Merge tag 'char-misc-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
b6366f04 9#include <linux/irq_work.h>
029632fb 10
ce0dbbbb
CW
11int sched_rr_timeslice = RR_TIMESLICE;
12
029632fb
PZ
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 21 int idle = 0;
77a4d1a1 22 int overrun;
029632fb 23
77a4d1a1 24 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 25 for (;;) {
77a4d1a1 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
27 if (!overrun)
28 break;
29
77a4d1a1 30 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 31 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 32 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 33 }
4cfafd30
PZ
34 if (idle)
35 rt_b->rt_period_active = 0;
77a4d1a1 36 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
029632fb 58 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
c3a990dc
SR
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
4cfafd30
PZ
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 }
029632fb
PZ
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73}
74
89b41108 75#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
b6366f04
SR
76static void push_irq_work_func(struct irq_work *work);
77#endif
78
07c54f7a 79void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
80{
81 struct rt_prio_array *array;
82 int i;
83
84 array = &rt_rq->active;
85 for (i = 0; i < MAX_RT_PRIO; i++) {
86 INIT_LIST_HEAD(array->queue + i);
87 __clear_bit(i, array->bitmap);
88 }
89 /* delimiter for bitsearch: */
90 __set_bit(MAX_RT_PRIO, array->bitmap);
91
92#if defined CONFIG_SMP
93 rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 rt_rq->highest_prio.next = MAX_RT_PRIO;
95 rt_rq->rt_nr_migratory = 0;
96 rt_rq->overloaded = 0;
97 plist_head_init(&rt_rq->pushable_tasks);
b6366f04
SR
98
99#ifdef HAVE_RT_PUSH_IPI
100 rt_rq->push_flags = 0;
101 rt_rq->push_cpu = nr_cpu_ids;
102 raw_spin_lock_init(&rt_rq->push_lock);
103 init_irq_work(&rt_rq->push_work, push_irq_work_func);
029632fb 104#endif
b6366f04 105#endif /* CONFIG_SMP */
f4ebcbc0
KT
106 /* We start is dequeued state, because no RT tasks are queued */
107 rt_rq->rt_queued = 0;
029632fb
PZ
108
109 rt_rq->rt_time = 0;
110 rt_rq->rt_throttled = 0;
111 rt_rq->rt_runtime = 0;
112 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113}
114
8f48894f 115#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
116static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117{
118 hrtimer_cancel(&rt_b->rt_period_timer);
119}
8f48894f
PZ
120
121#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122
398a153b
GH
123static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124{
8f48894f
PZ
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127#endif
398a153b
GH
128 return container_of(rt_se, struct task_struct, rt);
129}
130
398a153b
GH
131static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132{
133 return rt_rq->rq;
134}
135
136static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137{
138 return rt_se->rt_rq;
139}
140
653d07a6
KT
141static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142{
143 struct rt_rq *rt_rq = rt_se->rt_rq;
144
145 return rt_rq->rq;
146}
147
029632fb
PZ
148void free_rt_sched_group(struct task_group *tg)
149{
150 int i;
151
152 if (tg->rt_se)
153 destroy_rt_bandwidth(&tg->rt_bandwidth);
154
155 for_each_possible_cpu(i) {
156 if (tg->rt_rq)
157 kfree(tg->rt_rq[i]);
158 if (tg->rt_se)
159 kfree(tg->rt_se[i]);
160 }
161
162 kfree(tg->rt_rq);
163 kfree(tg->rt_se);
164}
165
166void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 struct sched_rt_entity *rt_se, int cpu,
168 struct sched_rt_entity *parent)
169{
170 struct rq *rq = cpu_rq(cpu);
171
172 rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 rt_rq->rt_nr_boosted = 0;
174 rt_rq->rq = rq;
175 rt_rq->tg = tg;
176
177 tg->rt_rq[cpu] = rt_rq;
178 tg->rt_se[cpu] = rt_se;
179
180 if (!rt_se)
181 return;
182
183 if (!parent)
184 rt_se->rt_rq = &rq->rt;
185 else
186 rt_se->rt_rq = parent->my_q;
187
188 rt_se->my_q = rt_rq;
189 rt_se->parent = parent;
190 INIT_LIST_HEAD(&rt_se->run_list);
191}
192
193int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194{
195 struct rt_rq *rt_rq;
196 struct sched_rt_entity *rt_se;
197 int i;
198
199 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 if (!tg->rt_rq)
201 goto err;
202 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 if (!tg->rt_se)
204 goto err;
205
206 init_rt_bandwidth(&tg->rt_bandwidth,
207 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208
209 for_each_possible_cpu(i) {
210 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 GFP_KERNEL, cpu_to_node(i));
212 if (!rt_rq)
213 goto err;
214
215 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 GFP_KERNEL, cpu_to_node(i));
217 if (!rt_se)
218 goto err_free_rq;
219
07c54f7a 220 init_rt_rq(rt_rq);
029632fb
PZ
221 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223 }
224
225 return 1;
226
227err_free_rq:
228 kfree(rt_rq);
229err:
230 return 0;
231}
232
398a153b
GH
233#else /* CONFIG_RT_GROUP_SCHED */
234
a1ba4d8b
PZ
235#define rt_entity_is_task(rt_se) (1)
236
8f48894f
PZ
237static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238{
239 return container_of(rt_se, struct task_struct, rt);
240}
241
398a153b
GH
242static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243{
244 return container_of(rt_rq, struct rq, rt);
245}
246
653d07a6 247static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
248{
249 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
250
251 return task_rq(p);
252}
253
254static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255{
256 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
257
258 return &rq->rt;
259}
260
029632fb
PZ
261void free_rt_sched_group(struct task_group *tg) { }
262
263int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264{
265 return 1;
266}
398a153b
GH
267#endif /* CONFIG_RT_GROUP_SCHED */
268
4fd29176 269#ifdef CONFIG_SMP
84de4274 270
8046d680 271static void pull_rt_task(struct rq *this_rq);
38033c37 272
dc877341
PZ
273static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274{
275 /* Try to pull RT tasks here if we lower this rq's prio */
276 return rq->rt.highest_prio.curr > prev->prio;
277}
278
637f5085 279static inline int rt_overloaded(struct rq *rq)
4fd29176 280{
637f5085 281 return atomic_read(&rq->rd->rto_count);
4fd29176 282}
84de4274 283
4fd29176
SR
284static inline void rt_set_overload(struct rq *rq)
285{
1f11eb6a
GH
286 if (!rq->online)
287 return;
288
c6c4927b 289 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
290 /*
291 * Make sure the mask is visible before we set
292 * the overload count. That is checked to determine
293 * if we should look at the mask. It would be a shame
294 * if we looked at the mask, but the mask was not
295 * updated yet.
7c3f2ab7
PZ
296 *
297 * Matched by the barrier in pull_rt_task().
4fd29176 298 */
7c3f2ab7 299 smp_wmb();
637f5085 300 atomic_inc(&rq->rd->rto_count);
4fd29176 301}
84de4274 302
4fd29176
SR
303static inline void rt_clear_overload(struct rq *rq)
304{
1f11eb6a
GH
305 if (!rq->online)
306 return;
307
4fd29176 308 /* the order here really doesn't matter */
637f5085 309 atomic_dec(&rq->rd->rto_count);
c6c4927b 310 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 311}
73fe6aae 312
398a153b 313static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 314{
a1ba4d8b 315 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
316 if (!rt_rq->overloaded) {
317 rt_set_overload(rq_of_rt_rq(rt_rq));
318 rt_rq->overloaded = 1;
cdc8eb98 319 }
398a153b
GH
320 } else if (rt_rq->overloaded) {
321 rt_clear_overload(rq_of_rt_rq(rt_rq));
322 rt_rq->overloaded = 0;
637f5085 323 }
73fe6aae 324}
4fd29176 325
398a153b
GH
326static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327{
29baa747
PZ
328 struct task_struct *p;
329
a1ba4d8b
PZ
330 if (!rt_entity_is_task(rt_se))
331 return;
332
29baa747 333 p = rt_task_of(rt_se);
a1ba4d8b
PZ
334 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335
336 rt_rq->rt_nr_total++;
29baa747 337 if (p->nr_cpus_allowed > 1)
398a153b
GH
338 rt_rq->rt_nr_migratory++;
339
340 update_rt_migration(rt_rq);
341}
342
343static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344{
29baa747
PZ
345 struct task_struct *p;
346
a1ba4d8b
PZ
347 if (!rt_entity_is_task(rt_se))
348 return;
349
29baa747 350 p = rt_task_of(rt_se);
a1ba4d8b
PZ
351 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352
353 rt_rq->rt_nr_total--;
29baa747 354 if (p->nr_cpus_allowed > 1)
398a153b
GH
355 rt_rq->rt_nr_migratory--;
356
357 update_rt_migration(rt_rq);
358}
359
5181f4a4
SR
360static inline int has_pushable_tasks(struct rq *rq)
361{
362 return !plist_head_empty(&rq->rt.pushable_tasks);
363}
364
fd7a4bed
PZ
365static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
367
368static void push_rt_tasks(struct rq *);
fd7a4bed 369static void pull_rt_task(struct rq *);
e3fca9e7
PZ
370
371static inline void queue_push_tasks(struct rq *rq)
dc877341 372{
e3fca9e7
PZ
373 if (!has_pushable_tasks(rq))
374 return;
375
fd7a4bed
PZ
376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377}
378
379static inline void queue_pull_task(struct rq *rq)
380{
381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
382}
383
917b627d
GH
384static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385{
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 plist_node_init(&p->pushable_tasks, p->prio);
388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
389
390 /* Update the highest prio pushable task */
391 if (p->prio < rq->rt.highest_prio.next)
392 rq->rt.highest_prio.next = p->prio;
917b627d
GH
393}
394
395static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396{
397 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 398
5181f4a4
SR
399 /* Update the new highest prio pushable task */
400 if (has_pushable_tasks(rq)) {
401 p = plist_first_entry(&rq->rt.pushable_tasks,
402 struct task_struct, pushable_tasks);
403 rq->rt.highest_prio.next = p->prio;
404 } else
405 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
406}
407
917b627d
GH
408#else
409
ceacc2c1 410static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 411{
6f505b16
PZ
412}
413
ceacc2c1
PZ
414static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415{
416}
417
b07430ac 418static inline
ceacc2c1
PZ
419void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420{
421}
422
398a153b 423static inline
ceacc2c1
PZ
424void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425{
426}
917b627d 427
dc877341
PZ
428static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429{
430 return false;
431}
432
8046d680 433static inline void pull_rt_task(struct rq *this_rq)
dc877341 434{
dc877341
PZ
435}
436
e3fca9e7 437static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
438{
439}
4fd29176
SR
440#endif /* CONFIG_SMP */
441
f4ebcbc0
KT
442static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444
6f505b16
PZ
445static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446{
ff77e468 447 return rt_se->on_rq;
6f505b16
PZ
448}
449
052f1dc7 450#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 451
9f0c1e56 452static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
453{
454 if (!rt_rq->tg)
9f0c1e56 455 return RUNTIME_INF;
6f505b16 456
ac086bc2
PZ
457 return rt_rq->rt_runtime;
458}
459
460static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461{
462 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
463}
464
ec514c48
CX
465typedef struct task_group *rt_rq_iter_t;
466
1c09ab0d
YZ
467static inline struct task_group *next_task_group(struct task_group *tg)
468{
469 do {
470 tg = list_entry_rcu(tg->list.next,
471 typeof(struct task_group), list);
472 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473
474 if (&tg->list == &task_groups)
475 tg = NULL;
476
477 return tg;
478}
479
480#define for_each_rt_rq(rt_rq, iter, rq) \
481 for (iter = container_of(&task_groups, typeof(*iter), list); \
482 (iter = next_task_group(iter)) && \
483 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 484
6f505b16
PZ
485#define for_each_sched_rt_entity(rt_se) \
486 for (; rt_se; rt_se = rt_se->parent)
487
488static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489{
490 return rt_se->my_q;
491}
492
ff77e468
PZ
493static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 495
9f0c1e56 496static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 497{
f6121f4f 498 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 499 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
500 struct sched_rt_entity *rt_se;
501
8875125e 502 int cpu = cpu_of(rq);
0c3b9168
BS
503
504 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 505
f6121f4f 506 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
507 if (!rt_se)
508 enqueue_top_rt_rq(rt_rq);
509 else if (!on_rt_rq(rt_se))
ff77e468 510 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 511
e864c499 512 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 513 resched_curr(rq);
6f505b16
PZ
514 }
515}
516
9f0c1e56 517static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 518{
74b7eb58 519 struct sched_rt_entity *rt_se;
0c3b9168 520 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 521
0c3b9168 522 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 523
f4ebcbc0
KT
524 if (!rt_se)
525 dequeue_top_rt_rq(rt_rq);
526 else if (on_rt_rq(rt_se))
ff77e468 527 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
528}
529
46383648
KT
530static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531{
532 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533}
534
23b0fdfc
PZ
535static int rt_se_boosted(struct sched_rt_entity *rt_se)
536{
537 struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 struct task_struct *p;
539
540 if (rt_rq)
541 return !!rt_rq->rt_nr_boosted;
542
543 p = rt_task_of(rt_se);
544 return p->prio != p->normal_prio;
545}
546
d0b27fa7 547#ifdef CONFIG_SMP
c6c4927b 548static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 549{
424c93fe 550 return this_rq()->rd->span;
d0b27fa7 551}
6f505b16 552#else
c6c4927b 553static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 554{
c6c4927b 555 return cpu_online_mask;
d0b27fa7
PZ
556}
557#endif
6f505b16 558
d0b27fa7
PZ
559static inline
560struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 561{
d0b27fa7
PZ
562 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563}
9f0c1e56 564
ac086bc2
PZ
565static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566{
567 return &rt_rq->tg->rt_bandwidth;
568}
569
55e12e5e 570#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
571
572static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573{
ac086bc2
PZ
574 return rt_rq->rt_runtime;
575}
576
577static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578{
579 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
580}
581
ec514c48
CX
582typedef struct rt_rq *rt_rq_iter_t;
583
584#define for_each_rt_rq(rt_rq, iter, rq) \
585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
6f505b16
PZ
587#define for_each_sched_rt_entity(rt_se) \
588 for (; rt_se; rt_se = NULL)
589
590static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591{
592 return NULL;
593}
594
9f0c1e56 595static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 596{
f4ebcbc0
KT
597 struct rq *rq = rq_of_rt_rq(rt_rq);
598
599 if (!rt_rq->rt_nr_running)
600 return;
601
602 enqueue_top_rt_rq(rt_rq);
8875125e 603 resched_curr(rq);
6f505b16
PZ
604}
605
9f0c1e56 606static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 607{
f4ebcbc0 608 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
609}
610
46383648
KT
611static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612{
613 return rt_rq->rt_throttled;
614}
615
c6c4927b 616static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 617{
c6c4927b 618 return cpu_online_mask;
d0b27fa7
PZ
619}
620
621static inline
622struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623{
624 return &cpu_rq(cpu)->rt;
625}
626
ac086bc2
PZ
627static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628{
629 return &def_rt_bandwidth;
630}
631
55e12e5e 632#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 633
faa59937
JL
634bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635{
636 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638 return (hrtimer_active(&rt_b->rt_period_timer) ||
639 rt_rq->rt_time < rt_b->rt_runtime);
640}
641
ac086bc2 642#ifdef CONFIG_SMP
78333cdd
PZ
643/*
644 * We ran out of runtime, see if we can borrow some from our neighbours.
645 */
269b26a5 646static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
647{
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 649 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 650 int i, weight;
ac086bc2
PZ
651 u64 rt_period;
652
c6c4927b 653 weight = cpumask_weight(rd->span);
ac086bc2 654
0986b11b 655 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 656 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 657 for_each_cpu(i, rd->span) {
ac086bc2
PZ
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
660
661 if (iter == rt_rq)
662 continue;
663
0986b11b 664 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
665 /*
666 * Either all rqs have inf runtime and there's nothing to steal
667 * or __disable_runtime() below sets a specific rq to inf to
668 * indicate its been disabled and disalow stealing.
669 */
7def2be1
PZ
670 if (iter->rt_runtime == RUNTIME_INF)
671 goto next;
672
78333cdd
PZ
673 /*
674 * From runqueues with spare time, take 1/n part of their
675 * spare time, but no more than our period.
676 */
ac086bc2
PZ
677 diff = iter->rt_runtime - iter->rt_time;
678 if (diff > 0) {
58838cf3 679 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
680 if (rt_rq->rt_runtime + diff > rt_period)
681 diff = rt_period - rt_rq->rt_runtime;
682 iter->rt_runtime -= diff;
683 rt_rq->rt_runtime += diff;
ac086bc2 684 if (rt_rq->rt_runtime == rt_period) {
0986b11b 685 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
686 break;
687 }
688 }
7def2be1 689next:
0986b11b 690 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 691 }
0986b11b 692 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 693}
7def2be1 694
78333cdd
PZ
695/*
696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
697 */
7def2be1
PZ
698static void __disable_runtime(struct rq *rq)
699{
700 struct root_domain *rd = rq->rd;
ec514c48 701 rt_rq_iter_t iter;
7def2be1
PZ
702 struct rt_rq *rt_rq;
703
704 if (unlikely(!scheduler_running))
705 return;
706
ec514c48 707 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
708 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 s64 want;
710 int i;
711
0986b11b
TG
712 raw_spin_lock(&rt_b->rt_runtime_lock);
713 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
714 /*
715 * Either we're all inf and nobody needs to borrow, or we're
716 * already disabled and thus have nothing to do, or we have
717 * exactly the right amount of runtime to take out.
718 */
7def2be1
PZ
719 if (rt_rq->rt_runtime == RUNTIME_INF ||
720 rt_rq->rt_runtime == rt_b->rt_runtime)
721 goto balanced;
0986b11b 722 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 723
78333cdd
PZ
724 /*
725 * Calculate the difference between what we started out with
726 * and what we current have, that's the amount of runtime
727 * we lend and now have to reclaim.
728 */
7def2be1
PZ
729 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
78333cdd
PZ
731 /*
732 * Greedy reclaim, take back as much as we can.
733 */
c6c4927b 734 for_each_cpu(i, rd->span) {
7def2be1
PZ
735 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 s64 diff;
737
78333cdd
PZ
738 /*
739 * Can't reclaim from ourselves or disabled runqueues.
740 */
f1679d08 741 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
742 continue;
743
0986b11b 744 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
745 if (want > 0) {
746 diff = min_t(s64, iter->rt_runtime, want);
747 iter->rt_runtime -= diff;
748 want -= diff;
749 } else {
750 iter->rt_runtime -= want;
751 want -= want;
752 }
0986b11b 753 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
754
755 if (!want)
756 break;
757 }
758
0986b11b 759 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
760 /*
761 * We cannot be left wanting - that would mean some runtime
762 * leaked out of the system.
763 */
7def2be1
PZ
764 BUG_ON(want);
765balanced:
78333cdd
PZ
766 /*
767 * Disable all the borrow logic by pretending we have inf
768 * runtime - in which case borrowing doesn't make sense.
769 */
7def2be1 770 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 771 rt_rq->rt_throttled = 0;
0986b11b
TG
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
774
775 /* Make rt_rq available for pick_next_task() */
776 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
777 }
778}
779
7def2be1
PZ
780static void __enable_runtime(struct rq *rq)
781{
ec514c48 782 rt_rq_iter_t iter;
7def2be1
PZ
783 struct rt_rq *rt_rq;
784
785 if (unlikely(!scheduler_running))
786 return;
787
78333cdd
PZ
788 /*
789 * Reset each runqueue's bandwidth settings
790 */
ec514c48 791 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
792 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
0986b11b
TG
794 raw_spin_lock(&rt_b->rt_runtime_lock);
795 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
796 rt_rq->rt_runtime = rt_b->rt_runtime;
797 rt_rq->rt_time = 0;
baf25731 798 rt_rq->rt_throttled = 0;
0986b11b
TG
799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
801 }
802}
803
269b26a5 804static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 805{
4a6184ce 806 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 807 return;
4a6184ce 808
eff6549b 809 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 811 do_balance_runtime(rt_rq);
0986b11b 812 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 813 }
eff6549b 814}
55e12e5e 815#else /* !CONFIG_SMP */
269b26a5 816static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 817#endif /* CONFIG_SMP */
ac086bc2 818
eff6549b
PZ
819static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820{
42c62a58 821 int i, idle = 1, throttled = 0;
c6c4927b 822 const struct cpumask *span;
eff6549b 823
eff6549b 824 span = sched_rt_period_mask();
e221d028
MG
825#ifdef CONFIG_RT_GROUP_SCHED
826 /*
827 * FIXME: isolated CPUs should really leave the root task group,
828 * whether they are isolcpus or were isolated via cpusets, lest
829 * the timer run on a CPU which does not service all runqueues,
830 * potentially leaving other CPUs indefinitely throttled. If
831 * isolation is really required, the user will turn the throttle
832 * off to kill the perturbations it causes anyway. Meanwhile,
833 * this maintains functionality for boot and/or troubleshooting.
834 */
835 if (rt_b == &root_task_group.rt_bandwidth)
836 span = cpu_online_mask;
837#endif
c6c4927b 838 for_each_cpu(i, span) {
eff6549b
PZ
839 int enqueue = 0;
840 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 struct rq *rq = rq_of_rt_rq(rt_rq);
842
05fa785c 843 raw_spin_lock(&rq->lock);
eff6549b
PZ
844 if (rt_rq->rt_time) {
845 u64 runtime;
846
0986b11b 847 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
848 if (rt_rq->rt_throttled)
849 balance_runtime(rt_rq);
850 runtime = rt_rq->rt_runtime;
851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 rt_rq->rt_throttled = 0;
854 enqueue = 1;
61eadef6
MG
855
856 /*
9edfbfed
PZ
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
861 * 'runtime'.
61eadef6
MG
862 */
863 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 864 rq_clock_skip_update(rq, false);
eff6549b
PZ
865 }
866 if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 idle = 0;
0986b11b 868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 869 } else if (rt_rq->rt_nr_running) {
6c3df255 870 idle = 0;
0c3b9168
BS
871 if (!rt_rq_throttled(rt_rq))
872 enqueue = 1;
873 }
42c62a58
PZ
874 if (rt_rq->rt_throttled)
875 throttled = 1;
eff6549b
PZ
876
877 if (enqueue)
878 sched_rt_rq_enqueue(rt_rq);
05fa785c 879 raw_spin_unlock(&rq->lock);
eff6549b
PZ
880 }
881
42c62a58
PZ
882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 return 1;
884
eff6549b
PZ
885 return idle;
886}
ac086bc2 887
6f505b16
PZ
888static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889{
052f1dc7 890#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
891 struct rt_rq *rt_rq = group_rt_rq(rt_se);
892
893 if (rt_rq)
e864c499 894 return rt_rq->highest_prio.curr;
6f505b16
PZ
895#endif
896
897 return rt_task_of(rt_se)->prio;
898}
899
9f0c1e56 900static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 901{
9f0c1e56 902 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 903
fa85ae24 904 if (rt_rq->rt_throttled)
23b0fdfc 905 return rt_rq_throttled(rt_rq);
fa85ae24 906
5b680fd6 907 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
908 return 0;
909
b79f3833
PZ
910 balance_runtime(rt_rq);
911 runtime = sched_rt_runtime(rt_rq);
912 if (runtime == RUNTIME_INF)
913 return 0;
ac086bc2 914
9f0c1e56 915 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917
918 /*
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
921 */
922 if (likely(rt_b->rt_runtime)) {
923 rt_rq->rt_throttled = 1;
c224815d 924 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
925 } else {
926 /*
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
929 * with exactly 0 ns.
930 */
931 rt_rq->rt_time = 0;
932 }
933
23b0fdfc 934 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 935 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
936 return 1;
937 }
fa85ae24
PZ
938 }
939
940 return 0;
941}
942
bb44e5d1
IM
943/*
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
946 */
a9957449 947static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
948{
949 struct task_struct *curr = rq->curr;
6f505b16 950 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
951 u64 delta_exec;
952
06c3bc65 953 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
954 return;
955
34e2c555
RW
956 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
957 if (cpu_of(rq) == smp_processor_id())
958 cpufreq_trigger_update(rq_clock(rq));
959
78becc27 960 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
961 if (unlikely((s64)delta_exec <= 0))
962 return;
6cfb0d5d 963
42c62a58
PZ
964 schedstat_set(curr->se.statistics.exec_max,
965 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
966
967 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
968 account_group_exec_runtime(curr, delta_exec);
969
78becc27 970 curr->se.exec_start = rq_clock_task(rq);
d842de87 971 cpuacct_charge(curr, delta_exec);
fa85ae24 972
e9e9250b
PZ
973 sched_rt_avg_update(rq, delta_exec);
974
0b148fa0
PZ
975 if (!rt_bandwidth_enabled())
976 return;
977
354d60c2 978 for_each_sched_rt_entity(rt_se) {
0b07939c 979 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 980
cc2991cf 981 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 982 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
983 rt_rq->rt_time += delta_exec;
984 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 985 resched_curr(rq);
0986b11b 986 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 987 }
354d60c2 988 }
bb44e5d1
IM
989}
990
f4ebcbc0
KT
991static void
992dequeue_top_rt_rq(struct rt_rq *rt_rq)
993{
994 struct rq *rq = rq_of_rt_rq(rt_rq);
995
996 BUG_ON(&rq->rt != rt_rq);
997
998 if (!rt_rq->rt_queued)
999 return;
1000
1001 BUG_ON(!rq->nr_running);
1002
72465447 1003 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1004 rt_rq->rt_queued = 0;
1005}
1006
1007static void
1008enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009{
1010 struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012 BUG_ON(&rq->rt != rt_rq);
1013
1014 if (rt_rq->rt_queued)
1015 return;
1016 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017 return;
1018
72465447 1019 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1020 rt_rq->rt_queued = 1;
1021}
1022
398a153b 1023#if defined CONFIG_SMP
e864c499 1024
398a153b
GH
1025static void
1026inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1027{
4d984277 1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1029
757dfcaa
KT
1030#ifdef CONFIG_RT_GROUP_SCHED
1031 /*
1032 * Change rq's cpupri only if rt_rq is the top queue.
1033 */
1034 if (&rq->rt != rt_rq)
1035 return;
1036#endif
5181f4a4
SR
1037 if (rq->online && prio < prev_prio)
1038 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1039}
73fe6aae 1040
398a153b
GH
1041static void
1042dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043{
1044 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1045
757dfcaa
KT
1046#ifdef CONFIG_RT_GROUP_SCHED
1047 /*
1048 * Change rq's cpupri only if rt_rq is the top queue.
1049 */
1050 if (&rq->rt != rt_rq)
1051 return;
1052#endif
398a153b
GH
1053 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1055}
1056
398a153b
GH
1057#else /* CONFIG_SMP */
1058
6f505b16 1059static inline
398a153b
GH
1060void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061static inline
1062void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063
1064#endif /* CONFIG_SMP */
6e0534f2 1065
052f1dc7 1066#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1067static void
1068inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069{
1070 int prev_prio = rt_rq->highest_prio.curr;
1071
1072 if (prio < prev_prio)
1073 rt_rq->highest_prio.curr = prio;
1074
1075 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076}
1077
1078static void
1079dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081 int prev_prio = rt_rq->highest_prio.curr;
1082
6f505b16 1083 if (rt_rq->rt_nr_running) {
764a9d6f 1084
398a153b 1085 WARN_ON(prio < prev_prio);
764a9d6f 1086
e864c499 1087 /*
398a153b
GH
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
e864c499 1090 */
398a153b 1091 if (prio == prev_prio) {
e864c499
GH
1092 struct rt_prio_array *array = &rt_rq->active;
1093
1094 rt_rq->highest_prio.curr =
764a9d6f 1095 sched_find_first_bit(array->bitmap);
e864c499
GH
1096 }
1097
764a9d6f 1098 } else
e864c499 1099 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1100
398a153b
GH
1101 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102}
1f11eb6a 1103
398a153b
GH
1104#else
1105
1106static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108
1109#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1110
052f1dc7 1111#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1112
1113static void
1114inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115{
1116 if (rt_se_boosted(rt_se))
1117 rt_rq->rt_nr_boosted++;
1118
1119 if (rt_rq->tg)
1120 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121}
1122
1123static void
1124dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125{
23b0fdfc
PZ
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted--;
1128
1129 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1130}
1131
1132#else /* CONFIG_RT_GROUP_SCHED */
1133
1134static void
1135inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137 start_rt_bandwidth(&def_rt_bandwidth);
1138}
1139
1140static inline
1141void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142
1143#endif /* CONFIG_RT_GROUP_SCHED */
1144
22abdef3
KT
1145static inline
1146unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147{
1148 struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
1150 if (group_rq)
1151 return group_rq->rt_nr_running;
1152 else
1153 return 1;
1154}
1155
01d36d0a
FW
1156static inline
1157unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158{
1159 struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 struct task_struct *tsk;
1161
1162 if (group_rq)
1163 return group_rq->rr_nr_running;
1164
1165 tsk = rt_task_of(rt_se);
1166
1167 return (tsk->policy == SCHED_RR) ? 1 : 0;
1168}
1169
398a153b
GH
1170static inline
1171void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172{
1173 int prio = rt_se_prio(rt_se);
1174
1175 WARN_ON(!rt_prio(prio));
22abdef3 1176 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1177 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1178
1179 inc_rt_prio(rt_rq, prio);
1180 inc_rt_migration(rt_se, rt_rq);
1181 inc_rt_group(rt_se, rt_rq);
1182}
1183
1184static inline
1185void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186{
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1189 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1190 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1191
1192 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193 dec_rt_migration(rt_se, rt_rq);
1194 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1195}
1196
ff77e468
PZ
1197/*
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1199 *
1200 * assumes ENQUEUE/DEQUEUE flags match
1201 */
1202static inline bool move_entity(unsigned int flags)
1203{
1204 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205 return false;
1206
1207 return true;
1208}
1209
1210static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211{
1212 list_del_init(&rt_se->run_list);
1213
1214 if (list_empty(array->queue + rt_se_prio(rt_se)))
1215 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1216
1217 rt_se->on_list = 0;
1218}
1219
1220static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1221{
6f505b16
PZ
1222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223 struct rt_prio_array *array = &rt_rq->active;
1224 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1225 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1226
ad2a3f13
PZ
1227 /*
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1231 * active members.
1232 */
ff77e468
PZ
1233 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234 if (rt_se->on_list)
1235 __delist_rt_entity(rt_se, array);
6f505b16 1236 return;
ff77e468 1237 }
63489e45 1238
ff77e468
PZ
1239 if (move_entity(flags)) {
1240 WARN_ON_ONCE(rt_se->on_list);
1241 if (flags & ENQUEUE_HEAD)
1242 list_add(&rt_se->run_list, queue);
1243 else
1244 list_add_tail(&rt_se->run_list, queue);
1245
1246 __set_bit(rt_se_prio(rt_se), array->bitmap);
1247 rt_se->on_list = 1;
1248 }
1249 rt_se->on_rq = 1;
78f2c7db 1250
6f505b16
PZ
1251 inc_rt_tasks(rt_se, rt_rq);
1252}
1253
ff77e468 1254static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1255{
1256 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257 struct rt_prio_array *array = &rt_rq->active;
1258
ff77e468
PZ
1259 if (move_entity(flags)) {
1260 WARN_ON_ONCE(!rt_se->on_list);
1261 __delist_rt_entity(rt_se, array);
1262 }
1263 rt_se->on_rq = 0;
6f505b16
PZ
1264
1265 dec_rt_tasks(rt_se, rt_rq);
1266}
1267
1268/*
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
6f505b16 1271 */
ff77e468 1272static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1273{
ad2a3f13 1274 struct sched_rt_entity *back = NULL;
6f505b16 1275
58d6c2d7
PZ
1276 for_each_sched_rt_entity(rt_se) {
1277 rt_se->back = back;
1278 back = rt_se;
1279 }
1280
f4ebcbc0
KT
1281 dequeue_top_rt_rq(rt_rq_of_se(back));
1282
58d6c2d7
PZ
1283 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284 if (on_rt_rq(rt_se))
ff77e468 1285 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1286 }
1287}
1288
ff77e468 1289static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1290{
f4ebcbc0
KT
1291 struct rq *rq = rq_of_rt_se(rt_se);
1292
ff77e468 1293 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1294 for_each_sched_rt_entity(rt_se)
ff77e468 1295 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1296 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1297}
1298
ff77e468 1299static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1300{
f4ebcbc0
KT
1301 struct rq *rq = rq_of_rt_se(rt_se);
1302
ff77e468 1303 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1304
1305 for_each_sched_rt_entity(rt_se) {
1306 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307
1308 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1309 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1310 }
f4ebcbc0 1311 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1312}
1313
1314/*
1315 * Adding/removing a task to/from a priority array:
1316 */
ea87bb78 1317static void
371fd7e7 1318enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1319{
1320 struct sched_rt_entity *rt_se = &p->rt;
1321
371fd7e7 1322 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1323 rt_se->timeout = 0;
1324
ff77e468 1325 enqueue_rt_entity(rt_se, flags);
c09595f6 1326
29baa747 1327 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1328 enqueue_pushable_task(rq, p);
6f505b16
PZ
1329}
1330
371fd7e7 1331static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1332{
6f505b16 1333 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1334
f1e14ef6 1335 update_curr_rt(rq);
ff77e468 1336 dequeue_rt_entity(rt_se, flags);
c09595f6 1337
917b627d 1338 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1339}
1340
1341/*
60686317
RW
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
bb44e5d1 1344 */
7ebefa8c
DA
1345static void
1346requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1347{
1cdad715 1348 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1349 struct rt_prio_array *array = &rt_rq->active;
1350 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351
1352 if (head)
1353 list_move(&rt_se->run_list, queue);
1354 else
1355 list_move_tail(&rt_se->run_list, queue);
1cdad715 1356 }
6f505b16
PZ
1357}
1358
7ebefa8c 1359static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1360{
6f505b16
PZ
1361 struct sched_rt_entity *rt_se = &p->rt;
1362 struct rt_rq *rt_rq;
bb44e5d1 1363
6f505b16
PZ
1364 for_each_sched_rt_entity(rt_se) {
1365 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1366 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1367 }
bb44e5d1
IM
1368}
1369
6f505b16 1370static void yield_task_rt(struct rq *rq)
bb44e5d1 1371{
7ebefa8c 1372 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1373}
1374
e7693a36 1375#ifdef CONFIG_SMP
318e0893
GH
1376static int find_lowest_rq(struct task_struct *task);
1377
0017d735 1378static int
ac66f547 1379select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1380{
7608dec2
PZ
1381 struct task_struct *curr;
1382 struct rq *rq;
c37495fd
SR
1383
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386 goto out;
1387
7608dec2
PZ
1388 rq = cpu_rq(cpu);
1389
1390 rcu_read_lock();
316c1608 1391 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1392
318e0893 1393 /*
7608dec2 1394 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1398 *
43fa5460
SR
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1405 * lock?
1406 *
1407 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1408 *
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1411 *
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
318e0893 1414 */
7608dec2 1415 if (curr && unlikely(rt_task(curr)) &&
29baa747 1416 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1417 curr->prio <= p->prio)) {
7608dec2 1418 int target = find_lowest_rq(p);
318e0893 1419
80e3d87b
TC
1420 /*
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1423 */
1424 if (target != -1 &&
1425 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1426 cpu = target;
318e0893 1427 }
7608dec2 1428 rcu_read_unlock();
318e0893 1429
c37495fd 1430out:
7608dec2 1431 return cpu;
e7693a36 1432}
7ebefa8c
DA
1433
1434static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435{
308a623a
WL
1436 /*
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1439 */
1440 if (rq->curr->nr_cpus_allowed == 1 ||
1441 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1442 return;
1443
308a623a
WL
1444 /*
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1447 */
29baa747 1448 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1449 && cpupri_find(&rq->rd->cpupri, p, NULL))
1450 return;
24600ce8 1451
7ebefa8c
DA
1452 /*
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1456 */
1457 requeue_task_rt(rq, p, 1);
8875125e 1458 resched_curr(rq);
7ebefa8c
DA
1459}
1460
e7693a36
GH
1461#endif /* CONFIG_SMP */
1462
bb44e5d1
IM
1463/*
1464 * Preempt the current task with a newly woken task if needed:
1465 */
7d478721 1466static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1467{
45c01e82 1468 if (p->prio < rq->curr->prio) {
8875125e 1469 resched_curr(rq);
45c01e82
GH
1470 return;
1471 }
1472
1473#ifdef CONFIG_SMP
1474 /*
1475 * If:
1476 *
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1480 *
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1484 * task.
1485 */
8dd0de8b 1486 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1487 check_preempt_equal_prio(rq, p);
45c01e82 1488#endif
bb44e5d1
IM
1489}
1490
6f505b16
PZ
1491static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492 struct rt_rq *rt_rq)
bb44e5d1 1493{
6f505b16
PZ
1494 struct rt_prio_array *array = &rt_rq->active;
1495 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1496 struct list_head *queue;
1497 int idx;
1498
1499 idx = sched_find_first_bit(array->bitmap);
6f505b16 1500 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1501
1502 queue = array->queue + idx;
6f505b16 1503 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1504
6f505b16
PZ
1505 return next;
1506}
bb44e5d1 1507
917b627d 1508static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1509{
1510 struct sched_rt_entity *rt_se;
1511 struct task_struct *p;
606dba2e 1512 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1513
1514 do {
1515 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1516 BUG_ON(!rt_se);
6f505b16
PZ
1517 rt_rq = group_rt_rq(rt_se);
1518 } while (rt_rq);
1519
1520 p = rt_task_of(rt_se);
78becc27 1521 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1522
1523 return p;
1524}
1525
606dba2e
PZ
1526static struct task_struct *
1527pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1528{
606dba2e
PZ
1529 struct task_struct *p;
1530 struct rt_rq *rt_rq = &rq->rt;
1531
37e117c0 1532 if (need_pull_rt_task(rq, prev)) {
cbce1a68
PZ
1533 /*
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1538 */
1539 lockdep_unpin_lock(&rq->lock);
38033c37 1540 pull_rt_task(rq);
cbce1a68 1541 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
1542 /*
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
37e117c0 1546 */
da0c1e65 1547 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1548 rq->dl.dl_nr_running))
37e117c0
PZ
1549 return RETRY_TASK;
1550 }
38033c37 1551
734ff2a7
KT
1552 /*
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1555 */
1556 if (prev->sched_class == &rt_sched_class)
1557 update_curr_rt(rq);
1558
f4ebcbc0 1559 if (!rt_rq->rt_queued)
606dba2e
PZ
1560 return NULL;
1561
3f1d2a31 1562 put_prev_task(rq, prev);
606dba2e
PZ
1563
1564 p = _pick_next_task_rt(rq);
917b627d
GH
1565
1566 /* The running task is never eligible for pushing */
f3f1768f 1567 dequeue_pushable_task(rq, p);
917b627d 1568
e3fca9e7 1569 queue_push_tasks(rq);
3f029d3c 1570
6f505b16 1571 return p;
bb44e5d1
IM
1572}
1573
31ee529c 1574static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1575{
f1e14ef6 1576 update_curr_rt(rq);
917b627d
GH
1577
1578 /*
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1581 */
29baa747 1582 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1583 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1584}
1585
681f3e68 1586#ifdef CONFIG_SMP
6f505b16 1587
e8fa1362
SR
1588/* Only try algorithms three times */
1589#define RT_MAX_TRIES 3
1590
f65eda4f
SR
1591static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592{
1593 if (!task_running(rq, p) &&
60334caf 1594 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1595 return 1;
1596 return 0;
1597}
1598
e23ee747
KT
1599/*
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1602 */
1603static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1604{
e23ee747
KT
1605 struct plist_head *head = &rq->rt.pushable_tasks;
1606 struct task_struct *p;
3d07467b 1607
e23ee747
KT
1608 if (!has_pushable_tasks(rq))
1609 return NULL;
3d07467b 1610
e23ee747
KT
1611 plist_for_each_entry(p, head, pushable_tasks) {
1612 if (pick_rt_task(rq, p, cpu))
1613 return p;
f65eda4f
SR
1614 }
1615
e23ee747 1616 return NULL;
e8fa1362
SR
1617}
1618
0e3900e6 1619static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1620
6e1254d2
GH
1621static int find_lowest_rq(struct task_struct *task)
1622{
1623 struct sched_domain *sd;
4ba29684 1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1625 int this_cpu = smp_processor_id();
1626 int cpu = task_cpu(task);
06f90dbd 1627
0da938c4
SR
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask))
1630 return -1;
1631
29baa747 1632 if (task->nr_cpus_allowed == 1)
6e0534f2 1633 return -1; /* No other targets possible */
6e1254d2 1634
6e0534f2
GH
1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 return -1; /* No targets found */
6e1254d2
GH
1637
1638 /*
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1642 *
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1645 */
96f874e2 1646 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1647 return cpu;
1648
1649 /*
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1652 */
e2c88063
RR
1653 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1655
cd4ae6ad 1656 rcu_read_lock();
e2c88063
RR
1657 for_each_domain(cpu, sd) {
1658 if (sd->flags & SD_WAKE_AFFINE) {
1659 int best_cpu;
6e1254d2 1660
e2c88063
RR
1661 /*
1662 * "this_cpu" is cheaper to preempt than a
1663 * remote processor.
1664 */
1665 if (this_cpu != -1 &&
cd4ae6ad
XF
1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 rcu_read_unlock();
e2c88063 1668 return this_cpu;
cd4ae6ad 1669 }
e2c88063
RR
1670
1671 best_cpu = cpumask_first_and(lowest_mask,
1672 sched_domain_span(sd));
cd4ae6ad
XF
1673 if (best_cpu < nr_cpu_ids) {
1674 rcu_read_unlock();
e2c88063 1675 return best_cpu;
cd4ae6ad 1676 }
6e1254d2
GH
1677 }
1678 }
cd4ae6ad 1679 rcu_read_unlock();
6e1254d2
GH
1680
1681 /*
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1684 * locations.
1685 */
e2c88063
RR
1686 if (this_cpu != -1)
1687 return this_cpu;
1688
1689 cpu = cpumask_any(lowest_mask);
1690 if (cpu < nr_cpu_ids)
1691 return cpu;
1692 return -1;
07b4032c
GH
1693}
1694
1695/* Will lock the rq it finds */
4df64c0b 1696static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1697{
1698 struct rq *lowest_rq = NULL;
07b4032c 1699 int tries;
4df64c0b 1700 int cpu;
e8fa1362 1701
07b4032c
GH
1702 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703 cpu = find_lowest_rq(task);
1704
2de0b463 1705 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1706 break;
1707
07b4032c
GH
1708 lowest_rq = cpu_rq(cpu);
1709
80e3d87b
TC
1710 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711 /*
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1715 */
1716 lowest_rq = NULL;
1717 break;
1718 }
1719
e8fa1362 1720 /* if the prio of this runqueue changed, try again */
07b4032c 1721 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1722 /*
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1727 */
07b4032c 1728 if (unlikely(task_rq(task) != rq ||
96f874e2 1729 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1730 tsk_cpus_allowed(task)) ||
07b4032c 1731 task_running(rq, task) ||
da0c1e65 1732 !task_on_rq_queued(task))) {
4df64c0b 1733
7f1b4393 1734 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1735 lowest_rq = NULL;
1736 break;
1737 }
1738 }
1739
1740 /* If this rq is still suitable use it. */
e864c499 1741 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1742 break;
1743
1744 /* try again */
1b12bbc7 1745 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1746 lowest_rq = NULL;
1747 }
1748
1749 return lowest_rq;
1750}
1751
917b627d
GH
1752static struct task_struct *pick_next_pushable_task(struct rq *rq)
1753{
1754 struct task_struct *p;
1755
1756 if (!has_pushable_tasks(rq))
1757 return NULL;
1758
1759 p = plist_first_entry(&rq->rt.pushable_tasks,
1760 struct task_struct, pushable_tasks);
1761
1762 BUG_ON(rq->cpu != task_cpu(p));
1763 BUG_ON(task_current(rq, p));
29baa747 1764 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1765
da0c1e65 1766 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1767 BUG_ON(!rt_task(p));
1768
1769 return p;
1770}
1771
e8fa1362
SR
1772/*
1773 * If the current CPU has more than one RT task, see if the non
1774 * running task can migrate over to a CPU that is running a task
1775 * of lesser priority.
1776 */
697f0a48 1777static int push_rt_task(struct rq *rq)
e8fa1362
SR
1778{
1779 struct task_struct *next_task;
1780 struct rq *lowest_rq;
311e800e 1781 int ret = 0;
e8fa1362 1782
a22d7fc1
GH
1783 if (!rq->rt.overloaded)
1784 return 0;
1785
917b627d 1786 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1787 if (!next_task)
1788 return 0;
1789
49246274 1790retry:
697f0a48 1791 if (unlikely(next_task == rq->curr)) {
f65eda4f 1792 WARN_ON(1);
e8fa1362 1793 return 0;
f65eda4f 1794 }
e8fa1362
SR
1795
1796 /*
1797 * It's possible that the next_task slipped in of
1798 * higher priority than current. If that's the case
1799 * just reschedule current.
1800 */
697f0a48 1801 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1802 resched_curr(rq);
e8fa1362
SR
1803 return 0;
1804 }
1805
697f0a48 1806 /* We might release rq lock */
e8fa1362
SR
1807 get_task_struct(next_task);
1808
1809 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1810 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1811 if (!lowest_rq) {
1812 struct task_struct *task;
1813 /*
311e800e 1814 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1815 * so it is possible that next_task has migrated.
1816 *
1817 * We need to make sure that the task is still on the same
1818 * run-queue and is also still the next task eligible for
1819 * pushing.
e8fa1362 1820 */
917b627d 1821 task = pick_next_pushable_task(rq);
1563513d
GH
1822 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1823 /*
311e800e
HD
1824 * The task hasn't migrated, and is still the next
1825 * eligible task, but we failed to find a run-queue
1826 * to push it to. Do not retry in this case, since
1827 * other cpus will pull from us when ready.
1563513d 1828 */
1563513d 1829 goto out;
e8fa1362 1830 }
917b627d 1831
1563513d
GH
1832 if (!task)
1833 /* No more tasks, just exit */
1834 goto out;
1835
917b627d 1836 /*
1563513d 1837 * Something has shifted, try again.
917b627d 1838 */
1563513d
GH
1839 put_task_struct(next_task);
1840 next_task = task;
1841 goto retry;
e8fa1362
SR
1842 }
1843
697f0a48 1844 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1845 set_task_cpu(next_task, lowest_rq->cpu);
1846 activate_task(lowest_rq, next_task, 0);
311e800e 1847 ret = 1;
e8fa1362 1848
8875125e 1849 resched_curr(lowest_rq);
e8fa1362 1850
1b12bbc7 1851 double_unlock_balance(rq, lowest_rq);
e8fa1362 1852
e8fa1362
SR
1853out:
1854 put_task_struct(next_task);
1855
311e800e 1856 return ret;
e8fa1362
SR
1857}
1858
e8fa1362
SR
1859static void push_rt_tasks(struct rq *rq)
1860{
1861 /* push_rt_task will return true if it moved an RT */
1862 while (push_rt_task(rq))
1863 ;
1864}
1865
b6366f04
SR
1866#ifdef HAVE_RT_PUSH_IPI
1867/*
1868 * The search for the next cpu always starts at rq->cpu and ends
1869 * when we reach rq->cpu again. It will never return rq->cpu.
1870 * This returns the next cpu to check, or nr_cpu_ids if the loop
1871 * is complete.
1872 *
1873 * rq->rt.push_cpu holds the last cpu returned by this function,
1874 * or if this is the first instance, it must hold rq->cpu.
1875 */
1876static int rto_next_cpu(struct rq *rq)
1877{
1878 int prev_cpu = rq->rt.push_cpu;
1879 int cpu;
1880
1881 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1882
1883 /*
1884 * If the previous cpu is less than the rq's CPU, then it already
1885 * passed the end of the mask, and has started from the beginning.
1886 * We end if the next CPU is greater or equal to rq's CPU.
1887 */
1888 if (prev_cpu < rq->cpu) {
1889 if (cpu >= rq->cpu)
1890 return nr_cpu_ids;
1891
1892 } else if (cpu >= nr_cpu_ids) {
1893 /*
1894 * We passed the end of the mask, start at the beginning.
1895 * If the result is greater or equal to the rq's CPU, then
1896 * the loop is finished.
1897 */
1898 cpu = cpumask_first(rq->rd->rto_mask);
1899 if (cpu >= rq->cpu)
1900 return nr_cpu_ids;
1901 }
1902 rq->rt.push_cpu = cpu;
1903
1904 /* Return cpu to let the caller know if the loop is finished or not */
1905 return cpu;
1906}
1907
1908static int find_next_push_cpu(struct rq *rq)
1909{
1910 struct rq *next_rq;
1911 int cpu;
1912
1913 while (1) {
1914 cpu = rto_next_cpu(rq);
1915 if (cpu >= nr_cpu_ids)
1916 break;
1917 next_rq = cpu_rq(cpu);
1918
1919 /* Make sure the next rq can push to this rq */
1920 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921 break;
1922 }
1923
1924 return cpu;
1925}
1926
1927#define RT_PUSH_IPI_EXECUTING 1
1928#define RT_PUSH_IPI_RESTART 2
1929
1930static void tell_cpu_to_push(struct rq *rq)
1931{
1932 int cpu;
1933
1934 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1935 raw_spin_lock(&rq->rt.push_lock);
1936 /* Make sure it's still executing */
1937 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1938 /*
1939 * Tell the IPI to restart the loop as things have
1940 * changed since it started.
1941 */
1942 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1943 raw_spin_unlock(&rq->rt.push_lock);
1944 return;
1945 }
1946 raw_spin_unlock(&rq->rt.push_lock);
1947 }
1948
1949 /* When here, there's no IPI going around */
1950
1951 rq->rt.push_cpu = rq->cpu;
1952 cpu = find_next_push_cpu(rq);
1953 if (cpu >= nr_cpu_ids)
1954 return;
1955
1956 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1957
1958 irq_work_queue_on(&rq->rt.push_work, cpu);
1959}
1960
1961/* Called from hardirq context */
1962static void try_to_push_tasks(void *arg)
1963{
1964 struct rt_rq *rt_rq = arg;
1965 struct rq *rq, *src_rq;
1966 int this_cpu;
1967 int cpu;
1968
1969 this_cpu = rt_rq->push_cpu;
1970
1971 /* Paranoid check */
1972 BUG_ON(this_cpu != smp_processor_id());
1973
1974 rq = cpu_rq(this_cpu);
1975 src_rq = rq_of_rt_rq(rt_rq);
1976
1977again:
1978 if (has_pushable_tasks(rq)) {
1979 raw_spin_lock(&rq->lock);
1980 push_rt_task(rq);
1981 raw_spin_unlock(&rq->lock);
1982 }
1983
1984 /* Pass the IPI to the next rt overloaded queue */
1985 raw_spin_lock(&rt_rq->push_lock);
1986 /*
1987 * If the source queue changed since the IPI went out,
1988 * we need to restart the search from that CPU again.
1989 */
1990 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1991 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1992 rt_rq->push_cpu = src_rq->cpu;
1993 }
1994
1995 cpu = find_next_push_cpu(src_rq);
1996
1997 if (cpu >= nr_cpu_ids)
1998 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1999 raw_spin_unlock(&rt_rq->push_lock);
2000
2001 if (cpu >= nr_cpu_ids)
2002 return;
2003
2004 /*
2005 * It is possible that a restart caused this CPU to be
2006 * chosen again. Don't bother with an IPI, just see if we
2007 * have more to push.
2008 */
2009 if (unlikely(cpu == rq->cpu))
2010 goto again;
2011
2012 /* Try the next RT overloaded CPU */
2013 irq_work_queue_on(&rt_rq->push_work, cpu);
2014}
2015
2016static void push_irq_work_func(struct irq_work *work)
2017{
2018 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2019
2020 try_to_push_tasks(rt_rq);
2021}
2022#endif /* HAVE_RT_PUSH_IPI */
2023
8046d680 2024static void pull_rt_task(struct rq *this_rq)
f65eda4f 2025{
8046d680
PZ
2026 int this_cpu = this_rq->cpu, cpu;
2027 bool resched = false;
a8728944 2028 struct task_struct *p;
f65eda4f 2029 struct rq *src_rq;
f65eda4f 2030
637f5085 2031 if (likely(!rt_overloaded(this_rq)))
8046d680 2032 return;
f65eda4f 2033
7c3f2ab7
PZ
2034 /*
2035 * Match the barrier from rt_set_overloaded; this guarantees that if we
2036 * see overloaded we must also see the rto_mask bit.
2037 */
2038 smp_rmb();
2039
b6366f04
SR
2040#ifdef HAVE_RT_PUSH_IPI
2041 if (sched_feat(RT_PUSH_IPI)) {
2042 tell_cpu_to_push(this_rq);
8046d680 2043 return;
b6366f04
SR
2044 }
2045#endif
2046
c6c4927b 2047 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2048 if (this_cpu == cpu)
2049 continue;
2050
2051 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2052
2053 /*
2054 * Don't bother taking the src_rq->lock if the next highest
2055 * task is known to be lower-priority than our current task.
2056 * This may look racy, but if this value is about to go
2057 * logically higher, the src_rq will push this task away.
2058 * And if its going logically lower, we do not care
2059 */
2060 if (src_rq->rt.highest_prio.next >=
2061 this_rq->rt.highest_prio.curr)
2062 continue;
2063
f65eda4f
SR
2064 /*
2065 * We can potentially drop this_rq's lock in
2066 * double_lock_balance, and another CPU could
a8728944 2067 * alter this_rq
f65eda4f 2068 */
a8728944 2069 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2070
2071 /*
e23ee747
KT
2072 * We can pull only a task, which is pushable
2073 * on its rq, and no others.
f65eda4f 2074 */
e23ee747 2075 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2076
2077 /*
2078 * Do we have an RT task that preempts
2079 * the to-be-scheduled task?
2080 */
a8728944 2081 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2082 WARN_ON(p == src_rq->curr);
da0c1e65 2083 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2084
2085 /*
2086 * There's a chance that p is higher in priority
2087 * than what's currently running on its cpu.
2088 * This is just that p is wakeing up and hasn't
2089 * had a chance to schedule. We only pull
2090 * p if it is lower in priority than the
a8728944 2091 * current task on the run queue
f65eda4f 2092 */
a8728944 2093 if (p->prio < src_rq->curr->prio)
614ee1f6 2094 goto skip;
f65eda4f 2095
8046d680 2096 resched = true;
f65eda4f
SR
2097
2098 deactivate_task(src_rq, p, 0);
2099 set_task_cpu(p, this_cpu);
2100 activate_task(this_rq, p, 0);
2101 /*
2102 * We continue with the search, just in
2103 * case there's an even higher prio task
25985edc 2104 * in another runqueue. (low likelihood
f65eda4f 2105 * but possible)
f65eda4f 2106 */
f65eda4f 2107 }
49246274 2108skip:
1b12bbc7 2109 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2110 }
2111
8046d680
PZ
2112 if (resched)
2113 resched_curr(this_rq);
f65eda4f
SR
2114}
2115
8ae121ac
GH
2116/*
2117 * If we are not running and we are not going to reschedule soon, we should
2118 * try to push tasks away now
2119 */
efbbd05a 2120static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2121{
9a897c5a 2122 if (!task_running(rq, p) &&
8ae121ac 2123 !test_tsk_need_resched(rq->curr) &&
29baa747 2124 p->nr_cpus_allowed > 1 &&
1baca4ce 2125 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 2126 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2127 rq->curr->prio <= p->prio))
4642dafd
SR
2128 push_rt_tasks(rq);
2129}
2130
bdd7c81b 2131/* Assumes rq->lock is held */
1f11eb6a 2132static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2133{
2134 if (rq->rt.overloaded)
2135 rt_set_overload(rq);
6e0534f2 2136
7def2be1
PZ
2137 __enable_runtime(rq);
2138
e864c499 2139 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2140}
2141
2142/* Assumes rq->lock is held */
1f11eb6a 2143static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2144{
2145 if (rq->rt.overloaded)
2146 rt_clear_overload(rq);
6e0534f2 2147
7def2be1
PZ
2148 __disable_runtime(rq);
2149
6e0534f2 2150 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2151}
cb469845
SR
2152
2153/*
2154 * When switch from the rt queue, we bring ourselves to a position
2155 * that we might want to pull RT tasks from other runqueues.
2156 */
da7a735e 2157static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2158{
2159 /*
2160 * If there are other RT tasks then we will reschedule
2161 * and the scheduling of the other RT tasks will handle
2162 * the balancing. But if we are the last RT task
2163 * we may need to handle the pulling of RT tasks
2164 * now.
2165 */
da0c1e65 2166 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2167 return;
2168
fd7a4bed 2169 queue_pull_task(rq);
cb469845 2170}
3d8cbdf8 2171
11c785b7 2172void __init init_sched_rt_class(void)
3d8cbdf8
RR
2173{
2174 unsigned int i;
2175
029632fb 2176 for_each_possible_cpu(i) {
eaa95840 2177 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2178 GFP_KERNEL, cpu_to_node(i));
029632fb 2179 }
3d8cbdf8 2180}
cb469845
SR
2181#endif /* CONFIG_SMP */
2182
2183/*
2184 * When switching a task to RT, we may overload the runqueue
2185 * with RT tasks. In this case we try to push them off to
2186 * other runqueues.
2187 */
da7a735e 2188static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2189{
cb469845
SR
2190 /*
2191 * If we are already running, then there's nothing
2192 * that needs to be done. But if we are not running
2193 * we may need to preempt the current running task.
2194 * If that current running task is also an RT task
2195 * then see if we can move to another run queue.
2196 */
da0c1e65 2197 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2198#ifdef CONFIG_SMP
fd7a4bed
PZ
2199 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2200 queue_push_tasks(rq);
2201#else
2202 if (p->prio < rq->curr->prio)
8875125e 2203 resched_curr(rq);
fd7a4bed 2204#endif /* CONFIG_SMP */
cb469845
SR
2205 }
2206}
2207
2208/*
2209 * Priority of the task has changed. This may cause
2210 * us to initiate a push or pull.
2211 */
da7a735e
PZ
2212static void
2213prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2214{
da0c1e65 2215 if (!task_on_rq_queued(p))
da7a735e
PZ
2216 return;
2217
2218 if (rq->curr == p) {
cb469845
SR
2219#ifdef CONFIG_SMP
2220 /*
2221 * If our priority decreases while running, we
2222 * may need to pull tasks to this runqueue.
2223 */
2224 if (oldprio < p->prio)
fd7a4bed
PZ
2225 queue_pull_task(rq);
2226
cb469845
SR
2227 /*
2228 * If there's a higher priority task waiting to run
fd7a4bed 2229 * then reschedule.
cb469845 2230 */
fd7a4bed 2231 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2232 resched_curr(rq);
cb469845
SR
2233#else
2234 /* For UP simply resched on drop of prio */
2235 if (oldprio < p->prio)
8875125e 2236 resched_curr(rq);
e8fa1362 2237#endif /* CONFIG_SMP */
cb469845
SR
2238 } else {
2239 /*
2240 * This task is not running, but if it is
2241 * greater than the current running task
2242 * then reschedule.
2243 */
2244 if (p->prio < rq->curr->prio)
8875125e 2245 resched_curr(rq);
cb469845
SR
2246 }
2247}
2248
78f2c7db
PZ
2249static void watchdog(struct rq *rq, struct task_struct *p)
2250{
2251 unsigned long soft, hard;
2252
78d7d407
JS
2253 /* max may change after cur was read, this will be fixed next tick */
2254 soft = task_rlimit(p, RLIMIT_RTTIME);
2255 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2256
2257 if (soft != RLIM_INFINITY) {
2258 unsigned long next;
2259
57d2aa00
YX
2260 if (p->rt.watchdog_stamp != jiffies) {
2261 p->rt.timeout++;
2262 p->rt.watchdog_stamp = jiffies;
2263 }
2264
78f2c7db 2265 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2266 if (p->rt.timeout > next)
f06febc9 2267 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2268 }
2269}
bb44e5d1 2270
8f4d37ec 2271static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2272{
454c7999
CC
2273 struct sched_rt_entity *rt_se = &p->rt;
2274
67e2be02
PZ
2275 update_curr_rt(rq);
2276
78f2c7db
PZ
2277 watchdog(rq, p);
2278
bb44e5d1
IM
2279 /*
2280 * RR tasks need a special form of timeslice management.
2281 * FIFO tasks have no timeslices.
2282 */
2283 if (p->policy != SCHED_RR)
2284 return;
2285
fa717060 2286 if (--p->rt.time_slice)
bb44e5d1
IM
2287 return;
2288
ce0dbbbb 2289 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2290
98fbc798 2291 /*
e9aa39bb
LB
2292 * Requeue to the end of queue if we (and all of our ancestors) are not
2293 * the only element on the queue
98fbc798 2294 */
454c7999
CC
2295 for_each_sched_rt_entity(rt_se) {
2296 if (rt_se->run_list.prev != rt_se->run_list.next) {
2297 requeue_task_rt(rq, p, 0);
8aa6f0eb 2298 resched_curr(rq);
454c7999
CC
2299 return;
2300 }
98fbc798 2301 }
bb44e5d1
IM
2302}
2303
83b699ed
SV
2304static void set_curr_task_rt(struct rq *rq)
2305{
2306 struct task_struct *p = rq->curr;
2307
78becc27 2308 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2309
2310 /* The running task is never eligible for pushing */
2311 dequeue_pushable_task(rq, p);
83b699ed
SV
2312}
2313
6d686f45 2314static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2315{
2316 /*
2317 * Time slice is 0 for SCHED_FIFO tasks
2318 */
2319 if (task->policy == SCHED_RR)
ce0dbbbb 2320 return sched_rr_timeslice;
0d721cea
PW
2321 else
2322 return 0;
2323}
2324
029632fb 2325const struct sched_class rt_sched_class = {
5522d5d5 2326 .next = &fair_sched_class,
bb44e5d1
IM
2327 .enqueue_task = enqueue_task_rt,
2328 .dequeue_task = dequeue_task_rt,
2329 .yield_task = yield_task_rt,
2330
2331 .check_preempt_curr = check_preempt_curr_rt,
2332
2333 .pick_next_task = pick_next_task_rt,
2334 .put_prev_task = put_prev_task_rt,
2335
681f3e68 2336#ifdef CONFIG_SMP
4ce72a2c
LZ
2337 .select_task_rq = select_task_rq_rt,
2338
6c37067e 2339 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2340 .rq_online = rq_online_rt,
2341 .rq_offline = rq_offline_rt,
efbbd05a 2342 .task_woken = task_woken_rt,
cb469845 2343 .switched_from = switched_from_rt,
681f3e68 2344#endif
bb44e5d1 2345
83b699ed 2346 .set_curr_task = set_curr_task_rt,
bb44e5d1 2347 .task_tick = task_tick_rt,
cb469845 2348
0d721cea
PW
2349 .get_rr_interval = get_rr_interval_rt,
2350
cb469845
SR
2351 .prio_changed = prio_changed_rt,
2352 .switched_to = switched_to_rt,
6e998916
SG
2353
2354 .update_curr = update_curr_rt,
bb44e5d1 2355};
ada18de2
PZ
2356
2357#ifdef CONFIG_SCHED_DEBUG
2358extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2359
029632fb 2360void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2361{
ec514c48 2362 rt_rq_iter_t iter;
ada18de2
PZ
2363 struct rt_rq *rt_rq;
2364
2365 rcu_read_lock();
ec514c48 2366 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2367 print_rt_rq(m, cpu, rt_rq);
2368 rcu_read_unlock();
2369}
55e12e5e 2370#endif /* CONFIG_SCHED_DEBUG */