cpufreq / sched: Pass flags to cpufreq_update_util()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
3866e845 6#include <linux/binfmts.h>
029632fb
PZ
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
b6366f04 10#include <linux/irq_work.h>
9f3660c2 11#include <linux/tick.h>
f809ca9a 12#include <linux/slab.h>
029632fb 13
391e43da 14#include "cpupri.h"
6bfd6d72 15#include "cpudeadline.h"
60fed789 16#include "cpuacct.h"
029632fb 17
45ceebf7 18struct rq;
442bf3aa 19struct cpuidle_state;
45ceebf7 20
da0c1e65
KT
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
cca26e80 23#define TASK_ON_RQ_MIGRATING 2
da0c1e65 24
029632fb
PZ
25extern __read_mostly int scheduler_running;
26
45ceebf7
PG
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
3289bdb4 30extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 31extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
32
33#ifdef CONFIG_SMP
cee1afce 34extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 35#else
cee1afce 36static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 37#endif
45ceebf7 38
029632fb
PZ
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
cc1f4b1f
LZ
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 57 */
2159197d 58#ifdef CONFIG_64BIT
172895e6 59# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
60# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 62#else
172895e6 63# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
6ecdd749 68/*
172895e6
YD
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
6ecdd749 76 */
172895e6 77#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 78
332ac17e
DF
79/*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84#define DL_SCALE (10)
85
029632fb
PZ
86/*
87 * These are the 'tuning knobs' of the scheduler:
029632fb 88 */
029632fb
PZ
89
90/*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93#define RUNTIME_INF ((u64)~0ULL)
94
20f9cd2a
HA
95static inline int idle_policy(int policy)
96{
97 return policy == SCHED_IDLE;
98}
d50dde5a
DF
99static inline int fair_policy(int policy)
100{
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102}
103
029632fb
PZ
104static inline int rt_policy(int policy)
105{
d50dde5a 106 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
107}
108
aab03e05
DF
109static inline int dl_policy(int policy)
110{
111 return policy == SCHED_DEADLINE;
112}
20f9cd2a
HA
113static inline bool valid_policy(int policy)
114{
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117}
aab03e05 118
029632fb
PZ
119static inline int task_has_rt_policy(struct task_struct *p)
120{
121 return rt_policy(p->policy);
122}
123
aab03e05
DF
124static inline int task_has_dl_policy(struct task_struct *p)
125{
126 return dl_policy(p->policy);
127}
128
2d3d891d
DF
129/*
130 * Tells if entity @a should preempt entity @b.
131 */
332ac17e
DF
132static inline bool
133dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
134{
135 return dl_time_before(a->deadline, b->deadline);
136}
137
029632fb
PZ
138/*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
146struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
4cfafd30 152 unsigned int rt_period_active;
029632fb 153};
a5e7be3b
JL
154
155void __dl_clear_params(struct task_struct *p);
156
332ac17e
DF
157/*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185};
186
187static inline int dl_bandwidth_enabled(void)
188{
1724813d 189 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
190}
191
192extern struct dl_bw *dl_bw_of(int i);
193
194struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197};
198
7f51412a
JL
199static inline
200void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201{
202 dl_b->total_bw -= tsk_bw;
203}
204
205static inline
206void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207{
208 dl_b->total_bw += tsk_bw;
209}
210
211static inline
212bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213{
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216}
217
029632fb
PZ
218extern struct mutex sched_domains_mutex;
219
220#ifdef CONFIG_CGROUP_SCHED
221
222#include <linux/cgroup.h>
223
224struct cfs_rq;
225struct rt_rq;
226
35cf4e50 227extern struct list_head task_groups;
029632fb
PZ
228
229struct cfs_bandwidth {
230#ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
9c58c79a 234 s64 hierarchical_quota;
029632fb
PZ
235 u64 runtime_expires;
236
4cfafd30 237 int idle, period_active;
029632fb
PZ
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244#endif
245};
246
247/* task group related information */
248struct task_group {
249 struct cgroup_subsys_state css;
250
251#ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
fa6bddeb 258#ifdef CONFIG_SMP
b0367629
WL
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
029632fb 265#endif
fa6bddeb 266#endif
029632fb
PZ
267
268#ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273#endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282#ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284#endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287};
288
289#ifdef CONFIG_FAIR_GROUP_SCHED
290#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292/*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300#define MIN_SHARES (1UL << 1)
301#define MAX_SHARES (1UL << 18)
302#endif
303
029632fb
PZ
304typedef int (*tg_visitor)(struct task_group *, void *);
305
306extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309/*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316{
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318}
319
320extern int tg_nop(struct task_group *tg, void *data);
321
322extern void free_fair_sched_group(struct task_group *tg);
323extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 324extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 325extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
326extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 struct sched_entity *se, int cpu,
328 struct sched_entity *parent);
329extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
330
331extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 332extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
333extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334
335extern void free_rt_sched_group(struct task_group *tg);
336extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 struct sched_rt_entity *rt_se, int cpu,
339 struct sched_rt_entity *parent);
340
25cc7da7
LZ
341extern struct task_group *sched_create_group(struct task_group *parent);
342extern void sched_online_group(struct task_group *tg,
343 struct task_group *parent);
344extern void sched_destroy_group(struct task_group *tg);
345extern void sched_offline_group(struct task_group *tg);
346
347extern void sched_move_task(struct task_struct *tsk);
348
349#ifdef CONFIG_FAIR_GROUP_SCHED
350extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
351
352#ifdef CONFIG_SMP
353extern void set_task_rq_fair(struct sched_entity *se,
354 struct cfs_rq *prev, struct cfs_rq *next);
355#else /* !CONFIG_SMP */
356static inline void set_task_rq_fair(struct sched_entity *se,
357 struct cfs_rq *prev, struct cfs_rq *next) { }
358#endif /* CONFIG_SMP */
359#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 360
029632fb
PZ
361#else /* CONFIG_CGROUP_SCHED */
362
363struct cfs_bandwidth { };
364
365#endif /* CONFIG_CGROUP_SCHED */
366
367/* CFS-related fields in a runqueue */
368struct cfs_rq {
369 struct load_weight load;
c82513e5 370 unsigned int nr_running, h_nr_running;
029632fb
PZ
371
372 u64 exec_clock;
373 u64 min_vruntime;
374#ifndef CONFIG_64BIT
375 u64 min_vruntime_copy;
376#endif
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
029632fb
PZ
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next, *last, *skip;
386
387#ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over;
389#endif
390
2dac754e
PT
391#ifdef CONFIG_SMP
392 /*
9d89c257 393 * CFS load tracking
2dac754e 394 */
9d89c257 395 struct sched_avg avg;
13962234
YD
396 u64 runnable_load_sum;
397 unsigned long runnable_load_avg;
c566e8e9 398#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
399 unsigned long tg_load_avg_contrib;
400#endif
401 atomic_long_t removed_load_avg, removed_util_avg;
402#ifndef CONFIG_64BIT
403 u64 load_last_update_time_copy;
404#endif
82958366 405
9d89c257 406#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
407 /*
408 * h_load = weight * f(tg)
409 *
410 * Where f(tg) is the recursive weight fraction assigned to
411 * this group.
412 */
413 unsigned long h_load;
68520796
VD
414 u64 last_h_load_update;
415 struct sched_entity *h_load_next;
416#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
417#endif /* CONFIG_SMP */
418
029632fb
PZ
419#ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
421
422 /*
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
426 *
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
429 */
430 int on_list;
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
029632fb
PZ
434#ifdef CONFIG_CFS_BANDWIDTH
435 int runtime_enabled;
436 u64 runtime_expires;
437 s64 runtime_remaining;
438
f1b17280
PT
439 u64 throttled_clock, throttled_clock_task;
440 u64 throttled_clock_task_time;
55e16d30 441 int throttled, throttle_count;
029632fb
PZ
442 struct list_head throttled_list;
443#endif /* CONFIG_CFS_BANDWIDTH */
444#endif /* CONFIG_FAIR_GROUP_SCHED */
445};
446
447static inline int rt_bandwidth_enabled(void)
448{
449 return sysctl_sched_rt_runtime >= 0;
450}
451
b6366f04
SR
452/* RT IPI pull logic requires IRQ_WORK */
453#ifdef CONFIG_IRQ_WORK
454# define HAVE_RT_PUSH_IPI
455#endif
456
029632fb
PZ
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
c82513e5 460 unsigned int rt_nr_running;
01d36d0a 461 unsigned int rr_nr_running;
029632fb
PZ
462#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 struct {
464 int curr; /* highest queued rt task prio */
465#ifdef CONFIG_SMP
466 int next; /* next highest */
467#endif
468 } highest_prio;
469#endif
470#ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 unsigned long rt_nr_total;
473 int overloaded;
474 struct plist_head pushable_tasks;
b6366f04
SR
475#ifdef HAVE_RT_PUSH_IPI
476 int push_flags;
477 int push_cpu;
478 struct irq_work push_work;
479 raw_spinlock_t push_lock;
029632fb 480#endif
b6366f04 481#endif /* CONFIG_SMP */
f4ebcbc0
KT
482 int rt_queued;
483
029632fb
PZ
484 int rt_throttled;
485 u64 rt_time;
486 u64 rt_runtime;
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock;
489
490#ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted;
492
493 struct rq *rq;
029632fb
PZ
494 struct task_group *tg;
495#endif
496};
497
aab03e05
DF
498/* Deadline class' related fields in a runqueue */
499struct dl_rq {
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root;
502 struct rb_node *rb_leftmost;
503
504 unsigned long dl_nr_running;
1baca4ce
JL
505
506#ifdef CONFIG_SMP
507 /*
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
512 */
513 struct {
514 u64 curr;
515 u64 next;
516 } earliest_dl;
517
518 unsigned long dl_nr_migratory;
1baca4ce
JL
519 int overloaded;
520
521 /*
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
525 */
526 struct rb_root pushable_dl_tasks_root;
527 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
528#else
529 struct dl_bw dl_bw;
1baca4ce 530#endif
aab03e05
DF
531};
532
029632fb
PZ
533#ifdef CONFIG_SMP
534
535/*
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
542 */
543struct root_domain {
544 atomic_t refcount;
545 atomic_t rto_count;
546 struct rcu_head rcu;
547 cpumask_var_t span;
548 cpumask_var_t online;
549
4486edd1
TC
550 /* Indicate more than one runnable task for any CPU */
551 bool overload;
552
1baca4ce
JL
553 /*
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
556 */
557 cpumask_var_t dlo_mask;
558 atomic_t dlo_count;
332ac17e 559 struct dl_bw dl_bw;
6bfd6d72 560 struct cpudl cpudl;
1baca4ce 561
029632fb
PZ
562 /*
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
565 */
566 cpumask_var_t rto_mask;
567 struct cpupri cpupri;
568};
569
570extern struct root_domain def_root_domain;
571
572#endif /* CONFIG_SMP */
573
574/*
575 * This is the main, per-CPU runqueue data structure.
576 *
577 * Locking rule: those places that want to lock multiple runqueues
578 * (such as the load balancing or the thread migration code), lock
579 * acquire operations must be ordered by ascending &runqueue.
580 */
581struct rq {
582 /* runqueue lock: */
583 raw_spinlock_t lock;
584
585 /*
586 * nr_running and cpu_load should be in the same cacheline because
587 * remote CPUs use both these fields when doing load calculation.
588 */
c82513e5 589 unsigned int nr_running;
0ec8aa00
PZ
590#ifdef CONFIG_NUMA_BALANCING
591 unsigned int nr_numa_running;
592 unsigned int nr_preferred_running;
593#endif
029632fb
PZ
594 #define CPU_LOAD_IDX_MAX 5
595 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 596#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
597#ifdef CONFIG_SMP
598 unsigned long last_load_update_tick;
599#endif /* CONFIG_SMP */
029632fb 600 u64 nohz_stamp;
1c792db7 601 unsigned long nohz_flags;
9fd81dd5 602#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
603#ifdef CONFIG_NO_HZ_FULL
604 unsigned long last_sched_tick;
029632fb 605#endif
029632fb
PZ
606 /* capture load from *all* tasks on this cpu: */
607 struct load_weight load;
608 unsigned long nr_load_updates;
609 u64 nr_switches;
610
611 struct cfs_rq cfs;
612 struct rt_rq rt;
aab03e05 613 struct dl_rq dl;
029632fb
PZ
614
615#ifdef CONFIG_FAIR_GROUP_SCHED
616 /* list of leaf cfs_rq on this cpu: */
617 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
618#endif /* CONFIG_FAIR_GROUP_SCHED */
619
029632fb
PZ
620 /*
621 * This is part of a global counter where only the total sum
622 * over all CPUs matters. A task can increase this counter on
623 * one CPU and if it got migrated afterwards it may decrease
624 * it on another CPU. Always updated under the runqueue lock:
625 */
626 unsigned long nr_uninterruptible;
627
628 struct task_struct *curr, *idle, *stop;
629 unsigned long next_balance;
630 struct mm_struct *prev_mm;
631
9edfbfed 632 unsigned int clock_skip_update;
029632fb
PZ
633 u64 clock;
634 u64 clock_task;
635
636 atomic_t nr_iowait;
637
638#ifdef CONFIG_SMP
639 struct root_domain *rd;
640 struct sched_domain *sd;
641
ced549fa 642 unsigned long cpu_capacity;
ca6d75e6 643 unsigned long cpu_capacity_orig;
029632fb 644
e3fca9e7
PZ
645 struct callback_head *balance_callback;
646
029632fb
PZ
647 unsigned char idle_balance;
648 /* For active balancing */
029632fb
PZ
649 int active_balance;
650 int push_cpu;
651 struct cpu_stop_work active_balance_work;
652 /* cpu of this runqueue: */
653 int cpu;
654 int online;
655
367456c7
PZ
656 struct list_head cfs_tasks;
657
029632fb
PZ
658 u64 rt_avg;
659 u64 age_stamp;
660 u64 idle_stamp;
661 u64 avg_idle;
9bd721c5
JL
662
663 /* This is used to determine avg_idle's max value */
664 u64 max_idle_balance_cost;
029632fb
PZ
665#endif
666
667#ifdef CONFIG_IRQ_TIME_ACCOUNTING
668 u64 prev_irq_time;
669#endif
670#ifdef CONFIG_PARAVIRT
671 u64 prev_steal_time;
672#endif
673#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
674 u64 prev_steal_time_rq;
675#endif
676
677 /* calc_load related fields */
678 unsigned long calc_load_update;
679 long calc_load_active;
680
681#ifdef CONFIG_SCHED_HRTICK
682#ifdef CONFIG_SMP
683 int hrtick_csd_pending;
684 struct call_single_data hrtick_csd;
685#endif
686 struct hrtimer hrtick_timer;
687#endif
688
689#ifdef CONFIG_SCHEDSTATS
690 /* latency stats */
691 struct sched_info rq_sched_info;
692 unsigned long long rq_cpu_time;
693 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
694
695 /* sys_sched_yield() stats */
696 unsigned int yld_count;
697
698 /* schedule() stats */
029632fb
PZ
699 unsigned int sched_count;
700 unsigned int sched_goidle;
701
702 /* try_to_wake_up() stats */
703 unsigned int ttwu_count;
704 unsigned int ttwu_local;
705#endif
706
707#ifdef CONFIG_SMP
708 struct llist_head wake_list;
709#endif
442bf3aa
DL
710
711#ifdef CONFIG_CPU_IDLE
712 /* Must be inspected within a rcu lock section */
713 struct cpuidle_state *idle_state;
714#endif
029632fb
PZ
715};
716
717static inline int cpu_of(struct rq *rq)
718{
719#ifdef CONFIG_SMP
720 return rq->cpu;
721#else
722 return 0;
723#endif
724}
725
8b06c55b 726DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 727
518cd623 728#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 729#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
730#define task_rq(p) cpu_rq(task_cpu(p))
731#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 732#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 733
cebde6d6
PZ
734static inline u64 __rq_clock_broken(struct rq *rq)
735{
316c1608 736 return READ_ONCE(rq->clock);
cebde6d6
PZ
737}
738
78becc27
FW
739static inline u64 rq_clock(struct rq *rq)
740{
cebde6d6 741 lockdep_assert_held(&rq->lock);
78becc27
FW
742 return rq->clock;
743}
744
745static inline u64 rq_clock_task(struct rq *rq)
746{
cebde6d6 747 lockdep_assert_held(&rq->lock);
78becc27
FW
748 return rq->clock_task;
749}
750
9edfbfed
PZ
751#define RQCF_REQ_SKIP 0x01
752#define RQCF_ACT_SKIP 0x02
753
754static inline void rq_clock_skip_update(struct rq *rq, bool skip)
755{
756 lockdep_assert_held(&rq->lock);
757 if (skip)
758 rq->clock_skip_update |= RQCF_REQ_SKIP;
759 else
760 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
761}
762
9942f79b 763#ifdef CONFIG_NUMA
e3fe70b1
RR
764enum numa_topology_type {
765 NUMA_DIRECT,
766 NUMA_GLUELESS_MESH,
767 NUMA_BACKPLANE,
768};
769extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
770extern int sched_max_numa_distance;
771extern bool find_numa_distance(int distance);
772#endif
773
f809ca9a 774#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
775/* The regions in numa_faults array from task_struct */
776enum numa_faults_stats {
777 NUMA_MEM = 0,
778 NUMA_CPU,
779 NUMA_MEMBUF,
780 NUMA_CPUBUF
781};
0ec8aa00 782extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 783extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 784extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
785#endif /* CONFIG_NUMA_BALANCING */
786
518cd623
PZ
787#ifdef CONFIG_SMP
788
e3fca9e7
PZ
789static inline void
790queue_balance_callback(struct rq *rq,
791 struct callback_head *head,
792 void (*func)(struct rq *rq))
793{
794 lockdep_assert_held(&rq->lock);
795
796 if (unlikely(head->next))
797 return;
798
799 head->func = (void (*)(struct callback_head *))func;
800 head->next = rq->balance_callback;
801 rq->balance_callback = head;
802}
803
e3baac47
PZ
804extern void sched_ttwu_pending(void);
805
029632fb
PZ
806#define rcu_dereference_check_sched_domain(p) \
807 rcu_dereference_check((p), \
808 lockdep_is_held(&sched_domains_mutex))
809
810/*
811 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
812 * See detach_destroy_domains: synchronize_sched for details.
813 *
814 * The domain tree of any CPU may only be accessed from within
815 * preempt-disabled sections.
816 */
817#define for_each_domain(cpu, __sd) \
518cd623
PZ
818 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
819 __sd; __sd = __sd->parent)
029632fb 820
77e81365
SS
821#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
822
518cd623
PZ
823/**
824 * highest_flag_domain - Return highest sched_domain containing flag.
825 * @cpu: The cpu whose highest level of sched domain is to
826 * be returned.
827 * @flag: The flag to check for the highest sched_domain
828 * for the given cpu.
829 *
830 * Returns the highest sched_domain of a cpu which contains the given flag.
831 */
832static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
833{
834 struct sched_domain *sd, *hsd = NULL;
835
836 for_each_domain(cpu, sd) {
837 if (!(sd->flags & flag))
838 break;
839 hsd = sd;
840 }
841
842 return hsd;
843}
844
fb13c7ee
MG
845static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
846{
847 struct sched_domain *sd;
848
849 for_each_domain(cpu, sd) {
850 if (sd->flags & flag)
851 break;
852 }
853
854 return sd;
855}
856
518cd623 857DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 858DECLARE_PER_CPU(int, sd_llc_size);
518cd623 859DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 860DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
861DECLARE_PER_CPU(struct sched_domain *, sd_busy);
862DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 863
63b2ca30 864struct sched_group_capacity {
5e6521ea
LZ
865 atomic_t ref;
866 /*
172895e6 867 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 868 * for a single CPU.
5e6521ea 869 */
dc7ff76e 870 unsigned int capacity;
5e6521ea 871 unsigned long next_update;
63b2ca30 872 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
873 /*
874 * Number of busy cpus in this group.
875 */
876 atomic_t nr_busy_cpus;
877
878 unsigned long cpumask[0]; /* iteration mask */
879};
880
881struct sched_group {
882 struct sched_group *next; /* Must be a circular list */
883 atomic_t ref;
884
885 unsigned int group_weight;
63b2ca30 886 struct sched_group_capacity *sgc;
5e6521ea
LZ
887
888 /*
889 * The CPUs this group covers.
890 *
891 * NOTE: this field is variable length. (Allocated dynamically
892 * by attaching extra space to the end of the structure,
893 * depending on how many CPUs the kernel has booted up with)
894 */
895 unsigned long cpumask[0];
896};
897
898static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
899{
900 return to_cpumask(sg->cpumask);
901}
902
903/*
904 * cpumask masking which cpus in the group are allowed to iterate up the domain
905 * tree.
906 */
907static inline struct cpumask *sched_group_mask(struct sched_group *sg)
908{
63b2ca30 909 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
910}
911
912/**
913 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
914 * @group: The group whose first cpu is to be returned.
915 */
916static inline unsigned int group_first_cpu(struct sched_group *group)
917{
918 return cpumask_first(sched_group_cpus(group));
919}
920
c1174876
PZ
921extern int group_balance_cpu(struct sched_group *sg);
922
3866e845
SRRH
923#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
924void register_sched_domain_sysctl(void);
925void unregister_sched_domain_sysctl(void);
926#else
927static inline void register_sched_domain_sysctl(void)
928{
929}
930static inline void unregister_sched_domain_sysctl(void)
931{
932}
933#endif
934
e3baac47
PZ
935#else
936
937static inline void sched_ttwu_pending(void) { }
938
518cd623 939#endif /* CONFIG_SMP */
029632fb 940
391e43da
PZ
941#include "stats.h"
942#include "auto_group.h"
029632fb
PZ
943
944#ifdef CONFIG_CGROUP_SCHED
945
946/*
947 * Return the group to which this tasks belongs.
948 *
8af01f56
TH
949 * We cannot use task_css() and friends because the cgroup subsystem
950 * changes that value before the cgroup_subsys::attach() method is called,
951 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
952 *
953 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
954 * core changes this before calling sched_move_task().
955 *
956 * Instead we use a 'copy' which is updated from sched_move_task() while
957 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
958 */
959static inline struct task_group *task_group(struct task_struct *p)
960{
8323f26c 961 return p->sched_task_group;
029632fb
PZ
962}
963
964/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
965static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
966{
967#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
968 struct task_group *tg = task_group(p);
969#endif
970
971#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 972 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
973 p->se.cfs_rq = tg->cfs_rq[cpu];
974 p->se.parent = tg->se[cpu];
975#endif
976
977#ifdef CONFIG_RT_GROUP_SCHED
978 p->rt.rt_rq = tg->rt_rq[cpu];
979 p->rt.parent = tg->rt_se[cpu];
980#endif
981}
982
983#else /* CONFIG_CGROUP_SCHED */
984
985static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
986static inline struct task_group *task_group(struct task_struct *p)
987{
988 return NULL;
989}
990
991#endif /* CONFIG_CGROUP_SCHED */
992
993static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
994{
995 set_task_rq(p, cpu);
996#ifdef CONFIG_SMP
997 /*
998 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
999 * successfuly executed on another CPU. We must ensure that updates of
1000 * per-task data have been completed by this moment.
1001 */
1002 smp_wmb();
1003 task_thread_info(p)->cpu = cpu;
ac66f547 1004 p->wake_cpu = cpu;
029632fb
PZ
1005#endif
1006}
1007
1008/*
1009 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1010 */
1011#ifdef CONFIG_SCHED_DEBUG
c5905afb 1012# include <linux/static_key.h>
029632fb
PZ
1013# define const_debug __read_mostly
1014#else
1015# define const_debug const
1016#endif
1017
1018extern const_debug unsigned int sysctl_sched_features;
1019
1020#define SCHED_FEAT(name, enabled) \
1021 __SCHED_FEAT_##name ,
1022
1023enum {
391e43da 1024#include "features.h"
f8b6d1cc 1025 __SCHED_FEAT_NR,
029632fb
PZ
1026};
1027
1028#undef SCHED_FEAT
1029
f8b6d1cc 1030#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1031#define SCHED_FEAT(name, enabled) \
c5905afb 1032static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1033{ \
6e76ea8a 1034 return static_key_##enabled(key); \
f8b6d1cc
PZ
1035}
1036
1037#include "features.h"
1038
1039#undef SCHED_FEAT
1040
c5905afb 1041extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1042#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1043#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1044#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1045#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1046
2a595721 1047extern struct static_key_false sched_numa_balancing;
cb251765 1048extern struct static_key_false sched_schedstats;
cbee9f88 1049
029632fb
PZ
1050static inline u64 global_rt_period(void)
1051{
1052 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1053}
1054
1055static inline u64 global_rt_runtime(void)
1056{
1057 if (sysctl_sched_rt_runtime < 0)
1058 return RUNTIME_INF;
1059
1060 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1061}
1062
029632fb
PZ
1063static inline int task_current(struct rq *rq, struct task_struct *p)
1064{
1065 return rq->curr == p;
1066}
1067
1068static inline int task_running(struct rq *rq, struct task_struct *p)
1069{
1070#ifdef CONFIG_SMP
1071 return p->on_cpu;
1072#else
1073 return task_current(rq, p);
1074#endif
1075}
1076
da0c1e65
KT
1077static inline int task_on_rq_queued(struct task_struct *p)
1078{
1079 return p->on_rq == TASK_ON_RQ_QUEUED;
1080}
029632fb 1081
cca26e80
KT
1082static inline int task_on_rq_migrating(struct task_struct *p)
1083{
1084 return p->on_rq == TASK_ON_RQ_MIGRATING;
1085}
1086
029632fb
PZ
1087#ifndef prepare_arch_switch
1088# define prepare_arch_switch(next) do { } while (0)
1089#endif
01f23e16
CM
1090#ifndef finish_arch_post_lock_switch
1091# define finish_arch_post_lock_switch() do { } while (0)
1092#endif
029632fb 1093
029632fb
PZ
1094static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1095{
1096#ifdef CONFIG_SMP
1097 /*
1098 * We can optimise this out completely for !SMP, because the
1099 * SMP rebalancing from interrupt is the only thing that cares
1100 * here.
1101 */
1102 next->on_cpu = 1;
1103#endif
1104}
1105
1106static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1107{
1108#ifdef CONFIG_SMP
1109 /*
1110 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1111 * We must ensure this doesn't happen until the switch is completely
1112 * finished.
95913d97 1113 *
b75a2253
PZ
1114 * In particular, the load of prev->state in finish_task_switch() must
1115 * happen before this.
1116 *
1f03e8d2 1117 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1118 */
95913d97 1119 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1120#endif
1121#ifdef CONFIG_DEBUG_SPINLOCK
1122 /* this is a valid case when another task releases the spinlock */
1123 rq->lock.owner = current;
1124#endif
1125 /*
1126 * If we are tracking spinlock dependencies then we have to
1127 * fix up the runqueue lock - which gets 'carried over' from
1128 * prev into current:
1129 */
1130 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1131
1132 raw_spin_unlock_irq(&rq->lock);
1133}
1134
b13095f0
LZ
1135/*
1136 * wake flags
1137 */
1138#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1139#define WF_FORK 0x02 /* child wakeup after fork */
1140#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1141
029632fb
PZ
1142/*
1143 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1144 * of tasks with abnormal "nice" values across CPUs the contribution that
1145 * each task makes to its run queue's load is weighted according to its
1146 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1147 * scaled version of the new time slice allocation that they receive on time
1148 * slice expiry etc.
1149 */
1150
1151#define WEIGHT_IDLEPRIO 3
1152#define WMULT_IDLEPRIO 1431655765
1153
ed82b8a1
AK
1154extern const int sched_prio_to_weight[40];
1155extern const u32 sched_prio_to_wmult[40];
029632fb 1156
ff77e468
PZ
1157/*
1158 * {de,en}queue flags:
1159 *
1160 * DEQUEUE_SLEEP - task is no longer runnable
1161 * ENQUEUE_WAKEUP - task just became runnable
1162 *
1163 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1164 * are in a known state which allows modification. Such pairs
1165 * should preserve as much state as possible.
1166 *
1167 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1168 * in the runqueue.
1169 *
1170 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1171 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1172 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1173 *
1174 */
1175
1176#define DEQUEUE_SLEEP 0x01
1177#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1178#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1179
1de64443 1180#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1181#define ENQUEUE_RESTORE 0x02
1182#define ENQUEUE_MOVE 0x04
1183
1184#define ENQUEUE_HEAD 0x08
1185#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1186#ifdef CONFIG_SMP
59efa0ba 1187#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1188#else
59efa0ba 1189#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1190#endif
c82ba9fa 1191
37e117c0
PZ
1192#define RETRY_TASK ((void *)-1UL)
1193
c82ba9fa
LZ
1194struct sched_class {
1195 const struct sched_class *next;
1196
1197 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1198 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1199 void (*yield_task) (struct rq *rq);
1200 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1201
1202 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1203
606dba2e
PZ
1204 /*
1205 * It is the responsibility of the pick_next_task() method that will
1206 * return the next task to call put_prev_task() on the @prev task or
1207 * something equivalent.
37e117c0
PZ
1208 *
1209 * May return RETRY_TASK when it finds a higher prio class has runnable
1210 * tasks.
606dba2e
PZ
1211 */
1212 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28
PZ
1213 struct task_struct *prev,
1214 struct pin_cookie cookie);
c82ba9fa
LZ
1215 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1216
1217#ifdef CONFIG_SMP
ac66f547 1218 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1219 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1220
c82ba9fa
LZ
1221 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1222
1223 void (*set_cpus_allowed)(struct task_struct *p,
1224 const struct cpumask *newmask);
1225
1226 void (*rq_online)(struct rq *rq);
1227 void (*rq_offline)(struct rq *rq);
1228#endif
1229
1230 void (*set_curr_task) (struct rq *rq);
1231 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1232 void (*task_fork) (struct task_struct *p);
e6c390f2 1233 void (*task_dead) (struct task_struct *p);
c82ba9fa 1234
67dfa1b7
KT
1235 /*
1236 * The switched_from() call is allowed to drop rq->lock, therefore we
1237 * cannot assume the switched_from/switched_to pair is serliazed by
1238 * rq->lock. They are however serialized by p->pi_lock.
1239 */
c82ba9fa
LZ
1240 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1241 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1242 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1243 int oldprio);
1244
1245 unsigned int (*get_rr_interval) (struct rq *rq,
1246 struct task_struct *task);
1247
6e998916
SG
1248 void (*update_curr) (struct rq *rq);
1249
ea86cb4b
VG
1250#define TASK_SET_GROUP 0
1251#define TASK_MOVE_GROUP 1
1252
c82ba9fa 1253#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1254 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1255#endif
1256};
029632fb 1257
3f1d2a31
PZ
1258static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1259{
1260 prev->sched_class->put_prev_task(rq, prev);
1261}
1262
029632fb
PZ
1263#define sched_class_highest (&stop_sched_class)
1264#define for_each_class(class) \
1265 for (class = sched_class_highest; class; class = class->next)
1266
1267extern const struct sched_class stop_sched_class;
aab03e05 1268extern const struct sched_class dl_sched_class;
029632fb
PZ
1269extern const struct sched_class rt_sched_class;
1270extern const struct sched_class fair_sched_class;
1271extern const struct sched_class idle_sched_class;
1272
1273
1274#ifdef CONFIG_SMP
1275
63b2ca30 1276extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1277
7caff66f 1278extern void trigger_load_balance(struct rq *rq);
029632fb 1279
c5b28038
PZ
1280extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1281
029632fb
PZ
1282#endif
1283
442bf3aa
DL
1284#ifdef CONFIG_CPU_IDLE
1285static inline void idle_set_state(struct rq *rq,
1286 struct cpuidle_state *idle_state)
1287{
1288 rq->idle_state = idle_state;
1289}
1290
1291static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1292{
1293 WARN_ON(!rcu_read_lock_held());
1294 return rq->idle_state;
1295}
1296#else
1297static inline void idle_set_state(struct rq *rq,
1298 struct cpuidle_state *idle_state)
1299{
1300}
1301
1302static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1303{
1304 return NULL;
1305}
1306#endif
1307
029632fb
PZ
1308extern void sysrq_sched_debug_show(void);
1309extern void sched_init_granularity(void);
1310extern void update_max_interval(void);
1baca4ce
JL
1311
1312extern void init_sched_dl_class(void);
029632fb
PZ
1313extern void init_sched_rt_class(void);
1314extern void init_sched_fair_class(void);
1315
8875125e 1316extern void resched_curr(struct rq *rq);
029632fb
PZ
1317extern void resched_cpu(int cpu);
1318
1319extern struct rt_bandwidth def_rt_bandwidth;
1320extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1321
332ac17e
DF
1322extern struct dl_bandwidth def_dl_bandwidth;
1323extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1324extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1325
332ac17e
DF
1326unsigned long to_ratio(u64 period, u64 runtime);
1327
540247fb 1328extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1329extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1330
76d92ac3
FW
1331#ifdef CONFIG_NO_HZ_FULL
1332extern bool sched_can_stop_tick(struct rq *rq);
1333
1334/*
1335 * Tick may be needed by tasks in the runqueue depending on their policy and
1336 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1337 * nohz mode if necessary.
1338 */
1339static inline void sched_update_tick_dependency(struct rq *rq)
1340{
1341 int cpu;
1342
1343 if (!tick_nohz_full_enabled())
1344 return;
1345
1346 cpu = cpu_of(rq);
1347
1348 if (!tick_nohz_full_cpu(cpu))
1349 return;
1350
1351 if (sched_can_stop_tick(rq))
1352 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1353 else
1354 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1355}
1356#else
1357static inline void sched_update_tick_dependency(struct rq *rq) { }
1358#endif
1359
72465447 1360static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1361{
72465447
KT
1362 unsigned prev_nr = rq->nr_running;
1363
1364 rq->nr_running = prev_nr + count;
9f3660c2 1365
72465447 1366 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1367#ifdef CONFIG_SMP
1368 if (!rq->rd->overload)
1369 rq->rd->overload = true;
1370#endif
4486edd1 1371 }
76d92ac3
FW
1372
1373 sched_update_tick_dependency(rq);
029632fb
PZ
1374}
1375
72465447 1376static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1377{
72465447 1378 rq->nr_running -= count;
76d92ac3
FW
1379 /* Check if we still need preemption */
1380 sched_update_tick_dependency(rq);
029632fb
PZ
1381}
1382
265f22a9
FW
1383static inline void rq_last_tick_reset(struct rq *rq)
1384{
1385#ifdef CONFIG_NO_HZ_FULL
1386 rq->last_sched_tick = jiffies;
1387#endif
1388}
1389
029632fb
PZ
1390extern void update_rq_clock(struct rq *rq);
1391
1392extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1393extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1394
1395extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1396
1397extern const_debug unsigned int sysctl_sched_time_avg;
1398extern const_debug unsigned int sysctl_sched_nr_migrate;
1399extern const_debug unsigned int sysctl_sched_migration_cost;
1400
1401static inline u64 sched_avg_period(void)
1402{
1403 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1404}
1405
029632fb
PZ
1406#ifdef CONFIG_SCHED_HRTICK
1407
1408/*
1409 * Use hrtick when:
1410 * - enabled by features
1411 * - hrtimer is actually high res
1412 */
1413static inline int hrtick_enabled(struct rq *rq)
1414{
1415 if (!sched_feat(HRTICK))
1416 return 0;
1417 if (!cpu_active(cpu_of(rq)))
1418 return 0;
1419 return hrtimer_is_hres_active(&rq->hrtick_timer);
1420}
1421
1422void hrtick_start(struct rq *rq, u64 delay);
1423
b39e66ea
MG
1424#else
1425
1426static inline int hrtick_enabled(struct rq *rq)
1427{
1428 return 0;
1429}
1430
029632fb
PZ
1431#endif /* CONFIG_SCHED_HRTICK */
1432
1433#ifdef CONFIG_SMP
1434extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1435
1436#ifndef arch_scale_freq_capacity
1437static __always_inline
1438unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1439{
1440 return SCHED_CAPACITY_SCALE;
1441}
1442#endif
b5b4860d 1443
8cd5601c
MR
1444#ifndef arch_scale_cpu_capacity
1445static __always_inline
1446unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1447{
e3279a2e 1448 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1449 return sd->smt_gain / sd->span_weight;
1450
1451 return SCHED_CAPACITY_SCALE;
1452}
1453#endif
1454
029632fb
PZ
1455static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456{
b5b4860d 1457 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1458 sched_avg_update(rq);
1459}
1460#else
1461static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1462static inline void sched_avg_update(struct rq *rq) { }
1463#endif
1464
eb580751
PZ
1465struct rq_flags {
1466 unsigned long flags;
e7904a28 1467 struct pin_cookie cookie;
eb580751
PZ
1468};
1469
1470struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1471 __acquires(rq->lock);
eb580751 1472struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1473 __acquires(p->pi_lock)
3e71a462 1474 __acquires(rq->lock);
3960c8c0 1475
eb580751 1476static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1477 __releases(rq->lock)
1478{
e7904a28 1479 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0
PZ
1480 raw_spin_unlock(&rq->lock);
1481}
1482
1483static inline void
eb580751 1484task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1485 __releases(rq->lock)
1486 __releases(p->pi_lock)
1487{
e7904a28 1488 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0 1489 raw_spin_unlock(&rq->lock);
eb580751 1490 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1491}
1492
029632fb
PZ
1493#ifdef CONFIG_SMP
1494#ifdef CONFIG_PREEMPT
1495
1496static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1497
1498/*
1499 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1500 * way at the expense of forcing extra atomic operations in all
1501 * invocations. This assures that the double_lock is acquired using the
1502 * same underlying policy as the spinlock_t on this architecture, which
1503 * reduces latency compared to the unfair variant below. However, it
1504 * also adds more overhead and therefore may reduce throughput.
1505 */
1506static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1507 __releases(this_rq->lock)
1508 __acquires(busiest->lock)
1509 __acquires(this_rq->lock)
1510{
1511 raw_spin_unlock(&this_rq->lock);
1512 double_rq_lock(this_rq, busiest);
1513
1514 return 1;
1515}
1516
1517#else
1518/*
1519 * Unfair double_lock_balance: Optimizes throughput at the expense of
1520 * latency by eliminating extra atomic operations when the locks are
1521 * already in proper order on entry. This favors lower cpu-ids and will
1522 * grant the double lock to lower cpus over higher ids under contention,
1523 * regardless of entry order into the function.
1524 */
1525static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1526 __releases(this_rq->lock)
1527 __acquires(busiest->lock)
1528 __acquires(this_rq->lock)
1529{
1530 int ret = 0;
1531
1532 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1533 if (busiest < this_rq) {
1534 raw_spin_unlock(&this_rq->lock);
1535 raw_spin_lock(&busiest->lock);
1536 raw_spin_lock_nested(&this_rq->lock,
1537 SINGLE_DEPTH_NESTING);
1538 ret = 1;
1539 } else
1540 raw_spin_lock_nested(&busiest->lock,
1541 SINGLE_DEPTH_NESTING);
1542 }
1543 return ret;
1544}
1545
1546#endif /* CONFIG_PREEMPT */
1547
1548/*
1549 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1550 */
1551static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1552{
1553 if (unlikely(!irqs_disabled())) {
1554 /* printk() doesn't work good under rq->lock */
1555 raw_spin_unlock(&this_rq->lock);
1556 BUG_ON(1);
1557 }
1558
1559 return _double_lock_balance(this_rq, busiest);
1560}
1561
1562static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1563 __releases(busiest->lock)
1564{
1565 raw_spin_unlock(&busiest->lock);
1566 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1567}
1568
74602315
PZ
1569static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1570{
1571 if (l1 > l2)
1572 swap(l1, l2);
1573
1574 spin_lock(l1);
1575 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1576}
1577
60e69eed
MG
1578static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1579{
1580 if (l1 > l2)
1581 swap(l1, l2);
1582
1583 spin_lock_irq(l1);
1584 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1585}
1586
74602315
PZ
1587static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1588{
1589 if (l1 > l2)
1590 swap(l1, l2);
1591
1592 raw_spin_lock(l1);
1593 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1594}
1595
029632fb
PZ
1596/*
1597 * double_rq_lock - safely lock two runqueues
1598 *
1599 * Note this does not disable interrupts like task_rq_lock,
1600 * you need to do so manually before calling.
1601 */
1602static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1603 __acquires(rq1->lock)
1604 __acquires(rq2->lock)
1605{
1606 BUG_ON(!irqs_disabled());
1607 if (rq1 == rq2) {
1608 raw_spin_lock(&rq1->lock);
1609 __acquire(rq2->lock); /* Fake it out ;) */
1610 } else {
1611 if (rq1 < rq2) {
1612 raw_spin_lock(&rq1->lock);
1613 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1614 } else {
1615 raw_spin_lock(&rq2->lock);
1616 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1617 }
1618 }
1619}
1620
1621/*
1622 * double_rq_unlock - safely unlock two runqueues
1623 *
1624 * Note this does not restore interrupts like task_rq_unlock,
1625 * you need to do so manually after calling.
1626 */
1627static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1628 __releases(rq1->lock)
1629 __releases(rq2->lock)
1630{
1631 raw_spin_unlock(&rq1->lock);
1632 if (rq1 != rq2)
1633 raw_spin_unlock(&rq2->lock);
1634 else
1635 __release(rq2->lock);
1636}
1637
1638#else /* CONFIG_SMP */
1639
1640/*
1641 * double_rq_lock - safely lock two runqueues
1642 *
1643 * Note this does not disable interrupts like task_rq_lock,
1644 * you need to do so manually before calling.
1645 */
1646static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1647 __acquires(rq1->lock)
1648 __acquires(rq2->lock)
1649{
1650 BUG_ON(!irqs_disabled());
1651 BUG_ON(rq1 != rq2);
1652 raw_spin_lock(&rq1->lock);
1653 __acquire(rq2->lock); /* Fake it out ;) */
1654}
1655
1656/*
1657 * double_rq_unlock - safely unlock two runqueues
1658 *
1659 * Note this does not restore interrupts like task_rq_unlock,
1660 * you need to do so manually after calling.
1661 */
1662static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1663 __releases(rq1->lock)
1664 __releases(rq2->lock)
1665{
1666 BUG_ON(rq1 != rq2);
1667 raw_spin_unlock(&rq1->lock);
1668 __release(rq2->lock);
1669}
1670
1671#endif
1672
1673extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1674extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1675
1676#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1677extern void print_cfs_stats(struct seq_file *m, int cpu);
1678extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1679extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1680extern void
1681print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1682
1683#ifdef CONFIG_NUMA_BALANCING
1684extern void
1685show_numa_stats(struct task_struct *p, struct seq_file *m);
1686extern void
1687print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1688 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1689#endif /* CONFIG_NUMA_BALANCING */
1690#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1691
1692extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1693extern void init_rt_rq(struct rt_rq *rt_rq);
1694extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1695
1ee14e6c
BS
1696extern void cfs_bandwidth_usage_inc(void);
1697extern void cfs_bandwidth_usage_dec(void);
1c792db7 1698
3451d024 1699#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1700enum rq_nohz_flag_bits {
1701 NOHZ_TICK_STOPPED,
1702 NOHZ_BALANCE_KICK,
1703};
1704
1705#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1706
1707extern void nohz_balance_exit_idle(unsigned int cpu);
1708#else
1709static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1710#endif
73fbec60
FW
1711
1712#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1713
1714DECLARE_PER_CPU(u64, cpu_hardirq_time);
1715DECLARE_PER_CPU(u64, cpu_softirq_time);
1716
1717#ifndef CONFIG_64BIT
1718DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1719
1720static inline void irq_time_write_begin(void)
1721{
1722 __this_cpu_inc(irq_time_seq.sequence);
1723 smp_wmb();
1724}
1725
1726static inline void irq_time_write_end(void)
1727{
1728 smp_wmb();
1729 __this_cpu_inc(irq_time_seq.sequence);
1730}
1731
1732static inline u64 irq_time_read(int cpu)
1733{
1734 u64 irq_time;
1735 unsigned seq;
1736
1737 do {
1738 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1739 irq_time = per_cpu(cpu_softirq_time, cpu) +
1740 per_cpu(cpu_hardirq_time, cpu);
1741 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1742
1743 return irq_time;
1744}
1745#else /* CONFIG_64BIT */
1746static inline void irq_time_write_begin(void)
1747{
1748}
1749
1750static inline void irq_time_write_end(void)
1751{
1752}
1753
1754static inline u64 irq_time_read(int cpu)
1755{
1756 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1757}
1758#endif /* CONFIG_64BIT */
1759#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1760
1761#ifdef CONFIG_CPU_FREQ
1762DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1763
1764/**
1765 * cpufreq_update_util - Take a note about CPU utilization changes.
1766 * @time: Current time.
58919e83 1767 * @flags: Update reason flags.
adaf9fcd 1768 *
58919e83
RW
1769 * This function is called by the scheduler on the CPU whose utilization is
1770 * being updated.
adaf9fcd
RW
1771 *
1772 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
1773 *
1774 * The way cpufreq is currently arranged requires it to evaluate the CPU
1775 * performance state (frequency/voltage) on a regular basis to prevent it from
1776 * being stuck in a completely inadequate performance level for too long.
1777 * That is not guaranteed to happen if the updates are only triggered from CFS,
1778 * though, because they may not be coming in if RT or deadline tasks are active
1779 * all the time (or there are RT and DL tasks only).
1780 *
1781 * As a workaround for that issue, this function is called by the RT and DL
1782 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1783 * but that really is a band-aid. Going forward it should be replaced with
1784 * solutions targeted more specifically at RT and DL tasks.
1785 */
58919e83 1786static inline void cpufreq_update_util(u64 time, unsigned int flags)
adaf9fcd 1787{
58919e83
RW
1788 struct update_util_data *data;
1789
1790 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1791 if (data)
1792 data->func(data, time, flags);
adaf9fcd
RW
1793}
1794#else
58919e83 1795static inline void cpufreq_update_util(u64 time, unsigned int flags) {}
adaf9fcd 1796#endif /* CONFIG_CPU_FREQ */
be53f58f 1797
9bdcb44e
RW
1798#ifdef arch_scale_freq_capacity
1799#ifndef arch_scale_freq_invariant
1800#define arch_scale_freq_invariant() (true)
1801#endif
1802#else /* arch_scale_freq_capacity */
1803#define arch_scale_freq_invariant() (false)
1804#endif