sched/uclamp: Set default clamps for RT tasks
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9148a3a1 78#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 80#else
6d3aed3d 81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
82#endif
83
45ceebf7 84struct rq;
442bf3aa 85struct cpuidle_state;
45ceebf7 86
da0c1e65
KT
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
cca26e80 89#define TASK_ON_RQ_MIGRATING 2
da0c1e65 90
029632fb
PZ
91extern __read_mostly int scheduler_running;
92
45ceebf7
PG
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
3289bdb4 96extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 98
029632fb
PZ
99/*
100 * Helpers for converting nanosecond timing to jiffy resolution
101 */
102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103
cc1f4b1f
LZ
104/*
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
110 *
111 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
2159197d 114 *
97fb7a0a
IM
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 117 */
2159197d 118#ifdef CONFIG_64BIT
172895e6 119# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
120# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 122#else
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
124# define scale_load(w) (w)
125# define scale_load_down(w) (w)
126#endif
127
6ecdd749 128/*
172895e6
YD
129 * Task weight (visible to users) and its load (invisible to users) have
130 * independent resolution, but they should be well calibrated. We use
131 * scale_load() and scale_load_down(w) to convert between them. The
132 * following must be true:
133 *
134 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
135 *
6ecdd749 136 */
172895e6 137#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 138
332ac17e
DF
139/*
140 * Single value that decides SCHED_DEADLINE internal math precision.
141 * 10 -> just above 1us
142 * 9 -> just above 0.5us
143 */
97fb7a0a 144#define DL_SCALE 10
029632fb
PZ
145
146/*
97fb7a0a 147 * Single value that denotes runtime == period, ie unlimited time.
029632fb 148 */
97fb7a0a 149#define RUNTIME_INF ((u64)~0ULL)
029632fb 150
20f9cd2a
HA
151static inline int idle_policy(int policy)
152{
153 return policy == SCHED_IDLE;
154}
d50dde5a
DF
155static inline int fair_policy(int policy)
156{
157 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
158}
159
029632fb
PZ
160static inline int rt_policy(int policy)
161{
d50dde5a 162 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
163}
164
aab03e05
DF
165static inline int dl_policy(int policy)
166{
167 return policy == SCHED_DEADLINE;
168}
20f9cd2a
HA
169static inline bool valid_policy(int policy)
170{
171 return idle_policy(policy) || fair_policy(policy) ||
172 rt_policy(policy) || dl_policy(policy);
173}
aab03e05 174
1da1843f
VK
175static inline int task_has_idle_policy(struct task_struct *p)
176{
177 return idle_policy(p->policy);
178}
179
029632fb
PZ
180static inline int task_has_rt_policy(struct task_struct *p)
181{
182 return rt_policy(p->policy);
183}
184
aab03e05
DF
185static inline int task_has_dl_policy(struct task_struct *p)
186{
187 return dl_policy(p->policy);
188}
189
07881166
JL
190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
794a56eb
JL
192/*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204#define SCHED_FLAG_SUGOV 0x10000000
205
206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207{
208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210#else
211 return false;
212#endif
213}
214
2d3d891d
DF
215/*
216 * Tells if entity @a should preempt entity @b.
217 */
332ac17e
DF
218static inline bool
219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 220{
794a56eb
JL
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
223}
224
029632fb
PZ
225/*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231};
232
233struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
4cfafd30 239 unsigned int rt_period_active;
029632fb 240};
a5e7be3b
JL
241
242void __dl_clear_params(struct task_struct *p);
243
332ac17e
DF
244/*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268struct dl_bandwidth {
97fb7a0a
IM
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
332ac17e
DF
272};
273
274static inline int dl_bandwidth_enabled(void)
275{
1724813d 276 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
277}
278
332ac17e 279struct dl_bw {
97fb7a0a
IM
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
332ac17e
DF
283};
284
daec5798
LA
285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
7f51412a 287static inline
8c0944ce 288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
289{
290 dl_b->total_bw -= tsk_bw;
daec5798 291 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
292}
293
294static inline
daec5798 295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
296{
297 dl_b->total_bw += tsk_bw;
daec5798 298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
299}
300
301static inline
302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303{
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306}
307
97fb7a0a 308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 309extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 310extern int sched_dl_global_validate(void);
06a76fe0 311extern void sched_dl_do_global(void);
97fb7a0a 312extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
317extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 319extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
320
321#ifdef CONFIG_CGROUP_SCHED
322
323#include <linux/cgroup.h>
eb414681 324#include <linux/psi.h>
029632fb
PZ
325
326struct cfs_rq;
327struct rt_rq;
328
35cf4e50 329extern struct list_head task_groups;
029632fb
PZ
330
331struct cfs_bandwidth {
332#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
333 raw_spinlock_t lock;
334 ktime_t period;
335 u64 quota;
336 u64 runtime;
337 s64 hierarchical_quota;
338 u64 runtime_expires;
512ac999 339 int expires_seq;
97fb7a0a 340
66567fcb 341 u8 idle;
342 u8 period_active;
343 u8 distribute_running;
344 u8 slack_started;
97fb7a0a
IM
345 struct hrtimer period_timer;
346 struct hrtimer slack_timer;
347 struct list_head throttled_cfs_rq;
348
349 /* Statistics: */
350 int nr_periods;
351 int nr_throttled;
352 u64 throttled_time;
029632fb
PZ
353#endif
354};
355
97fb7a0a 356/* Task group related information */
029632fb
PZ
357struct task_group {
358 struct cgroup_subsys_state css;
359
360#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
361 /* schedulable entities of this group on each CPU */
362 struct sched_entity **se;
363 /* runqueue "owned" by this group on each CPU */
364 struct cfs_rq **cfs_rq;
365 unsigned long shares;
029632fb 366
fa6bddeb 367#ifdef CONFIG_SMP
b0367629
WL
368 /*
369 * load_avg can be heavily contended at clock tick time, so put
370 * it in its own cacheline separated from the fields above which
371 * will also be accessed at each tick.
372 */
97fb7a0a 373 atomic_long_t load_avg ____cacheline_aligned;
029632fb 374#endif
fa6bddeb 375#endif
029632fb
PZ
376
377#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
378 struct sched_rt_entity **rt_se;
379 struct rt_rq **rt_rq;
029632fb 380
97fb7a0a 381 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
382#endif
383
97fb7a0a
IM
384 struct rcu_head rcu;
385 struct list_head list;
029632fb 386
97fb7a0a
IM
387 struct task_group *parent;
388 struct list_head siblings;
389 struct list_head children;
029632fb
PZ
390
391#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 392 struct autogroup *autogroup;
029632fb
PZ
393#endif
394
97fb7a0a 395 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
396};
397
398#ifdef CONFIG_FAIR_GROUP_SCHED
399#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
400
401/*
402 * A weight of 0 or 1 can cause arithmetics problems.
403 * A weight of a cfs_rq is the sum of weights of which entities
404 * are queued on this cfs_rq, so a weight of a entity should not be
405 * too large, so as the shares value of a task group.
406 * (The default weight is 1024 - so there's no practical
407 * limitation from this.)
408 */
97fb7a0a
IM
409#define MIN_SHARES (1UL << 1)
410#define MAX_SHARES (1UL << 18)
029632fb
PZ
411#endif
412
029632fb
PZ
413typedef int (*tg_visitor)(struct task_group *, void *);
414
415extern int walk_tg_tree_from(struct task_group *from,
416 tg_visitor down, tg_visitor up, void *data);
417
418/*
419 * Iterate the full tree, calling @down when first entering a node and @up when
420 * leaving it for the final time.
421 *
422 * Caller must hold rcu_lock or sufficient equivalent.
423 */
424static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
425{
426 return walk_tg_tree_from(&root_task_group, down, up, data);
427}
428
429extern int tg_nop(struct task_group *tg, void *data);
430
431extern void free_fair_sched_group(struct task_group *tg);
432extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 433extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 434extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
435extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
436 struct sched_entity *se, int cpu,
437 struct sched_entity *parent);
438extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
439
440extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 441extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
442extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
443
444extern void free_rt_sched_group(struct task_group *tg);
445extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
446extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
447 struct sched_rt_entity *rt_se, int cpu,
448 struct sched_rt_entity *parent);
8887cd99
NP
449extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
450extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
451extern long sched_group_rt_runtime(struct task_group *tg);
452extern long sched_group_rt_period(struct task_group *tg);
453extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 454
25cc7da7
LZ
455extern struct task_group *sched_create_group(struct task_group *parent);
456extern void sched_online_group(struct task_group *tg,
457 struct task_group *parent);
458extern void sched_destroy_group(struct task_group *tg);
459extern void sched_offline_group(struct task_group *tg);
460
461extern void sched_move_task(struct task_struct *tsk);
462
463#ifdef CONFIG_FAIR_GROUP_SCHED
464extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
465
466#ifdef CONFIG_SMP
467extern void set_task_rq_fair(struct sched_entity *se,
468 struct cfs_rq *prev, struct cfs_rq *next);
469#else /* !CONFIG_SMP */
470static inline void set_task_rq_fair(struct sched_entity *se,
471 struct cfs_rq *prev, struct cfs_rq *next) { }
472#endif /* CONFIG_SMP */
473#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 474
029632fb
PZ
475#else /* CONFIG_CGROUP_SCHED */
476
477struct cfs_bandwidth { };
478
479#endif /* CONFIG_CGROUP_SCHED */
480
481/* CFS-related fields in a runqueue */
482struct cfs_rq {
97fb7a0a
IM
483 struct load_weight load;
484 unsigned long runnable_weight;
485 unsigned int nr_running;
486 unsigned int h_nr_running;
029632fb 487
97fb7a0a
IM
488 u64 exec_clock;
489 u64 min_vruntime;
029632fb 490#ifndef CONFIG_64BIT
97fb7a0a 491 u64 min_vruntime_copy;
029632fb
PZ
492#endif
493
97fb7a0a 494 struct rb_root_cached tasks_timeline;
029632fb 495
029632fb
PZ
496 /*
497 * 'curr' points to currently running entity on this cfs_rq.
498 * It is set to NULL otherwise (i.e when none are currently running).
499 */
97fb7a0a
IM
500 struct sched_entity *curr;
501 struct sched_entity *next;
502 struct sched_entity *last;
503 struct sched_entity *skip;
029632fb
PZ
504
505#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 506 unsigned int nr_spread_over;
029632fb
PZ
507#endif
508
2dac754e
PT
509#ifdef CONFIG_SMP
510 /*
9d89c257 511 * CFS load tracking
2dac754e 512 */
97fb7a0a 513 struct sched_avg avg;
2a2f5d4e 514#ifndef CONFIG_64BIT
97fb7a0a 515 u64 load_last_update_time_copy;
9d89c257 516#endif
2a2f5d4e
PZ
517 struct {
518 raw_spinlock_t lock ____cacheline_aligned;
519 int nr;
520 unsigned long load_avg;
521 unsigned long util_avg;
0e2d2aaa 522 unsigned long runnable_sum;
2a2f5d4e 523 } removed;
82958366 524
9d89c257 525#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
526 unsigned long tg_load_avg_contrib;
527 long propagate;
528 long prop_runnable_sum;
0e2d2aaa 529
82958366
PT
530 /*
531 * h_load = weight * f(tg)
532 *
533 * Where f(tg) is the recursive weight fraction assigned to
534 * this group.
535 */
97fb7a0a
IM
536 unsigned long h_load;
537 u64 last_h_load_update;
538 struct sched_entity *h_load_next;
68520796 539#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
540#endif /* CONFIG_SMP */
541
029632fb 542#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 543 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
544
545 /*
546 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
547 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
548 * (like users, containers etc.)
549 *
97fb7a0a
IM
550 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
551 * This list is used during load balance.
029632fb 552 */
97fb7a0a
IM
553 int on_list;
554 struct list_head leaf_cfs_rq_list;
555 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 556
029632fb 557#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 558 int runtime_enabled;
512ac999 559 int expires_seq;
97fb7a0a
IM
560 u64 runtime_expires;
561 s64 runtime_remaining;
562
563 u64 throttled_clock;
564 u64 throttled_clock_task;
565 u64 throttled_clock_task_time;
566 int throttled;
567 int throttle_count;
568 struct list_head throttled_list;
029632fb
PZ
569#endif /* CONFIG_CFS_BANDWIDTH */
570#endif /* CONFIG_FAIR_GROUP_SCHED */
571};
572
573static inline int rt_bandwidth_enabled(void)
574{
575 return sysctl_sched_rt_runtime >= 0;
576}
577
b6366f04 578/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 579#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
580# define HAVE_RT_PUSH_IPI
581#endif
582
029632fb
PZ
583/* Real-Time classes' related field in a runqueue: */
584struct rt_rq {
97fb7a0a
IM
585 struct rt_prio_array active;
586 unsigned int rt_nr_running;
587 unsigned int rr_nr_running;
029632fb
PZ
588#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
589 struct {
97fb7a0a 590 int curr; /* highest queued rt task prio */
029632fb 591#ifdef CONFIG_SMP
97fb7a0a 592 int next; /* next highest */
029632fb
PZ
593#endif
594 } highest_prio;
595#endif
596#ifdef CONFIG_SMP
97fb7a0a
IM
597 unsigned long rt_nr_migratory;
598 unsigned long rt_nr_total;
599 int overloaded;
600 struct plist_head pushable_tasks;
371bf427 601
b6366f04 602#endif /* CONFIG_SMP */
97fb7a0a 603 int rt_queued;
f4ebcbc0 604
97fb7a0a
IM
605 int rt_throttled;
606 u64 rt_time;
607 u64 rt_runtime;
029632fb 608 /* Nests inside the rq lock: */
97fb7a0a 609 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
610
611#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 612 unsigned long rt_nr_boosted;
029632fb 613
97fb7a0a
IM
614 struct rq *rq;
615 struct task_group *tg;
029632fb
PZ
616#endif
617};
618
296b2ffe
VG
619static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
620{
621 return rt_rq->rt_queued && rt_rq->rt_nr_running;
622}
623
aab03e05
DF
624/* Deadline class' related fields in a runqueue */
625struct dl_rq {
626 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 627 struct rb_root_cached root;
aab03e05 628
97fb7a0a 629 unsigned long dl_nr_running;
1baca4ce
JL
630
631#ifdef CONFIG_SMP
632 /*
633 * Deadline values of the currently executing and the
634 * earliest ready task on this rq. Caching these facilitates
dfcb245e 635 * the decision whether or not a ready but not running task
1baca4ce
JL
636 * should migrate somewhere else.
637 */
638 struct {
97fb7a0a
IM
639 u64 curr;
640 u64 next;
1baca4ce
JL
641 } earliest_dl;
642
97fb7a0a
IM
643 unsigned long dl_nr_migratory;
644 int overloaded;
1baca4ce
JL
645
646 /*
647 * Tasks on this rq that can be pushed away. They are kept in
648 * an rb-tree, ordered by tasks' deadlines, with caching
649 * of the leftmost (earliest deadline) element.
650 */
97fb7a0a 651 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 652#else
97fb7a0a 653 struct dl_bw dl_bw;
1baca4ce 654#endif
e36d8677
LA
655 /*
656 * "Active utilization" for this runqueue: increased when a
657 * task wakes up (becomes TASK_RUNNING) and decreased when a
658 * task blocks
659 */
97fb7a0a 660 u64 running_bw;
4da3abce 661
8fd27231
LA
662 /*
663 * Utilization of the tasks "assigned" to this runqueue (including
664 * the tasks that are in runqueue and the tasks that executed on this
665 * CPU and blocked). Increased when a task moves to this runqueue, and
666 * decreased when the task moves away (migrates, changes scheduling
667 * policy, or terminates).
668 * This is needed to compute the "inactive utilization" for the
669 * runqueue (inactive utilization = this_bw - running_bw).
670 */
97fb7a0a
IM
671 u64 this_bw;
672 u64 extra_bw;
8fd27231 673
4da3abce
LA
674 /*
675 * Inverse of the fraction of CPU utilization that can be reclaimed
676 * by the GRUB algorithm.
677 */
97fb7a0a 678 u64 bw_ratio;
aab03e05
DF
679};
680
c0796298
VG
681#ifdef CONFIG_FAIR_GROUP_SCHED
682/* An entity is a task if it doesn't "own" a runqueue */
683#define entity_is_task(se) (!se->my_q)
684#else
685#define entity_is_task(se) 1
686#endif
687
029632fb 688#ifdef CONFIG_SMP
c0796298
VG
689/*
690 * XXX we want to get rid of these helpers and use the full load resolution.
691 */
692static inline long se_weight(struct sched_entity *se)
693{
694 return scale_load_down(se->load.weight);
695}
696
697static inline long se_runnable(struct sched_entity *se)
698{
699 return scale_load_down(se->runnable_weight);
700}
029632fb 701
afe06efd
TC
702static inline bool sched_asym_prefer(int a, int b)
703{
704 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
705}
706
6aa140fa
QP
707struct perf_domain {
708 struct em_perf_domain *em_pd;
709 struct perf_domain *next;
710 struct rcu_head rcu;
711};
712
630246a0
QP
713/* Scheduling group status flags */
714#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 715#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 716
029632fb
PZ
717/*
718 * We add the notion of a root-domain which will be used to define per-domain
719 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 720 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
721 * exclusive cpuset is created, we also create and attach a new root-domain
722 * object.
723 *
724 */
725struct root_domain {
97fb7a0a
IM
726 atomic_t refcount;
727 atomic_t rto_count;
728 struct rcu_head rcu;
729 cpumask_var_t span;
730 cpumask_var_t online;
029632fb 731
757ffdd7
VS
732 /*
733 * Indicate pullable load on at least one CPU, e.g:
734 * - More than one runnable task
735 * - Running task is misfit
736 */
575638d1 737 int overload;
4486edd1 738
2802bf3c
MR
739 /* Indicate one or more cpus over-utilized (tipping point) */
740 int overutilized;
741
1baca4ce
JL
742 /*
743 * The bit corresponding to a CPU gets set here if such CPU has more
744 * than one runnable -deadline task (as it is below for RT tasks).
745 */
97fb7a0a
IM
746 cpumask_var_t dlo_mask;
747 atomic_t dlo_count;
748 struct dl_bw dl_bw;
749 struct cpudl cpudl;
1baca4ce 750
4bdced5c
SRRH
751#ifdef HAVE_RT_PUSH_IPI
752 /*
753 * For IPI pull requests, loop across the rto_mask.
754 */
97fb7a0a
IM
755 struct irq_work rto_push_work;
756 raw_spinlock_t rto_lock;
4bdced5c 757 /* These are only updated and read within rto_lock */
97fb7a0a
IM
758 int rto_loop;
759 int rto_cpu;
4bdced5c 760 /* These atomics are updated outside of a lock */
97fb7a0a
IM
761 atomic_t rto_loop_next;
762 atomic_t rto_loop_start;
4bdced5c 763#endif
029632fb
PZ
764 /*
765 * The "RT overload" flag: it gets set if a CPU has more than
766 * one runnable RT task.
767 */
97fb7a0a
IM
768 cpumask_var_t rto_mask;
769 struct cpupri cpupri;
cd92bfd3 770
97fb7a0a 771 unsigned long max_cpu_capacity;
6aa140fa
QP
772
773 /*
774 * NULL-terminated list of performance domains intersecting with the
775 * CPUs of the rd. Protected by RCU.
776 */
7ba7319f 777 struct perf_domain __rcu *pd;
029632fb
PZ
778};
779
780extern struct root_domain def_root_domain;
f2cb1360 781extern struct mutex sched_domains_mutex;
f2cb1360
IM
782
783extern void init_defrootdomain(void);
8d5dc512 784extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 785extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
786extern void sched_get_rd(struct root_domain *rd);
787extern void sched_put_rd(struct root_domain *rd);
029632fb 788
4bdced5c
SRRH
789#ifdef HAVE_RT_PUSH_IPI
790extern void rto_push_irq_work_func(struct irq_work *work);
791#endif
029632fb
PZ
792#endif /* CONFIG_SMP */
793
69842cba
PB
794#ifdef CONFIG_UCLAMP_TASK
795/*
796 * struct uclamp_bucket - Utilization clamp bucket
797 * @value: utilization clamp value for tasks on this clamp bucket
798 * @tasks: number of RUNNABLE tasks on this clamp bucket
799 *
800 * Keep track of how many tasks are RUNNABLE for a given utilization
801 * clamp value.
802 */
803struct uclamp_bucket {
804 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
805 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
806};
807
808/*
809 * struct uclamp_rq - rq's utilization clamp
810 * @value: currently active clamp values for a rq
811 * @bucket: utilization clamp buckets affecting a rq
812 *
813 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
814 * A clamp value is affecting a rq when there is at least one task RUNNABLE
815 * (or actually running) with that value.
816 *
817 * There are up to UCLAMP_CNT possible different clamp values, currently there
818 * are only two: minimum utilization and maximum utilization.
819 *
820 * All utilization clamping values are MAX aggregated, since:
821 * - for util_min: we want to run the CPU at least at the max of the minimum
822 * utilization required by its currently RUNNABLE tasks.
823 * - for util_max: we want to allow the CPU to run up to the max of the
824 * maximum utilization allowed by its currently RUNNABLE tasks.
825 *
826 * Since on each system we expect only a limited number of different
827 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
828 * the metrics required to compute all the per-rq utilization clamp values.
829 */
830struct uclamp_rq {
831 unsigned int value;
832 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
833};
834#endif /* CONFIG_UCLAMP_TASK */
835
029632fb
PZ
836/*
837 * This is the main, per-CPU runqueue data structure.
838 *
839 * Locking rule: those places that want to lock multiple runqueues
840 * (such as the load balancing or the thread migration code), lock
841 * acquire operations must be ordered by ascending &runqueue.
842 */
843struct rq {
844 /* runqueue lock: */
97fb7a0a 845 raw_spinlock_t lock;
029632fb
PZ
846
847 /*
848 * nr_running and cpu_load should be in the same cacheline because
849 * remote CPUs use both these fields when doing load calculation.
850 */
97fb7a0a 851 unsigned int nr_running;
0ec8aa00 852#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
853 unsigned int nr_numa_running;
854 unsigned int nr_preferred_running;
a4739eca 855 unsigned int numa_migrate_on;
0ec8aa00 856#endif
3451d024 857#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 858#ifdef CONFIG_SMP
97fb7a0a 859 unsigned long last_load_update_tick;
e022e0d3 860 unsigned long last_blocked_load_update_tick;
f643ea22 861 unsigned int has_blocked_load;
9fd81dd5 862#endif /* CONFIG_SMP */
00357f5e 863 unsigned int nohz_tick_stopped;
a22e47a4 864 atomic_t nohz_flags;
9fd81dd5 865#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 866
97fb7a0a
IM
867 unsigned long nr_load_updates;
868 u64 nr_switches;
029632fb 869
69842cba
PB
870#ifdef CONFIG_UCLAMP_TASK
871 /* Utilization clamp values based on CPU's RUNNABLE tasks */
872 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
873 unsigned int uclamp_flags;
874#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
875#endif
876
97fb7a0a
IM
877 struct cfs_rq cfs;
878 struct rt_rq rt;
879 struct dl_rq dl;
029632fb
PZ
880
881#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
882 /* list of leaf cfs_rq on this CPU: */
883 struct list_head leaf_cfs_rq_list;
884 struct list_head *tmp_alone_branch;
a35b6466
PZ
885#endif /* CONFIG_FAIR_GROUP_SCHED */
886
029632fb
PZ
887 /*
888 * This is part of a global counter where only the total sum
889 * over all CPUs matters. A task can increase this counter on
890 * one CPU and if it got migrated afterwards it may decrease
891 * it on another CPU. Always updated under the runqueue lock:
892 */
97fb7a0a 893 unsigned long nr_uninterruptible;
029632fb 894
97fb7a0a
IM
895 struct task_struct *curr;
896 struct task_struct *idle;
897 struct task_struct *stop;
898 unsigned long next_balance;
899 struct mm_struct *prev_mm;
029632fb 900
97fb7a0a
IM
901 unsigned int clock_update_flags;
902 u64 clock;
23127296
VG
903 /* Ensure that all clocks are in the same cache line */
904 u64 clock_task ____cacheline_aligned;
905 u64 clock_pelt;
906 unsigned long lost_idle_time;
029632fb 907
97fb7a0a 908 atomic_t nr_iowait;
029632fb
PZ
909
910#ifdef CONFIG_SMP
994aeb7a
JFG
911 struct root_domain *rd;
912 struct sched_domain __rcu *sd;
97fb7a0a
IM
913
914 unsigned long cpu_capacity;
915 unsigned long cpu_capacity_orig;
029632fb 916
97fb7a0a 917 struct callback_head *balance_callback;
029632fb 918
97fb7a0a 919 unsigned char idle_balance;
e3fca9e7 920
3b1baa64
MR
921 unsigned long misfit_task_load;
922
029632fb 923 /* For active balancing */
97fb7a0a
IM
924 int active_balance;
925 int push_cpu;
926 struct cpu_stop_work active_balance_work;
927
928 /* CPU of this runqueue: */
929 int cpu;
930 int online;
029632fb 931
367456c7
PZ
932 struct list_head cfs_tasks;
933
371bf427 934 struct sched_avg avg_rt;
3727e0e1 935 struct sched_avg avg_dl;
11d4afd4 936#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
937 struct sched_avg avg_irq;
938#endif
97fb7a0a
IM
939 u64 idle_stamp;
940 u64 avg_idle;
9bd721c5
JL
941
942 /* This is used to determine avg_idle's max value */
97fb7a0a 943 u64 max_idle_balance_cost;
029632fb
PZ
944#endif
945
946#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 947 u64 prev_irq_time;
029632fb
PZ
948#endif
949#ifdef CONFIG_PARAVIRT
97fb7a0a 950 u64 prev_steal_time;
029632fb
PZ
951#endif
952#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 953 u64 prev_steal_time_rq;
029632fb
PZ
954#endif
955
956 /* calc_load related fields */
97fb7a0a
IM
957 unsigned long calc_load_update;
958 long calc_load_active;
029632fb
PZ
959
960#ifdef CONFIG_SCHED_HRTICK
961#ifdef CONFIG_SMP
97fb7a0a
IM
962 int hrtick_csd_pending;
963 call_single_data_t hrtick_csd;
029632fb 964#endif
97fb7a0a 965 struct hrtimer hrtick_timer;
029632fb
PZ
966#endif
967
968#ifdef CONFIG_SCHEDSTATS
969 /* latency stats */
97fb7a0a
IM
970 struct sched_info rq_sched_info;
971 unsigned long long rq_cpu_time;
029632fb
PZ
972 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
973
974 /* sys_sched_yield() stats */
97fb7a0a 975 unsigned int yld_count;
029632fb
PZ
976
977 /* schedule() stats */
97fb7a0a
IM
978 unsigned int sched_count;
979 unsigned int sched_goidle;
029632fb
PZ
980
981 /* try_to_wake_up() stats */
97fb7a0a
IM
982 unsigned int ttwu_count;
983 unsigned int ttwu_local;
029632fb
PZ
984#endif
985
986#ifdef CONFIG_SMP
97fb7a0a 987 struct llist_head wake_list;
029632fb 988#endif
442bf3aa
DL
989
990#ifdef CONFIG_CPU_IDLE
991 /* Must be inspected within a rcu lock section */
97fb7a0a 992 struct cpuidle_state *idle_state;
442bf3aa 993#endif
029632fb
PZ
994};
995
62478d99
VG
996#ifdef CONFIG_FAIR_GROUP_SCHED
997
998/* CPU runqueue to which this cfs_rq is attached */
999static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1000{
1001 return cfs_rq->rq;
1002}
1003
1004#else
1005
1006static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1007{
1008 return container_of(cfs_rq, struct rq, cfs);
1009}
1010#endif
1011
029632fb
PZ
1012static inline int cpu_of(struct rq *rq)
1013{
1014#ifdef CONFIG_SMP
1015 return rq->cpu;
1016#else
1017 return 0;
1018#endif
1019}
1020
1b568f0a
PZ
1021
1022#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1023extern void __update_idle_core(struct rq *rq);
1024
1025static inline void update_idle_core(struct rq *rq)
1026{
1027 if (static_branch_unlikely(&sched_smt_present))
1028 __update_idle_core(rq);
1029}
1030
1031#else
1032static inline void update_idle_core(struct rq *rq) { }
1033#endif
1034
8b06c55b 1035DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1036
518cd623 1037#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1038#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1039#define task_rq(p) cpu_rq(task_cpu(p))
1040#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1041#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1042
1f351d7f
JW
1043extern void update_rq_clock(struct rq *rq);
1044
cebde6d6
PZ
1045static inline u64 __rq_clock_broken(struct rq *rq)
1046{
316c1608 1047 return READ_ONCE(rq->clock);
cebde6d6
PZ
1048}
1049
cb42c9a3
MF
1050/*
1051 * rq::clock_update_flags bits
1052 *
1053 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1054 * call to __schedule(). This is an optimisation to avoid
1055 * neighbouring rq clock updates.
1056 *
1057 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1058 * in effect and calls to update_rq_clock() are being ignored.
1059 *
1060 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1061 * made to update_rq_clock() since the last time rq::lock was pinned.
1062 *
1063 * If inside of __schedule(), clock_update_flags will have been
1064 * shifted left (a left shift is a cheap operation for the fast path
1065 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1066 *
1067 * if (rq-clock_update_flags >= RQCF_UPDATED)
1068 *
1069 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1070 * one position though, because the next rq_unpin_lock() will shift it
1071 * back.
1072 */
97fb7a0a
IM
1073#define RQCF_REQ_SKIP 0x01
1074#define RQCF_ACT_SKIP 0x02
1075#define RQCF_UPDATED 0x04
cb42c9a3
MF
1076
1077static inline void assert_clock_updated(struct rq *rq)
1078{
1079 /*
1080 * The only reason for not seeing a clock update since the
1081 * last rq_pin_lock() is if we're currently skipping updates.
1082 */
1083 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1084}
1085
78becc27
FW
1086static inline u64 rq_clock(struct rq *rq)
1087{
cebde6d6 1088 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1089 assert_clock_updated(rq);
1090
78becc27
FW
1091 return rq->clock;
1092}
1093
1094static inline u64 rq_clock_task(struct rq *rq)
1095{
cebde6d6 1096 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1097 assert_clock_updated(rq);
1098
78becc27
FW
1099 return rq->clock_task;
1100}
1101
adcc8da8 1102static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1103{
1104 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1105 rq->clock_update_flags |= RQCF_REQ_SKIP;
1106}
1107
1108/*
595058b6 1109 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1110 * request is cancelled.
1111 */
1112static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1113{
1114 lockdep_assert_held(&rq->lock);
1115 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1116}
1117
d8ac8971
MF
1118struct rq_flags {
1119 unsigned long flags;
1120 struct pin_cookie cookie;
cb42c9a3
MF
1121#ifdef CONFIG_SCHED_DEBUG
1122 /*
1123 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1124 * current pin context is stashed here in case it needs to be
1125 * restored in rq_repin_lock().
1126 */
1127 unsigned int clock_update_flags;
1128#endif
d8ac8971
MF
1129};
1130
1131static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1132{
1133 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1134
1135#ifdef CONFIG_SCHED_DEBUG
1136 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1137 rf->clock_update_flags = 0;
1138#endif
d8ac8971
MF
1139}
1140
1141static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1142{
cb42c9a3
MF
1143#ifdef CONFIG_SCHED_DEBUG
1144 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1145 rf->clock_update_flags = RQCF_UPDATED;
1146#endif
1147
d8ac8971
MF
1148 lockdep_unpin_lock(&rq->lock, rf->cookie);
1149}
1150
1151static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1152{
1153 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1154
1155#ifdef CONFIG_SCHED_DEBUG
1156 /*
1157 * Restore the value we stashed in @rf for this pin context.
1158 */
1159 rq->clock_update_flags |= rf->clock_update_flags;
1160#endif
d8ac8971
MF
1161}
1162
1f351d7f
JW
1163struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1164 __acquires(rq->lock);
1165
1166struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1167 __acquires(p->pi_lock)
1168 __acquires(rq->lock);
1169
1170static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1171 __releases(rq->lock)
1172{
1173 rq_unpin_lock(rq, rf);
1174 raw_spin_unlock(&rq->lock);
1175}
1176
1177static inline void
1178task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1179 __releases(rq->lock)
1180 __releases(p->pi_lock)
1181{
1182 rq_unpin_lock(rq, rf);
1183 raw_spin_unlock(&rq->lock);
1184 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1185}
1186
1187static inline void
1188rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1189 __acquires(rq->lock)
1190{
1191 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1192 rq_pin_lock(rq, rf);
1193}
1194
1195static inline void
1196rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1197 __acquires(rq->lock)
1198{
1199 raw_spin_lock_irq(&rq->lock);
1200 rq_pin_lock(rq, rf);
1201}
1202
1203static inline void
1204rq_lock(struct rq *rq, struct rq_flags *rf)
1205 __acquires(rq->lock)
1206{
1207 raw_spin_lock(&rq->lock);
1208 rq_pin_lock(rq, rf);
1209}
1210
1211static inline void
1212rq_relock(struct rq *rq, struct rq_flags *rf)
1213 __acquires(rq->lock)
1214{
1215 raw_spin_lock(&rq->lock);
1216 rq_repin_lock(rq, rf);
1217}
1218
1219static inline void
1220rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1221 __releases(rq->lock)
1222{
1223 rq_unpin_lock(rq, rf);
1224 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1225}
1226
1227static inline void
1228rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1229 __releases(rq->lock)
1230{
1231 rq_unpin_lock(rq, rf);
1232 raw_spin_unlock_irq(&rq->lock);
1233}
1234
1235static inline void
1236rq_unlock(struct rq *rq, struct rq_flags *rf)
1237 __releases(rq->lock)
1238{
1239 rq_unpin_lock(rq, rf);
1240 raw_spin_unlock(&rq->lock);
1241}
1242
246b3b33
JW
1243static inline struct rq *
1244this_rq_lock_irq(struct rq_flags *rf)
1245 __acquires(rq->lock)
1246{
1247 struct rq *rq;
1248
1249 local_irq_disable();
1250 rq = this_rq();
1251 rq_lock(rq, rf);
1252 return rq;
1253}
1254
9942f79b 1255#ifdef CONFIG_NUMA
e3fe70b1
RR
1256enum numa_topology_type {
1257 NUMA_DIRECT,
1258 NUMA_GLUELESS_MESH,
1259 NUMA_BACKPLANE,
1260};
1261extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1262extern int sched_max_numa_distance;
1263extern bool find_numa_distance(int distance);
1264#endif
1265
f2cb1360
IM
1266#ifdef CONFIG_NUMA
1267extern void sched_init_numa(void);
1268extern void sched_domains_numa_masks_set(unsigned int cpu);
1269extern void sched_domains_numa_masks_clear(unsigned int cpu);
1270#else
1271static inline void sched_init_numa(void) { }
1272static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1273static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1274#endif
1275
f809ca9a 1276#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1277/* The regions in numa_faults array from task_struct */
1278enum numa_faults_stats {
1279 NUMA_MEM = 0,
1280 NUMA_CPU,
1281 NUMA_MEMBUF,
1282 NUMA_CPUBUF
1283};
0ec8aa00 1284extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1285extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1286extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1287 int cpu, int scpu);
13784475
MG
1288extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1289#else
1290static inline void
1291init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1292{
1293}
f809ca9a
MG
1294#endif /* CONFIG_NUMA_BALANCING */
1295
518cd623
PZ
1296#ifdef CONFIG_SMP
1297
e3fca9e7
PZ
1298static inline void
1299queue_balance_callback(struct rq *rq,
1300 struct callback_head *head,
1301 void (*func)(struct rq *rq))
1302{
1303 lockdep_assert_held(&rq->lock);
1304
1305 if (unlikely(head->next))
1306 return;
1307
1308 head->func = (void (*)(struct callback_head *))func;
1309 head->next = rq->balance_callback;
1310 rq->balance_callback = head;
1311}
1312
e3baac47
PZ
1313extern void sched_ttwu_pending(void);
1314
029632fb
PZ
1315#define rcu_dereference_check_sched_domain(p) \
1316 rcu_dereference_check((p), \
1317 lockdep_is_held(&sched_domains_mutex))
1318
1319/*
1320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1321 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1322 *
1323 * The domain tree of any CPU may only be accessed from within
1324 * preempt-disabled sections.
1325 */
1326#define for_each_domain(cpu, __sd) \
518cd623
PZ
1327 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1328 __sd; __sd = __sd->parent)
029632fb 1329
77e81365
SS
1330#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1331
518cd623
PZ
1332/**
1333 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1334 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1335 * be returned.
1336 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1337 * for the given CPU.
518cd623 1338 *
97fb7a0a 1339 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1340 */
1341static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1342{
1343 struct sched_domain *sd, *hsd = NULL;
1344
1345 for_each_domain(cpu, sd) {
1346 if (!(sd->flags & flag))
1347 break;
1348 hsd = sd;
1349 }
1350
1351 return hsd;
1352}
1353
fb13c7ee
MG
1354static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1355{
1356 struct sched_domain *sd;
1357
1358 for_each_domain(cpu, sd) {
1359 if (sd->flags & flag)
1360 break;
1361 }
1362
1363 return sd;
1364}
1365
994aeb7a 1366DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1367DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1368DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1369DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1370DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1371DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1372DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1373extern struct static_key_false sched_asym_cpucapacity;
518cd623 1374
63b2ca30 1375struct sched_group_capacity {
97fb7a0a 1376 atomic_t ref;
5e6521ea 1377 /*
172895e6 1378 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1379 * for a single CPU.
5e6521ea 1380 */
97fb7a0a
IM
1381 unsigned long capacity;
1382 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1383 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1384 unsigned long next_update;
1385 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1386
005f874d 1387#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1388 int id;
005f874d
PZ
1389#endif
1390
97fb7a0a 1391 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1392};
1393
1394struct sched_group {
97fb7a0a
IM
1395 struct sched_group *next; /* Must be a circular list */
1396 atomic_t ref;
5e6521ea 1397
97fb7a0a 1398 unsigned int group_weight;
63b2ca30 1399 struct sched_group_capacity *sgc;
97fb7a0a 1400 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1401
1402 /*
1403 * The CPUs this group covers.
1404 *
1405 * NOTE: this field is variable length. (Allocated dynamically
1406 * by attaching extra space to the end of the structure,
1407 * depending on how many CPUs the kernel has booted up with)
1408 */
97fb7a0a 1409 unsigned long cpumask[0];
5e6521ea
LZ
1410};
1411
ae4df9d6 1412static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1413{
1414 return to_cpumask(sg->cpumask);
1415}
1416
1417/*
e5c14b1f 1418 * See build_balance_mask().
5e6521ea 1419 */
e5c14b1f 1420static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1421{
63b2ca30 1422 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1423}
1424
1425/**
97fb7a0a
IM
1426 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1427 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1428 */
1429static inline unsigned int group_first_cpu(struct sched_group *group)
1430{
ae4df9d6 1431 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1432}
1433
c1174876
PZ
1434extern int group_balance_cpu(struct sched_group *sg);
1435
3866e845
SRRH
1436#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1437void register_sched_domain_sysctl(void);
bbdacdfe 1438void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1439void unregister_sched_domain_sysctl(void);
1440#else
1441static inline void register_sched_domain_sysctl(void)
1442{
1443}
bbdacdfe
PZ
1444static inline void dirty_sched_domain_sysctl(int cpu)
1445{
1446}
3866e845
SRRH
1447static inline void unregister_sched_domain_sysctl(void)
1448{
1449}
1450#endif
1451
e3baac47
PZ
1452#else
1453
1454static inline void sched_ttwu_pending(void) { }
1455
518cd623 1456#endif /* CONFIG_SMP */
029632fb 1457
391e43da 1458#include "stats.h"
1051408f 1459#include "autogroup.h"
029632fb
PZ
1460
1461#ifdef CONFIG_CGROUP_SCHED
1462
1463/*
1464 * Return the group to which this tasks belongs.
1465 *
8af01f56
TH
1466 * We cannot use task_css() and friends because the cgroup subsystem
1467 * changes that value before the cgroup_subsys::attach() method is called,
1468 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1469 *
1470 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1471 * core changes this before calling sched_move_task().
1472 *
1473 * Instead we use a 'copy' which is updated from sched_move_task() while
1474 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1475 */
1476static inline struct task_group *task_group(struct task_struct *p)
1477{
8323f26c 1478 return p->sched_task_group;
029632fb
PZ
1479}
1480
1481/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1482static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1483{
1484#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1485 struct task_group *tg = task_group(p);
1486#endif
1487
1488#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1489 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1490 p->se.cfs_rq = tg->cfs_rq[cpu];
1491 p->se.parent = tg->se[cpu];
1492#endif
1493
1494#ifdef CONFIG_RT_GROUP_SCHED
1495 p->rt.rt_rq = tg->rt_rq[cpu];
1496 p->rt.parent = tg->rt_se[cpu];
1497#endif
1498}
1499
1500#else /* CONFIG_CGROUP_SCHED */
1501
1502static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1503static inline struct task_group *task_group(struct task_struct *p)
1504{
1505 return NULL;
1506}
1507
1508#endif /* CONFIG_CGROUP_SCHED */
1509
1510static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1511{
1512 set_task_rq(p, cpu);
1513#ifdef CONFIG_SMP
1514 /*
1515 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1516 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1517 * per-task data have been completed by this moment.
1518 */
1519 smp_wmb();
c65eacbe 1520#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1521 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1522#else
c546951d 1523 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1524#endif
ac66f547 1525 p->wake_cpu = cpu;
029632fb
PZ
1526#endif
1527}
1528
1529/*
1530 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1531 */
1532#ifdef CONFIG_SCHED_DEBUG
c5905afb 1533# include <linux/static_key.h>
029632fb
PZ
1534# define const_debug __read_mostly
1535#else
1536# define const_debug const
1537#endif
1538
029632fb
PZ
1539#define SCHED_FEAT(name, enabled) \
1540 __SCHED_FEAT_##name ,
1541
1542enum {
391e43da 1543#include "features.h"
f8b6d1cc 1544 __SCHED_FEAT_NR,
029632fb
PZ
1545};
1546
1547#undef SCHED_FEAT
1548
e9666d10 1549#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
765cc3a4
PB
1550
1551/*
1552 * To support run-time toggling of sched features, all the translation units
1553 * (but core.c) reference the sysctl_sched_features defined in core.c.
1554 */
1555extern const_debug unsigned int sysctl_sched_features;
1556
f8b6d1cc 1557#define SCHED_FEAT(name, enabled) \
c5905afb 1558static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1559{ \
6e76ea8a 1560 return static_key_##enabled(key); \
f8b6d1cc
PZ
1561}
1562
1563#include "features.h"
f8b6d1cc
PZ
1564#undef SCHED_FEAT
1565
c5905afb 1566extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1567#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1568
e9666d10 1569#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
765cc3a4
PB
1570
1571/*
1572 * Each translation unit has its own copy of sysctl_sched_features to allow
1573 * constants propagation at compile time and compiler optimization based on
1574 * features default.
1575 */
1576#define SCHED_FEAT(name, enabled) \
1577 (1UL << __SCHED_FEAT_##name) * enabled |
1578static const_debug __maybe_unused unsigned int sysctl_sched_features =
1579#include "features.h"
1580 0;
1581#undef SCHED_FEAT
1582
7e6f4c5d 1583#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1584
e9666d10 1585#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
029632fb 1586
2a595721 1587extern struct static_key_false sched_numa_balancing;
cb251765 1588extern struct static_key_false sched_schedstats;
cbee9f88 1589
029632fb
PZ
1590static inline u64 global_rt_period(void)
1591{
1592 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1593}
1594
1595static inline u64 global_rt_runtime(void)
1596{
1597 if (sysctl_sched_rt_runtime < 0)
1598 return RUNTIME_INF;
1599
1600 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1601}
1602
029632fb
PZ
1603static inline int task_current(struct rq *rq, struct task_struct *p)
1604{
1605 return rq->curr == p;
1606}
1607
1608static inline int task_running(struct rq *rq, struct task_struct *p)
1609{
1610#ifdef CONFIG_SMP
1611 return p->on_cpu;
1612#else
1613 return task_current(rq, p);
1614#endif
1615}
1616
da0c1e65
KT
1617static inline int task_on_rq_queued(struct task_struct *p)
1618{
1619 return p->on_rq == TASK_ON_RQ_QUEUED;
1620}
029632fb 1621
cca26e80
KT
1622static inline int task_on_rq_migrating(struct task_struct *p)
1623{
c546951d 1624 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1625}
1626
b13095f0
LZ
1627/*
1628 * wake flags
1629 */
97fb7a0a
IM
1630#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1631#define WF_FORK 0x02 /* Child wakeup after fork */
1632#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1633
029632fb
PZ
1634/*
1635 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1636 * of tasks with abnormal "nice" values across CPUs the contribution that
1637 * each task makes to its run queue's load is weighted according to its
1638 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1639 * scaled version of the new time slice allocation that they receive on time
1640 * slice expiry etc.
1641 */
1642
97fb7a0a
IM
1643#define WEIGHT_IDLEPRIO 3
1644#define WMULT_IDLEPRIO 1431655765
029632fb 1645
97fb7a0a
IM
1646extern const int sched_prio_to_weight[40];
1647extern const u32 sched_prio_to_wmult[40];
029632fb 1648
ff77e468
PZ
1649/*
1650 * {de,en}queue flags:
1651 *
1652 * DEQUEUE_SLEEP - task is no longer runnable
1653 * ENQUEUE_WAKEUP - task just became runnable
1654 *
1655 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1656 * are in a known state which allows modification. Such pairs
1657 * should preserve as much state as possible.
1658 *
1659 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1660 * in the runqueue.
1661 *
1662 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1663 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1664 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1665 *
1666 */
1667
1668#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1669#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1670#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1671#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1672
1de64443 1673#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1674#define ENQUEUE_RESTORE 0x02
1675#define ENQUEUE_MOVE 0x04
0a67d1ee 1676#define ENQUEUE_NOCLOCK 0x08
ff77e468 1677
0a67d1ee
PZ
1678#define ENQUEUE_HEAD 0x10
1679#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1680#ifdef CONFIG_SMP
0a67d1ee 1681#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1682#else
59efa0ba 1683#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1684#endif
c82ba9fa 1685
37e117c0
PZ
1686#define RETRY_TASK ((void *)-1UL)
1687
c82ba9fa
LZ
1688struct sched_class {
1689 const struct sched_class *next;
1690
69842cba
PB
1691#ifdef CONFIG_UCLAMP_TASK
1692 int uclamp_enabled;
1693#endif
1694
c82ba9fa
LZ
1695 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1696 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1697 void (*yield_task) (struct rq *rq);
1698 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1699
97fb7a0a 1700 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1701
606dba2e
PZ
1702 /*
1703 * It is the responsibility of the pick_next_task() method that will
1704 * return the next task to call put_prev_task() on the @prev task or
1705 * something equivalent.
37e117c0
PZ
1706 *
1707 * May return RETRY_TASK when it finds a higher prio class has runnable
1708 * tasks.
606dba2e 1709 */
97fb7a0a
IM
1710 struct task_struct * (*pick_next_task)(struct rq *rq,
1711 struct task_struct *prev,
1712 struct rq_flags *rf);
1713 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1714
1715#ifdef CONFIG_SMP
ac66f547 1716 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1717 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1718
97fb7a0a 1719 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1720
1721 void (*set_cpus_allowed)(struct task_struct *p,
1722 const struct cpumask *newmask);
1723
1724 void (*rq_online)(struct rq *rq);
1725 void (*rq_offline)(struct rq *rq);
1726#endif
1727
97fb7a0a
IM
1728 void (*set_curr_task)(struct rq *rq);
1729 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1730 void (*task_fork)(struct task_struct *p);
1731 void (*task_dead)(struct task_struct *p);
c82ba9fa 1732
67dfa1b7
KT
1733 /*
1734 * The switched_from() call is allowed to drop rq->lock, therefore we
1735 * cannot assume the switched_from/switched_to pair is serliazed by
1736 * rq->lock. They are however serialized by p->pi_lock.
1737 */
97fb7a0a
IM
1738 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1739 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1740 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1741 int oldprio);
c82ba9fa 1742
97fb7a0a
IM
1743 unsigned int (*get_rr_interval)(struct rq *rq,
1744 struct task_struct *task);
c82ba9fa 1745
97fb7a0a 1746 void (*update_curr)(struct rq *rq);
6e998916 1747
97fb7a0a
IM
1748#define TASK_SET_GROUP 0
1749#define TASK_MOVE_GROUP 1
ea86cb4b 1750
c82ba9fa 1751#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1752 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1753#endif
1754};
029632fb 1755
3f1d2a31
PZ
1756static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1757{
1758 prev->sched_class->put_prev_task(rq, prev);
1759}
1760
b2bf6c31
PZ
1761static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1762{
1763 curr->sched_class->set_curr_task(rq);
1764}
1765
f5832c19 1766#ifdef CONFIG_SMP
029632fb 1767#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1768#else
1769#define sched_class_highest (&dl_sched_class)
1770#endif
029632fb
PZ
1771#define for_each_class(class) \
1772 for (class = sched_class_highest; class; class = class->next)
1773
1774extern const struct sched_class stop_sched_class;
aab03e05 1775extern const struct sched_class dl_sched_class;
029632fb
PZ
1776extern const struct sched_class rt_sched_class;
1777extern const struct sched_class fair_sched_class;
1778extern const struct sched_class idle_sched_class;
1779
1780
1781#ifdef CONFIG_SMP
1782
63b2ca30 1783extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1784
7caff66f 1785extern void trigger_load_balance(struct rq *rq);
029632fb 1786
c5b28038
PZ
1787extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1788
029632fb
PZ
1789#endif
1790
442bf3aa
DL
1791#ifdef CONFIG_CPU_IDLE
1792static inline void idle_set_state(struct rq *rq,
1793 struct cpuidle_state *idle_state)
1794{
1795 rq->idle_state = idle_state;
1796}
1797
1798static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1799{
9148a3a1 1800 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1801
442bf3aa
DL
1802 return rq->idle_state;
1803}
1804#else
1805static inline void idle_set_state(struct rq *rq,
1806 struct cpuidle_state *idle_state)
1807{
1808}
1809
1810static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1811{
1812 return NULL;
1813}
1814#endif
1815
8663effb
SRV
1816extern void schedule_idle(void);
1817
029632fb
PZ
1818extern void sysrq_sched_debug_show(void);
1819extern void sched_init_granularity(void);
1820extern void update_max_interval(void);
1baca4ce
JL
1821
1822extern void init_sched_dl_class(void);
029632fb
PZ
1823extern void init_sched_rt_class(void);
1824extern void init_sched_fair_class(void);
1825
9059393e
VG
1826extern void reweight_task(struct task_struct *p, int prio);
1827
8875125e 1828extern void resched_curr(struct rq *rq);
029632fb
PZ
1829extern void resched_cpu(int cpu);
1830
1831extern struct rt_bandwidth def_rt_bandwidth;
1832extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1833
332ac17e
DF
1834extern struct dl_bandwidth def_dl_bandwidth;
1835extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1836extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1837extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1838extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1839
97fb7a0a
IM
1840#define BW_SHIFT 20
1841#define BW_UNIT (1 << BW_SHIFT)
1842#define RATIO_SHIFT 8
332ac17e
DF
1843unsigned long to_ratio(u64 period, u64 runtime);
1844
540247fb 1845extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 1846extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 1847
76d92ac3
FW
1848#ifdef CONFIG_NO_HZ_FULL
1849extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1850extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1851
1852/*
1853 * Tick may be needed by tasks in the runqueue depending on their policy and
1854 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1855 * nohz mode if necessary.
1856 */
1857static inline void sched_update_tick_dependency(struct rq *rq)
1858{
1859 int cpu;
1860
1861 if (!tick_nohz_full_enabled())
1862 return;
1863
1864 cpu = cpu_of(rq);
1865
1866 if (!tick_nohz_full_cpu(cpu))
1867 return;
1868
1869 if (sched_can_stop_tick(rq))
1870 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1871 else
1872 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1873}
1874#else
d84b3131 1875static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1876static inline void sched_update_tick_dependency(struct rq *rq) { }
1877#endif
1878
72465447 1879static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1880{
72465447
KT
1881 unsigned prev_nr = rq->nr_running;
1882
1883 rq->nr_running = prev_nr + count;
9f3660c2 1884
4486edd1 1885#ifdef CONFIG_SMP
3e184501 1886 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1887 if (!READ_ONCE(rq->rd->overload))
1888 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1889 }
3e184501 1890#endif
76d92ac3
FW
1891
1892 sched_update_tick_dependency(rq);
029632fb
PZ
1893}
1894
72465447 1895static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1896{
72465447 1897 rq->nr_running -= count;
76d92ac3
FW
1898 /* Check if we still need preemption */
1899 sched_update_tick_dependency(rq);
029632fb
PZ
1900}
1901
029632fb
PZ
1902extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1903extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1904
1905extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1906
029632fb
PZ
1907extern const_debug unsigned int sysctl_sched_nr_migrate;
1908extern const_debug unsigned int sysctl_sched_migration_cost;
1909
029632fb
PZ
1910#ifdef CONFIG_SCHED_HRTICK
1911
1912/*
1913 * Use hrtick when:
1914 * - enabled by features
1915 * - hrtimer is actually high res
1916 */
1917static inline int hrtick_enabled(struct rq *rq)
1918{
1919 if (!sched_feat(HRTICK))
1920 return 0;
1921 if (!cpu_active(cpu_of(rq)))
1922 return 0;
1923 return hrtimer_is_hres_active(&rq->hrtick_timer);
1924}
1925
1926void hrtick_start(struct rq *rq, u64 delay);
1927
b39e66ea
MG
1928#else
1929
1930static inline int hrtick_enabled(struct rq *rq)
1931{
1932 return 0;
1933}
1934
029632fb
PZ
1935#endif /* CONFIG_SCHED_HRTICK */
1936
dfbca41f
PZ
1937#ifndef arch_scale_freq_capacity
1938static __always_inline
7673c8a4 1939unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1940{
1941 return SCHED_CAPACITY_SCALE;
1942}
1943#endif
b5b4860d 1944
029632fb
PZ
1945#ifdef CONFIG_SMP
1946#ifdef CONFIG_PREEMPT
1947
1948static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1949
1950/*
1951 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1952 * way at the expense of forcing extra atomic operations in all
1953 * invocations. This assures that the double_lock is acquired using the
1954 * same underlying policy as the spinlock_t on this architecture, which
1955 * reduces latency compared to the unfair variant below. However, it
1956 * also adds more overhead and therefore may reduce throughput.
1957 */
1958static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1959 __releases(this_rq->lock)
1960 __acquires(busiest->lock)
1961 __acquires(this_rq->lock)
1962{
1963 raw_spin_unlock(&this_rq->lock);
1964 double_rq_lock(this_rq, busiest);
1965
1966 return 1;
1967}
1968
1969#else
1970/*
1971 * Unfair double_lock_balance: Optimizes throughput at the expense of
1972 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1973 * already in proper order on entry. This favors lower CPU-ids and will
1974 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1975 * regardless of entry order into the function.
1976 */
1977static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1978 __releases(this_rq->lock)
1979 __acquires(busiest->lock)
1980 __acquires(this_rq->lock)
1981{
1982 int ret = 0;
1983
1984 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1985 if (busiest < this_rq) {
1986 raw_spin_unlock(&this_rq->lock);
1987 raw_spin_lock(&busiest->lock);
1988 raw_spin_lock_nested(&this_rq->lock,
1989 SINGLE_DEPTH_NESTING);
1990 ret = 1;
1991 } else
1992 raw_spin_lock_nested(&busiest->lock,
1993 SINGLE_DEPTH_NESTING);
1994 }
1995 return ret;
1996}
1997
1998#endif /* CONFIG_PREEMPT */
1999
2000/*
2001 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2002 */
2003static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2004{
2005 if (unlikely(!irqs_disabled())) {
97fb7a0a 2006 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2007 raw_spin_unlock(&this_rq->lock);
2008 BUG_ON(1);
2009 }
2010
2011 return _double_lock_balance(this_rq, busiest);
2012}
2013
2014static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2015 __releases(busiest->lock)
2016{
2017 raw_spin_unlock(&busiest->lock);
2018 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2019}
2020
74602315
PZ
2021static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2022{
2023 if (l1 > l2)
2024 swap(l1, l2);
2025
2026 spin_lock(l1);
2027 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2028}
2029
60e69eed
MG
2030static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2031{
2032 if (l1 > l2)
2033 swap(l1, l2);
2034
2035 spin_lock_irq(l1);
2036 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2037}
2038
74602315
PZ
2039static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2040{
2041 if (l1 > l2)
2042 swap(l1, l2);
2043
2044 raw_spin_lock(l1);
2045 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2046}
2047
029632fb
PZ
2048/*
2049 * double_rq_lock - safely lock two runqueues
2050 *
2051 * Note this does not disable interrupts like task_rq_lock,
2052 * you need to do so manually before calling.
2053 */
2054static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2055 __acquires(rq1->lock)
2056 __acquires(rq2->lock)
2057{
2058 BUG_ON(!irqs_disabled());
2059 if (rq1 == rq2) {
2060 raw_spin_lock(&rq1->lock);
2061 __acquire(rq2->lock); /* Fake it out ;) */
2062 } else {
2063 if (rq1 < rq2) {
2064 raw_spin_lock(&rq1->lock);
2065 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2066 } else {
2067 raw_spin_lock(&rq2->lock);
2068 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2069 }
2070 }
2071}
2072
2073/*
2074 * double_rq_unlock - safely unlock two runqueues
2075 *
2076 * Note this does not restore interrupts like task_rq_unlock,
2077 * you need to do so manually after calling.
2078 */
2079static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2080 __releases(rq1->lock)
2081 __releases(rq2->lock)
2082{
2083 raw_spin_unlock(&rq1->lock);
2084 if (rq1 != rq2)
2085 raw_spin_unlock(&rq2->lock);
2086 else
2087 __release(rq2->lock);
2088}
2089
f2cb1360
IM
2090extern void set_rq_online (struct rq *rq);
2091extern void set_rq_offline(struct rq *rq);
2092extern bool sched_smp_initialized;
2093
029632fb
PZ
2094#else /* CONFIG_SMP */
2095
2096/*
2097 * double_rq_lock - safely lock two runqueues
2098 *
2099 * Note this does not disable interrupts like task_rq_lock,
2100 * you need to do so manually before calling.
2101 */
2102static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2103 __acquires(rq1->lock)
2104 __acquires(rq2->lock)
2105{
2106 BUG_ON(!irqs_disabled());
2107 BUG_ON(rq1 != rq2);
2108 raw_spin_lock(&rq1->lock);
2109 __acquire(rq2->lock); /* Fake it out ;) */
2110}
2111
2112/*
2113 * double_rq_unlock - safely unlock two runqueues
2114 *
2115 * Note this does not restore interrupts like task_rq_unlock,
2116 * you need to do so manually after calling.
2117 */
2118static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2119 __releases(rq1->lock)
2120 __releases(rq2->lock)
2121{
2122 BUG_ON(rq1 != rq2);
2123 raw_spin_unlock(&rq1->lock);
2124 __release(rq2->lock);
2125}
2126
2127#endif
2128
2129extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2130extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2131
2132#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2133extern bool sched_debug_enabled;
2134
029632fb
PZ
2135extern void print_cfs_stats(struct seq_file *m, int cpu);
2136extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2137extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2138extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2139extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2140extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2141#ifdef CONFIG_NUMA_BALANCING
2142extern void
2143show_numa_stats(struct task_struct *p, struct seq_file *m);
2144extern void
2145print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2146 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2147#endif /* CONFIG_NUMA_BALANCING */
2148#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2149
2150extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2151extern void init_rt_rq(struct rt_rq *rt_rq);
2152extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2153
1ee14e6c
BS
2154extern void cfs_bandwidth_usage_inc(void);
2155extern void cfs_bandwidth_usage_dec(void);
1c792db7 2156
3451d024 2157#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2158#define NOHZ_BALANCE_KICK_BIT 0
2159#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2160
a22e47a4 2161#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2162#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2163
2164#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2165
2166#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2167
00357f5e 2168extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2169#else
00357f5e 2170static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2171#endif
73fbec60 2172
daec5798
LA
2173
2174#ifdef CONFIG_SMP
2175static inline
2176void __dl_update(struct dl_bw *dl_b, s64 bw)
2177{
2178 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2179 int i;
2180
2181 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2182 "sched RCU must be held");
2183 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2184 struct rq *rq = cpu_rq(i);
2185
2186 rq->dl.extra_bw += bw;
2187 }
2188}
2189#else
2190static inline
2191void __dl_update(struct dl_bw *dl_b, s64 bw)
2192{
2193 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2194
2195 dl->extra_bw += bw;
2196}
2197#endif
2198
2199
73fbec60 2200#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2201struct irqtime {
25e2d8c1 2202 u64 total;
a499a5a1 2203 u64 tick_delta;
19d23dbf
FW
2204 u64 irq_start_time;
2205 struct u64_stats_sync sync;
2206};
73fbec60 2207
19d23dbf 2208DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2209
25e2d8c1
FW
2210/*
2211 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2212 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2213 * and never move forward.
2214 */
73fbec60
FW
2215static inline u64 irq_time_read(int cpu)
2216{
19d23dbf
FW
2217 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2218 unsigned int seq;
2219 u64 total;
73fbec60
FW
2220
2221 do {
19d23dbf 2222 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2223 total = irqtime->total;
19d23dbf 2224 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2225
19d23dbf 2226 return total;
73fbec60 2227}
73fbec60 2228#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2229
2230#ifdef CONFIG_CPU_FREQ
b10abd0a 2231DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2232
2233/**
2234 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2235 * @rq: Runqueue to carry out the update for.
58919e83 2236 * @flags: Update reason flags.
adaf9fcd 2237 *
58919e83
RW
2238 * This function is called by the scheduler on the CPU whose utilization is
2239 * being updated.
adaf9fcd
RW
2240 *
2241 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2242 *
2243 * The way cpufreq is currently arranged requires it to evaluate the CPU
2244 * performance state (frequency/voltage) on a regular basis to prevent it from
2245 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2246 * That is not guaranteed to happen if the updates are only triggered from CFS
2247 * and DL, though, because they may not be coming in if only RT tasks are
2248 * active all the time (or there are RT tasks only).
adaf9fcd 2249 *
e0367b12
JL
2250 * As a workaround for that issue, this function is called periodically by the
2251 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2252 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2253 * solutions targeted more specifically at RT tasks.
adaf9fcd 2254 */
12bde33d 2255static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2256{
58919e83
RW
2257 struct update_util_data *data;
2258
674e7541
VK
2259 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2260 cpu_of(rq)));
58919e83 2261 if (data)
12bde33d
RW
2262 data->func(data, rq_clock(rq), flags);
2263}
adaf9fcd 2264#else
12bde33d 2265static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2266#endif /* CONFIG_CPU_FREQ */
be53f58f 2267
9bdcb44e 2268#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2269# ifndef arch_scale_freq_invariant
2270# define arch_scale_freq_invariant() true
2271# endif
2272#else
2273# define arch_scale_freq_invariant() false
9bdcb44e 2274#endif
d4edd662 2275
10a35e68
VG
2276#ifdef CONFIG_SMP
2277static inline unsigned long capacity_orig_of(int cpu)
2278{
2279 return cpu_rq(cpu)->cpu_capacity_orig;
2280}
2281#endif
2282
794a56eb 2283#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b
QP
2284/**
2285 * enum schedutil_type - CPU utilization type
2286 * @FREQUENCY_UTIL: Utilization used to select frequency
2287 * @ENERGY_UTIL: Utilization used during energy calculation
2288 *
2289 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2290 * need to be aggregated differently depending on the usage made of them. This
2291 * enum is used within schedutil_freq_util() to differentiate the types of
2292 * utilization expected by the callers, and adjust the aggregation accordingly.
2293 */
2294enum schedutil_type {
2295 FREQUENCY_UTIL,
2296 ENERGY_UTIL,
2297};
2298
2299unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
2300 unsigned long max, enum schedutil_type type);
2301
2302static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2303{
8ec59c0f 2304 unsigned long max = arch_scale_cpu_capacity(cpu);
938e5e4b
QP
2305
2306 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
2307}
2308
8cc90515 2309static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2310{
2311 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2312}
2313
8cc90515
VG
2314static inline unsigned long cpu_util_dl(struct rq *rq)
2315{
2316 return READ_ONCE(rq->avg_dl.util_avg);
2317}
2318
d4edd662
JL
2319static inline unsigned long cpu_util_cfs(struct rq *rq)
2320{
a07630b8
PB
2321 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2322
2323 if (sched_feat(UTIL_EST)) {
2324 util = max_t(unsigned long, util,
2325 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2326 }
2327
2328 return util;
d4edd662 2329}
371bf427
VG
2330
2331static inline unsigned long cpu_util_rt(struct rq *rq)
2332{
dfa444dc 2333 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2334}
938e5e4b
QP
2335#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2336static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2337{
2338 return cfs;
2339}
2e62c474 2340#endif
9033ea11 2341
11d4afd4 2342#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2343static inline unsigned long cpu_util_irq(struct rq *rq)
2344{
2345 return rq->avg_irq.util_avg;
2346}
2e62c474
VG
2347
2348static inline
2349unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2350{
2351 util *= (max - irq);
2352 util /= max;
2353
2354 return util;
2355
2356}
9033ea11
VG
2357#else
2358static inline unsigned long cpu_util_irq(struct rq *rq)
2359{
2360 return 0;
2361}
2362
2e62c474
VG
2363static inline
2364unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2365{
2366 return util;
2367}
794a56eb 2368#endif
6aa140fa 2369
531b5c9f 2370#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2371
6aa140fa 2372#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2373
2374DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2375
2376static inline bool sched_energy_enabled(void)
2377{
2378 return static_branch_unlikely(&sched_energy_present);
2379}
2380
2381#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2382
6aa140fa 2383#define perf_domain_span(pd) NULL
f8a696f2 2384static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2385
f8a696f2 2386#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */