sched/core: Address more wake_affine() regressions
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7 515 struct sched_entity *curr = cfs_rq->curr;
bfb06889 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 517
1af5f730
PZ
518 u64 vruntime = cfs_rq->min_vruntime;
519
b60205c7
PZ
520 if (curr) {
521 if (curr->on_rq)
522 vruntime = curr->vruntime;
523 else
524 curr = NULL;
525 }
1af5f730 526
bfb06889
DB
527 if (leftmost) { /* non-empty tree */
528 struct sched_entity *se;
529 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 549{
bfb06889 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bfb06889 553 bool leftmost = true;
bf0f6f24
IM
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
bfb06889 569 leftmost = false;
bf0f6f24
IM
570 }
571 }
572
bf0f6f24 573 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
574 rb_insert_color_cached(&se->run_node,
575 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
576}
577
0702e3eb 578static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bfb06889 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
029632fb 583struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 584{
bfb06889 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
586
587 if (!left)
588 return NULL;
589
590 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
591}
592
ac53db59
RR
593static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594{
595 struct rb_node *next = rb_next(&se->run_node);
596
597 if (!next)
598 return NULL;
599
600 return rb_entry(next, struct sched_entity, run_node);
601}
602
603#ifdef CONFIG_SCHED_DEBUG
029632fb 604struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 605{
bfb06889 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 607
70eee74b
BS
608 if (!last)
609 return NULL;
7eee3e67
IM
610
611 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
612}
613
bf0f6f24
IM
614/**************************************************************
615 * Scheduling class statistics methods:
616 */
617
acb4a848 618int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 619 void __user *buffer, size_t *lenp,
b2be5e96
PZ
620 loff_t *ppos)
621{
8d65af78 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 623 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
624
625 if (ret || !write)
626 return ret;
627
628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 sysctl_sched_min_granularity);
630
acb4a848
CE
631#define WRT_SYSCTL(name) \
632 (normalized_sysctl_##name = sysctl_##name / (factor))
633 WRT_SYSCTL(sched_min_granularity);
634 WRT_SYSCTL(sched_latency);
635 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
636#undef WRT_SYSCTL
637
b2be5e96
PZ
638 return 0;
639}
640#endif
647e7cac 641
a7be37ac 642/*
f9c0b095 643 * delta /= w
a7be37ac 644 */
9dbdb155 645static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 646{
f9c0b095 647 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
649
650 return delta;
651}
652
647e7cac
IM
653/*
654 * The idea is to set a period in which each task runs once.
655 *
532b1858 656 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
657 * this period because otherwise the slices get too small.
658 *
659 * p = (nr <= nl) ? l : l*nr/nl
660 */
4d78e7b6
PZ
661static u64 __sched_period(unsigned long nr_running)
662{
8e2b0bf3
BF
663 if (unlikely(nr_running > sched_nr_latency))
664 return nr_running * sysctl_sched_min_granularity;
665 else
666 return sysctl_sched_latency;
4d78e7b6
PZ
667}
668
647e7cac
IM
669/*
670 * We calculate the wall-time slice from the period by taking a part
671 * proportional to the weight.
672 *
f9c0b095 673 * s = p*P[w/rw]
647e7cac 674 */
6d0f0ebd 675static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 676{
0a582440 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 678
0a582440 679 for_each_sched_entity(se) {
6272d68c 680 struct load_weight *load;
3104bf03 681 struct load_weight lw;
6272d68c
LM
682
683 cfs_rq = cfs_rq_of(se);
684 load = &cfs_rq->load;
f9c0b095 685
0a582440 686 if (unlikely(!se->on_rq)) {
3104bf03 687 lw = cfs_rq->load;
0a582440
MG
688
689 update_load_add(&lw, se->load.weight);
690 load = &lw;
691 }
9dbdb155 692 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
693 }
694 return slice;
bf0f6f24
IM
695}
696
647e7cac 697/*
660cc00f 698 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 699 *
f9c0b095 700 * vs = s/w
647e7cac 701 */
f9c0b095 702static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 703{
f9c0b095 704 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
705}
706
a75cdaa9 707#ifdef CONFIG_SMP
283e2ed3
PZ
708
709#include "sched-pelt.h"
710
772bd008 711static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
712static unsigned long task_h_load(struct task_struct *p);
713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
9d89c257
YD
719 sa->last_update_time = 0;
720 /*
721 * sched_avg's period_contrib should be strictly less then 1024, so
722 * we give it 1023 to make sure it is almost a period (1024us), and
723 * will definitely be update (after enqueue).
724 */
725 sa->period_contrib = 1023;
b5a9b340
VG
726 /*
727 * Tasks are intialized with full load to be seen as heavy tasks until
728 * they get a chance to stabilize to their real load level.
729 * Group entities are intialized with zero load to reflect the fact that
730 * nothing has been attached to the task group yet.
731 */
732 if (entity_is_task(se))
733 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 734 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
735 /*
736 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 */
738 sa->util_avg = 0;
739 sa->util_sum = 0;
9d89c257 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 741}
7ea241af 742
7dc603c9 743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760 *
761 * where n denotes the nth task.
762 *
763 * For example, a simplest series from the beginning would be like:
764 *
765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 *
768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769 * if util_avg > util_avg_cap.
770 */
771void post_init_entity_util_avg(struct sched_entity *se)
772{
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
172895e6 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
776
777 if (cap > 0) {
778 if (cfs_rq->avg.util_avg != 0) {
779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
780 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781
782 if (sa->util_avg > cap)
783 sa->util_avg = cap;
784 } else {
785 sa->util_avg = cap;
786 }
787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 }
7dc603c9
PZ
789
790 if (entity_is_task(se)) {
791 struct task_struct *p = task_of(se);
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
3a123bbb 796 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
df217913 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
804 return;
805 }
806 }
807
df217913 808 attach_entity_cfs_rq(se);
2b8c41da
YD
809}
810
7dc603c9 811#else /* !CONFIG_SMP */
540247fb 812void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
813{
814}
2b8c41da
YD
815void post_init_entity_util_avg(struct sched_entity *se)
816{
817}
3d30544f
PZ
818static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819{
820}
7dc603c9 821#endif /* CONFIG_SMP */
a75cdaa9 822
bf0f6f24 823/*
9dbdb155 824 * Update the current task's runtime statistics.
bf0f6f24 825 */
b7cc0896 826static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 827{
429d43bc 828 struct sched_entity *curr = cfs_rq->curr;
78becc27 829 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 830 u64 delta_exec;
bf0f6f24
IM
831
832 if (unlikely(!curr))
833 return;
834
9dbdb155
PZ
835 delta_exec = now - curr->exec_start;
836 if (unlikely((s64)delta_exec <= 0))
34f28ecd 837 return;
bf0f6f24 838
8ebc91d9 839 curr->exec_start = now;
d842de87 840
9dbdb155
PZ
841 schedstat_set(curr->statistics.exec_max,
842 max(delta_exec, curr->statistics.exec_max));
843
844 curr->sum_exec_runtime += delta_exec;
ae92882e 845 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
846
847 curr->vruntime += calc_delta_fair(delta_exec, curr);
848 update_min_vruntime(cfs_rq);
849
d842de87
SV
850 if (entity_is_task(curr)) {
851 struct task_struct *curtask = task_of(curr);
852
f977bb49 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 854 cpuacct_charge(curtask, delta_exec);
f06febc9 855 account_group_exec_runtime(curtask, delta_exec);
d842de87 856 }
ec12cb7f
PT
857
858 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
859}
860
6e998916
SG
861static void update_curr_fair(struct rq *rq)
862{
863 update_curr(cfs_rq_of(&rq->curr->se));
864}
865
bf0f6f24 866static inline void
5870db5b 867update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 868{
4fa8d299
JP
869 u64 wait_start, prev_wait_start;
870
871 if (!schedstat_enabled())
872 return;
873
874 wait_start = rq_clock(rq_of(cfs_rq));
875 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
876
877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
878 likely(wait_start > prev_wait_start))
879 wait_start -= prev_wait_start;
3ea94de1 880
4fa8d299 881 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
882}
883
4fa8d299 884static inline void
3ea94de1
JP
885update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886{
887 struct task_struct *p;
cb251765
MG
888 u64 delta;
889
4fa8d299
JP
890 if (!schedstat_enabled())
891 return;
892
893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se)) {
896 p = task_of(se);
897 if (task_on_rq_migrating(p)) {
898 /*
899 * Preserve migrating task's wait time so wait_start
900 * time stamp can be adjusted to accumulate wait time
901 * prior to migration.
902 */
4fa8d299 903 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
904 return;
905 }
906 trace_sched_stat_wait(p, delta);
907 }
908
4fa8d299
JP
909 schedstat_set(se->statistics.wait_max,
910 max(schedstat_val(se->statistics.wait_max), delta));
911 schedstat_inc(se->statistics.wait_count);
912 schedstat_add(se->statistics.wait_sum, delta);
913 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 914}
3ea94de1 915
4fa8d299 916static inline void
1a3d027c
JP
917update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918{
919 struct task_struct *tsk = NULL;
4fa8d299
JP
920 u64 sleep_start, block_start;
921
922 if (!schedstat_enabled())
923 return;
924
925 sleep_start = schedstat_val(se->statistics.sleep_start);
926 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
927
928 if (entity_is_task(se))
929 tsk = task_of(se);
930
4fa8d299
JP
931 if (sleep_start) {
932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
933
934 if ((s64)delta < 0)
935 delta = 0;
936
4fa8d299
JP
937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 939
4fa8d299
JP
940 schedstat_set(se->statistics.sleep_start, 0);
941 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
942
943 if (tsk) {
944 account_scheduler_latency(tsk, delta >> 10, 1);
945 trace_sched_stat_sleep(tsk, delta);
946 }
947 }
4fa8d299
JP
948 if (block_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 schedstat_set(se->statistics.block_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.block_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 if (tsk->in_iowait) {
4fa8d299
JP
962 schedstat_add(se->statistics.iowait_sum, delta);
963 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
964 trace_sched_stat_iowait(tsk, delta);
965 }
966
967 trace_sched_stat_blocked(tsk, delta);
968
969 /*
970 * Blocking time is in units of nanosecs, so shift by
971 * 20 to get a milliseconds-range estimation of the
972 * amount of time that the task spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 profile_hits(SLEEP_PROFILING,
976 (void *)get_wchan(tsk),
977 delta >> 20);
978 }
979 account_scheduler_latency(tsk, delta >> 10, 0);
980 }
981 }
3ea94de1 982}
3ea94de1 983
bf0f6f24
IM
984/*
985 * Task is being enqueued - update stats:
986 */
cb251765 987static inline void
1a3d027c 988update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 989{
4fa8d299
JP
990 if (!schedstat_enabled())
991 return;
992
bf0f6f24
IM
993 /*
994 * Are we enqueueing a waiting task? (for current tasks
995 * a dequeue/enqueue event is a NOP)
996 */
429d43bc 997 if (se != cfs_rq->curr)
5870db5b 998 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
999
1000 if (flags & ENQUEUE_WAKEUP)
1001 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1002}
1003
bf0f6f24 1004static inline void
cb251765 1005update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Mark the end of the wait period if dequeueing a
1013 * waiting task:
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
9ef0a961 1016 update_stats_wait_end(cfs_rq, se);
cb251765 1017
4fa8d299
JP
1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 struct task_struct *tsk = task_of(se);
cb251765 1020
4fa8d299
JP
1021 if (tsk->state & TASK_INTERRUPTIBLE)
1022 schedstat_set(se->statistics.sleep_start,
1023 rq_clock(rq_of(cfs_rq)));
1024 if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 schedstat_set(se->statistics.block_start,
1026 rq_clock(rq_of(cfs_rq)));
cb251765 1027 }
cb251765
MG
1028}
1029
bf0f6f24
IM
1030/*
1031 * We are picking a new current task - update its stats:
1032 */
1033static inline void
79303e9e 1034update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1035{
1036 /*
1037 * We are starting a new run period:
1038 */
78becc27 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1040}
1041
bf0f6f24
IM
1042/**************************************************
1043 * Scheduling class queueing methods:
1044 */
1045
cbee9f88
PZ
1046#ifdef CONFIG_NUMA_BALANCING
1047/*
598f0ec0
MG
1048 * Approximate time to scan a full NUMA task in ms. The task scan period is
1049 * calculated based on the tasks virtual memory size and
1050 * numa_balancing_scan_size.
cbee9f88 1051 */
598f0ec0
MG
1052unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1054
1055/* Portion of address space to scan in MB */
1056unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1057
4b96a29b
PZ
1058/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060
b5dd77c8
RR
1061struct numa_group {
1062 atomic_t refcount;
1063
1064 spinlock_t lock; /* nr_tasks, tasks */
1065 int nr_tasks;
1066 pid_t gid;
1067 int active_nodes;
1068
1069 struct rcu_head rcu;
1070 unsigned long total_faults;
1071 unsigned long max_faults_cpu;
1072 /*
1073 * Faults_cpu is used to decide whether memory should move
1074 * towards the CPU. As a consequence, these stats are weighted
1075 * more by CPU use than by memory faults.
1076 */
1077 unsigned long *faults_cpu;
1078 unsigned long faults[0];
1079};
1080
1081static inline unsigned long group_faults_priv(struct numa_group *ng);
1082static inline unsigned long group_faults_shared(struct numa_group *ng);
1083
598f0ec0
MG
1084static unsigned int task_nr_scan_windows(struct task_struct *p)
1085{
1086 unsigned long rss = 0;
1087 unsigned long nr_scan_pages;
1088
1089 /*
1090 * Calculations based on RSS as non-present and empty pages are skipped
1091 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 * on resident pages
1093 */
1094 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 rss = get_mm_rss(p->mm);
1096 if (!rss)
1097 rss = nr_scan_pages;
1098
1099 rss = round_up(rss, nr_scan_pages);
1100 return rss / nr_scan_pages;
1101}
1102
1103/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104#define MAX_SCAN_WINDOW 2560
1105
1106static unsigned int task_scan_min(struct task_struct *p)
1107{
316c1608 1108 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1109 unsigned int scan, floor;
1110 unsigned int windows = 1;
1111
64192658
KT
1112 if (scan_size < MAX_SCAN_WINDOW)
1113 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1114 floor = 1000 / windows;
1115
1116 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 return max_t(unsigned int, floor, scan);
1118}
1119
b5dd77c8
RR
1120static unsigned int task_scan_start(struct task_struct *p)
1121{
1122 unsigned long smin = task_scan_min(p);
1123 unsigned long period = smin;
1124
1125 /* Scale the maximum scan period with the amount of shared memory. */
1126 if (p->numa_group) {
1127 struct numa_group *ng = p->numa_group;
1128 unsigned long shared = group_faults_shared(ng);
1129 unsigned long private = group_faults_priv(ng);
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134 }
1135
1136 return max(smin, period);
1137}
1138
598f0ec0
MG
1139static unsigned int task_scan_max(struct task_struct *p)
1140{
b5dd77c8
RR
1141 unsigned long smin = task_scan_min(p);
1142 unsigned long smax;
598f0ec0
MG
1143
1144 /* Watch for min being lower than max due to floor calculations */
1145 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
1148 if (p->numa_group) {
1149 struct numa_group *ng = p->numa_group;
1150 unsigned long shared = group_faults_shared(ng);
1151 unsigned long private = group_faults_priv(ng);
1152 unsigned long period = smax;
1153
1154 period *= atomic_read(&ng->refcount);
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157
1158 smax = max(smax, period);
1159 }
1160
598f0ec0
MG
1161 return max(smin, smax);
1162}
1163
0ec8aa00
PZ
1164static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165{
1166 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168}
1169
1170static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171{
1172 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174}
1175
be1e4e76
RR
1176/* Shared or private faults. */
1177#define NR_NUMA_HINT_FAULT_TYPES 2
1178
1179/* Memory and CPU locality */
1180#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181
1182/* Averaged statistics, and temporary buffers. */
1183#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184
e29cf08b
MG
1185pid_t task_numa_group_id(struct task_struct *p)
1186{
1187 return p->numa_group ? p->numa_group->gid : 0;
1188}
1189
44dba3d5
IM
1190/*
1191 * The averaged statistics, shared & private, memory & cpu,
1192 * occupy the first half of the array. The second half of the
1193 * array is for current counters, which are averaged into the
1194 * first set by task_numa_placement.
1195 */
1196static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1197{
44dba3d5 1198 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1199}
1200
1201static inline unsigned long task_faults(struct task_struct *p, int nid)
1202{
44dba3d5 1203 if (!p->numa_faults)
ac8e895b
MG
1204 return 0;
1205
44dba3d5
IM
1206 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1208}
1209
83e1d2cd
MG
1210static inline unsigned long group_faults(struct task_struct *p, int nid)
1211{
1212 if (!p->numa_group)
1213 return 0;
1214
44dba3d5
IM
1215 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1217}
1218
20e07dea
RR
1219static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220{
44dba3d5
IM
1221 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1223}
1224
b5dd77c8
RR
1225static inline unsigned long group_faults_priv(struct numa_group *ng)
1226{
1227 unsigned long faults = 0;
1228 int node;
1229
1230 for_each_online_node(node) {
1231 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 }
1233
1234 return faults;
1235}
1236
1237static inline unsigned long group_faults_shared(struct numa_group *ng)
1238{
1239 unsigned long faults = 0;
1240 int node;
1241
1242 for_each_online_node(node) {
1243 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 }
1245
1246 return faults;
1247}
1248
4142c3eb
RR
1249/*
1250 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251 * considered part of a numa group's pseudo-interleaving set. Migrations
1252 * between these nodes are slowed down, to allow things to settle down.
1253 */
1254#define ACTIVE_NODE_FRACTION 3
1255
1256static bool numa_is_active_node(int nid, struct numa_group *ng)
1257{
1258 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259}
1260
6c6b1193
RR
1261/* Handle placement on systems where not all nodes are directly connected. */
1262static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 int maxdist, bool task)
1264{
1265 unsigned long score = 0;
1266 int node;
1267
1268 /*
1269 * All nodes are directly connected, and the same distance
1270 * from each other. No need for fancy placement algorithms.
1271 */
1272 if (sched_numa_topology_type == NUMA_DIRECT)
1273 return 0;
1274
1275 /*
1276 * This code is called for each node, introducing N^2 complexity,
1277 * which should be ok given the number of nodes rarely exceeds 8.
1278 */
1279 for_each_online_node(node) {
1280 unsigned long faults;
1281 int dist = node_distance(nid, node);
1282
1283 /*
1284 * The furthest away nodes in the system are not interesting
1285 * for placement; nid was already counted.
1286 */
1287 if (dist == sched_max_numa_distance || node == nid)
1288 continue;
1289
1290 /*
1291 * On systems with a backplane NUMA topology, compare groups
1292 * of nodes, and move tasks towards the group with the most
1293 * memory accesses. When comparing two nodes at distance
1294 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 * of each group. Skip other nodes.
1296 */
1297 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 dist > maxdist)
1299 continue;
1300
1301 /* Add up the faults from nearby nodes. */
1302 if (task)
1303 faults = task_faults(p, node);
1304 else
1305 faults = group_faults(p, node);
1306
1307 /*
1308 * On systems with a glueless mesh NUMA topology, there are
1309 * no fixed "groups of nodes". Instead, nodes that are not
1310 * directly connected bounce traffic through intermediate
1311 * nodes; a numa_group can occupy any set of nodes.
1312 * The further away a node is, the less the faults count.
1313 * This seems to result in good task placement.
1314 */
1315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 faults *= (sched_max_numa_distance - dist);
1317 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 }
1319
1320 score += faults;
1321 }
1322
1323 return score;
1324}
1325
83e1d2cd
MG
1326/*
1327 * These return the fraction of accesses done by a particular task, or
1328 * task group, on a particular numa node. The group weight is given a
1329 * larger multiplier, in order to group tasks together that are almost
1330 * evenly spread out between numa nodes.
1331 */
7bd95320
RR
1332static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 int dist)
83e1d2cd 1334{
7bd95320 1335 unsigned long faults, total_faults;
83e1d2cd 1336
44dba3d5 1337 if (!p->numa_faults)
83e1d2cd
MG
1338 return 0;
1339
1340 total_faults = p->total_numa_faults;
1341
1342 if (!total_faults)
1343 return 0;
1344
7bd95320 1345 faults = task_faults(p, nid);
6c6b1193
RR
1346 faults += score_nearby_nodes(p, nid, dist, true);
1347
7bd95320 1348 return 1000 * faults / total_faults;
83e1d2cd
MG
1349}
1350
7bd95320
RR
1351static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 int dist)
83e1d2cd 1353{
7bd95320
RR
1354 unsigned long faults, total_faults;
1355
1356 if (!p->numa_group)
1357 return 0;
1358
1359 total_faults = p->numa_group->total_faults;
1360
1361 if (!total_faults)
83e1d2cd
MG
1362 return 0;
1363
7bd95320 1364 faults = group_faults(p, nid);
6c6b1193
RR
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
7bd95320 1367 return 1000 * faults / total_faults;
83e1d2cd
MG
1368}
1369
10f39042
RR
1370bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372{
1373 struct numa_group *ng = p->numa_group;
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378
1379 /*
1380 * Multi-stage node selection is used in conjunction with a periodic
1381 * migration fault to build a temporal task<->page relation. By using
1382 * a two-stage filter we remove short/unlikely relations.
1383 *
1384 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 * a task's usage of a particular page (n_p) per total usage of this
1386 * page (n_t) (in a given time-span) to a probability.
1387 *
1388 * Our periodic faults will sample this probability and getting the
1389 * same result twice in a row, given these samples are fully
1390 * independent, is then given by P(n)^2, provided our sample period
1391 * is sufficiently short compared to the usage pattern.
1392 *
1393 * This quadric squishes small probabilities, making it less likely we
1394 * act on an unlikely task<->page relation.
1395 */
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 if (!cpupid_pid_unset(last_cpupid) &&
1398 cpupid_to_nid(last_cpupid) != dst_nid)
1399 return false;
1400
1401 /* Always allow migrate on private faults */
1402 if (cpupid_match_pid(p, last_cpupid))
1403 return true;
1404
1405 /* A shared fault, but p->numa_group has not been set up yet. */
1406 if (!ng)
1407 return true;
1408
1409 /*
4142c3eb
RR
1410 * Destination node is much more heavily used than the source
1411 * node? Allow migration.
10f39042 1412 */
4142c3eb
RR
1413 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 ACTIVE_NODE_FRACTION)
10f39042
RR
1415 return true;
1416
1417 /*
4142c3eb
RR
1418 * Distribute memory according to CPU & memory use on each node,
1419 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 *
1421 * faults_cpu(dst) 3 faults_cpu(src)
1422 * --------------- * - > ---------------
1423 * faults_mem(dst) 4 faults_mem(src)
10f39042 1424 */
4142c3eb
RR
1425 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1427}
1428
c7132dd6 1429static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
ced549fa 1432static unsigned long capacity_of(int cpu);
58d081b5 1433
fb13c7ee 1434/* Cached statistics for all CPUs within a node */
58d081b5 1435struct numa_stats {
fb13c7ee 1436 unsigned long nr_running;
58d081b5 1437 unsigned long load;
fb13c7ee
MG
1438
1439 /* Total compute capacity of CPUs on a node */
5ef20ca1 1440 unsigned long compute_capacity;
fb13c7ee
MG
1441
1442 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1443 unsigned long task_capacity;
1b6a7495 1444 int has_free_capacity;
58d081b5 1445};
e6628d5b 1446
fb13c7ee
MG
1447/*
1448 * XXX borrowed from update_sg_lb_stats
1449 */
1450static void update_numa_stats(struct numa_stats *ns, int nid)
1451{
83d7f242
RR
1452 int smt, cpu, cpus = 0;
1453 unsigned long capacity;
fb13c7ee
MG
1454
1455 memset(ns, 0, sizeof(*ns));
1456 for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 struct rq *rq = cpu_rq(cpu);
1458
1459 ns->nr_running += rq->nr_running;
c7132dd6 1460 ns->load += weighted_cpuload(rq);
ced549fa 1461 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1462
1463 cpus++;
fb13c7ee
MG
1464 }
1465
5eca82a9
PZ
1466 /*
1467 * If we raced with hotplug and there are no CPUs left in our mask
1468 * the @ns structure is NULL'ed and task_numa_compare() will
1469 * not find this node attractive.
1470 *
1b6a7495
NP
1471 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 * imbalance and bail there.
5eca82a9
PZ
1473 */
1474 if (!cpus)
1475 return;
1476
83d7f242
RR
1477 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 capacity = cpus / smt; /* cores */
1480
1481 ns->task_capacity = min_t(unsigned, capacity,
1482 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1483 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
1505 if (env->best_task)
1506 put_task_struct(env->best_task);
bac78573
ON
1507 if (p)
1508 get_task_struct(p);
fb13c7ee
MG
1509
1510 env->best_task = p;
1511 env->best_imp = imp;
1512 env->best_cpu = env->dst_cpu;
1513}
1514
28a21745 1515static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1516 struct task_numa_env *env)
1517{
e4991b24
RR
1518 long imb, old_imb;
1519 long orig_src_load, orig_dst_load;
28a21745
RR
1520 long src_capacity, dst_capacity;
1521
1522 /*
1523 * The load is corrected for the CPU capacity available on each node.
1524 *
1525 * src_load dst_load
1526 * ------------ vs ---------
1527 * src_capacity dst_capacity
1528 */
1529 src_capacity = env->src_stats.compute_capacity;
1530 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1531
1532 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1533 if (dst_load < src_load)
1534 swap(dst_load, src_load);
e63da036
RR
1535
1536 /* Is the difference below the threshold? */
e4991b24
RR
1537 imb = dst_load * src_capacity * 100 -
1538 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1539 if (imb <= 0)
1540 return false;
1541
1542 /*
1543 * The imbalance is above the allowed threshold.
e4991b24 1544 * Compare it with the old imbalance.
e63da036 1545 */
28a21745 1546 orig_src_load = env->src_stats.load;
e4991b24 1547 orig_dst_load = env->dst_stats.load;
28a21745 1548
e4991b24
RR
1549 if (orig_dst_load < orig_src_load)
1550 swap(orig_dst_load, orig_src_load);
e63da036 1551
e4991b24
RR
1552 old_imb = orig_dst_load * src_capacity * 100 -
1553 orig_src_load * dst_capacity * env->imbalance_pct;
1554
1555 /* Would this change make things worse? */
1556 return (imb > old_imb);
e63da036
RR
1557}
1558
fb13c7ee
MG
1559/*
1560 * This checks if the overall compute and NUMA accesses of the system would
1561 * be improved if the source tasks was migrated to the target dst_cpu taking
1562 * into account that it might be best if task running on the dst_cpu should
1563 * be exchanged with the source task
1564 */
887c290e
RR
1565static void task_numa_compare(struct task_numa_env *env,
1566 long taskimp, long groupimp)
fb13c7ee
MG
1567{
1568 struct rq *src_rq = cpu_rq(env->src_cpu);
1569 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 struct task_struct *cur;
28a21745 1571 long src_load, dst_load;
fb13c7ee 1572 long load;
1c5d3eb3 1573 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1574 long moveimp = imp;
7bd95320 1575 int dist = env->dist;
fb13c7ee
MG
1576
1577 rcu_read_lock();
bac78573
ON
1578 cur = task_rcu_dereference(&dst_rq->curr);
1579 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1580 cur = NULL;
1581
7af68335
PZ
1582 /*
1583 * Because we have preemption enabled we can get migrated around and
1584 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 */
1586 if (cur == env->p)
1587 goto unlock;
1588
fb13c7ee
MG
1589 /*
1590 * "imp" is the fault differential for the source task between the
1591 * source and destination node. Calculate the total differential for
1592 * the source task and potential destination task. The more negative
1593 * the value is, the more rmeote accesses that would be expected to
1594 * be incurred if the tasks were swapped.
1595 */
1596 if (cur) {
1597 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1598 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1599 goto unlock;
1600
887c290e
RR
1601 /*
1602 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1603 * in any group then look only at task weights.
887c290e 1604 */
ca28aa53 1605 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1606 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1608 /*
1609 * Add some hysteresis to prevent swapping the
1610 * tasks within a group over tiny differences.
1611 */
1612 if (cur->numa_group)
1613 imp -= imp/16;
887c290e 1614 } else {
ca28aa53
RR
1615 /*
1616 * Compare the group weights. If a task is all by
1617 * itself (not part of a group), use the task weight
1618 * instead.
1619 */
ca28aa53 1620 if (cur->numa_group)
7bd95320
RR
1621 imp += group_weight(cur, env->src_nid, dist) -
1622 group_weight(cur, env->dst_nid, dist);
ca28aa53 1623 else
7bd95320
RR
1624 imp += task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
887c290e 1626 }
fb13c7ee
MG
1627 }
1628
0132c3e1 1629 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1630 goto unlock;
1631
1632 if (!cur) {
1633 /* Is there capacity at our destination? */
b932c03c 1634 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1635 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1636 goto unlock;
1637
1638 goto balance;
1639 }
1640
1641 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1642 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 dst_rq->nr_running == 1)
fb13c7ee
MG
1644 goto assign;
1645
1646 /*
1647 * In the overloaded case, try and keep the load balanced.
1648 */
1649balance:
e720fff6
PZ
1650 load = task_h_load(env->p);
1651 dst_load = env->dst_stats.load + load;
1652 src_load = env->src_stats.load - load;
fb13c7ee 1653
0132c3e1
RR
1654 if (moveimp > imp && moveimp > env->best_imp) {
1655 /*
1656 * If the improvement from just moving env->p direction is
1657 * better than swapping tasks around, check if a move is
1658 * possible. Store a slightly smaller score than moveimp,
1659 * so an actually idle CPU will win.
1660 */
1661 if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 imp = moveimp - 1;
1663 cur = NULL;
1664 goto assign;
1665 }
1666 }
1667
1668 if (imp <= env->best_imp)
1669 goto unlock;
1670
fb13c7ee 1671 if (cur) {
e720fff6
PZ
1672 load = task_h_load(cur);
1673 dst_load -= load;
1674 src_load += load;
fb13c7ee
MG
1675 }
1676
28a21745 1677 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1678 goto unlock;
1679
ba7e5a27
RR
1680 /*
1681 * One idle CPU per node is evaluated for a task numa move.
1682 * Call select_idle_sibling to maybe find a better one.
1683 */
10e2f1ac
PZ
1684 if (!cur) {
1685 /*
1686 * select_idle_siblings() uses an per-cpu cpumask that
1687 * can be used from IRQ context.
1688 */
1689 local_irq_disable();
772bd008
MR
1690 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 env->dst_cpu);
10e2f1ac
PZ
1692 local_irq_enable();
1693 }
ba7e5a27 1694
fb13c7ee
MG
1695assign:
1696 task_numa_assign(env, cur, imp);
1697unlock:
1698 rcu_read_unlock();
1699}
1700
887c290e
RR
1701static void task_numa_find_cpu(struct task_numa_env *env,
1702 long taskimp, long groupimp)
2c8a50aa
MG
1703{
1704 int cpu;
1705
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
0c98d344 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1709 continue;
1710
1711 env->dst_cpu = cpu;
887c290e 1712 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1713 }
1714}
1715
6f9aad0b
RR
1716/* Only move tasks to a NUMA node less busy than the current node. */
1717static bool numa_has_capacity(struct task_numa_env *env)
1718{
1719 struct numa_stats *src = &env->src_stats;
1720 struct numa_stats *dst = &env->dst_stats;
1721
1722 if (src->has_free_capacity && !dst->has_free_capacity)
1723 return false;
1724
1725 /*
1726 * Only consider a task move if the source has a higher load
1727 * than the destination, corrected for CPU capacity on each node.
1728 *
1729 * src->load dst->load
1730 * --------------------- vs ---------------------
1731 * src->compute_capacity dst->compute_capacity
1732 */
44dcb04f
SD
1733 if (src->load * dst->compute_capacity * env->imbalance_pct >
1734
1735 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1736 return true;
1737
1738 return false;
1739}
1740
58d081b5
MG
1741static int task_numa_migrate(struct task_struct *p)
1742{
58d081b5
MG
1743 struct task_numa_env env = {
1744 .p = p,
fb13c7ee 1745
58d081b5 1746 .src_cpu = task_cpu(p),
b32e86b4 1747 .src_nid = task_node(p),
fb13c7ee
MG
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
4142c3eb 1753 .best_cpu = -1,
58d081b5
MG
1754 };
1755 struct sched_domain *sd;
887c290e 1756 unsigned long taskweight, groupweight;
7bd95320 1757 int nid, ret, dist;
887c290e 1758 long taskimp, groupimp;
e6628d5b 1759
58d081b5 1760 /*
fb13c7ee
MG
1761 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 * imbalance and would be the first to start moving tasks about.
1763 *
1764 * And we want to avoid any moving of tasks about, as that would create
1765 * random movement of tasks -- counter the numa conditions we're trying
1766 * to satisfy here.
58d081b5
MG
1767 */
1768 rcu_read_lock();
fb13c7ee 1769 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1770 if (sd)
1771 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1772 rcu_read_unlock();
1773
46a73e8a
RR
1774 /*
1775 * Cpusets can break the scheduler domain tree into smaller
1776 * balance domains, some of which do not cross NUMA boundaries.
1777 * Tasks that are "trapped" in such domains cannot be migrated
1778 * elsewhere, so there is no point in (re)trying.
1779 */
1780 if (unlikely(!sd)) {
de1b301a 1781 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1782 return -EINVAL;
1783 }
1784
2c8a50aa 1785 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1786 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 taskweight = task_weight(p, env.src_nid, dist);
1788 groupweight = group_weight(p, env.src_nid, dist);
1789 update_numa_stats(&env.src_stats, env.src_nid);
1790 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1792 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1793
a43455a1 1794 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1795 if (numa_has_capacity(&env))
1796 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1797
9de05d48
RR
1798 /*
1799 * Look at other nodes in these cases:
1800 * - there is no space available on the preferred_nid
1801 * - the task is part of a numa_group that is interleaved across
1802 * multiple NUMA nodes; in order to better consolidate the group,
1803 * we need to check other locations.
1804 */
4142c3eb 1805 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1806 for_each_online_node(nid) {
1807 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 continue;
58d081b5 1809
7bd95320 1810 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1811 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 dist != env.dist) {
1813 taskweight = task_weight(p, env.src_nid, dist);
1814 groupweight = group_weight(p, env.src_nid, dist);
1815 }
7bd95320 1816
83e1d2cd 1817 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1818 taskimp = task_weight(p, nid, dist) - taskweight;
1819 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1820 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1821 continue;
1822
7bd95320 1823 env.dist = dist;
2c8a50aa
MG
1824 env.dst_nid = nid;
1825 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1826 if (numa_has_capacity(&env))
1827 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1828 }
1829 }
1830
68d1b02a
RR
1831 /*
1832 * If the task is part of a workload that spans multiple NUMA nodes,
1833 * and is migrating into one of the workload's active nodes, remember
1834 * this node as the task's preferred numa node, so the workload can
1835 * settle down.
1836 * A task that migrated to a second choice node will be better off
1837 * trying for a better one later. Do not set the preferred node here.
1838 */
db015dae 1839 if (p->numa_group) {
4142c3eb
RR
1840 struct numa_group *ng = p->numa_group;
1841
db015dae
RR
1842 if (env.best_cpu == -1)
1843 nid = env.src_nid;
1844 else
1845 nid = env.dst_nid;
1846
4142c3eb 1847 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1848 sched_setnuma(p, env.dst_nid);
1849 }
1850
1851 /* No better CPU than the current one was found. */
1852 if (env.best_cpu == -1)
1853 return -EAGAIN;
0ec8aa00 1854
04bb2f94
RR
1855 /*
1856 * Reset the scan period if the task is being rescheduled on an
1857 * alternative node to recheck if the tasks is now properly placed.
1858 */
b5dd77c8 1859 p->numa_scan_period = task_scan_start(p);
04bb2f94 1860
fb13c7ee 1861 if (env.best_task == NULL) {
286549dc
MG
1862 ret = migrate_task_to(p, env.best_cpu);
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1865 return ret;
1866 }
1867
1868 ret = migrate_swap(p, env.best_task);
286549dc
MG
1869 if (ret != 0)
1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1871 put_task_struct(env.best_task);
1872 return ret;
e6628d5b
MG
1873}
1874
6b9a7460
MG
1875/* Attempt to migrate a task to a CPU on the preferred node. */
1876static void numa_migrate_preferred(struct task_struct *p)
1877{
5085e2a3
RR
1878 unsigned long interval = HZ;
1879
2739d3ee 1880 /* This task has no NUMA fault statistics yet */
44dba3d5 1881 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1882 return;
1883
2739d3ee 1884 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1887
1888 /* Success if task is already running on preferred CPU */
de1b301a 1889 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1890 return;
1891
1892 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1893 task_numa_migrate(p);
6b9a7460
MG
1894}
1895
20e07dea 1896/*
4142c3eb 1897 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1898 * tracking the nodes from which NUMA hinting faults are triggered. This can
1899 * be different from the set of nodes where the workload's memory is currently
1900 * located.
20e07dea 1901 */
4142c3eb 1902static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1903{
1904 unsigned long faults, max_faults = 0;
4142c3eb 1905 int nid, active_nodes = 0;
20e07dea
RR
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
1909 if (faults > max_faults)
1910 max_faults = faults;
1911 }
1912
1913 for_each_online_node(nid) {
1914 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1915 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 active_nodes++;
20e07dea 1917 }
4142c3eb
RR
1918
1919 numa_group->max_faults_cpu = max_faults;
1920 numa_group->active_nodes = active_nodes;
20e07dea
RR
1921}
1922
04bb2f94
RR
1923/*
1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1926 * period will be for the next scan window. If local/(local+remote) ratio is
1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1929 */
1930#define NUMA_PERIOD_SLOTS 10
a22b4b01 1931#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1932
1933/*
1934 * Increase the scan period (slow down scanning) if the majority of
1935 * our memory is already on our local node, or if the majority of
1936 * the page accesses are shared with other processes.
1937 * Otherwise, decrease the scan period.
1938 */
1939static void update_task_scan_period(struct task_struct *p,
1940 unsigned long shared, unsigned long private)
1941{
1942 unsigned int period_slot;
37ec97de 1943 int lr_ratio, ps_ratio;
04bb2f94
RR
1944 int diff;
1945
1946 unsigned long remote = p->numa_faults_locality[0];
1947 unsigned long local = p->numa_faults_locality[1];
1948
1949 /*
1950 * If there were no record hinting faults then either the task is
1951 * completely idle or all activity is areas that are not of interest
074c2381
MG
1952 * to automatic numa balancing. Related to that, if there were failed
1953 * migration then it implies we are migrating too quickly or the local
1954 * node is overloaded. In either case, scan slower
04bb2f94 1955 */
074c2381 1956 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1957 p->numa_scan_period = min(p->numa_scan_period_max,
1958 p->numa_scan_period << 1);
1959
1960 p->mm->numa_next_scan = jiffies +
1961 msecs_to_jiffies(p->numa_scan_period);
1962
1963 return;
1964 }
1965
1966 /*
1967 * Prepare to scale scan period relative to the current period.
1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 */
1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975
1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are local. There is no need to
1979 * do fast NUMA scanning, since memory is already local.
1980 */
1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 if (!slot)
1983 slot = 1;
1984 diff = slot * period_slot;
1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 /*
1987 * Most memory accesses are shared with other tasks.
1988 * There is no point in continuing fast NUMA scanning,
1989 * since other tasks may just move the memory elsewhere.
1990 */
1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1992 if (!slot)
1993 slot = 1;
1994 diff = slot * period_slot;
1995 } else {
04bb2f94 1996 /*
37ec97de
RR
1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 * yet they are not on the local NUMA node. Speed up
1999 * NUMA scanning to get the memory moved over.
04bb2f94 2000 */
37ec97de
RR
2001 int ratio = max(lr_ratio, ps_ratio);
2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2003 }
2004
2005 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 task_scan_min(p), task_scan_max(p));
2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008}
2009
7e2703e6
RR
2010/*
2011 * Get the fraction of time the task has been running since the last
2012 * NUMA placement cycle. The scheduler keeps similar statistics, but
2013 * decays those on a 32ms period, which is orders of magnitude off
2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015 * stats only if the task is so new there are no NUMA statistics yet.
2016 */
2017static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018{
2019 u64 runtime, delta, now;
2020 /* Use the start of this time slice to avoid calculations. */
2021 now = p->se.exec_start;
2022 runtime = p->se.sum_exec_runtime;
2023
2024 if (p->last_task_numa_placement) {
2025 delta = runtime - p->last_sum_exec_runtime;
2026 *period = now - p->last_task_numa_placement;
2027 } else {
9d89c257
YD
2028 delta = p->se.avg.load_sum / p->se.load.weight;
2029 *period = LOAD_AVG_MAX;
7e2703e6
RR
2030 }
2031
2032 p->last_sum_exec_runtime = runtime;
2033 p->last_task_numa_placement = now;
2034
2035 return delta;
2036}
2037
54009416
RR
2038/*
2039 * Determine the preferred nid for a task in a numa_group. This needs to
2040 * be done in a way that produces consistent results with group_weight,
2041 * otherwise workloads might not converge.
2042 */
2043static int preferred_group_nid(struct task_struct *p, int nid)
2044{
2045 nodemask_t nodes;
2046 int dist;
2047
2048 /* Direct connections between all NUMA nodes. */
2049 if (sched_numa_topology_type == NUMA_DIRECT)
2050 return nid;
2051
2052 /*
2053 * On a system with glueless mesh NUMA topology, group_weight
2054 * scores nodes according to the number of NUMA hinting faults on
2055 * both the node itself, and on nearby nodes.
2056 */
2057 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 unsigned long score, max_score = 0;
2059 int node, max_node = nid;
2060
2061 dist = sched_max_numa_distance;
2062
2063 for_each_online_node(node) {
2064 score = group_weight(p, node, dist);
2065 if (score > max_score) {
2066 max_score = score;
2067 max_node = node;
2068 }
2069 }
2070 return max_node;
2071 }
2072
2073 /*
2074 * Finding the preferred nid in a system with NUMA backplane
2075 * interconnect topology is more involved. The goal is to locate
2076 * tasks from numa_groups near each other in the system, and
2077 * untangle workloads from different sides of the system. This requires
2078 * searching down the hierarchy of node groups, recursively searching
2079 * inside the highest scoring group of nodes. The nodemask tricks
2080 * keep the complexity of the search down.
2081 */
2082 nodes = node_online_map;
2083 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 unsigned long max_faults = 0;
81907478 2085 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2086 int a, b;
2087
2088 /* Are there nodes at this distance from each other? */
2089 if (!find_numa_distance(dist))
2090 continue;
2091
2092 for_each_node_mask(a, nodes) {
2093 unsigned long faults = 0;
2094 nodemask_t this_group;
2095 nodes_clear(this_group);
2096
2097 /* Sum group's NUMA faults; includes a==b case. */
2098 for_each_node_mask(b, nodes) {
2099 if (node_distance(a, b) < dist) {
2100 faults += group_faults(p, b);
2101 node_set(b, this_group);
2102 node_clear(b, nodes);
2103 }
2104 }
2105
2106 /* Remember the top group. */
2107 if (faults > max_faults) {
2108 max_faults = faults;
2109 max_group = this_group;
2110 /*
2111 * subtle: at the smallest distance there is
2112 * just one node left in each "group", the
2113 * winner is the preferred nid.
2114 */
2115 nid = a;
2116 }
2117 }
2118 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2119 if (!max_faults)
2120 break;
54009416
RR
2121 nodes = max_group;
2122 }
2123 return nid;
2124}
2125
cbee9f88
PZ
2126static void task_numa_placement(struct task_struct *p)
2127{
83e1d2cd
MG
2128 int seq, nid, max_nid = -1, max_group_nid = -1;
2129 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2130 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2131 unsigned long total_faults;
2132 u64 runtime, period;
7dbd13ed 2133 spinlock_t *group_lock = NULL;
cbee9f88 2134
7e5a2c17
JL
2135 /*
2136 * The p->mm->numa_scan_seq field gets updated without
2137 * exclusive access. Use READ_ONCE() here to ensure
2138 * that the field is read in a single access:
2139 */
316c1608 2140 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2141 if (p->numa_scan_seq == seq)
2142 return;
2143 p->numa_scan_seq = seq;
598f0ec0 2144 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2145
7e2703e6
RR
2146 total_faults = p->numa_faults_locality[0] +
2147 p->numa_faults_locality[1];
2148 runtime = numa_get_avg_runtime(p, &period);
2149
7dbd13ed
MG
2150 /* If the task is part of a group prevent parallel updates to group stats */
2151 if (p->numa_group) {
2152 group_lock = &p->numa_group->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
8c8a743c 2193 if (p->numa_group) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
2201 p->numa_group->faults[mem_idx] += diff;
2202 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2203 p->numa_group->total_faults += diff;
44dba3d5 2204 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
688b7585
MG
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
83e1d2cd
MG
2212
2213 if (group_faults > max_group_faults) {
2214 max_group_faults = group_faults;
2215 max_group_nid = nid;
2216 }
2217 }
2218
04bb2f94
RR
2219 update_task_scan_period(p, fault_types[0], fault_types[1]);
2220
7dbd13ed 2221 if (p->numa_group) {
4142c3eb 2222 numa_group_count_active_nodes(p->numa_group);
60e69eed 2223 spin_unlock_irq(group_lock);
54009416 2224 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2225 }
2226
bb97fc31
RR
2227 if (max_faults) {
2228 /* Set the new preferred node */
2229 if (max_nid != p->numa_preferred_nid)
2230 sched_setnuma(p, max_nid);
2231
2232 if (task_node(p) != p->numa_preferred_nid)
2233 numa_migrate_preferred(p);
3a7053b3 2234 }
cbee9f88
PZ
2235}
2236
8c8a743c
PZ
2237static inline int get_numa_group(struct numa_group *grp)
2238{
2239 return atomic_inc_not_zero(&grp->refcount);
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
2244 if (atomic_dec_and_test(&grp->refcount))
2245 kfree_rcu(grp, rcu);
2246}
2247
3e6a9418
MG
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
8c8a743c
PZ
2250{
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
2257 if (unlikely(!p->numa_group)) {
2258 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2259 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
2265 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
8c8a743c 2268 spin_lock_init(&grp->lock);
e29cf08b 2269 grp->gid = p->pid;
50ec8a40 2270 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
8c8a743c 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2275 grp->faults[i] = p->numa_faults[i];
8c8a743c 2276
989348b5 2277 grp->total_faults = p->total_numa_faults;
83e1d2cd 2278
8c8a743c
PZ
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
316c1608 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2287 goto no_join;
8c8a743c
PZ
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 my_grp = p->numa_group;
2294 if (grp == my_grp)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2302 goto no_join;
8c8a743c
PZ
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2308 goto no_join;
8c8a743c 2309
dabe1d99
RR
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
8c8a743c 2317
3e6a9418
MG
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
dabe1d99 2321 if (join && !get_numa_group(grp))
3354781a 2322 goto no_join;
8c8a743c 2323
8c8a743c
PZ
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
60e69eed
MG
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2331
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
8c8a743c 2335 }
989348b5
MG
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
8c8a743c 2338
8c8a743c
PZ
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
60e69eed 2343 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
3354781a
PZ
2348 return;
2349
2350no_join:
2351 rcu_read_unlock();
2352 return;
8c8a743c
PZ
2353}
2354
2355void task_numa_free(struct task_struct *p)
2356{
2357 struct numa_group *grp = p->numa_group;
44dba3d5 2358 void *numa_faults = p->numa_faults;
e9dd685c
SR
2359 unsigned long flags;
2360 int i;
8c8a743c
PZ
2361
2362 if (grp) {
e9dd685c 2363 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2364 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2365 grp->faults[i] -= p->numa_faults[i];
989348b5 2366 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2367
8c8a743c 2368 grp->nr_tasks--;
e9dd685c 2369 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2370 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2371 put_numa_group(grp);
2372 }
2373
44dba3d5 2374 p->numa_faults = NULL;
82727018 2375 kfree(numa_faults);
8c8a743c
PZ
2376}
2377
cbee9f88
PZ
2378/*
2379 * Got a PROT_NONE fault for a page on @node.
2380 */
58b46da3 2381void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2382{
2383 struct task_struct *p = current;
6688cc05 2384 bool migrated = flags & TNF_MIGRATED;
58b46da3 2385 int cpu_node = task_node(current);
792568ec 2386 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2387 struct numa_group *ng;
ac8e895b 2388 int priv;
cbee9f88 2389
2a595721 2390 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2391 return;
2392
9ff1d9ff
MG
2393 /* for example, ksmd faulting in a user's mm */
2394 if (!p->mm)
2395 return;
2396
f809ca9a 2397 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2398 if (unlikely(!p->numa_faults)) {
2399 int size = sizeof(*p->numa_faults) *
be1e4e76 2400 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2401
44dba3d5
IM
2402 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 if (!p->numa_faults)
f809ca9a 2404 return;
745d6147 2405
83e1d2cd 2406 p->total_numa_faults = 0;
04bb2f94 2407 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2408 }
cbee9f88 2409
8c8a743c
PZ
2410 /*
2411 * First accesses are treated as private, otherwise consider accesses
2412 * to be private if the accessing pid has not changed
2413 */
2414 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 priv = 1;
2416 } else {
2417 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2418 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2419 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2420 }
2421
792568ec
RR
2422 /*
2423 * If a workload spans multiple NUMA nodes, a shared fault that
2424 * occurs wholly within the set of nodes that the workload is
2425 * actively using should be counted as local. This allows the
2426 * scan rate to slow down when a workload has settled down.
2427 */
4142c3eb
RR
2428 ng = p->numa_group;
2429 if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 numa_is_active_node(cpu_node, ng) &&
2431 numa_is_active_node(mem_node, ng))
792568ec
RR
2432 local = 1;
2433
cbee9f88 2434 task_numa_placement(p);
f809ca9a 2435
2739d3ee
RR
2436 /*
2437 * Retry task to preferred node migration periodically, in case it
2438 * case it previously failed, or the scheduler moved us.
2439 */
2440 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2441 numa_migrate_preferred(p);
2442
b32e86b4
IM
2443 if (migrated)
2444 p->numa_pages_migrated += pages;
074c2381
MG
2445 if (flags & TNF_MIGRATE_FAIL)
2446 p->numa_faults_locality[2] += pages;
b32e86b4 2447
44dba3d5
IM
2448 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2450 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2451}
2452
6e5fb223
PZ
2453static void reset_ptenuma_scan(struct task_struct *p)
2454{
7e5a2c17
JL
2455 /*
2456 * We only did a read acquisition of the mmap sem, so
2457 * p->mm->numa_scan_seq is written to without exclusive access
2458 * and the update is not guaranteed to be atomic. That's not
2459 * much of an issue though, since this is just used for
2460 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 * expensive, to avoid any form of compiler optimizations:
2462 */
316c1608 2463 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2464 p->mm->numa_scan_offset = 0;
2465}
2466
cbee9f88
PZ
2467/*
2468 * The expensive part of numa migration is done from task_work context.
2469 * Triggered from task_tick_numa().
2470 */
2471void task_numa_work(struct callback_head *work)
2472{
2473 unsigned long migrate, next_scan, now = jiffies;
2474 struct task_struct *p = current;
2475 struct mm_struct *mm = p->mm;
51170840 2476 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2477 struct vm_area_struct *vma;
9f40604c 2478 unsigned long start, end;
598f0ec0 2479 unsigned long nr_pte_updates = 0;
4620f8c1 2480 long pages, virtpages;
cbee9f88 2481
9148a3a1 2482 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2483
2484 work->next = work; /* protect against double add */
2485 /*
2486 * Who cares about NUMA placement when they're dying.
2487 *
2488 * NOTE: make sure not to dereference p->mm before this check,
2489 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 * without p->mm even though we still had it when we enqueued this
2491 * work.
2492 */
2493 if (p->flags & PF_EXITING)
2494 return;
2495
930aa174 2496 if (!mm->numa_next_scan) {
7e8d16b6
MG
2497 mm->numa_next_scan = now +
2498 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2499 }
2500
cbee9f88
PZ
2501 /*
2502 * Enforce maximal scan/migration frequency..
2503 */
2504 migrate = mm->numa_next_scan;
2505 if (time_before(now, migrate))
2506 return;
2507
598f0ec0
MG
2508 if (p->numa_scan_period == 0) {
2509 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2510 p->numa_scan_period = task_scan_start(p);
598f0ec0 2511 }
cbee9f88 2512
fb003b80 2513 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2514 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 return;
2516
19a78d11
PZ
2517 /*
2518 * Delay this task enough that another task of this mm will likely win
2519 * the next time around.
2520 */
2521 p->node_stamp += 2 * TICK_NSEC;
2522
9f40604c
MG
2523 start = mm->numa_scan_offset;
2524 pages = sysctl_numa_balancing_scan_size;
2525 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2526 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2527 if (!pages)
2528 return;
cbee9f88 2529
4620f8c1 2530
8655d549
VB
2531 if (!down_read_trylock(&mm->mmap_sem))
2532 return;
9f40604c 2533 vma = find_vma(mm, start);
6e5fb223
PZ
2534 if (!vma) {
2535 reset_ptenuma_scan(p);
9f40604c 2536 start = 0;
6e5fb223
PZ
2537 vma = mm->mmap;
2538 }
9f40604c 2539 for (; vma; vma = vma->vm_next) {
6b79c57b 2540 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2541 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2542 continue;
6b79c57b 2543 }
6e5fb223 2544
4591ce4f
MG
2545 /*
2546 * Shared library pages mapped by multiple processes are not
2547 * migrated as it is expected they are cache replicated. Avoid
2548 * hinting faults in read-only file-backed mappings or the vdso
2549 * as migrating the pages will be of marginal benefit.
2550 */
2551 if (!vma->vm_mm ||
2552 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 continue;
2554
3c67f474
MG
2555 /*
2556 * Skip inaccessible VMAs to avoid any confusion between
2557 * PROT_NONE and NUMA hinting ptes
2558 */
2559 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 continue;
4591ce4f 2561
9f40604c
MG
2562 do {
2563 start = max(start, vma->vm_start);
2564 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 end = min(end, vma->vm_end);
4620f8c1 2566 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2567
2568 /*
4620f8c1
RR
2569 * Try to scan sysctl_numa_balancing_size worth of
2570 * hpages that have at least one present PTE that
2571 * is not already pte-numa. If the VMA contains
2572 * areas that are unused or already full of prot_numa
2573 * PTEs, scan up to virtpages, to skip through those
2574 * areas faster.
598f0ec0
MG
2575 */
2576 if (nr_pte_updates)
2577 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2578 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2579
9f40604c 2580 start = end;
4620f8c1 2581 if (pages <= 0 || virtpages <= 0)
9f40604c 2582 goto out;
3cf1962c
RR
2583
2584 cond_resched();
9f40604c 2585 } while (end != vma->vm_end);
cbee9f88 2586 }
6e5fb223 2587
9f40604c 2588out:
6e5fb223 2589 /*
c69307d5
PZ
2590 * It is possible to reach the end of the VMA list but the last few
2591 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 * would find the !migratable VMA on the next scan but not reset the
2593 * scanner to the start so check it now.
6e5fb223
PZ
2594 */
2595 if (vma)
9f40604c 2596 mm->numa_scan_offset = start;
6e5fb223
PZ
2597 else
2598 reset_ptenuma_scan(p);
2599 up_read(&mm->mmap_sem);
51170840
RR
2600
2601 /*
2602 * Make sure tasks use at least 32x as much time to run other code
2603 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 * Usually update_task_scan_period slows down scanning enough; on an
2605 * overloaded system we need to limit overhead on a per task basis.
2606 */
2607 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 u64 diff = p->se.sum_exec_runtime - runtime;
2609 p->node_stamp += 32 * diff;
2610 }
cbee9f88
PZ
2611}
2612
2613/*
2614 * Drive the periodic memory faults..
2615 */
2616void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617{
2618 struct callback_head *work = &curr->numa_work;
2619 u64 period, now;
2620
2621 /*
2622 * We don't care about NUMA placement if we don't have memory.
2623 */
2624 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 return;
2626
2627 /*
2628 * Using runtime rather than walltime has the dual advantage that
2629 * we (mostly) drive the selection from busy threads and that the
2630 * task needs to have done some actual work before we bother with
2631 * NUMA placement.
2632 */
2633 now = curr->se.sum_exec_runtime;
2634 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635
25b3e5a3 2636 if (now > curr->node_stamp + period) {
4b96a29b 2637 if (!curr->node_stamp)
b5dd77c8 2638 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2639 curr->node_stamp += period;
cbee9f88
PZ
2640
2641 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 task_work_add(curr, work, true);
2644 }
2645 }
2646}
3fed382b 2647
cbee9f88
PZ
2648#else
2649static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650{
2651}
0ec8aa00
PZ
2652
2653static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654{
2655}
2656
2657static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658{
2659}
3fed382b 2660
cbee9f88
PZ
2661#endif /* CONFIG_NUMA_BALANCING */
2662
30cfdcfc
DA
2663static void
2664account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2667 if (!parent_entity(se))
029632fb 2668 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2669#ifdef CONFIG_SMP
0ec8aa00
PZ
2670 if (entity_is_task(se)) {
2671 struct rq *rq = rq_of(cfs_rq);
2672
2673 account_numa_enqueue(rq, task_of(se));
2674 list_add(&se->group_node, &rq->cfs_tasks);
2675 }
367456c7 2676#endif
30cfdcfc 2677 cfs_rq->nr_running++;
30cfdcfc
DA
2678}
2679
2680static void
2681account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2689 list_del_init(&se->group_node);
0ec8aa00 2690 }
bfdb198c 2691#endif
30cfdcfc 2692 cfs_rq->nr_running--;
30cfdcfc
DA
2693}
2694
3ff6dcac
YZ
2695#ifdef CONFIG_FAIR_GROUP_SCHED
2696# ifdef CONFIG_SMP
ea1dc6fc 2697static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2698{
ea1dc6fc 2699 long tg_weight, load, shares;
cf5f0acf
PZ
2700
2701 /*
ea1dc6fc
PZ
2702 * This really should be: cfs_rq->avg.load_avg, but instead we use
2703 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2704 * the shares for small weight interactive tasks.
cf5f0acf 2705 */
ea1dc6fc 2706 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2707
ea1dc6fc 2708 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2709
ea1dc6fc
PZ
2710 /* Ensure tg_weight >= load */
2711 tg_weight -= cfs_rq->tg_load_avg_contrib;
2712 tg_weight += load;
3ff6dcac 2713
3ff6dcac 2714 shares = (tg->shares * load);
cf5f0acf
PZ
2715 if (tg_weight)
2716 shares /= tg_weight;
3ff6dcac 2717
b8fd8423
DE
2718 /*
2719 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2720 * of a group with small tg->shares value. It is a floor value which is
2721 * assigned as a minimum load.weight to the sched_entity representing
2722 * the group on a CPU.
2723 *
2724 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2725 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2726 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2727 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2728 * instead of 0.
2729 */
3ff6dcac
YZ
2730 if (shares < MIN_SHARES)
2731 shares = MIN_SHARES;
2732 if (shares > tg->shares)
2733 shares = tg->shares;
2734
2735 return shares;
2736}
3ff6dcac 2737# else /* CONFIG_SMP */
6d5ab293 2738static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2739{
2740 return tg->shares;
2741}
3ff6dcac 2742# endif /* CONFIG_SMP */
ea1dc6fc 2743
2069dd75
PZ
2744static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2745 unsigned long weight)
2746{
19e5eebb
PT
2747 if (se->on_rq) {
2748 /* commit outstanding execution time */
2749 if (cfs_rq->curr == se)
2750 update_curr(cfs_rq);
2069dd75 2751 account_entity_dequeue(cfs_rq, se);
19e5eebb 2752 }
2069dd75
PZ
2753
2754 update_load_set(&se->load, weight);
2755
2756 if (se->on_rq)
2757 account_entity_enqueue(cfs_rq, se);
2758}
2759
82958366
PT
2760static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2761
89ee048f 2762static void update_cfs_shares(struct sched_entity *se)
2069dd75 2763{
89ee048f 2764 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2765 struct task_group *tg;
3ff6dcac 2766 long shares;
2069dd75 2767
89ee048f
VG
2768 if (!cfs_rq)
2769 return;
2770
2771 if (throttled_hierarchy(cfs_rq))
2069dd75 2772 return;
89ee048f
VG
2773
2774 tg = cfs_rq->tg;
2775
3ff6dcac
YZ
2776#ifndef CONFIG_SMP
2777 if (likely(se->load.weight == tg->shares))
2778 return;
2779#endif
6d5ab293 2780 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2781
2782 reweight_entity(cfs_rq_of(se), se, shares);
2783}
89ee048f 2784
2069dd75 2785#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2786static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2787{
2788}
2789#endif /* CONFIG_FAIR_GROUP_SCHED */
2790
a030d738
VK
2791static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2792{
43964409
LT
2793 struct rq *rq = rq_of(cfs_rq);
2794
2795 if (&rq->cfs == cfs_rq) {
a030d738
VK
2796 /*
2797 * There are a few boundary cases this might miss but it should
2798 * get called often enough that that should (hopefully) not be
2799 * a real problem -- added to that it only calls on the local
2800 * CPU, so if we enqueue remotely we'll miss an update, but
2801 * the next tick/schedule should update.
2802 *
2803 * It will not get called when we go idle, because the idle
2804 * thread is a different class (!fair), nor will the utilization
2805 * number include things like RT tasks.
2806 *
2807 * As is, the util number is not freq-invariant (we'd have to
2808 * implement arch_scale_freq_capacity() for that).
2809 *
2810 * See cpu_util().
2811 */
43964409 2812 cpufreq_update_util(rq, 0);
a030d738
VK
2813 }
2814}
2815
141965c7 2816#ifdef CONFIG_SMP
9d85f21c
PT
2817/*
2818 * Approximate:
2819 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2820 */
a481db34 2821static u64 decay_load(u64 val, u64 n)
9d85f21c 2822{
5b51f2f8
PT
2823 unsigned int local_n;
2824
05296e75 2825 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2826 return 0;
2827
2828 /* after bounds checking we can collapse to 32-bit */
2829 local_n = n;
2830
2831 /*
2832 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2833 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2834 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2835 *
2836 * To achieve constant time decay_load.
2837 */
2838 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2839 val >>= local_n / LOAD_AVG_PERIOD;
2840 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2841 }
2842
9d89c257
YD
2843 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2844 return val;
5b51f2f8
PT
2845}
2846
05296e75 2847static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2848{
05296e75 2849 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2850
a481db34 2851 /*
3841cdc3 2852 * c1 = d1 y^p
a481db34 2853 */
05296e75 2854 c1 = decay_load((u64)d1, periods);
a481db34 2855
a481db34 2856 /*
3841cdc3 2857 * p-1
05296e75
PZ
2858 * c2 = 1024 \Sum y^n
2859 * n=1
a481db34 2860 *
05296e75
PZ
2861 * inf inf
2862 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2863 * n=0 n=p
a481db34 2864 */
05296e75 2865 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2866
2867 return c1 + c2 + c3;
9d85f21c
PT
2868}
2869
54a21385 2870#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2871
a481db34
YD
2872/*
2873 * Accumulate the three separate parts of the sum; d1 the remainder
2874 * of the last (incomplete) period, d2 the span of full periods and d3
2875 * the remainder of the (incomplete) current period.
2876 *
2877 * d1 d2 d3
2878 * ^ ^ ^
2879 * | | |
2880 * |<->|<----------------->|<--->|
2881 * ... |---x---|------| ... |------|-----x (now)
2882 *
3841cdc3
PZ
2883 * p-1
2884 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2885 * n=1
a481db34 2886 *
3841cdc3 2887 * = u y^p + (Step 1)
a481db34 2888 *
3841cdc3
PZ
2889 * p-1
2890 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2891 * n=1
a481db34
YD
2892 */
2893static __always_inline u32
2894accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2895 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2896{
2897 unsigned long scale_freq, scale_cpu;
05296e75 2898 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2899 u64 periods;
a481db34
YD
2900
2901 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2902 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2903
2904 delta += sa->period_contrib;
2905 periods = delta / 1024; /* A period is 1024us (~1ms) */
2906
2907 /*
2908 * Step 1: decay old *_sum if we crossed period boundaries.
2909 */
2910 if (periods) {
2911 sa->load_sum = decay_load(sa->load_sum, periods);
2912 if (cfs_rq) {
2913 cfs_rq->runnable_load_sum =
2914 decay_load(cfs_rq->runnable_load_sum, periods);
2915 }
2916 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2917
05296e75
PZ
2918 /*
2919 * Step 2
2920 */
2921 delta %= 1024;
2922 contrib = __accumulate_pelt_segments(periods,
2923 1024 - sa->period_contrib, delta);
2924 }
a481db34
YD
2925 sa->period_contrib = delta;
2926
2927 contrib = cap_scale(contrib, scale_freq);
2928 if (weight) {
2929 sa->load_sum += weight * contrib;
2930 if (cfs_rq)
2931 cfs_rq->runnable_load_sum += weight * contrib;
2932 }
2933 if (running)
2934 sa->util_sum += contrib * scale_cpu;
2935
2936 return periods;
2937}
2938
9d85f21c
PT
2939/*
2940 * We can represent the historical contribution to runnable average as the
2941 * coefficients of a geometric series. To do this we sub-divide our runnable
2942 * history into segments of approximately 1ms (1024us); label the segment that
2943 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2944 *
2945 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2946 * p0 p1 p2
2947 * (now) (~1ms ago) (~2ms ago)
2948 *
2949 * Let u_i denote the fraction of p_i that the entity was runnable.
2950 *
2951 * We then designate the fractions u_i as our co-efficients, yielding the
2952 * following representation of historical load:
2953 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2954 *
2955 * We choose y based on the with of a reasonably scheduling period, fixing:
2956 * y^32 = 0.5
2957 *
2958 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2959 * approximately half as much as the contribution to load within the last ms
2960 * (u_0).
2961 *
2962 * When a period "rolls over" and we have new u_0`, multiplying the previous
2963 * sum again by y is sufficient to update:
2964 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2965 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2966 */
9d89c257 2967static __always_inline int
0ccb977f 2968___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2969 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2970{
a481db34 2971 u64 delta;
9d85f21c 2972
9d89c257 2973 delta = now - sa->last_update_time;
9d85f21c
PT
2974 /*
2975 * This should only happen when time goes backwards, which it
2976 * unfortunately does during sched clock init when we swap over to TSC.
2977 */
2978 if ((s64)delta < 0) {
9d89c257 2979 sa->last_update_time = now;
9d85f21c
PT
2980 return 0;
2981 }
2982
2983 /*
2984 * Use 1024ns as the unit of measurement since it's a reasonable
2985 * approximation of 1us and fast to compute.
2986 */
2987 delta >>= 10;
2988 if (!delta)
2989 return 0;
bb0bd044
PZ
2990
2991 sa->last_update_time += delta << 10;
9d85f21c 2992
f235a54f
VG
2993 /*
2994 * running is a subset of runnable (weight) so running can't be set if
2995 * runnable is clear. But there are some corner cases where the current
2996 * se has been already dequeued but cfs_rq->curr still points to it.
2997 * This means that weight will be 0 but not running for a sched_entity
2998 * but also for a cfs_rq if the latter becomes idle. As an example,
2999 * this happens during idle_balance() which calls
3000 * update_blocked_averages()
3001 */
3002 if (!weight)
3003 running = 0;
3004
a481db34
YD
3005 /*
3006 * Now we know we crossed measurement unit boundaries. The *_avg
3007 * accrues by two steps:
3008 *
3009 * Step 1: accumulate *_sum since last_update_time. If we haven't
3010 * crossed period boundaries, finish.
3011 */
3012 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3013 return 0;
9ee474f5 3014
a481db34
YD
3015 /*
3016 * Step 2: update *_avg.
3017 */
625ed2bf 3018 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
3019 if (cfs_rq) {
3020 cfs_rq->runnable_load_avg =
625ed2bf 3021 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 3022 }
625ed2bf 3023 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 3024
a481db34 3025 return 1;
9ee474f5
PT
3026}
3027
0ccb977f
PZ
3028static int
3029__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3030{
3031 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3032}
3033
3034static int
3035__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3036{
3037 return ___update_load_avg(now, cpu, &se->avg,
3038 se->on_rq * scale_load_down(se->load.weight),
3039 cfs_rq->curr == se, NULL);
3040}
3041
3042static int
3043__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3044{
3045 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3046 scale_load_down(cfs_rq->load.weight),
3047 cfs_rq->curr != NULL, cfs_rq);
3048}
3049
09a43ace
VG
3050/*
3051 * Signed add and clamp on underflow.
3052 *
3053 * Explicitly do a load-store to ensure the intermediate value never hits
3054 * memory. This allows lockless observations without ever seeing the negative
3055 * values.
3056 */
3057#define add_positive(_ptr, _val) do { \
3058 typeof(_ptr) ptr = (_ptr); \
3059 typeof(_val) val = (_val); \
3060 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3061 \
3062 res = var + val; \
3063 \
3064 if (val < 0 && res > var) \
3065 res = 0; \
3066 \
3067 WRITE_ONCE(*ptr, res); \
3068} while (0)
3069
c566e8e9 3070#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3071/**
3072 * update_tg_load_avg - update the tg's load avg
3073 * @cfs_rq: the cfs_rq whose avg changed
3074 * @force: update regardless of how small the difference
3075 *
3076 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3077 * However, because tg->load_avg is a global value there are performance
3078 * considerations.
3079 *
3080 * In order to avoid having to look at the other cfs_rq's, we use a
3081 * differential update where we store the last value we propagated. This in
3082 * turn allows skipping updates if the differential is 'small'.
3083 *
815abf5a 3084 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3085 */
9d89c257 3086static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3087{
9d89c257 3088 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3089
aa0b7ae0
WL
3090 /*
3091 * No need to update load_avg for root_task_group as it is not used.
3092 */
3093 if (cfs_rq->tg == &root_task_group)
3094 return;
3095
9d89c257
YD
3096 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3097 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3098 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3099 }
8165e145 3100}
f5f9739d 3101
ad936d86
BP
3102/*
3103 * Called within set_task_rq() right before setting a task's cpu. The
3104 * caller only guarantees p->pi_lock is held; no other assumptions,
3105 * including the state of rq->lock, should be made.
3106 */
3107void set_task_rq_fair(struct sched_entity *se,
3108 struct cfs_rq *prev, struct cfs_rq *next)
3109{
0ccb977f
PZ
3110 u64 p_last_update_time;
3111 u64 n_last_update_time;
3112
ad936d86
BP
3113 if (!sched_feat(ATTACH_AGE_LOAD))
3114 return;
3115
3116 /*
3117 * We are supposed to update the task to "current" time, then its up to
3118 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3119 * getting what current time is, so simply throw away the out-of-date
3120 * time. This will result in the wakee task is less decayed, but giving
3121 * the wakee more load sounds not bad.
3122 */
0ccb977f
PZ
3123 if (!(se->avg.last_update_time && prev))
3124 return;
ad936d86
BP
3125
3126#ifndef CONFIG_64BIT
0ccb977f 3127 {
ad936d86
BP
3128 u64 p_last_update_time_copy;
3129 u64 n_last_update_time_copy;
3130
3131 do {
3132 p_last_update_time_copy = prev->load_last_update_time_copy;
3133 n_last_update_time_copy = next->load_last_update_time_copy;
3134
3135 smp_rmb();
3136
3137 p_last_update_time = prev->avg.last_update_time;
3138 n_last_update_time = next->avg.last_update_time;
3139
3140 } while (p_last_update_time != p_last_update_time_copy ||
3141 n_last_update_time != n_last_update_time_copy);
0ccb977f 3142 }
ad936d86 3143#else
0ccb977f
PZ
3144 p_last_update_time = prev->avg.last_update_time;
3145 n_last_update_time = next->avg.last_update_time;
ad936d86 3146#endif
0ccb977f
PZ
3147 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3148 se->avg.last_update_time = n_last_update_time;
ad936d86 3149}
09a43ace
VG
3150
3151/* Take into account change of utilization of a child task group */
3152static inline void
3153update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3154{
3155 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3156 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3157
3158 /* Nothing to update */
3159 if (!delta)
3160 return;
3161
3162 /* Set new sched_entity's utilization */
3163 se->avg.util_avg = gcfs_rq->avg.util_avg;
3164 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3165
3166 /* Update parent cfs_rq utilization */
3167 add_positive(&cfs_rq->avg.util_avg, delta);
3168 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3169}
3170
3171/* Take into account change of load of a child task group */
3172static inline void
3173update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3174{
3175 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3176 long delta, load = gcfs_rq->avg.load_avg;
3177
3178 /*
3179 * If the load of group cfs_rq is null, the load of the
3180 * sched_entity will also be null so we can skip the formula
3181 */
3182 if (load) {
3183 long tg_load;
3184
3185 /* Get tg's load and ensure tg_load > 0 */
3186 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3187
3188 /* Ensure tg_load >= load and updated with current load*/
3189 tg_load -= gcfs_rq->tg_load_avg_contrib;
3190 tg_load += load;
3191
3192 /*
3193 * We need to compute a correction term in the case that the
3194 * task group is consuming more CPU than a task of equal
3195 * weight. A task with a weight equals to tg->shares will have
3196 * a load less or equal to scale_load_down(tg->shares).
3197 * Similarly, the sched_entities that represent the task group
3198 * at parent level, can't have a load higher than
3199 * scale_load_down(tg->shares). And the Sum of sched_entities'
3200 * load must be <= scale_load_down(tg->shares).
3201 */
3202 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3203 /* scale gcfs_rq's load into tg's shares*/
3204 load *= scale_load_down(gcfs_rq->tg->shares);
3205 load /= tg_load;
3206 }
3207 }
3208
3209 delta = load - se->avg.load_avg;
3210
3211 /* Nothing to update */
3212 if (!delta)
3213 return;
3214
3215 /* Set new sched_entity's load */
3216 se->avg.load_avg = load;
3217 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3218
3219 /* Update parent cfs_rq load */
3220 add_positive(&cfs_rq->avg.load_avg, delta);
3221 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3222
3223 /*
3224 * If the sched_entity is already enqueued, we also have to update the
3225 * runnable load avg.
3226 */
3227 if (se->on_rq) {
3228 /* Update parent cfs_rq runnable_load_avg */
3229 add_positive(&cfs_rq->runnable_load_avg, delta);
3230 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3231 }
3232}
3233
3234static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3235{
3236 cfs_rq->propagate_avg = 1;
3237}
3238
3239static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3240{
3241 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3242
3243 if (!cfs_rq->propagate_avg)
3244 return 0;
3245
3246 cfs_rq->propagate_avg = 0;
3247 return 1;
3248}
3249
3250/* Update task and its cfs_rq load average */
3251static inline int propagate_entity_load_avg(struct sched_entity *se)
3252{
3253 struct cfs_rq *cfs_rq;
3254
3255 if (entity_is_task(se))
3256 return 0;
3257
3258 if (!test_and_clear_tg_cfs_propagate(se))
3259 return 0;
3260
3261 cfs_rq = cfs_rq_of(se);
3262
3263 set_tg_cfs_propagate(cfs_rq);
3264
3265 update_tg_cfs_util(cfs_rq, se);
3266 update_tg_cfs_load(cfs_rq, se);
3267
3268 return 1;
3269}
3270
bc427898
VG
3271/*
3272 * Check if we need to update the load and the utilization of a blocked
3273 * group_entity:
3274 */
3275static inline bool skip_blocked_update(struct sched_entity *se)
3276{
3277 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3278
3279 /*
3280 * If sched_entity still have not zero load or utilization, we have to
3281 * decay it:
3282 */
3283 if (se->avg.load_avg || se->avg.util_avg)
3284 return false;
3285
3286 /*
3287 * If there is a pending propagation, we have to update the load and
3288 * the utilization of the sched_entity:
3289 */
3290 if (gcfs_rq->propagate_avg)
3291 return false;
3292
3293 /*
3294 * Otherwise, the load and the utilization of the sched_entity is
3295 * already zero and there is no pending propagation, so it will be a
3296 * waste of time to try to decay it:
3297 */
3298 return true;
3299}
3300
6e83125c 3301#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3302
9d89c257 3303static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3304
3305static inline int propagate_entity_load_avg(struct sched_entity *se)
3306{
3307 return 0;
3308}
3309
3310static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3311
6e83125c 3312#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3313
89741892
PZ
3314/*
3315 * Unsigned subtract and clamp on underflow.
3316 *
3317 * Explicitly do a load-store to ensure the intermediate value never hits
3318 * memory. This allows lockless observations without ever seeing the negative
3319 * values.
3320 */
3321#define sub_positive(_ptr, _val) do { \
3322 typeof(_ptr) ptr = (_ptr); \
3323 typeof(*ptr) val = (_val); \
3324 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3325 res = var - val; \
3326 if (res > var) \
3327 res = 0; \
3328 WRITE_ONCE(*ptr, res); \
3329} while (0)
3330
3d30544f
PZ
3331/**
3332 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3333 * @now: current time, as per cfs_rq_clock_task()
3334 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3335 *
3336 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3337 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3338 * post_init_entity_util_avg().
3339 *
3340 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3341 *
7c3edd2c
PZ
3342 * Returns true if the load decayed or we removed load.
3343 *
3344 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3345 * call update_tg_load_avg() when this function returns true.
3d30544f 3346 */
a2c6c91f 3347static inline int
3a123bbb 3348update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3349{
9d89c257 3350 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3351 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3352
9d89c257 3353 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3354 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3355 sub_positive(&sa->load_avg, r);
3356 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3357 removed_load = 1;
4e516076 3358 set_tg_cfs_propagate(cfs_rq);
8165e145 3359 }
2dac754e 3360
9d89c257
YD
3361 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3362 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3363 sub_positive(&sa->util_avg, r);
3364 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3365 removed_util = 1;
4e516076 3366 set_tg_cfs_propagate(cfs_rq);
9d89c257 3367 }
36ee28e4 3368
0ccb977f 3369 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3370
9d89c257
YD
3371#ifndef CONFIG_64BIT
3372 smp_wmb();
3373 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3374#endif
36ee28e4 3375
3a123bbb 3376 if (decayed || removed_util)
a2c6c91f 3377 cfs_rq_util_change(cfs_rq);
21e96f88 3378
41e0d37f 3379 return decayed || removed_load;
21e96f88
SM
3380}
3381
d31b1a66
VG
3382/*
3383 * Optional action to be done while updating the load average
3384 */
3385#define UPDATE_TG 0x1
3386#define SKIP_AGE_LOAD 0x2
3387
21e96f88 3388/* Update task and its cfs_rq load average */
d31b1a66 3389static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3390{
3391 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3392 u64 now = cfs_rq_clock_task(cfs_rq);
3393 struct rq *rq = rq_of(cfs_rq);
3394 int cpu = cpu_of(rq);
09a43ace 3395 int decayed;
21e96f88
SM
3396
3397 /*
3398 * Track task load average for carrying it to new CPU after migrated, and
3399 * track group sched_entity load average for task_h_load calc in migration
3400 */
0ccb977f
PZ
3401 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3402 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3403
3a123bbb 3404 decayed = update_cfs_rq_load_avg(now, cfs_rq);
09a43ace
VG
3405 decayed |= propagate_entity_load_avg(se);
3406
3407 if (decayed && (flags & UPDATE_TG))
21e96f88 3408 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3409}
3410
3d30544f
PZ
3411/**
3412 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3413 * @cfs_rq: cfs_rq to attach to
3414 * @se: sched_entity to attach
3415 *
3416 * Must call update_cfs_rq_load_avg() before this, since we rely on
3417 * cfs_rq->avg.last_update_time being current.
3418 */
a05e8c51
BP
3419static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3420{
3421 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3422 cfs_rq->avg.load_avg += se->avg.load_avg;
3423 cfs_rq->avg.load_sum += se->avg.load_sum;
3424 cfs_rq->avg.util_avg += se->avg.util_avg;
3425 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3426 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3427
3428 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3429}
3430
3d30544f
PZ
3431/**
3432 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3433 * @cfs_rq: cfs_rq to detach from
3434 * @se: sched_entity to detach
3435 *
3436 * Must call update_cfs_rq_load_avg() before this, since we rely on
3437 * cfs_rq->avg.last_update_time being current.
3438 */
a05e8c51
BP
3439static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3440{
a05e8c51 3441
89741892
PZ
3442 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3443 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3444 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3445 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3446 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3447
3448 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3449}
3450
9d89c257
YD
3451/* Add the load generated by se into cfs_rq's load average */
3452static inline void
3453enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3454{
9d89c257 3455 struct sched_avg *sa = &se->avg;
18bf2805 3456
13962234
YD
3457 cfs_rq->runnable_load_avg += sa->load_avg;
3458 cfs_rq->runnable_load_sum += sa->load_sum;
3459
d31b1a66 3460 if (!sa->last_update_time) {
a05e8c51 3461 attach_entity_load_avg(cfs_rq, se);
9d89c257 3462 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3463 }
2dac754e
PT
3464}
3465
13962234
YD
3466/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3467static inline void
3468dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3469{
13962234
YD
3470 cfs_rq->runnable_load_avg =
3471 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3472 cfs_rq->runnable_load_sum =
a05e8c51 3473 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3474}
3475
9d89c257 3476#ifndef CONFIG_64BIT
0905f04e
YD
3477static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3478{
9d89c257 3479 u64 last_update_time_copy;
0905f04e 3480 u64 last_update_time;
9ee474f5 3481
9d89c257
YD
3482 do {
3483 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3484 smp_rmb();
3485 last_update_time = cfs_rq->avg.last_update_time;
3486 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3487
3488 return last_update_time;
3489}
9d89c257 3490#else
0905f04e
YD
3491static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3492{
3493 return cfs_rq->avg.last_update_time;
3494}
9d89c257
YD
3495#endif
3496
104cb16d
MR
3497/*
3498 * Synchronize entity load avg of dequeued entity without locking
3499 * the previous rq.
3500 */
3501void sync_entity_load_avg(struct sched_entity *se)
3502{
3503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3504 u64 last_update_time;
3505
3506 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3507 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3508}
3509
0905f04e
YD
3510/*
3511 * Task first catches up with cfs_rq, and then subtract
3512 * itself from the cfs_rq (task must be off the queue now).
3513 */
3514void remove_entity_load_avg(struct sched_entity *se)
3515{
3516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3517
3518 /*
7dc603c9
PZ
3519 * tasks cannot exit without having gone through wake_up_new_task() ->
3520 * post_init_entity_util_avg() which will have added things to the
3521 * cfs_rq, so we can remove unconditionally.
3522 *
3523 * Similarly for groups, they will have passed through
3524 * post_init_entity_util_avg() before unregister_sched_fair_group()
3525 * calls this.
0905f04e 3526 */
0905f04e 3527
104cb16d 3528 sync_entity_load_avg(se);
9d89c257
YD
3529 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3530 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3531}
642dbc39 3532
7ea241af
YD
3533static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3534{
3535 return cfs_rq->runnable_load_avg;
3536}
3537
3538static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3539{
3540 return cfs_rq->avg.load_avg;
3541}
3542
46f69fa3 3543static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3544
38033c37
PZ
3545#else /* CONFIG_SMP */
3546
01011473 3547static inline int
3a123bbb 3548update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3549{
3550 return 0;
3551}
3552
d31b1a66
VG
3553#define UPDATE_TG 0x0
3554#define SKIP_AGE_LOAD 0x0
3555
3556static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3557{
a030d738 3558 cfs_rq_util_change(cfs_rq_of(se));
536bd00c
RW
3559}
3560
9d89c257
YD
3561static inline void
3562enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3563static inline void
3564dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3565static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3566
a05e8c51
BP
3567static inline void
3568attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3569static inline void
3570detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3571
46f69fa3 3572static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3573{
3574 return 0;
3575}
3576
38033c37 3577#endif /* CONFIG_SMP */
9d85f21c 3578
ddc97297
PZ
3579static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3580{
3581#ifdef CONFIG_SCHED_DEBUG
3582 s64 d = se->vruntime - cfs_rq->min_vruntime;
3583
3584 if (d < 0)
3585 d = -d;
3586
3587 if (d > 3*sysctl_sched_latency)
ae92882e 3588 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3589#endif
3590}
3591
aeb73b04
PZ
3592static void
3593place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3594{
1af5f730 3595 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3596
2cb8600e
PZ
3597 /*
3598 * The 'current' period is already promised to the current tasks,
3599 * however the extra weight of the new task will slow them down a
3600 * little, place the new task so that it fits in the slot that
3601 * stays open at the end.
3602 */
94dfb5e7 3603 if (initial && sched_feat(START_DEBIT))
f9c0b095 3604 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3605
a2e7a7eb 3606 /* sleeps up to a single latency don't count. */
5ca9880c 3607 if (!initial) {
a2e7a7eb 3608 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3609
a2e7a7eb
MG
3610 /*
3611 * Halve their sleep time's effect, to allow
3612 * for a gentler effect of sleepers:
3613 */
3614 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3615 thresh >>= 1;
51e0304c 3616
a2e7a7eb 3617 vruntime -= thresh;
aeb73b04
PZ
3618 }
3619
b5d9d734 3620 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3621 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3622}
3623
d3d9dc33
PT
3624static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3625
cb251765
MG
3626static inline void check_schedstat_required(void)
3627{
3628#ifdef CONFIG_SCHEDSTATS
3629 if (schedstat_enabled())
3630 return;
3631
3632 /* Force schedstat enabled if a dependent tracepoint is active */
3633 if (trace_sched_stat_wait_enabled() ||
3634 trace_sched_stat_sleep_enabled() ||
3635 trace_sched_stat_iowait_enabled() ||
3636 trace_sched_stat_blocked_enabled() ||
3637 trace_sched_stat_runtime_enabled()) {
eda8dca5 3638 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3639 "stat_blocked and stat_runtime require the "
f67abed5 3640 "kernel parameter schedstats=enable or "
cb251765
MG
3641 "kernel.sched_schedstats=1\n");
3642 }
3643#endif
3644}
3645
b5179ac7
PZ
3646
3647/*
3648 * MIGRATION
3649 *
3650 * dequeue
3651 * update_curr()
3652 * update_min_vruntime()
3653 * vruntime -= min_vruntime
3654 *
3655 * enqueue
3656 * update_curr()
3657 * update_min_vruntime()
3658 * vruntime += min_vruntime
3659 *
3660 * this way the vruntime transition between RQs is done when both
3661 * min_vruntime are up-to-date.
3662 *
3663 * WAKEUP (remote)
3664 *
59efa0ba 3665 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3666 * vruntime -= min_vruntime
3667 *
3668 * enqueue
3669 * update_curr()
3670 * update_min_vruntime()
3671 * vruntime += min_vruntime
3672 *
3673 * this way we don't have the most up-to-date min_vruntime on the originating
3674 * CPU and an up-to-date min_vruntime on the destination CPU.
3675 */
3676
bf0f6f24 3677static void
88ec22d3 3678enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3679{
2f950354
PZ
3680 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3681 bool curr = cfs_rq->curr == se;
3682
88ec22d3 3683 /*
2f950354
PZ
3684 * If we're the current task, we must renormalise before calling
3685 * update_curr().
88ec22d3 3686 */
2f950354 3687 if (renorm && curr)
88ec22d3
PZ
3688 se->vruntime += cfs_rq->min_vruntime;
3689
2f950354
PZ
3690 update_curr(cfs_rq);
3691
bf0f6f24 3692 /*
2f950354
PZ
3693 * Otherwise, renormalise after, such that we're placed at the current
3694 * moment in time, instead of some random moment in the past. Being
3695 * placed in the past could significantly boost this task to the
3696 * fairness detriment of existing tasks.
bf0f6f24 3697 */
2f950354
PZ
3698 if (renorm && !curr)
3699 se->vruntime += cfs_rq->min_vruntime;
3700
89ee048f
VG
3701 /*
3702 * When enqueuing a sched_entity, we must:
3703 * - Update loads to have both entity and cfs_rq synced with now.
3704 * - Add its load to cfs_rq->runnable_avg
3705 * - For group_entity, update its weight to reflect the new share of
3706 * its group cfs_rq
3707 * - Add its new weight to cfs_rq->load.weight
3708 */
d31b1a66 3709 update_load_avg(se, UPDATE_TG);
9d89c257 3710 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3711 update_cfs_shares(se);
17bc14b7 3712 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3713
1a3d027c 3714 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3715 place_entity(cfs_rq, se, 0);
bf0f6f24 3716
cb251765 3717 check_schedstat_required();
4fa8d299
JP
3718 update_stats_enqueue(cfs_rq, se, flags);
3719 check_spread(cfs_rq, se);
2f950354 3720 if (!curr)
83b699ed 3721 __enqueue_entity(cfs_rq, se);
2069dd75 3722 se->on_rq = 1;
3d4b47b4 3723
d3d9dc33 3724 if (cfs_rq->nr_running == 1) {
3d4b47b4 3725 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3726 check_enqueue_throttle(cfs_rq);
3727 }
bf0f6f24
IM
3728}
3729
2c13c919 3730static void __clear_buddies_last(struct sched_entity *se)
2002c695 3731{
2c13c919
RR
3732 for_each_sched_entity(se) {
3733 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3734 if (cfs_rq->last != se)
2c13c919 3735 break;
f1044799
PZ
3736
3737 cfs_rq->last = NULL;
2c13c919
RR
3738 }
3739}
2002c695 3740
2c13c919
RR
3741static void __clear_buddies_next(struct sched_entity *se)
3742{
3743 for_each_sched_entity(se) {
3744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3745 if (cfs_rq->next != se)
2c13c919 3746 break;
f1044799
PZ
3747
3748 cfs_rq->next = NULL;
2c13c919 3749 }
2002c695
PZ
3750}
3751
ac53db59
RR
3752static void __clear_buddies_skip(struct sched_entity *se)
3753{
3754 for_each_sched_entity(se) {
3755 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3756 if (cfs_rq->skip != se)
ac53db59 3757 break;
f1044799
PZ
3758
3759 cfs_rq->skip = NULL;
ac53db59
RR
3760 }
3761}
3762
a571bbea
PZ
3763static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3764{
2c13c919
RR
3765 if (cfs_rq->last == se)
3766 __clear_buddies_last(se);
3767
3768 if (cfs_rq->next == se)
3769 __clear_buddies_next(se);
ac53db59
RR
3770
3771 if (cfs_rq->skip == se)
3772 __clear_buddies_skip(se);
a571bbea
PZ
3773}
3774
6c16a6dc 3775static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3776
bf0f6f24 3777static void
371fd7e7 3778dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3779{
a2a2d680
DA
3780 /*
3781 * Update run-time statistics of the 'current'.
3782 */
3783 update_curr(cfs_rq);
89ee048f
VG
3784
3785 /*
3786 * When dequeuing a sched_entity, we must:
3787 * - Update loads to have both entity and cfs_rq synced with now.
3788 * - Substract its load from the cfs_rq->runnable_avg.
3789 * - Substract its previous weight from cfs_rq->load.weight.
3790 * - For group entity, update its weight to reflect the new share
3791 * of its group cfs_rq.
3792 */
d31b1a66 3793 update_load_avg(se, UPDATE_TG);
13962234 3794 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3795
4fa8d299 3796 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3797
2002c695 3798 clear_buddies(cfs_rq, se);
4793241b 3799
83b699ed 3800 if (se != cfs_rq->curr)
30cfdcfc 3801 __dequeue_entity(cfs_rq, se);
17bc14b7 3802 se->on_rq = 0;
30cfdcfc 3803 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3804
3805 /*
b60205c7
PZ
3806 * Normalize after update_curr(); which will also have moved
3807 * min_vruntime if @se is the one holding it back. But before doing
3808 * update_min_vruntime() again, which will discount @se's position and
3809 * can move min_vruntime forward still more.
88ec22d3 3810 */
371fd7e7 3811 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3812 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3813
d8b4986d
PT
3814 /* return excess runtime on last dequeue */
3815 return_cfs_rq_runtime(cfs_rq);
3816
89ee048f 3817 update_cfs_shares(se);
b60205c7
PZ
3818
3819 /*
3820 * Now advance min_vruntime if @se was the entity holding it back,
3821 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3822 * put back on, and if we advance min_vruntime, we'll be placed back
3823 * further than we started -- ie. we'll be penalized.
3824 */
3825 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3826 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3827}
3828
3829/*
3830 * Preempt the current task with a newly woken task if needed:
3831 */
7c92e54f 3832static void
2e09bf55 3833check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3834{
11697830 3835 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3836 struct sched_entity *se;
3837 s64 delta;
11697830 3838
6d0f0ebd 3839 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3840 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3841 if (delta_exec > ideal_runtime) {
8875125e 3842 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3843 /*
3844 * The current task ran long enough, ensure it doesn't get
3845 * re-elected due to buddy favours.
3846 */
3847 clear_buddies(cfs_rq, curr);
f685ceac
MG
3848 return;
3849 }
3850
3851 /*
3852 * Ensure that a task that missed wakeup preemption by a
3853 * narrow margin doesn't have to wait for a full slice.
3854 * This also mitigates buddy induced latencies under load.
3855 */
f685ceac
MG
3856 if (delta_exec < sysctl_sched_min_granularity)
3857 return;
3858
f4cfb33e
WX
3859 se = __pick_first_entity(cfs_rq);
3860 delta = curr->vruntime - se->vruntime;
f685ceac 3861
f4cfb33e
WX
3862 if (delta < 0)
3863 return;
d7d82944 3864
f4cfb33e 3865 if (delta > ideal_runtime)
8875125e 3866 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3867}
3868
83b699ed 3869static void
8494f412 3870set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3871{
83b699ed
SV
3872 /* 'current' is not kept within the tree. */
3873 if (se->on_rq) {
3874 /*
3875 * Any task has to be enqueued before it get to execute on
3876 * a CPU. So account for the time it spent waiting on the
3877 * runqueue.
3878 */
4fa8d299 3879 update_stats_wait_end(cfs_rq, se);
83b699ed 3880 __dequeue_entity(cfs_rq, se);
d31b1a66 3881 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3882 }
3883
79303e9e 3884 update_stats_curr_start(cfs_rq, se);
429d43bc 3885 cfs_rq->curr = se;
4fa8d299 3886
eba1ed4b
IM
3887 /*
3888 * Track our maximum slice length, if the CPU's load is at
3889 * least twice that of our own weight (i.e. dont track it
3890 * when there are only lesser-weight tasks around):
3891 */
cb251765 3892 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3893 schedstat_set(se->statistics.slice_max,
3894 max((u64)schedstat_val(se->statistics.slice_max),
3895 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3896 }
4fa8d299 3897
4a55b450 3898 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3899}
3900
3f3a4904
PZ
3901static int
3902wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3903
ac53db59
RR
3904/*
3905 * Pick the next process, keeping these things in mind, in this order:
3906 * 1) keep things fair between processes/task groups
3907 * 2) pick the "next" process, since someone really wants that to run
3908 * 3) pick the "last" process, for cache locality
3909 * 4) do not run the "skip" process, if something else is available
3910 */
678d5718
PZ
3911static struct sched_entity *
3912pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3913{
678d5718
PZ
3914 struct sched_entity *left = __pick_first_entity(cfs_rq);
3915 struct sched_entity *se;
3916
3917 /*
3918 * If curr is set we have to see if its left of the leftmost entity
3919 * still in the tree, provided there was anything in the tree at all.
3920 */
3921 if (!left || (curr && entity_before(curr, left)))
3922 left = curr;
3923
3924 se = left; /* ideally we run the leftmost entity */
f4b6755f 3925
ac53db59
RR
3926 /*
3927 * Avoid running the skip buddy, if running something else can
3928 * be done without getting too unfair.
3929 */
3930 if (cfs_rq->skip == se) {
678d5718
PZ
3931 struct sched_entity *second;
3932
3933 if (se == curr) {
3934 second = __pick_first_entity(cfs_rq);
3935 } else {
3936 second = __pick_next_entity(se);
3937 if (!second || (curr && entity_before(curr, second)))
3938 second = curr;
3939 }
3940
ac53db59
RR
3941 if (second && wakeup_preempt_entity(second, left) < 1)
3942 se = second;
3943 }
aa2ac252 3944
f685ceac
MG
3945 /*
3946 * Prefer last buddy, try to return the CPU to a preempted task.
3947 */
3948 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3949 se = cfs_rq->last;
3950
ac53db59
RR
3951 /*
3952 * Someone really wants this to run. If it's not unfair, run it.
3953 */
3954 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3955 se = cfs_rq->next;
3956
f685ceac 3957 clear_buddies(cfs_rq, se);
4793241b
PZ
3958
3959 return se;
aa2ac252
PZ
3960}
3961
678d5718 3962static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3963
ab6cde26 3964static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3965{
3966 /*
3967 * If still on the runqueue then deactivate_task()
3968 * was not called and update_curr() has to be done:
3969 */
3970 if (prev->on_rq)
b7cc0896 3971 update_curr(cfs_rq);
bf0f6f24 3972
d3d9dc33
PT
3973 /* throttle cfs_rqs exceeding runtime */
3974 check_cfs_rq_runtime(cfs_rq);
3975
4fa8d299 3976 check_spread(cfs_rq, prev);
cb251765 3977
30cfdcfc 3978 if (prev->on_rq) {
4fa8d299 3979 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3980 /* Put 'current' back into the tree. */
3981 __enqueue_entity(cfs_rq, prev);
9d85f21c 3982 /* in !on_rq case, update occurred at dequeue */
9d89c257 3983 update_load_avg(prev, 0);
30cfdcfc 3984 }
429d43bc 3985 cfs_rq->curr = NULL;
bf0f6f24
IM
3986}
3987
8f4d37ec
PZ
3988static void
3989entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3990{
bf0f6f24 3991 /*
30cfdcfc 3992 * Update run-time statistics of the 'current'.
bf0f6f24 3993 */
30cfdcfc 3994 update_curr(cfs_rq);
bf0f6f24 3995
9d85f21c
PT
3996 /*
3997 * Ensure that runnable average is periodically updated.
3998 */
d31b1a66 3999 update_load_avg(curr, UPDATE_TG);
89ee048f 4000 update_cfs_shares(curr);
9d85f21c 4001
8f4d37ec
PZ
4002#ifdef CONFIG_SCHED_HRTICK
4003 /*
4004 * queued ticks are scheduled to match the slice, so don't bother
4005 * validating it and just reschedule.
4006 */
983ed7a6 4007 if (queued) {
8875125e 4008 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4009 return;
4010 }
8f4d37ec
PZ
4011 /*
4012 * don't let the period tick interfere with the hrtick preemption
4013 */
4014 if (!sched_feat(DOUBLE_TICK) &&
4015 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4016 return;
4017#endif
4018
2c2efaed 4019 if (cfs_rq->nr_running > 1)
2e09bf55 4020 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4021}
4022
ab84d31e
PT
4023
4024/**************************************************
4025 * CFS bandwidth control machinery
4026 */
4027
4028#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4029
4030#ifdef HAVE_JUMP_LABEL
c5905afb 4031static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4032
4033static inline bool cfs_bandwidth_used(void)
4034{
c5905afb 4035 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4036}
4037
1ee14e6c 4038void cfs_bandwidth_usage_inc(void)
029632fb 4039{
1ee14e6c
BS
4040 static_key_slow_inc(&__cfs_bandwidth_used);
4041}
4042
4043void cfs_bandwidth_usage_dec(void)
4044{
4045 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4046}
4047#else /* HAVE_JUMP_LABEL */
4048static bool cfs_bandwidth_used(void)
4049{
4050 return true;
4051}
4052
1ee14e6c
BS
4053void cfs_bandwidth_usage_inc(void) {}
4054void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4055#endif /* HAVE_JUMP_LABEL */
4056
ab84d31e
PT
4057/*
4058 * default period for cfs group bandwidth.
4059 * default: 0.1s, units: nanoseconds
4060 */
4061static inline u64 default_cfs_period(void)
4062{
4063 return 100000000ULL;
4064}
ec12cb7f
PT
4065
4066static inline u64 sched_cfs_bandwidth_slice(void)
4067{
4068 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4069}
4070
a9cf55b2
PT
4071/*
4072 * Replenish runtime according to assigned quota and update expiration time.
4073 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4074 * additional synchronization around rq->lock.
4075 *
4076 * requires cfs_b->lock
4077 */
029632fb 4078void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4079{
4080 u64 now;
4081
4082 if (cfs_b->quota == RUNTIME_INF)
4083 return;
4084
4085 now = sched_clock_cpu(smp_processor_id());
4086 cfs_b->runtime = cfs_b->quota;
4087 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4088}
4089
029632fb
PZ
4090static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4091{
4092 return &tg->cfs_bandwidth;
4093}
4094
f1b17280
PT
4095/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4096static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4097{
4098 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4099 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4100
78becc27 4101 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4102}
4103
85dac906
PT
4104/* returns 0 on failure to allocate runtime */
4105static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4106{
4107 struct task_group *tg = cfs_rq->tg;
4108 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4109 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4110
4111 /* note: this is a positive sum as runtime_remaining <= 0 */
4112 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4113
4114 raw_spin_lock(&cfs_b->lock);
4115 if (cfs_b->quota == RUNTIME_INF)
4116 amount = min_amount;
58088ad0 4117 else {
77a4d1a1 4118 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4119
4120 if (cfs_b->runtime > 0) {
4121 amount = min(cfs_b->runtime, min_amount);
4122 cfs_b->runtime -= amount;
4123 cfs_b->idle = 0;
4124 }
ec12cb7f 4125 }
a9cf55b2 4126 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4127 raw_spin_unlock(&cfs_b->lock);
4128
4129 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4130 /*
4131 * we may have advanced our local expiration to account for allowed
4132 * spread between our sched_clock and the one on which runtime was
4133 * issued.
4134 */
4135 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4136 cfs_rq->runtime_expires = expires;
85dac906
PT
4137
4138 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4139}
4140
a9cf55b2
PT
4141/*
4142 * Note: This depends on the synchronization provided by sched_clock and the
4143 * fact that rq->clock snapshots this value.
4144 */
4145static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4146{
a9cf55b2 4147 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4148
4149 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4150 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4151 return;
4152
a9cf55b2
PT
4153 if (cfs_rq->runtime_remaining < 0)
4154 return;
4155
4156 /*
4157 * If the local deadline has passed we have to consider the
4158 * possibility that our sched_clock is 'fast' and the global deadline
4159 * has not truly expired.
4160 *
4161 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4162 * whether the global deadline has advanced. It is valid to compare
4163 * cfs_b->runtime_expires without any locks since we only care about
4164 * exact equality, so a partial write will still work.
a9cf55b2
PT
4165 */
4166
51f2176d 4167 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4168 /* extend local deadline, drift is bounded above by 2 ticks */
4169 cfs_rq->runtime_expires += TICK_NSEC;
4170 } else {
4171 /* global deadline is ahead, expiration has passed */
4172 cfs_rq->runtime_remaining = 0;
4173 }
4174}
4175
9dbdb155 4176static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4177{
4178 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4179 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4180 expire_cfs_rq_runtime(cfs_rq);
4181
4182 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4183 return;
4184
85dac906
PT
4185 /*
4186 * if we're unable to extend our runtime we resched so that the active
4187 * hierarchy can be throttled
4188 */
4189 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4190 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4191}
4192
6c16a6dc 4193static __always_inline
9dbdb155 4194void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4195{
56f570e5 4196 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4197 return;
4198
4199 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4200}
4201
85dac906
PT
4202static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4203{
56f570e5 4204 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4205}
4206
64660c86
PT
4207/* check whether cfs_rq, or any parent, is throttled */
4208static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4209{
56f570e5 4210 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4211}
4212
4213/*
4214 * Ensure that neither of the group entities corresponding to src_cpu or
4215 * dest_cpu are members of a throttled hierarchy when performing group
4216 * load-balance operations.
4217 */
4218static inline int throttled_lb_pair(struct task_group *tg,
4219 int src_cpu, int dest_cpu)
4220{
4221 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4222
4223 src_cfs_rq = tg->cfs_rq[src_cpu];
4224 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4225
4226 return throttled_hierarchy(src_cfs_rq) ||
4227 throttled_hierarchy(dest_cfs_rq);
4228}
4229
4230/* updated child weight may affect parent so we have to do this bottom up */
4231static int tg_unthrottle_up(struct task_group *tg, void *data)
4232{
4233 struct rq *rq = data;
4234 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4235
4236 cfs_rq->throttle_count--;
64660c86 4237 if (!cfs_rq->throttle_count) {
f1b17280 4238 /* adjust cfs_rq_clock_task() */
78becc27 4239 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4240 cfs_rq->throttled_clock_task;
64660c86 4241 }
64660c86
PT
4242
4243 return 0;
4244}
4245
4246static int tg_throttle_down(struct task_group *tg, void *data)
4247{
4248 struct rq *rq = data;
4249 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4250
82958366
PT
4251 /* group is entering throttled state, stop time */
4252 if (!cfs_rq->throttle_count)
78becc27 4253 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4254 cfs_rq->throttle_count++;
4255
4256 return 0;
4257}
4258
d3d9dc33 4259static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4260{
4261 struct rq *rq = rq_of(cfs_rq);
4262 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4263 struct sched_entity *se;
4264 long task_delta, dequeue = 1;
77a4d1a1 4265 bool empty;
85dac906
PT
4266
4267 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4268
f1b17280 4269 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4270 rcu_read_lock();
4271 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4272 rcu_read_unlock();
85dac906
PT
4273
4274 task_delta = cfs_rq->h_nr_running;
4275 for_each_sched_entity(se) {
4276 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4277 /* throttled entity or throttle-on-deactivate */
4278 if (!se->on_rq)
4279 break;
4280
4281 if (dequeue)
4282 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4283 qcfs_rq->h_nr_running -= task_delta;
4284
4285 if (qcfs_rq->load.weight)
4286 dequeue = 0;
4287 }
4288
4289 if (!se)
72465447 4290 sub_nr_running(rq, task_delta);
85dac906
PT
4291
4292 cfs_rq->throttled = 1;
78becc27 4293 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4294 raw_spin_lock(&cfs_b->lock);
d49db342 4295 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4296
c06f04c7
BS
4297 /*
4298 * Add to the _head_ of the list, so that an already-started
4299 * distribute_cfs_runtime will not see us
4300 */
4301 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4302
4303 /*
4304 * If we're the first throttled task, make sure the bandwidth
4305 * timer is running.
4306 */
4307 if (empty)
4308 start_cfs_bandwidth(cfs_b);
4309
85dac906
PT
4310 raw_spin_unlock(&cfs_b->lock);
4311}
4312
029632fb 4313void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4314{
4315 struct rq *rq = rq_of(cfs_rq);
4316 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4317 struct sched_entity *se;
4318 int enqueue = 1;
4319 long task_delta;
4320
22b958d8 4321 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4322
4323 cfs_rq->throttled = 0;
1a55af2e
FW
4324
4325 update_rq_clock(rq);
4326
671fd9da 4327 raw_spin_lock(&cfs_b->lock);
78becc27 4328 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4329 list_del_rcu(&cfs_rq->throttled_list);
4330 raw_spin_unlock(&cfs_b->lock);
4331
64660c86
PT
4332 /* update hierarchical throttle state */
4333 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4334
671fd9da
PT
4335 if (!cfs_rq->load.weight)
4336 return;
4337
4338 task_delta = cfs_rq->h_nr_running;
4339 for_each_sched_entity(se) {
4340 if (se->on_rq)
4341 enqueue = 0;
4342
4343 cfs_rq = cfs_rq_of(se);
4344 if (enqueue)
4345 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4346 cfs_rq->h_nr_running += task_delta;
4347
4348 if (cfs_rq_throttled(cfs_rq))
4349 break;
4350 }
4351
4352 if (!se)
72465447 4353 add_nr_running(rq, task_delta);
671fd9da
PT
4354
4355 /* determine whether we need to wake up potentially idle cpu */
4356 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4357 resched_curr(rq);
671fd9da
PT
4358}
4359
4360static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4361 u64 remaining, u64 expires)
4362{
4363 struct cfs_rq *cfs_rq;
c06f04c7
BS
4364 u64 runtime;
4365 u64 starting_runtime = remaining;
671fd9da
PT
4366
4367 rcu_read_lock();
4368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4369 throttled_list) {
4370 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4371 struct rq_flags rf;
671fd9da 4372
8a8c69c3 4373 rq_lock(rq, &rf);
671fd9da
PT
4374 if (!cfs_rq_throttled(cfs_rq))
4375 goto next;
4376
4377 runtime = -cfs_rq->runtime_remaining + 1;
4378 if (runtime > remaining)
4379 runtime = remaining;
4380 remaining -= runtime;
4381
4382 cfs_rq->runtime_remaining += runtime;
4383 cfs_rq->runtime_expires = expires;
4384
4385 /* we check whether we're throttled above */
4386 if (cfs_rq->runtime_remaining > 0)
4387 unthrottle_cfs_rq(cfs_rq);
4388
4389next:
8a8c69c3 4390 rq_unlock(rq, &rf);
671fd9da
PT
4391
4392 if (!remaining)
4393 break;
4394 }
4395 rcu_read_unlock();
4396
c06f04c7 4397 return starting_runtime - remaining;
671fd9da
PT
4398}
4399
58088ad0
PT
4400/*
4401 * Responsible for refilling a task_group's bandwidth and unthrottling its
4402 * cfs_rqs as appropriate. If there has been no activity within the last
4403 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4404 * used to track this state.
4405 */
4406static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4407{
671fd9da 4408 u64 runtime, runtime_expires;
51f2176d 4409 int throttled;
58088ad0 4410
58088ad0
PT
4411 /* no need to continue the timer with no bandwidth constraint */
4412 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4413 goto out_deactivate;
58088ad0 4414
671fd9da 4415 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4416 cfs_b->nr_periods += overrun;
671fd9da 4417
51f2176d
BS
4418 /*
4419 * idle depends on !throttled (for the case of a large deficit), and if
4420 * we're going inactive then everything else can be deferred
4421 */
4422 if (cfs_b->idle && !throttled)
4423 goto out_deactivate;
a9cf55b2
PT
4424
4425 __refill_cfs_bandwidth_runtime(cfs_b);
4426
671fd9da
PT
4427 if (!throttled) {
4428 /* mark as potentially idle for the upcoming period */
4429 cfs_b->idle = 1;
51f2176d 4430 return 0;
671fd9da
PT
4431 }
4432
e8da1b18
NR
4433 /* account preceding periods in which throttling occurred */
4434 cfs_b->nr_throttled += overrun;
4435
671fd9da 4436 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4437
4438 /*
c06f04c7
BS
4439 * This check is repeated as we are holding onto the new bandwidth while
4440 * we unthrottle. This can potentially race with an unthrottled group
4441 * trying to acquire new bandwidth from the global pool. This can result
4442 * in us over-using our runtime if it is all used during this loop, but
4443 * only by limited amounts in that extreme case.
671fd9da 4444 */
c06f04c7
BS
4445 while (throttled && cfs_b->runtime > 0) {
4446 runtime = cfs_b->runtime;
671fd9da
PT
4447 raw_spin_unlock(&cfs_b->lock);
4448 /* we can't nest cfs_b->lock while distributing bandwidth */
4449 runtime = distribute_cfs_runtime(cfs_b, runtime,
4450 runtime_expires);
4451 raw_spin_lock(&cfs_b->lock);
4452
4453 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4454
4455 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4456 }
58088ad0 4457
671fd9da
PT
4458 /*
4459 * While we are ensured activity in the period following an
4460 * unthrottle, this also covers the case in which the new bandwidth is
4461 * insufficient to cover the existing bandwidth deficit. (Forcing the
4462 * timer to remain active while there are any throttled entities.)
4463 */
4464 cfs_b->idle = 0;
58088ad0 4465
51f2176d
BS
4466 return 0;
4467
4468out_deactivate:
51f2176d 4469 return 1;
58088ad0 4470}
d3d9dc33 4471
d8b4986d
PT
4472/* a cfs_rq won't donate quota below this amount */
4473static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4474/* minimum remaining period time to redistribute slack quota */
4475static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4476/* how long we wait to gather additional slack before distributing */
4477static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4478
db06e78c
BS
4479/*
4480 * Are we near the end of the current quota period?
4481 *
4482 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4483 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4484 * migrate_hrtimers, base is never cleared, so we are fine.
4485 */
d8b4986d
PT
4486static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4487{
4488 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4489 u64 remaining;
4490
4491 /* if the call-back is running a quota refresh is already occurring */
4492 if (hrtimer_callback_running(refresh_timer))
4493 return 1;
4494
4495 /* is a quota refresh about to occur? */
4496 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4497 if (remaining < min_expire)
4498 return 1;
4499
4500 return 0;
4501}
4502
4503static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4504{
4505 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4506
4507 /* if there's a quota refresh soon don't bother with slack */
4508 if (runtime_refresh_within(cfs_b, min_left))
4509 return;
4510
4cfafd30
PZ
4511 hrtimer_start(&cfs_b->slack_timer,
4512 ns_to_ktime(cfs_bandwidth_slack_period),
4513 HRTIMER_MODE_REL);
d8b4986d
PT
4514}
4515
4516/* we know any runtime found here is valid as update_curr() precedes return */
4517static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4518{
4519 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4520 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4521
4522 if (slack_runtime <= 0)
4523 return;
4524
4525 raw_spin_lock(&cfs_b->lock);
4526 if (cfs_b->quota != RUNTIME_INF &&
4527 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4528 cfs_b->runtime += slack_runtime;
4529
4530 /* we are under rq->lock, defer unthrottling using a timer */
4531 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4532 !list_empty(&cfs_b->throttled_cfs_rq))
4533 start_cfs_slack_bandwidth(cfs_b);
4534 }
4535 raw_spin_unlock(&cfs_b->lock);
4536
4537 /* even if it's not valid for return we don't want to try again */
4538 cfs_rq->runtime_remaining -= slack_runtime;
4539}
4540
4541static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4542{
56f570e5
PT
4543 if (!cfs_bandwidth_used())
4544 return;
4545
fccfdc6f 4546 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4547 return;
4548
4549 __return_cfs_rq_runtime(cfs_rq);
4550}
4551
4552/*
4553 * This is done with a timer (instead of inline with bandwidth return) since
4554 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4555 */
4556static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4557{
4558 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4559 u64 expires;
4560
4561 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4562 raw_spin_lock(&cfs_b->lock);
4563 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4564 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4565 return;
db06e78c 4566 }
d8b4986d 4567
c06f04c7 4568 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4569 runtime = cfs_b->runtime;
c06f04c7 4570
d8b4986d
PT
4571 expires = cfs_b->runtime_expires;
4572 raw_spin_unlock(&cfs_b->lock);
4573
4574 if (!runtime)
4575 return;
4576
4577 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4578
4579 raw_spin_lock(&cfs_b->lock);
4580 if (expires == cfs_b->runtime_expires)
c06f04c7 4581 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4582 raw_spin_unlock(&cfs_b->lock);
4583}
4584
d3d9dc33
PT
4585/*
4586 * When a group wakes up we want to make sure that its quota is not already
4587 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4588 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4589 */
4590static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4591{
56f570e5
PT
4592 if (!cfs_bandwidth_used())
4593 return;
4594
d3d9dc33
PT
4595 /* an active group must be handled by the update_curr()->put() path */
4596 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4597 return;
4598
4599 /* ensure the group is not already throttled */
4600 if (cfs_rq_throttled(cfs_rq))
4601 return;
4602
4603 /* update runtime allocation */
4604 account_cfs_rq_runtime(cfs_rq, 0);
4605 if (cfs_rq->runtime_remaining <= 0)
4606 throttle_cfs_rq(cfs_rq);
4607}
4608
55e16d30
PZ
4609static void sync_throttle(struct task_group *tg, int cpu)
4610{
4611 struct cfs_rq *pcfs_rq, *cfs_rq;
4612
4613 if (!cfs_bandwidth_used())
4614 return;
4615
4616 if (!tg->parent)
4617 return;
4618
4619 cfs_rq = tg->cfs_rq[cpu];
4620 pcfs_rq = tg->parent->cfs_rq[cpu];
4621
4622 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4623 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4624}
4625
d3d9dc33 4626/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4627static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4628{
56f570e5 4629 if (!cfs_bandwidth_used())
678d5718 4630 return false;
56f570e5 4631
d3d9dc33 4632 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4633 return false;
d3d9dc33
PT
4634
4635 /*
4636 * it's possible for a throttled entity to be forced into a running
4637 * state (e.g. set_curr_task), in this case we're finished.
4638 */
4639 if (cfs_rq_throttled(cfs_rq))
678d5718 4640 return true;
d3d9dc33
PT
4641
4642 throttle_cfs_rq(cfs_rq);
678d5718 4643 return true;
d3d9dc33 4644}
029632fb 4645
029632fb
PZ
4646static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4647{
4648 struct cfs_bandwidth *cfs_b =
4649 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4650
029632fb
PZ
4651 do_sched_cfs_slack_timer(cfs_b);
4652
4653 return HRTIMER_NORESTART;
4654}
4655
4656static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4657{
4658 struct cfs_bandwidth *cfs_b =
4659 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4660 int overrun;
4661 int idle = 0;
4662
51f2176d 4663 raw_spin_lock(&cfs_b->lock);
029632fb 4664 for (;;) {
77a4d1a1 4665 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4666 if (!overrun)
4667 break;
4668
4669 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4670 }
4cfafd30
PZ
4671 if (idle)
4672 cfs_b->period_active = 0;
51f2176d 4673 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4674
4675 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4676}
4677
4678void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4679{
4680 raw_spin_lock_init(&cfs_b->lock);
4681 cfs_b->runtime = 0;
4682 cfs_b->quota = RUNTIME_INF;
4683 cfs_b->period = ns_to_ktime(default_cfs_period());
4684
4685 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4686 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4687 cfs_b->period_timer.function = sched_cfs_period_timer;
4688 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4689 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4690}
4691
4692static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4693{
4694 cfs_rq->runtime_enabled = 0;
4695 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4696}
4697
77a4d1a1 4698void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4699{
4cfafd30 4700 lockdep_assert_held(&cfs_b->lock);
029632fb 4701
4cfafd30
PZ
4702 if (!cfs_b->period_active) {
4703 cfs_b->period_active = 1;
4704 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4705 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4706 }
029632fb
PZ
4707}
4708
4709static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4710{
7f1a169b
TH
4711 /* init_cfs_bandwidth() was not called */
4712 if (!cfs_b->throttled_cfs_rq.next)
4713 return;
4714
029632fb
PZ
4715 hrtimer_cancel(&cfs_b->period_timer);
4716 hrtimer_cancel(&cfs_b->slack_timer);
4717}
4718
502ce005
PZ
4719/*
4720 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4721 *
4722 * The race is harmless, since modifying bandwidth settings of unhooked group
4723 * bits doesn't do much.
4724 */
4725
4726/* cpu online calback */
0e59bdae
KT
4727static void __maybe_unused update_runtime_enabled(struct rq *rq)
4728{
502ce005 4729 struct task_group *tg;
0e59bdae 4730
502ce005
PZ
4731 lockdep_assert_held(&rq->lock);
4732
4733 rcu_read_lock();
4734 list_for_each_entry_rcu(tg, &task_groups, list) {
4735 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4736 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4737
4738 raw_spin_lock(&cfs_b->lock);
4739 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4740 raw_spin_unlock(&cfs_b->lock);
4741 }
502ce005 4742 rcu_read_unlock();
0e59bdae
KT
4743}
4744
502ce005 4745/* cpu offline callback */
38dc3348 4746static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4747{
502ce005
PZ
4748 struct task_group *tg;
4749
4750 lockdep_assert_held(&rq->lock);
4751
4752 rcu_read_lock();
4753 list_for_each_entry_rcu(tg, &task_groups, list) {
4754 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4755
029632fb
PZ
4756 if (!cfs_rq->runtime_enabled)
4757 continue;
4758
4759 /*
4760 * clock_task is not advancing so we just need to make sure
4761 * there's some valid quota amount
4762 */
51f2176d 4763 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4764 /*
4765 * Offline rq is schedulable till cpu is completely disabled
4766 * in take_cpu_down(), so we prevent new cfs throttling here.
4767 */
4768 cfs_rq->runtime_enabled = 0;
4769
029632fb
PZ
4770 if (cfs_rq_throttled(cfs_rq))
4771 unthrottle_cfs_rq(cfs_rq);
4772 }
502ce005 4773 rcu_read_unlock();
029632fb
PZ
4774}
4775
4776#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4777static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4778{
78becc27 4779 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4780}
4781
9dbdb155 4782static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4783static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4784static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4785static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4786static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4787
4788static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4789{
4790 return 0;
4791}
64660c86
PT
4792
4793static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4794{
4795 return 0;
4796}
4797
4798static inline int throttled_lb_pair(struct task_group *tg,
4799 int src_cpu, int dest_cpu)
4800{
4801 return 0;
4802}
029632fb
PZ
4803
4804void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4805
4806#ifdef CONFIG_FAIR_GROUP_SCHED
4807static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4808#endif
4809
029632fb
PZ
4810static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4811{
4812 return NULL;
4813}
4814static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4815static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4816static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4817
4818#endif /* CONFIG_CFS_BANDWIDTH */
4819
bf0f6f24
IM
4820/**************************************************
4821 * CFS operations on tasks:
4822 */
4823
8f4d37ec
PZ
4824#ifdef CONFIG_SCHED_HRTICK
4825static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4826{
8f4d37ec
PZ
4827 struct sched_entity *se = &p->se;
4828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4829
9148a3a1 4830 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4831
8bf46a39 4832 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4833 u64 slice = sched_slice(cfs_rq, se);
4834 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4835 s64 delta = slice - ran;
4836
4837 if (delta < 0) {
4838 if (rq->curr == p)
8875125e 4839 resched_curr(rq);
8f4d37ec
PZ
4840 return;
4841 }
31656519 4842 hrtick_start(rq, delta);
8f4d37ec
PZ
4843 }
4844}
a4c2f00f
PZ
4845
4846/*
4847 * called from enqueue/dequeue and updates the hrtick when the
4848 * current task is from our class and nr_running is low enough
4849 * to matter.
4850 */
4851static void hrtick_update(struct rq *rq)
4852{
4853 struct task_struct *curr = rq->curr;
4854
b39e66ea 4855 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4856 return;
4857
4858 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4859 hrtick_start_fair(rq, curr);
4860}
55e12e5e 4861#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4862static inline void
4863hrtick_start_fair(struct rq *rq, struct task_struct *p)
4864{
4865}
a4c2f00f
PZ
4866
4867static inline void hrtick_update(struct rq *rq)
4868{
4869}
8f4d37ec
PZ
4870#endif
4871
bf0f6f24
IM
4872/*
4873 * The enqueue_task method is called before nr_running is
4874 * increased. Here we update the fair scheduling stats and
4875 * then put the task into the rbtree:
4876 */
ea87bb78 4877static void
371fd7e7 4878enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4879{
4880 struct cfs_rq *cfs_rq;
62fb1851 4881 struct sched_entity *se = &p->se;
bf0f6f24 4882
8c34ab19
RW
4883 /*
4884 * If in_iowait is set, the code below may not trigger any cpufreq
4885 * utilization updates, so do it here explicitly with the IOWAIT flag
4886 * passed.
4887 */
4888 if (p->in_iowait)
674e7541 4889 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 4890
bf0f6f24 4891 for_each_sched_entity(se) {
62fb1851 4892 if (se->on_rq)
bf0f6f24
IM
4893 break;
4894 cfs_rq = cfs_rq_of(se);
88ec22d3 4895 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4896
4897 /*
4898 * end evaluation on encountering a throttled cfs_rq
4899 *
4900 * note: in the case of encountering a throttled cfs_rq we will
4901 * post the final h_nr_running increment below.
e210bffd 4902 */
85dac906
PT
4903 if (cfs_rq_throttled(cfs_rq))
4904 break;
953bfcd1 4905 cfs_rq->h_nr_running++;
85dac906 4906
88ec22d3 4907 flags = ENQUEUE_WAKEUP;
bf0f6f24 4908 }
8f4d37ec 4909
2069dd75 4910 for_each_sched_entity(se) {
0f317143 4911 cfs_rq = cfs_rq_of(se);
953bfcd1 4912 cfs_rq->h_nr_running++;
2069dd75 4913
85dac906
PT
4914 if (cfs_rq_throttled(cfs_rq))
4915 break;
4916
d31b1a66 4917 update_load_avg(se, UPDATE_TG);
89ee048f 4918 update_cfs_shares(se);
2069dd75
PZ
4919 }
4920
cd126afe 4921 if (!se)
72465447 4922 add_nr_running(rq, 1);
cd126afe 4923
a4c2f00f 4924 hrtick_update(rq);
bf0f6f24
IM
4925}
4926
2f36825b
VP
4927static void set_next_buddy(struct sched_entity *se);
4928
bf0f6f24
IM
4929/*
4930 * The dequeue_task method is called before nr_running is
4931 * decreased. We remove the task from the rbtree and
4932 * update the fair scheduling stats:
4933 */
371fd7e7 4934static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4935{
4936 struct cfs_rq *cfs_rq;
62fb1851 4937 struct sched_entity *se = &p->se;
2f36825b 4938 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4939
4940 for_each_sched_entity(se) {
4941 cfs_rq = cfs_rq_of(se);
371fd7e7 4942 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4943
4944 /*
4945 * end evaluation on encountering a throttled cfs_rq
4946 *
4947 * note: in the case of encountering a throttled cfs_rq we will
4948 * post the final h_nr_running decrement below.
4949 */
4950 if (cfs_rq_throttled(cfs_rq))
4951 break;
953bfcd1 4952 cfs_rq->h_nr_running--;
2069dd75 4953
bf0f6f24 4954 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4955 if (cfs_rq->load.weight) {
754bd598
KK
4956 /* Avoid re-evaluating load for this entity: */
4957 se = parent_entity(se);
2f36825b
VP
4958 /*
4959 * Bias pick_next to pick a task from this cfs_rq, as
4960 * p is sleeping when it is within its sched_slice.
4961 */
754bd598
KK
4962 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4963 set_next_buddy(se);
bf0f6f24 4964 break;
2f36825b 4965 }
371fd7e7 4966 flags |= DEQUEUE_SLEEP;
bf0f6f24 4967 }
8f4d37ec 4968
2069dd75 4969 for_each_sched_entity(se) {
0f317143 4970 cfs_rq = cfs_rq_of(se);
953bfcd1 4971 cfs_rq->h_nr_running--;
2069dd75 4972
85dac906
PT
4973 if (cfs_rq_throttled(cfs_rq))
4974 break;
4975
d31b1a66 4976 update_load_avg(se, UPDATE_TG);
89ee048f 4977 update_cfs_shares(se);
2069dd75
PZ
4978 }
4979
cd126afe 4980 if (!se)
72465447 4981 sub_nr_running(rq, 1);
cd126afe 4982
a4c2f00f 4983 hrtick_update(rq);
bf0f6f24
IM
4984}
4985
e7693a36 4986#ifdef CONFIG_SMP
10e2f1ac
PZ
4987
4988/* Working cpumask for: load_balance, load_balance_newidle. */
4989DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4990DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4991
9fd81dd5 4992#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4993/*
4994 * per rq 'load' arrray crap; XXX kill this.
4995 */
4996
4997/*
d937cdc5 4998 * The exact cpuload calculated at every tick would be:
3289bdb4 4999 *
d937cdc5
PZ
5000 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5001 *
5002 * If a cpu misses updates for n ticks (as it was idle) and update gets
5003 * called on the n+1-th tick when cpu may be busy, then we have:
5004 *
5005 * load_n = (1 - 1/2^i)^n * load_0
5006 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5007 *
5008 * decay_load_missed() below does efficient calculation of
3289bdb4 5009 *
d937cdc5
PZ
5010 * load' = (1 - 1/2^i)^n * load
5011 *
5012 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5013 * This allows us to precompute the above in said factors, thereby allowing the
5014 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5015 * fixed_power_int())
3289bdb4 5016 *
d937cdc5 5017 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5018 */
5019#define DEGRADE_SHIFT 7
d937cdc5
PZ
5020
5021static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5022static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5023 { 0, 0, 0, 0, 0, 0, 0, 0 },
5024 { 64, 32, 8, 0, 0, 0, 0, 0 },
5025 { 96, 72, 40, 12, 1, 0, 0, 0 },
5026 { 112, 98, 75, 43, 15, 1, 0, 0 },
5027 { 120, 112, 98, 76, 45, 16, 2, 0 }
5028};
3289bdb4
PZ
5029
5030/*
5031 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5032 * would be when CPU is idle and so we just decay the old load without
5033 * adding any new load.
5034 */
5035static unsigned long
5036decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5037{
5038 int j = 0;
5039
5040 if (!missed_updates)
5041 return load;
5042
5043 if (missed_updates >= degrade_zero_ticks[idx])
5044 return 0;
5045
5046 if (idx == 1)
5047 return load >> missed_updates;
5048
5049 while (missed_updates) {
5050 if (missed_updates % 2)
5051 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5052
5053 missed_updates >>= 1;
5054 j++;
5055 }
5056 return load;
5057}
9fd81dd5 5058#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5059
59543275 5060/**
cee1afce 5061 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5062 * @this_rq: The rq to update statistics for
5063 * @this_load: The current load
5064 * @pending_updates: The number of missed updates
59543275 5065 *
3289bdb4 5066 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5067 * scheduler tick (TICK_NSEC).
5068 *
5069 * This function computes a decaying average:
5070 *
5071 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5072 *
5073 * Because of NOHZ it might not get called on every tick which gives need for
5074 * the @pending_updates argument.
5075 *
5076 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5077 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5078 * = A * (A * load[i]_n-2 + B) + B
5079 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5080 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5081 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5082 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5083 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5084 *
5085 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5086 * any change in load would have resulted in the tick being turned back on.
5087 *
5088 * For regular NOHZ, this reduces to:
5089 *
5090 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5091 *
5092 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5093 * term.
3289bdb4 5094 */
1f41906a
FW
5095static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5096 unsigned long pending_updates)
3289bdb4 5097{
9fd81dd5 5098 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5099 int i, scale;
5100
5101 this_rq->nr_load_updates++;
5102
5103 /* Update our load: */
5104 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5105 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5106 unsigned long old_load, new_load;
5107
5108 /* scale is effectively 1 << i now, and >> i divides by scale */
5109
7400d3bb 5110 old_load = this_rq->cpu_load[i];
9fd81dd5 5111#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5112 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5113 if (tickless_load) {
5114 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5115 /*
5116 * old_load can never be a negative value because a
5117 * decayed tickless_load cannot be greater than the
5118 * original tickless_load.
5119 */
5120 old_load += tickless_load;
5121 }
9fd81dd5 5122#endif
3289bdb4
PZ
5123 new_load = this_load;
5124 /*
5125 * Round up the averaging division if load is increasing. This
5126 * prevents us from getting stuck on 9 if the load is 10, for
5127 * example.
5128 */
5129 if (new_load > old_load)
5130 new_load += scale - 1;
5131
5132 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5133 }
5134
5135 sched_avg_update(this_rq);
5136}
5137
7ea241af 5138/* Used instead of source_load when we know the type == 0 */
c7132dd6 5139static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5140{
c7132dd6 5141 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5142}
5143
3289bdb4 5144#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5145/*
5146 * There is no sane way to deal with nohz on smp when using jiffies because the
5147 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5148 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5149 *
5150 * Therefore we need to avoid the delta approach from the regular tick when
5151 * possible since that would seriously skew the load calculation. This is why we
5152 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5153 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5154 * loop exit, nohz_idle_balance, nohz full exit...)
5155 *
5156 * This means we might still be one tick off for nohz periods.
5157 */
5158
5159static void cpu_load_update_nohz(struct rq *this_rq,
5160 unsigned long curr_jiffies,
5161 unsigned long load)
be68a682
FW
5162{
5163 unsigned long pending_updates;
5164
5165 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5166 if (pending_updates) {
5167 this_rq->last_load_update_tick = curr_jiffies;
5168 /*
5169 * In the regular NOHZ case, we were idle, this means load 0.
5170 * In the NOHZ_FULL case, we were non-idle, we should consider
5171 * its weighted load.
5172 */
1f41906a 5173 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5174 }
5175}
5176
3289bdb4
PZ
5177/*
5178 * Called from nohz_idle_balance() to update the load ratings before doing the
5179 * idle balance.
5180 */
cee1afce 5181static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5182{
3289bdb4
PZ
5183 /*
5184 * bail if there's load or we're actually up-to-date.
5185 */
c7132dd6 5186 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5187 return;
5188
1f41906a 5189 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5190}
5191
5192/*
1f41906a
FW
5193 * Record CPU load on nohz entry so we know the tickless load to account
5194 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5195 * than other cpu_load[idx] but it should be fine as cpu_load readers
5196 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5197 */
1f41906a 5198void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5199{
5200 struct rq *this_rq = this_rq();
1f41906a
FW
5201
5202 /*
5203 * This is all lockless but should be fine. If weighted_cpuload changes
5204 * concurrently we'll exit nohz. And cpu_load write can race with
5205 * cpu_load_update_idle() but both updater would be writing the same.
5206 */
c7132dd6 5207 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5208}
5209
5210/*
5211 * Account the tickless load in the end of a nohz frame.
5212 */
5213void cpu_load_update_nohz_stop(void)
5214{
316c1608 5215 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5216 struct rq *this_rq = this_rq();
5217 unsigned long load;
8a8c69c3 5218 struct rq_flags rf;
3289bdb4
PZ
5219
5220 if (curr_jiffies == this_rq->last_load_update_tick)
5221 return;
5222
c7132dd6 5223 load = weighted_cpuload(this_rq);
8a8c69c3 5224 rq_lock(this_rq, &rf);
b52fad2d 5225 update_rq_clock(this_rq);
1f41906a 5226 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5227 rq_unlock(this_rq, &rf);
3289bdb4 5228}
1f41906a
FW
5229#else /* !CONFIG_NO_HZ_COMMON */
5230static inline void cpu_load_update_nohz(struct rq *this_rq,
5231 unsigned long curr_jiffies,
5232 unsigned long load) { }
5233#endif /* CONFIG_NO_HZ_COMMON */
5234
5235static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5236{
9fd81dd5 5237#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5238 /* See the mess around cpu_load_update_nohz(). */
5239 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5240#endif
1f41906a
FW
5241 cpu_load_update(this_rq, load, 1);
5242}
3289bdb4
PZ
5243
5244/*
5245 * Called from scheduler_tick()
5246 */
cee1afce 5247void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5248{
c7132dd6 5249 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5250
5251 if (tick_nohz_tick_stopped())
5252 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5253 else
5254 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5255}
5256
029632fb
PZ
5257/*
5258 * Return a low guess at the load of a migration-source cpu weighted
5259 * according to the scheduling class and "nice" value.
5260 *
5261 * We want to under-estimate the load of migration sources, to
5262 * balance conservatively.
5263 */
5264static unsigned long source_load(int cpu, int type)
5265{
5266 struct rq *rq = cpu_rq(cpu);
c7132dd6 5267 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5268
5269 if (type == 0 || !sched_feat(LB_BIAS))
5270 return total;
5271
5272 return min(rq->cpu_load[type-1], total);
5273}
5274
5275/*
5276 * Return a high guess at the load of a migration-target cpu weighted
5277 * according to the scheduling class and "nice" value.
5278 */
5279static unsigned long target_load(int cpu, int type)
5280{
5281 struct rq *rq = cpu_rq(cpu);
c7132dd6 5282 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5283
5284 if (type == 0 || !sched_feat(LB_BIAS))
5285 return total;
5286
5287 return max(rq->cpu_load[type-1], total);
5288}
5289
ced549fa 5290static unsigned long capacity_of(int cpu)
029632fb 5291{
ced549fa 5292 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5293}
5294
ca6d75e6
VG
5295static unsigned long capacity_orig_of(int cpu)
5296{
5297 return cpu_rq(cpu)->cpu_capacity_orig;
5298}
5299
029632fb
PZ
5300static unsigned long cpu_avg_load_per_task(int cpu)
5301{
5302 struct rq *rq = cpu_rq(cpu);
316c1608 5303 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5304 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5305
5306 if (nr_running)
b92486cb 5307 return load_avg / nr_running;
029632fb
PZ
5308
5309 return 0;
5310}
5311
c58d25f3
PZ
5312static void record_wakee(struct task_struct *p)
5313{
5314 /*
5315 * Only decay a single time; tasks that have less then 1 wakeup per
5316 * jiffy will not have built up many flips.
5317 */
5318 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5319 current->wakee_flips >>= 1;
5320 current->wakee_flip_decay_ts = jiffies;
5321 }
5322
5323 if (current->last_wakee != p) {
5324 current->last_wakee = p;
5325 current->wakee_flips++;
5326 }
5327}
5328
63b0e9ed
MG
5329/*
5330 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5331 *
63b0e9ed 5332 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5333 * at a frequency roughly N times higher than one of its wakees.
5334 *
5335 * In order to determine whether we should let the load spread vs consolidating
5336 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5337 * partner, and a factor of lls_size higher frequency in the other.
5338 *
5339 * With both conditions met, we can be relatively sure that the relationship is
5340 * non-monogamous, with partner count exceeding socket size.
5341 *
5342 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5343 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5344 * socket size.
63b0e9ed 5345 */
62470419
MW
5346static int wake_wide(struct task_struct *p)
5347{
63b0e9ed
MG
5348 unsigned int master = current->wakee_flips;
5349 unsigned int slave = p->wakee_flips;
7d9ffa89 5350 int factor = this_cpu_read(sd_llc_size);
62470419 5351
63b0e9ed
MG
5352 if (master < slave)
5353 swap(master, slave);
5354 if (slave < factor || master < slave * factor)
5355 return 0;
5356 return 1;
62470419
MW
5357}
5358
90001d67 5359/*
d153b153
PZ
5360 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5361 * soonest. For the purpose of speed we only consider the waking and previous
5362 * CPU.
90001d67 5363 *
d153b153
PZ
5364 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5365 * will be) idle.
f2cdd9cc
PZ
5366 *
5367 * wake_affine_weight() - considers the weight to reflect the average
5368 * scheduling latency of the CPUs. This seems to work
5369 * for the overloaded case.
90001d67 5370 */
d153b153 5371
90001d67 5372static bool
d153b153
PZ
5373wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
5374 int this_cpu, int prev_cpu, int sync)
90001d67 5375{
d153b153 5376 if (idle_cpu(this_cpu))
90001d67
PZ
5377 return true;
5378
d153b153
PZ
5379 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5380 return true;
90001d67 5381
d153b153 5382 return false;
90001d67
PZ
5383}
5384
f2cdd9cc
PZ
5385static bool
5386wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5387 int this_cpu, int prev_cpu, int sync)
5388{
5389 s64 this_eff_load, prev_eff_load;
5390 unsigned long task_load;
5391
5392 this_eff_load = target_load(this_cpu, sd->wake_idx);
5393 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5394
5395 if (sync) {
5396 unsigned long current_load = task_h_load(current);
5397
5398 if (current_load > this_eff_load)
5399 return true;
5400
5401 this_eff_load -= current_load;
5402 }
5403
5404 task_load = task_h_load(p);
5405
5406 this_eff_load += task_load;
5407 if (sched_feat(WA_BIAS))
5408 this_eff_load *= 100;
5409 this_eff_load *= capacity_of(prev_cpu);
5410
5411 prev_eff_load -= task_load;
5412 if (sched_feat(WA_BIAS))
5413 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5414 prev_eff_load *= capacity_of(this_cpu);
5415
5416 return this_eff_load <= prev_eff_load;
5417}
5418
772bd008
MR
5419static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5420 int prev_cpu, int sync)
098fb9db 5421{
3fed382b 5422 int this_cpu = smp_processor_id();
d153b153 5423 bool affine = false;
90001d67 5424
d153b153
PZ
5425 if (sched_feat(WA_IDLE) && !affine)
5426 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5427
f2cdd9cc
PZ
5428 if (sched_feat(WA_WEIGHT) && !affine)
5429 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5430
ae92882e 5431 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5432 if (affine) {
5433 schedstat_inc(sd->ttwu_move_affine);
5434 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5435 }
098fb9db 5436
3fed382b 5437 return affine;
098fb9db
IM
5438}
5439
6a0b19c0
MR
5440static inline int task_util(struct task_struct *p);
5441static int cpu_util_wake(int cpu, struct task_struct *p);
5442
5443static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5444{
5445 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5446}
5447
aaee1203
PZ
5448/*
5449 * find_idlest_group finds and returns the least busy CPU group within the
5450 * domain.
5451 */
5452static struct sched_group *
78e7ed53 5453find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5454 int this_cpu, int sd_flag)
e7693a36 5455{
b3bd3de6 5456 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5457 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5458 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5459 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5460 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5461 int load_idx = sd->forkexec_idx;
6b94780e
VG
5462 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5463 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5464 (sd->imbalance_pct-100) / 100;
e7693a36 5465
c44f2a02
VG
5466 if (sd_flag & SD_BALANCE_WAKE)
5467 load_idx = sd->wake_idx;
5468
aaee1203 5469 do {
6b94780e
VG
5470 unsigned long load, avg_load, runnable_load;
5471 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5472 int local_group;
5473 int i;
e7693a36 5474
aaee1203 5475 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5476 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5477 &p->cpus_allowed))
aaee1203
PZ
5478 continue;
5479
5480 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5481 sched_group_span(group));
aaee1203 5482
6a0b19c0
MR
5483 /*
5484 * Tally up the load of all CPUs in the group and find
5485 * the group containing the CPU with most spare capacity.
5486 */
aaee1203 5487 avg_load = 0;
6b94780e 5488 runnable_load = 0;
6a0b19c0 5489 max_spare_cap = 0;
aaee1203 5490
ae4df9d6 5491 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5492 /* Bias balancing toward cpus of our domain */
5493 if (local_group)
5494 load = source_load(i, load_idx);
5495 else
5496 load = target_load(i, load_idx);
5497
6b94780e
VG
5498 runnable_load += load;
5499
5500 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5501
5502 spare_cap = capacity_spare_wake(i, p);
5503
5504 if (spare_cap > max_spare_cap)
5505 max_spare_cap = spare_cap;
aaee1203
PZ
5506 }
5507
63b2ca30 5508 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5509 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5510 group->sgc->capacity;
5511 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5512 group->sgc->capacity;
aaee1203
PZ
5513
5514 if (local_group) {
6b94780e
VG
5515 this_runnable_load = runnable_load;
5516 this_avg_load = avg_load;
6a0b19c0
MR
5517 this_spare = max_spare_cap;
5518 } else {
6b94780e
VG
5519 if (min_runnable_load > (runnable_load + imbalance)) {
5520 /*
5521 * The runnable load is significantly smaller
5522 * so we can pick this new cpu
5523 */
5524 min_runnable_load = runnable_load;
5525 min_avg_load = avg_load;
5526 idlest = group;
5527 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5528 (100*min_avg_load > imbalance_scale*avg_load)) {
5529 /*
5530 * The runnable loads are close so take the
5531 * blocked load into account through avg_load.
5532 */
5533 min_avg_load = avg_load;
6a0b19c0
MR
5534 idlest = group;
5535 }
5536
5537 if (most_spare < max_spare_cap) {
5538 most_spare = max_spare_cap;
5539 most_spare_sg = group;
5540 }
aaee1203
PZ
5541 }
5542 } while (group = group->next, group != sd->groups);
5543
6a0b19c0
MR
5544 /*
5545 * The cross-over point between using spare capacity or least load
5546 * is too conservative for high utilization tasks on partially
5547 * utilized systems if we require spare_capacity > task_util(p),
5548 * so we allow for some task stuffing by using
5549 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5550 *
5551 * Spare capacity can't be used for fork because the utilization has
5552 * not been set yet, we must first select a rq to compute the initial
5553 * utilization.
6a0b19c0 5554 */
f519a3f1
VG
5555 if (sd_flag & SD_BALANCE_FORK)
5556 goto skip_spare;
5557
6a0b19c0 5558 if (this_spare > task_util(p) / 2 &&
6b94780e 5559 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5560 return NULL;
6b94780e
VG
5561
5562 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5563 return most_spare_sg;
5564
f519a3f1 5565skip_spare:
6b94780e
VG
5566 if (!idlest)
5567 return NULL;
5568
5569 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5570 return NULL;
6b94780e
VG
5571
5572 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5573 (100*this_avg_load < imbalance_scale*min_avg_load))
5574 return NULL;
5575
aaee1203
PZ
5576 return idlest;
5577}
5578
5579/*
5580 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5581 */
5582static int
5583find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5584{
5585 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5586 unsigned int min_exit_latency = UINT_MAX;
5587 u64 latest_idle_timestamp = 0;
5588 int least_loaded_cpu = this_cpu;
5589 int shallowest_idle_cpu = -1;
aaee1203
PZ
5590 int i;
5591
eaecf41f
MR
5592 /* Check if we have any choice: */
5593 if (group->group_weight == 1)
ae4df9d6 5594 return cpumask_first(sched_group_span(group));
eaecf41f 5595
aaee1203 5596 /* Traverse only the allowed CPUs */
ae4df9d6 5597 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5598 if (idle_cpu(i)) {
5599 struct rq *rq = cpu_rq(i);
5600 struct cpuidle_state *idle = idle_get_state(rq);
5601 if (idle && idle->exit_latency < min_exit_latency) {
5602 /*
5603 * We give priority to a CPU whose idle state
5604 * has the smallest exit latency irrespective
5605 * of any idle timestamp.
5606 */
5607 min_exit_latency = idle->exit_latency;
5608 latest_idle_timestamp = rq->idle_stamp;
5609 shallowest_idle_cpu = i;
5610 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5611 rq->idle_stamp > latest_idle_timestamp) {
5612 /*
5613 * If equal or no active idle state, then
5614 * the most recently idled CPU might have
5615 * a warmer cache.
5616 */
5617 latest_idle_timestamp = rq->idle_stamp;
5618 shallowest_idle_cpu = i;
5619 }
9f96742a 5620 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5621 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5622 if (load < min_load || (load == min_load && i == this_cpu)) {
5623 min_load = load;
5624 least_loaded_cpu = i;
5625 }
e7693a36
GH
5626 }
5627 }
5628
83a0a96a 5629 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5630}
e7693a36 5631
10e2f1ac
PZ
5632#ifdef CONFIG_SCHED_SMT
5633
5634static inline void set_idle_cores(int cpu, int val)
5635{
5636 struct sched_domain_shared *sds;
5637
5638 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5639 if (sds)
5640 WRITE_ONCE(sds->has_idle_cores, val);
5641}
5642
5643static inline bool test_idle_cores(int cpu, bool def)
5644{
5645 struct sched_domain_shared *sds;
5646
5647 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5648 if (sds)
5649 return READ_ONCE(sds->has_idle_cores);
5650
5651 return def;
5652}
5653
5654/*
5655 * Scans the local SMT mask to see if the entire core is idle, and records this
5656 * information in sd_llc_shared->has_idle_cores.
5657 *
5658 * Since SMT siblings share all cache levels, inspecting this limited remote
5659 * state should be fairly cheap.
5660 */
1b568f0a 5661void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5662{
5663 int core = cpu_of(rq);
5664 int cpu;
5665
5666 rcu_read_lock();
5667 if (test_idle_cores(core, true))
5668 goto unlock;
5669
5670 for_each_cpu(cpu, cpu_smt_mask(core)) {
5671 if (cpu == core)
5672 continue;
5673
5674 if (!idle_cpu(cpu))
5675 goto unlock;
5676 }
5677
5678 set_idle_cores(core, 1);
5679unlock:
5680 rcu_read_unlock();
5681}
5682
5683/*
5684 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5685 * there are no idle cores left in the system; tracked through
5686 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5687 */
5688static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5689{
5690 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5691 int core, cpu;
10e2f1ac 5692
1b568f0a
PZ
5693 if (!static_branch_likely(&sched_smt_present))
5694 return -1;
5695
10e2f1ac
PZ
5696 if (!test_idle_cores(target, false))
5697 return -1;
5698
0c98d344 5699 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5700
c743f0a5 5701 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5702 bool idle = true;
5703
5704 for_each_cpu(cpu, cpu_smt_mask(core)) {
5705 cpumask_clear_cpu(cpu, cpus);
5706 if (!idle_cpu(cpu))
5707 idle = false;
5708 }
5709
5710 if (idle)
5711 return core;
5712 }
5713
5714 /*
5715 * Failed to find an idle core; stop looking for one.
5716 */
5717 set_idle_cores(target, 0);
5718
5719 return -1;
5720}
5721
5722/*
5723 * Scan the local SMT mask for idle CPUs.
5724 */
5725static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5726{
5727 int cpu;
5728
1b568f0a
PZ
5729 if (!static_branch_likely(&sched_smt_present))
5730 return -1;
5731
10e2f1ac 5732 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5733 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5734 continue;
5735 if (idle_cpu(cpu))
5736 return cpu;
5737 }
5738
5739 return -1;
5740}
5741
5742#else /* CONFIG_SCHED_SMT */
5743
5744static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5745{
5746 return -1;
5747}
5748
5749static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5750{
5751 return -1;
5752}
5753
5754#endif /* CONFIG_SCHED_SMT */
5755
5756/*
5757 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5758 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5759 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5760 */
10e2f1ac
PZ
5761static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5762{
9cfb38a7 5763 struct sched_domain *this_sd;
1ad3aaf3 5764 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5765 u64 time, cost;
5766 s64 delta;
1ad3aaf3 5767 int cpu, nr = INT_MAX;
10e2f1ac 5768
9cfb38a7
WL
5769 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5770 if (!this_sd)
5771 return -1;
5772
10e2f1ac
PZ
5773 /*
5774 * Due to large variance we need a large fuzz factor; hackbench in
5775 * particularly is sensitive here.
5776 */
1ad3aaf3
PZ
5777 avg_idle = this_rq()->avg_idle / 512;
5778 avg_cost = this_sd->avg_scan_cost + 1;
5779
5780 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5781 return -1;
5782
1ad3aaf3
PZ
5783 if (sched_feat(SIS_PROP)) {
5784 u64 span_avg = sd->span_weight * avg_idle;
5785 if (span_avg > 4*avg_cost)
5786 nr = div_u64(span_avg, avg_cost);
5787 else
5788 nr = 4;
5789 }
5790
10e2f1ac
PZ
5791 time = local_clock();
5792
c743f0a5 5793 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5794 if (!--nr)
5795 return -1;
0c98d344 5796 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5797 continue;
5798 if (idle_cpu(cpu))
5799 break;
5800 }
5801
5802 time = local_clock() - time;
5803 cost = this_sd->avg_scan_cost;
5804 delta = (s64)(time - cost) / 8;
5805 this_sd->avg_scan_cost += delta;
5806
5807 return cpu;
5808}
5809
5810/*
5811 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5812 */
772bd008 5813static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5814{
99bd5e2f 5815 struct sched_domain *sd;
10e2f1ac 5816 int i;
a50bde51 5817
e0a79f52
MG
5818 if (idle_cpu(target))
5819 return target;
99bd5e2f
SS
5820
5821 /*
10e2f1ac 5822 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5823 */
772bd008
MR
5824 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5825 return prev;
a50bde51 5826
518cd623 5827 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5828 if (!sd)
5829 return target;
772bd008 5830
10e2f1ac
PZ
5831 i = select_idle_core(p, sd, target);
5832 if ((unsigned)i < nr_cpumask_bits)
5833 return i;
37407ea7 5834
10e2f1ac
PZ
5835 i = select_idle_cpu(p, sd, target);
5836 if ((unsigned)i < nr_cpumask_bits)
5837 return i;
5838
5839 i = select_idle_smt(p, sd, target);
5840 if ((unsigned)i < nr_cpumask_bits)
5841 return i;
970e1789 5842
a50bde51
PZ
5843 return target;
5844}
231678b7 5845
8bb5b00c 5846/*
9e91d61d 5847 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5848 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5849 * compare the utilization with the capacity of the CPU that is available for
5850 * CFS task (ie cpu_capacity).
231678b7
DE
5851 *
5852 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5853 * recent utilization of currently non-runnable tasks on a CPU. It represents
5854 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5855 * capacity_orig is the cpu_capacity available at the highest frequency
5856 * (arch_scale_freq_capacity()).
5857 * The utilization of a CPU converges towards a sum equal to or less than the
5858 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5859 * the running time on this CPU scaled by capacity_curr.
5860 *
5861 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5862 * higher than capacity_orig because of unfortunate rounding in
5863 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5864 * the average stabilizes with the new running time. We need to check that the
5865 * utilization stays within the range of [0..capacity_orig] and cap it if
5866 * necessary. Without utilization capping, a group could be seen as overloaded
5867 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5868 * available capacity. We allow utilization to overshoot capacity_curr (but not
5869 * capacity_orig) as it useful for predicting the capacity required after task
5870 * migrations (scheduler-driven DVFS).
8bb5b00c 5871 */
9e91d61d 5872static int cpu_util(int cpu)
8bb5b00c 5873{
9e91d61d 5874 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5875 unsigned long capacity = capacity_orig_of(cpu);
5876
231678b7 5877 return (util >= capacity) ? capacity : util;
8bb5b00c 5878}
a50bde51 5879
3273163c
MR
5880static inline int task_util(struct task_struct *p)
5881{
5882 return p->se.avg.util_avg;
5883}
5884
104cb16d
MR
5885/*
5886 * cpu_util_wake: Compute cpu utilization with any contributions from
5887 * the waking task p removed.
5888 */
5889static int cpu_util_wake(int cpu, struct task_struct *p)
5890{
5891 unsigned long util, capacity;
5892
5893 /* Task has no contribution or is new */
5894 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5895 return cpu_util(cpu);
5896
5897 capacity = capacity_orig_of(cpu);
5898 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5899
5900 return (util >= capacity) ? capacity : util;
5901}
5902
3273163c
MR
5903/*
5904 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5905 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5906 *
5907 * In that case WAKE_AFFINE doesn't make sense and we'll let
5908 * BALANCE_WAKE sort things out.
5909 */
5910static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5911{
5912 long min_cap, max_cap;
5913
5914 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5915 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5916
5917 /* Minimum capacity is close to max, no need to abort wake_affine */
5918 if (max_cap - min_cap < max_cap >> 3)
5919 return 0;
5920
104cb16d
MR
5921 /* Bring task utilization in sync with prev_cpu */
5922 sync_entity_load_avg(&p->se);
5923
3273163c
MR
5924 return min_cap * 1024 < task_util(p) * capacity_margin;
5925}
5926
aaee1203 5927/*
de91b9cb
MR
5928 * select_task_rq_fair: Select target runqueue for the waking task in domains
5929 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5930 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5931 *
de91b9cb
MR
5932 * Balances load by selecting the idlest cpu in the idlest group, or under
5933 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5934 *
de91b9cb 5935 * Returns the target cpu number.
aaee1203
PZ
5936 *
5937 * preempt must be disabled.
5938 */
0017d735 5939static int
ac66f547 5940select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5941{
29cd8bae 5942 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5943 int cpu = smp_processor_id();
63b0e9ed 5944 int new_cpu = prev_cpu;
99bd5e2f 5945 int want_affine = 0;
5158f4e4 5946 int sync = wake_flags & WF_SYNC;
c88d5910 5947
c58d25f3
PZ
5948 if (sd_flag & SD_BALANCE_WAKE) {
5949 record_wakee(p);
3273163c 5950 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5951 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5952 }
aaee1203 5953
dce840a0 5954 rcu_read_lock();
aaee1203 5955 for_each_domain(cpu, tmp) {
e4f42888 5956 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5957 break;
e4f42888 5958
fe3bcfe1 5959 /*
99bd5e2f
SS
5960 * If both cpu and prev_cpu are part of this domain,
5961 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5962 */
99bd5e2f
SS
5963 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5964 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5965 affine_sd = tmp;
29cd8bae 5966 break;
f03542a7 5967 }
29cd8bae 5968
f03542a7 5969 if (tmp->flags & sd_flag)
29cd8bae 5970 sd = tmp;
63b0e9ed
MG
5971 else if (!want_affine)
5972 break;
29cd8bae
PZ
5973 }
5974
63b0e9ed
MG
5975 if (affine_sd) {
5976 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
5977 if (cpu == prev_cpu)
5978 goto pick_cpu;
5979
5980 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5981 new_cpu = cpu;
8b911acd 5982 }
e7693a36 5983
63b0e9ed 5984 if (!sd) {
7d894e6e 5985 pick_cpu:
63b0e9ed 5986 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5987 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5988
5989 } else while (sd) {
aaee1203 5990 struct sched_group *group;
c88d5910 5991 int weight;
098fb9db 5992
0763a660 5993 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5994 sd = sd->child;
5995 continue;
5996 }
098fb9db 5997
c44f2a02 5998 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5999 if (!group) {
6000 sd = sd->child;
6001 continue;
6002 }
4ae7d5ce 6003
d7c33c49 6004 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6005 if (new_cpu == -1 || new_cpu == cpu) {
6006 /* Now try balancing at a lower domain level of cpu */
6007 sd = sd->child;
6008 continue;
e7693a36 6009 }
aaee1203
PZ
6010
6011 /* Now try balancing at a lower domain level of new_cpu */
6012 cpu = new_cpu;
669c55e9 6013 weight = sd->span_weight;
aaee1203
PZ
6014 sd = NULL;
6015 for_each_domain(cpu, tmp) {
669c55e9 6016 if (weight <= tmp->span_weight)
aaee1203 6017 break;
0763a660 6018 if (tmp->flags & sd_flag)
aaee1203
PZ
6019 sd = tmp;
6020 }
6021 /* while loop will break here if sd == NULL */
e7693a36 6022 }
dce840a0 6023 rcu_read_unlock();
e7693a36 6024
c88d5910 6025 return new_cpu;
e7693a36 6026}
0a74bef8
PT
6027
6028/*
6029 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6030 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6031 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6032 */
5a4fd036 6033static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6034{
59efa0ba
PZ
6035 /*
6036 * As blocked tasks retain absolute vruntime the migration needs to
6037 * deal with this by subtracting the old and adding the new
6038 * min_vruntime -- the latter is done by enqueue_entity() when placing
6039 * the task on the new runqueue.
6040 */
6041 if (p->state == TASK_WAKING) {
6042 struct sched_entity *se = &p->se;
6043 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6044 u64 min_vruntime;
6045
6046#ifndef CONFIG_64BIT
6047 u64 min_vruntime_copy;
6048
6049 do {
6050 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6051 smp_rmb();
6052 min_vruntime = cfs_rq->min_vruntime;
6053 } while (min_vruntime != min_vruntime_copy);
6054#else
6055 min_vruntime = cfs_rq->min_vruntime;
6056#endif
6057
6058 se->vruntime -= min_vruntime;
6059 }
6060
aff3e498 6061 /*
9d89c257
YD
6062 * We are supposed to update the task to "current" time, then its up to date
6063 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6064 * what current time is, so simply throw away the out-of-date time. This
6065 * will result in the wakee task is less decayed, but giving the wakee more
6066 * load sounds not bad.
aff3e498 6067 */
9d89c257
YD
6068 remove_entity_load_avg(&p->se);
6069
6070 /* Tell new CPU we are migrated */
6071 p->se.avg.last_update_time = 0;
3944a927
BS
6072
6073 /* We have migrated, no longer consider this task hot */
9d89c257 6074 p->se.exec_start = 0;
0a74bef8 6075}
12695578
YD
6076
6077static void task_dead_fair(struct task_struct *p)
6078{
6079 remove_entity_load_avg(&p->se);
6080}
e7693a36
GH
6081#endif /* CONFIG_SMP */
6082
e52fb7c0
PZ
6083static unsigned long
6084wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6085{
6086 unsigned long gran = sysctl_sched_wakeup_granularity;
6087
6088 /*
e52fb7c0
PZ
6089 * Since its curr running now, convert the gran from real-time
6090 * to virtual-time in his units.
13814d42
MG
6091 *
6092 * By using 'se' instead of 'curr' we penalize light tasks, so
6093 * they get preempted easier. That is, if 'se' < 'curr' then
6094 * the resulting gran will be larger, therefore penalizing the
6095 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6096 * be smaller, again penalizing the lighter task.
6097 *
6098 * This is especially important for buddies when the leftmost
6099 * task is higher priority than the buddy.
0bbd3336 6100 */
f4ad9bd2 6101 return calc_delta_fair(gran, se);
0bbd3336
PZ
6102}
6103
464b7527
PZ
6104/*
6105 * Should 'se' preempt 'curr'.
6106 *
6107 * |s1
6108 * |s2
6109 * |s3
6110 * g
6111 * |<--->|c
6112 *
6113 * w(c, s1) = -1
6114 * w(c, s2) = 0
6115 * w(c, s3) = 1
6116 *
6117 */
6118static int
6119wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6120{
6121 s64 gran, vdiff = curr->vruntime - se->vruntime;
6122
6123 if (vdiff <= 0)
6124 return -1;
6125
e52fb7c0 6126 gran = wakeup_gran(curr, se);
464b7527
PZ
6127 if (vdiff > gran)
6128 return 1;
6129
6130 return 0;
6131}
6132
02479099
PZ
6133static void set_last_buddy(struct sched_entity *se)
6134{
69c80f3e
VP
6135 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6136 return;
6137
c5ae366e
DA
6138 for_each_sched_entity(se) {
6139 if (SCHED_WARN_ON(!se->on_rq))
6140 return;
69c80f3e 6141 cfs_rq_of(se)->last = se;
c5ae366e 6142 }
02479099
PZ
6143}
6144
6145static void set_next_buddy(struct sched_entity *se)
6146{
69c80f3e
VP
6147 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6148 return;
6149
c5ae366e
DA
6150 for_each_sched_entity(se) {
6151 if (SCHED_WARN_ON(!se->on_rq))
6152 return;
69c80f3e 6153 cfs_rq_of(se)->next = se;
c5ae366e 6154 }
02479099
PZ
6155}
6156
ac53db59
RR
6157static void set_skip_buddy(struct sched_entity *se)
6158{
69c80f3e
VP
6159 for_each_sched_entity(se)
6160 cfs_rq_of(se)->skip = se;
ac53db59
RR
6161}
6162
bf0f6f24
IM
6163/*
6164 * Preempt the current task with a newly woken task if needed:
6165 */
5a9b86f6 6166static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6167{
6168 struct task_struct *curr = rq->curr;
8651a86c 6169 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6170 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6171 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6172 int next_buddy_marked = 0;
bf0f6f24 6173
4ae7d5ce
IM
6174 if (unlikely(se == pse))
6175 return;
6176
5238cdd3 6177 /*
163122b7 6178 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6179 * unconditionally check_prempt_curr() after an enqueue (which may have
6180 * lead to a throttle). This both saves work and prevents false
6181 * next-buddy nomination below.
6182 */
6183 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6184 return;
6185
2f36825b 6186 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6187 set_next_buddy(pse);
2f36825b
VP
6188 next_buddy_marked = 1;
6189 }
57fdc26d 6190
aec0a514
BR
6191 /*
6192 * We can come here with TIF_NEED_RESCHED already set from new task
6193 * wake up path.
5238cdd3
PT
6194 *
6195 * Note: this also catches the edge-case of curr being in a throttled
6196 * group (e.g. via set_curr_task), since update_curr() (in the
6197 * enqueue of curr) will have resulted in resched being set. This
6198 * prevents us from potentially nominating it as a false LAST_BUDDY
6199 * below.
aec0a514
BR
6200 */
6201 if (test_tsk_need_resched(curr))
6202 return;
6203
a2f5c9ab
DH
6204 /* Idle tasks are by definition preempted by non-idle tasks. */
6205 if (unlikely(curr->policy == SCHED_IDLE) &&
6206 likely(p->policy != SCHED_IDLE))
6207 goto preempt;
6208
91c234b4 6209 /*
a2f5c9ab
DH
6210 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6211 * is driven by the tick):
91c234b4 6212 */
8ed92e51 6213 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6214 return;
bf0f6f24 6215
464b7527 6216 find_matching_se(&se, &pse);
9bbd7374 6217 update_curr(cfs_rq_of(se));
002f128b 6218 BUG_ON(!pse);
2f36825b
VP
6219 if (wakeup_preempt_entity(se, pse) == 1) {
6220 /*
6221 * Bias pick_next to pick the sched entity that is
6222 * triggering this preemption.
6223 */
6224 if (!next_buddy_marked)
6225 set_next_buddy(pse);
3a7e73a2 6226 goto preempt;
2f36825b 6227 }
464b7527 6228
3a7e73a2 6229 return;
a65ac745 6230
3a7e73a2 6231preempt:
8875125e 6232 resched_curr(rq);
3a7e73a2
PZ
6233 /*
6234 * Only set the backward buddy when the current task is still
6235 * on the rq. This can happen when a wakeup gets interleaved
6236 * with schedule on the ->pre_schedule() or idle_balance()
6237 * point, either of which can * drop the rq lock.
6238 *
6239 * Also, during early boot the idle thread is in the fair class,
6240 * for obvious reasons its a bad idea to schedule back to it.
6241 */
6242 if (unlikely(!se->on_rq || curr == rq->idle))
6243 return;
6244
6245 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6246 set_last_buddy(se);
bf0f6f24
IM
6247}
6248
606dba2e 6249static struct task_struct *
d8ac8971 6250pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6251{
6252 struct cfs_rq *cfs_rq = &rq->cfs;
6253 struct sched_entity *se;
678d5718 6254 struct task_struct *p;
37e117c0 6255 int new_tasks;
678d5718 6256
6e83125c 6257again:
678d5718 6258 if (!cfs_rq->nr_running)
38033c37 6259 goto idle;
678d5718 6260
9674f5ca 6261#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6262 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6263 goto simple;
6264
6265 /*
6266 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6267 * likely that a next task is from the same cgroup as the current.
6268 *
6269 * Therefore attempt to avoid putting and setting the entire cgroup
6270 * hierarchy, only change the part that actually changes.
6271 */
6272
6273 do {
6274 struct sched_entity *curr = cfs_rq->curr;
6275
6276 /*
6277 * Since we got here without doing put_prev_entity() we also
6278 * have to consider cfs_rq->curr. If it is still a runnable
6279 * entity, update_curr() will update its vruntime, otherwise
6280 * forget we've ever seen it.
6281 */
54d27365
BS
6282 if (curr) {
6283 if (curr->on_rq)
6284 update_curr(cfs_rq);
6285 else
6286 curr = NULL;
678d5718 6287
54d27365
BS
6288 /*
6289 * This call to check_cfs_rq_runtime() will do the
6290 * throttle and dequeue its entity in the parent(s).
9674f5ca 6291 * Therefore the nr_running test will indeed
54d27365
BS
6292 * be correct.
6293 */
9674f5ca
VK
6294 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6295 cfs_rq = &rq->cfs;
6296
6297 if (!cfs_rq->nr_running)
6298 goto idle;
6299
54d27365 6300 goto simple;
9674f5ca 6301 }
54d27365 6302 }
678d5718
PZ
6303
6304 se = pick_next_entity(cfs_rq, curr);
6305 cfs_rq = group_cfs_rq(se);
6306 } while (cfs_rq);
6307
6308 p = task_of(se);
6309
6310 /*
6311 * Since we haven't yet done put_prev_entity and if the selected task
6312 * is a different task than we started out with, try and touch the
6313 * least amount of cfs_rqs.
6314 */
6315 if (prev != p) {
6316 struct sched_entity *pse = &prev->se;
6317
6318 while (!(cfs_rq = is_same_group(se, pse))) {
6319 int se_depth = se->depth;
6320 int pse_depth = pse->depth;
6321
6322 if (se_depth <= pse_depth) {
6323 put_prev_entity(cfs_rq_of(pse), pse);
6324 pse = parent_entity(pse);
6325 }
6326 if (se_depth >= pse_depth) {
6327 set_next_entity(cfs_rq_of(se), se);
6328 se = parent_entity(se);
6329 }
6330 }
6331
6332 put_prev_entity(cfs_rq, pse);
6333 set_next_entity(cfs_rq, se);
6334 }
6335
6336 if (hrtick_enabled(rq))
6337 hrtick_start_fair(rq, p);
6338
6339 return p;
6340simple:
678d5718 6341#endif
bf0f6f24 6342
3f1d2a31 6343 put_prev_task(rq, prev);
606dba2e 6344
bf0f6f24 6345 do {
678d5718 6346 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6347 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6348 cfs_rq = group_cfs_rq(se);
6349 } while (cfs_rq);
6350
8f4d37ec 6351 p = task_of(se);
678d5718 6352
b39e66ea
MG
6353 if (hrtick_enabled(rq))
6354 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6355
6356 return p;
38033c37
PZ
6357
6358idle:
46f69fa3
MF
6359 new_tasks = idle_balance(rq, rf);
6360
37e117c0
PZ
6361 /*
6362 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6363 * possible for any higher priority task to appear. In that case we
6364 * must re-start the pick_next_entity() loop.
6365 */
e4aa358b 6366 if (new_tasks < 0)
37e117c0
PZ
6367 return RETRY_TASK;
6368
e4aa358b 6369 if (new_tasks > 0)
38033c37 6370 goto again;
38033c37
PZ
6371
6372 return NULL;
bf0f6f24
IM
6373}
6374
6375/*
6376 * Account for a descheduled task:
6377 */
31ee529c 6378static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6379{
6380 struct sched_entity *se = &prev->se;
6381 struct cfs_rq *cfs_rq;
6382
6383 for_each_sched_entity(se) {
6384 cfs_rq = cfs_rq_of(se);
ab6cde26 6385 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6386 }
6387}
6388
ac53db59
RR
6389/*
6390 * sched_yield() is very simple
6391 *
6392 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6393 */
6394static void yield_task_fair(struct rq *rq)
6395{
6396 struct task_struct *curr = rq->curr;
6397 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6398 struct sched_entity *se = &curr->se;
6399
6400 /*
6401 * Are we the only task in the tree?
6402 */
6403 if (unlikely(rq->nr_running == 1))
6404 return;
6405
6406 clear_buddies(cfs_rq, se);
6407
6408 if (curr->policy != SCHED_BATCH) {
6409 update_rq_clock(rq);
6410 /*
6411 * Update run-time statistics of the 'current'.
6412 */
6413 update_curr(cfs_rq);
916671c0
MG
6414 /*
6415 * Tell update_rq_clock() that we've just updated,
6416 * so we don't do microscopic update in schedule()
6417 * and double the fastpath cost.
6418 */
9edfbfed 6419 rq_clock_skip_update(rq, true);
ac53db59
RR
6420 }
6421
6422 set_skip_buddy(se);
6423}
6424
d95f4122
MG
6425static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6426{
6427 struct sched_entity *se = &p->se;
6428
5238cdd3
PT
6429 /* throttled hierarchies are not runnable */
6430 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6431 return false;
6432
6433 /* Tell the scheduler that we'd really like pse to run next. */
6434 set_next_buddy(se);
6435
d95f4122
MG
6436 yield_task_fair(rq);
6437
6438 return true;
6439}
6440
681f3e68 6441#ifdef CONFIG_SMP
bf0f6f24 6442/**************************************************
e9c84cb8
PZ
6443 * Fair scheduling class load-balancing methods.
6444 *
6445 * BASICS
6446 *
6447 * The purpose of load-balancing is to achieve the same basic fairness the
6448 * per-cpu scheduler provides, namely provide a proportional amount of compute
6449 * time to each task. This is expressed in the following equation:
6450 *
6451 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6452 *
6453 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6454 * W_i,0 is defined as:
6455 *
6456 * W_i,0 = \Sum_j w_i,j (2)
6457 *
6458 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6459 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6460 *
6461 * The weight average is an exponential decay average of the instantaneous
6462 * weight:
6463 *
6464 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6465 *
ced549fa 6466 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6467 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6468 * can also include other factors [XXX].
6469 *
6470 * To achieve this balance we define a measure of imbalance which follows
6471 * directly from (1):
6472 *
ced549fa 6473 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6474 *
6475 * We them move tasks around to minimize the imbalance. In the continuous
6476 * function space it is obvious this converges, in the discrete case we get
6477 * a few fun cases generally called infeasible weight scenarios.
6478 *
6479 * [XXX expand on:
6480 * - infeasible weights;
6481 * - local vs global optima in the discrete case. ]
6482 *
6483 *
6484 * SCHED DOMAINS
6485 *
6486 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6487 * for all i,j solution, we create a tree of cpus that follows the hardware
6488 * topology where each level pairs two lower groups (or better). This results
6489 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6490 * tree to only the first of the previous level and we decrease the frequency
6491 * of load-balance at each level inv. proportional to the number of cpus in
6492 * the groups.
6493 *
6494 * This yields:
6495 *
6496 * log_2 n 1 n
6497 * \Sum { --- * --- * 2^i } = O(n) (5)
6498 * i = 0 2^i 2^i
6499 * `- size of each group
6500 * | | `- number of cpus doing load-balance
6501 * | `- freq
6502 * `- sum over all levels
6503 *
6504 * Coupled with a limit on how many tasks we can migrate every balance pass,
6505 * this makes (5) the runtime complexity of the balancer.
6506 *
6507 * An important property here is that each CPU is still (indirectly) connected
6508 * to every other cpu in at most O(log n) steps:
6509 *
6510 * The adjacency matrix of the resulting graph is given by:
6511 *
97a7142f 6512 * log_2 n
e9c84cb8
PZ
6513 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6514 * k = 0
6515 *
6516 * And you'll find that:
6517 *
6518 * A^(log_2 n)_i,j != 0 for all i,j (7)
6519 *
6520 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6521 * The task movement gives a factor of O(m), giving a convergence complexity
6522 * of:
6523 *
6524 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6525 *
6526 *
6527 * WORK CONSERVING
6528 *
6529 * In order to avoid CPUs going idle while there's still work to do, new idle
6530 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6531 * tree itself instead of relying on other CPUs to bring it work.
6532 *
6533 * This adds some complexity to both (5) and (8) but it reduces the total idle
6534 * time.
6535 *
6536 * [XXX more?]
6537 *
6538 *
6539 * CGROUPS
6540 *
6541 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6542 *
6543 * s_k,i
6544 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6545 * S_k
6546 *
6547 * Where
6548 *
6549 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6550 *
6551 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6552 *
6553 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6554 * property.
6555 *
6556 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6557 * rewrite all of this once again.]
97a7142f 6558 */
bf0f6f24 6559
ed387b78
HS
6560static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6561
0ec8aa00
PZ
6562enum fbq_type { regular, remote, all };
6563
ddcdf6e7 6564#define LBF_ALL_PINNED 0x01
367456c7 6565#define LBF_NEED_BREAK 0x02
6263322c
PZ
6566#define LBF_DST_PINNED 0x04
6567#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6568
6569struct lb_env {
6570 struct sched_domain *sd;
6571
ddcdf6e7 6572 struct rq *src_rq;
85c1e7da 6573 int src_cpu;
ddcdf6e7
PZ
6574
6575 int dst_cpu;
6576 struct rq *dst_rq;
6577
88b8dac0
SV
6578 struct cpumask *dst_grpmask;
6579 int new_dst_cpu;
ddcdf6e7 6580 enum cpu_idle_type idle;
bd939f45 6581 long imbalance;
b9403130
MW
6582 /* The set of CPUs under consideration for load-balancing */
6583 struct cpumask *cpus;
6584
ddcdf6e7 6585 unsigned int flags;
367456c7
PZ
6586
6587 unsigned int loop;
6588 unsigned int loop_break;
6589 unsigned int loop_max;
0ec8aa00
PZ
6590
6591 enum fbq_type fbq_type;
163122b7 6592 struct list_head tasks;
ddcdf6e7
PZ
6593};
6594
029632fb
PZ
6595/*
6596 * Is this task likely cache-hot:
6597 */
5d5e2b1b 6598static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6599{
6600 s64 delta;
6601
e5673f28
KT
6602 lockdep_assert_held(&env->src_rq->lock);
6603
029632fb
PZ
6604 if (p->sched_class != &fair_sched_class)
6605 return 0;
6606
6607 if (unlikely(p->policy == SCHED_IDLE))
6608 return 0;
6609
6610 /*
6611 * Buddy candidates are cache hot:
6612 */
5d5e2b1b 6613 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6614 (&p->se == cfs_rq_of(&p->se)->next ||
6615 &p->se == cfs_rq_of(&p->se)->last))
6616 return 1;
6617
6618 if (sysctl_sched_migration_cost == -1)
6619 return 1;
6620 if (sysctl_sched_migration_cost == 0)
6621 return 0;
6622
5d5e2b1b 6623 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6624
6625 return delta < (s64)sysctl_sched_migration_cost;
6626}
6627
3a7053b3 6628#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6629/*
2a1ed24c
SD
6630 * Returns 1, if task migration degrades locality
6631 * Returns 0, if task migration improves locality i.e migration preferred.
6632 * Returns -1, if task migration is not affected by locality.
c1ceac62 6633 */
2a1ed24c 6634static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6635{
b1ad065e 6636 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6637 unsigned long src_faults, dst_faults;
3a7053b3
MG
6638 int src_nid, dst_nid;
6639
2a595721 6640 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6641 return -1;
6642
c3b9bc5b 6643 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6644 return -1;
7a0f3083
MG
6645
6646 src_nid = cpu_to_node(env->src_cpu);
6647 dst_nid = cpu_to_node(env->dst_cpu);
6648
83e1d2cd 6649 if (src_nid == dst_nid)
2a1ed24c 6650 return -1;
7a0f3083 6651
2a1ed24c
SD
6652 /* Migrating away from the preferred node is always bad. */
6653 if (src_nid == p->numa_preferred_nid) {
6654 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6655 return 1;
6656 else
6657 return -1;
6658 }
b1ad065e 6659
c1ceac62
RR
6660 /* Encourage migration to the preferred node. */
6661 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6662 return 0;
b1ad065e 6663
739294fb
RR
6664 /* Leaving a core idle is often worse than degrading locality. */
6665 if (env->idle != CPU_NOT_IDLE)
6666 return -1;
6667
c1ceac62
RR
6668 if (numa_group) {
6669 src_faults = group_faults(p, src_nid);
6670 dst_faults = group_faults(p, dst_nid);
6671 } else {
6672 src_faults = task_faults(p, src_nid);
6673 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6674 }
6675
c1ceac62 6676 return dst_faults < src_faults;
7a0f3083
MG
6677}
6678
3a7053b3 6679#else
2a1ed24c 6680static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6681 struct lb_env *env)
6682{
2a1ed24c 6683 return -1;
7a0f3083 6684}
3a7053b3
MG
6685#endif
6686
1e3c88bd
PZ
6687/*
6688 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6689 */
6690static
8e45cb54 6691int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6692{
2a1ed24c 6693 int tsk_cache_hot;
e5673f28
KT
6694
6695 lockdep_assert_held(&env->src_rq->lock);
6696
1e3c88bd
PZ
6697 /*
6698 * We do not migrate tasks that are:
d3198084 6699 * 1) throttled_lb_pair, or
1e3c88bd 6700 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6701 * 3) running (obviously), or
6702 * 4) are cache-hot on their current CPU.
1e3c88bd 6703 */
d3198084
JK
6704 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6705 return 0;
6706
0c98d344 6707 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6708 int cpu;
88b8dac0 6709
ae92882e 6710 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6711
6263322c
PZ
6712 env->flags |= LBF_SOME_PINNED;
6713
88b8dac0
SV
6714 /*
6715 * Remember if this task can be migrated to any other cpu in
6716 * our sched_group. We may want to revisit it if we couldn't
6717 * meet load balance goals by pulling other tasks on src_cpu.
6718 *
65a4433a
JH
6719 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6720 * already computed one in current iteration.
88b8dac0 6721 */
65a4433a 6722 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6723 return 0;
6724
e02e60c1
JK
6725 /* Prevent to re-select dst_cpu via env's cpus */
6726 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6727 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6728 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6729 env->new_dst_cpu = cpu;
6730 break;
6731 }
88b8dac0 6732 }
e02e60c1 6733
1e3c88bd
PZ
6734 return 0;
6735 }
88b8dac0
SV
6736
6737 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6738 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6739
ddcdf6e7 6740 if (task_running(env->src_rq, p)) {
ae92882e 6741 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6742 return 0;
6743 }
6744
6745 /*
6746 * Aggressive migration if:
3a7053b3
MG
6747 * 1) destination numa is preferred
6748 * 2) task is cache cold, or
6749 * 3) too many balance attempts have failed.
1e3c88bd 6750 */
2a1ed24c
SD
6751 tsk_cache_hot = migrate_degrades_locality(p, env);
6752 if (tsk_cache_hot == -1)
6753 tsk_cache_hot = task_hot(p, env);
3a7053b3 6754
2a1ed24c 6755 if (tsk_cache_hot <= 0 ||
7a96c231 6756 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6757 if (tsk_cache_hot == 1) {
ae92882e
JP
6758 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6759 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6760 }
1e3c88bd
PZ
6761 return 1;
6762 }
6763
ae92882e 6764 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6765 return 0;
1e3c88bd
PZ
6766}
6767
897c395f 6768/*
163122b7
KT
6769 * detach_task() -- detach the task for the migration specified in env
6770 */
6771static void detach_task(struct task_struct *p, struct lb_env *env)
6772{
6773 lockdep_assert_held(&env->src_rq->lock);
6774
163122b7 6775 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6776 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6777 set_task_cpu(p, env->dst_cpu);
6778}
6779
897c395f 6780/*
e5673f28 6781 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6782 * part of active balancing operations within "domain".
897c395f 6783 *
e5673f28 6784 * Returns a task if successful and NULL otherwise.
897c395f 6785 */
e5673f28 6786static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6787{
6788 struct task_struct *p, *n;
897c395f 6789
e5673f28
KT
6790 lockdep_assert_held(&env->src_rq->lock);
6791
367456c7 6792 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6793 if (!can_migrate_task(p, env))
6794 continue;
897c395f 6795
163122b7 6796 detach_task(p, env);
e5673f28 6797
367456c7 6798 /*
e5673f28 6799 * Right now, this is only the second place where
163122b7 6800 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6801 * so we can safely collect stats here rather than
163122b7 6802 * inside detach_tasks().
367456c7 6803 */
ae92882e 6804 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6805 return p;
897c395f 6806 }
e5673f28 6807 return NULL;
897c395f
PZ
6808}
6809
eb95308e
PZ
6810static const unsigned int sched_nr_migrate_break = 32;
6811
5d6523eb 6812/*
163122b7
KT
6813 * detach_tasks() -- tries to detach up to imbalance weighted load from
6814 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6815 *
163122b7 6816 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6817 */
163122b7 6818static int detach_tasks(struct lb_env *env)
1e3c88bd 6819{
5d6523eb
PZ
6820 struct list_head *tasks = &env->src_rq->cfs_tasks;
6821 struct task_struct *p;
367456c7 6822 unsigned long load;
163122b7
KT
6823 int detached = 0;
6824
6825 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6826
bd939f45 6827 if (env->imbalance <= 0)
5d6523eb 6828 return 0;
1e3c88bd 6829
5d6523eb 6830 while (!list_empty(tasks)) {
985d3a4c
YD
6831 /*
6832 * We don't want to steal all, otherwise we may be treated likewise,
6833 * which could at worst lead to a livelock crash.
6834 */
6835 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6836 break;
6837
5d6523eb 6838 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6839
367456c7
PZ
6840 env->loop++;
6841 /* We've more or less seen every task there is, call it quits */
5d6523eb 6842 if (env->loop > env->loop_max)
367456c7 6843 break;
5d6523eb
PZ
6844
6845 /* take a breather every nr_migrate tasks */
367456c7 6846 if (env->loop > env->loop_break) {
eb95308e 6847 env->loop_break += sched_nr_migrate_break;
8e45cb54 6848 env->flags |= LBF_NEED_BREAK;
ee00e66f 6849 break;
a195f004 6850 }
1e3c88bd 6851
d3198084 6852 if (!can_migrate_task(p, env))
367456c7
PZ
6853 goto next;
6854
6855 load = task_h_load(p);
5d6523eb 6856
eb95308e 6857 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6858 goto next;
6859
bd939f45 6860 if ((load / 2) > env->imbalance)
367456c7 6861 goto next;
1e3c88bd 6862
163122b7
KT
6863 detach_task(p, env);
6864 list_add(&p->se.group_node, &env->tasks);
6865
6866 detached++;
bd939f45 6867 env->imbalance -= load;
1e3c88bd
PZ
6868
6869#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6870 /*
6871 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6872 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6873 * the critical section.
6874 */
5d6523eb 6875 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6876 break;
1e3c88bd
PZ
6877#endif
6878
ee00e66f
PZ
6879 /*
6880 * We only want to steal up to the prescribed amount of
6881 * weighted load.
6882 */
bd939f45 6883 if (env->imbalance <= 0)
ee00e66f 6884 break;
367456c7
PZ
6885
6886 continue;
6887next:
5d6523eb 6888 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6889 }
5d6523eb 6890
1e3c88bd 6891 /*
163122b7
KT
6892 * Right now, this is one of only two places we collect this stat
6893 * so we can safely collect detach_one_task() stats here rather
6894 * than inside detach_one_task().
1e3c88bd 6895 */
ae92882e 6896 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6897
163122b7
KT
6898 return detached;
6899}
6900
6901/*
6902 * attach_task() -- attach the task detached by detach_task() to its new rq.
6903 */
6904static void attach_task(struct rq *rq, struct task_struct *p)
6905{
6906 lockdep_assert_held(&rq->lock);
6907
6908 BUG_ON(task_rq(p) != rq);
5704ac0a 6909 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6910 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6911 check_preempt_curr(rq, p, 0);
6912}
6913
6914/*
6915 * attach_one_task() -- attaches the task returned from detach_one_task() to
6916 * its new rq.
6917 */
6918static void attach_one_task(struct rq *rq, struct task_struct *p)
6919{
8a8c69c3
PZ
6920 struct rq_flags rf;
6921
6922 rq_lock(rq, &rf);
5704ac0a 6923 update_rq_clock(rq);
163122b7 6924 attach_task(rq, p);
8a8c69c3 6925 rq_unlock(rq, &rf);
163122b7
KT
6926}
6927
6928/*
6929 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6930 * new rq.
6931 */
6932static void attach_tasks(struct lb_env *env)
6933{
6934 struct list_head *tasks = &env->tasks;
6935 struct task_struct *p;
8a8c69c3 6936 struct rq_flags rf;
163122b7 6937
8a8c69c3 6938 rq_lock(env->dst_rq, &rf);
5704ac0a 6939 update_rq_clock(env->dst_rq);
163122b7
KT
6940
6941 while (!list_empty(tasks)) {
6942 p = list_first_entry(tasks, struct task_struct, se.group_node);
6943 list_del_init(&p->se.group_node);
1e3c88bd 6944
163122b7
KT
6945 attach_task(env->dst_rq, p);
6946 }
6947
8a8c69c3 6948 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6949}
6950
230059de 6951#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
6952
6953static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6954{
6955 if (cfs_rq->load.weight)
6956 return false;
6957
6958 if (cfs_rq->avg.load_sum)
6959 return false;
6960
6961 if (cfs_rq->avg.util_sum)
6962 return false;
6963
6964 if (cfs_rq->runnable_load_sum)
6965 return false;
6966
6967 return true;
6968}
6969
48a16753 6970static void update_blocked_averages(int cpu)
9e3081ca 6971{
9e3081ca 6972 struct rq *rq = cpu_rq(cpu);
a9e7f654 6973 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 6974 struct rq_flags rf;
9e3081ca 6975
8a8c69c3 6976 rq_lock_irqsave(rq, &rf);
48a16753 6977 update_rq_clock(rq);
9d89c257 6978
9763b67f
PZ
6979 /*
6980 * Iterates the task_group tree in a bottom up fashion, see
6981 * list_add_leaf_cfs_rq() for details.
6982 */
a9e7f654 6983 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
6984 struct sched_entity *se;
6985
9d89c257
YD
6986 /* throttled entities do not contribute to load */
6987 if (throttled_hierarchy(cfs_rq))
6988 continue;
48a16753 6989
3a123bbb 6990 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 6991 update_tg_load_avg(cfs_rq, 0);
4e516076 6992
bc427898
VG
6993 /* Propagate pending load changes to the parent, if any: */
6994 se = cfs_rq->tg->se[cpu];
6995 if (se && !skip_blocked_update(se))
6996 update_load_avg(se, 0);
a9e7f654
TH
6997
6998 /*
6999 * There can be a lot of idle CPU cgroups. Don't let fully
7000 * decayed cfs_rqs linger on the list.
7001 */
7002 if (cfs_rq_is_decayed(cfs_rq))
7003 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7004 }
8a8c69c3 7005 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7006}
7007
9763b67f 7008/*
68520796 7009 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7010 * This needs to be done in a top-down fashion because the load of a child
7011 * group is a fraction of its parents load.
7012 */
68520796 7013static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7014{
68520796
VD
7015 struct rq *rq = rq_of(cfs_rq);
7016 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7017 unsigned long now = jiffies;
68520796 7018 unsigned long load;
a35b6466 7019
68520796 7020 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7021 return;
7022
68520796
VD
7023 cfs_rq->h_load_next = NULL;
7024 for_each_sched_entity(se) {
7025 cfs_rq = cfs_rq_of(se);
7026 cfs_rq->h_load_next = se;
7027 if (cfs_rq->last_h_load_update == now)
7028 break;
7029 }
a35b6466 7030
68520796 7031 if (!se) {
7ea241af 7032 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7033 cfs_rq->last_h_load_update = now;
7034 }
7035
7036 while ((se = cfs_rq->h_load_next) != NULL) {
7037 load = cfs_rq->h_load;
7ea241af
YD
7038 load = div64_ul(load * se->avg.load_avg,
7039 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7040 cfs_rq = group_cfs_rq(se);
7041 cfs_rq->h_load = load;
7042 cfs_rq->last_h_load_update = now;
7043 }
9763b67f
PZ
7044}
7045
367456c7 7046static unsigned long task_h_load(struct task_struct *p)
230059de 7047{
367456c7 7048 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7049
68520796 7050 update_cfs_rq_h_load(cfs_rq);
9d89c257 7051 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7052 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7053}
7054#else
48a16753 7055static inline void update_blocked_averages(int cpu)
9e3081ca 7056{
6c1d47c0
VG
7057 struct rq *rq = cpu_rq(cpu);
7058 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7059 struct rq_flags rf;
6c1d47c0 7060
8a8c69c3 7061 rq_lock_irqsave(rq, &rf);
6c1d47c0 7062 update_rq_clock(rq);
3a123bbb 7063 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7064 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7065}
7066
367456c7 7067static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7068{
9d89c257 7069 return p->se.avg.load_avg;
1e3c88bd 7070}
230059de 7071#endif
1e3c88bd 7072
1e3c88bd 7073/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7074
7075enum group_type {
7076 group_other = 0,
7077 group_imbalanced,
7078 group_overloaded,
7079};
7080
1e3c88bd
PZ
7081/*
7082 * sg_lb_stats - stats of a sched_group required for load_balancing
7083 */
7084struct sg_lb_stats {
7085 unsigned long avg_load; /*Avg load across the CPUs of the group */
7086 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7087 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7088 unsigned long load_per_task;
63b2ca30 7089 unsigned long group_capacity;
9e91d61d 7090 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7091 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7092 unsigned int idle_cpus;
7093 unsigned int group_weight;
caeb178c 7094 enum group_type group_type;
ea67821b 7095 int group_no_capacity;
0ec8aa00
PZ
7096#ifdef CONFIG_NUMA_BALANCING
7097 unsigned int nr_numa_running;
7098 unsigned int nr_preferred_running;
7099#endif
1e3c88bd
PZ
7100};
7101
56cf515b
JK
7102/*
7103 * sd_lb_stats - Structure to store the statistics of a sched_domain
7104 * during load balancing.
7105 */
7106struct sd_lb_stats {
7107 struct sched_group *busiest; /* Busiest group in this sd */
7108 struct sched_group *local; /* Local group in this sd */
90001d67 7109 unsigned long total_running;
56cf515b 7110 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7111 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7112 unsigned long avg_load; /* Average load across all groups in sd */
7113
56cf515b 7114 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7115 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7116};
7117
147c5fc2
PZ
7118static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7119{
7120 /*
7121 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7122 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7123 * We must however clear busiest_stat::avg_load because
7124 * update_sd_pick_busiest() reads this before assignment.
7125 */
7126 *sds = (struct sd_lb_stats){
7127 .busiest = NULL,
7128 .local = NULL,
90001d67 7129 .total_running = 0UL,
147c5fc2 7130 .total_load = 0UL,
63b2ca30 7131 .total_capacity = 0UL,
147c5fc2
PZ
7132 .busiest_stat = {
7133 .avg_load = 0UL,
caeb178c
RR
7134 .sum_nr_running = 0,
7135 .group_type = group_other,
147c5fc2
PZ
7136 },
7137 };
7138}
7139
1e3c88bd
PZ
7140/**
7141 * get_sd_load_idx - Obtain the load index for a given sched domain.
7142 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7143 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7144 *
7145 * Return: The load index.
1e3c88bd
PZ
7146 */
7147static inline int get_sd_load_idx(struct sched_domain *sd,
7148 enum cpu_idle_type idle)
7149{
7150 int load_idx;
7151
7152 switch (idle) {
7153 case CPU_NOT_IDLE:
7154 load_idx = sd->busy_idx;
7155 break;
7156
7157 case CPU_NEWLY_IDLE:
7158 load_idx = sd->newidle_idx;
7159 break;
7160 default:
7161 load_idx = sd->idle_idx;
7162 break;
7163 }
7164
7165 return load_idx;
7166}
7167
ced549fa 7168static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7169{
7170 struct rq *rq = cpu_rq(cpu);
b5b4860d 7171 u64 total, used, age_stamp, avg;
cadefd3d 7172 s64 delta;
1e3c88bd 7173
b654f7de
PZ
7174 /*
7175 * Since we're reading these variables without serialization make sure
7176 * we read them once before doing sanity checks on them.
7177 */
316c1608
JL
7178 age_stamp = READ_ONCE(rq->age_stamp);
7179 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7180 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7181
cadefd3d
PZ
7182 if (unlikely(delta < 0))
7183 delta = 0;
7184
7185 total = sched_avg_period() + delta;
aa483808 7186
b5b4860d 7187 used = div_u64(avg, total);
1e3c88bd 7188
b5b4860d
VG
7189 if (likely(used < SCHED_CAPACITY_SCALE))
7190 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7191
b5b4860d 7192 return 1;
1e3c88bd
PZ
7193}
7194
ced549fa 7195static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7196{
8cd5601c 7197 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7198 struct sched_group *sdg = sd->groups;
7199
ca6d75e6 7200 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7201
ced549fa 7202 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7203 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7204
ced549fa
NP
7205 if (!capacity)
7206 capacity = 1;
1e3c88bd 7207
ced549fa
NP
7208 cpu_rq(cpu)->cpu_capacity = capacity;
7209 sdg->sgc->capacity = capacity;
bf475ce0 7210 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7211}
7212
63b2ca30 7213void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7214{
7215 struct sched_domain *child = sd->child;
7216 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7217 unsigned long capacity, min_capacity;
4ec4412e
VG
7218 unsigned long interval;
7219
7220 interval = msecs_to_jiffies(sd->balance_interval);
7221 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7222 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7223
7224 if (!child) {
ced549fa 7225 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7226 return;
7227 }
7228
dc7ff76e 7229 capacity = 0;
bf475ce0 7230 min_capacity = ULONG_MAX;
1e3c88bd 7231
74a5ce20
PZ
7232 if (child->flags & SD_OVERLAP) {
7233 /*
7234 * SD_OVERLAP domains cannot assume that child groups
7235 * span the current group.
7236 */
7237
ae4df9d6 7238 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7239 struct sched_group_capacity *sgc;
9abf24d4 7240 struct rq *rq = cpu_rq(cpu);
863bffc8 7241
9abf24d4 7242 /*
63b2ca30 7243 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7244 * gets here before we've attached the domains to the
7245 * runqueues.
7246 *
ced549fa
NP
7247 * Use capacity_of(), which is set irrespective of domains
7248 * in update_cpu_capacity().
9abf24d4 7249 *
dc7ff76e 7250 * This avoids capacity from being 0 and
9abf24d4 7251 * causing divide-by-zero issues on boot.
9abf24d4
SD
7252 */
7253 if (unlikely(!rq->sd)) {
ced549fa 7254 capacity += capacity_of(cpu);
bf475ce0
MR
7255 } else {
7256 sgc = rq->sd->groups->sgc;
7257 capacity += sgc->capacity;
9abf24d4 7258 }
863bffc8 7259
bf475ce0 7260 min_capacity = min(capacity, min_capacity);
863bffc8 7261 }
74a5ce20
PZ
7262 } else {
7263 /*
7264 * !SD_OVERLAP domains can assume that child groups
7265 * span the current group.
97a7142f 7266 */
74a5ce20
PZ
7267
7268 group = child->groups;
7269 do {
bf475ce0
MR
7270 struct sched_group_capacity *sgc = group->sgc;
7271
7272 capacity += sgc->capacity;
7273 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7274 group = group->next;
7275 } while (group != child->groups);
7276 }
1e3c88bd 7277
63b2ca30 7278 sdg->sgc->capacity = capacity;
bf475ce0 7279 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7280}
7281
9d5efe05 7282/*
ea67821b
VG
7283 * Check whether the capacity of the rq has been noticeably reduced by side
7284 * activity. The imbalance_pct is used for the threshold.
7285 * Return true is the capacity is reduced
9d5efe05
SV
7286 */
7287static inline int
ea67821b 7288check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7289{
ea67821b
VG
7290 return ((rq->cpu_capacity * sd->imbalance_pct) <
7291 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7292}
7293
30ce5dab
PZ
7294/*
7295 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7296 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7297 *
7298 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7299 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7300 * Something like:
7301 *
2b4d5b25
IM
7302 * { 0 1 2 3 } { 4 5 6 7 }
7303 * * * * *
30ce5dab
PZ
7304 *
7305 * If we were to balance group-wise we'd place two tasks in the first group and
7306 * two tasks in the second group. Clearly this is undesired as it will overload
7307 * cpu 3 and leave one of the cpus in the second group unused.
7308 *
7309 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7310 * by noticing the lower domain failed to reach balance and had difficulty
7311 * moving tasks due to affinity constraints.
30ce5dab
PZ
7312 *
7313 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7314 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7315 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7316 * to create an effective group imbalance.
7317 *
7318 * This is a somewhat tricky proposition since the next run might not find the
7319 * group imbalance and decide the groups need to be balanced again. A most
7320 * subtle and fragile situation.
7321 */
7322
6263322c 7323static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7324{
63b2ca30 7325 return group->sgc->imbalance;
30ce5dab
PZ
7326}
7327
b37d9316 7328/*
ea67821b
VG
7329 * group_has_capacity returns true if the group has spare capacity that could
7330 * be used by some tasks.
7331 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7332 * smaller than the number of CPUs or if the utilization is lower than the
7333 * available capacity for CFS tasks.
ea67821b
VG
7334 * For the latter, we use a threshold to stabilize the state, to take into
7335 * account the variance of the tasks' load and to return true if the available
7336 * capacity in meaningful for the load balancer.
7337 * As an example, an available capacity of 1% can appear but it doesn't make
7338 * any benefit for the load balance.
b37d9316 7339 */
ea67821b
VG
7340static inline bool
7341group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7342{
ea67821b
VG
7343 if (sgs->sum_nr_running < sgs->group_weight)
7344 return true;
c61037e9 7345
ea67821b 7346 if ((sgs->group_capacity * 100) >
9e91d61d 7347 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7348 return true;
b37d9316 7349
ea67821b
VG
7350 return false;
7351}
7352
7353/*
7354 * group_is_overloaded returns true if the group has more tasks than it can
7355 * handle.
7356 * group_is_overloaded is not equals to !group_has_capacity because a group
7357 * with the exact right number of tasks, has no more spare capacity but is not
7358 * overloaded so both group_has_capacity and group_is_overloaded return
7359 * false.
7360 */
7361static inline bool
7362group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7363{
7364 if (sgs->sum_nr_running <= sgs->group_weight)
7365 return false;
b37d9316 7366
ea67821b 7367 if ((sgs->group_capacity * 100) <
9e91d61d 7368 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7369 return true;
b37d9316 7370
ea67821b 7371 return false;
b37d9316
PZ
7372}
7373
9e0994c0
MR
7374/*
7375 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7376 * per-CPU capacity than sched_group ref.
7377 */
7378static inline bool
7379group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7380{
7381 return sg->sgc->min_capacity * capacity_margin <
7382 ref->sgc->min_capacity * 1024;
7383}
7384
79a89f92
LY
7385static inline enum
7386group_type group_classify(struct sched_group *group,
7387 struct sg_lb_stats *sgs)
caeb178c 7388{
ea67821b 7389 if (sgs->group_no_capacity)
caeb178c
RR
7390 return group_overloaded;
7391
7392 if (sg_imbalanced(group))
7393 return group_imbalanced;
7394
7395 return group_other;
7396}
7397
1e3c88bd
PZ
7398/**
7399 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7400 * @env: The load balancing environment.
1e3c88bd 7401 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7402 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7403 * @local_group: Does group contain this_cpu.
1e3c88bd 7404 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7405 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7406 */
bd939f45
PZ
7407static inline void update_sg_lb_stats(struct lb_env *env,
7408 struct sched_group *group, int load_idx,
4486edd1
TC
7409 int local_group, struct sg_lb_stats *sgs,
7410 bool *overload)
1e3c88bd 7411{
30ce5dab 7412 unsigned long load;
a426f99c 7413 int i, nr_running;
1e3c88bd 7414
b72ff13c
PZ
7415 memset(sgs, 0, sizeof(*sgs));
7416
ae4df9d6 7417 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7418 struct rq *rq = cpu_rq(i);
7419
1e3c88bd 7420 /* Bias balancing toward cpus of our domain */
6263322c 7421 if (local_group)
04f733b4 7422 load = target_load(i, load_idx);
6263322c 7423 else
1e3c88bd 7424 load = source_load(i, load_idx);
1e3c88bd
PZ
7425
7426 sgs->group_load += load;
9e91d61d 7427 sgs->group_util += cpu_util(i);
65fdac08 7428 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7429
a426f99c
WL
7430 nr_running = rq->nr_running;
7431 if (nr_running > 1)
4486edd1
TC
7432 *overload = true;
7433
0ec8aa00
PZ
7434#ifdef CONFIG_NUMA_BALANCING
7435 sgs->nr_numa_running += rq->nr_numa_running;
7436 sgs->nr_preferred_running += rq->nr_preferred_running;
7437#endif
c7132dd6 7438 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7439 /*
7440 * No need to call idle_cpu() if nr_running is not 0
7441 */
7442 if (!nr_running && idle_cpu(i))
aae6d3dd 7443 sgs->idle_cpus++;
1e3c88bd
PZ
7444 }
7445
63b2ca30
NP
7446 /* Adjust by relative CPU capacity of the group */
7447 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7448 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7449
dd5feea1 7450 if (sgs->sum_nr_running)
38d0f770 7451 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7452
aae6d3dd 7453 sgs->group_weight = group->group_weight;
b37d9316 7454
ea67821b 7455 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7456 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7457}
7458
532cb4c4
MN
7459/**
7460 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7461 * @env: The load balancing environment.
532cb4c4
MN
7462 * @sds: sched_domain statistics
7463 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7464 * @sgs: sched_group statistics
532cb4c4
MN
7465 *
7466 * Determine if @sg is a busier group than the previously selected
7467 * busiest group.
e69f6186
YB
7468 *
7469 * Return: %true if @sg is a busier group than the previously selected
7470 * busiest group. %false otherwise.
532cb4c4 7471 */
bd939f45 7472static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7473 struct sd_lb_stats *sds,
7474 struct sched_group *sg,
bd939f45 7475 struct sg_lb_stats *sgs)
532cb4c4 7476{
caeb178c 7477 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7478
caeb178c 7479 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7480 return true;
7481
caeb178c
RR
7482 if (sgs->group_type < busiest->group_type)
7483 return false;
7484
7485 if (sgs->avg_load <= busiest->avg_load)
7486 return false;
7487
9e0994c0
MR
7488 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7489 goto asym_packing;
7490
7491 /*
7492 * Candidate sg has no more than one task per CPU and
7493 * has higher per-CPU capacity. Migrating tasks to less
7494 * capable CPUs may harm throughput. Maximize throughput,
7495 * power/energy consequences are not considered.
7496 */
7497 if (sgs->sum_nr_running <= sgs->group_weight &&
7498 group_smaller_cpu_capacity(sds->local, sg))
7499 return false;
7500
7501asym_packing:
caeb178c
RR
7502 /* This is the busiest node in its class. */
7503 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7504 return true;
7505
1f621e02
SD
7506 /* No ASYM_PACKING if target cpu is already busy */
7507 if (env->idle == CPU_NOT_IDLE)
7508 return true;
532cb4c4 7509 /*
afe06efd
TC
7510 * ASYM_PACKING needs to move all the work to the highest
7511 * prority CPUs in the group, therefore mark all groups
7512 * of lower priority than ourself as busy.
532cb4c4 7513 */
afe06efd
TC
7514 if (sgs->sum_nr_running &&
7515 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7516 if (!sds->busiest)
7517 return true;
7518
afe06efd
TC
7519 /* Prefer to move from lowest priority cpu's work */
7520 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7521 sg->asym_prefer_cpu))
532cb4c4
MN
7522 return true;
7523 }
7524
7525 return false;
7526}
7527
0ec8aa00
PZ
7528#ifdef CONFIG_NUMA_BALANCING
7529static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7530{
7531 if (sgs->sum_nr_running > sgs->nr_numa_running)
7532 return regular;
7533 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7534 return remote;
7535 return all;
7536}
7537
7538static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7539{
7540 if (rq->nr_running > rq->nr_numa_running)
7541 return regular;
7542 if (rq->nr_running > rq->nr_preferred_running)
7543 return remote;
7544 return all;
7545}
7546#else
7547static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7548{
7549 return all;
7550}
7551
7552static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7553{
7554 return regular;
7555}
7556#endif /* CONFIG_NUMA_BALANCING */
7557
1e3c88bd 7558/**
461819ac 7559 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7560 * @env: The load balancing environment.
1e3c88bd
PZ
7561 * @sds: variable to hold the statistics for this sched_domain.
7562 */
0ec8aa00 7563static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7564{
bd939f45
PZ
7565 struct sched_domain *child = env->sd->child;
7566 struct sched_group *sg = env->sd->groups;
05b40e05 7567 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7568 struct sg_lb_stats tmp_sgs;
1e3c88bd 7569 int load_idx, prefer_sibling = 0;
4486edd1 7570 bool overload = false;
1e3c88bd
PZ
7571
7572 if (child && child->flags & SD_PREFER_SIBLING)
7573 prefer_sibling = 1;
7574
bd939f45 7575 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7576
7577 do {
56cf515b 7578 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7579 int local_group;
7580
ae4df9d6 7581 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7582 if (local_group) {
7583 sds->local = sg;
05b40e05 7584 sgs = local;
b72ff13c
PZ
7585
7586 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7587 time_after_eq(jiffies, sg->sgc->next_update))
7588 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7589 }
1e3c88bd 7590
4486edd1
TC
7591 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7592 &overload);
1e3c88bd 7593
b72ff13c
PZ
7594 if (local_group)
7595 goto next_group;
7596
1e3c88bd
PZ
7597 /*
7598 * In case the child domain prefers tasks go to siblings
ea67821b 7599 * first, lower the sg capacity so that we'll try
75dd321d
NR
7600 * and move all the excess tasks away. We lower the capacity
7601 * of a group only if the local group has the capacity to fit
ea67821b
VG
7602 * these excess tasks. The extra check prevents the case where
7603 * you always pull from the heaviest group when it is already
7604 * under-utilized (possible with a large weight task outweighs
7605 * the tasks on the system).
1e3c88bd 7606 */
b72ff13c 7607 if (prefer_sibling && sds->local &&
05b40e05
SD
7608 group_has_capacity(env, local) &&
7609 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7610 sgs->group_no_capacity = 1;
79a89f92 7611 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7612 }
1e3c88bd 7613
b72ff13c 7614 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7615 sds->busiest = sg;
56cf515b 7616 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7617 }
7618
b72ff13c
PZ
7619next_group:
7620 /* Now, start updating sd_lb_stats */
90001d67 7621 sds->total_running += sgs->sum_nr_running;
b72ff13c 7622 sds->total_load += sgs->group_load;
63b2ca30 7623 sds->total_capacity += sgs->group_capacity;
b72ff13c 7624
532cb4c4 7625 sg = sg->next;
bd939f45 7626 } while (sg != env->sd->groups);
0ec8aa00
PZ
7627
7628 if (env->sd->flags & SD_NUMA)
7629 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7630
7631 if (!env->sd->parent) {
7632 /* update overload indicator if we are at root domain */
7633 if (env->dst_rq->rd->overload != overload)
7634 env->dst_rq->rd->overload = overload;
7635 }
532cb4c4
MN
7636}
7637
532cb4c4
MN
7638/**
7639 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7640 * sched domain.
532cb4c4
MN
7641 *
7642 * This is primarily intended to used at the sibling level. Some
7643 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7644 * case of POWER7, it can move to lower SMT modes only when higher
7645 * threads are idle. When in lower SMT modes, the threads will
7646 * perform better since they share less core resources. Hence when we
7647 * have idle threads, we want them to be the higher ones.
7648 *
7649 * This packing function is run on idle threads. It checks to see if
7650 * the busiest CPU in this domain (core in the P7 case) has a higher
7651 * CPU number than the packing function is being run on. Here we are
7652 * assuming lower CPU number will be equivalent to lower a SMT thread
7653 * number.
7654 *
e69f6186 7655 * Return: 1 when packing is required and a task should be moved to
46123355 7656 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 7657 *
cd96891d 7658 * @env: The load balancing environment.
532cb4c4 7659 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7660 */
bd939f45 7661static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7662{
7663 int busiest_cpu;
7664
bd939f45 7665 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7666 return 0;
7667
1f621e02
SD
7668 if (env->idle == CPU_NOT_IDLE)
7669 return 0;
7670
532cb4c4
MN
7671 if (!sds->busiest)
7672 return 0;
7673
afe06efd
TC
7674 busiest_cpu = sds->busiest->asym_prefer_cpu;
7675 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7676 return 0;
7677
bd939f45 7678 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7679 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7680 SCHED_CAPACITY_SCALE);
bd939f45 7681
532cb4c4 7682 return 1;
1e3c88bd
PZ
7683}
7684
7685/**
7686 * fix_small_imbalance - Calculate the minor imbalance that exists
7687 * amongst the groups of a sched_domain, during
7688 * load balancing.
cd96891d 7689 * @env: The load balancing environment.
1e3c88bd 7690 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7691 */
bd939f45
PZ
7692static inline
7693void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7694{
63b2ca30 7695 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7696 unsigned int imbn = 2;
dd5feea1 7697 unsigned long scaled_busy_load_per_task;
56cf515b 7698 struct sg_lb_stats *local, *busiest;
1e3c88bd 7699
56cf515b
JK
7700 local = &sds->local_stat;
7701 busiest = &sds->busiest_stat;
1e3c88bd 7702
56cf515b
JK
7703 if (!local->sum_nr_running)
7704 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7705 else if (busiest->load_per_task > local->load_per_task)
7706 imbn = 1;
dd5feea1 7707
56cf515b 7708 scaled_busy_load_per_task =
ca8ce3d0 7709 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7710 busiest->group_capacity;
56cf515b 7711
3029ede3
VD
7712 if (busiest->avg_load + scaled_busy_load_per_task >=
7713 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7714 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7715 return;
7716 }
7717
7718 /*
7719 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7720 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7721 * moving them.
7722 */
7723
63b2ca30 7724 capa_now += busiest->group_capacity *
56cf515b 7725 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7726 capa_now += local->group_capacity *
56cf515b 7727 min(local->load_per_task, local->avg_load);
ca8ce3d0 7728 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7729
7730 /* Amount of load we'd subtract */
a2cd4260 7731 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7732 capa_move += busiest->group_capacity *
56cf515b 7733 min(busiest->load_per_task,
a2cd4260 7734 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7735 }
1e3c88bd
PZ
7736
7737 /* Amount of load we'd add */
63b2ca30 7738 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7739 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7740 tmp = (busiest->avg_load * busiest->group_capacity) /
7741 local->group_capacity;
56cf515b 7742 } else {
ca8ce3d0 7743 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7744 local->group_capacity;
56cf515b 7745 }
63b2ca30 7746 capa_move += local->group_capacity *
3ae11c90 7747 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7748 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7749
7750 /* Move if we gain throughput */
63b2ca30 7751 if (capa_move > capa_now)
56cf515b 7752 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7753}
7754
7755/**
7756 * calculate_imbalance - Calculate the amount of imbalance present within the
7757 * groups of a given sched_domain during load balance.
bd939f45 7758 * @env: load balance environment
1e3c88bd 7759 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7760 */
bd939f45 7761static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7762{
dd5feea1 7763 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7764 struct sg_lb_stats *local, *busiest;
7765
7766 local = &sds->local_stat;
56cf515b 7767 busiest = &sds->busiest_stat;
dd5feea1 7768
caeb178c 7769 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7770 /*
7771 * In the group_imb case we cannot rely on group-wide averages
7772 * to ensure cpu-load equilibrium, look at wider averages. XXX
7773 */
56cf515b
JK
7774 busiest->load_per_task =
7775 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7776 }
7777
1e3c88bd 7778 /*
885e542c
DE
7779 * Avg load of busiest sg can be less and avg load of local sg can
7780 * be greater than avg load across all sgs of sd because avg load
7781 * factors in sg capacity and sgs with smaller group_type are
7782 * skipped when updating the busiest sg:
1e3c88bd 7783 */
b1885550
VD
7784 if (busiest->avg_load <= sds->avg_load ||
7785 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7786 env->imbalance = 0;
7787 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7788 }
7789
9a5d9ba6
PZ
7790 /*
7791 * If there aren't any idle cpus, avoid creating some.
7792 */
7793 if (busiest->group_type == group_overloaded &&
7794 local->group_type == group_overloaded) {
1be0eb2a 7795 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7796 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7797 load_above_capacity -= busiest->group_capacity;
26656215 7798 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7799 load_above_capacity /= busiest->group_capacity;
7800 } else
ea67821b 7801 load_above_capacity = ~0UL;
dd5feea1
SS
7802 }
7803
7804 /*
7805 * We're trying to get all the cpus to the average_load, so we don't
7806 * want to push ourselves above the average load, nor do we wish to
7807 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7808 * we also don't want to reduce the group load below the group
7809 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7810 */
30ce5dab 7811 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7812
7813 /* How much load to actually move to equalise the imbalance */
56cf515b 7814 env->imbalance = min(
63b2ca30
NP
7815 max_pull * busiest->group_capacity,
7816 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7817 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7818
7819 /*
7820 * if *imbalance is less than the average load per runnable task
25985edc 7821 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7822 * a think about bumping its value to force at least one task to be
7823 * moved
7824 */
56cf515b 7825 if (env->imbalance < busiest->load_per_task)
bd939f45 7826 return fix_small_imbalance(env, sds);
1e3c88bd 7827}
fab47622 7828
1e3c88bd
PZ
7829/******* find_busiest_group() helpers end here *********************/
7830
7831/**
7832 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7833 * if there is an imbalance.
1e3c88bd
PZ
7834 *
7835 * Also calculates the amount of weighted load which should be moved
7836 * to restore balance.
7837 *
cd96891d 7838 * @env: The load balancing environment.
1e3c88bd 7839 *
e69f6186 7840 * Return: - The busiest group if imbalance exists.
1e3c88bd 7841 */
56cf515b 7842static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7843{
56cf515b 7844 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7845 struct sd_lb_stats sds;
7846
147c5fc2 7847 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7848
7849 /*
7850 * Compute the various statistics relavent for load balancing at
7851 * this level.
7852 */
23f0d209 7853 update_sd_lb_stats(env, &sds);
56cf515b
JK
7854 local = &sds.local_stat;
7855 busiest = &sds.busiest_stat;
1e3c88bd 7856
ea67821b 7857 /* ASYM feature bypasses nice load balance check */
1f621e02 7858 if (check_asym_packing(env, &sds))
532cb4c4
MN
7859 return sds.busiest;
7860
cc57aa8f 7861 /* There is no busy sibling group to pull tasks from */
56cf515b 7862 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7863 goto out_balanced;
7864
90001d67 7865 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
7866 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7867 / sds.total_capacity;
b0432d8f 7868
866ab43e
PZ
7869 /*
7870 * If the busiest group is imbalanced the below checks don't
30ce5dab 7871 * work because they assume all things are equal, which typically
866ab43e
PZ
7872 * isn't true due to cpus_allowed constraints and the like.
7873 */
caeb178c 7874 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7875 goto force_balance;
7876
cc57aa8f 7877 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7878 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7879 busiest->group_no_capacity)
fab47622
NR
7880 goto force_balance;
7881
cc57aa8f 7882 /*
9c58c79a 7883 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7884 * don't try and pull any tasks.
7885 */
56cf515b 7886 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7887 goto out_balanced;
7888
cc57aa8f
PZ
7889 /*
7890 * Don't pull any tasks if this group is already above the domain
7891 * average load.
7892 */
56cf515b 7893 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7894 goto out_balanced;
7895
bd939f45 7896 if (env->idle == CPU_IDLE) {
aae6d3dd 7897 /*
43f4d666
VG
7898 * This cpu is idle. If the busiest group is not overloaded
7899 * and there is no imbalance between this and busiest group
7900 * wrt idle cpus, it is balanced. The imbalance becomes
7901 * significant if the diff is greater than 1 otherwise we
7902 * might end up to just move the imbalance on another group
aae6d3dd 7903 */
43f4d666
VG
7904 if ((busiest->group_type != group_overloaded) &&
7905 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7906 goto out_balanced;
c186fafe
PZ
7907 } else {
7908 /*
7909 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7910 * imbalance_pct to be conservative.
7911 */
56cf515b
JK
7912 if (100 * busiest->avg_load <=
7913 env->sd->imbalance_pct * local->avg_load)
c186fafe 7914 goto out_balanced;
aae6d3dd 7915 }
1e3c88bd 7916
fab47622 7917force_balance:
1e3c88bd 7918 /* Looks like there is an imbalance. Compute it */
bd939f45 7919 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7920 return sds.busiest;
7921
7922out_balanced:
bd939f45 7923 env->imbalance = 0;
1e3c88bd
PZ
7924 return NULL;
7925}
7926
7927/*
7928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7929 */
bd939f45 7930static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7931 struct sched_group *group)
1e3c88bd
PZ
7932{
7933 struct rq *busiest = NULL, *rq;
ced549fa 7934 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7935 int i;
7936
ae4df9d6 7937 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 7938 unsigned long capacity, wl;
0ec8aa00
PZ
7939 enum fbq_type rt;
7940
7941 rq = cpu_rq(i);
7942 rt = fbq_classify_rq(rq);
1e3c88bd 7943
0ec8aa00
PZ
7944 /*
7945 * We classify groups/runqueues into three groups:
7946 * - regular: there are !numa tasks
7947 * - remote: there are numa tasks that run on the 'wrong' node
7948 * - all: there is no distinction
7949 *
7950 * In order to avoid migrating ideally placed numa tasks,
7951 * ignore those when there's better options.
7952 *
7953 * If we ignore the actual busiest queue to migrate another
7954 * task, the next balance pass can still reduce the busiest
7955 * queue by moving tasks around inside the node.
7956 *
7957 * If we cannot move enough load due to this classification
7958 * the next pass will adjust the group classification and
7959 * allow migration of more tasks.
7960 *
7961 * Both cases only affect the total convergence complexity.
7962 */
7963 if (rt > env->fbq_type)
7964 continue;
7965
ced549fa 7966 capacity = capacity_of(i);
9d5efe05 7967
c7132dd6 7968 wl = weighted_cpuload(rq);
1e3c88bd 7969
6e40f5bb
TG
7970 /*
7971 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7972 * which is not scaled with the cpu capacity.
6e40f5bb 7973 */
ea67821b
VG
7974
7975 if (rq->nr_running == 1 && wl > env->imbalance &&
7976 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7977 continue;
7978
6e40f5bb
TG
7979 /*
7980 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7981 * the weighted_cpuload() scaled with the cpu capacity, so
7982 * that the load can be moved away from the cpu that is
7983 * potentially running at a lower capacity.
95a79b80 7984 *
ced549fa 7985 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7986 * multiplication to rid ourselves of the division works out
ced549fa
NP
7987 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7988 * our previous maximum.
6e40f5bb 7989 */
ced549fa 7990 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7991 busiest_load = wl;
ced549fa 7992 busiest_capacity = capacity;
1e3c88bd
PZ
7993 busiest = rq;
7994 }
7995 }
7996
7997 return busiest;
7998}
7999
8000/*
8001 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8002 * so long as it is large enough.
8003 */
8004#define MAX_PINNED_INTERVAL 512
8005
bd939f45 8006static int need_active_balance(struct lb_env *env)
1af3ed3d 8007{
bd939f45
PZ
8008 struct sched_domain *sd = env->sd;
8009
8010 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8011
8012 /*
8013 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8014 * lower priority CPUs in order to pack all tasks in the
8015 * highest priority CPUs.
532cb4c4 8016 */
afe06efd
TC
8017 if ((sd->flags & SD_ASYM_PACKING) &&
8018 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8019 return 1;
1af3ed3d
PZ
8020 }
8021
1aaf90a4
VG
8022 /*
8023 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8024 * It's worth migrating the task if the src_cpu's capacity is reduced
8025 * because of other sched_class or IRQs if more capacity stays
8026 * available on dst_cpu.
8027 */
8028 if ((env->idle != CPU_NOT_IDLE) &&
8029 (env->src_rq->cfs.h_nr_running == 1)) {
8030 if ((check_cpu_capacity(env->src_rq, sd)) &&
8031 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8032 return 1;
8033 }
8034
1af3ed3d
PZ
8035 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8036}
8037
969c7921
TH
8038static int active_load_balance_cpu_stop(void *data);
8039
23f0d209
JK
8040static int should_we_balance(struct lb_env *env)
8041{
8042 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8043 int cpu, balance_cpu = -1;
8044
8045 /*
8046 * In the newly idle case, we will allow all the cpu's
8047 * to do the newly idle load balance.
8048 */
8049 if (env->idle == CPU_NEWLY_IDLE)
8050 return 1;
8051
23f0d209 8052 /* Try to find first idle cpu */
e5c14b1f 8053 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8054 if (!idle_cpu(cpu))
23f0d209
JK
8055 continue;
8056
8057 balance_cpu = cpu;
8058 break;
8059 }
8060
8061 if (balance_cpu == -1)
8062 balance_cpu = group_balance_cpu(sg);
8063
8064 /*
8065 * First idle cpu or the first cpu(busiest) in this sched group
8066 * is eligible for doing load balancing at this and above domains.
8067 */
b0cff9d8 8068 return balance_cpu == env->dst_cpu;
23f0d209
JK
8069}
8070
1e3c88bd
PZ
8071/*
8072 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8073 * tasks if there is an imbalance.
8074 */
8075static int load_balance(int this_cpu, struct rq *this_rq,
8076 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8077 int *continue_balancing)
1e3c88bd 8078{
88b8dac0 8079 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8080 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8081 struct sched_group *group;
1e3c88bd 8082 struct rq *busiest;
8a8c69c3 8083 struct rq_flags rf;
4ba29684 8084 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8085
8e45cb54
PZ
8086 struct lb_env env = {
8087 .sd = sd,
ddcdf6e7
PZ
8088 .dst_cpu = this_cpu,
8089 .dst_rq = this_rq,
ae4df9d6 8090 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8091 .idle = idle,
eb95308e 8092 .loop_break = sched_nr_migrate_break,
b9403130 8093 .cpus = cpus,
0ec8aa00 8094 .fbq_type = all,
163122b7 8095 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8096 };
8097
65a4433a 8098 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8099
ae92882e 8100 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8101
8102redo:
23f0d209
JK
8103 if (!should_we_balance(&env)) {
8104 *continue_balancing = 0;
1e3c88bd 8105 goto out_balanced;
23f0d209 8106 }
1e3c88bd 8107
23f0d209 8108 group = find_busiest_group(&env);
1e3c88bd 8109 if (!group) {
ae92882e 8110 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8111 goto out_balanced;
8112 }
8113
b9403130 8114 busiest = find_busiest_queue(&env, group);
1e3c88bd 8115 if (!busiest) {
ae92882e 8116 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8117 goto out_balanced;
8118 }
8119
78feefc5 8120 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8121
ae92882e 8122 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8123
1aaf90a4
VG
8124 env.src_cpu = busiest->cpu;
8125 env.src_rq = busiest;
8126
1e3c88bd
PZ
8127 ld_moved = 0;
8128 if (busiest->nr_running > 1) {
8129 /*
8130 * Attempt to move tasks. If find_busiest_group has found
8131 * an imbalance but busiest->nr_running <= 1, the group is
8132 * still unbalanced. ld_moved simply stays zero, so it is
8133 * correctly treated as an imbalance.
8134 */
8e45cb54 8135 env.flags |= LBF_ALL_PINNED;
c82513e5 8136 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8137
5d6523eb 8138more_balance:
8a8c69c3 8139 rq_lock_irqsave(busiest, &rf);
3bed5e21 8140 update_rq_clock(busiest);
88b8dac0
SV
8141
8142 /*
8143 * cur_ld_moved - load moved in current iteration
8144 * ld_moved - cumulative load moved across iterations
8145 */
163122b7 8146 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8147
8148 /*
163122b7
KT
8149 * We've detached some tasks from busiest_rq. Every
8150 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8151 * unlock busiest->lock, and we are able to be sure
8152 * that nobody can manipulate the tasks in parallel.
8153 * See task_rq_lock() family for the details.
1e3c88bd 8154 */
163122b7 8155
8a8c69c3 8156 rq_unlock(busiest, &rf);
163122b7
KT
8157
8158 if (cur_ld_moved) {
8159 attach_tasks(&env);
8160 ld_moved += cur_ld_moved;
8161 }
8162
8a8c69c3 8163 local_irq_restore(rf.flags);
88b8dac0 8164
f1cd0858
JK
8165 if (env.flags & LBF_NEED_BREAK) {
8166 env.flags &= ~LBF_NEED_BREAK;
8167 goto more_balance;
8168 }
8169
88b8dac0
SV
8170 /*
8171 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8172 * us and move them to an alternate dst_cpu in our sched_group
8173 * where they can run. The upper limit on how many times we
8174 * iterate on same src_cpu is dependent on number of cpus in our
8175 * sched_group.
8176 *
8177 * This changes load balance semantics a bit on who can move
8178 * load to a given_cpu. In addition to the given_cpu itself
8179 * (or a ilb_cpu acting on its behalf where given_cpu is
8180 * nohz-idle), we now have balance_cpu in a position to move
8181 * load to given_cpu. In rare situations, this may cause
8182 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8183 * _independently_ and at _same_ time to move some load to
8184 * given_cpu) causing exceess load to be moved to given_cpu.
8185 * This however should not happen so much in practice and
8186 * moreover subsequent load balance cycles should correct the
8187 * excess load moved.
8188 */
6263322c 8189 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8190
7aff2e3a
VD
8191 /* Prevent to re-select dst_cpu via env's cpus */
8192 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8193
78feefc5 8194 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8195 env.dst_cpu = env.new_dst_cpu;
6263322c 8196 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8197 env.loop = 0;
8198 env.loop_break = sched_nr_migrate_break;
e02e60c1 8199
88b8dac0
SV
8200 /*
8201 * Go back to "more_balance" rather than "redo" since we
8202 * need to continue with same src_cpu.
8203 */
8204 goto more_balance;
8205 }
1e3c88bd 8206
6263322c
PZ
8207 /*
8208 * We failed to reach balance because of affinity.
8209 */
8210 if (sd_parent) {
63b2ca30 8211 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8212
afdeee05 8213 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8214 *group_imbalance = 1;
6263322c
PZ
8215 }
8216
1e3c88bd 8217 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8218 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8219 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8220 /*
8221 * Attempting to continue load balancing at the current
8222 * sched_domain level only makes sense if there are
8223 * active CPUs remaining as possible busiest CPUs to
8224 * pull load from which are not contained within the
8225 * destination group that is receiving any migrated
8226 * load.
8227 */
8228 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8229 env.loop = 0;
8230 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8231 goto redo;
bbf18b19 8232 }
afdeee05 8233 goto out_all_pinned;
1e3c88bd
PZ
8234 }
8235 }
8236
8237 if (!ld_moved) {
ae92882e 8238 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8239 /*
8240 * Increment the failure counter only on periodic balance.
8241 * We do not want newidle balance, which can be very
8242 * frequent, pollute the failure counter causing
8243 * excessive cache_hot migrations and active balances.
8244 */
8245 if (idle != CPU_NEWLY_IDLE)
8246 sd->nr_balance_failed++;
1e3c88bd 8247
bd939f45 8248 if (need_active_balance(&env)) {
8a8c69c3
PZ
8249 unsigned long flags;
8250
1e3c88bd
PZ
8251 raw_spin_lock_irqsave(&busiest->lock, flags);
8252
969c7921
TH
8253 /* don't kick the active_load_balance_cpu_stop,
8254 * if the curr task on busiest cpu can't be
8255 * moved to this_cpu
1e3c88bd 8256 */
0c98d344 8257 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8258 raw_spin_unlock_irqrestore(&busiest->lock,
8259 flags);
8e45cb54 8260 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8261 goto out_one_pinned;
8262 }
8263
969c7921
TH
8264 /*
8265 * ->active_balance synchronizes accesses to
8266 * ->active_balance_work. Once set, it's cleared
8267 * only after active load balance is finished.
8268 */
1e3c88bd
PZ
8269 if (!busiest->active_balance) {
8270 busiest->active_balance = 1;
8271 busiest->push_cpu = this_cpu;
8272 active_balance = 1;
8273 }
8274 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8275
bd939f45 8276 if (active_balance) {
969c7921
TH
8277 stop_one_cpu_nowait(cpu_of(busiest),
8278 active_load_balance_cpu_stop, busiest,
8279 &busiest->active_balance_work);
bd939f45 8280 }
1e3c88bd 8281
d02c0711 8282 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8283 sd->nr_balance_failed = sd->cache_nice_tries+1;
8284 }
8285 } else
8286 sd->nr_balance_failed = 0;
8287
8288 if (likely(!active_balance)) {
8289 /* We were unbalanced, so reset the balancing interval */
8290 sd->balance_interval = sd->min_interval;
8291 } else {
8292 /*
8293 * If we've begun active balancing, start to back off. This
8294 * case may not be covered by the all_pinned logic if there
8295 * is only 1 task on the busy runqueue (because we don't call
163122b7 8296 * detach_tasks).
1e3c88bd
PZ
8297 */
8298 if (sd->balance_interval < sd->max_interval)
8299 sd->balance_interval *= 2;
8300 }
8301
1e3c88bd
PZ
8302 goto out;
8303
8304out_balanced:
afdeee05
VG
8305 /*
8306 * We reach balance although we may have faced some affinity
8307 * constraints. Clear the imbalance flag if it was set.
8308 */
8309 if (sd_parent) {
8310 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8311
8312 if (*group_imbalance)
8313 *group_imbalance = 0;
8314 }
8315
8316out_all_pinned:
8317 /*
8318 * We reach balance because all tasks are pinned at this level so
8319 * we can't migrate them. Let the imbalance flag set so parent level
8320 * can try to migrate them.
8321 */
ae92882e 8322 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8323
8324 sd->nr_balance_failed = 0;
8325
8326out_one_pinned:
8327 /* tune up the balancing interval */
8e45cb54 8328 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8329 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8330 (sd->balance_interval < sd->max_interval))
8331 sd->balance_interval *= 2;
8332
46e49b38 8333 ld_moved = 0;
1e3c88bd 8334out:
1e3c88bd
PZ
8335 return ld_moved;
8336}
8337
52a08ef1
JL
8338static inline unsigned long
8339get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8340{
8341 unsigned long interval = sd->balance_interval;
8342
8343 if (cpu_busy)
8344 interval *= sd->busy_factor;
8345
8346 /* scale ms to jiffies */
8347 interval = msecs_to_jiffies(interval);
8348 interval = clamp(interval, 1UL, max_load_balance_interval);
8349
8350 return interval;
8351}
8352
8353static inline void
31851a98 8354update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8355{
8356 unsigned long interval, next;
8357
31851a98
LY
8358 /* used by idle balance, so cpu_busy = 0 */
8359 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8360 next = sd->last_balance + interval;
8361
8362 if (time_after(*next_balance, next))
8363 *next_balance = next;
8364}
8365
1e3c88bd
PZ
8366/*
8367 * idle_balance is called by schedule() if this_cpu is about to become
8368 * idle. Attempts to pull tasks from other CPUs.
8369 */
46f69fa3 8370static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8371{
52a08ef1
JL
8372 unsigned long next_balance = jiffies + HZ;
8373 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8374 struct sched_domain *sd;
8375 int pulled_task = 0;
9bd721c5 8376 u64 curr_cost = 0;
1e3c88bd 8377
6e83125c
PZ
8378 /*
8379 * We must set idle_stamp _before_ calling idle_balance(), such that we
8380 * measure the duration of idle_balance() as idle time.
8381 */
8382 this_rq->idle_stamp = rq_clock(this_rq);
8383
2800486e
PZ
8384 /*
8385 * Do not pull tasks towards !active CPUs...
8386 */
8387 if (!cpu_active(this_cpu))
8388 return 0;
8389
46f69fa3
MF
8390 /*
8391 * This is OK, because current is on_cpu, which avoids it being picked
8392 * for load-balance and preemption/IRQs are still disabled avoiding
8393 * further scheduler activity on it and we're being very careful to
8394 * re-start the picking loop.
8395 */
8396 rq_unpin_lock(this_rq, rf);
8397
4486edd1
TC
8398 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8399 !this_rq->rd->overload) {
52a08ef1
JL
8400 rcu_read_lock();
8401 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8402 if (sd)
31851a98 8403 update_next_balance(sd, &next_balance);
52a08ef1
JL
8404 rcu_read_unlock();
8405
6e83125c 8406 goto out;
52a08ef1 8407 }
1e3c88bd 8408
f492e12e
PZ
8409 raw_spin_unlock(&this_rq->lock);
8410
48a16753 8411 update_blocked_averages(this_cpu);
dce840a0 8412 rcu_read_lock();
1e3c88bd 8413 for_each_domain(this_cpu, sd) {
23f0d209 8414 int continue_balancing = 1;
9bd721c5 8415 u64 t0, domain_cost;
1e3c88bd
PZ
8416
8417 if (!(sd->flags & SD_LOAD_BALANCE))
8418 continue;
8419
52a08ef1 8420 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8421 update_next_balance(sd, &next_balance);
9bd721c5 8422 break;
52a08ef1 8423 }
9bd721c5 8424
f492e12e 8425 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8426 t0 = sched_clock_cpu(this_cpu);
8427
f492e12e 8428 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8429 sd, CPU_NEWLY_IDLE,
8430 &continue_balancing);
9bd721c5
JL
8431
8432 domain_cost = sched_clock_cpu(this_cpu) - t0;
8433 if (domain_cost > sd->max_newidle_lb_cost)
8434 sd->max_newidle_lb_cost = domain_cost;
8435
8436 curr_cost += domain_cost;
f492e12e 8437 }
1e3c88bd 8438
31851a98 8439 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8440
8441 /*
8442 * Stop searching for tasks to pull if there are
8443 * now runnable tasks on this rq.
8444 */
8445 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8446 break;
1e3c88bd 8447 }
dce840a0 8448 rcu_read_unlock();
f492e12e
PZ
8449
8450 raw_spin_lock(&this_rq->lock);
8451
0e5b5337
JL
8452 if (curr_cost > this_rq->max_idle_balance_cost)
8453 this_rq->max_idle_balance_cost = curr_cost;
8454
e5fc6611 8455 /*
0e5b5337
JL
8456 * While browsing the domains, we released the rq lock, a task could
8457 * have been enqueued in the meantime. Since we're not going idle,
8458 * pretend we pulled a task.
e5fc6611 8459 */
0e5b5337 8460 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8461 pulled_task = 1;
e5fc6611 8462
52a08ef1
JL
8463out:
8464 /* Move the next balance forward */
8465 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8466 this_rq->next_balance = next_balance;
9bd721c5 8467
e4aa358b 8468 /* Is there a task of a high priority class? */
46383648 8469 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8470 pulled_task = -1;
8471
38c6ade2 8472 if (pulled_task)
6e83125c
PZ
8473 this_rq->idle_stamp = 0;
8474
46f69fa3
MF
8475 rq_repin_lock(this_rq, rf);
8476
3c4017c1 8477 return pulled_task;
1e3c88bd
PZ
8478}
8479
8480/*
969c7921
TH
8481 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8482 * running tasks off the busiest CPU onto idle CPUs. It requires at
8483 * least 1 task to be running on each physical CPU where possible, and
8484 * avoids physical / logical imbalances.
1e3c88bd 8485 */
969c7921 8486static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8487{
969c7921
TH
8488 struct rq *busiest_rq = data;
8489 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8490 int target_cpu = busiest_rq->push_cpu;
969c7921 8491 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8492 struct sched_domain *sd;
e5673f28 8493 struct task_struct *p = NULL;
8a8c69c3 8494 struct rq_flags rf;
969c7921 8495
8a8c69c3 8496 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8497 /*
8498 * Between queueing the stop-work and running it is a hole in which
8499 * CPUs can become inactive. We should not move tasks from or to
8500 * inactive CPUs.
8501 */
8502 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8503 goto out_unlock;
969c7921
TH
8504
8505 /* make sure the requested cpu hasn't gone down in the meantime */
8506 if (unlikely(busiest_cpu != smp_processor_id() ||
8507 !busiest_rq->active_balance))
8508 goto out_unlock;
1e3c88bd
PZ
8509
8510 /* Is there any task to move? */
8511 if (busiest_rq->nr_running <= 1)
969c7921 8512 goto out_unlock;
1e3c88bd
PZ
8513
8514 /*
8515 * This condition is "impossible", if it occurs
8516 * we need to fix it. Originally reported by
8517 * Bjorn Helgaas on a 128-cpu setup.
8518 */
8519 BUG_ON(busiest_rq == target_rq);
8520
1e3c88bd 8521 /* Search for an sd spanning us and the target CPU. */
dce840a0 8522 rcu_read_lock();
1e3c88bd
PZ
8523 for_each_domain(target_cpu, sd) {
8524 if ((sd->flags & SD_LOAD_BALANCE) &&
8525 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8526 break;
8527 }
8528
8529 if (likely(sd)) {
8e45cb54
PZ
8530 struct lb_env env = {
8531 .sd = sd,
ddcdf6e7
PZ
8532 .dst_cpu = target_cpu,
8533 .dst_rq = target_rq,
8534 .src_cpu = busiest_rq->cpu,
8535 .src_rq = busiest_rq,
8e45cb54 8536 .idle = CPU_IDLE,
65a4433a
JH
8537 /*
8538 * can_migrate_task() doesn't need to compute new_dst_cpu
8539 * for active balancing. Since we have CPU_IDLE, but no
8540 * @dst_grpmask we need to make that test go away with lying
8541 * about DST_PINNED.
8542 */
8543 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8544 };
8545
ae92882e 8546 schedstat_inc(sd->alb_count);
3bed5e21 8547 update_rq_clock(busiest_rq);
1e3c88bd 8548
e5673f28 8549 p = detach_one_task(&env);
d02c0711 8550 if (p) {
ae92882e 8551 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8552 /* Active balancing done, reset the failure counter. */
8553 sd->nr_balance_failed = 0;
8554 } else {
ae92882e 8555 schedstat_inc(sd->alb_failed);
d02c0711 8556 }
1e3c88bd 8557 }
dce840a0 8558 rcu_read_unlock();
969c7921
TH
8559out_unlock:
8560 busiest_rq->active_balance = 0;
8a8c69c3 8561 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8562
8563 if (p)
8564 attach_one_task(target_rq, p);
8565
8566 local_irq_enable();
8567
969c7921 8568 return 0;
1e3c88bd
PZ
8569}
8570
d987fc7f
MG
8571static inline int on_null_domain(struct rq *rq)
8572{
8573 return unlikely(!rcu_dereference_sched(rq->sd));
8574}
8575
3451d024 8576#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8577/*
8578 * idle load balancing details
83cd4fe2
VP
8579 * - When one of the busy CPUs notice that there may be an idle rebalancing
8580 * needed, they will kick the idle load balancer, which then does idle
8581 * load balancing for all the idle CPUs.
8582 */
1e3c88bd 8583static struct {
83cd4fe2 8584 cpumask_var_t idle_cpus_mask;
0b005cf5 8585 atomic_t nr_cpus;
83cd4fe2
VP
8586 unsigned long next_balance; /* in jiffy units */
8587} nohz ____cacheline_aligned;
1e3c88bd 8588
3dd0337d 8589static inline int find_new_ilb(void)
1e3c88bd 8590{
0b005cf5 8591 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8592
786d6dc7
SS
8593 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8594 return ilb;
8595
8596 return nr_cpu_ids;
1e3c88bd 8597}
1e3c88bd 8598
83cd4fe2
VP
8599/*
8600 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8601 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8602 * CPU (if there is one).
8603 */
0aeeeeba 8604static void nohz_balancer_kick(void)
83cd4fe2
VP
8605{
8606 int ilb_cpu;
8607
8608 nohz.next_balance++;
8609
3dd0337d 8610 ilb_cpu = find_new_ilb();
83cd4fe2 8611
0b005cf5
SS
8612 if (ilb_cpu >= nr_cpu_ids)
8613 return;
83cd4fe2 8614
cd490c5b 8615 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8616 return;
8617 /*
8618 * Use smp_send_reschedule() instead of resched_cpu().
8619 * This way we generate a sched IPI on the target cpu which
8620 * is idle. And the softirq performing nohz idle load balance
8621 * will be run before returning from the IPI.
8622 */
8623 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8624 return;
8625}
8626
20a5c8cc 8627void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8628{
8629 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8630 /*
8631 * Completely isolated CPUs don't ever set, so we must test.
8632 */
8633 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8634 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8635 atomic_dec(&nohz.nr_cpus);
8636 }
71325960
SS
8637 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8638 }
8639}
8640
69e1e811
SS
8641static inline void set_cpu_sd_state_busy(void)
8642{
8643 struct sched_domain *sd;
37dc6b50 8644 int cpu = smp_processor_id();
69e1e811 8645
69e1e811 8646 rcu_read_lock();
0e369d75 8647 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8648
8649 if (!sd || !sd->nohz_idle)
8650 goto unlock;
8651 sd->nohz_idle = 0;
8652
0e369d75 8653 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8654unlock:
69e1e811
SS
8655 rcu_read_unlock();
8656}
8657
8658void set_cpu_sd_state_idle(void)
8659{
8660 struct sched_domain *sd;
37dc6b50 8661 int cpu = smp_processor_id();
69e1e811 8662
69e1e811 8663 rcu_read_lock();
0e369d75 8664 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8665
8666 if (!sd || sd->nohz_idle)
8667 goto unlock;
8668 sd->nohz_idle = 1;
8669
0e369d75 8670 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8671unlock:
69e1e811
SS
8672 rcu_read_unlock();
8673}
8674
1e3c88bd 8675/*
c1cc017c 8676 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8677 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8678 */
c1cc017c 8679void nohz_balance_enter_idle(int cpu)
1e3c88bd 8680{
71325960
SS
8681 /*
8682 * If this cpu is going down, then nothing needs to be done.
8683 */
8684 if (!cpu_active(cpu))
8685 return;
8686
387bc8b5
FW
8687 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8688 if (!is_housekeeping_cpu(cpu))
8689 return;
8690
c1cc017c
AS
8691 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8692 return;
1e3c88bd 8693
d987fc7f
MG
8694 /*
8695 * If we're a completely isolated CPU, we don't play.
8696 */
8697 if (on_null_domain(cpu_rq(cpu)))
8698 return;
8699
c1cc017c
AS
8700 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8701 atomic_inc(&nohz.nr_cpus);
8702 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8703}
8704#endif
8705
8706static DEFINE_SPINLOCK(balancing);
8707
49c022e6
PZ
8708/*
8709 * Scale the max load_balance interval with the number of CPUs in the system.
8710 * This trades load-balance latency on larger machines for less cross talk.
8711 */
029632fb 8712void update_max_interval(void)
49c022e6
PZ
8713{
8714 max_load_balance_interval = HZ*num_online_cpus()/10;
8715}
8716
1e3c88bd
PZ
8717/*
8718 * It checks each scheduling domain to see if it is due to be balanced,
8719 * and initiates a balancing operation if so.
8720 *
b9b0853a 8721 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8722 */
f7ed0a89 8723static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8724{
23f0d209 8725 int continue_balancing = 1;
f7ed0a89 8726 int cpu = rq->cpu;
1e3c88bd 8727 unsigned long interval;
04f733b4 8728 struct sched_domain *sd;
1e3c88bd
PZ
8729 /* Earliest time when we have to do rebalance again */
8730 unsigned long next_balance = jiffies + 60*HZ;
8731 int update_next_balance = 0;
f48627e6
JL
8732 int need_serialize, need_decay = 0;
8733 u64 max_cost = 0;
1e3c88bd 8734
48a16753 8735 update_blocked_averages(cpu);
2069dd75 8736
dce840a0 8737 rcu_read_lock();
1e3c88bd 8738 for_each_domain(cpu, sd) {
f48627e6
JL
8739 /*
8740 * Decay the newidle max times here because this is a regular
8741 * visit to all the domains. Decay ~1% per second.
8742 */
8743 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8744 sd->max_newidle_lb_cost =
8745 (sd->max_newidle_lb_cost * 253) / 256;
8746 sd->next_decay_max_lb_cost = jiffies + HZ;
8747 need_decay = 1;
8748 }
8749 max_cost += sd->max_newidle_lb_cost;
8750
1e3c88bd
PZ
8751 if (!(sd->flags & SD_LOAD_BALANCE))
8752 continue;
8753
f48627e6
JL
8754 /*
8755 * Stop the load balance at this level. There is another
8756 * CPU in our sched group which is doing load balancing more
8757 * actively.
8758 */
8759 if (!continue_balancing) {
8760 if (need_decay)
8761 continue;
8762 break;
8763 }
8764
52a08ef1 8765 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8766
8767 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8768 if (need_serialize) {
8769 if (!spin_trylock(&balancing))
8770 goto out;
8771 }
8772
8773 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8774 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8775 /*
6263322c 8776 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8777 * env->dst_cpu, so we can't know our idle
8778 * state even if we migrated tasks. Update it.
1e3c88bd 8779 */
de5eb2dd 8780 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8781 }
8782 sd->last_balance = jiffies;
52a08ef1 8783 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8784 }
8785 if (need_serialize)
8786 spin_unlock(&balancing);
8787out:
8788 if (time_after(next_balance, sd->last_balance + interval)) {
8789 next_balance = sd->last_balance + interval;
8790 update_next_balance = 1;
8791 }
f48627e6
JL
8792 }
8793 if (need_decay) {
1e3c88bd 8794 /*
f48627e6
JL
8795 * Ensure the rq-wide value also decays but keep it at a
8796 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8797 */
f48627e6
JL
8798 rq->max_idle_balance_cost =
8799 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8800 }
dce840a0 8801 rcu_read_unlock();
1e3c88bd
PZ
8802
8803 /*
8804 * next_balance will be updated only when there is a need.
8805 * When the cpu is attached to null domain for ex, it will not be
8806 * updated.
8807 */
c5afb6a8 8808 if (likely(update_next_balance)) {
1e3c88bd 8809 rq->next_balance = next_balance;
c5afb6a8
VG
8810
8811#ifdef CONFIG_NO_HZ_COMMON
8812 /*
8813 * If this CPU has been elected to perform the nohz idle
8814 * balance. Other idle CPUs have already rebalanced with
8815 * nohz_idle_balance() and nohz.next_balance has been
8816 * updated accordingly. This CPU is now running the idle load
8817 * balance for itself and we need to update the
8818 * nohz.next_balance accordingly.
8819 */
8820 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8821 nohz.next_balance = rq->next_balance;
8822#endif
8823 }
1e3c88bd
PZ
8824}
8825
3451d024 8826#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8827/*
3451d024 8828 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8829 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8830 */
208cb16b 8831static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8832{
208cb16b 8833 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8834 struct rq *rq;
8835 int balance_cpu;
c5afb6a8
VG
8836 /* Earliest time when we have to do rebalance again */
8837 unsigned long next_balance = jiffies + 60*HZ;
8838 int update_next_balance = 0;
83cd4fe2 8839
1c792db7
SS
8840 if (idle != CPU_IDLE ||
8841 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8842 goto end;
83cd4fe2
VP
8843
8844 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8845 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8846 continue;
8847
8848 /*
8849 * If this cpu gets work to do, stop the load balancing
8850 * work being done for other cpus. Next load
8851 * balancing owner will pick it up.
8852 */
1c792db7 8853 if (need_resched())
83cd4fe2 8854 break;
83cd4fe2 8855
5ed4f1d9
VG
8856 rq = cpu_rq(balance_cpu);
8857
ed61bbc6
TC
8858 /*
8859 * If time for next balance is due,
8860 * do the balance.
8861 */
8862 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8863 struct rq_flags rf;
8864
8865 rq_lock_irq(rq, &rf);
ed61bbc6 8866 update_rq_clock(rq);
cee1afce 8867 cpu_load_update_idle(rq);
8a8c69c3
PZ
8868 rq_unlock_irq(rq, &rf);
8869
ed61bbc6
TC
8870 rebalance_domains(rq, CPU_IDLE);
8871 }
83cd4fe2 8872
c5afb6a8
VG
8873 if (time_after(next_balance, rq->next_balance)) {
8874 next_balance = rq->next_balance;
8875 update_next_balance = 1;
8876 }
83cd4fe2 8877 }
c5afb6a8
VG
8878
8879 /*
8880 * next_balance will be updated only when there is a need.
8881 * When the CPU is attached to null domain for ex, it will not be
8882 * updated.
8883 */
8884 if (likely(update_next_balance))
8885 nohz.next_balance = next_balance;
1c792db7
SS
8886end:
8887 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8888}
8889
8890/*
0b005cf5 8891 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8892 * of an idle cpu in the system.
0b005cf5 8893 * - This rq has more than one task.
1aaf90a4
VG
8894 * - This rq has at least one CFS task and the capacity of the CPU is
8895 * significantly reduced because of RT tasks or IRQs.
8896 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8897 * multiple busy cpu.
0b005cf5
SS
8898 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8899 * domain span are idle.
83cd4fe2 8900 */
1aaf90a4 8901static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8902{
8903 unsigned long now = jiffies;
0e369d75 8904 struct sched_domain_shared *sds;
0b005cf5 8905 struct sched_domain *sd;
afe06efd 8906 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8907 bool kick = false;
83cd4fe2 8908
4a725627 8909 if (unlikely(rq->idle_balance))
1aaf90a4 8910 return false;
83cd4fe2 8911
1c792db7
SS
8912 /*
8913 * We may be recently in ticked or tickless idle mode. At the first
8914 * busy tick after returning from idle, we will update the busy stats.
8915 */
69e1e811 8916 set_cpu_sd_state_busy();
c1cc017c 8917 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8918
8919 /*
8920 * None are in tickless mode and hence no need for NOHZ idle load
8921 * balancing.
8922 */
8923 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8924 return false;
1c792db7
SS
8925
8926 if (time_before(now, nohz.next_balance))
1aaf90a4 8927 return false;
83cd4fe2 8928
0b005cf5 8929 if (rq->nr_running >= 2)
1aaf90a4 8930 return true;
83cd4fe2 8931
067491b7 8932 rcu_read_lock();
0e369d75
PZ
8933 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8934 if (sds) {
8935 /*
8936 * XXX: write a coherent comment on why we do this.
8937 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8938 */
8939 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8940 if (nr_busy > 1) {
8941 kick = true;
8942 goto unlock;
8943 }
8944
83cd4fe2 8945 }
37dc6b50 8946
1aaf90a4
VG
8947 sd = rcu_dereference(rq->sd);
8948 if (sd) {
8949 if ((rq->cfs.h_nr_running >= 1) &&
8950 check_cpu_capacity(rq, sd)) {
8951 kick = true;
8952 goto unlock;
8953 }
8954 }
37dc6b50 8955
1aaf90a4 8956 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8957 if (sd) {
8958 for_each_cpu(i, sched_domain_span(sd)) {
8959 if (i == cpu ||
8960 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8961 continue;
067491b7 8962
afe06efd
TC
8963 if (sched_asym_prefer(i, cpu)) {
8964 kick = true;
8965 goto unlock;
8966 }
8967 }
8968 }
1aaf90a4 8969unlock:
067491b7 8970 rcu_read_unlock();
1aaf90a4 8971 return kick;
83cd4fe2
VP
8972}
8973#else
208cb16b 8974static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8975#endif
8976
8977/*
8978 * run_rebalance_domains is triggered when needed from the scheduler tick.
8979 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8980 */
0766f788 8981static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8982{
208cb16b 8983 struct rq *this_rq = this_rq();
6eb57e0d 8984 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8985 CPU_IDLE : CPU_NOT_IDLE;
8986
1e3c88bd 8987 /*
83cd4fe2 8988 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8989 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8990 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8991 * give the idle cpus a chance to load balance. Else we may
8992 * load balance only within the local sched_domain hierarchy
8993 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8994 */
208cb16b 8995 nohz_idle_balance(this_rq, idle);
d4573c3e 8996 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8997}
8998
1e3c88bd
PZ
8999/*
9000 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9001 */
7caff66f 9002void trigger_load_balance(struct rq *rq)
1e3c88bd 9003{
1e3c88bd 9004 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9005 if (unlikely(on_null_domain(rq)))
9006 return;
9007
9008 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9009 raise_softirq(SCHED_SOFTIRQ);
3451d024 9010#ifdef CONFIG_NO_HZ_COMMON
c726099e 9011 if (nohz_kick_needed(rq))
0aeeeeba 9012 nohz_balancer_kick();
83cd4fe2 9013#endif
1e3c88bd
PZ
9014}
9015
0bcdcf28
CE
9016static void rq_online_fair(struct rq *rq)
9017{
9018 update_sysctl();
0e59bdae
KT
9019
9020 update_runtime_enabled(rq);
0bcdcf28
CE
9021}
9022
9023static void rq_offline_fair(struct rq *rq)
9024{
9025 update_sysctl();
a4c96ae3
PB
9026
9027 /* Ensure any throttled groups are reachable by pick_next_task */
9028 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9029}
9030
55e12e5e 9031#endif /* CONFIG_SMP */
e1d1484f 9032
bf0f6f24
IM
9033/*
9034 * scheduler tick hitting a task of our scheduling class:
9035 */
8f4d37ec 9036static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9037{
9038 struct cfs_rq *cfs_rq;
9039 struct sched_entity *se = &curr->se;
9040
9041 for_each_sched_entity(se) {
9042 cfs_rq = cfs_rq_of(se);
8f4d37ec 9043 entity_tick(cfs_rq, se, queued);
bf0f6f24 9044 }
18bf2805 9045
b52da86e 9046 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9047 task_tick_numa(rq, curr);
bf0f6f24
IM
9048}
9049
9050/*
cd29fe6f
PZ
9051 * called on fork with the child task as argument from the parent's context
9052 * - child not yet on the tasklist
9053 * - preemption disabled
bf0f6f24 9054 */
cd29fe6f 9055static void task_fork_fair(struct task_struct *p)
bf0f6f24 9056{
4fc420c9
DN
9057 struct cfs_rq *cfs_rq;
9058 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9059 struct rq *rq = this_rq();
8a8c69c3 9060 struct rq_flags rf;
bf0f6f24 9061
8a8c69c3 9062 rq_lock(rq, &rf);
861d034e
PZ
9063 update_rq_clock(rq);
9064
4fc420c9
DN
9065 cfs_rq = task_cfs_rq(current);
9066 curr = cfs_rq->curr;
e210bffd
PZ
9067 if (curr) {
9068 update_curr(cfs_rq);
b5d9d734 9069 se->vruntime = curr->vruntime;
e210bffd 9070 }
aeb73b04 9071 place_entity(cfs_rq, se, 1);
4d78e7b6 9072
cd29fe6f 9073 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9074 /*
edcb60a3
IM
9075 * Upon rescheduling, sched_class::put_prev_task() will place
9076 * 'current' within the tree based on its new key value.
9077 */
4d78e7b6 9078 swap(curr->vruntime, se->vruntime);
8875125e 9079 resched_curr(rq);
4d78e7b6 9080 }
bf0f6f24 9081
88ec22d3 9082 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9083 rq_unlock(rq, &rf);
bf0f6f24
IM
9084}
9085
cb469845
SR
9086/*
9087 * Priority of the task has changed. Check to see if we preempt
9088 * the current task.
9089 */
da7a735e
PZ
9090static void
9091prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9092{
da0c1e65 9093 if (!task_on_rq_queued(p))
da7a735e
PZ
9094 return;
9095
cb469845
SR
9096 /*
9097 * Reschedule if we are currently running on this runqueue and
9098 * our priority decreased, or if we are not currently running on
9099 * this runqueue and our priority is higher than the current's
9100 */
da7a735e 9101 if (rq->curr == p) {
cb469845 9102 if (p->prio > oldprio)
8875125e 9103 resched_curr(rq);
cb469845 9104 } else
15afe09b 9105 check_preempt_curr(rq, p, 0);
cb469845
SR
9106}
9107
daa59407 9108static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9109{
9110 struct sched_entity *se = &p->se;
da7a735e
PZ
9111
9112 /*
daa59407
BP
9113 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9114 * the dequeue_entity(.flags=0) will already have normalized the
9115 * vruntime.
9116 */
9117 if (p->on_rq)
9118 return true;
9119
9120 /*
9121 * When !on_rq, vruntime of the task has usually NOT been normalized.
9122 * But there are some cases where it has already been normalized:
da7a735e 9123 *
daa59407
BP
9124 * - A forked child which is waiting for being woken up by
9125 * wake_up_new_task().
9126 * - A task which has been woken up by try_to_wake_up() and
9127 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9128 */
daa59407
BP
9129 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9130 return true;
9131
9132 return false;
9133}
9134
09a43ace
VG
9135#ifdef CONFIG_FAIR_GROUP_SCHED
9136/*
9137 * Propagate the changes of the sched_entity across the tg tree to make it
9138 * visible to the root
9139 */
9140static void propagate_entity_cfs_rq(struct sched_entity *se)
9141{
9142 struct cfs_rq *cfs_rq;
9143
9144 /* Start to propagate at parent */
9145 se = se->parent;
9146
9147 for_each_sched_entity(se) {
9148 cfs_rq = cfs_rq_of(se);
9149
9150 if (cfs_rq_throttled(cfs_rq))
9151 break;
9152
9153 update_load_avg(se, UPDATE_TG);
9154 }
9155}
9156#else
9157static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9158#endif
9159
df217913 9160static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9161{
daa59407
BP
9162 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9163
9d89c257 9164 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9165 update_load_avg(se, 0);
a05e8c51 9166 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9167 update_tg_load_avg(cfs_rq, false);
09a43ace 9168 propagate_entity_cfs_rq(se);
da7a735e
PZ
9169}
9170
df217913 9171static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9172{
daa59407 9173 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9174
9175#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9176 /*
9177 * Since the real-depth could have been changed (only FAIR
9178 * class maintain depth value), reset depth properly.
9179 */
9180 se->depth = se->parent ? se->parent->depth + 1 : 0;
9181#endif
7855a35a 9182
df217913 9183 /* Synchronize entity with its cfs_rq */
d31b1a66 9184 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9185 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9186 update_tg_load_avg(cfs_rq, false);
09a43ace 9187 propagate_entity_cfs_rq(se);
df217913
VG
9188}
9189
9190static void detach_task_cfs_rq(struct task_struct *p)
9191{
9192 struct sched_entity *se = &p->se;
9193 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9194
9195 if (!vruntime_normalized(p)) {
9196 /*
9197 * Fix up our vruntime so that the current sleep doesn't
9198 * cause 'unlimited' sleep bonus.
9199 */
9200 place_entity(cfs_rq, se, 0);
9201 se->vruntime -= cfs_rq->min_vruntime;
9202 }
9203
9204 detach_entity_cfs_rq(se);
9205}
9206
9207static void attach_task_cfs_rq(struct task_struct *p)
9208{
9209 struct sched_entity *se = &p->se;
9210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9211
9212 attach_entity_cfs_rq(se);
daa59407
BP
9213
9214 if (!vruntime_normalized(p))
9215 se->vruntime += cfs_rq->min_vruntime;
9216}
6efdb105 9217
daa59407
BP
9218static void switched_from_fair(struct rq *rq, struct task_struct *p)
9219{
9220 detach_task_cfs_rq(p);
9221}
9222
9223static void switched_to_fair(struct rq *rq, struct task_struct *p)
9224{
9225 attach_task_cfs_rq(p);
7855a35a 9226
daa59407 9227 if (task_on_rq_queued(p)) {
7855a35a 9228 /*
daa59407
BP
9229 * We were most likely switched from sched_rt, so
9230 * kick off the schedule if running, otherwise just see
9231 * if we can still preempt the current task.
7855a35a 9232 */
daa59407
BP
9233 if (rq->curr == p)
9234 resched_curr(rq);
9235 else
9236 check_preempt_curr(rq, p, 0);
7855a35a 9237 }
cb469845
SR
9238}
9239
83b699ed
SV
9240/* Account for a task changing its policy or group.
9241 *
9242 * This routine is mostly called to set cfs_rq->curr field when a task
9243 * migrates between groups/classes.
9244 */
9245static void set_curr_task_fair(struct rq *rq)
9246{
9247 struct sched_entity *se = &rq->curr->se;
9248
ec12cb7f
PT
9249 for_each_sched_entity(se) {
9250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9251
9252 set_next_entity(cfs_rq, se);
9253 /* ensure bandwidth has been allocated on our new cfs_rq */
9254 account_cfs_rq_runtime(cfs_rq, 0);
9255 }
83b699ed
SV
9256}
9257
029632fb
PZ
9258void init_cfs_rq(struct cfs_rq *cfs_rq)
9259{
bfb06889 9260 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9261 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9262#ifndef CONFIG_64BIT
9263 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9264#endif
141965c7 9265#ifdef CONFIG_SMP
09a43ace
VG
9266#ifdef CONFIG_FAIR_GROUP_SCHED
9267 cfs_rq->propagate_avg = 0;
9268#endif
9d89c257
YD
9269 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9270 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9271#endif
029632fb
PZ
9272}
9273
810b3817 9274#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9275static void task_set_group_fair(struct task_struct *p)
9276{
9277 struct sched_entity *se = &p->se;
9278
9279 set_task_rq(p, task_cpu(p));
9280 se->depth = se->parent ? se->parent->depth + 1 : 0;
9281}
9282
bc54da21 9283static void task_move_group_fair(struct task_struct *p)
810b3817 9284{
daa59407 9285 detach_task_cfs_rq(p);
b2b5ce02 9286 set_task_rq(p, task_cpu(p));
6efdb105
BP
9287
9288#ifdef CONFIG_SMP
9289 /* Tell se's cfs_rq has been changed -- migrated */
9290 p->se.avg.last_update_time = 0;
9291#endif
daa59407 9292 attach_task_cfs_rq(p);
810b3817 9293}
029632fb 9294
ea86cb4b
VG
9295static void task_change_group_fair(struct task_struct *p, int type)
9296{
9297 switch (type) {
9298 case TASK_SET_GROUP:
9299 task_set_group_fair(p);
9300 break;
9301
9302 case TASK_MOVE_GROUP:
9303 task_move_group_fair(p);
9304 break;
9305 }
9306}
9307
029632fb
PZ
9308void free_fair_sched_group(struct task_group *tg)
9309{
9310 int i;
9311
9312 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9313
9314 for_each_possible_cpu(i) {
9315 if (tg->cfs_rq)
9316 kfree(tg->cfs_rq[i]);
6fe1f348 9317 if (tg->se)
029632fb
PZ
9318 kfree(tg->se[i]);
9319 }
9320
9321 kfree(tg->cfs_rq);
9322 kfree(tg->se);
9323}
9324
9325int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9326{
029632fb 9327 struct sched_entity *se;
b7fa30c9 9328 struct cfs_rq *cfs_rq;
029632fb
PZ
9329 int i;
9330
9331 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9332 if (!tg->cfs_rq)
9333 goto err;
9334 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9335 if (!tg->se)
9336 goto err;
9337
9338 tg->shares = NICE_0_LOAD;
9339
9340 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9341
9342 for_each_possible_cpu(i) {
9343 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9344 GFP_KERNEL, cpu_to_node(i));
9345 if (!cfs_rq)
9346 goto err;
9347
9348 se = kzalloc_node(sizeof(struct sched_entity),
9349 GFP_KERNEL, cpu_to_node(i));
9350 if (!se)
9351 goto err_free_rq;
9352
9353 init_cfs_rq(cfs_rq);
9354 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9355 init_entity_runnable_average(se);
029632fb
PZ
9356 }
9357
9358 return 1;
9359
9360err_free_rq:
9361 kfree(cfs_rq);
9362err:
9363 return 0;
9364}
9365
8663e24d
PZ
9366void online_fair_sched_group(struct task_group *tg)
9367{
9368 struct sched_entity *se;
9369 struct rq *rq;
9370 int i;
9371
9372 for_each_possible_cpu(i) {
9373 rq = cpu_rq(i);
9374 se = tg->se[i];
9375
9376 raw_spin_lock_irq(&rq->lock);
4126bad6 9377 update_rq_clock(rq);
d0326691 9378 attach_entity_cfs_rq(se);
55e16d30 9379 sync_throttle(tg, i);
8663e24d
PZ
9380 raw_spin_unlock_irq(&rq->lock);
9381 }
9382}
9383
6fe1f348 9384void unregister_fair_sched_group(struct task_group *tg)
029632fb 9385{
029632fb 9386 unsigned long flags;
6fe1f348
PZ
9387 struct rq *rq;
9388 int cpu;
029632fb 9389
6fe1f348
PZ
9390 for_each_possible_cpu(cpu) {
9391 if (tg->se[cpu])
9392 remove_entity_load_avg(tg->se[cpu]);
029632fb 9393
6fe1f348
PZ
9394 /*
9395 * Only empty task groups can be destroyed; so we can speculatively
9396 * check on_list without danger of it being re-added.
9397 */
9398 if (!tg->cfs_rq[cpu]->on_list)
9399 continue;
9400
9401 rq = cpu_rq(cpu);
9402
9403 raw_spin_lock_irqsave(&rq->lock, flags);
9404 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9405 raw_spin_unlock_irqrestore(&rq->lock, flags);
9406 }
029632fb
PZ
9407}
9408
9409void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9410 struct sched_entity *se, int cpu,
9411 struct sched_entity *parent)
9412{
9413 struct rq *rq = cpu_rq(cpu);
9414
9415 cfs_rq->tg = tg;
9416 cfs_rq->rq = rq;
029632fb
PZ
9417 init_cfs_rq_runtime(cfs_rq);
9418
9419 tg->cfs_rq[cpu] = cfs_rq;
9420 tg->se[cpu] = se;
9421
9422 /* se could be NULL for root_task_group */
9423 if (!se)
9424 return;
9425
fed14d45 9426 if (!parent) {
029632fb 9427 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9428 se->depth = 0;
9429 } else {
029632fb 9430 se->cfs_rq = parent->my_q;
fed14d45
PZ
9431 se->depth = parent->depth + 1;
9432 }
029632fb
PZ
9433
9434 se->my_q = cfs_rq;
0ac9b1c2
PT
9435 /* guarantee group entities always have weight */
9436 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9437 se->parent = parent;
9438}
9439
9440static DEFINE_MUTEX(shares_mutex);
9441
9442int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9443{
9444 int i;
029632fb
PZ
9445
9446 /*
9447 * We can't change the weight of the root cgroup.
9448 */
9449 if (!tg->se[0])
9450 return -EINVAL;
9451
9452 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9453
9454 mutex_lock(&shares_mutex);
9455 if (tg->shares == shares)
9456 goto done;
9457
9458 tg->shares = shares;
9459 for_each_possible_cpu(i) {
9460 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9461 struct sched_entity *se = tg->se[i];
9462 struct rq_flags rf;
029632fb 9463
029632fb 9464 /* Propagate contribution to hierarchy */
8a8c69c3 9465 rq_lock_irqsave(rq, &rf);
71b1da46 9466 update_rq_clock(rq);
89ee048f
VG
9467 for_each_sched_entity(se) {
9468 update_load_avg(se, UPDATE_TG);
9469 update_cfs_shares(se);
9470 }
8a8c69c3 9471 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9472 }
9473
9474done:
9475 mutex_unlock(&shares_mutex);
9476 return 0;
9477}
9478#else /* CONFIG_FAIR_GROUP_SCHED */
9479
9480void free_fair_sched_group(struct task_group *tg) { }
9481
9482int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9483{
9484 return 1;
9485}
9486
8663e24d
PZ
9487void online_fair_sched_group(struct task_group *tg) { }
9488
6fe1f348 9489void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9490
9491#endif /* CONFIG_FAIR_GROUP_SCHED */
9492
810b3817 9493
6d686f45 9494static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9495{
9496 struct sched_entity *se = &task->se;
0d721cea
PW
9497 unsigned int rr_interval = 0;
9498
9499 /*
9500 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9501 * idle runqueue:
9502 */
0d721cea 9503 if (rq->cfs.load.weight)
a59f4e07 9504 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9505
9506 return rr_interval;
9507}
9508
bf0f6f24
IM
9509/*
9510 * All the scheduling class methods:
9511 */
029632fb 9512const struct sched_class fair_sched_class = {
5522d5d5 9513 .next = &idle_sched_class,
bf0f6f24
IM
9514 .enqueue_task = enqueue_task_fair,
9515 .dequeue_task = dequeue_task_fair,
9516 .yield_task = yield_task_fair,
d95f4122 9517 .yield_to_task = yield_to_task_fair,
bf0f6f24 9518
2e09bf55 9519 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9520
9521 .pick_next_task = pick_next_task_fair,
9522 .put_prev_task = put_prev_task_fair,
9523
681f3e68 9524#ifdef CONFIG_SMP
4ce72a2c 9525 .select_task_rq = select_task_rq_fair,
0a74bef8 9526 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9527
0bcdcf28
CE
9528 .rq_online = rq_online_fair,
9529 .rq_offline = rq_offline_fair,
88ec22d3 9530
12695578 9531 .task_dead = task_dead_fair,
c5b28038 9532 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9533#endif
bf0f6f24 9534
83b699ed 9535 .set_curr_task = set_curr_task_fair,
bf0f6f24 9536 .task_tick = task_tick_fair,
cd29fe6f 9537 .task_fork = task_fork_fair,
cb469845
SR
9538
9539 .prio_changed = prio_changed_fair,
da7a735e 9540 .switched_from = switched_from_fair,
cb469845 9541 .switched_to = switched_to_fair,
810b3817 9542
0d721cea
PW
9543 .get_rr_interval = get_rr_interval_fair,
9544
6e998916
SG
9545 .update_curr = update_curr_fair,
9546
810b3817 9547#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9548 .task_change_group = task_change_group_fair,
810b3817 9549#endif
bf0f6f24
IM
9550};
9551
9552#ifdef CONFIG_SCHED_DEBUG
029632fb 9553void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9554{
a9e7f654 9555 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9556
5973e5b9 9557 rcu_read_lock();
a9e7f654 9558 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9559 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9560 rcu_read_unlock();
bf0f6f24 9561}
397f2378
SD
9562
9563#ifdef CONFIG_NUMA_BALANCING
9564void show_numa_stats(struct task_struct *p, struct seq_file *m)
9565{
9566 int node;
9567 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9568
9569 for_each_online_node(node) {
9570 if (p->numa_faults) {
9571 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9572 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9573 }
9574 if (p->numa_group) {
9575 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9576 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9577 }
9578 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9579 }
9580}
9581#endif /* CONFIG_NUMA_BALANCING */
9582#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9583
9584__init void init_sched_fair_class(void)
9585{
9586#ifdef CONFIG_SMP
9587 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9588
3451d024 9589#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9590 nohz.next_balance = jiffies;
029632fb 9591 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9592#endif
9593#endif /* SMP */
9594
9595}