sched: Move a few runnable tg variables into CONFIG_SMP
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
bf0f6f24
IM
683/*
684 * Update the current task's runtime statistics. Skip current tasks that
685 * are not in our scheduling class.
686 */
687static inline void
8ebc91d9
IM
688__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
689 unsigned long delta_exec)
bf0f6f24 690{
bbdba7c0 691 unsigned long delta_exec_weighted;
bf0f6f24 692
41acab88
LDM
693 schedstat_set(curr->statistics.exec_max,
694 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
695
696 curr->sum_exec_runtime += delta_exec;
7a62eabc 697 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 698 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 699
e9acbff6 700 curr->vruntime += delta_exec_weighted;
1af5f730 701 update_min_vruntime(cfs_rq);
bf0f6f24
IM
702}
703
b7cc0896 704static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 705{
429d43bc 706 struct sched_entity *curr = cfs_rq->curr;
78becc27 707 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
708 unsigned long delta_exec;
709
710 if (unlikely(!curr))
711 return;
712
713 /*
714 * Get the amount of time the current task was running
715 * since the last time we changed load (this cannot
716 * overflow on 32 bits):
717 */
8ebc91d9 718 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
719 if (!delta_exec)
720 return;
bf0f6f24 721
8ebc91d9
IM
722 __update_curr(cfs_rq, curr, delta_exec);
723 curr->exec_start = now;
d842de87
SV
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
736static inline void
5870db5b 737update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
78becc27 739 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
740}
741
bf0f6f24
IM
742/*
743 * Task is being enqueued - update stats:
744 */
d2417e5a 745static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
bf0f6f24
IM
747 /*
748 * Are we enqueueing a waiting task? (for current tasks
749 * a dequeue/enqueue event is a NOP)
750 */
429d43bc 751 if (se != cfs_rq->curr)
5870db5b 752 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
753}
754
bf0f6f24 755static void
9ef0a961 756update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
41acab88 758 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
760 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
761 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 762 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
763#ifdef CONFIG_SCHEDSTATS
764 if (entity_is_task(se)) {
765 trace_sched_stat_wait(task_of(se),
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767 }
768#endif
41acab88 769 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
770}
771
772static inline void
19b6a2e3 773update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 774{
bf0f6f24
IM
775 /*
776 * Mark the end of the wait period if dequeueing a
777 * waiting task:
778 */
429d43bc 779 if (se != cfs_rq->curr)
9ef0a961 780 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
781}
782
783/*
784 * We are picking a new current task - update its stats:
785 */
786static inline void
79303e9e 787update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
788{
789 /*
790 * We are starting a new run period:
791 */
78becc27 792 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
793}
794
bf0f6f24
IM
795/**************************************************
796 * Scheduling class queueing methods:
797 */
798
cbee9f88
PZ
799#ifdef CONFIG_NUMA_BALANCING
800/*
6e5fb223 801 * numa task sample period in ms
cbee9f88 802 */
6e5fb223 803unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
804unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
805unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
cbee9f88
PZ
813static void task_numa_placement(struct task_struct *p)
814{
2832bc19 815 int seq;
cbee9f88 816
2832bc19
HD
817 if (!p->mm) /* for example, ksmd faulting in a user's mm */
818 return;
819 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
820 if (p->numa_scan_seq == seq)
821 return;
822 p->numa_scan_seq = seq;
823
824 /* FIXME: Scheduling placement policy hints go here */
825}
826
827/*
828 * Got a PROT_NONE fault for a page on @node.
829 */
b8593bfd 830void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
831{
832 struct task_struct *p = current;
833
1a687c2e
MG
834 if (!sched_feat_numa(NUMA))
835 return;
836
cbee9f88
PZ
837 /* FIXME: Allocate task-specific structure for placement policy here */
838
fb003b80 839 /*
b8593bfd
MG
840 * If pages are properly placed (did not migrate) then scan slower.
841 * This is reset periodically in case of phase changes
fb003b80 842 */
b8593bfd
MG
843 if (!migrated)
844 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
845 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 846
cbee9f88
PZ
847 task_numa_placement(p);
848}
849
6e5fb223
PZ
850static void reset_ptenuma_scan(struct task_struct *p)
851{
852 ACCESS_ONCE(p->mm->numa_scan_seq)++;
853 p->mm->numa_scan_offset = 0;
854}
855
cbee9f88
PZ
856/*
857 * The expensive part of numa migration is done from task_work context.
858 * Triggered from task_tick_numa().
859 */
860void task_numa_work(struct callback_head *work)
861{
862 unsigned long migrate, next_scan, now = jiffies;
863 struct task_struct *p = current;
864 struct mm_struct *mm = p->mm;
6e5fb223 865 struct vm_area_struct *vma;
9f40604c
MG
866 unsigned long start, end;
867 long pages;
cbee9f88
PZ
868
869 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
870
871 work->next = work; /* protect against double add */
872 /*
873 * Who cares about NUMA placement when they're dying.
874 *
875 * NOTE: make sure not to dereference p->mm before this check,
876 * exit_task_work() happens _after_ exit_mm() so we could be called
877 * without p->mm even though we still had it when we enqueued this
878 * work.
879 */
880 if (p->flags & PF_EXITING)
881 return;
882
5bca2303
MG
883 /*
884 * We do not care about task placement until a task runs on a node
885 * other than the first one used by the address space. This is
886 * largely because migrations are driven by what CPU the task
887 * is running on. If it's never scheduled on another node, it'll
888 * not migrate so why bother trapping the fault.
889 */
890 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
891 mm->first_nid = numa_node_id();
892 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
893 /* Are we running on a new node yet? */
894 if (numa_node_id() == mm->first_nid &&
895 !sched_feat_numa(NUMA_FORCE))
896 return;
897
898 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
899 }
900
b8593bfd
MG
901 /*
902 * Reset the scan period if enough time has gone by. Objective is that
903 * scanning will be reduced if pages are properly placed. As tasks
904 * can enter different phases this needs to be re-examined. Lacking
905 * proper tracking of reference behaviour, this blunt hammer is used.
906 */
907 migrate = mm->numa_next_reset;
908 if (time_after(now, migrate)) {
909 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
910 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
911 xchg(&mm->numa_next_reset, next_scan);
912 }
913
cbee9f88
PZ
914 /*
915 * Enforce maximal scan/migration frequency..
916 */
917 migrate = mm->numa_next_scan;
918 if (time_before(now, migrate))
919 return;
920
921 if (p->numa_scan_period == 0)
922 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
923
fb003b80 924 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
925 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
926 return;
927
e14808b4
MG
928 /*
929 * Do not set pte_numa if the current running node is rate-limited.
930 * This loses statistics on the fault but if we are unwilling to
931 * migrate to this node, it is less likely we can do useful work
932 */
933 if (migrate_ratelimited(numa_node_id()))
934 return;
935
9f40604c
MG
936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
cbee9f88 941
6e5fb223 942 down_read(&mm->mmap_sem);
9f40604c 943 vma = find_vma(mm, start);
6e5fb223
PZ
944 if (!vma) {
945 reset_ptenuma_scan(p);
9f40604c 946 start = 0;
6e5fb223
PZ
947 vma = mm->mmap;
948 }
9f40604c 949 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
955 continue;
956
9f40604c
MG
957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
6e5fb223 962
9f40604c
MG
963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
cbee9f88 967 }
6e5fb223 968
9f40604c 969out:
6e5fb223
PZ
970 /*
971 * It is possible to reach the end of the VMA list but the last few VMAs are
972 * not guaranteed to the vma_migratable. If they are not, we would find the
973 * !migratable VMA on the next scan but not reset the scanner to the start
974 * so check it now.
975 */
976 if (vma)
9f40604c 977 mm->numa_scan_offset = start;
6e5fb223
PZ
978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
cbee9f88
PZ
981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1009 curr->node_stamp = now;
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
30cfdcfc
DA
1023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1027 if (!parent_entity(se))
029632fb 1028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
eb95308e 1031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1032#endif
30cfdcfc 1033 cfs_rq->nr_running++;
30cfdcfc
DA
1034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1040 if (!parent_entity(se))
029632fb 1041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1042 if (entity_is_task(se))
b87f1724 1043 list_del_init(&se->group_node);
30cfdcfc 1044 cfs_rq->nr_running--;
30cfdcfc
DA
1045}
1046
3ff6dcac
YZ
1047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
cf5f0acf
PZ
1049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
82958366
PT
1058 tg_weight = atomic64_read(&tg->load_avg);
1059 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
6d5ab293 1065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1066{
cf5f0acf 1067 long tg_weight, load, shares;
3ff6dcac 1068
cf5f0acf 1069 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1070 load = cfs_rq->load.weight;
3ff6dcac 1071
3ff6dcac 1072 shares = (tg->shares * load);
cf5f0acf
PZ
1073 if (tg_weight)
1074 shares /= tg_weight;
3ff6dcac
YZ
1075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
3ff6dcac 1083# else /* CONFIG_SMP */
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
3ff6dcac 1088# endif /* CONFIG_SMP */
2069dd75
PZ
1089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
19e5eebb
PT
1092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
2069dd75 1096 account_entity_dequeue(cfs_rq, se);
19e5eebb 1097 }
2069dd75
PZ
1098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
82958366
PT
1105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
6d5ab293 1107static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
3ff6dcac 1111 long shares;
2069dd75 1112
2069dd75
PZ
1113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1115 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1116 return;
3ff6dcac
YZ
1117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
6d5ab293 1121 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
141965c7 1131#ifdef CONFIG_SMP
5b51f2f8
PT
1132/*
1133 * We choose a half-life close to 1 scheduling period.
1134 * Note: The tables below are dependent on this value.
1135 */
1136#define LOAD_AVG_PERIOD 32
1137#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1138#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1139
1140/* Precomputed fixed inverse multiplies for multiplication by y^n */
1141static const u32 runnable_avg_yN_inv[] = {
1142 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1143 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1144 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1145 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1146 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1147 0x85aac367, 0x82cd8698,
1148};
1149
1150/*
1151 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1152 * over-estimates when re-combining.
1153 */
1154static const u32 runnable_avg_yN_sum[] = {
1155 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1156 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1157 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1158};
1159
9d85f21c
PT
1160/*
1161 * Approximate:
1162 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1163 */
1164static __always_inline u64 decay_load(u64 val, u64 n)
1165{
5b51f2f8
PT
1166 unsigned int local_n;
1167
1168 if (!n)
1169 return val;
1170 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1171 return 0;
1172
1173 /* after bounds checking we can collapse to 32-bit */
1174 local_n = n;
1175
1176 /*
1177 * As y^PERIOD = 1/2, we can combine
1178 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1179 * With a look-up table which covers k^n (n<PERIOD)
1180 *
1181 * To achieve constant time decay_load.
1182 */
1183 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1184 val >>= local_n / LOAD_AVG_PERIOD;
1185 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1186 }
1187
5b51f2f8
PT
1188 val *= runnable_avg_yN_inv[local_n];
1189 /* We don't use SRR here since we always want to round down. */
1190 return val >> 32;
1191}
1192
1193/*
1194 * For updates fully spanning n periods, the contribution to runnable
1195 * average will be: \Sum 1024*y^n
1196 *
1197 * We can compute this reasonably efficiently by combining:
1198 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1199 */
1200static u32 __compute_runnable_contrib(u64 n)
1201{
1202 u32 contrib = 0;
1203
1204 if (likely(n <= LOAD_AVG_PERIOD))
1205 return runnable_avg_yN_sum[n];
1206 else if (unlikely(n >= LOAD_AVG_MAX_N))
1207 return LOAD_AVG_MAX;
1208
1209 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1210 do {
1211 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1212 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1213
1214 n -= LOAD_AVG_PERIOD;
1215 } while (n > LOAD_AVG_PERIOD);
1216
1217 contrib = decay_load(contrib, n);
1218 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1219}
1220
1221/*
1222 * We can represent the historical contribution to runnable average as the
1223 * coefficients of a geometric series. To do this we sub-divide our runnable
1224 * history into segments of approximately 1ms (1024us); label the segment that
1225 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1226 *
1227 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1228 * p0 p1 p2
1229 * (now) (~1ms ago) (~2ms ago)
1230 *
1231 * Let u_i denote the fraction of p_i that the entity was runnable.
1232 *
1233 * We then designate the fractions u_i as our co-efficients, yielding the
1234 * following representation of historical load:
1235 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1236 *
1237 * We choose y based on the with of a reasonably scheduling period, fixing:
1238 * y^32 = 0.5
1239 *
1240 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1241 * approximately half as much as the contribution to load within the last ms
1242 * (u_0).
1243 *
1244 * When a period "rolls over" and we have new u_0`, multiplying the previous
1245 * sum again by y is sufficient to update:
1246 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1247 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1248 */
1249static __always_inline int __update_entity_runnable_avg(u64 now,
1250 struct sched_avg *sa,
1251 int runnable)
1252{
5b51f2f8
PT
1253 u64 delta, periods;
1254 u32 runnable_contrib;
9d85f21c
PT
1255 int delta_w, decayed = 0;
1256
1257 delta = now - sa->last_runnable_update;
1258 /*
1259 * This should only happen when time goes backwards, which it
1260 * unfortunately does during sched clock init when we swap over to TSC.
1261 */
1262 if ((s64)delta < 0) {
1263 sa->last_runnable_update = now;
1264 return 0;
1265 }
1266
1267 /*
1268 * Use 1024ns as the unit of measurement since it's a reasonable
1269 * approximation of 1us and fast to compute.
1270 */
1271 delta >>= 10;
1272 if (!delta)
1273 return 0;
1274 sa->last_runnable_update = now;
1275
1276 /* delta_w is the amount already accumulated against our next period */
1277 delta_w = sa->runnable_avg_period % 1024;
1278 if (delta + delta_w >= 1024) {
1279 /* period roll-over */
1280 decayed = 1;
1281
1282 /*
1283 * Now that we know we're crossing a period boundary, figure
1284 * out how much from delta we need to complete the current
1285 * period and accrue it.
1286 */
1287 delta_w = 1024 - delta_w;
5b51f2f8
PT
1288 if (runnable)
1289 sa->runnable_avg_sum += delta_w;
1290 sa->runnable_avg_period += delta_w;
1291
1292 delta -= delta_w;
1293
1294 /* Figure out how many additional periods this update spans */
1295 periods = delta / 1024;
1296 delta %= 1024;
1297
1298 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1299 periods + 1);
1300 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1301 periods + 1);
1302
1303 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1304 runnable_contrib = __compute_runnable_contrib(periods);
1305 if (runnable)
1306 sa->runnable_avg_sum += runnable_contrib;
1307 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1308 }
1309
1310 /* Remainder of delta accrued against u_0` */
1311 if (runnable)
1312 sa->runnable_avg_sum += delta;
1313 sa->runnable_avg_period += delta;
1314
1315 return decayed;
1316}
1317
9ee474f5 1318/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1319static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1320{
1321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1322 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1323
1324 decays -= se->avg.decay_count;
1325 if (!decays)
aff3e498 1326 return 0;
9ee474f5
PT
1327
1328 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1329 se->avg.decay_count = 0;
aff3e498
PT
1330
1331 return decays;
9ee474f5
PT
1332}
1333
c566e8e9
PT
1334#ifdef CONFIG_FAIR_GROUP_SCHED
1335static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1336 int force_update)
1337{
1338 struct task_group *tg = cfs_rq->tg;
1339 s64 tg_contrib;
1340
1341 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1342 tg_contrib -= cfs_rq->tg_load_contrib;
1343
1344 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1345 atomic64_add(tg_contrib, &tg->load_avg);
1346 cfs_rq->tg_load_contrib += tg_contrib;
1347 }
1348}
8165e145 1349
bb17f655
PT
1350/*
1351 * Aggregate cfs_rq runnable averages into an equivalent task_group
1352 * representation for computing load contributions.
1353 */
1354static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1355 struct cfs_rq *cfs_rq)
1356{
1357 struct task_group *tg = cfs_rq->tg;
1358 long contrib;
1359
1360 /* The fraction of a cpu used by this cfs_rq */
1361 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1362 sa->runnable_avg_period + 1);
1363 contrib -= cfs_rq->tg_runnable_contrib;
1364
1365 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1366 atomic_add(contrib, &tg->runnable_avg);
1367 cfs_rq->tg_runnable_contrib += contrib;
1368 }
1369}
1370
8165e145
PT
1371static inline void __update_group_entity_contrib(struct sched_entity *se)
1372{
1373 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1374 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1375 int runnable_avg;
1376
8165e145
PT
1377 u64 contrib;
1378
1379 contrib = cfs_rq->tg_load_contrib * tg->shares;
1380 se->avg.load_avg_contrib = div64_u64(contrib,
1381 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1382
1383 /*
1384 * For group entities we need to compute a correction term in the case
1385 * that they are consuming <1 cpu so that we would contribute the same
1386 * load as a task of equal weight.
1387 *
1388 * Explicitly co-ordinating this measurement would be expensive, but
1389 * fortunately the sum of each cpus contribution forms a usable
1390 * lower-bound on the true value.
1391 *
1392 * Consider the aggregate of 2 contributions. Either they are disjoint
1393 * (and the sum represents true value) or they are disjoint and we are
1394 * understating by the aggregate of their overlap.
1395 *
1396 * Extending this to N cpus, for a given overlap, the maximum amount we
1397 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1398 * cpus that overlap for this interval and w_i is the interval width.
1399 *
1400 * On a small machine; the first term is well-bounded which bounds the
1401 * total error since w_i is a subset of the period. Whereas on a
1402 * larger machine, while this first term can be larger, if w_i is the
1403 * of consequential size guaranteed to see n_i*w_i quickly converge to
1404 * our upper bound of 1-cpu.
1405 */
1406 runnable_avg = atomic_read(&tg->runnable_avg);
1407 if (runnable_avg < NICE_0_LOAD) {
1408 se->avg.load_avg_contrib *= runnable_avg;
1409 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1410 }
8165e145 1411}
c566e8e9
PT
1412#else
1413static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1414 int force_update) {}
bb17f655
PT
1415static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1416 struct cfs_rq *cfs_rq) {}
8165e145 1417static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1418#endif
1419
8165e145
PT
1420static inline void __update_task_entity_contrib(struct sched_entity *se)
1421{
1422 u32 contrib;
1423
1424 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1425 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1426 contrib /= (se->avg.runnable_avg_period + 1);
1427 se->avg.load_avg_contrib = scale_load(contrib);
1428}
1429
2dac754e
PT
1430/* Compute the current contribution to load_avg by se, return any delta */
1431static long __update_entity_load_avg_contrib(struct sched_entity *se)
1432{
1433 long old_contrib = se->avg.load_avg_contrib;
1434
8165e145
PT
1435 if (entity_is_task(se)) {
1436 __update_task_entity_contrib(se);
1437 } else {
bb17f655 1438 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1439 __update_group_entity_contrib(se);
1440 }
2dac754e
PT
1441
1442 return se->avg.load_avg_contrib - old_contrib;
1443}
1444
9ee474f5
PT
1445static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1446 long load_contrib)
1447{
1448 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1449 cfs_rq->blocked_load_avg -= load_contrib;
1450 else
1451 cfs_rq->blocked_load_avg = 0;
1452}
1453
f1b17280
PT
1454static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1455
9d85f21c 1456/* Update a sched_entity's runnable average */
9ee474f5
PT
1457static inline void update_entity_load_avg(struct sched_entity *se,
1458 int update_cfs_rq)
9d85f21c 1459{
2dac754e
PT
1460 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1461 long contrib_delta;
f1b17280 1462 u64 now;
2dac754e 1463
f1b17280
PT
1464 /*
1465 * For a group entity we need to use their owned cfs_rq_clock_task() in
1466 * case they are the parent of a throttled hierarchy.
1467 */
1468 if (entity_is_task(se))
1469 now = cfs_rq_clock_task(cfs_rq);
1470 else
1471 now = cfs_rq_clock_task(group_cfs_rq(se));
1472
1473 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1474 return;
1475
1476 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1477
1478 if (!update_cfs_rq)
1479 return;
1480
2dac754e
PT
1481 if (se->on_rq)
1482 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1483 else
1484 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1485}
1486
1487/*
1488 * Decay the load contributed by all blocked children and account this so that
1489 * their contribution may appropriately discounted when they wake up.
1490 */
aff3e498 1491static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1492{
f1b17280 1493 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1494 u64 decays;
1495
1496 decays = now - cfs_rq->last_decay;
aff3e498 1497 if (!decays && !force_update)
9ee474f5
PT
1498 return;
1499
aff3e498
PT
1500 if (atomic64_read(&cfs_rq->removed_load)) {
1501 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1502 subtract_blocked_load_contrib(cfs_rq, removed_load);
1503 }
9ee474f5 1504
aff3e498
PT
1505 if (decays) {
1506 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1507 decays);
1508 atomic64_add(decays, &cfs_rq->decay_counter);
1509 cfs_rq->last_decay = now;
1510 }
c566e8e9
PT
1511
1512 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1513}
18bf2805
BS
1514
1515static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1516{
78becc27 1517 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1518 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1519}
2dac754e
PT
1520
1521/* Add the load generated by se into cfs_rq's child load-average */
1522static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1523 struct sched_entity *se,
1524 int wakeup)
2dac754e 1525{
aff3e498
PT
1526 /*
1527 * We track migrations using entity decay_count <= 0, on a wake-up
1528 * migration we use a negative decay count to track the remote decays
1529 * accumulated while sleeping.
1530 */
1531 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1532 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1533 if (se->avg.decay_count) {
1534 /*
1535 * In a wake-up migration we have to approximate the
1536 * time sleeping. This is because we can't synchronize
1537 * clock_task between the two cpus, and it is not
1538 * guaranteed to be read-safe. Instead, we can
1539 * approximate this using our carried decays, which are
1540 * explicitly atomically readable.
1541 */
1542 se->avg.last_runnable_update -= (-se->avg.decay_count)
1543 << 20;
1544 update_entity_load_avg(se, 0);
1545 /* Indicate that we're now synchronized and on-rq */
1546 se->avg.decay_count = 0;
1547 }
9ee474f5
PT
1548 wakeup = 0;
1549 } else {
1550 __synchronize_entity_decay(se);
1551 }
1552
aff3e498
PT
1553 /* migrated tasks did not contribute to our blocked load */
1554 if (wakeup) {
9ee474f5 1555 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1556 update_entity_load_avg(se, 0);
1557 }
9ee474f5 1558
2dac754e 1559 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1560 /* we force update consideration on load-balancer moves */
1561 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1562}
1563
9ee474f5
PT
1564/*
1565 * Remove se's load from this cfs_rq child load-average, if the entity is
1566 * transitioning to a blocked state we track its projected decay using
1567 * blocked_load_avg.
1568 */
2dac754e 1569static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1570 struct sched_entity *se,
1571 int sleep)
2dac754e 1572{
9ee474f5 1573 update_entity_load_avg(se, 1);
aff3e498
PT
1574 /* we force update consideration on load-balancer moves */
1575 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1576
2dac754e 1577 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1578 if (sleep) {
1579 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1580 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1581 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1582}
642dbc39
VG
1583
1584/*
1585 * Update the rq's load with the elapsed running time before entering
1586 * idle. if the last scheduled task is not a CFS task, idle_enter will
1587 * be the only way to update the runnable statistic.
1588 */
1589void idle_enter_fair(struct rq *this_rq)
1590{
1591 update_rq_runnable_avg(this_rq, 1);
1592}
1593
1594/*
1595 * Update the rq's load with the elapsed idle time before a task is
1596 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1597 * be the only way to update the runnable statistic.
1598 */
1599void idle_exit_fair(struct rq *this_rq)
1600{
1601 update_rq_runnable_avg(this_rq, 0);
1602}
1603
9d85f21c 1604#else
9ee474f5
PT
1605static inline void update_entity_load_avg(struct sched_entity *se,
1606 int update_cfs_rq) {}
18bf2805 1607static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1608static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1609 struct sched_entity *se,
1610 int wakeup) {}
2dac754e 1611static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1612 struct sched_entity *se,
1613 int sleep) {}
aff3e498
PT
1614static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1615 int force_update) {}
9d85f21c
PT
1616#endif
1617
2396af69 1618static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1619{
bf0f6f24 1620#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1621 struct task_struct *tsk = NULL;
1622
1623 if (entity_is_task(se))
1624 tsk = task_of(se);
1625
41acab88 1626 if (se->statistics.sleep_start) {
78becc27 1627 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1628
1629 if ((s64)delta < 0)
1630 delta = 0;
1631
41acab88
LDM
1632 if (unlikely(delta > se->statistics.sleep_max))
1633 se->statistics.sleep_max = delta;
bf0f6f24 1634
8c79a045 1635 se->statistics.sleep_start = 0;
41acab88 1636 se->statistics.sum_sleep_runtime += delta;
9745512c 1637
768d0c27 1638 if (tsk) {
e414314c 1639 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1640 trace_sched_stat_sleep(tsk, delta);
1641 }
bf0f6f24 1642 }
41acab88 1643 if (se->statistics.block_start) {
78becc27 1644 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1645
1646 if ((s64)delta < 0)
1647 delta = 0;
1648
41acab88
LDM
1649 if (unlikely(delta > se->statistics.block_max))
1650 se->statistics.block_max = delta;
bf0f6f24 1651
8c79a045 1652 se->statistics.block_start = 0;
41acab88 1653 se->statistics.sum_sleep_runtime += delta;
30084fbd 1654
e414314c 1655 if (tsk) {
8f0dfc34 1656 if (tsk->in_iowait) {
41acab88
LDM
1657 se->statistics.iowait_sum += delta;
1658 se->statistics.iowait_count++;
768d0c27 1659 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1660 }
1661
b781a602
AV
1662 trace_sched_stat_blocked(tsk, delta);
1663
e414314c
PZ
1664 /*
1665 * Blocking time is in units of nanosecs, so shift by
1666 * 20 to get a milliseconds-range estimation of the
1667 * amount of time that the task spent sleeping:
1668 */
1669 if (unlikely(prof_on == SLEEP_PROFILING)) {
1670 profile_hits(SLEEP_PROFILING,
1671 (void *)get_wchan(tsk),
1672 delta >> 20);
1673 }
1674 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1675 }
bf0f6f24
IM
1676 }
1677#endif
1678}
1679
ddc97297
PZ
1680static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1681{
1682#ifdef CONFIG_SCHED_DEBUG
1683 s64 d = se->vruntime - cfs_rq->min_vruntime;
1684
1685 if (d < 0)
1686 d = -d;
1687
1688 if (d > 3*sysctl_sched_latency)
1689 schedstat_inc(cfs_rq, nr_spread_over);
1690#endif
1691}
1692
aeb73b04
PZ
1693static void
1694place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1695{
1af5f730 1696 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1697
2cb8600e
PZ
1698 /*
1699 * The 'current' period is already promised to the current tasks,
1700 * however the extra weight of the new task will slow them down a
1701 * little, place the new task so that it fits in the slot that
1702 * stays open at the end.
1703 */
94dfb5e7 1704 if (initial && sched_feat(START_DEBIT))
f9c0b095 1705 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1706
a2e7a7eb 1707 /* sleeps up to a single latency don't count. */
5ca9880c 1708 if (!initial) {
a2e7a7eb 1709 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1710
a2e7a7eb
MG
1711 /*
1712 * Halve their sleep time's effect, to allow
1713 * for a gentler effect of sleepers:
1714 */
1715 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1716 thresh >>= 1;
51e0304c 1717
a2e7a7eb 1718 vruntime -= thresh;
aeb73b04
PZ
1719 }
1720
b5d9d734 1721 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1722 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1723}
1724
d3d9dc33
PT
1725static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1726
bf0f6f24 1727static void
88ec22d3 1728enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1729{
88ec22d3
PZ
1730 /*
1731 * Update the normalized vruntime before updating min_vruntime
1732 * through callig update_curr().
1733 */
371fd7e7 1734 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1735 se->vruntime += cfs_rq->min_vruntime;
1736
bf0f6f24 1737 /*
a2a2d680 1738 * Update run-time statistics of the 'current'.
bf0f6f24 1739 */
b7cc0896 1740 update_curr(cfs_rq);
f269ae04 1741 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1742 account_entity_enqueue(cfs_rq, se);
1743 update_cfs_shares(cfs_rq);
bf0f6f24 1744
88ec22d3 1745 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1746 place_entity(cfs_rq, se, 0);
2396af69 1747 enqueue_sleeper(cfs_rq, se);
e9acbff6 1748 }
bf0f6f24 1749
d2417e5a 1750 update_stats_enqueue(cfs_rq, se);
ddc97297 1751 check_spread(cfs_rq, se);
83b699ed
SV
1752 if (se != cfs_rq->curr)
1753 __enqueue_entity(cfs_rq, se);
2069dd75 1754 se->on_rq = 1;
3d4b47b4 1755
d3d9dc33 1756 if (cfs_rq->nr_running == 1) {
3d4b47b4 1757 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1758 check_enqueue_throttle(cfs_rq);
1759 }
bf0f6f24
IM
1760}
1761
2c13c919 1762static void __clear_buddies_last(struct sched_entity *se)
2002c695 1763{
2c13c919
RR
1764 for_each_sched_entity(se) {
1765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1766 if (cfs_rq->last == se)
1767 cfs_rq->last = NULL;
1768 else
1769 break;
1770 }
1771}
2002c695 1772
2c13c919
RR
1773static void __clear_buddies_next(struct sched_entity *se)
1774{
1775 for_each_sched_entity(se) {
1776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1777 if (cfs_rq->next == se)
1778 cfs_rq->next = NULL;
1779 else
1780 break;
1781 }
2002c695
PZ
1782}
1783
ac53db59
RR
1784static void __clear_buddies_skip(struct sched_entity *se)
1785{
1786 for_each_sched_entity(se) {
1787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1788 if (cfs_rq->skip == se)
1789 cfs_rq->skip = NULL;
1790 else
1791 break;
1792 }
1793}
1794
a571bbea
PZ
1795static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1796{
2c13c919
RR
1797 if (cfs_rq->last == se)
1798 __clear_buddies_last(se);
1799
1800 if (cfs_rq->next == se)
1801 __clear_buddies_next(se);
ac53db59
RR
1802
1803 if (cfs_rq->skip == se)
1804 __clear_buddies_skip(se);
a571bbea
PZ
1805}
1806
6c16a6dc 1807static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1808
bf0f6f24 1809static void
371fd7e7 1810dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1811{
a2a2d680
DA
1812 /*
1813 * Update run-time statistics of the 'current'.
1814 */
1815 update_curr(cfs_rq);
17bc14b7 1816 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1817
19b6a2e3 1818 update_stats_dequeue(cfs_rq, se);
371fd7e7 1819 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1820#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1821 if (entity_is_task(se)) {
1822 struct task_struct *tsk = task_of(se);
1823
1824 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1825 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1826 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1827 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1828 }
db36cc7d 1829#endif
67e9fb2a
PZ
1830 }
1831
2002c695 1832 clear_buddies(cfs_rq, se);
4793241b 1833
83b699ed 1834 if (se != cfs_rq->curr)
30cfdcfc 1835 __dequeue_entity(cfs_rq, se);
17bc14b7 1836 se->on_rq = 0;
30cfdcfc 1837 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1838
1839 /*
1840 * Normalize the entity after updating the min_vruntime because the
1841 * update can refer to the ->curr item and we need to reflect this
1842 * movement in our normalized position.
1843 */
371fd7e7 1844 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1845 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1846
d8b4986d
PT
1847 /* return excess runtime on last dequeue */
1848 return_cfs_rq_runtime(cfs_rq);
1849
1e876231 1850 update_min_vruntime(cfs_rq);
17bc14b7 1851 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1852}
1853
1854/*
1855 * Preempt the current task with a newly woken task if needed:
1856 */
7c92e54f 1857static void
2e09bf55 1858check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1859{
11697830 1860 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1861 struct sched_entity *se;
1862 s64 delta;
11697830 1863
6d0f0ebd 1864 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1865 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1866 if (delta_exec > ideal_runtime) {
bf0f6f24 1867 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1868 /*
1869 * The current task ran long enough, ensure it doesn't get
1870 * re-elected due to buddy favours.
1871 */
1872 clear_buddies(cfs_rq, curr);
f685ceac
MG
1873 return;
1874 }
1875
1876 /*
1877 * Ensure that a task that missed wakeup preemption by a
1878 * narrow margin doesn't have to wait for a full slice.
1879 * This also mitigates buddy induced latencies under load.
1880 */
f685ceac
MG
1881 if (delta_exec < sysctl_sched_min_granularity)
1882 return;
1883
f4cfb33e
WX
1884 se = __pick_first_entity(cfs_rq);
1885 delta = curr->vruntime - se->vruntime;
f685ceac 1886
f4cfb33e
WX
1887 if (delta < 0)
1888 return;
d7d82944 1889
f4cfb33e
WX
1890 if (delta > ideal_runtime)
1891 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1892}
1893
83b699ed 1894static void
8494f412 1895set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1896{
83b699ed
SV
1897 /* 'current' is not kept within the tree. */
1898 if (se->on_rq) {
1899 /*
1900 * Any task has to be enqueued before it get to execute on
1901 * a CPU. So account for the time it spent waiting on the
1902 * runqueue.
1903 */
1904 update_stats_wait_end(cfs_rq, se);
1905 __dequeue_entity(cfs_rq, se);
1906 }
1907
79303e9e 1908 update_stats_curr_start(cfs_rq, se);
429d43bc 1909 cfs_rq->curr = se;
eba1ed4b
IM
1910#ifdef CONFIG_SCHEDSTATS
1911 /*
1912 * Track our maximum slice length, if the CPU's load is at
1913 * least twice that of our own weight (i.e. dont track it
1914 * when there are only lesser-weight tasks around):
1915 */
495eca49 1916 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1917 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1918 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1919 }
1920#endif
4a55b450 1921 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1922}
1923
3f3a4904
PZ
1924static int
1925wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1926
ac53db59
RR
1927/*
1928 * Pick the next process, keeping these things in mind, in this order:
1929 * 1) keep things fair between processes/task groups
1930 * 2) pick the "next" process, since someone really wants that to run
1931 * 3) pick the "last" process, for cache locality
1932 * 4) do not run the "skip" process, if something else is available
1933 */
f4b6755f 1934static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1935{
ac53db59 1936 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1937 struct sched_entity *left = se;
f4b6755f 1938
ac53db59
RR
1939 /*
1940 * Avoid running the skip buddy, if running something else can
1941 * be done without getting too unfair.
1942 */
1943 if (cfs_rq->skip == se) {
1944 struct sched_entity *second = __pick_next_entity(se);
1945 if (second && wakeup_preempt_entity(second, left) < 1)
1946 se = second;
1947 }
aa2ac252 1948
f685ceac
MG
1949 /*
1950 * Prefer last buddy, try to return the CPU to a preempted task.
1951 */
1952 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1953 se = cfs_rq->last;
1954
ac53db59
RR
1955 /*
1956 * Someone really wants this to run. If it's not unfair, run it.
1957 */
1958 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1959 se = cfs_rq->next;
1960
f685ceac 1961 clear_buddies(cfs_rq, se);
4793241b
PZ
1962
1963 return se;
aa2ac252
PZ
1964}
1965
d3d9dc33
PT
1966static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1967
ab6cde26 1968static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1969{
1970 /*
1971 * If still on the runqueue then deactivate_task()
1972 * was not called and update_curr() has to be done:
1973 */
1974 if (prev->on_rq)
b7cc0896 1975 update_curr(cfs_rq);
bf0f6f24 1976
d3d9dc33
PT
1977 /* throttle cfs_rqs exceeding runtime */
1978 check_cfs_rq_runtime(cfs_rq);
1979
ddc97297 1980 check_spread(cfs_rq, prev);
30cfdcfc 1981 if (prev->on_rq) {
5870db5b 1982 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1983 /* Put 'current' back into the tree. */
1984 __enqueue_entity(cfs_rq, prev);
9d85f21c 1985 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1986 update_entity_load_avg(prev, 1);
30cfdcfc 1987 }
429d43bc 1988 cfs_rq->curr = NULL;
bf0f6f24
IM
1989}
1990
8f4d37ec
PZ
1991static void
1992entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1993{
bf0f6f24 1994 /*
30cfdcfc 1995 * Update run-time statistics of the 'current'.
bf0f6f24 1996 */
30cfdcfc 1997 update_curr(cfs_rq);
bf0f6f24 1998
9d85f21c
PT
1999 /*
2000 * Ensure that runnable average is periodically updated.
2001 */
9ee474f5 2002 update_entity_load_avg(curr, 1);
aff3e498 2003 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2004
8f4d37ec
PZ
2005#ifdef CONFIG_SCHED_HRTICK
2006 /*
2007 * queued ticks are scheduled to match the slice, so don't bother
2008 * validating it and just reschedule.
2009 */
983ed7a6
HH
2010 if (queued) {
2011 resched_task(rq_of(cfs_rq)->curr);
2012 return;
2013 }
8f4d37ec
PZ
2014 /*
2015 * don't let the period tick interfere with the hrtick preemption
2016 */
2017 if (!sched_feat(DOUBLE_TICK) &&
2018 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2019 return;
2020#endif
2021
2c2efaed 2022 if (cfs_rq->nr_running > 1)
2e09bf55 2023 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2024}
2025
ab84d31e
PT
2026
2027/**************************************************
2028 * CFS bandwidth control machinery
2029 */
2030
2031#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2032
2033#ifdef HAVE_JUMP_LABEL
c5905afb 2034static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2035
2036static inline bool cfs_bandwidth_used(void)
2037{
c5905afb 2038 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2039}
2040
2041void account_cfs_bandwidth_used(int enabled, int was_enabled)
2042{
2043 /* only need to count groups transitioning between enabled/!enabled */
2044 if (enabled && !was_enabled)
c5905afb 2045 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2046 else if (!enabled && was_enabled)
c5905afb 2047 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2048}
2049#else /* HAVE_JUMP_LABEL */
2050static bool cfs_bandwidth_used(void)
2051{
2052 return true;
2053}
2054
2055void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2056#endif /* HAVE_JUMP_LABEL */
2057
ab84d31e
PT
2058/*
2059 * default period for cfs group bandwidth.
2060 * default: 0.1s, units: nanoseconds
2061 */
2062static inline u64 default_cfs_period(void)
2063{
2064 return 100000000ULL;
2065}
ec12cb7f
PT
2066
2067static inline u64 sched_cfs_bandwidth_slice(void)
2068{
2069 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2070}
2071
a9cf55b2
PT
2072/*
2073 * Replenish runtime according to assigned quota and update expiration time.
2074 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2075 * additional synchronization around rq->lock.
2076 *
2077 * requires cfs_b->lock
2078 */
029632fb 2079void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2080{
2081 u64 now;
2082
2083 if (cfs_b->quota == RUNTIME_INF)
2084 return;
2085
2086 now = sched_clock_cpu(smp_processor_id());
2087 cfs_b->runtime = cfs_b->quota;
2088 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2089}
2090
029632fb
PZ
2091static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2092{
2093 return &tg->cfs_bandwidth;
2094}
2095
f1b17280
PT
2096/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2097static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2098{
2099 if (unlikely(cfs_rq->throttle_count))
2100 return cfs_rq->throttled_clock_task;
2101
78becc27 2102 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2103}
2104
85dac906
PT
2105/* returns 0 on failure to allocate runtime */
2106static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2107{
2108 struct task_group *tg = cfs_rq->tg;
2109 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2110 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2111
2112 /* note: this is a positive sum as runtime_remaining <= 0 */
2113 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2114
2115 raw_spin_lock(&cfs_b->lock);
2116 if (cfs_b->quota == RUNTIME_INF)
2117 amount = min_amount;
58088ad0 2118 else {
a9cf55b2
PT
2119 /*
2120 * If the bandwidth pool has become inactive, then at least one
2121 * period must have elapsed since the last consumption.
2122 * Refresh the global state and ensure bandwidth timer becomes
2123 * active.
2124 */
2125 if (!cfs_b->timer_active) {
2126 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2127 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2128 }
58088ad0
PT
2129
2130 if (cfs_b->runtime > 0) {
2131 amount = min(cfs_b->runtime, min_amount);
2132 cfs_b->runtime -= amount;
2133 cfs_b->idle = 0;
2134 }
ec12cb7f 2135 }
a9cf55b2 2136 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2137 raw_spin_unlock(&cfs_b->lock);
2138
2139 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2140 /*
2141 * we may have advanced our local expiration to account for allowed
2142 * spread between our sched_clock and the one on which runtime was
2143 * issued.
2144 */
2145 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2146 cfs_rq->runtime_expires = expires;
85dac906
PT
2147
2148 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2149}
2150
a9cf55b2
PT
2151/*
2152 * Note: This depends on the synchronization provided by sched_clock and the
2153 * fact that rq->clock snapshots this value.
2154 */
2155static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2156{
a9cf55b2 2157 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2158
2159 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2160 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2161 return;
2162
a9cf55b2
PT
2163 if (cfs_rq->runtime_remaining < 0)
2164 return;
2165
2166 /*
2167 * If the local deadline has passed we have to consider the
2168 * possibility that our sched_clock is 'fast' and the global deadline
2169 * has not truly expired.
2170 *
2171 * Fortunately we can check determine whether this the case by checking
2172 * whether the global deadline has advanced.
2173 */
2174
2175 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2176 /* extend local deadline, drift is bounded above by 2 ticks */
2177 cfs_rq->runtime_expires += TICK_NSEC;
2178 } else {
2179 /* global deadline is ahead, expiration has passed */
2180 cfs_rq->runtime_remaining = 0;
2181 }
2182}
2183
2184static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2185 unsigned long delta_exec)
2186{
2187 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2188 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2189 expire_cfs_rq_runtime(cfs_rq);
2190
2191 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2192 return;
2193
85dac906
PT
2194 /*
2195 * if we're unable to extend our runtime we resched so that the active
2196 * hierarchy can be throttled
2197 */
2198 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2199 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2200}
2201
6c16a6dc
PZ
2202static __always_inline
2203void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2204{
56f570e5 2205 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2206 return;
2207
2208 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2209}
2210
85dac906
PT
2211static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2212{
56f570e5 2213 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2214}
2215
64660c86
PT
2216/* check whether cfs_rq, or any parent, is throttled */
2217static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2218{
56f570e5 2219 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2220}
2221
2222/*
2223 * Ensure that neither of the group entities corresponding to src_cpu or
2224 * dest_cpu are members of a throttled hierarchy when performing group
2225 * load-balance operations.
2226 */
2227static inline int throttled_lb_pair(struct task_group *tg,
2228 int src_cpu, int dest_cpu)
2229{
2230 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2231
2232 src_cfs_rq = tg->cfs_rq[src_cpu];
2233 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2234
2235 return throttled_hierarchy(src_cfs_rq) ||
2236 throttled_hierarchy(dest_cfs_rq);
2237}
2238
2239/* updated child weight may affect parent so we have to do this bottom up */
2240static int tg_unthrottle_up(struct task_group *tg, void *data)
2241{
2242 struct rq *rq = data;
2243 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2244
2245 cfs_rq->throttle_count--;
2246#ifdef CONFIG_SMP
2247 if (!cfs_rq->throttle_count) {
f1b17280 2248 /* adjust cfs_rq_clock_task() */
78becc27 2249 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2250 cfs_rq->throttled_clock_task;
64660c86
PT
2251 }
2252#endif
2253
2254 return 0;
2255}
2256
2257static int tg_throttle_down(struct task_group *tg, void *data)
2258{
2259 struct rq *rq = data;
2260 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2261
82958366
PT
2262 /* group is entering throttled state, stop time */
2263 if (!cfs_rq->throttle_count)
78becc27 2264 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2265 cfs_rq->throttle_count++;
2266
2267 return 0;
2268}
2269
d3d9dc33 2270static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2271{
2272 struct rq *rq = rq_of(cfs_rq);
2273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2274 struct sched_entity *se;
2275 long task_delta, dequeue = 1;
2276
2277 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2278
f1b17280 2279 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2280 rcu_read_lock();
2281 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2282 rcu_read_unlock();
85dac906
PT
2283
2284 task_delta = cfs_rq->h_nr_running;
2285 for_each_sched_entity(se) {
2286 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2287 /* throttled entity or throttle-on-deactivate */
2288 if (!se->on_rq)
2289 break;
2290
2291 if (dequeue)
2292 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2293 qcfs_rq->h_nr_running -= task_delta;
2294
2295 if (qcfs_rq->load.weight)
2296 dequeue = 0;
2297 }
2298
2299 if (!se)
2300 rq->nr_running -= task_delta;
2301
2302 cfs_rq->throttled = 1;
78becc27 2303 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2304 raw_spin_lock(&cfs_b->lock);
2305 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2306 raw_spin_unlock(&cfs_b->lock);
2307}
2308
029632fb 2309void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2310{
2311 struct rq *rq = rq_of(cfs_rq);
2312 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2313 struct sched_entity *se;
2314 int enqueue = 1;
2315 long task_delta;
2316
22b958d8 2317 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2318
2319 cfs_rq->throttled = 0;
1a55af2e
FW
2320
2321 update_rq_clock(rq);
2322
671fd9da 2323 raw_spin_lock(&cfs_b->lock);
78becc27 2324 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2325 list_del_rcu(&cfs_rq->throttled_list);
2326 raw_spin_unlock(&cfs_b->lock);
2327
64660c86
PT
2328 /* update hierarchical throttle state */
2329 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2330
671fd9da
PT
2331 if (!cfs_rq->load.weight)
2332 return;
2333
2334 task_delta = cfs_rq->h_nr_running;
2335 for_each_sched_entity(se) {
2336 if (se->on_rq)
2337 enqueue = 0;
2338
2339 cfs_rq = cfs_rq_of(se);
2340 if (enqueue)
2341 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2342 cfs_rq->h_nr_running += task_delta;
2343
2344 if (cfs_rq_throttled(cfs_rq))
2345 break;
2346 }
2347
2348 if (!se)
2349 rq->nr_running += task_delta;
2350
2351 /* determine whether we need to wake up potentially idle cpu */
2352 if (rq->curr == rq->idle && rq->cfs.nr_running)
2353 resched_task(rq->curr);
2354}
2355
2356static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2357 u64 remaining, u64 expires)
2358{
2359 struct cfs_rq *cfs_rq;
2360 u64 runtime = remaining;
2361
2362 rcu_read_lock();
2363 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2364 throttled_list) {
2365 struct rq *rq = rq_of(cfs_rq);
2366
2367 raw_spin_lock(&rq->lock);
2368 if (!cfs_rq_throttled(cfs_rq))
2369 goto next;
2370
2371 runtime = -cfs_rq->runtime_remaining + 1;
2372 if (runtime > remaining)
2373 runtime = remaining;
2374 remaining -= runtime;
2375
2376 cfs_rq->runtime_remaining += runtime;
2377 cfs_rq->runtime_expires = expires;
2378
2379 /* we check whether we're throttled above */
2380 if (cfs_rq->runtime_remaining > 0)
2381 unthrottle_cfs_rq(cfs_rq);
2382
2383next:
2384 raw_spin_unlock(&rq->lock);
2385
2386 if (!remaining)
2387 break;
2388 }
2389 rcu_read_unlock();
2390
2391 return remaining;
2392}
2393
58088ad0
PT
2394/*
2395 * Responsible for refilling a task_group's bandwidth and unthrottling its
2396 * cfs_rqs as appropriate. If there has been no activity within the last
2397 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2398 * used to track this state.
2399 */
2400static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2401{
671fd9da
PT
2402 u64 runtime, runtime_expires;
2403 int idle = 1, throttled;
58088ad0
PT
2404
2405 raw_spin_lock(&cfs_b->lock);
2406 /* no need to continue the timer with no bandwidth constraint */
2407 if (cfs_b->quota == RUNTIME_INF)
2408 goto out_unlock;
2409
671fd9da
PT
2410 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2411 /* idle depends on !throttled (for the case of a large deficit) */
2412 idle = cfs_b->idle && !throttled;
e8da1b18 2413 cfs_b->nr_periods += overrun;
671fd9da 2414
a9cf55b2
PT
2415 /* if we're going inactive then everything else can be deferred */
2416 if (idle)
2417 goto out_unlock;
2418
2419 __refill_cfs_bandwidth_runtime(cfs_b);
2420
671fd9da
PT
2421 if (!throttled) {
2422 /* mark as potentially idle for the upcoming period */
2423 cfs_b->idle = 1;
2424 goto out_unlock;
2425 }
2426
e8da1b18
NR
2427 /* account preceding periods in which throttling occurred */
2428 cfs_b->nr_throttled += overrun;
2429
671fd9da
PT
2430 /*
2431 * There are throttled entities so we must first use the new bandwidth
2432 * to unthrottle them before making it generally available. This
2433 * ensures that all existing debts will be paid before a new cfs_rq is
2434 * allowed to run.
2435 */
2436 runtime = cfs_b->runtime;
2437 runtime_expires = cfs_b->runtime_expires;
2438 cfs_b->runtime = 0;
2439
2440 /*
2441 * This check is repeated as we are holding onto the new bandwidth
2442 * while we unthrottle. This can potentially race with an unthrottled
2443 * group trying to acquire new bandwidth from the global pool.
2444 */
2445 while (throttled && runtime > 0) {
2446 raw_spin_unlock(&cfs_b->lock);
2447 /* we can't nest cfs_b->lock while distributing bandwidth */
2448 runtime = distribute_cfs_runtime(cfs_b, runtime,
2449 runtime_expires);
2450 raw_spin_lock(&cfs_b->lock);
2451
2452 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2453 }
58088ad0 2454
671fd9da
PT
2455 /* return (any) remaining runtime */
2456 cfs_b->runtime = runtime;
2457 /*
2458 * While we are ensured activity in the period following an
2459 * unthrottle, this also covers the case in which the new bandwidth is
2460 * insufficient to cover the existing bandwidth deficit. (Forcing the
2461 * timer to remain active while there are any throttled entities.)
2462 */
2463 cfs_b->idle = 0;
58088ad0
PT
2464out_unlock:
2465 if (idle)
2466 cfs_b->timer_active = 0;
2467 raw_spin_unlock(&cfs_b->lock);
2468
2469 return idle;
2470}
d3d9dc33 2471
d8b4986d
PT
2472/* a cfs_rq won't donate quota below this amount */
2473static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2474/* minimum remaining period time to redistribute slack quota */
2475static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2476/* how long we wait to gather additional slack before distributing */
2477static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2478
2479/* are we near the end of the current quota period? */
2480static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2481{
2482 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2483 u64 remaining;
2484
2485 /* if the call-back is running a quota refresh is already occurring */
2486 if (hrtimer_callback_running(refresh_timer))
2487 return 1;
2488
2489 /* is a quota refresh about to occur? */
2490 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2491 if (remaining < min_expire)
2492 return 1;
2493
2494 return 0;
2495}
2496
2497static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2498{
2499 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2500
2501 /* if there's a quota refresh soon don't bother with slack */
2502 if (runtime_refresh_within(cfs_b, min_left))
2503 return;
2504
2505 start_bandwidth_timer(&cfs_b->slack_timer,
2506 ns_to_ktime(cfs_bandwidth_slack_period));
2507}
2508
2509/* we know any runtime found here is valid as update_curr() precedes return */
2510static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2511{
2512 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2513 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2514
2515 if (slack_runtime <= 0)
2516 return;
2517
2518 raw_spin_lock(&cfs_b->lock);
2519 if (cfs_b->quota != RUNTIME_INF &&
2520 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2521 cfs_b->runtime += slack_runtime;
2522
2523 /* we are under rq->lock, defer unthrottling using a timer */
2524 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2525 !list_empty(&cfs_b->throttled_cfs_rq))
2526 start_cfs_slack_bandwidth(cfs_b);
2527 }
2528 raw_spin_unlock(&cfs_b->lock);
2529
2530 /* even if it's not valid for return we don't want to try again */
2531 cfs_rq->runtime_remaining -= slack_runtime;
2532}
2533
2534static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2535{
56f570e5
PT
2536 if (!cfs_bandwidth_used())
2537 return;
2538
fccfdc6f 2539 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2540 return;
2541
2542 __return_cfs_rq_runtime(cfs_rq);
2543}
2544
2545/*
2546 * This is done with a timer (instead of inline with bandwidth return) since
2547 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2548 */
2549static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2550{
2551 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2552 u64 expires;
2553
2554 /* confirm we're still not at a refresh boundary */
2555 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2556 return;
2557
2558 raw_spin_lock(&cfs_b->lock);
2559 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2560 runtime = cfs_b->runtime;
2561 cfs_b->runtime = 0;
2562 }
2563 expires = cfs_b->runtime_expires;
2564 raw_spin_unlock(&cfs_b->lock);
2565
2566 if (!runtime)
2567 return;
2568
2569 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2570
2571 raw_spin_lock(&cfs_b->lock);
2572 if (expires == cfs_b->runtime_expires)
2573 cfs_b->runtime = runtime;
2574 raw_spin_unlock(&cfs_b->lock);
2575}
2576
d3d9dc33
PT
2577/*
2578 * When a group wakes up we want to make sure that its quota is not already
2579 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2580 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2581 */
2582static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2583{
56f570e5
PT
2584 if (!cfs_bandwidth_used())
2585 return;
2586
d3d9dc33
PT
2587 /* an active group must be handled by the update_curr()->put() path */
2588 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2589 return;
2590
2591 /* ensure the group is not already throttled */
2592 if (cfs_rq_throttled(cfs_rq))
2593 return;
2594
2595 /* update runtime allocation */
2596 account_cfs_rq_runtime(cfs_rq, 0);
2597 if (cfs_rq->runtime_remaining <= 0)
2598 throttle_cfs_rq(cfs_rq);
2599}
2600
2601/* conditionally throttle active cfs_rq's from put_prev_entity() */
2602static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2603{
56f570e5
PT
2604 if (!cfs_bandwidth_used())
2605 return;
2606
d3d9dc33
PT
2607 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2608 return;
2609
2610 /*
2611 * it's possible for a throttled entity to be forced into a running
2612 * state (e.g. set_curr_task), in this case we're finished.
2613 */
2614 if (cfs_rq_throttled(cfs_rq))
2615 return;
2616
2617 throttle_cfs_rq(cfs_rq);
2618}
029632fb 2619
029632fb
PZ
2620static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2621{
2622 struct cfs_bandwidth *cfs_b =
2623 container_of(timer, struct cfs_bandwidth, slack_timer);
2624 do_sched_cfs_slack_timer(cfs_b);
2625
2626 return HRTIMER_NORESTART;
2627}
2628
2629static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2630{
2631 struct cfs_bandwidth *cfs_b =
2632 container_of(timer, struct cfs_bandwidth, period_timer);
2633 ktime_t now;
2634 int overrun;
2635 int idle = 0;
2636
2637 for (;;) {
2638 now = hrtimer_cb_get_time(timer);
2639 overrun = hrtimer_forward(timer, now, cfs_b->period);
2640
2641 if (!overrun)
2642 break;
2643
2644 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2645 }
2646
2647 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2648}
2649
2650void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2651{
2652 raw_spin_lock_init(&cfs_b->lock);
2653 cfs_b->runtime = 0;
2654 cfs_b->quota = RUNTIME_INF;
2655 cfs_b->period = ns_to_ktime(default_cfs_period());
2656
2657 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2658 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2659 cfs_b->period_timer.function = sched_cfs_period_timer;
2660 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2661 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2662}
2663
2664static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2665{
2666 cfs_rq->runtime_enabled = 0;
2667 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2668}
2669
2670/* requires cfs_b->lock, may release to reprogram timer */
2671void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2672{
2673 /*
2674 * The timer may be active because we're trying to set a new bandwidth
2675 * period or because we're racing with the tear-down path
2676 * (timer_active==0 becomes visible before the hrtimer call-back
2677 * terminates). In either case we ensure that it's re-programmed
2678 */
2679 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2680 raw_spin_unlock(&cfs_b->lock);
2681 /* ensure cfs_b->lock is available while we wait */
2682 hrtimer_cancel(&cfs_b->period_timer);
2683
2684 raw_spin_lock(&cfs_b->lock);
2685 /* if someone else restarted the timer then we're done */
2686 if (cfs_b->timer_active)
2687 return;
2688 }
2689
2690 cfs_b->timer_active = 1;
2691 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2692}
2693
2694static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2695{
2696 hrtimer_cancel(&cfs_b->period_timer);
2697 hrtimer_cancel(&cfs_b->slack_timer);
2698}
2699
38dc3348 2700static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2701{
2702 struct cfs_rq *cfs_rq;
2703
2704 for_each_leaf_cfs_rq(rq, cfs_rq) {
2705 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2706
2707 if (!cfs_rq->runtime_enabled)
2708 continue;
2709
2710 /*
2711 * clock_task is not advancing so we just need to make sure
2712 * there's some valid quota amount
2713 */
2714 cfs_rq->runtime_remaining = cfs_b->quota;
2715 if (cfs_rq_throttled(cfs_rq))
2716 unthrottle_cfs_rq(cfs_rq);
2717 }
2718}
2719
2720#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2721static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2722{
78becc27 2723 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2724}
2725
2726static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2727 unsigned long delta_exec) {}
d3d9dc33
PT
2728static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2729static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2730static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2731
2732static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2733{
2734 return 0;
2735}
64660c86
PT
2736
2737static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2738{
2739 return 0;
2740}
2741
2742static inline int throttled_lb_pair(struct task_group *tg,
2743 int src_cpu, int dest_cpu)
2744{
2745 return 0;
2746}
029632fb
PZ
2747
2748void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2749
2750#ifdef CONFIG_FAIR_GROUP_SCHED
2751static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2752#endif
2753
029632fb
PZ
2754static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2755{
2756 return NULL;
2757}
2758static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2759static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2760
2761#endif /* CONFIG_CFS_BANDWIDTH */
2762
bf0f6f24
IM
2763/**************************************************
2764 * CFS operations on tasks:
2765 */
2766
8f4d37ec
PZ
2767#ifdef CONFIG_SCHED_HRTICK
2768static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2769{
8f4d37ec
PZ
2770 struct sched_entity *se = &p->se;
2771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2772
2773 WARN_ON(task_rq(p) != rq);
2774
b39e66ea 2775 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2776 u64 slice = sched_slice(cfs_rq, se);
2777 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2778 s64 delta = slice - ran;
2779
2780 if (delta < 0) {
2781 if (rq->curr == p)
2782 resched_task(p);
2783 return;
2784 }
2785
2786 /*
2787 * Don't schedule slices shorter than 10000ns, that just
2788 * doesn't make sense. Rely on vruntime for fairness.
2789 */
31656519 2790 if (rq->curr != p)
157124c1 2791 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2792
31656519 2793 hrtick_start(rq, delta);
8f4d37ec
PZ
2794 }
2795}
a4c2f00f
PZ
2796
2797/*
2798 * called from enqueue/dequeue and updates the hrtick when the
2799 * current task is from our class and nr_running is low enough
2800 * to matter.
2801 */
2802static void hrtick_update(struct rq *rq)
2803{
2804 struct task_struct *curr = rq->curr;
2805
b39e66ea 2806 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2807 return;
2808
2809 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2810 hrtick_start_fair(rq, curr);
2811}
55e12e5e 2812#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2813static inline void
2814hrtick_start_fair(struct rq *rq, struct task_struct *p)
2815{
2816}
a4c2f00f
PZ
2817
2818static inline void hrtick_update(struct rq *rq)
2819{
2820}
8f4d37ec
PZ
2821#endif
2822
bf0f6f24
IM
2823/*
2824 * The enqueue_task method is called before nr_running is
2825 * increased. Here we update the fair scheduling stats and
2826 * then put the task into the rbtree:
2827 */
ea87bb78 2828static void
371fd7e7 2829enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2830{
2831 struct cfs_rq *cfs_rq;
62fb1851 2832 struct sched_entity *se = &p->se;
bf0f6f24
IM
2833
2834 for_each_sched_entity(se) {
62fb1851 2835 if (se->on_rq)
bf0f6f24
IM
2836 break;
2837 cfs_rq = cfs_rq_of(se);
88ec22d3 2838 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2839
2840 /*
2841 * end evaluation on encountering a throttled cfs_rq
2842 *
2843 * note: in the case of encountering a throttled cfs_rq we will
2844 * post the final h_nr_running increment below.
2845 */
2846 if (cfs_rq_throttled(cfs_rq))
2847 break;
953bfcd1 2848 cfs_rq->h_nr_running++;
85dac906 2849
88ec22d3 2850 flags = ENQUEUE_WAKEUP;
bf0f6f24 2851 }
8f4d37ec 2852
2069dd75 2853 for_each_sched_entity(se) {
0f317143 2854 cfs_rq = cfs_rq_of(se);
953bfcd1 2855 cfs_rq->h_nr_running++;
2069dd75 2856
85dac906
PT
2857 if (cfs_rq_throttled(cfs_rq))
2858 break;
2859
17bc14b7 2860 update_cfs_shares(cfs_rq);
9ee474f5 2861 update_entity_load_avg(se, 1);
2069dd75
PZ
2862 }
2863
18bf2805
BS
2864 if (!se) {
2865 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2866 inc_nr_running(rq);
18bf2805 2867 }
a4c2f00f 2868 hrtick_update(rq);
bf0f6f24
IM
2869}
2870
2f36825b
VP
2871static void set_next_buddy(struct sched_entity *se);
2872
bf0f6f24
IM
2873/*
2874 * The dequeue_task method is called before nr_running is
2875 * decreased. We remove the task from the rbtree and
2876 * update the fair scheduling stats:
2877 */
371fd7e7 2878static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2879{
2880 struct cfs_rq *cfs_rq;
62fb1851 2881 struct sched_entity *se = &p->se;
2f36825b 2882 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2883
2884 for_each_sched_entity(se) {
2885 cfs_rq = cfs_rq_of(se);
371fd7e7 2886 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2887
2888 /*
2889 * end evaluation on encountering a throttled cfs_rq
2890 *
2891 * note: in the case of encountering a throttled cfs_rq we will
2892 * post the final h_nr_running decrement below.
2893 */
2894 if (cfs_rq_throttled(cfs_rq))
2895 break;
953bfcd1 2896 cfs_rq->h_nr_running--;
2069dd75 2897
bf0f6f24 2898 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2899 if (cfs_rq->load.weight) {
2900 /*
2901 * Bias pick_next to pick a task from this cfs_rq, as
2902 * p is sleeping when it is within its sched_slice.
2903 */
2904 if (task_sleep && parent_entity(se))
2905 set_next_buddy(parent_entity(se));
9598c82d
PT
2906
2907 /* avoid re-evaluating load for this entity */
2908 se = parent_entity(se);
bf0f6f24 2909 break;
2f36825b 2910 }
371fd7e7 2911 flags |= DEQUEUE_SLEEP;
bf0f6f24 2912 }
8f4d37ec 2913
2069dd75 2914 for_each_sched_entity(se) {
0f317143 2915 cfs_rq = cfs_rq_of(se);
953bfcd1 2916 cfs_rq->h_nr_running--;
2069dd75 2917
85dac906
PT
2918 if (cfs_rq_throttled(cfs_rq))
2919 break;
2920
17bc14b7 2921 update_cfs_shares(cfs_rq);
9ee474f5 2922 update_entity_load_avg(se, 1);
2069dd75
PZ
2923 }
2924
18bf2805 2925 if (!se) {
85dac906 2926 dec_nr_running(rq);
18bf2805
BS
2927 update_rq_runnable_avg(rq, 1);
2928 }
a4c2f00f 2929 hrtick_update(rq);
bf0f6f24
IM
2930}
2931
e7693a36 2932#ifdef CONFIG_SMP
029632fb
PZ
2933/* Used instead of source_load when we know the type == 0 */
2934static unsigned long weighted_cpuload(const int cpu)
2935{
2936 return cpu_rq(cpu)->load.weight;
2937}
2938
2939/*
2940 * Return a low guess at the load of a migration-source cpu weighted
2941 * according to the scheduling class and "nice" value.
2942 *
2943 * We want to under-estimate the load of migration sources, to
2944 * balance conservatively.
2945 */
2946static unsigned long source_load(int cpu, int type)
2947{
2948 struct rq *rq = cpu_rq(cpu);
2949 unsigned long total = weighted_cpuload(cpu);
2950
2951 if (type == 0 || !sched_feat(LB_BIAS))
2952 return total;
2953
2954 return min(rq->cpu_load[type-1], total);
2955}
2956
2957/*
2958 * Return a high guess at the load of a migration-target cpu weighted
2959 * according to the scheduling class and "nice" value.
2960 */
2961static unsigned long target_load(int cpu, int type)
2962{
2963 struct rq *rq = cpu_rq(cpu);
2964 unsigned long total = weighted_cpuload(cpu);
2965
2966 if (type == 0 || !sched_feat(LB_BIAS))
2967 return total;
2968
2969 return max(rq->cpu_load[type-1], total);
2970}
2971
2972static unsigned long power_of(int cpu)
2973{
2974 return cpu_rq(cpu)->cpu_power;
2975}
2976
2977static unsigned long cpu_avg_load_per_task(int cpu)
2978{
2979 struct rq *rq = cpu_rq(cpu);
2980 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2981
2982 if (nr_running)
2983 return rq->load.weight / nr_running;
2984
2985 return 0;
2986}
2987
098fb9db 2988
74f8e4b2 2989static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2990{
2991 struct sched_entity *se = &p->se;
2992 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2993 u64 min_vruntime;
2994
2995#ifndef CONFIG_64BIT
2996 u64 min_vruntime_copy;
88ec22d3 2997
3fe1698b
PZ
2998 do {
2999 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3000 smp_rmb();
3001 min_vruntime = cfs_rq->min_vruntime;
3002 } while (min_vruntime != min_vruntime_copy);
3003#else
3004 min_vruntime = cfs_rq->min_vruntime;
3005#endif
88ec22d3 3006
3fe1698b 3007 se->vruntime -= min_vruntime;
88ec22d3
PZ
3008}
3009
bb3469ac 3010#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3011/*
3012 * effective_load() calculates the load change as seen from the root_task_group
3013 *
3014 * Adding load to a group doesn't make a group heavier, but can cause movement
3015 * of group shares between cpus. Assuming the shares were perfectly aligned one
3016 * can calculate the shift in shares.
cf5f0acf
PZ
3017 *
3018 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3019 * on this @cpu and results in a total addition (subtraction) of @wg to the
3020 * total group weight.
3021 *
3022 * Given a runqueue weight distribution (rw_i) we can compute a shares
3023 * distribution (s_i) using:
3024 *
3025 * s_i = rw_i / \Sum rw_j (1)
3026 *
3027 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3028 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3029 * shares distribution (s_i):
3030 *
3031 * rw_i = { 2, 4, 1, 0 }
3032 * s_i = { 2/7, 4/7, 1/7, 0 }
3033 *
3034 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3035 * task used to run on and the CPU the waker is running on), we need to
3036 * compute the effect of waking a task on either CPU and, in case of a sync
3037 * wakeup, compute the effect of the current task going to sleep.
3038 *
3039 * So for a change of @wl to the local @cpu with an overall group weight change
3040 * of @wl we can compute the new shares distribution (s'_i) using:
3041 *
3042 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3043 *
3044 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3045 * differences in waking a task to CPU 0. The additional task changes the
3046 * weight and shares distributions like:
3047 *
3048 * rw'_i = { 3, 4, 1, 0 }
3049 * s'_i = { 3/8, 4/8, 1/8, 0 }
3050 *
3051 * We can then compute the difference in effective weight by using:
3052 *
3053 * dw_i = S * (s'_i - s_i) (3)
3054 *
3055 * Where 'S' is the group weight as seen by its parent.
3056 *
3057 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3058 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3059 * 4/7) times the weight of the group.
f5bfb7d9 3060 */
2069dd75 3061static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3062{
4be9daaa 3063 struct sched_entity *se = tg->se[cpu];
f1d239f7 3064
cf5f0acf 3065 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3066 return wl;
3067
4be9daaa 3068 for_each_sched_entity(se) {
cf5f0acf 3069 long w, W;
4be9daaa 3070
977dda7c 3071 tg = se->my_q->tg;
bb3469ac 3072
cf5f0acf
PZ
3073 /*
3074 * W = @wg + \Sum rw_j
3075 */
3076 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3077
cf5f0acf
PZ
3078 /*
3079 * w = rw_i + @wl
3080 */
3081 w = se->my_q->load.weight + wl;
940959e9 3082
cf5f0acf
PZ
3083 /*
3084 * wl = S * s'_i; see (2)
3085 */
3086 if (W > 0 && w < W)
3087 wl = (w * tg->shares) / W;
977dda7c
PT
3088 else
3089 wl = tg->shares;
940959e9 3090
cf5f0acf
PZ
3091 /*
3092 * Per the above, wl is the new se->load.weight value; since
3093 * those are clipped to [MIN_SHARES, ...) do so now. See
3094 * calc_cfs_shares().
3095 */
977dda7c
PT
3096 if (wl < MIN_SHARES)
3097 wl = MIN_SHARES;
cf5f0acf
PZ
3098
3099 /*
3100 * wl = dw_i = S * (s'_i - s_i); see (3)
3101 */
977dda7c 3102 wl -= se->load.weight;
cf5f0acf
PZ
3103
3104 /*
3105 * Recursively apply this logic to all parent groups to compute
3106 * the final effective load change on the root group. Since
3107 * only the @tg group gets extra weight, all parent groups can
3108 * only redistribute existing shares. @wl is the shift in shares
3109 * resulting from this level per the above.
3110 */
4be9daaa 3111 wg = 0;
4be9daaa 3112 }
bb3469ac 3113
4be9daaa 3114 return wl;
bb3469ac
PZ
3115}
3116#else
4be9daaa 3117
83378269
PZ
3118static inline unsigned long effective_load(struct task_group *tg, int cpu,
3119 unsigned long wl, unsigned long wg)
4be9daaa 3120{
83378269 3121 return wl;
bb3469ac 3122}
4be9daaa 3123
bb3469ac
PZ
3124#endif
3125
c88d5910 3126static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3127{
e37b6a7b 3128 s64 this_load, load;
c88d5910 3129 int idx, this_cpu, prev_cpu;
098fb9db 3130 unsigned long tl_per_task;
c88d5910 3131 struct task_group *tg;
83378269 3132 unsigned long weight;
b3137bc8 3133 int balanced;
098fb9db 3134
c88d5910
PZ
3135 idx = sd->wake_idx;
3136 this_cpu = smp_processor_id();
3137 prev_cpu = task_cpu(p);
3138 load = source_load(prev_cpu, idx);
3139 this_load = target_load(this_cpu, idx);
098fb9db 3140
b3137bc8
MG
3141 /*
3142 * If sync wakeup then subtract the (maximum possible)
3143 * effect of the currently running task from the load
3144 * of the current CPU:
3145 */
83378269
PZ
3146 if (sync) {
3147 tg = task_group(current);
3148 weight = current->se.load.weight;
3149
c88d5910 3150 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3151 load += effective_load(tg, prev_cpu, 0, -weight);
3152 }
b3137bc8 3153
83378269
PZ
3154 tg = task_group(p);
3155 weight = p->se.load.weight;
b3137bc8 3156
71a29aa7
PZ
3157 /*
3158 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3159 * due to the sync cause above having dropped this_load to 0, we'll
3160 * always have an imbalance, but there's really nothing you can do
3161 * about that, so that's good too.
71a29aa7
PZ
3162 *
3163 * Otherwise check if either cpus are near enough in load to allow this
3164 * task to be woken on this_cpu.
3165 */
e37b6a7b
PT
3166 if (this_load > 0) {
3167 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3168
3169 this_eff_load = 100;
3170 this_eff_load *= power_of(prev_cpu);
3171 this_eff_load *= this_load +
3172 effective_load(tg, this_cpu, weight, weight);
3173
3174 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3175 prev_eff_load *= power_of(this_cpu);
3176 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3177
3178 balanced = this_eff_load <= prev_eff_load;
3179 } else
3180 balanced = true;
b3137bc8 3181
098fb9db 3182 /*
4ae7d5ce
IM
3183 * If the currently running task will sleep within
3184 * a reasonable amount of time then attract this newly
3185 * woken task:
098fb9db 3186 */
2fb7635c
PZ
3187 if (sync && balanced)
3188 return 1;
098fb9db 3189
41acab88 3190 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3191 tl_per_task = cpu_avg_load_per_task(this_cpu);
3192
c88d5910
PZ
3193 if (balanced ||
3194 (this_load <= load &&
3195 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3196 /*
3197 * This domain has SD_WAKE_AFFINE and
3198 * p is cache cold in this domain, and
3199 * there is no bad imbalance.
3200 */
c88d5910 3201 schedstat_inc(sd, ttwu_move_affine);
41acab88 3202 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3203
3204 return 1;
3205 }
3206 return 0;
3207}
3208
aaee1203
PZ
3209/*
3210 * find_idlest_group finds and returns the least busy CPU group within the
3211 * domain.
3212 */
3213static struct sched_group *
78e7ed53 3214find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3215 int this_cpu, int load_idx)
e7693a36 3216{
b3bd3de6 3217 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3218 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3219 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3220
aaee1203
PZ
3221 do {
3222 unsigned long load, avg_load;
3223 int local_group;
3224 int i;
e7693a36 3225
aaee1203
PZ
3226 /* Skip over this group if it has no CPUs allowed */
3227 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3228 tsk_cpus_allowed(p)))
aaee1203
PZ
3229 continue;
3230
3231 local_group = cpumask_test_cpu(this_cpu,
3232 sched_group_cpus(group));
3233
3234 /* Tally up the load of all CPUs in the group */
3235 avg_load = 0;
3236
3237 for_each_cpu(i, sched_group_cpus(group)) {
3238 /* Bias balancing toward cpus of our domain */
3239 if (local_group)
3240 load = source_load(i, load_idx);
3241 else
3242 load = target_load(i, load_idx);
3243
3244 avg_load += load;
3245 }
3246
3247 /* Adjust by relative CPU power of the group */
9c3f75cb 3248 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3249
3250 if (local_group) {
3251 this_load = avg_load;
aaee1203
PZ
3252 } else if (avg_load < min_load) {
3253 min_load = avg_load;
3254 idlest = group;
3255 }
3256 } while (group = group->next, group != sd->groups);
3257
3258 if (!idlest || 100*this_load < imbalance*min_load)
3259 return NULL;
3260 return idlest;
3261}
3262
3263/*
3264 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3265 */
3266static int
3267find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3268{
3269 unsigned long load, min_load = ULONG_MAX;
3270 int idlest = -1;
3271 int i;
3272
3273 /* Traverse only the allowed CPUs */
fa17b507 3274 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3275 load = weighted_cpuload(i);
3276
3277 if (load < min_load || (load == min_load && i == this_cpu)) {
3278 min_load = load;
3279 idlest = i;
e7693a36
GH
3280 }
3281 }
3282
aaee1203
PZ
3283 return idlest;
3284}
e7693a36 3285
a50bde51
PZ
3286/*
3287 * Try and locate an idle CPU in the sched_domain.
3288 */
99bd5e2f 3289static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3290{
99bd5e2f 3291 struct sched_domain *sd;
37407ea7 3292 struct sched_group *sg;
e0a79f52 3293 int i = task_cpu(p);
a50bde51 3294
e0a79f52
MG
3295 if (idle_cpu(target))
3296 return target;
99bd5e2f
SS
3297
3298 /*
e0a79f52 3299 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3300 */
e0a79f52
MG
3301 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3302 return i;
a50bde51
PZ
3303
3304 /*
37407ea7 3305 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3306 */
518cd623 3307 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3308 for_each_lower_domain(sd) {
37407ea7
LT
3309 sg = sd->groups;
3310 do {
3311 if (!cpumask_intersects(sched_group_cpus(sg),
3312 tsk_cpus_allowed(p)))
3313 goto next;
3314
3315 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3316 if (i == target || !idle_cpu(i))
37407ea7
LT
3317 goto next;
3318 }
970e1789 3319
37407ea7
LT
3320 target = cpumask_first_and(sched_group_cpus(sg),
3321 tsk_cpus_allowed(p));
3322 goto done;
3323next:
3324 sg = sg->next;
3325 } while (sg != sd->groups);
3326 }
3327done:
a50bde51
PZ
3328 return target;
3329}
3330
aaee1203
PZ
3331/*
3332 * sched_balance_self: balance the current task (running on cpu) in domains
3333 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3334 * SD_BALANCE_EXEC.
3335 *
3336 * Balance, ie. select the least loaded group.
3337 *
3338 * Returns the target CPU number, or the same CPU if no balancing is needed.
3339 *
3340 * preempt must be disabled.
3341 */
0017d735 3342static int
7608dec2 3343select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3344{
29cd8bae 3345 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3346 int cpu = smp_processor_id();
3347 int prev_cpu = task_cpu(p);
3348 int new_cpu = cpu;
99bd5e2f 3349 int want_affine = 0;
5158f4e4 3350 int sync = wake_flags & WF_SYNC;
c88d5910 3351
29baa747 3352 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3353 return prev_cpu;
3354
0763a660 3355 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3356 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3357 want_affine = 1;
3358 new_cpu = prev_cpu;
3359 }
aaee1203 3360
dce840a0 3361 rcu_read_lock();
aaee1203 3362 for_each_domain(cpu, tmp) {
e4f42888
PZ
3363 if (!(tmp->flags & SD_LOAD_BALANCE))
3364 continue;
3365
fe3bcfe1 3366 /*
99bd5e2f
SS
3367 * If both cpu and prev_cpu are part of this domain,
3368 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3369 */
99bd5e2f
SS
3370 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3371 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3372 affine_sd = tmp;
29cd8bae 3373 break;
f03542a7 3374 }
29cd8bae 3375
f03542a7 3376 if (tmp->flags & sd_flag)
29cd8bae
PZ
3377 sd = tmp;
3378 }
3379
8b911acd 3380 if (affine_sd) {
f03542a7 3381 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3382 prev_cpu = cpu;
3383
3384 new_cpu = select_idle_sibling(p, prev_cpu);
3385 goto unlock;
8b911acd 3386 }
e7693a36 3387
aaee1203 3388 while (sd) {
5158f4e4 3389 int load_idx = sd->forkexec_idx;
aaee1203 3390 struct sched_group *group;
c88d5910 3391 int weight;
098fb9db 3392
0763a660 3393 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3394 sd = sd->child;
3395 continue;
3396 }
098fb9db 3397
5158f4e4
PZ
3398 if (sd_flag & SD_BALANCE_WAKE)
3399 load_idx = sd->wake_idx;
098fb9db 3400
5158f4e4 3401 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3402 if (!group) {
3403 sd = sd->child;
3404 continue;
3405 }
4ae7d5ce 3406
d7c33c49 3407 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3408 if (new_cpu == -1 || new_cpu == cpu) {
3409 /* Now try balancing at a lower domain level of cpu */
3410 sd = sd->child;
3411 continue;
e7693a36 3412 }
aaee1203
PZ
3413
3414 /* Now try balancing at a lower domain level of new_cpu */
3415 cpu = new_cpu;
669c55e9 3416 weight = sd->span_weight;
aaee1203
PZ
3417 sd = NULL;
3418 for_each_domain(cpu, tmp) {
669c55e9 3419 if (weight <= tmp->span_weight)
aaee1203 3420 break;
0763a660 3421 if (tmp->flags & sd_flag)
aaee1203
PZ
3422 sd = tmp;
3423 }
3424 /* while loop will break here if sd == NULL */
e7693a36 3425 }
dce840a0
PZ
3426unlock:
3427 rcu_read_unlock();
e7693a36 3428
c88d5910 3429 return new_cpu;
e7693a36 3430}
0a74bef8
PT
3431
3432/*
3433 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3434 * cfs_rq_of(p) references at time of call are still valid and identify the
3435 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3436 * other assumptions, including the state of rq->lock, should be made.
3437 */
3438static void
3439migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3440{
aff3e498
PT
3441 struct sched_entity *se = &p->se;
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3443
3444 /*
3445 * Load tracking: accumulate removed load so that it can be processed
3446 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3447 * to blocked load iff they have a positive decay-count. It can never
3448 * be negative here since on-rq tasks have decay-count == 0.
3449 */
3450 if (se->avg.decay_count) {
3451 se->avg.decay_count = -__synchronize_entity_decay(se);
3452 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3453 }
0a74bef8 3454}
e7693a36
GH
3455#endif /* CONFIG_SMP */
3456
e52fb7c0
PZ
3457static unsigned long
3458wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3459{
3460 unsigned long gran = sysctl_sched_wakeup_granularity;
3461
3462 /*
e52fb7c0
PZ
3463 * Since its curr running now, convert the gran from real-time
3464 * to virtual-time in his units.
13814d42
MG
3465 *
3466 * By using 'se' instead of 'curr' we penalize light tasks, so
3467 * they get preempted easier. That is, if 'se' < 'curr' then
3468 * the resulting gran will be larger, therefore penalizing the
3469 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3470 * be smaller, again penalizing the lighter task.
3471 *
3472 * This is especially important for buddies when the leftmost
3473 * task is higher priority than the buddy.
0bbd3336 3474 */
f4ad9bd2 3475 return calc_delta_fair(gran, se);
0bbd3336
PZ
3476}
3477
464b7527
PZ
3478/*
3479 * Should 'se' preempt 'curr'.
3480 *
3481 * |s1
3482 * |s2
3483 * |s3
3484 * g
3485 * |<--->|c
3486 *
3487 * w(c, s1) = -1
3488 * w(c, s2) = 0
3489 * w(c, s3) = 1
3490 *
3491 */
3492static int
3493wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3494{
3495 s64 gran, vdiff = curr->vruntime - se->vruntime;
3496
3497 if (vdiff <= 0)
3498 return -1;
3499
e52fb7c0 3500 gran = wakeup_gran(curr, se);
464b7527
PZ
3501 if (vdiff > gran)
3502 return 1;
3503
3504 return 0;
3505}
3506
02479099
PZ
3507static void set_last_buddy(struct sched_entity *se)
3508{
69c80f3e
VP
3509 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3510 return;
3511
3512 for_each_sched_entity(se)
3513 cfs_rq_of(se)->last = se;
02479099
PZ
3514}
3515
3516static void set_next_buddy(struct sched_entity *se)
3517{
69c80f3e
VP
3518 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3519 return;
3520
3521 for_each_sched_entity(se)
3522 cfs_rq_of(se)->next = se;
02479099
PZ
3523}
3524
ac53db59
RR
3525static void set_skip_buddy(struct sched_entity *se)
3526{
69c80f3e
VP
3527 for_each_sched_entity(se)
3528 cfs_rq_of(se)->skip = se;
ac53db59
RR
3529}
3530
bf0f6f24
IM
3531/*
3532 * Preempt the current task with a newly woken task if needed:
3533 */
5a9b86f6 3534static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3535{
3536 struct task_struct *curr = rq->curr;
8651a86c 3537 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3538 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3539 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3540 int next_buddy_marked = 0;
bf0f6f24 3541
4ae7d5ce
IM
3542 if (unlikely(se == pse))
3543 return;
3544
5238cdd3 3545 /*
ddcdf6e7 3546 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3547 * unconditionally check_prempt_curr() after an enqueue (which may have
3548 * lead to a throttle). This both saves work and prevents false
3549 * next-buddy nomination below.
3550 */
3551 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3552 return;
3553
2f36825b 3554 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3555 set_next_buddy(pse);
2f36825b
VP
3556 next_buddy_marked = 1;
3557 }
57fdc26d 3558
aec0a514
BR
3559 /*
3560 * We can come here with TIF_NEED_RESCHED already set from new task
3561 * wake up path.
5238cdd3
PT
3562 *
3563 * Note: this also catches the edge-case of curr being in a throttled
3564 * group (e.g. via set_curr_task), since update_curr() (in the
3565 * enqueue of curr) will have resulted in resched being set. This
3566 * prevents us from potentially nominating it as a false LAST_BUDDY
3567 * below.
aec0a514
BR
3568 */
3569 if (test_tsk_need_resched(curr))
3570 return;
3571
a2f5c9ab
DH
3572 /* Idle tasks are by definition preempted by non-idle tasks. */
3573 if (unlikely(curr->policy == SCHED_IDLE) &&
3574 likely(p->policy != SCHED_IDLE))
3575 goto preempt;
3576
91c234b4 3577 /*
a2f5c9ab
DH
3578 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3579 * is driven by the tick):
91c234b4 3580 */
8ed92e51 3581 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3582 return;
bf0f6f24 3583
464b7527 3584 find_matching_se(&se, &pse);
9bbd7374 3585 update_curr(cfs_rq_of(se));
002f128b 3586 BUG_ON(!pse);
2f36825b
VP
3587 if (wakeup_preempt_entity(se, pse) == 1) {
3588 /*
3589 * Bias pick_next to pick the sched entity that is
3590 * triggering this preemption.
3591 */
3592 if (!next_buddy_marked)
3593 set_next_buddy(pse);
3a7e73a2 3594 goto preempt;
2f36825b 3595 }
464b7527 3596
3a7e73a2 3597 return;
a65ac745 3598
3a7e73a2
PZ
3599preempt:
3600 resched_task(curr);
3601 /*
3602 * Only set the backward buddy when the current task is still
3603 * on the rq. This can happen when a wakeup gets interleaved
3604 * with schedule on the ->pre_schedule() or idle_balance()
3605 * point, either of which can * drop the rq lock.
3606 *
3607 * Also, during early boot the idle thread is in the fair class,
3608 * for obvious reasons its a bad idea to schedule back to it.
3609 */
3610 if (unlikely(!se->on_rq || curr == rq->idle))
3611 return;
3612
3613 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3614 set_last_buddy(se);
bf0f6f24
IM
3615}
3616
fb8d4724 3617static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3618{
8f4d37ec 3619 struct task_struct *p;
bf0f6f24
IM
3620 struct cfs_rq *cfs_rq = &rq->cfs;
3621 struct sched_entity *se;
3622
36ace27e 3623 if (!cfs_rq->nr_running)
bf0f6f24
IM
3624 return NULL;
3625
3626 do {
9948f4b2 3627 se = pick_next_entity(cfs_rq);
f4b6755f 3628 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3629 cfs_rq = group_cfs_rq(se);
3630 } while (cfs_rq);
3631
8f4d37ec 3632 p = task_of(se);
b39e66ea
MG
3633 if (hrtick_enabled(rq))
3634 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3635
3636 return p;
bf0f6f24
IM
3637}
3638
3639/*
3640 * Account for a descheduled task:
3641 */
31ee529c 3642static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3643{
3644 struct sched_entity *se = &prev->se;
3645 struct cfs_rq *cfs_rq;
3646
3647 for_each_sched_entity(se) {
3648 cfs_rq = cfs_rq_of(se);
ab6cde26 3649 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3650 }
3651}
3652
ac53db59
RR
3653/*
3654 * sched_yield() is very simple
3655 *
3656 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3657 */
3658static void yield_task_fair(struct rq *rq)
3659{
3660 struct task_struct *curr = rq->curr;
3661 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3662 struct sched_entity *se = &curr->se;
3663
3664 /*
3665 * Are we the only task in the tree?
3666 */
3667 if (unlikely(rq->nr_running == 1))
3668 return;
3669
3670 clear_buddies(cfs_rq, se);
3671
3672 if (curr->policy != SCHED_BATCH) {
3673 update_rq_clock(rq);
3674 /*
3675 * Update run-time statistics of the 'current'.
3676 */
3677 update_curr(cfs_rq);
916671c0
MG
3678 /*
3679 * Tell update_rq_clock() that we've just updated,
3680 * so we don't do microscopic update in schedule()
3681 * and double the fastpath cost.
3682 */
3683 rq->skip_clock_update = 1;
ac53db59
RR
3684 }
3685
3686 set_skip_buddy(se);
3687}
3688
d95f4122
MG
3689static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3690{
3691 struct sched_entity *se = &p->se;
3692
5238cdd3
PT
3693 /* throttled hierarchies are not runnable */
3694 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3695 return false;
3696
3697 /* Tell the scheduler that we'd really like pse to run next. */
3698 set_next_buddy(se);
3699
d95f4122
MG
3700 yield_task_fair(rq);
3701
3702 return true;
3703}
3704
681f3e68 3705#ifdef CONFIG_SMP
bf0f6f24 3706/**************************************************
e9c84cb8
PZ
3707 * Fair scheduling class load-balancing methods.
3708 *
3709 * BASICS
3710 *
3711 * The purpose of load-balancing is to achieve the same basic fairness the
3712 * per-cpu scheduler provides, namely provide a proportional amount of compute
3713 * time to each task. This is expressed in the following equation:
3714 *
3715 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3716 *
3717 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3718 * W_i,0 is defined as:
3719 *
3720 * W_i,0 = \Sum_j w_i,j (2)
3721 *
3722 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3723 * is derived from the nice value as per prio_to_weight[].
3724 *
3725 * The weight average is an exponential decay average of the instantaneous
3726 * weight:
3727 *
3728 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3729 *
3730 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3731 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3732 * can also include other factors [XXX].
3733 *
3734 * To achieve this balance we define a measure of imbalance which follows
3735 * directly from (1):
3736 *
3737 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3738 *
3739 * We them move tasks around to minimize the imbalance. In the continuous
3740 * function space it is obvious this converges, in the discrete case we get
3741 * a few fun cases generally called infeasible weight scenarios.
3742 *
3743 * [XXX expand on:
3744 * - infeasible weights;
3745 * - local vs global optima in the discrete case. ]
3746 *
3747 *
3748 * SCHED DOMAINS
3749 *
3750 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3751 * for all i,j solution, we create a tree of cpus that follows the hardware
3752 * topology where each level pairs two lower groups (or better). This results
3753 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3754 * tree to only the first of the previous level and we decrease the frequency
3755 * of load-balance at each level inv. proportional to the number of cpus in
3756 * the groups.
3757 *
3758 * This yields:
3759 *
3760 * log_2 n 1 n
3761 * \Sum { --- * --- * 2^i } = O(n) (5)
3762 * i = 0 2^i 2^i
3763 * `- size of each group
3764 * | | `- number of cpus doing load-balance
3765 * | `- freq
3766 * `- sum over all levels
3767 *
3768 * Coupled with a limit on how many tasks we can migrate every balance pass,
3769 * this makes (5) the runtime complexity of the balancer.
3770 *
3771 * An important property here is that each CPU is still (indirectly) connected
3772 * to every other cpu in at most O(log n) steps:
3773 *
3774 * The adjacency matrix of the resulting graph is given by:
3775 *
3776 * log_2 n
3777 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3778 * k = 0
3779 *
3780 * And you'll find that:
3781 *
3782 * A^(log_2 n)_i,j != 0 for all i,j (7)
3783 *
3784 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3785 * The task movement gives a factor of O(m), giving a convergence complexity
3786 * of:
3787 *
3788 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3789 *
3790 *
3791 * WORK CONSERVING
3792 *
3793 * In order to avoid CPUs going idle while there's still work to do, new idle
3794 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3795 * tree itself instead of relying on other CPUs to bring it work.
3796 *
3797 * This adds some complexity to both (5) and (8) but it reduces the total idle
3798 * time.
3799 *
3800 * [XXX more?]
3801 *
3802 *
3803 * CGROUPS
3804 *
3805 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3806 *
3807 * s_k,i
3808 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3809 * S_k
3810 *
3811 * Where
3812 *
3813 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3814 *
3815 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3816 *
3817 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3818 * property.
3819 *
3820 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3821 * rewrite all of this once again.]
3822 */
bf0f6f24 3823
ed387b78
HS
3824static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3825
ddcdf6e7 3826#define LBF_ALL_PINNED 0x01
367456c7 3827#define LBF_NEED_BREAK 0x02
88b8dac0 3828#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3829
3830struct lb_env {
3831 struct sched_domain *sd;
3832
ddcdf6e7 3833 struct rq *src_rq;
85c1e7da 3834 int src_cpu;
ddcdf6e7
PZ
3835
3836 int dst_cpu;
3837 struct rq *dst_rq;
3838
88b8dac0
SV
3839 struct cpumask *dst_grpmask;
3840 int new_dst_cpu;
ddcdf6e7 3841 enum cpu_idle_type idle;
bd939f45 3842 long imbalance;
b9403130
MW
3843 /* The set of CPUs under consideration for load-balancing */
3844 struct cpumask *cpus;
3845
ddcdf6e7 3846 unsigned int flags;
367456c7
PZ
3847
3848 unsigned int loop;
3849 unsigned int loop_break;
3850 unsigned int loop_max;
ddcdf6e7
PZ
3851};
3852
1e3c88bd 3853/*
ddcdf6e7 3854 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3855 * Both runqueues must be locked.
3856 */
ddcdf6e7 3857static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3858{
ddcdf6e7
PZ
3859 deactivate_task(env->src_rq, p, 0);
3860 set_task_cpu(p, env->dst_cpu);
3861 activate_task(env->dst_rq, p, 0);
3862 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3863}
3864
029632fb
PZ
3865/*
3866 * Is this task likely cache-hot:
3867 */
3868static int
3869task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3870{
3871 s64 delta;
3872
3873 if (p->sched_class != &fair_sched_class)
3874 return 0;
3875
3876 if (unlikely(p->policy == SCHED_IDLE))
3877 return 0;
3878
3879 /*
3880 * Buddy candidates are cache hot:
3881 */
3882 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3883 (&p->se == cfs_rq_of(&p->se)->next ||
3884 &p->se == cfs_rq_of(&p->se)->last))
3885 return 1;
3886
3887 if (sysctl_sched_migration_cost == -1)
3888 return 1;
3889 if (sysctl_sched_migration_cost == 0)
3890 return 0;
3891
3892 delta = now - p->se.exec_start;
3893
3894 return delta < (s64)sysctl_sched_migration_cost;
3895}
3896
1e3c88bd
PZ
3897/*
3898 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3899 */
3900static
8e45cb54 3901int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3902{
3903 int tsk_cache_hot = 0;
3904 /*
3905 * We do not migrate tasks that are:
d3198084 3906 * 1) throttled_lb_pair, or
1e3c88bd 3907 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3908 * 3) running (obviously), or
3909 * 4) are cache-hot on their current CPU.
1e3c88bd 3910 */
d3198084
JK
3911 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3912 return 0;
3913
ddcdf6e7 3914 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3915 int cpu;
88b8dac0 3916
41acab88 3917 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3918
3919 /*
3920 * Remember if this task can be migrated to any other cpu in
3921 * our sched_group. We may want to revisit it if we couldn't
3922 * meet load balance goals by pulling other tasks on src_cpu.
3923 *
3924 * Also avoid computing new_dst_cpu if we have already computed
3925 * one in current iteration.
3926 */
3927 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3928 return 0;
3929
e02e60c1
JK
3930 /* Prevent to re-select dst_cpu via env's cpus */
3931 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3932 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3933 env->flags |= LBF_SOME_PINNED;
3934 env->new_dst_cpu = cpu;
3935 break;
3936 }
88b8dac0 3937 }
e02e60c1 3938
1e3c88bd
PZ
3939 return 0;
3940 }
88b8dac0
SV
3941
3942 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3943 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3944
ddcdf6e7 3945 if (task_running(env->src_rq, p)) {
41acab88 3946 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3947 return 0;
3948 }
3949
3950 /*
3951 * Aggressive migration if:
3952 * 1) task is cache cold, or
3953 * 2) too many balance attempts have failed.
3954 */
3955
78becc27 3956 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3957 if (!tsk_cache_hot ||
8e45cb54 3958 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3959
1e3c88bd 3960 if (tsk_cache_hot) {
8e45cb54 3961 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3962 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3963 }
4e2dcb73 3964
1e3c88bd
PZ
3965 return 1;
3966 }
3967
4e2dcb73
ZH
3968 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3969 return 0;
1e3c88bd
PZ
3970}
3971
897c395f
PZ
3972/*
3973 * move_one_task tries to move exactly one task from busiest to this_rq, as
3974 * part of active balancing operations within "domain".
3975 * Returns 1 if successful and 0 otherwise.
3976 *
3977 * Called with both runqueues locked.
3978 */
8e45cb54 3979static int move_one_task(struct lb_env *env)
897c395f
PZ
3980{
3981 struct task_struct *p, *n;
897c395f 3982
367456c7 3983 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
3984 if (!can_migrate_task(p, env))
3985 continue;
897c395f 3986
367456c7
PZ
3987 move_task(p, env);
3988 /*
3989 * Right now, this is only the second place move_task()
3990 * is called, so we can safely collect move_task()
3991 * stats here rather than inside move_task().
3992 */
3993 schedstat_inc(env->sd, lb_gained[env->idle]);
3994 return 1;
897c395f 3995 }
897c395f
PZ
3996 return 0;
3997}
3998
367456c7
PZ
3999static unsigned long task_h_load(struct task_struct *p);
4000
eb95308e
PZ
4001static const unsigned int sched_nr_migrate_break = 32;
4002
5d6523eb 4003/*
bd939f45 4004 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4005 * this_rq, as part of a balancing operation within domain "sd".
4006 * Returns 1 if successful and 0 otherwise.
4007 *
4008 * Called with both runqueues locked.
4009 */
4010static int move_tasks(struct lb_env *env)
1e3c88bd 4011{
5d6523eb
PZ
4012 struct list_head *tasks = &env->src_rq->cfs_tasks;
4013 struct task_struct *p;
367456c7
PZ
4014 unsigned long load;
4015 int pulled = 0;
1e3c88bd 4016
bd939f45 4017 if (env->imbalance <= 0)
5d6523eb 4018 return 0;
1e3c88bd 4019
5d6523eb
PZ
4020 while (!list_empty(tasks)) {
4021 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4022
367456c7
PZ
4023 env->loop++;
4024 /* We've more or less seen every task there is, call it quits */
5d6523eb 4025 if (env->loop > env->loop_max)
367456c7 4026 break;
5d6523eb
PZ
4027
4028 /* take a breather every nr_migrate tasks */
367456c7 4029 if (env->loop > env->loop_break) {
eb95308e 4030 env->loop_break += sched_nr_migrate_break;
8e45cb54 4031 env->flags |= LBF_NEED_BREAK;
ee00e66f 4032 break;
a195f004 4033 }
1e3c88bd 4034
d3198084 4035 if (!can_migrate_task(p, env))
367456c7
PZ
4036 goto next;
4037
4038 load = task_h_load(p);
5d6523eb 4039
eb95308e 4040 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4041 goto next;
4042
bd939f45 4043 if ((load / 2) > env->imbalance)
367456c7 4044 goto next;
1e3c88bd 4045
ddcdf6e7 4046 move_task(p, env);
ee00e66f 4047 pulled++;
bd939f45 4048 env->imbalance -= load;
1e3c88bd
PZ
4049
4050#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4051 /*
4052 * NEWIDLE balancing is a source of latency, so preemptible
4053 * kernels will stop after the first task is pulled to minimize
4054 * the critical section.
4055 */
5d6523eb 4056 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4057 break;
1e3c88bd
PZ
4058#endif
4059
ee00e66f
PZ
4060 /*
4061 * We only want to steal up to the prescribed amount of
4062 * weighted load.
4063 */
bd939f45 4064 if (env->imbalance <= 0)
ee00e66f 4065 break;
367456c7
PZ
4066
4067 continue;
4068next:
5d6523eb 4069 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4070 }
5d6523eb 4071
1e3c88bd 4072 /*
ddcdf6e7
PZ
4073 * Right now, this is one of only two places move_task() is called,
4074 * so we can safely collect move_task() stats here rather than
4075 * inside move_task().
1e3c88bd 4076 */
8e45cb54 4077 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4078
5d6523eb 4079 return pulled;
1e3c88bd
PZ
4080}
4081
230059de 4082#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4083/*
4084 * update tg->load_weight by folding this cpu's load_avg
4085 */
48a16753 4086static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4087{
48a16753
PT
4088 struct sched_entity *se = tg->se[cpu];
4089 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4090
48a16753
PT
4091 /* throttled entities do not contribute to load */
4092 if (throttled_hierarchy(cfs_rq))
4093 return;
9e3081ca 4094
aff3e498 4095 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4096
82958366
PT
4097 if (se) {
4098 update_entity_load_avg(se, 1);
4099 /*
4100 * We pivot on our runnable average having decayed to zero for
4101 * list removal. This generally implies that all our children
4102 * have also been removed (modulo rounding error or bandwidth
4103 * control); however, such cases are rare and we can fix these
4104 * at enqueue.
4105 *
4106 * TODO: fix up out-of-order children on enqueue.
4107 */
4108 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4109 list_del_leaf_cfs_rq(cfs_rq);
4110 } else {
48a16753 4111 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4112 update_rq_runnable_avg(rq, rq->nr_running);
4113 }
9e3081ca
PZ
4114}
4115
48a16753 4116static void update_blocked_averages(int cpu)
9e3081ca 4117{
9e3081ca 4118 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4119 struct cfs_rq *cfs_rq;
4120 unsigned long flags;
9e3081ca 4121
48a16753
PT
4122 raw_spin_lock_irqsave(&rq->lock, flags);
4123 update_rq_clock(rq);
9763b67f
PZ
4124 /*
4125 * Iterates the task_group tree in a bottom up fashion, see
4126 * list_add_leaf_cfs_rq() for details.
4127 */
64660c86 4128 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4129 /*
4130 * Note: We may want to consider periodically releasing
4131 * rq->lock about these updates so that creating many task
4132 * groups does not result in continually extending hold time.
4133 */
4134 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4135 }
48a16753
PT
4136
4137 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4138}
4139
9763b67f
PZ
4140/*
4141 * Compute the cpu's hierarchical load factor for each task group.
4142 * This needs to be done in a top-down fashion because the load of a child
4143 * group is a fraction of its parents load.
4144 */
4145static int tg_load_down(struct task_group *tg, void *data)
4146{
4147 unsigned long load;
4148 long cpu = (long)data;
4149
4150 if (!tg->parent) {
4151 load = cpu_rq(cpu)->load.weight;
4152 } else {
4153 load = tg->parent->cfs_rq[cpu]->h_load;
4154 load *= tg->se[cpu]->load.weight;
4155 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4156 }
4157
4158 tg->cfs_rq[cpu]->h_load = load;
4159
4160 return 0;
4161}
4162
4163static void update_h_load(long cpu)
4164{
a35b6466
PZ
4165 struct rq *rq = cpu_rq(cpu);
4166 unsigned long now = jiffies;
4167
4168 if (rq->h_load_throttle == now)
4169 return;
4170
4171 rq->h_load_throttle = now;
4172
367456c7 4173 rcu_read_lock();
9763b67f 4174 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4175 rcu_read_unlock();
9763b67f
PZ
4176}
4177
367456c7 4178static unsigned long task_h_load(struct task_struct *p)
230059de 4179{
367456c7
PZ
4180 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4181 unsigned long load;
230059de 4182
367456c7
PZ
4183 load = p->se.load.weight;
4184 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4185
367456c7 4186 return load;
230059de
PZ
4187}
4188#else
48a16753 4189static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4190{
4191}
4192
367456c7 4193static inline void update_h_load(long cpu)
230059de 4194{
230059de 4195}
230059de 4196
367456c7 4197static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4198{
367456c7 4199 return p->se.load.weight;
1e3c88bd 4200}
230059de 4201#endif
1e3c88bd 4202
1e3c88bd
PZ
4203/********** Helpers for find_busiest_group ************************/
4204/*
4205 * sd_lb_stats - Structure to store the statistics of a sched_domain
4206 * during load balancing.
4207 */
4208struct sd_lb_stats {
4209 struct sched_group *busiest; /* Busiest group in this sd */
4210 struct sched_group *this; /* Local group in this sd */
4211 unsigned long total_load; /* Total load of all groups in sd */
4212 unsigned long total_pwr; /* Total power of all groups in sd */
4213 unsigned long avg_load; /* Average load across all groups in sd */
4214
4215 /** Statistics of this group */
4216 unsigned long this_load;
4217 unsigned long this_load_per_task;
4218 unsigned long this_nr_running;
fab47622 4219 unsigned long this_has_capacity;
aae6d3dd 4220 unsigned int this_idle_cpus;
1e3c88bd
PZ
4221
4222 /* Statistics of the busiest group */
aae6d3dd 4223 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4224 unsigned long max_load;
4225 unsigned long busiest_load_per_task;
4226 unsigned long busiest_nr_running;
dd5feea1 4227 unsigned long busiest_group_capacity;
fab47622 4228 unsigned long busiest_has_capacity;
aae6d3dd 4229 unsigned int busiest_group_weight;
1e3c88bd
PZ
4230
4231 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4232};
4233
4234/*
4235 * sg_lb_stats - stats of a sched_group required for load_balancing
4236 */
4237struct sg_lb_stats {
4238 unsigned long avg_load; /*Avg load across the CPUs of the group */
4239 unsigned long group_load; /* Total load over the CPUs of the group */
4240 unsigned long sum_nr_running; /* Nr tasks running in the group */
4241 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4242 unsigned long group_capacity;
aae6d3dd
SS
4243 unsigned long idle_cpus;
4244 unsigned long group_weight;
1e3c88bd 4245 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4246 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4247};
4248
1e3c88bd
PZ
4249/**
4250 * get_sd_load_idx - Obtain the load index for a given sched domain.
4251 * @sd: The sched_domain whose load_idx is to be obtained.
4252 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4253 */
4254static inline int get_sd_load_idx(struct sched_domain *sd,
4255 enum cpu_idle_type idle)
4256{
4257 int load_idx;
4258
4259 switch (idle) {
4260 case CPU_NOT_IDLE:
4261 load_idx = sd->busy_idx;
4262 break;
4263
4264 case CPU_NEWLY_IDLE:
4265 load_idx = sd->newidle_idx;
4266 break;
4267 default:
4268 load_idx = sd->idle_idx;
4269 break;
4270 }
4271
4272 return load_idx;
4273}
4274
15f803c9 4275static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4276{
1399fa78 4277 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4278}
4279
4280unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4281{
4282 return default_scale_freq_power(sd, cpu);
4283}
4284
15f803c9 4285static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4286{
669c55e9 4287 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4288 unsigned long smt_gain = sd->smt_gain;
4289
4290 smt_gain /= weight;
4291
4292 return smt_gain;
4293}
4294
4295unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4296{
4297 return default_scale_smt_power(sd, cpu);
4298}
4299
15f803c9 4300static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4301{
4302 struct rq *rq = cpu_rq(cpu);
b654f7de 4303 u64 total, available, age_stamp, avg;
1e3c88bd 4304
b654f7de
PZ
4305 /*
4306 * Since we're reading these variables without serialization make sure
4307 * we read them once before doing sanity checks on them.
4308 */
4309 age_stamp = ACCESS_ONCE(rq->age_stamp);
4310 avg = ACCESS_ONCE(rq->rt_avg);
4311
78becc27 4312 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4313
b654f7de 4314 if (unlikely(total < avg)) {
aa483808
VP
4315 /* Ensures that power won't end up being negative */
4316 available = 0;
4317 } else {
b654f7de 4318 available = total - avg;
aa483808 4319 }
1e3c88bd 4320
1399fa78
NR
4321 if (unlikely((s64)total < SCHED_POWER_SCALE))
4322 total = SCHED_POWER_SCALE;
1e3c88bd 4323
1399fa78 4324 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4325
4326 return div_u64(available, total);
4327}
4328
4329static void update_cpu_power(struct sched_domain *sd, int cpu)
4330{
669c55e9 4331 unsigned long weight = sd->span_weight;
1399fa78 4332 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4333 struct sched_group *sdg = sd->groups;
4334
1e3c88bd
PZ
4335 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4336 if (sched_feat(ARCH_POWER))
4337 power *= arch_scale_smt_power(sd, cpu);
4338 else
4339 power *= default_scale_smt_power(sd, cpu);
4340
1399fa78 4341 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4342 }
4343
9c3f75cb 4344 sdg->sgp->power_orig = power;
9d5efe05
SV
4345
4346 if (sched_feat(ARCH_POWER))
4347 power *= arch_scale_freq_power(sd, cpu);
4348 else
4349 power *= default_scale_freq_power(sd, cpu);
4350
1399fa78 4351 power >>= SCHED_POWER_SHIFT;
9d5efe05 4352
1e3c88bd 4353 power *= scale_rt_power(cpu);
1399fa78 4354 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4355
4356 if (!power)
4357 power = 1;
4358
e51fd5e2 4359 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4360 sdg->sgp->power = power;
1e3c88bd
PZ
4361}
4362
029632fb 4363void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4364{
4365 struct sched_domain *child = sd->child;
4366 struct sched_group *group, *sdg = sd->groups;
4367 unsigned long power;
4ec4412e
VG
4368 unsigned long interval;
4369
4370 interval = msecs_to_jiffies(sd->balance_interval);
4371 interval = clamp(interval, 1UL, max_load_balance_interval);
4372 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4373
4374 if (!child) {
4375 update_cpu_power(sd, cpu);
4376 return;
4377 }
4378
4379 power = 0;
4380
74a5ce20
PZ
4381 if (child->flags & SD_OVERLAP) {
4382 /*
4383 * SD_OVERLAP domains cannot assume that child groups
4384 * span the current group.
4385 */
4386
4387 for_each_cpu(cpu, sched_group_cpus(sdg))
4388 power += power_of(cpu);
4389 } else {
4390 /*
4391 * !SD_OVERLAP domains can assume that child groups
4392 * span the current group.
4393 */
4394
4395 group = child->groups;
4396 do {
4397 power += group->sgp->power;
4398 group = group->next;
4399 } while (group != child->groups);
4400 }
1e3c88bd 4401
c3decf0d 4402 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4403}
4404
9d5efe05
SV
4405/*
4406 * Try and fix up capacity for tiny siblings, this is needed when
4407 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4408 * which on its own isn't powerful enough.
4409 *
4410 * See update_sd_pick_busiest() and check_asym_packing().
4411 */
4412static inline int
4413fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4414{
4415 /*
1399fa78 4416 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4417 */
a6c75f2f 4418 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4419 return 0;
4420
4421 /*
4422 * If ~90% of the cpu_power is still there, we're good.
4423 */
9c3f75cb 4424 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4425 return 1;
4426
4427 return 0;
4428}
4429
1e3c88bd
PZ
4430/**
4431 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4432 * @env: The load balancing environment.
1e3c88bd 4433 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4434 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4435 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4436 * @balance: Should we balance.
4437 * @sgs: variable to hold the statistics for this group.
4438 */
bd939f45
PZ
4439static inline void update_sg_lb_stats(struct lb_env *env,
4440 struct sched_group *group, int load_idx,
b9403130 4441 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4442{
e44bc5c5
PZ
4443 unsigned long nr_running, max_nr_running, min_nr_running;
4444 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4445 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4446 unsigned long avg_load_per_task = 0;
bd939f45 4447 int i;
1e3c88bd 4448
871e35bc 4449 if (local_group)
c1174876 4450 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4451
4452 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4453 max_cpu_load = 0;
4454 min_cpu_load = ~0UL;
2582f0eb 4455 max_nr_running = 0;
e44bc5c5 4456 min_nr_running = ~0UL;
1e3c88bd 4457
b9403130 4458 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4459 struct rq *rq = cpu_rq(i);
4460
e44bc5c5
PZ
4461 nr_running = rq->nr_running;
4462
1e3c88bd
PZ
4463 /* Bias balancing toward cpus of our domain */
4464 if (local_group) {
c1174876
PZ
4465 if (idle_cpu(i) && !first_idle_cpu &&
4466 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4467 first_idle_cpu = 1;
1e3c88bd
PZ
4468 balance_cpu = i;
4469 }
04f733b4
PZ
4470
4471 load = target_load(i, load_idx);
1e3c88bd
PZ
4472 } else {
4473 load = source_load(i, load_idx);
e44bc5c5 4474 if (load > max_cpu_load)
1e3c88bd
PZ
4475 max_cpu_load = load;
4476 if (min_cpu_load > load)
4477 min_cpu_load = load;
e44bc5c5
PZ
4478
4479 if (nr_running > max_nr_running)
4480 max_nr_running = nr_running;
4481 if (min_nr_running > nr_running)
4482 min_nr_running = nr_running;
1e3c88bd
PZ
4483 }
4484
4485 sgs->group_load += load;
e44bc5c5 4486 sgs->sum_nr_running += nr_running;
1e3c88bd 4487 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4488 if (idle_cpu(i))
4489 sgs->idle_cpus++;
1e3c88bd
PZ
4490 }
4491
4492 /*
4493 * First idle cpu or the first cpu(busiest) in this sched group
4494 * is eligible for doing load balancing at this and above
4495 * domains. In the newly idle case, we will allow all the cpu's
4496 * to do the newly idle load balance.
4497 */
4ec4412e 4498 if (local_group) {
bd939f45 4499 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4500 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4501 *balance = 0;
4502 return;
4503 }
bd939f45 4504 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4505 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4506 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4507 }
4508
4509 /* Adjust by relative CPU power of the group */
9c3f75cb 4510 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4511
1e3c88bd
PZ
4512 /*
4513 * Consider the group unbalanced when the imbalance is larger
866ab43e 4514 * than the average weight of a task.
1e3c88bd
PZ
4515 *
4516 * APZ: with cgroup the avg task weight can vary wildly and
4517 * might not be a suitable number - should we keep a
4518 * normalized nr_running number somewhere that negates
4519 * the hierarchy?
4520 */
dd5feea1
SS
4521 if (sgs->sum_nr_running)
4522 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4523
e44bc5c5
PZ
4524 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4525 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4526 sgs->group_imb = 1;
4527
9c3f75cb 4528 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4529 SCHED_POWER_SCALE);
9d5efe05 4530 if (!sgs->group_capacity)
bd939f45 4531 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4532 sgs->group_weight = group->group_weight;
fab47622
NR
4533
4534 if (sgs->group_capacity > sgs->sum_nr_running)
4535 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4536}
4537
532cb4c4
MN
4538/**
4539 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4540 * @env: The load balancing environment.
532cb4c4
MN
4541 * @sds: sched_domain statistics
4542 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4543 * @sgs: sched_group statistics
532cb4c4
MN
4544 *
4545 * Determine if @sg is a busier group than the previously selected
4546 * busiest group.
4547 */
bd939f45 4548static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4549 struct sd_lb_stats *sds,
4550 struct sched_group *sg,
bd939f45 4551 struct sg_lb_stats *sgs)
532cb4c4
MN
4552{
4553 if (sgs->avg_load <= sds->max_load)
4554 return false;
4555
4556 if (sgs->sum_nr_running > sgs->group_capacity)
4557 return true;
4558
4559 if (sgs->group_imb)
4560 return true;
4561
4562 /*
4563 * ASYM_PACKING needs to move all the work to the lowest
4564 * numbered CPUs in the group, therefore mark all groups
4565 * higher than ourself as busy.
4566 */
bd939f45
PZ
4567 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4568 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4569 if (!sds->busiest)
4570 return true;
4571
4572 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4573 return true;
4574 }
4575
4576 return false;
4577}
4578
1e3c88bd 4579/**
461819ac 4580 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4581 * @env: The load balancing environment.
1e3c88bd
PZ
4582 * @balance: Should we balance.
4583 * @sds: variable to hold the statistics for this sched_domain.
4584 */
bd939f45 4585static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4586 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4587{
bd939f45
PZ
4588 struct sched_domain *child = env->sd->child;
4589 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4590 struct sg_lb_stats sgs;
4591 int load_idx, prefer_sibling = 0;
4592
4593 if (child && child->flags & SD_PREFER_SIBLING)
4594 prefer_sibling = 1;
4595
bd939f45 4596 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4597
4598 do {
4599 int local_group;
4600
bd939f45 4601 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4602 memset(&sgs, 0, sizeof(sgs));
b9403130 4603 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4604
8f190fb3 4605 if (local_group && !(*balance))
1e3c88bd
PZ
4606 return;
4607
4608 sds->total_load += sgs.group_load;
9c3f75cb 4609 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4610
4611 /*
4612 * In case the child domain prefers tasks go to siblings
532cb4c4 4613 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4614 * and move all the excess tasks away. We lower the capacity
4615 * of a group only if the local group has the capacity to fit
4616 * these excess tasks, i.e. nr_running < group_capacity. The
4617 * extra check prevents the case where you always pull from the
4618 * heaviest group when it is already under-utilized (possible
4619 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4620 */
75dd321d 4621 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4622 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4623
4624 if (local_group) {
4625 sds->this_load = sgs.avg_load;
532cb4c4 4626 sds->this = sg;
1e3c88bd
PZ
4627 sds->this_nr_running = sgs.sum_nr_running;
4628 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4629 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4630 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4631 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4632 sds->max_load = sgs.avg_load;
532cb4c4 4633 sds->busiest = sg;
1e3c88bd 4634 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4635 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4636 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4637 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4638 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4639 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4640 sds->group_imb = sgs.group_imb;
4641 }
4642
532cb4c4 4643 sg = sg->next;
bd939f45 4644 } while (sg != env->sd->groups);
532cb4c4
MN
4645}
4646
532cb4c4
MN
4647/**
4648 * check_asym_packing - Check to see if the group is packed into the
4649 * sched doman.
4650 *
4651 * This is primarily intended to used at the sibling level. Some
4652 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4653 * case of POWER7, it can move to lower SMT modes only when higher
4654 * threads are idle. When in lower SMT modes, the threads will
4655 * perform better since they share less core resources. Hence when we
4656 * have idle threads, we want them to be the higher ones.
4657 *
4658 * This packing function is run on idle threads. It checks to see if
4659 * the busiest CPU in this domain (core in the P7 case) has a higher
4660 * CPU number than the packing function is being run on. Here we are
4661 * assuming lower CPU number will be equivalent to lower a SMT thread
4662 * number.
4663 *
b6b12294
MN
4664 * Returns 1 when packing is required and a task should be moved to
4665 * this CPU. The amount of the imbalance is returned in *imbalance.
4666 *
cd96891d 4667 * @env: The load balancing environment.
532cb4c4 4668 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4669 */
bd939f45 4670static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4671{
4672 int busiest_cpu;
4673
bd939f45 4674 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4675 return 0;
4676
4677 if (!sds->busiest)
4678 return 0;
4679
4680 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4681 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4682 return 0;
4683
bd939f45
PZ
4684 env->imbalance = DIV_ROUND_CLOSEST(
4685 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4686
532cb4c4 4687 return 1;
1e3c88bd
PZ
4688}
4689
4690/**
4691 * fix_small_imbalance - Calculate the minor imbalance that exists
4692 * amongst the groups of a sched_domain, during
4693 * load balancing.
cd96891d 4694 * @env: The load balancing environment.
1e3c88bd 4695 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4696 */
bd939f45
PZ
4697static inline
4698void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4699{
4700 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4701 unsigned int imbn = 2;
dd5feea1 4702 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4703
4704 if (sds->this_nr_running) {
4705 sds->this_load_per_task /= sds->this_nr_running;
4706 if (sds->busiest_load_per_task >
4707 sds->this_load_per_task)
4708 imbn = 1;
bd939f45 4709 } else {
1e3c88bd 4710 sds->this_load_per_task =
bd939f45
PZ
4711 cpu_avg_load_per_task(env->dst_cpu);
4712 }
1e3c88bd 4713
dd5feea1 4714 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4715 * SCHED_POWER_SCALE;
9c3f75cb 4716 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4717
4718 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4719 (scaled_busy_load_per_task * imbn)) {
bd939f45 4720 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4721 return;
4722 }
4723
4724 /*
4725 * OK, we don't have enough imbalance to justify moving tasks,
4726 * however we may be able to increase total CPU power used by
4727 * moving them.
4728 */
4729
9c3f75cb 4730 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4731 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4732 pwr_now += sds->this->sgp->power *
1e3c88bd 4733 min(sds->this_load_per_task, sds->this_load);
1399fa78 4734 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4735
4736 /* Amount of load we'd subtract */
1399fa78 4737 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4738 sds->busiest->sgp->power;
1e3c88bd 4739 if (sds->max_load > tmp)
9c3f75cb 4740 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4741 min(sds->busiest_load_per_task, sds->max_load - tmp);
4742
4743 /* Amount of load we'd add */
9c3f75cb 4744 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4745 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4746 tmp = (sds->max_load * sds->busiest->sgp->power) /
4747 sds->this->sgp->power;
1e3c88bd 4748 else
1399fa78 4749 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4750 sds->this->sgp->power;
4751 pwr_move += sds->this->sgp->power *
1e3c88bd 4752 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4753 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4754
4755 /* Move if we gain throughput */
4756 if (pwr_move > pwr_now)
bd939f45 4757 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4758}
4759
4760/**
4761 * calculate_imbalance - Calculate the amount of imbalance present within the
4762 * groups of a given sched_domain during load balance.
bd939f45 4763 * @env: load balance environment
1e3c88bd 4764 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4765 */
bd939f45 4766static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4767{
dd5feea1
SS
4768 unsigned long max_pull, load_above_capacity = ~0UL;
4769
4770 sds->busiest_load_per_task /= sds->busiest_nr_running;
4771 if (sds->group_imb) {
4772 sds->busiest_load_per_task =
4773 min(sds->busiest_load_per_task, sds->avg_load);
4774 }
4775
1e3c88bd
PZ
4776 /*
4777 * In the presence of smp nice balancing, certain scenarios can have
4778 * max load less than avg load(as we skip the groups at or below
4779 * its cpu_power, while calculating max_load..)
4780 */
4781 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4782 env->imbalance = 0;
4783 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4784 }
4785
dd5feea1
SS
4786 if (!sds->group_imb) {
4787 /*
4788 * Don't want to pull so many tasks that a group would go idle.
4789 */
4790 load_above_capacity = (sds->busiest_nr_running -
4791 sds->busiest_group_capacity);
4792
1399fa78 4793 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4794
9c3f75cb 4795 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4796 }
4797
4798 /*
4799 * We're trying to get all the cpus to the average_load, so we don't
4800 * want to push ourselves above the average load, nor do we wish to
4801 * reduce the max loaded cpu below the average load. At the same time,
4802 * we also don't want to reduce the group load below the group capacity
4803 * (so that we can implement power-savings policies etc). Thus we look
4804 * for the minimum possible imbalance.
4805 * Be careful of negative numbers as they'll appear as very large values
4806 * with unsigned longs.
4807 */
4808 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4809
4810 /* How much load to actually move to equalise the imbalance */
bd939f45 4811 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4812 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4813 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4814
4815 /*
4816 * if *imbalance is less than the average load per runnable task
25985edc 4817 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4818 * a think about bumping its value to force at least one task to be
4819 * moved
4820 */
bd939f45
PZ
4821 if (env->imbalance < sds->busiest_load_per_task)
4822 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4823
4824}
fab47622 4825
1e3c88bd
PZ
4826/******* find_busiest_group() helpers end here *********************/
4827
4828/**
4829 * find_busiest_group - Returns the busiest group within the sched_domain
4830 * if there is an imbalance. If there isn't an imbalance, and
4831 * the user has opted for power-savings, it returns a group whose
4832 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4833 * such a group exists.
4834 *
4835 * Also calculates the amount of weighted load which should be moved
4836 * to restore balance.
4837 *
cd96891d 4838 * @env: The load balancing environment.
1e3c88bd
PZ
4839 * @balance: Pointer to a variable indicating if this_cpu
4840 * is the appropriate cpu to perform load balancing at this_level.
4841 *
4842 * Returns: - the busiest group if imbalance exists.
4843 * - If no imbalance and user has opted for power-savings balance,
4844 * return the least loaded group whose CPUs can be
4845 * put to idle by rebalancing its tasks onto our group.
4846 */
4847static struct sched_group *
b9403130 4848find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4849{
4850 struct sd_lb_stats sds;
4851
4852 memset(&sds, 0, sizeof(sds));
4853
4854 /*
4855 * Compute the various statistics relavent for load balancing at
4856 * this level.
4857 */
b9403130 4858 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4859
cc57aa8f
PZ
4860 /*
4861 * this_cpu is not the appropriate cpu to perform load balancing at
4862 * this level.
1e3c88bd 4863 */
8f190fb3 4864 if (!(*balance))
1e3c88bd
PZ
4865 goto ret;
4866
bd939f45
PZ
4867 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4868 check_asym_packing(env, &sds))
532cb4c4
MN
4869 return sds.busiest;
4870
cc57aa8f 4871 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4872 if (!sds.busiest || sds.busiest_nr_running == 0)
4873 goto out_balanced;
4874
1399fa78 4875 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4876
866ab43e
PZ
4877 /*
4878 * If the busiest group is imbalanced the below checks don't
4879 * work because they assumes all things are equal, which typically
4880 * isn't true due to cpus_allowed constraints and the like.
4881 */
4882 if (sds.group_imb)
4883 goto force_balance;
4884
cc57aa8f 4885 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4886 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4887 !sds.busiest_has_capacity)
4888 goto force_balance;
4889
cc57aa8f
PZ
4890 /*
4891 * If the local group is more busy than the selected busiest group
4892 * don't try and pull any tasks.
4893 */
1e3c88bd
PZ
4894 if (sds.this_load >= sds.max_load)
4895 goto out_balanced;
4896
cc57aa8f
PZ
4897 /*
4898 * Don't pull any tasks if this group is already above the domain
4899 * average load.
4900 */
1e3c88bd
PZ
4901 if (sds.this_load >= sds.avg_load)
4902 goto out_balanced;
4903
bd939f45 4904 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4905 /*
4906 * This cpu is idle. If the busiest group load doesn't
4907 * have more tasks than the number of available cpu's and
4908 * there is no imbalance between this and busiest group
4909 * wrt to idle cpu's, it is balanced.
4910 */
c186fafe 4911 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4912 sds.busiest_nr_running <= sds.busiest_group_weight)
4913 goto out_balanced;
c186fafe
PZ
4914 } else {
4915 /*
4916 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4917 * imbalance_pct to be conservative.
4918 */
bd939f45 4919 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4920 goto out_balanced;
aae6d3dd 4921 }
1e3c88bd 4922
fab47622 4923force_balance:
1e3c88bd 4924 /* Looks like there is an imbalance. Compute it */
bd939f45 4925 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4926 return sds.busiest;
4927
4928out_balanced:
1e3c88bd 4929ret:
bd939f45 4930 env->imbalance = 0;
1e3c88bd
PZ
4931 return NULL;
4932}
4933
4934/*
4935 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4936 */
bd939f45 4937static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4938 struct sched_group *group)
1e3c88bd
PZ
4939{
4940 struct rq *busiest = NULL, *rq;
4941 unsigned long max_load = 0;
4942 int i;
4943
4944 for_each_cpu(i, sched_group_cpus(group)) {
4945 unsigned long power = power_of(i);
1399fa78
NR
4946 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4947 SCHED_POWER_SCALE);
1e3c88bd
PZ
4948 unsigned long wl;
4949
9d5efe05 4950 if (!capacity)
bd939f45 4951 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4952
b9403130 4953 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4954 continue;
4955
4956 rq = cpu_rq(i);
6e40f5bb 4957 wl = weighted_cpuload(i);
1e3c88bd 4958
6e40f5bb
TG
4959 /*
4960 * When comparing with imbalance, use weighted_cpuload()
4961 * which is not scaled with the cpu power.
4962 */
bd939f45 4963 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4964 continue;
4965
6e40f5bb
TG
4966 /*
4967 * For the load comparisons with the other cpu's, consider
4968 * the weighted_cpuload() scaled with the cpu power, so that
4969 * the load can be moved away from the cpu that is potentially
4970 * running at a lower capacity.
4971 */
1399fa78 4972 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4973
1e3c88bd
PZ
4974 if (wl > max_load) {
4975 max_load = wl;
4976 busiest = rq;
4977 }
4978 }
4979
4980 return busiest;
4981}
4982
4983/*
4984 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4985 * so long as it is large enough.
4986 */
4987#define MAX_PINNED_INTERVAL 512
4988
4989/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 4990DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 4991
bd939f45 4992static int need_active_balance(struct lb_env *env)
1af3ed3d 4993{
bd939f45
PZ
4994 struct sched_domain *sd = env->sd;
4995
4996 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4997
4998 /*
4999 * ASYM_PACKING needs to force migrate tasks from busy but
5000 * higher numbered CPUs in order to pack all tasks in the
5001 * lowest numbered CPUs.
5002 */
bd939f45 5003 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5004 return 1;
1af3ed3d
PZ
5005 }
5006
5007 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5008}
5009
969c7921
TH
5010static int active_load_balance_cpu_stop(void *data);
5011
1e3c88bd
PZ
5012/*
5013 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5014 * tasks if there is an imbalance.
5015 */
5016static int load_balance(int this_cpu, struct rq *this_rq,
5017 struct sched_domain *sd, enum cpu_idle_type idle,
5018 int *balance)
5019{
88b8dac0 5020 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5021 struct sched_group *group;
1e3c88bd
PZ
5022 struct rq *busiest;
5023 unsigned long flags;
e6252c3e 5024 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5025
8e45cb54
PZ
5026 struct lb_env env = {
5027 .sd = sd,
ddcdf6e7
PZ
5028 .dst_cpu = this_cpu,
5029 .dst_rq = this_rq,
88b8dac0 5030 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5031 .idle = idle,
eb95308e 5032 .loop_break = sched_nr_migrate_break,
b9403130 5033 .cpus = cpus,
8e45cb54
PZ
5034 };
5035
cfc03118
JK
5036 /*
5037 * For NEWLY_IDLE load_balancing, we don't need to consider
5038 * other cpus in our group
5039 */
e02e60c1 5040 if (idle == CPU_NEWLY_IDLE)
cfc03118 5041 env.dst_grpmask = NULL;
cfc03118 5042
1e3c88bd
PZ
5043 cpumask_copy(cpus, cpu_active_mask);
5044
1e3c88bd
PZ
5045 schedstat_inc(sd, lb_count[idle]);
5046
5047redo:
b9403130 5048 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5049
5050 if (*balance == 0)
5051 goto out_balanced;
5052
5053 if (!group) {
5054 schedstat_inc(sd, lb_nobusyg[idle]);
5055 goto out_balanced;
5056 }
5057
b9403130 5058 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5059 if (!busiest) {
5060 schedstat_inc(sd, lb_nobusyq[idle]);
5061 goto out_balanced;
5062 }
5063
78feefc5 5064 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5065
bd939f45 5066 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5067
5068 ld_moved = 0;
5069 if (busiest->nr_running > 1) {
5070 /*
5071 * Attempt to move tasks. If find_busiest_group has found
5072 * an imbalance but busiest->nr_running <= 1, the group is
5073 * still unbalanced. ld_moved simply stays zero, so it is
5074 * correctly treated as an imbalance.
5075 */
8e45cb54 5076 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5077 env.src_cpu = busiest->cpu;
5078 env.src_rq = busiest;
5079 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5080
a35b6466 5081 update_h_load(env.src_cpu);
5d6523eb 5082more_balance:
1e3c88bd 5083 local_irq_save(flags);
78feefc5 5084 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5085
5086 /*
5087 * cur_ld_moved - load moved in current iteration
5088 * ld_moved - cumulative load moved across iterations
5089 */
5090 cur_ld_moved = move_tasks(&env);
5091 ld_moved += cur_ld_moved;
78feefc5 5092 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5093 local_irq_restore(flags);
5094
5095 /*
5096 * some other cpu did the load balance for us.
5097 */
88b8dac0
SV
5098 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5099 resched_cpu(env.dst_cpu);
5100
f1cd0858
JK
5101 if (env.flags & LBF_NEED_BREAK) {
5102 env.flags &= ~LBF_NEED_BREAK;
5103 goto more_balance;
5104 }
5105
88b8dac0
SV
5106 /*
5107 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5108 * us and move them to an alternate dst_cpu in our sched_group
5109 * where they can run. The upper limit on how many times we
5110 * iterate on same src_cpu is dependent on number of cpus in our
5111 * sched_group.
5112 *
5113 * This changes load balance semantics a bit on who can move
5114 * load to a given_cpu. In addition to the given_cpu itself
5115 * (or a ilb_cpu acting on its behalf where given_cpu is
5116 * nohz-idle), we now have balance_cpu in a position to move
5117 * load to given_cpu. In rare situations, this may cause
5118 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5119 * _independently_ and at _same_ time to move some load to
5120 * given_cpu) causing exceess load to be moved to given_cpu.
5121 * This however should not happen so much in practice and
5122 * moreover subsequent load balance cycles should correct the
5123 * excess load moved.
5124 */
e02e60c1 5125 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5126
78feefc5 5127 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5128 env.dst_cpu = env.new_dst_cpu;
5129 env.flags &= ~LBF_SOME_PINNED;
5130 env.loop = 0;
5131 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5132
5133 /* Prevent to re-select dst_cpu via env's cpus */
5134 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5135
88b8dac0
SV
5136 /*
5137 * Go back to "more_balance" rather than "redo" since we
5138 * need to continue with same src_cpu.
5139 */
5140 goto more_balance;
5141 }
1e3c88bd
PZ
5142
5143 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5144 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5145 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5146 if (!cpumask_empty(cpus)) {
5147 env.loop = 0;
5148 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5149 goto redo;
bbf18b19 5150 }
1e3c88bd
PZ
5151 goto out_balanced;
5152 }
5153 }
5154
5155 if (!ld_moved) {
5156 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5157 /*
5158 * Increment the failure counter only on periodic balance.
5159 * We do not want newidle balance, which can be very
5160 * frequent, pollute the failure counter causing
5161 * excessive cache_hot migrations and active balances.
5162 */
5163 if (idle != CPU_NEWLY_IDLE)
5164 sd->nr_balance_failed++;
1e3c88bd 5165
bd939f45 5166 if (need_active_balance(&env)) {
1e3c88bd
PZ
5167 raw_spin_lock_irqsave(&busiest->lock, flags);
5168
969c7921
TH
5169 /* don't kick the active_load_balance_cpu_stop,
5170 * if the curr task on busiest cpu can't be
5171 * moved to this_cpu
1e3c88bd
PZ
5172 */
5173 if (!cpumask_test_cpu(this_cpu,
fa17b507 5174 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5175 raw_spin_unlock_irqrestore(&busiest->lock,
5176 flags);
8e45cb54 5177 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5178 goto out_one_pinned;
5179 }
5180
969c7921
TH
5181 /*
5182 * ->active_balance synchronizes accesses to
5183 * ->active_balance_work. Once set, it's cleared
5184 * only after active load balance is finished.
5185 */
1e3c88bd
PZ
5186 if (!busiest->active_balance) {
5187 busiest->active_balance = 1;
5188 busiest->push_cpu = this_cpu;
5189 active_balance = 1;
5190 }
5191 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5192
bd939f45 5193 if (active_balance) {
969c7921
TH
5194 stop_one_cpu_nowait(cpu_of(busiest),
5195 active_load_balance_cpu_stop, busiest,
5196 &busiest->active_balance_work);
bd939f45 5197 }
1e3c88bd
PZ
5198
5199 /*
5200 * We've kicked active balancing, reset the failure
5201 * counter.
5202 */
5203 sd->nr_balance_failed = sd->cache_nice_tries+1;
5204 }
5205 } else
5206 sd->nr_balance_failed = 0;
5207
5208 if (likely(!active_balance)) {
5209 /* We were unbalanced, so reset the balancing interval */
5210 sd->balance_interval = sd->min_interval;
5211 } else {
5212 /*
5213 * If we've begun active balancing, start to back off. This
5214 * case may not be covered by the all_pinned logic if there
5215 * is only 1 task on the busy runqueue (because we don't call
5216 * move_tasks).
5217 */
5218 if (sd->balance_interval < sd->max_interval)
5219 sd->balance_interval *= 2;
5220 }
5221
1e3c88bd
PZ
5222 goto out;
5223
5224out_balanced:
5225 schedstat_inc(sd, lb_balanced[idle]);
5226
5227 sd->nr_balance_failed = 0;
5228
5229out_one_pinned:
5230 /* tune up the balancing interval */
8e45cb54 5231 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5232 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5233 (sd->balance_interval < sd->max_interval))
5234 sd->balance_interval *= 2;
5235
46e49b38 5236 ld_moved = 0;
1e3c88bd 5237out:
1e3c88bd
PZ
5238 return ld_moved;
5239}
5240
1e3c88bd
PZ
5241/*
5242 * idle_balance is called by schedule() if this_cpu is about to become
5243 * idle. Attempts to pull tasks from other CPUs.
5244 */
029632fb 5245void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5246{
5247 struct sched_domain *sd;
5248 int pulled_task = 0;
5249 unsigned long next_balance = jiffies + HZ;
5250
78becc27 5251 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5252
5253 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5254 return;
5255
f492e12e
PZ
5256 /*
5257 * Drop the rq->lock, but keep IRQ/preempt disabled.
5258 */
5259 raw_spin_unlock(&this_rq->lock);
5260
48a16753 5261 update_blocked_averages(this_cpu);
dce840a0 5262 rcu_read_lock();
1e3c88bd
PZ
5263 for_each_domain(this_cpu, sd) {
5264 unsigned long interval;
f492e12e 5265 int balance = 1;
1e3c88bd
PZ
5266
5267 if (!(sd->flags & SD_LOAD_BALANCE))
5268 continue;
5269
f492e12e 5270 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5271 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5272 pulled_task = load_balance(this_cpu, this_rq,
5273 sd, CPU_NEWLY_IDLE, &balance);
5274 }
1e3c88bd
PZ
5275
5276 interval = msecs_to_jiffies(sd->balance_interval);
5277 if (time_after(next_balance, sd->last_balance + interval))
5278 next_balance = sd->last_balance + interval;
d5ad140b
NR
5279 if (pulled_task) {
5280 this_rq->idle_stamp = 0;
1e3c88bd 5281 break;
d5ad140b 5282 }
1e3c88bd 5283 }
dce840a0 5284 rcu_read_unlock();
f492e12e
PZ
5285
5286 raw_spin_lock(&this_rq->lock);
5287
1e3c88bd
PZ
5288 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5289 /*
5290 * We are going idle. next_balance may be set based on
5291 * a busy processor. So reset next_balance.
5292 */
5293 this_rq->next_balance = next_balance;
5294 }
5295}
5296
5297/*
969c7921
TH
5298 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5299 * running tasks off the busiest CPU onto idle CPUs. It requires at
5300 * least 1 task to be running on each physical CPU where possible, and
5301 * avoids physical / logical imbalances.
1e3c88bd 5302 */
969c7921 5303static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5304{
969c7921
TH
5305 struct rq *busiest_rq = data;
5306 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5307 int target_cpu = busiest_rq->push_cpu;
969c7921 5308 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5309 struct sched_domain *sd;
969c7921
TH
5310
5311 raw_spin_lock_irq(&busiest_rq->lock);
5312
5313 /* make sure the requested cpu hasn't gone down in the meantime */
5314 if (unlikely(busiest_cpu != smp_processor_id() ||
5315 !busiest_rq->active_balance))
5316 goto out_unlock;
1e3c88bd
PZ
5317
5318 /* Is there any task to move? */
5319 if (busiest_rq->nr_running <= 1)
969c7921 5320 goto out_unlock;
1e3c88bd
PZ
5321
5322 /*
5323 * This condition is "impossible", if it occurs
5324 * we need to fix it. Originally reported by
5325 * Bjorn Helgaas on a 128-cpu setup.
5326 */
5327 BUG_ON(busiest_rq == target_rq);
5328
5329 /* move a task from busiest_rq to target_rq */
5330 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5331
5332 /* Search for an sd spanning us and the target CPU. */
dce840a0 5333 rcu_read_lock();
1e3c88bd
PZ
5334 for_each_domain(target_cpu, sd) {
5335 if ((sd->flags & SD_LOAD_BALANCE) &&
5336 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5337 break;
5338 }
5339
5340 if (likely(sd)) {
8e45cb54
PZ
5341 struct lb_env env = {
5342 .sd = sd,
ddcdf6e7
PZ
5343 .dst_cpu = target_cpu,
5344 .dst_rq = target_rq,
5345 .src_cpu = busiest_rq->cpu,
5346 .src_rq = busiest_rq,
8e45cb54
PZ
5347 .idle = CPU_IDLE,
5348 };
5349
1e3c88bd
PZ
5350 schedstat_inc(sd, alb_count);
5351
8e45cb54 5352 if (move_one_task(&env))
1e3c88bd
PZ
5353 schedstat_inc(sd, alb_pushed);
5354 else
5355 schedstat_inc(sd, alb_failed);
5356 }
dce840a0 5357 rcu_read_unlock();
1e3c88bd 5358 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5359out_unlock:
5360 busiest_rq->active_balance = 0;
5361 raw_spin_unlock_irq(&busiest_rq->lock);
5362 return 0;
1e3c88bd
PZ
5363}
5364
3451d024 5365#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5366/*
5367 * idle load balancing details
83cd4fe2
VP
5368 * - When one of the busy CPUs notice that there may be an idle rebalancing
5369 * needed, they will kick the idle load balancer, which then does idle
5370 * load balancing for all the idle CPUs.
5371 */
1e3c88bd 5372static struct {
83cd4fe2 5373 cpumask_var_t idle_cpus_mask;
0b005cf5 5374 atomic_t nr_cpus;
83cd4fe2
VP
5375 unsigned long next_balance; /* in jiffy units */
5376} nohz ____cacheline_aligned;
1e3c88bd 5377
8e7fbcbc 5378static inline int find_new_ilb(int call_cpu)
1e3c88bd 5379{
0b005cf5 5380 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5381
786d6dc7
SS
5382 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5383 return ilb;
5384
5385 return nr_cpu_ids;
1e3c88bd 5386}
1e3c88bd 5387
83cd4fe2
VP
5388/*
5389 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5390 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5391 * CPU (if there is one).
5392 */
5393static void nohz_balancer_kick(int cpu)
5394{
5395 int ilb_cpu;
5396
5397 nohz.next_balance++;
5398
0b005cf5 5399 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5400
0b005cf5
SS
5401 if (ilb_cpu >= nr_cpu_ids)
5402 return;
83cd4fe2 5403
cd490c5b 5404 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5405 return;
5406 /*
5407 * Use smp_send_reschedule() instead of resched_cpu().
5408 * This way we generate a sched IPI on the target cpu which
5409 * is idle. And the softirq performing nohz idle load balance
5410 * will be run before returning from the IPI.
5411 */
5412 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5413 return;
5414}
5415
c1cc017c 5416static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5417{
5418 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5419 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5420 atomic_dec(&nohz.nr_cpus);
5421 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5422 }
5423}
5424
69e1e811
SS
5425static inline void set_cpu_sd_state_busy(void)
5426{
5427 struct sched_domain *sd;
69e1e811 5428
69e1e811 5429 rcu_read_lock();
424c93fe 5430 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5431
5432 if (!sd || !sd->nohz_idle)
5433 goto unlock;
5434 sd->nohz_idle = 0;
5435
5436 for (; sd; sd = sd->parent)
69e1e811 5437 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5438unlock:
69e1e811
SS
5439 rcu_read_unlock();
5440}
5441
5442void set_cpu_sd_state_idle(void)
5443{
5444 struct sched_domain *sd;
69e1e811 5445
69e1e811 5446 rcu_read_lock();
424c93fe 5447 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5448
5449 if (!sd || sd->nohz_idle)
5450 goto unlock;
5451 sd->nohz_idle = 1;
5452
5453 for (; sd; sd = sd->parent)
69e1e811 5454 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5455unlock:
69e1e811
SS
5456 rcu_read_unlock();
5457}
5458
1e3c88bd 5459/*
c1cc017c 5460 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5461 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5462 */
c1cc017c 5463void nohz_balance_enter_idle(int cpu)
1e3c88bd 5464{
71325960
SS
5465 /*
5466 * If this cpu is going down, then nothing needs to be done.
5467 */
5468 if (!cpu_active(cpu))
5469 return;
5470
c1cc017c
AS
5471 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5472 return;
1e3c88bd 5473
c1cc017c
AS
5474 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5475 atomic_inc(&nohz.nr_cpus);
5476 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5477}
71325960
SS
5478
5479static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5480 unsigned long action, void *hcpu)
5481{
5482 switch (action & ~CPU_TASKS_FROZEN) {
5483 case CPU_DYING:
c1cc017c 5484 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5485 return NOTIFY_OK;
5486 default:
5487 return NOTIFY_DONE;
5488 }
5489}
1e3c88bd
PZ
5490#endif
5491
5492static DEFINE_SPINLOCK(balancing);
5493
49c022e6
PZ
5494/*
5495 * Scale the max load_balance interval with the number of CPUs in the system.
5496 * This trades load-balance latency on larger machines for less cross talk.
5497 */
029632fb 5498void update_max_interval(void)
49c022e6
PZ
5499{
5500 max_load_balance_interval = HZ*num_online_cpus()/10;
5501}
5502
1e3c88bd
PZ
5503/*
5504 * It checks each scheduling domain to see if it is due to be balanced,
5505 * and initiates a balancing operation if so.
5506 *
b9b0853a 5507 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5508 */
5509static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5510{
5511 int balance = 1;
5512 struct rq *rq = cpu_rq(cpu);
5513 unsigned long interval;
04f733b4 5514 struct sched_domain *sd;
1e3c88bd
PZ
5515 /* Earliest time when we have to do rebalance again */
5516 unsigned long next_balance = jiffies + 60*HZ;
5517 int update_next_balance = 0;
5518 int need_serialize;
5519
48a16753 5520 update_blocked_averages(cpu);
2069dd75 5521
dce840a0 5522 rcu_read_lock();
1e3c88bd
PZ
5523 for_each_domain(cpu, sd) {
5524 if (!(sd->flags & SD_LOAD_BALANCE))
5525 continue;
5526
5527 interval = sd->balance_interval;
5528 if (idle != CPU_IDLE)
5529 interval *= sd->busy_factor;
5530
5531 /* scale ms to jiffies */
5532 interval = msecs_to_jiffies(interval);
49c022e6 5533 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5534
5535 need_serialize = sd->flags & SD_SERIALIZE;
5536
5537 if (need_serialize) {
5538 if (!spin_trylock(&balancing))
5539 goto out;
5540 }
5541
5542 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5543 if (load_balance(cpu, rq, sd, idle, &balance)) {
5544 /*
de5eb2dd
JK
5545 * The LBF_SOME_PINNED logic could have changed
5546 * env->dst_cpu, so we can't know our idle
5547 * state even if we migrated tasks. Update it.
1e3c88bd 5548 */
de5eb2dd 5549 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5550 }
5551 sd->last_balance = jiffies;
5552 }
5553 if (need_serialize)
5554 spin_unlock(&balancing);
5555out:
5556 if (time_after(next_balance, sd->last_balance + interval)) {
5557 next_balance = sd->last_balance + interval;
5558 update_next_balance = 1;
5559 }
5560
5561 /*
5562 * Stop the load balance at this level. There is another
5563 * CPU in our sched group which is doing load balancing more
5564 * actively.
5565 */
5566 if (!balance)
5567 break;
5568 }
dce840a0 5569 rcu_read_unlock();
1e3c88bd
PZ
5570
5571 /*
5572 * next_balance will be updated only when there is a need.
5573 * When the cpu is attached to null domain for ex, it will not be
5574 * updated.
5575 */
5576 if (likely(update_next_balance))
5577 rq->next_balance = next_balance;
5578}
5579
3451d024 5580#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5581/*
3451d024 5582 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5583 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5584 */
83cd4fe2
VP
5585static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5586{
5587 struct rq *this_rq = cpu_rq(this_cpu);
5588 struct rq *rq;
5589 int balance_cpu;
5590
1c792db7
SS
5591 if (idle != CPU_IDLE ||
5592 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5593 goto end;
83cd4fe2
VP
5594
5595 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5596 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5597 continue;
5598
5599 /*
5600 * If this cpu gets work to do, stop the load balancing
5601 * work being done for other cpus. Next load
5602 * balancing owner will pick it up.
5603 */
1c792db7 5604 if (need_resched())
83cd4fe2 5605 break;
83cd4fe2 5606
5ed4f1d9
VG
5607 rq = cpu_rq(balance_cpu);
5608
5609 raw_spin_lock_irq(&rq->lock);
5610 update_rq_clock(rq);
5611 update_idle_cpu_load(rq);
5612 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5613
5614 rebalance_domains(balance_cpu, CPU_IDLE);
5615
83cd4fe2
VP
5616 if (time_after(this_rq->next_balance, rq->next_balance))
5617 this_rq->next_balance = rq->next_balance;
5618 }
5619 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5620end:
5621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5622}
5623
5624/*
0b005cf5
SS
5625 * Current heuristic for kicking the idle load balancer in the presence
5626 * of an idle cpu is the system.
5627 * - This rq has more than one task.
5628 * - At any scheduler domain level, this cpu's scheduler group has multiple
5629 * busy cpu's exceeding the group's power.
5630 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5631 * domain span are idle.
83cd4fe2
VP
5632 */
5633static inline int nohz_kick_needed(struct rq *rq, int cpu)
5634{
5635 unsigned long now = jiffies;
0b005cf5 5636 struct sched_domain *sd;
83cd4fe2 5637
1c792db7 5638 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5639 return 0;
5640
1c792db7
SS
5641 /*
5642 * We may be recently in ticked or tickless idle mode. At the first
5643 * busy tick after returning from idle, we will update the busy stats.
5644 */
69e1e811 5645 set_cpu_sd_state_busy();
c1cc017c 5646 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5647
5648 /*
5649 * None are in tickless mode and hence no need for NOHZ idle load
5650 * balancing.
5651 */
5652 if (likely(!atomic_read(&nohz.nr_cpus)))
5653 return 0;
1c792db7
SS
5654
5655 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5656 return 0;
5657
0b005cf5
SS
5658 if (rq->nr_running >= 2)
5659 goto need_kick;
83cd4fe2 5660
067491b7 5661 rcu_read_lock();
0b005cf5
SS
5662 for_each_domain(cpu, sd) {
5663 struct sched_group *sg = sd->groups;
5664 struct sched_group_power *sgp = sg->sgp;
5665 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5666
0b005cf5 5667 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5668 goto need_kick_unlock;
0b005cf5
SS
5669
5670 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5671 && (cpumask_first_and(nohz.idle_cpus_mask,
5672 sched_domain_span(sd)) < cpu))
067491b7 5673 goto need_kick_unlock;
0b005cf5
SS
5674
5675 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5676 break;
83cd4fe2 5677 }
067491b7 5678 rcu_read_unlock();
83cd4fe2 5679 return 0;
067491b7
PZ
5680
5681need_kick_unlock:
5682 rcu_read_unlock();
0b005cf5
SS
5683need_kick:
5684 return 1;
83cd4fe2
VP
5685}
5686#else
5687static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5688#endif
5689
5690/*
5691 * run_rebalance_domains is triggered when needed from the scheduler tick.
5692 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5693 */
1e3c88bd
PZ
5694static void run_rebalance_domains(struct softirq_action *h)
5695{
5696 int this_cpu = smp_processor_id();
5697 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5698 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5699 CPU_IDLE : CPU_NOT_IDLE;
5700
5701 rebalance_domains(this_cpu, idle);
5702
1e3c88bd 5703 /*
83cd4fe2 5704 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5705 * balancing on behalf of the other idle cpus whose ticks are
5706 * stopped.
5707 */
83cd4fe2 5708 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5709}
5710
5711static inline int on_null_domain(int cpu)
5712{
90a6501f 5713 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5714}
5715
5716/*
5717 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5718 */
029632fb 5719void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5720{
1e3c88bd
PZ
5721 /* Don't need to rebalance while attached to NULL domain */
5722 if (time_after_eq(jiffies, rq->next_balance) &&
5723 likely(!on_null_domain(cpu)))
5724 raise_softirq(SCHED_SOFTIRQ);
3451d024 5725#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5726 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5727 nohz_balancer_kick(cpu);
5728#endif
1e3c88bd
PZ
5729}
5730
0bcdcf28
CE
5731static void rq_online_fair(struct rq *rq)
5732{
5733 update_sysctl();
5734}
5735
5736static void rq_offline_fair(struct rq *rq)
5737{
5738 update_sysctl();
a4c96ae3
PB
5739
5740 /* Ensure any throttled groups are reachable by pick_next_task */
5741 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5742}
5743
55e12e5e 5744#endif /* CONFIG_SMP */
e1d1484f 5745
bf0f6f24
IM
5746/*
5747 * scheduler tick hitting a task of our scheduling class:
5748 */
8f4d37ec 5749static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5750{
5751 struct cfs_rq *cfs_rq;
5752 struct sched_entity *se = &curr->se;
5753
5754 for_each_sched_entity(se) {
5755 cfs_rq = cfs_rq_of(se);
8f4d37ec 5756 entity_tick(cfs_rq, se, queued);
bf0f6f24 5757 }
18bf2805 5758
cbee9f88
PZ
5759 if (sched_feat_numa(NUMA))
5760 task_tick_numa(rq, curr);
3d59eebc 5761
18bf2805 5762 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5763}
5764
5765/*
cd29fe6f
PZ
5766 * called on fork with the child task as argument from the parent's context
5767 * - child not yet on the tasklist
5768 * - preemption disabled
bf0f6f24 5769 */
cd29fe6f 5770static void task_fork_fair(struct task_struct *p)
bf0f6f24 5771{
4fc420c9
DN
5772 struct cfs_rq *cfs_rq;
5773 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5774 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5775 struct rq *rq = this_rq();
5776 unsigned long flags;
5777
05fa785c 5778 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5779
861d034e
PZ
5780 update_rq_clock(rq);
5781
4fc420c9
DN
5782 cfs_rq = task_cfs_rq(current);
5783 curr = cfs_rq->curr;
5784
b0a0f667
PM
5785 if (unlikely(task_cpu(p) != this_cpu)) {
5786 rcu_read_lock();
cd29fe6f 5787 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5788 rcu_read_unlock();
5789 }
bf0f6f24 5790
7109c442 5791 update_curr(cfs_rq);
cd29fe6f 5792
b5d9d734
MG
5793 if (curr)
5794 se->vruntime = curr->vruntime;
aeb73b04 5795 place_entity(cfs_rq, se, 1);
4d78e7b6 5796
cd29fe6f 5797 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5798 /*
edcb60a3
IM
5799 * Upon rescheduling, sched_class::put_prev_task() will place
5800 * 'current' within the tree based on its new key value.
5801 */
4d78e7b6 5802 swap(curr->vruntime, se->vruntime);
aec0a514 5803 resched_task(rq->curr);
4d78e7b6 5804 }
bf0f6f24 5805
88ec22d3
PZ
5806 se->vruntime -= cfs_rq->min_vruntime;
5807
05fa785c 5808 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5809}
5810
cb469845
SR
5811/*
5812 * Priority of the task has changed. Check to see if we preempt
5813 * the current task.
5814 */
da7a735e
PZ
5815static void
5816prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5817{
da7a735e
PZ
5818 if (!p->se.on_rq)
5819 return;
5820
cb469845
SR
5821 /*
5822 * Reschedule if we are currently running on this runqueue and
5823 * our priority decreased, or if we are not currently running on
5824 * this runqueue and our priority is higher than the current's
5825 */
da7a735e 5826 if (rq->curr == p) {
cb469845
SR
5827 if (p->prio > oldprio)
5828 resched_task(rq->curr);
5829 } else
15afe09b 5830 check_preempt_curr(rq, p, 0);
cb469845
SR
5831}
5832
da7a735e
PZ
5833static void switched_from_fair(struct rq *rq, struct task_struct *p)
5834{
5835 struct sched_entity *se = &p->se;
5836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5837
5838 /*
5839 * Ensure the task's vruntime is normalized, so that when its
5840 * switched back to the fair class the enqueue_entity(.flags=0) will
5841 * do the right thing.
5842 *
5843 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5844 * have normalized the vruntime, if it was !on_rq, then only when
5845 * the task is sleeping will it still have non-normalized vruntime.
5846 */
5847 if (!se->on_rq && p->state != TASK_RUNNING) {
5848 /*
5849 * Fix up our vruntime so that the current sleep doesn't
5850 * cause 'unlimited' sleep bonus.
5851 */
5852 place_entity(cfs_rq, se, 0);
5853 se->vruntime -= cfs_rq->min_vruntime;
5854 }
9ee474f5 5855
141965c7 5856#ifdef CONFIG_SMP
9ee474f5
PT
5857 /*
5858 * Remove our load from contribution when we leave sched_fair
5859 * and ensure we don't carry in an old decay_count if we
5860 * switch back.
5861 */
5862 if (p->se.avg.decay_count) {
5863 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5864 __synchronize_entity_decay(&p->se);
5865 subtract_blocked_load_contrib(cfs_rq,
5866 p->se.avg.load_avg_contrib);
5867 }
5868#endif
da7a735e
PZ
5869}
5870
cb469845
SR
5871/*
5872 * We switched to the sched_fair class.
5873 */
da7a735e 5874static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5875{
da7a735e
PZ
5876 if (!p->se.on_rq)
5877 return;
5878
cb469845
SR
5879 /*
5880 * We were most likely switched from sched_rt, so
5881 * kick off the schedule if running, otherwise just see
5882 * if we can still preempt the current task.
5883 */
da7a735e 5884 if (rq->curr == p)
cb469845
SR
5885 resched_task(rq->curr);
5886 else
15afe09b 5887 check_preempt_curr(rq, p, 0);
cb469845
SR
5888}
5889
83b699ed
SV
5890/* Account for a task changing its policy or group.
5891 *
5892 * This routine is mostly called to set cfs_rq->curr field when a task
5893 * migrates between groups/classes.
5894 */
5895static void set_curr_task_fair(struct rq *rq)
5896{
5897 struct sched_entity *se = &rq->curr->se;
5898
ec12cb7f
PT
5899 for_each_sched_entity(se) {
5900 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5901
5902 set_next_entity(cfs_rq, se);
5903 /* ensure bandwidth has been allocated on our new cfs_rq */
5904 account_cfs_rq_runtime(cfs_rq, 0);
5905 }
83b699ed
SV
5906}
5907
029632fb
PZ
5908void init_cfs_rq(struct cfs_rq *cfs_rq)
5909{
5910 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5911 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5912#ifndef CONFIG_64BIT
5913 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5914#endif
141965c7 5915#ifdef CONFIG_SMP
9ee474f5 5916 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5917 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5918#endif
029632fb
PZ
5919}
5920
810b3817 5921#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5922static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5923{
aff3e498 5924 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5925 /*
5926 * If the task was not on the rq at the time of this cgroup movement
5927 * it must have been asleep, sleeping tasks keep their ->vruntime
5928 * absolute on their old rq until wakeup (needed for the fair sleeper
5929 * bonus in place_entity()).
5930 *
5931 * If it was on the rq, we've just 'preempted' it, which does convert
5932 * ->vruntime to a relative base.
5933 *
5934 * Make sure both cases convert their relative position when migrating
5935 * to another cgroup's rq. This does somewhat interfere with the
5936 * fair sleeper stuff for the first placement, but who cares.
5937 */
7ceff013
DN
5938 /*
5939 * When !on_rq, vruntime of the task has usually NOT been normalized.
5940 * But there are some cases where it has already been normalized:
5941 *
5942 * - Moving a forked child which is waiting for being woken up by
5943 * wake_up_new_task().
62af3783
DN
5944 * - Moving a task which has been woken up by try_to_wake_up() and
5945 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5946 *
5947 * To prevent boost or penalty in the new cfs_rq caused by delta
5948 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5949 */
62af3783 5950 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5951 on_rq = 1;
5952
b2b5ce02
PZ
5953 if (!on_rq)
5954 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5955 set_task_rq(p, task_cpu(p));
aff3e498
PT
5956 if (!on_rq) {
5957 cfs_rq = cfs_rq_of(&p->se);
5958 p->se.vruntime += cfs_rq->min_vruntime;
5959#ifdef CONFIG_SMP
5960 /*
5961 * migrate_task_rq_fair() will have removed our previous
5962 * contribution, but we must synchronize for ongoing future
5963 * decay.
5964 */
5965 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5966 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5967#endif
5968 }
810b3817 5969}
029632fb
PZ
5970
5971void free_fair_sched_group(struct task_group *tg)
5972{
5973 int i;
5974
5975 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5976
5977 for_each_possible_cpu(i) {
5978 if (tg->cfs_rq)
5979 kfree(tg->cfs_rq[i]);
5980 if (tg->se)
5981 kfree(tg->se[i]);
5982 }
5983
5984 kfree(tg->cfs_rq);
5985 kfree(tg->se);
5986}
5987
5988int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5989{
5990 struct cfs_rq *cfs_rq;
5991 struct sched_entity *se;
5992 int i;
5993
5994 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5995 if (!tg->cfs_rq)
5996 goto err;
5997 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5998 if (!tg->se)
5999 goto err;
6000
6001 tg->shares = NICE_0_LOAD;
6002
6003 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6004
6005 for_each_possible_cpu(i) {
6006 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6007 GFP_KERNEL, cpu_to_node(i));
6008 if (!cfs_rq)
6009 goto err;
6010
6011 se = kzalloc_node(sizeof(struct sched_entity),
6012 GFP_KERNEL, cpu_to_node(i));
6013 if (!se)
6014 goto err_free_rq;
6015
6016 init_cfs_rq(cfs_rq);
6017 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6018 }
6019
6020 return 1;
6021
6022err_free_rq:
6023 kfree(cfs_rq);
6024err:
6025 return 0;
6026}
6027
6028void unregister_fair_sched_group(struct task_group *tg, int cpu)
6029{
6030 struct rq *rq = cpu_rq(cpu);
6031 unsigned long flags;
6032
6033 /*
6034 * Only empty task groups can be destroyed; so we can speculatively
6035 * check on_list without danger of it being re-added.
6036 */
6037 if (!tg->cfs_rq[cpu]->on_list)
6038 return;
6039
6040 raw_spin_lock_irqsave(&rq->lock, flags);
6041 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6042 raw_spin_unlock_irqrestore(&rq->lock, flags);
6043}
6044
6045void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6046 struct sched_entity *se, int cpu,
6047 struct sched_entity *parent)
6048{
6049 struct rq *rq = cpu_rq(cpu);
6050
6051 cfs_rq->tg = tg;
6052 cfs_rq->rq = rq;
029632fb
PZ
6053 init_cfs_rq_runtime(cfs_rq);
6054
6055 tg->cfs_rq[cpu] = cfs_rq;
6056 tg->se[cpu] = se;
6057
6058 /* se could be NULL for root_task_group */
6059 if (!se)
6060 return;
6061
6062 if (!parent)
6063 se->cfs_rq = &rq->cfs;
6064 else
6065 se->cfs_rq = parent->my_q;
6066
6067 se->my_q = cfs_rq;
6068 update_load_set(&se->load, 0);
6069 se->parent = parent;
6070}
6071
6072static DEFINE_MUTEX(shares_mutex);
6073
6074int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6075{
6076 int i;
6077 unsigned long flags;
6078
6079 /*
6080 * We can't change the weight of the root cgroup.
6081 */
6082 if (!tg->se[0])
6083 return -EINVAL;
6084
6085 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6086
6087 mutex_lock(&shares_mutex);
6088 if (tg->shares == shares)
6089 goto done;
6090
6091 tg->shares = shares;
6092 for_each_possible_cpu(i) {
6093 struct rq *rq = cpu_rq(i);
6094 struct sched_entity *se;
6095
6096 se = tg->se[i];
6097 /* Propagate contribution to hierarchy */
6098 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6099
6100 /* Possible calls to update_curr() need rq clock */
6101 update_rq_clock(rq);
17bc14b7 6102 for_each_sched_entity(se)
029632fb
PZ
6103 update_cfs_shares(group_cfs_rq(se));
6104 raw_spin_unlock_irqrestore(&rq->lock, flags);
6105 }
6106
6107done:
6108 mutex_unlock(&shares_mutex);
6109 return 0;
6110}
6111#else /* CONFIG_FAIR_GROUP_SCHED */
6112
6113void free_fair_sched_group(struct task_group *tg) { }
6114
6115int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6116{
6117 return 1;
6118}
6119
6120void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6121
6122#endif /* CONFIG_FAIR_GROUP_SCHED */
6123
810b3817 6124
6d686f45 6125static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6126{
6127 struct sched_entity *se = &task->se;
0d721cea
PW
6128 unsigned int rr_interval = 0;
6129
6130 /*
6131 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6132 * idle runqueue:
6133 */
0d721cea 6134 if (rq->cfs.load.weight)
a59f4e07 6135 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6136
6137 return rr_interval;
6138}
6139
bf0f6f24
IM
6140/*
6141 * All the scheduling class methods:
6142 */
029632fb 6143const struct sched_class fair_sched_class = {
5522d5d5 6144 .next = &idle_sched_class,
bf0f6f24
IM
6145 .enqueue_task = enqueue_task_fair,
6146 .dequeue_task = dequeue_task_fair,
6147 .yield_task = yield_task_fair,
d95f4122 6148 .yield_to_task = yield_to_task_fair,
bf0f6f24 6149
2e09bf55 6150 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6151
6152 .pick_next_task = pick_next_task_fair,
6153 .put_prev_task = put_prev_task_fair,
6154
681f3e68 6155#ifdef CONFIG_SMP
4ce72a2c 6156 .select_task_rq = select_task_rq_fair,
0a74bef8 6157 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6158
0bcdcf28
CE
6159 .rq_online = rq_online_fair,
6160 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6161
6162 .task_waking = task_waking_fair,
681f3e68 6163#endif
bf0f6f24 6164
83b699ed 6165 .set_curr_task = set_curr_task_fair,
bf0f6f24 6166 .task_tick = task_tick_fair,
cd29fe6f 6167 .task_fork = task_fork_fair,
cb469845
SR
6168
6169 .prio_changed = prio_changed_fair,
da7a735e 6170 .switched_from = switched_from_fair,
cb469845 6171 .switched_to = switched_to_fair,
810b3817 6172
0d721cea
PW
6173 .get_rr_interval = get_rr_interval_fair,
6174
810b3817 6175#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6176 .task_move_group = task_move_group_fair,
810b3817 6177#endif
bf0f6f24
IM
6178};
6179
6180#ifdef CONFIG_SCHED_DEBUG
029632fb 6181void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6182{
bf0f6f24
IM
6183 struct cfs_rq *cfs_rq;
6184
5973e5b9 6185 rcu_read_lock();
c3b64f1e 6186 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6187 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6188 rcu_read_unlock();
bf0f6f24
IM
6189}
6190#endif
029632fb
PZ
6191
6192__init void init_sched_fair_class(void)
6193{
6194#ifdef CONFIG_SMP
6195 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6196
3451d024 6197#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6198 nohz.next_balance = jiffies;
029632fb 6199 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6200 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6201#endif
6202#endif /* SMP */
6203
6204}