sched: Add sched_class->task_dead() method
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
5eca82a9 1003 int cpu, cpus = 0;
fb13c7ee
MG
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
5eca82a9
PZ
1012
1013 cpus++;
fb13c7ee
MG
1014 }
1015
5eca82a9
PZ
1016 /*
1017 * If we raced with hotplug and there are no CPUs left in our mask
1018 * the @ns structure is NULL'ed and task_numa_compare() will
1019 * not find this node attractive.
1020 *
1021 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1022 * and bail there.
1023 */
1024 if (!cpus)
1025 return;
1026
fb13c7ee
MG
1027 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1028 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1029 ns->has_capacity = (ns->nr_running < ns->capacity);
1030}
1031
58d081b5
MG
1032struct task_numa_env {
1033 struct task_struct *p;
e6628d5b 1034
58d081b5
MG
1035 int src_cpu, src_nid;
1036 int dst_cpu, dst_nid;
e6628d5b 1037
58d081b5 1038 struct numa_stats src_stats, dst_stats;
e6628d5b 1039
fb13c7ee
MG
1040 int imbalance_pct, idx;
1041
1042 struct task_struct *best_task;
1043 long best_imp;
58d081b5
MG
1044 int best_cpu;
1045};
1046
fb13c7ee
MG
1047static void task_numa_assign(struct task_numa_env *env,
1048 struct task_struct *p, long imp)
1049{
1050 if (env->best_task)
1051 put_task_struct(env->best_task);
1052 if (p)
1053 get_task_struct(p);
1054
1055 env->best_task = p;
1056 env->best_imp = imp;
1057 env->best_cpu = env->dst_cpu;
1058}
1059
1060/*
1061 * This checks if the overall compute and NUMA accesses of the system would
1062 * be improved if the source tasks was migrated to the target dst_cpu taking
1063 * into account that it might be best if task running on the dst_cpu should
1064 * be exchanged with the source task
1065 */
887c290e
RR
1066static void task_numa_compare(struct task_numa_env *env,
1067 long taskimp, long groupimp)
fb13c7ee
MG
1068{
1069 struct rq *src_rq = cpu_rq(env->src_cpu);
1070 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1071 struct task_struct *cur;
1072 long dst_load, src_load;
1073 long load;
887c290e 1074 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1075
1076 rcu_read_lock();
1077 cur = ACCESS_ONCE(dst_rq->curr);
1078 if (cur->pid == 0) /* idle */
1079 cur = NULL;
1080
1081 /*
1082 * "imp" is the fault differential for the source task between the
1083 * source and destination node. Calculate the total differential for
1084 * the source task and potential destination task. The more negative
1085 * the value is, the more rmeote accesses that would be expected to
1086 * be incurred if the tasks were swapped.
1087 */
1088 if (cur) {
1089 /* Skip this swap candidate if cannot move to the source cpu */
1090 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1091 goto unlock;
1092
887c290e
RR
1093 /*
1094 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1095 * in any group then look only at task weights.
887c290e 1096 */
ca28aa53 1097 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1098 imp = taskimp + task_weight(cur, env->src_nid) -
1099 task_weight(cur, env->dst_nid);
ca28aa53
RR
1100 /*
1101 * Add some hysteresis to prevent swapping the
1102 * tasks within a group over tiny differences.
1103 */
1104 if (cur->numa_group)
1105 imp -= imp/16;
887c290e 1106 } else {
ca28aa53
RR
1107 /*
1108 * Compare the group weights. If a task is all by
1109 * itself (not part of a group), use the task weight
1110 * instead.
1111 */
1112 if (env->p->numa_group)
1113 imp = groupimp;
1114 else
1115 imp = taskimp;
1116
1117 if (cur->numa_group)
1118 imp += group_weight(cur, env->src_nid) -
1119 group_weight(cur, env->dst_nid);
1120 else
1121 imp += task_weight(cur, env->src_nid) -
1122 task_weight(cur, env->dst_nid);
887c290e 1123 }
fb13c7ee
MG
1124 }
1125
1126 if (imp < env->best_imp)
1127 goto unlock;
1128
1129 if (!cur) {
1130 /* Is there capacity at our destination? */
1131 if (env->src_stats.has_capacity &&
1132 !env->dst_stats.has_capacity)
1133 goto unlock;
1134
1135 goto balance;
1136 }
1137
1138 /* Balance doesn't matter much if we're running a task per cpu */
1139 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1140 goto assign;
1141
1142 /*
1143 * In the overloaded case, try and keep the load balanced.
1144 */
1145balance:
1146 dst_load = env->dst_stats.load;
1147 src_load = env->src_stats.load;
1148
1149 /* XXX missing power terms */
1150 load = task_h_load(env->p);
1151 dst_load += load;
1152 src_load -= load;
1153
1154 if (cur) {
1155 load = task_h_load(cur);
1156 dst_load -= load;
1157 src_load += load;
1158 }
1159
1160 /* make src_load the smaller */
1161 if (dst_load < src_load)
1162 swap(dst_load, src_load);
1163
1164 if (src_load * env->imbalance_pct < dst_load * 100)
1165 goto unlock;
1166
1167assign:
1168 task_numa_assign(env, cur, imp);
1169unlock:
1170 rcu_read_unlock();
1171}
1172
887c290e
RR
1173static void task_numa_find_cpu(struct task_numa_env *env,
1174 long taskimp, long groupimp)
2c8a50aa
MG
1175{
1176 int cpu;
1177
1178 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1179 /* Skip this CPU if the source task cannot migrate */
1180 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1181 continue;
1182
1183 env->dst_cpu = cpu;
887c290e 1184 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1185 }
1186}
1187
58d081b5
MG
1188static int task_numa_migrate(struct task_struct *p)
1189{
58d081b5
MG
1190 struct task_numa_env env = {
1191 .p = p,
fb13c7ee 1192
58d081b5 1193 .src_cpu = task_cpu(p),
b32e86b4 1194 .src_nid = task_node(p),
fb13c7ee
MG
1195
1196 .imbalance_pct = 112,
1197
1198 .best_task = NULL,
1199 .best_imp = 0,
1200 .best_cpu = -1
58d081b5
MG
1201 };
1202 struct sched_domain *sd;
887c290e 1203 unsigned long taskweight, groupweight;
2c8a50aa 1204 int nid, ret;
887c290e 1205 long taskimp, groupimp;
e6628d5b 1206
58d081b5 1207 /*
fb13c7ee
MG
1208 * Pick the lowest SD_NUMA domain, as that would have the smallest
1209 * imbalance and would be the first to start moving tasks about.
1210 *
1211 * And we want to avoid any moving of tasks about, as that would create
1212 * random movement of tasks -- counter the numa conditions we're trying
1213 * to satisfy here.
58d081b5
MG
1214 */
1215 rcu_read_lock();
fb13c7ee 1216 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1217 if (sd)
1218 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1219 rcu_read_unlock();
1220
46a73e8a
RR
1221 /*
1222 * Cpusets can break the scheduler domain tree into smaller
1223 * balance domains, some of which do not cross NUMA boundaries.
1224 * Tasks that are "trapped" in such domains cannot be migrated
1225 * elsewhere, so there is no point in (re)trying.
1226 */
1227 if (unlikely(!sd)) {
1228 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1229 return -EINVAL;
1230 }
1231
887c290e
RR
1232 taskweight = task_weight(p, env.src_nid);
1233 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1234 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1235 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1236 taskimp = task_weight(p, env.dst_nid) - taskweight;
1237 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1238 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1239
e1dda8a7
RR
1240 /* If the preferred nid has capacity, try to use it. */
1241 if (env.dst_stats.has_capacity)
887c290e 1242 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1243
1244 /* No space available on the preferred nid. Look elsewhere. */
1245 if (env.best_cpu == -1) {
2c8a50aa
MG
1246 for_each_online_node(nid) {
1247 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1248 continue;
58d081b5 1249
83e1d2cd 1250 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1251 taskimp = task_weight(p, nid) - taskweight;
1252 groupimp = group_weight(p, nid) - groupweight;
1253 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1254 continue;
1255
2c8a50aa
MG
1256 env.dst_nid = nid;
1257 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1258 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1259 }
1260 }
1261
fb13c7ee
MG
1262 /* No better CPU than the current one was found. */
1263 if (env.best_cpu == -1)
1264 return -EAGAIN;
1265
0ec8aa00
PZ
1266 sched_setnuma(p, env.dst_nid);
1267
04bb2f94
RR
1268 /*
1269 * Reset the scan period if the task is being rescheduled on an
1270 * alternative node to recheck if the tasks is now properly placed.
1271 */
1272 p->numa_scan_period = task_scan_min(p);
1273
fb13c7ee
MG
1274 if (env.best_task == NULL) {
1275 int ret = migrate_task_to(p, env.best_cpu);
1276 return ret;
1277 }
1278
1279 ret = migrate_swap(p, env.best_task);
1280 put_task_struct(env.best_task);
1281 return ret;
e6628d5b
MG
1282}
1283
6b9a7460
MG
1284/* Attempt to migrate a task to a CPU on the preferred node. */
1285static void numa_migrate_preferred(struct task_struct *p)
1286{
2739d3ee
RR
1287 /* This task has no NUMA fault statistics yet */
1288 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1289 return;
1290
2739d3ee
RR
1291 /* Periodically retry migrating the task to the preferred node */
1292 p->numa_migrate_retry = jiffies + HZ;
1293
1294 /* Success if task is already running on preferred CPU */
1295 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1296 return;
1297
1298 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1299 task_numa_migrate(p);
6b9a7460
MG
1300}
1301
04bb2f94
RR
1302/*
1303 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1304 * increments. The more local the fault statistics are, the higher the scan
1305 * period will be for the next scan window. If local/remote ratio is below
1306 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1307 * scan period will decrease
1308 */
1309#define NUMA_PERIOD_SLOTS 10
1310#define NUMA_PERIOD_THRESHOLD 3
1311
1312/*
1313 * Increase the scan period (slow down scanning) if the majority of
1314 * our memory is already on our local node, or if the majority of
1315 * the page accesses are shared with other processes.
1316 * Otherwise, decrease the scan period.
1317 */
1318static void update_task_scan_period(struct task_struct *p,
1319 unsigned long shared, unsigned long private)
1320{
1321 unsigned int period_slot;
1322 int ratio;
1323 int diff;
1324
1325 unsigned long remote = p->numa_faults_locality[0];
1326 unsigned long local = p->numa_faults_locality[1];
1327
1328 /*
1329 * If there were no record hinting faults then either the task is
1330 * completely idle or all activity is areas that are not of interest
1331 * to automatic numa balancing. Scan slower
1332 */
1333 if (local + shared == 0) {
1334 p->numa_scan_period = min(p->numa_scan_period_max,
1335 p->numa_scan_period << 1);
1336
1337 p->mm->numa_next_scan = jiffies +
1338 msecs_to_jiffies(p->numa_scan_period);
1339
1340 return;
1341 }
1342
1343 /*
1344 * Prepare to scale scan period relative to the current period.
1345 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1346 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1347 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1348 */
1349 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1350 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1351 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1352 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1353 if (!slot)
1354 slot = 1;
1355 diff = slot * period_slot;
1356 } else {
1357 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1358
1359 /*
1360 * Scale scan rate increases based on sharing. There is an
1361 * inverse relationship between the degree of sharing and
1362 * the adjustment made to the scanning period. Broadly
1363 * speaking the intent is that there is little point
1364 * scanning faster if shared accesses dominate as it may
1365 * simply bounce migrations uselessly
1366 */
1367 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1368 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1369 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1370 }
1371
1372 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1373 task_scan_min(p), task_scan_max(p));
1374 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1375}
1376
cbee9f88
PZ
1377static void task_numa_placement(struct task_struct *p)
1378{
83e1d2cd
MG
1379 int seq, nid, max_nid = -1, max_group_nid = -1;
1380 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1381 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1382 spinlock_t *group_lock = NULL;
cbee9f88 1383
2832bc19 1384 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1385 if (p->numa_scan_seq == seq)
1386 return;
1387 p->numa_scan_seq = seq;
598f0ec0 1388 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1389
7dbd13ed
MG
1390 /* If the task is part of a group prevent parallel updates to group stats */
1391 if (p->numa_group) {
1392 group_lock = &p->numa_group->lock;
1393 spin_lock(group_lock);
1394 }
1395
688b7585
MG
1396 /* Find the node with the highest number of faults */
1397 for_each_online_node(nid) {
83e1d2cd 1398 unsigned long faults = 0, group_faults = 0;
ac8e895b 1399 int priv, i;
745d6147 1400
ac8e895b 1401 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1402 long diff;
1403
ac8e895b 1404 i = task_faults_idx(nid, priv);
8c8a743c 1405 diff = -p->numa_faults[i];
745d6147 1406
ac8e895b
MG
1407 /* Decay existing window, copy faults since last scan */
1408 p->numa_faults[i] >>= 1;
1409 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1410 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1411 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1412
1413 faults += p->numa_faults[i];
8c8a743c 1414 diff += p->numa_faults[i];
83e1d2cd 1415 p->total_numa_faults += diff;
8c8a743c
PZ
1416 if (p->numa_group) {
1417 /* safe because we can only change our own group */
989348b5
MG
1418 p->numa_group->faults[i] += diff;
1419 p->numa_group->total_faults += diff;
1420 group_faults += p->numa_group->faults[i];
8c8a743c 1421 }
ac8e895b
MG
1422 }
1423
688b7585
MG
1424 if (faults > max_faults) {
1425 max_faults = faults;
1426 max_nid = nid;
1427 }
83e1d2cd
MG
1428
1429 if (group_faults > max_group_faults) {
1430 max_group_faults = group_faults;
1431 max_group_nid = nid;
1432 }
1433 }
1434
04bb2f94
RR
1435 update_task_scan_period(p, fault_types[0], fault_types[1]);
1436
7dbd13ed
MG
1437 if (p->numa_group) {
1438 /*
1439 * If the preferred task and group nids are different,
1440 * iterate over the nodes again to find the best place.
1441 */
1442 if (max_nid != max_group_nid) {
1443 unsigned long weight, max_weight = 0;
1444
1445 for_each_online_node(nid) {
1446 weight = task_weight(p, nid) + group_weight(p, nid);
1447 if (weight > max_weight) {
1448 max_weight = weight;
1449 max_nid = nid;
1450 }
83e1d2cd
MG
1451 }
1452 }
7dbd13ed
MG
1453
1454 spin_unlock(group_lock);
688b7585
MG
1455 }
1456
6b9a7460 1457 /* Preferred node as the node with the most faults */
3a7053b3 1458 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1459 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1460 sched_setnuma(p, max_nid);
6b9a7460 1461 numa_migrate_preferred(p);
3a7053b3 1462 }
cbee9f88
PZ
1463}
1464
8c8a743c
PZ
1465static inline int get_numa_group(struct numa_group *grp)
1466{
1467 return atomic_inc_not_zero(&grp->refcount);
1468}
1469
1470static inline void put_numa_group(struct numa_group *grp)
1471{
1472 if (atomic_dec_and_test(&grp->refcount))
1473 kfree_rcu(grp, rcu);
1474}
1475
3e6a9418
MG
1476static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1477 int *priv)
8c8a743c
PZ
1478{
1479 struct numa_group *grp, *my_grp;
1480 struct task_struct *tsk;
1481 bool join = false;
1482 int cpu = cpupid_to_cpu(cpupid);
1483 int i;
1484
1485 if (unlikely(!p->numa_group)) {
1486 unsigned int size = sizeof(struct numa_group) +
989348b5 1487 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1488
1489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1490 if (!grp)
1491 return;
1492
1493 atomic_set(&grp->refcount, 1);
1494 spin_lock_init(&grp->lock);
1495 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1496 grp->gid = p->pid;
8c8a743c
PZ
1497
1498 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1499 grp->faults[i] = p->numa_faults[i];
8c8a743c 1500
989348b5 1501 grp->total_faults = p->total_numa_faults;
83e1d2cd 1502
8c8a743c
PZ
1503 list_add(&p->numa_entry, &grp->task_list);
1504 grp->nr_tasks++;
1505 rcu_assign_pointer(p->numa_group, grp);
1506 }
1507
1508 rcu_read_lock();
1509 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1510
1511 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1512 goto no_join;
8c8a743c
PZ
1513
1514 grp = rcu_dereference(tsk->numa_group);
1515 if (!grp)
3354781a 1516 goto no_join;
8c8a743c
PZ
1517
1518 my_grp = p->numa_group;
1519 if (grp == my_grp)
3354781a 1520 goto no_join;
8c8a743c
PZ
1521
1522 /*
1523 * Only join the other group if its bigger; if we're the bigger group,
1524 * the other task will join us.
1525 */
1526 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1527 goto no_join;
8c8a743c
PZ
1528
1529 /*
1530 * Tie-break on the grp address.
1531 */
1532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1533 goto no_join;
8c8a743c 1534
dabe1d99
RR
1535 /* Always join threads in the same process. */
1536 if (tsk->mm == current->mm)
1537 join = true;
1538
1539 /* Simple filter to avoid false positives due to PID collisions */
1540 if (flags & TNF_SHARED)
1541 join = true;
8c8a743c 1542
3e6a9418
MG
1543 /* Update priv based on whether false sharing was detected */
1544 *priv = !join;
1545
dabe1d99 1546 if (join && !get_numa_group(grp))
3354781a 1547 goto no_join;
8c8a743c 1548
8c8a743c
PZ
1549 rcu_read_unlock();
1550
1551 if (!join)
1552 return;
1553
989348b5
MG
1554 double_lock(&my_grp->lock, &grp->lock);
1555
8c8a743c 1556 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1557 my_grp->faults[i] -= p->numa_faults[i];
1558 grp->faults[i] += p->numa_faults[i];
8c8a743c 1559 }
989348b5
MG
1560 my_grp->total_faults -= p->total_numa_faults;
1561 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1562
1563 list_move(&p->numa_entry, &grp->task_list);
1564 my_grp->nr_tasks--;
1565 grp->nr_tasks++;
1566
1567 spin_unlock(&my_grp->lock);
1568 spin_unlock(&grp->lock);
1569
1570 rcu_assign_pointer(p->numa_group, grp);
1571
1572 put_numa_group(my_grp);
3354781a
PZ
1573 return;
1574
1575no_join:
1576 rcu_read_unlock();
1577 return;
8c8a743c
PZ
1578}
1579
1580void task_numa_free(struct task_struct *p)
1581{
1582 struct numa_group *grp = p->numa_group;
1583 int i;
82727018 1584 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1585
1586 if (grp) {
989348b5 1587 spin_lock(&grp->lock);
8c8a743c 1588 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1589 grp->faults[i] -= p->numa_faults[i];
1590 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1591
8c8a743c
PZ
1592 list_del(&p->numa_entry);
1593 grp->nr_tasks--;
1594 spin_unlock(&grp->lock);
1595 rcu_assign_pointer(p->numa_group, NULL);
1596 put_numa_group(grp);
1597 }
1598
82727018
RR
1599 p->numa_faults = NULL;
1600 p->numa_faults_buffer = NULL;
1601 kfree(numa_faults);
8c8a743c
PZ
1602}
1603
cbee9f88
PZ
1604/*
1605 * Got a PROT_NONE fault for a page on @node.
1606 */
6688cc05 1607void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1608{
1609 struct task_struct *p = current;
6688cc05 1610 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1611 int priv;
cbee9f88 1612
10e84b97 1613 if (!numabalancing_enabled)
1a687c2e
MG
1614 return;
1615
9ff1d9ff
MG
1616 /* for example, ksmd faulting in a user's mm */
1617 if (!p->mm)
1618 return;
1619
82727018
RR
1620 /* Do not worry about placement if exiting */
1621 if (p->state == TASK_DEAD)
1622 return;
1623
f809ca9a
MG
1624 /* Allocate buffer to track faults on a per-node basis */
1625 if (unlikely(!p->numa_faults)) {
ac8e895b 1626 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1627
745d6147
MG
1628 /* numa_faults and numa_faults_buffer share the allocation */
1629 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1630 if (!p->numa_faults)
1631 return;
745d6147
MG
1632
1633 BUG_ON(p->numa_faults_buffer);
ac8e895b 1634 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1635 p->total_numa_faults = 0;
04bb2f94 1636 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1637 }
cbee9f88 1638
8c8a743c
PZ
1639 /*
1640 * First accesses are treated as private, otherwise consider accesses
1641 * to be private if the accessing pid has not changed
1642 */
1643 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1644 priv = 1;
1645 } else {
1646 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1647 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1648 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1649 }
1650
cbee9f88 1651 task_numa_placement(p);
f809ca9a 1652
2739d3ee
RR
1653 /*
1654 * Retry task to preferred node migration periodically, in case it
1655 * case it previously failed, or the scheduler moved us.
1656 */
1657 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1658 numa_migrate_preferred(p);
1659
b32e86b4
IM
1660 if (migrated)
1661 p->numa_pages_migrated += pages;
1662
ac8e895b 1663 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1664 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1665}
1666
6e5fb223
PZ
1667static void reset_ptenuma_scan(struct task_struct *p)
1668{
1669 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1670 p->mm->numa_scan_offset = 0;
1671}
1672
cbee9f88
PZ
1673/*
1674 * The expensive part of numa migration is done from task_work context.
1675 * Triggered from task_tick_numa().
1676 */
1677void task_numa_work(struct callback_head *work)
1678{
1679 unsigned long migrate, next_scan, now = jiffies;
1680 struct task_struct *p = current;
1681 struct mm_struct *mm = p->mm;
6e5fb223 1682 struct vm_area_struct *vma;
9f40604c 1683 unsigned long start, end;
598f0ec0 1684 unsigned long nr_pte_updates = 0;
9f40604c 1685 long pages;
cbee9f88
PZ
1686
1687 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1688
1689 work->next = work; /* protect against double add */
1690 /*
1691 * Who cares about NUMA placement when they're dying.
1692 *
1693 * NOTE: make sure not to dereference p->mm before this check,
1694 * exit_task_work() happens _after_ exit_mm() so we could be called
1695 * without p->mm even though we still had it when we enqueued this
1696 * work.
1697 */
1698 if (p->flags & PF_EXITING)
1699 return;
1700
930aa174 1701 if (!mm->numa_next_scan) {
7e8d16b6
MG
1702 mm->numa_next_scan = now +
1703 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1704 }
1705
cbee9f88
PZ
1706 /*
1707 * Enforce maximal scan/migration frequency..
1708 */
1709 migrate = mm->numa_next_scan;
1710 if (time_before(now, migrate))
1711 return;
1712
598f0ec0
MG
1713 if (p->numa_scan_period == 0) {
1714 p->numa_scan_period_max = task_scan_max(p);
1715 p->numa_scan_period = task_scan_min(p);
1716 }
cbee9f88 1717
fb003b80 1718 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1719 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1720 return;
1721
19a78d11
PZ
1722 /*
1723 * Delay this task enough that another task of this mm will likely win
1724 * the next time around.
1725 */
1726 p->node_stamp += 2 * TICK_NSEC;
1727
9f40604c
MG
1728 start = mm->numa_scan_offset;
1729 pages = sysctl_numa_balancing_scan_size;
1730 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1731 if (!pages)
1732 return;
cbee9f88 1733
6e5fb223 1734 down_read(&mm->mmap_sem);
9f40604c 1735 vma = find_vma(mm, start);
6e5fb223
PZ
1736 if (!vma) {
1737 reset_ptenuma_scan(p);
9f40604c 1738 start = 0;
6e5fb223
PZ
1739 vma = mm->mmap;
1740 }
9f40604c 1741 for (; vma; vma = vma->vm_next) {
fc314724 1742 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1743 continue;
1744
4591ce4f
MG
1745 /*
1746 * Shared library pages mapped by multiple processes are not
1747 * migrated as it is expected they are cache replicated. Avoid
1748 * hinting faults in read-only file-backed mappings or the vdso
1749 * as migrating the pages will be of marginal benefit.
1750 */
1751 if (!vma->vm_mm ||
1752 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1753 continue;
1754
9f40604c
MG
1755 do {
1756 start = max(start, vma->vm_start);
1757 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1758 end = min(end, vma->vm_end);
598f0ec0
MG
1759 nr_pte_updates += change_prot_numa(vma, start, end);
1760
1761 /*
1762 * Scan sysctl_numa_balancing_scan_size but ensure that
1763 * at least one PTE is updated so that unused virtual
1764 * address space is quickly skipped.
1765 */
1766 if (nr_pte_updates)
1767 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1768
9f40604c
MG
1769 start = end;
1770 if (pages <= 0)
1771 goto out;
1772 } while (end != vma->vm_end);
cbee9f88 1773 }
6e5fb223 1774
9f40604c 1775out:
6e5fb223 1776 /*
c69307d5
PZ
1777 * It is possible to reach the end of the VMA list but the last few
1778 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1779 * would find the !migratable VMA on the next scan but not reset the
1780 * scanner to the start so check it now.
6e5fb223
PZ
1781 */
1782 if (vma)
9f40604c 1783 mm->numa_scan_offset = start;
6e5fb223
PZ
1784 else
1785 reset_ptenuma_scan(p);
1786 up_read(&mm->mmap_sem);
cbee9f88
PZ
1787}
1788
1789/*
1790 * Drive the periodic memory faults..
1791 */
1792void task_tick_numa(struct rq *rq, struct task_struct *curr)
1793{
1794 struct callback_head *work = &curr->numa_work;
1795 u64 period, now;
1796
1797 /*
1798 * We don't care about NUMA placement if we don't have memory.
1799 */
1800 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1801 return;
1802
1803 /*
1804 * Using runtime rather than walltime has the dual advantage that
1805 * we (mostly) drive the selection from busy threads and that the
1806 * task needs to have done some actual work before we bother with
1807 * NUMA placement.
1808 */
1809 now = curr->se.sum_exec_runtime;
1810 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1811
1812 if (now - curr->node_stamp > period) {
4b96a29b 1813 if (!curr->node_stamp)
598f0ec0 1814 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1815 curr->node_stamp += period;
cbee9f88
PZ
1816
1817 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1818 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1819 task_work_add(curr, work, true);
1820 }
1821 }
1822}
1823#else
1824static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1825{
1826}
0ec8aa00
PZ
1827
1828static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1829{
1830}
1831
1832static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1833{
1834}
cbee9f88
PZ
1835#endif /* CONFIG_NUMA_BALANCING */
1836
30cfdcfc
DA
1837static void
1838account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1839{
1840 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1841 if (!parent_entity(se))
029632fb 1842 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1843#ifdef CONFIG_SMP
0ec8aa00
PZ
1844 if (entity_is_task(se)) {
1845 struct rq *rq = rq_of(cfs_rq);
1846
1847 account_numa_enqueue(rq, task_of(se));
1848 list_add(&se->group_node, &rq->cfs_tasks);
1849 }
367456c7 1850#endif
30cfdcfc 1851 cfs_rq->nr_running++;
30cfdcfc
DA
1852}
1853
1854static void
1855account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1856{
1857 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1858 if (!parent_entity(se))
029632fb 1859 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1860 if (entity_is_task(se)) {
1861 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1862 list_del_init(&se->group_node);
0ec8aa00 1863 }
30cfdcfc 1864 cfs_rq->nr_running--;
30cfdcfc
DA
1865}
1866
3ff6dcac
YZ
1867#ifdef CONFIG_FAIR_GROUP_SCHED
1868# ifdef CONFIG_SMP
cf5f0acf
PZ
1869static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1870{
1871 long tg_weight;
1872
1873 /*
1874 * Use this CPU's actual weight instead of the last load_contribution
1875 * to gain a more accurate current total weight. See
1876 * update_cfs_rq_load_contribution().
1877 */
bf5b986e 1878 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1879 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1880 tg_weight += cfs_rq->load.weight;
1881
1882 return tg_weight;
1883}
1884
6d5ab293 1885static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1886{
cf5f0acf 1887 long tg_weight, load, shares;
3ff6dcac 1888
cf5f0acf 1889 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1890 load = cfs_rq->load.weight;
3ff6dcac 1891
3ff6dcac 1892 shares = (tg->shares * load);
cf5f0acf
PZ
1893 if (tg_weight)
1894 shares /= tg_weight;
3ff6dcac
YZ
1895
1896 if (shares < MIN_SHARES)
1897 shares = MIN_SHARES;
1898 if (shares > tg->shares)
1899 shares = tg->shares;
1900
1901 return shares;
1902}
3ff6dcac 1903# else /* CONFIG_SMP */
6d5ab293 1904static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1905{
1906 return tg->shares;
1907}
3ff6dcac 1908# endif /* CONFIG_SMP */
2069dd75
PZ
1909static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1910 unsigned long weight)
1911{
19e5eebb
PT
1912 if (se->on_rq) {
1913 /* commit outstanding execution time */
1914 if (cfs_rq->curr == se)
1915 update_curr(cfs_rq);
2069dd75 1916 account_entity_dequeue(cfs_rq, se);
19e5eebb 1917 }
2069dd75
PZ
1918
1919 update_load_set(&se->load, weight);
1920
1921 if (se->on_rq)
1922 account_entity_enqueue(cfs_rq, se);
1923}
1924
82958366
PT
1925static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1926
6d5ab293 1927static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1928{
1929 struct task_group *tg;
1930 struct sched_entity *se;
3ff6dcac 1931 long shares;
2069dd75 1932
2069dd75
PZ
1933 tg = cfs_rq->tg;
1934 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1935 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1936 return;
3ff6dcac
YZ
1937#ifndef CONFIG_SMP
1938 if (likely(se->load.weight == tg->shares))
1939 return;
1940#endif
6d5ab293 1941 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1942
1943 reweight_entity(cfs_rq_of(se), se, shares);
1944}
1945#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1946static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1947{
1948}
1949#endif /* CONFIG_FAIR_GROUP_SCHED */
1950
141965c7 1951#ifdef CONFIG_SMP
5b51f2f8
PT
1952/*
1953 * We choose a half-life close to 1 scheduling period.
1954 * Note: The tables below are dependent on this value.
1955 */
1956#define LOAD_AVG_PERIOD 32
1957#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1958#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1959
1960/* Precomputed fixed inverse multiplies for multiplication by y^n */
1961static const u32 runnable_avg_yN_inv[] = {
1962 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1963 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1964 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1965 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1966 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1967 0x85aac367, 0x82cd8698,
1968};
1969
1970/*
1971 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1972 * over-estimates when re-combining.
1973 */
1974static const u32 runnable_avg_yN_sum[] = {
1975 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1976 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1977 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1978};
1979
9d85f21c
PT
1980/*
1981 * Approximate:
1982 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1983 */
1984static __always_inline u64 decay_load(u64 val, u64 n)
1985{
5b51f2f8
PT
1986 unsigned int local_n;
1987
1988 if (!n)
1989 return val;
1990 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1991 return 0;
1992
1993 /* after bounds checking we can collapse to 32-bit */
1994 local_n = n;
1995
1996 /*
1997 * As y^PERIOD = 1/2, we can combine
1998 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1999 * With a look-up table which covers k^n (n<PERIOD)
2000 *
2001 * To achieve constant time decay_load.
2002 */
2003 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2004 val >>= local_n / LOAD_AVG_PERIOD;
2005 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2006 }
2007
5b51f2f8
PT
2008 val *= runnable_avg_yN_inv[local_n];
2009 /* We don't use SRR here since we always want to round down. */
2010 return val >> 32;
2011}
2012
2013/*
2014 * For updates fully spanning n periods, the contribution to runnable
2015 * average will be: \Sum 1024*y^n
2016 *
2017 * We can compute this reasonably efficiently by combining:
2018 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2019 */
2020static u32 __compute_runnable_contrib(u64 n)
2021{
2022 u32 contrib = 0;
2023
2024 if (likely(n <= LOAD_AVG_PERIOD))
2025 return runnable_avg_yN_sum[n];
2026 else if (unlikely(n >= LOAD_AVG_MAX_N))
2027 return LOAD_AVG_MAX;
2028
2029 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2030 do {
2031 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2032 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2033
2034 n -= LOAD_AVG_PERIOD;
2035 } while (n > LOAD_AVG_PERIOD);
2036
2037 contrib = decay_load(contrib, n);
2038 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2039}
2040
2041/*
2042 * We can represent the historical contribution to runnable average as the
2043 * coefficients of a geometric series. To do this we sub-divide our runnable
2044 * history into segments of approximately 1ms (1024us); label the segment that
2045 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2046 *
2047 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2048 * p0 p1 p2
2049 * (now) (~1ms ago) (~2ms ago)
2050 *
2051 * Let u_i denote the fraction of p_i that the entity was runnable.
2052 *
2053 * We then designate the fractions u_i as our co-efficients, yielding the
2054 * following representation of historical load:
2055 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2056 *
2057 * We choose y based on the with of a reasonably scheduling period, fixing:
2058 * y^32 = 0.5
2059 *
2060 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2061 * approximately half as much as the contribution to load within the last ms
2062 * (u_0).
2063 *
2064 * When a period "rolls over" and we have new u_0`, multiplying the previous
2065 * sum again by y is sufficient to update:
2066 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2067 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2068 */
2069static __always_inline int __update_entity_runnable_avg(u64 now,
2070 struct sched_avg *sa,
2071 int runnable)
2072{
5b51f2f8
PT
2073 u64 delta, periods;
2074 u32 runnable_contrib;
9d85f21c
PT
2075 int delta_w, decayed = 0;
2076
2077 delta = now - sa->last_runnable_update;
2078 /*
2079 * This should only happen when time goes backwards, which it
2080 * unfortunately does during sched clock init when we swap over to TSC.
2081 */
2082 if ((s64)delta < 0) {
2083 sa->last_runnable_update = now;
2084 return 0;
2085 }
2086
2087 /*
2088 * Use 1024ns as the unit of measurement since it's a reasonable
2089 * approximation of 1us and fast to compute.
2090 */
2091 delta >>= 10;
2092 if (!delta)
2093 return 0;
2094 sa->last_runnable_update = now;
2095
2096 /* delta_w is the amount already accumulated against our next period */
2097 delta_w = sa->runnable_avg_period % 1024;
2098 if (delta + delta_w >= 1024) {
2099 /* period roll-over */
2100 decayed = 1;
2101
2102 /*
2103 * Now that we know we're crossing a period boundary, figure
2104 * out how much from delta we need to complete the current
2105 * period and accrue it.
2106 */
2107 delta_w = 1024 - delta_w;
5b51f2f8
PT
2108 if (runnable)
2109 sa->runnable_avg_sum += delta_w;
2110 sa->runnable_avg_period += delta_w;
2111
2112 delta -= delta_w;
2113
2114 /* Figure out how many additional periods this update spans */
2115 periods = delta / 1024;
2116 delta %= 1024;
2117
2118 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2119 periods + 1);
2120 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2121 periods + 1);
2122
2123 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2124 runnable_contrib = __compute_runnable_contrib(periods);
2125 if (runnable)
2126 sa->runnable_avg_sum += runnable_contrib;
2127 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2128 }
2129
2130 /* Remainder of delta accrued against u_0` */
2131 if (runnable)
2132 sa->runnable_avg_sum += delta;
2133 sa->runnable_avg_period += delta;
2134
2135 return decayed;
2136}
2137
9ee474f5 2138/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2139static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2140{
2141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2142 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2143
2144 decays -= se->avg.decay_count;
2145 if (!decays)
aff3e498 2146 return 0;
9ee474f5
PT
2147
2148 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2149 se->avg.decay_count = 0;
aff3e498
PT
2150
2151 return decays;
9ee474f5
PT
2152}
2153
c566e8e9
PT
2154#ifdef CONFIG_FAIR_GROUP_SCHED
2155static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2156 int force_update)
2157{
2158 struct task_group *tg = cfs_rq->tg;
bf5b986e 2159 long tg_contrib;
c566e8e9
PT
2160
2161 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2162 tg_contrib -= cfs_rq->tg_load_contrib;
2163
bf5b986e
AS
2164 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2165 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2166 cfs_rq->tg_load_contrib += tg_contrib;
2167 }
2168}
8165e145 2169
bb17f655
PT
2170/*
2171 * Aggregate cfs_rq runnable averages into an equivalent task_group
2172 * representation for computing load contributions.
2173 */
2174static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2175 struct cfs_rq *cfs_rq)
2176{
2177 struct task_group *tg = cfs_rq->tg;
2178 long contrib;
2179
2180 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2181 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2182 sa->runnable_avg_period + 1);
2183 contrib -= cfs_rq->tg_runnable_contrib;
2184
2185 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2186 atomic_add(contrib, &tg->runnable_avg);
2187 cfs_rq->tg_runnable_contrib += contrib;
2188 }
2189}
2190
8165e145
PT
2191static inline void __update_group_entity_contrib(struct sched_entity *se)
2192{
2193 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2194 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2195 int runnable_avg;
2196
8165e145
PT
2197 u64 contrib;
2198
2199 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2200 se->avg.load_avg_contrib = div_u64(contrib,
2201 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2202
2203 /*
2204 * For group entities we need to compute a correction term in the case
2205 * that they are consuming <1 cpu so that we would contribute the same
2206 * load as a task of equal weight.
2207 *
2208 * Explicitly co-ordinating this measurement would be expensive, but
2209 * fortunately the sum of each cpus contribution forms a usable
2210 * lower-bound on the true value.
2211 *
2212 * Consider the aggregate of 2 contributions. Either they are disjoint
2213 * (and the sum represents true value) or they are disjoint and we are
2214 * understating by the aggregate of their overlap.
2215 *
2216 * Extending this to N cpus, for a given overlap, the maximum amount we
2217 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2218 * cpus that overlap for this interval and w_i is the interval width.
2219 *
2220 * On a small machine; the first term is well-bounded which bounds the
2221 * total error since w_i is a subset of the period. Whereas on a
2222 * larger machine, while this first term can be larger, if w_i is the
2223 * of consequential size guaranteed to see n_i*w_i quickly converge to
2224 * our upper bound of 1-cpu.
2225 */
2226 runnable_avg = atomic_read(&tg->runnable_avg);
2227 if (runnable_avg < NICE_0_LOAD) {
2228 se->avg.load_avg_contrib *= runnable_avg;
2229 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2230 }
8165e145 2231}
c566e8e9
PT
2232#else
2233static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2234 int force_update) {}
bb17f655
PT
2235static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2236 struct cfs_rq *cfs_rq) {}
8165e145 2237static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2238#endif
2239
8165e145
PT
2240static inline void __update_task_entity_contrib(struct sched_entity *se)
2241{
2242 u32 contrib;
2243
2244 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2245 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2246 contrib /= (se->avg.runnable_avg_period + 1);
2247 se->avg.load_avg_contrib = scale_load(contrib);
2248}
2249
2dac754e
PT
2250/* Compute the current contribution to load_avg by se, return any delta */
2251static long __update_entity_load_avg_contrib(struct sched_entity *se)
2252{
2253 long old_contrib = se->avg.load_avg_contrib;
2254
8165e145
PT
2255 if (entity_is_task(se)) {
2256 __update_task_entity_contrib(se);
2257 } else {
bb17f655 2258 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2259 __update_group_entity_contrib(se);
2260 }
2dac754e
PT
2261
2262 return se->avg.load_avg_contrib - old_contrib;
2263}
2264
9ee474f5
PT
2265static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2266 long load_contrib)
2267{
2268 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2269 cfs_rq->blocked_load_avg -= load_contrib;
2270 else
2271 cfs_rq->blocked_load_avg = 0;
2272}
2273
f1b17280
PT
2274static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2275
9d85f21c 2276/* Update a sched_entity's runnable average */
9ee474f5
PT
2277static inline void update_entity_load_avg(struct sched_entity *se,
2278 int update_cfs_rq)
9d85f21c 2279{
2dac754e
PT
2280 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2281 long contrib_delta;
f1b17280 2282 u64 now;
2dac754e 2283
f1b17280
PT
2284 /*
2285 * For a group entity we need to use their owned cfs_rq_clock_task() in
2286 * case they are the parent of a throttled hierarchy.
2287 */
2288 if (entity_is_task(se))
2289 now = cfs_rq_clock_task(cfs_rq);
2290 else
2291 now = cfs_rq_clock_task(group_cfs_rq(se));
2292
2293 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2294 return;
2295
2296 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2297
2298 if (!update_cfs_rq)
2299 return;
2300
2dac754e
PT
2301 if (se->on_rq)
2302 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2303 else
2304 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2305}
2306
2307/*
2308 * Decay the load contributed by all blocked children and account this so that
2309 * their contribution may appropriately discounted when they wake up.
2310 */
aff3e498 2311static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2312{
f1b17280 2313 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2314 u64 decays;
2315
2316 decays = now - cfs_rq->last_decay;
aff3e498 2317 if (!decays && !force_update)
9ee474f5
PT
2318 return;
2319
2509940f
AS
2320 if (atomic_long_read(&cfs_rq->removed_load)) {
2321 unsigned long removed_load;
2322 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2323 subtract_blocked_load_contrib(cfs_rq, removed_load);
2324 }
9ee474f5 2325
aff3e498
PT
2326 if (decays) {
2327 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2328 decays);
2329 atomic64_add(decays, &cfs_rq->decay_counter);
2330 cfs_rq->last_decay = now;
2331 }
c566e8e9
PT
2332
2333 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2334}
18bf2805
BS
2335
2336static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2337{
78becc27 2338 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2339 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2340}
2dac754e
PT
2341
2342/* Add the load generated by se into cfs_rq's child load-average */
2343static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2344 struct sched_entity *se,
2345 int wakeup)
2dac754e 2346{
aff3e498
PT
2347 /*
2348 * We track migrations using entity decay_count <= 0, on a wake-up
2349 * migration we use a negative decay count to track the remote decays
2350 * accumulated while sleeping.
a75cdaa9
AS
2351 *
2352 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2353 * are seen by enqueue_entity_load_avg() as a migration with an already
2354 * constructed load_avg_contrib.
aff3e498
PT
2355 */
2356 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2357 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2358 if (se->avg.decay_count) {
2359 /*
2360 * In a wake-up migration we have to approximate the
2361 * time sleeping. This is because we can't synchronize
2362 * clock_task between the two cpus, and it is not
2363 * guaranteed to be read-safe. Instead, we can
2364 * approximate this using our carried decays, which are
2365 * explicitly atomically readable.
2366 */
2367 se->avg.last_runnable_update -= (-se->avg.decay_count)
2368 << 20;
2369 update_entity_load_avg(se, 0);
2370 /* Indicate that we're now synchronized and on-rq */
2371 se->avg.decay_count = 0;
2372 }
9ee474f5
PT
2373 wakeup = 0;
2374 } else {
282cf499
AS
2375 /*
2376 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2377 * would have made count negative); we must be careful to avoid
2378 * double-accounting blocked time after synchronizing decays.
2379 */
2380 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2381 << 20;
9ee474f5
PT
2382 }
2383
aff3e498
PT
2384 /* migrated tasks did not contribute to our blocked load */
2385 if (wakeup) {
9ee474f5 2386 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2387 update_entity_load_avg(se, 0);
2388 }
9ee474f5 2389
2dac754e 2390 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2393}
2394
9ee474f5
PT
2395/*
2396 * Remove se's load from this cfs_rq child load-average, if the entity is
2397 * transitioning to a blocked state we track its projected decay using
2398 * blocked_load_avg.
2399 */
2dac754e 2400static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2401 struct sched_entity *se,
2402 int sleep)
2dac754e 2403{
9ee474f5 2404 update_entity_load_avg(se, 1);
aff3e498
PT
2405 /* we force update consideration on load-balancer moves */
2406 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2407
2dac754e 2408 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2409 if (sleep) {
2410 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2411 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2412 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2413}
642dbc39
VG
2414
2415/*
2416 * Update the rq's load with the elapsed running time before entering
2417 * idle. if the last scheduled task is not a CFS task, idle_enter will
2418 * be the only way to update the runnable statistic.
2419 */
2420void idle_enter_fair(struct rq *this_rq)
2421{
2422 update_rq_runnable_avg(this_rq, 1);
2423}
2424
2425/*
2426 * Update the rq's load with the elapsed idle time before a task is
2427 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2428 * be the only way to update the runnable statistic.
2429 */
2430void idle_exit_fair(struct rq *this_rq)
2431{
2432 update_rq_runnable_avg(this_rq, 0);
2433}
2434
9d85f21c 2435#else
9ee474f5
PT
2436static inline void update_entity_load_avg(struct sched_entity *se,
2437 int update_cfs_rq) {}
18bf2805 2438static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2439static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2440 struct sched_entity *se,
2441 int wakeup) {}
2dac754e 2442static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2443 struct sched_entity *se,
2444 int sleep) {}
aff3e498
PT
2445static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2446 int force_update) {}
9d85f21c
PT
2447#endif
2448
2396af69 2449static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2450{
bf0f6f24 2451#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2452 struct task_struct *tsk = NULL;
2453
2454 if (entity_is_task(se))
2455 tsk = task_of(se);
2456
41acab88 2457 if (se->statistics.sleep_start) {
78becc27 2458 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2459
2460 if ((s64)delta < 0)
2461 delta = 0;
2462
41acab88
LDM
2463 if (unlikely(delta > se->statistics.sleep_max))
2464 se->statistics.sleep_max = delta;
bf0f6f24 2465
8c79a045 2466 se->statistics.sleep_start = 0;
41acab88 2467 se->statistics.sum_sleep_runtime += delta;
9745512c 2468
768d0c27 2469 if (tsk) {
e414314c 2470 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2471 trace_sched_stat_sleep(tsk, delta);
2472 }
bf0f6f24 2473 }
41acab88 2474 if (se->statistics.block_start) {
78becc27 2475 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2476
2477 if ((s64)delta < 0)
2478 delta = 0;
2479
41acab88
LDM
2480 if (unlikely(delta > se->statistics.block_max))
2481 se->statistics.block_max = delta;
bf0f6f24 2482
8c79a045 2483 se->statistics.block_start = 0;
41acab88 2484 se->statistics.sum_sleep_runtime += delta;
30084fbd 2485
e414314c 2486 if (tsk) {
8f0dfc34 2487 if (tsk->in_iowait) {
41acab88
LDM
2488 se->statistics.iowait_sum += delta;
2489 se->statistics.iowait_count++;
768d0c27 2490 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2491 }
2492
b781a602
AV
2493 trace_sched_stat_blocked(tsk, delta);
2494
e414314c
PZ
2495 /*
2496 * Blocking time is in units of nanosecs, so shift by
2497 * 20 to get a milliseconds-range estimation of the
2498 * amount of time that the task spent sleeping:
2499 */
2500 if (unlikely(prof_on == SLEEP_PROFILING)) {
2501 profile_hits(SLEEP_PROFILING,
2502 (void *)get_wchan(tsk),
2503 delta >> 20);
2504 }
2505 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2506 }
bf0f6f24
IM
2507 }
2508#endif
2509}
2510
ddc97297
PZ
2511static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2512{
2513#ifdef CONFIG_SCHED_DEBUG
2514 s64 d = se->vruntime - cfs_rq->min_vruntime;
2515
2516 if (d < 0)
2517 d = -d;
2518
2519 if (d > 3*sysctl_sched_latency)
2520 schedstat_inc(cfs_rq, nr_spread_over);
2521#endif
2522}
2523
aeb73b04
PZ
2524static void
2525place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2526{
1af5f730 2527 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2528
2cb8600e
PZ
2529 /*
2530 * The 'current' period is already promised to the current tasks,
2531 * however the extra weight of the new task will slow them down a
2532 * little, place the new task so that it fits in the slot that
2533 * stays open at the end.
2534 */
94dfb5e7 2535 if (initial && sched_feat(START_DEBIT))
f9c0b095 2536 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2537
a2e7a7eb 2538 /* sleeps up to a single latency don't count. */
5ca9880c 2539 if (!initial) {
a2e7a7eb 2540 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2541
a2e7a7eb
MG
2542 /*
2543 * Halve their sleep time's effect, to allow
2544 * for a gentler effect of sleepers:
2545 */
2546 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2547 thresh >>= 1;
51e0304c 2548
a2e7a7eb 2549 vruntime -= thresh;
aeb73b04
PZ
2550 }
2551
b5d9d734 2552 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2553 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2554}
2555
d3d9dc33
PT
2556static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2557
bf0f6f24 2558static void
88ec22d3 2559enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2560{
88ec22d3
PZ
2561 /*
2562 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2563 * through calling update_curr().
88ec22d3 2564 */
371fd7e7 2565 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2566 se->vruntime += cfs_rq->min_vruntime;
2567
bf0f6f24 2568 /*
a2a2d680 2569 * Update run-time statistics of the 'current'.
bf0f6f24 2570 */
b7cc0896 2571 update_curr(cfs_rq);
f269ae04 2572 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2573 account_entity_enqueue(cfs_rq, se);
2574 update_cfs_shares(cfs_rq);
bf0f6f24 2575
88ec22d3 2576 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2577 place_entity(cfs_rq, se, 0);
2396af69 2578 enqueue_sleeper(cfs_rq, se);
e9acbff6 2579 }
bf0f6f24 2580
d2417e5a 2581 update_stats_enqueue(cfs_rq, se);
ddc97297 2582 check_spread(cfs_rq, se);
83b699ed
SV
2583 if (se != cfs_rq->curr)
2584 __enqueue_entity(cfs_rq, se);
2069dd75 2585 se->on_rq = 1;
3d4b47b4 2586
d3d9dc33 2587 if (cfs_rq->nr_running == 1) {
3d4b47b4 2588 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2589 check_enqueue_throttle(cfs_rq);
2590 }
bf0f6f24
IM
2591}
2592
2c13c919 2593static void __clear_buddies_last(struct sched_entity *se)
2002c695 2594{
2c13c919
RR
2595 for_each_sched_entity(se) {
2596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2597 if (cfs_rq->last == se)
2598 cfs_rq->last = NULL;
2599 else
2600 break;
2601 }
2602}
2002c695 2603
2c13c919
RR
2604static void __clear_buddies_next(struct sched_entity *se)
2605{
2606 for_each_sched_entity(se) {
2607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2608 if (cfs_rq->next == se)
2609 cfs_rq->next = NULL;
2610 else
2611 break;
2612 }
2002c695
PZ
2613}
2614
ac53db59
RR
2615static void __clear_buddies_skip(struct sched_entity *se)
2616{
2617 for_each_sched_entity(se) {
2618 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2619 if (cfs_rq->skip == se)
2620 cfs_rq->skip = NULL;
2621 else
2622 break;
2623 }
2624}
2625
a571bbea
PZ
2626static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2627{
2c13c919
RR
2628 if (cfs_rq->last == se)
2629 __clear_buddies_last(se);
2630
2631 if (cfs_rq->next == se)
2632 __clear_buddies_next(se);
ac53db59
RR
2633
2634 if (cfs_rq->skip == se)
2635 __clear_buddies_skip(se);
a571bbea
PZ
2636}
2637
6c16a6dc 2638static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2639
bf0f6f24 2640static void
371fd7e7 2641dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2642{
a2a2d680
DA
2643 /*
2644 * Update run-time statistics of the 'current'.
2645 */
2646 update_curr(cfs_rq);
17bc14b7 2647 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2648
19b6a2e3 2649 update_stats_dequeue(cfs_rq, se);
371fd7e7 2650 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2651#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2652 if (entity_is_task(se)) {
2653 struct task_struct *tsk = task_of(se);
2654
2655 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2656 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2657 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2658 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2659 }
db36cc7d 2660#endif
67e9fb2a
PZ
2661 }
2662
2002c695 2663 clear_buddies(cfs_rq, se);
4793241b 2664
83b699ed 2665 if (se != cfs_rq->curr)
30cfdcfc 2666 __dequeue_entity(cfs_rq, se);
17bc14b7 2667 se->on_rq = 0;
30cfdcfc 2668 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2669
2670 /*
2671 * Normalize the entity after updating the min_vruntime because the
2672 * update can refer to the ->curr item and we need to reflect this
2673 * movement in our normalized position.
2674 */
371fd7e7 2675 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2676 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2677
d8b4986d
PT
2678 /* return excess runtime on last dequeue */
2679 return_cfs_rq_runtime(cfs_rq);
2680
1e876231 2681 update_min_vruntime(cfs_rq);
17bc14b7 2682 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2683}
2684
2685/*
2686 * Preempt the current task with a newly woken task if needed:
2687 */
7c92e54f 2688static void
2e09bf55 2689check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2690{
11697830 2691 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2692 struct sched_entity *se;
2693 s64 delta;
11697830 2694
6d0f0ebd 2695 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2696 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2697 if (delta_exec > ideal_runtime) {
bf0f6f24 2698 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2699 /*
2700 * The current task ran long enough, ensure it doesn't get
2701 * re-elected due to buddy favours.
2702 */
2703 clear_buddies(cfs_rq, curr);
f685ceac
MG
2704 return;
2705 }
2706
2707 /*
2708 * Ensure that a task that missed wakeup preemption by a
2709 * narrow margin doesn't have to wait for a full slice.
2710 * This also mitigates buddy induced latencies under load.
2711 */
f685ceac
MG
2712 if (delta_exec < sysctl_sched_min_granularity)
2713 return;
2714
f4cfb33e
WX
2715 se = __pick_first_entity(cfs_rq);
2716 delta = curr->vruntime - se->vruntime;
f685ceac 2717
f4cfb33e
WX
2718 if (delta < 0)
2719 return;
d7d82944 2720
f4cfb33e
WX
2721 if (delta > ideal_runtime)
2722 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2723}
2724
83b699ed 2725static void
8494f412 2726set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2727{
83b699ed
SV
2728 /* 'current' is not kept within the tree. */
2729 if (se->on_rq) {
2730 /*
2731 * Any task has to be enqueued before it get to execute on
2732 * a CPU. So account for the time it spent waiting on the
2733 * runqueue.
2734 */
2735 update_stats_wait_end(cfs_rq, se);
2736 __dequeue_entity(cfs_rq, se);
2737 }
2738
79303e9e 2739 update_stats_curr_start(cfs_rq, se);
429d43bc 2740 cfs_rq->curr = se;
eba1ed4b
IM
2741#ifdef CONFIG_SCHEDSTATS
2742 /*
2743 * Track our maximum slice length, if the CPU's load is at
2744 * least twice that of our own weight (i.e. dont track it
2745 * when there are only lesser-weight tasks around):
2746 */
495eca49 2747 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2748 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2749 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2750 }
2751#endif
4a55b450 2752 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2753}
2754
3f3a4904
PZ
2755static int
2756wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2757
ac53db59
RR
2758/*
2759 * Pick the next process, keeping these things in mind, in this order:
2760 * 1) keep things fair between processes/task groups
2761 * 2) pick the "next" process, since someone really wants that to run
2762 * 3) pick the "last" process, for cache locality
2763 * 4) do not run the "skip" process, if something else is available
2764 */
f4b6755f 2765static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2766{
ac53db59 2767 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2768 struct sched_entity *left = se;
f4b6755f 2769
ac53db59
RR
2770 /*
2771 * Avoid running the skip buddy, if running something else can
2772 * be done without getting too unfair.
2773 */
2774 if (cfs_rq->skip == se) {
2775 struct sched_entity *second = __pick_next_entity(se);
2776 if (second && wakeup_preempt_entity(second, left) < 1)
2777 se = second;
2778 }
aa2ac252 2779
f685ceac
MG
2780 /*
2781 * Prefer last buddy, try to return the CPU to a preempted task.
2782 */
2783 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2784 se = cfs_rq->last;
2785
ac53db59
RR
2786 /*
2787 * Someone really wants this to run. If it's not unfair, run it.
2788 */
2789 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2790 se = cfs_rq->next;
2791
f685ceac 2792 clear_buddies(cfs_rq, se);
4793241b
PZ
2793
2794 return se;
aa2ac252
PZ
2795}
2796
d3d9dc33
PT
2797static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2798
ab6cde26 2799static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2800{
2801 /*
2802 * If still on the runqueue then deactivate_task()
2803 * was not called and update_curr() has to be done:
2804 */
2805 if (prev->on_rq)
b7cc0896 2806 update_curr(cfs_rq);
bf0f6f24 2807
d3d9dc33
PT
2808 /* throttle cfs_rqs exceeding runtime */
2809 check_cfs_rq_runtime(cfs_rq);
2810
ddc97297 2811 check_spread(cfs_rq, prev);
30cfdcfc 2812 if (prev->on_rq) {
5870db5b 2813 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2814 /* Put 'current' back into the tree. */
2815 __enqueue_entity(cfs_rq, prev);
9d85f21c 2816 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2817 update_entity_load_avg(prev, 1);
30cfdcfc 2818 }
429d43bc 2819 cfs_rq->curr = NULL;
bf0f6f24
IM
2820}
2821
8f4d37ec
PZ
2822static void
2823entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2824{
bf0f6f24 2825 /*
30cfdcfc 2826 * Update run-time statistics of the 'current'.
bf0f6f24 2827 */
30cfdcfc 2828 update_curr(cfs_rq);
bf0f6f24 2829
9d85f21c
PT
2830 /*
2831 * Ensure that runnable average is periodically updated.
2832 */
9ee474f5 2833 update_entity_load_avg(curr, 1);
aff3e498 2834 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2835 update_cfs_shares(cfs_rq);
9d85f21c 2836
8f4d37ec
PZ
2837#ifdef CONFIG_SCHED_HRTICK
2838 /*
2839 * queued ticks are scheduled to match the slice, so don't bother
2840 * validating it and just reschedule.
2841 */
983ed7a6
HH
2842 if (queued) {
2843 resched_task(rq_of(cfs_rq)->curr);
2844 return;
2845 }
8f4d37ec
PZ
2846 /*
2847 * don't let the period tick interfere with the hrtick preemption
2848 */
2849 if (!sched_feat(DOUBLE_TICK) &&
2850 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2851 return;
2852#endif
2853
2c2efaed 2854 if (cfs_rq->nr_running > 1)
2e09bf55 2855 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2856}
2857
ab84d31e
PT
2858
2859/**************************************************
2860 * CFS bandwidth control machinery
2861 */
2862
2863#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2864
2865#ifdef HAVE_JUMP_LABEL
c5905afb 2866static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2867
2868static inline bool cfs_bandwidth_used(void)
2869{
c5905afb 2870 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2871}
2872
1ee14e6c 2873void cfs_bandwidth_usage_inc(void)
029632fb 2874{
1ee14e6c
BS
2875 static_key_slow_inc(&__cfs_bandwidth_used);
2876}
2877
2878void cfs_bandwidth_usage_dec(void)
2879{
2880 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2881}
2882#else /* HAVE_JUMP_LABEL */
2883static bool cfs_bandwidth_used(void)
2884{
2885 return true;
2886}
2887
1ee14e6c
BS
2888void cfs_bandwidth_usage_inc(void) {}
2889void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2890#endif /* HAVE_JUMP_LABEL */
2891
ab84d31e
PT
2892/*
2893 * default period for cfs group bandwidth.
2894 * default: 0.1s, units: nanoseconds
2895 */
2896static inline u64 default_cfs_period(void)
2897{
2898 return 100000000ULL;
2899}
ec12cb7f
PT
2900
2901static inline u64 sched_cfs_bandwidth_slice(void)
2902{
2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2904}
2905
a9cf55b2
PT
2906/*
2907 * Replenish runtime according to assigned quota and update expiration time.
2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2909 * additional synchronization around rq->lock.
2910 *
2911 * requires cfs_b->lock
2912 */
029632fb 2913void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2914{
2915 u64 now;
2916
2917 if (cfs_b->quota == RUNTIME_INF)
2918 return;
2919
2920 now = sched_clock_cpu(smp_processor_id());
2921 cfs_b->runtime = cfs_b->quota;
2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2923}
2924
029632fb
PZ
2925static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2926{
2927 return &tg->cfs_bandwidth;
2928}
2929
f1b17280
PT
2930/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2931static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2932{
2933 if (unlikely(cfs_rq->throttle_count))
2934 return cfs_rq->throttled_clock_task;
2935
78becc27 2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2937}
2938
85dac906
PT
2939/* returns 0 on failure to allocate runtime */
2940static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2941{
2942 struct task_group *tg = cfs_rq->tg;
2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2944 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2945
2946 /* note: this is a positive sum as runtime_remaining <= 0 */
2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2948
2949 raw_spin_lock(&cfs_b->lock);
2950 if (cfs_b->quota == RUNTIME_INF)
2951 amount = min_amount;
58088ad0 2952 else {
a9cf55b2
PT
2953 /*
2954 * If the bandwidth pool has become inactive, then at least one
2955 * period must have elapsed since the last consumption.
2956 * Refresh the global state and ensure bandwidth timer becomes
2957 * active.
2958 */
2959 if (!cfs_b->timer_active) {
2960 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2961 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2962 }
58088ad0
PT
2963
2964 if (cfs_b->runtime > 0) {
2965 amount = min(cfs_b->runtime, min_amount);
2966 cfs_b->runtime -= amount;
2967 cfs_b->idle = 0;
2968 }
ec12cb7f 2969 }
a9cf55b2 2970 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2971 raw_spin_unlock(&cfs_b->lock);
2972
2973 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2974 /*
2975 * we may have advanced our local expiration to account for allowed
2976 * spread between our sched_clock and the one on which runtime was
2977 * issued.
2978 */
2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2980 cfs_rq->runtime_expires = expires;
85dac906
PT
2981
2982 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2983}
2984
a9cf55b2
PT
2985/*
2986 * Note: This depends on the synchronization provided by sched_clock and the
2987 * fact that rq->clock snapshots this value.
2988 */
2989static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2990{
a9cf55b2 2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2992
2993 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2995 return;
2996
a9cf55b2
PT
2997 if (cfs_rq->runtime_remaining < 0)
2998 return;
2999
3000 /*
3001 * If the local deadline has passed we have to consider the
3002 * possibility that our sched_clock is 'fast' and the global deadline
3003 * has not truly expired.
3004 *
3005 * Fortunately we can check determine whether this the case by checking
3006 * whether the global deadline has advanced.
3007 */
3008
3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3010 /* extend local deadline, drift is bounded above by 2 ticks */
3011 cfs_rq->runtime_expires += TICK_NSEC;
3012 } else {
3013 /* global deadline is ahead, expiration has passed */
3014 cfs_rq->runtime_remaining = 0;
3015 }
3016}
3017
3018static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3019 unsigned long delta_exec)
3020{
3021 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3022 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3023 expire_cfs_rq_runtime(cfs_rq);
3024
3025 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3026 return;
3027
85dac906
PT
3028 /*
3029 * if we're unable to extend our runtime we resched so that the active
3030 * hierarchy can be throttled
3031 */
3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3033 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3034}
3035
6c16a6dc
PZ
3036static __always_inline
3037void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3038{
56f570e5 3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3040 return;
3041
3042 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3043}
3044
85dac906
PT
3045static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3046{
56f570e5 3047 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3048}
3049
64660c86
PT
3050/* check whether cfs_rq, or any parent, is throttled */
3051static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3052{
56f570e5 3053 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3054}
3055
3056/*
3057 * Ensure that neither of the group entities corresponding to src_cpu or
3058 * dest_cpu are members of a throttled hierarchy when performing group
3059 * load-balance operations.
3060 */
3061static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063{
3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3065
3066 src_cfs_rq = tg->cfs_rq[src_cpu];
3067 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3068
3069 return throttled_hierarchy(src_cfs_rq) ||
3070 throttled_hierarchy(dest_cfs_rq);
3071}
3072
3073/* updated child weight may affect parent so we have to do this bottom up */
3074static int tg_unthrottle_up(struct task_group *tg, void *data)
3075{
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
3079 cfs_rq->throttle_count--;
3080#ifdef CONFIG_SMP
3081 if (!cfs_rq->throttle_count) {
f1b17280 3082 /* adjust cfs_rq_clock_task() */
78becc27 3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3084 cfs_rq->throttled_clock_task;
64660c86
PT
3085 }
3086#endif
3087
3088 return 0;
3089}
3090
3091static int tg_throttle_down(struct task_group *tg, void *data)
3092{
3093 struct rq *rq = data;
3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3095
82958366
PT
3096 /* group is entering throttled state, stop time */
3097 if (!cfs_rq->throttle_count)
78becc27 3098 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3099 cfs_rq->throttle_count++;
3100
3101 return 0;
3102}
3103
d3d9dc33 3104static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3105{
3106 struct rq *rq = rq_of(cfs_rq);
3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3108 struct sched_entity *se;
3109 long task_delta, dequeue = 1;
3110
3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3112
f1b17280 3113 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3114 rcu_read_lock();
3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3116 rcu_read_unlock();
85dac906
PT
3117
3118 task_delta = cfs_rq->h_nr_running;
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3121 /* throttled entity or throttle-on-deactivate */
3122 if (!se->on_rq)
3123 break;
3124
3125 if (dequeue)
3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3127 qcfs_rq->h_nr_running -= task_delta;
3128
3129 if (qcfs_rq->load.weight)
3130 dequeue = 0;
3131 }
3132
3133 if (!se)
3134 rq->nr_running -= task_delta;
3135
3136 cfs_rq->throttled = 1;
78becc27 3137 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3138 raw_spin_lock(&cfs_b->lock);
3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3140 if (!cfs_b->timer_active)
3141 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3142 raw_spin_unlock(&cfs_b->lock);
3143}
3144
029632fb 3145void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3146{
3147 struct rq *rq = rq_of(cfs_rq);
3148 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3149 struct sched_entity *se;
3150 int enqueue = 1;
3151 long task_delta;
3152
22b958d8 3153 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3154
3155 cfs_rq->throttled = 0;
1a55af2e
FW
3156
3157 update_rq_clock(rq);
3158
671fd9da 3159 raw_spin_lock(&cfs_b->lock);
78becc27 3160 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3161 list_del_rcu(&cfs_rq->throttled_list);
3162 raw_spin_unlock(&cfs_b->lock);
3163
64660c86
PT
3164 /* update hierarchical throttle state */
3165 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3166
671fd9da
PT
3167 if (!cfs_rq->load.weight)
3168 return;
3169
3170 task_delta = cfs_rq->h_nr_running;
3171 for_each_sched_entity(se) {
3172 if (se->on_rq)
3173 enqueue = 0;
3174
3175 cfs_rq = cfs_rq_of(se);
3176 if (enqueue)
3177 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3178 cfs_rq->h_nr_running += task_delta;
3179
3180 if (cfs_rq_throttled(cfs_rq))
3181 break;
3182 }
3183
3184 if (!se)
3185 rq->nr_running += task_delta;
3186
3187 /* determine whether we need to wake up potentially idle cpu */
3188 if (rq->curr == rq->idle && rq->cfs.nr_running)
3189 resched_task(rq->curr);
3190}
3191
3192static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3193 u64 remaining, u64 expires)
3194{
3195 struct cfs_rq *cfs_rq;
3196 u64 runtime = remaining;
3197
3198 rcu_read_lock();
3199 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3200 throttled_list) {
3201 struct rq *rq = rq_of(cfs_rq);
3202
3203 raw_spin_lock(&rq->lock);
3204 if (!cfs_rq_throttled(cfs_rq))
3205 goto next;
3206
3207 runtime = -cfs_rq->runtime_remaining + 1;
3208 if (runtime > remaining)
3209 runtime = remaining;
3210 remaining -= runtime;
3211
3212 cfs_rq->runtime_remaining += runtime;
3213 cfs_rq->runtime_expires = expires;
3214
3215 /* we check whether we're throttled above */
3216 if (cfs_rq->runtime_remaining > 0)
3217 unthrottle_cfs_rq(cfs_rq);
3218
3219next:
3220 raw_spin_unlock(&rq->lock);
3221
3222 if (!remaining)
3223 break;
3224 }
3225 rcu_read_unlock();
3226
3227 return remaining;
3228}
3229
58088ad0
PT
3230/*
3231 * Responsible for refilling a task_group's bandwidth and unthrottling its
3232 * cfs_rqs as appropriate. If there has been no activity within the last
3233 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3234 * used to track this state.
3235 */
3236static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3237{
671fd9da
PT
3238 u64 runtime, runtime_expires;
3239 int idle = 1, throttled;
58088ad0
PT
3240
3241 raw_spin_lock(&cfs_b->lock);
3242 /* no need to continue the timer with no bandwidth constraint */
3243 if (cfs_b->quota == RUNTIME_INF)
3244 goto out_unlock;
3245
671fd9da
PT
3246 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3247 /* idle depends on !throttled (for the case of a large deficit) */
3248 idle = cfs_b->idle && !throttled;
e8da1b18 3249 cfs_b->nr_periods += overrun;
671fd9da 3250
a9cf55b2
PT
3251 /* if we're going inactive then everything else can be deferred */
3252 if (idle)
3253 goto out_unlock;
3254
927b54fc
BS
3255 /*
3256 * if we have relooped after returning idle once, we need to update our
3257 * status as actually running, so that other cpus doing
3258 * __start_cfs_bandwidth will stop trying to cancel us.
3259 */
3260 cfs_b->timer_active = 1;
3261
a9cf55b2
PT
3262 __refill_cfs_bandwidth_runtime(cfs_b);
3263
671fd9da
PT
3264 if (!throttled) {
3265 /* mark as potentially idle for the upcoming period */
3266 cfs_b->idle = 1;
3267 goto out_unlock;
3268 }
3269
e8da1b18
NR
3270 /* account preceding periods in which throttling occurred */
3271 cfs_b->nr_throttled += overrun;
3272
671fd9da
PT
3273 /*
3274 * There are throttled entities so we must first use the new bandwidth
3275 * to unthrottle them before making it generally available. This
3276 * ensures that all existing debts will be paid before a new cfs_rq is
3277 * allowed to run.
3278 */
3279 runtime = cfs_b->runtime;
3280 runtime_expires = cfs_b->runtime_expires;
3281 cfs_b->runtime = 0;
3282
3283 /*
3284 * This check is repeated as we are holding onto the new bandwidth
3285 * while we unthrottle. This can potentially race with an unthrottled
3286 * group trying to acquire new bandwidth from the global pool.
3287 */
3288 while (throttled && runtime > 0) {
3289 raw_spin_unlock(&cfs_b->lock);
3290 /* we can't nest cfs_b->lock while distributing bandwidth */
3291 runtime = distribute_cfs_runtime(cfs_b, runtime,
3292 runtime_expires);
3293 raw_spin_lock(&cfs_b->lock);
3294
3295 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3296 }
58088ad0 3297
671fd9da
PT
3298 /* return (any) remaining runtime */
3299 cfs_b->runtime = runtime;
3300 /*
3301 * While we are ensured activity in the period following an
3302 * unthrottle, this also covers the case in which the new bandwidth is
3303 * insufficient to cover the existing bandwidth deficit. (Forcing the
3304 * timer to remain active while there are any throttled entities.)
3305 */
3306 cfs_b->idle = 0;
58088ad0
PT
3307out_unlock:
3308 if (idle)
3309 cfs_b->timer_active = 0;
3310 raw_spin_unlock(&cfs_b->lock);
3311
3312 return idle;
3313}
d3d9dc33 3314
d8b4986d
PT
3315/* a cfs_rq won't donate quota below this amount */
3316static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3317/* minimum remaining period time to redistribute slack quota */
3318static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3319/* how long we wait to gather additional slack before distributing */
3320static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3321
db06e78c
BS
3322/*
3323 * Are we near the end of the current quota period?
3324 *
3325 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3326 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3327 * migrate_hrtimers, base is never cleared, so we are fine.
3328 */
d8b4986d
PT
3329static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3330{
3331 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3332 u64 remaining;
3333
3334 /* if the call-back is running a quota refresh is already occurring */
3335 if (hrtimer_callback_running(refresh_timer))
3336 return 1;
3337
3338 /* is a quota refresh about to occur? */
3339 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3340 if (remaining < min_expire)
3341 return 1;
3342
3343 return 0;
3344}
3345
3346static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3347{
3348 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3349
3350 /* if there's a quota refresh soon don't bother with slack */
3351 if (runtime_refresh_within(cfs_b, min_left))
3352 return;
3353
3354 start_bandwidth_timer(&cfs_b->slack_timer,
3355 ns_to_ktime(cfs_bandwidth_slack_period));
3356}
3357
3358/* we know any runtime found here is valid as update_curr() precedes return */
3359static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3360{
3361 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3362 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3363
3364 if (slack_runtime <= 0)
3365 return;
3366
3367 raw_spin_lock(&cfs_b->lock);
3368 if (cfs_b->quota != RUNTIME_INF &&
3369 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3370 cfs_b->runtime += slack_runtime;
3371
3372 /* we are under rq->lock, defer unthrottling using a timer */
3373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3374 !list_empty(&cfs_b->throttled_cfs_rq))
3375 start_cfs_slack_bandwidth(cfs_b);
3376 }
3377 raw_spin_unlock(&cfs_b->lock);
3378
3379 /* even if it's not valid for return we don't want to try again */
3380 cfs_rq->runtime_remaining -= slack_runtime;
3381}
3382
3383static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3384{
56f570e5
PT
3385 if (!cfs_bandwidth_used())
3386 return;
3387
fccfdc6f 3388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3389 return;
3390
3391 __return_cfs_rq_runtime(cfs_rq);
3392}
3393
3394/*
3395 * This is done with a timer (instead of inline with bandwidth return) since
3396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3397 */
3398static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3399{
3400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3401 u64 expires;
3402
3403 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3404 raw_spin_lock(&cfs_b->lock);
3405 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3406 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3407 return;
db06e78c 3408 }
d8b4986d 3409
d8b4986d
PT
3410 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3411 runtime = cfs_b->runtime;
3412 cfs_b->runtime = 0;
3413 }
3414 expires = cfs_b->runtime_expires;
3415 raw_spin_unlock(&cfs_b->lock);
3416
3417 if (!runtime)
3418 return;
3419
3420 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3421
3422 raw_spin_lock(&cfs_b->lock);
3423 if (expires == cfs_b->runtime_expires)
3424 cfs_b->runtime = runtime;
3425 raw_spin_unlock(&cfs_b->lock);
3426}
3427
d3d9dc33
PT
3428/*
3429 * When a group wakes up we want to make sure that its quota is not already
3430 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3431 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3432 */
3433static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3434{
56f570e5
PT
3435 if (!cfs_bandwidth_used())
3436 return;
3437
d3d9dc33
PT
3438 /* an active group must be handled by the update_curr()->put() path */
3439 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3440 return;
3441
3442 /* ensure the group is not already throttled */
3443 if (cfs_rq_throttled(cfs_rq))
3444 return;
3445
3446 /* update runtime allocation */
3447 account_cfs_rq_runtime(cfs_rq, 0);
3448 if (cfs_rq->runtime_remaining <= 0)
3449 throttle_cfs_rq(cfs_rq);
3450}
3451
3452/* conditionally throttle active cfs_rq's from put_prev_entity() */
3453static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3454{
56f570e5
PT
3455 if (!cfs_bandwidth_used())
3456 return;
3457
d3d9dc33
PT
3458 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3459 return;
3460
3461 /*
3462 * it's possible for a throttled entity to be forced into a running
3463 * state (e.g. set_curr_task), in this case we're finished.
3464 */
3465 if (cfs_rq_throttled(cfs_rq))
3466 return;
3467
3468 throttle_cfs_rq(cfs_rq);
3469}
029632fb 3470
029632fb
PZ
3471static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3472{
3473 struct cfs_bandwidth *cfs_b =
3474 container_of(timer, struct cfs_bandwidth, slack_timer);
3475 do_sched_cfs_slack_timer(cfs_b);
3476
3477 return HRTIMER_NORESTART;
3478}
3479
3480static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3481{
3482 struct cfs_bandwidth *cfs_b =
3483 container_of(timer, struct cfs_bandwidth, period_timer);
3484 ktime_t now;
3485 int overrun;
3486 int idle = 0;
3487
3488 for (;;) {
3489 now = hrtimer_cb_get_time(timer);
3490 overrun = hrtimer_forward(timer, now, cfs_b->period);
3491
3492 if (!overrun)
3493 break;
3494
3495 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3496 }
3497
3498 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3499}
3500
3501void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3502{
3503 raw_spin_lock_init(&cfs_b->lock);
3504 cfs_b->runtime = 0;
3505 cfs_b->quota = RUNTIME_INF;
3506 cfs_b->period = ns_to_ktime(default_cfs_period());
3507
3508 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3509 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3510 cfs_b->period_timer.function = sched_cfs_period_timer;
3511 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3512 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3513}
3514
3515static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3516{
3517 cfs_rq->runtime_enabled = 0;
3518 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3519}
3520
3521/* requires cfs_b->lock, may release to reprogram timer */
3522void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3523{
3524 /*
3525 * The timer may be active because we're trying to set a new bandwidth
3526 * period or because we're racing with the tear-down path
3527 * (timer_active==0 becomes visible before the hrtimer call-back
3528 * terminates). In either case we ensure that it's re-programmed
3529 */
927b54fc
BS
3530 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3531 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3532 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3533 raw_spin_unlock(&cfs_b->lock);
927b54fc 3534 cpu_relax();
029632fb
PZ
3535 raw_spin_lock(&cfs_b->lock);
3536 /* if someone else restarted the timer then we're done */
3537 if (cfs_b->timer_active)
3538 return;
3539 }
3540
3541 cfs_b->timer_active = 1;
3542 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3543}
3544
3545static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3546{
3547 hrtimer_cancel(&cfs_b->period_timer);
3548 hrtimer_cancel(&cfs_b->slack_timer);
3549}
3550
38dc3348 3551static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3552{
3553 struct cfs_rq *cfs_rq;
3554
3555 for_each_leaf_cfs_rq(rq, cfs_rq) {
3556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3557
3558 if (!cfs_rq->runtime_enabled)
3559 continue;
3560
3561 /*
3562 * clock_task is not advancing so we just need to make sure
3563 * there's some valid quota amount
3564 */
3565 cfs_rq->runtime_remaining = cfs_b->quota;
3566 if (cfs_rq_throttled(cfs_rq))
3567 unthrottle_cfs_rq(cfs_rq);
3568 }
3569}
3570
3571#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3572static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3573{
78becc27 3574 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3575}
3576
3577static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3578 unsigned long delta_exec) {}
d3d9dc33
PT
3579static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3580static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3581static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3582
3583static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3584{
3585 return 0;
3586}
64660c86
PT
3587
3588static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3589{
3590 return 0;
3591}
3592
3593static inline int throttled_lb_pair(struct task_group *tg,
3594 int src_cpu, int dest_cpu)
3595{
3596 return 0;
3597}
029632fb
PZ
3598
3599void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3600
3601#ifdef CONFIG_FAIR_GROUP_SCHED
3602static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3603#endif
3604
029632fb
PZ
3605static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3606{
3607 return NULL;
3608}
3609static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3610static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3611
3612#endif /* CONFIG_CFS_BANDWIDTH */
3613
bf0f6f24
IM
3614/**************************************************
3615 * CFS operations on tasks:
3616 */
3617
8f4d37ec
PZ
3618#ifdef CONFIG_SCHED_HRTICK
3619static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3620{
8f4d37ec
PZ
3621 struct sched_entity *se = &p->se;
3622 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3623
3624 WARN_ON(task_rq(p) != rq);
3625
b39e66ea 3626 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3627 u64 slice = sched_slice(cfs_rq, se);
3628 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3629 s64 delta = slice - ran;
3630
3631 if (delta < 0) {
3632 if (rq->curr == p)
3633 resched_task(p);
3634 return;
3635 }
3636
3637 /*
3638 * Don't schedule slices shorter than 10000ns, that just
3639 * doesn't make sense. Rely on vruntime for fairness.
3640 */
31656519 3641 if (rq->curr != p)
157124c1 3642 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3643
31656519 3644 hrtick_start(rq, delta);
8f4d37ec
PZ
3645 }
3646}
a4c2f00f
PZ
3647
3648/*
3649 * called from enqueue/dequeue and updates the hrtick when the
3650 * current task is from our class and nr_running is low enough
3651 * to matter.
3652 */
3653static void hrtick_update(struct rq *rq)
3654{
3655 struct task_struct *curr = rq->curr;
3656
b39e66ea 3657 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3658 return;
3659
3660 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3661 hrtick_start_fair(rq, curr);
3662}
55e12e5e 3663#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3664static inline void
3665hrtick_start_fair(struct rq *rq, struct task_struct *p)
3666{
3667}
a4c2f00f
PZ
3668
3669static inline void hrtick_update(struct rq *rq)
3670{
3671}
8f4d37ec
PZ
3672#endif
3673
bf0f6f24
IM
3674/*
3675 * The enqueue_task method is called before nr_running is
3676 * increased. Here we update the fair scheduling stats and
3677 * then put the task into the rbtree:
3678 */
ea87bb78 3679static void
371fd7e7 3680enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3681{
3682 struct cfs_rq *cfs_rq;
62fb1851 3683 struct sched_entity *se = &p->se;
bf0f6f24
IM
3684
3685 for_each_sched_entity(se) {
62fb1851 3686 if (se->on_rq)
bf0f6f24
IM
3687 break;
3688 cfs_rq = cfs_rq_of(se);
88ec22d3 3689 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3690
3691 /*
3692 * end evaluation on encountering a throttled cfs_rq
3693 *
3694 * note: in the case of encountering a throttled cfs_rq we will
3695 * post the final h_nr_running increment below.
3696 */
3697 if (cfs_rq_throttled(cfs_rq))
3698 break;
953bfcd1 3699 cfs_rq->h_nr_running++;
85dac906 3700
88ec22d3 3701 flags = ENQUEUE_WAKEUP;
bf0f6f24 3702 }
8f4d37ec 3703
2069dd75 3704 for_each_sched_entity(se) {
0f317143 3705 cfs_rq = cfs_rq_of(se);
953bfcd1 3706 cfs_rq->h_nr_running++;
2069dd75 3707
85dac906
PT
3708 if (cfs_rq_throttled(cfs_rq))
3709 break;
3710
17bc14b7 3711 update_cfs_shares(cfs_rq);
9ee474f5 3712 update_entity_load_avg(se, 1);
2069dd75
PZ
3713 }
3714
18bf2805
BS
3715 if (!se) {
3716 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3717 inc_nr_running(rq);
18bf2805 3718 }
a4c2f00f 3719 hrtick_update(rq);
bf0f6f24
IM
3720}
3721
2f36825b
VP
3722static void set_next_buddy(struct sched_entity *se);
3723
bf0f6f24
IM
3724/*
3725 * The dequeue_task method is called before nr_running is
3726 * decreased. We remove the task from the rbtree and
3727 * update the fair scheduling stats:
3728 */
371fd7e7 3729static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3730{
3731 struct cfs_rq *cfs_rq;
62fb1851 3732 struct sched_entity *se = &p->se;
2f36825b 3733 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3734
3735 for_each_sched_entity(se) {
3736 cfs_rq = cfs_rq_of(se);
371fd7e7 3737 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3738
3739 /*
3740 * end evaluation on encountering a throttled cfs_rq
3741 *
3742 * note: in the case of encountering a throttled cfs_rq we will
3743 * post the final h_nr_running decrement below.
3744 */
3745 if (cfs_rq_throttled(cfs_rq))
3746 break;
953bfcd1 3747 cfs_rq->h_nr_running--;
2069dd75 3748
bf0f6f24 3749 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3750 if (cfs_rq->load.weight) {
3751 /*
3752 * Bias pick_next to pick a task from this cfs_rq, as
3753 * p is sleeping when it is within its sched_slice.
3754 */
3755 if (task_sleep && parent_entity(se))
3756 set_next_buddy(parent_entity(se));
9598c82d
PT
3757
3758 /* avoid re-evaluating load for this entity */
3759 se = parent_entity(se);
bf0f6f24 3760 break;
2f36825b 3761 }
371fd7e7 3762 flags |= DEQUEUE_SLEEP;
bf0f6f24 3763 }
8f4d37ec 3764
2069dd75 3765 for_each_sched_entity(se) {
0f317143 3766 cfs_rq = cfs_rq_of(se);
953bfcd1 3767 cfs_rq->h_nr_running--;
2069dd75 3768
85dac906
PT
3769 if (cfs_rq_throttled(cfs_rq))
3770 break;
3771
17bc14b7 3772 update_cfs_shares(cfs_rq);
9ee474f5 3773 update_entity_load_avg(se, 1);
2069dd75
PZ
3774 }
3775
18bf2805 3776 if (!se) {
85dac906 3777 dec_nr_running(rq);
18bf2805
BS
3778 update_rq_runnable_avg(rq, 1);
3779 }
a4c2f00f 3780 hrtick_update(rq);
bf0f6f24
IM
3781}
3782
e7693a36 3783#ifdef CONFIG_SMP
029632fb
PZ
3784/* Used instead of source_load when we know the type == 0 */
3785static unsigned long weighted_cpuload(const int cpu)
3786{
b92486cb 3787 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3788}
3789
3790/*
3791 * Return a low guess at the load of a migration-source cpu weighted
3792 * according to the scheduling class and "nice" value.
3793 *
3794 * We want to under-estimate the load of migration sources, to
3795 * balance conservatively.
3796 */
3797static unsigned long source_load(int cpu, int type)
3798{
3799 struct rq *rq = cpu_rq(cpu);
3800 unsigned long total = weighted_cpuload(cpu);
3801
3802 if (type == 0 || !sched_feat(LB_BIAS))
3803 return total;
3804
3805 return min(rq->cpu_load[type-1], total);
3806}
3807
3808/*
3809 * Return a high guess at the load of a migration-target cpu weighted
3810 * according to the scheduling class and "nice" value.
3811 */
3812static unsigned long target_load(int cpu, int type)
3813{
3814 struct rq *rq = cpu_rq(cpu);
3815 unsigned long total = weighted_cpuload(cpu);
3816
3817 if (type == 0 || !sched_feat(LB_BIAS))
3818 return total;
3819
3820 return max(rq->cpu_load[type-1], total);
3821}
3822
3823static unsigned long power_of(int cpu)
3824{
3825 return cpu_rq(cpu)->cpu_power;
3826}
3827
3828static unsigned long cpu_avg_load_per_task(int cpu)
3829{
3830 struct rq *rq = cpu_rq(cpu);
3831 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3832 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3833
3834 if (nr_running)
b92486cb 3835 return load_avg / nr_running;
029632fb
PZ
3836
3837 return 0;
3838}
3839
62470419
MW
3840static void record_wakee(struct task_struct *p)
3841{
3842 /*
3843 * Rough decay (wiping) for cost saving, don't worry
3844 * about the boundary, really active task won't care
3845 * about the loss.
3846 */
3847 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3848 current->wakee_flips = 0;
3849 current->wakee_flip_decay_ts = jiffies;
3850 }
3851
3852 if (current->last_wakee != p) {
3853 current->last_wakee = p;
3854 current->wakee_flips++;
3855 }
3856}
098fb9db 3857
74f8e4b2 3858static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3859{
3860 struct sched_entity *se = &p->se;
3861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3862 u64 min_vruntime;
3863
3864#ifndef CONFIG_64BIT
3865 u64 min_vruntime_copy;
88ec22d3 3866
3fe1698b
PZ
3867 do {
3868 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3869 smp_rmb();
3870 min_vruntime = cfs_rq->min_vruntime;
3871 } while (min_vruntime != min_vruntime_copy);
3872#else
3873 min_vruntime = cfs_rq->min_vruntime;
3874#endif
88ec22d3 3875
3fe1698b 3876 se->vruntime -= min_vruntime;
62470419 3877 record_wakee(p);
88ec22d3
PZ
3878}
3879
bb3469ac 3880#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3881/*
3882 * effective_load() calculates the load change as seen from the root_task_group
3883 *
3884 * Adding load to a group doesn't make a group heavier, but can cause movement
3885 * of group shares between cpus. Assuming the shares were perfectly aligned one
3886 * can calculate the shift in shares.
cf5f0acf
PZ
3887 *
3888 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3889 * on this @cpu and results in a total addition (subtraction) of @wg to the
3890 * total group weight.
3891 *
3892 * Given a runqueue weight distribution (rw_i) we can compute a shares
3893 * distribution (s_i) using:
3894 *
3895 * s_i = rw_i / \Sum rw_j (1)
3896 *
3897 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3898 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3899 * shares distribution (s_i):
3900 *
3901 * rw_i = { 2, 4, 1, 0 }
3902 * s_i = { 2/7, 4/7, 1/7, 0 }
3903 *
3904 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3905 * task used to run on and the CPU the waker is running on), we need to
3906 * compute the effect of waking a task on either CPU and, in case of a sync
3907 * wakeup, compute the effect of the current task going to sleep.
3908 *
3909 * So for a change of @wl to the local @cpu with an overall group weight change
3910 * of @wl we can compute the new shares distribution (s'_i) using:
3911 *
3912 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3913 *
3914 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3915 * differences in waking a task to CPU 0. The additional task changes the
3916 * weight and shares distributions like:
3917 *
3918 * rw'_i = { 3, 4, 1, 0 }
3919 * s'_i = { 3/8, 4/8, 1/8, 0 }
3920 *
3921 * We can then compute the difference in effective weight by using:
3922 *
3923 * dw_i = S * (s'_i - s_i) (3)
3924 *
3925 * Where 'S' is the group weight as seen by its parent.
3926 *
3927 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3928 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3929 * 4/7) times the weight of the group.
f5bfb7d9 3930 */
2069dd75 3931static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3932{
4be9daaa 3933 struct sched_entity *se = tg->se[cpu];
f1d239f7 3934
58d081b5 3935 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3936 return wl;
3937
4be9daaa 3938 for_each_sched_entity(se) {
cf5f0acf 3939 long w, W;
4be9daaa 3940
977dda7c 3941 tg = se->my_q->tg;
bb3469ac 3942
cf5f0acf
PZ
3943 /*
3944 * W = @wg + \Sum rw_j
3945 */
3946 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3947
cf5f0acf
PZ
3948 /*
3949 * w = rw_i + @wl
3950 */
3951 w = se->my_q->load.weight + wl;
940959e9 3952
cf5f0acf
PZ
3953 /*
3954 * wl = S * s'_i; see (2)
3955 */
3956 if (W > 0 && w < W)
3957 wl = (w * tg->shares) / W;
977dda7c
PT
3958 else
3959 wl = tg->shares;
940959e9 3960
cf5f0acf
PZ
3961 /*
3962 * Per the above, wl is the new se->load.weight value; since
3963 * those are clipped to [MIN_SHARES, ...) do so now. See
3964 * calc_cfs_shares().
3965 */
977dda7c
PT
3966 if (wl < MIN_SHARES)
3967 wl = MIN_SHARES;
cf5f0acf
PZ
3968
3969 /*
3970 * wl = dw_i = S * (s'_i - s_i); see (3)
3971 */
977dda7c 3972 wl -= se->load.weight;
cf5f0acf
PZ
3973
3974 /*
3975 * Recursively apply this logic to all parent groups to compute
3976 * the final effective load change on the root group. Since
3977 * only the @tg group gets extra weight, all parent groups can
3978 * only redistribute existing shares. @wl is the shift in shares
3979 * resulting from this level per the above.
3980 */
4be9daaa 3981 wg = 0;
4be9daaa 3982 }
bb3469ac 3983
4be9daaa 3984 return wl;
bb3469ac
PZ
3985}
3986#else
4be9daaa 3987
58d081b5 3988static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3989{
83378269 3990 return wl;
bb3469ac 3991}
4be9daaa 3992
bb3469ac
PZ
3993#endif
3994
62470419
MW
3995static int wake_wide(struct task_struct *p)
3996{
7d9ffa89 3997 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3998
3999 /*
4000 * Yeah, it's the switching-frequency, could means many wakee or
4001 * rapidly switch, use factor here will just help to automatically
4002 * adjust the loose-degree, so bigger node will lead to more pull.
4003 */
4004 if (p->wakee_flips > factor) {
4005 /*
4006 * wakee is somewhat hot, it needs certain amount of cpu
4007 * resource, so if waker is far more hot, prefer to leave
4008 * it alone.
4009 */
4010 if (current->wakee_flips > (factor * p->wakee_flips))
4011 return 1;
4012 }
4013
4014 return 0;
4015}
4016
c88d5910 4017static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4018{
e37b6a7b 4019 s64 this_load, load;
c88d5910 4020 int idx, this_cpu, prev_cpu;
098fb9db 4021 unsigned long tl_per_task;
c88d5910 4022 struct task_group *tg;
83378269 4023 unsigned long weight;
b3137bc8 4024 int balanced;
098fb9db 4025
62470419
MW
4026 /*
4027 * If we wake multiple tasks be careful to not bounce
4028 * ourselves around too much.
4029 */
4030 if (wake_wide(p))
4031 return 0;
4032
c88d5910
PZ
4033 idx = sd->wake_idx;
4034 this_cpu = smp_processor_id();
4035 prev_cpu = task_cpu(p);
4036 load = source_load(prev_cpu, idx);
4037 this_load = target_load(this_cpu, idx);
098fb9db 4038
b3137bc8
MG
4039 /*
4040 * If sync wakeup then subtract the (maximum possible)
4041 * effect of the currently running task from the load
4042 * of the current CPU:
4043 */
83378269
PZ
4044 if (sync) {
4045 tg = task_group(current);
4046 weight = current->se.load.weight;
4047
c88d5910 4048 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4049 load += effective_load(tg, prev_cpu, 0, -weight);
4050 }
b3137bc8 4051
83378269
PZ
4052 tg = task_group(p);
4053 weight = p->se.load.weight;
b3137bc8 4054
71a29aa7
PZ
4055 /*
4056 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4057 * due to the sync cause above having dropped this_load to 0, we'll
4058 * always have an imbalance, but there's really nothing you can do
4059 * about that, so that's good too.
71a29aa7
PZ
4060 *
4061 * Otherwise check if either cpus are near enough in load to allow this
4062 * task to be woken on this_cpu.
4063 */
e37b6a7b
PT
4064 if (this_load > 0) {
4065 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4066
4067 this_eff_load = 100;
4068 this_eff_load *= power_of(prev_cpu);
4069 this_eff_load *= this_load +
4070 effective_load(tg, this_cpu, weight, weight);
4071
4072 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4073 prev_eff_load *= power_of(this_cpu);
4074 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4075
4076 balanced = this_eff_load <= prev_eff_load;
4077 } else
4078 balanced = true;
b3137bc8 4079
098fb9db 4080 /*
4ae7d5ce
IM
4081 * If the currently running task will sleep within
4082 * a reasonable amount of time then attract this newly
4083 * woken task:
098fb9db 4084 */
2fb7635c
PZ
4085 if (sync && balanced)
4086 return 1;
098fb9db 4087
41acab88 4088 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4089 tl_per_task = cpu_avg_load_per_task(this_cpu);
4090
c88d5910
PZ
4091 if (balanced ||
4092 (this_load <= load &&
4093 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4094 /*
4095 * This domain has SD_WAKE_AFFINE and
4096 * p is cache cold in this domain, and
4097 * there is no bad imbalance.
4098 */
c88d5910 4099 schedstat_inc(sd, ttwu_move_affine);
41acab88 4100 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4101
4102 return 1;
4103 }
4104 return 0;
4105}
4106
aaee1203
PZ
4107/*
4108 * find_idlest_group finds and returns the least busy CPU group within the
4109 * domain.
4110 */
4111static struct sched_group *
78e7ed53 4112find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4113 int this_cpu, int sd_flag)
e7693a36 4114{
b3bd3de6 4115 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4116 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4117 int load_idx = sd->forkexec_idx;
aaee1203 4118 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4119
c44f2a02
VG
4120 if (sd_flag & SD_BALANCE_WAKE)
4121 load_idx = sd->wake_idx;
4122
aaee1203
PZ
4123 do {
4124 unsigned long load, avg_load;
4125 int local_group;
4126 int i;
e7693a36 4127
aaee1203
PZ
4128 /* Skip over this group if it has no CPUs allowed */
4129 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4130 tsk_cpus_allowed(p)))
aaee1203
PZ
4131 continue;
4132
4133 local_group = cpumask_test_cpu(this_cpu,
4134 sched_group_cpus(group));
4135
4136 /* Tally up the load of all CPUs in the group */
4137 avg_load = 0;
4138
4139 for_each_cpu(i, sched_group_cpus(group)) {
4140 /* Bias balancing toward cpus of our domain */
4141 if (local_group)
4142 load = source_load(i, load_idx);
4143 else
4144 load = target_load(i, load_idx);
4145
4146 avg_load += load;
4147 }
4148
4149 /* Adjust by relative CPU power of the group */
9c3f75cb 4150 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4151
4152 if (local_group) {
4153 this_load = avg_load;
aaee1203
PZ
4154 } else if (avg_load < min_load) {
4155 min_load = avg_load;
4156 idlest = group;
4157 }
4158 } while (group = group->next, group != sd->groups);
4159
4160 if (!idlest || 100*this_load < imbalance*min_load)
4161 return NULL;
4162 return idlest;
4163}
4164
4165/*
4166 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4167 */
4168static int
4169find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4170{
4171 unsigned long load, min_load = ULONG_MAX;
4172 int idlest = -1;
4173 int i;
4174
4175 /* Traverse only the allowed CPUs */
fa17b507 4176 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4177 load = weighted_cpuload(i);
4178
4179 if (load < min_load || (load == min_load && i == this_cpu)) {
4180 min_load = load;
4181 idlest = i;
e7693a36
GH
4182 }
4183 }
4184
aaee1203
PZ
4185 return idlest;
4186}
e7693a36 4187
a50bde51
PZ
4188/*
4189 * Try and locate an idle CPU in the sched_domain.
4190 */
99bd5e2f 4191static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4192{
99bd5e2f 4193 struct sched_domain *sd;
37407ea7 4194 struct sched_group *sg;
e0a79f52 4195 int i = task_cpu(p);
a50bde51 4196
e0a79f52
MG
4197 if (idle_cpu(target))
4198 return target;
99bd5e2f
SS
4199
4200 /*
e0a79f52 4201 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4202 */
e0a79f52
MG
4203 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4204 return i;
a50bde51
PZ
4205
4206 /*
37407ea7 4207 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4208 */
518cd623 4209 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4210 for_each_lower_domain(sd) {
37407ea7
LT
4211 sg = sd->groups;
4212 do {
4213 if (!cpumask_intersects(sched_group_cpus(sg),
4214 tsk_cpus_allowed(p)))
4215 goto next;
4216
4217 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4218 if (i == target || !idle_cpu(i))
37407ea7
LT
4219 goto next;
4220 }
970e1789 4221
37407ea7
LT
4222 target = cpumask_first_and(sched_group_cpus(sg),
4223 tsk_cpus_allowed(p));
4224 goto done;
4225next:
4226 sg = sg->next;
4227 } while (sg != sd->groups);
4228 }
4229done:
a50bde51
PZ
4230 return target;
4231}
4232
aaee1203
PZ
4233/*
4234 * sched_balance_self: balance the current task (running on cpu) in domains
4235 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4236 * SD_BALANCE_EXEC.
4237 *
4238 * Balance, ie. select the least loaded group.
4239 *
4240 * Returns the target CPU number, or the same CPU if no balancing is needed.
4241 *
4242 * preempt must be disabled.
4243 */
0017d735 4244static int
ac66f547 4245select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4246{
29cd8bae 4247 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4248 int cpu = smp_processor_id();
c88d5910 4249 int new_cpu = cpu;
99bd5e2f 4250 int want_affine = 0;
5158f4e4 4251 int sync = wake_flags & WF_SYNC;
c88d5910 4252
29baa747 4253 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4254 return prev_cpu;
4255
0763a660 4256 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4257 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4258 want_affine = 1;
4259 new_cpu = prev_cpu;
4260 }
aaee1203 4261
dce840a0 4262 rcu_read_lock();
aaee1203 4263 for_each_domain(cpu, tmp) {
e4f42888
PZ
4264 if (!(tmp->flags & SD_LOAD_BALANCE))
4265 continue;
4266
fe3bcfe1 4267 /*
99bd5e2f
SS
4268 * If both cpu and prev_cpu are part of this domain,
4269 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4270 */
99bd5e2f
SS
4271 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4272 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4273 affine_sd = tmp;
29cd8bae 4274 break;
f03542a7 4275 }
29cd8bae 4276
f03542a7 4277 if (tmp->flags & sd_flag)
29cd8bae
PZ
4278 sd = tmp;
4279 }
4280
8b911acd 4281 if (affine_sd) {
f03542a7 4282 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4283 prev_cpu = cpu;
4284
4285 new_cpu = select_idle_sibling(p, prev_cpu);
4286 goto unlock;
8b911acd 4287 }
e7693a36 4288
aaee1203
PZ
4289 while (sd) {
4290 struct sched_group *group;
c88d5910 4291 int weight;
098fb9db 4292
0763a660 4293 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4294 sd = sd->child;
4295 continue;
4296 }
098fb9db 4297
c44f2a02 4298 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4299 if (!group) {
4300 sd = sd->child;
4301 continue;
4302 }
4ae7d5ce 4303
d7c33c49 4304 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4305 if (new_cpu == -1 || new_cpu == cpu) {
4306 /* Now try balancing at a lower domain level of cpu */
4307 sd = sd->child;
4308 continue;
e7693a36 4309 }
aaee1203
PZ
4310
4311 /* Now try balancing at a lower domain level of new_cpu */
4312 cpu = new_cpu;
669c55e9 4313 weight = sd->span_weight;
aaee1203
PZ
4314 sd = NULL;
4315 for_each_domain(cpu, tmp) {
669c55e9 4316 if (weight <= tmp->span_weight)
aaee1203 4317 break;
0763a660 4318 if (tmp->flags & sd_flag)
aaee1203
PZ
4319 sd = tmp;
4320 }
4321 /* while loop will break here if sd == NULL */
e7693a36 4322 }
dce840a0
PZ
4323unlock:
4324 rcu_read_unlock();
e7693a36 4325
c88d5910 4326 return new_cpu;
e7693a36 4327}
0a74bef8
PT
4328
4329/*
4330 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4331 * cfs_rq_of(p) references at time of call are still valid and identify the
4332 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4333 * other assumptions, including the state of rq->lock, should be made.
4334 */
4335static void
4336migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4337{
aff3e498
PT
4338 struct sched_entity *se = &p->se;
4339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4340
4341 /*
4342 * Load tracking: accumulate removed load so that it can be processed
4343 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4344 * to blocked load iff they have a positive decay-count. It can never
4345 * be negative here since on-rq tasks have decay-count == 0.
4346 */
4347 if (se->avg.decay_count) {
4348 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4349 atomic_long_add(se->avg.load_avg_contrib,
4350 &cfs_rq->removed_load);
aff3e498 4351 }
0a74bef8 4352}
e7693a36
GH
4353#endif /* CONFIG_SMP */
4354
e52fb7c0
PZ
4355static unsigned long
4356wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4357{
4358 unsigned long gran = sysctl_sched_wakeup_granularity;
4359
4360 /*
e52fb7c0
PZ
4361 * Since its curr running now, convert the gran from real-time
4362 * to virtual-time in his units.
13814d42
MG
4363 *
4364 * By using 'se' instead of 'curr' we penalize light tasks, so
4365 * they get preempted easier. That is, if 'se' < 'curr' then
4366 * the resulting gran will be larger, therefore penalizing the
4367 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4368 * be smaller, again penalizing the lighter task.
4369 *
4370 * This is especially important for buddies when the leftmost
4371 * task is higher priority than the buddy.
0bbd3336 4372 */
f4ad9bd2 4373 return calc_delta_fair(gran, se);
0bbd3336
PZ
4374}
4375
464b7527
PZ
4376/*
4377 * Should 'se' preempt 'curr'.
4378 *
4379 * |s1
4380 * |s2
4381 * |s3
4382 * g
4383 * |<--->|c
4384 *
4385 * w(c, s1) = -1
4386 * w(c, s2) = 0
4387 * w(c, s3) = 1
4388 *
4389 */
4390static int
4391wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4392{
4393 s64 gran, vdiff = curr->vruntime - se->vruntime;
4394
4395 if (vdiff <= 0)
4396 return -1;
4397
e52fb7c0 4398 gran = wakeup_gran(curr, se);
464b7527
PZ
4399 if (vdiff > gran)
4400 return 1;
4401
4402 return 0;
4403}
4404
02479099
PZ
4405static void set_last_buddy(struct sched_entity *se)
4406{
69c80f3e
VP
4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4408 return;
4409
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->last = se;
02479099
PZ
4412}
4413
4414static void set_next_buddy(struct sched_entity *se)
4415{
69c80f3e
VP
4416 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4417 return;
4418
4419 for_each_sched_entity(se)
4420 cfs_rq_of(se)->next = se;
02479099
PZ
4421}
4422
ac53db59
RR
4423static void set_skip_buddy(struct sched_entity *se)
4424{
69c80f3e
VP
4425 for_each_sched_entity(se)
4426 cfs_rq_of(se)->skip = se;
ac53db59
RR
4427}
4428
bf0f6f24
IM
4429/*
4430 * Preempt the current task with a newly woken task if needed:
4431 */
5a9b86f6 4432static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4433{
4434 struct task_struct *curr = rq->curr;
8651a86c 4435 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4436 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4437 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4438 int next_buddy_marked = 0;
bf0f6f24 4439
4ae7d5ce
IM
4440 if (unlikely(se == pse))
4441 return;
4442
5238cdd3 4443 /*
ddcdf6e7 4444 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4445 * unconditionally check_prempt_curr() after an enqueue (which may have
4446 * lead to a throttle). This both saves work and prevents false
4447 * next-buddy nomination below.
4448 */
4449 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4450 return;
4451
2f36825b 4452 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4453 set_next_buddy(pse);
2f36825b
VP
4454 next_buddy_marked = 1;
4455 }
57fdc26d 4456
aec0a514
BR
4457 /*
4458 * We can come here with TIF_NEED_RESCHED already set from new task
4459 * wake up path.
5238cdd3
PT
4460 *
4461 * Note: this also catches the edge-case of curr being in a throttled
4462 * group (e.g. via set_curr_task), since update_curr() (in the
4463 * enqueue of curr) will have resulted in resched being set. This
4464 * prevents us from potentially nominating it as a false LAST_BUDDY
4465 * below.
aec0a514
BR
4466 */
4467 if (test_tsk_need_resched(curr))
4468 return;
4469
a2f5c9ab
DH
4470 /* Idle tasks are by definition preempted by non-idle tasks. */
4471 if (unlikely(curr->policy == SCHED_IDLE) &&
4472 likely(p->policy != SCHED_IDLE))
4473 goto preempt;
4474
91c234b4 4475 /*
a2f5c9ab
DH
4476 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4477 * is driven by the tick):
91c234b4 4478 */
8ed92e51 4479 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4480 return;
bf0f6f24 4481
464b7527 4482 find_matching_se(&se, &pse);
9bbd7374 4483 update_curr(cfs_rq_of(se));
002f128b 4484 BUG_ON(!pse);
2f36825b
VP
4485 if (wakeup_preempt_entity(se, pse) == 1) {
4486 /*
4487 * Bias pick_next to pick the sched entity that is
4488 * triggering this preemption.
4489 */
4490 if (!next_buddy_marked)
4491 set_next_buddy(pse);
3a7e73a2 4492 goto preempt;
2f36825b 4493 }
464b7527 4494
3a7e73a2 4495 return;
a65ac745 4496
3a7e73a2
PZ
4497preempt:
4498 resched_task(curr);
4499 /*
4500 * Only set the backward buddy when the current task is still
4501 * on the rq. This can happen when a wakeup gets interleaved
4502 * with schedule on the ->pre_schedule() or idle_balance()
4503 * point, either of which can * drop the rq lock.
4504 *
4505 * Also, during early boot the idle thread is in the fair class,
4506 * for obvious reasons its a bad idea to schedule back to it.
4507 */
4508 if (unlikely(!se->on_rq || curr == rq->idle))
4509 return;
4510
4511 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4512 set_last_buddy(se);
bf0f6f24
IM
4513}
4514
fb8d4724 4515static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4516{
8f4d37ec 4517 struct task_struct *p;
bf0f6f24
IM
4518 struct cfs_rq *cfs_rq = &rq->cfs;
4519 struct sched_entity *se;
4520
36ace27e 4521 if (!cfs_rq->nr_running)
bf0f6f24
IM
4522 return NULL;
4523
4524 do {
9948f4b2 4525 se = pick_next_entity(cfs_rq);
f4b6755f 4526 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4527 cfs_rq = group_cfs_rq(se);
4528 } while (cfs_rq);
4529
8f4d37ec 4530 p = task_of(se);
b39e66ea
MG
4531 if (hrtick_enabled(rq))
4532 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4533
4534 return p;
bf0f6f24
IM
4535}
4536
4537/*
4538 * Account for a descheduled task:
4539 */
31ee529c 4540static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4541{
4542 struct sched_entity *se = &prev->se;
4543 struct cfs_rq *cfs_rq;
4544
4545 for_each_sched_entity(se) {
4546 cfs_rq = cfs_rq_of(se);
ab6cde26 4547 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4548 }
4549}
4550
ac53db59
RR
4551/*
4552 * sched_yield() is very simple
4553 *
4554 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4555 */
4556static void yield_task_fair(struct rq *rq)
4557{
4558 struct task_struct *curr = rq->curr;
4559 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4560 struct sched_entity *se = &curr->se;
4561
4562 /*
4563 * Are we the only task in the tree?
4564 */
4565 if (unlikely(rq->nr_running == 1))
4566 return;
4567
4568 clear_buddies(cfs_rq, se);
4569
4570 if (curr->policy != SCHED_BATCH) {
4571 update_rq_clock(rq);
4572 /*
4573 * Update run-time statistics of the 'current'.
4574 */
4575 update_curr(cfs_rq);
916671c0
MG
4576 /*
4577 * Tell update_rq_clock() that we've just updated,
4578 * so we don't do microscopic update in schedule()
4579 * and double the fastpath cost.
4580 */
4581 rq->skip_clock_update = 1;
ac53db59
RR
4582 }
4583
4584 set_skip_buddy(se);
4585}
4586
d95f4122
MG
4587static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4588{
4589 struct sched_entity *se = &p->se;
4590
5238cdd3
PT
4591 /* throttled hierarchies are not runnable */
4592 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4593 return false;
4594
4595 /* Tell the scheduler that we'd really like pse to run next. */
4596 set_next_buddy(se);
4597
d95f4122
MG
4598 yield_task_fair(rq);
4599
4600 return true;
4601}
4602
681f3e68 4603#ifdef CONFIG_SMP
bf0f6f24 4604/**************************************************
e9c84cb8
PZ
4605 * Fair scheduling class load-balancing methods.
4606 *
4607 * BASICS
4608 *
4609 * The purpose of load-balancing is to achieve the same basic fairness the
4610 * per-cpu scheduler provides, namely provide a proportional amount of compute
4611 * time to each task. This is expressed in the following equation:
4612 *
4613 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4614 *
4615 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4616 * W_i,0 is defined as:
4617 *
4618 * W_i,0 = \Sum_j w_i,j (2)
4619 *
4620 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4621 * is derived from the nice value as per prio_to_weight[].
4622 *
4623 * The weight average is an exponential decay average of the instantaneous
4624 * weight:
4625 *
4626 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4627 *
4628 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4629 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4630 * can also include other factors [XXX].
4631 *
4632 * To achieve this balance we define a measure of imbalance which follows
4633 * directly from (1):
4634 *
4635 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4636 *
4637 * We them move tasks around to minimize the imbalance. In the continuous
4638 * function space it is obvious this converges, in the discrete case we get
4639 * a few fun cases generally called infeasible weight scenarios.
4640 *
4641 * [XXX expand on:
4642 * - infeasible weights;
4643 * - local vs global optima in the discrete case. ]
4644 *
4645 *
4646 * SCHED DOMAINS
4647 *
4648 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4649 * for all i,j solution, we create a tree of cpus that follows the hardware
4650 * topology where each level pairs two lower groups (or better). This results
4651 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4652 * tree to only the first of the previous level and we decrease the frequency
4653 * of load-balance at each level inv. proportional to the number of cpus in
4654 * the groups.
4655 *
4656 * This yields:
4657 *
4658 * log_2 n 1 n
4659 * \Sum { --- * --- * 2^i } = O(n) (5)
4660 * i = 0 2^i 2^i
4661 * `- size of each group
4662 * | | `- number of cpus doing load-balance
4663 * | `- freq
4664 * `- sum over all levels
4665 *
4666 * Coupled with a limit on how many tasks we can migrate every balance pass,
4667 * this makes (5) the runtime complexity of the balancer.
4668 *
4669 * An important property here is that each CPU is still (indirectly) connected
4670 * to every other cpu in at most O(log n) steps:
4671 *
4672 * The adjacency matrix of the resulting graph is given by:
4673 *
4674 * log_2 n
4675 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4676 * k = 0
4677 *
4678 * And you'll find that:
4679 *
4680 * A^(log_2 n)_i,j != 0 for all i,j (7)
4681 *
4682 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4683 * The task movement gives a factor of O(m), giving a convergence complexity
4684 * of:
4685 *
4686 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4687 *
4688 *
4689 * WORK CONSERVING
4690 *
4691 * In order to avoid CPUs going idle while there's still work to do, new idle
4692 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4693 * tree itself instead of relying on other CPUs to bring it work.
4694 *
4695 * This adds some complexity to both (5) and (8) but it reduces the total idle
4696 * time.
4697 *
4698 * [XXX more?]
4699 *
4700 *
4701 * CGROUPS
4702 *
4703 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4704 *
4705 * s_k,i
4706 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4707 * S_k
4708 *
4709 * Where
4710 *
4711 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4712 *
4713 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4714 *
4715 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4716 * property.
4717 *
4718 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4719 * rewrite all of this once again.]
4720 */
bf0f6f24 4721
ed387b78
HS
4722static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4723
0ec8aa00
PZ
4724enum fbq_type { regular, remote, all };
4725
ddcdf6e7 4726#define LBF_ALL_PINNED 0x01
367456c7 4727#define LBF_NEED_BREAK 0x02
6263322c
PZ
4728#define LBF_DST_PINNED 0x04
4729#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4730
4731struct lb_env {
4732 struct sched_domain *sd;
4733
ddcdf6e7 4734 struct rq *src_rq;
85c1e7da 4735 int src_cpu;
ddcdf6e7
PZ
4736
4737 int dst_cpu;
4738 struct rq *dst_rq;
4739
88b8dac0
SV
4740 struct cpumask *dst_grpmask;
4741 int new_dst_cpu;
ddcdf6e7 4742 enum cpu_idle_type idle;
bd939f45 4743 long imbalance;
b9403130
MW
4744 /* The set of CPUs under consideration for load-balancing */
4745 struct cpumask *cpus;
4746
ddcdf6e7 4747 unsigned int flags;
367456c7
PZ
4748
4749 unsigned int loop;
4750 unsigned int loop_break;
4751 unsigned int loop_max;
0ec8aa00
PZ
4752
4753 enum fbq_type fbq_type;
ddcdf6e7
PZ
4754};
4755
1e3c88bd 4756/*
ddcdf6e7 4757 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4758 * Both runqueues must be locked.
4759 */
ddcdf6e7 4760static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4761{
ddcdf6e7
PZ
4762 deactivate_task(env->src_rq, p, 0);
4763 set_task_cpu(p, env->dst_cpu);
4764 activate_task(env->dst_rq, p, 0);
4765 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4766}
4767
029632fb
PZ
4768/*
4769 * Is this task likely cache-hot:
4770 */
4771static int
4772task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4773{
4774 s64 delta;
4775
4776 if (p->sched_class != &fair_sched_class)
4777 return 0;
4778
4779 if (unlikely(p->policy == SCHED_IDLE))
4780 return 0;
4781
4782 /*
4783 * Buddy candidates are cache hot:
4784 */
4785 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4786 (&p->se == cfs_rq_of(&p->se)->next ||
4787 &p->se == cfs_rq_of(&p->se)->last))
4788 return 1;
4789
4790 if (sysctl_sched_migration_cost == -1)
4791 return 1;
4792 if (sysctl_sched_migration_cost == 0)
4793 return 0;
4794
4795 delta = now - p->se.exec_start;
4796
4797 return delta < (s64)sysctl_sched_migration_cost;
4798}
4799
3a7053b3
MG
4800#ifdef CONFIG_NUMA_BALANCING
4801/* Returns true if the destination node has incurred more faults */
4802static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4803{
4804 int src_nid, dst_nid;
4805
4806 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4807 !(env->sd->flags & SD_NUMA)) {
4808 return false;
4809 }
4810
4811 src_nid = cpu_to_node(env->src_cpu);
4812 dst_nid = cpu_to_node(env->dst_cpu);
4813
83e1d2cd 4814 if (src_nid == dst_nid)
3a7053b3
MG
4815 return false;
4816
83e1d2cd
MG
4817 /* Always encourage migration to the preferred node. */
4818 if (dst_nid == p->numa_preferred_nid)
4819 return true;
4820
887c290e
RR
4821 /* If both task and group weight improve, this move is a winner. */
4822 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4823 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4824 return true;
4825
4826 return false;
4827}
7a0f3083
MG
4828
4829
4830static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4831{
4832 int src_nid, dst_nid;
4833
4834 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4835 return false;
4836
4837 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4838 return false;
4839
4840 src_nid = cpu_to_node(env->src_cpu);
4841 dst_nid = cpu_to_node(env->dst_cpu);
4842
83e1d2cd 4843 if (src_nid == dst_nid)
7a0f3083
MG
4844 return false;
4845
83e1d2cd
MG
4846 /* Migrating away from the preferred node is always bad. */
4847 if (src_nid == p->numa_preferred_nid)
4848 return true;
4849
887c290e
RR
4850 /* If either task or group weight get worse, don't do it. */
4851 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4852 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4853 return true;
4854
4855 return false;
4856}
4857
3a7053b3
MG
4858#else
4859static inline bool migrate_improves_locality(struct task_struct *p,
4860 struct lb_env *env)
4861{
4862 return false;
4863}
7a0f3083
MG
4864
4865static inline bool migrate_degrades_locality(struct task_struct *p,
4866 struct lb_env *env)
4867{
4868 return false;
4869}
3a7053b3
MG
4870#endif
4871
1e3c88bd
PZ
4872/*
4873 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4874 */
4875static
8e45cb54 4876int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4877{
4878 int tsk_cache_hot = 0;
4879 /*
4880 * We do not migrate tasks that are:
d3198084 4881 * 1) throttled_lb_pair, or
1e3c88bd 4882 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4883 * 3) running (obviously), or
4884 * 4) are cache-hot on their current CPU.
1e3c88bd 4885 */
d3198084
JK
4886 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4887 return 0;
4888
ddcdf6e7 4889 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4890 int cpu;
88b8dac0 4891
41acab88 4892 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4893
6263322c
PZ
4894 env->flags |= LBF_SOME_PINNED;
4895
88b8dac0
SV
4896 /*
4897 * Remember if this task can be migrated to any other cpu in
4898 * our sched_group. We may want to revisit it if we couldn't
4899 * meet load balance goals by pulling other tasks on src_cpu.
4900 *
4901 * Also avoid computing new_dst_cpu if we have already computed
4902 * one in current iteration.
4903 */
6263322c 4904 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4905 return 0;
4906
e02e60c1
JK
4907 /* Prevent to re-select dst_cpu via env's cpus */
4908 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4909 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4910 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4911 env->new_dst_cpu = cpu;
4912 break;
4913 }
88b8dac0 4914 }
e02e60c1 4915
1e3c88bd
PZ
4916 return 0;
4917 }
88b8dac0
SV
4918
4919 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4920 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4921
ddcdf6e7 4922 if (task_running(env->src_rq, p)) {
41acab88 4923 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4924 return 0;
4925 }
4926
4927 /*
4928 * Aggressive migration if:
3a7053b3
MG
4929 * 1) destination numa is preferred
4930 * 2) task is cache cold, or
4931 * 3) too many balance attempts have failed.
1e3c88bd 4932 */
78becc27 4933 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4934 if (!tsk_cache_hot)
4935 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4936
4937 if (migrate_improves_locality(p, env)) {
4938#ifdef CONFIG_SCHEDSTATS
4939 if (tsk_cache_hot) {
4940 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4941 schedstat_inc(p, se.statistics.nr_forced_migrations);
4942 }
4943#endif
4944 return 1;
4945 }
4946
1e3c88bd 4947 if (!tsk_cache_hot ||
8e45cb54 4948 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4949
1e3c88bd 4950 if (tsk_cache_hot) {
8e45cb54 4951 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4952 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4953 }
4e2dcb73 4954
1e3c88bd
PZ
4955 return 1;
4956 }
4957
4e2dcb73
ZH
4958 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4959 return 0;
1e3c88bd
PZ
4960}
4961
897c395f
PZ
4962/*
4963 * move_one_task tries to move exactly one task from busiest to this_rq, as
4964 * part of active balancing operations within "domain".
4965 * Returns 1 if successful and 0 otherwise.
4966 *
4967 * Called with both runqueues locked.
4968 */
8e45cb54 4969static int move_one_task(struct lb_env *env)
897c395f
PZ
4970{
4971 struct task_struct *p, *n;
897c395f 4972
367456c7 4973 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4974 if (!can_migrate_task(p, env))
4975 continue;
897c395f 4976
367456c7
PZ
4977 move_task(p, env);
4978 /*
4979 * Right now, this is only the second place move_task()
4980 * is called, so we can safely collect move_task()
4981 * stats here rather than inside move_task().
4982 */
4983 schedstat_inc(env->sd, lb_gained[env->idle]);
4984 return 1;
897c395f 4985 }
897c395f
PZ
4986 return 0;
4987}
4988
eb95308e
PZ
4989static const unsigned int sched_nr_migrate_break = 32;
4990
5d6523eb 4991/*
bd939f45 4992 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4993 * this_rq, as part of a balancing operation within domain "sd".
4994 * Returns 1 if successful and 0 otherwise.
4995 *
4996 * Called with both runqueues locked.
4997 */
4998static int move_tasks(struct lb_env *env)
1e3c88bd 4999{
5d6523eb
PZ
5000 struct list_head *tasks = &env->src_rq->cfs_tasks;
5001 struct task_struct *p;
367456c7
PZ
5002 unsigned long load;
5003 int pulled = 0;
1e3c88bd 5004
bd939f45 5005 if (env->imbalance <= 0)
5d6523eb 5006 return 0;
1e3c88bd 5007
5d6523eb
PZ
5008 while (!list_empty(tasks)) {
5009 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5010
367456c7
PZ
5011 env->loop++;
5012 /* We've more or less seen every task there is, call it quits */
5d6523eb 5013 if (env->loop > env->loop_max)
367456c7 5014 break;
5d6523eb
PZ
5015
5016 /* take a breather every nr_migrate tasks */
367456c7 5017 if (env->loop > env->loop_break) {
eb95308e 5018 env->loop_break += sched_nr_migrate_break;
8e45cb54 5019 env->flags |= LBF_NEED_BREAK;
ee00e66f 5020 break;
a195f004 5021 }
1e3c88bd 5022
d3198084 5023 if (!can_migrate_task(p, env))
367456c7
PZ
5024 goto next;
5025
5026 load = task_h_load(p);
5d6523eb 5027
eb95308e 5028 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5029 goto next;
5030
bd939f45 5031 if ((load / 2) > env->imbalance)
367456c7 5032 goto next;
1e3c88bd 5033
ddcdf6e7 5034 move_task(p, env);
ee00e66f 5035 pulled++;
bd939f45 5036 env->imbalance -= load;
1e3c88bd
PZ
5037
5038#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5039 /*
5040 * NEWIDLE balancing is a source of latency, so preemptible
5041 * kernels will stop after the first task is pulled to minimize
5042 * the critical section.
5043 */
5d6523eb 5044 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5045 break;
1e3c88bd
PZ
5046#endif
5047
ee00e66f
PZ
5048 /*
5049 * We only want to steal up to the prescribed amount of
5050 * weighted load.
5051 */
bd939f45 5052 if (env->imbalance <= 0)
ee00e66f 5053 break;
367456c7
PZ
5054
5055 continue;
5056next:
5d6523eb 5057 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5058 }
5d6523eb 5059
1e3c88bd 5060 /*
ddcdf6e7
PZ
5061 * Right now, this is one of only two places move_task() is called,
5062 * so we can safely collect move_task() stats here rather than
5063 * inside move_task().
1e3c88bd 5064 */
8e45cb54 5065 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5066
5d6523eb 5067 return pulled;
1e3c88bd
PZ
5068}
5069
230059de 5070#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5071/*
5072 * update tg->load_weight by folding this cpu's load_avg
5073 */
48a16753 5074static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5075{
48a16753
PT
5076 struct sched_entity *se = tg->se[cpu];
5077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5078
48a16753
PT
5079 /* throttled entities do not contribute to load */
5080 if (throttled_hierarchy(cfs_rq))
5081 return;
9e3081ca 5082
aff3e498 5083 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5084
82958366
PT
5085 if (se) {
5086 update_entity_load_avg(se, 1);
5087 /*
5088 * We pivot on our runnable average having decayed to zero for
5089 * list removal. This generally implies that all our children
5090 * have also been removed (modulo rounding error or bandwidth
5091 * control); however, such cases are rare and we can fix these
5092 * at enqueue.
5093 *
5094 * TODO: fix up out-of-order children on enqueue.
5095 */
5096 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5097 list_del_leaf_cfs_rq(cfs_rq);
5098 } else {
48a16753 5099 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5100 update_rq_runnable_avg(rq, rq->nr_running);
5101 }
9e3081ca
PZ
5102}
5103
48a16753 5104static void update_blocked_averages(int cpu)
9e3081ca 5105{
9e3081ca 5106 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5107 struct cfs_rq *cfs_rq;
5108 unsigned long flags;
9e3081ca 5109
48a16753
PT
5110 raw_spin_lock_irqsave(&rq->lock, flags);
5111 update_rq_clock(rq);
9763b67f
PZ
5112 /*
5113 * Iterates the task_group tree in a bottom up fashion, see
5114 * list_add_leaf_cfs_rq() for details.
5115 */
64660c86 5116 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5117 /*
5118 * Note: We may want to consider periodically releasing
5119 * rq->lock about these updates so that creating many task
5120 * groups does not result in continually extending hold time.
5121 */
5122 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5123 }
48a16753
PT
5124
5125 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5126}
5127
9763b67f 5128/*
68520796 5129 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5130 * This needs to be done in a top-down fashion because the load of a child
5131 * group is a fraction of its parents load.
5132 */
68520796 5133static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5134{
68520796
VD
5135 struct rq *rq = rq_of(cfs_rq);
5136 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5137 unsigned long now = jiffies;
68520796 5138 unsigned long load;
a35b6466 5139
68520796 5140 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5141 return;
5142
68520796
VD
5143 cfs_rq->h_load_next = NULL;
5144 for_each_sched_entity(se) {
5145 cfs_rq = cfs_rq_of(se);
5146 cfs_rq->h_load_next = se;
5147 if (cfs_rq->last_h_load_update == now)
5148 break;
5149 }
a35b6466 5150
68520796 5151 if (!se) {
7e3115ef 5152 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5153 cfs_rq->last_h_load_update = now;
5154 }
5155
5156 while ((se = cfs_rq->h_load_next) != NULL) {
5157 load = cfs_rq->h_load;
5158 load = div64_ul(load * se->avg.load_avg_contrib,
5159 cfs_rq->runnable_load_avg + 1);
5160 cfs_rq = group_cfs_rq(se);
5161 cfs_rq->h_load = load;
5162 cfs_rq->last_h_load_update = now;
5163 }
9763b67f
PZ
5164}
5165
367456c7 5166static unsigned long task_h_load(struct task_struct *p)
230059de 5167{
367456c7 5168 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5169
68520796 5170 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5171 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5172 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5173}
5174#else
48a16753 5175static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5176{
5177}
5178
367456c7 5179static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5180{
a003a25b 5181 return p->se.avg.load_avg_contrib;
1e3c88bd 5182}
230059de 5183#endif
1e3c88bd 5184
1e3c88bd 5185/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5186/*
5187 * sg_lb_stats - stats of a sched_group required for load_balancing
5188 */
5189struct sg_lb_stats {
5190 unsigned long avg_load; /*Avg load across the CPUs of the group */
5191 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5192 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5193 unsigned long load_per_task;
3ae11c90 5194 unsigned long group_power;
147c5fc2
PZ
5195 unsigned int sum_nr_running; /* Nr tasks running in the group */
5196 unsigned int group_capacity;
5197 unsigned int idle_cpus;
5198 unsigned int group_weight;
1e3c88bd 5199 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5200 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5201#ifdef CONFIG_NUMA_BALANCING
5202 unsigned int nr_numa_running;
5203 unsigned int nr_preferred_running;
5204#endif
1e3c88bd
PZ
5205};
5206
56cf515b
JK
5207/*
5208 * sd_lb_stats - Structure to store the statistics of a sched_domain
5209 * during load balancing.
5210 */
5211struct sd_lb_stats {
5212 struct sched_group *busiest; /* Busiest group in this sd */
5213 struct sched_group *local; /* Local group in this sd */
5214 unsigned long total_load; /* Total load of all groups in sd */
5215 unsigned long total_pwr; /* Total power of all groups in sd */
5216 unsigned long avg_load; /* Average load across all groups in sd */
5217
56cf515b 5218 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5219 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5220};
5221
147c5fc2
PZ
5222static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5223{
5224 /*
5225 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5226 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5227 * We must however clear busiest_stat::avg_load because
5228 * update_sd_pick_busiest() reads this before assignment.
5229 */
5230 *sds = (struct sd_lb_stats){
5231 .busiest = NULL,
5232 .local = NULL,
5233 .total_load = 0UL,
5234 .total_pwr = 0UL,
5235 .busiest_stat = {
5236 .avg_load = 0UL,
5237 },
5238 };
5239}
5240
1e3c88bd
PZ
5241/**
5242 * get_sd_load_idx - Obtain the load index for a given sched domain.
5243 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5244 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5245 *
5246 * Return: The load index.
1e3c88bd
PZ
5247 */
5248static inline int get_sd_load_idx(struct sched_domain *sd,
5249 enum cpu_idle_type idle)
5250{
5251 int load_idx;
5252
5253 switch (idle) {
5254 case CPU_NOT_IDLE:
5255 load_idx = sd->busy_idx;
5256 break;
5257
5258 case CPU_NEWLY_IDLE:
5259 load_idx = sd->newidle_idx;
5260 break;
5261 default:
5262 load_idx = sd->idle_idx;
5263 break;
5264 }
5265
5266 return load_idx;
5267}
5268
15f803c9 5269static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5270{
1399fa78 5271 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5272}
5273
5274unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5275{
5276 return default_scale_freq_power(sd, cpu);
5277}
5278
15f803c9 5279static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5280{
669c55e9 5281 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5282 unsigned long smt_gain = sd->smt_gain;
5283
5284 smt_gain /= weight;
5285
5286 return smt_gain;
5287}
5288
5289unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5290{
5291 return default_scale_smt_power(sd, cpu);
5292}
5293
15f803c9 5294static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5295{
5296 struct rq *rq = cpu_rq(cpu);
b654f7de 5297 u64 total, available, age_stamp, avg;
1e3c88bd 5298
b654f7de
PZ
5299 /*
5300 * Since we're reading these variables without serialization make sure
5301 * we read them once before doing sanity checks on them.
5302 */
5303 age_stamp = ACCESS_ONCE(rq->age_stamp);
5304 avg = ACCESS_ONCE(rq->rt_avg);
5305
78becc27 5306 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5307
b654f7de 5308 if (unlikely(total < avg)) {
aa483808
VP
5309 /* Ensures that power won't end up being negative */
5310 available = 0;
5311 } else {
b654f7de 5312 available = total - avg;
aa483808 5313 }
1e3c88bd 5314
1399fa78
NR
5315 if (unlikely((s64)total < SCHED_POWER_SCALE))
5316 total = SCHED_POWER_SCALE;
1e3c88bd 5317
1399fa78 5318 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5319
5320 return div_u64(available, total);
5321}
5322
5323static void update_cpu_power(struct sched_domain *sd, int cpu)
5324{
669c55e9 5325 unsigned long weight = sd->span_weight;
1399fa78 5326 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5327 struct sched_group *sdg = sd->groups;
5328
1e3c88bd
PZ
5329 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5330 if (sched_feat(ARCH_POWER))
5331 power *= arch_scale_smt_power(sd, cpu);
5332 else
5333 power *= default_scale_smt_power(sd, cpu);
5334
1399fa78 5335 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5336 }
5337
9c3f75cb 5338 sdg->sgp->power_orig = power;
9d5efe05
SV
5339
5340 if (sched_feat(ARCH_POWER))
5341 power *= arch_scale_freq_power(sd, cpu);
5342 else
5343 power *= default_scale_freq_power(sd, cpu);
5344
1399fa78 5345 power >>= SCHED_POWER_SHIFT;
9d5efe05 5346
1e3c88bd 5347 power *= scale_rt_power(cpu);
1399fa78 5348 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5349
5350 if (!power)
5351 power = 1;
5352
e51fd5e2 5353 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5354 sdg->sgp->power = power;
1e3c88bd
PZ
5355}
5356
029632fb 5357void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5358{
5359 struct sched_domain *child = sd->child;
5360 struct sched_group *group, *sdg = sd->groups;
863bffc8 5361 unsigned long power, power_orig;
4ec4412e
VG
5362 unsigned long interval;
5363
5364 interval = msecs_to_jiffies(sd->balance_interval);
5365 interval = clamp(interval, 1UL, max_load_balance_interval);
5366 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5367
5368 if (!child) {
5369 update_cpu_power(sd, cpu);
5370 return;
5371 }
5372
863bffc8 5373 power_orig = power = 0;
1e3c88bd 5374
74a5ce20
PZ
5375 if (child->flags & SD_OVERLAP) {
5376 /*
5377 * SD_OVERLAP domains cannot assume that child groups
5378 * span the current group.
5379 */
5380
863bffc8
PZ
5381 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5382 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5383
5384 power_orig += sg->sgp->power_orig;
5385 power += sg->sgp->power;
5386 }
74a5ce20
PZ
5387 } else {
5388 /*
5389 * !SD_OVERLAP domains can assume that child groups
5390 * span the current group.
5391 */
5392
5393 group = child->groups;
5394 do {
863bffc8 5395 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5396 power += group->sgp->power;
5397 group = group->next;
5398 } while (group != child->groups);
5399 }
1e3c88bd 5400
863bffc8
PZ
5401 sdg->sgp->power_orig = power_orig;
5402 sdg->sgp->power = power;
1e3c88bd
PZ
5403}
5404
9d5efe05
SV
5405/*
5406 * Try and fix up capacity for tiny siblings, this is needed when
5407 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5408 * which on its own isn't powerful enough.
5409 *
5410 * See update_sd_pick_busiest() and check_asym_packing().
5411 */
5412static inline int
5413fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5414{
5415 /*
1399fa78 5416 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5417 */
a6c75f2f 5418 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5419 return 0;
5420
5421 /*
5422 * If ~90% of the cpu_power is still there, we're good.
5423 */
9c3f75cb 5424 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5425 return 1;
5426
5427 return 0;
5428}
5429
30ce5dab
PZ
5430/*
5431 * Group imbalance indicates (and tries to solve) the problem where balancing
5432 * groups is inadequate due to tsk_cpus_allowed() constraints.
5433 *
5434 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5435 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5436 * Something like:
5437 *
5438 * { 0 1 2 3 } { 4 5 6 7 }
5439 * * * * *
5440 *
5441 * If we were to balance group-wise we'd place two tasks in the first group and
5442 * two tasks in the second group. Clearly this is undesired as it will overload
5443 * cpu 3 and leave one of the cpus in the second group unused.
5444 *
5445 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5446 * by noticing the lower domain failed to reach balance and had difficulty
5447 * moving tasks due to affinity constraints.
30ce5dab
PZ
5448 *
5449 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5450 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5451 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5452 * to create an effective group imbalance.
5453 *
5454 * This is a somewhat tricky proposition since the next run might not find the
5455 * group imbalance and decide the groups need to be balanced again. A most
5456 * subtle and fragile situation.
5457 */
5458
6263322c 5459static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5460{
6263322c 5461 return group->sgp->imbalance;
30ce5dab
PZ
5462}
5463
b37d9316
PZ
5464/*
5465 * Compute the group capacity.
5466 *
c61037e9
PZ
5467 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5468 * first dividing out the smt factor and computing the actual number of cores
5469 * and limit power unit capacity with that.
b37d9316
PZ
5470 */
5471static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5472{
c61037e9
PZ
5473 unsigned int capacity, smt, cpus;
5474 unsigned int power, power_orig;
5475
5476 power = group->sgp->power;
5477 power_orig = group->sgp->power_orig;
5478 cpus = group->group_weight;
b37d9316 5479
c61037e9
PZ
5480 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5481 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5482 capacity = cpus / smt; /* cores */
b37d9316 5483
c61037e9 5484 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5485 if (!capacity)
5486 capacity = fix_small_capacity(env->sd, group);
5487
5488 return capacity;
5489}
5490
1e3c88bd
PZ
5491/**
5492 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5493 * @env: The load balancing environment.
1e3c88bd 5494 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5495 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5496 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5497 * @sgs: variable to hold the statistics for this group.
5498 */
bd939f45
PZ
5499static inline void update_sg_lb_stats(struct lb_env *env,
5500 struct sched_group *group, int load_idx,
23f0d209 5501 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5502{
30ce5dab 5503 unsigned long load;
bd939f45 5504 int i;
1e3c88bd 5505
b72ff13c
PZ
5506 memset(sgs, 0, sizeof(*sgs));
5507
b9403130 5508 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5509 struct rq *rq = cpu_rq(i);
5510
1e3c88bd 5511 /* Bias balancing toward cpus of our domain */
6263322c 5512 if (local_group)
04f733b4 5513 load = target_load(i, load_idx);
6263322c 5514 else
1e3c88bd 5515 load = source_load(i, load_idx);
1e3c88bd
PZ
5516
5517 sgs->group_load += load;
380c9077 5518 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5519#ifdef CONFIG_NUMA_BALANCING
5520 sgs->nr_numa_running += rq->nr_numa_running;
5521 sgs->nr_preferred_running += rq->nr_preferred_running;
5522#endif
1e3c88bd 5523 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5524 if (idle_cpu(i))
5525 sgs->idle_cpus++;
1e3c88bd
PZ
5526 }
5527
1e3c88bd 5528 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5529 sgs->group_power = group->sgp->power;
5530 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5531
dd5feea1 5532 if (sgs->sum_nr_running)
38d0f770 5533 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5534
aae6d3dd 5535 sgs->group_weight = group->group_weight;
fab47622 5536
b37d9316
PZ
5537 sgs->group_imb = sg_imbalanced(group);
5538 sgs->group_capacity = sg_capacity(env, group);
5539
fab47622
NR
5540 if (sgs->group_capacity > sgs->sum_nr_running)
5541 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5542}
5543
532cb4c4
MN
5544/**
5545 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5546 * @env: The load balancing environment.
532cb4c4
MN
5547 * @sds: sched_domain statistics
5548 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5549 * @sgs: sched_group statistics
532cb4c4
MN
5550 *
5551 * Determine if @sg is a busier group than the previously selected
5552 * busiest group.
e69f6186
YB
5553 *
5554 * Return: %true if @sg is a busier group than the previously selected
5555 * busiest group. %false otherwise.
532cb4c4 5556 */
bd939f45 5557static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5558 struct sd_lb_stats *sds,
5559 struct sched_group *sg,
bd939f45 5560 struct sg_lb_stats *sgs)
532cb4c4 5561{
56cf515b 5562 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5563 return false;
5564
5565 if (sgs->sum_nr_running > sgs->group_capacity)
5566 return true;
5567
5568 if (sgs->group_imb)
5569 return true;
5570
5571 /*
5572 * ASYM_PACKING needs to move all the work to the lowest
5573 * numbered CPUs in the group, therefore mark all groups
5574 * higher than ourself as busy.
5575 */
bd939f45
PZ
5576 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5577 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5578 if (!sds->busiest)
5579 return true;
5580
5581 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5582 return true;
5583 }
5584
5585 return false;
5586}
5587
0ec8aa00
PZ
5588#ifdef CONFIG_NUMA_BALANCING
5589static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5590{
5591 if (sgs->sum_nr_running > sgs->nr_numa_running)
5592 return regular;
5593 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5594 return remote;
5595 return all;
5596}
5597
5598static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5599{
5600 if (rq->nr_running > rq->nr_numa_running)
5601 return regular;
5602 if (rq->nr_running > rq->nr_preferred_running)
5603 return remote;
5604 return all;
5605}
5606#else
5607static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5608{
5609 return all;
5610}
5611
5612static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5613{
5614 return regular;
5615}
5616#endif /* CONFIG_NUMA_BALANCING */
5617
1e3c88bd 5618/**
461819ac 5619 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5620 * @env: The load balancing environment.
1e3c88bd
PZ
5621 * @sds: variable to hold the statistics for this sched_domain.
5622 */
0ec8aa00 5623static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5624{
bd939f45
PZ
5625 struct sched_domain *child = env->sd->child;
5626 struct sched_group *sg = env->sd->groups;
56cf515b 5627 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5628 int load_idx, prefer_sibling = 0;
5629
5630 if (child && child->flags & SD_PREFER_SIBLING)
5631 prefer_sibling = 1;
5632
bd939f45 5633 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5634
5635 do {
56cf515b 5636 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5637 int local_group;
5638
bd939f45 5639 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5640 if (local_group) {
5641 sds->local = sg;
5642 sgs = &sds->local_stat;
b72ff13c
PZ
5643
5644 if (env->idle != CPU_NEWLY_IDLE ||
5645 time_after_eq(jiffies, sg->sgp->next_update))
5646 update_group_power(env->sd, env->dst_cpu);
56cf515b 5647 }
1e3c88bd 5648
56cf515b 5649 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5650
b72ff13c
PZ
5651 if (local_group)
5652 goto next_group;
5653
1e3c88bd
PZ
5654 /*
5655 * In case the child domain prefers tasks go to siblings
532cb4c4 5656 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5657 * and move all the excess tasks away. We lower the capacity
5658 * of a group only if the local group has the capacity to fit
5659 * these excess tasks, i.e. nr_running < group_capacity. The
5660 * extra check prevents the case where you always pull from the
5661 * heaviest group when it is already under-utilized (possible
5662 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5663 */
b72ff13c
PZ
5664 if (prefer_sibling && sds->local &&
5665 sds->local_stat.group_has_capacity)
147c5fc2 5666 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5667
b72ff13c 5668 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5669 sds->busiest = sg;
56cf515b 5670 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5671 }
5672
b72ff13c
PZ
5673next_group:
5674 /* Now, start updating sd_lb_stats */
5675 sds->total_load += sgs->group_load;
5676 sds->total_pwr += sgs->group_power;
5677
532cb4c4 5678 sg = sg->next;
bd939f45 5679 } while (sg != env->sd->groups);
0ec8aa00
PZ
5680
5681 if (env->sd->flags & SD_NUMA)
5682 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5683}
5684
532cb4c4
MN
5685/**
5686 * check_asym_packing - Check to see if the group is packed into the
5687 * sched doman.
5688 *
5689 * This is primarily intended to used at the sibling level. Some
5690 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5691 * case of POWER7, it can move to lower SMT modes only when higher
5692 * threads are idle. When in lower SMT modes, the threads will
5693 * perform better since they share less core resources. Hence when we
5694 * have idle threads, we want them to be the higher ones.
5695 *
5696 * This packing function is run on idle threads. It checks to see if
5697 * the busiest CPU in this domain (core in the P7 case) has a higher
5698 * CPU number than the packing function is being run on. Here we are
5699 * assuming lower CPU number will be equivalent to lower a SMT thread
5700 * number.
5701 *
e69f6186 5702 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5703 * this CPU. The amount of the imbalance is returned in *imbalance.
5704 *
cd96891d 5705 * @env: The load balancing environment.
532cb4c4 5706 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5707 */
bd939f45 5708static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5709{
5710 int busiest_cpu;
5711
bd939f45 5712 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5713 return 0;
5714
5715 if (!sds->busiest)
5716 return 0;
5717
5718 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5719 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5720 return 0;
5721
bd939f45 5722 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5723 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5724 SCHED_POWER_SCALE);
bd939f45 5725
532cb4c4 5726 return 1;
1e3c88bd
PZ
5727}
5728
5729/**
5730 * fix_small_imbalance - Calculate the minor imbalance that exists
5731 * amongst the groups of a sched_domain, during
5732 * load balancing.
cd96891d 5733 * @env: The load balancing environment.
1e3c88bd 5734 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5735 */
bd939f45
PZ
5736static inline
5737void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5738{
5739 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5740 unsigned int imbn = 2;
dd5feea1 5741 unsigned long scaled_busy_load_per_task;
56cf515b 5742 struct sg_lb_stats *local, *busiest;
1e3c88bd 5743
56cf515b
JK
5744 local = &sds->local_stat;
5745 busiest = &sds->busiest_stat;
1e3c88bd 5746
56cf515b
JK
5747 if (!local->sum_nr_running)
5748 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5749 else if (busiest->load_per_task > local->load_per_task)
5750 imbn = 1;
dd5feea1 5751
56cf515b
JK
5752 scaled_busy_load_per_task =
5753 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5754 busiest->group_power;
56cf515b 5755
3029ede3
VD
5756 if (busiest->avg_load + scaled_busy_load_per_task >=
5757 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5758 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5759 return;
5760 }
5761
5762 /*
5763 * OK, we don't have enough imbalance to justify moving tasks,
5764 * however we may be able to increase total CPU power used by
5765 * moving them.
5766 */
5767
3ae11c90 5768 pwr_now += busiest->group_power *
56cf515b 5769 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5770 pwr_now += local->group_power *
56cf515b 5771 min(local->load_per_task, local->avg_load);
1399fa78 5772 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5773
5774 /* Amount of load we'd subtract */
56cf515b 5775 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5776 busiest->group_power;
56cf515b 5777 if (busiest->avg_load > tmp) {
3ae11c90 5778 pwr_move += busiest->group_power *
56cf515b
JK
5779 min(busiest->load_per_task,
5780 busiest->avg_load - tmp);
5781 }
1e3c88bd
PZ
5782
5783 /* Amount of load we'd add */
3ae11c90 5784 if (busiest->avg_load * busiest->group_power <
56cf515b 5785 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5786 tmp = (busiest->avg_load * busiest->group_power) /
5787 local->group_power;
56cf515b
JK
5788 } else {
5789 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5790 local->group_power;
56cf515b 5791 }
3ae11c90
PZ
5792 pwr_move += local->group_power *
5793 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5794 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5795
5796 /* Move if we gain throughput */
5797 if (pwr_move > pwr_now)
56cf515b 5798 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5799}
5800
5801/**
5802 * calculate_imbalance - Calculate the amount of imbalance present within the
5803 * groups of a given sched_domain during load balance.
bd939f45 5804 * @env: load balance environment
1e3c88bd 5805 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5806 */
bd939f45 5807static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5808{
dd5feea1 5809 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5810 struct sg_lb_stats *local, *busiest;
5811
5812 local = &sds->local_stat;
56cf515b 5813 busiest = &sds->busiest_stat;
dd5feea1 5814
56cf515b 5815 if (busiest->group_imb) {
30ce5dab
PZ
5816 /*
5817 * In the group_imb case we cannot rely on group-wide averages
5818 * to ensure cpu-load equilibrium, look at wider averages. XXX
5819 */
56cf515b
JK
5820 busiest->load_per_task =
5821 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5822 }
5823
1e3c88bd
PZ
5824 /*
5825 * In the presence of smp nice balancing, certain scenarios can have
5826 * max load less than avg load(as we skip the groups at or below
5827 * its cpu_power, while calculating max_load..)
5828 */
b1885550
VD
5829 if (busiest->avg_load <= sds->avg_load ||
5830 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5831 env->imbalance = 0;
5832 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5833 }
5834
56cf515b 5835 if (!busiest->group_imb) {
dd5feea1
SS
5836 /*
5837 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5838 * Except of course for the group_imb case, since then we might
5839 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5840 */
56cf515b
JK
5841 load_above_capacity =
5842 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5843
1399fa78 5844 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5845 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5846 }
5847
5848 /*
5849 * We're trying to get all the cpus to the average_load, so we don't
5850 * want to push ourselves above the average load, nor do we wish to
5851 * reduce the max loaded cpu below the average load. At the same time,
5852 * we also don't want to reduce the group load below the group capacity
5853 * (so that we can implement power-savings policies etc). Thus we look
5854 * for the minimum possible imbalance.
dd5feea1 5855 */
30ce5dab 5856 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5857
5858 /* How much load to actually move to equalise the imbalance */
56cf515b 5859 env->imbalance = min(
3ae11c90
PZ
5860 max_pull * busiest->group_power,
5861 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5862 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5863
5864 /*
5865 * if *imbalance is less than the average load per runnable task
25985edc 5866 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5867 * a think about bumping its value to force at least one task to be
5868 * moved
5869 */
56cf515b 5870 if (env->imbalance < busiest->load_per_task)
bd939f45 5871 return fix_small_imbalance(env, sds);
1e3c88bd 5872}
fab47622 5873
1e3c88bd
PZ
5874/******* find_busiest_group() helpers end here *********************/
5875
5876/**
5877 * find_busiest_group - Returns the busiest group within the sched_domain
5878 * if there is an imbalance. If there isn't an imbalance, and
5879 * the user has opted for power-savings, it returns a group whose
5880 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5881 * such a group exists.
5882 *
5883 * Also calculates the amount of weighted load which should be moved
5884 * to restore balance.
5885 *
cd96891d 5886 * @env: The load balancing environment.
1e3c88bd 5887 *
e69f6186 5888 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5889 * - If no imbalance and user has opted for power-savings balance,
5890 * return the least loaded group whose CPUs can be
5891 * put to idle by rebalancing its tasks onto our group.
5892 */
56cf515b 5893static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5894{
56cf515b 5895 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5896 struct sd_lb_stats sds;
5897
147c5fc2 5898 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5899
5900 /*
5901 * Compute the various statistics relavent for load balancing at
5902 * this level.
5903 */
23f0d209 5904 update_sd_lb_stats(env, &sds);
56cf515b
JK
5905 local = &sds.local_stat;
5906 busiest = &sds.busiest_stat;
1e3c88bd 5907
bd939f45
PZ
5908 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5909 check_asym_packing(env, &sds))
532cb4c4
MN
5910 return sds.busiest;
5911
cc57aa8f 5912 /* There is no busy sibling group to pull tasks from */
56cf515b 5913 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5914 goto out_balanced;
5915
1399fa78 5916 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5917
866ab43e
PZ
5918 /*
5919 * If the busiest group is imbalanced the below checks don't
30ce5dab 5920 * work because they assume all things are equal, which typically
866ab43e
PZ
5921 * isn't true due to cpus_allowed constraints and the like.
5922 */
56cf515b 5923 if (busiest->group_imb)
866ab43e
PZ
5924 goto force_balance;
5925
cc57aa8f 5926 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5927 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5928 !busiest->group_has_capacity)
fab47622
NR
5929 goto force_balance;
5930
cc57aa8f
PZ
5931 /*
5932 * If the local group is more busy than the selected busiest group
5933 * don't try and pull any tasks.
5934 */
56cf515b 5935 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5936 goto out_balanced;
5937
cc57aa8f
PZ
5938 /*
5939 * Don't pull any tasks if this group is already above the domain
5940 * average load.
5941 */
56cf515b 5942 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5943 goto out_balanced;
5944
bd939f45 5945 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5946 /*
5947 * This cpu is idle. If the busiest group load doesn't
5948 * have more tasks than the number of available cpu's and
5949 * there is no imbalance between this and busiest group
5950 * wrt to idle cpu's, it is balanced.
5951 */
56cf515b
JK
5952 if ((local->idle_cpus < busiest->idle_cpus) &&
5953 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5954 goto out_balanced;
c186fafe
PZ
5955 } else {
5956 /*
5957 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5958 * imbalance_pct to be conservative.
5959 */
56cf515b
JK
5960 if (100 * busiest->avg_load <=
5961 env->sd->imbalance_pct * local->avg_load)
c186fafe 5962 goto out_balanced;
aae6d3dd 5963 }
1e3c88bd 5964
fab47622 5965force_balance:
1e3c88bd 5966 /* Looks like there is an imbalance. Compute it */
bd939f45 5967 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5968 return sds.busiest;
5969
5970out_balanced:
bd939f45 5971 env->imbalance = 0;
1e3c88bd
PZ
5972 return NULL;
5973}
5974
5975/*
5976 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5977 */
bd939f45 5978static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5979 struct sched_group *group)
1e3c88bd
PZ
5980{
5981 struct rq *busiest = NULL, *rq;
95a79b80 5982 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5983 int i;
5984
6906a408 5985 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5986 unsigned long power, capacity, wl;
5987 enum fbq_type rt;
5988
5989 rq = cpu_rq(i);
5990 rt = fbq_classify_rq(rq);
1e3c88bd 5991
0ec8aa00
PZ
5992 /*
5993 * We classify groups/runqueues into three groups:
5994 * - regular: there are !numa tasks
5995 * - remote: there are numa tasks that run on the 'wrong' node
5996 * - all: there is no distinction
5997 *
5998 * In order to avoid migrating ideally placed numa tasks,
5999 * ignore those when there's better options.
6000 *
6001 * If we ignore the actual busiest queue to migrate another
6002 * task, the next balance pass can still reduce the busiest
6003 * queue by moving tasks around inside the node.
6004 *
6005 * If we cannot move enough load due to this classification
6006 * the next pass will adjust the group classification and
6007 * allow migration of more tasks.
6008 *
6009 * Both cases only affect the total convergence complexity.
6010 */
6011 if (rt > env->fbq_type)
6012 continue;
6013
6014 power = power_of(i);
6015 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6016 if (!capacity)
bd939f45 6017 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6018
6e40f5bb 6019 wl = weighted_cpuload(i);
1e3c88bd 6020
6e40f5bb
TG
6021 /*
6022 * When comparing with imbalance, use weighted_cpuload()
6023 * which is not scaled with the cpu power.
6024 */
bd939f45 6025 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6026 continue;
6027
6e40f5bb
TG
6028 /*
6029 * For the load comparisons with the other cpu's, consider
6030 * the weighted_cpuload() scaled with the cpu power, so that
6031 * the load can be moved away from the cpu that is potentially
6032 * running at a lower capacity.
95a79b80
JK
6033 *
6034 * Thus we're looking for max(wl_i / power_i), crosswise
6035 * multiplication to rid ourselves of the division works out
6036 * to: wl_i * power_j > wl_j * power_i; where j is our
6037 * previous maximum.
6e40f5bb 6038 */
95a79b80
JK
6039 if (wl * busiest_power > busiest_load * power) {
6040 busiest_load = wl;
6041 busiest_power = power;
1e3c88bd
PZ
6042 busiest = rq;
6043 }
6044 }
6045
6046 return busiest;
6047}
6048
6049/*
6050 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6051 * so long as it is large enough.
6052 */
6053#define MAX_PINNED_INTERVAL 512
6054
6055/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6056DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6057
bd939f45 6058static int need_active_balance(struct lb_env *env)
1af3ed3d 6059{
bd939f45
PZ
6060 struct sched_domain *sd = env->sd;
6061
6062 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6063
6064 /*
6065 * ASYM_PACKING needs to force migrate tasks from busy but
6066 * higher numbered CPUs in order to pack all tasks in the
6067 * lowest numbered CPUs.
6068 */
bd939f45 6069 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6070 return 1;
1af3ed3d
PZ
6071 }
6072
6073 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6074}
6075
969c7921
TH
6076static int active_load_balance_cpu_stop(void *data);
6077
23f0d209
JK
6078static int should_we_balance(struct lb_env *env)
6079{
6080 struct sched_group *sg = env->sd->groups;
6081 struct cpumask *sg_cpus, *sg_mask;
6082 int cpu, balance_cpu = -1;
6083
6084 /*
6085 * In the newly idle case, we will allow all the cpu's
6086 * to do the newly idle load balance.
6087 */
6088 if (env->idle == CPU_NEWLY_IDLE)
6089 return 1;
6090
6091 sg_cpus = sched_group_cpus(sg);
6092 sg_mask = sched_group_mask(sg);
6093 /* Try to find first idle cpu */
6094 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6095 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6096 continue;
6097
6098 balance_cpu = cpu;
6099 break;
6100 }
6101
6102 if (balance_cpu == -1)
6103 balance_cpu = group_balance_cpu(sg);
6104
6105 /*
6106 * First idle cpu or the first cpu(busiest) in this sched group
6107 * is eligible for doing load balancing at this and above domains.
6108 */
b0cff9d8 6109 return balance_cpu == env->dst_cpu;
23f0d209
JK
6110}
6111
1e3c88bd
PZ
6112/*
6113 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6114 * tasks if there is an imbalance.
6115 */
6116static int load_balance(int this_cpu, struct rq *this_rq,
6117 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6118 int *continue_balancing)
1e3c88bd 6119{
88b8dac0 6120 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6121 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6122 struct sched_group *group;
1e3c88bd
PZ
6123 struct rq *busiest;
6124 unsigned long flags;
e6252c3e 6125 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6126
8e45cb54
PZ
6127 struct lb_env env = {
6128 .sd = sd,
ddcdf6e7
PZ
6129 .dst_cpu = this_cpu,
6130 .dst_rq = this_rq,
88b8dac0 6131 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6132 .idle = idle,
eb95308e 6133 .loop_break = sched_nr_migrate_break,
b9403130 6134 .cpus = cpus,
0ec8aa00 6135 .fbq_type = all,
8e45cb54
PZ
6136 };
6137
cfc03118
JK
6138 /*
6139 * For NEWLY_IDLE load_balancing, we don't need to consider
6140 * other cpus in our group
6141 */
e02e60c1 6142 if (idle == CPU_NEWLY_IDLE)
cfc03118 6143 env.dst_grpmask = NULL;
cfc03118 6144
1e3c88bd
PZ
6145 cpumask_copy(cpus, cpu_active_mask);
6146
1e3c88bd
PZ
6147 schedstat_inc(sd, lb_count[idle]);
6148
6149redo:
23f0d209
JK
6150 if (!should_we_balance(&env)) {
6151 *continue_balancing = 0;
1e3c88bd 6152 goto out_balanced;
23f0d209 6153 }
1e3c88bd 6154
23f0d209 6155 group = find_busiest_group(&env);
1e3c88bd
PZ
6156 if (!group) {
6157 schedstat_inc(sd, lb_nobusyg[idle]);
6158 goto out_balanced;
6159 }
6160
b9403130 6161 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6162 if (!busiest) {
6163 schedstat_inc(sd, lb_nobusyq[idle]);
6164 goto out_balanced;
6165 }
6166
78feefc5 6167 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6168
bd939f45 6169 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6170
6171 ld_moved = 0;
6172 if (busiest->nr_running > 1) {
6173 /*
6174 * Attempt to move tasks. If find_busiest_group has found
6175 * an imbalance but busiest->nr_running <= 1, the group is
6176 * still unbalanced. ld_moved simply stays zero, so it is
6177 * correctly treated as an imbalance.
6178 */
8e45cb54 6179 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6180 env.src_cpu = busiest->cpu;
6181 env.src_rq = busiest;
6182 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6183
5d6523eb 6184more_balance:
1e3c88bd 6185 local_irq_save(flags);
78feefc5 6186 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6187
6188 /*
6189 * cur_ld_moved - load moved in current iteration
6190 * ld_moved - cumulative load moved across iterations
6191 */
6192 cur_ld_moved = move_tasks(&env);
6193 ld_moved += cur_ld_moved;
78feefc5 6194 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6195 local_irq_restore(flags);
6196
6197 /*
6198 * some other cpu did the load balance for us.
6199 */
88b8dac0
SV
6200 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6201 resched_cpu(env.dst_cpu);
6202
f1cd0858
JK
6203 if (env.flags & LBF_NEED_BREAK) {
6204 env.flags &= ~LBF_NEED_BREAK;
6205 goto more_balance;
6206 }
6207
88b8dac0
SV
6208 /*
6209 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6210 * us and move them to an alternate dst_cpu in our sched_group
6211 * where they can run. The upper limit on how many times we
6212 * iterate on same src_cpu is dependent on number of cpus in our
6213 * sched_group.
6214 *
6215 * This changes load balance semantics a bit on who can move
6216 * load to a given_cpu. In addition to the given_cpu itself
6217 * (or a ilb_cpu acting on its behalf where given_cpu is
6218 * nohz-idle), we now have balance_cpu in a position to move
6219 * load to given_cpu. In rare situations, this may cause
6220 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6221 * _independently_ and at _same_ time to move some load to
6222 * given_cpu) causing exceess load to be moved to given_cpu.
6223 * This however should not happen so much in practice and
6224 * moreover subsequent load balance cycles should correct the
6225 * excess load moved.
6226 */
6263322c 6227 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6228
7aff2e3a
VD
6229 /* Prevent to re-select dst_cpu via env's cpus */
6230 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6231
78feefc5 6232 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6233 env.dst_cpu = env.new_dst_cpu;
6263322c 6234 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6235 env.loop = 0;
6236 env.loop_break = sched_nr_migrate_break;
e02e60c1 6237
88b8dac0
SV
6238 /*
6239 * Go back to "more_balance" rather than "redo" since we
6240 * need to continue with same src_cpu.
6241 */
6242 goto more_balance;
6243 }
1e3c88bd 6244
6263322c
PZ
6245 /*
6246 * We failed to reach balance because of affinity.
6247 */
6248 if (sd_parent) {
6249 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6250
6251 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6252 *group_imbalance = 1;
6253 } else if (*group_imbalance)
6254 *group_imbalance = 0;
6255 }
6256
1e3c88bd 6257 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6258 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6259 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6260 if (!cpumask_empty(cpus)) {
6261 env.loop = 0;
6262 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6263 goto redo;
bbf18b19 6264 }
1e3c88bd
PZ
6265 goto out_balanced;
6266 }
6267 }
6268
6269 if (!ld_moved) {
6270 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6271 /*
6272 * Increment the failure counter only on periodic balance.
6273 * We do not want newidle balance, which can be very
6274 * frequent, pollute the failure counter causing
6275 * excessive cache_hot migrations and active balances.
6276 */
6277 if (idle != CPU_NEWLY_IDLE)
6278 sd->nr_balance_failed++;
1e3c88bd 6279
bd939f45 6280 if (need_active_balance(&env)) {
1e3c88bd
PZ
6281 raw_spin_lock_irqsave(&busiest->lock, flags);
6282
969c7921
TH
6283 /* don't kick the active_load_balance_cpu_stop,
6284 * if the curr task on busiest cpu can't be
6285 * moved to this_cpu
1e3c88bd
PZ
6286 */
6287 if (!cpumask_test_cpu(this_cpu,
fa17b507 6288 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6289 raw_spin_unlock_irqrestore(&busiest->lock,
6290 flags);
8e45cb54 6291 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6292 goto out_one_pinned;
6293 }
6294
969c7921
TH
6295 /*
6296 * ->active_balance synchronizes accesses to
6297 * ->active_balance_work. Once set, it's cleared
6298 * only after active load balance is finished.
6299 */
1e3c88bd
PZ
6300 if (!busiest->active_balance) {
6301 busiest->active_balance = 1;
6302 busiest->push_cpu = this_cpu;
6303 active_balance = 1;
6304 }
6305 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6306
bd939f45 6307 if (active_balance) {
969c7921
TH
6308 stop_one_cpu_nowait(cpu_of(busiest),
6309 active_load_balance_cpu_stop, busiest,
6310 &busiest->active_balance_work);
bd939f45 6311 }
1e3c88bd
PZ
6312
6313 /*
6314 * We've kicked active balancing, reset the failure
6315 * counter.
6316 */
6317 sd->nr_balance_failed = sd->cache_nice_tries+1;
6318 }
6319 } else
6320 sd->nr_balance_failed = 0;
6321
6322 if (likely(!active_balance)) {
6323 /* We were unbalanced, so reset the balancing interval */
6324 sd->balance_interval = sd->min_interval;
6325 } else {
6326 /*
6327 * If we've begun active balancing, start to back off. This
6328 * case may not be covered by the all_pinned logic if there
6329 * is only 1 task on the busy runqueue (because we don't call
6330 * move_tasks).
6331 */
6332 if (sd->balance_interval < sd->max_interval)
6333 sd->balance_interval *= 2;
6334 }
6335
1e3c88bd
PZ
6336 goto out;
6337
6338out_balanced:
6339 schedstat_inc(sd, lb_balanced[idle]);
6340
6341 sd->nr_balance_failed = 0;
6342
6343out_one_pinned:
6344 /* tune up the balancing interval */
8e45cb54 6345 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6346 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6347 (sd->balance_interval < sd->max_interval))
6348 sd->balance_interval *= 2;
6349
46e49b38 6350 ld_moved = 0;
1e3c88bd 6351out:
1e3c88bd
PZ
6352 return ld_moved;
6353}
6354
1e3c88bd
PZ
6355/*
6356 * idle_balance is called by schedule() if this_cpu is about to become
6357 * idle. Attempts to pull tasks from other CPUs.
6358 */
029632fb 6359void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6360{
6361 struct sched_domain *sd;
6362 int pulled_task = 0;
6363 unsigned long next_balance = jiffies + HZ;
9bd721c5 6364 u64 curr_cost = 0;
1e3c88bd 6365
78becc27 6366 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6367
6368 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6369 return;
6370
f492e12e
PZ
6371 /*
6372 * Drop the rq->lock, but keep IRQ/preempt disabled.
6373 */
6374 raw_spin_unlock(&this_rq->lock);
6375
48a16753 6376 update_blocked_averages(this_cpu);
dce840a0 6377 rcu_read_lock();
1e3c88bd
PZ
6378 for_each_domain(this_cpu, sd) {
6379 unsigned long interval;
23f0d209 6380 int continue_balancing = 1;
9bd721c5 6381 u64 t0, domain_cost;
1e3c88bd
PZ
6382
6383 if (!(sd->flags & SD_LOAD_BALANCE))
6384 continue;
6385
9bd721c5
JL
6386 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6387 break;
6388
f492e12e 6389 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6390 t0 = sched_clock_cpu(this_cpu);
6391
1e3c88bd 6392 /* If we've pulled tasks over stop searching: */
f492e12e 6393 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6394 sd, CPU_NEWLY_IDLE,
6395 &continue_balancing);
9bd721c5
JL
6396
6397 domain_cost = sched_clock_cpu(this_cpu) - t0;
6398 if (domain_cost > sd->max_newidle_lb_cost)
6399 sd->max_newidle_lb_cost = domain_cost;
6400
6401 curr_cost += domain_cost;
f492e12e 6402 }
1e3c88bd
PZ
6403
6404 interval = msecs_to_jiffies(sd->balance_interval);
6405 if (time_after(next_balance, sd->last_balance + interval))
6406 next_balance = sd->last_balance + interval;
d5ad140b
NR
6407 if (pulled_task) {
6408 this_rq->idle_stamp = 0;
1e3c88bd 6409 break;
d5ad140b 6410 }
1e3c88bd 6411 }
dce840a0 6412 rcu_read_unlock();
f492e12e
PZ
6413
6414 raw_spin_lock(&this_rq->lock);
6415
1e3c88bd
PZ
6416 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6417 /*
6418 * We are going idle. next_balance may be set based on
6419 * a busy processor. So reset next_balance.
6420 */
6421 this_rq->next_balance = next_balance;
6422 }
9bd721c5
JL
6423
6424 if (curr_cost > this_rq->max_idle_balance_cost)
6425 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6426}
6427
6428/*
969c7921
TH
6429 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6430 * running tasks off the busiest CPU onto idle CPUs. It requires at
6431 * least 1 task to be running on each physical CPU where possible, and
6432 * avoids physical / logical imbalances.
1e3c88bd 6433 */
969c7921 6434static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6435{
969c7921
TH
6436 struct rq *busiest_rq = data;
6437 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6438 int target_cpu = busiest_rq->push_cpu;
969c7921 6439 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6440 struct sched_domain *sd;
969c7921
TH
6441
6442 raw_spin_lock_irq(&busiest_rq->lock);
6443
6444 /* make sure the requested cpu hasn't gone down in the meantime */
6445 if (unlikely(busiest_cpu != smp_processor_id() ||
6446 !busiest_rq->active_balance))
6447 goto out_unlock;
1e3c88bd
PZ
6448
6449 /* Is there any task to move? */
6450 if (busiest_rq->nr_running <= 1)
969c7921 6451 goto out_unlock;
1e3c88bd
PZ
6452
6453 /*
6454 * This condition is "impossible", if it occurs
6455 * we need to fix it. Originally reported by
6456 * Bjorn Helgaas on a 128-cpu setup.
6457 */
6458 BUG_ON(busiest_rq == target_rq);
6459
6460 /* move a task from busiest_rq to target_rq */
6461 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6462
6463 /* Search for an sd spanning us and the target CPU. */
dce840a0 6464 rcu_read_lock();
1e3c88bd
PZ
6465 for_each_domain(target_cpu, sd) {
6466 if ((sd->flags & SD_LOAD_BALANCE) &&
6467 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6468 break;
6469 }
6470
6471 if (likely(sd)) {
8e45cb54
PZ
6472 struct lb_env env = {
6473 .sd = sd,
ddcdf6e7
PZ
6474 .dst_cpu = target_cpu,
6475 .dst_rq = target_rq,
6476 .src_cpu = busiest_rq->cpu,
6477 .src_rq = busiest_rq,
8e45cb54
PZ
6478 .idle = CPU_IDLE,
6479 };
6480
1e3c88bd
PZ
6481 schedstat_inc(sd, alb_count);
6482
8e45cb54 6483 if (move_one_task(&env))
1e3c88bd
PZ
6484 schedstat_inc(sd, alb_pushed);
6485 else
6486 schedstat_inc(sd, alb_failed);
6487 }
dce840a0 6488 rcu_read_unlock();
1e3c88bd 6489 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6490out_unlock:
6491 busiest_rq->active_balance = 0;
6492 raw_spin_unlock_irq(&busiest_rq->lock);
6493 return 0;
1e3c88bd
PZ
6494}
6495
3451d024 6496#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6497/*
6498 * idle load balancing details
83cd4fe2
VP
6499 * - When one of the busy CPUs notice that there may be an idle rebalancing
6500 * needed, they will kick the idle load balancer, which then does idle
6501 * load balancing for all the idle CPUs.
6502 */
1e3c88bd 6503static struct {
83cd4fe2 6504 cpumask_var_t idle_cpus_mask;
0b005cf5 6505 atomic_t nr_cpus;
83cd4fe2
VP
6506 unsigned long next_balance; /* in jiffy units */
6507} nohz ____cacheline_aligned;
1e3c88bd 6508
8e7fbcbc 6509static inline int find_new_ilb(int call_cpu)
1e3c88bd 6510{
0b005cf5 6511 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6512
786d6dc7
SS
6513 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6514 return ilb;
6515
6516 return nr_cpu_ids;
1e3c88bd 6517}
1e3c88bd 6518
83cd4fe2
VP
6519/*
6520 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6521 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6522 * CPU (if there is one).
6523 */
6524static void nohz_balancer_kick(int cpu)
6525{
6526 int ilb_cpu;
6527
6528 nohz.next_balance++;
6529
0b005cf5 6530 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6531
0b005cf5
SS
6532 if (ilb_cpu >= nr_cpu_ids)
6533 return;
83cd4fe2 6534
cd490c5b 6535 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6536 return;
6537 /*
6538 * Use smp_send_reschedule() instead of resched_cpu().
6539 * This way we generate a sched IPI on the target cpu which
6540 * is idle. And the softirq performing nohz idle load balance
6541 * will be run before returning from the IPI.
6542 */
6543 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6544 return;
6545}
6546
c1cc017c 6547static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6548{
6549 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6550 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6551 atomic_dec(&nohz.nr_cpus);
6552 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6553 }
6554}
6555
69e1e811
SS
6556static inline void set_cpu_sd_state_busy(void)
6557{
6558 struct sched_domain *sd;
37dc6b50 6559 int cpu = smp_processor_id();
69e1e811 6560
69e1e811 6561 rcu_read_lock();
37dc6b50 6562 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6563
6564 if (!sd || !sd->nohz_idle)
6565 goto unlock;
6566 sd->nohz_idle = 0;
6567
37dc6b50 6568 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6569unlock:
69e1e811
SS
6570 rcu_read_unlock();
6571}
6572
6573void set_cpu_sd_state_idle(void)
6574{
6575 struct sched_domain *sd;
37dc6b50 6576 int cpu = smp_processor_id();
69e1e811 6577
69e1e811 6578 rcu_read_lock();
37dc6b50 6579 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6580
6581 if (!sd || sd->nohz_idle)
6582 goto unlock;
6583 sd->nohz_idle = 1;
6584
37dc6b50 6585 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6586unlock:
69e1e811
SS
6587 rcu_read_unlock();
6588}
6589
1e3c88bd 6590/*
c1cc017c 6591 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6592 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6593 */
c1cc017c 6594void nohz_balance_enter_idle(int cpu)
1e3c88bd 6595{
71325960
SS
6596 /*
6597 * If this cpu is going down, then nothing needs to be done.
6598 */
6599 if (!cpu_active(cpu))
6600 return;
6601
c1cc017c
AS
6602 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6603 return;
1e3c88bd 6604
c1cc017c
AS
6605 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6606 atomic_inc(&nohz.nr_cpus);
6607 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6608}
71325960 6609
0db0628d 6610static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6611 unsigned long action, void *hcpu)
6612{
6613 switch (action & ~CPU_TASKS_FROZEN) {
6614 case CPU_DYING:
c1cc017c 6615 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6616 return NOTIFY_OK;
6617 default:
6618 return NOTIFY_DONE;
6619 }
6620}
1e3c88bd
PZ
6621#endif
6622
6623static DEFINE_SPINLOCK(balancing);
6624
49c022e6
PZ
6625/*
6626 * Scale the max load_balance interval with the number of CPUs in the system.
6627 * This trades load-balance latency on larger machines for less cross talk.
6628 */
029632fb 6629void update_max_interval(void)
49c022e6
PZ
6630{
6631 max_load_balance_interval = HZ*num_online_cpus()/10;
6632}
6633
1e3c88bd
PZ
6634/*
6635 * It checks each scheduling domain to see if it is due to be balanced,
6636 * and initiates a balancing operation if so.
6637 *
b9b0853a 6638 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6639 */
6640static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6641{
23f0d209 6642 int continue_balancing = 1;
1e3c88bd
PZ
6643 struct rq *rq = cpu_rq(cpu);
6644 unsigned long interval;
04f733b4 6645 struct sched_domain *sd;
1e3c88bd
PZ
6646 /* Earliest time when we have to do rebalance again */
6647 unsigned long next_balance = jiffies + 60*HZ;
6648 int update_next_balance = 0;
f48627e6
JL
6649 int need_serialize, need_decay = 0;
6650 u64 max_cost = 0;
1e3c88bd 6651
48a16753 6652 update_blocked_averages(cpu);
2069dd75 6653
dce840a0 6654 rcu_read_lock();
1e3c88bd 6655 for_each_domain(cpu, sd) {
f48627e6
JL
6656 /*
6657 * Decay the newidle max times here because this is a regular
6658 * visit to all the domains. Decay ~1% per second.
6659 */
6660 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6661 sd->max_newidle_lb_cost =
6662 (sd->max_newidle_lb_cost * 253) / 256;
6663 sd->next_decay_max_lb_cost = jiffies + HZ;
6664 need_decay = 1;
6665 }
6666 max_cost += sd->max_newidle_lb_cost;
6667
1e3c88bd
PZ
6668 if (!(sd->flags & SD_LOAD_BALANCE))
6669 continue;
6670
f48627e6
JL
6671 /*
6672 * Stop the load balance at this level. There is another
6673 * CPU in our sched group which is doing load balancing more
6674 * actively.
6675 */
6676 if (!continue_balancing) {
6677 if (need_decay)
6678 continue;
6679 break;
6680 }
6681
1e3c88bd
PZ
6682 interval = sd->balance_interval;
6683 if (idle != CPU_IDLE)
6684 interval *= sd->busy_factor;
6685
6686 /* scale ms to jiffies */
6687 interval = msecs_to_jiffies(interval);
49c022e6 6688 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6689
6690 need_serialize = sd->flags & SD_SERIALIZE;
6691
6692 if (need_serialize) {
6693 if (!spin_trylock(&balancing))
6694 goto out;
6695 }
6696
6697 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6698 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6699 /*
6263322c 6700 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6701 * env->dst_cpu, so we can't know our idle
6702 * state even if we migrated tasks. Update it.
1e3c88bd 6703 */
de5eb2dd 6704 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6705 }
6706 sd->last_balance = jiffies;
6707 }
6708 if (need_serialize)
6709 spin_unlock(&balancing);
6710out:
6711 if (time_after(next_balance, sd->last_balance + interval)) {
6712 next_balance = sd->last_balance + interval;
6713 update_next_balance = 1;
6714 }
f48627e6
JL
6715 }
6716 if (need_decay) {
1e3c88bd 6717 /*
f48627e6
JL
6718 * Ensure the rq-wide value also decays but keep it at a
6719 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6720 */
f48627e6
JL
6721 rq->max_idle_balance_cost =
6722 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6723 }
dce840a0 6724 rcu_read_unlock();
1e3c88bd
PZ
6725
6726 /*
6727 * next_balance will be updated only when there is a need.
6728 * When the cpu is attached to null domain for ex, it will not be
6729 * updated.
6730 */
6731 if (likely(update_next_balance))
6732 rq->next_balance = next_balance;
6733}
6734
3451d024 6735#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6736/*
3451d024 6737 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6738 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6739 */
83cd4fe2
VP
6740static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6741{
6742 struct rq *this_rq = cpu_rq(this_cpu);
6743 struct rq *rq;
6744 int balance_cpu;
6745
1c792db7
SS
6746 if (idle != CPU_IDLE ||
6747 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6748 goto end;
83cd4fe2
VP
6749
6750 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6751 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6752 continue;
6753
6754 /*
6755 * If this cpu gets work to do, stop the load balancing
6756 * work being done for other cpus. Next load
6757 * balancing owner will pick it up.
6758 */
1c792db7 6759 if (need_resched())
83cd4fe2 6760 break;
83cd4fe2 6761
5ed4f1d9
VG
6762 rq = cpu_rq(balance_cpu);
6763
6764 raw_spin_lock_irq(&rq->lock);
6765 update_rq_clock(rq);
6766 update_idle_cpu_load(rq);
6767 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6768
6769 rebalance_domains(balance_cpu, CPU_IDLE);
6770
83cd4fe2
VP
6771 if (time_after(this_rq->next_balance, rq->next_balance))
6772 this_rq->next_balance = rq->next_balance;
6773 }
6774 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6775end:
6776 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6777}
6778
6779/*
0b005cf5
SS
6780 * Current heuristic for kicking the idle load balancer in the presence
6781 * of an idle cpu is the system.
6782 * - This rq has more than one task.
6783 * - At any scheduler domain level, this cpu's scheduler group has multiple
6784 * busy cpu's exceeding the group's power.
6785 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6786 * domain span are idle.
83cd4fe2
VP
6787 */
6788static inline int nohz_kick_needed(struct rq *rq, int cpu)
6789{
6790 unsigned long now = jiffies;
0b005cf5 6791 struct sched_domain *sd;
37dc6b50
PM
6792 struct sched_group_power *sgp;
6793 int nr_busy;
83cd4fe2 6794
1c792db7 6795 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6796 return 0;
6797
1c792db7
SS
6798 /*
6799 * We may be recently in ticked or tickless idle mode. At the first
6800 * busy tick after returning from idle, we will update the busy stats.
6801 */
69e1e811 6802 set_cpu_sd_state_busy();
c1cc017c 6803 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6804
6805 /*
6806 * None are in tickless mode and hence no need for NOHZ idle load
6807 * balancing.
6808 */
6809 if (likely(!atomic_read(&nohz.nr_cpus)))
6810 return 0;
1c792db7
SS
6811
6812 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6813 return 0;
6814
0b005cf5
SS
6815 if (rq->nr_running >= 2)
6816 goto need_kick;
83cd4fe2 6817
067491b7 6818 rcu_read_lock();
37dc6b50 6819 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6820
37dc6b50
PM
6821 if (sd) {
6822 sgp = sd->groups->sgp;
6823 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6824
37dc6b50 6825 if (nr_busy > 1)
067491b7 6826 goto need_kick_unlock;
83cd4fe2 6827 }
37dc6b50
PM
6828
6829 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6830
6831 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6832 sched_domain_span(sd)) < cpu))
6833 goto need_kick_unlock;
6834
067491b7 6835 rcu_read_unlock();
83cd4fe2 6836 return 0;
067491b7
PZ
6837
6838need_kick_unlock:
6839 rcu_read_unlock();
0b005cf5
SS
6840need_kick:
6841 return 1;
83cd4fe2
VP
6842}
6843#else
6844static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6845#endif
6846
6847/*
6848 * run_rebalance_domains is triggered when needed from the scheduler tick.
6849 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6850 */
1e3c88bd
PZ
6851static void run_rebalance_domains(struct softirq_action *h)
6852{
6853 int this_cpu = smp_processor_id();
6854 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6855 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6856 CPU_IDLE : CPU_NOT_IDLE;
6857
6858 rebalance_domains(this_cpu, idle);
6859
1e3c88bd 6860 /*
83cd4fe2 6861 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6862 * balancing on behalf of the other idle cpus whose ticks are
6863 * stopped.
6864 */
83cd4fe2 6865 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6866}
6867
6868static inline int on_null_domain(int cpu)
6869{
90a6501f 6870 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6871}
6872
6873/*
6874 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6875 */
029632fb 6876void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6877{
1e3c88bd
PZ
6878 /* Don't need to rebalance while attached to NULL domain */
6879 if (time_after_eq(jiffies, rq->next_balance) &&
6880 likely(!on_null_domain(cpu)))
6881 raise_softirq(SCHED_SOFTIRQ);
3451d024 6882#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6883 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6884 nohz_balancer_kick(cpu);
6885#endif
1e3c88bd
PZ
6886}
6887
0bcdcf28
CE
6888static void rq_online_fair(struct rq *rq)
6889{
6890 update_sysctl();
6891}
6892
6893static void rq_offline_fair(struct rq *rq)
6894{
6895 update_sysctl();
a4c96ae3
PB
6896
6897 /* Ensure any throttled groups are reachable by pick_next_task */
6898 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6899}
6900
55e12e5e 6901#endif /* CONFIG_SMP */
e1d1484f 6902
bf0f6f24
IM
6903/*
6904 * scheduler tick hitting a task of our scheduling class:
6905 */
8f4d37ec 6906static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6907{
6908 struct cfs_rq *cfs_rq;
6909 struct sched_entity *se = &curr->se;
6910
6911 for_each_sched_entity(se) {
6912 cfs_rq = cfs_rq_of(se);
8f4d37ec 6913 entity_tick(cfs_rq, se, queued);
bf0f6f24 6914 }
18bf2805 6915
10e84b97 6916 if (numabalancing_enabled)
cbee9f88 6917 task_tick_numa(rq, curr);
3d59eebc 6918
18bf2805 6919 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6920}
6921
6922/*
cd29fe6f
PZ
6923 * called on fork with the child task as argument from the parent's context
6924 * - child not yet on the tasklist
6925 * - preemption disabled
bf0f6f24 6926 */
cd29fe6f 6927static void task_fork_fair(struct task_struct *p)
bf0f6f24 6928{
4fc420c9
DN
6929 struct cfs_rq *cfs_rq;
6930 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6931 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6932 struct rq *rq = this_rq();
6933 unsigned long flags;
6934
05fa785c 6935 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6936
861d034e
PZ
6937 update_rq_clock(rq);
6938
4fc420c9
DN
6939 cfs_rq = task_cfs_rq(current);
6940 curr = cfs_rq->curr;
6941
6c9a27f5
DN
6942 /*
6943 * Not only the cpu but also the task_group of the parent might have
6944 * been changed after parent->se.parent,cfs_rq were copied to
6945 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6946 * of child point to valid ones.
6947 */
6948 rcu_read_lock();
6949 __set_task_cpu(p, this_cpu);
6950 rcu_read_unlock();
bf0f6f24 6951
7109c442 6952 update_curr(cfs_rq);
cd29fe6f 6953
b5d9d734
MG
6954 if (curr)
6955 se->vruntime = curr->vruntime;
aeb73b04 6956 place_entity(cfs_rq, se, 1);
4d78e7b6 6957
cd29fe6f 6958 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6959 /*
edcb60a3
IM
6960 * Upon rescheduling, sched_class::put_prev_task() will place
6961 * 'current' within the tree based on its new key value.
6962 */
4d78e7b6 6963 swap(curr->vruntime, se->vruntime);
aec0a514 6964 resched_task(rq->curr);
4d78e7b6 6965 }
bf0f6f24 6966
88ec22d3
PZ
6967 se->vruntime -= cfs_rq->min_vruntime;
6968
05fa785c 6969 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6970}
6971
cb469845
SR
6972/*
6973 * Priority of the task has changed. Check to see if we preempt
6974 * the current task.
6975 */
da7a735e
PZ
6976static void
6977prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6978{
da7a735e
PZ
6979 if (!p->se.on_rq)
6980 return;
6981
cb469845
SR
6982 /*
6983 * Reschedule if we are currently running on this runqueue and
6984 * our priority decreased, or if we are not currently running on
6985 * this runqueue and our priority is higher than the current's
6986 */
da7a735e 6987 if (rq->curr == p) {
cb469845
SR
6988 if (p->prio > oldprio)
6989 resched_task(rq->curr);
6990 } else
15afe09b 6991 check_preempt_curr(rq, p, 0);
cb469845
SR
6992}
6993
da7a735e
PZ
6994static void switched_from_fair(struct rq *rq, struct task_struct *p)
6995{
6996 struct sched_entity *se = &p->se;
6997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6998
6999 /*
7000 * Ensure the task's vruntime is normalized, so that when its
7001 * switched back to the fair class the enqueue_entity(.flags=0) will
7002 * do the right thing.
7003 *
7004 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7005 * have normalized the vruntime, if it was !on_rq, then only when
7006 * the task is sleeping will it still have non-normalized vruntime.
7007 */
7008 if (!se->on_rq && p->state != TASK_RUNNING) {
7009 /*
7010 * Fix up our vruntime so that the current sleep doesn't
7011 * cause 'unlimited' sleep bonus.
7012 */
7013 place_entity(cfs_rq, se, 0);
7014 se->vruntime -= cfs_rq->min_vruntime;
7015 }
9ee474f5 7016
141965c7 7017#ifdef CONFIG_SMP
9ee474f5
PT
7018 /*
7019 * Remove our load from contribution when we leave sched_fair
7020 * and ensure we don't carry in an old decay_count if we
7021 * switch back.
7022 */
87e3c8ae
KT
7023 if (se->avg.decay_count) {
7024 __synchronize_entity_decay(se);
7025 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7026 }
7027#endif
da7a735e
PZ
7028}
7029
cb469845
SR
7030/*
7031 * We switched to the sched_fair class.
7032 */
da7a735e 7033static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7034{
da7a735e
PZ
7035 if (!p->se.on_rq)
7036 return;
7037
cb469845
SR
7038 /*
7039 * We were most likely switched from sched_rt, so
7040 * kick off the schedule if running, otherwise just see
7041 * if we can still preempt the current task.
7042 */
da7a735e 7043 if (rq->curr == p)
cb469845
SR
7044 resched_task(rq->curr);
7045 else
15afe09b 7046 check_preempt_curr(rq, p, 0);
cb469845
SR
7047}
7048
83b699ed
SV
7049/* Account for a task changing its policy or group.
7050 *
7051 * This routine is mostly called to set cfs_rq->curr field when a task
7052 * migrates between groups/classes.
7053 */
7054static void set_curr_task_fair(struct rq *rq)
7055{
7056 struct sched_entity *se = &rq->curr->se;
7057
ec12cb7f
PT
7058 for_each_sched_entity(se) {
7059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7060
7061 set_next_entity(cfs_rq, se);
7062 /* ensure bandwidth has been allocated on our new cfs_rq */
7063 account_cfs_rq_runtime(cfs_rq, 0);
7064 }
83b699ed
SV
7065}
7066
029632fb
PZ
7067void init_cfs_rq(struct cfs_rq *cfs_rq)
7068{
7069 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7070 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7071#ifndef CONFIG_64BIT
7072 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7073#endif
141965c7 7074#ifdef CONFIG_SMP
9ee474f5 7075 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7076 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7077#endif
029632fb
PZ
7078}
7079
810b3817 7080#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7081static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7082{
aff3e498 7083 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7084 /*
7085 * If the task was not on the rq at the time of this cgroup movement
7086 * it must have been asleep, sleeping tasks keep their ->vruntime
7087 * absolute on their old rq until wakeup (needed for the fair sleeper
7088 * bonus in place_entity()).
7089 *
7090 * If it was on the rq, we've just 'preempted' it, which does convert
7091 * ->vruntime to a relative base.
7092 *
7093 * Make sure both cases convert their relative position when migrating
7094 * to another cgroup's rq. This does somewhat interfere with the
7095 * fair sleeper stuff for the first placement, but who cares.
7096 */
7ceff013
DN
7097 /*
7098 * When !on_rq, vruntime of the task has usually NOT been normalized.
7099 * But there are some cases where it has already been normalized:
7100 *
7101 * - Moving a forked child which is waiting for being woken up by
7102 * wake_up_new_task().
62af3783
DN
7103 * - Moving a task which has been woken up by try_to_wake_up() and
7104 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7105 *
7106 * To prevent boost or penalty in the new cfs_rq caused by delta
7107 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7108 */
62af3783 7109 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7110 on_rq = 1;
7111
b2b5ce02
PZ
7112 if (!on_rq)
7113 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7114 set_task_rq(p, task_cpu(p));
aff3e498
PT
7115 if (!on_rq) {
7116 cfs_rq = cfs_rq_of(&p->se);
7117 p->se.vruntime += cfs_rq->min_vruntime;
7118#ifdef CONFIG_SMP
7119 /*
7120 * migrate_task_rq_fair() will have removed our previous
7121 * contribution, but we must synchronize for ongoing future
7122 * decay.
7123 */
7124 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7125 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7126#endif
7127 }
810b3817 7128}
029632fb
PZ
7129
7130void free_fair_sched_group(struct task_group *tg)
7131{
7132 int i;
7133
7134 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7135
7136 for_each_possible_cpu(i) {
7137 if (tg->cfs_rq)
7138 kfree(tg->cfs_rq[i]);
7139 if (tg->se)
7140 kfree(tg->se[i]);
7141 }
7142
7143 kfree(tg->cfs_rq);
7144 kfree(tg->se);
7145}
7146
7147int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7148{
7149 struct cfs_rq *cfs_rq;
7150 struct sched_entity *se;
7151 int i;
7152
7153 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7154 if (!tg->cfs_rq)
7155 goto err;
7156 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7157 if (!tg->se)
7158 goto err;
7159
7160 tg->shares = NICE_0_LOAD;
7161
7162 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7163
7164 for_each_possible_cpu(i) {
7165 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7166 GFP_KERNEL, cpu_to_node(i));
7167 if (!cfs_rq)
7168 goto err;
7169
7170 se = kzalloc_node(sizeof(struct sched_entity),
7171 GFP_KERNEL, cpu_to_node(i));
7172 if (!se)
7173 goto err_free_rq;
7174
7175 init_cfs_rq(cfs_rq);
7176 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7177 }
7178
7179 return 1;
7180
7181err_free_rq:
7182 kfree(cfs_rq);
7183err:
7184 return 0;
7185}
7186
7187void unregister_fair_sched_group(struct task_group *tg, int cpu)
7188{
7189 struct rq *rq = cpu_rq(cpu);
7190 unsigned long flags;
7191
7192 /*
7193 * Only empty task groups can be destroyed; so we can speculatively
7194 * check on_list without danger of it being re-added.
7195 */
7196 if (!tg->cfs_rq[cpu]->on_list)
7197 return;
7198
7199 raw_spin_lock_irqsave(&rq->lock, flags);
7200 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7201 raw_spin_unlock_irqrestore(&rq->lock, flags);
7202}
7203
7204void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7205 struct sched_entity *se, int cpu,
7206 struct sched_entity *parent)
7207{
7208 struct rq *rq = cpu_rq(cpu);
7209
7210 cfs_rq->tg = tg;
7211 cfs_rq->rq = rq;
029632fb
PZ
7212 init_cfs_rq_runtime(cfs_rq);
7213
7214 tg->cfs_rq[cpu] = cfs_rq;
7215 tg->se[cpu] = se;
7216
7217 /* se could be NULL for root_task_group */
7218 if (!se)
7219 return;
7220
7221 if (!parent)
7222 se->cfs_rq = &rq->cfs;
7223 else
7224 se->cfs_rq = parent->my_q;
7225
7226 se->my_q = cfs_rq;
0ac9b1c2
PT
7227 /* guarantee group entities always have weight */
7228 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7229 se->parent = parent;
7230}
7231
7232static DEFINE_MUTEX(shares_mutex);
7233
7234int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7235{
7236 int i;
7237 unsigned long flags;
7238
7239 /*
7240 * We can't change the weight of the root cgroup.
7241 */
7242 if (!tg->se[0])
7243 return -EINVAL;
7244
7245 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7246
7247 mutex_lock(&shares_mutex);
7248 if (tg->shares == shares)
7249 goto done;
7250
7251 tg->shares = shares;
7252 for_each_possible_cpu(i) {
7253 struct rq *rq = cpu_rq(i);
7254 struct sched_entity *se;
7255
7256 se = tg->se[i];
7257 /* Propagate contribution to hierarchy */
7258 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7259
7260 /* Possible calls to update_curr() need rq clock */
7261 update_rq_clock(rq);
17bc14b7 7262 for_each_sched_entity(se)
029632fb
PZ
7263 update_cfs_shares(group_cfs_rq(se));
7264 raw_spin_unlock_irqrestore(&rq->lock, flags);
7265 }
7266
7267done:
7268 mutex_unlock(&shares_mutex);
7269 return 0;
7270}
7271#else /* CONFIG_FAIR_GROUP_SCHED */
7272
7273void free_fair_sched_group(struct task_group *tg) { }
7274
7275int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7276{
7277 return 1;
7278}
7279
7280void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7281
7282#endif /* CONFIG_FAIR_GROUP_SCHED */
7283
810b3817 7284
6d686f45 7285static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7286{
7287 struct sched_entity *se = &task->se;
0d721cea
PW
7288 unsigned int rr_interval = 0;
7289
7290 /*
7291 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7292 * idle runqueue:
7293 */
0d721cea 7294 if (rq->cfs.load.weight)
a59f4e07 7295 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7296
7297 return rr_interval;
7298}
7299
bf0f6f24
IM
7300/*
7301 * All the scheduling class methods:
7302 */
029632fb 7303const struct sched_class fair_sched_class = {
5522d5d5 7304 .next = &idle_sched_class,
bf0f6f24
IM
7305 .enqueue_task = enqueue_task_fair,
7306 .dequeue_task = dequeue_task_fair,
7307 .yield_task = yield_task_fair,
d95f4122 7308 .yield_to_task = yield_to_task_fair,
bf0f6f24 7309
2e09bf55 7310 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7311
7312 .pick_next_task = pick_next_task_fair,
7313 .put_prev_task = put_prev_task_fair,
7314
681f3e68 7315#ifdef CONFIG_SMP
4ce72a2c 7316 .select_task_rq = select_task_rq_fair,
0a74bef8 7317 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7318
0bcdcf28
CE
7319 .rq_online = rq_online_fair,
7320 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7321
7322 .task_waking = task_waking_fair,
681f3e68 7323#endif
bf0f6f24 7324
83b699ed 7325 .set_curr_task = set_curr_task_fair,
bf0f6f24 7326 .task_tick = task_tick_fair,
cd29fe6f 7327 .task_fork = task_fork_fair,
cb469845
SR
7328
7329 .prio_changed = prio_changed_fair,
da7a735e 7330 .switched_from = switched_from_fair,
cb469845 7331 .switched_to = switched_to_fair,
810b3817 7332
0d721cea
PW
7333 .get_rr_interval = get_rr_interval_fair,
7334
810b3817 7335#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7336 .task_move_group = task_move_group_fair,
810b3817 7337#endif
bf0f6f24
IM
7338};
7339
7340#ifdef CONFIG_SCHED_DEBUG
029632fb 7341void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7342{
bf0f6f24
IM
7343 struct cfs_rq *cfs_rq;
7344
5973e5b9 7345 rcu_read_lock();
c3b64f1e 7346 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7347 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7348 rcu_read_unlock();
bf0f6f24
IM
7349}
7350#endif
029632fb
PZ
7351
7352__init void init_sched_fair_class(void)
7353{
7354#ifdef CONFIG_SMP
7355 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7356
3451d024 7357#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7358 nohz.next_balance = jiffies;
029632fb 7359 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7360 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7361#endif
7362#endif /* SMP */
7363
7364}