static keys: Add docs better explaining the whole 'struct static_key' mechanism
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
39 *
40 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
41 * Timeslices get refilled after they expire.
42 */
43#define DEF_TIMESLICE (100 * HZ / 1000)
44
45/*
46 * single value that denotes runtime == period, ie unlimited time.
47 */
48#define RUNTIME_INF ((u64)~0ULL)
49
50static inline int rt_policy(int policy)
51{
52 if (policy == SCHED_FIFO || policy == SCHED_RR)
53 return 1;
54 return 0;
55}
56
57static inline int task_has_rt_policy(struct task_struct *p)
58{
59 return rt_policy(p->policy);
60}
61
62/*
63 * This is the priority-queue data structure of the RT scheduling class:
64 */
65struct rt_prio_array {
66 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
67 struct list_head queue[MAX_RT_PRIO];
68};
69
70struct rt_bandwidth {
71 /* nests inside the rq lock: */
72 raw_spinlock_t rt_runtime_lock;
73 ktime_t rt_period;
74 u64 rt_runtime;
75 struct hrtimer rt_period_timer;
76};
77
78extern struct mutex sched_domains_mutex;
79
80#ifdef CONFIG_CGROUP_SCHED
81
82#include <linux/cgroup.h>
83
84struct cfs_rq;
85struct rt_rq;
86
87static LIST_HEAD(task_groups);
88
89struct cfs_bandwidth {
90#ifdef CONFIG_CFS_BANDWIDTH
91 raw_spinlock_t lock;
92 ktime_t period;
93 u64 quota, runtime;
94 s64 hierarchal_quota;
95 u64 runtime_expires;
96
97 int idle, timer_active;
98 struct hrtimer period_timer, slack_timer;
99 struct list_head throttled_cfs_rq;
100
101 /* statistics */
102 int nr_periods, nr_throttled;
103 u64 throttled_time;
104#endif
105};
106
107/* task group related information */
108struct task_group {
109 struct cgroup_subsys_state css;
110
111#ifdef CONFIG_FAIR_GROUP_SCHED
112 /* schedulable entities of this group on each cpu */
113 struct sched_entity **se;
114 /* runqueue "owned" by this group on each cpu */
115 struct cfs_rq **cfs_rq;
116 unsigned long shares;
117
118 atomic_t load_weight;
119#endif
120
121#ifdef CONFIG_RT_GROUP_SCHED
122 struct sched_rt_entity **rt_se;
123 struct rt_rq **rt_rq;
124
125 struct rt_bandwidth rt_bandwidth;
126#endif
127
128 struct rcu_head rcu;
129 struct list_head list;
130
131 struct task_group *parent;
132 struct list_head siblings;
133 struct list_head children;
134
135#ifdef CONFIG_SCHED_AUTOGROUP
136 struct autogroup *autogroup;
137#endif
138
139 struct cfs_bandwidth cfs_bandwidth;
140};
141
142#ifdef CONFIG_FAIR_GROUP_SCHED
143#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
144
145/*
146 * A weight of 0 or 1 can cause arithmetics problems.
147 * A weight of a cfs_rq is the sum of weights of which entities
148 * are queued on this cfs_rq, so a weight of a entity should not be
149 * too large, so as the shares value of a task group.
150 * (The default weight is 1024 - so there's no practical
151 * limitation from this.)
152 */
153#define MIN_SHARES (1UL << 1)
154#define MAX_SHARES (1UL << 18)
155#endif
156
157/* Default task group.
158 * Every task in system belong to this group at bootup.
159 */
160extern struct task_group root_task_group;
161
162typedef int (*tg_visitor)(struct task_group *, void *);
163
164extern int walk_tg_tree_from(struct task_group *from,
165 tg_visitor down, tg_visitor up, void *data);
166
167/*
168 * Iterate the full tree, calling @down when first entering a node and @up when
169 * leaving it for the final time.
170 *
171 * Caller must hold rcu_lock or sufficient equivalent.
172 */
173static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
174{
175 return walk_tg_tree_from(&root_task_group, down, up, data);
176}
177
178extern int tg_nop(struct task_group *tg, void *data);
179
180extern void free_fair_sched_group(struct task_group *tg);
181extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
182extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
183extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
184 struct sched_entity *se, int cpu,
185 struct sched_entity *parent);
186extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
188
189extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
190extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
191extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
192
193extern void free_rt_sched_group(struct task_group *tg);
194extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
195extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
196 struct sched_rt_entity *rt_se, int cpu,
197 struct sched_rt_entity *parent);
198
199#else /* CONFIG_CGROUP_SCHED */
200
201struct cfs_bandwidth { };
202
203#endif /* CONFIG_CGROUP_SCHED */
204
205/* CFS-related fields in a runqueue */
206struct cfs_rq {
207 struct load_weight load;
208 unsigned long nr_running, h_nr_running;
209
210 u64 exec_clock;
211 u64 min_vruntime;
212#ifndef CONFIG_64BIT
213 u64 min_vruntime_copy;
214#endif
215
216 struct rb_root tasks_timeline;
217 struct rb_node *rb_leftmost;
218
219 struct list_head tasks;
220 struct list_head *balance_iterator;
221
222 /*
223 * 'curr' points to currently running entity on this cfs_rq.
224 * It is set to NULL otherwise (i.e when none are currently running).
225 */
226 struct sched_entity *curr, *next, *last, *skip;
227
228#ifdef CONFIG_SCHED_DEBUG
229 unsigned int nr_spread_over;
230#endif
231
232#ifdef CONFIG_FAIR_GROUP_SCHED
233 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
234
235 /*
236 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
237 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
238 * (like users, containers etc.)
239 *
240 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
241 * list is used during load balance.
242 */
243 int on_list;
244 struct list_head leaf_cfs_rq_list;
245 struct task_group *tg; /* group that "owns" this runqueue */
246
247#ifdef CONFIG_SMP
248 /*
249 * the part of load.weight contributed by tasks
250 */
251 unsigned long task_weight;
252
253 /*
254 * h_load = weight * f(tg)
255 *
256 * Where f(tg) is the recursive weight fraction assigned to
257 * this group.
258 */
259 unsigned long h_load;
260
261 /*
262 * Maintaining per-cpu shares distribution for group scheduling
263 *
264 * load_stamp is the last time we updated the load average
265 * load_last is the last time we updated the load average and saw load
266 * load_unacc_exec_time is currently unaccounted execution time
267 */
268 u64 load_avg;
269 u64 load_period;
270 u64 load_stamp, load_last, load_unacc_exec_time;
271
272 unsigned long load_contribution;
273#endif /* CONFIG_SMP */
274#ifdef CONFIG_CFS_BANDWIDTH
275 int runtime_enabled;
276 u64 runtime_expires;
277 s64 runtime_remaining;
278
279 u64 throttled_timestamp;
280 int throttled, throttle_count;
281 struct list_head throttled_list;
282#endif /* CONFIG_CFS_BANDWIDTH */
283#endif /* CONFIG_FAIR_GROUP_SCHED */
284};
285
286static inline int rt_bandwidth_enabled(void)
287{
288 return sysctl_sched_rt_runtime >= 0;
289}
290
291/* Real-Time classes' related field in a runqueue: */
292struct rt_rq {
293 struct rt_prio_array active;
294 unsigned long rt_nr_running;
295#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
296 struct {
297 int curr; /* highest queued rt task prio */
298#ifdef CONFIG_SMP
299 int next; /* next highest */
300#endif
301 } highest_prio;
302#endif
303#ifdef CONFIG_SMP
304 unsigned long rt_nr_migratory;
305 unsigned long rt_nr_total;
306 int overloaded;
307 struct plist_head pushable_tasks;
308#endif
309 int rt_throttled;
310 u64 rt_time;
311 u64 rt_runtime;
312 /* Nests inside the rq lock: */
313 raw_spinlock_t rt_runtime_lock;
314
315#ifdef CONFIG_RT_GROUP_SCHED
316 unsigned long rt_nr_boosted;
317
318 struct rq *rq;
319 struct list_head leaf_rt_rq_list;
320 struct task_group *tg;
321#endif
322};
323
324#ifdef CONFIG_SMP
325
326/*
327 * We add the notion of a root-domain which will be used to define per-domain
328 * variables. Each exclusive cpuset essentially defines an island domain by
329 * fully partitioning the member cpus from any other cpuset. Whenever a new
330 * exclusive cpuset is created, we also create and attach a new root-domain
331 * object.
332 *
333 */
334struct root_domain {
335 atomic_t refcount;
336 atomic_t rto_count;
337 struct rcu_head rcu;
338 cpumask_var_t span;
339 cpumask_var_t online;
340
341 /*
342 * The "RT overload" flag: it gets set if a CPU has more than
343 * one runnable RT task.
344 */
345 cpumask_var_t rto_mask;
346 struct cpupri cpupri;
347};
348
349extern struct root_domain def_root_domain;
350
351#endif /* CONFIG_SMP */
352
353/*
354 * This is the main, per-CPU runqueue data structure.
355 *
356 * Locking rule: those places that want to lock multiple runqueues
357 * (such as the load balancing or the thread migration code), lock
358 * acquire operations must be ordered by ascending &runqueue.
359 */
360struct rq {
361 /* runqueue lock: */
362 raw_spinlock_t lock;
363
364 /*
365 * nr_running and cpu_load should be in the same cacheline because
366 * remote CPUs use both these fields when doing load calculation.
367 */
368 unsigned long nr_running;
369 #define CPU_LOAD_IDX_MAX 5
370 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
371 unsigned long last_load_update_tick;
372#ifdef CONFIG_NO_HZ
373 u64 nohz_stamp;
1c792db7 374 unsigned long nohz_flags;
029632fb
PZ
375#endif
376 int skip_clock_update;
377
378 /* capture load from *all* tasks on this cpu: */
379 struct load_weight load;
380 unsigned long nr_load_updates;
381 u64 nr_switches;
382
383 struct cfs_rq cfs;
384 struct rt_rq rt;
385
386#ifdef CONFIG_FAIR_GROUP_SCHED
387 /* list of leaf cfs_rq on this cpu: */
388 struct list_head leaf_cfs_rq_list;
389#endif
390#ifdef CONFIG_RT_GROUP_SCHED
391 struct list_head leaf_rt_rq_list;
392#endif
393
394 /*
395 * This is part of a global counter where only the total sum
396 * over all CPUs matters. A task can increase this counter on
397 * one CPU and if it got migrated afterwards it may decrease
398 * it on another CPU. Always updated under the runqueue lock:
399 */
400 unsigned long nr_uninterruptible;
401
402 struct task_struct *curr, *idle, *stop;
403 unsigned long next_balance;
404 struct mm_struct *prev_mm;
405
406 u64 clock;
407 u64 clock_task;
408
409 atomic_t nr_iowait;
410
411#ifdef CONFIG_SMP
412 struct root_domain *rd;
413 struct sched_domain *sd;
414
415 unsigned long cpu_power;
416
417 unsigned char idle_balance;
418 /* For active balancing */
419 int post_schedule;
420 int active_balance;
421 int push_cpu;
422 struct cpu_stop_work active_balance_work;
423 /* cpu of this runqueue: */
424 int cpu;
425 int online;
426
427 u64 rt_avg;
428 u64 age_stamp;
429 u64 idle_stamp;
430 u64 avg_idle;
431#endif
432
433#ifdef CONFIG_IRQ_TIME_ACCOUNTING
434 u64 prev_irq_time;
435#endif
436#ifdef CONFIG_PARAVIRT
437 u64 prev_steal_time;
438#endif
439#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
440 u64 prev_steal_time_rq;
441#endif
442
443 /* calc_load related fields */
444 unsigned long calc_load_update;
445 long calc_load_active;
446
447#ifdef CONFIG_SCHED_HRTICK
448#ifdef CONFIG_SMP
449 int hrtick_csd_pending;
450 struct call_single_data hrtick_csd;
451#endif
452 struct hrtimer hrtick_timer;
453#endif
454
455#ifdef CONFIG_SCHEDSTATS
456 /* latency stats */
457 struct sched_info rq_sched_info;
458 unsigned long long rq_cpu_time;
459 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
460
461 /* sys_sched_yield() stats */
462 unsigned int yld_count;
463
464 /* schedule() stats */
465 unsigned int sched_switch;
466 unsigned int sched_count;
467 unsigned int sched_goidle;
468
469 /* try_to_wake_up() stats */
470 unsigned int ttwu_count;
471 unsigned int ttwu_local;
472#endif
473
474#ifdef CONFIG_SMP
475 struct llist_head wake_list;
476#endif
477};
478
479static inline int cpu_of(struct rq *rq)
480{
481#ifdef CONFIG_SMP
482 return rq->cpu;
483#else
484 return 0;
485#endif
486}
487
488DECLARE_PER_CPU(struct rq, runqueues);
489
518cd623
PZ
490#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
491#define this_rq() (&__get_cpu_var(runqueues))
492#define task_rq(p) cpu_rq(task_cpu(p))
493#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
494#define raw_rq() (&__raw_get_cpu_var(runqueues))
495
496#ifdef CONFIG_SMP
497
029632fb
PZ
498#define rcu_dereference_check_sched_domain(p) \
499 rcu_dereference_check((p), \
500 lockdep_is_held(&sched_domains_mutex))
501
502/*
503 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
504 * See detach_destroy_domains: synchronize_sched for details.
505 *
506 * The domain tree of any CPU may only be accessed from within
507 * preempt-disabled sections.
508 */
509#define for_each_domain(cpu, __sd) \
518cd623
PZ
510 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
511 __sd; __sd = __sd->parent)
029632fb 512
77e81365
SS
513#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
514
518cd623
PZ
515/**
516 * highest_flag_domain - Return highest sched_domain containing flag.
517 * @cpu: The cpu whose highest level of sched domain is to
518 * be returned.
519 * @flag: The flag to check for the highest sched_domain
520 * for the given cpu.
521 *
522 * Returns the highest sched_domain of a cpu which contains the given flag.
523 */
524static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
525{
526 struct sched_domain *sd, *hsd = NULL;
527
528 for_each_domain(cpu, sd) {
529 if (!(sd->flags & flag))
530 break;
531 hsd = sd;
532 }
533
534 return hsd;
535}
536
537DECLARE_PER_CPU(struct sched_domain *, sd_llc);
538DECLARE_PER_CPU(int, sd_llc_id);
539
540#endif /* CONFIG_SMP */
029632fb 541
391e43da
PZ
542#include "stats.h"
543#include "auto_group.h"
029632fb
PZ
544
545#ifdef CONFIG_CGROUP_SCHED
546
547/*
548 * Return the group to which this tasks belongs.
549 *
550 * We use task_subsys_state_check() and extend the RCU verification with
551 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
552 * task it moves into the cgroup. Therefore by holding either of those locks,
553 * we pin the task to the current cgroup.
554 */
555static inline struct task_group *task_group(struct task_struct *p)
556{
557 struct task_group *tg;
558 struct cgroup_subsys_state *css;
559
560 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
561 lockdep_is_held(&p->pi_lock) ||
562 lockdep_is_held(&task_rq(p)->lock));
563 tg = container_of(css, struct task_group, css);
564
565 return autogroup_task_group(p, tg);
566}
567
568/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
569static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
570{
571#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
572 struct task_group *tg = task_group(p);
573#endif
574
575#ifdef CONFIG_FAIR_GROUP_SCHED
576 p->se.cfs_rq = tg->cfs_rq[cpu];
577 p->se.parent = tg->se[cpu];
578#endif
579
580#ifdef CONFIG_RT_GROUP_SCHED
581 p->rt.rt_rq = tg->rt_rq[cpu];
582 p->rt.parent = tg->rt_se[cpu];
583#endif
584}
585
586#else /* CONFIG_CGROUP_SCHED */
587
588static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
589static inline struct task_group *task_group(struct task_struct *p)
590{
591 return NULL;
592}
593
594#endif /* CONFIG_CGROUP_SCHED */
595
596static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
597{
598 set_task_rq(p, cpu);
599#ifdef CONFIG_SMP
600 /*
601 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
602 * successfuly executed on another CPU. We must ensure that updates of
603 * per-task data have been completed by this moment.
604 */
605 smp_wmb();
606 task_thread_info(p)->cpu = cpu;
607#endif
608}
609
610/*
611 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
612 */
613#ifdef CONFIG_SCHED_DEBUG
f8b6d1cc 614# include <linux/jump_label.h>
029632fb
PZ
615# define const_debug __read_mostly
616#else
617# define const_debug const
618#endif
619
620extern const_debug unsigned int sysctl_sched_features;
621
622#define SCHED_FEAT(name, enabled) \
623 __SCHED_FEAT_##name ,
624
625enum {
391e43da 626#include "features.h"
f8b6d1cc 627 __SCHED_FEAT_NR,
029632fb
PZ
628};
629
630#undef SCHED_FEAT
631
f8b6d1cc
PZ
632#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
633static __always_inline bool static_branch__true(struct jump_label_key *key)
634{
635 return likely(static_branch(key)); /* Not out of line branch. */
636}
637
638static __always_inline bool static_branch__false(struct jump_label_key *key)
639{
640 return unlikely(static_branch(key)); /* Out of line branch. */
641}
642
643#define SCHED_FEAT(name, enabled) \
644static __always_inline bool static_branch_##name(struct jump_label_key *key) \
645{ \
646 return static_branch__##enabled(key); \
647}
648
649#include "features.h"
650
651#undef SCHED_FEAT
652
653extern struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR];
654#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
655#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 656#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 657#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
658
659static inline u64 global_rt_period(void)
660{
661 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
662}
663
664static inline u64 global_rt_runtime(void)
665{
666 if (sysctl_sched_rt_runtime < 0)
667 return RUNTIME_INF;
668
669 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
670}
671
672
673
674static inline int task_current(struct rq *rq, struct task_struct *p)
675{
676 return rq->curr == p;
677}
678
679static inline int task_running(struct rq *rq, struct task_struct *p)
680{
681#ifdef CONFIG_SMP
682 return p->on_cpu;
683#else
684 return task_current(rq, p);
685#endif
686}
687
688
689#ifndef prepare_arch_switch
690# define prepare_arch_switch(next) do { } while (0)
691#endif
692#ifndef finish_arch_switch
693# define finish_arch_switch(prev) do { } while (0)
694#endif
695
696#ifndef __ARCH_WANT_UNLOCKED_CTXSW
697static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
698{
699#ifdef CONFIG_SMP
700 /*
701 * We can optimise this out completely for !SMP, because the
702 * SMP rebalancing from interrupt is the only thing that cares
703 * here.
704 */
705 next->on_cpu = 1;
706#endif
707}
708
709static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
710{
711#ifdef CONFIG_SMP
712 /*
713 * After ->on_cpu is cleared, the task can be moved to a different CPU.
714 * We must ensure this doesn't happen until the switch is completely
715 * finished.
716 */
717 smp_wmb();
718 prev->on_cpu = 0;
719#endif
720#ifdef CONFIG_DEBUG_SPINLOCK
721 /* this is a valid case when another task releases the spinlock */
722 rq->lock.owner = current;
723#endif
724 /*
725 * If we are tracking spinlock dependencies then we have to
726 * fix up the runqueue lock - which gets 'carried over' from
727 * prev into current:
728 */
729 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
730
731 raw_spin_unlock_irq(&rq->lock);
732}
733
734#else /* __ARCH_WANT_UNLOCKED_CTXSW */
735static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
736{
737#ifdef CONFIG_SMP
738 /*
739 * We can optimise this out completely for !SMP, because the
740 * SMP rebalancing from interrupt is the only thing that cares
741 * here.
742 */
743 next->on_cpu = 1;
744#endif
745#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
746 raw_spin_unlock_irq(&rq->lock);
747#else
748 raw_spin_unlock(&rq->lock);
749#endif
750}
751
752static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
753{
754#ifdef CONFIG_SMP
755 /*
756 * After ->on_cpu is cleared, the task can be moved to a different CPU.
757 * We must ensure this doesn't happen until the switch is completely
758 * finished.
759 */
760 smp_wmb();
761 prev->on_cpu = 0;
762#endif
763#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
764 local_irq_enable();
765#endif
766}
767#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
768
769
770static inline void update_load_add(struct load_weight *lw, unsigned long inc)
771{
772 lw->weight += inc;
773 lw->inv_weight = 0;
774}
775
776static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
777{
778 lw->weight -= dec;
779 lw->inv_weight = 0;
780}
781
782static inline void update_load_set(struct load_weight *lw, unsigned long w)
783{
784 lw->weight = w;
785 lw->inv_weight = 0;
786}
787
788/*
789 * To aid in avoiding the subversion of "niceness" due to uneven distribution
790 * of tasks with abnormal "nice" values across CPUs the contribution that
791 * each task makes to its run queue's load is weighted according to its
792 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
793 * scaled version of the new time slice allocation that they receive on time
794 * slice expiry etc.
795 */
796
797#define WEIGHT_IDLEPRIO 3
798#define WMULT_IDLEPRIO 1431655765
799
800/*
801 * Nice levels are multiplicative, with a gentle 10% change for every
802 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
803 * nice 1, it will get ~10% less CPU time than another CPU-bound task
804 * that remained on nice 0.
805 *
806 * The "10% effect" is relative and cumulative: from _any_ nice level,
807 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
808 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
809 * If a task goes up by ~10% and another task goes down by ~10% then
810 * the relative distance between them is ~25%.)
811 */
812static const int prio_to_weight[40] = {
813 /* -20 */ 88761, 71755, 56483, 46273, 36291,
814 /* -15 */ 29154, 23254, 18705, 14949, 11916,
815 /* -10 */ 9548, 7620, 6100, 4904, 3906,
816 /* -5 */ 3121, 2501, 1991, 1586, 1277,
817 /* 0 */ 1024, 820, 655, 526, 423,
818 /* 5 */ 335, 272, 215, 172, 137,
819 /* 10 */ 110, 87, 70, 56, 45,
820 /* 15 */ 36, 29, 23, 18, 15,
821};
822
823/*
824 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
825 *
826 * In cases where the weight does not change often, we can use the
827 * precalculated inverse to speed up arithmetics by turning divisions
828 * into multiplications:
829 */
830static const u32 prio_to_wmult[40] = {
831 /* -20 */ 48388, 59856, 76040, 92818, 118348,
832 /* -15 */ 147320, 184698, 229616, 287308, 360437,
833 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
834 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
835 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
836 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
837 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
838 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
839};
840
841/* Time spent by the tasks of the cpu accounting group executing in ... */
842enum cpuacct_stat_index {
843 CPUACCT_STAT_USER, /* ... user mode */
844 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
845
846 CPUACCT_STAT_NSTATS,
847};
848
849
850#define sched_class_highest (&stop_sched_class)
851#define for_each_class(class) \
852 for (class = sched_class_highest; class; class = class->next)
853
854extern const struct sched_class stop_sched_class;
855extern const struct sched_class rt_sched_class;
856extern const struct sched_class fair_sched_class;
857extern const struct sched_class idle_sched_class;
858
859
860#ifdef CONFIG_SMP
861
862extern void trigger_load_balance(struct rq *rq, int cpu);
863extern void idle_balance(int this_cpu, struct rq *this_rq);
864
865#else /* CONFIG_SMP */
866
867static inline void idle_balance(int cpu, struct rq *rq)
868{
869}
870
871#endif
872
873extern void sysrq_sched_debug_show(void);
874extern void sched_init_granularity(void);
875extern void update_max_interval(void);
876extern void update_group_power(struct sched_domain *sd, int cpu);
877extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
878extern void init_sched_rt_class(void);
879extern void init_sched_fair_class(void);
880
881extern void resched_task(struct task_struct *p);
882extern void resched_cpu(int cpu);
883
884extern struct rt_bandwidth def_rt_bandwidth;
885extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
886
887extern void update_cpu_load(struct rq *this_rq);
888
889#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
890#include <linux/cgroup.h>
891/* track cpu usage of a group of tasks and its child groups */
892struct cpuacct {
893 struct cgroup_subsys_state css;
894 /* cpuusage holds pointer to a u64-type object on every cpu */
895 u64 __percpu *cpuusage;
896 struct kernel_cpustat __percpu *cpustat;
897};
898
899/* return cpu accounting group corresponding to this container */
900static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
901{
902 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
903 struct cpuacct, css);
904}
905
906/* return cpu accounting group to which this task belongs */
907static inline struct cpuacct *task_ca(struct task_struct *tsk)
908{
909 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
910 struct cpuacct, css);
911}
912
913static inline struct cpuacct *parent_ca(struct cpuacct *ca)
914{
915 if (!ca || !ca->css.cgroup->parent)
916 return NULL;
917 return cgroup_ca(ca->css.cgroup->parent);
918}
919
029632fb 920extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
921#else
922static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
923#endif
924
925static inline void inc_nr_running(struct rq *rq)
926{
927 rq->nr_running++;
928}
929
930static inline void dec_nr_running(struct rq *rq)
931{
932 rq->nr_running--;
933}
934
935extern void update_rq_clock(struct rq *rq);
936
937extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
938extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
939
940extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
941
942extern const_debug unsigned int sysctl_sched_time_avg;
943extern const_debug unsigned int sysctl_sched_nr_migrate;
944extern const_debug unsigned int sysctl_sched_migration_cost;
945
946static inline u64 sched_avg_period(void)
947{
948 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
949}
950
951void calc_load_account_idle(struct rq *this_rq);
952
953#ifdef CONFIG_SCHED_HRTICK
954
955/*
956 * Use hrtick when:
957 * - enabled by features
958 * - hrtimer is actually high res
959 */
960static inline int hrtick_enabled(struct rq *rq)
961{
962 if (!sched_feat(HRTICK))
963 return 0;
964 if (!cpu_active(cpu_of(rq)))
965 return 0;
966 return hrtimer_is_hres_active(&rq->hrtick_timer);
967}
968
969void hrtick_start(struct rq *rq, u64 delay);
970
b39e66ea
MG
971#else
972
973static inline int hrtick_enabled(struct rq *rq)
974{
975 return 0;
976}
977
029632fb
PZ
978#endif /* CONFIG_SCHED_HRTICK */
979
980#ifdef CONFIG_SMP
981extern void sched_avg_update(struct rq *rq);
982static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
983{
984 rq->rt_avg += rt_delta;
985 sched_avg_update(rq);
986}
987#else
988static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
989static inline void sched_avg_update(struct rq *rq) { }
990#endif
991
992extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
993
994#ifdef CONFIG_SMP
995#ifdef CONFIG_PREEMPT
996
997static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
998
999/*
1000 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1001 * way at the expense of forcing extra atomic operations in all
1002 * invocations. This assures that the double_lock is acquired using the
1003 * same underlying policy as the spinlock_t on this architecture, which
1004 * reduces latency compared to the unfair variant below. However, it
1005 * also adds more overhead and therefore may reduce throughput.
1006 */
1007static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1008 __releases(this_rq->lock)
1009 __acquires(busiest->lock)
1010 __acquires(this_rq->lock)
1011{
1012 raw_spin_unlock(&this_rq->lock);
1013 double_rq_lock(this_rq, busiest);
1014
1015 return 1;
1016}
1017
1018#else
1019/*
1020 * Unfair double_lock_balance: Optimizes throughput at the expense of
1021 * latency by eliminating extra atomic operations when the locks are
1022 * already in proper order on entry. This favors lower cpu-ids and will
1023 * grant the double lock to lower cpus over higher ids under contention,
1024 * regardless of entry order into the function.
1025 */
1026static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1027 __releases(this_rq->lock)
1028 __acquires(busiest->lock)
1029 __acquires(this_rq->lock)
1030{
1031 int ret = 0;
1032
1033 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1034 if (busiest < this_rq) {
1035 raw_spin_unlock(&this_rq->lock);
1036 raw_spin_lock(&busiest->lock);
1037 raw_spin_lock_nested(&this_rq->lock,
1038 SINGLE_DEPTH_NESTING);
1039 ret = 1;
1040 } else
1041 raw_spin_lock_nested(&busiest->lock,
1042 SINGLE_DEPTH_NESTING);
1043 }
1044 return ret;
1045}
1046
1047#endif /* CONFIG_PREEMPT */
1048
1049/*
1050 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1051 */
1052static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1053{
1054 if (unlikely(!irqs_disabled())) {
1055 /* printk() doesn't work good under rq->lock */
1056 raw_spin_unlock(&this_rq->lock);
1057 BUG_ON(1);
1058 }
1059
1060 return _double_lock_balance(this_rq, busiest);
1061}
1062
1063static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1064 __releases(busiest->lock)
1065{
1066 raw_spin_unlock(&busiest->lock);
1067 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1068}
1069
1070/*
1071 * double_rq_lock - safely lock two runqueues
1072 *
1073 * Note this does not disable interrupts like task_rq_lock,
1074 * you need to do so manually before calling.
1075 */
1076static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1077 __acquires(rq1->lock)
1078 __acquires(rq2->lock)
1079{
1080 BUG_ON(!irqs_disabled());
1081 if (rq1 == rq2) {
1082 raw_spin_lock(&rq1->lock);
1083 __acquire(rq2->lock); /* Fake it out ;) */
1084 } else {
1085 if (rq1 < rq2) {
1086 raw_spin_lock(&rq1->lock);
1087 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1088 } else {
1089 raw_spin_lock(&rq2->lock);
1090 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1091 }
1092 }
1093}
1094
1095/*
1096 * double_rq_unlock - safely unlock two runqueues
1097 *
1098 * Note this does not restore interrupts like task_rq_unlock,
1099 * you need to do so manually after calling.
1100 */
1101static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1102 __releases(rq1->lock)
1103 __releases(rq2->lock)
1104{
1105 raw_spin_unlock(&rq1->lock);
1106 if (rq1 != rq2)
1107 raw_spin_unlock(&rq2->lock);
1108 else
1109 __release(rq2->lock);
1110}
1111
1112#else /* CONFIG_SMP */
1113
1114/*
1115 * double_rq_lock - safely lock two runqueues
1116 *
1117 * Note this does not disable interrupts like task_rq_lock,
1118 * you need to do so manually before calling.
1119 */
1120static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1121 __acquires(rq1->lock)
1122 __acquires(rq2->lock)
1123{
1124 BUG_ON(!irqs_disabled());
1125 BUG_ON(rq1 != rq2);
1126 raw_spin_lock(&rq1->lock);
1127 __acquire(rq2->lock); /* Fake it out ;) */
1128}
1129
1130/*
1131 * double_rq_unlock - safely unlock two runqueues
1132 *
1133 * Note this does not restore interrupts like task_rq_unlock,
1134 * you need to do so manually after calling.
1135 */
1136static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1137 __releases(rq1->lock)
1138 __releases(rq2->lock)
1139{
1140 BUG_ON(rq1 != rq2);
1141 raw_spin_unlock(&rq1->lock);
1142 __release(rq2->lock);
1143}
1144
1145#endif
1146
1147extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1148extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1149extern void print_cfs_stats(struct seq_file *m, int cpu);
1150extern void print_rt_stats(struct seq_file *m, int cpu);
1151
1152extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1153extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1154extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1155
1156extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1157
1158#ifdef CONFIG_NO_HZ
1159enum rq_nohz_flag_bits {
1160 NOHZ_TICK_STOPPED,
1161 NOHZ_BALANCE_KICK,
69e1e811 1162 NOHZ_IDLE,
1c792db7
SS
1163};
1164
1165#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1166#endif