sched/fair: Implement update_blocked_averages() for CONFIG_FAIR_GROUP_SCHED=n
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
3289bdb4 29extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 30extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
31
32#ifdef CONFIG_SMP
45ceebf7 33extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
34#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
45ceebf7 37
029632fb
PZ
38/*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
cc1f4b1f
LZ
43/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
029632fb
PZ
68#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
332ac17e
DF
71/*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
029632fb
PZ
78/*
79 * These are the 'tuning knobs' of the scheduler:
029632fb 80 */
029632fb
PZ
81
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
d50dde5a
DF
87static inline int fair_policy(int policy)
88{
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90}
91
029632fb
PZ
92static inline int rt_policy(int policy)
93{
d50dde5a 94 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
95}
96
aab03e05
DF
97static inline int dl_policy(int policy)
98{
99 return policy == SCHED_DEADLINE;
100}
101
029632fb
PZ
102static inline int task_has_rt_policy(struct task_struct *p)
103{
104 return rt_policy(p->policy);
105}
106
aab03e05
DF
107static inline int task_has_dl_policy(struct task_struct *p)
108{
109 return dl_policy(p->policy);
110}
111
332ac17e 112static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
113{
114 return (s64)(a - b) < 0;
115}
116
117/*
118 * Tells if entity @a should preempt entity @b.
119 */
332ac17e
DF
120static inline bool
121dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
122{
123 return dl_time_before(a->deadline, b->deadline);
124}
125
029632fb
PZ
126/*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132};
133
134struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
4cfafd30 140 unsigned int rt_period_active;
029632fb 141};
a5e7be3b
JL
142
143void __dl_clear_params(struct task_struct *p);
144
332ac17e
DF
145/*
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
150 *
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
156 *
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
158 * meaning that:
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
167 * control.
168 */
169struct dl_bandwidth {
170 raw_spinlock_t dl_runtime_lock;
171 u64 dl_runtime;
172 u64 dl_period;
173};
174
175static inline int dl_bandwidth_enabled(void)
176{
1724813d 177 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
178}
179
180extern struct dl_bw *dl_bw_of(int i);
181
182struct dl_bw {
183 raw_spinlock_t lock;
184 u64 bw, total_bw;
185};
186
7f51412a
JL
187static inline
188void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189{
190 dl_b->total_bw -= tsk_bw;
191}
192
193static inline
194void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195{
196 dl_b->total_bw += tsk_bw;
197}
198
199static inline
200bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201{
202 return dl_b->bw != -1 &&
203 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204}
205
029632fb
PZ
206extern struct mutex sched_domains_mutex;
207
208#ifdef CONFIG_CGROUP_SCHED
209
210#include <linux/cgroup.h>
211
212struct cfs_rq;
213struct rt_rq;
214
35cf4e50 215extern struct list_head task_groups;
029632fb
PZ
216
217struct cfs_bandwidth {
218#ifdef CONFIG_CFS_BANDWIDTH
219 raw_spinlock_t lock;
220 ktime_t period;
221 u64 quota, runtime;
9c58c79a 222 s64 hierarchical_quota;
029632fb
PZ
223 u64 runtime_expires;
224
4cfafd30 225 int idle, period_active;
029632fb
PZ
226 struct hrtimer period_timer, slack_timer;
227 struct list_head throttled_cfs_rq;
228
229 /* statistics */
230 int nr_periods, nr_throttled;
231 u64 throttled_time;
232#endif
233};
234
235/* task group related information */
236struct task_group {
237 struct cgroup_subsys_state css;
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity **se;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq **cfs_rq;
244 unsigned long shares;
245
fa6bddeb 246#ifdef CONFIG_SMP
bf5b986e 247 atomic_long_t load_avg;
029632fb 248#endif
fa6bddeb 249#endif
029632fb
PZ
250
251#ifdef CONFIG_RT_GROUP_SCHED
252 struct sched_rt_entity **rt_se;
253 struct rt_rq **rt_rq;
254
255 struct rt_bandwidth rt_bandwidth;
256#endif
257
258 struct rcu_head rcu;
259 struct list_head list;
260
261 struct task_group *parent;
262 struct list_head siblings;
263 struct list_head children;
264
265#ifdef CONFIG_SCHED_AUTOGROUP
266 struct autogroup *autogroup;
267#endif
268
269 struct cfs_bandwidth cfs_bandwidth;
270};
271
272#ifdef CONFIG_FAIR_GROUP_SCHED
273#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
274
275/*
276 * A weight of 0 or 1 can cause arithmetics problems.
277 * A weight of a cfs_rq is the sum of weights of which entities
278 * are queued on this cfs_rq, so a weight of a entity should not be
279 * too large, so as the shares value of a task group.
280 * (The default weight is 1024 - so there's no practical
281 * limitation from this.)
282 */
283#define MIN_SHARES (1UL << 1)
284#define MAX_SHARES (1UL << 18)
285#endif
286
029632fb
PZ
287typedef int (*tg_visitor)(struct task_group *, void *);
288
289extern int walk_tg_tree_from(struct task_group *from,
290 tg_visitor down, tg_visitor up, void *data);
291
292/*
293 * Iterate the full tree, calling @down when first entering a node and @up when
294 * leaving it for the final time.
295 *
296 * Caller must hold rcu_lock or sufficient equivalent.
297 */
298static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
299{
300 return walk_tg_tree_from(&root_task_group, down, up, data);
301}
302
303extern int tg_nop(struct task_group *tg, void *data);
304
305extern void free_fair_sched_group(struct task_group *tg);
306extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
307extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
308extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
309 struct sched_entity *se, int cpu,
310 struct sched_entity *parent);
311extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
312extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
313
314extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 315extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
316extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
317
318extern void free_rt_sched_group(struct task_group *tg);
319extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
320extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
321 struct sched_rt_entity *rt_se, int cpu,
322 struct sched_rt_entity *parent);
323
25cc7da7
LZ
324extern struct task_group *sched_create_group(struct task_group *parent);
325extern void sched_online_group(struct task_group *tg,
326 struct task_group *parent);
327extern void sched_destroy_group(struct task_group *tg);
328extern void sched_offline_group(struct task_group *tg);
329
330extern void sched_move_task(struct task_struct *tsk);
331
332#ifdef CONFIG_FAIR_GROUP_SCHED
333extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
334#endif
335
029632fb
PZ
336#else /* CONFIG_CGROUP_SCHED */
337
338struct cfs_bandwidth { };
339
340#endif /* CONFIG_CGROUP_SCHED */
341
342/* CFS-related fields in a runqueue */
343struct cfs_rq {
344 struct load_weight load;
c82513e5 345 unsigned int nr_running, h_nr_running;
029632fb
PZ
346
347 u64 exec_clock;
348 u64 min_vruntime;
349#ifndef CONFIG_64BIT
350 u64 min_vruntime_copy;
351#endif
352
353 struct rb_root tasks_timeline;
354 struct rb_node *rb_leftmost;
355
029632fb
PZ
356 /*
357 * 'curr' points to currently running entity on this cfs_rq.
358 * It is set to NULL otherwise (i.e when none are currently running).
359 */
360 struct sched_entity *curr, *next, *last, *skip;
361
362#ifdef CONFIG_SCHED_DEBUG
363 unsigned int nr_spread_over;
364#endif
365
2dac754e
PT
366#ifdef CONFIG_SMP
367 /*
9d89c257 368 * CFS load tracking
2dac754e 369 */
9d89c257 370 struct sched_avg avg;
c566e8e9 371#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
372 unsigned long tg_load_avg_contrib;
373#endif
374 atomic_long_t removed_load_avg, removed_util_avg;
375#ifndef CONFIG_64BIT
376 u64 load_last_update_time_copy;
377#endif
82958366 378
9d89c257 379#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
380 /*
381 * h_load = weight * f(tg)
382 *
383 * Where f(tg) is the recursive weight fraction assigned to
384 * this group.
385 */
386 unsigned long h_load;
68520796
VD
387 u64 last_h_load_update;
388 struct sched_entity *h_load_next;
389#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
390#endif /* CONFIG_SMP */
391
029632fb
PZ
392#ifdef CONFIG_FAIR_GROUP_SCHED
393 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
394
395 /*
396 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
397 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
398 * (like users, containers etc.)
399 *
400 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
401 * list is used during load balance.
402 */
403 int on_list;
404 struct list_head leaf_cfs_rq_list;
405 struct task_group *tg; /* group that "owns" this runqueue */
406
029632fb
PZ
407#ifdef CONFIG_CFS_BANDWIDTH
408 int runtime_enabled;
409 u64 runtime_expires;
410 s64 runtime_remaining;
411
f1b17280
PT
412 u64 throttled_clock, throttled_clock_task;
413 u64 throttled_clock_task_time;
029632fb
PZ
414 int throttled, throttle_count;
415 struct list_head throttled_list;
416#endif /* CONFIG_CFS_BANDWIDTH */
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418};
419
420static inline int rt_bandwidth_enabled(void)
421{
422 return sysctl_sched_rt_runtime >= 0;
423}
424
b6366f04
SR
425/* RT IPI pull logic requires IRQ_WORK */
426#ifdef CONFIG_IRQ_WORK
427# define HAVE_RT_PUSH_IPI
428#endif
429
029632fb
PZ
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
c82513e5 433 unsigned int rt_nr_running;
029632fb
PZ
434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
435 struct {
436 int curr; /* highest queued rt task prio */
437#ifdef CONFIG_SMP
438 int next; /* next highest */
439#endif
440 } highest_prio;
441#endif
442#ifdef CONFIG_SMP
443 unsigned long rt_nr_migratory;
444 unsigned long rt_nr_total;
445 int overloaded;
446 struct plist_head pushable_tasks;
b6366f04
SR
447#ifdef HAVE_RT_PUSH_IPI
448 int push_flags;
449 int push_cpu;
450 struct irq_work push_work;
451 raw_spinlock_t push_lock;
029632fb 452#endif
b6366f04 453#endif /* CONFIG_SMP */
f4ebcbc0
KT
454 int rt_queued;
455
029632fb
PZ
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 raw_spinlock_t rt_runtime_lock;
461
462#ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
464
465 struct rq *rq;
029632fb
PZ
466 struct task_group *tg;
467#endif
468};
469
aab03e05
DF
470/* Deadline class' related fields in a runqueue */
471struct dl_rq {
472 /* runqueue is an rbtree, ordered by deadline */
473 struct rb_root rb_root;
474 struct rb_node *rb_leftmost;
475
476 unsigned long dl_nr_running;
1baca4ce
JL
477
478#ifdef CONFIG_SMP
479 /*
480 * Deadline values of the currently executing and the
481 * earliest ready task on this rq. Caching these facilitates
482 * the decision wether or not a ready but not running task
483 * should migrate somewhere else.
484 */
485 struct {
486 u64 curr;
487 u64 next;
488 } earliest_dl;
489
490 unsigned long dl_nr_migratory;
1baca4ce
JL
491 int overloaded;
492
493 /*
494 * Tasks on this rq that can be pushed away. They are kept in
495 * an rb-tree, ordered by tasks' deadlines, with caching
496 * of the leftmost (earliest deadline) element.
497 */
498 struct rb_root pushable_dl_tasks_root;
499 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
500#else
501 struct dl_bw dl_bw;
1baca4ce 502#endif
aab03e05
DF
503};
504
029632fb
PZ
505#ifdef CONFIG_SMP
506
507/*
508 * We add the notion of a root-domain which will be used to define per-domain
509 * variables. Each exclusive cpuset essentially defines an island domain by
510 * fully partitioning the member cpus from any other cpuset. Whenever a new
511 * exclusive cpuset is created, we also create and attach a new root-domain
512 * object.
513 *
514 */
515struct root_domain {
516 atomic_t refcount;
517 atomic_t rto_count;
518 struct rcu_head rcu;
519 cpumask_var_t span;
520 cpumask_var_t online;
521
4486edd1
TC
522 /* Indicate more than one runnable task for any CPU */
523 bool overload;
524
1baca4ce
JL
525 /*
526 * The bit corresponding to a CPU gets set here if such CPU has more
527 * than one runnable -deadline task (as it is below for RT tasks).
528 */
529 cpumask_var_t dlo_mask;
530 atomic_t dlo_count;
332ac17e 531 struct dl_bw dl_bw;
6bfd6d72 532 struct cpudl cpudl;
1baca4ce 533
029632fb
PZ
534 /*
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
538 cpumask_var_t rto_mask;
539 struct cpupri cpupri;
540};
541
542extern struct root_domain def_root_domain;
543
544#endif /* CONFIG_SMP */
545
546/*
547 * This is the main, per-CPU runqueue data structure.
548 *
549 * Locking rule: those places that want to lock multiple runqueues
550 * (such as the load balancing or the thread migration code), lock
551 * acquire operations must be ordered by ascending &runqueue.
552 */
553struct rq {
554 /* runqueue lock: */
555 raw_spinlock_t lock;
556
557 /*
558 * nr_running and cpu_load should be in the same cacheline because
559 * remote CPUs use both these fields when doing load calculation.
560 */
c82513e5 561 unsigned int nr_running;
0ec8aa00
PZ
562#ifdef CONFIG_NUMA_BALANCING
563 unsigned int nr_numa_running;
564 unsigned int nr_preferred_running;
565#endif
029632fb
PZ
566 #define CPU_LOAD_IDX_MAX 5
567 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
568 unsigned long last_load_update_tick;
3451d024 569#ifdef CONFIG_NO_HZ_COMMON
029632fb 570 u64 nohz_stamp;
1c792db7 571 unsigned long nohz_flags;
265f22a9
FW
572#endif
573#ifdef CONFIG_NO_HZ_FULL
574 unsigned long last_sched_tick;
029632fb 575#endif
029632fb
PZ
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
582 struct rt_rq rt;
aab03e05 583 struct dl_rq dl;
029632fb
PZ
584
585#ifdef CONFIG_FAIR_GROUP_SCHED
586 /* list of leaf cfs_rq on this cpu: */
587 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
588#endif /* CONFIG_FAIR_GROUP_SCHED */
589
029632fb
PZ
590 /*
591 * This is part of a global counter where only the total sum
592 * over all CPUs matters. A task can increase this counter on
593 * one CPU and if it got migrated afterwards it may decrease
594 * it on another CPU. Always updated under the runqueue lock:
595 */
596 unsigned long nr_uninterruptible;
597
598 struct task_struct *curr, *idle, *stop;
599 unsigned long next_balance;
600 struct mm_struct *prev_mm;
601
9edfbfed 602 unsigned int clock_skip_update;
029632fb
PZ
603 u64 clock;
604 u64 clock_task;
605
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
609 struct root_domain *rd;
610 struct sched_domain *sd;
611
ced549fa 612 unsigned long cpu_capacity;
ca6d75e6 613 unsigned long cpu_capacity_orig;
029632fb 614
e3fca9e7
PZ
615 struct callback_head *balance_callback;
616
029632fb
PZ
617 unsigned char idle_balance;
618 /* For active balancing */
029632fb
PZ
619 int active_balance;
620 int push_cpu;
621 struct cpu_stop_work active_balance_work;
622 /* cpu of this runqueue: */
623 int cpu;
624 int online;
625
367456c7
PZ
626 struct list_head cfs_tasks;
627
029632fb
PZ
628 u64 rt_avg;
629 u64 age_stamp;
630 u64 idle_stamp;
631 u64 avg_idle;
9bd721c5
JL
632
633 /* This is used to determine avg_idle's max value */
634 u64 max_idle_balance_cost;
029632fb
PZ
635#endif
636
637#ifdef CONFIG_IRQ_TIME_ACCOUNTING
638 u64 prev_irq_time;
639#endif
640#ifdef CONFIG_PARAVIRT
641 u64 prev_steal_time;
642#endif
643#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
644 u64 prev_steal_time_rq;
645#endif
646
647 /* calc_load related fields */
648 unsigned long calc_load_update;
649 long calc_load_active;
650
651#ifdef CONFIG_SCHED_HRTICK
652#ifdef CONFIG_SMP
653 int hrtick_csd_pending;
654 struct call_single_data hrtick_csd;
655#endif
656 struct hrtimer hrtick_timer;
657#endif
658
659#ifdef CONFIG_SCHEDSTATS
660 /* latency stats */
661 struct sched_info rq_sched_info;
662 unsigned long long rq_cpu_time;
663 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
664
665 /* sys_sched_yield() stats */
666 unsigned int yld_count;
667
668 /* schedule() stats */
029632fb
PZ
669 unsigned int sched_count;
670 unsigned int sched_goidle;
671
672 /* try_to_wake_up() stats */
673 unsigned int ttwu_count;
674 unsigned int ttwu_local;
675#endif
676
677#ifdef CONFIG_SMP
678 struct llist_head wake_list;
679#endif
442bf3aa
DL
680
681#ifdef CONFIG_CPU_IDLE
682 /* Must be inspected within a rcu lock section */
683 struct cpuidle_state *idle_state;
684#endif
029632fb
PZ
685};
686
687static inline int cpu_of(struct rq *rq)
688{
689#ifdef CONFIG_SMP
690 return rq->cpu;
691#else
692 return 0;
693#endif
694}
695
8b06c55b 696DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 697
518cd623 698#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 699#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
700#define task_rq(p) cpu_rq(task_cpu(p))
701#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 702#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 703
cebde6d6
PZ
704static inline u64 __rq_clock_broken(struct rq *rq)
705{
316c1608 706 return READ_ONCE(rq->clock);
cebde6d6
PZ
707}
708
78becc27
FW
709static inline u64 rq_clock(struct rq *rq)
710{
cebde6d6 711 lockdep_assert_held(&rq->lock);
78becc27
FW
712 return rq->clock;
713}
714
715static inline u64 rq_clock_task(struct rq *rq)
716{
cebde6d6 717 lockdep_assert_held(&rq->lock);
78becc27
FW
718 return rq->clock_task;
719}
720
9edfbfed
PZ
721#define RQCF_REQ_SKIP 0x01
722#define RQCF_ACT_SKIP 0x02
723
724static inline void rq_clock_skip_update(struct rq *rq, bool skip)
725{
726 lockdep_assert_held(&rq->lock);
727 if (skip)
728 rq->clock_skip_update |= RQCF_REQ_SKIP;
729 else
730 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
731}
732
9942f79b 733#ifdef CONFIG_NUMA
e3fe70b1
RR
734enum numa_topology_type {
735 NUMA_DIRECT,
736 NUMA_GLUELESS_MESH,
737 NUMA_BACKPLANE,
738};
739extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
740extern int sched_max_numa_distance;
741extern bool find_numa_distance(int distance);
742#endif
743
f809ca9a 744#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
745/* The regions in numa_faults array from task_struct */
746enum numa_faults_stats {
747 NUMA_MEM = 0,
748 NUMA_CPU,
749 NUMA_MEMBUF,
750 NUMA_CPUBUF
751};
0ec8aa00 752extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 753extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 754extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
755#endif /* CONFIG_NUMA_BALANCING */
756
518cd623
PZ
757#ifdef CONFIG_SMP
758
e3fca9e7
PZ
759static inline void
760queue_balance_callback(struct rq *rq,
761 struct callback_head *head,
762 void (*func)(struct rq *rq))
763{
764 lockdep_assert_held(&rq->lock);
765
766 if (unlikely(head->next))
767 return;
768
769 head->func = (void (*)(struct callback_head *))func;
770 head->next = rq->balance_callback;
771 rq->balance_callback = head;
772}
773
e3baac47
PZ
774extern void sched_ttwu_pending(void);
775
029632fb
PZ
776#define rcu_dereference_check_sched_domain(p) \
777 rcu_dereference_check((p), \
778 lockdep_is_held(&sched_domains_mutex))
779
780/*
781 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
782 * See detach_destroy_domains: synchronize_sched for details.
783 *
784 * The domain tree of any CPU may only be accessed from within
785 * preempt-disabled sections.
786 */
787#define for_each_domain(cpu, __sd) \
518cd623
PZ
788 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
789 __sd; __sd = __sd->parent)
029632fb 790
77e81365
SS
791#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
792
518cd623
PZ
793/**
794 * highest_flag_domain - Return highest sched_domain containing flag.
795 * @cpu: The cpu whose highest level of sched domain is to
796 * be returned.
797 * @flag: The flag to check for the highest sched_domain
798 * for the given cpu.
799 *
800 * Returns the highest sched_domain of a cpu which contains the given flag.
801 */
802static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
803{
804 struct sched_domain *sd, *hsd = NULL;
805
806 for_each_domain(cpu, sd) {
807 if (!(sd->flags & flag))
808 break;
809 hsd = sd;
810 }
811
812 return hsd;
813}
814
fb13c7ee
MG
815static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
816{
817 struct sched_domain *sd;
818
819 for_each_domain(cpu, sd) {
820 if (sd->flags & flag)
821 break;
822 }
823
824 return sd;
825}
826
518cd623 827DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 828DECLARE_PER_CPU(int, sd_llc_size);
518cd623 829DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 830DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
831DECLARE_PER_CPU(struct sched_domain *, sd_busy);
832DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 833
63b2ca30 834struct sched_group_capacity {
5e6521ea
LZ
835 atomic_t ref;
836 /*
63b2ca30
NP
837 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
838 * for a single CPU.
5e6521ea 839 */
dc7ff76e 840 unsigned int capacity;
5e6521ea 841 unsigned long next_update;
63b2ca30 842 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
843 /*
844 * Number of busy cpus in this group.
845 */
846 atomic_t nr_busy_cpus;
847
848 unsigned long cpumask[0]; /* iteration mask */
849};
850
851struct sched_group {
852 struct sched_group *next; /* Must be a circular list */
853 atomic_t ref;
854
855 unsigned int group_weight;
63b2ca30 856 struct sched_group_capacity *sgc;
5e6521ea
LZ
857
858 /*
859 * The CPUs this group covers.
860 *
861 * NOTE: this field is variable length. (Allocated dynamically
862 * by attaching extra space to the end of the structure,
863 * depending on how many CPUs the kernel has booted up with)
864 */
865 unsigned long cpumask[0];
866};
867
868static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
869{
870 return to_cpumask(sg->cpumask);
871}
872
873/*
874 * cpumask masking which cpus in the group are allowed to iterate up the domain
875 * tree.
876 */
877static inline struct cpumask *sched_group_mask(struct sched_group *sg)
878{
63b2ca30 879 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
880}
881
882/**
883 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
884 * @group: The group whose first cpu is to be returned.
885 */
886static inline unsigned int group_first_cpu(struct sched_group *group)
887{
888 return cpumask_first(sched_group_cpus(group));
889}
890
c1174876
PZ
891extern int group_balance_cpu(struct sched_group *sg);
892
e3baac47
PZ
893#else
894
895static inline void sched_ttwu_pending(void) { }
896
518cd623 897#endif /* CONFIG_SMP */
029632fb 898
391e43da
PZ
899#include "stats.h"
900#include "auto_group.h"
029632fb
PZ
901
902#ifdef CONFIG_CGROUP_SCHED
903
904/*
905 * Return the group to which this tasks belongs.
906 *
8af01f56
TH
907 * We cannot use task_css() and friends because the cgroup subsystem
908 * changes that value before the cgroup_subsys::attach() method is called,
909 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
910 *
911 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
912 * core changes this before calling sched_move_task().
913 *
914 * Instead we use a 'copy' which is updated from sched_move_task() while
915 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
916 */
917static inline struct task_group *task_group(struct task_struct *p)
918{
8323f26c 919 return p->sched_task_group;
029632fb
PZ
920}
921
922/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
923static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
924{
925#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
926 struct task_group *tg = task_group(p);
927#endif
928
929#ifdef CONFIG_FAIR_GROUP_SCHED
930 p->se.cfs_rq = tg->cfs_rq[cpu];
931 p->se.parent = tg->se[cpu];
932#endif
933
934#ifdef CONFIG_RT_GROUP_SCHED
935 p->rt.rt_rq = tg->rt_rq[cpu];
936 p->rt.parent = tg->rt_se[cpu];
937#endif
938}
939
940#else /* CONFIG_CGROUP_SCHED */
941
942static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
943static inline struct task_group *task_group(struct task_struct *p)
944{
945 return NULL;
946}
947
948#endif /* CONFIG_CGROUP_SCHED */
949
950static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
951{
952 set_task_rq(p, cpu);
953#ifdef CONFIG_SMP
954 /*
955 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
956 * successfuly executed on another CPU. We must ensure that updates of
957 * per-task data have been completed by this moment.
958 */
959 smp_wmb();
960 task_thread_info(p)->cpu = cpu;
ac66f547 961 p->wake_cpu = cpu;
029632fb
PZ
962#endif
963}
964
965/*
966 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
967 */
968#ifdef CONFIG_SCHED_DEBUG
c5905afb 969# include <linux/static_key.h>
029632fb
PZ
970# define const_debug __read_mostly
971#else
972# define const_debug const
973#endif
974
975extern const_debug unsigned int sysctl_sched_features;
976
977#define SCHED_FEAT(name, enabled) \
978 __SCHED_FEAT_##name ,
979
980enum {
391e43da 981#include "features.h"
f8b6d1cc 982 __SCHED_FEAT_NR,
029632fb
PZ
983};
984
985#undef SCHED_FEAT
986
f8b6d1cc 987#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 988#define SCHED_FEAT(name, enabled) \
c5905afb 989static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 990{ \
6e76ea8a 991 return static_key_##enabled(key); \
f8b6d1cc
PZ
992}
993
994#include "features.h"
995
996#undef SCHED_FEAT
997
c5905afb 998extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
999#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1000#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1001#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1002#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1003
cbee9f88
PZ
1004#ifdef CONFIG_NUMA_BALANCING
1005#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
1006#ifdef CONFIG_SCHED_DEBUG
1007#define numabalancing_enabled sched_feat_numa(NUMA)
1008#else
1009extern bool numabalancing_enabled;
1010#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
1011#else
1012#define sched_feat_numa(x) (0)
3105b86a
MG
1013#define numabalancing_enabled (0)
1014#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 1015
029632fb
PZ
1016static inline u64 global_rt_period(void)
1017{
1018 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1019}
1020
1021static inline u64 global_rt_runtime(void)
1022{
1023 if (sysctl_sched_rt_runtime < 0)
1024 return RUNTIME_INF;
1025
1026 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1027}
1028
029632fb
PZ
1029static inline int task_current(struct rq *rq, struct task_struct *p)
1030{
1031 return rq->curr == p;
1032}
1033
1034static inline int task_running(struct rq *rq, struct task_struct *p)
1035{
1036#ifdef CONFIG_SMP
1037 return p->on_cpu;
1038#else
1039 return task_current(rq, p);
1040#endif
1041}
1042
da0c1e65
KT
1043static inline int task_on_rq_queued(struct task_struct *p)
1044{
1045 return p->on_rq == TASK_ON_RQ_QUEUED;
1046}
029632fb 1047
cca26e80
KT
1048static inline int task_on_rq_migrating(struct task_struct *p)
1049{
1050 return p->on_rq == TASK_ON_RQ_MIGRATING;
1051}
1052
029632fb
PZ
1053#ifndef prepare_arch_switch
1054# define prepare_arch_switch(next) do { } while (0)
1055#endif
1056#ifndef finish_arch_switch
1057# define finish_arch_switch(prev) do { } while (0)
1058#endif
01f23e16
CM
1059#ifndef finish_arch_post_lock_switch
1060# define finish_arch_post_lock_switch() do { } while (0)
1061#endif
029632fb 1062
029632fb
PZ
1063static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1064{
1065#ifdef CONFIG_SMP
1066 /*
1067 * We can optimise this out completely for !SMP, because the
1068 * SMP rebalancing from interrupt is the only thing that cares
1069 * here.
1070 */
1071 next->on_cpu = 1;
1072#endif
1073}
1074
1075static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1076{
1077#ifdef CONFIG_SMP
1078 /*
1079 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1080 * We must ensure this doesn't happen until the switch is completely
1081 * finished.
1082 */
1083 smp_wmb();
1084 prev->on_cpu = 0;
1085#endif
1086#ifdef CONFIG_DEBUG_SPINLOCK
1087 /* this is a valid case when another task releases the spinlock */
1088 rq->lock.owner = current;
1089#endif
1090 /*
1091 * If we are tracking spinlock dependencies then we have to
1092 * fix up the runqueue lock - which gets 'carried over' from
1093 * prev into current:
1094 */
1095 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1096
1097 raw_spin_unlock_irq(&rq->lock);
1098}
1099
b13095f0
LZ
1100/*
1101 * wake flags
1102 */
1103#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1104#define WF_FORK 0x02 /* child wakeup after fork */
1105#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1106
029632fb
PZ
1107/*
1108 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1109 * of tasks with abnormal "nice" values across CPUs the contribution that
1110 * each task makes to its run queue's load is weighted according to its
1111 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1112 * scaled version of the new time slice allocation that they receive on time
1113 * slice expiry etc.
1114 */
1115
1116#define WEIGHT_IDLEPRIO 3
1117#define WMULT_IDLEPRIO 1431655765
1118
1119/*
1120 * Nice levels are multiplicative, with a gentle 10% change for every
1121 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1122 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1123 * that remained on nice 0.
1124 *
1125 * The "10% effect" is relative and cumulative: from _any_ nice level,
1126 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1127 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1128 * If a task goes up by ~10% and another task goes down by ~10% then
1129 * the relative distance between them is ~25%.)
1130 */
1131static const int prio_to_weight[40] = {
1132 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1133 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1134 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1135 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1136 /* 0 */ 1024, 820, 655, 526, 423,
1137 /* 5 */ 335, 272, 215, 172, 137,
1138 /* 10 */ 110, 87, 70, 56, 45,
1139 /* 15 */ 36, 29, 23, 18, 15,
1140};
1141
1142/*
1143 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1144 *
1145 * In cases where the weight does not change often, we can use the
1146 * precalculated inverse to speed up arithmetics by turning divisions
1147 * into multiplications:
1148 */
1149static const u32 prio_to_wmult[40] = {
1150 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1151 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1152 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1153 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1154 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1155 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1156 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1157 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1158};
1159
c82ba9fa
LZ
1160#define ENQUEUE_WAKEUP 1
1161#define ENQUEUE_HEAD 2
1162#ifdef CONFIG_SMP
1163#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1164#else
1165#define ENQUEUE_WAKING 0
1166#endif
aab03e05 1167#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1168
1169#define DEQUEUE_SLEEP 1
1170
37e117c0
PZ
1171#define RETRY_TASK ((void *)-1UL)
1172
c82ba9fa
LZ
1173struct sched_class {
1174 const struct sched_class *next;
1175
1176 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1177 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1178 void (*yield_task) (struct rq *rq);
1179 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1180
1181 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1182
606dba2e
PZ
1183 /*
1184 * It is the responsibility of the pick_next_task() method that will
1185 * return the next task to call put_prev_task() on the @prev task or
1186 * something equivalent.
37e117c0
PZ
1187 *
1188 * May return RETRY_TASK when it finds a higher prio class has runnable
1189 * tasks.
606dba2e
PZ
1190 */
1191 struct task_struct * (*pick_next_task) (struct rq *rq,
1192 struct task_struct *prev);
c82ba9fa
LZ
1193 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1194
1195#ifdef CONFIG_SMP
ac66f547 1196 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1197 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1198
c82ba9fa
LZ
1199 void (*task_waking) (struct task_struct *task);
1200 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1201
1202 void (*set_cpus_allowed)(struct task_struct *p,
1203 const struct cpumask *newmask);
1204
1205 void (*rq_online)(struct rq *rq);
1206 void (*rq_offline)(struct rq *rq);
1207#endif
1208
1209 void (*set_curr_task) (struct rq *rq);
1210 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1211 void (*task_fork) (struct task_struct *p);
e6c390f2 1212 void (*task_dead) (struct task_struct *p);
c82ba9fa 1213
67dfa1b7
KT
1214 /*
1215 * The switched_from() call is allowed to drop rq->lock, therefore we
1216 * cannot assume the switched_from/switched_to pair is serliazed by
1217 * rq->lock. They are however serialized by p->pi_lock.
1218 */
c82ba9fa
LZ
1219 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1220 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1221 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1222 int oldprio);
1223
1224 unsigned int (*get_rr_interval) (struct rq *rq,
1225 struct task_struct *task);
1226
6e998916
SG
1227 void (*update_curr) (struct rq *rq);
1228
c82ba9fa
LZ
1229#ifdef CONFIG_FAIR_GROUP_SCHED
1230 void (*task_move_group) (struct task_struct *p, int on_rq);
1231#endif
1232};
029632fb 1233
3f1d2a31
PZ
1234static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1235{
1236 prev->sched_class->put_prev_task(rq, prev);
1237}
1238
029632fb
PZ
1239#define sched_class_highest (&stop_sched_class)
1240#define for_each_class(class) \
1241 for (class = sched_class_highest; class; class = class->next)
1242
1243extern const struct sched_class stop_sched_class;
aab03e05 1244extern const struct sched_class dl_sched_class;
029632fb
PZ
1245extern const struct sched_class rt_sched_class;
1246extern const struct sched_class fair_sched_class;
1247extern const struct sched_class idle_sched_class;
1248
1249
1250#ifdef CONFIG_SMP
1251
63b2ca30 1252extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1253
7caff66f 1254extern void trigger_load_balance(struct rq *rq);
029632fb 1255
642dbc39
VG
1256extern void idle_enter_fair(struct rq *this_rq);
1257extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1258
dc877341
PZ
1259#else
1260
1261static inline void idle_enter_fair(struct rq *rq) { }
1262static inline void idle_exit_fair(struct rq *rq) { }
1263
029632fb
PZ
1264#endif
1265
442bf3aa
DL
1266#ifdef CONFIG_CPU_IDLE
1267static inline void idle_set_state(struct rq *rq,
1268 struct cpuidle_state *idle_state)
1269{
1270 rq->idle_state = idle_state;
1271}
1272
1273static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1274{
1275 WARN_ON(!rcu_read_lock_held());
1276 return rq->idle_state;
1277}
1278#else
1279static inline void idle_set_state(struct rq *rq,
1280 struct cpuidle_state *idle_state)
1281{
1282}
1283
1284static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1285{
1286 return NULL;
1287}
1288#endif
1289
029632fb
PZ
1290extern void sysrq_sched_debug_show(void);
1291extern void sched_init_granularity(void);
1292extern void update_max_interval(void);
1baca4ce
JL
1293
1294extern void init_sched_dl_class(void);
029632fb
PZ
1295extern void init_sched_rt_class(void);
1296extern void init_sched_fair_class(void);
1297
8875125e 1298extern void resched_curr(struct rq *rq);
029632fb
PZ
1299extern void resched_cpu(int cpu);
1300
1301extern struct rt_bandwidth def_rt_bandwidth;
1302extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1303
332ac17e
DF
1304extern struct dl_bandwidth def_dl_bandwidth;
1305extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1306extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1307
332ac17e
DF
1308unsigned long to_ratio(u64 period, u64 runtime);
1309
a75cdaa9
AS
1310extern void init_task_runnable_average(struct task_struct *p);
1311
72465447 1312static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1313{
72465447
KT
1314 unsigned prev_nr = rq->nr_running;
1315
1316 rq->nr_running = prev_nr + count;
9f3660c2 1317
72465447 1318 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1319#ifdef CONFIG_SMP
1320 if (!rq->rd->overload)
1321 rq->rd->overload = true;
1322#endif
1323
1324#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1325 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1326 /*
1327 * Tick is needed if more than one task runs on a CPU.
1328 * Send the target an IPI to kick it out of nohz mode.
1329 *
1330 * We assume that IPI implies full memory barrier and the
1331 * new value of rq->nr_running is visible on reception
1332 * from the target.
1333 */
fd2ac4f4 1334 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1335 }
9f3660c2 1336#endif
4486edd1 1337 }
029632fb
PZ
1338}
1339
72465447 1340static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1341{
72465447 1342 rq->nr_running -= count;
029632fb
PZ
1343}
1344
265f22a9
FW
1345static inline void rq_last_tick_reset(struct rq *rq)
1346{
1347#ifdef CONFIG_NO_HZ_FULL
1348 rq->last_sched_tick = jiffies;
1349#endif
1350}
1351
029632fb
PZ
1352extern void update_rq_clock(struct rq *rq);
1353
1354extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1355extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1356
1357extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1358
1359extern const_debug unsigned int sysctl_sched_time_avg;
1360extern const_debug unsigned int sysctl_sched_nr_migrate;
1361extern const_debug unsigned int sysctl_sched_migration_cost;
1362
1363static inline u64 sched_avg_period(void)
1364{
1365 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1366}
1367
029632fb
PZ
1368#ifdef CONFIG_SCHED_HRTICK
1369
1370/*
1371 * Use hrtick when:
1372 * - enabled by features
1373 * - hrtimer is actually high res
1374 */
1375static inline int hrtick_enabled(struct rq *rq)
1376{
1377 if (!sched_feat(HRTICK))
1378 return 0;
1379 if (!cpu_active(cpu_of(rq)))
1380 return 0;
1381 return hrtimer_is_hres_active(&rq->hrtick_timer);
1382}
1383
1384void hrtick_start(struct rq *rq, u64 delay);
1385
b39e66ea
MG
1386#else
1387
1388static inline int hrtick_enabled(struct rq *rq)
1389{
1390 return 0;
1391}
1392
029632fb
PZ
1393#endif /* CONFIG_SCHED_HRTICK */
1394
1395#ifdef CONFIG_SMP
1396extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1397
1398#ifndef arch_scale_freq_capacity
1399static __always_inline
1400unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1401{
1402 return SCHED_CAPACITY_SCALE;
1403}
1404#endif
b5b4860d 1405
029632fb
PZ
1406static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1407{
b5b4860d 1408 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1409 sched_avg_update(rq);
1410}
1411#else
1412static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1413static inline void sched_avg_update(struct rq *rq) { }
1414#endif
1415
3960c8c0
PZ
1416/*
1417 * __task_rq_lock - lock the rq @p resides on.
1418 */
1419static inline struct rq *__task_rq_lock(struct task_struct *p)
1420 __acquires(rq->lock)
1421{
1422 struct rq *rq;
1423
1424 lockdep_assert_held(&p->pi_lock);
1425
1426 for (;;) {
1427 rq = task_rq(p);
1428 raw_spin_lock(&rq->lock);
cbce1a68
PZ
1429 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1430 lockdep_pin_lock(&rq->lock);
3960c8c0 1431 return rq;
cbce1a68 1432 }
3960c8c0
PZ
1433 raw_spin_unlock(&rq->lock);
1434
1435 while (unlikely(task_on_rq_migrating(p)))
1436 cpu_relax();
1437 }
1438}
1439
1440/*
1441 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1442 */
1443static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1444 __acquires(p->pi_lock)
1445 __acquires(rq->lock)
1446{
1447 struct rq *rq;
1448
1449 for (;;) {
1450 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1451 rq = task_rq(p);
1452 raw_spin_lock(&rq->lock);
1453 /*
1454 * move_queued_task() task_rq_lock()
1455 *
1456 * ACQUIRE (rq->lock)
1457 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1458 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1459 * [S] ->cpu = new_cpu [L] task_rq()
1460 * [L] ->on_rq
1461 * RELEASE (rq->lock)
1462 *
1463 * If we observe the old cpu in task_rq_lock, the acquire of
1464 * the old rq->lock will fully serialize against the stores.
1465 *
1466 * If we observe the new cpu in task_rq_lock, the acquire will
1467 * pair with the WMB to ensure we must then also see migrating.
1468 */
cbce1a68
PZ
1469 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1470 lockdep_pin_lock(&rq->lock);
3960c8c0 1471 return rq;
cbce1a68 1472 }
3960c8c0
PZ
1473 raw_spin_unlock(&rq->lock);
1474 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1475
1476 while (unlikely(task_on_rq_migrating(p)))
1477 cpu_relax();
1478 }
1479}
1480
1481static inline void __task_rq_unlock(struct rq *rq)
1482 __releases(rq->lock)
1483{
cbce1a68 1484 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1485 raw_spin_unlock(&rq->lock);
1486}
1487
1488static inline void
1489task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1490 __releases(rq->lock)
1491 __releases(p->pi_lock)
1492{
cbce1a68 1493 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1494 raw_spin_unlock(&rq->lock);
1495 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1496}
1497
029632fb
PZ
1498#ifdef CONFIG_SMP
1499#ifdef CONFIG_PREEMPT
1500
1501static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1502
1503/*
1504 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1505 * way at the expense of forcing extra atomic operations in all
1506 * invocations. This assures that the double_lock is acquired using the
1507 * same underlying policy as the spinlock_t on this architecture, which
1508 * reduces latency compared to the unfair variant below. However, it
1509 * also adds more overhead and therefore may reduce throughput.
1510 */
1511static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1512 __releases(this_rq->lock)
1513 __acquires(busiest->lock)
1514 __acquires(this_rq->lock)
1515{
1516 raw_spin_unlock(&this_rq->lock);
1517 double_rq_lock(this_rq, busiest);
1518
1519 return 1;
1520}
1521
1522#else
1523/*
1524 * Unfair double_lock_balance: Optimizes throughput at the expense of
1525 * latency by eliminating extra atomic operations when the locks are
1526 * already in proper order on entry. This favors lower cpu-ids and will
1527 * grant the double lock to lower cpus over higher ids under contention,
1528 * regardless of entry order into the function.
1529 */
1530static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1531 __releases(this_rq->lock)
1532 __acquires(busiest->lock)
1533 __acquires(this_rq->lock)
1534{
1535 int ret = 0;
1536
1537 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1538 if (busiest < this_rq) {
1539 raw_spin_unlock(&this_rq->lock);
1540 raw_spin_lock(&busiest->lock);
1541 raw_spin_lock_nested(&this_rq->lock,
1542 SINGLE_DEPTH_NESTING);
1543 ret = 1;
1544 } else
1545 raw_spin_lock_nested(&busiest->lock,
1546 SINGLE_DEPTH_NESTING);
1547 }
1548 return ret;
1549}
1550
1551#endif /* CONFIG_PREEMPT */
1552
1553/*
1554 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1555 */
1556static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1557{
1558 if (unlikely(!irqs_disabled())) {
1559 /* printk() doesn't work good under rq->lock */
1560 raw_spin_unlock(&this_rq->lock);
1561 BUG_ON(1);
1562 }
1563
1564 return _double_lock_balance(this_rq, busiest);
1565}
1566
1567static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1568 __releases(busiest->lock)
1569{
1570 raw_spin_unlock(&busiest->lock);
1571 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1572}
1573
74602315
PZ
1574static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1575{
1576 if (l1 > l2)
1577 swap(l1, l2);
1578
1579 spin_lock(l1);
1580 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1581}
1582
60e69eed
MG
1583static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1584{
1585 if (l1 > l2)
1586 swap(l1, l2);
1587
1588 spin_lock_irq(l1);
1589 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590}
1591
74602315
PZ
1592static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1593{
1594 if (l1 > l2)
1595 swap(l1, l2);
1596
1597 raw_spin_lock(l1);
1598 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1599}
1600
029632fb
PZ
1601/*
1602 * double_rq_lock - safely lock two runqueues
1603 *
1604 * Note this does not disable interrupts like task_rq_lock,
1605 * you need to do so manually before calling.
1606 */
1607static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1608 __acquires(rq1->lock)
1609 __acquires(rq2->lock)
1610{
1611 BUG_ON(!irqs_disabled());
1612 if (rq1 == rq2) {
1613 raw_spin_lock(&rq1->lock);
1614 __acquire(rq2->lock); /* Fake it out ;) */
1615 } else {
1616 if (rq1 < rq2) {
1617 raw_spin_lock(&rq1->lock);
1618 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1619 } else {
1620 raw_spin_lock(&rq2->lock);
1621 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1622 }
1623 }
1624}
1625
1626/*
1627 * double_rq_unlock - safely unlock two runqueues
1628 *
1629 * Note this does not restore interrupts like task_rq_unlock,
1630 * you need to do so manually after calling.
1631 */
1632static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1633 __releases(rq1->lock)
1634 __releases(rq2->lock)
1635{
1636 raw_spin_unlock(&rq1->lock);
1637 if (rq1 != rq2)
1638 raw_spin_unlock(&rq2->lock);
1639 else
1640 __release(rq2->lock);
1641}
1642
1643#else /* CONFIG_SMP */
1644
1645/*
1646 * double_rq_lock - safely lock two runqueues
1647 *
1648 * Note this does not disable interrupts like task_rq_lock,
1649 * you need to do so manually before calling.
1650 */
1651static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1652 __acquires(rq1->lock)
1653 __acquires(rq2->lock)
1654{
1655 BUG_ON(!irqs_disabled());
1656 BUG_ON(rq1 != rq2);
1657 raw_spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659}
1660
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668 __releases(rq1->lock)
1669 __releases(rq2->lock)
1670{
1671 BUG_ON(rq1 != rq2);
1672 raw_spin_unlock(&rq1->lock);
1673 __release(rq2->lock);
1674}
1675
1676#endif
1677
1678extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1679extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1680
1681#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1682extern void print_cfs_stats(struct seq_file *m, int cpu);
1683extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1684extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1685extern void
1686print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1687
1688#ifdef CONFIG_NUMA_BALANCING
1689extern void
1690show_numa_stats(struct task_struct *p, struct seq_file *m);
1691extern void
1692print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1693 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1694#endif /* CONFIG_NUMA_BALANCING */
1695#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1696
1697extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1698extern void init_rt_rq(struct rt_rq *rt_rq);
1699extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1700
1ee14e6c
BS
1701extern void cfs_bandwidth_usage_inc(void);
1702extern void cfs_bandwidth_usage_dec(void);
1c792db7 1703
3451d024 1704#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1705enum rq_nohz_flag_bits {
1706 NOHZ_TICK_STOPPED,
1707 NOHZ_BALANCE_KICK,
1708};
1709
1710#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1711#endif
73fbec60
FW
1712
1713#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1714
1715DECLARE_PER_CPU(u64, cpu_hardirq_time);
1716DECLARE_PER_CPU(u64, cpu_softirq_time);
1717
1718#ifndef CONFIG_64BIT
1719DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1720
1721static inline void irq_time_write_begin(void)
1722{
1723 __this_cpu_inc(irq_time_seq.sequence);
1724 smp_wmb();
1725}
1726
1727static inline void irq_time_write_end(void)
1728{
1729 smp_wmb();
1730 __this_cpu_inc(irq_time_seq.sequence);
1731}
1732
1733static inline u64 irq_time_read(int cpu)
1734{
1735 u64 irq_time;
1736 unsigned seq;
1737
1738 do {
1739 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1740 irq_time = per_cpu(cpu_softirq_time, cpu) +
1741 per_cpu(cpu_hardirq_time, cpu);
1742 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1743
1744 return irq_time;
1745}
1746#else /* CONFIG_64BIT */
1747static inline void irq_time_write_begin(void)
1748{
1749}
1750
1751static inline void irq_time_write_end(void)
1752{
1753}
1754
1755static inline u64 irq_time_read(int cpu)
1756{
1757 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1758}
1759#endif /* CONFIG_64BIT */
1760#endif /* CONFIG_IRQ_TIME_ACCOUNTING */