sched/rt: Substract number of tasks of throttled queues from rq->nr_running
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
60e69eed 1500 spin_lock_irq(group_lock);
7dbd13ed
MG
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed 1574
60e69eed 1575 spin_unlock_irq(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
60e69eed
MG
1680 BUG_ON(irqs_disabled());
1681 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1682
be1e4e76 1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1684 my_grp->faults[i] -= p->numa_faults_memory[i];
1685 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1686 }
989348b5
MG
1687 my_grp->total_faults -= p->total_numa_faults;
1688 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1689
1690 list_move(&p->numa_entry, &grp->task_list);
1691 my_grp->nr_tasks--;
1692 grp->nr_tasks++;
1693
1694 spin_unlock(&my_grp->lock);
60e69eed 1695 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1696
1697 rcu_assign_pointer(p->numa_group, grp);
1698
1699 put_numa_group(my_grp);
3354781a
PZ
1700 return;
1701
1702no_join:
1703 rcu_read_unlock();
1704 return;
8c8a743c
PZ
1705}
1706
1707void task_numa_free(struct task_struct *p)
1708{
1709 struct numa_group *grp = p->numa_group;
1710 int i;
ff1df896 1711 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1712
1713 if (grp) {
60e69eed 1714 spin_lock_irq(&grp->lock);
be1e4e76 1715 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1716 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1717 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1718
8c8a743c
PZ
1719 list_del(&p->numa_entry);
1720 grp->nr_tasks--;
60e69eed 1721 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1722 rcu_assign_pointer(p->numa_group, NULL);
1723 put_numa_group(grp);
1724 }
1725
ff1df896
RR
1726 p->numa_faults_memory = NULL;
1727 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1728 p->numa_faults_cpu= NULL;
1729 p->numa_faults_buffer_cpu = NULL;
82727018 1730 kfree(numa_faults);
8c8a743c
PZ
1731}
1732
cbee9f88
PZ
1733/*
1734 * Got a PROT_NONE fault for a page on @node.
1735 */
58b46da3 1736void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1737{
1738 struct task_struct *p = current;
6688cc05 1739 bool migrated = flags & TNF_MIGRATED;
58b46da3 1740 int cpu_node = task_node(current);
ac8e895b 1741 int priv;
cbee9f88 1742
10e84b97 1743 if (!numabalancing_enabled)
1a687c2e
MG
1744 return;
1745
9ff1d9ff
MG
1746 /* for example, ksmd faulting in a user's mm */
1747 if (!p->mm)
1748 return;
1749
82727018
RR
1750 /* Do not worry about placement if exiting */
1751 if (p->state == TASK_DEAD)
1752 return;
1753
f809ca9a 1754 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1755 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1756 int size = sizeof(*p->numa_faults_memory) *
1757 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1758
be1e4e76 1759 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1760 if (!p->numa_faults_memory)
f809ca9a 1761 return;
745d6147 1762
ff1df896 1763 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1764 /*
1765 * The averaged statistics, shared & private, memory & cpu,
1766 * occupy the first half of the array. The second half of the
1767 * array is for current counters, which are averaged into the
1768 * first set by task_numa_placement.
1769 */
50ec8a40
RR
1770 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1771 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1772 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1773 p->total_numa_faults = 0;
04bb2f94 1774 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1775 }
cbee9f88 1776
8c8a743c
PZ
1777 /*
1778 * First accesses are treated as private, otherwise consider accesses
1779 * to be private if the accessing pid has not changed
1780 */
1781 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1782 priv = 1;
1783 } else {
1784 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1785 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1786 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1787 }
1788
cbee9f88 1789 task_numa_placement(p);
f809ca9a 1790
2739d3ee
RR
1791 /*
1792 * Retry task to preferred node migration periodically, in case it
1793 * case it previously failed, or the scheduler moved us.
1794 */
1795 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1796 numa_migrate_preferred(p);
1797
b32e86b4
IM
1798 if (migrated)
1799 p->numa_pages_migrated += pages;
1800
58b46da3
RR
1801 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1802 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1803 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1804}
1805
6e5fb223
PZ
1806static void reset_ptenuma_scan(struct task_struct *p)
1807{
1808 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1809 p->mm->numa_scan_offset = 0;
1810}
1811
cbee9f88
PZ
1812/*
1813 * The expensive part of numa migration is done from task_work context.
1814 * Triggered from task_tick_numa().
1815 */
1816void task_numa_work(struct callback_head *work)
1817{
1818 unsigned long migrate, next_scan, now = jiffies;
1819 struct task_struct *p = current;
1820 struct mm_struct *mm = p->mm;
6e5fb223 1821 struct vm_area_struct *vma;
9f40604c 1822 unsigned long start, end;
598f0ec0 1823 unsigned long nr_pte_updates = 0;
9f40604c 1824 long pages;
cbee9f88
PZ
1825
1826 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1827
1828 work->next = work; /* protect against double add */
1829 /*
1830 * Who cares about NUMA placement when they're dying.
1831 *
1832 * NOTE: make sure not to dereference p->mm before this check,
1833 * exit_task_work() happens _after_ exit_mm() so we could be called
1834 * without p->mm even though we still had it when we enqueued this
1835 * work.
1836 */
1837 if (p->flags & PF_EXITING)
1838 return;
1839
930aa174 1840 if (!mm->numa_next_scan) {
7e8d16b6
MG
1841 mm->numa_next_scan = now +
1842 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1843 }
1844
cbee9f88
PZ
1845 /*
1846 * Enforce maximal scan/migration frequency..
1847 */
1848 migrate = mm->numa_next_scan;
1849 if (time_before(now, migrate))
1850 return;
1851
598f0ec0
MG
1852 if (p->numa_scan_period == 0) {
1853 p->numa_scan_period_max = task_scan_max(p);
1854 p->numa_scan_period = task_scan_min(p);
1855 }
cbee9f88 1856
fb003b80 1857 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1858 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1859 return;
1860
19a78d11
PZ
1861 /*
1862 * Delay this task enough that another task of this mm will likely win
1863 * the next time around.
1864 */
1865 p->node_stamp += 2 * TICK_NSEC;
1866
9f40604c
MG
1867 start = mm->numa_scan_offset;
1868 pages = sysctl_numa_balancing_scan_size;
1869 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1870 if (!pages)
1871 return;
cbee9f88 1872
6e5fb223 1873 down_read(&mm->mmap_sem);
9f40604c 1874 vma = find_vma(mm, start);
6e5fb223
PZ
1875 if (!vma) {
1876 reset_ptenuma_scan(p);
9f40604c 1877 start = 0;
6e5fb223
PZ
1878 vma = mm->mmap;
1879 }
9f40604c 1880 for (; vma; vma = vma->vm_next) {
fc314724 1881 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1882 continue;
1883
4591ce4f
MG
1884 /*
1885 * Shared library pages mapped by multiple processes are not
1886 * migrated as it is expected they are cache replicated. Avoid
1887 * hinting faults in read-only file-backed mappings or the vdso
1888 * as migrating the pages will be of marginal benefit.
1889 */
1890 if (!vma->vm_mm ||
1891 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1892 continue;
1893
3c67f474
MG
1894 /*
1895 * Skip inaccessible VMAs to avoid any confusion between
1896 * PROT_NONE and NUMA hinting ptes
1897 */
1898 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1899 continue;
4591ce4f 1900
9f40604c
MG
1901 do {
1902 start = max(start, vma->vm_start);
1903 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1904 end = min(end, vma->vm_end);
598f0ec0
MG
1905 nr_pte_updates += change_prot_numa(vma, start, end);
1906
1907 /*
1908 * Scan sysctl_numa_balancing_scan_size but ensure that
1909 * at least one PTE is updated so that unused virtual
1910 * address space is quickly skipped.
1911 */
1912 if (nr_pte_updates)
1913 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1914
9f40604c
MG
1915 start = end;
1916 if (pages <= 0)
1917 goto out;
3cf1962c
RR
1918
1919 cond_resched();
9f40604c 1920 } while (end != vma->vm_end);
cbee9f88 1921 }
6e5fb223 1922
9f40604c 1923out:
6e5fb223 1924 /*
c69307d5
PZ
1925 * It is possible to reach the end of the VMA list but the last few
1926 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1927 * would find the !migratable VMA on the next scan but not reset the
1928 * scanner to the start so check it now.
6e5fb223
PZ
1929 */
1930 if (vma)
9f40604c 1931 mm->numa_scan_offset = start;
6e5fb223
PZ
1932 else
1933 reset_ptenuma_scan(p);
1934 up_read(&mm->mmap_sem);
cbee9f88
PZ
1935}
1936
1937/*
1938 * Drive the periodic memory faults..
1939 */
1940void task_tick_numa(struct rq *rq, struct task_struct *curr)
1941{
1942 struct callback_head *work = &curr->numa_work;
1943 u64 period, now;
1944
1945 /*
1946 * We don't care about NUMA placement if we don't have memory.
1947 */
1948 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1949 return;
1950
1951 /*
1952 * Using runtime rather than walltime has the dual advantage that
1953 * we (mostly) drive the selection from busy threads and that the
1954 * task needs to have done some actual work before we bother with
1955 * NUMA placement.
1956 */
1957 now = curr->se.sum_exec_runtime;
1958 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1959
1960 if (now - curr->node_stamp > period) {
4b96a29b 1961 if (!curr->node_stamp)
598f0ec0 1962 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1963 curr->node_stamp += period;
cbee9f88
PZ
1964
1965 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1966 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1967 task_work_add(curr, work, true);
1968 }
1969 }
1970}
1971#else
1972static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1973{
1974}
0ec8aa00
PZ
1975
1976static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1977{
1978}
1979
1980static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1981{
1982}
cbee9f88
PZ
1983#endif /* CONFIG_NUMA_BALANCING */
1984
30cfdcfc
DA
1985static void
1986account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1987{
1988 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1989 if (!parent_entity(se))
029632fb 1990 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1991#ifdef CONFIG_SMP
0ec8aa00
PZ
1992 if (entity_is_task(se)) {
1993 struct rq *rq = rq_of(cfs_rq);
1994
1995 account_numa_enqueue(rq, task_of(se));
1996 list_add(&se->group_node, &rq->cfs_tasks);
1997 }
367456c7 1998#endif
30cfdcfc 1999 cfs_rq->nr_running++;
30cfdcfc
DA
2000}
2001
2002static void
2003account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2004{
2005 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2006 if (!parent_entity(se))
029632fb 2007 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2008 if (entity_is_task(se)) {
2009 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2010 list_del_init(&se->group_node);
0ec8aa00 2011 }
30cfdcfc 2012 cfs_rq->nr_running--;
30cfdcfc
DA
2013}
2014
3ff6dcac
YZ
2015#ifdef CONFIG_FAIR_GROUP_SCHED
2016# ifdef CONFIG_SMP
cf5f0acf
PZ
2017static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2018{
2019 long tg_weight;
2020
2021 /*
2022 * Use this CPU's actual weight instead of the last load_contribution
2023 * to gain a more accurate current total weight. See
2024 * update_cfs_rq_load_contribution().
2025 */
bf5b986e 2026 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2027 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2028 tg_weight += cfs_rq->load.weight;
2029
2030 return tg_weight;
2031}
2032
6d5ab293 2033static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2034{
cf5f0acf 2035 long tg_weight, load, shares;
3ff6dcac 2036
cf5f0acf 2037 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2038 load = cfs_rq->load.weight;
3ff6dcac 2039
3ff6dcac 2040 shares = (tg->shares * load);
cf5f0acf
PZ
2041 if (tg_weight)
2042 shares /= tg_weight;
3ff6dcac
YZ
2043
2044 if (shares < MIN_SHARES)
2045 shares = MIN_SHARES;
2046 if (shares > tg->shares)
2047 shares = tg->shares;
2048
2049 return shares;
2050}
3ff6dcac 2051# else /* CONFIG_SMP */
6d5ab293 2052static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2053{
2054 return tg->shares;
2055}
3ff6dcac 2056# endif /* CONFIG_SMP */
2069dd75
PZ
2057static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2058 unsigned long weight)
2059{
19e5eebb
PT
2060 if (se->on_rq) {
2061 /* commit outstanding execution time */
2062 if (cfs_rq->curr == se)
2063 update_curr(cfs_rq);
2069dd75 2064 account_entity_dequeue(cfs_rq, se);
19e5eebb 2065 }
2069dd75
PZ
2066
2067 update_load_set(&se->load, weight);
2068
2069 if (se->on_rq)
2070 account_entity_enqueue(cfs_rq, se);
2071}
2072
82958366
PT
2073static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2074
6d5ab293 2075static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2076{
2077 struct task_group *tg;
2078 struct sched_entity *se;
3ff6dcac 2079 long shares;
2069dd75 2080
2069dd75
PZ
2081 tg = cfs_rq->tg;
2082 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2083 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2084 return;
3ff6dcac
YZ
2085#ifndef CONFIG_SMP
2086 if (likely(se->load.weight == tg->shares))
2087 return;
2088#endif
6d5ab293 2089 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2090
2091 reweight_entity(cfs_rq_of(se), se, shares);
2092}
2093#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2094static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2095{
2096}
2097#endif /* CONFIG_FAIR_GROUP_SCHED */
2098
141965c7 2099#ifdef CONFIG_SMP
5b51f2f8
PT
2100/*
2101 * We choose a half-life close to 1 scheduling period.
2102 * Note: The tables below are dependent on this value.
2103 */
2104#define LOAD_AVG_PERIOD 32
2105#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2106#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2107
2108/* Precomputed fixed inverse multiplies for multiplication by y^n */
2109static const u32 runnable_avg_yN_inv[] = {
2110 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2111 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2112 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2113 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2114 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2115 0x85aac367, 0x82cd8698,
2116};
2117
2118/*
2119 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2120 * over-estimates when re-combining.
2121 */
2122static const u32 runnable_avg_yN_sum[] = {
2123 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2124 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2125 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2126};
2127
9d85f21c
PT
2128/*
2129 * Approximate:
2130 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2131 */
2132static __always_inline u64 decay_load(u64 val, u64 n)
2133{
5b51f2f8
PT
2134 unsigned int local_n;
2135
2136 if (!n)
2137 return val;
2138 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2139 return 0;
2140
2141 /* after bounds checking we can collapse to 32-bit */
2142 local_n = n;
2143
2144 /*
2145 * As y^PERIOD = 1/2, we can combine
2146 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2147 * With a look-up table which covers k^n (n<PERIOD)
2148 *
2149 * To achieve constant time decay_load.
2150 */
2151 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2152 val >>= local_n / LOAD_AVG_PERIOD;
2153 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2154 }
2155
5b51f2f8
PT
2156 val *= runnable_avg_yN_inv[local_n];
2157 /* We don't use SRR here since we always want to round down. */
2158 return val >> 32;
2159}
2160
2161/*
2162 * For updates fully spanning n periods, the contribution to runnable
2163 * average will be: \Sum 1024*y^n
2164 *
2165 * We can compute this reasonably efficiently by combining:
2166 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2167 */
2168static u32 __compute_runnable_contrib(u64 n)
2169{
2170 u32 contrib = 0;
2171
2172 if (likely(n <= LOAD_AVG_PERIOD))
2173 return runnable_avg_yN_sum[n];
2174 else if (unlikely(n >= LOAD_AVG_MAX_N))
2175 return LOAD_AVG_MAX;
2176
2177 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2178 do {
2179 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2180 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2181
2182 n -= LOAD_AVG_PERIOD;
2183 } while (n > LOAD_AVG_PERIOD);
2184
2185 contrib = decay_load(contrib, n);
2186 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2187}
2188
2189/*
2190 * We can represent the historical contribution to runnable average as the
2191 * coefficients of a geometric series. To do this we sub-divide our runnable
2192 * history into segments of approximately 1ms (1024us); label the segment that
2193 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2194 *
2195 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2196 * p0 p1 p2
2197 * (now) (~1ms ago) (~2ms ago)
2198 *
2199 * Let u_i denote the fraction of p_i that the entity was runnable.
2200 *
2201 * We then designate the fractions u_i as our co-efficients, yielding the
2202 * following representation of historical load:
2203 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2204 *
2205 * We choose y based on the with of a reasonably scheduling period, fixing:
2206 * y^32 = 0.5
2207 *
2208 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2209 * approximately half as much as the contribution to load within the last ms
2210 * (u_0).
2211 *
2212 * When a period "rolls over" and we have new u_0`, multiplying the previous
2213 * sum again by y is sufficient to update:
2214 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2215 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2216 */
2217static __always_inline int __update_entity_runnable_avg(u64 now,
2218 struct sched_avg *sa,
2219 int runnable)
2220{
5b51f2f8
PT
2221 u64 delta, periods;
2222 u32 runnable_contrib;
9d85f21c
PT
2223 int delta_w, decayed = 0;
2224
2225 delta = now - sa->last_runnable_update;
2226 /*
2227 * This should only happen when time goes backwards, which it
2228 * unfortunately does during sched clock init when we swap over to TSC.
2229 */
2230 if ((s64)delta < 0) {
2231 sa->last_runnable_update = now;
2232 return 0;
2233 }
2234
2235 /*
2236 * Use 1024ns as the unit of measurement since it's a reasonable
2237 * approximation of 1us and fast to compute.
2238 */
2239 delta >>= 10;
2240 if (!delta)
2241 return 0;
2242 sa->last_runnable_update = now;
2243
2244 /* delta_w is the amount already accumulated against our next period */
2245 delta_w = sa->runnable_avg_period % 1024;
2246 if (delta + delta_w >= 1024) {
2247 /* period roll-over */
2248 decayed = 1;
2249
2250 /*
2251 * Now that we know we're crossing a period boundary, figure
2252 * out how much from delta we need to complete the current
2253 * period and accrue it.
2254 */
2255 delta_w = 1024 - delta_w;
5b51f2f8
PT
2256 if (runnable)
2257 sa->runnable_avg_sum += delta_w;
2258 sa->runnable_avg_period += delta_w;
2259
2260 delta -= delta_w;
2261
2262 /* Figure out how many additional periods this update spans */
2263 periods = delta / 1024;
2264 delta %= 1024;
2265
2266 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2267 periods + 1);
2268 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2269 periods + 1);
2270
2271 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2272 runnable_contrib = __compute_runnable_contrib(periods);
2273 if (runnable)
2274 sa->runnable_avg_sum += runnable_contrib;
2275 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2276 }
2277
2278 /* Remainder of delta accrued against u_0` */
2279 if (runnable)
2280 sa->runnable_avg_sum += delta;
2281 sa->runnable_avg_period += delta;
2282
2283 return decayed;
2284}
2285
9ee474f5 2286/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2287static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2288{
2289 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2290 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2291
2292 decays -= se->avg.decay_count;
2293 if (!decays)
aff3e498 2294 return 0;
9ee474f5
PT
2295
2296 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2297 se->avg.decay_count = 0;
aff3e498
PT
2298
2299 return decays;
9ee474f5
PT
2300}
2301
c566e8e9
PT
2302#ifdef CONFIG_FAIR_GROUP_SCHED
2303static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2304 int force_update)
2305{
2306 struct task_group *tg = cfs_rq->tg;
bf5b986e 2307 long tg_contrib;
c566e8e9
PT
2308
2309 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2310 tg_contrib -= cfs_rq->tg_load_contrib;
2311
bf5b986e
AS
2312 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2313 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2314 cfs_rq->tg_load_contrib += tg_contrib;
2315 }
2316}
8165e145 2317
bb17f655
PT
2318/*
2319 * Aggregate cfs_rq runnable averages into an equivalent task_group
2320 * representation for computing load contributions.
2321 */
2322static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2323 struct cfs_rq *cfs_rq)
2324{
2325 struct task_group *tg = cfs_rq->tg;
2326 long contrib;
2327
2328 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2329 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2330 sa->runnable_avg_period + 1);
2331 contrib -= cfs_rq->tg_runnable_contrib;
2332
2333 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2334 atomic_add(contrib, &tg->runnable_avg);
2335 cfs_rq->tg_runnable_contrib += contrib;
2336 }
2337}
2338
8165e145
PT
2339static inline void __update_group_entity_contrib(struct sched_entity *se)
2340{
2341 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2342 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2343 int runnable_avg;
2344
8165e145
PT
2345 u64 contrib;
2346
2347 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2348 se->avg.load_avg_contrib = div_u64(contrib,
2349 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2350
2351 /*
2352 * For group entities we need to compute a correction term in the case
2353 * that they are consuming <1 cpu so that we would contribute the same
2354 * load as a task of equal weight.
2355 *
2356 * Explicitly co-ordinating this measurement would be expensive, but
2357 * fortunately the sum of each cpus contribution forms a usable
2358 * lower-bound on the true value.
2359 *
2360 * Consider the aggregate of 2 contributions. Either they are disjoint
2361 * (and the sum represents true value) or they are disjoint and we are
2362 * understating by the aggregate of their overlap.
2363 *
2364 * Extending this to N cpus, for a given overlap, the maximum amount we
2365 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2366 * cpus that overlap for this interval and w_i is the interval width.
2367 *
2368 * On a small machine; the first term is well-bounded which bounds the
2369 * total error since w_i is a subset of the period. Whereas on a
2370 * larger machine, while this first term can be larger, if w_i is the
2371 * of consequential size guaranteed to see n_i*w_i quickly converge to
2372 * our upper bound of 1-cpu.
2373 */
2374 runnable_avg = atomic_read(&tg->runnable_avg);
2375 if (runnable_avg < NICE_0_LOAD) {
2376 se->avg.load_avg_contrib *= runnable_avg;
2377 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2378 }
8165e145 2379}
f5f9739d
DE
2380
2381static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2382{
2383 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2384 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2385}
6e83125c 2386#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2387static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2388 int force_update) {}
bb17f655
PT
2389static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2390 struct cfs_rq *cfs_rq) {}
8165e145 2391static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2392static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2393#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2394
8165e145
PT
2395static inline void __update_task_entity_contrib(struct sched_entity *se)
2396{
2397 u32 contrib;
2398
2399 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2400 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2401 contrib /= (se->avg.runnable_avg_period + 1);
2402 se->avg.load_avg_contrib = scale_load(contrib);
2403}
2404
2dac754e
PT
2405/* Compute the current contribution to load_avg by se, return any delta */
2406static long __update_entity_load_avg_contrib(struct sched_entity *se)
2407{
2408 long old_contrib = se->avg.load_avg_contrib;
2409
8165e145
PT
2410 if (entity_is_task(se)) {
2411 __update_task_entity_contrib(se);
2412 } else {
bb17f655 2413 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2414 __update_group_entity_contrib(se);
2415 }
2dac754e
PT
2416
2417 return se->avg.load_avg_contrib - old_contrib;
2418}
2419
9ee474f5
PT
2420static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2421 long load_contrib)
2422{
2423 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2424 cfs_rq->blocked_load_avg -= load_contrib;
2425 else
2426 cfs_rq->blocked_load_avg = 0;
2427}
2428
f1b17280
PT
2429static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2430
9d85f21c 2431/* Update a sched_entity's runnable average */
9ee474f5
PT
2432static inline void update_entity_load_avg(struct sched_entity *se,
2433 int update_cfs_rq)
9d85f21c 2434{
2dac754e
PT
2435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2436 long contrib_delta;
f1b17280 2437 u64 now;
2dac754e 2438
f1b17280
PT
2439 /*
2440 * For a group entity we need to use their owned cfs_rq_clock_task() in
2441 * case they are the parent of a throttled hierarchy.
2442 */
2443 if (entity_is_task(se))
2444 now = cfs_rq_clock_task(cfs_rq);
2445 else
2446 now = cfs_rq_clock_task(group_cfs_rq(se));
2447
2448 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2449 return;
2450
2451 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2452
2453 if (!update_cfs_rq)
2454 return;
2455
2dac754e
PT
2456 if (se->on_rq)
2457 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2458 else
2459 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2460}
2461
2462/*
2463 * Decay the load contributed by all blocked children and account this so that
2464 * their contribution may appropriately discounted when they wake up.
2465 */
aff3e498 2466static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2467{
f1b17280 2468 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2469 u64 decays;
2470
2471 decays = now - cfs_rq->last_decay;
aff3e498 2472 if (!decays && !force_update)
9ee474f5
PT
2473 return;
2474
2509940f
AS
2475 if (atomic_long_read(&cfs_rq->removed_load)) {
2476 unsigned long removed_load;
2477 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2478 subtract_blocked_load_contrib(cfs_rq, removed_load);
2479 }
9ee474f5 2480
aff3e498
PT
2481 if (decays) {
2482 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2483 decays);
2484 atomic64_add(decays, &cfs_rq->decay_counter);
2485 cfs_rq->last_decay = now;
2486 }
c566e8e9
PT
2487
2488 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2489}
18bf2805 2490
2dac754e
PT
2491/* Add the load generated by se into cfs_rq's child load-average */
2492static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2493 struct sched_entity *se,
2494 int wakeup)
2dac754e 2495{
aff3e498
PT
2496 /*
2497 * We track migrations using entity decay_count <= 0, on a wake-up
2498 * migration we use a negative decay count to track the remote decays
2499 * accumulated while sleeping.
a75cdaa9
AS
2500 *
2501 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2502 * are seen by enqueue_entity_load_avg() as a migration with an already
2503 * constructed load_avg_contrib.
aff3e498
PT
2504 */
2505 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2506 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2507 if (se->avg.decay_count) {
2508 /*
2509 * In a wake-up migration we have to approximate the
2510 * time sleeping. This is because we can't synchronize
2511 * clock_task between the two cpus, and it is not
2512 * guaranteed to be read-safe. Instead, we can
2513 * approximate this using our carried decays, which are
2514 * explicitly atomically readable.
2515 */
2516 se->avg.last_runnable_update -= (-se->avg.decay_count)
2517 << 20;
2518 update_entity_load_avg(se, 0);
2519 /* Indicate that we're now synchronized and on-rq */
2520 se->avg.decay_count = 0;
2521 }
9ee474f5
PT
2522 wakeup = 0;
2523 } else {
9390675a 2524 __synchronize_entity_decay(se);
9ee474f5
PT
2525 }
2526
aff3e498
PT
2527 /* migrated tasks did not contribute to our blocked load */
2528 if (wakeup) {
9ee474f5 2529 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2530 update_entity_load_avg(se, 0);
2531 }
9ee474f5 2532
2dac754e 2533 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2534 /* we force update consideration on load-balancer moves */
2535 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2536}
2537
9ee474f5
PT
2538/*
2539 * Remove se's load from this cfs_rq child load-average, if the entity is
2540 * transitioning to a blocked state we track its projected decay using
2541 * blocked_load_avg.
2542 */
2dac754e 2543static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2544 struct sched_entity *se,
2545 int sleep)
2dac754e 2546{
9ee474f5 2547 update_entity_load_avg(se, 1);
aff3e498
PT
2548 /* we force update consideration on load-balancer moves */
2549 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2550
2dac754e 2551 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2552 if (sleep) {
2553 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2554 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2555 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2556}
642dbc39
VG
2557
2558/*
2559 * Update the rq's load with the elapsed running time before entering
2560 * idle. if the last scheduled task is not a CFS task, idle_enter will
2561 * be the only way to update the runnable statistic.
2562 */
2563void idle_enter_fair(struct rq *this_rq)
2564{
2565 update_rq_runnable_avg(this_rq, 1);
2566}
2567
2568/*
2569 * Update the rq's load with the elapsed idle time before a task is
2570 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2571 * be the only way to update the runnable statistic.
2572 */
2573void idle_exit_fair(struct rq *this_rq)
2574{
2575 update_rq_runnable_avg(this_rq, 0);
2576}
2577
6e83125c
PZ
2578static int idle_balance(struct rq *this_rq);
2579
38033c37
PZ
2580#else /* CONFIG_SMP */
2581
9ee474f5
PT
2582static inline void update_entity_load_avg(struct sched_entity *se,
2583 int update_cfs_rq) {}
18bf2805 2584static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2585static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2586 struct sched_entity *se,
2587 int wakeup) {}
2dac754e 2588static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2589 struct sched_entity *se,
2590 int sleep) {}
aff3e498
PT
2591static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2592 int force_update) {}
6e83125c
PZ
2593
2594static inline int idle_balance(struct rq *rq)
2595{
2596 return 0;
2597}
2598
38033c37 2599#endif /* CONFIG_SMP */
9d85f21c 2600
2396af69 2601static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2602{
bf0f6f24 2603#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2604 struct task_struct *tsk = NULL;
2605
2606 if (entity_is_task(se))
2607 tsk = task_of(se);
2608
41acab88 2609 if (se->statistics.sleep_start) {
78becc27 2610 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2611
2612 if ((s64)delta < 0)
2613 delta = 0;
2614
41acab88
LDM
2615 if (unlikely(delta > se->statistics.sleep_max))
2616 se->statistics.sleep_max = delta;
bf0f6f24 2617
8c79a045 2618 se->statistics.sleep_start = 0;
41acab88 2619 se->statistics.sum_sleep_runtime += delta;
9745512c 2620
768d0c27 2621 if (tsk) {
e414314c 2622 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2623 trace_sched_stat_sleep(tsk, delta);
2624 }
bf0f6f24 2625 }
41acab88 2626 if (se->statistics.block_start) {
78becc27 2627 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2628
2629 if ((s64)delta < 0)
2630 delta = 0;
2631
41acab88
LDM
2632 if (unlikely(delta > se->statistics.block_max))
2633 se->statistics.block_max = delta;
bf0f6f24 2634
8c79a045 2635 se->statistics.block_start = 0;
41acab88 2636 se->statistics.sum_sleep_runtime += delta;
30084fbd 2637
e414314c 2638 if (tsk) {
8f0dfc34 2639 if (tsk->in_iowait) {
41acab88
LDM
2640 se->statistics.iowait_sum += delta;
2641 se->statistics.iowait_count++;
768d0c27 2642 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2643 }
2644
b781a602
AV
2645 trace_sched_stat_blocked(tsk, delta);
2646
e414314c
PZ
2647 /*
2648 * Blocking time is in units of nanosecs, so shift by
2649 * 20 to get a milliseconds-range estimation of the
2650 * amount of time that the task spent sleeping:
2651 */
2652 if (unlikely(prof_on == SLEEP_PROFILING)) {
2653 profile_hits(SLEEP_PROFILING,
2654 (void *)get_wchan(tsk),
2655 delta >> 20);
2656 }
2657 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2658 }
bf0f6f24
IM
2659 }
2660#endif
2661}
2662
ddc97297
PZ
2663static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2664{
2665#ifdef CONFIG_SCHED_DEBUG
2666 s64 d = se->vruntime - cfs_rq->min_vruntime;
2667
2668 if (d < 0)
2669 d = -d;
2670
2671 if (d > 3*sysctl_sched_latency)
2672 schedstat_inc(cfs_rq, nr_spread_over);
2673#endif
2674}
2675
aeb73b04
PZ
2676static void
2677place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2678{
1af5f730 2679 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2680
2cb8600e
PZ
2681 /*
2682 * The 'current' period is already promised to the current tasks,
2683 * however the extra weight of the new task will slow them down a
2684 * little, place the new task so that it fits in the slot that
2685 * stays open at the end.
2686 */
94dfb5e7 2687 if (initial && sched_feat(START_DEBIT))
f9c0b095 2688 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2689
a2e7a7eb 2690 /* sleeps up to a single latency don't count. */
5ca9880c 2691 if (!initial) {
a2e7a7eb 2692 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2693
a2e7a7eb
MG
2694 /*
2695 * Halve their sleep time's effect, to allow
2696 * for a gentler effect of sleepers:
2697 */
2698 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2699 thresh >>= 1;
51e0304c 2700
a2e7a7eb 2701 vruntime -= thresh;
aeb73b04
PZ
2702 }
2703
b5d9d734 2704 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2705 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2706}
2707
d3d9dc33
PT
2708static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2709
bf0f6f24 2710static void
88ec22d3 2711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2712{
88ec22d3
PZ
2713 /*
2714 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2715 * through calling update_curr().
88ec22d3 2716 */
371fd7e7 2717 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2718 se->vruntime += cfs_rq->min_vruntime;
2719
bf0f6f24 2720 /*
a2a2d680 2721 * Update run-time statistics of the 'current'.
bf0f6f24 2722 */
b7cc0896 2723 update_curr(cfs_rq);
f269ae04 2724 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2725 account_entity_enqueue(cfs_rq, se);
2726 update_cfs_shares(cfs_rq);
bf0f6f24 2727
88ec22d3 2728 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2729 place_entity(cfs_rq, se, 0);
2396af69 2730 enqueue_sleeper(cfs_rq, se);
e9acbff6 2731 }
bf0f6f24 2732
d2417e5a 2733 update_stats_enqueue(cfs_rq, se);
ddc97297 2734 check_spread(cfs_rq, se);
83b699ed
SV
2735 if (se != cfs_rq->curr)
2736 __enqueue_entity(cfs_rq, se);
2069dd75 2737 se->on_rq = 1;
3d4b47b4 2738
d3d9dc33 2739 if (cfs_rq->nr_running == 1) {
3d4b47b4 2740 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2741 check_enqueue_throttle(cfs_rq);
2742 }
bf0f6f24
IM
2743}
2744
2c13c919 2745static void __clear_buddies_last(struct sched_entity *se)
2002c695 2746{
2c13c919
RR
2747 for_each_sched_entity(se) {
2748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2749 if (cfs_rq->last != se)
2c13c919 2750 break;
f1044799
PZ
2751
2752 cfs_rq->last = NULL;
2c13c919
RR
2753 }
2754}
2002c695 2755
2c13c919
RR
2756static void __clear_buddies_next(struct sched_entity *se)
2757{
2758 for_each_sched_entity(se) {
2759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2760 if (cfs_rq->next != se)
2c13c919 2761 break;
f1044799
PZ
2762
2763 cfs_rq->next = NULL;
2c13c919 2764 }
2002c695
PZ
2765}
2766
ac53db59
RR
2767static void __clear_buddies_skip(struct sched_entity *se)
2768{
2769 for_each_sched_entity(se) {
2770 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2771 if (cfs_rq->skip != se)
ac53db59 2772 break;
f1044799
PZ
2773
2774 cfs_rq->skip = NULL;
ac53db59
RR
2775 }
2776}
2777
a571bbea
PZ
2778static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2779{
2c13c919
RR
2780 if (cfs_rq->last == se)
2781 __clear_buddies_last(se);
2782
2783 if (cfs_rq->next == se)
2784 __clear_buddies_next(se);
ac53db59
RR
2785
2786 if (cfs_rq->skip == se)
2787 __clear_buddies_skip(se);
a571bbea
PZ
2788}
2789
6c16a6dc 2790static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2791
bf0f6f24 2792static void
371fd7e7 2793dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2794{
a2a2d680
DA
2795 /*
2796 * Update run-time statistics of the 'current'.
2797 */
2798 update_curr(cfs_rq);
17bc14b7 2799 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2800
19b6a2e3 2801 update_stats_dequeue(cfs_rq, se);
371fd7e7 2802 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2803#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2804 if (entity_is_task(se)) {
2805 struct task_struct *tsk = task_of(se);
2806
2807 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2808 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2809 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2810 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2811 }
db36cc7d 2812#endif
67e9fb2a
PZ
2813 }
2814
2002c695 2815 clear_buddies(cfs_rq, se);
4793241b 2816
83b699ed 2817 if (se != cfs_rq->curr)
30cfdcfc 2818 __dequeue_entity(cfs_rq, se);
17bc14b7 2819 se->on_rq = 0;
30cfdcfc 2820 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2821
2822 /*
2823 * Normalize the entity after updating the min_vruntime because the
2824 * update can refer to the ->curr item and we need to reflect this
2825 * movement in our normalized position.
2826 */
371fd7e7 2827 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2828 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2829
d8b4986d
PT
2830 /* return excess runtime on last dequeue */
2831 return_cfs_rq_runtime(cfs_rq);
2832
1e876231 2833 update_min_vruntime(cfs_rq);
17bc14b7 2834 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2835}
2836
2837/*
2838 * Preempt the current task with a newly woken task if needed:
2839 */
7c92e54f 2840static void
2e09bf55 2841check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2842{
11697830 2843 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2844 struct sched_entity *se;
2845 s64 delta;
11697830 2846
6d0f0ebd 2847 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2848 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2849 if (delta_exec > ideal_runtime) {
bf0f6f24 2850 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2851 /*
2852 * The current task ran long enough, ensure it doesn't get
2853 * re-elected due to buddy favours.
2854 */
2855 clear_buddies(cfs_rq, curr);
f685ceac
MG
2856 return;
2857 }
2858
2859 /*
2860 * Ensure that a task that missed wakeup preemption by a
2861 * narrow margin doesn't have to wait for a full slice.
2862 * This also mitigates buddy induced latencies under load.
2863 */
f685ceac
MG
2864 if (delta_exec < sysctl_sched_min_granularity)
2865 return;
2866
f4cfb33e
WX
2867 se = __pick_first_entity(cfs_rq);
2868 delta = curr->vruntime - se->vruntime;
f685ceac 2869
f4cfb33e
WX
2870 if (delta < 0)
2871 return;
d7d82944 2872
f4cfb33e
WX
2873 if (delta > ideal_runtime)
2874 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2875}
2876
83b699ed 2877static void
8494f412 2878set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2879{
83b699ed
SV
2880 /* 'current' is not kept within the tree. */
2881 if (se->on_rq) {
2882 /*
2883 * Any task has to be enqueued before it get to execute on
2884 * a CPU. So account for the time it spent waiting on the
2885 * runqueue.
2886 */
2887 update_stats_wait_end(cfs_rq, se);
2888 __dequeue_entity(cfs_rq, se);
2889 }
2890
79303e9e 2891 update_stats_curr_start(cfs_rq, se);
429d43bc 2892 cfs_rq->curr = se;
eba1ed4b
IM
2893#ifdef CONFIG_SCHEDSTATS
2894 /*
2895 * Track our maximum slice length, if the CPU's load is at
2896 * least twice that of our own weight (i.e. dont track it
2897 * when there are only lesser-weight tasks around):
2898 */
495eca49 2899 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2900 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2901 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2902 }
2903#endif
4a55b450 2904 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2905}
2906
3f3a4904
PZ
2907static int
2908wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2909
ac53db59
RR
2910/*
2911 * Pick the next process, keeping these things in mind, in this order:
2912 * 1) keep things fair between processes/task groups
2913 * 2) pick the "next" process, since someone really wants that to run
2914 * 3) pick the "last" process, for cache locality
2915 * 4) do not run the "skip" process, if something else is available
2916 */
678d5718
PZ
2917static struct sched_entity *
2918pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2919{
678d5718
PZ
2920 struct sched_entity *left = __pick_first_entity(cfs_rq);
2921 struct sched_entity *se;
2922
2923 /*
2924 * If curr is set we have to see if its left of the leftmost entity
2925 * still in the tree, provided there was anything in the tree at all.
2926 */
2927 if (!left || (curr && entity_before(curr, left)))
2928 left = curr;
2929
2930 se = left; /* ideally we run the leftmost entity */
f4b6755f 2931
ac53db59
RR
2932 /*
2933 * Avoid running the skip buddy, if running something else can
2934 * be done without getting too unfair.
2935 */
2936 if (cfs_rq->skip == se) {
678d5718
PZ
2937 struct sched_entity *second;
2938
2939 if (se == curr) {
2940 second = __pick_first_entity(cfs_rq);
2941 } else {
2942 second = __pick_next_entity(se);
2943 if (!second || (curr && entity_before(curr, second)))
2944 second = curr;
2945 }
2946
ac53db59
RR
2947 if (second && wakeup_preempt_entity(second, left) < 1)
2948 se = second;
2949 }
aa2ac252 2950
f685ceac
MG
2951 /*
2952 * Prefer last buddy, try to return the CPU to a preempted task.
2953 */
2954 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2955 se = cfs_rq->last;
2956
ac53db59
RR
2957 /*
2958 * Someone really wants this to run. If it's not unfair, run it.
2959 */
2960 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2961 se = cfs_rq->next;
2962
f685ceac 2963 clear_buddies(cfs_rq, se);
4793241b
PZ
2964
2965 return se;
aa2ac252
PZ
2966}
2967
678d5718 2968static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2969
ab6cde26 2970static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2971{
2972 /*
2973 * If still on the runqueue then deactivate_task()
2974 * was not called and update_curr() has to be done:
2975 */
2976 if (prev->on_rq)
b7cc0896 2977 update_curr(cfs_rq);
bf0f6f24 2978
d3d9dc33
PT
2979 /* throttle cfs_rqs exceeding runtime */
2980 check_cfs_rq_runtime(cfs_rq);
2981
ddc97297 2982 check_spread(cfs_rq, prev);
30cfdcfc 2983 if (prev->on_rq) {
5870db5b 2984 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2985 /* Put 'current' back into the tree. */
2986 __enqueue_entity(cfs_rq, prev);
9d85f21c 2987 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2988 update_entity_load_avg(prev, 1);
30cfdcfc 2989 }
429d43bc 2990 cfs_rq->curr = NULL;
bf0f6f24
IM
2991}
2992
8f4d37ec
PZ
2993static void
2994entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2995{
bf0f6f24 2996 /*
30cfdcfc 2997 * Update run-time statistics of the 'current'.
bf0f6f24 2998 */
30cfdcfc 2999 update_curr(cfs_rq);
bf0f6f24 3000
9d85f21c
PT
3001 /*
3002 * Ensure that runnable average is periodically updated.
3003 */
9ee474f5 3004 update_entity_load_avg(curr, 1);
aff3e498 3005 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3006 update_cfs_shares(cfs_rq);
9d85f21c 3007
8f4d37ec
PZ
3008#ifdef CONFIG_SCHED_HRTICK
3009 /*
3010 * queued ticks are scheduled to match the slice, so don't bother
3011 * validating it and just reschedule.
3012 */
983ed7a6
HH
3013 if (queued) {
3014 resched_task(rq_of(cfs_rq)->curr);
3015 return;
3016 }
8f4d37ec
PZ
3017 /*
3018 * don't let the period tick interfere with the hrtick preemption
3019 */
3020 if (!sched_feat(DOUBLE_TICK) &&
3021 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3022 return;
3023#endif
3024
2c2efaed 3025 if (cfs_rq->nr_running > 1)
2e09bf55 3026 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3027}
3028
ab84d31e
PT
3029
3030/**************************************************
3031 * CFS bandwidth control machinery
3032 */
3033
3034#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3035
3036#ifdef HAVE_JUMP_LABEL
c5905afb 3037static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3038
3039static inline bool cfs_bandwidth_used(void)
3040{
c5905afb 3041 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3042}
3043
1ee14e6c 3044void cfs_bandwidth_usage_inc(void)
029632fb 3045{
1ee14e6c
BS
3046 static_key_slow_inc(&__cfs_bandwidth_used);
3047}
3048
3049void cfs_bandwidth_usage_dec(void)
3050{
3051 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3052}
3053#else /* HAVE_JUMP_LABEL */
3054static bool cfs_bandwidth_used(void)
3055{
3056 return true;
3057}
3058
1ee14e6c
BS
3059void cfs_bandwidth_usage_inc(void) {}
3060void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3061#endif /* HAVE_JUMP_LABEL */
3062
ab84d31e
PT
3063/*
3064 * default period for cfs group bandwidth.
3065 * default: 0.1s, units: nanoseconds
3066 */
3067static inline u64 default_cfs_period(void)
3068{
3069 return 100000000ULL;
3070}
ec12cb7f
PT
3071
3072static inline u64 sched_cfs_bandwidth_slice(void)
3073{
3074 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3075}
3076
a9cf55b2
PT
3077/*
3078 * Replenish runtime according to assigned quota and update expiration time.
3079 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3080 * additional synchronization around rq->lock.
3081 *
3082 * requires cfs_b->lock
3083 */
029632fb 3084void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3085{
3086 u64 now;
3087
3088 if (cfs_b->quota == RUNTIME_INF)
3089 return;
3090
3091 now = sched_clock_cpu(smp_processor_id());
3092 cfs_b->runtime = cfs_b->quota;
3093 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3094}
3095
029632fb
PZ
3096static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3097{
3098 return &tg->cfs_bandwidth;
3099}
3100
f1b17280
PT
3101/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3102static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3103{
3104 if (unlikely(cfs_rq->throttle_count))
3105 return cfs_rq->throttled_clock_task;
3106
78becc27 3107 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3108}
3109
85dac906
PT
3110/* returns 0 on failure to allocate runtime */
3111static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3112{
3113 struct task_group *tg = cfs_rq->tg;
3114 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3115 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3116
3117 /* note: this is a positive sum as runtime_remaining <= 0 */
3118 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3119
3120 raw_spin_lock(&cfs_b->lock);
3121 if (cfs_b->quota == RUNTIME_INF)
3122 amount = min_amount;
58088ad0 3123 else {
a9cf55b2
PT
3124 /*
3125 * If the bandwidth pool has become inactive, then at least one
3126 * period must have elapsed since the last consumption.
3127 * Refresh the global state and ensure bandwidth timer becomes
3128 * active.
3129 */
3130 if (!cfs_b->timer_active) {
3131 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3132 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3133 }
58088ad0
PT
3134
3135 if (cfs_b->runtime > 0) {
3136 amount = min(cfs_b->runtime, min_amount);
3137 cfs_b->runtime -= amount;
3138 cfs_b->idle = 0;
3139 }
ec12cb7f 3140 }
a9cf55b2 3141 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3142 raw_spin_unlock(&cfs_b->lock);
3143
3144 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3145 /*
3146 * we may have advanced our local expiration to account for allowed
3147 * spread between our sched_clock and the one on which runtime was
3148 * issued.
3149 */
3150 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3151 cfs_rq->runtime_expires = expires;
85dac906
PT
3152
3153 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3154}
3155
a9cf55b2
PT
3156/*
3157 * Note: This depends on the synchronization provided by sched_clock and the
3158 * fact that rq->clock snapshots this value.
3159 */
3160static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3161{
a9cf55b2 3162 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3163
3164 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3165 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3166 return;
3167
a9cf55b2
PT
3168 if (cfs_rq->runtime_remaining < 0)
3169 return;
3170
3171 /*
3172 * If the local deadline has passed we have to consider the
3173 * possibility that our sched_clock is 'fast' and the global deadline
3174 * has not truly expired.
3175 *
3176 * Fortunately we can check determine whether this the case by checking
3177 * whether the global deadline has advanced.
3178 */
3179
3180 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3181 /* extend local deadline, drift is bounded above by 2 ticks */
3182 cfs_rq->runtime_expires += TICK_NSEC;
3183 } else {
3184 /* global deadline is ahead, expiration has passed */
3185 cfs_rq->runtime_remaining = 0;
3186 }
3187}
3188
9dbdb155 3189static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3190{
3191 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3192 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3193 expire_cfs_rq_runtime(cfs_rq);
3194
3195 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3196 return;
3197
85dac906
PT
3198 /*
3199 * if we're unable to extend our runtime we resched so that the active
3200 * hierarchy can be throttled
3201 */
3202 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3203 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3204}
3205
6c16a6dc 3206static __always_inline
9dbdb155 3207void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3208{
56f570e5 3209 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3210 return;
3211
3212 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3213}
3214
85dac906
PT
3215static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3216{
56f570e5 3217 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3218}
3219
64660c86
PT
3220/* check whether cfs_rq, or any parent, is throttled */
3221static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3222{
56f570e5 3223 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3224}
3225
3226/*
3227 * Ensure that neither of the group entities corresponding to src_cpu or
3228 * dest_cpu are members of a throttled hierarchy when performing group
3229 * load-balance operations.
3230 */
3231static inline int throttled_lb_pair(struct task_group *tg,
3232 int src_cpu, int dest_cpu)
3233{
3234 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3235
3236 src_cfs_rq = tg->cfs_rq[src_cpu];
3237 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3238
3239 return throttled_hierarchy(src_cfs_rq) ||
3240 throttled_hierarchy(dest_cfs_rq);
3241}
3242
3243/* updated child weight may affect parent so we have to do this bottom up */
3244static int tg_unthrottle_up(struct task_group *tg, void *data)
3245{
3246 struct rq *rq = data;
3247 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3248
3249 cfs_rq->throttle_count--;
3250#ifdef CONFIG_SMP
3251 if (!cfs_rq->throttle_count) {
f1b17280 3252 /* adjust cfs_rq_clock_task() */
78becc27 3253 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3254 cfs_rq->throttled_clock_task;
64660c86
PT
3255 }
3256#endif
3257
3258 return 0;
3259}
3260
3261static int tg_throttle_down(struct task_group *tg, void *data)
3262{
3263 struct rq *rq = data;
3264 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3265
82958366
PT
3266 /* group is entering throttled state, stop time */
3267 if (!cfs_rq->throttle_count)
78becc27 3268 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3269 cfs_rq->throttle_count++;
3270
3271 return 0;
3272}
3273
d3d9dc33 3274static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3275{
3276 struct rq *rq = rq_of(cfs_rq);
3277 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3278 struct sched_entity *se;
3279 long task_delta, dequeue = 1;
3280
3281 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3282
f1b17280 3283 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3284 rcu_read_lock();
3285 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3286 rcu_read_unlock();
85dac906
PT
3287
3288 task_delta = cfs_rq->h_nr_running;
3289 for_each_sched_entity(se) {
3290 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3291 /* throttled entity or throttle-on-deactivate */
3292 if (!se->on_rq)
3293 break;
3294
3295 if (dequeue)
3296 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3297 qcfs_rq->h_nr_running -= task_delta;
3298
3299 if (qcfs_rq->load.weight)
3300 dequeue = 0;
3301 }
3302
3303 if (!se)
3304 rq->nr_running -= task_delta;
3305
3306 cfs_rq->throttled = 1;
78becc27 3307 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3308 raw_spin_lock(&cfs_b->lock);
3309 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3310 if (!cfs_b->timer_active)
3311 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3312 raw_spin_unlock(&cfs_b->lock);
3313}
3314
029632fb 3315void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3316{
3317 struct rq *rq = rq_of(cfs_rq);
3318 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3319 struct sched_entity *se;
3320 int enqueue = 1;
3321 long task_delta;
3322
22b958d8 3323 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3324
3325 cfs_rq->throttled = 0;
1a55af2e
FW
3326
3327 update_rq_clock(rq);
3328
671fd9da 3329 raw_spin_lock(&cfs_b->lock);
78becc27 3330 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3331 list_del_rcu(&cfs_rq->throttled_list);
3332 raw_spin_unlock(&cfs_b->lock);
3333
64660c86
PT
3334 /* update hierarchical throttle state */
3335 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3336
671fd9da
PT
3337 if (!cfs_rq->load.weight)
3338 return;
3339
3340 task_delta = cfs_rq->h_nr_running;
3341 for_each_sched_entity(se) {
3342 if (se->on_rq)
3343 enqueue = 0;
3344
3345 cfs_rq = cfs_rq_of(se);
3346 if (enqueue)
3347 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3348 cfs_rq->h_nr_running += task_delta;
3349
3350 if (cfs_rq_throttled(cfs_rq))
3351 break;
3352 }
3353
3354 if (!se)
3355 rq->nr_running += task_delta;
3356
3357 /* determine whether we need to wake up potentially idle cpu */
3358 if (rq->curr == rq->idle && rq->cfs.nr_running)
3359 resched_task(rq->curr);
3360}
3361
3362static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3363 u64 remaining, u64 expires)
3364{
3365 struct cfs_rq *cfs_rq;
3366 u64 runtime = remaining;
3367
3368 rcu_read_lock();
3369 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3370 throttled_list) {
3371 struct rq *rq = rq_of(cfs_rq);
3372
3373 raw_spin_lock(&rq->lock);
3374 if (!cfs_rq_throttled(cfs_rq))
3375 goto next;
3376
3377 runtime = -cfs_rq->runtime_remaining + 1;
3378 if (runtime > remaining)
3379 runtime = remaining;
3380 remaining -= runtime;
3381
3382 cfs_rq->runtime_remaining += runtime;
3383 cfs_rq->runtime_expires = expires;
3384
3385 /* we check whether we're throttled above */
3386 if (cfs_rq->runtime_remaining > 0)
3387 unthrottle_cfs_rq(cfs_rq);
3388
3389next:
3390 raw_spin_unlock(&rq->lock);
3391
3392 if (!remaining)
3393 break;
3394 }
3395 rcu_read_unlock();
3396
3397 return remaining;
3398}
3399
58088ad0
PT
3400/*
3401 * Responsible for refilling a task_group's bandwidth and unthrottling its
3402 * cfs_rqs as appropriate. If there has been no activity within the last
3403 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3404 * used to track this state.
3405 */
3406static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3407{
671fd9da
PT
3408 u64 runtime, runtime_expires;
3409 int idle = 1, throttled;
58088ad0
PT
3410
3411 raw_spin_lock(&cfs_b->lock);
3412 /* no need to continue the timer with no bandwidth constraint */
3413 if (cfs_b->quota == RUNTIME_INF)
3414 goto out_unlock;
3415
671fd9da
PT
3416 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3417 /* idle depends on !throttled (for the case of a large deficit) */
3418 idle = cfs_b->idle && !throttled;
e8da1b18 3419 cfs_b->nr_periods += overrun;
671fd9da 3420
a9cf55b2
PT
3421 /* if we're going inactive then everything else can be deferred */
3422 if (idle)
3423 goto out_unlock;
3424
927b54fc
BS
3425 /*
3426 * if we have relooped after returning idle once, we need to update our
3427 * status as actually running, so that other cpus doing
3428 * __start_cfs_bandwidth will stop trying to cancel us.
3429 */
3430 cfs_b->timer_active = 1;
3431
a9cf55b2
PT
3432 __refill_cfs_bandwidth_runtime(cfs_b);
3433
671fd9da
PT
3434 if (!throttled) {
3435 /* mark as potentially idle for the upcoming period */
3436 cfs_b->idle = 1;
3437 goto out_unlock;
3438 }
3439
e8da1b18
NR
3440 /* account preceding periods in which throttling occurred */
3441 cfs_b->nr_throttled += overrun;
3442
671fd9da
PT
3443 /*
3444 * There are throttled entities so we must first use the new bandwidth
3445 * to unthrottle them before making it generally available. This
3446 * ensures that all existing debts will be paid before a new cfs_rq is
3447 * allowed to run.
3448 */
3449 runtime = cfs_b->runtime;
3450 runtime_expires = cfs_b->runtime_expires;
3451 cfs_b->runtime = 0;
3452
3453 /*
3454 * This check is repeated as we are holding onto the new bandwidth
3455 * while we unthrottle. This can potentially race with an unthrottled
3456 * group trying to acquire new bandwidth from the global pool.
3457 */
3458 while (throttled && runtime > 0) {
3459 raw_spin_unlock(&cfs_b->lock);
3460 /* we can't nest cfs_b->lock while distributing bandwidth */
3461 runtime = distribute_cfs_runtime(cfs_b, runtime,
3462 runtime_expires);
3463 raw_spin_lock(&cfs_b->lock);
3464
3465 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3466 }
58088ad0 3467
671fd9da
PT
3468 /* return (any) remaining runtime */
3469 cfs_b->runtime = runtime;
3470 /*
3471 * While we are ensured activity in the period following an
3472 * unthrottle, this also covers the case in which the new bandwidth is
3473 * insufficient to cover the existing bandwidth deficit. (Forcing the
3474 * timer to remain active while there are any throttled entities.)
3475 */
3476 cfs_b->idle = 0;
58088ad0
PT
3477out_unlock:
3478 if (idle)
3479 cfs_b->timer_active = 0;
3480 raw_spin_unlock(&cfs_b->lock);
3481
3482 return idle;
3483}
d3d9dc33 3484
d8b4986d
PT
3485/* a cfs_rq won't donate quota below this amount */
3486static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3487/* minimum remaining period time to redistribute slack quota */
3488static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3489/* how long we wait to gather additional slack before distributing */
3490static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3491
db06e78c
BS
3492/*
3493 * Are we near the end of the current quota period?
3494 *
3495 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3496 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3497 * migrate_hrtimers, base is never cleared, so we are fine.
3498 */
d8b4986d
PT
3499static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3500{
3501 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3502 u64 remaining;
3503
3504 /* if the call-back is running a quota refresh is already occurring */
3505 if (hrtimer_callback_running(refresh_timer))
3506 return 1;
3507
3508 /* is a quota refresh about to occur? */
3509 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3510 if (remaining < min_expire)
3511 return 1;
3512
3513 return 0;
3514}
3515
3516static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3517{
3518 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3519
3520 /* if there's a quota refresh soon don't bother with slack */
3521 if (runtime_refresh_within(cfs_b, min_left))
3522 return;
3523
3524 start_bandwidth_timer(&cfs_b->slack_timer,
3525 ns_to_ktime(cfs_bandwidth_slack_period));
3526}
3527
3528/* we know any runtime found here is valid as update_curr() precedes return */
3529static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3530{
3531 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3532 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3533
3534 if (slack_runtime <= 0)
3535 return;
3536
3537 raw_spin_lock(&cfs_b->lock);
3538 if (cfs_b->quota != RUNTIME_INF &&
3539 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3540 cfs_b->runtime += slack_runtime;
3541
3542 /* we are under rq->lock, defer unthrottling using a timer */
3543 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3544 !list_empty(&cfs_b->throttled_cfs_rq))
3545 start_cfs_slack_bandwidth(cfs_b);
3546 }
3547 raw_spin_unlock(&cfs_b->lock);
3548
3549 /* even if it's not valid for return we don't want to try again */
3550 cfs_rq->runtime_remaining -= slack_runtime;
3551}
3552
3553static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3554{
56f570e5
PT
3555 if (!cfs_bandwidth_used())
3556 return;
3557
fccfdc6f 3558 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3559 return;
3560
3561 __return_cfs_rq_runtime(cfs_rq);
3562}
3563
3564/*
3565 * This is done with a timer (instead of inline with bandwidth return) since
3566 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3567 */
3568static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3569{
3570 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3571 u64 expires;
3572
3573 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3574 raw_spin_lock(&cfs_b->lock);
3575 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3576 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3577 return;
db06e78c 3578 }
d8b4986d 3579
d8b4986d
PT
3580 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3581 runtime = cfs_b->runtime;
3582 cfs_b->runtime = 0;
3583 }
3584 expires = cfs_b->runtime_expires;
3585 raw_spin_unlock(&cfs_b->lock);
3586
3587 if (!runtime)
3588 return;
3589
3590 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3591
3592 raw_spin_lock(&cfs_b->lock);
3593 if (expires == cfs_b->runtime_expires)
3594 cfs_b->runtime = runtime;
3595 raw_spin_unlock(&cfs_b->lock);
3596}
3597
d3d9dc33
PT
3598/*
3599 * When a group wakes up we want to make sure that its quota is not already
3600 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3601 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3602 */
3603static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3604{
56f570e5
PT
3605 if (!cfs_bandwidth_used())
3606 return;
3607
d3d9dc33
PT
3608 /* an active group must be handled by the update_curr()->put() path */
3609 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3610 return;
3611
3612 /* ensure the group is not already throttled */
3613 if (cfs_rq_throttled(cfs_rq))
3614 return;
3615
3616 /* update runtime allocation */
3617 account_cfs_rq_runtime(cfs_rq, 0);
3618 if (cfs_rq->runtime_remaining <= 0)
3619 throttle_cfs_rq(cfs_rq);
3620}
3621
3622/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3623static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3624{
56f570e5 3625 if (!cfs_bandwidth_used())
678d5718 3626 return false;
56f570e5 3627
d3d9dc33 3628 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3629 return false;
d3d9dc33
PT
3630
3631 /*
3632 * it's possible for a throttled entity to be forced into a running
3633 * state (e.g. set_curr_task), in this case we're finished.
3634 */
3635 if (cfs_rq_throttled(cfs_rq))
678d5718 3636 return true;
d3d9dc33
PT
3637
3638 throttle_cfs_rq(cfs_rq);
678d5718 3639 return true;
d3d9dc33 3640}
029632fb 3641
029632fb
PZ
3642static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3643{
3644 struct cfs_bandwidth *cfs_b =
3645 container_of(timer, struct cfs_bandwidth, slack_timer);
3646 do_sched_cfs_slack_timer(cfs_b);
3647
3648 return HRTIMER_NORESTART;
3649}
3650
3651static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3652{
3653 struct cfs_bandwidth *cfs_b =
3654 container_of(timer, struct cfs_bandwidth, period_timer);
3655 ktime_t now;
3656 int overrun;
3657 int idle = 0;
3658
3659 for (;;) {
3660 now = hrtimer_cb_get_time(timer);
3661 overrun = hrtimer_forward(timer, now, cfs_b->period);
3662
3663 if (!overrun)
3664 break;
3665
3666 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3667 }
3668
3669 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3670}
3671
3672void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3673{
3674 raw_spin_lock_init(&cfs_b->lock);
3675 cfs_b->runtime = 0;
3676 cfs_b->quota = RUNTIME_INF;
3677 cfs_b->period = ns_to_ktime(default_cfs_period());
3678
3679 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3680 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3681 cfs_b->period_timer.function = sched_cfs_period_timer;
3682 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3683 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3684}
3685
3686static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3687{
3688 cfs_rq->runtime_enabled = 0;
3689 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3690}
3691
3692/* requires cfs_b->lock, may release to reprogram timer */
3693void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3694{
3695 /*
3696 * The timer may be active because we're trying to set a new bandwidth
3697 * period or because we're racing with the tear-down path
3698 * (timer_active==0 becomes visible before the hrtimer call-back
3699 * terminates). In either case we ensure that it's re-programmed
3700 */
927b54fc
BS
3701 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3702 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3703 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3704 raw_spin_unlock(&cfs_b->lock);
927b54fc 3705 cpu_relax();
029632fb
PZ
3706 raw_spin_lock(&cfs_b->lock);
3707 /* if someone else restarted the timer then we're done */
3708 if (cfs_b->timer_active)
3709 return;
3710 }
3711
3712 cfs_b->timer_active = 1;
3713 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3714}
3715
3716static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3717{
3718 hrtimer_cancel(&cfs_b->period_timer);
3719 hrtimer_cancel(&cfs_b->slack_timer);
3720}
3721
38dc3348 3722static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3723{
3724 struct cfs_rq *cfs_rq;
3725
3726 for_each_leaf_cfs_rq(rq, cfs_rq) {
3727 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3728
3729 if (!cfs_rq->runtime_enabled)
3730 continue;
3731
3732 /*
3733 * clock_task is not advancing so we just need to make sure
3734 * there's some valid quota amount
3735 */
3736 cfs_rq->runtime_remaining = cfs_b->quota;
3737 if (cfs_rq_throttled(cfs_rq))
3738 unthrottle_cfs_rq(cfs_rq);
3739 }
3740}
3741
3742#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3744{
78becc27 3745 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3746}
3747
9dbdb155 3748static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3749static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3750static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3751static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3752
3753static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754{
3755 return 0;
3756}
64660c86
PT
3757
3758static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3759{
3760 return 0;
3761}
3762
3763static inline int throttled_lb_pair(struct task_group *tg,
3764 int src_cpu, int dest_cpu)
3765{
3766 return 0;
3767}
029632fb
PZ
3768
3769void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3770
3771#ifdef CONFIG_FAIR_GROUP_SCHED
3772static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3773#endif
3774
029632fb
PZ
3775static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3776{
3777 return NULL;
3778}
3779static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3780static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3781
3782#endif /* CONFIG_CFS_BANDWIDTH */
3783
bf0f6f24
IM
3784/**************************************************
3785 * CFS operations on tasks:
3786 */
3787
8f4d37ec
PZ
3788#ifdef CONFIG_SCHED_HRTICK
3789static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3790{
8f4d37ec
PZ
3791 struct sched_entity *se = &p->se;
3792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3793
3794 WARN_ON(task_rq(p) != rq);
3795
b39e66ea 3796 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3797 u64 slice = sched_slice(cfs_rq, se);
3798 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3799 s64 delta = slice - ran;
3800
3801 if (delta < 0) {
3802 if (rq->curr == p)
3803 resched_task(p);
3804 return;
3805 }
3806
3807 /*
3808 * Don't schedule slices shorter than 10000ns, that just
3809 * doesn't make sense. Rely on vruntime for fairness.
3810 */
31656519 3811 if (rq->curr != p)
157124c1 3812 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3813
31656519 3814 hrtick_start(rq, delta);
8f4d37ec
PZ
3815 }
3816}
a4c2f00f
PZ
3817
3818/*
3819 * called from enqueue/dequeue and updates the hrtick when the
3820 * current task is from our class and nr_running is low enough
3821 * to matter.
3822 */
3823static void hrtick_update(struct rq *rq)
3824{
3825 struct task_struct *curr = rq->curr;
3826
b39e66ea 3827 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3828 return;
3829
3830 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3831 hrtick_start_fair(rq, curr);
3832}
55e12e5e 3833#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3834static inline void
3835hrtick_start_fair(struct rq *rq, struct task_struct *p)
3836{
3837}
a4c2f00f
PZ
3838
3839static inline void hrtick_update(struct rq *rq)
3840{
3841}
8f4d37ec
PZ
3842#endif
3843
bf0f6f24
IM
3844/*
3845 * The enqueue_task method is called before nr_running is
3846 * increased. Here we update the fair scheduling stats and
3847 * then put the task into the rbtree:
3848 */
ea87bb78 3849static void
371fd7e7 3850enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3851{
3852 struct cfs_rq *cfs_rq;
62fb1851 3853 struct sched_entity *se = &p->se;
bf0f6f24
IM
3854
3855 for_each_sched_entity(se) {
62fb1851 3856 if (se->on_rq)
bf0f6f24
IM
3857 break;
3858 cfs_rq = cfs_rq_of(se);
88ec22d3 3859 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3860
3861 /*
3862 * end evaluation on encountering a throttled cfs_rq
3863 *
3864 * note: in the case of encountering a throttled cfs_rq we will
3865 * post the final h_nr_running increment below.
3866 */
3867 if (cfs_rq_throttled(cfs_rq))
3868 break;
953bfcd1 3869 cfs_rq->h_nr_running++;
85dac906 3870
88ec22d3 3871 flags = ENQUEUE_WAKEUP;
bf0f6f24 3872 }
8f4d37ec 3873
2069dd75 3874 for_each_sched_entity(se) {
0f317143 3875 cfs_rq = cfs_rq_of(se);
953bfcd1 3876 cfs_rq->h_nr_running++;
2069dd75 3877
85dac906
PT
3878 if (cfs_rq_throttled(cfs_rq))
3879 break;
3880
17bc14b7 3881 update_cfs_shares(cfs_rq);
9ee474f5 3882 update_entity_load_avg(se, 1);
2069dd75
PZ
3883 }
3884
18bf2805
BS
3885 if (!se) {
3886 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3887 inc_nr_running(rq);
18bf2805 3888 }
a4c2f00f 3889 hrtick_update(rq);
bf0f6f24
IM
3890}
3891
2f36825b
VP
3892static void set_next_buddy(struct sched_entity *se);
3893
bf0f6f24
IM
3894/*
3895 * The dequeue_task method is called before nr_running is
3896 * decreased. We remove the task from the rbtree and
3897 * update the fair scheduling stats:
3898 */
371fd7e7 3899static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3900{
3901 struct cfs_rq *cfs_rq;
62fb1851 3902 struct sched_entity *se = &p->se;
2f36825b 3903 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3904
3905 for_each_sched_entity(se) {
3906 cfs_rq = cfs_rq_of(se);
371fd7e7 3907 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3908
3909 /*
3910 * end evaluation on encountering a throttled cfs_rq
3911 *
3912 * note: in the case of encountering a throttled cfs_rq we will
3913 * post the final h_nr_running decrement below.
3914 */
3915 if (cfs_rq_throttled(cfs_rq))
3916 break;
953bfcd1 3917 cfs_rq->h_nr_running--;
2069dd75 3918
bf0f6f24 3919 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3920 if (cfs_rq->load.weight) {
3921 /*
3922 * Bias pick_next to pick a task from this cfs_rq, as
3923 * p is sleeping when it is within its sched_slice.
3924 */
3925 if (task_sleep && parent_entity(se))
3926 set_next_buddy(parent_entity(se));
9598c82d
PT
3927
3928 /* avoid re-evaluating load for this entity */
3929 se = parent_entity(se);
bf0f6f24 3930 break;
2f36825b 3931 }
371fd7e7 3932 flags |= DEQUEUE_SLEEP;
bf0f6f24 3933 }
8f4d37ec 3934
2069dd75 3935 for_each_sched_entity(se) {
0f317143 3936 cfs_rq = cfs_rq_of(se);
953bfcd1 3937 cfs_rq->h_nr_running--;
2069dd75 3938
85dac906
PT
3939 if (cfs_rq_throttled(cfs_rq))
3940 break;
3941
17bc14b7 3942 update_cfs_shares(cfs_rq);
9ee474f5 3943 update_entity_load_avg(se, 1);
2069dd75
PZ
3944 }
3945
18bf2805 3946 if (!se) {
85dac906 3947 dec_nr_running(rq);
18bf2805
BS
3948 update_rq_runnable_avg(rq, 1);
3949 }
a4c2f00f 3950 hrtick_update(rq);
bf0f6f24
IM
3951}
3952
e7693a36 3953#ifdef CONFIG_SMP
029632fb
PZ
3954/* Used instead of source_load when we know the type == 0 */
3955static unsigned long weighted_cpuload(const int cpu)
3956{
b92486cb 3957 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3958}
3959
3960/*
3961 * Return a low guess at the load of a migration-source cpu weighted
3962 * according to the scheduling class and "nice" value.
3963 *
3964 * We want to under-estimate the load of migration sources, to
3965 * balance conservatively.
3966 */
3967static unsigned long source_load(int cpu, int type)
3968{
3969 struct rq *rq = cpu_rq(cpu);
3970 unsigned long total = weighted_cpuload(cpu);
3971
3972 if (type == 0 || !sched_feat(LB_BIAS))
3973 return total;
3974
3975 return min(rq->cpu_load[type-1], total);
3976}
3977
3978/*
3979 * Return a high guess at the load of a migration-target cpu weighted
3980 * according to the scheduling class and "nice" value.
3981 */
3982static unsigned long target_load(int cpu, int type)
3983{
3984 struct rq *rq = cpu_rq(cpu);
3985 unsigned long total = weighted_cpuload(cpu);
3986
3987 if (type == 0 || !sched_feat(LB_BIAS))
3988 return total;
3989
3990 return max(rq->cpu_load[type-1], total);
3991}
3992
3993static unsigned long power_of(int cpu)
3994{
3995 return cpu_rq(cpu)->cpu_power;
3996}
3997
3998static unsigned long cpu_avg_load_per_task(int cpu)
3999{
4000 struct rq *rq = cpu_rq(cpu);
4001 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4002 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4003
4004 if (nr_running)
b92486cb 4005 return load_avg / nr_running;
029632fb
PZ
4006
4007 return 0;
4008}
4009
62470419
MW
4010static void record_wakee(struct task_struct *p)
4011{
4012 /*
4013 * Rough decay (wiping) for cost saving, don't worry
4014 * about the boundary, really active task won't care
4015 * about the loss.
4016 */
4017 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4018 current->wakee_flips = 0;
4019 current->wakee_flip_decay_ts = jiffies;
4020 }
4021
4022 if (current->last_wakee != p) {
4023 current->last_wakee = p;
4024 current->wakee_flips++;
4025 }
4026}
098fb9db 4027
74f8e4b2 4028static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4029{
4030 struct sched_entity *se = &p->se;
4031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4032 u64 min_vruntime;
4033
4034#ifndef CONFIG_64BIT
4035 u64 min_vruntime_copy;
88ec22d3 4036
3fe1698b
PZ
4037 do {
4038 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4039 smp_rmb();
4040 min_vruntime = cfs_rq->min_vruntime;
4041 } while (min_vruntime != min_vruntime_copy);
4042#else
4043 min_vruntime = cfs_rq->min_vruntime;
4044#endif
88ec22d3 4045
3fe1698b 4046 se->vruntime -= min_vruntime;
62470419 4047 record_wakee(p);
88ec22d3
PZ
4048}
4049
bb3469ac 4050#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4051/*
4052 * effective_load() calculates the load change as seen from the root_task_group
4053 *
4054 * Adding load to a group doesn't make a group heavier, but can cause movement
4055 * of group shares between cpus. Assuming the shares were perfectly aligned one
4056 * can calculate the shift in shares.
cf5f0acf
PZ
4057 *
4058 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4059 * on this @cpu and results in a total addition (subtraction) of @wg to the
4060 * total group weight.
4061 *
4062 * Given a runqueue weight distribution (rw_i) we can compute a shares
4063 * distribution (s_i) using:
4064 *
4065 * s_i = rw_i / \Sum rw_j (1)
4066 *
4067 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4068 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4069 * shares distribution (s_i):
4070 *
4071 * rw_i = { 2, 4, 1, 0 }
4072 * s_i = { 2/7, 4/7, 1/7, 0 }
4073 *
4074 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4075 * task used to run on and the CPU the waker is running on), we need to
4076 * compute the effect of waking a task on either CPU and, in case of a sync
4077 * wakeup, compute the effect of the current task going to sleep.
4078 *
4079 * So for a change of @wl to the local @cpu with an overall group weight change
4080 * of @wl we can compute the new shares distribution (s'_i) using:
4081 *
4082 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4083 *
4084 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4085 * differences in waking a task to CPU 0. The additional task changes the
4086 * weight and shares distributions like:
4087 *
4088 * rw'_i = { 3, 4, 1, 0 }
4089 * s'_i = { 3/8, 4/8, 1/8, 0 }
4090 *
4091 * We can then compute the difference in effective weight by using:
4092 *
4093 * dw_i = S * (s'_i - s_i) (3)
4094 *
4095 * Where 'S' is the group weight as seen by its parent.
4096 *
4097 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4098 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4099 * 4/7) times the weight of the group.
f5bfb7d9 4100 */
2069dd75 4101static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4102{
4be9daaa 4103 struct sched_entity *se = tg->se[cpu];
f1d239f7 4104
9722c2da 4105 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4106 return wl;
4107
4be9daaa 4108 for_each_sched_entity(se) {
cf5f0acf 4109 long w, W;
4be9daaa 4110
977dda7c 4111 tg = se->my_q->tg;
bb3469ac 4112
cf5f0acf
PZ
4113 /*
4114 * W = @wg + \Sum rw_j
4115 */
4116 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4117
cf5f0acf
PZ
4118 /*
4119 * w = rw_i + @wl
4120 */
4121 w = se->my_q->load.weight + wl;
940959e9 4122
cf5f0acf
PZ
4123 /*
4124 * wl = S * s'_i; see (2)
4125 */
4126 if (W > 0 && w < W)
4127 wl = (w * tg->shares) / W;
977dda7c
PT
4128 else
4129 wl = tg->shares;
940959e9 4130
cf5f0acf
PZ
4131 /*
4132 * Per the above, wl is the new se->load.weight value; since
4133 * those are clipped to [MIN_SHARES, ...) do so now. See
4134 * calc_cfs_shares().
4135 */
977dda7c
PT
4136 if (wl < MIN_SHARES)
4137 wl = MIN_SHARES;
cf5f0acf
PZ
4138
4139 /*
4140 * wl = dw_i = S * (s'_i - s_i); see (3)
4141 */
977dda7c 4142 wl -= se->load.weight;
cf5f0acf
PZ
4143
4144 /*
4145 * Recursively apply this logic to all parent groups to compute
4146 * the final effective load change on the root group. Since
4147 * only the @tg group gets extra weight, all parent groups can
4148 * only redistribute existing shares. @wl is the shift in shares
4149 * resulting from this level per the above.
4150 */
4be9daaa 4151 wg = 0;
4be9daaa 4152 }
bb3469ac 4153
4be9daaa 4154 return wl;
bb3469ac
PZ
4155}
4156#else
4be9daaa 4157
58d081b5 4158static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4159{
83378269 4160 return wl;
bb3469ac 4161}
4be9daaa 4162
bb3469ac
PZ
4163#endif
4164
62470419
MW
4165static int wake_wide(struct task_struct *p)
4166{
7d9ffa89 4167 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4168
4169 /*
4170 * Yeah, it's the switching-frequency, could means many wakee or
4171 * rapidly switch, use factor here will just help to automatically
4172 * adjust the loose-degree, so bigger node will lead to more pull.
4173 */
4174 if (p->wakee_flips > factor) {
4175 /*
4176 * wakee is somewhat hot, it needs certain amount of cpu
4177 * resource, so if waker is far more hot, prefer to leave
4178 * it alone.
4179 */
4180 if (current->wakee_flips > (factor * p->wakee_flips))
4181 return 1;
4182 }
4183
4184 return 0;
4185}
4186
c88d5910 4187static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4188{
e37b6a7b 4189 s64 this_load, load;
c88d5910 4190 int idx, this_cpu, prev_cpu;
098fb9db 4191 unsigned long tl_per_task;
c88d5910 4192 struct task_group *tg;
83378269 4193 unsigned long weight;
b3137bc8 4194 int balanced;
098fb9db 4195
62470419
MW
4196 /*
4197 * If we wake multiple tasks be careful to not bounce
4198 * ourselves around too much.
4199 */
4200 if (wake_wide(p))
4201 return 0;
4202
c88d5910
PZ
4203 idx = sd->wake_idx;
4204 this_cpu = smp_processor_id();
4205 prev_cpu = task_cpu(p);
4206 load = source_load(prev_cpu, idx);
4207 this_load = target_load(this_cpu, idx);
098fb9db 4208
b3137bc8
MG
4209 /*
4210 * If sync wakeup then subtract the (maximum possible)
4211 * effect of the currently running task from the load
4212 * of the current CPU:
4213 */
83378269
PZ
4214 if (sync) {
4215 tg = task_group(current);
4216 weight = current->se.load.weight;
4217
c88d5910 4218 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4219 load += effective_load(tg, prev_cpu, 0, -weight);
4220 }
b3137bc8 4221
83378269
PZ
4222 tg = task_group(p);
4223 weight = p->se.load.weight;
b3137bc8 4224
71a29aa7
PZ
4225 /*
4226 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4227 * due to the sync cause above having dropped this_load to 0, we'll
4228 * always have an imbalance, but there's really nothing you can do
4229 * about that, so that's good too.
71a29aa7
PZ
4230 *
4231 * Otherwise check if either cpus are near enough in load to allow this
4232 * task to be woken on this_cpu.
4233 */
e37b6a7b
PT
4234 if (this_load > 0) {
4235 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4236
4237 this_eff_load = 100;
4238 this_eff_load *= power_of(prev_cpu);
4239 this_eff_load *= this_load +
4240 effective_load(tg, this_cpu, weight, weight);
4241
4242 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4243 prev_eff_load *= power_of(this_cpu);
4244 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4245
4246 balanced = this_eff_load <= prev_eff_load;
4247 } else
4248 balanced = true;
b3137bc8 4249
098fb9db 4250 /*
4ae7d5ce
IM
4251 * If the currently running task will sleep within
4252 * a reasonable amount of time then attract this newly
4253 * woken task:
098fb9db 4254 */
2fb7635c
PZ
4255 if (sync && balanced)
4256 return 1;
098fb9db 4257
41acab88 4258 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4259 tl_per_task = cpu_avg_load_per_task(this_cpu);
4260
c88d5910
PZ
4261 if (balanced ||
4262 (this_load <= load &&
4263 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4264 /*
4265 * This domain has SD_WAKE_AFFINE and
4266 * p is cache cold in this domain, and
4267 * there is no bad imbalance.
4268 */
c88d5910 4269 schedstat_inc(sd, ttwu_move_affine);
41acab88 4270 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4271
4272 return 1;
4273 }
4274 return 0;
4275}
4276
aaee1203
PZ
4277/*
4278 * find_idlest_group finds and returns the least busy CPU group within the
4279 * domain.
4280 */
4281static struct sched_group *
78e7ed53 4282find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4283 int this_cpu, int sd_flag)
e7693a36 4284{
b3bd3de6 4285 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4286 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4287 int load_idx = sd->forkexec_idx;
aaee1203 4288 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4289
c44f2a02
VG
4290 if (sd_flag & SD_BALANCE_WAKE)
4291 load_idx = sd->wake_idx;
4292
aaee1203
PZ
4293 do {
4294 unsigned long load, avg_load;
4295 int local_group;
4296 int i;
e7693a36 4297
aaee1203
PZ
4298 /* Skip over this group if it has no CPUs allowed */
4299 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4300 tsk_cpus_allowed(p)))
aaee1203
PZ
4301 continue;
4302
4303 local_group = cpumask_test_cpu(this_cpu,
4304 sched_group_cpus(group));
4305
4306 /* Tally up the load of all CPUs in the group */
4307 avg_load = 0;
4308
4309 for_each_cpu(i, sched_group_cpus(group)) {
4310 /* Bias balancing toward cpus of our domain */
4311 if (local_group)
4312 load = source_load(i, load_idx);
4313 else
4314 load = target_load(i, load_idx);
4315
4316 avg_load += load;
4317 }
4318
4319 /* Adjust by relative CPU power of the group */
9c3f75cb 4320 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4321
4322 if (local_group) {
4323 this_load = avg_load;
aaee1203
PZ
4324 } else if (avg_load < min_load) {
4325 min_load = avg_load;
4326 idlest = group;
4327 }
4328 } while (group = group->next, group != sd->groups);
4329
4330 if (!idlest || 100*this_load < imbalance*min_load)
4331 return NULL;
4332 return idlest;
4333}
4334
4335/*
4336 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4337 */
4338static int
4339find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4340{
4341 unsigned long load, min_load = ULONG_MAX;
4342 int idlest = -1;
4343 int i;
4344
4345 /* Traverse only the allowed CPUs */
fa17b507 4346 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4347 load = weighted_cpuload(i);
4348
4349 if (load < min_load || (load == min_load && i == this_cpu)) {
4350 min_load = load;
4351 idlest = i;
e7693a36
GH
4352 }
4353 }
4354
aaee1203
PZ
4355 return idlest;
4356}
e7693a36 4357
a50bde51
PZ
4358/*
4359 * Try and locate an idle CPU in the sched_domain.
4360 */
99bd5e2f 4361static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4362{
99bd5e2f 4363 struct sched_domain *sd;
37407ea7 4364 struct sched_group *sg;
e0a79f52 4365 int i = task_cpu(p);
a50bde51 4366
e0a79f52
MG
4367 if (idle_cpu(target))
4368 return target;
99bd5e2f
SS
4369
4370 /*
e0a79f52 4371 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4372 */
e0a79f52
MG
4373 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4374 return i;
a50bde51
PZ
4375
4376 /*
37407ea7 4377 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4378 */
518cd623 4379 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4380 for_each_lower_domain(sd) {
37407ea7
LT
4381 sg = sd->groups;
4382 do {
4383 if (!cpumask_intersects(sched_group_cpus(sg),
4384 tsk_cpus_allowed(p)))
4385 goto next;
4386
4387 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4388 if (i == target || !idle_cpu(i))
37407ea7
LT
4389 goto next;
4390 }
970e1789 4391
37407ea7
LT
4392 target = cpumask_first_and(sched_group_cpus(sg),
4393 tsk_cpus_allowed(p));
4394 goto done;
4395next:
4396 sg = sg->next;
4397 } while (sg != sd->groups);
4398 }
4399done:
a50bde51
PZ
4400 return target;
4401}
4402
aaee1203 4403/*
de91b9cb
MR
4404 * select_task_rq_fair: Select target runqueue for the waking task in domains
4405 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4406 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4407 *
de91b9cb
MR
4408 * Balances load by selecting the idlest cpu in the idlest group, or under
4409 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4410 *
de91b9cb 4411 * Returns the target cpu number.
aaee1203
PZ
4412 *
4413 * preempt must be disabled.
4414 */
0017d735 4415static int
ac66f547 4416select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4417{
29cd8bae 4418 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4419 int cpu = smp_processor_id();
c88d5910 4420 int new_cpu = cpu;
99bd5e2f 4421 int want_affine = 0;
5158f4e4 4422 int sync = wake_flags & WF_SYNC;
c88d5910 4423
29baa747 4424 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4425 return prev_cpu;
4426
0763a660 4427 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4428 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4429 want_affine = 1;
4430 new_cpu = prev_cpu;
4431 }
aaee1203 4432
dce840a0 4433 rcu_read_lock();
aaee1203 4434 for_each_domain(cpu, tmp) {
e4f42888
PZ
4435 if (!(tmp->flags & SD_LOAD_BALANCE))
4436 continue;
4437
fe3bcfe1 4438 /*
99bd5e2f
SS
4439 * If both cpu and prev_cpu are part of this domain,
4440 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4441 */
99bd5e2f
SS
4442 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4443 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4444 affine_sd = tmp;
29cd8bae 4445 break;
f03542a7 4446 }
29cd8bae 4447
f03542a7 4448 if (tmp->flags & sd_flag)
29cd8bae
PZ
4449 sd = tmp;
4450 }
4451
8b911acd 4452 if (affine_sd) {
f03542a7 4453 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4454 prev_cpu = cpu;
4455
4456 new_cpu = select_idle_sibling(p, prev_cpu);
4457 goto unlock;
8b911acd 4458 }
e7693a36 4459
aaee1203
PZ
4460 while (sd) {
4461 struct sched_group *group;
c88d5910 4462 int weight;
098fb9db 4463
0763a660 4464 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4465 sd = sd->child;
4466 continue;
4467 }
098fb9db 4468
c44f2a02 4469 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4470 if (!group) {
4471 sd = sd->child;
4472 continue;
4473 }
4ae7d5ce 4474
d7c33c49 4475 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4476 if (new_cpu == -1 || new_cpu == cpu) {
4477 /* Now try balancing at a lower domain level of cpu */
4478 sd = sd->child;
4479 continue;
e7693a36 4480 }
aaee1203
PZ
4481
4482 /* Now try balancing at a lower domain level of new_cpu */
4483 cpu = new_cpu;
669c55e9 4484 weight = sd->span_weight;
aaee1203
PZ
4485 sd = NULL;
4486 for_each_domain(cpu, tmp) {
669c55e9 4487 if (weight <= tmp->span_weight)
aaee1203 4488 break;
0763a660 4489 if (tmp->flags & sd_flag)
aaee1203
PZ
4490 sd = tmp;
4491 }
4492 /* while loop will break here if sd == NULL */
e7693a36 4493 }
dce840a0
PZ
4494unlock:
4495 rcu_read_unlock();
e7693a36 4496
c88d5910 4497 return new_cpu;
e7693a36 4498}
0a74bef8
PT
4499
4500/*
4501 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4502 * cfs_rq_of(p) references at time of call are still valid and identify the
4503 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4504 * other assumptions, including the state of rq->lock, should be made.
4505 */
4506static void
4507migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4508{
aff3e498
PT
4509 struct sched_entity *se = &p->se;
4510 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4511
4512 /*
4513 * Load tracking: accumulate removed load so that it can be processed
4514 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4515 * to blocked load iff they have a positive decay-count. It can never
4516 * be negative here since on-rq tasks have decay-count == 0.
4517 */
4518 if (se->avg.decay_count) {
4519 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4520 atomic_long_add(se->avg.load_avg_contrib,
4521 &cfs_rq->removed_load);
aff3e498 4522 }
0a74bef8 4523}
e7693a36
GH
4524#endif /* CONFIG_SMP */
4525
e52fb7c0
PZ
4526static unsigned long
4527wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4528{
4529 unsigned long gran = sysctl_sched_wakeup_granularity;
4530
4531 /*
e52fb7c0
PZ
4532 * Since its curr running now, convert the gran from real-time
4533 * to virtual-time in his units.
13814d42
MG
4534 *
4535 * By using 'se' instead of 'curr' we penalize light tasks, so
4536 * they get preempted easier. That is, if 'se' < 'curr' then
4537 * the resulting gran will be larger, therefore penalizing the
4538 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4539 * be smaller, again penalizing the lighter task.
4540 *
4541 * This is especially important for buddies when the leftmost
4542 * task is higher priority than the buddy.
0bbd3336 4543 */
f4ad9bd2 4544 return calc_delta_fair(gran, se);
0bbd3336
PZ
4545}
4546
464b7527
PZ
4547/*
4548 * Should 'se' preempt 'curr'.
4549 *
4550 * |s1
4551 * |s2
4552 * |s3
4553 * g
4554 * |<--->|c
4555 *
4556 * w(c, s1) = -1
4557 * w(c, s2) = 0
4558 * w(c, s3) = 1
4559 *
4560 */
4561static int
4562wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4563{
4564 s64 gran, vdiff = curr->vruntime - se->vruntime;
4565
4566 if (vdiff <= 0)
4567 return -1;
4568
e52fb7c0 4569 gran = wakeup_gran(curr, se);
464b7527
PZ
4570 if (vdiff > gran)
4571 return 1;
4572
4573 return 0;
4574}
4575
02479099
PZ
4576static void set_last_buddy(struct sched_entity *se)
4577{
69c80f3e
VP
4578 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4579 return;
4580
4581 for_each_sched_entity(se)
4582 cfs_rq_of(se)->last = se;
02479099
PZ
4583}
4584
4585static void set_next_buddy(struct sched_entity *se)
4586{
69c80f3e
VP
4587 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4588 return;
4589
4590 for_each_sched_entity(se)
4591 cfs_rq_of(se)->next = se;
02479099
PZ
4592}
4593
ac53db59
RR
4594static void set_skip_buddy(struct sched_entity *se)
4595{
69c80f3e
VP
4596 for_each_sched_entity(se)
4597 cfs_rq_of(se)->skip = se;
ac53db59
RR
4598}
4599
bf0f6f24
IM
4600/*
4601 * Preempt the current task with a newly woken task if needed:
4602 */
5a9b86f6 4603static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4604{
4605 struct task_struct *curr = rq->curr;
8651a86c 4606 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4607 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4608 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4609 int next_buddy_marked = 0;
bf0f6f24 4610
4ae7d5ce
IM
4611 if (unlikely(se == pse))
4612 return;
4613
5238cdd3 4614 /*
ddcdf6e7 4615 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4616 * unconditionally check_prempt_curr() after an enqueue (which may have
4617 * lead to a throttle). This both saves work and prevents false
4618 * next-buddy nomination below.
4619 */
4620 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4621 return;
4622
2f36825b 4623 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4624 set_next_buddy(pse);
2f36825b
VP
4625 next_buddy_marked = 1;
4626 }
57fdc26d 4627
aec0a514
BR
4628 /*
4629 * We can come here with TIF_NEED_RESCHED already set from new task
4630 * wake up path.
5238cdd3
PT
4631 *
4632 * Note: this also catches the edge-case of curr being in a throttled
4633 * group (e.g. via set_curr_task), since update_curr() (in the
4634 * enqueue of curr) will have resulted in resched being set. This
4635 * prevents us from potentially nominating it as a false LAST_BUDDY
4636 * below.
aec0a514
BR
4637 */
4638 if (test_tsk_need_resched(curr))
4639 return;
4640
a2f5c9ab
DH
4641 /* Idle tasks are by definition preempted by non-idle tasks. */
4642 if (unlikely(curr->policy == SCHED_IDLE) &&
4643 likely(p->policy != SCHED_IDLE))
4644 goto preempt;
4645
91c234b4 4646 /*
a2f5c9ab
DH
4647 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4648 * is driven by the tick):
91c234b4 4649 */
8ed92e51 4650 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4651 return;
bf0f6f24 4652
464b7527 4653 find_matching_se(&se, &pse);
9bbd7374 4654 update_curr(cfs_rq_of(se));
002f128b 4655 BUG_ON(!pse);
2f36825b
VP
4656 if (wakeup_preempt_entity(se, pse) == 1) {
4657 /*
4658 * Bias pick_next to pick the sched entity that is
4659 * triggering this preemption.
4660 */
4661 if (!next_buddy_marked)
4662 set_next_buddy(pse);
3a7e73a2 4663 goto preempt;
2f36825b 4664 }
464b7527 4665
3a7e73a2 4666 return;
a65ac745 4667
3a7e73a2
PZ
4668preempt:
4669 resched_task(curr);
4670 /*
4671 * Only set the backward buddy when the current task is still
4672 * on the rq. This can happen when a wakeup gets interleaved
4673 * with schedule on the ->pre_schedule() or idle_balance()
4674 * point, either of which can * drop the rq lock.
4675 *
4676 * Also, during early boot the idle thread is in the fair class,
4677 * for obvious reasons its a bad idea to schedule back to it.
4678 */
4679 if (unlikely(!se->on_rq || curr == rq->idle))
4680 return;
4681
4682 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4683 set_last_buddy(se);
bf0f6f24
IM
4684}
4685
606dba2e
PZ
4686static struct task_struct *
4687pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4688{
4689 struct cfs_rq *cfs_rq = &rq->cfs;
4690 struct sched_entity *se;
678d5718 4691 struct task_struct *p;
37e117c0 4692 int new_tasks;
678d5718 4693
6e83125c 4694again:
678d5718
PZ
4695#ifdef CONFIG_FAIR_GROUP_SCHED
4696 if (!cfs_rq->nr_running)
38033c37 4697 goto idle;
678d5718 4698
3f1d2a31 4699 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4700 goto simple;
4701
4702 /*
4703 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4704 * likely that a next task is from the same cgroup as the current.
4705 *
4706 * Therefore attempt to avoid putting and setting the entire cgroup
4707 * hierarchy, only change the part that actually changes.
4708 */
4709
4710 do {
4711 struct sched_entity *curr = cfs_rq->curr;
4712
4713 /*
4714 * Since we got here without doing put_prev_entity() we also
4715 * have to consider cfs_rq->curr. If it is still a runnable
4716 * entity, update_curr() will update its vruntime, otherwise
4717 * forget we've ever seen it.
4718 */
4719 if (curr && curr->on_rq)
4720 update_curr(cfs_rq);
4721 else
4722 curr = NULL;
4723
4724 /*
4725 * This call to check_cfs_rq_runtime() will do the throttle and
4726 * dequeue its entity in the parent(s). Therefore the 'simple'
4727 * nr_running test will indeed be correct.
4728 */
4729 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4730 goto simple;
4731
4732 se = pick_next_entity(cfs_rq, curr);
4733 cfs_rq = group_cfs_rq(se);
4734 } while (cfs_rq);
4735
4736 p = task_of(se);
4737
4738 /*
4739 * Since we haven't yet done put_prev_entity and if the selected task
4740 * is a different task than we started out with, try and touch the
4741 * least amount of cfs_rqs.
4742 */
4743 if (prev != p) {
4744 struct sched_entity *pse = &prev->se;
4745
4746 while (!(cfs_rq = is_same_group(se, pse))) {
4747 int se_depth = se->depth;
4748 int pse_depth = pse->depth;
4749
4750 if (se_depth <= pse_depth) {
4751 put_prev_entity(cfs_rq_of(pse), pse);
4752 pse = parent_entity(pse);
4753 }
4754 if (se_depth >= pse_depth) {
4755 set_next_entity(cfs_rq_of(se), se);
4756 se = parent_entity(se);
4757 }
4758 }
4759
4760 put_prev_entity(cfs_rq, pse);
4761 set_next_entity(cfs_rq, se);
4762 }
4763
4764 if (hrtick_enabled(rq))
4765 hrtick_start_fair(rq, p);
4766
4767 return p;
4768simple:
4769 cfs_rq = &rq->cfs;
4770#endif
bf0f6f24 4771
36ace27e 4772 if (!cfs_rq->nr_running)
38033c37 4773 goto idle;
bf0f6f24 4774
3f1d2a31 4775 put_prev_task(rq, prev);
606dba2e 4776
bf0f6f24 4777 do {
678d5718 4778 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4779 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4780 cfs_rq = group_cfs_rq(se);
4781 } while (cfs_rq);
4782
8f4d37ec 4783 p = task_of(se);
678d5718 4784
b39e66ea
MG
4785 if (hrtick_enabled(rq))
4786 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4787
4788 return p;
38033c37
PZ
4789
4790idle:
e4aa358b 4791 new_tasks = idle_balance(rq);
37e117c0
PZ
4792 /*
4793 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4794 * possible for any higher priority task to appear. In that case we
4795 * must re-start the pick_next_entity() loop.
4796 */
e4aa358b 4797 if (new_tasks < 0)
37e117c0
PZ
4798 return RETRY_TASK;
4799
e4aa358b 4800 if (new_tasks > 0)
38033c37 4801 goto again;
38033c37
PZ
4802
4803 return NULL;
bf0f6f24
IM
4804}
4805
4806/*
4807 * Account for a descheduled task:
4808 */
31ee529c 4809static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4810{
4811 struct sched_entity *se = &prev->se;
4812 struct cfs_rq *cfs_rq;
4813
4814 for_each_sched_entity(se) {
4815 cfs_rq = cfs_rq_of(se);
ab6cde26 4816 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4817 }
4818}
4819
ac53db59
RR
4820/*
4821 * sched_yield() is very simple
4822 *
4823 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4824 */
4825static void yield_task_fair(struct rq *rq)
4826{
4827 struct task_struct *curr = rq->curr;
4828 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4829 struct sched_entity *se = &curr->se;
4830
4831 /*
4832 * Are we the only task in the tree?
4833 */
4834 if (unlikely(rq->nr_running == 1))
4835 return;
4836
4837 clear_buddies(cfs_rq, se);
4838
4839 if (curr->policy != SCHED_BATCH) {
4840 update_rq_clock(rq);
4841 /*
4842 * Update run-time statistics of the 'current'.
4843 */
4844 update_curr(cfs_rq);
916671c0
MG
4845 /*
4846 * Tell update_rq_clock() that we've just updated,
4847 * so we don't do microscopic update in schedule()
4848 * and double the fastpath cost.
4849 */
4850 rq->skip_clock_update = 1;
ac53db59
RR
4851 }
4852
4853 set_skip_buddy(se);
4854}
4855
d95f4122
MG
4856static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4857{
4858 struct sched_entity *se = &p->se;
4859
5238cdd3
PT
4860 /* throttled hierarchies are not runnable */
4861 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4862 return false;
4863
4864 /* Tell the scheduler that we'd really like pse to run next. */
4865 set_next_buddy(se);
4866
d95f4122
MG
4867 yield_task_fair(rq);
4868
4869 return true;
4870}
4871
681f3e68 4872#ifdef CONFIG_SMP
bf0f6f24 4873/**************************************************
e9c84cb8
PZ
4874 * Fair scheduling class load-balancing methods.
4875 *
4876 * BASICS
4877 *
4878 * The purpose of load-balancing is to achieve the same basic fairness the
4879 * per-cpu scheduler provides, namely provide a proportional amount of compute
4880 * time to each task. This is expressed in the following equation:
4881 *
4882 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4883 *
4884 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4885 * W_i,0 is defined as:
4886 *
4887 * W_i,0 = \Sum_j w_i,j (2)
4888 *
4889 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4890 * is derived from the nice value as per prio_to_weight[].
4891 *
4892 * The weight average is an exponential decay average of the instantaneous
4893 * weight:
4894 *
4895 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4896 *
4897 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4898 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4899 * can also include other factors [XXX].
4900 *
4901 * To achieve this balance we define a measure of imbalance which follows
4902 * directly from (1):
4903 *
4904 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4905 *
4906 * We them move tasks around to minimize the imbalance. In the continuous
4907 * function space it is obvious this converges, in the discrete case we get
4908 * a few fun cases generally called infeasible weight scenarios.
4909 *
4910 * [XXX expand on:
4911 * - infeasible weights;
4912 * - local vs global optima in the discrete case. ]
4913 *
4914 *
4915 * SCHED DOMAINS
4916 *
4917 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4918 * for all i,j solution, we create a tree of cpus that follows the hardware
4919 * topology where each level pairs two lower groups (or better). This results
4920 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4921 * tree to only the first of the previous level and we decrease the frequency
4922 * of load-balance at each level inv. proportional to the number of cpus in
4923 * the groups.
4924 *
4925 * This yields:
4926 *
4927 * log_2 n 1 n
4928 * \Sum { --- * --- * 2^i } = O(n) (5)
4929 * i = 0 2^i 2^i
4930 * `- size of each group
4931 * | | `- number of cpus doing load-balance
4932 * | `- freq
4933 * `- sum over all levels
4934 *
4935 * Coupled with a limit on how many tasks we can migrate every balance pass,
4936 * this makes (5) the runtime complexity of the balancer.
4937 *
4938 * An important property here is that each CPU is still (indirectly) connected
4939 * to every other cpu in at most O(log n) steps:
4940 *
4941 * The adjacency matrix of the resulting graph is given by:
4942 *
4943 * log_2 n
4944 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4945 * k = 0
4946 *
4947 * And you'll find that:
4948 *
4949 * A^(log_2 n)_i,j != 0 for all i,j (7)
4950 *
4951 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4952 * The task movement gives a factor of O(m), giving a convergence complexity
4953 * of:
4954 *
4955 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4956 *
4957 *
4958 * WORK CONSERVING
4959 *
4960 * In order to avoid CPUs going idle while there's still work to do, new idle
4961 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4962 * tree itself instead of relying on other CPUs to bring it work.
4963 *
4964 * This adds some complexity to both (5) and (8) but it reduces the total idle
4965 * time.
4966 *
4967 * [XXX more?]
4968 *
4969 *
4970 * CGROUPS
4971 *
4972 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4973 *
4974 * s_k,i
4975 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4976 * S_k
4977 *
4978 * Where
4979 *
4980 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4981 *
4982 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4983 *
4984 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4985 * property.
4986 *
4987 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4988 * rewrite all of this once again.]
4989 */
bf0f6f24 4990
ed387b78
HS
4991static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4992
0ec8aa00
PZ
4993enum fbq_type { regular, remote, all };
4994
ddcdf6e7 4995#define LBF_ALL_PINNED 0x01
367456c7 4996#define LBF_NEED_BREAK 0x02
6263322c
PZ
4997#define LBF_DST_PINNED 0x04
4998#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4999
5000struct lb_env {
5001 struct sched_domain *sd;
5002
ddcdf6e7 5003 struct rq *src_rq;
85c1e7da 5004 int src_cpu;
ddcdf6e7
PZ
5005
5006 int dst_cpu;
5007 struct rq *dst_rq;
5008
88b8dac0
SV
5009 struct cpumask *dst_grpmask;
5010 int new_dst_cpu;
ddcdf6e7 5011 enum cpu_idle_type idle;
bd939f45 5012 long imbalance;
b9403130
MW
5013 /* The set of CPUs under consideration for load-balancing */
5014 struct cpumask *cpus;
5015
ddcdf6e7 5016 unsigned int flags;
367456c7
PZ
5017
5018 unsigned int loop;
5019 unsigned int loop_break;
5020 unsigned int loop_max;
0ec8aa00
PZ
5021
5022 enum fbq_type fbq_type;
ddcdf6e7
PZ
5023};
5024
1e3c88bd 5025/*
ddcdf6e7 5026 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5027 * Both runqueues must be locked.
5028 */
ddcdf6e7 5029static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5030{
ddcdf6e7
PZ
5031 deactivate_task(env->src_rq, p, 0);
5032 set_task_cpu(p, env->dst_cpu);
5033 activate_task(env->dst_rq, p, 0);
5034 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5035}
5036
029632fb
PZ
5037/*
5038 * Is this task likely cache-hot:
5039 */
5040static int
6037dd1a 5041task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5042{
5043 s64 delta;
5044
5045 if (p->sched_class != &fair_sched_class)
5046 return 0;
5047
5048 if (unlikely(p->policy == SCHED_IDLE))
5049 return 0;
5050
5051 /*
5052 * Buddy candidates are cache hot:
5053 */
5054 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5055 (&p->se == cfs_rq_of(&p->se)->next ||
5056 &p->se == cfs_rq_of(&p->se)->last))
5057 return 1;
5058
5059 if (sysctl_sched_migration_cost == -1)
5060 return 1;
5061 if (sysctl_sched_migration_cost == 0)
5062 return 0;
5063
5064 delta = now - p->se.exec_start;
5065
5066 return delta < (s64)sysctl_sched_migration_cost;
5067}
5068
3a7053b3
MG
5069#ifdef CONFIG_NUMA_BALANCING
5070/* Returns true if the destination node has incurred more faults */
5071static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5072{
5073 int src_nid, dst_nid;
5074
ff1df896 5075 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5076 !(env->sd->flags & SD_NUMA)) {
5077 return false;
5078 }
5079
5080 src_nid = cpu_to_node(env->src_cpu);
5081 dst_nid = cpu_to_node(env->dst_cpu);
5082
83e1d2cd 5083 if (src_nid == dst_nid)
3a7053b3
MG
5084 return false;
5085
83e1d2cd
MG
5086 /* Always encourage migration to the preferred node. */
5087 if (dst_nid == p->numa_preferred_nid)
5088 return true;
5089
887c290e
RR
5090 /* If both task and group weight improve, this move is a winner. */
5091 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5092 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5093 return true;
5094
5095 return false;
5096}
7a0f3083
MG
5097
5098
5099static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5100{
5101 int src_nid, dst_nid;
5102
5103 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5104 return false;
5105
ff1df896 5106 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5107 return false;
5108
5109 src_nid = cpu_to_node(env->src_cpu);
5110 dst_nid = cpu_to_node(env->dst_cpu);
5111
83e1d2cd 5112 if (src_nid == dst_nid)
7a0f3083
MG
5113 return false;
5114
83e1d2cd
MG
5115 /* Migrating away from the preferred node is always bad. */
5116 if (src_nid == p->numa_preferred_nid)
5117 return true;
5118
887c290e
RR
5119 /* If either task or group weight get worse, don't do it. */
5120 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5121 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5122 return true;
5123
5124 return false;
5125}
5126
3a7053b3
MG
5127#else
5128static inline bool migrate_improves_locality(struct task_struct *p,
5129 struct lb_env *env)
5130{
5131 return false;
5132}
7a0f3083
MG
5133
5134static inline bool migrate_degrades_locality(struct task_struct *p,
5135 struct lb_env *env)
5136{
5137 return false;
5138}
3a7053b3
MG
5139#endif
5140
1e3c88bd
PZ
5141/*
5142 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5143 */
5144static
8e45cb54 5145int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5146{
5147 int tsk_cache_hot = 0;
5148 /*
5149 * We do not migrate tasks that are:
d3198084 5150 * 1) throttled_lb_pair, or
1e3c88bd 5151 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5152 * 3) running (obviously), or
5153 * 4) are cache-hot on their current CPU.
1e3c88bd 5154 */
d3198084
JK
5155 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5156 return 0;
5157
ddcdf6e7 5158 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5159 int cpu;
88b8dac0 5160
41acab88 5161 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5162
6263322c
PZ
5163 env->flags |= LBF_SOME_PINNED;
5164
88b8dac0
SV
5165 /*
5166 * Remember if this task can be migrated to any other cpu in
5167 * our sched_group. We may want to revisit it if we couldn't
5168 * meet load balance goals by pulling other tasks on src_cpu.
5169 *
5170 * Also avoid computing new_dst_cpu if we have already computed
5171 * one in current iteration.
5172 */
6263322c 5173 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5174 return 0;
5175
e02e60c1
JK
5176 /* Prevent to re-select dst_cpu via env's cpus */
5177 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5178 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5179 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5180 env->new_dst_cpu = cpu;
5181 break;
5182 }
88b8dac0 5183 }
e02e60c1 5184
1e3c88bd
PZ
5185 return 0;
5186 }
88b8dac0
SV
5187
5188 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5189 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5190
ddcdf6e7 5191 if (task_running(env->src_rq, p)) {
41acab88 5192 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5193 return 0;
5194 }
5195
5196 /*
5197 * Aggressive migration if:
3a7053b3
MG
5198 * 1) destination numa is preferred
5199 * 2) task is cache cold, or
5200 * 3) too many balance attempts have failed.
1e3c88bd 5201 */
6037dd1a 5202 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5203 if (!tsk_cache_hot)
5204 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5205
5206 if (migrate_improves_locality(p, env)) {
5207#ifdef CONFIG_SCHEDSTATS
5208 if (tsk_cache_hot) {
5209 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5210 schedstat_inc(p, se.statistics.nr_forced_migrations);
5211 }
5212#endif
5213 return 1;
5214 }
5215
1e3c88bd 5216 if (!tsk_cache_hot ||
8e45cb54 5217 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5218
1e3c88bd 5219 if (tsk_cache_hot) {
8e45cb54 5220 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5221 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5222 }
4e2dcb73 5223
1e3c88bd
PZ
5224 return 1;
5225 }
5226
4e2dcb73
ZH
5227 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5228 return 0;
1e3c88bd
PZ
5229}
5230
897c395f
PZ
5231/*
5232 * move_one_task tries to move exactly one task from busiest to this_rq, as
5233 * part of active balancing operations within "domain".
5234 * Returns 1 if successful and 0 otherwise.
5235 *
5236 * Called with both runqueues locked.
5237 */
8e45cb54 5238static int move_one_task(struct lb_env *env)
897c395f
PZ
5239{
5240 struct task_struct *p, *n;
897c395f 5241
367456c7 5242 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5243 if (!can_migrate_task(p, env))
5244 continue;
897c395f 5245
367456c7
PZ
5246 move_task(p, env);
5247 /*
5248 * Right now, this is only the second place move_task()
5249 * is called, so we can safely collect move_task()
5250 * stats here rather than inside move_task().
5251 */
5252 schedstat_inc(env->sd, lb_gained[env->idle]);
5253 return 1;
897c395f 5254 }
897c395f
PZ
5255 return 0;
5256}
5257
eb95308e
PZ
5258static const unsigned int sched_nr_migrate_break = 32;
5259
5d6523eb 5260/*
bd939f45 5261 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5262 * this_rq, as part of a balancing operation within domain "sd".
5263 * Returns 1 if successful and 0 otherwise.
5264 *
5265 * Called with both runqueues locked.
5266 */
5267static int move_tasks(struct lb_env *env)
1e3c88bd 5268{
5d6523eb
PZ
5269 struct list_head *tasks = &env->src_rq->cfs_tasks;
5270 struct task_struct *p;
367456c7
PZ
5271 unsigned long load;
5272 int pulled = 0;
1e3c88bd 5273
bd939f45 5274 if (env->imbalance <= 0)
5d6523eb 5275 return 0;
1e3c88bd 5276
5d6523eb
PZ
5277 while (!list_empty(tasks)) {
5278 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5279
367456c7
PZ
5280 env->loop++;
5281 /* We've more or less seen every task there is, call it quits */
5d6523eb 5282 if (env->loop > env->loop_max)
367456c7 5283 break;
5d6523eb
PZ
5284
5285 /* take a breather every nr_migrate tasks */
367456c7 5286 if (env->loop > env->loop_break) {
eb95308e 5287 env->loop_break += sched_nr_migrate_break;
8e45cb54 5288 env->flags |= LBF_NEED_BREAK;
ee00e66f 5289 break;
a195f004 5290 }
1e3c88bd 5291
d3198084 5292 if (!can_migrate_task(p, env))
367456c7
PZ
5293 goto next;
5294
5295 load = task_h_load(p);
5d6523eb 5296
eb95308e 5297 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5298 goto next;
5299
bd939f45 5300 if ((load / 2) > env->imbalance)
367456c7 5301 goto next;
1e3c88bd 5302
ddcdf6e7 5303 move_task(p, env);
ee00e66f 5304 pulled++;
bd939f45 5305 env->imbalance -= load;
1e3c88bd
PZ
5306
5307#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5308 /*
5309 * NEWIDLE balancing is a source of latency, so preemptible
5310 * kernels will stop after the first task is pulled to minimize
5311 * the critical section.
5312 */
5d6523eb 5313 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5314 break;
1e3c88bd
PZ
5315#endif
5316
ee00e66f
PZ
5317 /*
5318 * We only want to steal up to the prescribed amount of
5319 * weighted load.
5320 */
bd939f45 5321 if (env->imbalance <= 0)
ee00e66f 5322 break;
367456c7
PZ
5323
5324 continue;
5325next:
5d6523eb 5326 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5327 }
5d6523eb 5328
1e3c88bd 5329 /*
ddcdf6e7
PZ
5330 * Right now, this is one of only two places move_task() is called,
5331 * so we can safely collect move_task() stats here rather than
5332 * inside move_task().
1e3c88bd 5333 */
8e45cb54 5334 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5335
5d6523eb 5336 return pulled;
1e3c88bd
PZ
5337}
5338
230059de 5339#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5340/*
5341 * update tg->load_weight by folding this cpu's load_avg
5342 */
48a16753 5343static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5344{
48a16753
PT
5345 struct sched_entity *se = tg->se[cpu];
5346 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5347
48a16753
PT
5348 /* throttled entities do not contribute to load */
5349 if (throttled_hierarchy(cfs_rq))
5350 return;
9e3081ca 5351
aff3e498 5352 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5353
82958366
PT
5354 if (se) {
5355 update_entity_load_avg(se, 1);
5356 /*
5357 * We pivot on our runnable average having decayed to zero for
5358 * list removal. This generally implies that all our children
5359 * have also been removed (modulo rounding error or bandwidth
5360 * control); however, such cases are rare and we can fix these
5361 * at enqueue.
5362 *
5363 * TODO: fix up out-of-order children on enqueue.
5364 */
5365 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5366 list_del_leaf_cfs_rq(cfs_rq);
5367 } else {
48a16753 5368 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5369 update_rq_runnable_avg(rq, rq->nr_running);
5370 }
9e3081ca
PZ
5371}
5372
48a16753 5373static void update_blocked_averages(int cpu)
9e3081ca 5374{
9e3081ca 5375 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5376 struct cfs_rq *cfs_rq;
5377 unsigned long flags;
9e3081ca 5378
48a16753
PT
5379 raw_spin_lock_irqsave(&rq->lock, flags);
5380 update_rq_clock(rq);
9763b67f
PZ
5381 /*
5382 * Iterates the task_group tree in a bottom up fashion, see
5383 * list_add_leaf_cfs_rq() for details.
5384 */
64660c86 5385 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5386 /*
5387 * Note: We may want to consider periodically releasing
5388 * rq->lock about these updates so that creating many task
5389 * groups does not result in continually extending hold time.
5390 */
5391 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5392 }
48a16753
PT
5393
5394 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5395}
5396
9763b67f 5397/*
68520796 5398 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5399 * This needs to be done in a top-down fashion because the load of a child
5400 * group is a fraction of its parents load.
5401 */
68520796 5402static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5403{
68520796
VD
5404 struct rq *rq = rq_of(cfs_rq);
5405 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5406 unsigned long now = jiffies;
68520796 5407 unsigned long load;
a35b6466 5408
68520796 5409 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5410 return;
5411
68520796
VD
5412 cfs_rq->h_load_next = NULL;
5413 for_each_sched_entity(se) {
5414 cfs_rq = cfs_rq_of(se);
5415 cfs_rq->h_load_next = se;
5416 if (cfs_rq->last_h_load_update == now)
5417 break;
5418 }
a35b6466 5419
68520796 5420 if (!se) {
7e3115ef 5421 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5422 cfs_rq->last_h_load_update = now;
5423 }
5424
5425 while ((se = cfs_rq->h_load_next) != NULL) {
5426 load = cfs_rq->h_load;
5427 load = div64_ul(load * se->avg.load_avg_contrib,
5428 cfs_rq->runnable_load_avg + 1);
5429 cfs_rq = group_cfs_rq(se);
5430 cfs_rq->h_load = load;
5431 cfs_rq->last_h_load_update = now;
5432 }
9763b67f
PZ
5433}
5434
367456c7 5435static unsigned long task_h_load(struct task_struct *p)
230059de 5436{
367456c7 5437 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5438
68520796 5439 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5440 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5441 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5442}
5443#else
48a16753 5444static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5445{
5446}
5447
367456c7 5448static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5449{
a003a25b 5450 return p->se.avg.load_avg_contrib;
1e3c88bd 5451}
230059de 5452#endif
1e3c88bd 5453
1e3c88bd 5454/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5455/*
5456 * sg_lb_stats - stats of a sched_group required for load_balancing
5457 */
5458struct sg_lb_stats {
5459 unsigned long avg_load; /*Avg load across the CPUs of the group */
5460 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5461 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5462 unsigned long load_per_task;
3ae11c90 5463 unsigned long group_power;
147c5fc2
PZ
5464 unsigned int sum_nr_running; /* Nr tasks running in the group */
5465 unsigned int group_capacity;
5466 unsigned int idle_cpus;
5467 unsigned int group_weight;
1e3c88bd 5468 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5469 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5470#ifdef CONFIG_NUMA_BALANCING
5471 unsigned int nr_numa_running;
5472 unsigned int nr_preferred_running;
5473#endif
1e3c88bd
PZ
5474};
5475
56cf515b
JK
5476/*
5477 * sd_lb_stats - Structure to store the statistics of a sched_domain
5478 * during load balancing.
5479 */
5480struct sd_lb_stats {
5481 struct sched_group *busiest; /* Busiest group in this sd */
5482 struct sched_group *local; /* Local group in this sd */
5483 unsigned long total_load; /* Total load of all groups in sd */
5484 unsigned long total_pwr; /* Total power of all groups in sd */
5485 unsigned long avg_load; /* Average load across all groups in sd */
5486
56cf515b 5487 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5488 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5489};
5490
147c5fc2
PZ
5491static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5492{
5493 /*
5494 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5495 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5496 * We must however clear busiest_stat::avg_load because
5497 * update_sd_pick_busiest() reads this before assignment.
5498 */
5499 *sds = (struct sd_lb_stats){
5500 .busiest = NULL,
5501 .local = NULL,
5502 .total_load = 0UL,
5503 .total_pwr = 0UL,
5504 .busiest_stat = {
5505 .avg_load = 0UL,
5506 },
5507 };
5508}
5509
1e3c88bd
PZ
5510/**
5511 * get_sd_load_idx - Obtain the load index for a given sched domain.
5512 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5513 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5514 *
5515 * Return: The load index.
1e3c88bd
PZ
5516 */
5517static inline int get_sd_load_idx(struct sched_domain *sd,
5518 enum cpu_idle_type idle)
5519{
5520 int load_idx;
5521
5522 switch (idle) {
5523 case CPU_NOT_IDLE:
5524 load_idx = sd->busy_idx;
5525 break;
5526
5527 case CPU_NEWLY_IDLE:
5528 load_idx = sd->newidle_idx;
5529 break;
5530 default:
5531 load_idx = sd->idle_idx;
5532 break;
5533 }
5534
5535 return load_idx;
5536}
5537
15f803c9 5538static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5539{
1399fa78 5540 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5541}
5542
5543unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5544{
5545 return default_scale_freq_power(sd, cpu);
5546}
5547
15f803c9 5548static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5549{
669c55e9 5550 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5551 unsigned long smt_gain = sd->smt_gain;
5552
5553 smt_gain /= weight;
5554
5555 return smt_gain;
5556}
5557
5558unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5559{
5560 return default_scale_smt_power(sd, cpu);
5561}
5562
15f803c9 5563static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5564{
5565 struct rq *rq = cpu_rq(cpu);
b654f7de 5566 u64 total, available, age_stamp, avg;
cadefd3d 5567 s64 delta;
1e3c88bd 5568
b654f7de
PZ
5569 /*
5570 * Since we're reading these variables without serialization make sure
5571 * we read them once before doing sanity checks on them.
5572 */
5573 age_stamp = ACCESS_ONCE(rq->age_stamp);
5574 avg = ACCESS_ONCE(rq->rt_avg);
5575
cadefd3d
PZ
5576 delta = rq_clock(rq) - age_stamp;
5577 if (unlikely(delta < 0))
5578 delta = 0;
5579
5580 total = sched_avg_period() + delta;
aa483808 5581
b654f7de 5582 if (unlikely(total < avg)) {
aa483808
VP
5583 /* Ensures that power won't end up being negative */
5584 available = 0;
5585 } else {
b654f7de 5586 available = total - avg;
aa483808 5587 }
1e3c88bd 5588
1399fa78
NR
5589 if (unlikely((s64)total < SCHED_POWER_SCALE))
5590 total = SCHED_POWER_SCALE;
1e3c88bd 5591
1399fa78 5592 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5593
5594 return div_u64(available, total);
5595}
5596
5597static void update_cpu_power(struct sched_domain *sd, int cpu)
5598{
669c55e9 5599 unsigned long weight = sd->span_weight;
1399fa78 5600 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5601 struct sched_group *sdg = sd->groups;
5602
1e3c88bd
PZ
5603 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5604 if (sched_feat(ARCH_POWER))
5605 power *= arch_scale_smt_power(sd, cpu);
5606 else
5607 power *= default_scale_smt_power(sd, cpu);
5608
1399fa78 5609 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5610 }
5611
9c3f75cb 5612 sdg->sgp->power_orig = power;
9d5efe05
SV
5613
5614 if (sched_feat(ARCH_POWER))
5615 power *= arch_scale_freq_power(sd, cpu);
5616 else
5617 power *= default_scale_freq_power(sd, cpu);
5618
1399fa78 5619 power >>= SCHED_POWER_SHIFT;
9d5efe05 5620
1e3c88bd 5621 power *= scale_rt_power(cpu);
1399fa78 5622 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5623
5624 if (!power)
5625 power = 1;
5626
e51fd5e2 5627 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5628 sdg->sgp->power = power;
1e3c88bd
PZ
5629}
5630
029632fb 5631void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5632{
5633 struct sched_domain *child = sd->child;
5634 struct sched_group *group, *sdg = sd->groups;
863bffc8 5635 unsigned long power, power_orig;
4ec4412e
VG
5636 unsigned long interval;
5637
5638 interval = msecs_to_jiffies(sd->balance_interval);
5639 interval = clamp(interval, 1UL, max_load_balance_interval);
5640 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5641
5642 if (!child) {
5643 update_cpu_power(sd, cpu);
5644 return;
5645 }
5646
863bffc8 5647 power_orig = power = 0;
1e3c88bd 5648
74a5ce20
PZ
5649 if (child->flags & SD_OVERLAP) {
5650 /*
5651 * SD_OVERLAP domains cannot assume that child groups
5652 * span the current group.
5653 */
5654
863bffc8 5655 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5656 struct sched_group_power *sgp;
5657 struct rq *rq = cpu_rq(cpu);
863bffc8 5658
9abf24d4
SD
5659 /*
5660 * build_sched_domains() -> init_sched_groups_power()
5661 * gets here before we've attached the domains to the
5662 * runqueues.
5663 *
5664 * Use power_of(), which is set irrespective of domains
5665 * in update_cpu_power().
5666 *
5667 * This avoids power/power_orig from being 0 and
5668 * causing divide-by-zero issues on boot.
5669 *
5670 * Runtime updates will correct power_orig.
5671 */
5672 if (unlikely(!rq->sd)) {
5673 power_orig += power_of(cpu);
5674 power += power_of(cpu);
5675 continue;
5676 }
863bffc8 5677
9abf24d4
SD
5678 sgp = rq->sd->groups->sgp;
5679 power_orig += sgp->power_orig;
5680 power += sgp->power;
863bffc8 5681 }
74a5ce20
PZ
5682 } else {
5683 /*
5684 * !SD_OVERLAP domains can assume that child groups
5685 * span the current group.
5686 */
5687
5688 group = child->groups;
5689 do {
863bffc8 5690 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5691 power += group->sgp->power;
5692 group = group->next;
5693 } while (group != child->groups);
5694 }
1e3c88bd 5695
863bffc8
PZ
5696 sdg->sgp->power_orig = power_orig;
5697 sdg->sgp->power = power;
1e3c88bd
PZ
5698}
5699
9d5efe05
SV
5700/*
5701 * Try and fix up capacity for tiny siblings, this is needed when
5702 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5703 * which on its own isn't powerful enough.
5704 *
5705 * See update_sd_pick_busiest() and check_asym_packing().
5706 */
5707static inline int
5708fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5709{
5710 /*
1399fa78 5711 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5712 */
a6c75f2f 5713 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5714 return 0;
5715
5716 /*
5717 * If ~90% of the cpu_power is still there, we're good.
5718 */
9c3f75cb 5719 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5720 return 1;
5721
5722 return 0;
5723}
5724
30ce5dab
PZ
5725/*
5726 * Group imbalance indicates (and tries to solve) the problem where balancing
5727 * groups is inadequate due to tsk_cpus_allowed() constraints.
5728 *
5729 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5730 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5731 * Something like:
5732 *
5733 * { 0 1 2 3 } { 4 5 6 7 }
5734 * * * * *
5735 *
5736 * If we were to balance group-wise we'd place two tasks in the first group and
5737 * two tasks in the second group. Clearly this is undesired as it will overload
5738 * cpu 3 and leave one of the cpus in the second group unused.
5739 *
5740 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5741 * by noticing the lower domain failed to reach balance and had difficulty
5742 * moving tasks due to affinity constraints.
30ce5dab
PZ
5743 *
5744 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5745 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5746 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5747 * to create an effective group imbalance.
5748 *
5749 * This is a somewhat tricky proposition since the next run might not find the
5750 * group imbalance and decide the groups need to be balanced again. A most
5751 * subtle and fragile situation.
5752 */
5753
6263322c 5754static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5755{
6263322c 5756 return group->sgp->imbalance;
30ce5dab
PZ
5757}
5758
b37d9316
PZ
5759/*
5760 * Compute the group capacity.
5761 *
c61037e9
PZ
5762 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5763 * first dividing out the smt factor and computing the actual number of cores
5764 * and limit power unit capacity with that.
b37d9316
PZ
5765 */
5766static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5767{
c61037e9
PZ
5768 unsigned int capacity, smt, cpus;
5769 unsigned int power, power_orig;
5770
5771 power = group->sgp->power;
5772 power_orig = group->sgp->power_orig;
5773 cpus = group->group_weight;
b37d9316 5774
c61037e9
PZ
5775 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5776 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5777 capacity = cpus / smt; /* cores */
b37d9316 5778
c61037e9 5779 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5780 if (!capacity)
5781 capacity = fix_small_capacity(env->sd, group);
5782
5783 return capacity;
5784}
5785
1e3c88bd
PZ
5786/**
5787 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5788 * @env: The load balancing environment.
1e3c88bd 5789 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5790 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5791 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5792 * @sgs: variable to hold the statistics for this group.
5793 */
bd939f45
PZ
5794static inline void update_sg_lb_stats(struct lb_env *env,
5795 struct sched_group *group, int load_idx,
23f0d209 5796 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5797{
30ce5dab 5798 unsigned long load;
bd939f45 5799 int i;
1e3c88bd 5800
b72ff13c
PZ
5801 memset(sgs, 0, sizeof(*sgs));
5802
b9403130 5803 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5804 struct rq *rq = cpu_rq(i);
5805
1e3c88bd 5806 /* Bias balancing toward cpus of our domain */
6263322c 5807 if (local_group)
04f733b4 5808 load = target_load(i, load_idx);
6263322c 5809 else
1e3c88bd 5810 load = source_load(i, load_idx);
1e3c88bd
PZ
5811
5812 sgs->group_load += load;
380c9077 5813 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5814#ifdef CONFIG_NUMA_BALANCING
5815 sgs->nr_numa_running += rq->nr_numa_running;
5816 sgs->nr_preferred_running += rq->nr_preferred_running;
5817#endif
1e3c88bd 5818 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5819 if (idle_cpu(i))
5820 sgs->idle_cpus++;
1e3c88bd
PZ
5821 }
5822
1e3c88bd 5823 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5824 sgs->group_power = group->sgp->power;
5825 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5826
dd5feea1 5827 if (sgs->sum_nr_running)
38d0f770 5828 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5829
aae6d3dd 5830 sgs->group_weight = group->group_weight;
fab47622 5831
b37d9316
PZ
5832 sgs->group_imb = sg_imbalanced(group);
5833 sgs->group_capacity = sg_capacity(env, group);
5834
fab47622
NR
5835 if (sgs->group_capacity > sgs->sum_nr_running)
5836 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5837}
5838
532cb4c4
MN
5839/**
5840 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5841 * @env: The load balancing environment.
532cb4c4
MN
5842 * @sds: sched_domain statistics
5843 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5844 * @sgs: sched_group statistics
532cb4c4
MN
5845 *
5846 * Determine if @sg is a busier group than the previously selected
5847 * busiest group.
e69f6186
YB
5848 *
5849 * Return: %true if @sg is a busier group than the previously selected
5850 * busiest group. %false otherwise.
532cb4c4 5851 */
bd939f45 5852static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5853 struct sd_lb_stats *sds,
5854 struct sched_group *sg,
bd939f45 5855 struct sg_lb_stats *sgs)
532cb4c4 5856{
56cf515b 5857 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5858 return false;
5859
5860 if (sgs->sum_nr_running > sgs->group_capacity)
5861 return true;
5862
5863 if (sgs->group_imb)
5864 return true;
5865
5866 /*
5867 * ASYM_PACKING needs to move all the work to the lowest
5868 * numbered CPUs in the group, therefore mark all groups
5869 * higher than ourself as busy.
5870 */
bd939f45
PZ
5871 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5872 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5873 if (!sds->busiest)
5874 return true;
5875
5876 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5877 return true;
5878 }
5879
5880 return false;
5881}
5882
0ec8aa00
PZ
5883#ifdef CONFIG_NUMA_BALANCING
5884static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5885{
5886 if (sgs->sum_nr_running > sgs->nr_numa_running)
5887 return regular;
5888 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5889 return remote;
5890 return all;
5891}
5892
5893static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5894{
5895 if (rq->nr_running > rq->nr_numa_running)
5896 return regular;
5897 if (rq->nr_running > rq->nr_preferred_running)
5898 return remote;
5899 return all;
5900}
5901#else
5902static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5903{
5904 return all;
5905}
5906
5907static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5908{
5909 return regular;
5910}
5911#endif /* CONFIG_NUMA_BALANCING */
5912
1e3c88bd 5913/**
461819ac 5914 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5915 * @env: The load balancing environment.
1e3c88bd
PZ
5916 * @sds: variable to hold the statistics for this sched_domain.
5917 */
0ec8aa00 5918static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5919{
bd939f45
PZ
5920 struct sched_domain *child = env->sd->child;
5921 struct sched_group *sg = env->sd->groups;
56cf515b 5922 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5923 int load_idx, prefer_sibling = 0;
5924
5925 if (child && child->flags & SD_PREFER_SIBLING)
5926 prefer_sibling = 1;
5927
bd939f45 5928 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5929
5930 do {
56cf515b 5931 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5932 int local_group;
5933
bd939f45 5934 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5935 if (local_group) {
5936 sds->local = sg;
5937 sgs = &sds->local_stat;
b72ff13c
PZ
5938
5939 if (env->idle != CPU_NEWLY_IDLE ||
5940 time_after_eq(jiffies, sg->sgp->next_update))
5941 update_group_power(env->sd, env->dst_cpu);
56cf515b 5942 }
1e3c88bd 5943
56cf515b 5944 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5945
b72ff13c
PZ
5946 if (local_group)
5947 goto next_group;
5948
1e3c88bd
PZ
5949 /*
5950 * In case the child domain prefers tasks go to siblings
532cb4c4 5951 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5952 * and move all the excess tasks away. We lower the capacity
5953 * of a group only if the local group has the capacity to fit
5954 * these excess tasks, i.e. nr_running < group_capacity. The
5955 * extra check prevents the case where you always pull from the
5956 * heaviest group when it is already under-utilized (possible
5957 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5958 */
b72ff13c
PZ
5959 if (prefer_sibling && sds->local &&
5960 sds->local_stat.group_has_capacity)
147c5fc2 5961 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5962
b72ff13c 5963 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5964 sds->busiest = sg;
56cf515b 5965 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5966 }
5967
b72ff13c
PZ
5968next_group:
5969 /* Now, start updating sd_lb_stats */
5970 sds->total_load += sgs->group_load;
5971 sds->total_pwr += sgs->group_power;
5972
532cb4c4 5973 sg = sg->next;
bd939f45 5974 } while (sg != env->sd->groups);
0ec8aa00
PZ
5975
5976 if (env->sd->flags & SD_NUMA)
5977 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5978}
5979
532cb4c4
MN
5980/**
5981 * check_asym_packing - Check to see if the group is packed into the
5982 * sched doman.
5983 *
5984 * This is primarily intended to used at the sibling level. Some
5985 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5986 * case of POWER7, it can move to lower SMT modes only when higher
5987 * threads are idle. When in lower SMT modes, the threads will
5988 * perform better since they share less core resources. Hence when we
5989 * have idle threads, we want them to be the higher ones.
5990 *
5991 * This packing function is run on idle threads. It checks to see if
5992 * the busiest CPU in this domain (core in the P7 case) has a higher
5993 * CPU number than the packing function is being run on. Here we are
5994 * assuming lower CPU number will be equivalent to lower a SMT thread
5995 * number.
5996 *
e69f6186 5997 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5998 * this CPU. The amount of the imbalance is returned in *imbalance.
5999 *
cd96891d 6000 * @env: The load balancing environment.
532cb4c4 6001 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6002 */
bd939f45 6003static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6004{
6005 int busiest_cpu;
6006
bd939f45 6007 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6008 return 0;
6009
6010 if (!sds->busiest)
6011 return 0;
6012
6013 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6014 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6015 return 0;
6016
bd939f45 6017 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6018 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6019 SCHED_POWER_SCALE);
bd939f45 6020
532cb4c4 6021 return 1;
1e3c88bd
PZ
6022}
6023
6024/**
6025 * fix_small_imbalance - Calculate the minor imbalance that exists
6026 * amongst the groups of a sched_domain, during
6027 * load balancing.
cd96891d 6028 * @env: The load balancing environment.
1e3c88bd 6029 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6030 */
bd939f45
PZ
6031static inline
6032void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6033{
6034 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6035 unsigned int imbn = 2;
dd5feea1 6036 unsigned long scaled_busy_load_per_task;
56cf515b 6037 struct sg_lb_stats *local, *busiest;
1e3c88bd 6038
56cf515b
JK
6039 local = &sds->local_stat;
6040 busiest = &sds->busiest_stat;
1e3c88bd 6041
56cf515b
JK
6042 if (!local->sum_nr_running)
6043 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6044 else if (busiest->load_per_task > local->load_per_task)
6045 imbn = 1;
dd5feea1 6046
56cf515b
JK
6047 scaled_busy_load_per_task =
6048 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6049 busiest->group_power;
56cf515b 6050
3029ede3
VD
6051 if (busiest->avg_load + scaled_busy_load_per_task >=
6052 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6053 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6054 return;
6055 }
6056
6057 /*
6058 * OK, we don't have enough imbalance to justify moving tasks,
6059 * however we may be able to increase total CPU power used by
6060 * moving them.
6061 */
6062
3ae11c90 6063 pwr_now += busiest->group_power *
56cf515b 6064 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6065 pwr_now += local->group_power *
56cf515b 6066 min(local->load_per_task, local->avg_load);
1399fa78 6067 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6068
6069 /* Amount of load we'd subtract */
a2cd4260 6070 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6071 pwr_move += busiest->group_power *
56cf515b 6072 min(busiest->load_per_task,
a2cd4260 6073 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6074 }
1e3c88bd
PZ
6075
6076 /* Amount of load we'd add */
3ae11c90 6077 if (busiest->avg_load * busiest->group_power <
56cf515b 6078 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6079 tmp = (busiest->avg_load * busiest->group_power) /
6080 local->group_power;
56cf515b
JK
6081 } else {
6082 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6083 local->group_power;
56cf515b 6084 }
3ae11c90
PZ
6085 pwr_move += local->group_power *
6086 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6087 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6088
6089 /* Move if we gain throughput */
6090 if (pwr_move > pwr_now)
56cf515b 6091 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6092}
6093
6094/**
6095 * calculate_imbalance - Calculate the amount of imbalance present within the
6096 * groups of a given sched_domain during load balance.
bd939f45 6097 * @env: load balance environment
1e3c88bd 6098 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6099 */
bd939f45 6100static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6101{
dd5feea1 6102 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6103 struct sg_lb_stats *local, *busiest;
6104
6105 local = &sds->local_stat;
56cf515b 6106 busiest = &sds->busiest_stat;
dd5feea1 6107
56cf515b 6108 if (busiest->group_imb) {
30ce5dab
PZ
6109 /*
6110 * In the group_imb case we cannot rely on group-wide averages
6111 * to ensure cpu-load equilibrium, look at wider averages. XXX
6112 */
56cf515b
JK
6113 busiest->load_per_task =
6114 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6115 }
6116
1e3c88bd
PZ
6117 /*
6118 * In the presence of smp nice balancing, certain scenarios can have
6119 * max load less than avg load(as we skip the groups at or below
6120 * its cpu_power, while calculating max_load..)
6121 */
b1885550
VD
6122 if (busiest->avg_load <= sds->avg_load ||
6123 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6124 env->imbalance = 0;
6125 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6126 }
6127
56cf515b 6128 if (!busiest->group_imb) {
dd5feea1
SS
6129 /*
6130 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6131 * Except of course for the group_imb case, since then we might
6132 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6133 */
56cf515b
JK
6134 load_above_capacity =
6135 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6136
1399fa78 6137 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6138 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6139 }
6140
6141 /*
6142 * We're trying to get all the cpus to the average_load, so we don't
6143 * want to push ourselves above the average load, nor do we wish to
6144 * reduce the max loaded cpu below the average load. At the same time,
6145 * we also don't want to reduce the group load below the group capacity
6146 * (so that we can implement power-savings policies etc). Thus we look
6147 * for the minimum possible imbalance.
dd5feea1 6148 */
30ce5dab 6149 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6150
6151 /* How much load to actually move to equalise the imbalance */
56cf515b 6152 env->imbalance = min(
3ae11c90
PZ
6153 max_pull * busiest->group_power,
6154 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6155 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6156
6157 /*
6158 * if *imbalance is less than the average load per runnable task
25985edc 6159 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6160 * a think about bumping its value to force at least one task to be
6161 * moved
6162 */
56cf515b 6163 if (env->imbalance < busiest->load_per_task)
bd939f45 6164 return fix_small_imbalance(env, sds);
1e3c88bd 6165}
fab47622 6166
1e3c88bd
PZ
6167/******* find_busiest_group() helpers end here *********************/
6168
6169/**
6170 * find_busiest_group - Returns the busiest group within the sched_domain
6171 * if there is an imbalance. If there isn't an imbalance, and
6172 * the user has opted for power-savings, it returns a group whose
6173 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6174 * such a group exists.
6175 *
6176 * Also calculates the amount of weighted load which should be moved
6177 * to restore balance.
6178 *
cd96891d 6179 * @env: The load balancing environment.
1e3c88bd 6180 *
e69f6186 6181 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6182 * - If no imbalance and user has opted for power-savings balance,
6183 * return the least loaded group whose CPUs can be
6184 * put to idle by rebalancing its tasks onto our group.
6185 */
56cf515b 6186static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6187{
56cf515b 6188 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6189 struct sd_lb_stats sds;
6190
147c5fc2 6191 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6192
6193 /*
6194 * Compute the various statistics relavent for load balancing at
6195 * this level.
6196 */
23f0d209 6197 update_sd_lb_stats(env, &sds);
56cf515b
JK
6198 local = &sds.local_stat;
6199 busiest = &sds.busiest_stat;
1e3c88bd 6200
bd939f45
PZ
6201 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6202 check_asym_packing(env, &sds))
532cb4c4
MN
6203 return sds.busiest;
6204
cc57aa8f 6205 /* There is no busy sibling group to pull tasks from */
56cf515b 6206 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6207 goto out_balanced;
6208
1399fa78 6209 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6210
866ab43e
PZ
6211 /*
6212 * If the busiest group is imbalanced the below checks don't
30ce5dab 6213 * work because they assume all things are equal, which typically
866ab43e
PZ
6214 * isn't true due to cpus_allowed constraints and the like.
6215 */
56cf515b 6216 if (busiest->group_imb)
866ab43e
PZ
6217 goto force_balance;
6218
cc57aa8f 6219 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6220 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6221 !busiest->group_has_capacity)
fab47622
NR
6222 goto force_balance;
6223
cc57aa8f
PZ
6224 /*
6225 * If the local group is more busy than the selected busiest group
6226 * don't try and pull any tasks.
6227 */
56cf515b 6228 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6229 goto out_balanced;
6230
cc57aa8f
PZ
6231 /*
6232 * Don't pull any tasks if this group is already above the domain
6233 * average load.
6234 */
56cf515b 6235 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6236 goto out_balanced;
6237
bd939f45 6238 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6239 /*
6240 * This cpu is idle. If the busiest group load doesn't
6241 * have more tasks than the number of available cpu's and
6242 * there is no imbalance between this and busiest group
6243 * wrt to idle cpu's, it is balanced.
6244 */
56cf515b
JK
6245 if ((local->idle_cpus < busiest->idle_cpus) &&
6246 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6247 goto out_balanced;
c186fafe
PZ
6248 } else {
6249 /*
6250 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6251 * imbalance_pct to be conservative.
6252 */
56cf515b
JK
6253 if (100 * busiest->avg_load <=
6254 env->sd->imbalance_pct * local->avg_load)
c186fafe 6255 goto out_balanced;
aae6d3dd 6256 }
1e3c88bd 6257
fab47622 6258force_balance:
1e3c88bd 6259 /* Looks like there is an imbalance. Compute it */
bd939f45 6260 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6261 return sds.busiest;
6262
6263out_balanced:
bd939f45 6264 env->imbalance = 0;
1e3c88bd
PZ
6265 return NULL;
6266}
6267
6268/*
6269 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6270 */
bd939f45 6271static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6272 struct sched_group *group)
1e3c88bd
PZ
6273{
6274 struct rq *busiest = NULL, *rq;
95a79b80 6275 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6276 int i;
6277
6906a408 6278 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6279 unsigned long power, capacity, wl;
6280 enum fbq_type rt;
6281
6282 rq = cpu_rq(i);
6283 rt = fbq_classify_rq(rq);
1e3c88bd 6284
0ec8aa00
PZ
6285 /*
6286 * We classify groups/runqueues into three groups:
6287 * - regular: there are !numa tasks
6288 * - remote: there are numa tasks that run on the 'wrong' node
6289 * - all: there is no distinction
6290 *
6291 * In order to avoid migrating ideally placed numa tasks,
6292 * ignore those when there's better options.
6293 *
6294 * If we ignore the actual busiest queue to migrate another
6295 * task, the next balance pass can still reduce the busiest
6296 * queue by moving tasks around inside the node.
6297 *
6298 * If we cannot move enough load due to this classification
6299 * the next pass will adjust the group classification and
6300 * allow migration of more tasks.
6301 *
6302 * Both cases only affect the total convergence complexity.
6303 */
6304 if (rt > env->fbq_type)
6305 continue;
6306
6307 power = power_of(i);
6308 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6309 if (!capacity)
bd939f45 6310 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6311
6e40f5bb 6312 wl = weighted_cpuload(i);
1e3c88bd 6313
6e40f5bb
TG
6314 /*
6315 * When comparing with imbalance, use weighted_cpuload()
6316 * which is not scaled with the cpu power.
6317 */
bd939f45 6318 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6319 continue;
6320
6e40f5bb
TG
6321 /*
6322 * For the load comparisons with the other cpu's, consider
6323 * the weighted_cpuload() scaled with the cpu power, so that
6324 * the load can be moved away from the cpu that is potentially
6325 * running at a lower capacity.
95a79b80
JK
6326 *
6327 * Thus we're looking for max(wl_i / power_i), crosswise
6328 * multiplication to rid ourselves of the division works out
6329 * to: wl_i * power_j > wl_j * power_i; where j is our
6330 * previous maximum.
6e40f5bb 6331 */
95a79b80
JK
6332 if (wl * busiest_power > busiest_load * power) {
6333 busiest_load = wl;
6334 busiest_power = power;
1e3c88bd
PZ
6335 busiest = rq;
6336 }
6337 }
6338
6339 return busiest;
6340}
6341
6342/*
6343 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6344 * so long as it is large enough.
6345 */
6346#define MAX_PINNED_INTERVAL 512
6347
6348/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6349DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6350
bd939f45 6351static int need_active_balance(struct lb_env *env)
1af3ed3d 6352{
bd939f45
PZ
6353 struct sched_domain *sd = env->sd;
6354
6355 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6356
6357 /*
6358 * ASYM_PACKING needs to force migrate tasks from busy but
6359 * higher numbered CPUs in order to pack all tasks in the
6360 * lowest numbered CPUs.
6361 */
bd939f45 6362 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6363 return 1;
1af3ed3d
PZ
6364 }
6365
6366 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6367}
6368
969c7921
TH
6369static int active_load_balance_cpu_stop(void *data);
6370
23f0d209
JK
6371static int should_we_balance(struct lb_env *env)
6372{
6373 struct sched_group *sg = env->sd->groups;
6374 struct cpumask *sg_cpus, *sg_mask;
6375 int cpu, balance_cpu = -1;
6376
6377 /*
6378 * In the newly idle case, we will allow all the cpu's
6379 * to do the newly idle load balance.
6380 */
6381 if (env->idle == CPU_NEWLY_IDLE)
6382 return 1;
6383
6384 sg_cpus = sched_group_cpus(sg);
6385 sg_mask = sched_group_mask(sg);
6386 /* Try to find first idle cpu */
6387 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6388 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6389 continue;
6390
6391 balance_cpu = cpu;
6392 break;
6393 }
6394
6395 if (balance_cpu == -1)
6396 balance_cpu = group_balance_cpu(sg);
6397
6398 /*
6399 * First idle cpu or the first cpu(busiest) in this sched group
6400 * is eligible for doing load balancing at this and above domains.
6401 */
b0cff9d8 6402 return balance_cpu == env->dst_cpu;
23f0d209
JK
6403}
6404
1e3c88bd
PZ
6405/*
6406 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6407 * tasks if there is an imbalance.
6408 */
6409static int load_balance(int this_cpu, struct rq *this_rq,
6410 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6411 int *continue_balancing)
1e3c88bd 6412{
88b8dac0 6413 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6414 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6415 struct sched_group *group;
1e3c88bd
PZ
6416 struct rq *busiest;
6417 unsigned long flags;
e6252c3e 6418 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6419
8e45cb54
PZ
6420 struct lb_env env = {
6421 .sd = sd,
ddcdf6e7
PZ
6422 .dst_cpu = this_cpu,
6423 .dst_rq = this_rq,
88b8dac0 6424 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6425 .idle = idle,
eb95308e 6426 .loop_break = sched_nr_migrate_break,
b9403130 6427 .cpus = cpus,
0ec8aa00 6428 .fbq_type = all,
8e45cb54
PZ
6429 };
6430
cfc03118
JK
6431 /*
6432 * For NEWLY_IDLE load_balancing, we don't need to consider
6433 * other cpus in our group
6434 */
e02e60c1 6435 if (idle == CPU_NEWLY_IDLE)
cfc03118 6436 env.dst_grpmask = NULL;
cfc03118 6437
1e3c88bd
PZ
6438 cpumask_copy(cpus, cpu_active_mask);
6439
1e3c88bd
PZ
6440 schedstat_inc(sd, lb_count[idle]);
6441
6442redo:
23f0d209
JK
6443 if (!should_we_balance(&env)) {
6444 *continue_balancing = 0;
1e3c88bd 6445 goto out_balanced;
23f0d209 6446 }
1e3c88bd 6447
23f0d209 6448 group = find_busiest_group(&env);
1e3c88bd
PZ
6449 if (!group) {
6450 schedstat_inc(sd, lb_nobusyg[idle]);
6451 goto out_balanced;
6452 }
6453
b9403130 6454 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6455 if (!busiest) {
6456 schedstat_inc(sd, lb_nobusyq[idle]);
6457 goto out_balanced;
6458 }
6459
78feefc5 6460 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6461
bd939f45 6462 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6463
6464 ld_moved = 0;
6465 if (busiest->nr_running > 1) {
6466 /*
6467 * Attempt to move tasks. If find_busiest_group has found
6468 * an imbalance but busiest->nr_running <= 1, the group is
6469 * still unbalanced. ld_moved simply stays zero, so it is
6470 * correctly treated as an imbalance.
6471 */
8e45cb54 6472 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6473 env.src_cpu = busiest->cpu;
6474 env.src_rq = busiest;
6475 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6476
5d6523eb 6477more_balance:
1e3c88bd 6478 local_irq_save(flags);
78feefc5 6479 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6480
6481 /*
6482 * cur_ld_moved - load moved in current iteration
6483 * ld_moved - cumulative load moved across iterations
6484 */
6485 cur_ld_moved = move_tasks(&env);
6486 ld_moved += cur_ld_moved;
78feefc5 6487 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6488 local_irq_restore(flags);
6489
6490 /*
6491 * some other cpu did the load balance for us.
6492 */
88b8dac0
SV
6493 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6494 resched_cpu(env.dst_cpu);
6495
f1cd0858
JK
6496 if (env.flags & LBF_NEED_BREAK) {
6497 env.flags &= ~LBF_NEED_BREAK;
6498 goto more_balance;
6499 }
6500
88b8dac0
SV
6501 /*
6502 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6503 * us and move them to an alternate dst_cpu in our sched_group
6504 * where they can run. The upper limit on how many times we
6505 * iterate on same src_cpu is dependent on number of cpus in our
6506 * sched_group.
6507 *
6508 * This changes load balance semantics a bit on who can move
6509 * load to a given_cpu. In addition to the given_cpu itself
6510 * (or a ilb_cpu acting on its behalf where given_cpu is
6511 * nohz-idle), we now have balance_cpu in a position to move
6512 * load to given_cpu. In rare situations, this may cause
6513 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6514 * _independently_ and at _same_ time to move some load to
6515 * given_cpu) causing exceess load to be moved to given_cpu.
6516 * This however should not happen so much in practice and
6517 * moreover subsequent load balance cycles should correct the
6518 * excess load moved.
6519 */
6263322c 6520 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6521
7aff2e3a
VD
6522 /* Prevent to re-select dst_cpu via env's cpus */
6523 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6524
78feefc5 6525 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6526 env.dst_cpu = env.new_dst_cpu;
6263322c 6527 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6528 env.loop = 0;
6529 env.loop_break = sched_nr_migrate_break;
e02e60c1 6530
88b8dac0
SV
6531 /*
6532 * Go back to "more_balance" rather than "redo" since we
6533 * need to continue with same src_cpu.
6534 */
6535 goto more_balance;
6536 }
1e3c88bd 6537
6263322c
PZ
6538 /*
6539 * We failed to reach balance because of affinity.
6540 */
6541 if (sd_parent) {
6542 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6543
6544 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6545 *group_imbalance = 1;
6546 } else if (*group_imbalance)
6547 *group_imbalance = 0;
6548 }
6549
1e3c88bd 6550 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6551 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6552 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6553 if (!cpumask_empty(cpus)) {
6554 env.loop = 0;
6555 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6556 goto redo;
bbf18b19 6557 }
1e3c88bd
PZ
6558 goto out_balanced;
6559 }
6560 }
6561
6562 if (!ld_moved) {
6563 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6564 /*
6565 * Increment the failure counter only on periodic balance.
6566 * We do not want newidle balance, which can be very
6567 * frequent, pollute the failure counter causing
6568 * excessive cache_hot migrations and active balances.
6569 */
6570 if (idle != CPU_NEWLY_IDLE)
6571 sd->nr_balance_failed++;
1e3c88bd 6572
bd939f45 6573 if (need_active_balance(&env)) {
1e3c88bd
PZ
6574 raw_spin_lock_irqsave(&busiest->lock, flags);
6575
969c7921
TH
6576 /* don't kick the active_load_balance_cpu_stop,
6577 * if the curr task on busiest cpu can't be
6578 * moved to this_cpu
1e3c88bd
PZ
6579 */
6580 if (!cpumask_test_cpu(this_cpu,
fa17b507 6581 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6582 raw_spin_unlock_irqrestore(&busiest->lock,
6583 flags);
8e45cb54 6584 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6585 goto out_one_pinned;
6586 }
6587
969c7921
TH
6588 /*
6589 * ->active_balance synchronizes accesses to
6590 * ->active_balance_work. Once set, it's cleared
6591 * only after active load balance is finished.
6592 */
1e3c88bd
PZ
6593 if (!busiest->active_balance) {
6594 busiest->active_balance = 1;
6595 busiest->push_cpu = this_cpu;
6596 active_balance = 1;
6597 }
6598 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6599
bd939f45 6600 if (active_balance) {
969c7921
TH
6601 stop_one_cpu_nowait(cpu_of(busiest),
6602 active_load_balance_cpu_stop, busiest,
6603 &busiest->active_balance_work);
bd939f45 6604 }
1e3c88bd
PZ
6605
6606 /*
6607 * We've kicked active balancing, reset the failure
6608 * counter.
6609 */
6610 sd->nr_balance_failed = sd->cache_nice_tries+1;
6611 }
6612 } else
6613 sd->nr_balance_failed = 0;
6614
6615 if (likely(!active_balance)) {
6616 /* We were unbalanced, so reset the balancing interval */
6617 sd->balance_interval = sd->min_interval;
6618 } else {
6619 /*
6620 * If we've begun active balancing, start to back off. This
6621 * case may not be covered by the all_pinned logic if there
6622 * is only 1 task on the busy runqueue (because we don't call
6623 * move_tasks).
6624 */
6625 if (sd->balance_interval < sd->max_interval)
6626 sd->balance_interval *= 2;
6627 }
6628
1e3c88bd
PZ
6629 goto out;
6630
6631out_balanced:
6632 schedstat_inc(sd, lb_balanced[idle]);
6633
6634 sd->nr_balance_failed = 0;
6635
6636out_one_pinned:
6637 /* tune up the balancing interval */
8e45cb54 6638 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6639 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6640 (sd->balance_interval < sd->max_interval))
6641 sd->balance_interval *= 2;
6642
46e49b38 6643 ld_moved = 0;
1e3c88bd 6644out:
1e3c88bd
PZ
6645 return ld_moved;
6646}
6647
1e3c88bd
PZ
6648/*
6649 * idle_balance is called by schedule() if this_cpu is about to become
6650 * idle. Attempts to pull tasks from other CPUs.
6651 */
6e83125c 6652static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6653{
6654 struct sched_domain *sd;
6655 int pulled_task = 0;
6656 unsigned long next_balance = jiffies + HZ;
9bd721c5 6657 u64 curr_cost = 0;
b4f2ab43 6658 int this_cpu = this_rq->cpu;
1e3c88bd 6659
6e83125c
PZ
6660 idle_enter_fair(this_rq);
6661 /*
6662 * We must set idle_stamp _before_ calling idle_balance(), such that we
6663 * measure the duration of idle_balance() as idle time.
6664 */
6665 this_rq->idle_stamp = rq_clock(this_rq);
6666
1e3c88bd 6667 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6668 goto out;
1e3c88bd 6669
f492e12e
PZ
6670 /*
6671 * Drop the rq->lock, but keep IRQ/preempt disabled.
6672 */
6673 raw_spin_unlock(&this_rq->lock);
6674
48a16753 6675 update_blocked_averages(this_cpu);
dce840a0 6676 rcu_read_lock();
1e3c88bd
PZ
6677 for_each_domain(this_cpu, sd) {
6678 unsigned long interval;
23f0d209 6679 int continue_balancing = 1;
9bd721c5 6680 u64 t0, domain_cost;
1e3c88bd
PZ
6681
6682 if (!(sd->flags & SD_LOAD_BALANCE))
6683 continue;
6684
9bd721c5
JL
6685 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6686 break;
6687
f492e12e 6688 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6689 t0 = sched_clock_cpu(this_cpu);
6690
1e3c88bd 6691 /* If we've pulled tasks over stop searching: */
f492e12e 6692 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6693 sd, CPU_NEWLY_IDLE,
6694 &continue_balancing);
9bd721c5
JL
6695
6696 domain_cost = sched_clock_cpu(this_cpu) - t0;
6697 if (domain_cost > sd->max_newidle_lb_cost)
6698 sd->max_newidle_lb_cost = domain_cost;
6699
6700 curr_cost += domain_cost;
f492e12e 6701 }
1e3c88bd
PZ
6702
6703 interval = msecs_to_jiffies(sd->balance_interval);
6704 if (time_after(next_balance, sd->last_balance + interval))
6705 next_balance = sd->last_balance + interval;
3c4017c1 6706 if (pulled_task)
1e3c88bd 6707 break;
1e3c88bd 6708 }
dce840a0 6709 rcu_read_unlock();
f492e12e
PZ
6710
6711 raw_spin_lock(&this_rq->lock);
6712
e5fc6611
DL
6713 /*
6714 * While browsing the domains, we released the rq lock.
6715 * A task could have be enqueued in the meantime
6716 */
35805ff8 6717 if (this_rq->cfs.h_nr_running && !pulled_task) {
6e83125c
PZ
6718 pulled_task = 1;
6719 goto out;
6720 }
e5fc6611 6721
1e3c88bd
PZ
6722 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6723 /*
6724 * We are going idle. next_balance may be set based on
6725 * a busy processor. So reset next_balance.
6726 */
6727 this_rq->next_balance = next_balance;
6728 }
9bd721c5
JL
6729
6730 if (curr_cost > this_rq->max_idle_balance_cost)
6731 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1 6732
6e83125c 6733out:
e4aa358b 6734 /* Is there a task of a high priority class? */
4c6c4e38 6735 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
a1d9a323
KT
6736 ((this_rq->stop && this_rq->stop->on_rq) ||
6737 this_rq->dl.dl_nr_running ||
4c6c4e38 6738 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
e4aa358b
KT
6739 pulled_task = -1;
6740
6741 if (pulled_task) {
6742 idle_exit_fair(this_rq);
6e83125c 6743 this_rq->idle_stamp = 0;
e4aa358b 6744 }
6e83125c 6745
3c4017c1 6746 return pulled_task;
1e3c88bd
PZ
6747}
6748
6749/*
969c7921
TH
6750 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6751 * running tasks off the busiest CPU onto idle CPUs. It requires at
6752 * least 1 task to be running on each physical CPU where possible, and
6753 * avoids physical / logical imbalances.
1e3c88bd 6754 */
969c7921 6755static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6756{
969c7921
TH
6757 struct rq *busiest_rq = data;
6758 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6759 int target_cpu = busiest_rq->push_cpu;
969c7921 6760 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6761 struct sched_domain *sd;
969c7921
TH
6762
6763 raw_spin_lock_irq(&busiest_rq->lock);
6764
6765 /* make sure the requested cpu hasn't gone down in the meantime */
6766 if (unlikely(busiest_cpu != smp_processor_id() ||
6767 !busiest_rq->active_balance))
6768 goto out_unlock;
1e3c88bd
PZ
6769
6770 /* Is there any task to move? */
6771 if (busiest_rq->nr_running <= 1)
969c7921 6772 goto out_unlock;
1e3c88bd
PZ
6773
6774 /*
6775 * This condition is "impossible", if it occurs
6776 * we need to fix it. Originally reported by
6777 * Bjorn Helgaas on a 128-cpu setup.
6778 */
6779 BUG_ON(busiest_rq == target_rq);
6780
6781 /* move a task from busiest_rq to target_rq */
6782 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6783
6784 /* Search for an sd spanning us and the target CPU. */
dce840a0 6785 rcu_read_lock();
1e3c88bd
PZ
6786 for_each_domain(target_cpu, sd) {
6787 if ((sd->flags & SD_LOAD_BALANCE) &&
6788 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6789 break;
6790 }
6791
6792 if (likely(sd)) {
8e45cb54
PZ
6793 struct lb_env env = {
6794 .sd = sd,
ddcdf6e7
PZ
6795 .dst_cpu = target_cpu,
6796 .dst_rq = target_rq,
6797 .src_cpu = busiest_rq->cpu,
6798 .src_rq = busiest_rq,
8e45cb54
PZ
6799 .idle = CPU_IDLE,
6800 };
6801
1e3c88bd
PZ
6802 schedstat_inc(sd, alb_count);
6803
8e45cb54 6804 if (move_one_task(&env))
1e3c88bd
PZ
6805 schedstat_inc(sd, alb_pushed);
6806 else
6807 schedstat_inc(sd, alb_failed);
6808 }
dce840a0 6809 rcu_read_unlock();
1e3c88bd 6810 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6811out_unlock:
6812 busiest_rq->active_balance = 0;
6813 raw_spin_unlock_irq(&busiest_rq->lock);
6814 return 0;
1e3c88bd
PZ
6815}
6816
d987fc7f
MG
6817static inline int on_null_domain(struct rq *rq)
6818{
6819 return unlikely(!rcu_dereference_sched(rq->sd));
6820}
6821
3451d024 6822#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6823/*
6824 * idle load balancing details
83cd4fe2
VP
6825 * - When one of the busy CPUs notice that there may be an idle rebalancing
6826 * needed, they will kick the idle load balancer, which then does idle
6827 * load balancing for all the idle CPUs.
6828 */
1e3c88bd 6829static struct {
83cd4fe2 6830 cpumask_var_t idle_cpus_mask;
0b005cf5 6831 atomic_t nr_cpus;
83cd4fe2
VP
6832 unsigned long next_balance; /* in jiffy units */
6833} nohz ____cacheline_aligned;
1e3c88bd 6834
3dd0337d 6835static inline int find_new_ilb(void)
1e3c88bd 6836{
0b005cf5 6837 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6838
786d6dc7
SS
6839 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6840 return ilb;
6841
6842 return nr_cpu_ids;
1e3c88bd 6843}
1e3c88bd 6844
83cd4fe2
VP
6845/*
6846 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6847 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6848 * CPU (if there is one).
6849 */
0aeeeeba 6850static void nohz_balancer_kick(void)
83cd4fe2
VP
6851{
6852 int ilb_cpu;
6853
6854 nohz.next_balance++;
6855
3dd0337d 6856 ilb_cpu = find_new_ilb();
83cd4fe2 6857
0b005cf5
SS
6858 if (ilb_cpu >= nr_cpu_ids)
6859 return;
83cd4fe2 6860
cd490c5b 6861 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6862 return;
6863 /*
6864 * Use smp_send_reschedule() instead of resched_cpu().
6865 * This way we generate a sched IPI on the target cpu which
6866 * is idle. And the softirq performing nohz idle load balance
6867 * will be run before returning from the IPI.
6868 */
6869 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6870 return;
6871}
6872
c1cc017c 6873static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6874{
6875 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6876 /*
6877 * Completely isolated CPUs don't ever set, so we must test.
6878 */
6879 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6880 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6881 atomic_dec(&nohz.nr_cpus);
6882 }
71325960
SS
6883 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6884 }
6885}
6886
69e1e811
SS
6887static inline void set_cpu_sd_state_busy(void)
6888{
6889 struct sched_domain *sd;
37dc6b50 6890 int cpu = smp_processor_id();
69e1e811 6891
69e1e811 6892 rcu_read_lock();
37dc6b50 6893 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6894
6895 if (!sd || !sd->nohz_idle)
6896 goto unlock;
6897 sd->nohz_idle = 0;
6898
37dc6b50 6899 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6900unlock:
69e1e811
SS
6901 rcu_read_unlock();
6902}
6903
6904void set_cpu_sd_state_idle(void)
6905{
6906 struct sched_domain *sd;
37dc6b50 6907 int cpu = smp_processor_id();
69e1e811 6908
69e1e811 6909 rcu_read_lock();
37dc6b50 6910 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6911
6912 if (!sd || sd->nohz_idle)
6913 goto unlock;
6914 sd->nohz_idle = 1;
6915
37dc6b50 6916 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6917unlock:
69e1e811
SS
6918 rcu_read_unlock();
6919}
6920
1e3c88bd 6921/*
c1cc017c 6922 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6923 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6924 */
c1cc017c 6925void nohz_balance_enter_idle(int cpu)
1e3c88bd 6926{
71325960
SS
6927 /*
6928 * If this cpu is going down, then nothing needs to be done.
6929 */
6930 if (!cpu_active(cpu))
6931 return;
6932
c1cc017c
AS
6933 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6934 return;
1e3c88bd 6935
d987fc7f
MG
6936 /*
6937 * If we're a completely isolated CPU, we don't play.
6938 */
6939 if (on_null_domain(cpu_rq(cpu)))
6940 return;
6941
c1cc017c
AS
6942 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6943 atomic_inc(&nohz.nr_cpus);
6944 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6945}
71325960 6946
0db0628d 6947static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6948 unsigned long action, void *hcpu)
6949{
6950 switch (action & ~CPU_TASKS_FROZEN) {
6951 case CPU_DYING:
c1cc017c 6952 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6953 return NOTIFY_OK;
6954 default:
6955 return NOTIFY_DONE;
6956 }
6957}
1e3c88bd
PZ
6958#endif
6959
6960static DEFINE_SPINLOCK(balancing);
6961
49c022e6
PZ
6962/*
6963 * Scale the max load_balance interval with the number of CPUs in the system.
6964 * This trades load-balance latency on larger machines for less cross talk.
6965 */
029632fb 6966void update_max_interval(void)
49c022e6
PZ
6967{
6968 max_load_balance_interval = HZ*num_online_cpus()/10;
6969}
6970
1e3c88bd
PZ
6971/*
6972 * It checks each scheduling domain to see if it is due to be balanced,
6973 * and initiates a balancing operation if so.
6974 *
b9b0853a 6975 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6976 */
f7ed0a89 6977static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6978{
23f0d209 6979 int continue_balancing = 1;
f7ed0a89 6980 int cpu = rq->cpu;
1e3c88bd 6981 unsigned long interval;
04f733b4 6982 struct sched_domain *sd;
1e3c88bd
PZ
6983 /* Earliest time when we have to do rebalance again */
6984 unsigned long next_balance = jiffies + 60*HZ;
6985 int update_next_balance = 0;
f48627e6
JL
6986 int need_serialize, need_decay = 0;
6987 u64 max_cost = 0;
1e3c88bd 6988
48a16753 6989 update_blocked_averages(cpu);
2069dd75 6990
dce840a0 6991 rcu_read_lock();
1e3c88bd 6992 for_each_domain(cpu, sd) {
f48627e6
JL
6993 /*
6994 * Decay the newidle max times here because this is a regular
6995 * visit to all the domains. Decay ~1% per second.
6996 */
6997 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6998 sd->max_newidle_lb_cost =
6999 (sd->max_newidle_lb_cost * 253) / 256;
7000 sd->next_decay_max_lb_cost = jiffies + HZ;
7001 need_decay = 1;
7002 }
7003 max_cost += sd->max_newidle_lb_cost;
7004
1e3c88bd
PZ
7005 if (!(sd->flags & SD_LOAD_BALANCE))
7006 continue;
7007
f48627e6
JL
7008 /*
7009 * Stop the load balance at this level. There is another
7010 * CPU in our sched group which is doing load balancing more
7011 * actively.
7012 */
7013 if (!continue_balancing) {
7014 if (need_decay)
7015 continue;
7016 break;
7017 }
7018
1e3c88bd
PZ
7019 interval = sd->balance_interval;
7020 if (idle != CPU_IDLE)
7021 interval *= sd->busy_factor;
7022
7023 /* scale ms to jiffies */
7024 interval = msecs_to_jiffies(interval);
49c022e6 7025 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
7026
7027 need_serialize = sd->flags & SD_SERIALIZE;
7028
7029 if (need_serialize) {
7030 if (!spin_trylock(&balancing))
7031 goto out;
7032 }
7033
7034 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7035 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7036 /*
6263322c 7037 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7038 * env->dst_cpu, so we can't know our idle
7039 * state even if we migrated tasks. Update it.
1e3c88bd 7040 */
de5eb2dd 7041 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7042 }
7043 sd->last_balance = jiffies;
7044 }
7045 if (need_serialize)
7046 spin_unlock(&balancing);
7047out:
7048 if (time_after(next_balance, sd->last_balance + interval)) {
7049 next_balance = sd->last_balance + interval;
7050 update_next_balance = 1;
7051 }
f48627e6
JL
7052 }
7053 if (need_decay) {
1e3c88bd 7054 /*
f48627e6
JL
7055 * Ensure the rq-wide value also decays but keep it at a
7056 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7057 */
f48627e6
JL
7058 rq->max_idle_balance_cost =
7059 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7060 }
dce840a0 7061 rcu_read_unlock();
1e3c88bd
PZ
7062
7063 /*
7064 * next_balance will be updated only when there is a need.
7065 * When the cpu is attached to null domain for ex, it will not be
7066 * updated.
7067 */
7068 if (likely(update_next_balance))
7069 rq->next_balance = next_balance;
7070}
7071
3451d024 7072#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7073/*
3451d024 7074 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7075 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7076 */
208cb16b 7077static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7078{
208cb16b 7079 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7080 struct rq *rq;
7081 int balance_cpu;
7082
1c792db7
SS
7083 if (idle != CPU_IDLE ||
7084 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7085 goto end;
83cd4fe2
VP
7086
7087 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7088 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7089 continue;
7090
7091 /*
7092 * If this cpu gets work to do, stop the load balancing
7093 * work being done for other cpus. Next load
7094 * balancing owner will pick it up.
7095 */
1c792db7 7096 if (need_resched())
83cd4fe2 7097 break;
83cd4fe2 7098
5ed4f1d9
VG
7099 rq = cpu_rq(balance_cpu);
7100
7101 raw_spin_lock_irq(&rq->lock);
7102 update_rq_clock(rq);
7103 update_idle_cpu_load(rq);
7104 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7105
f7ed0a89 7106 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7107
83cd4fe2
VP
7108 if (time_after(this_rq->next_balance, rq->next_balance))
7109 this_rq->next_balance = rq->next_balance;
7110 }
7111 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7112end:
7113 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7114}
7115
7116/*
0b005cf5
SS
7117 * Current heuristic for kicking the idle load balancer in the presence
7118 * of an idle cpu is the system.
7119 * - This rq has more than one task.
7120 * - At any scheduler domain level, this cpu's scheduler group has multiple
7121 * busy cpu's exceeding the group's power.
7122 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7123 * domain span are idle.
83cd4fe2 7124 */
4a725627 7125static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7126{
7127 unsigned long now = jiffies;
0b005cf5 7128 struct sched_domain *sd;
37dc6b50 7129 struct sched_group_power *sgp;
4a725627 7130 int nr_busy, cpu = rq->cpu;
83cd4fe2 7131
4a725627 7132 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7133 return 0;
7134
1c792db7
SS
7135 /*
7136 * We may be recently in ticked or tickless idle mode. At the first
7137 * busy tick after returning from idle, we will update the busy stats.
7138 */
69e1e811 7139 set_cpu_sd_state_busy();
c1cc017c 7140 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7141
7142 /*
7143 * None are in tickless mode and hence no need for NOHZ idle load
7144 * balancing.
7145 */
7146 if (likely(!atomic_read(&nohz.nr_cpus)))
7147 return 0;
1c792db7
SS
7148
7149 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7150 return 0;
7151
0b005cf5
SS
7152 if (rq->nr_running >= 2)
7153 goto need_kick;
83cd4fe2 7154
067491b7 7155 rcu_read_lock();
37dc6b50 7156 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7157
37dc6b50
PM
7158 if (sd) {
7159 sgp = sd->groups->sgp;
7160 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7161
37dc6b50 7162 if (nr_busy > 1)
067491b7 7163 goto need_kick_unlock;
83cd4fe2 7164 }
37dc6b50
PM
7165
7166 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7167
7168 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7169 sched_domain_span(sd)) < cpu))
7170 goto need_kick_unlock;
7171
067491b7 7172 rcu_read_unlock();
83cd4fe2 7173 return 0;
067491b7
PZ
7174
7175need_kick_unlock:
7176 rcu_read_unlock();
0b005cf5
SS
7177need_kick:
7178 return 1;
83cd4fe2
VP
7179}
7180#else
208cb16b 7181static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7182#endif
7183
7184/*
7185 * run_rebalance_domains is triggered when needed from the scheduler tick.
7186 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7187 */
1e3c88bd
PZ
7188static void run_rebalance_domains(struct softirq_action *h)
7189{
208cb16b 7190 struct rq *this_rq = this_rq();
6eb57e0d 7191 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7192 CPU_IDLE : CPU_NOT_IDLE;
7193
f7ed0a89 7194 rebalance_domains(this_rq, idle);
1e3c88bd 7195
1e3c88bd 7196 /*
83cd4fe2 7197 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7198 * balancing on behalf of the other idle cpus whose ticks are
7199 * stopped.
7200 */
208cb16b 7201 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7202}
7203
1e3c88bd
PZ
7204/*
7205 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7206 */
7caff66f 7207void trigger_load_balance(struct rq *rq)
1e3c88bd 7208{
1e3c88bd 7209 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7210 if (unlikely(on_null_domain(rq)))
7211 return;
7212
7213 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7214 raise_softirq(SCHED_SOFTIRQ);
3451d024 7215#ifdef CONFIG_NO_HZ_COMMON
c726099e 7216 if (nohz_kick_needed(rq))
0aeeeeba 7217 nohz_balancer_kick();
83cd4fe2 7218#endif
1e3c88bd
PZ
7219}
7220
0bcdcf28
CE
7221static void rq_online_fair(struct rq *rq)
7222{
7223 update_sysctl();
7224}
7225
7226static void rq_offline_fair(struct rq *rq)
7227{
7228 update_sysctl();
a4c96ae3
PB
7229
7230 /* Ensure any throttled groups are reachable by pick_next_task */
7231 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7232}
7233
55e12e5e 7234#endif /* CONFIG_SMP */
e1d1484f 7235
bf0f6f24
IM
7236/*
7237 * scheduler tick hitting a task of our scheduling class:
7238 */
8f4d37ec 7239static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7240{
7241 struct cfs_rq *cfs_rq;
7242 struct sched_entity *se = &curr->se;
7243
7244 for_each_sched_entity(se) {
7245 cfs_rq = cfs_rq_of(se);
8f4d37ec 7246 entity_tick(cfs_rq, se, queued);
bf0f6f24 7247 }
18bf2805 7248
10e84b97 7249 if (numabalancing_enabled)
cbee9f88 7250 task_tick_numa(rq, curr);
3d59eebc 7251
18bf2805 7252 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7253}
7254
7255/*
cd29fe6f
PZ
7256 * called on fork with the child task as argument from the parent's context
7257 * - child not yet on the tasklist
7258 * - preemption disabled
bf0f6f24 7259 */
cd29fe6f 7260static void task_fork_fair(struct task_struct *p)
bf0f6f24 7261{
4fc420c9
DN
7262 struct cfs_rq *cfs_rq;
7263 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7264 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7265 struct rq *rq = this_rq();
7266 unsigned long flags;
7267
05fa785c 7268 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7269
861d034e
PZ
7270 update_rq_clock(rq);
7271
4fc420c9
DN
7272 cfs_rq = task_cfs_rq(current);
7273 curr = cfs_rq->curr;
7274
6c9a27f5
DN
7275 /*
7276 * Not only the cpu but also the task_group of the parent might have
7277 * been changed after parent->se.parent,cfs_rq were copied to
7278 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7279 * of child point to valid ones.
7280 */
7281 rcu_read_lock();
7282 __set_task_cpu(p, this_cpu);
7283 rcu_read_unlock();
bf0f6f24 7284
7109c442 7285 update_curr(cfs_rq);
cd29fe6f 7286
b5d9d734
MG
7287 if (curr)
7288 se->vruntime = curr->vruntime;
aeb73b04 7289 place_entity(cfs_rq, se, 1);
4d78e7b6 7290
cd29fe6f 7291 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7292 /*
edcb60a3
IM
7293 * Upon rescheduling, sched_class::put_prev_task() will place
7294 * 'current' within the tree based on its new key value.
7295 */
4d78e7b6 7296 swap(curr->vruntime, se->vruntime);
aec0a514 7297 resched_task(rq->curr);
4d78e7b6 7298 }
bf0f6f24 7299
88ec22d3
PZ
7300 se->vruntime -= cfs_rq->min_vruntime;
7301
05fa785c 7302 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7303}
7304
cb469845
SR
7305/*
7306 * Priority of the task has changed. Check to see if we preempt
7307 * the current task.
7308 */
da7a735e
PZ
7309static void
7310prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7311{
da7a735e
PZ
7312 if (!p->se.on_rq)
7313 return;
7314
cb469845
SR
7315 /*
7316 * Reschedule if we are currently running on this runqueue and
7317 * our priority decreased, or if we are not currently running on
7318 * this runqueue and our priority is higher than the current's
7319 */
da7a735e 7320 if (rq->curr == p) {
cb469845
SR
7321 if (p->prio > oldprio)
7322 resched_task(rq->curr);
7323 } else
15afe09b 7324 check_preempt_curr(rq, p, 0);
cb469845
SR
7325}
7326
da7a735e
PZ
7327static void switched_from_fair(struct rq *rq, struct task_struct *p)
7328{
7329 struct sched_entity *se = &p->se;
7330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7331
7332 /*
791c9e02 7333 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7334 * switched back to the fair class the enqueue_entity(.flags=0) will
7335 * do the right thing.
7336 *
791c9e02
GM
7337 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7338 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7339 * the task is sleeping will it still have non-normalized vruntime.
7340 */
791c9e02 7341 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7342 /*
7343 * Fix up our vruntime so that the current sleep doesn't
7344 * cause 'unlimited' sleep bonus.
7345 */
7346 place_entity(cfs_rq, se, 0);
7347 se->vruntime -= cfs_rq->min_vruntime;
7348 }
9ee474f5 7349
141965c7 7350#ifdef CONFIG_SMP
9ee474f5
PT
7351 /*
7352 * Remove our load from contribution when we leave sched_fair
7353 * and ensure we don't carry in an old decay_count if we
7354 * switch back.
7355 */
87e3c8ae
KT
7356 if (se->avg.decay_count) {
7357 __synchronize_entity_decay(se);
7358 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7359 }
7360#endif
da7a735e
PZ
7361}
7362
cb469845
SR
7363/*
7364 * We switched to the sched_fair class.
7365 */
da7a735e 7366static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7367{
eb7a59b2
M
7368 struct sched_entity *se = &p->se;
7369#ifdef CONFIG_FAIR_GROUP_SCHED
7370 /*
7371 * Since the real-depth could have been changed (only FAIR
7372 * class maintain depth value), reset depth properly.
7373 */
7374 se->depth = se->parent ? se->parent->depth + 1 : 0;
7375#endif
7376 if (!se->on_rq)
da7a735e
PZ
7377 return;
7378
cb469845
SR
7379 /*
7380 * We were most likely switched from sched_rt, so
7381 * kick off the schedule if running, otherwise just see
7382 * if we can still preempt the current task.
7383 */
da7a735e 7384 if (rq->curr == p)
cb469845
SR
7385 resched_task(rq->curr);
7386 else
15afe09b 7387 check_preempt_curr(rq, p, 0);
cb469845
SR
7388}
7389
83b699ed
SV
7390/* Account for a task changing its policy or group.
7391 *
7392 * This routine is mostly called to set cfs_rq->curr field when a task
7393 * migrates between groups/classes.
7394 */
7395static void set_curr_task_fair(struct rq *rq)
7396{
7397 struct sched_entity *se = &rq->curr->se;
7398
ec12cb7f
PT
7399 for_each_sched_entity(se) {
7400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7401
7402 set_next_entity(cfs_rq, se);
7403 /* ensure bandwidth has been allocated on our new cfs_rq */
7404 account_cfs_rq_runtime(cfs_rq, 0);
7405 }
83b699ed
SV
7406}
7407
029632fb
PZ
7408void init_cfs_rq(struct cfs_rq *cfs_rq)
7409{
7410 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7411 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7412#ifndef CONFIG_64BIT
7413 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7414#endif
141965c7 7415#ifdef CONFIG_SMP
9ee474f5 7416 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7417 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7418#endif
029632fb
PZ
7419}
7420
810b3817 7421#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7422static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7423{
fed14d45 7424 struct sched_entity *se = &p->se;
aff3e498 7425 struct cfs_rq *cfs_rq;
fed14d45 7426
b2b5ce02
PZ
7427 /*
7428 * If the task was not on the rq at the time of this cgroup movement
7429 * it must have been asleep, sleeping tasks keep their ->vruntime
7430 * absolute on their old rq until wakeup (needed for the fair sleeper
7431 * bonus in place_entity()).
7432 *
7433 * If it was on the rq, we've just 'preempted' it, which does convert
7434 * ->vruntime to a relative base.
7435 *
7436 * Make sure both cases convert their relative position when migrating
7437 * to another cgroup's rq. This does somewhat interfere with the
7438 * fair sleeper stuff for the first placement, but who cares.
7439 */
7ceff013
DN
7440 /*
7441 * When !on_rq, vruntime of the task has usually NOT been normalized.
7442 * But there are some cases where it has already been normalized:
7443 *
7444 * - Moving a forked child which is waiting for being woken up by
7445 * wake_up_new_task().
62af3783
DN
7446 * - Moving a task which has been woken up by try_to_wake_up() and
7447 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7448 *
7449 * To prevent boost or penalty in the new cfs_rq caused by delta
7450 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7451 */
fed14d45 7452 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7453 on_rq = 1;
7454
b2b5ce02 7455 if (!on_rq)
fed14d45 7456 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7457 set_task_rq(p, task_cpu(p));
fed14d45 7458 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7459 if (!on_rq) {
fed14d45
PZ
7460 cfs_rq = cfs_rq_of(se);
7461 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7462#ifdef CONFIG_SMP
7463 /*
7464 * migrate_task_rq_fair() will have removed our previous
7465 * contribution, but we must synchronize for ongoing future
7466 * decay.
7467 */
fed14d45
PZ
7468 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7469 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7470#endif
7471 }
810b3817 7472}
029632fb
PZ
7473
7474void free_fair_sched_group(struct task_group *tg)
7475{
7476 int i;
7477
7478 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7479
7480 for_each_possible_cpu(i) {
7481 if (tg->cfs_rq)
7482 kfree(tg->cfs_rq[i]);
7483 if (tg->se)
7484 kfree(tg->se[i]);
7485 }
7486
7487 kfree(tg->cfs_rq);
7488 kfree(tg->se);
7489}
7490
7491int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7492{
7493 struct cfs_rq *cfs_rq;
7494 struct sched_entity *se;
7495 int i;
7496
7497 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7498 if (!tg->cfs_rq)
7499 goto err;
7500 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7501 if (!tg->se)
7502 goto err;
7503
7504 tg->shares = NICE_0_LOAD;
7505
7506 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7507
7508 for_each_possible_cpu(i) {
7509 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7510 GFP_KERNEL, cpu_to_node(i));
7511 if (!cfs_rq)
7512 goto err;
7513
7514 se = kzalloc_node(sizeof(struct sched_entity),
7515 GFP_KERNEL, cpu_to_node(i));
7516 if (!se)
7517 goto err_free_rq;
7518
7519 init_cfs_rq(cfs_rq);
7520 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7521 }
7522
7523 return 1;
7524
7525err_free_rq:
7526 kfree(cfs_rq);
7527err:
7528 return 0;
7529}
7530
7531void unregister_fair_sched_group(struct task_group *tg, int cpu)
7532{
7533 struct rq *rq = cpu_rq(cpu);
7534 unsigned long flags;
7535
7536 /*
7537 * Only empty task groups can be destroyed; so we can speculatively
7538 * check on_list without danger of it being re-added.
7539 */
7540 if (!tg->cfs_rq[cpu]->on_list)
7541 return;
7542
7543 raw_spin_lock_irqsave(&rq->lock, flags);
7544 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7545 raw_spin_unlock_irqrestore(&rq->lock, flags);
7546}
7547
7548void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7549 struct sched_entity *se, int cpu,
7550 struct sched_entity *parent)
7551{
7552 struct rq *rq = cpu_rq(cpu);
7553
7554 cfs_rq->tg = tg;
7555 cfs_rq->rq = rq;
029632fb
PZ
7556 init_cfs_rq_runtime(cfs_rq);
7557
7558 tg->cfs_rq[cpu] = cfs_rq;
7559 tg->se[cpu] = se;
7560
7561 /* se could be NULL for root_task_group */
7562 if (!se)
7563 return;
7564
fed14d45 7565 if (!parent) {
029632fb 7566 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7567 se->depth = 0;
7568 } else {
029632fb 7569 se->cfs_rq = parent->my_q;
fed14d45
PZ
7570 se->depth = parent->depth + 1;
7571 }
029632fb
PZ
7572
7573 se->my_q = cfs_rq;
0ac9b1c2
PT
7574 /* guarantee group entities always have weight */
7575 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7576 se->parent = parent;
7577}
7578
7579static DEFINE_MUTEX(shares_mutex);
7580
7581int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7582{
7583 int i;
7584 unsigned long flags;
7585
7586 /*
7587 * We can't change the weight of the root cgroup.
7588 */
7589 if (!tg->se[0])
7590 return -EINVAL;
7591
7592 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7593
7594 mutex_lock(&shares_mutex);
7595 if (tg->shares == shares)
7596 goto done;
7597
7598 tg->shares = shares;
7599 for_each_possible_cpu(i) {
7600 struct rq *rq = cpu_rq(i);
7601 struct sched_entity *se;
7602
7603 se = tg->se[i];
7604 /* Propagate contribution to hierarchy */
7605 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7606
7607 /* Possible calls to update_curr() need rq clock */
7608 update_rq_clock(rq);
17bc14b7 7609 for_each_sched_entity(se)
029632fb
PZ
7610 update_cfs_shares(group_cfs_rq(se));
7611 raw_spin_unlock_irqrestore(&rq->lock, flags);
7612 }
7613
7614done:
7615 mutex_unlock(&shares_mutex);
7616 return 0;
7617}
7618#else /* CONFIG_FAIR_GROUP_SCHED */
7619
7620void free_fair_sched_group(struct task_group *tg) { }
7621
7622int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7623{
7624 return 1;
7625}
7626
7627void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7628
7629#endif /* CONFIG_FAIR_GROUP_SCHED */
7630
810b3817 7631
6d686f45 7632static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7633{
7634 struct sched_entity *se = &task->se;
0d721cea
PW
7635 unsigned int rr_interval = 0;
7636
7637 /*
7638 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7639 * idle runqueue:
7640 */
0d721cea 7641 if (rq->cfs.load.weight)
a59f4e07 7642 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7643
7644 return rr_interval;
7645}
7646
bf0f6f24
IM
7647/*
7648 * All the scheduling class methods:
7649 */
029632fb 7650const struct sched_class fair_sched_class = {
5522d5d5 7651 .next = &idle_sched_class,
bf0f6f24
IM
7652 .enqueue_task = enqueue_task_fair,
7653 .dequeue_task = dequeue_task_fair,
7654 .yield_task = yield_task_fair,
d95f4122 7655 .yield_to_task = yield_to_task_fair,
bf0f6f24 7656
2e09bf55 7657 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7658
7659 .pick_next_task = pick_next_task_fair,
7660 .put_prev_task = put_prev_task_fair,
7661
681f3e68 7662#ifdef CONFIG_SMP
4ce72a2c 7663 .select_task_rq = select_task_rq_fair,
0a74bef8 7664 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7665
0bcdcf28
CE
7666 .rq_online = rq_online_fair,
7667 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7668
7669 .task_waking = task_waking_fair,
681f3e68 7670#endif
bf0f6f24 7671
83b699ed 7672 .set_curr_task = set_curr_task_fair,
bf0f6f24 7673 .task_tick = task_tick_fair,
cd29fe6f 7674 .task_fork = task_fork_fair,
cb469845
SR
7675
7676 .prio_changed = prio_changed_fair,
da7a735e 7677 .switched_from = switched_from_fair,
cb469845 7678 .switched_to = switched_to_fair,
810b3817 7679
0d721cea
PW
7680 .get_rr_interval = get_rr_interval_fair,
7681
810b3817 7682#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7683 .task_move_group = task_move_group_fair,
810b3817 7684#endif
bf0f6f24
IM
7685};
7686
7687#ifdef CONFIG_SCHED_DEBUG
029632fb 7688void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7689{
bf0f6f24
IM
7690 struct cfs_rq *cfs_rq;
7691
5973e5b9 7692 rcu_read_lock();
c3b64f1e 7693 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7694 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7695 rcu_read_unlock();
bf0f6f24
IM
7696}
7697#endif
029632fb
PZ
7698
7699__init void init_sched_fair_class(void)
7700{
7701#ifdef CONFIG_SMP
7702 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7703
3451d024 7704#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7705 nohz.next_balance = jiffies;
029632fb 7706 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7707 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7708#endif
7709#endif /* SMP */
7710
7711}