Merge tag 'usb-3.8-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
aff3e498
PT
265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
9ee474f5 267
3d4b47b4
PZ
268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
67e86250
PT
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 284 }
3d4b47b4
PZ
285
286 cfs_rq->on_list = 1;
9ee474f5 287 /* We should have no load, but we need to update last_decay. */
aff3e498 288 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
b758149c
PZ
300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
464b7527
PZ
319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
8f48894f
PZ
362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
bf0f6f24 368
62160e3f
IM
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
372}
373
374#define entity_is_task(se) 1
375
b758149c
PZ
376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
bf0f6f24 378
b758149c 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 380{
b758149c 381 return &task_rq(p)->cfs;
bf0f6f24
IM
382}
383
b758149c
PZ
384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
3d4b47b4
PZ
398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
b758149c
PZ
406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
464b7527
PZ
420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
b758149c
PZ
425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
6c16a6dc
PZ
427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
0702e3eb 434static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 435{
368059a9
PZ
436 s64 delta = (s64)(vruntime - min_vruntime);
437 if (delta > 0)
02e0431a
PZ
438 min_vruntime = vruntime;
439
440 return min_vruntime;
441}
442
0702e3eb 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
54fdc581
FC
452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
1af5f730
PZ
458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
e17036da 470 if (!cfs_rq->curr)
1af5f730
PZ
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 574 int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac
PZ
595 */
596static inline unsigned long
597calc_delta_fair(unsigned long delta, struct sched_entity *se)
598{
f9c0b095
PZ
599 if (unlikely(se->load.weight != NICE_0_LOAD))
600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
601
602 return delta;
603}
604
647e7cac
IM
605/*
606 * The idea is to set a period in which each task runs once.
607 *
532b1858 608 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
609 * this period because otherwise the slices get too small.
610 *
611 * p = (nr <= nl) ? l : l*nr/nl
612 */
4d78e7b6
PZ
613static u64 __sched_period(unsigned long nr_running)
614{
615 u64 period = sysctl_sched_latency;
b2be5e96 616 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
617
618 if (unlikely(nr_running > nr_latency)) {
4bf0b771 619 period = sysctl_sched_min_granularity;
4d78e7b6 620 period *= nr_running;
4d78e7b6
PZ
621 }
622
623 return period;
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
649 slice = calc_delta_mine(slice, se->load.weight, load);
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
ac884dec 655 * We calculate the vruntime slice of a to be inserted task
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
bf0f6f24
IM
664/*
665 * Update the current task's runtime statistics. Skip current tasks that
666 * are not in our scheduling class.
667 */
668static inline void
8ebc91d9
IM
669__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 unsigned long delta_exec)
bf0f6f24 671{
bbdba7c0 672 unsigned long delta_exec_weighted;
bf0f6f24 673
41acab88
LDM
674 schedstat_set(curr->statistics.exec_max,
675 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
676
677 curr->sum_exec_runtime += delta_exec;
7a62eabc 678 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 679 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 680
e9acbff6 681 curr->vruntime += delta_exec_weighted;
1af5f730 682 update_min_vruntime(cfs_rq);
bf0f6f24
IM
683}
684
b7cc0896 685static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 686{
429d43bc 687 struct sched_entity *curr = cfs_rq->curr;
305e6835 688 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
689 unsigned long delta_exec;
690
691 if (unlikely(!curr))
692 return;
693
694 /*
695 * Get the amount of time the current task was running
696 * since the last time we changed load (this cannot
697 * overflow on 32 bits):
698 */
8ebc91d9 699 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
700 if (!delta_exec)
701 return;
bf0f6f24 702
8ebc91d9
IM
703 __update_curr(cfs_rq, curr, delta_exec);
704 curr->exec_start = now;
d842de87
SV
705
706 if (entity_is_task(curr)) {
707 struct task_struct *curtask = task_of(curr);
708
f977bb49 709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 710 cpuacct_charge(curtask, delta_exec);
f06febc9 711 account_group_exec_runtime(curtask, delta_exec);
d842de87 712 }
ec12cb7f
PT
713
714 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
715}
716
717static inline void
5870db5b 718update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 719{
41acab88 720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
721}
722
bf0f6f24
IM
723/*
724 * Task is being enqueued - update stats:
725 */
d2417e5a 726static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 727{
bf0f6f24
IM
728 /*
729 * Are we enqueueing a waiting task? (for current tasks
730 * a dequeue/enqueue event is a NOP)
731 */
429d43bc 732 if (se != cfs_rq->curr)
5870db5b 733 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
734}
735
bf0f6f24 736static void
9ef0a961 737update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
41acab88
LDM
739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
744#ifdef CONFIG_SCHEDSTATS
745 if (entity_is_task(se)) {
746 trace_sched_stat_wait(task_of(se),
41acab88 747 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
748 }
749#endif
41acab88 750 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
751}
752
753static inline void
19b6a2e3 754update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
bf0f6f24
IM
756 /*
757 * Mark the end of the wait period if dequeueing a
758 * waiting task:
759 */
429d43bc 760 if (se != cfs_rq->curr)
9ef0a961 761 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
762}
763
764/*
765 * We are picking a new current task - update its stats:
766 */
767static inline void
79303e9e 768update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
769{
770 /*
771 * We are starting a new run period:
772 */
305e6835 773 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
774}
775
bf0f6f24
IM
776/**************************************************
777 * Scheduling class queueing methods:
778 */
779
cbee9f88
PZ
780#ifdef CONFIG_NUMA_BALANCING
781/*
6e5fb223 782 * numa task sample period in ms
cbee9f88 783 */
6e5fb223 784unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
785unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
787
788/* Portion of address space to scan in MB */
789unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 790
4b96a29b
PZ
791/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792unsigned int sysctl_numa_balancing_scan_delay = 1000;
793
cbee9f88
PZ
794static void task_numa_placement(struct task_struct *p)
795{
2832bc19 796 int seq;
cbee9f88 797
2832bc19
HD
798 if (!p->mm) /* for example, ksmd faulting in a user's mm */
799 return;
800 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
801 if (p->numa_scan_seq == seq)
802 return;
803 p->numa_scan_seq = seq;
804
805 /* FIXME: Scheduling placement policy hints go here */
806}
807
808/*
809 * Got a PROT_NONE fault for a page on @node.
810 */
b8593bfd 811void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
812{
813 struct task_struct *p = current;
814
1a687c2e
MG
815 if (!sched_feat_numa(NUMA))
816 return;
817
cbee9f88
PZ
818 /* FIXME: Allocate task-specific structure for placement policy here */
819
fb003b80 820 /*
b8593bfd
MG
821 * If pages are properly placed (did not migrate) then scan slower.
822 * This is reset periodically in case of phase changes
fb003b80 823 */
b8593bfd
MG
824 if (!migrated)
825 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
826 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 827
cbee9f88
PZ
828 task_numa_placement(p);
829}
830
6e5fb223
PZ
831static void reset_ptenuma_scan(struct task_struct *p)
832{
833 ACCESS_ONCE(p->mm->numa_scan_seq)++;
834 p->mm->numa_scan_offset = 0;
835}
836
cbee9f88
PZ
837/*
838 * The expensive part of numa migration is done from task_work context.
839 * Triggered from task_tick_numa().
840 */
841void task_numa_work(struct callback_head *work)
842{
843 unsigned long migrate, next_scan, now = jiffies;
844 struct task_struct *p = current;
845 struct mm_struct *mm = p->mm;
6e5fb223 846 struct vm_area_struct *vma;
9f40604c
MG
847 unsigned long start, end;
848 long pages;
cbee9f88
PZ
849
850 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
851
852 work->next = work; /* protect against double add */
853 /*
854 * Who cares about NUMA placement when they're dying.
855 *
856 * NOTE: make sure not to dereference p->mm before this check,
857 * exit_task_work() happens _after_ exit_mm() so we could be called
858 * without p->mm even though we still had it when we enqueued this
859 * work.
860 */
861 if (p->flags & PF_EXITING)
862 return;
863
5bca2303
MG
864 /*
865 * We do not care about task placement until a task runs on a node
866 * other than the first one used by the address space. This is
867 * largely because migrations are driven by what CPU the task
868 * is running on. If it's never scheduled on another node, it'll
869 * not migrate so why bother trapping the fault.
870 */
871 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
872 mm->first_nid = numa_node_id();
873 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
874 /* Are we running on a new node yet? */
875 if (numa_node_id() == mm->first_nid &&
876 !sched_feat_numa(NUMA_FORCE))
877 return;
878
879 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
880 }
881
b8593bfd
MG
882 /*
883 * Reset the scan period if enough time has gone by. Objective is that
884 * scanning will be reduced if pages are properly placed. As tasks
885 * can enter different phases this needs to be re-examined. Lacking
886 * proper tracking of reference behaviour, this blunt hammer is used.
887 */
888 migrate = mm->numa_next_reset;
889 if (time_after(now, migrate)) {
890 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
891 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
892 xchg(&mm->numa_next_reset, next_scan);
893 }
894
cbee9f88
PZ
895 /*
896 * Enforce maximal scan/migration frequency..
897 */
898 migrate = mm->numa_next_scan;
899 if (time_before(now, migrate))
900 return;
901
902 if (p->numa_scan_period == 0)
903 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
904
fb003b80 905 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
906 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
907 return;
908
e14808b4
MG
909 /*
910 * Do not set pte_numa if the current running node is rate-limited.
911 * This loses statistics on the fault but if we are unwilling to
912 * migrate to this node, it is less likely we can do useful work
913 */
914 if (migrate_ratelimited(numa_node_id()))
915 return;
916
9f40604c
MG
917 start = mm->numa_scan_offset;
918 pages = sysctl_numa_balancing_scan_size;
919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
920 if (!pages)
921 return;
cbee9f88 922
6e5fb223 923 down_read(&mm->mmap_sem);
9f40604c 924 vma = find_vma(mm, start);
6e5fb223
PZ
925 if (!vma) {
926 reset_ptenuma_scan(p);
9f40604c 927 start = 0;
6e5fb223
PZ
928 vma = mm->mmap;
929 }
9f40604c 930 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
931 if (!vma_migratable(vma))
932 continue;
933
934 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 935 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
936 continue;
937
9f40604c
MG
938 do {
939 start = max(start, vma->vm_start);
940 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
941 end = min(end, vma->vm_end);
942 pages -= change_prot_numa(vma, start, end);
6e5fb223 943
9f40604c
MG
944 start = end;
945 if (pages <= 0)
946 goto out;
947 } while (end != vma->vm_end);
cbee9f88 948 }
6e5fb223 949
9f40604c 950out:
6e5fb223
PZ
951 /*
952 * It is possible to reach the end of the VMA list but the last few VMAs are
953 * not guaranteed to the vma_migratable. If they are not, we would find the
954 * !migratable VMA on the next scan but not reset the scanner to the start
955 * so check it now.
956 */
957 if (vma)
9f40604c 958 mm->numa_scan_offset = start;
6e5fb223
PZ
959 else
960 reset_ptenuma_scan(p);
961 up_read(&mm->mmap_sem);
cbee9f88
PZ
962}
963
964/*
965 * Drive the periodic memory faults..
966 */
967void task_tick_numa(struct rq *rq, struct task_struct *curr)
968{
969 struct callback_head *work = &curr->numa_work;
970 u64 period, now;
971
972 /*
973 * We don't care about NUMA placement if we don't have memory.
974 */
975 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
976 return;
977
978 /*
979 * Using runtime rather than walltime has the dual advantage that
980 * we (mostly) drive the selection from busy threads and that the
981 * task needs to have done some actual work before we bother with
982 * NUMA placement.
983 */
984 now = curr->se.sum_exec_runtime;
985 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
986
987 if (now - curr->node_stamp > period) {
4b96a29b
PZ
988 if (!curr->node_stamp)
989 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
990 curr->node_stamp = now;
991
992 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
993 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
994 task_work_add(curr, work, true);
995 }
996 }
997}
998#else
999static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1000{
1001}
1002#endif /* CONFIG_NUMA_BALANCING */
1003
30cfdcfc
DA
1004static void
1005account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006{
1007 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1008 if (!parent_entity(se))
029632fb 1009 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1010#ifdef CONFIG_SMP
1011 if (entity_is_task(se))
eb95308e 1012 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1013#endif
30cfdcfc 1014 cfs_rq->nr_running++;
30cfdcfc
DA
1015}
1016
1017static void
1018account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1019{
1020 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1021 if (!parent_entity(se))
029632fb 1022 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1023 if (entity_is_task(se))
b87f1724 1024 list_del_init(&se->group_node);
30cfdcfc 1025 cfs_rq->nr_running--;
30cfdcfc
DA
1026}
1027
3ff6dcac
YZ
1028#ifdef CONFIG_FAIR_GROUP_SCHED
1029# ifdef CONFIG_SMP
cf5f0acf
PZ
1030static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1031{
1032 long tg_weight;
1033
1034 /*
1035 * Use this CPU's actual weight instead of the last load_contribution
1036 * to gain a more accurate current total weight. See
1037 * update_cfs_rq_load_contribution().
1038 */
82958366
PT
1039 tg_weight = atomic64_read(&tg->load_avg);
1040 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1041 tg_weight += cfs_rq->load.weight;
1042
1043 return tg_weight;
1044}
1045
6d5ab293 1046static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1047{
cf5f0acf 1048 long tg_weight, load, shares;
3ff6dcac 1049
cf5f0acf 1050 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1051 load = cfs_rq->load.weight;
3ff6dcac 1052
3ff6dcac 1053 shares = (tg->shares * load);
cf5f0acf
PZ
1054 if (tg_weight)
1055 shares /= tg_weight;
3ff6dcac
YZ
1056
1057 if (shares < MIN_SHARES)
1058 shares = MIN_SHARES;
1059 if (shares > tg->shares)
1060 shares = tg->shares;
1061
1062 return shares;
1063}
3ff6dcac 1064# else /* CONFIG_SMP */
6d5ab293 1065static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1066{
1067 return tg->shares;
1068}
3ff6dcac 1069# endif /* CONFIG_SMP */
2069dd75
PZ
1070static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1071 unsigned long weight)
1072{
19e5eebb
PT
1073 if (se->on_rq) {
1074 /* commit outstanding execution time */
1075 if (cfs_rq->curr == se)
1076 update_curr(cfs_rq);
2069dd75 1077 account_entity_dequeue(cfs_rq, se);
19e5eebb 1078 }
2069dd75
PZ
1079
1080 update_load_set(&se->load, weight);
1081
1082 if (se->on_rq)
1083 account_entity_enqueue(cfs_rq, se);
1084}
1085
82958366
PT
1086static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1087
6d5ab293 1088static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1089{
1090 struct task_group *tg;
1091 struct sched_entity *se;
3ff6dcac 1092 long shares;
2069dd75 1093
2069dd75
PZ
1094 tg = cfs_rq->tg;
1095 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1096 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1097 return;
3ff6dcac
YZ
1098#ifndef CONFIG_SMP
1099 if (likely(se->load.weight == tg->shares))
1100 return;
1101#endif
6d5ab293 1102 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1103
1104 reweight_entity(cfs_rq_of(se), se, shares);
1105}
1106#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1107static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109}
1110#endif /* CONFIG_FAIR_GROUP_SCHED */
1111
f4e26b12
PT
1112/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1113#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1114/*
1115 * We choose a half-life close to 1 scheduling period.
1116 * Note: The tables below are dependent on this value.
1117 */
1118#define LOAD_AVG_PERIOD 32
1119#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1120#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1121
1122/* Precomputed fixed inverse multiplies for multiplication by y^n */
1123static const u32 runnable_avg_yN_inv[] = {
1124 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1125 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1126 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1127 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1128 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1129 0x85aac367, 0x82cd8698,
1130};
1131
1132/*
1133 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1134 * over-estimates when re-combining.
1135 */
1136static const u32 runnable_avg_yN_sum[] = {
1137 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1138 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1139 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1140};
1141
9d85f21c
PT
1142/*
1143 * Approximate:
1144 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1145 */
1146static __always_inline u64 decay_load(u64 val, u64 n)
1147{
5b51f2f8
PT
1148 unsigned int local_n;
1149
1150 if (!n)
1151 return val;
1152 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1153 return 0;
1154
1155 /* after bounds checking we can collapse to 32-bit */
1156 local_n = n;
1157
1158 /*
1159 * As y^PERIOD = 1/2, we can combine
1160 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1161 * With a look-up table which covers k^n (n<PERIOD)
1162 *
1163 * To achieve constant time decay_load.
1164 */
1165 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1166 val >>= local_n / LOAD_AVG_PERIOD;
1167 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1168 }
1169
5b51f2f8
PT
1170 val *= runnable_avg_yN_inv[local_n];
1171 /* We don't use SRR here since we always want to round down. */
1172 return val >> 32;
1173}
1174
1175/*
1176 * For updates fully spanning n periods, the contribution to runnable
1177 * average will be: \Sum 1024*y^n
1178 *
1179 * We can compute this reasonably efficiently by combining:
1180 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1181 */
1182static u32 __compute_runnable_contrib(u64 n)
1183{
1184 u32 contrib = 0;
1185
1186 if (likely(n <= LOAD_AVG_PERIOD))
1187 return runnable_avg_yN_sum[n];
1188 else if (unlikely(n >= LOAD_AVG_MAX_N))
1189 return LOAD_AVG_MAX;
1190
1191 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1192 do {
1193 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1194 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1195
1196 n -= LOAD_AVG_PERIOD;
1197 } while (n > LOAD_AVG_PERIOD);
1198
1199 contrib = decay_load(contrib, n);
1200 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1201}
1202
1203/*
1204 * We can represent the historical contribution to runnable average as the
1205 * coefficients of a geometric series. To do this we sub-divide our runnable
1206 * history into segments of approximately 1ms (1024us); label the segment that
1207 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1208 *
1209 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1210 * p0 p1 p2
1211 * (now) (~1ms ago) (~2ms ago)
1212 *
1213 * Let u_i denote the fraction of p_i that the entity was runnable.
1214 *
1215 * We then designate the fractions u_i as our co-efficients, yielding the
1216 * following representation of historical load:
1217 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1218 *
1219 * We choose y based on the with of a reasonably scheduling period, fixing:
1220 * y^32 = 0.5
1221 *
1222 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1223 * approximately half as much as the contribution to load within the last ms
1224 * (u_0).
1225 *
1226 * When a period "rolls over" and we have new u_0`, multiplying the previous
1227 * sum again by y is sufficient to update:
1228 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1229 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1230 */
1231static __always_inline int __update_entity_runnable_avg(u64 now,
1232 struct sched_avg *sa,
1233 int runnable)
1234{
5b51f2f8
PT
1235 u64 delta, periods;
1236 u32 runnable_contrib;
9d85f21c
PT
1237 int delta_w, decayed = 0;
1238
1239 delta = now - sa->last_runnable_update;
1240 /*
1241 * This should only happen when time goes backwards, which it
1242 * unfortunately does during sched clock init when we swap over to TSC.
1243 */
1244 if ((s64)delta < 0) {
1245 sa->last_runnable_update = now;
1246 return 0;
1247 }
1248
1249 /*
1250 * Use 1024ns as the unit of measurement since it's a reasonable
1251 * approximation of 1us and fast to compute.
1252 */
1253 delta >>= 10;
1254 if (!delta)
1255 return 0;
1256 sa->last_runnable_update = now;
1257
1258 /* delta_w is the amount already accumulated against our next period */
1259 delta_w = sa->runnable_avg_period % 1024;
1260 if (delta + delta_w >= 1024) {
1261 /* period roll-over */
1262 decayed = 1;
1263
1264 /*
1265 * Now that we know we're crossing a period boundary, figure
1266 * out how much from delta we need to complete the current
1267 * period and accrue it.
1268 */
1269 delta_w = 1024 - delta_w;
5b51f2f8
PT
1270 if (runnable)
1271 sa->runnable_avg_sum += delta_w;
1272 sa->runnable_avg_period += delta_w;
1273
1274 delta -= delta_w;
1275
1276 /* Figure out how many additional periods this update spans */
1277 periods = delta / 1024;
1278 delta %= 1024;
1279
1280 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1281 periods + 1);
1282 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1283 periods + 1);
1284
1285 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1286 runnable_contrib = __compute_runnable_contrib(periods);
1287 if (runnable)
1288 sa->runnable_avg_sum += runnable_contrib;
1289 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1290 }
1291
1292 /* Remainder of delta accrued against u_0` */
1293 if (runnable)
1294 sa->runnable_avg_sum += delta;
1295 sa->runnable_avg_period += delta;
1296
1297 return decayed;
1298}
1299
9ee474f5 1300/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1301static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1302{
1303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1304 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1305
1306 decays -= se->avg.decay_count;
1307 if (!decays)
aff3e498 1308 return 0;
9ee474f5
PT
1309
1310 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1311 se->avg.decay_count = 0;
aff3e498
PT
1312
1313 return decays;
9ee474f5
PT
1314}
1315
c566e8e9
PT
1316#ifdef CONFIG_FAIR_GROUP_SCHED
1317static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1318 int force_update)
1319{
1320 struct task_group *tg = cfs_rq->tg;
1321 s64 tg_contrib;
1322
1323 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1324 tg_contrib -= cfs_rq->tg_load_contrib;
1325
1326 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1327 atomic64_add(tg_contrib, &tg->load_avg);
1328 cfs_rq->tg_load_contrib += tg_contrib;
1329 }
1330}
8165e145 1331
bb17f655
PT
1332/*
1333 * Aggregate cfs_rq runnable averages into an equivalent task_group
1334 * representation for computing load contributions.
1335 */
1336static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1337 struct cfs_rq *cfs_rq)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 long contrib;
1341
1342 /* The fraction of a cpu used by this cfs_rq */
1343 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1344 sa->runnable_avg_period + 1);
1345 contrib -= cfs_rq->tg_runnable_contrib;
1346
1347 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1348 atomic_add(contrib, &tg->runnable_avg);
1349 cfs_rq->tg_runnable_contrib += contrib;
1350 }
1351}
1352
8165e145
PT
1353static inline void __update_group_entity_contrib(struct sched_entity *se)
1354{
1355 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1356 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1357 int runnable_avg;
1358
8165e145
PT
1359 u64 contrib;
1360
1361 contrib = cfs_rq->tg_load_contrib * tg->shares;
1362 se->avg.load_avg_contrib = div64_u64(contrib,
1363 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1364
1365 /*
1366 * For group entities we need to compute a correction term in the case
1367 * that they are consuming <1 cpu so that we would contribute the same
1368 * load as a task of equal weight.
1369 *
1370 * Explicitly co-ordinating this measurement would be expensive, but
1371 * fortunately the sum of each cpus contribution forms a usable
1372 * lower-bound on the true value.
1373 *
1374 * Consider the aggregate of 2 contributions. Either they are disjoint
1375 * (and the sum represents true value) or they are disjoint and we are
1376 * understating by the aggregate of their overlap.
1377 *
1378 * Extending this to N cpus, for a given overlap, the maximum amount we
1379 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1380 * cpus that overlap for this interval and w_i is the interval width.
1381 *
1382 * On a small machine; the first term is well-bounded which bounds the
1383 * total error since w_i is a subset of the period. Whereas on a
1384 * larger machine, while this first term can be larger, if w_i is the
1385 * of consequential size guaranteed to see n_i*w_i quickly converge to
1386 * our upper bound of 1-cpu.
1387 */
1388 runnable_avg = atomic_read(&tg->runnable_avg);
1389 if (runnable_avg < NICE_0_LOAD) {
1390 se->avg.load_avg_contrib *= runnable_avg;
1391 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1392 }
8165e145 1393}
c566e8e9
PT
1394#else
1395static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1396 int force_update) {}
bb17f655
PT
1397static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1398 struct cfs_rq *cfs_rq) {}
8165e145 1399static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1400#endif
1401
8165e145
PT
1402static inline void __update_task_entity_contrib(struct sched_entity *se)
1403{
1404 u32 contrib;
1405
1406 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1407 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1408 contrib /= (se->avg.runnable_avg_period + 1);
1409 se->avg.load_avg_contrib = scale_load(contrib);
1410}
1411
2dac754e
PT
1412/* Compute the current contribution to load_avg by se, return any delta */
1413static long __update_entity_load_avg_contrib(struct sched_entity *se)
1414{
1415 long old_contrib = se->avg.load_avg_contrib;
1416
8165e145
PT
1417 if (entity_is_task(se)) {
1418 __update_task_entity_contrib(se);
1419 } else {
bb17f655 1420 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1421 __update_group_entity_contrib(se);
1422 }
2dac754e
PT
1423
1424 return se->avg.load_avg_contrib - old_contrib;
1425}
1426
9ee474f5
PT
1427static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1428 long load_contrib)
1429{
1430 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1431 cfs_rq->blocked_load_avg -= load_contrib;
1432 else
1433 cfs_rq->blocked_load_avg = 0;
1434}
1435
f1b17280
PT
1436static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1437
9d85f21c 1438/* Update a sched_entity's runnable average */
9ee474f5
PT
1439static inline void update_entity_load_avg(struct sched_entity *se,
1440 int update_cfs_rq)
9d85f21c 1441{
2dac754e
PT
1442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1443 long contrib_delta;
f1b17280 1444 u64 now;
2dac754e 1445
f1b17280
PT
1446 /*
1447 * For a group entity we need to use their owned cfs_rq_clock_task() in
1448 * case they are the parent of a throttled hierarchy.
1449 */
1450 if (entity_is_task(se))
1451 now = cfs_rq_clock_task(cfs_rq);
1452 else
1453 now = cfs_rq_clock_task(group_cfs_rq(se));
1454
1455 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1456 return;
1457
1458 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1459
1460 if (!update_cfs_rq)
1461 return;
1462
2dac754e
PT
1463 if (se->on_rq)
1464 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1465 else
1466 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1467}
1468
1469/*
1470 * Decay the load contributed by all blocked children and account this so that
1471 * their contribution may appropriately discounted when they wake up.
1472 */
aff3e498 1473static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1474{
f1b17280 1475 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1476 u64 decays;
1477
1478 decays = now - cfs_rq->last_decay;
aff3e498 1479 if (!decays && !force_update)
9ee474f5
PT
1480 return;
1481
aff3e498
PT
1482 if (atomic64_read(&cfs_rq->removed_load)) {
1483 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1484 subtract_blocked_load_contrib(cfs_rq, removed_load);
1485 }
9ee474f5 1486
aff3e498
PT
1487 if (decays) {
1488 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1489 decays);
1490 atomic64_add(decays, &cfs_rq->decay_counter);
1491 cfs_rq->last_decay = now;
1492 }
c566e8e9
PT
1493
1494 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1495}
18bf2805
BS
1496
1497static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1498{
1499 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1500 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1501}
2dac754e
PT
1502
1503/* Add the load generated by se into cfs_rq's child load-average */
1504static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1505 struct sched_entity *se,
1506 int wakeup)
2dac754e 1507{
aff3e498
PT
1508 /*
1509 * We track migrations using entity decay_count <= 0, on a wake-up
1510 * migration we use a negative decay count to track the remote decays
1511 * accumulated while sleeping.
1512 */
1513 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1514 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1515 if (se->avg.decay_count) {
1516 /*
1517 * In a wake-up migration we have to approximate the
1518 * time sleeping. This is because we can't synchronize
1519 * clock_task between the two cpus, and it is not
1520 * guaranteed to be read-safe. Instead, we can
1521 * approximate this using our carried decays, which are
1522 * explicitly atomically readable.
1523 */
1524 se->avg.last_runnable_update -= (-se->avg.decay_count)
1525 << 20;
1526 update_entity_load_avg(se, 0);
1527 /* Indicate that we're now synchronized and on-rq */
1528 se->avg.decay_count = 0;
1529 }
9ee474f5
PT
1530 wakeup = 0;
1531 } else {
1532 __synchronize_entity_decay(se);
1533 }
1534
aff3e498
PT
1535 /* migrated tasks did not contribute to our blocked load */
1536 if (wakeup) {
9ee474f5 1537 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1538 update_entity_load_avg(se, 0);
1539 }
9ee474f5 1540
2dac754e 1541 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1542 /* we force update consideration on load-balancer moves */
1543 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1544}
1545
9ee474f5
PT
1546/*
1547 * Remove se's load from this cfs_rq child load-average, if the entity is
1548 * transitioning to a blocked state we track its projected decay using
1549 * blocked_load_avg.
1550 */
2dac754e 1551static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1552 struct sched_entity *se,
1553 int sleep)
2dac754e 1554{
9ee474f5 1555 update_entity_load_avg(se, 1);
aff3e498
PT
1556 /* we force update consideration on load-balancer moves */
1557 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1558
2dac754e 1559 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1560 if (sleep) {
1561 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1562 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1563 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1564}
9d85f21c 1565#else
9ee474f5
PT
1566static inline void update_entity_load_avg(struct sched_entity *se,
1567 int update_cfs_rq) {}
18bf2805 1568static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1569static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1570 struct sched_entity *se,
1571 int wakeup) {}
2dac754e 1572static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1573 struct sched_entity *se,
1574 int sleep) {}
aff3e498
PT
1575static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1576 int force_update) {}
9d85f21c
PT
1577#endif
1578
2396af69 1579static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1580{
bf0f6f24 1581#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1582 struct task_struct *tsk = NULL;
1583
1584 if (entity_is_task(se))
1585 tsk = task_of(se);
1586
41acab88
LDM
1587 if (se->statistics.sleep_start) {
1588 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1589
1590 if ((s64)delta < 0)
1591 delta = 0;
1592
41acab88
LDM
1593 if (unlikely(delta > se->statistics.sleep_max))
1594 se->statistics.sleep_max = delta;
bf0f6f24 1595
8c79a045 1596 se->statistics.sleep_start = 0;
41acab88 1597 se->statistics.sum_sleep_runtime += delta;
9745512c 1598
768d0c27 1599 if (tsk) {
e414314c 1600 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1601 trace_sched_stat_sleep(tsk, delta);
1602 }
bf0f6f24 1603 }
41acab88
LDM
1604 if (se->statistics.block_start) {
1605 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1606
1607 if ((s64)delta < 0)
1608 delta = 0;
1609
41acab88
LDM
1610 if (unlikely(delta > se->statistics.block_max))
1611 se->statistics.block_max = delta;
bf0f6f24 1612
8c79a045 1613 se->statistics.block_start = 0;
41acab88 1614 se->statistics.sum_sleep_runtime += delta;
30084fbd 1615
e414314c 1616 if (tsk) {
8f0dfc34 1617 if (tsk->in_iowait) {
41acab88
LDM
1618 se->statistics.iowait_sum += delta;
1619 se->statistics.iowait_count++;
768d0c27 1620 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1621 }
1622
b781a602
AV
1623 trace_sched_stat_blocked(tsk, delta);
1624
e414314c
PZ
1625 /*
1626 * Blocking time is in units of nanosecs, so shift by
1627 * 20 to get a milliseconds-range estimation of the
1628 * amount of time that the task spent sleeping:
1629 */
1630 if (unlikely(prof_on == SLEEP_PROFILING)) {
1631 profile_hits(SLEEP_PROFILING,
1632 (void *)get_wchan(tsk),
1633 delta >> 20);
1634 }
1635 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1636 }
bf0f6f24
IM
1637 }
1638#endif
1639}
1640
ddc97297
PZ
1641static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1642{
1643#ifdef CONFIG_SCHED_DEBUG
1644 s64 d = se->vruntime - cfs_rq->min_vruntime;
1645
1646 if (d < 0)
1647 d = -d;
1648
1649 if (d > 3*sysctl_sched_latency)
1650 schedstat_inc(cfs_rq, nr_spread_over);
1651#endif
1652}
1653
aeb73b04
PZ
1654static void
1655place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1656{
1af5f730 1657 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1658
2cb8600e
PZ
1659 /*
1660 * The 'current' period is already promised to the current tasks,
1661 * however the extra weight of the new task will slow them down a
1662 * little, place the new task so that it fits in the slot that
1663 * stays open at the end.
1664 */
94dfb5e7 1665 if (initial && sched_feat(START_DEBIT))
f9c0b095 1666 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1667
a2e7a7eb 1668 /* sleeps up to a single latency don't count. */
5ca9880c 1669 if (!initial) {
a2e7a7eb 1670 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1671
a2e7a7eb
MG
1672 /*
1673 * Halve their sleep time's effect, to allow
1674 * for a gentler effect of sleepers:
1675 */
1676 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1677 thresh >>= 1;
51e0304c 1678
a2e7a7eb 1679 vruntime -= thresh;
aeb73b04
PZ
1680 }
1681
b5d9d734
MG
1682 /* ensure we never gain time by being placed backwards. */
1683 vruntime = max_vruntime(se->vruntime, vruntime);
1684
67e9fb2a 1685 se->vruntime = vruntime;
aeb73b04
PZ
1686}
1687
d3d9dc33
PT
1688static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1689
bf0f6f24 1690static void
88ec22d3 1691enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1692{
88ec22d3
PZ
1693 /*
1694 * Update the normalized vruntime before updating min_vruntime
1695 * through callig update_curr().
1696 */
371fd7e7 1697 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1698 se->vruntime += cfs_rq->min_vruntime;
1699
bf0f6f24 1700 /*
a2a2d680 1701 * Update run-time statistics of the 'current'.
bf0f6f24 1702 */
b7cc0896 1703 update_curr(cfs_rq);
f269ae04 1704 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1705 account_entity_enqueue(cfs_rq, se);
1706 update_cfs_shares(cfs_rq);
bf0f6f24 1707
88ec22d3 1708 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1709 place_entity(cfs_rq, se, 0);
2396af69 1710 enqueue_sleeper(cfs_rq, se);
e9acbff6 1711 }
bf0f6f24 1712
d2417e5a 1713 update_stats_enqueue(cfs_rq, se);
ddc97297 1714 check_spread(cfs_rq, se);
83b699ed
SV
1715 if (se != cfs_rq->curr)
1716 __enqueue_entity(cfs_rq, se);
2069dd75 1717 se->on_rq = 1;
3d4b47b4 1718
d3d9dc33 1719 if (cfs_rq->nr_running == 1) {
3d4b47b4 1720 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1721 check_enqueue_throttle(cfs_rq);
1722 }
bf0f6f24
IM
1723}
1724
2c13c919 1725static void __clear_buddies_last(struct sched_entity *se)
2002c695 1726{
2c13c919
RR
1727 for_each_sched_entity(se) {
1728 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1729 if (cfs_rq->last == se)
1730 cfs_rq->last = NULL;
1731 else
1732 break;
1733 }
1734}
2002c695 1735
2c13c919
RR
1736static void __clear_buddies_next(struct sched_entity *se)
1737{
1738 for_each_sched_entity(se) {
1739 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1740 if (cfs_rq->next == se)
1741 cfs_rq->next = NULL;
1742 else
1743 break;
1744 }
2002c695
PZ
1745}
1746
ac53db59
RR
1747static void __clear_buddies_skip(struct sched_entity *se)
1748{
1749 for_each_sched_entity(se) {
1750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1751 if (cfs_rq->skip == se)
1752 cfs_rq->skip = NULL;
1753 else
1754 break;
1755 }
1756}
1757
a571bbea
PZ
1758static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1759{
2c13c919
RR
1760 if (cfs_rq->last == se)
1761 __clear_buddies_last(se);
1762
1763 if (cfs_rq->next == se)
1764 __clear_buddies_next(se);
ac53db59
RR
1765
1766 if (cfs_rq->skip == se)
1767 __clear_buddies_skip(se);
a571bbea
PZ
1768}
1769
6c16a6dc 1770static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1771
bf0f6f24 1772static void
371fd7e7 1773dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1774{
a2a2d680
DA
1775 /*
1776 * Update run-time statistics of the 'current'.
1777 */
1778 update_curr(cfs_rq);
17bc14b7 1779 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1780
19b6a2e3 1781 update_stats_dequeue(cfs_rq, se);
371fd7e7 1782 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1783#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1784 if (entity_is_task(se)) {
1785 struct task_struct *tsk = task_of(se);
1786
1787 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1788 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1789 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1790 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1791 }
db36cc7d 1792#endif
67e9fb2a
PZ
1793 }
1794
2002c695 1795 clear_buddies(cfs_rq, se);
4793241b 1796
83b699ed 1797 if (se != cfs_rq->curr)
30cfdcfc 1798 __dequeue_entity(cfs_rq, se);
17bc14b7 1799 se->on_rq = 0;
30cfdcfc 1800 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1801
1802 /*
1803 * Normalize the entity after updating the min_vruntime because the
1804 * update can refer to the ->curr item and we need to reflect this
1805 * movement in our normalized position.
1806 */
371fd7e7 1807 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1808 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1809
d8b4986d
PT
1810 /* return excess runtime on last dequeue */
1811 return_cfs_rq_runtime(cfs_rq);
1812
1e876231 1813 update_min_vruntime(cfs_rq);
17bc14b7 1814 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1815}
1816
1817/*
1818 * Preempt the current task with a newly woken task if needed:
1819 */
7c92e54f 1820static void
2e09bf55 1821check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1822{
11697830 1823 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1824 struct sched_entity *se;
1825 s64 delta;
11697830 1826
6d0f0ebd 1827 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1828 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1829 if (delta_exec > ideal_runtime) {
bf0f6f24 1830 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1831 /*
1832 * The current task ran long enough, ensure it doesn't get
1833 * re-elected due to buddy favours.
1834 */
1835 clear_buddies(cfs_rq, curr);
f685ceac
MG
1836 return;
1837 }
1838
1839 /*
1840 * Ensure that a task that missed wakeup preemption by a
1841 * narrow margin doesn't have to wait for a full slice.
1842 * This also mitigates buddy induced latencies under load.
1843 */
f685ceac
MG
1844 if (delta_exec < sysctl_sched_min_granularity)
1845 return;
1846
f4cfb33e
WX
1847 se = __pick_first_entity(cfs_rq);
1848 delta = curr->vruntime - se->vruntime;
f685ceac 1849
f4cfb33e
WX
1850 if (delta < 0)
1851 return;
d7d82944 1852
f4cfb33e
WX
1853 if (delta > ideal_runtime)
1854 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1855}
1856
83b699ed 1857static void
8494f412 1858set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1859{
83b699ed
SV
1860 /* 'current' is not kept within the tree. */
1861 if (se->on_rq) {
1862 /*
1863 * Any task has to be enqueued before it get to execute on
1864 * a CPU. So account for the time it spent waiting on the
1865 * runqueue.
1866 */
1867 update_stats_wait_end(cfs_rq, se);
1868 __dequeue_entity(cfs_rq, se);
1869 }
1870
79303e9e 1871 update_stats_curr_start(cfs_rq, se);
429d43bc 1872 cfs_rq->curr = se;
eba1ed4b
IM
1873#ifdef CONFIG_SCHEDSTATS
1874 /*
1875 * Track our maximum slice length, if the CPU's load is at
1876 * least twice that of our own weight (i.e. dont track it
1877 * when there are only lesser-weight tasks around):
1878 */
495eca49 1879 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1880 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1881 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1882 }
1883#endif
4a55b450 1884 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1885}
1886
3f3a4904
PZ
1887static int
1888wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1889
ac53db59
RR
1890/*
1891 * Pick the next process, keeping these things in mind, in this order:
1892 * 1) keep things fair between processes/task groups
1893 * 2) pick the "next" process, since someone really wants that to run
1894 * 3) pick the "last" process, for cache locality
1895 * 4) do not run the "skip" process, if something else is available
1896 */
f4b6755f 1897static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1898{
ac53db59 1899 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1900 struct sched_entity *left = se;
f4b6755f 1901
ac53db59
RR
1902 /*
1903 * Avoid running the skip buddy, if running something else can
1904 * be done without getting too unfair.
1905 */
1906 if (cfs_rq->skip == se) {
1907 struct sched_entity *second = __pick_next_entity(se);
1908 if (second && wakeup_preempt_entity(second, left) < 1)
1909 se = second;
1910 }
aa2ac252 1911
f685ceac
MG
1912 /*
1913 * Prefer last buddy, try to return the CPU to a preempted task.
1914 */
1915 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1916 se = cfs_rq->last;
1917
ac53db59
RR
1918 /*
1919 * Someone really wants this to run. If it's not unfair, run it.
1920 */
1921 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1922 se = cfs_rq->next;
1923
f685ceac 1924 clear_buddies(cfs_rq, se);
4793241b
PZ
1925
1926 return se;
aa2ac252
PZ
1927}
1928
d3d9dc33
PT
1929static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1930
ab6cde26 1931static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1932{
1933 /*
1934 * If still on the runqueue then deactivate_task()
1935 * was not called and update_curr() has to be done:
1936 */
1937 if (prev->on_rq)
b7cc0896 1938 update_curr(cfs_rq);
bf0f6f24 1939
d3d9dc33
PT
1940 /* throttle cfs_rqs exceeding runtime */
1941 check_cfs_rq_runtime(cfs_rq);
1942
ddc97297 1943 check_spread(cfs_rq, prev);
30cfdcfc 1944 if (prev->on_rq) {
5870db5b 1945 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1946 /* Put 'current' back into the tree. */
1947 __enqueue_entity(cfs_rq, prev);
9d85f21c 1948 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1949 update_entity_load_avg(prev, 1);
30cfdcfc 1950 }
429d43bc 1951 cfs_rq->curr = NULL;
bf0f6f24
IM
1952}
1953
8f4d37ec
PZ
1954static void
1955entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1956{
bf0f6f24 1957 /*
30cfdcfc 1958 * Update run-time statistics of the 'current'.
bf0f6f24 1959 */
30cfdcfc 1960 update_curr(cfs_rq);
bf0f6f24 1961
9d85f21c
PT
1962 /*
1963 * Ensure that runnable average is periodically updated.
1964 */
9ee474f5 1965 update_entity_load_avg(curr, 1);
aff3e498 1966 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1967
8f4d37ec
PZ
1968#ifdef CONFIG_SCHED_HRTICK
1969 /*
1970 * queued ticks are scheduled to match the slice, so don't bother
1971 * validating it and just reschedule.
1972 */
983ed7a6
HH
1973 if (queued) {
1974 resched_task(rq_of(cfs_rq)->curr);
1975 return;
1976 }
8f4d37ec
PZ
1977 /*
1978 * don't let the period tick interfere with the hrtick preemption
1979 */
1980 if (!sched_feat(DOUBLE_TICK) &&
1981 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1982 return;
1983#endif
1984
2c2efaed 1985 if (cfs_rq->nr_running > 1)
2e09bf55 1986 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1987}
1988
ab84d31e
PT
1989
1990/**************************************************
1991 * CFS bandwidth control machinery
1992 */
1993
1994#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1995
1996#ifdef HAVE_JUMP_LABEL
c5905afb 1997static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1998
1999static inline bool cfs_bandwidth_used(void)
2000{
c5905afb 2001 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2002}
2003
2004void account_cfs_bandwidth_used(int enabled, int was_enabled)
2005{
2006 /* only need to count groups transitioning between enabled/!enabled */
2007 if (enabled && !was_enabled)
c5905afb 2008 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2009 else if (!enabled && was_enabled)
c5905afb 2010 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2011}
2012#else /* HAVE_JUMP_LABEL */
2013static bool cfs_bandwidth_used(void)
2014{
2015 return true;
2016}
2017
2018void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2019#endif /* HAVE_JUMP_LABEL */
2020
ab84d31e
PT
2021/*
2022 * default period for cfs group bandwidth.
2023 * default: 0.1s, units: nanoseconds
2024 */
2025static inline u64 default_cfs_period(void)
2026{
2027 return 100000000ULL;
2028}
ec12cb7f
PT
2029
2030static inline u64 sched_cfs_bandwidth_slice(void)
2031{
2032 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2033}
2034
a9cf55b2
PT
2035/*
2036 * Replenish runtime according to assigned quota and update expiration time.
2037 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2038 * additional synchronization around rq->lock.
2039 *
2040 * requires cfs_b->lock
2041 */
029632fb 2042void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2043{
2044 u64 now;
2045
2046 if (cfs_b->quota == RUNTIME_INF)
2047 return;
2048
2049 now = sched_clock_cpu(smp_processor_id());
2050 cfs_b->runtime = cfs_b->quota;
2051 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2052}
2053
029632fb
PZ
2054static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2055{
2056 return &tg->cfs_bandwidth;
2057}
2058
f1b17280
PT
2059/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2060static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2061{
2062 if (unlikely(cfs_rq->throttle_count))
2063 return cfs_rq->throttled_clock_task;
2064
2065 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2066}
2067
85dac906
PT
2068/* returns 0 on failure to allocate runtime */
2069static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2070{
2071 struct task_group *tg = cfs_rq->tg;
2072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2073 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2074
2075 /* note: this is a positive sum as runtime_remaining <= 0 */
2076 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2077
2078 raw_spin_lock(&cfs_b->lock);
2079 if (cfs_b->quota == RUNTIME_INF)
2080 amount = min_amount;
58088ad0 2081 else {
a9cf55b2
PT
2082 /*
2083 * If the bandwidth pool has become inactive, then at least one
2084 * period must have elapsed since the last consumption.
2085 * Refresh the global state and ensure bandwidth timer becomes
2086 * active.
2087 */
2088 if (!cfs_b->timer_active) {
2089 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2090 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2091 }
58088ad0
PT
2092
2093 if (cfs_b->runtime > 0) {
2094 amount = min(cfs_b->runtime, min_amount);
2095 cfs_b->runtime -= amount;
2096 cfs_b->idle = 0;
2097 }
ec12cb7f 2098 }
a9cf55b2 2099 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2100 raw_spin_unlock(&cfs_b->lock);
2101
2102 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2103 /*
2104 * we may have advanced our local expiration to account for allowed
2105 * spread between our sched_clock and the one on which runtime was
2106 * issued.
2107 */
2108 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2109 cfs_rq->runtime_expires = expires;
85dac906
PT
2110
2111 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2112}
2113
a9cf55b2
PT
2114/*
2115 * Note: This depends on the synchronization provided by sched_clock and the
2116 * fact that rq->clock snapshots this value.
2117 */
2118static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2119{
a9cf55b2
PT
2120 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2121 struct rq *rq = rq_of(cfs_rq);
2122
2123 /* if the deadline is ahead of our clock, nothing to do */
2124 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2125 return;
2126
a9cf55b2
PT
2127 if (cfs_rq->runtime_remaining < 0)
2128 return;
2129
2130 /*
2131 * If the local deadline has passed we have to consider the
2132 * possibility that our sched_clock is 'fast' and the global deadline
2133 * has not truly expired.
2134 *
2135 * Fortunately we can check determine whether this the case by checking
2136 * whether the global deadline has advanced.
2137 */
2138
2139 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2140 /* extend local deadline, drift is bounded above by 2 ticks */
2141 cfs_rq->runtime_expires += TICK_NSEC;
2142 } else {
2143 /* global deadline is ahead, expiration has passed */
2144 cfs_rq->runtime_remaining = 0;
2145 }
2146}
2147
2148static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2149 unsigned long delta_exec)
2150{
2151 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2152 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2153 expire_cfs_rq_runtime(cfs_rq);
2154
2155 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2156 return;
2157
85dac906
PT
2158 /*
2159 * if we're unable to extend our runtime we resched so that the active
2160 * hierarchy can be throttled
2161 */
2162 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2163 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2164}
2165
6c16a6dc
PZ
2166static __always_inline
2167void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2168{
56f570e5 2169 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2170 return;
2171
2172 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2173}
2174
85dac906
PT
2175static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2176{
56f570e5 2177 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2178}
2179
64660c86
PT
2180/* check whether cfs_rq, or any parent, is throttled */
2181static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2182{
56f570e5 2183 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2184}
2185
2186/*
2187 * Ensure that neither of the group entities corresponding to src_cpu or
2188 * dest_cpu are members of a throttled hierarchy when performing group
2189 * load-balance operations.
2190 */
2191static inline int throttled_lb_pair(struct task_group *tg,
2192 int src_cpu, int dest_cpu)
2193{
2194 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2195
2196 src_cfs_rq = tg->cfs_rq[src_cpu];
2197 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2198
2199 return throttled_hierarchy(src_cfs_rq) ||
2200 throttled_hierarchy(dest_cfs_rq);
2201}
2202
2203/* updated child weight may affect parent so we have to do this bottom up */
2204static int tg_unthrottle_up(struct task_group *tg, void *data)
2205{
2206 struct rq *rq = data;
2207 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2208
2209 cfs_rq->throttle_count--;
2210#ifdef CONFIG_SMP
2211 if (!cfs_rq->throttle_count) {
f1b17280
PT
2212 /* adjust cfs_rq_clock_task() */
2213 cfs_rq->throttled_clock_task_time += rq->clock_task -
2214 cfs_rq->throttled_clock_task;
64660c86
PT
2215 }
2216#endif
2217
2218 return 0;
2219}
2220
2221static int tg_throttle_down(struct task_group *tg, void *data)
2222{
2223 struct rq *rq = data;
2224 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2225
82958366
PT
2226 /* group is entering throttled state, stop time */
2227 if (!cfs_rq->throttle_count)
f1b17280 2228 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2229 cfs_rq->throttle_count++;
2230
2231 return 0;
2232}
2233
d3d9dc33 2234static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2235{
2236 struct rq *rq = rq_of(cfs_rq);
2237 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2238 struct sched_entity *se;
2239 long task_delta, dequeue = 1;
2240
2241 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2242
f1b17280 2243 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2244 rcu_read_lock();
2245 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2246 rcu_read_unlock();
85dac906
PT
2247
2248 task_delta = cfs_rq->h_nr_running;
2249 for_each_sched_entity(se) {
2250 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2251 /* throttled entity or throttle-on-deactivate */
2252 if (!se->on_rq)
2253 break;
2254
2255 if (dequeue)
2256 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2257 qcfs_rq->h_nr_running -= task_delta;
2258
2259 if (qcfs_rq->load.weight)
2260 dequeue = 0;
2261 }
2262
2263 if (!se)
2264 rq->nr_running -= task_delta;
2265
2266 cfs_rq->throttled = 1;
f1b17280 2267 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2268 raw_spin_lock(&cfs_b->lock);
2269 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2270 raw_spin_unlock(&cfs_b->lock);
2271}
2272
029632fb 2273void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2274{
2275 struct rq *rq = rq_of(cfs_rq);
2276 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2277 struct sched_entity *se;
2278 int enqueue = 1;
2279 long task_delta;
2280
2281 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2282
2283 cfs_rq->throttled = 0;
2284 raw_spin_lock(&cfs_b->lock);
f1b17280 2285 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2286 list_del_rcu(&cfs_rq->throttled_list);
2287 raw_spin_unlock(&cfs_b->lock);
2288
64660c86
PT
2289 update_rq_clock(rq);
2290 /* update hierarchical throttle state */
2291 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2292
671fd9da
PT
2293 if (!cfs_rq->load.weight)
2294 return;
2295
2296 task_delta = cfs_rq->h_nr_running;
2297 for_each_sched_entity(se) {
2298 if (se->on_rq)
2299 enqueue = 0;
2300
2301 cfs_rq = cfs_rq_of(se);
2302 if (enqueue)
2303 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2304 cfs_rq->h_nr_running += task_delta;
2305
2306 if (cfs_rq_throttled(cfs_rq))
2307 break;
2308 }
2309
2310 if (!se)
2311 rq->nr_running += task_delta;
2312
2313 /* determine whether we need to wake up potentially idle cpu */
2314 if (rq->curr == rq->idle && rq->cfs.nr_running)
2315 resched_task(rq->curr);
2316}
2317
2318static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2319 u64 remaining, u64 expires)
2320{
2321 struct cfs_rq *cfs_rq;
2322 u64 runtime = remaining;
2323
2324 rcu_read_lock();
2325 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2326 throttled_list) {
2327 struct rq *rq = rq_of(cfs_rq);
2328
2329 raw_spin_lock(&rq->lock);
2330 if (!cfs_rq_throttled(cfs_rq))
2331 goto next;
2332
2333 runtime = -cfs_rq->runtime_remaining + 1;
2334 if (runtime > remaining)
2335 runtime = remaining;
2336 remaining -= runtime;
2337
2338 cfs_rq->runtime_remaining += runtime;
2339 cfs_rq->runtime_expires = expires;
2340
2341 /* we check whether we're throttled above */
2342 if (cfs_rq->runtime_remaining > 0)
2343 unthrottle_cfs_rq(cfs_rq);
2344
2345next:
2346 raw_spin_unlock(&rq->lock);
2347
2348 if (!remaining)
2349 break;
2350 }
2351 rcu_read_unlock();
2352
2353 return remaining;
2354}
2355
58088ad0
PT
2356/*
2357 * Responsible for refilling a task_group's bandwidth and unthrottling its
2358 * cfs_rqs as appropriate. If there has been no activity within the last
2359 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2360 * used to track this state.
2361 */
2362static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2363{
671fd9da
PT
2364 u64 runtime, runtime_expires;
2365 int idle = 1, throttled;
58088ad0
PT
2366
2367 raw_spin_lock(&cfs_b->lock);
2368 /* no need to continue the timer with no bandwidth constraint */
2369 if (cfs_b->quota == RUNTIME_INF)
2370 goto out_unlock;
2371
671fd9da
PT
2372 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2373 /* idle depends on !throttled (for the case of a large deficit) */
2374 idle = cfs_b->idle && !throttled;
e8da1b18 2375 cfs_b->nr_periods += overrun;
671fd9da 2376
a9cf55b2
PT
2377 /* if we're going inactive then everything else can be deferred */
2378 if (idle)
2379 goto out_unlock;
2380
2381 __refill_cfs_bandwidth_runtime(cfs_b);
2382
671fd9da
PT
2383 if (!throttled) {
2384 /* mark as potentially idle for the upcoming period */
2385 cfs_b->idle = 1;
2386 goto out_unlock;
2387 }
2388
e8da1b18
NR
2389 /* account preceding periods in which throttling occurred */
2390 cfs_b->nr_throttled += overrun;
2391
671fd9da
PT
2392 /*
2393 * There are throttled entities so we must first use the new bandwidth
2394 * to unthrottle them before making it generally available. This
2395 * ensures that all existing debts will be paid before a new cfs_rq is
2396 * allowed to run.
2397 */
2398 runtime = cfs_b->runtime;
2399 runtime_expires = cfs_b->runtime_expires;
2400 cfs_b->runtime = 0;
2401
2402 /*
2403 * This check is repeated as we are holding onto the new bandwidth
2404 * while we unthrottle. This can potentially race with an unthrottled
2405 * group trying to acquire new bandwidth from the global pool.
2406 */
2407 while (throttled && runtime > 0) {
2408 raw_spin_unlock(&cfs_b->lock);
2409 /* we can't nest cfs_b->lock while distributing bandwidth */
2410 runtime = distribute_cfs_runtime(cfs_b, runtime,
2411 runtime_expires);
2412 raw_spin_lock(&cfs_b->lock);
2413
2414 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2415 }
58088ad0 2416
671fd9da
PT
2417 /* return (any) remaining runtime */
2418 cfs_b->runtime = runtime;
2419 /*
2420 * While we are ensured activity in the period following an
2421 * unthrottle, this also covers the case in which the new bandwidth is
2422 * insufficient to cover the existing bandwidth deficit. (Forcing the
2423 * timer to remain active while there are any throttled entities.)
2424 */
2425 cfs_b->idle = 0;
58088ad0
PT
2426out_unlock:
2427 if (idle)
2428 cfs_b->timer_active = 0;
2429 raw_spin_unlock(&cfs_b->lock);
2430
2431 return idle;
2432}
d3d9dc33 2433
d8b4986d
PT
2434/* a cfs_rq won't donate quota below this amount */
2435static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2436/* minimum remaining period time to redistribute slack quota */
2437static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2438/* how long we wait to gather additional slack before distributing */
2439static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2440
2441/* are we near the end of the current quota period? */
2442static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2443{
2444 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2445 u64 remaining;
2446
2447 /* if the call-back is running a quota refresh is already occurring */
2448 if (hrtimer_callback_running(refresh_timer))
2449 return 1;
2450
2451 /* is a quota refresh about to occur? */
2452 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2453 if (remaining < min_expire)
2454 return 1;
2455
2456 return 0;
2457}
2458
2459static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2460{
2461 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2462
2463 /* if there's a quota refresh soon don't bother with slack */
2464 if (runtime_refresh_within(cfs_b, min_left))
2465 return;
2466
2467 start_bandwidth_timer(&cfs_b->slack_timer,
2468 ns_to_ktime(cfs_bandwidth_slack_period));
2469}
2470
2471/* we know any runtime found here is valid as update_curr() precedes return */
2472static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2473{
2474 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2475 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2476
2477 if (slack_runtime <= 0)
2478 return;
2479
2480 raw_spin_lock(&cfs_b->lock);
2481 if (cfs_b->quota != RUNTIME_INF &&
2482 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2483 cfs_b->runtime += slack_runtime;
2484
2485 /* we are under rq->lock, defer unthrottling using a timer */
2486 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2487 !list_empty(&cfs_b->throttled_cfs_rq))
2488 start_cfs_slack_bandwidth(cfs_b);
2489 }
2490 raw_spin_unlock(&cfs_b->lock);
2491
2492 /* even if it's not valid for return we don't want to try again */
2493 cfs_rq->runtime_remaining -= slack_runtime;
2494}
2495
2496static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2497{
56f570e5
PT
2498 if (!cfs_bandwidth_used())
2499 return;
2500
fccfdc6f 2501 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2502 return;
2503
2504 __return_cfs_rq_runtime(cfs_rq);
2505}
2506
2507/*
2508 * This is done with a timer (instead of inline with bandwidth return) since
2509 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2510 */
2511static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2512{
2513 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2514 u64 expires;
2515
2516 /* confirm we're still not at a refresh boundary */
2517 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2518 return;
2519
2520 raw_spin_lock(&cfs_b->lock);
2521 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2522 runtime = cfs_b->runtime;
2523 cfs_b->runtime = 0;
2524 }
2525 expires = cfs_b->runtime_expires;
2526 raw_spin_unlock(&cfs_b->lock);
2527
2528 if (!runtime)
2529 return;
2530
2531 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2532
2533 raw_spin_lock(&cfs_b->lock);
2534 if (expires == cfs_b->runtime_expires)
2535 cfs_b->runtime = runtime;
2536 raw_spin_unlock(&cfs_b->lock);
2537}
2538
d3d9dc33
PT
2539/*
2540 * When a group wakes up we want to make sure that its quota is not already
2541 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2542 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2543 */
2544static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2545{
56f570e5
PT
2546 if (!cfs_bandwidth_used())
2547 return;
2548
d3d9dc33
PT
2549 /* an active group must be handled by the update_curr()->put() path */
2550 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2551 return;
2552
2553 /* ensure the group is not already throttled */
2554 if (cfs_rq_throttled(cfs_rq))
2555 return;
2556
2557 /* update runtime allocation */
2558 account_cfs_rq_runtime(cfs_rq, 0);
2559 if (cfs_rq->runtime_remaining <= 0)
2560 throttle_cfs_rq(cfs_rq);
2561}
2562
2563/* conditionally throttle active cfs_rq's from put_prev_entity() */
2564static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565{
56f570e5
PT
2566 if (!cfs_bandwidth_used())
2567 return;
2568
d3d9dc33
PT
2569 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2570 return;
2571
2572 /*
2573 * it's possible for a throttled entity to be forced into a running
2574 * state (e.g. set_curr_task), in this case we're finished.
2575 */
2576 if (cfs_rq_throttled(cfs_rq))
2577 return;
2578
2579 throttle_cfs_rq(cfs_rq);
2580}
029632fb
PZ
2581
2582static inline u64 default_cfs_period(void);
2583static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2584static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2585
2586static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2587{
2588 struct cfs_bandwidth *cfs_b =
2589 container_of(timer, struct cfs_bandwidth, slack_timer);
2590 do_sched_cfs_slack_timer(cfs_b);
2591
2592 return HRTIMER_NORESTART;
2593}
2594
2595static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2596{
2597 struct cfs_bandwidth *cfs_b =
2598 container_of(timer, struct cfs_bandwidth, period_timer);
2599 ktime_t now;
2600 int overrun;
2601 int idle = 0;
2602
2603 for (;;) {
2604 now = hrtimer_cb_get_time(timer);
2605 overrun = hrtimer_forward(timer, now, cfs_b->period);
2606
2607 if (!overrun)
2608 break;
2609
2610 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2611 }
2612
2613 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2614}
2615
2616void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2617{
2618 raw_spin_lock_init(&cfs_b->lock);
2619 cfs_b->runtime = 0;
2620 cfs_b->quota = RUNTIME_INF;
2621 cfs_b->period = ns_to_ktime(default_cfs_period());
2622
2623 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2624 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2625 cfs_b->period_timer.function = sched_cfs_period_timer;
2626 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2627 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2628}
2629
2630static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2631{
2632 cfs_rq->runtime_enabled = 0;
2633 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2634}
2635
2636/* requires cfs_b->lock, may release to reprogram timer */
2637void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2638{
2639 /*
2640 * The timer may be active because we're trying to set a new bandwidth
2641 * period or because we're racing with the tear-down path
2642 * (timer_active==0 becomes visible before the hrtimer call-back
2643 * terminates). In either case we ensure that it's re-programmed
2644 */
2645 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2646 raw_spin_unlock(&cfs_b->lock);
2647 /* ensure cfs_b->lock is available while we wait */
2648 hrtimer_cancel(&cfs_b->period_timer);
2649
2650 raw_spin_lock(&cfs_b->lock);
2651 /* if someone else restarted the timer then we're done */
2652 if (cfs_b->timer_active)
2653 return;
2654 }
2655
2656 cfs_b->timer_active = 1;
2657 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2658}
2659
2660static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2661{
2662 hrtimer_cancel(&cfs_b->period_timer);
2663 hrtimer_cancel(&cfs_b->slack_timer);
2664}
2665
a4c96ae3 2666static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2667{
2668 struct cfs_rq *cfs_rq;
2669
2670 for_each_leaf_cfs_rq(rq, cfs_rq) {
2671 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2672
2673 if (!cfs_rq->runtime_enabled)
2674 continue;
2675
2676 /*
2677 * clock_task is not advancing so we just need to make sure
2678 * there's some valid quota amount
2679 */
2680 cfs_rq->runtime_remaining = cfs_b->quota;
2681 if (cfs_rq_throttled(cfs_rq))
2682 unthrottle_cfs_rq(cfs_rq);
2683 }
2684}
2685
2686#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2687static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2688{
2689 return rq_of(cfs_rq)->clock_task;
2690}
2691
2692static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2693 unsigned long delta_exec) {}
d3d9dc33
PT
2694static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2695static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2696static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2697
2698static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2699{
2700 return 0;
2701}
64660c86
PT
2702
2703static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2704{
2705 return 0;
2706}
2707
2708static inline int throttled_lb_pair(struct task_group *tg,
2709 int src_cpu, int dest_cpu)
2710{
2711 return 0;
2712}
029632fb
PZ
2713
2714void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2715
2716#ifdef CONFIG_FAIR_GROUP_SCHED
2717static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2718#endif
2719
029632fb
PZ
2720static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2721{
2722 return NULL;
2723}
2724static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2725static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2726
2727#endif /* CONFIG_CFS_BANDWIDTH */
2728
bf0f6f24
IM
2729/**************************************************
2730 * CFS operations on tasks:
2731 */
2732
8f4d37ec
PZ
2733#ifdef CONFIG_SCHED_HRTICK
2734static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2735{
8f4d37ec
PZ
2736 struct sched_entity *se = &p->se;
2737 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2738
2739 WARN_ON(task_rq(p) != rq);
2740
b39e66ea 2741 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2742 u64 slice = sched_slice(cfs_rq, se);
2743 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2744 s64 delta = slice - ran;
2745
2746 if (delta < 0) {
2747 if (rq->curr == p)
2748 resched_task(p);
2749 return;
2750 }
2751
2752 /*
2753 * Don't schedule slices shorter than 10000ns, that just
2754 * doesn't make sense. Rely on vruntime for fairness.
2755 */
31656519 2756 if (rq->curr != p)
157124c1 2757 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2758
31656519 2759 hrtick_start(rq, delta);
8f4d37ec
PZ
2760 }
2761}
a4c2f00f
PZ
2762
2763/*
2764 * called from enqueue/dequeue and updates the hrtick when the
2765 * current task is from our class and nr_running is low enough
2766 * to matter.
2767 */
2768static void hrtick_update(struct rq *rq)
2769{
2770 struct task_struct *curr = rq->curr;
2771
b39e66ea 2772 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2773 return;
2774
2775 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2776 hrtick_start_fair(rq, curr);
2777}
55e12e5e 2778#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2779static inline void
2780hrtick_start_fair(struct rq *rq, struct task_struct *p)
2781{
2782}
a4c2f00f
PZ
2783
2784static inline void hrtick_update(struct rq *rq)
2785{
2786}
8f4d37ec
PZ
2787#endif
2788
bf0f6f24
IM
2789/*
2790 * The enqueue_task method is called before nr_running is
2791 * increased. Here we update the fair scheduling stats and
2792 * then put the task into the rbtree:
2793 */
ea87bb78 2794static void
371fd7e7 2795enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2796{
2797 struct cfs_rq *cfs_rq;
62fb1851 2798 struct sched_entity *se = &p->se;
bf0f6f24
IM
2799
2800 for_each_sched_entity(se) {
62fb1851 2801 if (se->on_rq)
bf0f6f24
IM
2802 break;
2803 cfs_rq = cfs_rq_of(se);
88ec22d3 2804 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2805
2806 /*
2807 * end evaluation on encountering a throttled cfs_rq
2808 *
2809 * note: in the case of encountering a throttled cfs_rq we will
2810 * post the final h_nr_running increment below.
2811 */
2812 if (cfs_rq_throttled(cfs_rq))
2813 break;
953bfcd1 2814 cfs_rq->h_nr_running++;
85dac906 2815
88ec22d3 2816 flags = ENQUEUE_WAKEUP;
bf0f6f24 2817 }
8f4d37ec 2818
2069dd75 2819 for_each_sched_entity(se) {
0f317143 2820 cfs_rq = cfs_rq_of(se);
953bfcd1 2821 cfs_rq->h_nr_running++;
2069dd75 2822
85dac906
PT
2823 if (cfs_rq_throttled(cfs_rq))
2824 break;
2825
17bc14b7 2826 update_cfs_shares(cfs_rq);
9ee474f5 2827 update_entity_load_avg(se, 1);
2069dd75
PZ
2828 }
2829
18bf2805
BS
2830 if (!se) {
2831 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2832 inc_nr_running(rq);
18bf2805 2833 }
a4c2f00f 2834 hrtick_update(rq);
bf0f6f24
IM
2835}
2836
2f36825b
VP
2837static void set_next_buddy(struct sched_entity *se);
2838
bf0f6f24
IM
2839/*
2840 * The dequeue_task method is called before nr_running is
2841 * decreased. We remove the task from the rbtree and
2842 * update the fair scheduling stats:
2843 */
371fd7e7 2844static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2845{
2846 struct cfs_rq *cfs_rq;
62fb1851 2847 struct sched_entity *se = &p->se;
2f36825b 2848 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2849
2850 for_each_sched_entity(se) {
2851 cfs_rq = cfs_rq_of(se);
371fd7e7 2852 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2853
2854 /*
2855 * end evaluation on encountering a throttled cfs_rq
2856 *
2857 * note: in the case of encountering a throttled cfs_rq we will
2858 * post the final h_nr_running decrement below.
2859 */
2860 if (cfs_rq_throttled(cfs_rq))
2861 break;
953bfcd1 2862 cfs_rq->h_nr_running--;
2069dd75 2863
bf0f6f24 2864 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2865 if (cfs_rq->load.weight) {
2866 /*
2867 * Bias pick_next to pick a task from this cfs_rq, as
2868 * p is sleeping when it is within its sched_slice.
2869 */
2870 if (task_sleep && parent_entity(se))
2871 set_next_buddy(parent_entity(se));
9598c82d
PT
2872
2873 /* avoid re-evaluating load for this entity */
2874 se = parent_entity(se);
bf0f6f24 2875 break;
2f36825b 2876 }
371fd7e7 2877 flags |= DEQUEUE_SLEEP;
bf0f6f24 2878 }
8f4d37ec 2879
2069dd75 2880 for_each_sched_entity(se) {
0f317143 2881 cfs_rq = cfs_rq_of(se);
953bfcd1 2882 cfs_rq->h_nr_running--;
2069dd75 2883
85dac906
PT
2884 if (cfs_rq_throttled(cfs_rq))
2885 break;
2886
17bc14b7 2887 update_cfs_shares(cfs_rq);
9ee474f5 2888 update_entity_load_avg(se, 1);
2069dd75
PZ
2889 }
2890
18bf2805 2891 if (!se) {
85dac906 2892 dec_nr_running(rq);
18bf2805
BS
2893 update_rq_runnable_avg(rq, 1);
2894 }
a4c2f00f 2895 hrtick_update(rq);
bf0f6f24
IM
2896}
2897
e7693a36 2898#ifdef CONFIG_SMP
029632fb
PZ
2899/* Used instead of source_load when we know the type == 0 */
2900static unsigned long weighted_cpuload(const int cpu)
2901{
2902 return cpu_rq(cpu)->load.weight;
2903}
2904
2905/*
2906 * Return a low guess at the load of a migration-source cpu weighted
2907 * according to the scheduling class and "nice" value.
2908 *
2909 * We want to under-estimate the load of migration sources, to
2910 * balance conservatively.
2911 */
2912static unsigned long source_load(int cpu, int type)
2913{
2914 struct rq *rq = cpu_rq(cpu);
2915 unsigned long total = weighted_cpuload(cpu);
2916
2917 if (type == 0 || !sched_feat(LB_BIAS))
2918 return total;
2919
2920 return min(rq->cpu_load[type-1], total);
2921}
2922
2923/*
2924 * Return a high guess at the load of a migration-target cpu weighted
2925 * according to the scheduling class and "nice" value.
2926 */
2927static unsigned long target_load(int cpu, int type)
2928{
2929 struct rq *rq = cpu_rq(cpu);
2930 unsigned long total = weighted_cpuload(cpu);
2931
2932 if (type == 0 || !sched_feat(LB_BIAS))
2933 return total;
2934
2935 return max(rq->cpu_load[type-1], total);
2936}
2937
2938static unsigned long power_of(int cpu)
2939{
2940 return cpu_rq(cpu)->cpu_power;
2941}
2942
2943static unsigned long cpu_avg_load_per_task(int cpu)
2944{
2945 struct rq *rq = cpu_rq(cpu);
2946 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2947
2948 if (nr_running)
2949 return rq->load.weight / nr_running;
2950
2951 return 0;
2952}
2953
098fb9db 2954
74f8e4b2 2955static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2956{
2957 struct sched_entity *se = &p->se;
2958 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2959 u64 min_vruntime;
2960
2961#ifndef CONFIG_64BIT
2962 u64 min_vruntime_copy;
88ec22d3 2963
3fe1698b
PZ
2964 do {
2965 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2966 smp_rmb();
2967 min_vruntime = cfs_rq->min_vruntime;
2968 } while (min_vruntime != min_vruntime_copy);
2969#else
2970 min_vruntime = cfs_rq->min_vruntime;
2971#endif
88ec22d3 2972
3fe1698b 2973 se->vruntime -= min_vruntime;
88ec22d3
PZ
2974}
2975
bb3469ac 2976#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2977/*
2978 * effective_load() calculates the load change as seen from the root_task_group
2979 *
2980 * Adding load to a group doesn't make a group heavier, but can cause movement
2981 * of group shares between cpus. Assuming the shares were perfectly aligned one
2982 * can calculate the shift in shares.
cf5f0acf
PZ
2983 *
2984 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2985 * on this @cpu and results in a total addition (subtraction) of @wg to the
2986 * total group weight.
2987 *
2988 * Given a runqueue weight distribution (rw_i) we can compute a shares
2989 * distribution (s_i) using:
2990 *
2991 * s_i = rw_i / \Sum rw_j (1)
2992 *
2993 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2994 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2995 * shares distribution (s_i):
2996 *
2997 * rw_i = { 2, 4, 1, 0 }
2998 * s_i = { 2/7, 4/7, 1/7, 0 }
2999 *
3000 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3001 * task used to run on and the CPU the waker is running on), we need to
3002 * compute the effect of waking a task on either CPU and, in case of a sync
3003 * wakeup, compute the effect of the current task going to sleep.
3004 *
3005 * So for a change of @wl to the local @cpu with an overall group weight change
3006 * of @wl we can compute the new shares distribution (s'_i) using:
3007 *
3008 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3009 *
3010 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3011 * differences in waking a task to CPU 0. The additional task changes the
3012 * weight and shares distributions like:
3013 *
3014 * rw'_i = { 3, 4, 1, 0 }
3015 * s'_i = { 3/8, 4/8, 1/8, 0 }
3016 *
3017 * We can then compute the difference in effective weight by using:
3018 *
3019 * dw_i = S * (s'_i - s_i) (3)
3020 *
3021 * Where 'S' is the group weight as seen by its parent.
3022 *
3023 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3024 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3025 * 4/7) times the weight of the group.
f5bfb7d9 3026 */
2069dd75 3027static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3028{
4be9daaa 3029 struct sched_entity *se = tg->se[cpu];
f1d239f7 3030
cf5f0acf 3031 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3032 return wl;
3033
4be9daaa 3034 for_each_sched_entity(se) {
cf5f0acf 3035 long w, W;
4be9daaa 3036
977dda7c 3037 tg = se->my_q->tg;
bb3469ac 3038
cf5f0acf
PZ
3039 /*
3040 * W = @wg + \Sum rw_j
3041 */
3042 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3043
cf5f0acf
PZ
3044 /*
3045 * w = rw_i + @wl
3046 */
3047 w = se->my_q->load.weight + wl;
940959e9 3048
cf5f0acf
PZ
3049 /*
3050 * wl = S * s'_i; see (2)
3051 */
3052 if (W > 0 && w < W)
3053 wl = (w * tg->shares) / W;
977dda7c
PT
3054 else
3055 wl = tg->shares;
940959e9 3056
cf5f0acf
PZ
3057 /*
3058 * Per the above, wl is the new se->load.weight value; since
3059 * those are clipped to [MIN_SHARES, ...) do so now. See
3060 * calc_cfs_shares().
3061 */
977dda7c
PT
3062 if (wl < MIN_SHARES)
3063 wl = MIN_SHARES;
cf5f0acf
PZ
3064
3065 /*
3066 * wl = dw_i = S * (s'_i - s_i); see (3)
3067 */
977dda7c 3068 wl -= se->load.weight;
cf5f0acf
PZ
3069
3070 /*
3071 * Recursively apply this logic to all parent groups to compute
3072 * the final effective load change on the root group. Since
3073 * only the @tg group gets extra weight, all parent groups can
3074 * only redistribute existing shares. @wl is the shift in shares
3075 * resulting from this level per the above.
3076 */
4be9daaa 3077 wg = 0;
4be9daaa 3078 }
bb3469ac 3079
4be9daaa 3080 return wl;
bb3469ac
PZ
3081}
3082#else
4be9daaa 3083
83378269
PZ
3084static inline unsigned long effective_load(struct task_group *tg, int cpu,
3085 unsigned long wl, unsigned long wg)
4be9daaa 3086{
83378269 3087 return wl;
bb3469ac 3088}
4be9daaa 3089
bb3469ac
PZ
3090#endif
3091
c88d5910 3092static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3093{
e37b6a7b 3094 s64 this_load, load;
c88d5910 3095 int idx, this_cpu, prev_cpu;
098fb9db 3096 unsigned long tl_per_task;
c88d5910 3097 struct task_group *tg;
83378269 3098 unsigned long weight;
b3137bc8 3099 int balanced;
098fb9db 3100
c88d5910
PZ
3101 idx = sd->wake_idx;
3102 this_cpu = smp_processor_id();
3103 prev_cpu = task_cpu(p);
3104 load = source_load(prev_cpu, idx);
3105 this_load = target_load(this_cpu, idx);
098fb9db 3106
b3137bc8
MG
3107 /*
3108 * If sync wakeup then subtract the (maximum possible)
3109 * effect of the currently running task from the load
3110 * of the current CPU:
3111 */
83378269
PZ
3112 if (sync) {
3113 tg = task_group(current);
3114 weight = current->se.load.weight;
3115
c88d5910 3116 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3117 load += effective_load(tg, prev_cpu, 0, -weight);
3118 }
b3137bc8 3119
83378269
PZ
3120 tg = task_group(p);
3121 weight = p->se.load.weight;
b3137bc8 3122
71a29aa7
PZ
3123 /*
3124 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3125 * due to the sync cause above having dropped this_load to 0, we'll
3126 * always have an imbalance, but there's really nothing you can do
3127 * about that, so that's good too.
71a29aa7
PZ
3128 *
3129 * Otherwise check if either cpus are near enough in load to allow this
3130 * task to be woken on this_cpu.
3131 */
e37b6a7b
PT
3132 if (this_load > 0) {
3133 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3134
3135 this_eff_load = 100;
3136 this_eff_load *= power_of(prev_cpu);
3137 this_eff_load *= this_load +
3138 effective_load(tg, this_cpu, weight, weight);
3139
3140 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3141 prev_eff_load *= power_of(this_cpu);
3142 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3143
3144 balanced = this_eff_load <= prev_eff_load;
3145 } else
3146 balanced = true;
b3137bc8 3147
098fb9db 3148 /*
4ae7d5ce
IM
3149 * If the currently running task will sleep within
3150 * a reasonable amount of time then attract this newly
3151 * woken task:
098fb9db 3152 */
2fb7635c
PZ
3153 if (sync && balanced)
3154 return 1;
098fb9db 3155
41acab88 3156 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3157 tl_per_task = cpu_avg_load_per_task(this_cpu);
3158
c88d5910
PZ
3159 if (balanced ||
3160 (this_load <= load &&
3161 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3162 /*
3163 * This domain has SD_WAKE_AFFINE and
3164 * p is cache cold in this domain, and
3165 * there is no bad imbalance.
3166 */
c88d5910 3167 schedstat_inc(sd, ttwu_move_affine);
41acab88 3168 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3169
3170 return 1;
3171 }
3172 return 0;
3173}
3174
aaee1203
PZ
3175/*
3176 * find_idlest_group finds and returns the least busy CPU group within the
3177 * domain.
3178 */
3179static struct sched_group *
78e7ed53 3180find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3181 int this_cpu, int load_idx)
e7693a36 3182{
b3bd3de6 3183 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3184 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3185 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3186
aaee1203
PZ
3187 do {
3188 unsigned long load, avg_load;
3189 int local_group;
3190 int i;
e7693a36 3191
aaee1203
PZ
3192 /* Skip over this group if it has no CPUs allowed */
3193 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3194 tsk_cpus_allowed(p)))
aaee1203
PZ
3195 continue;
3196
3197 local_group = cpumask_test_cpu(this_cpu,
3198 sched_group_cpus(group));
3199
3200 /* Tally up the load of all CPUs in the group */
3201 avg_load = 0;
3202
3203 for_each_cpu(i, sched_group_cpus(group)) {
3204 /* Bias balancing toward cpus of our domain */
3205 if (local_group)
3206 load = source_load(i, load_idx);
3207 else
3208 load = target_load(i, load_idx);
3209
3210 avg_load += load;
3211 }
3212
3213 /* Adjust by relative CPU power of the group */
9c3f75cb 3214 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3215
3216 if (local_group) {
3217 this_load = avg_load;
aaee1203
PZ
3218 } else if (avg_load < min_load) {
3219 min_load = avg_load;
3220 idlest = group;
3221 }
3222 } while (group = group->next, group != sd->groups);
3223
3224 if (!idlest || 100*this_load < imbalance*min_load)
3225 return NULL;
3226 return idlest;
3227}
3228
3229/*
3230 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3231 */
3232static int
3233find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3234{
3235 unsigned long load, min_load = ULONG_MAX;
3236 int idlest = -1;
3237 int i;
3238
3239 /* Traverse only the allowed CPUs */
fa17b507 3240 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3241 load = weighted_cpuload(i);
3242
3243 if (load < min_load || (load == min_load && i == this_cpu)) {
3244 min_load = load;
3245 idlest = i;
e7693a36
GH
3246 }
3247 }
3248
aaee1203
PZ
3249 return idlest;
3250}
e7693a36 3251
a50bde51
PZ
3252/*
3253 * Try and locate an idle CPU in the sched_domain.
3254 */
99bd5e2f 3255static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
3256{
3257 int cpu = smp_processor_id();
3258 int prev_cpu = task_cpu(p);
99bd5e2f 3259 struct sched_domain *sd;
37407ea7
LT
3260 struct sched_group *sg;
3261 int i;
a50bde51
PZ
3262
3263 /*
99bd5e2f
SS
3264 * If the task is going to be woken-up on this cpu and if it is
3265 * already idle, then it is the right target.
a50bde51 3266 */
99bd5e2f
SS
3267 if (target == cpu && idle_cpu(cpu))
3268 return cpu;
3269
3270 /*
3271 * If the task is going to be woken-up on the cpu where it previously
3272 * ran and if it is currently idle, then it the right target.
3273 */
3274 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 3275 return prev_cpu;
a50bde51
PZ
3276
3277 /*
37407ea7 3278 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3279 */
518cd623 3280 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3281 for_each_lower_domain(sd) {
37407ea7
LT
3282 sg = sd->groups;
3283 do {
3284 if (!cpumask_intersects(sched_group_cpus(sg),
3285 tsk_cpus_allowed(p)))
3286 goto next;
3287
3288 for_each_cpu(i, sched_group_cpus(sg)) {
3289 if (!idle_cpu(i))
3290 goto next;
3291 }
970e1789 3292
37407ea7
LT
3293 target = cpumask_first_and(sched_group_cpus(sg),
3294 tsk_cpus_allowed(p));
3295 goto done;
3296next:
3297 sg = sg->next;
3298 } while (sg != sd->groups);
3299 }
3300done:
a50bde51
PZ
3301 return target;
3302}
3303
aaee1203
PZ
3304/*
3305 * sched_balance_self: balance the current task (running on cpu) in domains
3306 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3307 * SD_BALANCE_EXEC.
3308 *
3309 * Balance, ie. select the least loaded group.
3310 *
3311 * Returns the target CPU number, or the same CPU if no balancing is needed.
3312 *
3313 * preempt must be disabled.
3314 */
0017d735 3315static int
7608dec2 3316select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3317{
29cd8bae 3318 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3319 int cpu = smp_processor_id();
3320 int prev_cpu = task_cpu(p);
3321 int new_cpu = cpu;
99bd5e2f 3322 int want_affine = 0;
5158f4e4 3323 int sync = wake_flags & WF_SYNC;
c88d5910 3324
29baa747 3325 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3326 return prev_cpu;
3327
0763a660 3328 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3329 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3330 want_affine = 1;
3331 new_cpu = prev_cpu;
3332 }
aaee1203 3333
dce840a0 3334 rcu_read_lock();
aaee1203 3335 for_each_domain(cpu, tmp) {
e4f42888
PZ
3336 if (!(tmp->flags & SD_LOAD_BALANCE))
3337 continue;
3338
fe3bcfe1 3339 /*
99bd5e2f
SS
3340 * If both cpu and prev_cpu are part of this domain,
3341 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3342 */
99bd5e2f
SS
3343 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3344 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3345 affine_sd = tmp;
29cd8bae 3346 break;
f03542a7 3347 }
29cd8bae 3348
f03542a7 3349 if (tmp->flags & sd_flag)
29cd8bae
PZ
3350 sd = tmp;
3351 }
3352
8b911acd 3353 if (affine_sd) {
f03542a7 3354 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3355 prev_cpu = cpu;
3356
3357 new_cpu = select_idle_sibling(p, prev_cpu);
3358 goto unlock;
8b911acd 3359 }
e7693a36 3360
aaee1203 3361 while (sd) {
5158f4e4 3362 int load_idx = sd->forkexec_idx;
aaee1203 3363 struct sched_group *group;
c88d5910 3364 int weight;
098fb9db 3365
0763a660 3366 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3367 sd = sd->child;
3368 continue;
3369 }
098fb9db 3370
5158f4e4
PZ
3371 if (sd_flag & SD_BALANCE_WAKE)
3372 load_idx = sd->wake_idx;
098fb9db 3373
5158f4e4 3374 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3375 if (!group) {
3376 sd = sd->child;
3377 continue;
3378 }
4ae7d5ce 3379
d7c33c49 3380 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3381 if (new_cpu == -1 || new_cpu == cpu) {
3382 /* Now try balancing at a lower domain level of cpu */
3383 sd = sd->child;
3384 continue;
e7693a36 3385 }
aaee1203
PZ
3386
3387 /* Now try balancing at a lower domain level of new_cpu */
3388 cpu = new_cpu;
669c55e9 3389 weight = sd->span_weight;
aaee1203
PZ
3390 sd = NULL;
3391 for_each_domain(cpu, tmp) {
669c55e9 3392 if (weight <= tmp->span_weight)
aaee1203 3393 break;
0763a660 3394 if (tmp->flags & sd_flag)
aaee1203
PZ
3395 sd = tmp;
3396 }
3397 /* while loop will break here if sd == NULL */
e7693a36 3398 }
dce840a0
PZ
3399unlock:
3400 rcu_read_unlock();
e7693a36 3401
c88d5910 3402 return new_cpu;
e7693a36 3403}
0a74bef8 3404
f4e26b12
PT
3405/*
3406 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3407 * removed when useful for applications beyond shares distribution (e.g.
3408 * load-balance).
3409 */
3410#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3411/*
3412 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3413 * cfs_rq_of(p) references at time of call are still valid and identify the
3414 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3415 * other assumptions, including the state of rq->lock, should be made.
3416 */
3417static void
3418migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3419{
aff3e498
PT
3420 struct sched_entity *se = &p->se;
3421 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3422
3423 /*
3424 * Load tracking: accumulate removed load so that it can be processed
3425 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3426 * to blocked load iff they have a positive decay-count. It can never
3427 * be negative here since on-rq tasks have decay-count == 0.
3428 */
3429 if (se->avg.decay_count) {
3430 se->avg.decay_count = -__synchronize_entity_decay(se);
3431 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3432 }
0a74bef8 3433}
f4e26b12 3434#endif
e7693a36
GH
3435#endif /* CONFIG_SMP */
3436
e52fb7c0
PZ
3437static unsigned long
3438wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3439{
3440 unsigned long gran = sysctl_sched_wakeup_granularity;
3441
3442 /*
e52fb7c0
PZ
3443 * Since its curr running now, convert the gran from real-time
3444 * to virtual-time in his units.
13814d42
MG
3445 *
3446 * By using 'se' instead of 'curr' we penalize light tasks, so
3447 * they get preempted easier. That is, if 'se' < 'curr' then
3448 * the resulting gran will be larger, therefore penalizing the
3449 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3450 * be smaller, again penalizing the lighter task.
3451 *
3452 * This is especially important for buddies when the leftmost
3453 * task is higher priority than the buddy.
0bbd3336 3454 */
f4ad9bd2 3455 return calc_delta_fair(gran, se);
0bbd3336
PZ
3456}
3457
464b7527
PZ
3458/*
3459 * Should 'se' preempt 'curr'.
3460 *
3461 * |s1
3462 * |s2
3463 * |s3
3464 * g
3465 * |<--->|c
3466 *
3467 * w(c, s1) = -1
3468 * w(c, s2) = 0
3469 * w(c, s3) = 1
3470 *
3471 */
3472static int
3473wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3474{
3475 s64 gran, vdiff = curr->vruntime - se->vruntime;
3476
3477 if (vdiff <= 0)
3478 return -1;
3479
e52fb7c0 3480 gran = wakeup_gran(curr, se);
464b7527
PZ
3481 if (vdiff > gran)
3482 return 1;
3483
3484 return 0;
3485}
3486
02479099
PZ
3487static void set_last_buddy(struct sched_entity *se)
3488{
69c80f3e
VP
3489 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3490 return;
3491
3492 for_each_sched_entity(se)
3493 cfs_rq_of(se)->last = se;
02479099
PZ
3494}
3495
3496static void set_next_buddy(struct sched_entity *se)
3497{
69c80f3e
VP
3498 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3499 return;
3500
3501 for_each_sched_entity(se)
3502 cfs_rq_of(se)->next = se;
02479099
PZ
3503}
3504
ac53db59
RR
3505static void set_skip_buddy(struct sched_entity *se)
3506{
69c80f3e
VP
3507 for_each_sched_entity(se)
3508 cfs_rq_of(se)->skip = se;
ac53db59
RR
3509}
3510
bf0f6f24
IM
3511/*
3512 * Preempt the current task with a newly woken task if needed:
3513 */
5a9b86f6 3514static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3515{
3516 struct task_struct *curr = rq->curr;
8651a86c 3517 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3518 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3519 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3520 int next_buddy_marked = 0;
bf0f6f24 3521
4ae7d5ce
IM
3522 if (unlikely(se == pse))
3523 return;
3524
5238cdd3 3525 /*
ddcdf6e7 3526 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3527 * unconditionally check_prempt_curr() after an enqueue (which may have
3528 * lead to a throttle). This both saves work and prevents false
3529 * next-buddy nomination below.
3530 */
3531 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3532 return;
3533
2f36825b 3534 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3535 set_next_buddy(pse);
2f36825b
VP
3536 next_buddy_marked = 1;
3537 }
57fdc26d 3538
aec0a514
BR
3539 /*
3540 * We can come here with TIF_NEED_RESCHED already set from new task
3541 * wake up path.
5238cdd3
PT
3542 *
3543 * Note: this also catches the edge-case of curr being in a throttled
3544 * group (e.g. via set_curr_task), since update_curr() (in the
3545 * enqueue of curr) will have resulted in resched being set. This
3546 * prevents us from potentially nominating it as a false LAST_BUDDY
3547 * below.
aec0a514
BR
3548 */
3549 if (test_tsk_need_resched(curr))
3550 return;
3551
a2f5c9ab
DH
3552 /* Idle tasks are by definition preempted by non-idle tasks. */
3553 if (unlikely(curr->policy == SCHED_IDLE) &&
3554 likely(p->policy != SCHED_IDLE))
3555 goto preempt;
3556
91c234b4 3557 /*
a2f5c9ab
DH
3558 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3559 * is driven by the tick):
91c234b4 3560 */
8ed92e51 3561 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3562 return;
bf0f6f24 3563
464b7527 3564 find_matching_se(&se, &pse);
9bbd7374 3565 update_curr(cfs_rq_of(se));
002f128b 3566 BUG_ON(!pse);
2f36825b
VP
3567 if (wakeup_preempt_entity(se, pse) == 1) {
3568 /*
3569 * Bias pick_next to pick the sched entity that is
3570 * triggering this preemption.
3571 */
3572 if (!next_buddy_marked)
3573 set_next_buddy(pse);
3a7e73a2 3574 goto preempt;
2f36825b 3575 }
464b7527 3576
3a7e73a2 3577 return;
a65ac745 3578
3a7e73a2
PZ
3579preempt:
3580 resched_task(curr);
3581 /*
3582 * Only set the backward buddy when the current task is still
3583 * on the rq. This can happen when a wakeup gets interleaved
3584 * with schedule on the ->pre_schedule() or idle_balance()
3585 * point, either of which can * drop the rq lock.
3586 *
3587 * Also, during early boot the idle thread is in the fair class,
3588 * for obvious reasons its a bad idea to schedule back to it.
3589 */
3590 if (unlikely(!se->on_rq || curr == rq->idle))
3591 return;
3592
3593 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3594 set_last_buddy(se);
bf0f6f24
IM
3595}
3596
fb8d4724 3597static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3598{
8f4d37ec 3599 struct task_struct *p;
bf0f6f24
IM
3600 struct cfs_rq *cfs_rq = &rq->cfs;
3601 struct sched_entity *se;
3602
36ace27e 3603 if (!cfs_rq->nr_running)
bf0f6f24
IM
3604 return NULL;
3605
3606 do {
9948f4b2 3607 se = pick_next_entity(cfs_rq);
f4b6755f 3608 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3609 cfs_rq = group_cfs_rq(se);
3610 } while (cfs_rq);
3611
8f4d37ec 3612 p = task_of(se);
b39e66ea
MG
3613 if (hrtick_enabled(rq))
3614 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3615
3616 return p;
bf0f6f24
IM
3617}
3618
3619/*
3620 * Account for a descheduled task:
3621 */
31ee529c 3622static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3623{
3624 struct sched_entity *se = &prev->se;
3625 struct cfs_rq *cfs_rq;
3626
3627 for_each_sched_entity(se) {
3628 cfs_rq = cfs_rq_of(se);
ab6cde26 3629 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3630 }
3631}
3632
ac53db59
RR
3633/*
3634 * sched_yield() is very simple
3635 *
3636 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3637 */
3638static void yield_task_fair(struct rq *rq)
3639{
3640 struct task_struct *curr = rq->curr;
3641 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3642 struct sched_entity *se = &curr->se;
3643
3644 /*
3645 * Are we the only task in the tree?
3646 */
3647 if (unlikely(rq->nr_running == 1))
3648 return;
3649
3650 clear_buddies(cfs_rq, se);
3651
3652 if (curr->policy != SCHED_BATCH) {
3653 update_rq_clock(rq);
3654 /*
3655 * Update run-time statistics of the 'current'.
3656 */
3657 update_curr(cfs_rq);
916671c0
MG
3658 /*
3659 * Tell update_rq_clock() that we've just updated,
3660 * so we don't do microscopic update in schedule()
3661 * and double the fastpath cost.
3662 */
3663 rq->skip_clock_update = 1;
ac53db59
RR
3664 }
3665
3666 set_skip_buddy(se);
3667}
3668
d95f4122
MG
3669static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3670{
3671 struct sched_entity *se = &p->se;
3672
5238cdd3
PT
3673 /* throttled hierarchies are not runnable */
3674 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3675 return false;
3676
3677 /* Tell the scheduler that we'd really like pse to run next. */
3678 set_next_buddy(se);
3679
d95f4122
MG
3680 yield_task_fair(rq);
3681
3682 return true;
3683}
3684
681f3e68 3685#ifdef CONFIG_SMP
bf0f6f24 3686/**************************************************
e9c84cb8
PZ
3687 * Fair scheduling class load-balancing methods.
3688 *
3689 * BASICS
3690 *
3691 * The purpose of load-balancing is to achieve the same basic fairness the
3692 * per-cpu scheduler provides, namely provide a proportional amount of compute
3693 * time to each task. This is expressed in the following equation:
3694 *
3695 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3696 *
3697 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3698 * W_i,0 is defined as:
3699 *
3700 * W_i,0 = \Sum_j w_i,j (2)
3701 *
3702 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3703 * is derived from the nice value as per prio_to_weight[].
3704 *
3705 * The weight average is an exponential decay average of the instantaneous
3706 * weight:
3707 *
3708 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3709 *
3710 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3711 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3712 * can also include other factors [XXX].
3713 *
3714 * To achieve this balance we define a measure of imbalance which follows
3715 * directly from (1):
3716 *
3717 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3718 *
3719 * We them move tasks around to minimize the imbalance. In the continuous
3720 * function space it is obvious this converges, in the discrete case we get
3721 * a few fun cases generally called infeasible weight scenarios.
3722 *
3723 * [XXX expand on:
3724 * - infeasible weights;
3725 * - local vs global optima in the discrete case. ]
3726 *
3727 *
3728 * SCHED DOMAINS
3729 *
3730 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3731 * for all i,j solution, we create a tree of cpus that follows the hardware
3732 * topology where each level pairs two lower groups (or better). This results
3733 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3734 * tree to only the first of the previous level and we decrease the frequency
3735 * of load-balance at each level inv. proportional to the number of cpus in
3736 * the groups.
3737 *
3738 * This yields:
3739 *
3740 * log_2 n 1 n
3741 * \Sum { --- * --- * 2^i } = O(n) (5)
3742 * i = 0 2^i 2^i
3743 * `- size of each group
3744 * | | `- number of cpus doing load-balance
3745 * | `- freq
3746 * `- sum over all levels
3747 *
3748 * Coupled with a limit on how many tasks we can migrate every balance pass,
3749 * this makes (5) the runtime complexity of the balancer.
3750 *
3751 * An important property here is that each CPU is still (indirectly) connected
3752 * to every other cpu in at most O(log n) steps:
3753 *
3754 * The adjacency matrix of the resulting graph is given by:
3755 *
3756 * log_2 n
3757 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3758 * k = 0
3759 *
3760 * And you'll find that:
3761 *
3762 * A^(log_2 n)_i,j != 0 for all i,j (7)
3763 *
3764 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3765 * The task movement gives a factor of O(m), giving a convergence complexity
3766 * of:
3767 *
3768 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3769 *
3770 *
3771 * WORK CONSERVING
3772 *
3773 * In order to avoid CPUs going idle while there's still work to do, new idle
3774 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3775 * tree itself instead of relying on other CPUs to bring it work.
3776 *
3777 * This adds some complexity to both (5) and (8) but it reduces the total idle
3778 * time.
3779 *
3780 * [XXX more?]
3781 *
3782 *
3783 * CGROUPS
3784 *
3785 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3786 *
3787 * s_k,i
3788 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3789 * S_k
3790 *
3791 * Where
3792 *
3793 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3794 *
3795 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3796 *
3797 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3798 * property.
3799 *
3800 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3801 * rewrite all of this once again.]
3802 */
bf0f6f24 3803
ed387b78
HS
3804static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3805
ddcdf6e7 3806#define LBF_ALL_PINNED 0x01
367456c7 3807#define LBF_NEED_BREAK 0x02
88b8dac0 3808#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3809
3810struct lb_env {
3811 struct sched_domain *sd;
3812
ddcdf6e7 3813 struct rq *src_rq;
85c1e7da 3814 int src_cpu;
ddcdf6e7
PZ
3815
3816 int dst_cpu;
3817 struct rq *dst_rq;
3818
88b8dac0
SV
3819 struct cpumask *dst_grpmask;
3820 int new_dst_cpu;
ddcdf6e7 3821 enum cpu_idle_type idle;
bd939f45 3822 long imbalance;
b9403130
MW
3823 /* The set of CPUs under consideration for load-balancing */
3824 struct cpumask *cpus;
3825
ddcdf6e7 3826 unsigned int flags;
367456c7
PZ
3827
3828 unsigned int loop;
3829 unsigned int loop_break;
3830 unsigned int loop_max;
ddcdf6e7
PZ
3831};
3832
1e3c88bd 3833/*
ddcdf6e7 3834 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3835 * Both runqueues must be locked.
3836 */
ddcdf6e7 3837static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3838{
ddcdf6e7
PZ
3839 deactivate_task(env->src_rq, p, 0);
3840 set_task_cpu(p, env->dst_cpu);
3841 activate_task(env->dst_rq, p, 0);
3842 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3843}
3844
029632fb
PZ
3845/*
3846 * Is this task likely cache-hot:
3847 */
3848static int
3849task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3850{
3851 s64 delta;
3852
3853 if (p->sched_class != &fair_sched_class)
3854 return 0;
3855
3856 if (unlikely(p->policy == SCHED_IDLE))
3857 return 0;
3858
3859 /*
3860 * Buddy candidates are cache hot:
3861 */
3862 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3863 (&p->se == cfs_rq_of(&p->se)->next ||
3864 &p->se == cfs_rq_of(&p->se)->last))
3865 return 1;
3866
3867 if (sysctl_sched_migration_cost == -1)
3868 return 1;
3869 if (sysctl_sched_migration_cost == 0)
3870 return 0;
3871
3872 delta = now - p->se.exec_start;
3873
3874 return delta < (s64)sysctl_sched_migration_cost;
3875}
3876
1e3c88bd
PZ
3877/*
3878 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3879 */
3880static
8e45cb54 3881int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3882{
3883 int tsk_cache_hot = 0;
3884 /*
3885 * We do not migrate tasks that are:
3886 * 1) running (obviously), or
3887 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3888 * 3) are cache-hot on their current CPU.
3889 */
ddcdf6e7 3890 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3891 int new_dst_cpu;
3892
41acab88 3893 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3894
3895 /*
3896 * Remember if this task can be migrated to any other cpu in
3897 * our sched_group. We may want to revisit it if we couldn't
3898 * meet load balance goals by pulling other tasks on src_cpu.
3899 *
3900 * Also avoid computing new_dst_cpu if we have already computed
3901 * one in current iteration.
3902 */
3903 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3904 return 0;
3905
3906 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3907 tsk_cpus_allowed(p));
3908 if (new_dst_cpu < nr_cpu_ids) {
3909 env->flags |= LBF_SOME_PINNED;
3910 env->new_dst_cpu = new_dst_cpu;
3911 }
1e3c88bd
PZ
3912 return 0;
3913 }
88b8dac0
SV
3914
3915 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3916 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3917
ddcdf6e7 3918 if (task_running(env->src_rq, p)) {
41acab88 3919 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3920 return 0;
3921 }
3922
3923 /*
3924 * Aggressive migration if:
3925 * 1) task is cache cold, or
3926 * 2) too many balance attempts have failed.
3927 */
3928
ddcdf6e7 3929 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3930 if (!tsk_cache_hot ||
8e45cb54 3931 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3932#ifdef CONFIG_SCHEDSTATS
3933 if (tsk_cache_hot) {
8e45cb54 3934 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3935 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3936 }
3937#endif
3938 return 1;
3939 }
3940
3941 if (tsk_cache_hot) {
41acab88 3942 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3943 return 0;
3944 }
3945 return 1;
3946}
3947
897c395f
PZ
3948/*
3949 * move_one_task tries to move exactly one task from busiest to this_rq, as
3950 * part of active balancing operations within "domain".
3951 * Returns 1 if successful and 0 otherwise.
3952 *
3953 * Called with both runqueues locked.
3954 */
8e45cb54 3955static int move_one_task(struct lb_env *env)
897c395f
PZ
3956{
3957 struct task_struct *p, *n;
897c395f 3958
367456c7
PZ
3959 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3960 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3961 continue;
897c395f 3962
367456c7
PZ
3963 if (!can_migrate_task(p, env))
3964 continue;
897c395f 3965
367456c7
PZ
3966 move_task(p, env);
3967 /*
3968 * Right now, this is only the second place move_task()
3969 * is called, so we can safely collect move_task()
3970 * stats here rather than inside move_task().
3971 */
3972 schedstat_inc(env->sd, lb_gained[env->idle]);
3973 return 1;
897c395f 3974 }
897c395f
PZ
3975 return 0;
3976}
3977
367456c7
PZ
3978static unsigned long task_h_load(struct task_struct *p);
3979
eb95308e
PZ
3980static const unsigned int sched_nr_migrate_break = 32;
3981
5d6523eb 3982/*
bd939f45 3983 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3984 * this_rq, as part of a balancing operation within domain "sd".
3985 * Returns 1 if successful and 0 otherwise.
3986 *
3987 * Called with both runqueues locked.
3988 */
3989static int move_tasks(struct lb_env *env)
1e3c88bd 3990{
5d6523eb
PZ
3991 struct list_head *tasks = &env->src_rq->cfs_tasks;
3992 struct task_struct *p;
367456c7
PZ
3993 unsigned long load;
3994 int pulled = 0;
1e3c88bd 3995
bd939f45 3996 if (env->imbalance <= 0)
5d6523eb 3997 return 0;
1e3c88bd 3998
5d6523eb
PZ
3999 while (!list_empty(tasks)) {
4000 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4001
367456c7
PZ
4002 env->loop++;
4003 /* We've more or less seen every task there is, call it quits */
5d6523eb 4004 if (env->loop > env->loop_max)
367456c7 4005 break;
5d6523eb
PZ
4006
4007 /* take a breather every nr_migrate tasks */
367456c7 4008 if (env->loop > env->loop_break) {
eb95308e 4009 env->loop_break += sched_nr_migrate_break;
8e45cb54 4010 env->flags |= LBF_NEED_BREAK;
ee00e66f 4011 break;
a195f004 4012 }
1e3c88bd 4013
5d6523eb 4014 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
4015 goto next;
4016
4017 load = task_h_load(p);
5d6523eb 4018
eb95308e 4019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4020 goto next;
4021
bd939f45 4022 if ((load / 2) > env->imbalance)
367456c7 4023 goto next;
1e3c88bd 4024
367456c7
PZ
4025 if (!can_migrate_task(p, env))
4026 goto next;
1e3c88bd 4027
ddcdf6e7 4028 move_task(p, env);
ee00e66f 4029 pulled++;
bd939f45 4030 env->imbalance -= load;
1e3c88bd
PZ
4031
4032#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4033 /*
4034 * NEWIDLE balancing is a source of latency, so preemptible
4035 * kernels will stop after the first task is pulled to minimize
4036 * the critical section.
4037 */
5d6523eb 4038 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4039 break;
1e3c88bd
PZ
4040#endif
4041
ee00e66f
PZ
4042 /*
4043 * We only want to steal up to the prescribed amount of
4044 * weighted load.
4045 */
bd939f45 4046 if (env->imbalance <= 0)
ee00e66f 4047 break;
367456c7
PZ
4048
4049 continue;
4050next:
5d6523eb 4051 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4052 }
5d6523eb 4053
1e3c88bd 4054 /*
ddcdf6e7
PZ
4055 * Right now, this is one of only two places move_task() is called,
4056 * so we can safely collect move_task() stats here rather than
4057 * inside move_task().
1e3c88bd 4058 */
8e45cb54 4059 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4060
5d6523eb 4061 return pulled;
1e3c88bd
PZ
4062}
4063
230059de 4064#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4065/*
4066 * update tg->load_weight by folding this cpu's load_avg
4067 */
48a16753 4068static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4069{
48a16753
PT
4070 struct sched_entity *se = tg->se[cpu];
4071 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4072
48a16753
PT
4073 /* throttled entities do not contribute to load */
4074 if (throttled_hierarchy(cfs_rq))
4075 return;
9e3081ca 4076
aff3e498 4077 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4078
82958366
PT
4079 if (se) {
4080 update_entity_load_avg(se, 1);
4081 /*
4082 * We pivot on our runnable average having decayed to zero for
4083 * list removal. This generally implies that all our children
4084 * have also been removed (modulo rounding error or bandwidth
4085 * control); however, such cases are rare and we can fix these
4086 * at enqueue.
4087 *
4088 * TODO: fix up out-of-order children on enqueue.
4089 */
4090 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4091 list_del_leaf_cfs_rq(cfs_rq);
4092 } else {
48a16753 4093 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4094 update_rq_runnable_avg(rq, rq->nr_running);
4095 }
9e3081ca
PZ
4096}
4097
48a16753 4098static void update_blocked_averages(int cpu)
9e3081ca 4099{
9e3081ca 4100 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4101 struct cfs_rq *cfs_rq;
4102 unsigned long flags;
9e3081ca 4103
48a16753
PT
4104 raw_spin_lock_irqsave(&rq->lock, flags);
4105 update_rq_clock(rq);
9763b67f
PZ
4106 /*
4107 * Iterates the task_group tree in a bottom up fashion, see
4108 * list_add_leaf_cfs_rq() for details.
4109 */
64660c86 4110 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4111 /*
4112 * Note: We may want to consider periodically releasing
4113 * rq->lock about these updates so that creating many task
4114 * groups does not result in continually extending hold time.
4115 */
4116 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4117 }
48a16753
PT
4118
4119 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4120}
4121
9763b67f
PZ
4122/*
4123 * Compute the cpu's hierarchical load factor for each task group.
4124 * This needs to be done in a top-down fashion because the load of a child
4125 * group is a fraction of its parents load.
4126 */
4127static int tg_load_down(struct task_group *tg, void *data)
4128{
4129 unsigned long load;
4130 long cpu = (long)data;
4131
4132 if (!tg->parent) {
4133 load = cpu_rq(cpu)->load.weight;
4134 } else {
4135 load = tg->parent->cfs_rq[cpu]->h_load;
4136 load *= tg->se[cpu]->load.weight;
4137 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4138 }
4139
4140 tg->cfs_rq[cpu]->h_load = load;
4141
4142 return 0;
4143}
4144
4145static void update_h_load(long cpu)
4146{
a35b6466
PZ
4147 struct rq *rq = cpu_rq(cpu);
4148 unsigned long now = jiffies;
4149
4150 if (rq->h_load_throttle == now)
4151 return;
4152
4153 rq->h_load_throttle = now;
4154
367456c7 4155 rcu_read_lock();
9763b67f 4156 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4157 rcu_read_unlock();
9763b67f
PZ
4158}
4159
367456c7 4160static unsigned long task_h_load(struct task_struct *p)
230059de 4161{
367456c7
PZ
4162 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4163 unsigned long load;
230059de 4164
367456c7
PZ
4165 load = p->se.load.weight;
4166 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4167
367456c7 4168 return load;
230059de
PZ
4169}
4170#else
48a16753 4171static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4172{
4173}
4174
367456c7 4175static inline void update_h_load(long cpu)
230059de 4176{
230059de 4177}
230059de 4178
367456c7 4179static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4180{
367456c7 4181 return p->se.load.weight;
1e3c88bd 4182}
230059de 4183#endif
1e3c88bd 4184
1e3c88bd
PZ
4185/********** Helpers for find_busiest_group ************************/
4186/*
4187 * sd_lb_stats - Structure to store the statistics of a sched_domain
4188 * during load balancing.
4189 */
4190struct sd_lb_stats {
4191 struct sched_group *busiest; /* Busiest group in this sd */
4192 struct sched_group *this; /* Local group in this sd */
4193 unsigned long total_load; /* Total load of all groups in sd */
4194 unsigned long total_pwr; /* Total power of all groups in sd */
4195 unsigned long avg_load; /* Average load across all groups in sd */
4196
4197 /** Statistics of this group */
4198 unsigned long this_load;
4199 unsigned long this_load_per_task;
4200 unsigned long this_nr_running;
fab47622 4201 unsigned long this_has_capacity;
aae6d3dd 4202 unsigned int this_idle_cpus;
1e3c88bd
PZ
4203
4204 /* Statistics of the busiest group */
aae6d3dd 4205 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4206 unsigned long max_load;
4207 unsigned long busiest_load_per_task;
4208 unsigned long busiest_nr_running;
dd5feea1 4209 unsigned long busiest_group_capacity;
fab47622 4210 unsigned long busiest_has_capacity;
aae6d3dd 4211 unsigned int busiest_group_weight;
1e3c88bd
PZ
4212
4213 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4214};
4215
4216/*
4217 * sg_lb_stats - stats of a sched_group required for load_balancing
4218 */
4219struct sg_lb_stats {
4220 unsigned long avg_load; /*Avg load across the CPUs of the group */
4221 unsigned long group_load; /* Total load over the CPUs of the group */
4222 unsigned long sum_nr_running; /* Nr tasks running in the group */
4223 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4224 unsigned long group_capacity;
aae6d3dd
SS
4225 unsigned long idle_cpus;
4226 unsigned long group_weight;
1e3c88bd 4227 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4228 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4229};
4230
1e3c88bd
PZ
4231/**
4232 * get_sd_load_idx - Obtain the load index for a given sched domain.
4233 * @sd: The sched_domain whose load_idx is to be obtained.
4234 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4235 */
4236static inline int get_sd_load_idx(struct sched_domain *sd,
4237 enum cpu_idle_type idle)
4238{
4239 int load_idx;
4240
4241 switch (idle) {
4242 case CPU_NOT_IDLE:
4243 load_idx = sd->busy_idx;
4244 break;
4245
4246 case CPU_NEWLY_IDLE:
4247 load_idx = sd->newidle_idx;
4248 break;
4249 default:
4250 load_idx = sd->idle_idx;
4251 break;
4252 }
4253
4254 return load_idx;
4255}
4256
1e3c88bd
PZ
4257unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4258{
1399fa78 4259 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4260}
4261
4262unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4263{
4264 return default_scale_freq_power(sd, cpu);
4265}
4266
4267unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4268{
669c55e9 4269 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4270 unsigned long smt_gain = sd->smt_gain;
4271
4272 smt_gain /= weight;
4273
4274 return smt_gain;
4275}
4276
4277unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4278{
4279 return default_scale_smt_power(sd, cpu);
4280}
4281
4282unsigned long scale_rt_power(int cpu)
4283{
4284 struct rq *rq = cpu_rq(cpu);
b654f7de 4285 u64 total, available, age_stamp, avg;
1e3c88bd 4286
b654f7de
PZ
4287 /*
4288 * Since we're reading these variables without serialization make sure
4289 * we read them once before doing sanity checks on them.
4290 */
4291 age_stamp = ACCESS_ONCE(rq->age_stamp);
4292 avg = ACCESS_ONCE(rq->rt_avg);
4293
4294 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4295
b654f7de 4296 if (unlikely(total < avg)) {
aa483808
VP
4297 /* Ensures that power won't end up being negative */
4298 available = 0;
4299 } else {
b654f7de 4300 available = total - avg;
aa483808 4301 }
1e3c88bd 4302
1399fa78
NR
4303 if (unlikely((s64)total < SCHED_POWER_SCALE))
4304 total = SCHED_POWER_SCALE;
1e3c88bd 4305
1399fa78 4306 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4307
4308 return div_u64(available, total);
4309}
4310
4311static void update_cpu_power(struct sched_domain *sd, int cpu)
4312{
669c55e9 4313 unsigned long weight = sd->span_weight;
1399fa78 4314 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4315 struct sched_group *sdg = sd->groups;
4316
1e3c88bd
PZ
4317 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4318 if (sched_feat(ARCH_POWER))
4319 power *= arch_scale_smt_power(sd, cpu);
4320 else
4321 power *= default_scale_smt_power(sd, cpu);
4322
1399fa78 4323 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4324 }
4325
9c3f75cb 4326 sdg->sgp->power_orig = power;
9d5efe05
SV
4327
4328 if (sched_feat(ARCH_POWER))
4329 power *= arch_scale_freq_power(sd, cpu);
4330 else
4331 power *= default_scale_freq_power(sd, cpu);
4332
1399fa78 4333 power >>= SCHED_POWER_SHIFT;
9d5efe05 4334
1e3c88bd 4335 power *= scale_rt_power(cpu);
1399fa78 4336 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4337
4338 if (!power)
4339 power = 1;
4340
e51fd5e2 4341 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4342 sdg->sgp->power = power;
1e3c88bd
PZ
4343}
4344
029632fb 4345void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4346{
4347 struct sched_domain *child = sd->child;
4348 struct sched_group *group, *sdg = sd->groups;
4349 unsigned long power;
4ec4412e
VG
4350 unsigned long interval;
4351
4352 interval = msecs_to_jiffies(sd->balance_interval);
4353 interval = clamp(interval, 1UL, max_load_balance_interval);
4354 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4355
4356 if (!child) {
4357 update_cpu_power(sd, cpu);
4358 return;
4359 }
4360
4361 power = 0;
4362
74a5ce20
PZ
4363 if (child->flags & SD_OVERLAP) {
4364 /*
4365 * SD_OVERLAP domains cannot assume that child groups
4366 * span the current group.
4367 */
4368
4369 for_each_cpu(cpu, sched_group_cpus(sdg))
4370 power += power_of(cpu);
4371 } else {
4372 /*
4373 * !SD_OVERLAP domains can assume that child groups
4374 * span the current group.
4375 */
4376
4377 group = child->groups;
4378 do {
4379 power += group->sgp->power;
4380 group = group->next;
4381 } while (group != child->groups);
4382 }
1e3c88bd 4383
c3decf0d 4384 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4385}
4386
9d5efe05
SV
4387/*
4388 * Try and fix up capacity for tiny siblings, this is needed when
4389 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4390 * which on its own isn't powerful enough.
4391 *
4392 * See update_sd_pick_busiest() and check_asym_packing().
4393 */
4394static inline int
4395fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4396{
4397 /*
1399fa78 4398 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4399 */
a6c75f2f 4400 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4401 return 0;
4402
4403 /*
4404 * If ~90% of the cpu_power is still there, we're good.
4405 */
9c3f75cb 4406 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4407 return 1;
4408
4409 return 0;
4410}
4411
1e3c88bd
PZ
4412/**
4413 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4414 * @env: The load balancing environment.
1e3c88bd 4415 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4416 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4417 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4418 * @balance: Should we balance.
4419 * @sgs: variable to hold the statistics for this group.
4420 */
bd939f45
PZ
4421static inline void update_sg_lb_stats(struct lb_env *env,
4422 struct sched_group *group, int load_idx,
b9403130 4423 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4424{
e44bc5c5
PZ
4425 unsigned long nr_running, max_nr_running, min_nr_running;
4426 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4427 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4428 unsigned long avg_load_per_task = 0;
bd939f45 4429 int i;
1e3c88bd 4430
871e35bc 4431 if (local_group)
c1174876 4432 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4433
4434 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4435 max_cpu_load = 0;
4436 min_cpu_load = ~0UL;
2582f0eb 4437 max_nr_running = 0;
e44bc5c5 4438 min_nr_running = ~0UL;
1e3c88bd 4439
b9403130 4440 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4441 struct rq *rq = cpu_rq(i);
4442
e44bc5c5
PZ
4443 nr_running = rq->nr_running;
4444
1e3c88bd
PZ
4445 /* Bias balancing toward cpus of our domain */
4446 if (local_group) {
c1174876
PZ
4447 if (idle_cpu(i) && !first_idle_cpu &&
4448 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4449 first_idle_cpu = 1;
1e3c88bd
PZ
4450 balance_cpu = i;
4451 }
04f733b4
PZ
4452
4453 load = target_load(i, load_idx);
1e3c88bd
PZ
4454 } else {
4455 load = source_load(i, load_idx);
e44bc5c5 4456 if (load > max_cpu_load)
1e3c88bd
PZ
4457 max_cpu_load = load;
4458 if (min_cpu_load > load)
4459 min_cpu_load = load;
e44bc5c5
PZ
4460
4461 if (nr_running > max_nr_running)
4462 max_nr_running = nr_running;
4463 if (min_nr_running > nr_running)
4464 min_nr_running = nr_running;
1e3c88bd
PZ
4465 }
4466
4467 sgs->group_load += load;
e44bc5c5 4468 sgs->sum_nr_running += nr_running;
1e3c88bd 4469 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4470 if (idle_cpu(i))
4471 sgs->idle_cpus++;
1e3c88bd
PZ
4472 }
4473
4474 /*
4475 * First idle cpu or the first cpu(busiest) in this sched group
4476 * is eligible for doing load balancing at this and above
4477 * domains. In the newly idle case, we will allow all the cpu's
4478 * to do the newly idle load balance.
4479 */
4ec4412e 4480 if (local_group) {
bd939f45 4481 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4482 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4483 *balance = 0;
4484 return;
4485 }
bd939f45 4486 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4487 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4488 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4489 }
4490
4491 /* Adjust by relative CPU power of the group */
9c3f75cb 4492 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4493
1e3c88bd
PZ
4494 /*
4495 * Consider the group unbalanced when the imbalance is larger
866ab43e 4496 * than the average weight of a task.
1e3c88bd
PZ
4497 *
4498 * APZ: with cgroup the avg task weight can vary wildly and
4499 * might not be a suitable number - should we keep a
4500 * normalized nr_running number somewhere that negates
4501 * the hierarchy?
4502 */
dd5feea1
SS
4503 if (sgs->sum_nr_running)
4504 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4505
e44bc5c5
PZ
4506 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4507 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4508 sgs->group_imb = 1;
4509
9c3f75cb 4510 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4511 SCHED_POWER_SCALE);
9d5efe05 4512 if (!sgs->group_capacity)
bd939f45 4513 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4514 sgs->group_weight = group->group_weight;
fab47622
NR
4515
4516 if (sgs->group_capacity > sgs->sum_nr_running)
4517 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4518}
4519
532cb4c4
MN
4520/**
4521 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4522 * @env: The load balancing environment.
532cb4c4
MN
4523 * @sds: sched_domain statistics
4524 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4525 * @sgs: sched_group statistics
532cb4c4
MN
4526 *
4527 * Determine if @sg is a busier group than the previously selected
4528 * busiest group.
4529 */
bd939f45 4530static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4531 struct sd_lb_stats *sds,
4532 struct sched_group *sg,
bd939f45 4533 struct sg_lb_stats *sgs)
532cb4c4
MN
4534{
4535 if (sgs->avg_load <= sds->max_load)
4536 return false;
4537
4538 if (sgs->sum_nr_running > sgs->group_capacity)
4539 return true;
4540
4541 if (sgs->group_imb)
4542 return true;
4543
4544 /*
4545 * ASYM_PACKING needs to move all the work to the lowest
4546 * numbered CPUs in the group, therefore mark all groups
4547 * higher than ourself as busy.
4548 */
bd939f45
PZ
4549 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4550 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4551 if (!sds->busiest)
4552 return true;
4553
4554 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4555 return true;
4556 }
4557
4558 return false;
4559}
4560
1e3c88bd 4561/**
461819ac 4562 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4563 * @env: The load balancing environment.
1e3c88bd
PZ
4564 * @balance: Should we balance.
4565 * @sds: variable to hold the statistics for this sched_domain.
4566 */
bd939f45 4567static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4568 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4569{
bd939f45
PZ
4570 struct sched_domain *child = env->sd->child;
4571 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4572 struct sg_lb_stats sgs;
4573 int load_idx, prefer_sibling = 0;
4574
4575 if (child && child->flags & SD_PREFER_SIBLING)
4576 prefer_sibling = 1;
4577
bd939f45 4578 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4579
4580 do {
4581 int local_group;
4582
bd939f45 4583 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4584 memset(&sgs, 0, sizeof(sgs));
b9403130 4585 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4586
8f190fb3 4587 if (local_group && !(*balance))
1e3c88bd
PZ
4588 return;
4589
4590 sds->total_load += sgs.group_load;
9c3f75cb 4591 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4592
4593 /*
4594 * In case the child domain prefers tasks go to siblings
532cb4c4 4595 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4596 * and move all the excess tasks away. We lower the capacity
4597 * of a group only if the local group has the capacity to fit
4598 * these excess tasks, i.e. nr_running < group_capacity. The
4599 * extra check prevents the case where you always pull from the
4600 * heaviest group when it is already under-utilized (possible
4601 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4602 */
75dd321d 4603 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4604 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4605
4606 if (local_group) {
4607 sds->this_load = sgs.avg_load;
532cb4c4 4608 sds->this = sg;
1e3c88bd
PZ
4609 sds->this_nr_running = sgs.sum_nr_running;
4610 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4611 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4612 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4613 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4614 sds->max_load = sgs.avg_load;
532cb4c4 4615 sds->busiest = sg;
1e3c88bd 4616 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4617 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4618 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4619 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4620 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4621 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4622 sds->group_imb = sgs.group_imb;
4623 }
4624
532cb4c4 4625 sg = sg->next;
bd939f45 4626 } while (sg != env->sd->groups);
532cb4c4
MN
4627}
4628
532cb4c4
MN
4629/**
4630 * check_asym_packing - Check to see if the group is packed into the
4631 * sched doman.
4632 *
4633 * This is primarily intended to used at the sibling level. Some
4634 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4635 * case of POWER7, it can move to lower SMT modes only when higher
4636 * threads are idle. When in lower SMT modes, the threads will
4637 * perform better since they share less core resources. Hence when we
4638 * have idle threads, we want them to be the higher ones.
4639 *
4640 * This packing function is run on idle threads. It checks to see if
4641 * the busiest CPU in this domain (core in the P7 case) has a higher
4642 * CPU number than the packing function is being run on. Here we are
4643 * assuming lower CPU number will be equivalent to lower a SMT thread
4644 * number.
4645 *
b6b12294
MN
4646 * Returns 1 when packing is required and a task should be moved to
4647 * this CPU. The amount of the imbalance is returned in *imbalance.
4648 *
cd96891d 4649 * @env: The load balancing environment.
532cb4c4 4650 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4651 */
bd939f45 4652static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4653{
4654 int busiest_cpu;
4655
bd939f45 4656 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4657 return 0;
4658
4659 if (!sds->busiest)
4660 return 0;
4661
4662 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4663 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4664 return 0;
4665
bd939f45
PZ
4666 env->imbalance = DIV_ROUND_CLOSEST(
4667 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4668
532cb4c4 4669 return 1;
1e3c88bd
PZ
4670}
4671
4672/**
4673 * fix_small_imbalance - Calculate the minor imbalance that exists
4674 * amongst the groups of a sched_domain, during
4675 * load balancing.
cd96891d 4676 * @env: The load balancing environment.
1e3c88bd 4677 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4678 */
bd939f45
PZ
4679static inline
4680void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4681{
4682 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4683 unsigned int imbn = 2;
dd5feea1 4684 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4685
4686 if (sds->this_nr_running) {
4687 sds->this_load_per_task /= sds->this_nr_running;
4688 if (sds->busiest_load_per_task >
4689 sds->this_load_per_task)
4690 imbn = 1;
bd939f45 4691 } else {
1e3c88bd 4692 sds->this_load_per_task =
bd939f45
PZ
4693 cpu_avg_load_per_task(env->dst_cpu);
4694 }
1e3c88bd 4695
dd5feea1 4696 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4697 * SCHED_POWER_SCALE;
9c3f75cb 4698 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4699
4700 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4701 (scaled_busy_load_per_task * imbn)) {
bd939f45 4702 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4703 return;
4704 }
4705
4706 /*
4707 * OK, we don't have enough imbalance to justify moving tasks,
4708 * however we may be able to increase total CPU power used by
4709 * moving them.
4710 */
4711
9c3f75cb 4712 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4713 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4714 pwr_now += sds->this->sgp->power *
1e3c88bd 4715 min(sds->this_load_per_task, sds->this_load);
1399fa78 4716 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4717
4718 /* Amount of load we'd subtract */
1399fa78 4719 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4720 sds->busiest->sgp->power;
1e3c88bd 4721 if (sds->max_load > tmp)
9c3f75cb 4722 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4723 min(sds->busiest_load_per_task, sds->max_load - tmp);
4724
4725 /* Amount of load we'd add */
9c3f75cb 4726 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4727 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4728 tmp = (sds->max_load * sds->busiest->sgp->power) /
4729 sds->this->sgp->power;
1e3c88bd 4730 else
1399fa78 4731 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4732 sds->this->sgp->power;
4733 pwr_move += sds->this->sgp->power *
1e3c88bd 4734 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4735 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4736
4737 /* Move if we gain throughput */
4738 if (pwr_move > pwr_now)
bd939f45 4739 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4740}
4741
4742/**
4743 * calculate_imbalance - Calculate the amount of imbalance present within the
4744 * groups of a given sched_domain during load balance.
bd939f45 4745 * @env: load balance environment
1e3c88bd 4746 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4747 */
bd939f45 4748static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4749{
dd5feea1
SS
4750 unsigned long max_pull, load_above_capacity = ~0UL;
4751
4752 sds->busiest_load_per_task /= sds->busiest_nr_running;
4753 if (sds->group_imb) {
4754 sds->busiest_load_per_task =
4755 min(sds->busiest_load_per_task, sds->avg_load);
4756 }
4757
1e3c88bd
PZ
4758 /*
4759 * In the presence of smp nice balancing, certain scenarios can have
4760 * max load less than avg load(as we skip the groups at or below
4761 * its cpu_power, while calculating max_load..)
4762 */
4763 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4764 env->imbalance = 0;
4765 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4766 }
4767
dd5feea1
SS
4768 if (!sds->group_imb) {
4769 /*
4770 * Don't want to pull so many tasks that a group would go idle.
4771 */
4772 load_above_capacity = (sds->busiest_nr_running -
4773 sds->busiest_group_capacity);
4774
1399fa78 4775 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4776
9c3f75cb 4777 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4778 }
4779
4780 /*
4781 * We're trying to get all the cpus to the average_load, so we don't
4782 * want to push ourselves above the average load, nor do we wish to
4783 * reduce the max loaded cpu below the average load. At the same time,
4784 * we also don't want to reduce the group load below the group capacity
4785 * (so that we can implement power-savings policies etc). Thus we look
4786 * for the minimum possible imbalance.
4787 * Be careful of negative numbers as they'll appear as very large values
4788 * with unsigned longs.
4789 */
4790 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4791
4792 /* How much load to actually move to equalise the imbalance */
bd939f45 4793 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4794 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4795 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4796
4797 /*
4798 * if *imbalance is less than the average load per runnable task
25985edc 4799 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4800 * a think about bumping its value to force at least one task to be
4801 * moved
4802 */
bd939f45
PZ
4803 if (env->imbalance < sds->busiest_load_per_task)
4804 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4805
4806}
fab47622 4807
1e3c88bd
PZ
4808/******* find_busiest_group() helpers end here *********************/
4809
4810/**
4811 * find_busiest_group - Returns the busiest group within the sched_domain
4812 * if there is an imbalance. If there isn't an imbalance, and
4813 * the user has opted for power-savings, it returns a group whose
4814 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4815 * such a group exists.
4816 *
4817 * Also calculates the amount of weighted load which should be moved
4818 * to restore balance.
4819 *
cd96891d 4820 * @env: The load balancing environment.
1e3c88bd
PZ
4821 * @balance: Pointer to a variable indicating if this_cpu
4822 * is the appropriate cpu to perform load balancing at this_level.
4823 *
4824 * Returns: - the busiest group if imbalance exists.
4825 * - If no imbalance and user has opted for power-savings balance,
4826 * return the least loaded group whose CPUs can be
4827 * put to idle by rebalancing its tasks onto our group.
4828 */
4829static struct sched_group *
b9403130 4830find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4831{
4832 struct sd_lb_stats sds;
4833
4834 memset(&sds, 0, sizeof(sds));
4835
4836 /*
4837 * Compute the various statistics relavent for load balancing at
4838 * this level.
4839 */
b9403130 4840 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4841
cc57aa8f
PZ
4842 /*
4843 * this_cpu is not the appropriate cpu to perform load balancing at
4844 * this level.
1e3c88bd 4845 */
8f190fb3 4846 if (!(*balance))
1e3c88bd
PZ
4847 goto ret;
4848
bd939f45
PZ
4849 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4850 check_asym_packing(env, &sds))
532cb4c4
MN
4851 return sds.busiest;
4852
cc57aa8f 4853 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4854 if (!sds.busiest || sds.busiest_nr_running == 0)
4855 goto out_balanced;
4856
1399fa78 4857 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4858
866ab43e
PZ
4859 /*
4860 * If the busiest group is imbalanced the below checks don't
4861 * work because they assumes all things are equal, which typically
4862 * isn't true due to cpus_allowed constraints and the like.
4863 */
4864 if (sds.group_imb)
4865 goto force_balance;
4866
cc57aa8f 4867 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4868 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4869 !sds.busiest_has_capacity)
4870 goto force_balance;
4871
cc57aa8f
PZ
4872 /*
4873 * If the local group is more busy than the selected busiest group
4874 * don't try and pull any tasks.
4875 */
1e3c88bd
PZ
4876 if (sds.this_load >= sds.max_load)
4877 goto out_balanced;
4878
cc57aa8f
PZ
4879 /*
4880 * Don't pull any tasks if this group is already above the domain
4881 * average load.
4882 */
1e3c88bd
PZ
4883 if (sds.this_load >= sds.avg_load)
4884 goto out_balanced;
4885
bd939f45 4886 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4887 /*
4888 * This cpu is idle. If the busiest group load doesn't
4889 * have more tasks than the number of available cpu's and
4890 * there is no imbalance between this and busiest group
4891 * wrt to idle cpu's, it is balanced.
4892 */
c186fafe 4893 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4894 sds.busiest_nr_running <= sds.busiest_group_weight)
4895 goto out_balanced;
c186fafe
PZ
4896 } else {
4897 /*
4898 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4899 * imbalance_pct to be conservative.
4900 */
bd939f45 4901 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4902 goto out_balanced;
aae6d3dd 4903 }
1e3c88bd 4904
fab47622 4905force_balance:
1e3c88bd 4906 /* Looks like there is an imbalance. Compute it */
bd939f45 4907 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4908 return sds.busiest;
4909
4910out_balanced:
1e3c88bd 4911ret:
bd939f45 4912 env->imbalance = 0;
1e3c88bd
PZ
4913 return NULL;
4914}
4915
4916/*
4917 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4918 */
bd939f45 4919static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4920 struct sched_group *group)
1e3c88bd
PZ
4921{
4922 struct rq *busiest = NULL, *rq;
4923 unsigned long max_load = 0;
4924 int i;
4925
4926 for_each_cpu(i, sched_group_cpus(group)) {
4927 unsigned long power = power_of(i);
1399fa78
NR
4928 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4929 SCHED_POWER_SCALE);
1e3c88bd
PZ
4930 unsigned long wl;
4931
9d5efe05 4932 if (!capacity)
bd939f45 4933 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4934
b9403130 4935 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4936 continue;
4937
4938 rq = cpu_rq(i);
6e40f5bb 4939 wl = weighted_cpuload(i);
1e3c88bd 4940
6e40f5bb
TG
4941 /*
4942 * When comparing with imbalance, use weighted_cpuload()
4943 * which is not scaled with the cpu power.
4944 */
bd939f45 4945 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4946 continue;
4947
6e40f5bb
TG
4948 /*
4949 * For the load comparisons with the other cpu's, consider
4950 * the weighted_cpuload() scaled with the cpu power, so that
4951 * the load can be moved away from the cpu that is potentially
4952 * running at a lower capacity.
4953 */
1399fa78 4954 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4955
1e3c88bd
PZ
4956 if (wl > max_load) {
4957 max_load = wl;
4958 busiest = rq;
4959 }
4960 }
4961
4962 return busiest;
4963}
4964
4965/*
4966 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4967 * so long as it is large enough.
4968 */
4969#define MAX_PINNED_INTERVAL 512
4970
4971/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4972DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4973
bd939f45 4974static int need_active_balance(struct lb_env *env)
1af3ed3d 4975{
bd939f45
PZ
4976 struct sched_domain *sd = env->sd;
4977
4978 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4979
4980 /*
4981 * ASYM_PACKING needs to force migrate tasks from busy but
4982 * higher numbered CPUs in order to pack all tasks in the
4983 * lowest numbered CPUs.
4984 */
bd939f45 4985 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4986 return 1;
1af3ed3d
PZ
4987 }
4988
4989 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4990}
4991
969c7921
TH
4992static int active_load_balance_cpu_stop(void *data);
4993
1e3c88bd
PZ
4994/*
4995 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4996 * tasks if there is an imbalance.
4997 */
4998static int load_balance(int this_cpu, struct rq *this_rq,
4999 struct sched_domain *sd, enum cpu_idle_type idle,
5000 int *balance)
5001{
88b8dac0
SV
5002 int ld_moved, cur_ld_moved, active_balance = 0;
5003 int lb_iterations, max_lb_iterations;
1e3c88bd 5004 struct sched_group *group;
1e3c88bd
PZ
5005 struct rq *busiest;
5006 unsigned long flags;
5007 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5008
8e45cb54
PZ
5009 struct lb_env env = {
5010 .sd = sd,
ddcdf6e7
PZ
5011 .dst_cpu = this_cpu,
5012 .dst_rq = this_rq,
88b8dac0 5013 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5014 .idle = idle,
eb95308e 5015 .loop_break = sched_nr_migrate_break,
b9403130 5016 .cpus = cpus,
8e45cb54
PZ
5017 };
5018
1e3c88bd 5019 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 5020 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 5021
1e3c88bd
PZ
5022 schedstat_inc(sd, lb_count[idle]);
5023
5024redo:
b9403130 5025 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5026
5027 if (*balance == 0)
5028 goto out_balanced;
5029
5030 if (!group) {
5031 schedstat_inc(sd, lb_nobusyg[idle]);
5032 goto out_balanced;
5033 }
5034
b9403130 5035 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5036 if (!busiest) {
5037 schedstat_inc(sd, lb_nobusyq[idle]);
5038 goto out_balanced;
5039 }
5040
78feefc5 5041 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5042
bd939f45 5043 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5044
5045 ld_moved = 0;
88b8dac0 5046 lb_iterations = 1;
1e3c88bd
PZ
5047 if (busiest->nr_running > 1) {
5048 /*
5049 * Attempt to move tasks. If find_busiest_group has found
5050 * an imbalance but busiest->nr_running <= 1, the group is
5051 * still unbalanced. ld_moved simply stays zero, so it is
5052 * correctly treated as an imbalance.
5053 */
8e45cb54 5054 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5055 env.src_cpu = busiest->cpu;
5056 env.src_rq = busiest;
5057 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5058
a35b6466 5059 update_h_load(env.src_cpu);
5d6523eb 5060more_balance:
1e3c88bd 5061 local_irq_save(flags);
78feefc5 5062 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5063
5064 /*
5065 * cur_ld_moved - load moved in current iteration
5066 * ld_moved - cumulative load moved across iterations
5067 */
5068 cur_ld_moved = move_tasks(&env);
5069 ld_moved += cur_ld_moved;
78feefc5 5070 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5071 local_irq_restore(flags);
5072
5d6523eb
PZ
5073 if (env.flags & LBF_NEED_BREAK) {
5074 env.flags &= ~LBF_NEED_BREAK;
5075 goto more_balance;
5076 }
5077
1e3c88bd
PZ
5078 /*
5079 * some other cpu did the load balance for us.
5080 */
88b8dac0
SV
5081 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5082 resched_cpu(env.dst_cpu);
5083
5084 /*
5085 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5086 * us and move them to an alternate dst_cpu in our sched_group
5087 * where they can run. The upper limit on how many times we
5088 * iterate on same src_cpu is dependent on number of cpus in our
5089 * sched_group.
5090 *
5091 * This changes load balance semantics a bit on who can move
5092 * load to a given_cpu. In addition to the given_cpu itself
5093 * (or a ilb_cpu acting on its behalf where given_cpu is
5094 * nohz-idle), we now have balance_cpu in a position to move
5095 * load to given_cpu. In rare situations, this may cause
5096 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5097 * _independently_ and at _same_ time to move some load to
5098 * given_cpu) causing exceess load to be moved to given_cpu.
5099 * This however should not happen so much in practice and
5100 * moreover subsequent load balance cycles should correct the
5101 * excess load moved.
5102 */
5103 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5104 lb_iterations++ < max_lb_iterations) {
5105
78feefc5 5106 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5107 env.dst_cpu = env.new_dst_cpu;
5108 env.flags &= ~LBF_SOME_PINNED;
5109 env.loop = 0;
5110 env.loop_break = sched_nr_migrate_break;
5111 /*
5112 * Go back to "more_balance" rather than "redo" since we
5113 * need to continue with same src_cpu.
5114 */
5115 goto more_balance;
5116 }
1e3c88bd
PZ
5117
5118 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5119 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5120 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5121 if (!cpumask_empty(cpus)) {
5122 env.loop = 0;
5123 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5124 goto redo;
bbf18b19 5125 }
1e3c88bd
PZ
5126 goto out_balanced;
5127 }
5128 }
5129
5130 if (!ld_moved) {
5131 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5132 /*
5133 * Increment the failure counter only on periodic balance.
5134 * We do not want newidle balance, which can be very
5135 * frequent, pollute the failure counter causing
5136 * excessive cache_hot migrations and active balances.
5137 */
5138 if (idle != CPU_NEWLY_IDLE)
5139 sd->nr_balance_failed++;
1e3c88bd 5140
bd939f45 5141 if (need_active_balance(&env)) {
1e3c88bd
PZ
5142 raw_spin_lock_irqsave(&busiest->lock, flags);
5143
969c7921
TH
5144 /* don't kick the active_load_balance_cpu_stop,
5145 * if the curr task on busiest cpu can't be
5146 * moved to this_cpu
1e3c88bd
PZ
5147 */
5148 if (!cpumask_test_cpu(this_cpu,
fa17b507 5149 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5150 raw_spin_unlock_irqrestore(&busiest->lock,
5151 flags);
8e45cb54 5152 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5153 goto out_one_pinned;
5154 }
5155
969c7921
TH
5156 /*
5157 * ->active_balance synchronizes accesses to
5158 * ->active_balance_work. Once set, it's cleared
5159 * only after active load balance is finished.
5160 */
1e3c88bd
PZ
5161 if (!busiest->active_balance) {
5162 busiest->active_balance = 1;
5163 busiest->push_cpu = this_cpu;
5164 active_balance = 1;
5165 }
5166 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5167
bd939f45 5168 if (active_balance) {
969c7921
TH
5169 stop_one_cpu_nowait(cpu_of(busiest),
5170 active_load_balance_cpu_stop, busiest,
5171 &busiest->active_balance_work);
bd939f45 5172 }
1e3c88bd
PZ
5173
5174 /*
5175 * We've kicked active balancing, reset the failure
5176 * counter.
5177 */
5178 sd->nr_balance_failed = sd->cache_nice_tries+1;
5179 }
5180 } else
5181 sd->nr_balance_failed = 0;
5182
5183 if (likely(!active_balance)) {
5184 /* We were unbalanced, so reset the balancing interval */
5185 sd->balance_interval = sd->min_interval;
5186 } else {
5187 /*
5188 * If we've begun active balancing, start to back off. This
5189 * case may not be covered by the all_pinned logic if there
5190 * is only 1 task on the busy runqueue (because we don't call
5191 * move_tasks).
5192 */
5193 if (sd->balance_interval < sd->max_interval)
5194 sd->balance_interval *= 2;
5195 }
5196
1e3c88bd
PZ
5197 goto out;
5198
5199out_balanced:
5200 schedstat_inc(sd, lb_balanced[idle]);
5201
5202 sd->nr_balance_failed = 0;
5203
5204out_one_pinned:
5205 /* tune up the balancing interval */
8e45cb54 5206 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5207 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5208 (sd->balance_interval < sd->max_interval))
5209 sd->balance_interval *= 2;
5210
46e49b38 5211 ld_moved = 0;
1e3c88bd 5212out:
1e3c88bd
PZ
5213 return ld_moved;
5214}
5215
1e3c88bd
PZ
5216/*
5217 * idle_balance is called by schedule() if this_cpu is about to become
5218 * idle. Attempts to pull tasks from other CPUs.
5219 */
029632fb 5220void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5221{
5222 struct sched_domain *sd;
5223 int pulled_task = 0;
5224 unsigned long next_balance = jiffies + HZ;
5225
5226 this_rq->idle_stamp = this_rq->clock;
5227
5228 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5229 return;
5230
18bf2805
BS
5231 update_rq_runnable_avg(this_rq, 1);
5232
f492e12e
PZ
5233 /*
5234 * Drop the rq->lock, but keep IRQ/preempt disabled.
5235 */
5236 raw_spin_unlock(&this_rq->lock);
5237
48a16753 5238 update_blocked_averages(this_cpu);
dce840a0 5239 rcu_read_lock();
1e3c88bd
PZ
5240 for_each_domain(this_cpu, sd) {
5241 unsigned long interval;
f492e12e 5242 int balance = 1;
1e3c88bd
PZ
5243
5244 if (!(sd->flags & SD_LOAD_BALANCE))
5245 continue;
5246
f492e12e 5247 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5248 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5249 pulled_task = load_balance(this_cpu, this_rq,
5250 sd, CPU_NEWLY_IDLE, &balance);
5251 }
1e3c88bd
PZ
5252
5253 interval = msecs_to_jiffies(sd->balance_interval);
5254 if (time_after(next_balance, sd->last_balance + interval))
5255 next_balance = sd->last_balance + interval;
d5ad140b
NR
5256 if (pulled_task) {
5257 this_rq->idle_stamp = 0;
1e3c88bd 5258 break;
d5ad140b 5259 }
1e3c88bd 5260 }
dce840a0 5261 rcu_read_unlock();
f492e12e
PZ
5262
5263 raw_spin_lock(&this_rq->lock);
5264
1e3c88bd
PZ
5265 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5266 /*
5267 * We are going idle. next_balance may be set based on
5268 * a busy processor. So reset next_balance.
5269 */
5270 this_rq->next_balance = next_balance;
5271 }
5272}
5273
5274/*
969c7921
TH
5275 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5276 * running tasks off the busiest CPU onto idle CPUs. It requires at
5277 * least 1 task to be running on each physical CPU where possible, and
5278 * avoids physical / logical imbalances.
1e3c88bd 5279 */
969c7921 5280static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5281{
969c7921
TH
5282 struct rq *busiest_rq = data;
5283 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5284 int target_cpu = busiest_rq->push_cpu;
969c7921 5285 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5286 struct sched_domain *sd;
969c7921
TH
5287
5288 raw_spin_lock_irq(&busiest_rq->lock);
5289
5290 /* make sure the requested cpu hasn't gone down in the meantime */
5291 if (unlikely(busiest_cpu != smp_processor_id() ||
5292 !busiest_rq->active_balance))
5293 goto out_unlock;
1e3c88bd
PZ
5294
5295 /* Is there any task to move? */
5296 if (busiest_rq->nr_running <= 1)
969c7921 5297 goto out_unlock;
1e3c88bd
PZ
5298
5299 /*
5300 * This condition is "impossible", if it occurs
5301 * we need to fix it. Originally reported by
5302 * Bjorn Helgaas on a 128-cpu setup.
5303 */
5304 BUG_ON(busiest_rq == target_rq);
5305
5306 /* move a task from busiest_rq to target_rq */
5307 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5308
5309 /* Search for an sd spanning us and the target CPU. */
dce840a0 5310 rcu_read_lock();
1e3c88bd
PZ
5311 for_each_domain(target_cpu, sd) {
5312 if ((sd->flags & SD_LOAD_BALANCE) &&
5313 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5314 break;
5315 }
5316
5317 if (likely(sd)) {
8e45cb54
PZ
5318 struct lb_env env = {
5319 .sd = sd,
ddcdf6e7
PZ
5320 .dst_cpu = target_cpu,
5321 .dst_rq = target_rq,
5322 .src_cpu = busiest_rq->cpu,
5323 .src_rq = busiest_rq,
8e45cb54
PZ
5324 .idle = CPU_IDLE,
5325 };
5326
1e3c88bd
PZ
5327 schedstat_inc(sd, alb_count);
5328
8e45cb54 5329 if (move_one_task(&env))
1e3c88bd
PZ
5330 schedstat_inc(sd, alb_pushed);
5331 else
5332 schedstat_inc(sd, alb_failed);
5333 }
dce840a0 5334 rcu_read_unlock();
1e3c88bd 5335 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5336out_unlock:
5337 busiest_rq->active_balance = 0;
5338 raw_spin_unlock_irq(&busiest_rq->lock);
5339 return 0;
1e3c88bd
PZ
5340}
5341
5342#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5343/*
5344 * idle load balancing details
83cd4fe2
VP
5345 * - When one of the busy CPUs notice that there may be an idle rebalancing
5346 * needed, they will kick the idle load balancer, which then does idle
5347 * load balancing for all the idle CPUs.
5348 */
1e3c88bd 5349static struct {
83cd4fe2 5350 cpumask_var_t idle_cpus_mask;
0b005cf5 5351 atomic_t nr_cpus;
83cd4fe2
VP
5352 unsigned long next_balance; /* in jiffy units */
5353} nohz ____cacheline_aligned;
1e3c88bd 5354
8e7fbcbc 5355static inline int find_new_ilb(int call_cpu)
1e3c88bd 5356{
0b005cf5 5357 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5358
786d6dc7
SS
5359 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5360 return ilb;
5361
5362 return nr_cpu_ids;
1e3c88bd 5363}
1e3c88bd 5364
83cd4fe2
VP
5365/*
5366 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5367 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5368 * CPU (if there is one).
5369 */
5370static void nohz_balancer_kick(int cpu)
5371{
5372 int ilb_cpu;
5373
5374 nohz.next_balance++;
5375
0b005cf5 5376 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5377
0b005cf5
SS
5378 if (ilb_cpu >= nr_cpu_ids)
5379 return;
83cd4fe2 5380
cd490c5b 5381 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5382 return;
5383 /*
5384 * Use smp_send_reschedule() instead of resched_cpu().
5385 * This way we generate a sched IPI on the target cpu which
5386 * is idle. And the softirq performing nohz idle load balance
5387 * will be run before returning from the IPI.
5388 */
5389 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5390 return;
5391}
5392
c1cc017c 5393static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5394{
5395 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5396 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5397 atomic_dec(&nohz.nr_cpus);
5398 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5399 }
5400}
5401
69e1e811
SS
5402static inline void set_cpu_sd_state_busy(void)
5403{
5404 struct sched_domain *sd;
5405 int cpu = smp_processor_id();
5406
5407 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5408 return;
5409 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5410
5411 rcu_read_lock();
5412 for_each_domain(cpu, sd)
5413 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5414 rcu_read_unlock();
5415}
5416
5417void set_cpu_sd_state_idle(void)
5418{
5419 struct sched_domain *sd;
5420 int cpu = smp_processor_id();
5421
5422 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5423 return;
5424 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5425
5426 rcu_read_lock();
5427 for_each_domain(cpu, sd)
5428 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5429 rcu_read_unlock();
5430}
5431
1e3c88bd 5432/*
c1cc017c 5433 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5434 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5435 */
c1cc017c 5436void nohz_balance_enter_idle(int cpu)
1e3c88bd 5437{
71325960
SS
5438 /*
5439 * If this cpu is going down, then nothing needs to be done.
5440 */
5441 if (!cpu_active(cpu))
5442 return;
5443
c1cc017c
AS
5444 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5445 return;
1e3c88bd 5446
c1cc017c
AS
5447 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5448 atomic_inc(&nohz.nr_cpus);
5449 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5450}
71325960
SS
5451
5452static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5453 unsigned long action, void *hcpu)
5454{
5455 switch (action & ~CPU_TASKS_FROZEN) {
5456 case CPU_DYING:
c1cc017c 5457 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5458 return NOTIFY_OK;
5459 default:
5460 return NOTIFY_DONE;
5461 }
5462}
1e3c88bd
PZ
5463#endif
5464
5465static DEFINE_SPINLOCK(balancing);
5466
49c022e6
PZ
5467/*
5468 * Scale the max load_balance interval with the number of CPUs in the system.
5469 * This trades load-balance latency on larger machines for less cross talk.
5470 */
029632fb 5471void update_max_interval(void)
49c022e6
PZ
5472{
5473 max_load_balance_interval = HZ*num_online_cpus()/10;
5474}
5475
1e3c88bd
PZ
5476/*
5477 * It checks each scheduling domain to see if it is due to be balanced,
5478 * and initiates a balancing operation if so.
5479 *
5480 * Balancing parameters are set up in arch_init_sched_domains.
5481 */
5482static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5483{
5484 int balance = 1;
5485 struct rq *rq = cpu_rq(cpu);
5486 unsigned long interval;
04f733b4 5487 struct sched_domain *sd;
1e3c88bd
PZ
5488 /* Earliest time when we have to do rebalance again */
5489 unsigned long next_balance = jiffies + 60*HZ;
5490 int update_next_balance = 0;
5491 int need_serialize;
5492
48a16753 5493 update_blocked_averages(cpu);
2069dd75 5494
dce840a0 5495 rcu_read_lock();
1e3c88bd
PZ
5496 for_each_domain(cpu, sd) {
5497 if (!(sd->flags & SD_LOAD_BALANCE))
5498 continue;
5499
5500 interval = sd->balance_interval;
5501 if (idle != CPU_IDLE)
5502 interval *= sd->busy_factor;
5503
5504 /* scale ms to jiffies */
5505 interval = msecs_to_jiffies(interval);
49c022e6 5506 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5507
5508 need_serialize = sd->flags & SD_SERIALIZE;
5509
5510 if (need_serialize) {
5511 if (!spin_trylock(&balancing))
5512 goto out;
5513 }
5514
5515 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5516 if (load_balance(cpu, rq, sd, idle, &balance)) {
5517 /*
5518 * We've pulled tasks over so either we're no
c186fafe 5519 * longer idle.
1e3c88bd
PZ
5520 */
5521 idle = CPU_NOT_IDLE;
5522 }
5523 sd->last_balance = jiffies;
5524 }
5525 if (need_serialize)
5526 spin_unlock(&balancing);
5527out:
5528 if (time_after(next_balance, sd->last_balance + interval)) {
5529 next_balance = sd->last_balance + interval;
5530 update_next_balance = 1;
5531 }
5532
5533 /*
5534 * Stop the load balance at this level. There is another
5535 * CPU in our sched group which is doing load balancing more
5536 * actively.
5537 */
5538 if (!balance)
5539 break;
5540 }
dce840a0 5541 rcu_read_unlock();
1e3c88bd
PZ
5542
5543 /*
5544 * next_balance will be updated only when there is a need.
5545 * When the cpu is attached to null domain for ex, it will not be
5546 * updated.
5547 */
5548 if (likely(update_next_balance))
5549 rq->next_balance = next_balance;
5550}
5551
83cd4fe2 5552#ifdef CONFIG_NO_HZ
1e3c88bd 5553/*
83cd4fe2 5554 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5555 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5556 */
83cd4fe2
VP
5557static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5558{
5559 struct rq *this_rq = cpu_rq(this_cpu);
5560 struct rq *rq;
5561 int balance_cpu;
5562
1c792db7
SS
5563 if (idle != CPU_IDLE ||
5564 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5565 goto end;
83cd4fe2
VP
5566
5567 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5568 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5569 continue;
5570
5571 /*
5572 * If this cpu gets work to do, stop the load balancing
5573 * work being done for other cpus. Next load
5574 * balancing owner will pick it up.
5575 */
1c792db7 5576 if (need_resched())
83cd4fe2 5577 break;
83cd4fe2 5578
5ed4f1d9
VG
5579 rq = cpu_rq(balance_cpu);
5580
5581 raw_spin_lock_irq(&rq->lock);
5582 update_rq_clock(rq);
5583 update_idle_cpu_load(rq);
5584 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5585
5586 rebalance_domains(balance_cpu, CPU_IDLE);
5587
83cd4fe2
VP
5588 if (time_after(this_rq->next_balance, rq->next_balance))
5589 this_rq->next_balance = rq->next_balance;
5590 }
5591 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5592end:
5593 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5594}
5595
5596/*
0b005cf5
SS
5597 * Current heuristic for kicking the idle load balancer in the presence
5598 * of an idle cpu is the system.
5599 * - This rq has more than one task.
5600 * - At any scheduler domain level, this cpu's scheduler group has multiple
5601 * busy cpu's exceeding the group's power.
5602 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5603 * domain span are idle.
83cd4fe2
VP
5604 */
5605static inline int nohz_kick_needed(struct rq *rq, int cpu)
5606{
5607 unsigned long now = jiffies;
0b005cf5 5608 struct sched_domain *sd;
83cd4fe2 5609
1c792db7 5610 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5611 return 0;
5612
1c792db7
SS
5613 /*
5614 * We may be recently in ticked or tickless idle mode. At the first
5615 * busy tick after returning from idle, we will update the busy stats.
5616 */
69e1e811 5617 set_cpu_sd_state_busy();
c1cc017c 5618 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5619
5620 /*
5621 * None are in tickless mode and hence no need for NOHZ idle load
5622 * balancing.
5623 */
5624 if (likely(!atomic_read(&nohz.nr_cpus)))
5625 return 0;
1c792db7
SS
5626
5627 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5628 return 0;
5629
0b005cf5
SS
5630 if (rq->nr_running >= 2)
5631 goto need_kick;
83cd4fe2 5632
067491b7 5633 rcu_read_lock();
0b005cf5
SS
5634 for_each_domain(cpu, sd) {
5635 struct sched_group *sg = sd->groups;
5636 struct sched_group_power *sgp = sg->sgp;
5637 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5638
0b005cf5 5639 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5640 goto need_kick_unlock;
0b005cf5
SS
5641
5642 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5643 && (cpumask_first_and(nohz.idle_cpus_mask,
5644 sched_domain_span(sd)) < cpu))
067491b7 5645 goto need_kick_unlock;
0b005cf5
SS
5646
5647 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5648 break;
83cd4fe2 5649 }
067491b7 5650 rcu_read_unlock();
83cd4fe2 5651 return 0;
067491b7
PZ
5652
5653need_kick_unlock:
5654 rcu_read_unlock();
0b005cf5
SS
5655need_kick:
5656 return 1;
83cd4fe2
VP
5657}
5658#else
5659static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5660#endif
5661
5662/*
5663 * run_rebalance_domains is triggered when needed from the scheduler tick.
5664 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5665 */
1e3c88bd
PZ
5666static void run_rebalance_domains(struct softirq_action *h)
5667{
5668 int this_cpu = smp_processor_id();
5669 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5670 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5671 CPU_IDLE : CPU_NOT_IDLE;
5672
5673 rebalance_domains(this_cpu, idle);
5674
1e3c88bd 5675 /*
83cd4fe2 5676 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5677 * balancing on behalf of the other idle cpus whose ticks are
5678 * stopped.
5679 */
83cd4fe2 5680 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5681}
5682
5683static inline int on_null_domain(int cpu)
5684{
90a6501f 5685 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5686}
5687
5688/*
5689 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5690 */
029632fb 5691void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5692{
1e3c88bd
PZ
5693 /* Don't need to rebalance while attached to NULL domain */
5694 if (time_after_eq(jiffies, rq->next_balance) &&
5695 likely(!on_null_domain(cpu)))
5696 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5697#ifdef CONFIG_NO_HZ
1c792db7 5698 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5699 nohz_balancer_kick(cpu);
5700#endif
1e3c88bd
PZ
5701}
5702
0bcdcf28
CE
5703static void rq_online_fair(struct rq *rq)
5704{
5705 update_sysctl();
5706}
5707
5708static void rq_offline_fair(struct rq *rq)
5709{
5710 update_sysctl();
a4c96ae3
PB
5711
5712 /* Ensure any throttled groups are reachable by pick_next_task */
5713 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5714}
5715
55e12e5e 5716#endif /* CONFIG_SMP */
e1d1484f 5717
bf0f6f24
IM
5718/*
5719 * scheduler tick hitting a task of our scheduling class:
5720 */
8f4d37ec 5721static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5722{
5723 struct cfs_rq *cfs_rq;
5724 struct sched_entity *se = &curr->se;
5725
5726 for_each_sched_entity(se) {
5727 cfs_rq = cfs_rq_of(se);
8f4d37ec 5728 entity_tick(cfs_rq, se, queued);
bf0f6f24 5729 }
18bf2805 5730
cbee9f88
PZ
5731 if (sched_feat_numa(NUMA))
5732 task_tick_numa(rq, curr);
3d59eebc 5733
18bf2805 5734 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5735}
5736
5737/*
cd29fe6f
PZ
5738 * called on fork with the child task as argument from the parent's context
5739 * - child not yet on the tasklist
5740 * - preemption disabled
bf0f6f24 5741 */
cd29fe6f 5742static void task_fork_fair(struct task_struct *p)
bf0f6f24 5743{
4fc420c9
DN
5744 struct cfs_rq *cfs_rq;
5745 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5746 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5747 struct rq *rq = this_rq();
5748 unsigned long flags;
5749
05fa785c 5750 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5751
861d034e
PZ
5752 update_rq_clock(rq);
5753
4fc420c9
DN
5754 cfs_rq = task_cfs_rq(current);
5755 curr = cfs_rq->curr;
5756
b0a0f667
PM
5757 if (unlikely(task_cpu(p) != this_cpu)) {
5758 rcu_read_lock();
cd29fe6f 5759 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5760 rcu_read_unlock();
5761 }
bf0f6f24 5762
7109c442 5763 update_curr(cfs_rq);
cd29fe6f 5764
b5d9d734
MG
5765 if (curr)
5766 se->vruntime = curr->vruntime;
aeb73b04 5767 place_entity(cfs_rq, se, 1);
4d78e7b6 5768
cd29fe6f 5769 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5770 /*
edcb60a3
IM
5771 * Upon rescheduling, sched_class::put_prev_task() will place
5772 * 'current' within the tree based on its new key value.
5773 */
4d78e7b6 5774 swap(curr->vruntime, se->vruntime);
aec0a514 5775 resched_task(rq->curr);
4d78e7b6 5776 }
bf0f6f24 5777
88ec22d3
PZ
5778 se->vruntime -= cfs_rq->min_vruntime;
5779
05fa785c 5780 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5781}
5782
cb469845
SR
5783/*
5784 * Priority of the task has changed. Check to see if we preempt
5785 * the current task.
5786 */
da7a735e
PZ
5787static void
5788prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5789{
da7a735e
PZ
5790 if (!p->se.on_rq)
5791 return;
5792
cb469845
SR
5793 /*
5794 * Reschedule if we are currently running on this runqueue and
5795 * our priority decreased, or if we are not currently running on
5796 * this runqueue and our priority is higher than the current's
5797 */
da7a735e 5798 if (rq->curr == p) {
cb469845
SR
5799 if (p->prio > oldprio)
5800 resched_task(rq->curr);
5801 } else
15afe09b 5802 check_preempt_curr(rq, p, 0);
cb469845
SR
5803}
5804
da7a735e
PZ
5805static void switched_from_fair(struct rq *rq, struct task_struct *p)
5806{
5807 struct sched_entity *se = &p->se;
5808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5809
5810 /*
5811 * Ensure the task's vruntime is normalized, so that when its
5812 * switched back to the fair class the enqueue_entity(.flags=0) will
5813 * do the right thing.
5814 *
5815 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5816 * have normalized the vruntime, if it was !on_rq, then only when
5817 * the task is sleeping will it still have non-normalized vruntime.
5818 */
5819 if (!se->on_rq && p->state != TASK_RUNNING) {
5820 /*
5821 * Fix up our vruntime so that the current sleep doesn't
5822 * cause 'unlimited' sleep bonus.
5823 */
5824 place_entity(cfs_rq, se, 0);
5825 se->vruntime -= cfs_rq->min_vruntime;
5826 }
9ee474f5
PT
5827
5828#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5829 /*
5830 * Remove our load from contribution when we leave sched_fair
5831 * and ensure we don't carry in an old decay_count if we
5832 * switch back.
5833 */
5834 if (p->se.avg.decay_count) {
5835 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5836 __synchronize_entity_decay(&p->se);
5837 subtract_blocked_load_contrib(cfs_rq,
5838 p->se.avg.load_avg_contrib);
5839 }
5840#endif
da7a735e
PZ
5841}
5842
cb469845
SR
5843/*
5844 * We switched to the sched_fair class.
5845 */
da7a735e 5846static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5847{
da7a735e
PZ
5848 if (!p->se.on_rq)
5849 return;
5850
cb469845
SR
5851 /*
5852 * We were most likely switched from sched_rt, so
5853 * kick off the schedule if running, otherwise just see
5854 * if we can still preempt the current task.
5855 */
da7a735e 5856 if (rq->curr == p)
cb469845
SR
5857 resched_task(rq->curr);
5858 else
15afe09b 5859 check_preempt_curr(rq, p, 0);
cb469845
SR
5860}
5861
83b699ed
SV
5862/* Account for a task changing its policy or group.
5863 *
5864 * This routine is mostly called to set cfs_rq->curr field when a task
5865 * migrates between groups/classes.
5866 */
5867static void set_curr_task_fair(struct rq *rq)
5868{
5869 struct sched_entity *se = &rq->curr->se;
5870
ec12cb7f
PT
5871 for_each_sched_entity(se) {
5872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5873
5874 set_next_entity(cfs_rq, se);
5875 /* ensure bandwidth has been allocated on our new cfs_rq */
5876 account_cfs_rq_runtime(cfs_rq, 0);
5877 }
83b699ed
SV
5878}
5879
029632fb
PZ
5880void init_cfs_rq(struct cfs_rq *cfs_rq)
5881{
5882 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5883 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5884#ifndef CONFIG_64BIT
5885 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5886#endif
9ee474f5
PT
5887#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5888 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5889 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5890#endif
029632fb
PZ
5891}
5892
810b3817 5893#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5894static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5895{
aff3e498 5896 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5897 /*
5898 * If the task was not on the rq at the time of this cgroup movement
5899 * it must have been asleep, sleeping tasks keep their ->vruntime
5900 * absolute on their old rq until wakeup (needed for the fair sleeper
5901 * bonus in place_entity()).
5902 *
5903 * If it was on the rq, we've just 'preempted' it, which does convert
5904 * ->vruntime to a relative base.
5905 *
5906 * Make sure both cases convert their relative position when migrating
5907 * to another cgroup's rq. This does somewhat interfere with the
5908 * fair sleeper stuff for the first placement, but who cares.
5909 */
7ceff013
DN
5910 /*
5911 * When !on_rq, vruntime of the task has usually NOT been normalized.
5912 * But there are some cases where it has already been normalized:
5913 *
5914 * - Moving a forked child which is waiting for being woken up by
5915 * wake_up_new_task().
62af3783
DN
5916 * - Moving a task which has been woken up by try_to_wake_up() and
5917 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5918 *
5919 * To prevent boost or penalty in the new cfs_rq caused by delta
5920 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5921 */
62af3783 5922 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5923 on_rq = 1;
5924
b2b5ce02
PZ
5925 if (!on_rq)
5926 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5927 set_task_rq(p, task_cpu(p));
aff3e498
PT
5928 if (!on_rq) {
5929 cfs_rq = cfs_rq_of(&p->se);
5930 p->se.vruntime += cfs_rq->min_vruntime;
5931#ifdef CONFIG_SMP
5932 /*
5933 * migrate_task_rq_fair() will have removed our previous
5934 * contribution, but we must synchronize for ongoing future
5935 * decay.
5936 */
5937 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5938 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5939#endif
5940 }
810b3817 5941}
029632fb
PZ
5942
5943void free_fair_sched_group(struct task_group *tg)
5944{
5945 int i;
5946
5947 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5948
5949 for_each_possible_cpu(i) {
5950 if (tg->cfs_rq)
5951 kfree(tg->cfs_rq[i]);
5952 if (tg->se)
5953 kfree(tg->se[i]);
5954 }
5955
5956 kfree(tg->cfs_rq);
5957 kfree(tg->se);
5958}
5959
5960int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5961{
5962 struct cfs_rq *cfs_rq;
5963 struct sched_entity *se;
5964 int i;
5965
5966 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5967 if (!tg->cfs_rq)
5968 goto err;
5969 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5970 if (!tg->se)
5971 goto err;
5972
5973 tg->shares = NICE_0_LOAD;
5974
5975 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5976
5977 for_each_possible_cpu(i) {
5978 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5979 GFP_KERNEL, cpu_to_node(i));
5980 if (!cfs_rq)
5981 goto err;
5982
5983 se = kzalloc_node(sizeof(struct sched_entity),
5984 GFP_KERNEL, cpu_to_node(i));
5985 if (!se)
5986 goto err_free_rq;
5987
5988 init_cfs_rq(cfs_rq);
5989 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5990 }
5991
5992 return 1;
5993
5994err_free_rq:
5995 kfree(cfs_rq);
5996err:
5997 return 0;
5998}
5999
6000void unregister_fair_sched_group(struct task_group *tg, int cpu)
6001{
6002 struct rq *rq = cpu_rq(cpu);
6003 unsigned long flags;
6004
6005 /*
6006 * Only empty task groups can be destroyed; so we can speculatively
6007 * check on_list without danger of it being re-added.
6008 */
6009 if (!tg->cfs_rq[cpu]->on_list)
6010 return;
6011
6012 raw_spin_lock_irqsave(&rq->lock, flags);
6013 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6014 raw_spin_unlock_irqrestore(&rq->lock, flags);
6015}
6016
6017void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6018 struct sched_entity *se, int cpu,
6019 struct sched_entity *parent)
6020{
6021 struct rq *rq = cpu_rq(cpu);
6022
6023 cfs_rq->tg = tg;
6024 cfs_rq->rq = rq;
029632fb
PZ
6025 init_cfs_rq_runtime(cfs_rq);
6026
6027 tg->cfs_rq[cpu] = cfs_rq;
6028 tg->se[cpu] = se;
6029
6030 /* se could be NULL for root_task_group */
6031 if (!se)
6032 return;
6033
6034 if (!parent)
6035 se->cfs_rq = &rq->cfs;
6036 else
6037 se->cfs_rq = parent->my_q;
6038
6039 se->my_q = cfs_rq;
6040 update_load_set(&se->load, 0);
6041 se->parent = parent;
6042}
6043
6044static DEFINE_MUTEX(shares_mutex);
6045
6046int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6047{
6048 int i;
6049 unsigned long flags;
6050
6051 /*
6052 * We can't change the weight of the root cgroup.
6053 */
6054 if (!tg->se[0])
6055 return -EINVAL;
6056
6057 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6058
6059 mutex_lock(&shares_mutex);
6060 if (tg->shares == shares)
6061 goto done;
6062
6063 tg->shares = shares;
6064 for_each_possible_cpu(i) {
6065 struct rq *rq = cpu_rq(i);
6066 struct sched_entity *se;
6067
6068 se = tg->se[i];
6069 /* Propagate contribution to hierarchy */
6070 raw_spin_lock_irqsave(&rq->lock, flags);
17bc14b7 6071 for_each_sched_entity(se)
029632fb
PZ
6072 update_cfs_shares(group_cfs_rq(se));
6073 raw_spin_unlock_irqrestore(&rq->lock, flags);
6074 }
6075
6076done:
6077 mutex_unlock(&shares_mutex);
6078 return 0;
6079}
6080#else /* CONFIG_FAIR_GROUP_SCHED */
6081
6082void free_fair_sched_group(struct task_group *tg) { }
6083
6084int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6085{
6086 return 1;
6087}
6088
6089void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6090
6091#endif /* CONFIG_FAIR_GROUP_SCHED */
6092
810b3817 6093
6d686f45 6094static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6095{
6096 struct sched_entity *se = &task->se;
0d721cea
PW
6097 unsigned int rr_interval = 0;
6098
6099 /*
6100 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6101 * idle runqueue:
6102 */
0d721cea
PW
6103 if (rq->cfs.load.weight)
6104 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
6105
6106 return rr_interval;
6107}
6108
bf0f6f24
IM
6109/*
6110 * All the scheduling class methods:
6111 */
029632fb 6112const struct sched_class fair_sched_class = {
5522d5d5 6113 .next = &idle_sched_class,
bf0f6f24
IM
6114 .enqueue_task = enqueue_task_fair,
6115 .dequeue_task = dequeue_task_fair,
6116 .yield_task = yield_task_fair,
d95f4122 6117 .yield_to_task = yield_to_task_fair,
bf0f6f24 6118
2e09bf55 6119 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6120
6121 .pick_next_task = pick_next_task_fair,
6122 .put_prev_task = put_prev_task_fair,
6123
681f3e68 6124#ifdef CONFIG_SMP
4ce72a2c 6125 .select_task_rq = select_task_rq_fair,
f4e26b12 6126#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6127 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6128#endif
0bcdcf28
CE
6129 .rq_online = rq_online_fair,
6130 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6131
6132 .task_waking = task_waking_fair,
681f3e68 6133#endif
bf0f6f24 6134
83b699ed 6135 .set_curr_task = set_curr_task_fair,
bf0f6f24 6136 .task_tick = task_tick_fair,
cd29fe6f 6137 .task_fork = task_fork_fair,
cb469845
SR
6138
6139 .prio_changed = prio_changed_fair,
da7a735e 6140 .switched_from = switched_from_fair,
cb469845 6141 .switched_to = switched_to_fair,
810b3817 6142
0d721cea
PW
6143 .get_rr_interval = get_rr_interval_fair,
6144
810b3817 6145#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6146 .task_move_group = task_move_group_fair,
810b3817 6147#endif
bf0f6f24
IM
6148};
6149
6150#ifdef CONFIG_SCHED_DEBUG
029632fb 6151void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6152{
bf0f6f24
IM
6153 struct cfs_rq *cfs_rq;
6154
5973e5b9 6155 rcu_read_lock();
c3b64f1e 6156 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6157 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6158 rcu_read_unlock();
bf0f6f24
IM
6159}
6160#endif
029632fb
PZ
6161
6162__init void init_sched_fair_class(void)
6163{
6164#ifdef CONFIG_SMP
6165 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6166
6167#ifdef CONFIG_NO_HZ
554cecaf 6168 nohz.next_balance = jiffies;
029632fb 6169 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6170 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6171#endif
6172#endif /* SMP */
6173
6174}