sched/core: Fix set_user_nice()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
3866e845 6#include <linux/binfmts.h>
029632fb
PZ
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
b6366f04 10#include <linux/irq_work.h>
9f3660c2 11#include <linux/tick.h>
f809ca9a 12#include <linux/slab.h>
029632fb 13
391e43da 14#include "cpupri.h"
6bfd6d72 15#include "cpudeadline.h"
60fed789 16#include "cpuacct.h"
029632fb 17
45ceebf7 18struct rq;
442bf3aa 19struct cpuidle_state;
45ceebf7 20
da0c1e65
KT
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
cca26e80 23#define TASK_ON_RQ_MIGRATING 2
da0c1e65 24
029632fb
PZ
25extern __read_mostly int scheduler_running;
26
45ceebf7
PG
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
3289bdb4 30extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 31extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
32
33#ifdef CONFIG_SMP
cee1afce 34extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 35#else
cee1afce 36static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 37#endif
45ceebf7 38
029632fb
PZ
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
cc1f4b1f
LZ
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 57 */
2159197d 58#ifdef CONFIG_64BIT
172895e6 59# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
60# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 62#else
172895e6 63# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
6ecdd749 68/*
172895e6
YD
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
6ecdd749 76 */
172895e6 77#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 78
332ac17e
DF
79/*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84#define DL_SCALE (10)
85
029632fb
PZ
86/*
87 * These are the 'tuning knobs' of the scheduler:
029632fb 88 */
029632fb
PZ
89
90/*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93#define RUNTIME_INF ((u64)~0ULL)
94
20f9cd2a
HA
95static inline int idle_policy(int policy)
96{
97 return policy == SCHED_IDLE;
98}
d50dde5a
DF
99static inline int fair_policy(int policy)
100{
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102}
103
029632fb
PZ
104static inline int rt_policy(int policy)
105{
d50dde5a 106 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
107}
108
aab03e05
DF
109static inline int dl_policy(int policy)
110{
111 return policy == SCHED_DEADLINE;
112}
20f9cd2a
HA
113static inline bool valid_policy(int policy)
114{
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117}
aab03e05 118
029632fb
PZ
119static inline int task_has_rt_policy(struct task_struct *p)
120{
121 return rt_policy(p->policy);
122}
123
aab03e05
DF
124static inline int task_has_dl_policy(struct task_struct *p)
125{
126 return dl_policy(p->policy);
127}
128
2d3d891d
DF
129/*
130 * Tells if entity @a should preempt entity @b.
131 */
332ac17e
DF
132static inline bool
133dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
134{
135 return dl_time_before(a->deadline, b->deadline);
136}
137
029632fb
PZ
138/*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
146struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
4cfafd30 152 unsigned int rt_period_active;
029632fb 153};
a5e7be3b
JL
154
155void __dl_clear_params(struct task_struct *p);
156
332ac17e
DF
157/*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185};
186
187static inline int dl_bandwidth_enabled(void)
188{
1724813d 189 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
190}
191
192extern struct dl_bw *dl_bw_of(int i);
193
194struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197};
198
7f51412a
JL
199static inline
200void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201{
202 dl_b->total_bw -= tsk_bw;
203}
204
205static inline
206void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207{
208 dl_b->total_bw += tsk_bw;
209}
210
211static inline
212bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213{
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216}
217
029632fb
PZ
218extern struct mutex sched_domains_mutex;
219
220#ifdef CONFIG_CGROUP_SCHED
221
222#include <linux/cgroup.h>
223
224struct cfs_rq;
225struct rt_rq;
226
35cf4e50 227extern struct list_head task_groups;
029632fb
PZ
228
229struct cfs_bandwidth {
230#ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
9c58c79a 234 s64 hierarchical_quota;
029632fb
PZ
235 u64 runtime_expires;
236
4cfafd30 237 int idle, period_active;
029632fb
PZ
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244#endif
245};
246
247/* task group related information */
248struct task_group {
249 struct cgroup_subsys_state css;
250
251#ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
fa6bddeb 258#ifdef CONFIG_SMP
b0367629
WL
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
029632fb 265#endif
fa6bddeb 266#endif
029632fb
PZ
267
268#ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273#endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282#ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284#endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287};
288
289#ifdef CONFIG_FAIR_GROUP_SCHED
290#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292/*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300#define MIN_SHARES (1UL << 1)
301#define MAX_SHARES (1UL << 18)
302#endif
303
029632fb
PZ
304typedef int (*tg_visitor)(struct task_group *, void *);
305
306extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309/*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316{
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318}
319
320extern int tg_nop(struct task_group *tg, void *data);
321
322extern void free_fair_sched_group(struct task_group *tg);
323extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 324extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 325extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
326extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 struct sched_entity *se, int cpu,
328 struct sched_entity *parent);
329extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
330
331extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 332extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
333extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334
335extern void free_rt_sched_group(struct task_group *tg);
336extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 struct sched_rt_entity *rt_se, int cpu,
339 struct sched_rt_entity *parent);
340
25cc7da7
LZ
341extern struct task_group *sched_create_group(struct task_group *parent);
342extern void sched_online_group(struct task_group *tg,
343 struct task_group *parent);
344extern void sched_destroy_group(struct task_group *tg);
345extern void sched_offline_group(struct task_group *tg);
346
347extern void sched_move_task(struct task_struct *tsk);
348
349#ifdef CONFIG_FAIR_GROUP_SCHED
350extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
351
352#ifdef CONFIG_SMP
353extern void set_task_rq_fair(struct sched_entity *se,
354 struct cfs_rq *prev, struct cfs_rq *next);
355#else /* !CONFIG_SMP */
356static inline void set_task_rq_fair(struct sched_entity *se,
357 struct cfs_rq *prev, struct cfs_rq *next) { }
358#endif /* CONFIG_SMP */
359#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 360
029632fb
PZ
361#else /* CONFIG_CGROUP_SCHED */
362
363struct cfs_bandwidth { };
364
365#endif /* CONFIG_CGROUP_SCHED */
366
367/* CFS-related fields in a runqueue */
368struct cfs_rq {
369 struct load_weight load;
c82513e5 370 unsigned int nr_running, h_nr_running;
029632fb
PZ
371
372 u64 exec_clock;
373 u64 min_vruntime;
374#ifndef CONFIG_64BIT
375 u64 min_vruntime_copy;
376#endif
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
029632fb
PZ
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next, *last, *skip;
386
387#ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over;
389#endif
390
2dac754e
PT
391#ifdef CONFIG_SMP
392 /*
9d89c257 393 * CFS load tracking
2dac754e 394 */
9d89c257 395 struct sched_avg avg;
13962234
YD
396 u64 runnable_load_sum;
397 unsigned long runnable_load_avg;
c566e8e9 398#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
399 unsigned long tg_load_avg_contrib;
400#endif
401 atomic_long_t removed_load_avg, removed_util_avg;
402#ifndef CONFIG_64BIT
403 u64 load_last_update_time_copy;
404#endif
82958366 405
9d89c257 406#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
407 /*
408 * h_load = weight * f(tg)
409 *
410 * Where f(tg) is the recursive weight fraction assigned to
411 * this group.
412 */
413 unsigned long h_load;
68520796
VD
414 u64 last_h_load_update;
415 struct sched_entity *h_load_next;
416#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
417#endif /* CONFIG_SMP */
418
029632fb
PZ
419#ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
421
422 /*
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
426 *
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
429 */
430 int on_list;
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
029632fb
PZ
434#ifdef CONFIG_CFS_BANDWIDTH
435 int runtime_enabled;
436 u64 runtime_expires;
437 s64 runtime_remaining;
438
f1b17280
PT
439 u64 throttled_clock, throttled_clock_task;
440 u64 throttled_clock_task_time;
55e16d30 441 int throttled, throttle_count;
029632fb
PZ
442 struct list_head throttled_list;
443#endif /* CONFIG_CFS_BANDWIDTH */
444#endif /* CONFIG_FAIR_GROUP_SCHED */
445};
446
447static inline int rt_bandwidth_enabled(void)
448{
449 return sysctl_sched_rt_runtime >= 0;
450}
451
b6366f04
SR
452/* RT IPI pull logic requires IRQ_WORK */
453#ifdef CONFIG_IRQ_WORK
454# define HAVE_RT_PUSH_IPI
455#endif
456
029632fb
PZ
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
c82513e5 460 unsigned int rt_nr_running;
01d36d0a 461 unsigned int rr_nr_running;
029632fb
PZ
462#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 struct {
464 int curr; /* highest queued rt task prio */
465#ifdef CONFIG_SMP
466 int next; /* next highest */
467#endif
468 } highest_prio;
469#endif
470#ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 unsigned long rt_nr_total;
473 int overloaded;
474 struct plist_head pushable_tasks;
b6366f04
SR
475#ifdef HAVE_RT_PUSH_IPI
476 int push_flags;
477 int push_cpu;
478 struct irq_work push_work;
479 raw_spinlock_t push_lock;
029632fb 480#endif
b6366f04 481#endif /* CONFIG_SMP */
f4ebcbc0
KT
482 int rt_queued;
483
029632fb
PZ
484 int rt_throttled;
485 u64 rt_time;
486 u64 rt_runtime;
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock;
489
490#ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted;
492
493 struct rq *rq;
029632fb
PZ
494 struct task_group *tg;
495#endif
496};
497
aab03e05
DF
498/* Deadline class' related fields in a runqueue */
499struct dl_rq {
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root;
502 struct rb_node *rb_leftmost;
503
504 unsigned long dl_nr_running;
1baca4ce
JL
505
506#ifdef CONFIG_SMP
507 /*
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
512 */
513 struct {
514 u64 curr;
515 u64 next;
516 } earliest_dl;
517
518 unsigned long dl_nr_migratory;
1baca4ce
JL
519 int overloaded;
520
521 /*
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
525 */
526 struct rb_root pushable_dl_tasks_root;
527 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
528#else
529 struct dl_bw dl_bw;
1baca4ce 530#endif
aab03e05
DF
531};
532
029632fb
PZ
533#ifdef CONFIG_SMP
534
535/*
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
542 */
543struct root_domain {
544 atomic_t refcount;
545 atomic_t rto_count;
546 struct rcu_head rcu;
547 cpumask_var_t span;
548 cpumask_var_t online;
549
4486edd1
TC
550 /* Indicate more than one runnable task for any CPU */
551 bool overload;
552
1baca4ce
JL
553 /*
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
556 */
557 cpumask_var_t dlo_mask;
558 atomic_t dlo_count;
332ac17e 559 struct dl_bw dl_bw;
6bfd6d72 560 struct cpudl cpudl;
1baca4ce 561
029632fb
PZ
562 /*
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
565 */
566 cpumask_var_t rto_mask;
567 struct cpupri cpupri;
cd92bfd3
DE
568
569 unsigned long max_cpu_capacity;
029632fb
PZ
570};
571
572extern struct root_domain def_root_domain;
573
574#endif /* CONFIG_SMP */
575
576/*
577 * This is the main, per-CPU runqueue data structure.
578 *
579 * Locking rule: those places that want to lock multiple runqueues
580 * (such as the load balancing or the thread migration code), lock
581 * acquire operations must be ordered by ascending &runqueue.
582 */
583struct rq {
584 /* runqueue lock: */
585 raw_spinlock_t lock;
586
587 /*
588 * nr_running and cpu_load should be in the same cacheline because
589 * remote CPUs use both these fields when doing load calculation.
590 */
c82513e5 591 unsigned int nr_running;
0ec8aa00
PZ
592#ifdef CONFIG_NUMA_BALANCING
593 unsigned int nr_numa_running;
594 unsigned int nr_preferred_running;
595#endif
029632fb
PZ
596 #define CPU_LOAD_IDX_MAX 5
597 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 598#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
599#ifdef CONFIG_SMP
600 unsigned long last_load_update_tick;
601#endif /* CONFIG_SMP */
1c792db7 602 unsigned long nohz_flags;
9fd81dd5 603#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
604#ifdef CONFIG_NO_HZ_FULL
605 unsigned long last_sched_tick;
029632fb 606#endif
029632fb
PZ
607 /* capture load from *all* tasks on this cpu: */
608 struct load_weight load;
609 unsigned long nr_load_updates;
610 u64 nr_switches;
611
612 struct cfs_rq cfs;
613 struct rt_rq rt;
aab03e05 614 struct dl_rq dl;
029632fb
PZ
615
616#ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
619#endif /* CONFIG_FAIR_GROUP_SCHED */
620
029632fb
PZ
621 /*
622 * This is part of a global counter where only the total sum
623 * over all CPUs matters. A task can increase this counter on
624 * one CPU and if it got migrated afterwards it may decrease
625 * it on another CPU. Always updated under the runqueue lock:
626 */
627 unsigned long nr_uninterruptible;
628
629 struct task_struct *curr, *idle, *stop;
630 unsigned long next_balance;
631 struct mm_struct *prev_mm;
632
9edfbfed 633 unsigned int clock_skip_update;
029632fb
PZ
634 u64 clock;
635 u64 clock_task;
636
637 atomic_t nr_iowait;
638
639#ifdef CONFIG_SMP
640 struct root_domain *rd;
641 struct sched_domain *sd;
642
ced549fa 643 unsigned long cpu_capacity;
ca6d75e6 644 unsigned long cpu_capacity_orig;
029632fb 645
e3fca9e7
PZ
646 struct callback_head *balance_callback;
647
029632fb
PZ
648 unsigned char idle_balance;
649 /* For active balancing */
029632fb
PZ
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
367456c7
PZ
657 struct list_head cfs_tasks;
658
029632fb
PZ
659 u64 rt_avg;
660 u64 age_stamp;
661 u64 idle_stamp;
662 u64 avg_idle;
9bd721c5
JL
663
664 /* This is used to determine avg_idle's max value */
665 u64 max_idle_balance_cost;
029632fb
PZ
666#endif
667
668#ifdef CONFIG_IRQ_TIME_ACCOUNTING
669 u64 prev_irq_time;
670#endif
671#ifdef CONFIG_PARAVIRT
672 u64 prev_steal_time;
673#endif
674#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
675 u64 prev_steal_time_rq;
676#endif
677
678 /* calc_load related fields */
679 unsigned long calc_load_update;
680 long calc_load_active;
681
682#ifdef CONFIG_SCHED_HRTICK
683#ifdef CONFIG_SMP
684 int hrtick_csd_pending;
685 struct call_single_data hrtick_csd;
686#endif
687 struct hrtimer hrtick_timer;
688#endif
689
690#ifdef CONFIG_SCHEDSTATS
691 /* latency stats */
692 struct sched_info rq_sched_info;
693 unsigned long long rq_cpu_time;
694 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
695
696 /* sys_sched_yield() stats */
697 unsigned int yld_count;
698
699 /* schedule() stats */
029632fb
PZ
700 unsigned int sched_count;
701 unsigned int sched_goidle;
702
703 /* try_to_wake_up() stats */
704 unsigned int ttwu_count;
705 unsigned int ttwu_local;
706#endif
707
708#ifdef CONFIG_SMP
709 struct llist_head wake_list;
710#endif
442bf3aa
DL
711
712#ifdef CONFIG_CPU_IDLE
713 /* Must be inspected within a rcu lock section */
714 struct cpuidle_state *idle_state;
715#endif
029632fb
PZ
716};
717
718static inline int cpu_of(struct rq *rq)
719{
720#ifdef CONFIG_SMP
721 return rq->cpu;
722#else
723 return 0;
724#endif
725}
726
1b568f0a
PZ
727
728#ifdef CONFIG_SCHED_SMT
729
730extern struct static_key_false sched_smt_present;
731
732extern void __update_idle_core(struct rq *rq);
733
734static inline void update_idle_core(struct rq *rq)
735{
736 if (static_branch_unlikely(&sched_smt_present))
737 __update_idle_core(rq);
738}
739
740#else
741static inline void update_idle_core(struct rq *rq) { }
742#endif
743
8b06c55b 744DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 745
518cd623 746#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 747#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
748#define task_rq(p) cpu_rq(task_cpu(p))
749#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 750#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 751
cebde6d6
PZ
752static inline u64 __rq_clock_broken(struct rq *rq)
753{
316c1608 754 return READ_ONCE(rq->clock);
cebde6d6
PZ
755}
756
78becc27
FW
757static inline u64 rq_clock(struct rq *rq)
758{
cebde6d6 759 lockdep_assert_held(&rq->lock);
78becc27
FW
760 return rq->clock;
761}
762
763static inline u64 rq_clock_task(struct rq *rq)
764{
cebde6d6 765 lockdep_assert_held(&rq->lock);
78becc27
FW
766 return rq->clock_task;
767}
768
9edfbfed
PZ
769#define RQCF_REQ_SKIP 0x01
770#define RQCF_ACT_SKIP 0x02
771
772static inline void rq_clock_skip_update(struct rq *rq, bool skip)
773{
774 lockdep_assert_held(&rq->lock);
775 if (skip)
776 rq->clock_skip_update |= RQCF_REQ_SKIP;
777 else
778 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
779}
780
9942f79b 781#ifdef CONFIG_NUMA
e3fe70b1
RR
782enum numa_topology_type {
783 NUMA_DIRECT,
784 NUMA_GLUELESS_MESH,
785 NUMA_BACKPLANE,
786};
787extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
788extern int sched_max_numa_distance;
789extern bool find_numa_distance(int distance);
790#endif
791
f809ca9a 792#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
793/* The regions in numa_faults array from task_struct */
794enum numa_faults_stats {
795 NUMA_MEM = 0,
796 NUMA_CPU,
797 NUMA_MEMBUF,
798 NUMA_CPUBUF
799};
0ec8aa00 800extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 801extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 802extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
803#endif /* CONFIG_NUMA_BALANCING */
804
518cd623
PZ
805#ifdef CONFIG_SMP
806
e3fca9e7
PZ
807static inline void
808queue_balance_callback(struct rq *rq,
809 struct callback_head *head,
810 void (*func)(struct rq *rq))
811{
812 lockdep_assert_held(&rq->lock);
813
814 if (unlikely(head->next))
815 return;
816
817 head->func = (void (*)(struct callback_head *))func;
818 head->next = rq->balance_callback;
819 rq->balance_callback = head;
820}
821
e3baac47
PZ
822extern void sched_ttwu_pending(void);
823
029632fb
PZ
824#define rcu_dereference_check_sched_domain(p) \
825 rcu_dereference_check((p), \
826 lockdep_is_held(&sched_domains_mutex))
827
828/*
829 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
830 * See detach_destroy_domains: synchronize_sched for details.
831 *
832 * The domain tree of any CPU may only be accessed from within
833 * preempt-disabled sections.
834 */
835#define for_each_domain(cpu, __sd) \
518cd623
PZ
836 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
837 __sd; __sd = __sd->parent)
029632fb 838
77e81365
SS
839#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
840
518cd623
PZ
841/**
842 * highest_flag_domain - Return highest sched_domain containing flag.
843 * @cpu: The cpu whose highest level of sched domain is to
844 * be returned.
845 * @flag: The flag to check for the highest sched_domain
846 * for the given cpu.
847 *
848 * Returns the highest sched_domain of a cpu which contains the given flag.
849 */
850static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
851{
852 struct sched_domain *sd, *hsd = NULL;
853
854 for_each_domain(cpu, sd) {
855 if (!(sd->flags & flag))
856 break;
857 hsd = sd;
858 }
859
860 return hsd;
861}
862
fb13c7ee
MG
863static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
864{
865 struct sched_domain *sd;
866
867 for_each_domain(cpu, sd) {
868 if (sd->flags & flag)
869 break;
870 }
871
872 return sd;
873}
874
518cd623 875DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 876DECLARE_PER_CPU(int, sd_llc_size);
518cd623 877DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 878DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 879DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 880DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 881
63b2ca30 882struct sched_group_capacity {
5e6521ea
LZ
883 atomic_t ref;
884 /*
172895e6 885 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 886 * for a single CPU.
5e6521ea 887 */
dc7ff76e 888 unsigned int capacity;
5e6521ea 889 unsigned long next_update;
63b2ca30 890 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
891
892 unsigned long cpumask[0]; /* iteration mask */
893};
894
895struct sched_group {
896 struct sched_group *next; /* Must be a circular list */
897 atomic_t ref;
898
899 unsigned int group_weight;
63b2ca30 900 struct sched_group_capacity *sgc;
5e6521ea
LZ
901
902 /*
903 * The CPUs this group covers.
904 *
905 * NOTE: this field is variable length. (Allocated dynamically
906 * by attaching extra space to the end of the structure,
907 * depending on how many CPUs the kernel has booted up with)
908 */
909 unsigned long cpumask[0];
910};
911
912static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
913{
914 return to_cpumask(sg->cpumask);
915}
916
917/*
918 * cpumask masking which cpus in the group are allowed to iterate up the domain
919 * tree.
920 */
921static inline struct cpumask *sched_group_mask(struct sched_group *sg)
922{
63b2ca30 923 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
924}
925
926/**
927 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
928 * @group: The group whose first cpu is to be returned.
929 */
930static inline unsigned int group_first_cpu(struct sched_group *group)
931{
932 return cpumask_first(sched_group_cpus(group));
933}
934
c1174876
PZ
935extern int group_balance_cpu(struct sched_group *sg);
936
3866e845
SRRH
937#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
938void register_sched_domain_sysctl(void);
939void unregister_sched_domain_sysctl(void);
940#else
941static inline void register_sched_domain_sysctl(void)
942{
943}
944static inline void unregister_sched_domain_sysctl(void)
945{
946}
947#endif
948
e3baac47
PZ
949#else
950
951static inline void sched_ttwu_pending(void) { }
952
518cd623 953#endif /* CONFIG_SMP */
029632fb 954
391e43da
PZ
955#include "stats.h"
956#include "auto_group.h"
029632fb
PZ
957
958#ifdef CONFIG_CGROUP_SCHED
959
960/*
961 * Return the group to which this tasks belongs.
962 *
8af01f56
TH
963 * We cannot use task_css() and friends because the cgroup subsystem
964 * changes that value before the cgroup_subsys::attach() method is called,
965 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
966 *
967 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
968 * core changes this before calling sched_move_task().
969 *
970 * Instead we use a 'copy' which is updated from sched_move_task() while
971 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
972 */
973static inline struct task_group *task_group(struct task_struct *p)
974{
8323f26c 975 return p->sched_task_group;
029632fb
PZ
976}
977
978/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
979static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
980{
981#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
982 struct task_group *tg = task_group(p);
983#endif
984
985#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 986 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
987 p->se.cfs_rq = tg->cfs_rq[cpu];
988 p->se.parent = tg->se[cpu];
989#endif
990
991#ifdef CONFIG_RT_GROUP_SCHED
992 p->rt.rt_rq = tg->rt_rq[cpu];
993 p->rt.parent = tg->rt_se[cpu];
994#endif
995}
996
997#else /* CONFIG_CGROUP_SCHED */
998
999static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1000static inline struct task_group *task_group(struct task_struct *p)
1001{
1002 return NULL;
1003}
1004
1005#endif /* CONFIG_CGROUP_SCHED */
1006
1007static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1008{
1009 set_task_rq(p, cpu);
1010#ifdef CONFIG_SMP
1011 /*
1012 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1013 * successfuly executed on another CPU. We must ensure that updates of
1014 * per-task data have been completed by this moment.
1015 */
1016 smp_wmb();
1017 task_thread_info(p)->cpu = cpu;
ac66f547 1018 p->wake_cpu = cpu;
029632fb
PZ
1019#endif
1020}
1021
1022/*
1023 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1024 */
1025#ifdef CONFIG_SCHED_DEBUG
c5905afb 1026# include <linux/static_key.h>
029632fb
PZ
1027# define const_debug __read_mostly
1028#else
1029# define const_debug const
1030#endif
1031
1032extern const_debug unsigned int sysctl_sched_features;
1033
1034#define SCHED_FEAT(name, enabled) \
1035 __SCHED_FEAT_##name ,
1036
1037enum {
391e43da 1038#include "features.h"
f8b6d1cc 1039 __SCHED_FEAT_NR,
029632fb
PZ
1040};
1041
1042#undef SCHED_FEAT
1043
f8b6d1cc 1044#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1045#define SCHED_FEAT(name, enabled) \
c5905afb 1046static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1047{ \
6e76ea8a 1048 return static_key_##enabled(key); \
f8b6d1cc
PZ
1049}
1050
1051#include "features.h"
1052
1053#undef SCHED_FEAT
1054
c5905afb 1055extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1056#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1057#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1058#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1059#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1060
2a595721 1061extern struct static_key_false sched_numa_balancing;
cb251765 1062extern struct static_key_false sched_schedstats;
cbee9f88 1063
029632fb
PZ
1064static inline u64 global_rt_period(void)
1065{
1066 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1067}
1068
1069static inline u64 global_rt_runtime(void)
1070{
1071 if (sysctl_sched_rt_runtime < 0)
1072 return RUNTIME_INF;
1073
1074 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1075}
1076
029632fb
PZ
1077static inline int task_current(struct rq *rq, struct task_struct *p)
1078{
1079 return rq->curr == p;
1080}
1081
1082static inline int task_running(struct rq *rq, struct task_struct *p)
1083{
1084#ifdef CONFIG_SMP
1085 return p->on_cpu;
1086#else
1087 return task_current(rq, p);
1088#endif
1089}
1090
da0c1e65
KT
1091static inline int task_on_rq_queued(struct task_struct *p)
1092{
1093 return p->on_rq == TASK_ON_RQ_QUEUED;
1094}
029632fb 1095
cca26e80
KT
1096static inline int task_on_rq_migrating(struct task_struct *p)
1097{
1098 return p->on_rq == TASK_ON_RQ_MIGRATING;
1099}
1100
029632fb
PZ
1101#ifndef prepare_arch_switch
1102# define prepare_arch_switch(next) do { } while (0)
1103#endif
01f23e16
CM
1104#ifndef finish_arch_post_lock_switch
1105# define finish_arch_post_lock_switch() do { } while (0)
1106#endif
029632fb 1107
029632fb
PZ
1108static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1109{
1110#ifdef CONFIG_SMP
1111 /*
1112 * We can optimise this out completely for !SMP, because the
1113 * SMP rebalancing from interrupt is the only thing that cares
1114 * here.
1115 */
1116 next->on_cpu = 1;
1117#endif
1118}
1119
1120static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1121{
1122#ifdef CONFIG_SMP
1123 /*
1124 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1125 * We must ensure this doesn't happen until the switch is completely
1126 * finished.
95913d97 1127 *
b75a2253
PZ
1128 * In particular, the load of prev->state in finish_task_switch() must
1129 * happen before this.
1130 *
1f03e8d2 1131 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1132 */
95913d97 1133 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1134#endif
1135#ifdef CONFIG_DEBUG_SPINLOCK
1136 /* this is a valid case when another task releases the spinlock */
1137 rq->lock.owner = current;
1138#endif
1139 /*
1140 * If we are tracking spinlock dependencies then we have to
1141 * fix up the runqueue lock - which gets 'carried over' from
1142 * prev into current:
1143 */
1144 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1145
1146 raw_spin_unlock_irq(&rq->lock);
1147}
1148
b13095f0
LZ
1149/*
1150 * wake flags
1151 */
1152#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1153#define WF_FORK 0x02 /* child wakeup after fork */
1154#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1155
029632fb
PZ
1156/*
1157 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1158 * of tasks with abnormal "nice" values across CPUs the contribution that
1159 * each task makes to its run queue's load is weighted according to its
1160 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1161 * scaled version of the new time slice allocation that they receive on time
1162 * slice expiry etc.
1163 */
1164
1165#define WEIGHT_IDLEPRIO 3
1166#define WMULT_IDLEPRIO 1431655765
1167
ed82b8a1
AK
1168extern const int sched_prio_to_weight[40];
1169extern const u32 sched_prio_to_wmult[40];
029632fb 1170
ff77e468
PZ
1171/*
1172 * {de,en}queue flags:
1173 *
1174 * DEQUEUE_SLEEP - task is no longer runnable
1175 * ENQUEUE_WAKEUP - task just became runnable
1176 *
1177 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1178 * are in a known state which allows modification. Such pairs
1179 * should preserve as much state as possible.
1180 *
1181 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1182 * in the runqueue.
1183 *
1184 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1185 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1186 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1187 *
1188 */
1189
1190#define DEQUEUE_SLEEP 0x01
1191#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1192#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1193
1de64443 1194#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1195#define ENQUEUE_RESTORE 0x02
1196#define ENQUEUE_MOVE 0x04
1197
1198#define ENQUEUE_HEAD 0x08
1199#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1200#ifdef CONFIG_SMP
59efa0ba 1201#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1202#else
59efa0ba 1203#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1204#endif
c82ba9fa 1205
37e117c0
PZ
1206#define RETRY_TASK ((void *)-1UL)
1207
c82ba9fa
LZ
1208struct sched_class {
1209 const struct sched_class *next;
1210
1211 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1212 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1213 void (*yield_task) (struct rq *rq);
1214 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1215
1216 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1217
606dba2e
PZ
1218 /*
1219 * It is the responsibility of the pick_next_task() method that will
1220 * return the next task to call put_prev_task() on the @prev task or
1221 * something equivalent.
37e117c0
PZ
1222 *
1223 * May return RETRY_TASK when it finds a higher prio class has runnable
1224 * tasks.
606dba2e
PZ
1225 */
1226 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28
PZ
1227 struct task_struct *prev,
1228 struct pin_cookie cookie);
c82ba9fa
LZ
1229 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1230
1231#ifdef CONFIG_SMP
ac66f547 1232 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1233 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1234
c82ba9fa
LZ
1235 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1236
1237 void (*set_cpus_allowed)(struct task_struct *p,
1238 const struct cpumask *newmask);
1239
1240 void (*rq_online)(struct rq *rq);
1241 void (*rq_offline)(struct rq *rq);
1242#endif
1243
1244 void (*set_curr_task) (struct rq *rq);
1245 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1246 void (*task_fork) (struct task_struct *p);
e6c390f2 1247 void (*task_dead) (struct task_struct *p);
c82ba9fa 1248
67dfa1b7
KT
1249 /*
1250 * The switched_from() call is allowed to drop rq->lock, therefore we
1251 * cannot assume the switched_from/switched_to pair is serliazed by
1252 * rq->lock. They are however serialized by p->pi_lock.
1253 */
c82ba9fa
LZ
1254 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1255 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1256 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1257 int oldprio);
1258
1259 unsigned int (*get_rr_interval) (struct rq *rq,
1260 struct task_struct *task);
1261
6e998916
SG
1262 void (*update_curr) (struct rq *rq);
1263
ea86cb4b
VG
1264#define TASK_SET_GROUP 0
1265#define TASK_MOVE_GROUP 1
1266
c82ba9fa 1267#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1268 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1269#endif
1270};
029632fb 1271
3f1d2a31
PZ
1272static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1273{
1274 prev->sched_class->put_prev_task(rq, prev);
1275}
1276
b2bf6c31
PZ
1277static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1278{
1279 curr->sched_class->set_curr_task(rq);
1280}
1281
029632fb
PZ
1282#define sched_class_highest (&stop_sched_class)
1283#define for_each_class(class) \
1284 for (class = sched_class_highest; class; class = class->next)
1285
1286extern const struct sched_class stop_sched_class;
aab03e05 1287extern const struct sched_class dl_sched_class;
029632fb
PZ
1288extern const struct sched_class rt_sched_class;
1289extern const struct sched_class fair_sched_class;
1290extern const struct sched_class idle_sched_class;
1291
1292
1293#ifdef CONFIG_SMP
1294
63b2ca30 1295extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1296
7caff66f 1297extern void trigger_load_balance(struct rq *rq);
029632fb 1298
c5b28038
PZ
1299extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1300
029632fb
PZ
1301#endif
1302
442bf3aa
DL
1303#ifdef CONFIG_CPU_IDLE
1304static inline void idle_set_state(struct rq *rq,
1305 struct cpuidle_state *idle_state)
1306{
1307 rq->idle_state = idle_state;
1308}
1309
1310static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1311{
1312 WARN_ON(!rcu_read_lock_held());
1313 return rq->idle_state;
1314}
1315#else
1316static inline void idle_set_state(struct rq *rq,
1317 struct cpuidle_state *idle_state)
1318{
1319}
1320
1321static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1322{
1323 return NULL;
1324}
1325#endif
1326
029632fb
PZ
1327extern void sysrq_sched_debug_show(void);
1328extern void sched_init_granularity(void);
1329extern void update_max_interval(void);
1baca4ce
JL
1330
1331extern void init_sched_dl_class(void);
029632fb
PZ
1332extern void init_sched_rt_class(void);
1333extern void init_sched_fair_class(void);
1334
8875125e 1335extern void resched_curr(struct rq *rq);
029632fb
PZ
1336extern void resched_cpu(int cpu);
1337
1338extern struct rt_bandwidth def_rt_bandwidth;
1339extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1340
332ac17e
DF
1341extern struct dl_bandwidth def_dl_bandwidth;
1342extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1343extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1344
332ac17e
DF
1345unsigned long to_ratio(u64 period, u64 runtime);
1346
540247fb 1347extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1348extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1349
76d92ac3
FW
1350#ifdef CONFIG_NO_HZ_FULL
1351extern bool sched_can_stop_tick(struct rq *rq);
1352
1353/*
1354 * Tick may be needed by tasks in the runqueue depending on their policy and
1355 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1356 * nohz mode if necessary.
1357 */
1358static inline void sched_update_tick_dependency(struct rq *rq)
1359{
1360 int cpu;
1361
1362 if (!tick_nohz_full_enabled())
1363 return;
1364
1365 cpu = cpu_of(rq);
1366
1367 if (!tick_nohz_full_cpu(cpu))
1368 return;
1369
1370 if (sched_can_stop_tick(rq))
1371 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1372 else
1373 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1374}
1375#else
1376static inline void sched_update_tick_dependency(struct rq *rq) { }
1377#endif
1378
72465447 1379static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1380{
72465447
KT
1381 unsigned prev_nr = rq->nr_running;
1382
1383 rq->nr_running = prev_nr + count;
9f3660c2 1384
72465447 1385 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1386#ifdef CONFIG_SMP
1387 if (!rq->rd->overload)
1388 rq->rd->overload = true;
1389#endif
4486edd1 1390 }
76d92ac3
FW
1391
1392 sched_update_tick_dependency(rq);
029632fb
PZ
1393}
1394
72465447 1395static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1396{
72465447 1397 rq->nr_running -= count;
76d92ac3
FW
1398 /* Check if we still need preemption */
1399 sched_update_tick_dependency(rq);
029632fb
PZ
1400}
1401
265f22a9
FW
1402static inline void rq_last_tick_reset(struct rq *rq)
1403{
1404#ifdef CONFIG_NO_HZ_FULL
1405 rq->last_sched_tick = jiffies;
1406#endif
1407}
1408
029632fb
PZ
1409extern void update_rq_clock(struct rq *rq);
1410
1411extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1412extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1413
1414extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1415
1416extern const_debug unsigned int sysctl_sched_time_avg;
1417extern const_debug unsigned int sysctl_sched_nr_migrate;
1418extern const_debug unsigned int sysctl_sched_migration_cost;
1419
1420static inline u64 sched_avg_period(void)
1421{
1422 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1423}
1424
029632fb
PZ
1425#ifdef CONFIG_SCHED_HRTICK
1426
1427/*
1428 * Use hrtick when:
1429 * - enabled by features
1430 * - hrtimer is actually high res
1431 */
1432static inline int hrtick_enabled(struct rq *rq)
1433{
1434 if (!sched_feat(HRTICK))
1435 return 0;
1436 if (!cpu_active(cpu_of(rq)))
1437 return 0;
1438 return hrtimer_is_hres_active(&rq->hrtick_timer);
1439}
1440
1441void hrtick_start(struct rq *rq, u64 delay);
1442
b39e66ea
MG
1443#else
1444
1445static inline int hrtick_enabled(struct rq *rq)
1446{
1447 return 0;
1448}
1449
029632fb
PZ
1450#endif /* CONFIG_SCHED_HRTICK */
1451
1452#ifdef CONFIG_SMP
1453extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1454
1455#ifndef arch_scale_freq_capacity
1456static __always_inline
1457unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1458{
1459 return SCHED_CAPACITY_SCALE;
1460}
1461#endif
b5b4860d 1462
8cd5601c
MR
1463#ifndef arch_scale_cpu_capacity
1464static __always_inline
1465unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1466{
e3279a2e 1467 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1468 return sd->smt_gain / sd->span_weight;
1469
1470 return SCHED_CAPACITY_SCALE;
1471}
1472#endif
1473
029632fb
PZ
1474static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1475{
b5b4860d 1476 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1477 sched_avg_update(rq);
1478}
1479#else
1480static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1481static inline void sched_avg_update(struct rq *rq) { }
1482#endif
1483
eb580751
PZ
1484struct rq_flags {
1485 unsigned long flags;
e7904a28 1486 struct pin_cookie cookie;
eb580751
PZ
1487};
1488
1489struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1490 __acquires(rq->lock);
eb580751 1491struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1492 __acquires(p->pi_lock)
3e71a462 1493 __acquires(rq->lock);
3960c8c0 1494
eb580751 1495static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1496 __releases(rq->lock)
1497{
e7904a28 1498 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0
PZ
1499 raw_spin_unlock(&rq->lock);
1500}
1501
1502static inline void
eb580751 1503task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1504 __releases(rq->lock)
1505 __releases(p->pi_lock)
1506{
e7904a28 1507 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0 1508 raw_spin_unlock(&rq->lock);
eb580751 1509 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1510}
1511
029632fb
PZ
1512#ifdef CONFIG_SMP
1513#ifdef CONFIG_PREEMPT
1514
1515static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1516
1517/*
1518 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1519 * way at the expense of forcing extra atomic operations in all
1520 * invocations. This assures that the double_lock is acquired using the
1521 * same underlying policy as the spinlock_t on this architecture, which
1522 * reduces latency compared to the unfair variant below. However, it
1523 * also adds more overhead and therefore may reduce throughput.
1524 */
1525static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1526 __releases(this_rq->lock)
1527 __acquires(busiest->lock)
1528 __acquires(this_rq->lock)
1529{
1530 raw_spin_unlock(&this_rq->lock);
1531 double_rq_lock(this_rq, busiest);
1532
1533 return 1;
1534}
1535
1536#else
1537/*
1538 * Unfair double_lock_balance: Optimizes throughput at the expense of
1539 * latency by eliminating extra atomic operations when the locks are
1540 * already in proper order on entry. This favors lower cpu-ids and will
1541 * grant the double lock to lower cpus over higher ids under contention,
1542 * regardless of entry order into the function.
1543 */
1544static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1545 __releases(this_rq->lock)
1546 __acquires(busiest->lock)
1547 __acquires(this_rq->lock)
1548{
1549 int ret = 0;
1550
1551 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1552 if (busiest < this_rq) {
1553 raw_spin_unlock(&this_rq->lock);
1554 raw_spin_lock(&busiest->lock);
1555 raw_spin_lock_nested(&this_rq->lock,
1556 SINGLE_DEPTH_NESTING);
1557 ret = 1;
1558 } else
1559 raw_spin_lock_nested(&busiest->lock,
1560 SINGLE_DEPTH_NESTING);
1561 }
1562 return ret;
1563}
1564
1565#endif /* CONFIG_PREEMPT */
1566
1567/*
1568 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1569 */
1570static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1571{
1572 if (unlikely(!irqs_disabled())) {
1573 /* printk() doesn't work good under rq->lock */
1574 raw_spin_unlock(&this_rq->lock);
1575 BUG_ON(1);
1576 }
1577
1578 return _double_lock_balance(this_rq, busiest);
1579}
1580
1581static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1582 __releases(busiest->lock)
1583{
1584 raw_spin_unlock(&busiest->lock);
1585 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1586}
1587
74602315
PZ
1588static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1589{
1590 if (l1 > l2)
1591 swap(l1, l2);
1592
1593 spin_lock(l1);
1594 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1595}
1596
60e69eed
MG
1597static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1598{
1599 if (l1 > l2)
1600 swap(l1, l2);
1601
1602 spin_lock_irq(l1);
1603 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1604}
1605
74602315
PZ
1606static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1607{
1608 if (l1 > l2)
1609 swap(l1, l2);
1610
1611 raw_spin_lock(l1);
1612 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1613}
1614
029632fb
PZ
1615/*
1616 * double_rq_lock - safely lock two runqueues
1617 *
1618 * Note this does not disable interrupts like task_rq_lock,
1619 * you need to do so manually before calling.
1620 */
1621static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1622 __acquires(rq1->lock)
1623 __acquires(rq2->lock)
1624{
1625 BUG_ON(!irqs_disabled());
1626 if (rq1 == rq2) {
1627 raw_spin_lock(&rq1->lock);
1628 __acquire(rq2->lock); /* Fake it out ;) */
1629 } else {
1630 if (rq1 < rq2) {
1631 raw_spin_lock(&rq1->lock);
1632 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1633 } else {
1634 raw_spin_lock(&rq2->lock);
1635 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 }
1638}
1639
1640/*
1641 * double_rq_unlock - safely unlock two runqueues
1642 *
1643 * Note this does not restore interrupts like task_rq_unlock,
1644 * you need to do so manually after calling.
1645 */
1646static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1647 __releases(rq1->lock)
1648 __releases(rq2->lock)
1649{
1650 raw_spin_unlock(&rq1->lock);
1651 if (rq1 != rq2)
1652 raw_spin_unlock(&rq2->lock);
1653 else
1654 __release(rq2->lock);
1655}
1656
1657#else /* CONFIG_SMP */
1658
1659/*
1660 * double_rq_lock - safely lock two runqueues
1661 *
1662 * Note this does not disable interrupts like task_rq_lock,
1663 * you need to do so manually before calling.
1664 */
1665static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1666 __acquires(rq1->lock)
1667 __acquires(rq2->lock)
1668{
1669 BUG_ON(!irqs_disabled());
1670 BUG_ON(rq1 != rq2);
1671 raw_spin_lock(&rq1->lock);
1672 __acquire(rq2->lock); /* Fake it out ;) */
1673}
1674
1675/*
1676 * double_rq_unlock - safely unlock two runqueues
1677 *
1678 * Note this does not restore interrupts like task_rq_unlock,
1679 * you need to do so manually after calling.
1680 */
1681static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1682 __releases(rq1->lock)
1683 __releases(rq2->lock)
1684{
1685 BUG_ON(rq1 != rq2);
1686 raw_spin_unlock(&rq1->lock);
1687 __release(rq2->lock);
1688}
1689
1690#endif
1691
1692extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1693extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1694
1695#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1696extern void print_cfs_stats(struct seq_file *m, int cpu);
1697extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1698extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1699extern void
1700print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1701
1702#ifdef CONFIG_NUMA_BALANCING
1703extern void
1704show_numa_stats(struct task_struct *p, struct seq_file *m);
1705extern void
1706print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1707 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1708#endif /* CONFIG_NUMA_BALANCING */
1709#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1710
1711extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1712extern void init_rt_rq(struct rt_rq *rt_rq);
1713extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1714
1ee14e6c
BS
1715extern void cfs_bandwidth_usage_inc(void);
1716extern void cfs_bandwidth_usage_dec(void);
1c792db7 1717
3451d024 1718#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1719enum rq_nohz_flag_bits {
1720 NOHZ_TICK_STOPPED,
1721 NOHZ_BALANCE_KICK,
1722};
1723
1724#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1725
1726extern void nohz_balance_exit_idle(unsigned int cpu);
1727#else
1728static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1729#endif
73fbec60
FW
1730
1731#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1732
1733DECLARE_PER_CPU(u64, cpu_hardirq_time);
1734DECLARE_PER_CPU(u64, cpu_softirq_time);
1735
1736#ifndef CONFIG_64BIT
1737DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1738
1739static inline void irq_time_write_begin(void)
1740{
1741 __this_cpu_inc(irq_time_seq.sequence);
1742 smp_wmb();
1743}
1744
1745static inline void irq_time_write_end(void)
1746{
1747 smp_wmb();
1748 __this_cpu_inc(irq_time_seq.sequence);
1749}
1750
1751static inline u64 irq_time_read(int cpu)
1752{
1753 u64 irq_time;
1754 unsigned seq;
1755
1756 do {
1757 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1758 irq_time = per_cpu(cpu_softirq_time, cpu) +
1759 per_cpu(cpu_hardirq_time, cpu);
1760 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1761
1762 return irq_time;
1763}
1764#else /* CONFIG_64BIT */
1765static inline void irq_time_write_begin(void)
1766{
1767}
1768
1769static inline void irq_time_write_end(void)
1770{
1771}
1772
1773static inline u64 irq_time_read(int cpu)
1774{
1775 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1776}
1777#endif /* CONFIG_64BIT */
1778#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1779
1780#ifdef CONFIG_CPU_FREQ
1781DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1782
1783/**
1784 * cpufreq_update_util - Take a note about CPU utilization changes.
1785 * @time: Current time.
1786 * @util: Current utilization.
1787 * @max: Utilization ceiling.
1788 *
1789 * This function is called by the scheduler on every invocation of
1790 * update_load_avg() on the CPU whose utilization is being updated.
1791 *
1792 * It can only be called from RCU-sched read-side critical sections.
1793 */
1794static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1795{
1796 struct update_util_data *data;
1797
1798 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1799 if (data)
1800 data->func(data, time, util, max);
1801}
1802
1803/**
1804 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1805 * @time: Current time.
1806 *
1807 * The way cpufreq is currently arranged requires it to evaluate the CPU
1808 * performance state (frequency/voltage) on a regular basis to prevent it from
1809 * being stuck in a completely inadequate performance level for too long.
1810 * That is not guaranteed to happen if the updates are only triggered from CFS,
1811 * though, because they may not be coming in if RT or deadline tasks are active
1812 * all the time (or there are RT and DL tasks only).
1813 *
1814 * As a workaround for that issue, this function is called by the RT and DL
1815 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1816 * but that really is a band-aid. Going forward it should be replaced with
1817 * solutions targeted more specifically at RT and DL tasks.
1818 */
1819static inline void cpufreq_trigger_update(u64 time)
1820{
1821 cpufreq_update_util(time, ULONG_MAX, 0);
1822}
1823#else
1824static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1825static inline void cpufreq_trigger_update(u64 time) {}
1826#endif /* CONFIG_CPU_FREQ */
be53f58f 1827
9bdcb44e
RW
1828#ifdef arch_scale_freq_capacity
1829#ifndef arch_scale_freq_invariant
1830#define arch_scale_freq_invariant() (true)
1831#endif
1832#else /* arch_scale_freq_capacity */
1833#define arch_scale_freq_invariant() (false)
1834#endif