sched: Pass 'struct rq' to rebalance_domains()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
de1c9ce6
RR
822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
598f0ec0
MG
830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
0ec8aa00
PZ
875static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
876{
877 rq->nr_numa_running += (p->numa_preferred_nid != -1);
878 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
879}
880
881static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
882{
883 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
884 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
885}
886
8c8a743c
PZ
887struct numa_group {
888 atomic_t refcount;
889
890 spinlock_t lock; /* nr_tasks, tasks */
891 int nr_tasks;
e29cf08b 892 pid_t gid;
8c8a743c
PZ
893 struct list_head task_list;
894
895 struct rcu_head rcu;
989348b5
MG
896 unsigned long total_faults;
897 unsigned long faults[0];
8c8a743c
PZ
898};
899
e29cf08b
MG
900pid_t task_numa_group_id(struct task_struct *p)
901{
902 return p->numa_group ? p->numa_group->gid : 0;
903}
904
ac8e895b
MG
905static inline int task_faults_idx(int nid, int priv)
906{
907 return 2 * nid + priv;
908}
909
910static inline unsigned long task_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_faults)
913 return 0;
914
915 return p->numa_faults[task_faults_idx(nid, 0)] +
916 p->numa_faults[task_faults_idx(nid, 1)];
917}
918
83e1d2cd
MG
919static inline unsigned long group_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_group)
922 return 0;
923
82897b4f
WL
924 return p->numa_group->faults[task_faults_idx(nid, 0)] +
925 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
926}
927
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
938 if (!p->numa_faults)
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
e6628d5b 957static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
958static unsigned long source_load(int cpu, int type);
959static unsigned long target_load(int cpu, int type);
960static unsigned long power_of(int cpu);
961static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
962
fb13c7ee 963/* Cached statistics for all CPUs within a node */
58d081b5 964struct numa_stats {
fb13c7ee 965 unsigned long nr_running;
58d081b5 966 unsigned long load;
fb13c7ee
MG
967
968 /* Total compute capacity of CPUs on a node */
969 unsigned long power;
970
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
973 int has_capacity;
58d081b5 974};
e6628d5b 975
fb13c7ee
MG
976/*
977 * XXX borrowed from update_sg_lb_stats
978 */
979static void update_numa_stats(struct numa_stats *ns, int nid)
980{
5eca82a9 981 int cpu, cpus = 0;
fb13c7ee
MG
982
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
986
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
5eca82a9
PZ
990
991 cpus++;
fb13c7ee
MG
992 }
993
5eca82a9
PZ
994 /*
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
998 *
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1000 * and bail there.
1001 */
1002 if (!cpus)
1003 return;
1004
fb13c7ee
MG
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1008}
1009
58d081b5
MG
1010struct task_numa_env {
1011 struct task_struct *p;
e6628d5b 1012
58d081b5
MG
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
e6628d5b 1015
58d081b5 1016 struct numa_stats src_stats, dst_stats;
e6628d5b 1017
40ea2b42 1018 int imbalance_pct;
fb13c7ee
MG
1019
1020 struct task_struct *best_task;
1021 long best_imp;
58d081b5
MG
1022 int best_cpu;
1023};
1024
fb13c7ee
MG
1025static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1027{
1028 if (env->best_task)
1029 put_task_struct(env->best_task);
1030 if (p)
1031 get_task_struct(p);
1032
1033 env->best_task = p;
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1036}
1037
1038/*
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1043 */
887c290e
RR
1044static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
fb13c7ee
MG
1046{
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1051 long load;
887c290e 1052 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1053
1054 rcu_read_lock();
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1057 cur = NULL;
1058
1059 /*
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1065 */
1066 if (cur) {
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1069 goto unlock;
1070
887c290e
RR
1071 /*
1072 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1073 * in any group then look only at task weights.
887c290e 1074 */
ca28aa53 1075 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
ca28aa53
RR
1078 /*
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1081 */
1082 if (cur->numa_group)
1083 imp -= imp/16;
887c290e 1084 } else {
ca28aa53
RR
1085 /*
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1088 * instead.
1089 */
1090 if (env->p->numa_group)
1091 imp = groupimp;
1092 else
1093 imp = taskimp;
1094
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1098 else
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
887c290e 1101 }
fb13c7ee
MG
1102 }
1103
1104 if (imp < env->best_imp)
1105 goto unlock;
1106
1107 if (!cur) {
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1111 goto unlock;
1112
1113 goto balance;
1114 }
1115
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1118 goto assign;
1119
1120 /*
1121 * In the overloaded case, try and keep the load balanced.
1122 */
1123balance:
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1126
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1129 dst_load += load;
1130 src_load -= load;
1131
1132 if (cur) {
1133 load = task_h_load(cur);
1134 dst_load -= load;
1135 src_load += load;
1136 }
1137
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1141
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1143 goto unlock;
1144
1145assign:
1146 task_numa_assign(env, cur, imp);
1147unlock:
1148 rcu_read_unlock();
1149}
1150
887c290e
RR
1151static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
2c8a50aa
MG
1153{
1154 int cpu;
1155
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1159 continue;
1160
1161 env->dst_cpu = cpu;
887c290e 1162 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1163 }
1164}
1165
58d081b5
MG
1166static int task_numa_migrate(struct task_struct *p)
1167{
58d081b5
MG
1168 struct task_numa_env env = {
1169 .p = p,
fb13c7ee 1170
58d081b5 1171 .src_cpu = task_cpu(p),
b32e86b4 1172 .src_nid = task_node(p),
fb13c7ee
MG
1173
1174 .imbalance_pct = 112,
1175
1176 .best_task = NULL,
1177 .best_imp = 0,
1178 .best_cpu = -1
58d081b5
MG
1179 };
1180 struct sched_domain *sd;
887c290e 1181 unsigned long taskweight, groupweight;
2c8a50aa 1182 int nid, ret;
887c290e 1183 long taskimp, groupimp;
e6628d5b 1184
58d081b5 1185 /*
fb13c7ee
MG
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1188 *
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1191 * to satisfy here.
58d081b5
MG
1192 */
1193 rcu_read_lock();
fb13c7ee 1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1195 if (sd)
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1197 rcu_read_unlock();
1198
46a73e8a
RR
1199 /*
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1204 */
1205 if (unlikely(!sd)) {
de1b301a 1206 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1207 return -EINVAL;
1208 }
1209
887c290e
RR
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1212 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1213 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1216 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1217
e1dda8a7
RR
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
887c290e 1220 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1221
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
2c8a50aa
MG
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1226 continue;
58d081b5 1227
83e1d2cd 1228 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1232 continue;
1233
2c8a50aa
MG
1234 env.dst_nid = nid;
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1236 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1237 }
1238 }
1239
fb13c7ee
MG
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1242 return -EAGAIN;
1243
0ec8aa00
PZ
1244 sched_setnuma(p, env.dst_nid);
1245
04bb2f94
RR
1246 /*
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1249 */
1250 p->numa_scan_period = task_scan_min(p);
1251
fb13c7ee
MG
1252 if (env.best_task == NULL) {
1253 int ret = migrate_task_to(p, env.best_cpu);
1254 return ret;
1255 }
1256
1257 ret = migrate_swap(p, env.best_task);
1258 put_task_struct(env.best_task);
1259 return ret;
e6628d5b
MG
1260}
1261
6b9a7460
MG
1262/* Attempt to migrate a task to a CPU on the preferred node. */
1263static void numa_migrate_preferred(struct task_struct *p)
1264{
2739d3ee
RR
1265 /* This task has no NUMA fault statistics yet */
1266 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1267 return;
1268
2739d3ee
RR
1269 /* Periodically retry migrating the task to the preferred node */
1270 p->numa_migrate_retry = jiffies + HZ;
1271
1272 /* Success if task is already running on preferred CPU */
de1b301a 1273 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1274 return;
1275
1276 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1277 task_numa_migrate(p);
6b9a7460
MG
1278}
1279
04bb2f94
RR
1280/*
1281 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1282 * increments. The more local the fault statistics are, the higher the scan
1283 * period will be for the next scan window. If local/remote ratio is below
1284 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1285 * scan period will decrease
1286 */
1287#define NUMA_PERIOD_SLOTS 10
1288#define NUMA_PERIOD_THRESHOLD 3
1289
1290/*
1291 * Increase the scan period (slow down scanning) if the majority of
1292 * our memory is already on our local node, or if the majority of
1293 * the page accesses are shared with other processes.
1294 * Otherwise, decrease the scan period.
1295 */
1296static void update_task_scan_period(struct task_struct *p,
1297 unsigned long shared, unsigned long private)
1298{
1299 unsigned int period_slot;
1300 int ratio;
1301 int diff;
1302
1303 unsigned long remote = p->numa_faults_locality[0];
1304 unsigned long local = p->numa_faults_locality[1];
1305
1306 /*
1307 * If there were no record hinting faults then either the task is
1308 * completely idle or all activity is areas that are not of interest
1309 * to automatic numa balancing. Scan slower
1310 */
1311 if (local + shared == 0) {
1312 p->numa_scan_period = min(p->numa_scan_period_max,
1313 p->numa_scan_period << 1);
1314
1315 p->mm->numa_next_scan = jiffies +
1316 msecs_to_jiffies(p->numa_scan_period);
1317
1318 return;
1319 }
1320
1321 /*
1322 * Prepare to scale scan period relative to the current period.
1323 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1324 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1325 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1326 */
1327 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1328 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1329 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1330 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1331 if (!slot)
1332 slot = 1;
1333 diff = slot * period_slot;
1334 } else {
1335 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1336
1337 /*
1338 * Scale scan rate increases based on sharing. There is an
1339 * inverse relationship between the degree of sharing and
1340 * the adjustment made to the scanning period. Broadly
1341 * speaking the intent is that there is little point
1342 * scanning faster if shared accesses dominate as it may
1343 * simply bounce migrations uselessly
1344 */
04bb2f94
RR
1345 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1346 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1347 }
1348
1349 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1350 task_scan_min(p), task_scan_max(p));
1351 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1352}
1353
cbee9f88
PZ
1354static void task_numa_placement(struct task_struct *p)
1355{
83e1d2cd
MG
1356 int seq, nid, max_nid = -1, max_group_nid = -1;
1357 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1358 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1359 spinlock_t *group_lock = NULL;
cbee9f88 1360
2832bc19 1361 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1362 if (p->numa_scan_seq == seq)
1363 return;
1364 p->numa_scan_seq = seq;
598f0ec0 1365 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1366
7dbd13ed
MG
1367 /* If the task is part of a group prevent parallel updates to group stats */
1368 if (p->numa_group) {
1369 group_lock = &p->numa_group->lock;
1370 spin_lock(group_lock);
1371 }
1372
688b7585
MG
1373 /* Find the node with the highest number of faults */
1374 for_each_online_node(nid) {
83e1d2cd 1375 unsigned long faults = 0, group_faults = 0;
ac8e895b 1376 int priv, i;
745d6147 1377
ac8e895b 1378 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1379 long diff;
1380
ac8e895b 1381 i = task_faults_idx(nid, priv);
8c8a743c 1382 diff = -p->numa_faults[i];
745d6147 1383
ac8e895b
MG
1384 /* Decay existing window, copy faults since last scan */
1385 p->numa_faults[i] >>= 1;
1386 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1387 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1388 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1389
1390 faults += p->numa_faults[i];
8c8a743c 1391 diff += p->numa_faults[i];
83e1d2cd 1392 p->total_numa_faults += diff;
8c8a743c
PZ
1393 if (p->numa_group) {
1394 /* safe because we can only change our own group */
989348b5
MG
1395 p->numa_group->faults[i] += diff;
1396 p->numa_group->total_faults += diff;
1397 group_faults += p->numa_group->faults[i];
8c8a743c 1398 }
ac8e895b
MG
1399 }
1400
688b7585
MG
1401 if (faults > max_faults) {
1402 max_faults = faults;
1403 max_nid = nid;
1404 }
83e1d2cd
MG
1405
1406 if (group_faults > max_group_faults) {
1407 max_group_faults = group_faults;
1408 max_group_nid = nid;
1409 }
1410 }
1411
04bb2f94
RR
1412 update_task_scan_period(p, fault_types[0], fault_types[1]);
1413
7dbd13ed
MG
1414 if (p->numa_group) {
1415 /*
1416 * If the preferred task and group nids are different,
1417 * iterate over the nodes again to find the best place.
1418 */
1419 if (max_nid != max_group_nid) {
1420 unsigned long weight, max_weight = 0;
1421
1422 for_each_online_node(nid) {
1423 weight = task_weight(p, nid) + group_weight(p, nid);
1424 if (weight > max_weight) {
1425 max_weight = weight;
1426 max_nid = nid;
1427 }
83e1d2cd
MG
1428 }
1429 }
7dbd13ed
MG
1430
1431 spin_unlock(group_lock);
688b7585
MG
1432 }
1433
6b9a7460 1434 /* Preferred node as the node with the most faults */
3a7053b3 1435 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1436 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1437 sched_setnuma(p, max_nid);
6b9a7460 1438 numa_migrate_preferred(p);
3a7053b3 1439 }
cbee9f88
PZ
1440}
1441
8c8a743c
PZ
1442static inline int get_numa_group(struct numa_group *grp)
1443{
1444 return atomic_inc_not_zero(&grp->refcount);
1445}
1446
1447static inline void put_numa_group(struct numa_group *grp)
1448{
1449 if (atomic_dec_and_test(&grp->refcount))
1450 kfree_rcu(grp, rcu);
1451}
1452
3e6a9418
MG
1453static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1454 int *priv)
8c8a743c
PZ
1455{
1456 struct numa_group *grp, *my_grp;
1457 struct task_struct *tsk;
1458 bool join = false;
1459 int cpu = cpupid_to_cpu(cpupid);
1460 int i;
1461
1462 if (unlikely(!p->numa_group)) {
1463 unsigned int size = sizeof(struct numa_group) +
989348b5 1464 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1465
1466 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1467 if (!grp)
1468 return;
1469
1470 atomic_set(&grp->refcount, 1);
1471 spin_lock_init(&grp->lock);
1472 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1473 grp->gid = p->pid;
8c8a743c
PZ
1474
1475 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1476 grp->faults[i] = p->numa_faults[i];
8c8a743c 1477
989348b5 1478 grp->total_faults = p->total_numa_faults;
83e1d2cd 1479
8c8a743c
PZ
1480 list_add(&p->numa_entry, &grp->task_list);
1481 grp->nr_tasks++;
1482 rcu_assign_pointer(p->numa_group, grp);
1483 }
1484
1485 rcu_read_lock();
1486 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1487
1488 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1489 goto no_join;
8c8a743c
PZ
1490
1491 grp = rcu_dereference(tsk->numa_group);
1492 if (!grp)
3354781a 1493 goto no_join;
8c8a743c
PZ
1494
1495 my_grp = p->numa_group;
1496 if (grp == my_grp)
3354781a 1497 goto no_join;
8c8a743c
PZ
1498
1499 /*
1500 * Only join the other group if its bigger; if we're the bigger group,
1501 * the other task will join us.
1502 */
1503 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1504 goto no_join;
8c8a743c
PZ
1505
1506 /*
1507 * Tie-break on the grp address.
1508 */
1509 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1510 goto no_join;
8c8a743c 1511
dabe1d99
RR
1512 /* Always join threads in the same process. */
1513 if (tsk->mm == current->mm)
1514 join = true;
1515
1516 /* Simple filter to avoid false positives due to PID collisions */
1517 if (flags & TNF_SHARED)
1518 join = true;
8c8a743c 1519
3e6a9418
MG
1520 /* Update priv based on whether false sharing was detected */
1521 *priv = !join;
1522
dabe1d99 1523 if (join && !get_numa_group(grp))
3354781a 1524 goto no_join;
8c8a743c 1525
8c8a743c
PZ
1526 rcu_read_unlock();
1527
1528 if (!join)
1529 return;
1530
989348b5
MG
1531 double_lock(&my_grp->lock, &grp->lock);
1532
8c8a743c 1533 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1534 my_grp->faults[i] -= p->numa_faults[i];
1535 grp->faults[i] += p->numa_faults[i];
8c8a743c 1536 }
989348b5
MG
1537 my_grp->total_faults -= p->total_numa_faults;
1538 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1539
1540 list_move(&p->numa_entry, &grp->task_list);
1541 my_grp->nr_tasks--;
1542 grp->nr_tasks++;
1543
1544 spin_unlock(&my_grp->lock);
1545 spin_unlock(&grp->lock);
1546
1547 rcu_assign_pointer(p->numa_group, grp);
1548
1549 put_numa_group(my_grp);
3354781a
PZ
1550 return;
1551
1552no_join:
1553 rcu_read_unlock();
1554 return;
8c8a743c
PZ
1555}
1556
1557void task_numa_free(struct task_struct *p)
1558{
1559 struct numa_group *grp = p->numa_group;
1560 int i;
82727018 1561 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1562
1563 if (grp) {
989348b5 1564 spin_lock(&grp->lock);
8c8a743c 1565 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1566 grp->faults[i] -= p->numa_faults[i];
1567 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1568
8c8a743c
PZ
1569 list_del(&p->numa_entry);
1570 grp->nr_tasks--;
1571 spin_unlock(&grp->lock);
1572 rcu_assign_pointer(p->numa_group, NULL);
1573 put_numa_group(grp);
1574 }
1575
82727018
RR
1576 p->numa_faults = NULL;
1577 p->numa_faults_buffer = NULL;
1578 kfree(numa_faults);
8c8a743c
PZ
1579}
1580
cbee9f88
PZ
1581/*
1582 * Got a PROT_NONE fault for a page on @node.
1583 */
6688cc05 1584void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1585{
1586 struct task_struct *p = current;
6688cc05 1587 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1588 int priv;
cbee9f88 1589
10e84b97 1590 if (!numabalancing_enabled)
1a687c2e
MG
1591 return;
1592
9ff1d9ff
MG
1593 /* for example, ksmd faulting in a user's mm */
1594 if (!p->mm)
1595 return;
1596
82727018
RR
1597 /* Do not worry about placement if exiting */
1598 if (p->state == TASK_DEAD)
1599 return;
1600
f809ca9a
MG
1601 /* Allocate buffer to track faults on a per-node basis */
1602 if (unlikely(!p->numa_faults)) {
ac8e895b 1603 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1604
745d6147
MG
1605 /* numa_faults and numa_faults_buffer share the allocation */
1606 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1607 if (!p->numa_faults)
1608 return;
745d6147
MG
1609
1610 BUG_ON(p->numa_faults_buffer);
ac8e895b 1611 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1612 p->total_numa_faults = 0;
04bb2f94 1613 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1614 }
cbee9f88 1615
8c8a743c
PZ
1616 /*
1617 * First accesses are treated as private, otherwise consider accesses
1618 * to be private if the accessing pid has not changed
1619 */
1620 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1621 priv = 1;
1622 } else {
1623 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1624 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1625 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1626 }
1627
cbee9f88 1628 task_numa_placement(p);
f809ca9a 1629
2739d3ee
RR
1630 /*
1631 * Retry task to preferred node migration periodically, in case it
1632 * case it previously failed, or the scheduler moved us.
1633 */
1634 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1635 numa_migrate_preferred(p);
1636
b32e86b4
IM
1637 if (migrated)
1638 p->numa_pages_migrated += pages;
1639
ac8e895b 1640 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1641 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1642}
1643
6e5fb223
PZ
1644static void reset_ptenuma_scan(struct task_struct *p)
1645{
1646 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1647 p->mm->numa_scan_offset = 0;
1648}
1649
cbee9f88
PZ
1650/*
1651 * The expensive part of numa migration is done from task_work context.
1652 * Triggered from task_tick_numa().
1653 */
1654void task_numa_work(struct callback_head *work)
1655{
1656 unsigned long migrate, next_scan, now = jiffies;
1657 struct task_struct *p = current;
1658 struct mm_struct *mm = p->mm;
6e5fb223 1659 struct vm_area_struct *vma;
9f40604c 1660 unsigned long start, end;
598f0ec0 1661 unsigned long nr_pte_updates = 0;
9f40604c 1662 long pages;
cbee9f88
PZ
1663
1664 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1665
1666 work->next = work; /* protect against double add */
1667 /*
1668 * Who cares about NUMA placement when they're dying.
1669 *
1670 * NOTE: make sure not to dereference p->mm before this check,
1671 * exit_task_work() happens _after_ exit_mm() so we could be called
1672 * without p->mm even though we still had it when we enqueued this
1673 * work.
1674 */
1675 if (p->flags & PF_EXITING)
1676 return;
1677
930aa174 1678 if (!mm->numa_next_scan) {
7e8d16b6
MG
1679 mm->numa_next_scan = now +
1680 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1681 }
1682
cbee9f88
PZ
1683 /*
1684 * Enforce maximal scan/migration frequency..
1685 */
1686 migrate = mm->numa_next_scan;
1687 if (time_before(now, migrate))
1688 return;
1689
598f0ec0
MG
1690 if (p->numa_scan_period == 0) {
1691 p->numa_scan_period_max = task_scan_max(p);
1692 p->numa_scan_period = task_scan_min(p);
1693 }
cbee9f88 1694
fb003b80 1695 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1696 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1697 return;
1698
19a78d11
PZ
1699 /*
1700 * Delay this task enough that another task of this mm will likely win
1701 * the next time around.
1702 */
1703 p->node_stamp += 2 * TICK_NSEC;
1704
9f40604c
MG
1705 start = mm->numa_scan_offset;
1706 pages = sysctl_numa_balancing_scan_size;
1707 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1708 if (!pages)
1709 return;
cbee9f88 1710
6e5fb223 1711 down_read(&mm->mmap_sem);
9f40604c 1712 vma = find_vma(mm, start);
6e5fb223
PZ
1713 if (!vma) {
1714 reset_ptenuma_scan(p);
9f40604c 1715 start = 0;
6e5fb223
PZ
1716 vma = mm->mmap;
1717 }
9f40604c 1718 for (; vma; vma = vma->vm_next) {
fc314724 1719 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1720 continue;
1721
4591ce4f
MG
1722 /*
1723 * Shared library pages mapped by multiple processes are not
1724 * migrated as it is expected they are cache replicated. Avoid
1725 * hinting faults in read-only file-backed mappings or the vdso
1726 * as migrating the pages will be of marginal benefit.
1727 */
1728 if (!vma->vm_mm ||
1729 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1730 continue;
1731
3c67f474
MG
1732 /*
1733 * Skip inaccessible VMAs to avoid any confusion between
1734 * PROT_NONE and NUMA hinting ptes
1735 */
1736 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1737 continue;
4591ce4f 1738
9f40604c
MG
1739 do {
1740 start = max(start, vma->vm_start);
1741 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1742 end = min(end, vma->vm_end);
598f0ec0
MG
1743 nr_pte_updates += change_prot_numa(vma, start, end);
1744
1745 /*
1746 * Scan sysctl_numa_balancing_scan_size but ensure that
1747 * at least one PTE is updated so that unused virtual
1748 * address space is quickly skipped.
1749 */
1750 if (nr_pte_updates)
1751 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1752
9f40604c
MG
1753 start = end;
1754 if (pages <= 0)
1755 goto out;
1756 } while (end != vma->vm_end);
cbee9f88 1757 }
6e5fb223 1758
9f40604c 1759out:
6e5fb223 1760 /*
c69307d5
PZ
1761 * It is possible to reach the end of the VMA list but the last few
1762 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1763 * would find the !migratable VMA on the next scan but not reset the
1764 * scanner to the start so check it now.
6e5fb223
PZ
1765 */
1766 if (vma)
9f40604c 1767 mm->numa_scan_offset = start;
6e5fb223
PZ
1768 else
1769 reset_ptenuma_scan(p);
1770 up_read(&mm->mmap_sem);
cbee9f88
PZ
1771}
1772
1773/*
1774 * Drive the periodic memory faults..
1775 */
1776void task_tick_numa(struct rq *rq, struct task_struct *curr)
1777{
1778 struct callback_head *work = &curr->numa_work;
1779 u64 period, now;
1780
1781 /*
1782 * We don't care about NUMA placement if we don't have memory.
1783 */
1784 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1785 return;
1786
1787 /*
1788 * Using runtime rather than walltime has the dual advantage that
1789 * we (mostly) drive the selection from busy threads and that the
1790 * task needs to have done some actual work before we bother with
1791 * NUMA placement.
1792 */
1793 now = curr->se.sum_exec_runtime;
1794 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1795
1796 if (now - curr->node_stamp > period) {
4b96a29b 1797 if (!curr->node_stamp)
598f0ec0 1798 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1799 curr->node_stamp += period;
cbee9f88
PZ
1800
1801 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1802 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1803 task_work_add(curr, work, true);
1804 }
1805 }
1806}
1807#else
1808static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1809{
1810}
0ec8aa00
PZ
1811
1812static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1817{
1818}
cbee9f88
PZ
1819#endif /* CONFIG_NUMA_BALANCING */
1820
30cfdcfc
DA
1821static void
1822account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1823{
1824 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1825 if (!parent_entity(se))
029632fb 1826 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1827#ifdef CONFIG_SMP
0ec8aa00
PZ
1828 if (entity_is_task(se)) {
1829 struct rq *rq = rq_of(cfs_rq);
1830
1831 account_numa_enqueue(rq, task_of(se));
1832 list_add(&se->group_node, &rq->cfs_tasks);
1833 }
367456c7 1834#endif
30cfdcfc 1835 cfs_rq->nr_running++;
30cfdcfc
DA
1836}
1837
1838static void
1839account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1840{
1841 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1842 if (!parent_entity(se))
029632fb 1843 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1844 if (entity_is_task(se)) {
1845 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1846 list_del_init(&se->group_node);
0ec8aa00 1847 }
30cfdcfc 1848 cfs_rq->nr_running--;
30cfdcfc
DA
1849}
1850
3ff6dcac
YZ
1851#ifdef CONFIG_FAIR_GROUP_SCHED
1852# ifdef CONFIG_SMP
cf5f0acf
PZ
1853static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1854{
1855 long tg_weight;
1856
1857 /*
1858 * Use this CPU's actual weight instead of the last load_contribution
1859 * to gain a more accurate current total weight. See
1860 * update_cfs_rq_load_contribution().
1861 */
bf5b986e 1862 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1863 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1864 tg_weight += cfs_rq->load.weight;
1865
1866 return tg_weight;
1867}
1868
6d5ab293 1869static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1870{
cf5f0acf 1871 long tg_weight, load, shares;
3ff6dcac 1872
cf5f0acf 1873 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1874 load = cfs_rq->load.weight;
3ff6dcac 1875
3ff6dcac 1876 shares = (tg->shares * load);
cf5f0acf
PZ
1877 if (tg_weight)
1878 shares /= tg_weight;
3ff6dcac
YZ
1879
1880 if (shares < MIN_SHARES)
1881 shares = MIN_SHARES;
1882 if (shares > tg->shares)
1883 shares = tg->shares;
1884
1885 return shares;
1886}
3ff6dcac 1887# else /* CONFIG_SMP */
6d5ab293 1888static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1889{
1890 return tg->shares;
1891}
3ff6dcac 1892# endif /* CONFIG_SMP */
2069dd75
PZ
1893static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1894 unsigned long weight)
1895{
19e5eebb
PT
1896 if (se->on_rq) {
1897 /* commit outstanding execution time */
1898 if (cfs_rq->curr == se)
1899 update_curr(cfs_rq);
2069dd75 1900 account_entity_dequeue(cfs_rq, se);
19e5eebb 1901 }
2069dd75
PZ
1902
1903 update_load_set(&se->load, weight);
1904
1905 if (se->on_rq)
1906 account_entity_enqueue(cfs_rq, se);
1907}
1908
82958366
PT
1909static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1910
6d5ab293 1911static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1912{
1913 struct task_group *tg;
1914 struct sched_entity *se;
3ff6dcac 1915 long shares;
2069dd75 1916
2069dd75
PZ
1917 tg = cfs_rq->tg;
1918 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1919 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1920 return;
3ff6dcac
YZ
1921#ifndef CONFIG_SMP
1922 if (likely(se->load.weight == tg->shares))
1923 return;
1924#endif
6d5ab293 1925 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1926
1927 reweight_entity(cfs_rq_of(se), se, shares);
1928}
1929#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1930static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1931{
1932}
1933#endif /* CONFIG_FAIR_GROUP_SCHED */
1934
141965c7 1935#ifdef CONFIG_SMP
5b51f2f8
PT
1936/*
1937 * We choose a half-life close to 1 scheduling period.
1938 * Note: The tables below are dependent on this value.
1939 */
1940#define LOAD_AVG_PERIOD 32
1941#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1942#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1943
1944/* Precomputed fixed inverse multiplies for multiplication by y^n */
1945static const u32 runnable_avg_yN_inv[] = {
1946 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1947 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1948 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1949 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1950 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1951 0x85aac367, 0x82cd8698,
1952};
1953
1954/*
1955 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1956 * over-estimates when re-combining.
1957 */
1958static const u32 runnable_avg_yN_sum[] = {
1959 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1960 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1961 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1962};
1963
9d85f21c
PT
1964/*
1965 * Approximate:
1966 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1967 */
1968static __always_inline u64 decay_load(u64 val, u64 n)
1969{
5b51f2f8
PT
1970 unsigned int local_n;
1971
1972 if (!n)
1973 return val;
1974 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1975 return 0;
1976
1977 /* after bounds checking we can collapse to 32-bit */
1978 local_n = n;
1979
1980 /*
1981 * As y^PERIOD = 1/2, we can combine
1982 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1983 * With a look-up table which covers k^n (n<PERIOD)
1984 *
1985 * To achieve constant time decay_load.
1986 */
1987 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1988 val >>= local_n / LOAD_AVG_PERIOD;
1989 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1990 }
1991
5b51f2f8
PT
1992 val *= runnable_avg_yN_inv[local_n];
1993 /* We don't use SRR here since we always want to round down. */
1994 return val >> 32;
1995}
1996
1997/*
1998 * For updates fully spanning n periods, the contribution to runnable
1999 * average will be: \Sum 1024*y^n
2000 *
2001 * We can compute this reasonably efficiently by combining:
2002 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2003 */
2004static u32 __compute_runnable_contrib(u64 n)
2005{
2006 u32 contrib = 0;
2007
2008 if (likely(n <= LOAD_AVG_PERIOD))
2009 return runnable_avg_yN_sum[n];
2010 else if (unlikely(n >= LOAD_AVG_MAX_N))
2011 return LOAD_AVG_MAX;
2012
2013 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2014 do {
2015 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2016 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2017
2018 n -= LOAD_AVG_PERIOD;
2019 } while (n > LOAD_AVG_PERIOD);
2020
2021 contrib = decay_load(contrib, n);
2022 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2023}
2024
2025/*
2026 * We can represent the historical contribution to runnable average as the
2027 * coefficients of a geometric series. To do this we sub-divide our runnable
2028 * history into segments of approximately 1ms (1024us); label the segment that
2029 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2030 *
2031 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2032 * p0 p1 p2
2033 * (now) (~1ms ago) (~2ms ago)
2034 *
2035 * Let u_i denote the fraction of p_i that the entity was runnable.
2036 *
2037 * We then designate the fractions u_i as our co-efficients, yielding the
2038 * following representation of historical load:
2039 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2040 *
2041 * We choose y based on the with of a reasonably scheduling period, fixing:
2042 * y^32 = 0.5
2043 *
2044 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2045 * approximately half as much as the contribution to load within the last ms
2046 * (u_0).
2047 *
2048 * When a period "rolls over" and we have new u_0`, multiplying the previous
2049 * sum again by y is sufficient to update:
2050 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2051 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2052 */
2053static __always_inline int __update_entity_runnable_avg(u64 now,
2054 struct sched_avg *sa,
2055 int runnable)
2056{
5b51f2f8
PT
2057 u64 delta, periods;
2058 u32 runnable_contrib;
9d85f21c
PT
2059 int delta_w, decayed = 0;
2060
2061 delta = now - sa->last_runnable_update;
2062 /*
2063 * This should only happen when time goes backwards, which it
2064 * unfortunately does during sched clock init when we swap over to TSC.
2065 */
2066 if ((s64)delta < 0) {
2067 sa->last_runnable_update = now;
2068 return 0;
2069 }
2070
2071 /*
2072 * Use 1024ns as the unit of measurement since it's a reasonable
2073 * approximation of 1us and fast to compute.
2074 */
2075 delta >>= 10;
2076 if (!delta)
2077 return 0;
2078 sa->last_runnable_update = now;
2079
2080 /* delta_w is the amount already accumulated against our next period */
2081 delta_w = sa->runnable_avg_period % 1024;
2082 if (delta + delta_w >= 1024) {
2083 /* period roll-over */
2084 decayed = 1;
2085
2086 /*
2087 * Now that we know we're crossing a period boundary, figure
2088 * out how much from delta we need to complete the current
2089 * period and accrue it.
2090 */
2091 delta_w = 1024 - delta_w;
5b51f2f8
PT
2092 if (runnable)
2093 sa->runnable_avg_sum += delta_w;
2094 sa->runnable_avg_period += delta_w;
2095
2096 delta -= delta_w;
2097
2098 /* Figure out how many additional periods this update spans */
2099 periods = delta / 1024;
2100 delta %= 1024;
2101
2102 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2103 periods + 1);
2104 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2105 periods + 1);
2106
2107 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2108 runnable_contrib = __compute_runnable_contrib(periods);
2109 if (runnable)
2110 sa->runnable_avg_sum += runnable_contrib;
2111 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2112 }
2113
2114 /* Remainder of delta accrued against u_0` */
2115 if (runnable)
2116 sa->runnable_avg_sum += delta;
2117 sa->runnable_avg_period += delta;
2118
2119 return decayed;
2120}
2121
9ee474f5 2122/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2123static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2124{
2125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2126 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2127
2128 decays -= se->avg.decay_count;
2129 if (!decays)
aff3e498 2130 return 0;
9ee474f5
PT
2131
2132 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2133 se->avg.decay_count = 0;
aff3e498
PT
2134
2135 return decays;
9ee474f5
PT
2136}
2137
c566e8e9
PT
2138#ifdef CONFIG_FAIR_GROUP_SCHED
2139static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2140 int force_update)
2141{
2142 struct task_group *tg = cfs_rq->tg;
bf5b986e 2143 long tg_contrib;
c566e8e9
PT
2144
2145 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2146 tg_contrib -= cfs_rq->tg_load_contrib;
2147
bf5b986e
AS
2148 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2149 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2150 cfs_rq->tg_load_contrib += tg_contrib;
2151 }
2152}
8165e145 2153
bb17f655
PT
2154/*
2155 * Aggregate cfs_rq runnable averages into an equivalent task_group
2156 * representation for computing load contributions.
2157 */
2158static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2159 struct cfs_rq *cfs_rq)
2160{
2161 struct task_group *tg = cfs_rq->tg;
2162 long contrib;
2163
2164 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2165 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2166 sa->runnable_avg_period + 1);
2167 contrib -= cfs_rq->tg_runnable_contrib;
2168
2169 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2170 atomic_add(contrib, &tg->runnable_avg);
2171 cfs_rq->tg_runnable_contrib += contrib;
2172 }
2173}
2174
8165e145
PT
2175static inline void __update_group_entity_contrib(struct sched_entity *se)
2176{
2177 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2178 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2179 int runnable_avg;
2180
8165e145
PT
2181 u64 contrib;
2182
2183 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2184 se->avg.load_avg_contrib = div_u64(contrib,
2185 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2186
2187 /*
2188 * For group entities we need to compute a correction term in the case
2189 * that they are consuming <1 cpu so that we would contribute the same
2190 * load as a task of equal weight.
2191 *
2192 * Explicitly co-ordinating this measurement would be expensive, but
2193 * fortunately the sum of each cpus contribution forms a usable
2194 * lower-bound on the true value.
2195 *
2196 * Consider the aggregate of 2 contributions. Either they are disjoint
2197 * (and the sum represents true value) or they are disjoint and we are
2198 * understating by the aggregate of their overlap.
2199 *
2200 * Extending this to N cpus, for a given overlap, the maximum amount we
2201 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2202 * cpus that overlap for this interval and w_i is the interval width.
2203 *
2204 * On a small machine; the first term is well-bounded which bounds the
2205 * total error since w_i is a subset of the period. Whereas on a
2206 * larger machine, while this first term can be larger, if w_i is the
2207 * of consequential size guaranteed to see n_i*w_i quickly converge to
2208 * our upper bound of 1-cpu.
2209 */
2210 runnable_avg = atomic_read(&tg->runnable_avg);
2211 if (runnable_avg < NICE_0_LOAD) {
2212 se->avg.load_avg_contrib *= runnable_avg;
2213 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2214 }
8165e145 2215}
c566e8e9
PT
2216#else
2217static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2218 int force_update) {}
bb17f655
PT
2219static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2220 struct cfs_rq *cfs_rq) {}
8165e145 2221static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2222#endif
2223
8165e145
PT
2224static inline void __update_task_entity_contrib(struct sched_entity *se)
2225{
2226 u32 contrib;
2227
2228 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2229 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2230 contrib /= (se->avg.runnable_avg_period + 1);
2231 se->avg.load_avg_contrib = scale_load(contrib);
2232}
2233
2dac754e
PT
2234/* Compute the current contribution to load_avg by se, return any delta */
2235static long __update_entity_load_avg_contrib(struct sched_entity *se)
2236{
2237 long old_contrib = se->avg.load_avg_contrib;
2238
8165e145
PT
2239 if (entity_is_task(se)) {
2240 __update_task_entity_contrib(se);
2241 } else {
bb17f655 2242 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2243 __update_group_entity_contrib(se);
2244 }
2dac754e
PT
2245
2246 return se->avg.load_avg_contrib - old_contrib;
2247}
2248
9ee474f5
PT
2249static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2250 long load_contrib)
2251{
2252 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2253 cfs_rq->blocked_load_avg -= load_contrib;
2254 else
2255 cfs_rq->blocked_load_avg = 0;
2256}
2257
f1b17280
PT
2258static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2259
9d85f21c 2260/* Update a sched_entity's runnable average */
9ee474f5
PT
2261static inline void update_entity_load_avg(struct sched_entity *se,
2262 int update_cfs_rq)
9d85f21c 2263{
2dac754e
PT
2264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2265 long contrib_delta;
f1b17280 2266 u64 now;
2dac754e 2267
f1b17280
PT
2268 /*
2269 * For a group entity we need to use their owned cfs_rq_clock_task() in
2270 * case they are the parent of a throttled hierarchy.
2271 */
2272 if (entity_is_task(se))
2273 now = cfs_rq_clock_task(cfs_rq);
2274 else
2275 now = cfs_rq_clock_task(group_cfs_rq(se));
2276
2277 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2278 return;
2279
2280 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2281
2282 if (!update_cfs_rq)
2283 return;
2284
2dac754e
PT
2285 if (se->on_rq)
2286 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2287 else
2288 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2289}
2290
2291/*
2292 * Decay the load contributed by all blocked children and account this so that
2293 * their contribution may appropriately discounted when they wake up.
2294 */
aff3e498 2295static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2296{
f1b17280 2297 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2298 u64 decays;
2299
2300 decays = now - cfs_rq->last_decay;
aff3e498 2301 if (!decays && !force_update)
9ee474f5
PT
2302 return;
2303
2509940f
AS
2304 if (atomic_long_read(&cfs_rq->removed_load)) {
2305 unsigned long removed_load;
2306 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2307 subtract_blocked_load_contrib(cfs_rq, removed_load);
2308 }
9ee474f5 2309
aff3e498
PT
2310 if (decays) {
2311 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2312 decays);
2313 atomic64_add(decays, &cfs_rq->decay_counter);
2314 cfs_rq->last_decay = now;
2315 }
c566e8e9
PT
2316
2317 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2318}
18bf2805
BS
2319
2320static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2321{
78becc27 2322 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2323 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2324}
2dac754e
PT
2325
2326/* Add the load generated by se into cfs_rq's child load-average */
2327static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2328 struct sched_entity *se,
2329 int wakeup)
2dac754e 2330{
aff3e498
PT
2331 /*
2332 * We track migrations using entity decay_count <= 0, on a wake-up
2333 * migration we use a negative decay count to track the remote decays
2334 * accumulated while sleeping.
a75cdaa9
AS
2335 *
2336 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2337 * are seen by enqueue_entity_load_avg() as a migration with an already
2338 * constructed load_avg_contrib.
aff3e498
PT
2339 */
2340 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2341 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2342 if (se->avg.decay_count) {
2343 /*
2344 * In a wake-up migration we have to approximate the
2345 * time sleeping. This is because we can't synchronize
2346 * clock_task between the two cpus, and it is not
2347 * guaranteed to be read-safe. Instead, we can
2348 * approximate this using our carried decays, which are
2349 * explicitly atomically readable.
2350 */
2351 se->avg.last_runnable_update -= (-se->avg.decay_count)
2352 << 20;
2353 update_entity_load_avg(se, 0);
2354 /* Indicate that we're now synchronized and on-rq */
2355 se->avg.decay_count = 0;
2356 }
9ee474f5
PT
2357 wakeup = 0;
2358 } else {
282cf499
AS
2359 /*
2360 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2361 * would have made count negative); we must be careful to avoid
2362 * double-accounting blocked time after synchronizing decays.
2363 */
2364 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2365 << 20;
9ee474f5
PT
2366 }
2367
aff3e498
PT
2368 /* migrated tasks did not contribute to our blocked load */
2369 if (wakeup) {
9ee474f5 2370 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2371 update_entity_load_avg(se, 0);
2372 }
9ee474f5 2373
2dac754e 2374 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2377}
2378
9ee474f5
PT
2379/*
2380 * Remove se's load from this cfs_rq child load-average, if the entity is
2381 * transitioning to a blocked state we track its projected decay using
2382 * blocked_load_avg.
2383 */
2dac754e 2384static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2385 struct sched_entity *se,
2386 int sleep)
2dac754e 2387{
9ee474f5 2388 update_entity_load_avg(se, 1);
aff3e498
PT
2389 /* we force update consideration on load-balancer moves */
2390 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2391
2dac754e 2392 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2393 if (sleep) {
2394 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2395 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2396 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2397}
642dbc39
VG
2398
2399/*
2400 * Update the rq's load with the elapsed running time before entering
2401 * idle. if the last scheduled task is not a CFS task, idle_enter will
2402 * be the only way to update the runnable statistic.
2403 */
2404void idle_enter_fair(struct rq *this_rq)
2405{
2406 update_rq_runnable_avg(this_rq, 1);
2407}
2408
2409/*
2410 * Update the rq's load with the elapsed idle time before a task is
2411 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2412 * be the only way to update the runnable statistic.
2413 */
2414void idle_exit_fair(struct rq *this_rq)
2415{
2416 update_rq_runnable_avg(this_rq, 0);
2417}
2418
9d85f21c 2419#else
9ee474f5
PT
2420static inline void update_entity_load_avg(struct sched_entity *se,
2421 int update_cfs_rq) {}
18bf2805 2422static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2423static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2424 struct sched_entity *se,
2425 int wakeup) {}
2dac754e 2426static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2427 struct sched_entity *se,
2428 int sleep) {}
aff3e498
PT
2429static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2430 int force_update) {}
9d85f21c
PT
2431#endif
2432
2396af69 2433static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2434{
bf0f6f24 2435#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2436 struct task_struct *tsk = NULL;
2437
2438 if (entity_is_task(se))
2439 tsk = task_of(se);
2440
41acab88 2441 if (se->statistics.sleep_start) {
78becc27 2442 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2443
2444 if ((s64)delta < 0)
2445 delta = 0;
2446
41acab88
LDM
2447 if (unlikely(delta > se->statistics.sleep_max))
2448 se->statistics.sleep_max = delta;
bf0f6f24 2449
8c79a045 2450 se->statistics.sleep_start = 0;
41acab88 2451 se->statistics.sum_sleep_runtime += delta;
9745512c 2452
768d0c27 2453 if (tsk) {
e414314c 2454 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2455 trace_sched_stat_sleep(tsk, delta);
2456 }
bf0f6f24 2457 }
41acab88 2458 if (se->statistics.block_start) {
78becc27 2459 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2460
2461 if ((s64)delta < 0)
2462 delta = 0;
2463
41acab88
LDM
2464 if (unlikely(delta > se->statistics.block_max))
2465 se->statistics.block_max = delta;
bf0f6f24 2466
8c79a045 2467 se->statistics.block_start = 0;
41acab88 2468 se->statistics.sum_sleep_runtime += delta;
30084fbd 2469
e414314c 2470 if (tsk) {
8f0dfc34 2471 if (tsk->in_iowait) {
41acab88
LDM
2472 se->statistics.iowait_sum += delta;
2473 se->statistics.iowait_count++;
768d0c27 2474 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2475 }
2476
b781a602
AV
2477 trace_sched_stat_blocked(tsk, delta);
2478
e414314c
PZ
2479 /*
2480 * Blocking time is in units of nanosecs, so shift by
2481 * 20 to get a milliseconds-range estimation of the
2482 * amount of time that the task spent sleeping:
2483 */
2484 if (unlikely(prof_on == SLEEP_PROFILING)) {
2485 profile_hits(SLEEP_PROFILING,
2486 (void *)get_wchan(tsk),
2487 delta >> 20);
2488 }
2489 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2490 }
bf0f6f24
IM
2491 }
2492#endif
2493}
2494
ddc97297
PZ
2495static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2496{
2497#ifdef CONFIG_SCHED_DEBUG
2498 s64 d = se->vruntime - cfs_rq->min_vruntime;
2499
2500 if (d < 0)
2501 d = -d;
2502
2503 if (d > 3*sysctl_sched_latency)
2504 schedstat_inc(cfs_rq, nr_spread_over);
2505#endif
2506}
2507
aeb73b04
PZ
2508static void
2509place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2510{
1af5f730 2511 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2512
2cb8600e
PZ
2513 /*
2514 * The 'current' period is already promised to the current tasks,
2515 * however the extra weight of the new task will slow them down a
2516 * little, place the new task so that it fits in the slot that
2517 * stays open at the end.
2518 */
94dfb5e7 2519 if (initial && sched_feat(START_DEBIT))
f9c0b095 2520 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2521
a2e7a7eb 2522 /* sleeps up to a single latency don't count. */
5ca9880c 2523 if (!initial) {
a2e7a7eb 2524 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2525
a2e7a7eb
MG
2526 /*
2527 * Halve their sleep time's effect, to allow
2528 * for a gentler effect of sleepers:
2529 */
2530 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2531 thresh >>= 1;
51e0304c 2532
a2e7a7eb 2533 vruntime -= thresh;
aeb73b04
PZ
2534 }
2535
b5d9d734 2536 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2537 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2538}
2539
d3d9dc33
PT
2540static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2541
bf0f6f24 2542static void
88ec22d3 2543enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2544{
88ec22d3
PZ
2545 /*
2546 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2547 * through calling update_curr().
88ec22d3 2548 */
371fd7e7 2549 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2550 se->vruntime += cfs_rq->min_vruntime;
2551
bf0f6f24 2552 /*
a2a2d680 2553 * Update run-time statistics of the 'current'.
bf0f6f24 2554 */
b7cc0896 2555 update_curr(cfs_rq);
f269ae04 2556 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2557 account_entity_enqueue(cfs_rq, se);
2558 update_cfs_shares(cfs_rq);
bf0f6f24 2559
88ec22d3 2560 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2561 place_entity(cfs_rq, se, 0);
2396af69 2562 enqueue_sleeper(cfs_rq, se);
e9acbff6 2563 }
bf0f6f24 2564
d2417e5a 2565 update_stats_enqueue(cfs_rq, se);
ddc97297 2566 check_spread(cfs_rq, se);
83b699ed
SV
2567 if (se != cfs_rq->curr)
2568 __enqueue_entity(cfs_rq, se);
2069dd75 2569 se->on_rq = 1;
3d4b47b4 2570
d3d9dc33 2571 if (cfs_rq->nr_running == 1) {
3d4b47b4 2572 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2573 check_enqueue_throttle(cfs_rq);
2574 }
bf0f6f24
IM
2575}
2576
2c13c919 2577static void __clear_buddies_last(struct sched_entity *se)
2002c695 2578{
2c13c919
RR
2579 for_each_sched_entity(se) {
2580 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2581 if (cfs_rq->last == se)
2582 cfs_rq->last = NULL;
2583 else
2584 break;
2585 }
2586}
2002c695 2587
2c13c919
RR
2588static void __clear_buddies_next(struct sched_entity *se)
2589{
2590 for_each_sched_entity(se) {
2591 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2592 if (cfs_rq->next == se)
2593 cfs_rq->next = NULL;
2594 else
2595 break;
2596 }
2002c695
PZ
2597}
2598
ac53db59
RR
2599static void __clear_buddies_skip(struct sched_entity *se)
2600{
2601 for_each_sched_entity(se) {
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 if (cfs_rq->skip == se)
2604 cfs_rq->skip = NULL;
2605 else
2606 break;
2607 }
2608}
2609
a571bbea
PZ
2610static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2611{
2c13c919
RR
2612 if (cfs_rq->last == se)
2613 __clear_buddies_last(se);
2614
2615 if (cfs_rq->next == se)
2616 __clear_buddies_next(se);
ac53db59
RR
2617
2618 if (cfs_rq->skip == se)
2619 __clear_buddies_skip(se);
a571bbea
PZ
2620}
2621
6c16a6dc 2622static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2623
bf0f6f24 2624static void
371fd7e7 2625dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2626{
a2a2d680
DA
2627 /*
2628 * Update run-time statistics of the 'current'.
2629 */
2630 update_curr(cfs_rq);
17bc14b7 2631 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2632
19b6a2e3 2633 update_stats_dequeue(cfs_rq, se);
371fd7e7 2634 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2635#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2636 if (entity_is_task(se)) {
2637 struct task_struct *tsk = task_of(se);
2638
2639 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2640 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2641 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2642 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2643 }
db36cc7d 2644#endif
67e9fb2a
PZ
2645 }
2646
2002c695 2647 clear_buddies(cfs_rq, se);
4793241b 2648
83b699ed 2649 if (se != cfs_rq->curr)
30cfdcfc 2650 __dequeue_entity(cfs_rq, se);
17bc14b7 2651 se->on_rq = 0;
30cfdcfc 2652 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2653
2654 /*
2655 * Normalize the entity after updating the min_vruntime because the
2656 * update can refer to the ->curr item and we need to reflect this
2657 * movement in our normalized position.
2658 */
371fd7e7 2659 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2660 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2661
d8b4986d
PT
2662 /* return excess runtime on last dequeue */
2663 return_cfs_rq_runtime(cfs_rq);
2664
1e876231 2665 update_min_vruntime(cfs_rq);
17bc14b7 2666 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2667}
2668
2669/*
2670 * Preempt the current task with a newly woken task if needed:
2671 */
7c92e54f 2672static void
2e09bf55 2673check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2674{
11697830 2675 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2676 struct sched_entity *se;
2677 s64 delta;
11697830 2678
6d0f0ebd 2679 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2680 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2681 if (delta_exec > ideal_runtime) {
bf0f6f24 2682 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2683 /*
2684 * The current task ran long enough, ensure it doesn't get
2685 * re-elected due to buddy favours.
2686 */
2687 clear_buddies(cfs_rq, curr);
f685ceac
MG
2688 return;
2689 }
2690
2691 /*
2692 * Ensure that a task that missed wakeup preemption by a
2693 * narrow margin doesn't have to wait for a full slice.
2694 * This also mitigates buddy induced latencies under load.
2695 */
f685ceac
MG
2696 if (delta_exec < sysctl_sched_min_granularity)
2697 return;
2698
f4cfb33e
WX
2699 se = __pick_first_entity(cfs_rq);
2700 delta = curr->vruntime - se->vruntime;
f685ceac 2701
f4cfb33e
WX
2702 if (delta < 0)
2703 return;
d7d82944 2704
f4cfb33e
WX
2705 if (delta > ideal_runtime)
2706 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2707}
2708
83b699ed 2709static void
8494f412 2710set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2711{
83b699ed
SV
2712 /* 'current' is not kept within the tree. */
2713 if (se->on_rq) {
2714 /*
2715 * Any task has to be enqueued before it get to execute on
2716 * a CPU. So account for the time it spent waiting on the
2717 * runqueue.
2718 */
2719 update_stats_wait_end(cfs_rq, se);
2720 __dequeue_entity(cfs_rq, se);
2721 }
2722
79303e9e 2723 update_stats_curr_start(cfs_rq, se);
429d43bc 2724 cfs_rq->curr = se;
eba1ed4b
IM
2725#ifdef CONFIG_SCHEDSTATS
2726 /*
2727 * Track our maximum slice length, if the CPU's load is at
2728 * least twice that of our own weight (i.e. dont track it
2729 * when there are only lesser-weight tasks around):
2730 */
495eca49 2731 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2732 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2733 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2734 }
2735#endif
4a55b450 2736 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2737}
2738
3f3a4904
PZ
2739static int
2740wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2741
ac53db59
RR
2742/*
2743 * Pick the next process, keeping these things in mind, in this order:
2744 * 1) keep things fair between processes/task groups
2745 * 2) pick the "next" process, since someone really wants that to run
2746 * 3) pick the "last" process, for cache locality
2747 * 4) do not run the "skip" process, if something else is available
2748 */
f4b6755f 2749static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2750{
ac53db59 2751 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2752 struct sched_entity *left = se;
f4b6755f 2753
ac53db59
RR
2754 /*
2755 * Avoid running the skip buddy, if running something else can
2756 * be done without getting too unfair.
2757 */
2758 if (cfs_rq->skip == se) {
2759 struct sched_entity *second = __pick_next_entity(se);
2760 if (second && wakeup_preempt_entity(second, left) < 1)
2761 se = second;
2762 }
aa2ac252 2763
f685ceac
MG
2764 /*
2765 * Prefer last buddy, try to return the CPU to a preempted task.
2766 */
2767 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2768 se = cfs_rq->last;
2769
ac53db59
RR
2770 /*
2771 * Someone really wants this to run. If it's not unfair, run it.
2772 */
2773 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2774 se = cfs_rq->next;
2775
f685ceac 2776 clear_buddies(cfs_rq, se);
4793241b
PZ
2777
2778 return se;
aa2ac252
PZ
2779}
2780
d3d9dc33
PT
2781static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2782
ab6cde26 2783static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2784{
2785 /*
2786 * If still on the runqueue then deactivate_task()
2787 * was not called and update_curr() has to be done:
2788 */
2789 if (prev->on_rq)
b7cc0896 2790 update_curr(cfs_rq);
bf0f6f24 2791
d3d9dc33
PT
2792 /* throttle cfs_rqs exceeding runtime */
2793 check_cfs_rq_runtime(cfs_rq);
2794
ddc97297 2795 check_spread(cfs_rq, prev);
30cfdcfc 2796 if (prev->on_rq) {
5870db5b 2797 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2798 /* Put 'current' back into the tree. */
2799 __enqueue_entity(cfs_rq, prev);
9d85f21c 2800 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2801 update_entity_load_avg(prev, 1);
30cfdcfc 2802 }
429d43bc 2803 cfs_rq->curr = NULL;
bf0f6f24
IM
2804}
2805
8f4d37ec
PZ
2806static void
2807entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2808{
bf0f6f24 2809 /*
30cfdcfc 2810 * Update run-time statistics of the 'current'.
bf0f6f24 2811 */
30cfdcfc 2812 update_curr(cfs_rq);
bf0f6f24 2813
9d85f21c
PT
2814 /*
2815 * Ensure that runnable average is periodically updated.
2816 */
9ee474f5 2817 update_entity_load_avg(curr, 1);
aff3e498 2818 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2819 update_cfs_shares(cfs_rq);
9d85f21c 2820
8f4d37ec
PZ
2821#ifdef CONFIG_SCHED_HRTICK
2822 /*
2823 * queued ticks are scheduled to match the slice, so don't bother
2824 * validating it and just reschedule.
2825 */
983ed7a6
HH
2826 if (queued) {
2827 resched_task(rq_of(cfs_rq)->curr);
2828 return;
2829 }
8f4d37ec
PZ
2830 /*
2831 * don't let the period tick interfere with the hrtick preemption
2832 */
2833 if (!sched_feat(DOUBLE_TICK) &&
2834 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2835 return;
2836#endif
2837
2c2efaed 2838 if (cfs_rq->nr_running > 1)
2e09bf55 2839 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2840}
2841
ab84d31e
PT
2842
2843/**************************************************
2844 * CFS bandwidth control machinery
2845 */
2846
2847#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2848
2849#ifdef HAVE_JUMP_LABEL
c5905afb 2850static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2851
2852static inline bool cfs_bandwidth_used(void)
2853{
c5905afb 2854 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2855}
2856
1ee14e6c 2857void cfs_bandwidth_usage_inc(void)
029632fb 2858{
1ee14e6c
BS
2859 static_key_slow_inc(&__cfs_bandwidth_used);
2860}
2861
2862void cfs_bandwidth_usage_dec(void)
2863{
2864 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2865}
2866#else /* HAVE_JUMP_LABEL */
2867static bool cfs_bandwidth_used(void)
2868{
2869 return true;
2870}
2871
1ee14e6c
BS
2872void cfs_bandwidth_usage_inc(void) {}
2873void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2874#endif /* HAVE_JUMP_LABEL */
2875
ab84d31e
PT
2876/*
2877 * default period for cfs group bandwidth.
2878 * default: 0.1s, units: nanoseconds
2879 */
2880static inline u64 default_cfs_period(void)
2881{
2882 return 100000000ULL;
2883}
ec12cb7f
PT
2884
2885static inline u64 sched_cfs_bandwidth_slice(void)
2886{
2887 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2888}
2889
a9cf55b2
PT
2890/*
2891 * Replenish runtime according to assigned quota and update expiration time.
2892 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2893 * additional synchronization around rq->lock.
2894 *
2895 * requires cfs_b->lock
2896 */
029632fb 2897void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2898{
2899 u64 now;
2900
2901 if (cfs_b->quota == RUNTIME_INF)
2902 return;
2903
2904 now = sched_clock_cpu(smp_processor_id());
2905 cfs_b->runtime = cfs_b->quota;
2906 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2907}
2908
029632fb
PZ
2909static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2910{
2911 return &tg->cfs_bandwidth;
2912}
2913
f1b17280
PT
2914/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2915static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2916{
2917 if (unlikely(cfs_rq->throttle_count))
2918 return cfs_rq->throttled_clock_task;
2919
78becc27 2920 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2921}
2922
85dac906
PT
2923/* returns 0 on failure to allocate runtime */
2924static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2925{
2926 struct task_group *tg = cfs_rq->tg;
2927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2928 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2929
2930 /* note: this is a positive sum as runtime_remaining <= 0 */
2931 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2932
2933 raw_spin_lock(&cfs_b->lock);
2934 if (cfs_b->quota == RUNTIME_INF)
2935 amount = min_amount;
58088ad0 2936 else {
a9cf55b2
PT
2937 /*
2938 * If the bandwidth pool has become inactive, then at least one
2939 * period must have elapsed since the last consumption.
2940 * Refresh the global state and ensure bandwidth timer becomes
2941 * active.
2942 */
2943 if (!cfs_b->timer_active) {
2944 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2945 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2946 }
58088ad0
PT
2947
2948 if (cfs_b->runtime > 0) {
2949 amount = min(cfs_b->runtime, min_amount);
2950 cfs_b->runtime -= amount;
2951 cfs_b->idle = 0;
2952 }
ec12cb7f 2953 }
a9cf55b2 2954 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2955 raw_spin_unlock(&cfs_b->lock);
2956
2957 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2958 /*
2959 * we may have advanced our local expiration to account for allowed
2960 * spread between our sched_clock and the one on which runtime was
2961 * issued.
2962 */
2963 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2964 cfs_rq->runtime_expires = expires;
85dac906
PT
2965
2966 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2967}
2968
a9cf55b2
PT
2969/*
2970 * Note: This depends on the synchronization provided by sched_clock and the
2971 * fact that rq->clock snapshots this value.
2972 */
2973static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2974{
a9cf55b2 2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2976
2977 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2978 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2979 return;
2980
a9cf55b2
PT
2981 if (cfs_rq->runtime_remaining < 0)
2982 return;
2983
2984 /*
2985 * If the local deadline has passed we have to consider the
2986 * possibility that our sched_clock is 'fast' and the global deadline
2987 * has not truly expired.
2988 *
2989 * Fortunately we can check determine whether this the case by checking
2990 * whether the global deadline has advanced.
2991 */
2992
2993 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2994 /* extend local deadline, drift is bounded above by 2 ticks */
2995 cfs_rq->runtime_expires += TICK_NSEC;
2996 } else {
2997 /* global deadline is ahead, expiration has passed */
2998 cfs_rq->runtime_remaining = 0;
2999 }
3000}
3001
9dbdb155 3002static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3003{
3004 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3005 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3006 expire_cfs_rq_runtime(cfs_rq);
3007
3008 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3009 return;
3010
85dac906
PT
3011 /*
3012 * if we're unable to extend our runtime we resched so that the active
3013 * hierarchy can be throttled
3014 */
3015 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3016 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3017}
3018
6c16a6dc 3019static __always_inline
9dbdb155 3020void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3021{
56f570e5 3022 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3023 return;
3024
3025 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3026}
3027
85dac906
PT
3028static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3029{
56f570e5 3030 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3031}
3032
64660c86
PT
3033/* check whether cfs_rq, or any parent, is throttled */
3034static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3035{
56f570e5 3036 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3037}
3038
3039/*
3040 * Ensure that neither of the group entities corresponding to src_cpu or
3041 * dest_cpu are members of a throttled hierarchy when performing group
3042 * load-balance operations.
3043 */
3044static inline int throttled_lb_pair(struct task_group *tg,
3045 int src_cpu, int dest_cpu)
3046{
3047 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3048
3049 src_cfs_rq = tg->cfs_rq[src_cpu];
3050 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3051
3052 return throttled_hierarchy(src_cfs_rq) ||
3053 throttled_hierarchy(dest_cfs_rq);
3054}
3055
3056/* updated child weight may affect parent so we have to do this bottom up */
3057static int tg_unthrottle_up(struct task_group *tg, void *data)
3058{
3059 struct rq *rq = data;
3060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3061
3062 cfs_rq->throttle_count--;
3063#ifdef CONFIG_SMP
3064 if (!cfs_rq->throttle_count) {
f1b17280 3065 /* adjust cfs_rq_clock_task() */
78becc27 3066 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3067 cfs_rq->throttled_clock_task;
64660c86
PT
3068 }
3069#endif
3070
3071 return 0;
3072}
3073
3074static int tg_throttle_down(struct task_group *tg, void *data)
3075{
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
82958366
PT
3079 /* group is entering throttled state, stop time */
3080 if (!cfs_rq->throttle_count)
78becc27 3081 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3082 cfs_rq->throttle_count++;
3083
3084 return 0;
3085}
3086
d3d9dc33 3087static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3088{
3089 struct rq *rq = rq_of(cfs_rq);
3090 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3091 struct sched_entity *se;
3092 long task_delta, dequeue = 1;
3093
3094 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3095
f1b17280 3096 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3097 rcu_read_lock();
3098 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3099 rcu_read_unlock();
85dac906
PT
3100
3101 task_delta = cfs_rq->h_nr_running;
3102 for_each_sched_entity(se) {
3103 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3104 /* throttled entity or throttle-on-deactivate */
3105 if (!se->on_rq)
3106 break;
3107
3108 if (dequeue)
3109 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3110 qcfs_rq->h_nr_running -= task_delta;
3111
3112 if (qcfs_rq->load.weight)
3113 dequeue = 0;
3114 }
3115
3116 if (!se)
3117 rq->nr_running -= task_delta;
3118
3119 cfs_rq->throttled = 1;
78becc27 3120 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3121 raw_spin_lock(&cfs_b->lock);
3122 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3123 if (!cfs_b->timer_active)
3124 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3125 raw_spin_unlock(&cfs_b->lock);
3126}
3127
029632fb 3128void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3129{
3130 struct rq *rq = rq_of(cfs_rq);
3131 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3132 struct sched_entity *se;
3133 int enqueue = 1;
3134 long task_delta;
3135
22b958d8 3136 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3137
3138 cfs_rq->throttled = 0;
1a55af2e
FW
3139
3140 update_rq_clock(rq);
3141
671fd9da 3142 raw_spin_lock(&cfs_b->lock);
78becc27 3143 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3144 list_del_rcu(&cfs_rq->throttled_list);
3145 raw_spin_unlock(&cfs_b->lock);
3146
64660c86
PT
3147 /* update hierarchical throttle state */
3148 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3149
671fd9da
PT
3150 if (!cfs_rq->load.weight)
3151 return;
3152
3153 task_delta = cfs_rq->h_nr_running;
3154 for_each_sched_entity(se) {
3155 if (se->on_rq)
3156 enqueue = 0;
3157
3158 cfs_rq = cfs_rq_of(se);
3159 if (enqueue)
3160 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3161 cfs_rq->h_nr_running += task_delta;
3162
3163 if (cfs_rq_throttled(cfs_rq))
3164 break;
3165 }
3166
3167 if (!se)
3168 rq->nr_running += task_delta;
3169
3170 /* determine whether we need to wake up potentially idle cpu */
3171 if (rq->curr == rq->idle && rq->cfs.nr_running)
3172 resched_task(rq->curr);
3173}
3174
3175static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3176 u64 remaining, u64 expires)
3177{
3178 struct cfs_rq *cfs_rq;
3179 u64 runtime = remaining;
3180
3181 rcu_read_lock();
3182 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3183 throttled_list) {
3184 struct rq *rq = rq_of(cfs_rq);
3185
3186 raw_spin_lock(&rq->lock);
3187 if (!cfs_rq_throttled(cfs_rq))
3188 goto next;
3189
3190 runtime = -cfs_rq->runtime_remaining + 1;
3191 if (runtime > remaining)
3192 runtime = remaining;
3193 remaining -= runtime;
3194
3195 cfs_rq->runtime_remaining += runtime;
3196 cfs_rq->runtime_expires = expires;
3197
3198 /* we check whether we're throttled above */
3199 if (cfs_rq->runtime_remaining > 0)
3200 unthrottle_cfs_rq(cfs_rq);
3201
3202next:
3203 raw_spin_unlock(&rq->lock);
3204
3205 if (!remaining)
3206 break;
3207 }
3208 rcu_read_unlock();
3209
3210 return remaining;
3211}
3212
58088ad0
PT
3213/*
3214 * Responsible for refilling a task_group's bandwidth and unthrottling its
3215 * cfs_rqs as appropriate. If there has been no activity within the last
3216 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3217 * used to track this state.
3218 */
3219static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3220{
671fd9da
PT
3221 u64 runtime, runtime_expires;
3222 int idle = 1, throttled;
58088ad0
PT
3223
3224 raw_spin_lock(&cfs_b->lock);
3225 /* no need to continue the timer with no bandwidth constraint */
3226 if (cfs_b->quota == RUNTIME_INF)
3227 goto out_unlock;
3228
671fd9da
PT
3229 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3230 /* idle depends on !throttled (for the case of a large deficit) */
3231 idle = cfs_b->idle && !throttled;
e8da1b18 3232 cfs_b->nr_periods += overrun;
671fd9da 3233
a9cf55b2
PT
3234 /* if we're going inactive then everything else can be deferred */
3235 if (idle)
3236 goto out_unlock;
3237
927b54fc
BS
3238 /*
3239 * if we have relooped after returning idle once, we need to update our
3240 * status as actually running, so that other cpus doing
3241 * __start_cfs_bandwidth will stop trying to cancel us.
3242 */
3243 cfs_b->timer_active = 1;
3244
a9cf55b2
PT
3245 __refill_cfs_bandwidth_runtime(cfs_b);
3246
671fd9da
PT
3247 if (!throttled) {
3248 /* mark as potentially idle for the upcoming period */
3249 cfs_b->idle = 1;
3250 goto out_unlock;
3251 }
3252
e8da1b18
NR
3253 /* account preceding periods in which throttling occurred */
3254 cfs_b->nr_throttled += overrun;
3255
671fd9da
PT
3256 /*
3257 * There are throttled entities so we must first use the new bandwidth
3258 * to unthrottle them before making it generally available. This
3259 * ensures that all existing debts will be paid before a new cfs_rq is
3260 * allowed to run.
3261 */
3262 runtime = cfs_b->runtime;
3263 runtime_expires = cfs_b->runtime_expires;
3264 cfs_b->runtime = 0;
3265
3266 /*
3267 * This check is repeated as we are holding onto the new bandwidth
3268 * while we unthrottle. This can potentially race with an unthrottled
3269 * group trying to acquire new bandwidth from the global pool.
3270 */
3271 while (throttled && runtime > 0) {
3272 raw_spin_unlock(&cfs_b->lock);
3273 /* we can't nest cfs_b->lock while distributing bandwidth */
3274 runtime = distribute_cfs_runtime(cfs_b, runtime,
3275 runtime_expires);
3276 raw_spin_lock(&cfs_b->lock);
3277
3278 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3279 }
58088ad0 3280
671fd9da
PT
3281 /* return (any) remaining runtime */
3282 cfs_b->runtime = runtime;
3283 /*
3284 * While we are ensured activity in the period following an
3285 * unthrottle, this also covers the case in which the new bandwidth is
3286 * insufficient to cover the existing bandwidth deficit. (Forcing the
3287 * timer to remain active while there are any throttled entities.)
3288 */
3289 cfs_b->idle = 0;
58088ad0
PT
3290out_unlock:
3291 if (idle)
3292 cfs_b->timer_active = 0;
3293 raw_spin_unlock(&cfs_b->lock);
3294
3295 return idle;
3296}
d3d9dc33 3297
d8b4986d
PT
3298/* a cfs_rq won't donate quota below this amount */
3299static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3300/* minimum remaining period time to redistribute slack quota */
3301static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3302/* how long we wait to gather additional slack before distributing */
3303static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3304
db06e78c
BS
3305/*
3306 * Are we near the end of the current quota period?
3307 *
3308 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3309 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3310 * migrate_hrtimers, base is never cleared, so we are fine.
3311 */
d8b4986d
PT
3312static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3313{
3314 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3315 u64 remaining;
3316
3317 /* if the call-back is running a quota refresh is already occurring */
3318 if (hrtimer_callback_running(refresh_timer))
3319 return 1;
3320
3321 /* is a quota refresh about to occur? */
3322 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3323 if (remaining < min_expire)
3324 return 1;
3325
3326 return 0;
3327}
3328
3329static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3330{
3331 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3332
3333 /* if there's a quota refresh soon don't bother with slack */
3334 if (runtime_refresh_within(cfs_b, min_left))
3335 return;
3336
3337 start_bandwidth_timer(&cfs_b->slack_timer,
3338 ns_to_ktime(cfs_bandwidth_slack_period));
3339}
3340
3341/* we know any runtime found here is valid as update_curr() precedes return */
3342static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3343{
3344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3345 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3346
3347 if (slack_runtime <= 0)
3348 return;
3349
3350 raw_spin_lock(&cfs_b->lock);
3351 if (cfs_b->quota != RUNTIME_INF &&
3352 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3353 cfs_b->runtime += slack_runtime;
3354
3355 /* we are under rq->lock, defer unthrottling using a timer */
3356 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3357 !list_empty(&cfs_b->throttled_cfs_rq))
3358 start_cfs_slack_bandwidth(cfs_b);
3359 }
3360 raw_spin_unlock(&cfs_b->lock);
3361
3362 /* even if it's not valid for return we don't want to try again */
3363 cfs_rq->runtime_remaining -= slack_runtime;
3364}
3365
3366static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3367{
56f570e5
PT
3368 if (!cfs_bandwidth_used())
3369 return;
3370
fccfdc6f 3371 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3372 return;
3373
3374 __return_cfs_rq_runtime(cfs_rq);
3375}
3376
3377/*
3378 * This is done with a timer (instead of inline with bandwidth return) since
3379 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3380 */
3381static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3382{
3383 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3384 u64 expires;
3385
3386 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3387 raw_spin_lock(&cfs_b->lock);
3388 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3389 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3390 return;
db06e78c 3391 }
d8b4986d 3392
d8b4986d
PT
3393 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3394 runtime = cfs_b->runtime;
3395 cfs_b->runtime = 0;
3396 }
3397 expires = cfs_b->runtime_expires;
3398 raw_spin_unlock(&cfs_b->lock);
3399
3400 if (!runtime)
3401 return;
3402
3403 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3404
3405 raw_spin_lock(&cfs_b->lock);
3406 if (expires == cfs_b->runtime_expires)
3407 cfs_b->runtime = runtime;
3408 raw_spin_unlock(&cfs_b->lock);
3409}
3410
d3d9dc33
PT
3411/*
3412 * When a group wakes up we want to make sure that its quota is not already
3413 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3414 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3415 */
3416static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3417{
56f570e5
PT
3418 if (!cfs_bandwidth_used())
3419 return;
3420
d3d9dc33
PT
3421 /* an active group must be handled by the update_curr()->put() path */
3422 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3423 return;
3424
3425 /* ensure the group is not already throttled */
3426 if (cfs_rq_throttled(cfs_rq))
3427 return;
3428
3429 /* update runtime allocation */
3430 account_cfs_rq_runtime(cfs_rq, 0);
3431 if (cfs_rq->runtime_remaining <= 0)
3432 throttle_cfs_rq(cfs_rq);
3433}
3434
3435/* conditionally throttle active cfs_rq's from put_prev_entity() */
3436static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3437{
56f570e5
PT
3438 if (!cfs_bandwidth_used())
3439 return;
3440
d3d9dc33
PT
3441 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3442 return;
3443
3444 /*
3445 * it's possible for a throttled entity to be forced into a running
3446 * state (e.g. set_curr_task), in this case we're finished.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 return;
3450
3451 throttle_cfs_rq(cfs_rq);
3452}
029632fb 3453
029632fb
PZ
3454static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3455{
3456 struct cfs_bandwidth *cfs_b =
3457 container_of(timer, struct cfs_bandwidth, slack_timer);
3458 do_sched_cfs_slack_timer(cfs_b);
3459
3460 return HRTIMER_NORESTART;
3461}
3462
3463static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3464{
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, period_timer);
3467 ktime_t now;
3468 int overrun;
3469 int idle = 0;
3470
3471 for (;;) {
3472 now = hrtimer_cb_get_time(timer);
3473 overrun = hrtimer_forward(timer, now, cfs_b->period);
3474
3475 if (!overrun)
3476 break;
3477
3478 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3479 }
3480
3481 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3482}
3483
3484void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3485{
3486 raw_spin_lock_init(&cfs_b->lock);
3487 cfs_b->runtime = 0;
3488 cfs_b->quota = RUNTIME_INF;
3489 cfs_b->period = ns_to_ktime(default_cfs_period());
3490
3491 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3492 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3493 cfs_b->period_timer.function = sched_cfs_period_timer;
3494 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3496}
3497
3498static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3499{
3500 cfs_rq->runtime_enabled = 0;
3501 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3502}
3503
3504/* requires cfs_b->lock, may release to reprogram timer */
3505void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3506{
3507 /*
3508 * The timer may be active because we're trying to set a new bandwidth
3509 * period or because we're racing with the tear-down path
3510 * (timer_active==0 becomes visible before the hrtimer call-back
3511 * terminates). In either case we ensure that it's re-programmed
3512 */
927b54fc
BS
3513 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3514 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3515 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3516 raw_spin_unlock(&cfs_b->lock);
927b54fc 3517 cpu_relax();
029632fb
PZ
3518 raw_spin_lock(&cfs_b->lock);
3519 /* if someone else restarted the timer then we're done */
3520 if (cfs_b->timer_active)
3521 return;
3522 }
3523
3524 cfs_b->timer_active = 1;
3525 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3526}
3527
3528static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3529{
3530 hrtimer_cancel(&cfs_b->period_timer);
3531 hrtimer_cancel(&cfs_b->slack_timer);
3532}
3533
38dc3348 3534static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3535{
3536 struct cfs_rq *cfs_rq;
3537
3538 for_each_leaf_cfs_rq(rq, cfs_rq) {
3539 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3540
3541 if (!cfs_rq->runtime_enabled)
3542 continue;
3543
3544 /*
3545 * clock_task is not advancing so we just need to make sure
3546 * there's some valid quota amount
3547 */
3548 cfs_rq->runtime_remaining = cfs_b->quota;
3549 if (cfs_rq_throttled(cfs_rq))
3550 unthrottle_cfs_rq(cfs_rq);
3551 }
3552}
3553
3554#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3555static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3556{
78becc27 3557 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3558}
3559
9dbdb155 3560static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3561static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3562static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3563static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3564
3565static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3566{
3567 return 0;
3568}
64660c86
PT
3569
3570static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3571{
3572 return 0;
3573}
3574
3575static inline int throttled_lb_pair(struct task_group *tg,
3576 int src_cpu, int dest_cpu)
3577{
3578 return 0;
3579}
029632fb
PZ
3580
3581void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3582
3583#ifdef CONFIG_FAIR_GROUP_SCHED
3584static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3585#endif
3586
029632fb
PZ
3587static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3588{
3589 return NULL;
3590}
3591static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3592static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3593
3594#endif /* CONFIG_CFS_BANDWIDTH */
3595
bf0f6f24
IM
3596/**************************************************
3597 * CFS operations on tasks:
3598 */
3599
8f4d37ec
PZ
3600#ifdef CONFIG_SCHED_HRTICK
3601static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3602{
8f4d37ec
PZ
3603 struct sched_entity *se = &p->se;
3604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3605
3606 WARN_ON(task_rq(p) != rq);
3607
b39e66ea 3608 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3609 u64 slice = sched_slice(cfs_rq, se);
3610 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3611 s64 delta = slice - ran;
3612
3613 if (delta < 0) {
3614 if (rq->curr == p)
3615 resched_task(p);
3616 return;
3617 }
3618
3619 /*
3620 * Don't schedule slices shorter than 10000ns, that just
3621 * doesn't make sense. Rely on vruntime for fairness.
3622 */
31656519 3623 if (rq->curr != p)
157124c1 3624 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3625
31656519 3626 hrtick_start(rq, delta);
8f4d37ec
PZ
3627 }
3628}
a4c2f00f
PZ
3629
3630/*
3631 * called from enqueue/dequeue and updates the hrtick when the
3632 * current task is from our class and nr_running is low enough
3633 * to matter.
3634 */
3635static void hrtick_update(struct rq *rq)
3636{
3637 struct task_struct *curr = rq->curr;
3638
b39e66ea 3639 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3640 return;
3641
3642 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3643 hrtick_start_fair(rq, curr);
3644}
55e12e5e 3645#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3646static inline void
3647hrtick_start_fair(struct rq *rq, struct task_struct *p)
3648{
3649}
a4c2f00f
PZ
3650
3651static inline void hrtick_update(struct rq *rq)
3652{
3653}
8f4d37ec
PZ
3654#endif
3655
bf0f6f24
IM
3656/*
3657 * The enqueue_task method is called before nr_running is
3658 * increased. Here we update the fair scheduling stats and
3659 * then put the task into the rbtree:
3660 */
ea87bb78 3661static void
371fd7e7 3662enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3663{
3664 struct cfs_rq *cfs_rq;
62fb1851 3665 struct sched_entity *se = &p->se;
bf0f6f24
IM
3666
3667 for_each_sched_entity(se) {
62fb1851 3668 if (se->on_rq)
bf0f6f24
IM
3669 break;
3670 cfs_rq = cfs_rq_of(se);
88ec22d3 3671 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3672
3673 /*
3674 * end evaluation on encountering a throttled cfs_rq
3675 *
3676 * note: in the case of encountering a throttled cfs_rq we will
3677 * post the final h_nr_running increment below.
3678 */
3679 if (cfs_rq_throttled(cfs_rq))
3680 break;
953bfcd1 3681 cfs_rq->h_nr_running++;
85dac906 3682
88ec22d3 3683 flags = ENQUEUE_WAKEUP;
bf0f6f24 3684 }
8f4d37ec 3685
2069dd75 3686 for_each_sched_entity(se) {
0f317143 3687 cfs_rq = cfs_rq_of(se);
953bfcd1 3688 cfs_rq->h_nr_running++;
2069dd75 3689
85dac906
PT
3690 if (cfs_rq_throttled(cfs_rq))
3691 break;
3692
17bc14b7 3693 update_cfs_shares(cfs_rq);
9ee474f5 3694 update_entity_load_avg(se, 1);
2069dd75
PZ
3695 }
3696
18bf2805
BS
3697 if (!se) {
3698 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3699 inc_nr_running(rq);
18bf2805 3700 }
a4c2f00f 3701 hrtick_update(rq);
bf0f6f24
IM
3702}
3703
2f36825b
VP
3704static void set_next_buddy(struct sched_entity *se);
3705
bf0f6f24
IM
3706/*
3707 * The dequeue_task method is called before nr_running is
3708 * decreased. We remove the task from the rbtree and
3709 * update the fair scheduling stats:
3710 */
371fd7e7 3711static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3712{
3713 struct cfs_rq *cfs_rq;
62fb1851 3714 struct sched_entity *se = &p->se;
2f36825b 3715 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3716
3717 for_each_sched_entity(se) {
3718 cfs_rq = cfs_rq_of(se);
371fd7e7 3719 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3720
3721 /*
3722 * end evaluation on encountering a throttled cfs_rq
3723 *
3724 * note: in the case of encountering a throttled cfs_rq we will
3725 * post the final h_nr_running decrement below.
3726 */
3727 if (cfs_rq_throttled(cfs_rq))
3728 break;
953bfcd1 3729 cfs_rq->h_nr_running--;
2069dd75 3730
bf0f6f24 3731 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3732 if (cfs_rq->load.weight) {
3733 /*
3734 * Bias pick_next to pick a task from this cfs_rq, as
3735 * p is sleeping when it is within its sched_slice.
3736 */
3737 if (task_sleep && parent_entity(se))
3738 set_next_buddy(parent_entity(se));
9598c82d
PT
3739
3740 /* avoid re-evaluating load for this entity */
3741 se = parent_entity(se);
bf0f6f24 3742 break;
2f36825b 3743 }
371fd7e7 3744 flags |= DEQUEUE_SLEEP;
bf0f6f24 3745 }
8f4d37ec 3746
2069dd75 3747 for_each_sched_entity(se) {
0f317143 3748 cfs_rq = cfs_rq_of(se);
953bfcd1 3749 cfs_rq->h_nr_running--;
2069dd75 3750
85dac906
PT
3751 if (cfs_rq_throttled(cfs_rq))
3752 break;
3753
17bc14b7 3754 update_cfs_shares(cfs_rq);
9ee474f5 3755 update_entity_load_avg(se, 1);
2069dd75
PZ
3756 }
3757
18bf2805 3758 if (!se) {
85dac906 3759 dec_nr_running(rq);
18bf2805
BS
3760 update_rq_runnable_avg(rq, 1);
3761 }
a4c2f00f 3762 hrtick_update(rq);
bf0f6f24
IM
3763}
3764
e7693a36 3765#ifdef CONFIG_SMP
029632fb
PZ
3766/* Used instead of source_load when we know the type == 0 */
3767static unsigned long weighted_cpuload(const int cpu)
3768{
b92486cb 3769 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3770}
3771
3772/*
3773 * Return a low guess at the load of a migration-source cpu weighted
3774 * according to the scheduling class and "nice" value.
3775 *
3776 * We want to under-estimate the load of migration sources, to
3777 * balance conservatively.
3778 */
3779static unsigned long source_load(int cpu, int type)
3780{
3781 struct rq *rq = cpu_rq(cpu);
3782 unsigned long total = weighted_cpuload(cpu);
3783
3784 if (type == 0 || !sched_feat(LB_BIAS))
3785 return total;
3786
3787 return min(rq->cpu_load[type-1], total);
3788}
3789
3790/*
3791 * Return a high guess at the load of a migration-target cpu weighted
3792 * according to the scheduling class and "nice" value.
3793 */
3794static unsigned long target_load(int cpu, int type)
3795{
3796 struct rq *rq = cpu_rq(cpu);
3797 unsigned long total = weighted_cpuload(cpu);
3798
3799 if (type == 0 || !sched_feat(LB_BIAS))
3800 return total;
3801
3802 return max(rq->cpu_load[type-1], total);
3803}
3804
3805static unsigned long power_of(int cpu)
3806{
3807 return cpu_rq(cpu)->cpu_power;
3808}
3809
3810static unsigned long cpu_avg_load_per_task(int cpu)
3811{
3812 struct rq *rq = cpu_rq(cpu);
3813 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3814 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3815
3816 if (nr_running)
b92486cb 3817 return load_avg / nr_running;
029632fb
PZ
3818
3819 return 0;
3820}
3821
62470419
MW
3822static void record_wakee(struct task_struct *p)
3823{
3824 /*
3825 * Rough decay (wiping) for cost saving, don't worry
3826 * about the boundary, really active task won't care
3827 * about the loss.
3828 */
3829 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3830 current->wakee_flips = 0;
3831 current->wakee_flip_decay_ts = jiffies;
3832 }
3833
3834 if (current->last_wakee != p) {
3835 current->last_wakee = p;
3836 current->wakee_flips++;
3837 }
3838}
098fb9db 3839
74f8e4b2 3840static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3841{
3842 struct sched_entity *se = &p->se;
3843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3844 u64 min_vruntime;
3845
3846#ifndef CONFIG_64BIT
3847 u64 min_vruntime_copy;
88ec22d3 3848
3fe1698b
PZ
3849 do {
3850 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3851 smp_rmb();
3852 min_vruntime = cfs_rq->min_vruntime;
3853 } while (min_vruntime != min_vruntime_copy);
3854#else
3855 min_vruntime = cfs_rq->min_vruntime;
3856#endif
88ec22d3 3857
3fe1698b 3858 se->vruntime -= min_vruntime;
62470419 3859 record_wakee(p);
88ec22d3
PZ
3860}
3861
bb3469ac 3862#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3863/*
3864 * effective_load() calculates the load change as seen from the root_task_group
3865 *
3866 * Adding load to a group doesn't make a group heavier, but can cause movement
3867 * of group shares between cpus. Assuming the shares were perfectly aligned one
3868 * can calculate the shift in shares.
cf5f0acf
PZ
3869 *
3870 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3871 * on this @cpu and results in a total addition (subtraction) of @wg to the
3872 * total group weight.
3873 *
3874 * Given a runqueue weight distribution (rw_i) we can compute a shares
3875 * distribution (s_i) using:
3876 *
3877 * s_i = rw_i / \Sum rw_j (1)
3878 *
3879 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3880 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3881 * shares distribution (s_i):
3882 *
3883 * rw_i = { 2, 4, 1, 0 }
3884 * s_i = { 2/7, 4/7, 1/7, 0 }
3885 *
3886 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3887 * task used to run on and the CPU the waker is running on), we need to
3888 * compute the effect of waking a task on either CPU and, in case of a sync
3889 * wakeup, compute the effect of the current task going to sleep.
3890 *
3891 * So for a change of @wl to the local @cpu with an overall group weight change
3892 * of @wl we can compute the new shares distribution (s'_i) using:
3893 *
3894 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3895 *
3896 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3897 * differences in waking a task to CPU 0. The additional task changes the
3898 * weight and shares distributions like:
3899 *
3900 * rw'_i = { 3, 4, 1, 0 }
3901 * s'_i = { 3/8, 4/8, 1/8, 0 }
3902 *
3903 * We can then compute the difference in effective weight by using:
3904 *
3905 * dw_i = S * (s'_i - s_i) (3)
3906 *
3907 * Where 'S' is the group weight as seen by its parent.
3908 *
3909 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3910 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3911 * 4/7) times the weight of the group.
f5bfb7d9 3912 */
2069dd75 3913static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3914{
4be9daaa 3915 struct sched_entity *se = tg->se[cpu];
f1d239f7 3916
9722c2da 3917 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3918 return wl;
3919
4be9daaa 3920 for_each_sched_entity(se) {
cf5f0acf 3921 long w, W;
4be9daaa 3922
977dda7c 3923 tg = se->my_q->tg;
bb3469ac 3924
cf5f0acf
PZ
3925 /*
3926 * W = @wg + \Sum rw_j
3927 */
3928 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3929
cf5f0acf
PZ
3930 /*
3931 * w = rw_i + @wl
3932 */
3933 w = se->my_q->load.weight + wl;
940959e9 3934
cf5f0acf
PZ
3935 /*
3936 * wl = S * s'_i; see (2)
3937 */
3938 if (W > 0 && w < W)
3939 wl = (w * tg->shares) / W;
977dda7c
PT
3940 else
3941 wl = tg->shares;
940959e9 3942
cf5f0acf
PZ
3943 /*
3944 * Per the above, wl is the new se->load.weight value; since
3945 * those are clipped to [MIN_SHARES, ...) do so now. See
3946 * calc_cfs_shares().
3947 */
977dda7c
PT
3948 if (wl < MIN_SHARES)
3949 wl = MIN_SHARES;
cf5f0acf
PZ
3950
3951 /*
3952 * wl = dw_i = S * (s'_i - s_i); see (3)
3953 */
977dda7c 3954 wl -= se->load.weight;
cf5f0acf
PZ
3955
3956 /*
3957 * Recursively apply this logic to all parent groups to compute
3958 * the final effective load change on the root group. Since
3959 * only the @tg group gets extra weight, all parent groups can
3960 * only redistribute existing shares. @wl is the shift in shares
3961 * resulting from this level per the above.
3962 */
4be9daaa 3963 wg = 0;
4be9daaa 3964 }
bb3469ac 3965
4be9daaa 3966 return wl;
bb3469ac
PZ
3967}
3968#else
4be9daaa 3969
58d081b5 3970static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3971{
83378269 3972 return wl;
bb3469ac 3973}
4be9daaa 3974
bb3469ac
PZ
3975#endif
3976
62470419
MW
3977static int wake_wide(struct task_struct *p)
3978{
7d9ffa89 3979 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3980
3981 /*
3982 * Yeah, it's the switching-frequency, could means many wakee or
3983 * rapidly switch, use factor here will just help to automatically
3984 * adjust the loose-degree, so bigger node will lead to more pull.
3985 */
3986 if (p->wakee_flips > factor) {
3987 /*
3988 * wakee is somewhat hot, it needs certain amount of cpu
3989 * resource, so if waker is far more hot, prefer to leave
3990 * it alone.
3991 */
3992 if (current->wakee_flips > (factor * p->wakee_flips))
3993 return 1;
3994 }
3995
3996 return 0;
3997}
3998
c88d5910 3999static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4000{
e37b6a7b 4001 s64 this_load, load;
c88d5910 4002 int idx, this_cpu, prev_cpu;
098fb9db 4003 unsigned long tl_per_task;
c88d5910 4004 struct task_group *tg;
83378269 4005 unsigned long weight;
b3137bc8 4006 int balanced;
098fb9db 4007
62470419
MW
4008 /*
4009 * If we wake multiple tasks be careful to not bounce
4010 * ourselves around too much.
4011 */
4012 if (wake_wide(p))
4013 return 0;
4014
c88d5910
PZ
4015 idx = sd->wake_idx;
4016 this_cpu = smp_processor_id();
4017 prev_cpu = task_cpu(p);
4018 load = source_load(prev_cpu, idx);
4019 this_load = target_load(this_cpu, idx);
098fb9db 4020
b3137bc8
MG
4021 /*
4022 * If sync wakeup then subtract the (maximum possible)
4023 * effect of the currently running task from the load
4024 * of the current CPU:
4025 */
83378269
PZ
4026 if (sync) {
4027 tg = task_group(current);
4028 weight = current->se.load.weight;
4029
c88d5910 4030 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4031 load += effective_load(tg, prev_cpu, 0, -weight);
4032 }
b3137bc8 4033
83378269
PZ
4034 tg = task_group(p);
4035 weight = p->se.load.weight;
b3137bc8 4036
71a29aa7
PZ
4037 /*
4038 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4039 * due to the sync cause above having dropped this_load to 0, we'll
4040 * always have an imbalance, but there's really nothing you can do
4041 * about that, so that's good too.
71a29aa7
PZ
4042 *
4043 * Otherwise check if either cpus are near enough in load to allow this
4044 * task to be woken on this_cpu.
4045 */
e37b6a7b
PT
4046 if (this_load > 0) {
4047 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4048
4049 this_eff_load = 100;
4050 this_eff_load *= power_of(prev_cpu);
4051 this_eff_load *= this_load +
4052 effective_load(tg, this_cpu, weight, weight);
4053
4054 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4055 prev_eff_load *= power_of(this_cpu);
4056 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4057
4058 balanced = this_eff_load <= prev_eff_load;
4059 } else
4060 balanced = true;
b3137bc8 4061
098fb9db 4062 /*
4ae7d5ce
IM
4063 * If the currently running task will sleep within
4064 * a reasonable amount of time then attract this newly
4065 * woken task:
098fb9db 4066 */
2fb7635c
PZ
4067 if (sync && balanced)
4068 return 1;
098fb9db 4069
41acab88 4070 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4071 tl_per_task = cpu_avg_load_per_task(this_cpu);
4072
c88d5910
PZ
4073 if (balanced ||
4074 (this_load <= load &&
4075 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4076 /*
4077 * This domain has SD_WAKE_AFFINE and
4078 * p is cache cold in this domain, and
4079 * there is no bad imbalance.
4080 */
c88d5910 4081 schedstat_inc(sd, ttwu_move_affine);
41acab88 4082 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4083
4084 return 1;
4085 }
4086 return 0;
4087}
4088
aaee1203
PZ
4089/*
4090 * find_idlest_group finds and returns the least busy CPU group within the
4091 * domain.
4092 */
4093static struct sched_group *
78e7ed53 4094find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4095 int this_cpu, int sd_flag)
e7693a36 4096{
b3bd3de6 4097 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4098 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4099 int load_idx = sd->forkexec_idx;
aaee1203 4100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4101
c44f2a02
VG
4102 if (sd_flag & SD_BALANCE_WAKE)
4103 load_idx = sd->wake_idx;
4104
aaee1203
PZ
4105 do {
4106 unsigned long load, avg_load;
4107 int local_group;
4108 int i;
e7693a36 4109
aaee1203
PZ
4110 /* Skip over this group if it has no CPUs allowed */
4111 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4112 tsk_cpus_allowed(p)))
aaee1203
PZ
4113 continue;
4114
4115 local_group = cpumask_test_cpu(this_cpu,
4116 sched_group_cpus(group));
4117
4118 /* Tally up the load of all CPUs in the group */
4119 avg_load = 0;
4120
4121 for_each_cpu(i, sched_group_cpus(group)) {
4122 /* Bias balancing toward cpus of our domain */
4123 if (local_group)
4124 load = source_load(i, load_idx);
4125 else
4126 load = target_load(i, load_idx);
4127
4128 avg_load += load;
4129 }
4130
4131 /* Adjust by relative CPU power of the group */
9c3f75cb 4132 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4133
4134 if (local_group) {
4135 this_load = avg_load;
aaee1203
PZ
4136 } else if (avg_load < min_load) {
4137 min_load = avg_load;
4138 idlest = group;
4139 }
4140 } while (group = group->next, group != sd->groups);
4141
4142 if (!idlest || 100*this_load < imbalance*min_load)
4143 return NULL;
4144 return idlest;
4145}
4146
4147/*
4148 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4149 */
4150static int
4151find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4152{
4153 unsigned long load, min_load = ULONG_MAX;
4154 int idlest = -1;
4155 int i;
4156
4157 /* Traverse only the allowed CPUs */
fa17b507 4158 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4159 load = weighted_cpuload(i);
4160
4161 if (load < min_load || (load == min_load && i == this_cpu)) {
4162 min_load = load;
4163 idlest = i;
e7693a36
GH
4164 }
4165 }
4166
aaee1203
PZ
4167 return idlest;
4168}
e7693a36 4169
a50bde51
PZ
4170/*
4171 * Try and locate an idle CPU in the sched_domain.
4172 */
99bd5e2f 4173static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4174{
99bd5e2f 4175 struct sched_domain *sd;
37407ea7 4176 struct sched_group *sg;
e0a79f52 4177 int i = task_cpu(p);
a50bde51 4178
e0a79f52
MG
4179 if (idle_cpu(target))
4180 return target;
99bd5e2f
SS
4181
4182 /*
e0a79f52 4183 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4184 */
e0a79f52
MG
4185 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4186 return i;
a50bde51
PZ
4187
4188 /*
37407ea7 4189 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4190 */
518cd623 4191 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4192 for_each_lower_domain(sd) {
37407ea7
LT
4193 sg = sd->groups;
4194 do {
4195 if (!cpumask_intersects(sched_group_cpus(sg),
4196 tsk_cpus_allowed(p)))
4197 goto next;
4198
4199 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4200 if (i == target || !idle_cpu(i))
37407ea7
LT
4201 goto next;
4202 }
970e1789 4203
37407ea7
LT
4204 target = cpumask_first_and(sched_group_cpus(sg),
4205 tsk_cpus_allowed(p));
4206 goto done;
4207next:
4208 sg = sg->next;
4209 } while (sg != sd->groups);
4210 }
4211done:
a50bde51
PZ
4212 return target;
4213}
4214
aaee1203
PZ
4215/*
4216 * sched_balance_self: balance the current task (running on cpu) in domains
4217 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4218 * SD_BALANCE_EXEC.
4219 *
4220 * Balance, ie. select the least loaded group.
4221 *
4222 * Returns the target CPU number, or the same CPU if no balancing is needed.
4223 *
4224 * preempt must be disabled.
4225 */
0017d735 4226static int
ac66f547 4227select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4228{
29cd8bae 4229 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4230 int cpu = smp_processor_id();
c88d5910 4231 int new_cpu = cpu;
99bd5e2f 4232 int want_affine = 0;
5158f4e4 4233 int sync = wake_flags & WF_SYNC;
c88d5910 4234
29baa747 4235 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4236 return prev_cpu;
4237
0763a660 4238 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4239 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4240 want_affine = 1;
4241 new_cpu = prev_cpu;
4242 }
aaee1203 4243
dce840a0 4244 rcu_read_lock();
aaee1203 4245 for_each_domain(cpu, tmp) {
e4f42888
PZ
4246 if (!(tmp->flags & SD_LOAD_BALANCE))
4247 continue;
4248
fe3bcfe1 4249 /*
99bd5e2f
SS
4250 * If both cpu and prev_cpu are part of this domain,
4251 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4252 */
99bd5e2f
SS
4253 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4254 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4255 affine_sd = tmp;
29cd8bae 4256 break;
f03542a7 4257 }
29cd8bae 4258
f03542a7 4259 if (tmp->flags & sd_flag)
29cd8bae
PZ
4260 sd = tmp;
4261 }
4262
8b911acd 4263 if (affine_sd) {
f03542a7 4264 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4265 prev_cpu = cpu;
4266
4267 new_cpu = select_idle_sibling(p, prev_cpu);
4268 goto unlock;
8b911acd 4269 }
e7693a36 4270
aaee1203
PZ
4271 while (sd) {
4272 struct sched_group *group;
c88d5910 4273 int weight;
098fb9db 4274
0763a660 4275 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4276 sd = sd->child;
4277 continue;
4278 }
098fb9db 4279
c44f2a02 4280 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4281 if (!group) {
4282 sd = sd->child;
4283 continue;
4284 }
4ae7d5ce 4285
d7c33c49 4286 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4287 if (new_cpu == -1 || new_cpu == cpu) {
4288 /* Now try balancing at a lower domain level of cpu */
4289 sd = sd->child;
4290 continue;
e7693a36 4291 }
aaee1203
PZ
4292
4293 /* Now try balancing at a lower domain level of new_cpu */
4294 cpu = new_cpu;
669c55e9 4295 weight = sd->span_weight;
aaee1203
PZ
4296 sd = NULL;
4297 for_each_domain(cpu, tmp) {
669c55e9 4298 if (weight <= tmp->span_weight)
aaee1203 4299 break;
0763a660 4300 if (tmp->flags & sd_flag)
aaee1203
PZ
4301 sd = tmp;
4302 }
4303 /* while loop will break here if sd == NULL */
e7693a36 4304 }
dce840a0
PZ
4305unlock:
4306 rcu_read_unlock();
e7693a36 4307
c88d5910 4308 return new_cpu;
e7693a36 4309}
0a74bef8
PT
4310
4311/*
4312 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4313 * cfs_rq_of(p) references at time of call are still valid and identify the
4314 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4315 * other assumptions, including the state of rq->lock, should be made.
4316 */
4317static void
4318migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4319{
aff3e498
PT
4320 struct sched_entity *se = &p->se;
4321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4322
4323 /*
4324 * Load tracking: accumulate removed load so that it can be processed
4325 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4326 * to blocked load iff they have a positive decay-count. It can never
4327 * be negative here since on-rq tasks have decay-count == 0.
4328 */
4329 if (se->avg.decay_count) {
4330 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4331 atomic_long_add(se->avg.load_avg_contrib,
4332 &cfs_rq->removed_load);
aff3e498 4333 }
0a74bef8 4334}
e7693a36
GH
4335#endif /* CONFIG_SMP */
4336
e52fb7c0
PZ
4337static unsigned long
4338wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4339{
4340 unsigned long gran = sysctl_sched_wakeup_granularity;
4341
4342 /*
e52fb7c0
PZ
4343 * Since its curr running now, convert the gran from real-time
4344 * to virtual-time in his units.
13814d42
MG
4345 *
4346 * By using 'se' instead of 'curr' we penalize light tasks, so
4347 * they get preempted easier. That is, if 'se' < 'curr' then
4348 * the resulting gran will be larger, therefore penalizing the
4349 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4350 * be smaller, again penalizing the lighter task.
4351 *
4352 * This is especially important for buddies when the leftmost
4353 * task is higher priority than the buddy.
0bbd3336 4354 */
f4ad9bd2 4355 return calc_delta_fair(gran, se);
0bbd3336
PZ
4356}
4357
464b7527
PZ
4358/*
4359 * Should 'se' preempt 'curr'.
4360 *
4361 * |s1
4362 * |s2
4363 * |s3
4364 * g
4365 * |<--->|c
4366 *
4367 * w(c, s1) = -1
4368 * w(c, s2) = 0
4369 * w(c, s3) = 1
4370 *
4371 */
4372static int
4373wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4374{
4375 s64 gran, vdiff = curr->vruntime - se->vruntime;
4376
4377 if (vdiff <= 0)
4378 return -1;
4379
e52fb7c0 4380 gran = wakeup_gran(curr, se);
464b7527
PZ
4381 if (vdiff > gran)
4382 return 1;
4383
4384 return 0;
4385}
4386
02479099
PZ
4387static void set_last_buddy(struct sched_entity *se)
4388{
69c80f3e
VP
4389 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4390 return;
4391
4392 for_each_sched_entity(se)
4393 cfs_rq_of(se)->last = se;
02479099
PZ
4394}
4395
4396static void set_next_buddy(struct sched_entity *se)
4397{
69c80f3e
VP
4398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4399 return;
4400
4401 for_each_sched_entity(se)
4402 cfs_rq_of(se)->next = se;
02479099
PZ
4403}
4404
ac53db59
RR
4405static void set_skip_buddy(struct sched_entity *se)
4406{
69c80f3e
VP
4407 for_each_sched_entity(se)
4408 cfs_rq_of(se)->skip = se;
ac53db59
RR
4409}
4410
bf0f6f24
IM
4411/*
4412 * Preempt the current task with a newly woken task if needed:
4413 */
5a9b86f6 4414static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4415{
4416 struct task_struct *curr = rq->curr;
8651a86c 4417 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4418 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4419 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4420 int next_buddy_marked = 0;
bf0f6f24 4421
4ae7d5ce
IM
4422 if (unlikely(se == pse))
4423 return;
4424
5238cdd3 4425 /*
ddcdf6e7 4426 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4427 * unconditionally check_prempt_curr() after an enqueue (which may have
4428 * lead to a throttle). This both saves work and prevents false
4429 * next-buddy nomination below.
4430 */
4431 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4432 return;
4433
2f36825b 4434 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4435 set_next_buddy(pse);
2f36825b
VP
4436 next_buddy_marked = 1;
4437 }
57fdc26d 4438
aec0a514
BR
4439 /*
4440 * We can come here with TIF_NEED_RESCHED already set from new task
4441 * wake up path.
5238cdd3
PT
4442 *
4443 * Note: this also catches the edge-case of curr being in a throttled
4444 * group (e.g. via set_curr_task), since update_curr() (in the
4445 * enqueue of curr) will have resulted in resched being set. This
4446 * prevents us from potentially nominating it as a false LAST_BUDDY
4447 * below.
aec0a514
BR
4448 */
4449 if (test_tsk_need_resched(curr))
4450 return;
4451
a2f5c9ab
DH
4452 /* Idle tasks are by definition preempted by non-idle tasks. */
4453 if (unlikely(curr->policy == SCHED_IDLE) &&
4454 likely(p->policy != SCHED_IDLE))
4455 goto preempt;
4456
91c234b4 4457 /*
a2f5c9ab
DH
4458 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4459 * is driven by the tick):
91c234b4 4460 */
8ed92e51 4461 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4462 return;
bf0f6f24 4463
464b7527 4464 find_matching_se(&se, &pse);
9bbd7374 4465 update_curr(cfs_rq_of(se));
002f128b 4466 BUG_ON(!pse);
2f36825b
VP
4467 if (wakeup_preempt_entity(se, pse) == 1) {
4468 /*
4469 * Bias pick_next to pick the sched entity that is
4470 * triggering this preemption.
4471 */
4472 if (!next_buddy_marked)
4473 set_next_buddy(pse);
3a7e73a2 4474 goto preempt;
2f36825b 4475 }
464b7527 4476
3a7e73a2 4477 return;
a65ac745 4478
3a7e73a2
PZ
4479preempt:
4480 resched_task(curr);
4481 /*
4482 * Only set the backward buddy when the current task is still
4483 * on the rq. This can happen when a wakeup gets interleaved
4484 * with schedule on the ->pre_schedule() or idle_balance()
4485 * point, either of which can * drop the rq lock.
4486 *
4487 * Also, during early boot the idle thread is in the fair class,
4488 * for obvious reasons its a bad idea to schedule back to it.
4489 */
4490 if (unlikely(!se->on_rq || curr == rq->idle))
4491 return;
4492
4493 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4494 set_last_buddy(se);
bf0f6f24
IM
4495}
4496
fb8d4724 4497static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4498{
8f4d37ec 4499 struct task_struct *p;
bf0f6f24
IM
4500 struct cfs_rq *cfs_rq = &rq->cfs;
4501 struct sched_entity *se;
4502
36ace27e 4503 if (!cfs_rq->nr_running)
bf0f6f24
IM
4504 return NULL;
4505
4506 do {
9948f4b2 4507 se = pick_next_entity(cfs_rq);
f4b6755f 4508 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4509 cfs_rq = group_cfs_rq(se);
4510 } while (cfs_rq);
4511
8f4d37ec 4512 p = task_of(se);
b39e66ea
MG
4513 if (hrtick_enabled(rq))
4514 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4515
4516 return p;
bf0f6f24
IM
4517}
4518
4519/*
4520 * Account for a descheduled task:
4521 */
31ee529c 4522static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4523{
4524 struct sched_entity *se = &prev->se;
4525 struct cfs_rq *cfs_rq;
4526
4527 for_each_sched_entity(se) {
4528 cfs_rq = cfs_rq_of(se);
ab6cde26 4529 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4530 }
4531}
4532
ac53db59
RR
4533/*
4534 * sched_yield() is very simple
4535 *
4536 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4537 */
4538static void yield_task_fair(struct rq *rq)
4539{
4540 struct task_struct *curr = rq->curr;
4541 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4542 struct sched_entity *se = &curr->se;
4543
4544 /*
4545 * Are we the only task in the tree?
4546 */
4547 if (unlikely(rq->nr_running == 1))
4548 return;
4549
4550 clear_buddies(cfs_rq, se);
4551
4552 if (curr->policy != SCHED_BATCH) {
4553 update_rq_clock(rq);
4554 /*
4555 * Update run-time statistics of the 'current'.
4556 */
4557 update_curr(cfs_rq);
916671c0
MG
4558 /*
4559 * Tell update_rq_clock() that we've just updated,
4560 * so we don't do microscopic update in schedule()
4561 * and double the fastpath cost.
4562 */
4563 rq->skip_clock_update = 1;
ac53db59
RR
4564 }
4565
4566 set_skip_buddy(se);
4567}
4568
d95f4122
MG
4569static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4570{
4571 struct sched_entity *se = &p->se;
4572
5238cdd3
PT
4573 /* throttled hierarchies are not runnable */
4574 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4575 return false;
4576
4577 /* Tell the scheduler that we'd really like pse to run next. */
4578 set_next_buddy(se);
4579
d95f4122
MG
4580 yield_task_fair(rq);
4581
4582 return true;
4583}
4584
681f3e68 4585#ifdef CONFIG_SMP
bf0f6f24 4586/**************************************************
e9c84cb8
PZ
4587 * Fair scheduling class load-balancing methods.
4588 *
4589 * BASICS
4590 *
4591 * The purpose of load-balancing is to achieve the same basic fairness the
4592 * per-cpu scheduler provides, namely provide a proportional amount of compute
4593 * time to each task. This is expressed in the following equation:
4594 *
4595 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4596 *
4597 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4598 * W_i,0 is defined as:
4599 *
4600 * W_i,0 = \Sum_j w_i,j (2)
4601 *
4602 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4603 * is derived from the nice value as per prio_to_weight[].
4604 *
4605 * The weight average is an exponential decay average of the instantaneous
4606 * weight:
4607 *
4608 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4609 *
4610 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4611 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4612 * can also include other factors [XXX].
4613 *
4614 * To achieve this balance we define a measure of imbalance which follows
4615 * directly from (1):
4616 *
4617 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4618 *
4619 * We them move tasks around to minimize the imbalance. In the continuous
4620 * function space it is obvious this converges, in the discrete case we get
4621 * a few fun cases generally called infeasible weight scenarios.
4622 *
4623 * [XXX expand on:
4624 * - infeasible weights;
4625 * - local vs global optima in the discrete case. ]
4626 *
4627 *
4628 * SCHED DOMAINS
4629 *
4630 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4631 * for all i,j solution, we create a tree of cpus that follows the hardware
4632 * topology where each level pairs two lower groups (or better). This results
4633 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4634 * tree to only the first of the previous level and we decrease the frequency
4635 * of load-balance at each level inv. proportional to the number of cpus in
4636 * the groups.
4637 *
4638 * This yields:
4639 *
4640 * log_2 n 1 n
4641 * \Sum { --- * --- * 2^i } = O(n) (5)
4642 * i = 0 2^i 2^i
4643 * `- size of each group
4644 * | | `- number of cpus doing load-balance
4645 * | `- freq
4646 * `- sum over all levels
4647 *
4648 * Coupled with a limit on how many tasks we can migrate every balance pass,
4649 * this makes (5) the runtime complexity of the balancer.
4650 *
4651 * An important property here is that each CPU is still (indirectly) connected
4652 * to every other cpu in at most O(log n) steps:
4653 *
4654 * The adjacency matrix of the resulting graph is given by:
4655 *
4656 * log_2 n
4657 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4658 * k = 0
4659 *
4660 * And you'll find that:
4661 *
4662 * A^(log_2 n)_i,j != 0 for all i,j (7)
4663 *
4664 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4665 * The task movement gives a factor of O(m), giving a convergence complexity
4666 * of:
4667 *
4668 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4669 *
4670 *
4671 * WORK CONSERVING
4672 *
4673 * In order to avoid CPUs going idle while there's still work to do, new idle
4674 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4675 * tree itself instead of relying on other CPUs to bring it work.
4676 *
4677 * This adds some complexity to both (5) and (8) but it reduces the total idle
4678 * time.
4679 *
4680 * [XXX more?]
4681 *
4682 *
4683 * CGROUPS
4684 *
4685 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4686 *
4687 * s_k,i
4688 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4689 * S_k
4690 *
4691 * Where
4692 *
4693 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4694 *
4695 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4696 *
4697 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4698 * property.
4699 *
4700 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4701 * rewrite all of this once again.]
4702 */
bf0f6f24 4703
ed387b78
HS
4704static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4705
0ec8aa00
PZ
4706enum fbq_type { regular, remote, all };
4707
ddcdf6e7 4708#define LBF_ALL_PINNED 0x01
367456c7 4709#define LBF_NEED_BREAK 0x02
6263322c
PZ
4710#define LBF_DST_PINNED 0x04
4711#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4712
4713struct lb_env {
4714 struct sched_domain *sd;
4715
ddcdf6e7 4716 struct rq *src_rq;
85c1e7da 4717 int src_cpu;
ddcdf6e7
PZ
4718
4719 int dst_cpu;
4720 struct rq *dst_rq;
4721
88b8dac0
SV
4722 struct cpumask *dst_grpmask;
4723 int new_dst_cpu;
ddcdf6e7 4724 enum cpu_idle_type idle;
bd939f45 4725 long imbalance;
b9403130
MW
4726 /* The set of CPUs under consideration for load-balancing */
4727 struct cpumask *cpus;
4728
ddcdf6e7 4729 unsigned int flags;
367456c7
PZ
4730
4731 unsigned int loop;
4732 unsigned int loop_break;
4733 unsigned int loop_max;
0ec8aa00
PZ
4734
4735 enum fbq_type fbq_type;
ddcdf6e7
PZ
4736};
4737
1e3c88bd 4738/*
ddcdf6e7 4739 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4740 * Both runqueues must be locked.
4741 */
ddcdf6e7 4742static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4743{
ddcdf6e7
PZ
4744 deactivate_task(env->src_rq, p, 0);
4745 set_task_cpu(p, env->dst_cpu);
4746 activate_task(env->dst_rq, p, 0);
4747 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4748}
4749
029632fb
PZ
4750/*
4751 * Is this task likely cache-hot:
4752 */
4753static int
4754task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4755{
4756 s64 delta;
4757
4758 if (p->sched_class != &fair_sched_class)
4759 return 0;
4760
4761 if (unlikely(p->policy == SCHED_IDLE))
4762 return 0;
4763
4764 /*
4765 * Buddy candidates are cache hot:
4766 */
4767 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4768 (&p->se == cfs_rq_of(&p->se)->next ||
4769 &p->se == cfs_rq_of(&p->se)->last))
4770 return 1;
4771
4772 if (sysctl_sched_migration_cost == -1)
4773 return 1;
4774 if (sysctl_sched_migration_cost == 0)
4775 return 0;
4776
4777 delta = now - p->se.exec_start;
4778
4779 return delta < (s64)sysctl_sched_migration_cost;
4780}
4781
3a7053b3
MG
4782#ifdef CONFIG_NUMA_BALANCING
4783/* Returns true if the destination node has incurred more faults */
4784static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4785{
4786 int src_nid, dst_nid;
4787
4788 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4789 !(env->sd->flags & SD_NUMA)) {
4790 return false;
4791 }
4792
4793 src_nid = cpu_to_node(env->src_cpu);
4794 dst_nid = cpu_to_node(env->dst_cpu);
4795
83e1d2cd 4796 if (src_nid == dst_nid)
3a7053b3
MG
4797 return false;
4798
83e1d2cd
MG
4799 /* Always encourage migration to the preferred node. */
4800 if (dst_nid == p->numa_preferred_nid)
4801 return true;
4802
887c290e
RR
4803 /* If both task and group weight improve, this move is a winner. */
4804 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4805 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4806 return true;
4807
4808 return false;
4809}
7a0f3083
MG
4810
4811
4812static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4813{
4814 int src_nid, dst_nid;
4815
4816 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4817 return false;
4818
4819 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4820 return false;
4821
4822 src_nid = cpu_to_node(env->src_cpu);
4823 dst_nid = cpu_to_node(env->dst_cpu);
4824
83e1d2cd 4825 if (src_nid == dst_nid)
7a0f3083
MG
4826 return false;
4827
83e1d2cd
MG
4828 /* Migrating away from the preferred node is always bad. */
4829 if (src_nid == p->numa_preferred_nid)
4830 return true;
4831
887c290e
RR
4832 /* If either task or group weight get worse, don't do it. */
4833 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4834 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4835 return true;
4836
4837 return false;
4838}
4839
3a7053b3
MG
4840#else
4841static inline bool migrate_improves_locality(struct task_struct *p,
4842 struct lb_env *env)
4843{
4844 return false;
4845}
7a0f3083
MG
4846
4847static inline bool migrate_degrades_locality(struct task_struct *p,
4848 struct lb_env *env)
4849{
4850 return false;
4851}
3a7053b3
MG
4852#endif
4853
1e3c88bd
PZ
4854/*
4855 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4856 */
4857static
8e45cb54 4858int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4859{
4860 int tsk_cache_hot = 0;
4861 /*
4862 * We do not migrate tasks that are:
d3198084 4863 * 1) throttled_lb_pair, or
1e3c88bd 4864 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4865 * 3) running (obviously), or
4866 * 4) are cache-hot on their current CPU.
1e3c88bd 4867 */
d3198084
JK
4868 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4869 return 0;
4870
ddcdf6e7 4871 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4872 int cpu;
88b8dac0 4873
41acab88 4874 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4875
6263322c
PZ
4876 env->flags |= LBF_SOME_PINNED;
4877
88b8dac0
SV
4878 /*
4879 * Remember if this task can be migrated to any other cpu in
4880 * our sched_group. We may want to revisit it if we couldn't
4881 * meet load balance goals by pulling other tasks on src_cpu.
4882 *
4883 * Also avoid computing new_dst_cpu if we have already computed
4884 * one in current iteration.
4885 */
6263322c 4886 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4887 return 0;
4888
e02e60c1
JK
4889 /* Prevent to re-select dst_cpu via env's cpus */
4890 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4891 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4892 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4893 env->new_dst_cpu = cpu;
4894 break;
4895 }
88b8dac0 4896 }
e02e60c1 4897
1e3c88bd
PZ
4898 return 0;
4899 }
88b8dac0
SV
4900
4901 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4902 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4903
ddcdf6e7 4904 if (task_running(env->src_rq, p)) {
41acab88 4905 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4906 return 0;
4907 }
4908
4909 /*
4910 * Aggressive migration if:
3a7053b3
MG
4911 * 1) destination numa is preferred
4912 * 2) task is cache cold, or
4913 * 3) too many balance attempts have failed.
1e3c88bd 4914 */
78becc27 4915 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4916 if (!tsk_cache_hot)
4917 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4918
4919 if (migrate_improves_locality(p, env)) {
4920#ifdef CONFIG_SCHEDSTATS
4921 if (tsk_cache_hot) {
4922 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4923 schedstat_inc(p, se.statistics.nr_forced_migrations);
4924 }
4925#endif
4926 return 1;
4927 }
4928
1e3c88bd 4929 if (!tsk_cache_hot ||
8e45cb54 4930 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4931
1e3c88bd 4932 if (tsk_cache_hot) {
8e45cb54 4933 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4934 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4935 }
4e2dcb73 4936
1e3c88bd
PZ
4937 return 1;
4938 }
4939
4e2dcb73
ZH
4940 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4941 return 0;
1e3c88bd
PZ
4942}
4943
897c395f
PZ
4944/*
4945 * move_one_task tries to move exactly one task from busiest to this_rq, as
4946 * part of active balancing operations within "domain".
4947 * Returns 1 if successful and 0 otherwise.
4948 *
4949 * Called with both runqueues locked.
4950 */
8e45cb54 4951static int move_one_task(struct lb_env *env)
897c395f
PZ
4952{
4953 struct task_struct *p, *n;
897c395f 4954
367456c7 4955 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4956 if (!can_migrate_task(p, env))
4957 continue;
897c395f 4958
367456c7
PZ
4959 move_task(p, env);
4960 /*
4961 * Right now, this is only the second place move_task()
4962 * is called, so we can safely collect move_task()
4963 * stats here rather than inside move_task().
4964 */
4965 schedstat_inc(env->sd, lb_gained[env->idle]);
4966 return 1;
897c395f 4967 }
897c395f
PZ
4968 return 0;
4969}
4970
eb95308e
PZ
4971static const unsigned int sched_nr_migrate_break = 32;
4972
5d6523eb 4973/*
bd939f45 4974 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4975 * this_rq, as part of a balancing operation within domain "sd".
4976 * Returns 1 if successful and 0 otherwise.
4977 *
4978 * Called with both runqueues locked.
4979 */
4980static int move_tasks(struct lb_env *env)
1e3c88bd 4981{
5d6523eb
PZ
4982 struct list_head *tasks = &env->src_rq->cfs_tasks;
4983 struct task_struct *p;
367456c7
PZ
4984 unsigned long load;
4985 int pulled = 0;
1e3c88bd 4986
bd939f45 4987 if (env->imbalance <= 0)
5d6523eb 4988 return 0;
1e3c88bd 4989
5d6523eb
PZ
4990 while (!list_empty(tasks)) {
4991 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4992
367456c7
PZ
4993 env->loop++;
4994 /* We've more or less seen every task there is, call it quits */
5d6523eb 4995 if (env->loop > env->loop_max)
367456c7 4996 break;
5d6523eb
PZ
4997
4998 /* take a breather every nr_migrate tasks */
367456c7 4999 if (env->loop > env->loop_break) {
eb95308e 5000 env->loop_break += sched_nr_migrate_break;
8e45cb54 5001 env->flags |= LBF_NEED_BREAK;
ee00e66f 5002 break;
a195f004 5003 }
1e3c88bd 5004
d3198084 5005 if (!can_migrate_task(p, env))
367456c7
PZ
5006 goto next;
5007
5008 load = task_h_load(p);
5d6523eb 5009
eb95308e 5010 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5011 goto next;
5012
bd939f45 5013 if ((load / 2) > env->imbalance)
367456c7 5014 goto next;
1e3c88bd 5015
ddcdf6e7 5016 move_task(p, env);
ee00e66f 5017 pulled++;
bd939f45 5018 env->imbalance -= load;
1e3c88bd
PZ
5019
5020#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5021 /*
5022 * NEWIDLE balancing is a source of latency, so preemptible
5023 * kernels will stop after the first task is pulled to minimize
5024 * the critical section.
5025 */
5d6523eb 5026 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5027 break;
1e3c88bd
PZ
5028#endif
5029
ee00e66f
PZ
5030 /*
5031 * We only want to steal up to the prescribed amount of
5032 * weighted load.
5033 */
bd939f45 5034 if (env->imbalance <= 0)
ee00e66f 5035 break;
367456c7
PZ
5036
5037 continue;
5038next:
5d6523eb 5039 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5040 }
5d6523eb 5041
1e3c88bd 5042 /*
ddcdf6e7
PZ
5043 * Right now, this is one of only two places move_task() is called,
5044 * so we can safely collect move_task() stats here rather than
5045 * inside move_task().
1e3c88bd 5046 */
8e45cb54 5047 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5048
5d6523eb 5049 return pulled;
1e3c88bd
PZ
5050}
5051
230059de 5052#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5053/*
5054 * update tg->load_weight by folding this cpu's load_avg
5055 */
48a16753 5056static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5057{
48a16753
PT
5058 struct sched_entity *se = tg->se[cpu];
5059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5060
48a16753
PT
5061 /* throttled entities do not contribute to load */
5062 if (throttled_hierarchy(cfs_rq))
5063 return;
9e3081ca 5064
aff3e498 5065 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5066
82958366
PT
5067 if (se) {
5068 update_entity_load_avg(se, 1);
5069 /*
5070 * We pivot on our runnable average having decayed to zero for
5071 * list removal. This generally implies that all our children
5072 * have also been removed (modulo rounding error or bandwidth
5073 * control); however, such cases are rare and we can fix these
5074 * at enqueue.
5075 *
5076 * TODO: fix up out-of-order children on enqueue.
5077 */
5078 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5079 list_del_leaf_cfs_rq(cfs_rq);
5080 } else {
48a16753 5081 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5082 update_rq_runnable_avg(rq, rq->nr_running);
5083 }
9e3081ca
PZ
5084}
5085
48a16753 5086static void update_blocked_averages(int cpu)
9e3081ca 5087{
9e3081ca 5088 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5089 struct cfs_rq *cfs_rq;
5090 unsigned long flags;
9e3081ca 5091
48a16753
PT
5092 raw_spin_lock_irqsave(&rq->lock, flags);
5093 update_rq_clock(rq);
9763b67f
PZ
5094 /*
5095 * Iterates the task_group tree in a bottom up fashion, see
5096 * list_add_leaf_cfs_rq() for details.
5097 */
64660c86 5098 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5099 /*
5100 * Note: We may want to consider periodically releasing
5101 * rq->lock about these updates so that creating many task
5102 * groups does not result in continually extending hold time.
5103 */
5104 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5105 }
48a16753
PT
5106
5107 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5108}
5109
9763b67f 5110/*
68520796 5111 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5112 * This needs to be done in a top-down fashion because the load of a child
5113 * group is a fraction of its parents load.
5114 */
68520796 5115static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5116{
68520796
VD
5117 struct rq *rq = rq_of(cfs_rq);
5118 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5119 unsigned long now = jiffies;
68520796 5120 unsigned long load;
a35b6466 5121
68520796 5122 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5123 return;
5124
68520796
VD
5125 cfs_rq->h_load_next = NULL;
5126 for_each_sched_entity(se) {
5127 cfs_rq = cfs_rq_of(se);
5128 cfs_rq->h_load_next = se;
5129 if (cfs_rq->last_h_load_update == now)
5130 break;
5131 }
a35b6466 5132
68520796 5133 if (!se) {
7e3115ef 5134 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5135 cfs_rq->last_h_load_update = now;
5136 }
5137
5138 while ((se = cfs_rq->h_load_next) != NULL) {
5139 load = cfs_rq->h_load;
5140 load = div64_ul(load * se->avg.load_avg_contrib,
5141 cfs_rq->runnable_load_avg + 1);
5142 cfs_rq = group_cfs_rq(se);
5143 cfs_rq->h_load = load;
5144 cfs_rq->last_h_load_update = now;
5145 }
9763b67f
PZ
5146}
5147
367456c7 5148static unsigned long task_h_load(struct task_struct *p)
230059de 5149{
367456c7 5150 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5151
68520796 5152 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5153 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5154 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5155}
5156#else
48a16753 5157static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5158{
5159}
5160
367456c7 5161static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5162{
a003a25b 5163 return p->se.avg.load_avg_contrib;
1e3c88bd 5164}
230059de 5165#endif
1e3c88bd 5166
1e3c88bd 5167/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5168/*
5169 * sg_lb_stats - stats of a sched_group required for load_balancing
5170 */
5171struct sg_lb_stats {
5172 unsigned long avg_load; /*Avg load across the CPUs of the group */
5173 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5174 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5175 unsigned long load_per_task;
3ae11c90 5176 unsigned long group_power;
147c5fc2
PZ
5177 unsigned int sum_nr_running; /* Nr tasks running in the group */
5178 unsigned int group_capacity;
5179 unsigned int idle_cpus;
5180 unsigned int group_weight;
1e3c88bd 5181 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5182 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5183#ifdef CONFIG_NUMA_BALANCING
5184 unsigned int nr_numa_running;
5185 unsigned int nr_preferred_running;
5186#endif
1e3c88bd
PZ
5187};
5188
56cf515b
JK
5189/*
5190 * sd_lb_stats - Structure to store the statistics of a sched_domain
5191 * during load balancing.
5192 */
5193struct sd_lb_stats {
5194 struct sched_group *busiest; /* Busiest group in this sd */
5195 struct sched_group *local; /* Local group in this sd */
5196 unsigned long total_load; /* Total load of all groups in sd */
5197 unsigned long total_pwr; /* Total power of all groups in sd */
5198 unsigned long avg_load; /* Average load across all groups in sd */
5199
56cf515b 5200 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5201 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5202};
5203
147c5fc2
PZ
5204static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5205{
5206 /*
5207 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5208 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5209 * We must however clear busiest_stat::avg_load because
5210 * update_sd_pick_busiest() reads this before assignment.
5211 */
5212 *sds = (struct sd_lb_stats){
5213 .busiest = NULL,
5214 .local = NULL,
5215 .total_load = 0UL,
5216 .total_pwr = 0UL,
5217 .busiest_stat = {
5218 .avg_load = 0UL,
5219 },
5220 };
5221}
5222
1e3c88bd
PZ
5223/**
5224 * get_sd_load_idx - Obtain the load index for a given sched domain.
5225 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5226 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5227 *
5228 * Return: The load index.
1e3c88bd
PZ
5229 */
5230static inline int get_sd_load_idx(struct sched_domain *sd,
5231 enum cpu_idle_type idle)
5232{
5233 int load_idx;
5234
5235 switch (idle) {
5236 case CPU_NOT_IDLE:
5237 load_idx = sd->busy_idx;
5238 break;
5239
5240 case CPU_NEWLY_IDLE:
5241 load_idx = sd->newidle_idx;
5242 break;
5243 default:
5244 load_idx = sd->idle_idx;
5245 break;
5246 }
5247
5248 return load_idx;
5249}
5250
15f803c9 5251static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5252{
1399fa78 5253 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5254}
5255
5256unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5257{
5258 return default_scale_freq_power(sd, cpu);
5259}
5260
15f803c9 5261static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5262{
669c55e9 5263 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5264 unsigned long smt_gain = sd->smt_gain;
5265
5266 smt_gain /= weight;
5267
5268 return smt_gain;
5269}
5270
5271unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5272{
5273 return default_scale_smt_power(sd, cpu);
5274}
5275
15f803c9 5276static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5277{
5278 struct rq *rq = cpu_rq(cpu);
b654f7de 5279 u64 total, available, age_stamp, avg;
1e3c88bd 5280
b654f7de
PZ
5281 /*
5282 * Since we're reading these variables without serialization make sure
5283 * we read them once before doing sanity checks on them.
5284 */
5285 age_stamp = ACCESS_ONCE(rq->age_stamp);
5286 avg = ACCESS_ONCE(rq->rt_avg);
5287
78becc27 5288 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5289
b654f7de 5290 if (unlikely(total < avg)) {
aa483808
VP
5291 /* Ensures that power won't end up being negative */
5292 available = 0;
5293 } else {
b654f7de 5294 available = total - avg;
aa483808 5295 }
1e3c88bd 5296
1399fa78
NR
5297 if (unlikely((s64)total < SCHED_POWER_SCALE))
5298 total = SCHED_POWER_SCALE;
1e3c88bd 5299
1399fa78 5300 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5301
5302 return div_u64(available, total);
5303}
5304
5305static void update_cpu_power(struct sched_domain *sd, int cpu)
5306{
669c55e9 5307 unsigned long weight = sd->span_weight;
1399fa78 5308 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5309 struct sched_group *sdg = sd->groups;
5310
1e3c88bd
PZ
5311 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5312 if (sched_feat(ARCH_POWER))
5313 power *= arch_scale_smt_power(sd, cpu);
5314 else
5315 power *= default_scale_smt_power(sd, cpu);
5316
1399fa78 5317 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5318 }
5319
9c3f75cb 5320 sdg->sgp->power_orig = power;
9d5efe05
SV
5321
5322 if (sched_feat(ARCH_POWER))
5323 power *= arch_scale_freq_power(sd, cpu);
5324 else
5325 power *= default_scale_freq_power(sd, cpu);
5326
1399fa78 5327 power >>= SCHED_POWER_SHIFT;
9d5efe05 5328
1e3c88bd 5329 power *= scale_rt_power(cpu);
1399fa78 5330 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5331
5332 if (!power)
5333 power = 1;
5334
e51fd5e2 5335 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5336 sdg->sgp->power = power;
1e3c88bd
PZ
5337}
5338
029632fb 5339void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5340{
5341 struct sched_domain *child = sd->child;
5342 struct sched_group *group, *sdg = sd->groups;
863bffc8 5343 unsigned long power, power_orig;
4ec4412e
VG
5344 unsigned long interval;
5345
5346 interval = msecs_to_jiffies(sd->balance_interval);
5347 interval = clamp(interval, 1UL, max_load_balance_interval);
5348 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5349
5350 if (!child) {
5351 update_cpu_power(sd, cpu);
5352 return;
5353 }
5354
863bffc8 5355 power_orig = power = 0;
1e3c88bd 5356
74a5ce20
PZ
5357 if (child->flags & SD_OVERLAP) {
5358 /*
5359 * SD_OVERLAP domains cannot assume that child groups
5360 * span the current group.
5361 */
5362
863bffc8 5363 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5364 struct sched_group_power *sgp;
5365 struct rq *rq = cpu_rq(cpu);
863bffc8 5366
9abf24d4
SD
5367 /*
5368 * build_sched_domains() -> init_sched_groups_power()
5369 * gets here before we've attached the domains to the
5370 * runqueues.
5371 *
5372 * Use power_of(), which is set irrespective of domains
5373 * in update_cpu_power().
5374 *
5375 * This avoids power/power_orig from being 0 and
5376 * causing divide-by-zero issues on boot.
5377 *
5378 * Runtime updates will correct power_orig.
5379 */
5380 if (unlikely(!rq->sd)) {
5381 power_orig += power_of(cpu);
5382 power += power_of(cpu);
5383 continue;
5384 }
863bffc8 5385
9abf24d4
SD
5386 sgp = rq->sd->groups->sgp;
5387 power_orig += sgp->power_orig;
5388 power += sgp->power;
863bffc8 5389 }
74a5ce20
PZ
5390 } else {
5391 /*
5392 * !SD_OVERLAP domains can assume that child groups
5393 * span the current group.
5394 */
5395
5396 group = child->groups;
5397 do {
863bffc8 5398 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5399 power += group->sgp->power;
5400 group = group->next;
5401 } while (group != child->groups);
5402 }
1e3c88bd 5403
863bffc8
PZ
5404 sdg->sgp->power_orig = power_orig;
5405 sdg->sgp->power = power;
1e3c88bd
PZ
5406}
5407
9d5efe05
SV
5408/*
5409 * Try and fix up capacity for tiny siblings, this is needed when
5410 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5411 * which on its own isn't powerful enough.
5412 *
5413 * See update_sd_pick_busiest() and check_asym_packing().
5414 */
5415static inline int
5416fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5417{
5418 /*
1399fa78 5419 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5420 */
a6c75f2f 5421 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5422 return 0;
5423
5424 /*
5425 * If ~90% of the cpu_power is still there, we're good.
5426 */
9c3f75cb 5427 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5428 return 1;
5429
5430 return 0;
5431}
5432
30ce5dab
PZ
5433/*
5434 * Group imbalance indicates (and tries to solve) the problem where balancing
5435 * groups is inadequate due to tsk_cpus_allowed() constraints.
5436 *
5437 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5438 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5439 * Something like:
5440 *
5441 * { 0 1 2 3 } { 4 5 6 7 }
5442 * * * * *
5443 *
5444 * If we were to balance group-wise we'd place two tasks in the first group and
5445 * two tasks in the second group. Clearly this is undesired as it will overload
5446 * cpu 3 and leave one of the cpus in the second group unused.
5447 *
5448 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5449 * by noticing the lower domain failed to reach balance and had difficulty
5450 * moving tasks due to affinity constraints.
30ce5dab
PZ
5451 *
5452 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5453 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5454 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5455 * to create an effective group imbalance.
5456 *
5457 * This is a somewhat tricky proposition since the next run might not find the
5458 * group imbalance and decide the groups need to be balanced again. A most
5459 * subtle and fragile situation.
5460 */
5461
6263322c 5462static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5463{
6263322c 5464 return group->sgp->imbalance;
30ce5dab
PZ
5465}
5466
b37d9316
PZ
5467/*
5468 * Compute the group capacity.
5469 *
c61037e9
PZ
5470 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5471 * first dividing out the smt factor and computing the actual number of cores
5472 * and limit power unit capacity with that.
b37d9316
PZ
5473 */
5474static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5475{
c61037e9
PZ
5476 unsigned int capacity, smt, cpus;
5477 unsigned int power, power_orig;
5478
5479 power = group->sgp->power;
5480 power_orig = group->sgp->power_orig;
5481 cpus = group->group_weight;
b37d9316 5482
c61037e9
PZ
5483 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5484 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5485 capacity = cpus / smt; /* cores */
b37d9316 5486
c61037e9 5487 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5488 if (!capacity)
5489 capacity = fix_small_capacity(env->sd, group);
5490
5491 return capacity;
5492}
5493
1e3c88bd
PZ
5494/**
5495 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5496 * @env: The load balancing environment.
1e3c88bd 5497 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5498 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5499 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5500 * @sgs: variable to hold the statistics for this group.
5501 */
bd939f45
PZ
5502static inline void update_sg_lb_stats(struct lb_env *env,
5503 struct sched_group *group, int load_idx,
23f0d209 5504 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5505{
30ce5dab 5506 unsigned long load;
bd939f45 5507 int i;
1e3c88bd 5508
b72ff13c
PZ
5509 memset(sgs, 0, sizeof(*sgs));
5510
b9403130 5511 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5512 struct rq *rq = cpu_rq(i);
5513
1e3c88bd 5514 /* Bias balancing toward cpus of our domain */
6263322c 5515 if (local_group)
04f733b4 5516 load = target_load(i, load_idx);
6263322c 5517 else
1e3c88bd 5518 load = source_load(i, load_idx);
1e3c88bd
PZ
5519
5520 sgs->group_load += load;
380c9077 5521 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5522#ifdef CONFIG_NUMA_BALANCING
5523 sgs->nr_numa_running += rq->nr_numa_running;
5524 sgs->nr_preferred_running += rq->nr_preferred_running;
5525#endif
1e3c88bd 5526 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5527 if (idle_cpu(i))
5528 sgs->idle_cpus++;
1e3c88bd
PZ
5529 }
5530
1e3c88bd 5531 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5532 sgs->group_power = group->sgp->power;
5533 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5534
dd5feea1 5535 if (sgs->sum_nr_running)
38d0f770 5536 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5537
aae6d3dd 5538 sgs->group_weight = group->group_weight;
fab47622 5539
b37d9316
PZ
5540 sgs->group_imb = sg_imbalanced(group);
5541 sgs->group_capacity = sg_capacity(env, group);
5542
fab47622
NR
5543 if (sgs->group_capacity > sgs->sum_nr_running)
5544 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5545}
5546
532cb4c4
MN
5547/**
5548 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5549 * @env: The load balancing environment.
532cb4c4
MN
5550 * @sds: sched_domain statistics
5551 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5552 * @sgs: sched_group statistics
532cb4c4
MN
5553 *
5554 * Determine if @sg is a busier group than the previously selected
5555 * busiest group.
e69f6186
YB
5556 *
5557 * Return: %true if @sg is a busier group than the previously selected
5558 * busiest group. %false otherwise.
532cb4c4 5559 */
bd939f45 5560static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5561 struct sd_lb_stats *sds,
5562 struct sched_group *sg,
bd939f45 5563 struct sg_lb_stats *sgs)
532cb4c4 5564{
56cf515b 5565 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5566 return false;
5567
5568 if (sgs->sum_nr_running > sgs->group_capacity)
5569 return true;
5570
5571 if (sgs->group_imb)
5572 return true;
5573
5574 /*
5575 * ASYM_PACKING needs to move all the work to the lowest
5576 * numbered CPUs in the group, therefore mark all groups
5577 * higher than ourself as busy.
5578 */
bd939f45
PZ
5579 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5580 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5581 if (!sds->busiest)
5582 return true;
5583
5584 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5585 return true;
5586 }
5587
5588 return false;
5589}
5590
0ec8aa00
PZ
5591#ifdef CONFIG_NUMA_BALANCING
5592static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5593{
5594 if (sgs->sum_nr_running > sgs->nr_numa_running)
5595 return regular;
5596 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5597 return remote;
5598 return all;
5599}
5600
5601static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5602{
5603 if (rq->nr_running > rq->nr_numa_running)
5604 return regular;
5605 if (rq->nr_running > rq->nr_preferred_running)
5606 return remote;
5607 return all;
5608}
5609#else
5610static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5611{
5612 return all;
5613}
5614
5615static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5616{
5617 return regular;
5618}
5619#endif /* CONFIG_NUMA_BALANCING */
5620
1e3c88bd 5621/**
461819ac 5622 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5623 * @env: The load balancing environment.
1e3c88bd
PZ
5624 * @sds: variable to hold the statistics for this sched_domain.
5625 */
0ec8aa00 5626static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5627{
bd939f45
PZ
5628 struct sched_domain *child = env->sd->child;
5629 struct sched_group *sg = env->sd->groups;
56cf515b 5630 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5631 int load_idx, prefer_sibling = 0;
5632
5633 if (child && child->flags & SD_PREFER_SIBLING)
5634 prefer_sibling = 1;
5635
bd939f45 5636 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5637
5638 do {
56cf515b 5639 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5640 int local_group;
5641
bd939f45 5642 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5643 if (local_group) {
5644 sds->local = sg;
5645 sgs = &sds->local_stat;
b72ff13c
PZ
5646
5647 if (env->idle != CPU_NEWLY_IDLE ||
5648 time_after_eq(jiffies, sg->sgp->next_update))
5649 update_group_power(env->sd, env->dst_cpu);
56cf515b 5650 }
1e3c88bd 5651
56cf515b 5652 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5653
b72ff13c
PZ
5654 if (local_group)
5655 goto next_group;
5656
1e3c88bd
PZ
5657 /*
5658 * In case the child domain prefers tasks go to siblings
532cb4c4 5659 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5660 * and move all the excess tasks away. We lower the capacity
5661 * of a group only if the local group has the capacity to fit
5662 * these excess tasks, i.e. nr_running < group_capacity. The
5663 * extra check prevents the case where you always pull from the
5664 * heaviest group when it is already under-utilized (possible
5665 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5666 */
b72ff13c
PZ
5667 if (prefer_sibling && sds->local &&
5668 sds->local_stat.group_has_capacity)
147c5fc2 5669 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5670
b72ff13c 5671 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5672 sds->busiest = sg;
56cf515b 5673 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5674 }
5675
b72ff13c
PZ
5676next_group:
5677 /* Now, start updating sd_lb_stats */
5678 sds->total_load += sgs->group_load;
5679 sds->total_pwr += sgs->group_power;
5680
532cb4c4 5681 sg = sg->next;
bd939f45 5682 } while (sg != env->sd->groups);
0ec8aa00
PZ
5683
5684 if (env->sd->flags & SD_NUMA)
5685 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5686}
5687
532cb4c4
MN
5688/**
5689 * check_asym_packing - Check to see if the group is packed into the
5690 * sched doman.
5691 *
5692 * This is primarily intended to used at the sibling level. Some
5693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5694 * case of POWER7, it can move to lower SMT modes only when higher
5695 * threads are idle. When in lower SMT modes, the threads will
5696 * perform better since they share less core resources. Hence when we
5697 * have idle threads, we want them to be the higher ones.
5698 *
5699 * This packing function is run on idle threads. It checks to see if
5700 * the busiest CPU in this domain (core in the P7 case) has a higher
5701 * CPU number than the packing function is being run on. Here we are
5702 * assuming lower CPU number will be equivalent to lower a SMT thread
5703 * number.
5704 *
e69f6186 5705 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5706 * this CPU. The amount of the imbalance is returned in *imbalance.
5707 *
cd96891d 5708 * @env: The load balancing environment.
532cb4c4 5709 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5710 */
bd939f45 5711static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5712{
5713 int busiest_cpu;
5714
bd939f45 5715 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5716 return 0;
5717
5718 if (!sds->busiest)
5719 return 0;
5720
5721 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5722 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5723 return 0;
5724
bd939f45 5725 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5726 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5727 SCHED_POWER_SCALE);
bd939f45 5728
532cb4c4 5729 return 1;
1e3c88bd
PZ
5730}
5731
5732/**
5733 * fix_small_imbalance - Calculate the minor imbalance that exists
5734 * amongst the groups of a sched_domain, during
5735 * load balancing.
cd96891d 5736 * @env: The load balancing environment.
1e3c88bd 5737 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5738 */
bd939f45
PZ
5739static inline
5740void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5741{
5742 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5743 unsigned int imbn = 2;
dd5feea1 5744 unsigned long scaled_busy_load_per_task;
56cf515b 5745 struct sg_lb_stats *local, *busiest;
1e3c88bd 5746
56cf515b
JK
5747 local = &sds->local_stat;
5748 busiest = &sds->busiest_stat;
1e3c88bd 5749
56cf515b
JK
5750 if (!local->sum_nr_running)
5751 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5752 else if (busiest->load_per_task > local->load_per_task)
5753 imbn = 1;
dd5feea1 5754
56cf515b
JK
5755 scaled_busy_load_per_task =
5756 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5757 busiest->group_power;
56cf515b 5758
3029ede3
VD
5759 if (busiest->avg_load + scaled_busy_load_per_task >=
5760 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5761 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5762 return;
5763 }
5764
5765 /*
5766 * OK, we don't have enough imbalance to justify moving tasks,
5767 * however we may be able to increase total CPU power used by
5768 * moving them.
5769 */
5770
3ae11c90 5771 pwr_now += busiest->group_power *
56cf515b 5772 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5773 pwr_now += local->group_power *
56cf515b 5774 min(local->load_per_task, local->avg_load);
1399fa78 5775 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5776
5777 /* Amount of load we'd subtract */
56cf515b 5778 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5779 busiest->group_power;
56cf515b 5780 if (busiest->avg_load > tmp) {
3ae11c90 5781 pwr_move += busiest->group_power *
56cf515b
JK
5782 min(busiest->load_per_task,
5783 busiest->avg_load - tmp);
5784 }
1e3c88bd
PZ
5785
5786 /* Amount of load we'd add */
3ae11c90 5787 if (busiest->avg_load * busiest->group_power <
56cf515b 5788 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5789 tmp = (busiest->avg_load * busiest->group_power) /
5790 local->group_power;
56cf515b
JK
5791 } else {
5792 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5793 local->group_power;
56cf515b 5794 }
3ae11c90
PZ
5795 pwr_move += local->group_power *
5796 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5797 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5798
5799 /* Move if we gain throughput */
5800 if (pwr_move > pwr_now)
56cf515b 5801 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5802}
5803
5804/**
5805 * calculate_imbalance - Calculate the amount of imbalance present within the
5806 * groups of a given sched_domain during load balance.
bd939f45 5807 * @env: load balance environment
1e3c88bd 5808 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5809 */
bd939f45 5810static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5811{
dd5feea1 5812 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5813 struct sg_lb_stats *local, *busiest;
5814
5815 local = &sds->local_stat;
56cf515b 5816 busiest = &sds->busiest_stat;
dd5feea1 5817
56cf515b 5818 if (busiest->group_imb) {
30ce5dab
PZ
5819 /*
5820 * In the group_imb case we cannot rely on group-wide averages
5821 * to ensure cpu-load equilibrium, look at wider averages. XXX
5822 */
56cf515b
JK
5823 busiest->load_per_task =
5824 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5825 }
5826
1e3c88bd
PZ
5827 /*
5828 * In the presence of smp nice balancing, certain scenarios can have
5829 * max load less than avg load(as we skip the groups at or below
5830 * its cpu_power, while calculating max_load..)
5831 */
b1885550
VD
5832 if (busiest->avg_load <= sds->avg_load ||
5833 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5834 env->imbalance = 0;
5835 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5836 }
5837
56cf515b 5838 if (!busiest->group_imb) {
dd5feea1
SS
5839 /*
5840 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5841 * Except of course for the group_imb case, since then we might
5842 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5843 */
56cf515b
JK
5844 load_above_capacity =
5845 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5846
1399fa78 5847 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5848 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5849 }
5850
5851 /*
5852 * We're trying to get all the cpus to the average_load, so we don't
5853 * want to push ourselves above the average load, nor do we wish to
5854 * reduce the max loaded cpu below the average load. At the same time,
5855 * we also don't want to reduce the group load below the group capacity
5856 * (so that we can implement power-savings policies etc). Thus we look
5857 * for the minimum possible imbalance.
dd5feea1 5858 */
30ce5dab 5859 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5860
5861 /* How much load to actually move to equalise the imbalance */
56cf515b 5862 env->imbalance = min(
3ae11c90
PZ
5863 max_pull * busiest->group_power,
5864 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5865 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5866
5867 /*
5868 * if *imbalance is less than the average load per runnable task
25985edc 5869 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5870 * a think about bumping its value to force at least one task to be
5871 * moved
5872 */
56cf515b 5873 if (env->imbalance < busiest->load_per_task)
bd939f45 5874 return fix_small_imbalance(env, sds);
1e3c88bd 5875}
fab47622 5876
1e3c88bd
PZ
5877/******* find_busiest_group() helpers end here *********************/
5878
5879/**
5880 * find_busiest_group - Returns the busiest group within the sched_domain
5881 * if there is an imbalance. If there isn't an imbalance, and
5882 * the user has opted for power-savings, it returns a group whose
5883 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5884 * such a group exists.
5885 *
5886 * Also calculates the amount of weighted load which should be moved
5887 * to restore balance.
5888 *
cd96891d 5889 * @env: The load balancing environment.
1e3c88bd 5890 *
e69f6186 5891 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5892 * - If no imbalance and user has opted for power-savings balance,
5893 * return the least loaded group whose CPUs can be
5894 * put to idle by rebalancing its tasks onto our group.
5895 */
56cf515b 5896static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5897{
56cf515b 5898 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5899 struct sd_lb_stats sds;
5900
147c5fc2 5901 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5902
5903 /*
5904 * Compute the various statistics relavent for load balancing at
5905 * this level.
5906 */
23f0d209 5907 update_sd_lb_stats(env, &sds);
56cf515b
JK
5908 local = &sds.local_stat;
5909 busiest = &sds.busiest_stat;
1e3c88bd 5910
bd939f45
PZ
5911 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5912 check_asym_packing(env, &sds))
532cb4c4
MN
5913 return sds.busiest;
5914
cc57aa8f 5915 /* There is no busy sibling group to pull tasks from */
56cf515b 5916 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5917 goto out_balanced;
5918
1399fa78 5919 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5920
866ab43e
PZ
5921 /*
5922 * If the busiest group is imbalanced the below checks don't
30ce5dab 5923 * work because they assume all things are equal, which typically
866ab43e
PZ
5924 * isn't true due to cpus_allowed constraints and the like.
5925 */
56cf515b 5926 if (busiest->group_imb)
866ab43e
PZ
5927 goto force_balance;
5928
cc57aa8f 5929 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5930 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5931 !busiest->group_has_capacity)
fab47622
NR
5932 goto force_balance;
5933
cc57aa8f
PZ
5934 /*
5935 * If the local group is more busy than the selected busiest group
5936 * don't try and pull any tasks.
5937 */
56cf515b 5938 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5939 goto out_balanced;
5940
cc57aa8f
PZ
5941 /*
5942 * Don't pull any tasks if this group is already above the domain
5943 * average load.
5944 */
56cf515b 5945 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5946 goto out_balanced;
5947
bd939f45 5948 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5949 /*
5950 * This cpu is idle. If the busiest group load doesn't
5951 * have more tasks than the number of available cpu's and
5952 * there is no imbalance between this and busiest group
5953 * wrt to idle cpu's, it is balanced.
5954 */
56cf515b
JK
5955 if ((local->idle_cpus < busiest->idle_cpus) &&
5956 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5957 goto out_balanced;
c186fafe
PZ
5958 } else {
5959 /*
5960 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5961 * imbalance_pct to be conservative.
5962 */
56cf515b
JK
5963 if (100 * busiest->avg_load <=
5964 env->sd->imbalance_pct * local->avg_load)
c186fafe 5965 goto out_balanced;
aae6d3dd 5966 }
1e3c88bd 5967
fab47622 5968force_balance:
1e3c88bd 5969 /* Looks like there is an imbalance. Compute it */
bd939f45 5970 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5971 return sds.busiest;
5972
5973out_balanced:
bd939f45 5974 env->imbalance = 0;
1e3c88bd
PZ
5975 return NULL;
5976}
5977
5978/*
5979 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5980 */
bd939f45 5981static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5982 struct sched_group *group)
1e3c88bd
PZ
5983{
5984 struct rq *busiest = NULL, *rq;
95a79b80 5985 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5986 int i;
5987
6906a408 5988 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5989 unsigned long power, capacity, wl;
5990 enum fbq_type rt;
5991
5992 rq = cpu_rq(i);
5993 rt = fbq_classify_rq(rq);
1e3c88bd 5994
0ec8aa00
PZ
5995 /*
5996 * We classify groups/runqueues into three groups:
5997 * - regular: there are !numa tasks
5998 * - remote: there are numa tasks that run on the 'wrong' node
5999 * - all: there is no distinction
6000 *
6001 * In order to avoid migrating ideally placed numa tasks,
6002 * ignore those when there's better options.
6003 *
6004 * If we ignore the actual busiest queue to migrate another
6005 * task, the next balance pass can still reduce the busiest
6006 * queue by moving tasks around inside the node.
6007 *
6008 * If we cannot move enough load due to this classification
6009 * the next pass will adjust the group classification and
6010 * allow migration of more tasks.
6011 *
6012 * Both cases only affect the total convergence complexity.
6013 */
6014 if (rt > env->fbq_type)
6015 continue;
6016
6017 power = power_of(i);
6018 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6019 if (!capacity)
bd939f45 6020 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6021
6e40f5bb 6022 wl = weighted_cpuload(i);
1e3c88bd 6023
6e40f5bb
TG
6024 /*
6025 * When comparing with imbalance, use weighted_cpuload()
6026 * which is not scaled with the cpu power.
6027 */
bd939f45 6028 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6029 continue;
6030
6e40f5bb
TG
6031 /*
6032 * For the load comparisons with the other cpu's, consider
6033 * the weighted_cpuload() scaled with the cpu power, so that
6034 * the load can be moved away from the cpu that is potentially
6035 * running at a lower capacity.
95a79b80
JK
6036 *
6037 * Thus we're looking for max(wl_i / power_i), crosswise
6038 * multiplication to rid ourselves of the division works out
6039 * to: wl_i * power_j > wl_j * power_i; where j is our
6040 * previous maximum.
6e40f5bb 6041 */
95a79b80
JK
6042 if (wl * busiest_power > busiest_load * power) {
6043 busiest_load = wl;
6044 busiest_power = power;
1e3c88bd
PZ
6045 busiest = rq;
6046 }
6047 }
6048
6049 return busiest;
6050}
6051
6052/*
6053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6054 * so long as it is large enough.
6055 */
6056#define MAX_PINNED_INTERVAL 512
6057
6058/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6059DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6060
bd939f45 6061static int need_active_balance(struct lb_env *env)
1af3ed3d 6062{
bd939f45
PZ
6063 struct sched_domain *sd = env->sd;
6064
6065 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6066
6067 /*
6068 * ASYM_PACKING needs to force migrate tasks from busy but
6069 * higher numbered CPUs in order to pack all tasks in the
6070 * lowest numbered CPUs.
6071 */
bd939f45 6072 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6073 return 1;
1af3ed3d
PZ
6074 }
6075
6076 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6077}
6078
969c7921
TH
6079static int active_load_balance_cpu_stop(void *data);
6080
23f0d209
JK
6081static int should_we_balance(struct lb_env *env)
6082{
6083 struct sched_group *sg = env->sd->groups;
6084 struct cpumask *sg_cpus, *sg_mask;
6085 int cpu, balance_cpu = -1;
6086
6087 /*
6088 * In the newly idle case, we will allow all the cpu's
6089 * to do the newly idle load balance.
6090 */
6091 if (env->idle == CPU_NEWLY_IDLE)
6092 return 1;
6093
6094 sg_cpus = sched_group_cpus(sg);
6095 sg_mask = sched_group_mask(sg);
6096 /* Try to find first idle cpu */
6097 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6098 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6099 continue;
6100
6101 balance_cpu = cpu;
6102 break;
6103 }
6104
6105 if (balance_cpu == -1)
6106 balance_cpu = group_balance_cpu(sg);
6107
6108 /*
6109 * First idle cpu or the first cpu(busiest) in this sched group
6110 * is eligible for doing load balancing at this and above domains.
6111 */
b0cff9d8 6112 return balance_cpu == env->dst_cpu;
23f0d209
JK
6113}
6114
1e3c88bd
PZ
6115/*
6116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6117 * tasks if there is an imbalance.
6118 */
6119static int load_balance(int this_cpu, struct rq *this_rq,
6120 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6121 int *continue_balancing)
1e3c88bd 6122{
88b8dac0 6123 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6124 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6125 struct sched_group *group;
1e3c88bd
PZ
6126 struct rq *busiest;
6127 unsigned long flags;
e6252c3e 6128 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6129
8e45cb54
PZ
6130 struct lb_env env = {
6131 .sd = sd,
ddcdf6e7
PZ
6132 .dst_cpu = this_cpu,
6133 .dst_rq = this_rq,
88b8dac0 6134 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6135 .idle = idle,
eb95308e 6136 .loop_break = sched_nr_migrate_break,
b9403130 6137 .cpus = cpus,
0ec8aa00 6138 .fbq_type = all,
8e45cb54
PZ
6139 };
6140
cfc03118
JK
6141 /*
6142 * For NEWLY_IDLE load_balancing, we don't need to consider
6143 * other cpus in our group
6144 */
e02e60c1 6145 if (idle == CPU_NEWLY_IDLE)
cfc03118 6146 env.dst_grpmask = NULL;
cfc03118 6147
1e3c88bd
PZ
6148 cpumask_copy(cpus, cpu_active_mask);
6149
1e3c88bd
PZ
6150 schedstat_inc(sd, lb_count[idle]);
6151
6152redo:
23f0d209
JK
6153 if (!should_we_balance(&env)) {
6154 *continue_balancing = 0;
1e3c88bd 6155 goto out_balanced;
23f0d209 6156 }
1e3c88bd 6157
23f0d209 6158 group = find_busiest_group(&env);
1e3c88bd
PZ
6159 if (!group) {
6160 schedstat_inc(sd, lb_nobusyg[idle]);
6161 goto out_balanced;
6162 }
6163
b9403130 6164 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6165 if (!busiest) {
6166 schedstat_inc(sd, lb_nobusyq[idle]);
6167 goto out_balanced;
6168 }
6169
78feefc5 6170 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6171
bd939f45 6172 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6173
6174 ld_moved = 0;
6175 if (busiest->nr_running > 1) {
6176 /*
6177 * Attempt to move tasks. If find_busiest_group has found
6178 * an imbalance but busiest->nr_running <= 1, the group is
6179 * still unbalanced. ld_moved simply stays zero, so it is
6180 * correctly treated as an imbalance.
6181 */
8e45cb54 6182 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6183 env.src_cpu = busiest->cpu;
6184 env.src_rq = busiest;
6185 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6186
5d6523eb 6187more_balance:
1e3c88bd 6188 local_irq_save(flags);
78feefc5 6189 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6190
6191 /*
6192 * cur_ld_moved - load moved in current iteration
6193 * ld_moved - cumulative load moved across iterations
6194 */
6195 cur_ld_moved = move_tasks(&env);
6196 ld_moved += cur_ld_moved;
78feefc5 6197 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6198 local_irq_restore(flags);
6199
6200 /*
6201 * some other cpu did the load balance for us.
6202 */
88b8dac0
SV
6203 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6204 resched_cpu(env.dst_cpu);
6205
f1cd0858
JK
6206 if (env.flags & LBF_NEED_BREAK) {
6207 env.flags &= ~LBF_NEED_BREAK;
6208 goto more_balance;
6209 }
6210
88b8dac0
SV
6211 /*
6212 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6213 * us and move them to an alternate dst_cpu in our sched_group
6214 * where they can run. The upper limit on how many times we
6215 * iterate on same src_cpu is dependent on number of cpus in our
6216 * sched_group.
6217 *
6218 * This changes load balance semantics a bit on who can move
6219 * load to a given_cpu. In addition to the given_cpu itself
6220 * (or a ilb_cpu acting on its behalf where given_cpu is
6221 * nohz-idle), we now have balance_cpu in a position to move
6222 * load to given_cpu. In rare situations, this may cause
6223 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6224 * _independently_ and at _same_ time to move some load to
6225 * given_cpu) causing exceess load to be moved to given_cpu.
6226 * This however should not happen so much in practice and
6227 * moreover subsequent load balance cycles should correct the
6228 * excess load moved.
6229 */
6263322c 6230 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6231
7aff2e3a
VD
6232 /* Prevent to re-select dst_cpu via env's cpus */
6233 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6234
78feefc5 6235 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6236 env.dst_cpu = env.new_dst_cpu;
6263322c 6237 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6238 env.loop = 0;
6239 env.loop_break = sched_nr_migrate_break;
e02e60c1 6240
88b8dac0
SV
6241 /*
6242 * Go back to "more_balance" rather than "redo" since we
6243 * need to continue with same src_cpu.
6244 */
6245 goto more_balance;
6246 }
1e3c88bd 6247
6263322c
PZ
6248 /*
6249 * We failed to reach balance because of affinity.
6250 */
6251 if (sd_parent) {
6252 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6253
6254 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6255 *group_imbalance = 1;
6256 } else if (*group_imbalance)
6257 *group_imbalance = 0;
6258 }
6259
1e3c88bd 6260 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6261 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6262 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6263 if (!cpumask_empty(cpus)) {
6264 env.loop = 0;
6265 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6266 goto redo;
bbf18b19 6267 }
1e3c88bd
PZ
6268 goto out_balanced;
6269 }
6270 }
6271
6272 if (!ld_moved) {
6273 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6274 /*
6275 * Increment the failure counter only on periodic balance.
6276 * We do not want newidle balance, which can be very
6277 * frequent, pollute the failure counter causing
6278 * excessive cache_hot migrations and active balances.
6279 */
6280 if (idle != CPU_NEWLY_IDLE)
6281 sd->nr_balance_failed++;
1e3c88bd 6282
bd939f45 6283 if (need_active_balance(&env)) {
1e3c88bd
PZ
6284 raw_spin_lock_irqsave(&busiest->lock, flags);
6285
969c7921
TH
6286 /* don't kick the active_load_balance_cpu_stop,
6287 * if the curr task on busiest cpu can't be
6288 * moved to this_cpu
1e3c88bd
PZ
6289 */
6290 if (!cpumask_test_cpu(this_cpu,
fa17b507 6291 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6292 raw_spin_unlock_irqrestore(&busiest->lock,
6293 flags);
8e45cb54 6294 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6295 goto out_one_pinned;
6296 }
6297
969c7921
TH
6298 /*
6299 * ->active_balance synchronizes accesses to
6300 * ->active_balance_work. Once set, it's cleared
6301 * only after active load balance is finished.
6302 */
1e3c88bd
PZ
6303 if (!busiest->active_balance) {
6304 busiest->active_balance = 1;
6305 busiest->push_cpu = this_cpu;
6306 active_balance = 1;
6307 }
6308 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6309
bd939f45 6310 if (active_balance) {
969c7921
TH
6311 stop_one_cpu_nowait(cpu_of(busiest),
6312 active_load_balance_cpu_stop, busiest,
6313 &busiest->active_balance_work);
bd939f45 6314 }
1e3c88bd
PZ
6315
6316 /*
6317 * We've kicked active balancing, reset the failure
6318 * counter.
6319 */
6320 sd->nr_balance_failed = sd->cache_nice_tries+1;
6321 }
6322 } else
6323 sd->nr_balance_failed = 0;
6324
6325 if (likely(!active_balance)) {
6326 /* We were unbalanced, so reset the balancing interval */
6327 sd->balance_interval = sd->min_interval;
6328 } else {
6329 /*
6330 * If we've begun active balancing, start to back off. This
6331 * case may not be covered by the all_pinned logic if there
6332 * is only 1 task on the busy runqueue (because we don't call
6333 * move_tasks).
6334 */
6335 if (sd->balance_interval < sd->max_interval)
6336 sd->balance_interval *= 2;
6337 }
6338
1e3c88bd
PZ
6339 goto out;
6340
6341out_balanced:
6342 schedstat_inc(sd, lb_balanced[idle]);
6343
6344 sd->nr_balance_failed = 0;
6345
6346out_one_pinned:
6347 /* tune up the balancing interval */
8e45cb54 6348 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6349 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6350 (sd->balance_interval < sd->max_interval))
6351 sd->balance_interval *= 2;
6352
46e49b38 6353 ld_moved = 0;
1e3c88bd 6354out:
1e3c88bd
PZ
6355 return ld_moved;
6356}
6357
1e3c88bd
PZ
6358/*
6359 * idle_balance is called by schedule() if this_cpu is about to become
6360 * idle. Attempts to pull tasks from other CPUs.
6361 */
029632fb 6362void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6363{
6364 struct sched_domain *sd;
6365 int pulled_task = 0;
6366 unsigned long next_balance = jiffies + HZ;
9bd721c5 6367 u64 curr_cost = 0;
1e3c88bd 6368
78becc27 6369 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6370
6371 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6372 return;
6373
f492e12e
PZ
6374 /*
6375 * Drop the rq->lock, but keep IRQ/preempt disabled.
6376 */
6377 raw_spin_unlock(&this_rq->lock);
6378
48a16753 6379 update_blocked_averages(this_cpu);
dce840a0 6380 rcu_read_lock();
1e3c88bd
PZ
6381 for_each_domain(this_cpu, sd) {
6382 unsigned long interval;
23f0d209 6383 int continue_balancing = 1;
9bd721c5 6384 u64 t0, domain_cost;
1e3c88bd
PZ
6385
6386 if (!(sd->flags & SD_LOAD_BALANCE))
6387 continue;
6388
9bd721c5
JL
6389 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6390 break;
6391
f492e12e 6392 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6393 t0 = sched_clock_cpu(this_cpu);
6394
1e3c88bd 6395 /* If we've pulled tasks over stop searching: */
f492e12e 6396 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6397 sd, CPU_NEWLY_IDLE,
6398 &continue_balancing);
9bd721c5
JL
6399
6400 domain_cost = sched_clock_cpu(this_cpu) - t0;
6401 if (domain_cost > sd->max_newidle_lb_cost)
6402 sd->max_newidle_lb_cost = domain_cost;
6403
6404 curr_cost += domain_cost;
f492e12e 6405 }
1e3c88bd
PZ
6406
6407 interval = msecs_to_jiffies(sd->balance_interval);
6408 if (time_after(next_balance, sd->last_balance + interval))
6409 next_balance = sd->last_balance + interval;
d5ad140b
NR
6410 if (pulled_task) {
6411 this_rq->idle_stamp = 0;
1e3c88bd 6412 break;
d5ad140b 6413 }
1e3c88bd 6414 }
dce840a0 6415 rcu_read_unlock();
f492e12e
PZ
6416
6417 raw_spin_lock(&this_rq->lock);
6418
1e3c88bd
PZ
6419 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6420 /*
6421 * We are going idle. next_balance may be set based on
6422 * a busy processor. So reset next_balance.
6423 */
6424 this_rq->next_balance = next_balance;
6425 }
9bd721c5
JL
6426
6427 if (curr_cost > this_rq->max_idle_balance_cost)
6428 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6429}
6430
6431/*
969c7921
TH
6432 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6433 * running tasks off the busiest CPU onto idle CPUs. It requires at
6434 * least 1 task to be running on each physical CPU where possible, and
6435 * avoids physical / logical imbalances.
1e3c88bd 6436 */
969c7921 6437static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6438{
969c7921
TH
6439 struct rq *busiest_rq = data;
6440 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6441 int target_cpu = busiest_rq->push_cpu;
969c7921 6442 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6443 struct sched_domain *sd;
969c7921
TH
6444
6445 raw_spin_lock_irq(&busiest_rq->lock);
6446
6447 /* make sure the requested cpu hasn't gone down in the meantime */
6448 if (unlikely(busiest_cpu != smp_processor_id() ||
6449 !busiest_rq->active_balance))
6450 goto out_unlock;
1e3c88bd
PZ
6451
6452 /* Is there any task to move? */
6453 if (busiest_rq->nr_running <= 1)
969c7921 6454 goto out_unlock;
1e3c88bd
PZ
6455
6456 /*
6457 * This condition is "impossible", if it occurs
6458 * we need to fix it. Originally reported by
6459 * Bjorn Helgaas on a 128-cpu setup.
6460 */
6461 BUG_ON(busiest_rq == target_rq);
6462
6463 /* move a task from busiest_rq to target_rq */
6464 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6465
6466 /* Search for an sd spanning us and the target CPU. */
dce840a0 6467 rcu_read_lock();
1e3c88bd
PZ
6468 for_each_domain(target_cpu, sd) {
6469 if ((sd->flags & SD_LOAD_BALANCE) &&
6470 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6471 break;
6472 }
6473
6474 if (likely(sd)) {
8e45cb54
PZ
6475 struct lb_env env = {
6476 .sd = sd,
ddcdf6e7
PZ
6477 .dst_cpu = target_cpu,
6478 .dst_rq = target_rq,
6479 .src_cpu = busiest_rq->cpu,
6480 .src_rq = busiest_rq,
8e45cb54
PZ
6481 .idle = CPU_IDLE,
6482 };
6483
1e3c88bd
PZ
6484 schedstat_inc(sd, alb_count);
6485
8e45cb54 6486 if (move_one_task(&env))
1e3c88bd
PZ
6487 schedstat_inc(sd, alb_pushed);
6488 else
6489 schedstat_inc(sd, alb_failed);
6490 }
dce840a0 6491 rcu_read_unlock();
1e3c88bd 6492 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6493out_unlock:
6494 busiest_rq->active_balance = 0;
6495 raw_spin_unlock_irq(&busiest_rq->lock);
6496 return 0;
1e3c88bd
PZ
6497}
6498
3451d024 6499#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6500/*
6501 * idle load balancing details
83cd4fe2
VP
6502 * - When one of the busy CPUs notice that there may be an idle rebalancing
6503 * needed, they will kick the idle load balancer, which then does idle
6504 * load balancing for all the idle CPUs.
6505 */
1e3c88bd 6506static struct {
83cd4fe2 6507 cpumask_var_t idle_cpus_mask;
0b005cf5 6508 atomic_t nr_cpus;
83cd4fe2
VP
6509 unsigned long next_balance; /* in jiffy units */
6510} nohz ____cacheline_aligned;
1e3c88bd 6511
3dd0337d 6512static inline int find_new_ilb(void)
1e3c88bd 6513{
0b005cf5 6514 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6515
786d6dc7
SS
6516 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6517 return ilb;
6518
6519 return nr_cpu_ids;
1e3c88bd 6520}
1e3c88bd 6521
83cd4fe2
VP
6522/*
6523 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6524 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6525 * CPU (if there is one).
6526 */
0aeeeeba 6527static void nohz_balancer_kick(void)
83cd4fe2
VP
6528{
6529 int ilb_cpu;
6530
6531 nohz.next_balance++;
6532
3dd0337d 6533 ilb_cpu = find_new_ilb();
83cd4fe2 6534
0b005cf5
SS
6535 if (ilb_cpu >= nr_cpu_ids)
6536 return;
83cd4fe2 6537
cd490c5b 6538 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6539 return;
6540 /*
6541 * Use smp_send_reschedule() instead of resched_cpu().
6542 * This way we generate a sched IPI on the target cpu which
6543 * is idle. And the softirq performing nohz idle load balance
6544 * will be run before returning from the IPI.
6545 */
6546 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6547 return;
6548}
6549
c1cc017c 6550static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6551{
6552 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6553 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6554 atomic_dec(&nohz.nr_cpus);
6555 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6556 }
6557}
6558
69e1e811
SS
6559static inline void set_cpu_sd_state_busy(void)
6560{
6561 struct sched_domain *sd;
37dc6b50 6562 int cpu = smp_processor_id();
69e1e811 6563
69e1e811 6564 rcu_read_lock();
37dc6b50 6565 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6566
6567 if (!sd || !sd->nohz_idle)
6568 goto unlock;
6569 sd->nohz_idle = 0;
6570
37dc6b50 6571 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6572unlock:
69e1e811
SS
6573 rcu_read_unlock();
6574}
6575
6576void set_cpu_sd_state_idle(void)
6577{
6578 struct sched_domain *sd;
37dc6b50 6579 int cpu = smp_processor_id();
69e1e811 6580
69e1e811 6581 rcu_read_lock();
37dc6b50 6582 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6583
6584 if (!sd || sd->nohz_idle)
6585 goto unlock;
6586 sd->nohz_idle = 1;
6587
37dc6b50 6588 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6589unlock:
69e1e811
SS
6590 rcu_read_unlock();
6591}
6592
1e3c88bd 6593/*
c1cc017c 6594 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6595 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6596 */
c1cc017c 6597void nohz_balance_enter_idle(int cpu)
1e3c88bd 6598{
71325960
SS
6599 /*
6600 * If this cpu is going down, then nothing needs to be done.
6601 */
6602 if (!cpu_active(cpu))
6603 return;
6604
c1cc017c
AS
6605 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6606 return;
1e3c88bd 6607
c1cc017c
AS
6608 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6609 atomic_inc(&nohz.nr_cpus);
6610 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6611}
71325960 6612
0db0628d 6613static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6614 unsigned long action, void *hcpu)
6615{
6616 switch (action & ~CPU_TASKS_FROZEN) {
6617 case CPU_DYING:
c1cc017c 6618 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6619 return NOTIFY_OK;
6620 default:
6621 return NOTIFY_DONE;
6622 }
6623}
1e3c88bd
PZ
6624#endif
6625
6626static DEFINE_SPINLOCK(balancing);
6627
49c022e6
PZ
6628/*
6629 * Scale the max load_balance interval with the number of CPUs in the system.
6630 * This trades load-balance latency on larger machines for less cross talk.
6631 */
029632fb 6632void update_max_interval(void)
49c022e6
PZ
6633{
6634 max_load_balance_interval = HZ*num_online_cpus()/10;
6635}
6636
1e3c88bd
PZ
6637/*
6638 * It checks each scheduling domain to see if it is due to be balanced,
6639 * and initiates a balancing operation if so.
6640 *
b9b0853a 6641 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6642 */
f7ed0a89 6643static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6644{
23f0d209 6645 int continue_balancing = 1;
f7ed0a89 6646 int cpu = rq->cpu;
1e3c88bd 6647 unsigned long interval;
04f733b4 6648 struct sched_domain *sd;
1e3c88bd
PZ
6649 /* Earliest time when we have to do rebalance again */
6650 unsigned long next_balance = jiffies + 60*HZ;
6651 int update_next_balance = 0;
f48627e6
JL
6652 int need_serialize, need_decay = 0;
6653 u64 max_cost = 0;
1e3c88bd 6654
48a16753 6655 update_blocked_averages(cpu);
2069dd75 6656
dce840a0 6657 rcu_read_lock();
1e3c88bd 6658 for_each_domain(cpu, sd) {
f48627e6
JL
6659 /*
6660 * Decay the newidle max times here because this is a regular
6661 * visit to all the domains. Decay ~1% per second.
6662 */
6663 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6664 sd->max_newidle_lb_cost =
6665 (sd->max_newidle_lb_cost * 253) / 256;
6666 sd->next_decay_max_lb_cost = jiffies + HZ;
6667 need_decay = 1;
6668 }
6669 max_cost += sd->max_newidle_lb_cost;
6670
1e3c88bd
PZ
6671 if (!(sd->flags & SD_LOAD_BALANCE))
6672 continue;
6673
f48627e6
JL
6674 /*
6675 * Stop the load balance at this level. There is another
6676 * CPU in our sched group which is doing load balancing more
6677 * actively.
6678 */
6679 if (!continue_balancing) {
6680 if (need_decay)
6681 continue;
6682 break;
6683 }
6684
1e3c88bd
PZ
6685 interval = sd->balance_interval;
6686 if (idle != CPU_IDLE)
6687 interval *= sd->busy_factor;
6688
6689 /* scale ms to jiffies */
6690 interval = msecs_to_jiffies(interval);
49c022e6 6691 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6692
6693 need_serialize = sd->flags & SD_SERIALIZE;
6694
6695 if (need_serialize) {
6696 if (!spin_trylock(&balancing))
6697 goto out;
6698 }
6699
6700 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6701 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6702 /*
6263322c 6703 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6704 * env->dst_cpu, so we can't know our idle
6705 * state even if we migrated tasks. Update it.
1e3c88bd 6706 */
de5eb2dd 6707 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6708 }
6709 sd->last_balance = jiffies;
6710 }
6711 if (need_serialize)
6712 spin_unlock(&balancing);
6713out:
6714 if (time_after(next_balance, sd->last_balance + interval)) {
6715 next_balance = sd->last_balance + interval;
6716 update_next_balance = 1;
6717 }
f48627e6
JL
6718 }
6719 if (need_decay) {
1e3c88bd 6720 /*
f48627e6
JL
6721 * Ensure the rq-wide value also decays but keep it at a
6722 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6723 */
f48627e6
JL
6724 rq->max_idle_balance_cost =
6725 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6726 }
dce840a0 6727 rcu_read_unlock();
1e3c88bd
PZ
6728
6729 /*
6730 * next_balance will be updated only when there is a need.
6731 * When the cpu is attached to null domain for ex, it will not be
6732 * updated.
6733 */
6734 if (likely(update_next_balance))
6735 rq->next_balance = next_balance;
6736}
6737
3451d024 6738#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6739/*
3451d024 6740 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6741 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6742 */
83cd4fe2
VP
6743static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6744{
6745 struct rq *this_rq = cpu_rq(this_cpu);
6746 struct rq *rq;
6747 int balance_cpu;
6748
1c792db7
SS
6749 if (idle != CPU_IDLE ||
6750 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6751 goto end;
83cd4fe2
VP
6752
6753 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6754 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6755 continue;
6756
6757 /*
6758 * If this cpu gets work to do, stop the load balancing
6759 * work being done for other cpus. Next load
6760 * balancing owner will pick it up.
6761 */
1c792db7 6762 if (need_resched())
83cd4fe2 6763 break;
83cd4fe2 6764
5ed4f1d9
VG
6765 rq = cpu_rq(balance_cpu);
6766
6767 raw_spin_lock_irq(&rq->lock);
6768 update_rq_clock(rq);
6769 update_idle_cpu_load(rq);
6770 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6771
f7ed0a89 6772 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6773
83cd4fe2
VP
6774 if (time_after(this_rq->next_balance, rq->next_balance))
6775 this_rq->next_balance = rq->next_balance;
6776 }
6777 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6778end:
6779 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6780}
6781
6782/*
0b005cf5
SS
6783 * Current heuristic for kicking the idle load balancer in the presence
6784 * of an idle cpu is the system.
6785 * - This rq has more than one task.
6786 * - At any scheduler domain level, this cpu's scheduler group has multiple
6787 * busy cpu's exceeding the group's power.
6788 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6789 * domain span are idle.
83cd4fe2 6790 */
4a725627 6791static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6792{
6793 unsigned long now = jiffies;
0b005cf5 6794 struct sched_domain *sd;
37dc6b50 6795 struct sched_group_power *sgp;
4a725627 6796 int nr_busy, cpu = rq->cpu;
83cd4fe2 6797
4a725627 6798 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6799 return 0;
6800
1c792db7
SS
6801 /*
6802 * We may be recently in ticked or tickless idle mode. At the first
6803 * busy tick after returning from idle, we will update the busy stats.
6804 */
69e1e811 6805 set_cpu_sd_state_busy();
c1cc017c 6806 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6807
6808 /*
6809 * None are in tickless mode and hence no need for NOHZ idle load
6810 * balancing.
6811 */
6812 if (likely(!atomic_read(&nohz.nr_cpus)))
6813 return 0;
1c792db7
SS
6814
6815 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6816 return 0;
6817
0b005cf5
SS
6818 if (rq->nr_running >= 2)
6819 goto need_kick;
83cd4fe2 6820
067491b7 6821 rcu_read_lock();
37dc6b50 6822 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6823
37dc6b50
PM
6824 if (sd) {
6825 sgp = sd->groups->sgp;
6826 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6827
37dc6b50 6828 if (nr_busy > 1)
067491b7 6829 goto need_kick_unlock;
83cd4fe2 6830 }
37dc6b50
PM
6831
6832 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6833
6834 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6835 sched_domain_span(sd)) < cpu))
6836 goto need_kick_unlock;
6837
067491b7 6838 rcu_read_unlock();
83cd4fe2 6839 return 0;
067491b7
PZ
6840
6841need_kick_unlock:
6842 rcu_read_unlock();
0b005cf5
SS
6843need_kick:
6844 return 1;
83cd4fe2
VP
6845}
6846#else
6847static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6848#endif
6849
6850/*
6851 * run_rebalance_domains is triggered when needed from the scheduler tick.
6852 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6853 */
1e3c88bd
PZ
6854static void run_rebalance_domains(struct softirq_action *h)
6855{
6856 int this_cpu = smp_processor_id();
6857 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6858 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6859 CPU_IDLE : CPU_NOT_IDLE;
6860
f7ed0a89 6861 rebalance_domains(this_rq, idle);
1e3c88bd 6862
1e3c88bd 6863 /*
83cd4fe2 6864 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6865 * balancing on behalf of the other idle cpus whose ticks are
6866 * stopped.
6867 */
83cd4fe2 6868 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6869}
6870
63f609b1 6871static inline int on_null_domain(struct rq *rq)
1e3c88bd 6872{
63f609b1 6873 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
6874}
6875
6876/*
6877 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6878 */
7caff66f 6879void trigger_load_balance(struct rq *rq)
1e3c88bd 6880{
1e3c88bd
PZ
6881 /* Don't need to rebalance while attached to NULL domain */
6882 if (time_after_eq(jiffies, rq->next_balance) &&
63f609b1 6883 likely(!on_null_domain(rq)))
1e3c88bd 6884 raise_softirq(SCHED_SOFTIRQ);
3451d024 6885#ifdef CONFIG_NO_HZ_COMMON
63f609b1 6886 if (nohz_kick_needed(rq) && likely(!on_null_domain(rq)))
0aeeeeba 6887 nohz_balancer_kick();
83cd4fe2 6888#endif
1e3c88bd
PZ
6889}
6890
0bcdcf28
CE
6891static void rq_online_fair(struct rq *rq)
6892{
6893 update_sysctl();
6894}
6895
6896static void rq_offline_fair(struct rq *rq)
6897{
6898 update_sysctl();
a4c96ae3
PB
6899
6900 /* Ensure any throttled groups are reachable by pick_next_task */
6901 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6902}
6903
55e12e5e 6904#endif /* CONFIG_SMP */
e1d1484f 6905
bf0f6f24
IM
6906/*
6907 * scheduler tick hitting a task of our scheduling class:
6908 */
8f4d37ec 6909static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6910{
6911 struct cfs_rq *cfs_rq;
6912 struct sched_entity *se = &curr->se;
6913
6914 for_each_sched_entity(se) {
6915 cfs_rq = cfs_rq_of(se);
8f4d37ec 6916 entity_tick(cfs_rq, se, queued);
bf0f6f24 6917 }
18bf2805 6918
10e84b97 6919 if (numabalancing_enabled)
cbee9f88 6920 task_tick_numa(rq, curr);
3d59eebc 6921
18bf2805 6922 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6923}
6924
6925/*
cd29fe6f
PZ
6926 * called on fork with the child task as argument from the parent's context
6927 * - child not yet on the tasklist
6928 * - preemption disabled
bf0f6f24 6929 */
cd29fe6f 6930static void task_fork_fair(struct task_struct *p)
bf0f6f24 6931{
4fc420c9
DN
6932 struct cfs_rq *cfs_rq;
6933 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6934 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6935 struct rq *rq = this_rq();
6936 unsigned long flags;
6937
05fa785c 6938 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6939
861d034e
PZ
6940 update_rq_clock(rq);
6941
4fc420c9
DN
6942 cfs_rq = task_cfs_rq(current);
6943 curr = cfs_rq->curr;
6944
6c9a27f5
DN
6945 /*
6946 * Not only the cpu but also the task_group of the parent might have
6947 * been changed after parent->se.parent,cfs_rq were copied to
6948 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6949 * of child point to valid ones.
6950 */
6951 rcu_read_lock();
6952 __set_task_cpu(p, this_cpu);
6953 rcu_read_unlock();
bf0f6f24 6954
7109c442 6955 update_curr(cfs_rq);
cd29fe6f 6956
b5d9d734
MG
6957 if (curr)
6958 se->vruntime = curr->vruntime;
aeb73b04 6959 place_entity(cfs_rq, se, 1);
4d78e7b6 6960
cd29fe6f 6961 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6962 /*
edcb60a3
IM
6963 * Upon rescheduling, sched_class::put_prev_task() will place
6964 * 'current' within the tree based on its new key value.
6965 */
4d78e7b6 6966 swap(curr->vruntime, se->vruntime);
aec0a514 6967 resched_task(rq->curr);
4d78e7b6 6968 }
bf0f6f24 6969
88ec22d3
PZ
6970 se->vruntime -= cfs_rq->min_vruntime;
6971
05fa785c 6972 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6973}
6974
cb469845
SR
6975/*
6976 * Priority of the task has changed. Check to see if we preempt
6977 * the current task.
6978 */
da7a735e
PZ
6979static void
6980prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6981{
da7a735e
PZ
6982 if (!p->se.on_rq)
6983 return;
6984
cb469845
SR
6985 /*
6986 * Reschedule if we are currently running on this runqueue and
6987 * our priority decreased, or if we are not currently running on
6988 * this runqueue and our priority is higher than the current's
6989 */
da7a735e 6990 if (rq->curr == p) {
cb469845
SR
6991 if (p->prio > oldprio)
6992 resched_task(rq->curr);
6993 } else
15afe09b 6994 check_preempt_curr(rq, p, 0);
cb469845
SR
6995}
6996
da7a735e
PZ
6997static void switched_from_fair(struct rq *rq, struct task_struct *p)
6998{
6999 struct sched_entity *se = &p->se;
7000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7001
7002 /*
7003 * Ensure the task's vruntime is normalized, so that when its
7004 * switched back to the fair class the enqueue_entity(.flags=0) will
7005 * do the right thing.
7006 *
7007 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7008 * have normalized the vruntime, if it was !on_rq, then only when
7009 * the task is sleeping will it still have non-normalized vruntime.
7010 */
7011 if (!se->on_rq && p->state != TASK_RUNNING) {
7012 /*
7013 * Fix up our vruntime so that the current sleep doesn't
7014 * cause 'unlimited' sleep bonus.
7015 */
7016 place_entity(cfs_rq, se, 0);
7017 se->vruntime -= cfs_rq->min_vruntime;
7018 }
9ee474f5 7019
141965c7 7020#ifdef CONFIG_SMP
9ee474f5
PT
7021 /*
7022 * Remove our load from contribution when we leave sched_fair
7023 * and ensure we don't carry in an old decay_count if we
7024 * switch back.
7025 */
87e3c8ae
KT
7026 if (se->avg.decay_count) {
7027 __synchronize_entity_decay(se);
7028 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7029 }
7030#endif
da7a735e
PZ
7031}
7032
cb469845
SR
7033/*
7034 * We switched to the sched_fair class.
7035 */
da7a735e 7036static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7037{
da7a735e
PZ
7038 if (!p->se.on_rq)
7039 return;
7040
cb469845
SR
7041 /*
7042 * We were most likely switched from sched_rt, so
7043 * kick off the schedule if running, otherwise just see
7044 * if we can still preempt the current task.
7045 */
da7a735e 7046 if (rq->curr == p)
cb469845
SR
7047 resched_task(rq->curr);
7048 else
15afe09b 7049 check_preempt_curr(rq, p, 0);
cb469845
SR
7050}
7051
83b699ed
SV
7052/* Account for a task changing its policy or group.
7053 *
7054 * This routine is mostly called to set cfs_rq->curr field when a task
7055 * migrates between groups/classes.
7056 */
7057static void set_curr_task_fair(struct rq *rq)
7058{
7059 struct sched_entity *se = &rq->curr->se;
7060
ec12cb7f
PT
7061 for_each_sched_entity(se) {
7062 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7063
7064 set_next_entity(cfs_rq, se);
7065 /* ensure bandwidth has been allocated on our new cfs_rq */
7066 account_cfs_rq_runtime(cfs_rq, 0);
7067 }
83b699ed
SV
7068}
7069
029632fb
PZ
7070void init_cfs_rq(struct cfs_rq *cfs_rq)
7071{
7072 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7073 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7074#ifndef CONFIG_64BIT
7075 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7076#endif
141965c7 7077#ifdef CONFIG_SMP
9ee474f5 7078 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7079 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7080#endif
029632fb
PZ
7081}
7082
810b3817 7083#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7084static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7085{
aff3e498 7086 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7087 /*
7088 * If the task was not on the rq at the time of this cgroup movement
7089 * it must have been asleep, sleeping tasks keep their ->vruntime
7090 * absolute on their old rq until wakeup (needed for the fair sleeper
7091 * bonus in place_entity()).
7092 *
7093 * If it was on the rq, we've just 'preempted' it, which does convert
7094 * ->vruntime to a relative base.
7095 *
7096 * Make sure both cases convert their relative position when migrating
7097 * to another cgroup's rq. This does somewhat interfere with the
7098 * fair sleeper stuff for the first placement, but who cares.
7099 */
7ceff013
DN
7100 /*
7101 * When !on_rq, vruntime of the task has usually NOT been normalized.
7102 * But there are some cases where it has already been normalized:
7103 *
7104 * - Moving a forked child which is waiting for being woken up by
7105 * wake_up_new_task().
62af3783
DN
7106 * - Moving a task which has been woken up by try_to_wake_up() and
7107 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7108 *
7109 * To prevent boost or penalty in the new cfs_rq caused by delta
7110 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7111 */
62af3783 7112 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7113 on_rq = 1;
7114
b2b5ce02
PZ
7115 if (!on_rq)
7116 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7117 set_task_rq(p, task_cpu(p));
aff3e498
PT
7118 if (!on_rq) {
7119 cfs_rq = cfs_rq_of(&p->se);
7120 p->se.vruntime += cfs_rq->min_vruntime;
7121#ifdef CONFIG_SMP
7122 /*
7123 * migrate_task_rq_fair() will have removed our previous
7124 * contribution, but we must synchronize for ongoing future
7125 * decay.
7126 */
7127 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7128 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7129#endif
7130 }
810b3817 7131}
029632fb
PZ
7132
7133void free_fair_sched_group(struct task_group *tg)
7134{
7135 int i;
7136
7137 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7138
7139 for_each_possible_cpu(i) {
7140 if (tg->cfs_rq)
7141 kfree(tg->cfs_rq[i]);
7142 if (tg->se)
7143 kfree(tg->se[i]);
7144 }
7145
7146 kfree(tg->cfs_rq);
7147 kfree(tg->se);
7148}
7149
7150int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7151{
7152 struct cfs_rq *cfs_rq;
7153 struct sched_entity *se;
7154 int i;
7155
7156 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7157 if (!tg->cfs_rq)
7158 goto err;
7159 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7160 if (!tg->se)
7161 goto err;
7162
7163 tg->shares = NICE_0_LOAD;
7164
7165 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7166
7167 for_each_possible_cpu(i) {
7168 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7169 GFP_KERNEL, cpu_to_node(i));
7170 if (!cfs_rq)
7171 goto err;
7172
7173 se = kzalloc_node(sizeof(struct sched_entity),
7174 GFP_KERNEL, cpu_to_node(i));
7175 if (!se)
7176 goto err_free_rq;
7177
7178 init_cfs_rq(cfs_rq);
7179 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7180 }
7181
7182 return 1;
7183
7184err_free_rq:
7185 kfree(cfs_rq);
7186err:
7187 return 0;
7188}
7189
7190void unregister_fair_sched_group(struct task_group *tg, int cpu)
7191{
7192 struct rq *rq = cpu_rq(cpu);
7193 unsigned long flags;
7194
7195 /*
7196 * Only empty task groups can be destroyed; so we can speculatively
7197 * check on_list without danger of it being re-added.
7198 */
7199 if (!tg->cfs_rq[cpu]->on_list)
7200 return;
7201
7202 raw_spin_lock_irqsave(&rq->lock, flags);
7203 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7204 raw_spin_unlock_irqrestore(&rq->lock, flags);
7205}
7206
7207void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7208 struct sched_entity *se, int cpu,
7209 struct sched_entity *parent)
7210{
7211 struct rq *rq = cpu_rq(cpu);
7212
7213 cfs_rq->tg = tg;
7214 cfs_rq->rq = rq;
029632fb
PZ
7215 init_cfs_rq_runtime(cfs_rq);
7216
7217 tg->cfs_rq[cpu] = cfs_rq;
7218 tg->se[cpu] = se;
7219
7220 /* se could be NULL for root_task_group */
7221 if (!se)
7222 return;
7223
7224 if (!parent)
7225 se->cfs_rq = &rq->cfs;
7226 else
7227 se->cfs_rq = parent->my_q;
7228
7229 se->my_q = cfs_rq;
0ac9b1c2
PT
7230 /* guarantee group entities always have weight */
7231 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7232 se->parent = parent;
7233}
7234
7235static DEFINE_MUTEX(shares_mutex);
7236
7237int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7238{
7239 int i;
7240 unsigned long flags;
7241
7242 /*
7243 * We can't change the weight of the root cgroup.
7244 */
7245 if (!tg->se[0])
7246 return -EINVAL;
7247
7248 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7249
7250 mutex_lock(&shares_mutex);
7251 if (tg->shares == shares)
7252 goto done;
7253
7254 tg->shares = shares;
7255 for_each_possible_cpu(i) {
7256 struct rq *rq = cpu_rq(i);
7257 struct sched_entity *se;
7258
7259 se = tg->se[i];
7260 /* Propagate contribution to hierarchy */
7261 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7262
7263 /* Possible calls to update_curr() need rq clock */
7264 update_rq_clock(rq);
17bc14b7 7265 for_each_sched_entity(se)
029632fb
PZ
7266 update_cfs_shares(group_cfs_rq(se));
7267 raw_spin_unlock_irqrestore(&rq->lock, flags);
7268 }
7269
7270done:
7271 mutex_unlock(&shares_mutex);
7272 return 0;
7273}
7274#else /* CONFIG_FAIR_GROUP_SCHED */
7275
7276void free_fair_sched_group(struct task_group *tg) { }
7277
7278int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7279{
7280 return 1;
7281}
7282
7283void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7284
7285#endif /* CONFIG_FAIR_GROUP_SCHED */
7286
810b3817 7287
6d686f45 7288static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7289{
7290 struct sched_entity *se = &task->se;
0d721cea
PW
7291 unsigned int rr_interval = 0;
7292
7293 /*
7294 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7295 * idle runqueue:
7296 */
0d721cea 7297 if (rq->cfs.load.weight)
a59f4e07 7298 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7299
7300 return rr_interval;
7301}
7302
bf0f6f24
IM
7303/*
7304 * All the scheduling class methods:
7305 */
029632fb 7306const struct sched_class fair_sched_class = {
5522d5d5 7307 .next = &idle_sched_class,
bf0f6f24
IM
7308 .enqueue_task = enqueue_task_fair,
7309 .dequeue_task = dequeue_task_fair,
7310 .yield_task = yield_task_fair,
d95f4122 7311 .yield_to_task = yield_to_task_fair,
bf0f6f24 7312
2e09bf55 7313 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7314
7315 .pick_next_task = pick_next_task_fair,
7316 .put_prev_task = put_prev_task_fair,
7317
681f3e68 7318#ifdef CONFIG_SMP
4ce72a2c 7319 .select_task_rq = select_task_rq_fair,
0a74bef8 7320 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7321
0bcdcf28
CE
7322 .rq_online = rq_online_fair,
7323 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7324
7325 .task_waking = task_waking_fair,
681f3e68 7326#endif
bf0f6f24 7327
83b699ed 7328 .set_curr_task = set_curr_task_fair,
bf0f6f24 7329 .task_tick = task_tick_fair,
cd29fe6f 7330 .task_fork = task_fork_fair,
cb469845
SR
7331
7332 .prio_changed = prio_changed_fair,
da7a735e 7333 .switched_from = switched_from_fair,
cb469845 7334 .switched_to = switched_to_fair,
810b3817 7335
0d721cea
PW
7336 .get_rr_interval = get_rr_interval_fair,
7337
810b3817 7338#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7339 .task_move_group = task_move_group_fair,
810b3817 7340#endif
bf0f6f24
IM
7341};
7342
7343#ifdef CONFIG_SCHED_DEBUG
029632fb 7344void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7345{
bf0f6f24
IM
7346 struct cfs_rq *cfs_rq;
7347
5973e5b9 7348 rcu_read_lock();
c3b64f1e 7349 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7350 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7351 rcu_read_unlock();
bf0f6f24
IM
7352}
7353#endif
029632fb
PZ
7354
7355__init void init_sched_fair_class(void)
7356{
7357#ifdef CONFIG_SMP
7358 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7359
3451d024 7360#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7361 nohz.next_balance = jiffies;
029632fb 7362 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7363 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7364#endif
7365#endif /* SMP */
7366
7367}