sched/topology: Rename sched_group_mask()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c
PZ
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 376static inline struct cfs_rq *
b758149c
PZ
377is_same_group(struct sched_entity *se, struct sched_entity *pse)
378{
379 if (se->cfs_rq == pse->cfs_rq)
fed14d45 380 return se->cfs_rq;
b758149c 381
fed14d45 382 return NULL;
b758149c
PZ
383}
384
385static inline struct sched_entity *parent_entity(struct sched_entity *se)
386{
387 return se->parent;
388}
389
464b7527
PZ
390static void
391find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392{
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
fed14d45
PZ
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
464b7527
PZ
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420}
421
8f48894f
PZ
422#else /* !CONFIG_FAIR_GROUP_SCHED */
423
424static inline struct task_struct *task_of(struct sched_entity *se)
425{
426 return container_of(se, struct task_struct, se);
427}
bf0f6f24 428
62160e3f
IM
429static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430{
431 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
432}
433
434#define entity_is_task(se) 1
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
b758149c 439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 440{
b758149c 441 return &task_rq(p)->cfs;
bf0f6f24
IM
442}
443
b758149c
PZ
444static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445{
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450}
451
452/* runqueue "owned" by this group */
453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454{
455 return NULL;
456}
457
3d4b47b4
PZ
458static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459{
460}
461
462static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463{
464}
465
b758149c
PZ
466#define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
b758149c
PZ
469static inline struct sched_entity *parent_entity(struct sched_entity *se)
470{
471 return NULL;
472}
473
464b7527
PZ
474static inline void
475find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476{
477}
478
b758149c
PZ
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
6c16a6dc 481static __always_inline
9dbdb155 482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
483
484/**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
1bf08230 488static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 489{
1bf08230 490 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 491 if (delta > 0)
1bf08230 492 max_vruntime = vruntime;
02e0431a 493
1bf08230 494 return max_vruntime;
02e0431a
PZ
495}
496
0702e3eb 497static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
498{
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504}
505
54fdc581
FC
506static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508{
509 return (s64)(a->vruntime - b->vruntime) < 0;
510}
511
1af5f730
PZ
512static void update_min_vruntime(struct cfs_rq *cfs_rq)
513{
b60205c7
PZ
514 struct sched_entity *curr = cfs_rq->curr;
515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730
PZ
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
b60205c7 530 if (!curr)
1af5f730
PZ
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
1bf08230 536 /* ensure we never gain time by being placed backwards. */
1af5f730 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
538#ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541#endif
1af5f730
PZ
542}
543
bf0f6f24
IM
544/*
545 * Enqueue an entity into the rb-tree:
546 */
0702e3eb 547static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
bf0f6f24
IM
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
2bd2d6f2 564 if (entity_before(se, entry)) {
bf0f6f24
IM
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
1af5f730 576 if (leftmost)
57cb499d 577 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
3fe69747
PZ
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
3fe69747
PZ
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
3fe69747 590 }
e9acbff6 591
bf0f6f24 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
f4b6755f
PZ
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
7eee3e67 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67
IM
622
623 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 631 void __user *buffer, size_t *lenp,
b2be5e96
PZ
632 loff_t *ppos)
633{
8d65af78 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 635 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
acb4a848
CE
643#define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
648#undef WRT_SYSCTL
649
b2be5e96
PZ
650 return 0;
651}
652#endif
647e7cac 653
a7be37ac 654/*
f9c0b095 655 * delta /= w
a7be37ac 656 */
9dbdb155 657static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 658{
f9c0b095 659 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
661
662 return delta;
663}
664
647e7cac
IM
665/*
666 * The idea is to set a period in which each task runs once.
667 *
532b1858 668 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
4d78e7b6
PZ
673static u64 __sched_period(unsigned long nr_running)
674{
8e2b0bf3
BF
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
4d78e7b6
PZ
679}
680
647e7cac
IM
681/*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
f9c0b095 685 * s = p*P[w/rw]
647e7cac 686 */
6d0f0ebd 687static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 688{
0a582440 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 690
0a582440 691 for_each_sched_entity(se) {
6272d68c 692 struct load_weight *load;
3104bf03 693 struct load_weight lw;
6272d68c
LM
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
f9c0b095 697
0a582440 698 if (unlikely(!se->on_rq)) {
3104bf03 699 lw = cfs_rq->load;
0a582440
MG
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
9dbdb155 704 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
705 }
706 return slice;
bf0f6f24
IM
707}
708
647e7cac 709/*
660cc00f 710 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 711 *
f9c0b095 712 * vs = s/w
647e7cac 713 */
f9c0b095 714static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 715{
f9c0b095 716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
717}
718
a75cdaa9 719#ifdef CONFIG_SMP
283e2ed3
PZ
720
721#include "sched-pelt.h"
722
772bd008 723static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
724static unsigned long task_h_load(struct task_struct *p);
725
540247fb
YD
726/* Give new sched_entity start runnable values to heavy its load in infant time */
727void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 728{
540247fb 729 struct sched_avg *sa = &se->avg;
a75cdaa9 730
9d89c257
YD
731 sa->last_update_time = 0;
732 /*
733 * sched_avg's period_contrib should be strictly less then 1024, so
734 * we give it 1023 to make sure it is almost a period (1024us), and
735 * will definitely be update (after enqueue).
736 */
737 sa->period_contrib = 1023;
b5a9b340
VG
738 /*
739 * Tasks are intialized with full load to be seen as heavy tasks until
740 * they get a chance to stabilize to their real load level.
741 * Group entities are intialized with zero load to reflect the fact that
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
745 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 746 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
747 /*
748 * At this point, util_avg won't be used in select_task_rq_fair anyway
749 */
750 sa->util_avg = 0;
751 sa->util_sum = 0;
9d89c257 752 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 753}
7ea241af 754
7dc603c9 755static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 756static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 757
2b8c41da
YD
758/*
759 * With new tasks being created, their initial util_avgs are extrapolated
760 * based on the cfs_rq's current util_avg:
761 *
762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763 *
764 * However, in many cases, the above util_avg does not give a desired
765 * value. Moreover, the sum of the util_avgs may be divergent, such
766 * as when the series is a harmonic series.
767 *
768 * To solve this problem, we also cap the util_avg of successive tasks to
769 * only 1/2 of the left utilization budget:
770 *
771 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
772 *
773 * where n denotes the nth task.
774 *
775 * For example, a simplest series from the beginning would be like:
776 *
777 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
778 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
779 *
780 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
781 * if util_avg > util_avg_cap.
782 */
783void post_init_entity_util_avg(struct sched_entity *se)
784{
785 struct cfs_rq *cfs_rq = cfs_rq_of(se);
786 struct sched_avg *sa = &se->avg;
172895e6 787 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
788
789 if (cap > 0) {
790 if (cfs_rq->avg.util_avg != 0) {
791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
792 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793
794 if (sa->util_avg > cap)
795 sa->util_avg = cap;
796 } else {
797 sa->util_avg = cap;
798 }
799 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
800 }
7dc603c9
PZ
801
802 if (entity_is_task(se)) {
803 struct task_struct *p = task_of(se);
804 if (p->sched_class != &fair_sched_class) {
805 /*
806 * For !fair tasks do:
807 *
808 update_cfs_rq_load_avg(now, cfs_rq, false);
809 attach_entity_load_avg(cfs_rq, se);
810 switched_from_fair(rq, p);
811 *
812 * such that the next switched_to_fair() has the
813 * expected state.
814 */
df217913 815 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
816 return;
817 }
818 }
819
df217913 820 attach_entity_cfs_rq(se);
2b8c41da
YD
821}
822
7dc603c9 823#else /* !CONFIG_SMP */
540247fb 824void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
825{
826}
2b8c41da
YD
827void post_init_entity_util_avg(struct sched_entity *se)
828{
829}
3d30544f
PZ
830static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
831{
832}
7dc603c9 833#endif /* CONFIG_SMP */
a75cdaa9 834
bf0f6f24 835/*
9dbdb155 836 * Update the current task's runtime statistics.
bf0f6f24 837 */
b7cc0896 838static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 839{
429d43bc 840 struct sched_entity *curr = cfs_rq->curr;
78becc27 841 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 842 u64 delta_exec;
bf0f6f24
IM
843
844 if (unlikely(!curr))
845 return;
846
9dbdb155
PZ
847 delta_exec = now - curr->exec_start;
848 if (unlikely((s64)delta_exec <= 0))
34f28ecd 849 return;
bf0f6f24 850
8ebc91d9 851 curr->exec_start = now;
d842de87 852
9dbdb155
PZ
853 schedstat_set(curr->statistics.exec_max,
854 max(delta_exec, curr->statistics.exec_max));
855
856 curr->sum_exec_runtime += delta_exec;
ae92882e 857 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
858
859 curr->vruntime += calc_delta_fair(delta_exec, curr);
860 update_min_vruntime(cfs_rq);
861
d842de87
SV
862 if (entity_is_task(curr)) {
863 struct task_struct *curtask = task_of(curr);
864
f977bb49 865 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 866 cpuacct_charge(curtask, delta_exec);
f06febc9 867 account_group_exec_runtime(curtask, delta_exec);
d842de87 868 }
ec12cb7f
PT
869
870 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
871}
872
6e998916
SG
873static void update_curr_fair(struct rq *rq)
874{
875 update_curr(cfs_rq_of(&rq->curr->se));
876}
877
bf0f6f24 878static inline void
5870db5b 879update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 880{
4fa8d299
JP
881 u64 wait_start, prev_wait_start;
882
883 if (!schedstat_enabled())
884 return;
885
886 wait_start = rq_clock(rq_of(cfs_rq));
887 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
888
889 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
890 likely(wait_start > prev_wait_start))
891 wait_start -= prev_wait_start;
3ea94de1 892
4fa8d299 893 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
894}
895
4fa8d299 896static inline void
3ea94de1
JP
897update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
898{
899 struct task_struct *p;
cb251765
MG
900 u64 delta;
901
4fa8d299
JP
902 if (!schedstat_enabled())
903 return;
904
905 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
906
907 if (entity_is_task(se)) {
908 p = task_of(se);
909 if (task_on_rq_migrating(p)) {
910 /*
911 * Preserve migrating task's wait time so wait_start
912 * time stamp can be adjusted to accumulate wait time
913 * prior to migration.
914 */
4fa8d299 915 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
916 return;
917 }
918 trace_sched_stat_wait(p, delta);
919 }
920
4fa8d299
JP
921 schedstat_set(se->statistics.wait_max,
922 max(schedstat_val(se->statistics.wait_max), delta));
923 schedstat_inc(se->statistics.wait_count);
924 schedstat_add(se->statistics.wait_sum, delta);
925 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 926}
3ea94de1 927
4fa8d299 928static inline void
1a3d027c
JP
929update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
930{
931 struct task_struct *tsk = NULL;
4fa8d299
JP
932 u64 sleep_start, block_start;
933
934 if (!schedstat_enabled())
935 return;
936
937 sleep_start = schedstat_val(se->statistics.sleep_start);
938 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
939
940 if (entity_is_task(se))
941 tsk = task_of(se);
942
4fa8d299
JP
943 if (sleep_start) {
944 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
945
946 if ((s64)delta < 0)
947 delta = 0;
948
4fa8d299
JP
949 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
950 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 951
4fa8d299
JP
952 schedstat_set(se->statistics.sleep_start, 0);
953 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
954
955 if (tsk) {
956 account_scheduler_latency(tsk, delta >> 10, 1);
957 trace_sched_stat_sleep(tsk, delta);
958 }
959 }
4fa8d299
JP
960 if (block_start) {
961 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
962
963 if ((s64)delta < 0)
964 delta = 0;
965
4fa8d299
JP
966 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
967 schedstat_set(se->statistics.block_max, delta);
1a3d027c 968
4fa8d299
JP
969 schedstat_set(se->statistics.block_start, 0);
970 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
971
972 if (tsk) {
973 if (tsk->in_iowait) {
4fa8d299
JP
974 schedstat_add(se->statistics.iowait_sum, delta);
975 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
976 trace_sched_stat_iowait(tsk, delta);
977 }
978
979 trace_sched_stat_blocked(tsk, delta);
980
981 /*
982 * Blocking time is in units of nanosecs, so shift by
983 * 20 to get a milliseconds-range estimation of the
984 * amount of time that the task spent sleeping:
985 */
986 if (unlikely(prof_on == SLEEP_PROFILING)) {
987 profile_hits(SLEEP_PROFILING,
988 (void *)get_wchan(tsk),
989 delta >> 20);
990 }
991 account_scheduler_latency(tsk, delta >> 10, 0);
992 }
993 }
3ea94de1 994}
3ea94de1 995
bf0f6f24
IM
996/*
997 * Task is being enqueued - update stats:
998 */
cb251765 999static inline void
1a3d027c 1000update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1001{
4fa8d299
JP
1002 if (!schedstat_enabled())
1003 return;
1004
bf0f6f24
IM
1005 /*
1006 * Are we enqueueing a waiting task? (for current tasks
1007 * a dequeue/enqueue event is a NOP)
1008 */
429d43bc 1009 if (se != cfs_rq->curr)
5870db5b 1010 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1011
1012 if (flags & ENQUEUE_WAKEUP)
1013 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1014}
1015
bf0f6f24 1016static inline void
cb251765 1017update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1018{
4fa8d299
JP
1019
1020 if (!schedstat_enabled())
1021 return;
1022
bf0f6f24
IM
1023 /*
1024 * Mark the end of the wait period if dequeueing a
1025 * waiting task:
1026 */
429d43bc 1027 if (se != cfs_rq->curr)
9ef0a961 1028 update_stats_wait_end(cfs_rq, se);
cb251765 1029
4fa8d299
JP
1030 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1031 struct task_struct *tsk = task_of(se);
cb251765 1032
4fa8d299
JP
1033 if (tsk->state & TASK_INTERRUPTIBLE)
1034 schedstat_set(se->statistics.sleep_start,
1035 rq_clock(rq_of(cfs_rq)));
1036 if (tsk->state & TASK_UNINTERRUPTIBLE)
1037 schedstat_set(se->statistics.block_start,
1038 rq_clock(rq_of(cfs_rq)));
cb251765 1039 }
cb251765
MG
1040}
1041
bf0f6f24
IM
1042/*
1043 * We are picking a new current task - update its stats:
1044 */
1045static inline void
79303e9e 1046update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1047{
1048 /*
1049 * We are starting a new run period:
1050 */
78becc27 1051 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1052}
1053
bf0f6f24
IM
1054/**************************************************
1055 * Scheduling class queueing methods:
1056 */
1057
cbee9f88
PZ
1058#ifdef CONFIG_NUMA_BALANCING
1059/*
598f0ec0
MG
1060 * Approximate time to scan a full NUMA task in ms. The task scan period is
1061 * calculated based on the tasks virtual memory size and
1062 * numa_balancing_scan_size.
cbee9f88 1063 */
598f0ec0
MG
1064unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1065unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1066
1067/* Portion of address space to scan in MB */
1068unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1069
4b96a29b
PZ
1070/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1071unsigned int sysctl_numa_balancing_scan_delay = 1000;
1072
598f0ec0
MG
1073static unsigned int task_nr_scan_windows(struct task_struct *p)
1074{
1075 unsigned long rss = 0;
1076 unsigned long nr_scan_pages;
1077
1078 /*
1079 * Calculations based on RSS as non-present and empty pages are skipped
1080 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 * on resident pages
1082 */
1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 rss = get_mm_rss(p->mm);
1085 if (!rss)
1086 rss = nr_scan_pages;
1087
1088 rss = round_up(rss, nr_scan_pages);
1089 return rss / nr_scan_pages;
1090}
1091
1092/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093#define MAX_SCAN_WINDOW 2560
1094
1095static unsigned int task_scan_min(struct task_struct *p)
1096{
316c1608 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1098 unsigned int scan, floor;
1099 unsigned int windows = 1;
1100
64192658
KT
1101 if (scan_size < MAX_SCAN_WINDOW)
1102 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1103 floor = 1000 / windows;
1104
1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 return max_t(unsigned int, floor, scan);
1107}
1108
1109static unsigned int task_scan_max(struct task_struct *p)
1110{
1111 unsigned int smin = task_scan_min(p);
1112 unsigned int smax;
1113
1114 /* Watch for min being lower than max due to floor calculations */
1115 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1116 return max(smin, smax);
1117}
1118
0ec8aa00
PZ
1119static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1120{
1121 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1122 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1123}
1124
1125static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1126{
1127 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1128 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1129}
1130
8c8a743c
PZ
1131struct numa_group {
1132 atomic_t refcount;
1133
1134 spinlock_t lock; /* nr_tasks, tasks */
1135 int nr_tasks;
e29cf08b 1136 pid_t gid;
4142c3eb 1137 int active_nodes;
8c8a743c
PZ
1138
1139 struct rcu_head rcu;
989348b5 1140 unsigned long total_faults;
4142c3eb 1141 unsigned long max_faults_cpu;
7e2703e6
RR
1142 /*
1143 * Faults_cpu is used to decide whether memory should move
1144 * towards the CPU. As a consequence, these stats are weighted
1145 * more by CPU use than by memory faults.
1146 */
50ec8a40 1147 unsigned long *faults_cpu;
989348b5 1148 unsigned long faults[0];
8c8a743c
PZ
1149};
1150
be1e4e76
RR
1151/* Shared or private faults. */
1152#define NR_NUMA_HINT_FAULT_TYPES 2
1153
1154/* Memory and CPU locality */
1155#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1156
1157/* Averaged statistics, and temporary buffers. */
1158#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1159
e29cf08b
MG
1160pid_t task_numa_group_id(struct task_struct *p)
1161{
1162 return p->numa_group ? p->numa_group->gid : 0;
1163}
1164
44dba3d5
IM
1165/*
1166 * The averaged statistics, shared & private, memory & cpu,
1167 * occupy the first half of the array. The second half of the
1168 * array is for current counters, which are averaged into the
1169 * first set by task_numa_placement.
1170 */
1171static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1172{
44dba3d5 1173 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1174}
1175
1176static inline unsigned long task_faults(struct task_struct *p, int nid)
1177{
44dba3d5 1178 if (!p->numa_faults)
ac8e895b
MG
1179 return 0;
1180
44dba3d5
IM
1181 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1182 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1183}
1184
83e1d2cd
MG
1185static inline unsigned long group_faults(struct task_struct *p, int nid)
1186{
1187 if (!p->numa_group)
1188 return 0;
1189
44dba3d5
IM
1190 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1191 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1192}
1193
20e07dea
RR
1194static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1195{
44dba3d5
IM
1196 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1198}
1199
4142c3eb
RR
1200/*
1201 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1202 * considered part of a numa group's pseudo-interleaving set. Migrations
1203 * between these nodes are slowed down, to allow things to settle down.
1204 */
1205#define ACTIVE_NODE_FRACTION 3
1206
1207static bool numa_is_active_node(int nid, struct numa_group *ng)
1208{
1209 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1210}
1211
6c6b1193
RR
1212/* Handle placement on systems where not all nodes are directly connected. */
1213static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1214 int maxdist, bool task)
1215{
1216 unsigned long score = 0;
1217 int node;
1218
1219 /*
1220 * All nodes are directly connected, and the same distance
1221 * from each other. No need for fancy placement algorithms.
1222 */
1223 if (sched_numa_topology_type == NUMA_DIRECT)
1224 return 0;
1225
1226 /*
1227 * This code is called for each node, introducing N^2 complexity,
1228 * which should be ok given the number of nodes rarely exceeds 8.
1229 */
1230 for_each_online_node(node) {
1231 unsigned long faults;
1232 int dist = node_distance(nid, node);
1233
1234 /*
1235 * The furthest away nodes in the system are not interesting
1236 * for placement; nid was already counted.
1237 */
1238 if (dist == sched_max_numa_distance || node == nid)
1239 continue;
1240
1241 /*
1242 * On systems with a backplane NUMA topology, compare groups
1243 * of nodes, and move tasks towards the group with the most
1244 * memory accesses. When comparing two nodes at distance
1245 * "hoplimit", only nodes closer by than "hoplimit" are part
1246 * of each group. Skip other nodes.
1247 */
1248 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1249 dist > maxdist)
1250 continue;
1251
1252 /* Add up the faults from nearby nodes. */
1253 if (task)
1254 faults = task_faults(p, node);
1255 else
1256 faults = group_faults(p, node);
1257
1258 /*
1259 * On systems with a glueless mesh NUMA topology, there are
1260 * no fixed "groups of nodes". Instead, nodes that are not
1261 * directly connected bounce traffic through intermediate
1262 * nodes; a numa_group can occupy any set of nodes.
1263 * The further away a node is, the less the faults count.
1264 * This seems to result in good task placement.
1265 */
1266 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1267 faults *= (sched_max_numa_distance - dist);
1268 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1269 }
1270
1271 score += faults;
1272 }
1273
1274 return score;
1275}
1276
83e1d2cd
MG
1277/*
1278 * These return the fraction of accesses done by a particular task, or
1279 * task group, on a particular numa node. The group weight is given a
1280 * larger multiplier, in order to group tasks together that are almost
1281 * evenly spread out between numa nodes.
1282 */
7bd95320
RR
1283static inline unsigned long task_weight(struct task_struct *p, int nid,
1284 int dist)
83e1d2cd 1285{
7bd95320 1286 unsigned long faults, total_faults;
83e1d2cd 1287
44dba3d5 1288 if (!p->numa_faults)
83e1d2cd
MG
1289 return 0;
1290
1291 total_faults = p->total_numa_faults;
1292
1293 if (!total_faults)
1294 return 0;
1295
7bd95320 1296 faults = task_faults(p, nid);
6c6b1193
RR
1297 faults += score_nearby_nodes(p, nid, dist, true);
1298
7bd95320 1299 return 1000 * faults / total_faults;
83e1d2cd
MG
1300}
1301
7bd95320
RR
1302static inline unsigned long group_weight(struct task_struct *p, int nid,
1303 int dist)
83e1d2cd 1304{
7bd95320
RR
1305 unsigned long faults, total_faults;
1306
1307 if (!p->numa_group)
1308 return 0;
1309
1310 total_faults = p->numa_group->total_faults;
1311
1312 if (!total_faults)
83e1d2cd
MG
1313 return 0;
1314
7bd95320 1315 faults = group_faults(p, nid);
6c6b1193
RR
1316 faults += score_nearby_nodes(p, nid, dist, false);
1317
7bd95320 1318 return 1000 * faults / total_faults;
83e1d2cd
MG
1319}
1320
10f39042
RR
1321bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1322 int src_nid, int dst_cpu)
1323{
1324 struct numa_group *ng = p->numa_group;
1325 int dst_nid = cpu_to_node(dst_cpu);
1326 int last_cpupid, this_cpupid;
1327
1328 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1329
1330 /*
1331 * Multi-stage node selection is used in conjunction with a periodic
1332 * migration fault to build a temporal task<->page relation. By using
1333 * a two-stage filter we remove short/unlikely relations.
1334 *
1335 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1336 * a task's usage of a particular page (n_p) per total usage of this
1337 * page (n_t) (in a given time-span) to a probability.
1338 *
1339 * Our periodic faults will sample this probability and getting the
1340 * same result twice in a row, given these samples are fully
1341 * independent, is then given by P(n)^2, provided our sample period
1342 * is sufficiently short compared to the usage pattern.
1343 *
1344 * This quadric squishes small probabilities, making it less likely we
1345 * act on an unlikely task<->page relation.
1346 */
1347 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1348 if (!cpupid_pid_unset(last_cpupid) &&
1349 cpupid_to_nid(last_cpupid) != dst_nid)
1350 return false;
1351
1352 /* Always allow migrate on private faults */
1353 if (cpupid_match_pid(p, last_cpupid))
1354 return true;
1355
1356 /* A shared fault, but p->numa_group has not been set up yet. */
1357 if (!ng)
1358 return true;
1359
1360 /*
4142c3eb
RR
1361 * Destination node is much more heavily used than the source
1362 * node? Allow migration.
10f39042 1363 */
4142c3eb
RR
1364 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1365 ACTIVE_NODE_FRACTION)
10f39042
RR
1366 return true;
1367
1368 /*
4142c3eb
RR
1369 * Distribute memory according to CPU & memory use on each node,
1370 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1371 *
1372 * faults_cpu(dst) 3 faults_cpu(src)
1373 * --------------- * - > ---------------
1374 * faults_mem(dst) 4 faults_mem(src)
10f39042 1375 */
4142c3eb
RR
1376 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1377 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1378}
1379
e6628d5b 1380static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1381static unsigned long source_load(int cpu, int type);
1382static unsigned long target_load(int cpu, int type);
ced549fa 1383static unsigned long capacity_of(int cpu);
58d081b5
MG
1384static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1385
fb13c7ee 1386/* Cached statistics for all CPUs within a node */
58d081b5 1387struct numa_stats {
fb13c7ee 1388 unsigned long nr_running;
58d081b5 1389 unsigned long load;
fb13c7ee
MG
1390
1391 /* Total compute capacity of CPUs on a node */
5ef20ca1 1392 unsigned long compute_capacity;
fb13c7ee
MG
1393
1394 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1395 unsigned long task_capacity;
1b6a7495 1396 int has_free_capacity;
58d081b5 1397};
e6628d5b 1398
fb13c7ee
MG
1399/*
1400 * XXX borrowed from update_sg_lb_stats
1401 */
1402static void update_numa_stats(struct numa_stats *ns, int nid)
1403{
83d7f242
RR
1404 int smt, cpu, cpus = 0;
1405 unsigned long capacity;
fb13c7ee
MG
1406
1407 memset(ns, 0, sizeof(*ns));
1408 for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 struct rq *rq = cpu_rq(cpu);
1410
1411 ns->nr_running += rq->nr_running;
1412 ns->load += weighted_cpuload(cpu);
ced549fa 1413 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1414
1415 cpus++;
fb13c7ee
MG
1416 }
1417
5eca82a9
PZ
1418 /*
1419 * If we raced with hotplug and there are no CPUs left in our mask
1420 * the @ns structure is NULL'ed and task_numa_compare() will
1421 * not find this node attractive.
1422 *
1b6a7495
NP
1423 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 * imbalance and bail there.
5eca82a9
PZ
1425 */
1426 if (!cpus)
1427 return;
1428
83d7f242
RR
1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 capacity = cpus / smt; /* cores */
1432
1433 ns->task_capacity = min_t(unsigned, capacity,
1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1436}
1437
58d081b5
MG
1438struct task_numa_env {
1439 struct task_struct *p;
e6628d5b 1440
58d081b5
MG
1441 int src_cpu, src_nid;
1442 int dst_cpu, dst_nid;
e6628d5b 1443
58d081b5 1444 struct numa_stats src_stats, dst_stats;
e6628d5b 1445
40ea2b42 1446 int imbalance_pct;
7bd95320 1447 int dist;
fb13c7ee
MG
1448
1449 struct task_struct *best_task;
1450 long best_imp;
58d081b5
MG
1451 int best_cpu;
1452};
1453
fb13c7ee
MG
1454static void task_numa_assign(struct task_numa_env *env,
1455 struct task_struct *p, long imp)
1456{
1457 if (env->best_task)
1458 put_task_struct(env->best_task);
bac78573
ON
1459 if (p)
1460 get_task_struct(p);
fb13c7ee
MG
1461
1462 env->best_task = p;
1463 env->best_imp = imp;
1464 env->best_cpu = env->dst_cpu;
1465}
1466
28a21745 1467static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1468 struct task_numa_env *env)
1469{
e4991b24
RR
1470 long imb, old_imb;
1471 long orig_src_load, orig_dst_load;
28a21745
RR
1472 long src_capacity, dst_capacity;
1473
1474 /*
1475 * The load is corrected for the CPU capacity available on each node.
1476 *
1477 * src_load dst_load
1478 * ------------ vs ---------
1479 * src_capacity dst_capacity
1480 */
1481 src_capacity = env->src_stats.compute_capacity;
1482 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1483
1484 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1485 if (dst_load < src_load)
1486 swap(dst_load, src_load);
e63da036
RR
1487
1488 /* Is the difference below the threshold? */
e4991b24
RR
1489 imb = dst_load * src_capacity * 100 -
1490 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1491 if (imb <= 0)
1492 return false;
1493
1494 /*
1495 * The imbalance is above the allowed threshold.
e4991b24 1496 * Compare it with the old imbalance.
e63da036 1497 */
28a21745 1498 orig_src_load = env->src_stats.load;
e4991b24 1499 orig_dst_load = env->dst_stats.load;
28a21745 1500
e4991b24
RR
1501 if (orig_dst_load < orig_src_load)
1502 swap(orig_dst_load, orig_src_load);
e63da036 1503
e4991b24
RR
1504 old_imb = orig_dst_load * src_capacity * 100 -
1505 orig_src_load * dst_capacity * env->imbalance_pct;
1506
1507 /* Would this change make things worse? */
1508 return (imb > old_imb);
e63da036
RR
1509}
1510
fb13c7ee
MG
1511/*
1512 * This checks if the overall compute and NUMA accesses of the system would
1513 * be improved if the source tasks was migrated to the target dst_cpu taking
1514 * into account that it might be best if task running on the dst_cpu should
1515 * be exchanged with the source task
1516 */
887c290e
RR
1517static void task_numa_compare(struct task_numa_env *env,
1518 long taskimp, long groupimp)
fb13c7ee
MG
1519{
1520 struct rq *src_rq = cpu_rq(env->src_cpu);
1521 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 struct task_struct *cur;
28a21745 1523 long src_load, dst_load;
fb13c7ee 1524 long load;
1c5d3eb3 1525 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1526 long moveimp = imp;
7bd95320 1527 int dist = env->dist;
fb13c7ee
MG
1528
1529 rcu_read_lock();
bac78573
ON
1530 cur = task_rcu_dereference(&dst_rq->curr);
1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1532 cur = NULL;
1533
7af68335
PZ
1534 /*
1535 * Because we have preemption enabled we can get migrated around and
1536 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 */
1538 if (cur == env->p)
1539 goto unlock;
1540
fb13c7ee
MG
1541 /*
1542 * "imp" is the fault differential for the source task between the
1543 * source and destination node. Calculate the total differential for
1544 * the source task and potential destination task. The more negative
1545 * the value is, the more rmeote accesses that would be expected to
1546 * be incurred if the tasks were swapped.
1547 */
1548 if (cur) {
1549 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1551 goto unlock;
1552
887c290e
RR
1553 /*
1554 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1555 * in any group then look only at task weights.
887c290e 1556 */
ca28aa53 1557 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1558 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1560 /*
1561 * Add some hysteresis to prevent swapping the
1562 * tasks within a group over tiny differences.
1563 */
1564 if (cur->numa_group)
1565 imp -= imp/16;
887c290e 1566 } else {
ca28aa53
RR
1567 /*
1568 * Compare the group weights. If a task is all by
1569 * itself (not part of a group), use the task weight
1570 * instead.
1571 */
ca28aa53 1572 if (cur->numa_group)
7bd95320
RR
1573 imp += group_weight(cur, env->src_nid, dist) -
1574 group_weight(cur, env->dst_nid, dist);
ca28aa53 1575 else
7bd95320
RR
1576 imp += task_weight(cur, env->src_nid, dist) -
1577 task_weight(cur, env->dst_nid, dist);
887c290e 1578 }
fb13c7ee
MG
1579 }
1580
0132c3e1 1581 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1582 goto unlock;
1583
1584 if (!cur) {
1585 /* Is there capacity at our destination? */
b932c03c 1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1587 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1588 goto unlock;
1589
1590 goto balance;
1591 }
1592
1593 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1594 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 dst_rq->nr_running == 1)
fb13c7ee
MG
1596 goto assign;
1597
1598 /*
1599 * In the overloaded case, try and keep the load balanced.
1600 */
1601balance:
e720fff6
PZ
1602 load = task_h_load(env->p);
1603 dst_load = env->dst_stats.load + load;
1604 src_load = env->src_stats.load - load;
fb13c7ee 1605
0132c3e1
RR
1606 if (moveimp > imp && moveimp > env->best_imp) {
1607 /*
1608 * If the improvement from just moving env->p direction is
1609 * better than swapping tasks around, check if a move is
1610 * possible. Store a slightly smaller score than moveimp,
1611 * so an actually idle CPU will win.
1612 */
1613 if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 imp = moveimp - 1;
1615 cur = NULL;
1616 goto assign;
1617 }
1618 }
1619
1620 if (imp <= env->best_imp)
1621 goto unlock;
1622
fb13c7ee 1623 if (cur) {
e720fff6
PZ
1624 load = task_h_load(cur);
1625 dst_load -= load;
1626 src_load += load;
fb13c7ee
MG
1627 }
1628
28a21745 1629 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1630 goto unlock;
1631
ba7e5a27
RR
1632 /*
1633 * One idle CPU per node is evaluated for a task numa move.
1634 * Call select_idle_sibling to maybe find a better one.
1635 */
10e2f1ac
PZ
1636 if (!cur) {
1637 /*
1638 * select_idle_siblings() uses an per-cpu cpumask that
1639 * can be used from IRQ context.
1640 */
1641 local_irq_disable();
772bd008
MR
1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 env->dst_cpu);
10e2f1ac
PZ
1644 local_irq_enable();
1645 }
ba7e5a27 1646
fb13c7ee
MG
1647assign:
1648 task_numa_assign(env, cur, imp);
1649unlock:
1650 rcu_read_unlock();
1651}
1652
887c290e
RR
1653static void task_numa_find_cpu(struct task_numa_env *env,
1654 long taskimp, long groupimp)
2c8a50aa
MG
1655{
1656 int cpu;
1657
1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 /* Skip this CPU if the source task cannot migrate */
0c98d344 1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1661 continue;
1662
1663 env->dst_cpu = cpu;
887c290e 1664 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1665 }
1666}
1667
6f9aad0b
RR
1668/* Only move tasks to a NUMA node less busy than the current node. */
1669static bool numa_has_capacity(struct task_numa_env *env)
1670{
1671 struct numa_stats *src = &env->src_stats;
1672 struct numa_stats *dst = &env->dst_stats;
1673
1674 if (src->has_free_capacity && !dst->has_free_capacity)
1675 return false;
1676
1677 /*
1678 * Only consider a task move if the source has a higher load
1679 * than the destination, corrected for CPU capacity on each node.
1680 *
1681 * src->load dst->load
1682 * --------------------- vs ---------------------
1683 * src->compute_capacity dst->compute_capacity
1684 */
44dcb04f
SD
1685 if (src->load * dst->compute_capacity * env->imbalance_pct >
1686
1687 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1688 return true;
1689
1690 return false;
1691}
1692
58d081b5
MG
1693static int task_numa_migrate(struct task_struct *p)
1694{
58d081b5
MG
1695 struct task_numa_env env = {
1696 .p = p,
fb13c7ee 1697
58d081b5 1698 .src_cpu = task_cpu(p),
b32e86b4 1699 .src_nid = task_node(p),
fb13c7ee
MG
1700
1701 .imbalance_pct = 112,
1702
1703 .best_task = NULL,
1704 .best_imp = 0,
4142c3eb 1705 .best_cpu = -1,
58d081b5
MG
1706 };
1707 struct sched_domain *sd;
887c290e 1708 unsigned long taskweight, groupweight;
7bd95320 1709 int nid, ret, dist;
887c290e 1710 long taskimp, groupimp;
e6628d5b 1711
58d081b5 1712 /*
fb13c7ee
MG
1713 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 * imbalance and would be the first to start moving tasks about.
1715 *
1716 * And we want to avoid any moving of tasks about, as that would create
1717 * random movement of tasks -- counter the numa conditions we're trying
1718 * to satisfy here.
58d081b5
MG
1719 */
1720 rcu_read_lock();
fb13c7ee 1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1722 if (sd)
1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1724 rcu_read_unlock();
1725
46a73e8a
RR
1726 /*
1727 * Cpusets can break the scheduler domain tree into smaller
1728 * balance domains, some of which do not cross NUMA boundaries.
1729 * Tasks that are "trapped" in such domains cannot be migrated
1730 * elsewhere, so there is no point in (re)trying.
1731 */
1732 if (unlikely(!sd)) {
de1b301a 1733 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1734 return -EINVAL;
1735 }
1736
2c8a50aa 1737 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 taskweight = task_weight(p, env.src_nid, dist);
1740 groupweight = group_weight(p, env.src_nid, dist);
1741 update_numa_stats(&env.src_stats, env.src_nid);
1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1744 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1745
a43455a1 1746 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1747 if (numa_has_capacity(&env))
1748 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1749
9de05d48
RR
1750 /*
1751 * Look at other nodes in these cases:
1752 * - there is no space available on the preferred_nid
1753 * - the task is part of a numa_group that is interleaved across
1754 * multiple NUMA nodes; in order to better consolidate the group,
1755 * we need to check other locations.
1756 */
4142c3eb 1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1758 for_each_online_node(nid) {
1759 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 continue;
58d081b5 1761
7bd95320 1762 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1763 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 dist != env.dist) {
1765 taskweight = task_weight(p, env.src_nid, dist);
1766 groupweight = group_weight(p, env.src_nid, dist);
1767 }
7bd95320 1768
83e1d2cd 1769 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1770 taskimp = task_weight(p, nid, dist) - taskweight;
1771 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1772 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1773 continue;
1774
7bd95320 1775 env.dist = dist;
2c8a50aa
MG
1776 env.dst_nid = nid;
1777 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1778 if (numa_has_capacity(&env))
1779 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1780 }
1781 }
1782
68d1b02a
RR
1783 /*
1784 * If the task is part of a workload that spans multiple NUMA nodes,
1785 * and is migrating into one of the workload's active nodes, remember
1786 * this node as the task's preferred numa node, so the workload can
1787 * settle down.
1788 * A task that migrated to a second choice node will be better off
1789 * trying for a better one later. Do not set the preferred node here.
1790 */
db015dae 1791 if (p->numa_group) {
4142c3eb
RR
1792 struct numa_group *ng = p->numa_group;
1793
db015dae
RR
1794 if (env.best_cpu == -1)
1795 nid = env.src_nid;
1796 else
1797 nid = env.dst_nid;
1798
4142c3eb 1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1800 sched_setnuma(p, env.dst_nid);
1801 }
1802
1803 /* No better CPU than the current one was found. */
1804 if (env.best_cpu == -1)
1805 return -EAGAIN;
0ec8aa00 1806
04bb2f94
RR
1807 /*
1808 * Reset the scan period if the task is being rescheduled on an
1809 * alternative node to recheck if the tasks is now properly placed.
1810 */
1811 p->numa_scan_period = task_scan_min(p);
1812
fb13c7ee 1813 if (env.best_task == NULL) {
286549dc
MG
1814 ret = migrate_task_to(p, env.best_cpu);
1815 if (ret != 0)
1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1817 return ret;
1818 }
1819
1820 ret = migrate_swap(p, env.best_task);
286549dc
MG
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1823 put_task_struct(env.best_task);
1824 return ret;
e6628d5b
MG
1825}
1826
6b9a7460
MG
1827/* Attempt to migrate a task to a CPU on the preferred node. */
1828static void numa_migrate_preferred(struct task_struct *p)
1829{
5085e2a3
RR
1830 unsigned long interval = HZ;
1831
2739d3ee 1832 /* This task has no NUMA fault statistics yet */
44dba3d5 1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1834 return;
1835
2739d3ee 1836 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1839
1840 /* Success if task is already running on preferred CPU */
de1b301a 1841 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1842 return;
1843
1844 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1845 task_numa_migrate(p);
6b9a7460
MG
1846}
1847
20e07dea 1848/*
4142c3eb 1849 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1850 * tracking the nodes from which NUMA hinting faults are triggered. This can
1851 * be different from the set of nodes where the workload's memory is currently
1852 * located.
20e07dea 1853 */
4142c3eb 1854static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1855{
1856 unsigned long faults, max_faults = 0;
4142c3eb 1857 int nid, active_nodes = 0;
20e07dea
RR
1858
1859 for_each_online_node(nid) {
1860 faults = group_faults_cpu(numa_group, nid);
1861 if (faults > max_faults)
1862 max_faults = faults;
1863 }
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1867 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 active_nodes++;
20e07dea 1869 }
4142c3eb
RR
1870
1871 numa_group->max_faults_cpu = max_faults;
1872 numa_group->active_nodes = active_nodes;
20e07dea
RR
1873}
1874
04bb2f94
RR
1875/*
1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1878 * period will be for the next scan window. If local/(local+remote) ratio is
1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1881 */
1882#define NUMA_PERIOD_SLOTS 10
a22b4b01 1883#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1884
1885/*
1886 * Increase the scan period (slow down scanning) if the majority of
1887 * our memory is already on our local node, or if the majority of
1888 * the page accesses are shared with other processes.
1889 * Otherwise, decrease the scan period.
1890 */
1891static void update_task_scan_period(struct task_struct *p,
1892 unsigned long shared, unsigned long private)
1893{
1894 unsigned int period_slot;
1895 int ratio;
1896 int diff;
1897
1898 unsigned long remote = p->numa_faults_locality[0];
1899 unsigned long local = p->numa_faults_locality[1];
1900
1901 /*
1902 * If there were no record hinting faults then either the task is
1903 * completely idle or all activity is areas that are not of interest
074c2381
MG
1904 * to automatic numa balancing. Related to that, if there were failed
1905 * migration then it implies we are migrating too quickly or the local
1906 * node is overloaded. In either case, scan slower
04bb2f94 1907 */
074c2381 1908 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1909 p->numa_scan_period = min(p->numa_scan_period_max,
1910 p->numa_scan_period << 1);
1911
1912 p->mm->numa_next_scan = jiffies +
1913 msecs_to_jiffies(p->numa_scan_period);
1914
1915 return;
1916 }
1917
1918 /*
1919 * Prepare to scale scan period relative to the current period.
1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 */
1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1925 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1927 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1928 if (!slot)
1929 slot = 1;
1930 diff = slot * period_slot;
1931 } else {
1932 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1933
1934 /*
1935 * Scale scan rate increases based on sharing. There is an
1936 * inverse relationship between the degree of sharing and
1937 * the adjustment made to the scanning period. Broadly
1938 * speaking the intent is that there is little point
1939 * scanning faster if shared accesses dominate as it may
1940 * simply bounce migrations uselessly
1941 */
2847c90e 1942 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1943 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1944 }
1945
1946 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1947 task_scan_min(p), task_scan_max(p));
1948 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1949}
1950
7e2703e6
RR
1951/*
1952 * Get the fraction of time the task has been running since the last
1953 * NUMA placement cycle. The scheduler keeps similar statistics, but
1954 * decays those on a 32ms period, which is orders of magnitude off
1955 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1956 * stats only if the task is so new there are no NUMA statistics yet.
1957 */
1958static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1959{
1960 u64 runtime, delta, now;
1961 /* Use the start of this time slice to avoid calculations. */
1962 now = p->se.exec_start;
1963 runtime = p->se.sum_exec_runtime;
1964
1965 if (p->last_task_numa_placement) {
1966 delta = runtime - p->last_sum_exec_runtime;
1967 *period = now - p->last_task_numa_placement;
1968 } else {
9d89c257
YD
1969 delta = p->se.avg.load_sum / p->se.load.weight;
1970 *period = LOAD_AVG_MAX;
7e2703e6
RR
1971 }
1972
1973 p->last_sum_exec_runtime = runtime;
1974 p->last_task_numa_placement = now;
1975
1976 return delta;
1977}
1978
54009416
RR
1979/*
1980 * Determine the preferred nid for a task in a numa_group. This needs to
1981 * be done in a way that produces consistent results with group_weight,
1982 * otherwise workloads might not converge.
1983 */
1984static int preferred_group_nid(struct task_struct *p, int nid)
1985{
1986 nodemask_t nodes;
1987 int dist;
1988
1989 /* Direct connections between all NUMA nodes. */
1990 if (sched_numa_topology_type == NUMA_DIRECT)
1991 return nid;
1992
1993 /*
1994 * On a system with glueless mesh NUMA topology, group_weight
1995 * scores nodes according to the number of NUMA hinting faults on
1996 * both the node itself, and on nearby nodes.
1997 */
1998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1999 unsigned long score, max_score = 0;
2000 int node, max_node = nid;
2001
2002 dist = sched_max_numa_distance;
2003
2004 for_each_online_node(node) {
2005 score = group_weight(p, node, dist);
2006 if (score > max_score) {
2007 max_score = score;
2008 max_node = node;
2009 }
2010 }
2011 return max_node;
2012 }
2013
2014 /*
2015 * Finding the preferred nid in a system with NUMA backplane
2016 * interconnect topology is more involved. The goal is to locate
2017 * tasks from numa_groups near each other in the system, and
2018 * untangle workloads from different sides of the system. This requires
2019 * searching down the hierarchy of node groups, recursively searching
2020 * inside the highest scoring group of nodes. The nodemask tricks
2021 * keep the complexity of the search down.
2022 */
2023 nodes = node_online_map;
2024 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2025 unsigned long max_faults = 0;
81907478 2026 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2027 int a, b;
2028
2029 /* Are there nodes at this distance from each other? */
2030 if (!find_numa_distance(dist))
2031 continue;
2032
2033 for_each_node_mask(a, nodes) {
2034 unsigned long faults = 0;
2035 nodemask_t this_group;
2036 nodes_clear(this_group);
2037
2038 /* Sum group's NUMA faults; includes a==b case. */
2039 for_each_node_mask(b, nodes) {
2040 if (node_distance(a, b) < dist) {
2041 faults += group_faults(p, b);
2042 node_set(b, this_group);
2043 node_clear(b, nodes);
2044 }
2045 }
2046
2047 /* Remember the top group. */
2048 if (faults > max_faults) {
2049 max_faults = faults;
2050 max_group = this_group;
2051 /*
2052 * subtle: at the smallest distance there is
2053 * just one node left in each "group", the
2054 * winner is the preferred nid.
2055 */
2056 nid = a;
2057 }
2058 }
2059 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2060 if (!max_faults)
2061 break;
54009416
RR
2062 nodes = max_group;
2063 }
2064 return nid;
2065}
2066
cbee9f88
PZ
2067static void task_numa_placement(struct task_struct *p)
2068{
83e1d2cd
MG
2069 int seq, nid, max_nid = -1, max_group_nid = -1;
2070 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2071 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2072 unsigned long total_faults;
2073 u64 runtime, period;
7dbd13ed 2074 spinlock_t *group_lock = NULL;
cbee9f88 2075
7e5a2c17
JL
2076 /*
2077 * The p->mm->numa_scan_seq field gets updated without
2078 * exclusive access. Use READ_ONCE() here to ensure
2079 * that the field is read in a single access:
2080 */
316c1608 2081 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2082 if (p->numa_scan_seq == seq)
2083 return;
2084 p->numa_scan_seq = seq;
598f0ec0 2085 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2086
7e2703e6
RR
2087 total_faults = p->numa_faults_locality[0] +
2088 p->numa_faults_locality[1];
2089 runtime = numa_get_avg_runtime(p, &period);
2090
7dbd13ed
MG
2091 /* If the task is part of a group prevent parallel updates to group stats */
2092 if (p->numa_group) {
2093 group_lock = &p->numa_group->lock;
60e69eed 2094 spin_lock_irq(group_lock);
7dbd13ed
MG
2095 }
2096
688b7585
MG
2097 /* Find the node with the highest number of faults */
2098 for_each_online_node(nid) {
44dba3d5
IM
2099 /* Keep track of the offsets in numa_faults array */
2100 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2101 unsigned long faults = 0, group_faults = 0;
44dba3d5 2102 int priv;
745d6147 2103
be1e4e76 2104 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2105 long diff, f_diff, f_weight;
8c8a743c 2106
44dba3d5
IM
2107 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2108 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2109 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2110 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2111
ac8e895b 2112 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2113 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2114 fault_types[priv] += p->numa_faults[membuf_idx];
2115 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2116
7e2703e6
RR
2117 /*
2118 * Normalize the faults_from, so all tasks in a group
2119 * count according to CPU use, instead of by the raw
2120 * number of faults. Tasks with little runtime have
2121 * little over-all impact on throughput, and thus their
2122 * faults are less important.
2123 */
2124 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2125 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2126 (total_faults + 1);
44dba3d5
IM
2127 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2128 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2129
44dba3d5
IM
2130 p->numa_faults[mem_idx] += diff;
2131 p->numa_faults[cpu_idx] += f_diff;
2132 faults += p->numa_faults[mem_idx];
83e1d2cd 2133 p->total_numa_faults += diff;
8c8a743c 2134 if (p->numa_group) {
44dba3d5
IM
2135 /*
2136 * safe because we can only change our own group
2137 *
2138 * mem_idx represents the offset for a given
2139 * nid and priv in a specific region because it
2140 * is at the beginning of the numa_faults array.
2141 */
2142 p->numa_group->faults[mem_idx] += diff;
2143 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2144 p->numa_group->total_faults += diff;
44dba3d5 2145 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2146 }
ac8e895b
MG
2147 }
2148
688b7585
MG
2149 if (faults > max_faults) {
2150 max_faults = faults;
2151 max_nid = nid;
2152 }
83e1d2cd
MG
2153
2154 if (group_faults > max_group_faults) {
2155 max_group_faults = group_faults;
2156 max_group_nid = nid;
2157 }
2158 }
2159
04bb2f94
RR
2160 update_task_scan_period(p, fault_types[0], fault_types[1]);
2161
7dbd13ed 2162 if (p->numa_group) {
4142c3eb 2163 numa_group_count_active_nodes(p->numa_group);
60e69eed 2164 spin_unlock_irq(group_lock);
54009416 2165 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2166 }
2167
bb97fc31
RR
2168 if (max_faults) {
2169 /* Set the new preferred node */
2170 if (max_nid != p->numa_preferred_nid)
2171 sched_setnuma(p, max_nid);
2172
2173 if (task_node(p) != p->numa_preferred_nid)
2174 numa_migrate_preferred(p);
3a7053b3 2175 }
cbee9f88
PZ
2176}
2177
8c8a743c
PZ
2178static inline int get_numa_group(struct numa_group *grp)
2179{
2180 return atomic_inc_not_zero(&grp->refcount);
2181}
2182
2183static inline void put_numa_group(struct numa_group *grp)
2184{
2185 if (atomic_dec_and_test(&grp->refcount))
2186 kfree_rcu(grp, rcu);
2187}
2188
3e6a9418
MG
2189static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2190 int *priv)
8c8a743c
PZ
2191{
2192 struct numa_group *grp, *my_grp;
2193 struct task_struct *tsk;
2194 bool join = false;
2195 int cpu = cpupid_to_cpu(cpupid);
2196 int i;
2197
2198 if (unlikely(!p->numa_group)) {
2199 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2200 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2201
2202 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2203 if (!grp)
2204 return;
2205
2206 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2207 grp->active_nodes = 1;
2208 grp->max_faults_cpu = 0;
8c8a743c 2209 spin_lock_init(&grp->lock);
e29cf08b 2210 grp->gid = p->pid;
50ec8a40 2211 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2212 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2213 nr_node_ids;
8c8a743c 2214
be1e4e76 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2216 grp->faults[i] = p->numa_faults[i];
8c8a743c 2217
989348b5 2218 grp->total_faults = p->total_numa_faults;
83e1d2cd 2219
8c8a743c
PZ
2220 grp->nr_tasks++;
2221 rcu_assign_pointer(p->numa_group, grp);
2222 }
2223
2224 rcu_read_lock();
316c1608 2225 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2226
2227 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2228 goto no_join;
8c8a743c
PZ
2229
2230 grp = rcu_dereference(tsk->numa_group);
2231 if (!grp)
3354781a 2232 goto no_join;
8c8a743c
PZ
2233
2234 my_grp = p->numa_group;
2235 if (grp == my_grp)
3354781a 2236 goto no_join;
8c8a743c
PZ
2237
2238 /*
2239 * Only join the other group if its bigger; if we're the bigger group,
2240 * the other task will join us.
2241 */
2242 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2243 goto no_join;
8c8a743c
PZ
2244
2245 /*
2246 * Tie-break on the grp address.
2247 */
2248 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2249 goto no_join;
8c8a743c 2250
dabe1d99
RR
2251 /* Always join threads in the same process. */
2252 if (tsk->mm == current->mm)
2253 join = true;
2254
2255 /* Simple filter to avoid false positives due to PID collisions */
2256 if (flags & TNF_SHARED)
2257 join = true;
8c8a743c 2258
3e6a9418
MG
2259 /* Update priv based on whether false sharing was detected */
2260 *priv = !join;
2261
dabe1d99 2262 if (join && !get_numa_group(grp))
3354781a 2263 goto no_join;
8c8a743c 2264
8c8a743c
PZ
2265 rcu_read_unlock();
2266
2267 if (!join)
2268 return;
2269
60e69eed
MG
2270 BUG_ON(irqs_disabled());
2271 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2272
be1e4e76 2273 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2274 my_grp->faults[i] -= p->numa_faults[i];
2275 grp->faults[i] += p->numa_faults[i];
8c8a743c 2276 }
989348b5
MG
2277 my_grp->total_faults -= p->total_numa_faults;
2278 grp->total_faults += p->total_numa_faults;
8c8a743c 2279
8c8a743c
PZ
2280 my_grp->nr_tasks--;
2281 grp->nr_tasks++;
2282
2283 spin_unlock(&my_grp->lock);
60e69eed 2284 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2285
2286 rcu_assign_pointer(p->numa_group, grp);
2287
2288 put_numa_group(my_grp);
3354781a
PZ
2289 return;
2290
2291no_join:
2292 rcu_read_unlock();
2293 return;
8c8a743c
PZ
2294}
2295
2296void task_numa_free(struct task_struct *p)
2297{
2298 struct numa_group *grp = p->numa_group;
44dba3d5 2299 void *numa_faults = p->numa_faults;
e9dd685c
SR
2300 unsigned long flags;
2301 int i;
8c8a743c
PZ
2302
2303 if (grp) {
e9dd685c 2304 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2305 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2306 grp->faults[i] -= p->numa_faults[i];
989348b5 2307 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2308
8c8a743c 2309 grp->nr_tasks--;
e9dd685c 2310 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2311 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2312 put_numa_group(grp);
2313 }
2314
44dba3d5 2315 p->numa_faults = NULL;
82727018 2316 kfree(numa_faults);
8c8a743c
PZ
2317}
2318
cbee9f88
PZ
2319/*
2320 * Got a PROT_NONE fault for a page on @node.
2321 */
58b46da3 2322void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2323{
2324 struct task_struct *p = current;
6688cc05 2325 bool migrated = flags & TNF_MIGRATED;
58b46da3 2326 int cpu_node = task_node(current);
792568ec 2327 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2328 struct numa_group *ng;
ac8e895b 2329 int priv;
cbee9f88 2330
2a595721 2331 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2332 return;
2333
9ff1d9ff
MG
2334 /* for example, ksmd faulting in a user's mm */
2335 if (!p->mm)
2336 return;
2337
f809ca9a 2338 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2339 if (unlikely(!p->numa_faults)) {
2340 int size = sizeof(*p->numa_faults) *
be1e4e76 2341 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2342
44dba3d5
IM
2343 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2344 if (!p->numa_faults)
f809ca9a 2345 return;
745d6147 2346
83e1d2cd 2347 p->total_numa_faults = 0;
04bb2f94 2348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2349 }
cbee9f88 2350
8c8a743c
PZ
2351 /*
2352 * First accesses are treated as private, otherwise consider accesses
2353 * to be private if the accessing pid has not changed
2354 */
2355 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2356 priv = 1;
2357 } else {
2358 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2359 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2360 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2361 }
2362
792568ec
RR
2363 /*
2364 * If a workload spans multiple NUMA nodes, a shared fault that
2365 * occurs wholly within the set of nodes that the workload is
2366 * actively using should be counted as local. This allows the
2367 * scan rate to slow down when a workload has settled down.
2368 */
4142c3eb
RR
2369 ng = p->numa_group;
2370 if (!priv && !local && ng && ng->active_nodes > 1 &&
2371 numa_is_active_node(cpu_node, ng) &&
2372 numa_is_active_node(mem_node, ng))
792568ec
RR
2373 local = 1;
2374
cbee9f88 2375 task_numa_placement(p);
f809ca9a 2376
2739d3ee
RR
2377 /*
2378 * Retry task to preferred node migration periodically, in case it
2379 * case it previously failed, or the scheduler moved us.
2380 */
2381 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2382 numa_migrate_preferred(p);
2383
b32e86b4
IM
2384 if (migrated)
2385 p->numa_pages_migrated += pages;
074c2381
MG
2386 if (flags & TNF_MIGRATE_FAIL)
2387 p->numa_faults_locality[2] += pages;
b32e86b4 2388
44dba3d5
IM
2389 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2390 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2391 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2392}
2393
6e5fb223
PZ
2394static void reset_ptenuma_scan(struct task_struct *p)
2395{
7e5a2c17
JL
2396 /*
2397 * We only did a read acquisition of the mmap sem, so
2398 * p->mm->numa_scan_seq is written to without exclusive access
2399 * and the update is not guaranteed to be atomic. That's not
2400 * much of an issue though, since this is just used for
2401 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2402 * expensive, to avoid any form of compiler optimizations:
2403 */
316c1608 2404 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2405 p->mm->numa_scan_offset = 0;
2406}
2407
cbee9f88
PZ
2408/*
2409 * The expensive part of numa migration is done from task_work context.
2410 * Triggered from task_tick_numa().
2411 */
2412void task_numa_work(struct callback_head *work)
2413{
2414 unsigned long migrate, next_scan, now = jiffies;
2415 struct task_struct *p = current;
2416 struct mm_struct *mm = p->mm;
51170840 2417 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2418 struct vm_area_struct *vma;
9f40604c 2419 unsigned long start, end;
598f0ec0 2420 unsigned long nr_pte_updates = 0;
4620f8c1 2421 long pages, virtpages;
cbee9f88 2422
9148a3a1 2423 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2424
2425 work->next = work; /* protect against double add */
2426 /*
2427 * Who cares about NUMA placement when they're dying.
2428 *
2429 * NOTE: make sure not to dereference p->mm before this check,
2430 * exit_task_work() happens _after_ exit_mm() so we could be called
2431 * without p->mm even though we still had it when we enqueued this
2432 * work.
2433 */
2434 if (p->flags & PF_EXITING)
2435 return;
2436
930aa174 2437 if (!mm->numa_next_scan) {
7e8d16b6
MG
2438 mm->numa_next_scan = now +
2439 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2440 }
2441
cbee9f88
PZ
2442 /*
2443 * Enforce maximal scan/migration frequency..
2444 */
2445 migrate = mm->numa_next_scan;
2446 if (time_before(now, migrate))
2447 return;
2448
598f0ec0
MG
2449 if (p->numa_scan_period == 0) {
2450 p->numa_scan_period_max = task_scan_max(p);
2451 p->numa_scan_period = task_scan_min(p);
2452 }
cbee9f88 2453
fb003b80 2454 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2455 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2456 return;
2457
19a78d11
PZ
2458 /*
2459 * Delay this task enough that another task of this mm will likely win
2460 * the next time around.
2461 */
2462 p->node_stamp += 2 * TICK_NSEC;
2463
9f40604c
MG
2464 start = mm->numa_scan_offset;
2465 pages = sysctl_numa_balancing_scan_size;
2466 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2467 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2468 if (!pages)
2469 return;
cbee9f88 2470
4620f8c1 2471
6e5fb223 2472 down_read(&mm->mmap_sem);
9f40604c 2473 vma = find_vma(mm, start);
6e5fb223
PZ
2474 if (!vma) {
2475 reset_ptenuma_scan(p);
9f40604c 2476 start = 0;
6e5fb223
PZ
2477 vma = mm->mmap;
2478 }
9f40604c 2479 for (; vma; vma = vma->vm_next) {
6b79c57b 2480 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2481 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2482 continue;
6b79c57b 2483 }
6e5fb223 2484
4591ce4f
MG
2485 /*
2486 * Shared library pages mapped by multiple processes are not
2487 * migrated as it is expected they are cache replicated. Avoid
2488 * hinting faults in read-only file-backed mappings or the vdso
2489 * as migrating the pages will be of marginal benefit.
2490 */
2491 if (!vma->vm_mm ||
2492 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2493 continue;
2494
3c67f474
MG
2495 /*
2496 * Skip inaccessible VMAs to avoid any confusion between
2497 * PROT_NONE and NUMA hinting ptes
2498 */
2499 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2500 continue;
4591ce4f 2501
9f40604c
MG
2502 do {
2503 start = max(start, vma->vm_start);
2504 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2505 end = min(end, vma->vm_end);
4620f8c1 2506 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2507
2508 /*
4620f8c1
RR
2509 * Try to scan sysctl_numa_balancing_size worth of
2510 * hpages that have at least one present PTE that
2511 * is not already pte-numa. If the VMA contains
2512 * areas that are unused or already full of prot_numa
2513 * PTEs, scan up to virtpages, to skip through those
2514 * areas faster.
598f0ec0
MG
2515 */
2516 if (nr_pte_updates)
2517 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2518 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2519
9f40604c 2520 start = end;
4620f8c1 2521 if (pages <= 0 || virtpages <= 0)
9f40604c 2522 goto out;
3cf1962c
RR
2523
2524 cond_resched();
9f40604c 2525 } while (end != vma->vm_end);
cbee9f88 2526 }
6e5fb223 2527
9f40604c 2528out:
6e5fb223 2529 /*
c69307d5
PZ
2530 * It is possible to reach the end of the VMA list but the last few
2531 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2532 * would find the !migratable VMA on the next scan but not reset the
2533 * scanner to the start so check it now.
6e5fb223
PZ
2534 */
2535 if (vma)
9f40604c 2536 mm->numa_scan_offset = start;
6e5fb223
PZ
2537 else
2538 reset_ptenuma_scan(p);
2539 up_read(&mm->mmap_sem);
51170840
RR
2540
2541 /*
2542 * Make sure tasks use at least 32x as much time to run other code
2543 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2544 * Usually update_task_scan_period slows down scanning enough; on an
2545 * overloaded system we need to limit overhead on a per task basis.
2546 */
2547 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2548 u64 diff = p->se.sum_exec_runtime - runtime;
2549 p->node_stamp += 32 * diff;
2550 }
cbee9f88
PZ
2551}
2552
2553/*
2554 * Drive the periodic memory faults..
2555 */
2556void task_tick_numa(struct rq *rq, struct task_struct *curr)
2557{
2558 struct callback_head *work = &curr->numa_work;
2559 u64 period, now;
2560
2561 /*
2562 * We don't care about NUMA placement if we don't have memory.
2563 */
2564 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2565 return;
2566
2567 /*
2568 * Using runtime rather than walltime has the dual advantage that
2569 * we (mostly) drive the selection from busy threads and that the
2570 * task needs to have done some actual work before we bother with
2571 * NUMA placement.
2572 */
2573 now = curr->se.sum_exec_runtime;
2574 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2575
25b3e5a3 2576 if (now > curr->node_stamp + period) {
4b96a29b 2577 if (!curr->node_stamp)
598f0ec0 2578 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2579 curr->node_stamp += period;
cbee9f88
PZ
2580
2581 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2582 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2583 task_work_add(curr, work, true);
2584 }
2585 }
2586}
2587#else
2588static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2589{
2590}
0ec8aa00
PZ
2591
2592static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2593{
2594}
2595
2596static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2597{
2598}
cbee9f88
PZ
2599#endif /* CONFIG_NUMA_BALANCING */
2600
30cfdcfc
DA
2601static void
2602account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
2604 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2605 if (!parent_entity(se))
029632fb 2606 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2607#ifdef CONFIG_SMP
0ec8aa00
PZ
2608 if (entity_is_task(se)) {
2609 struct rq *rq = rq_of(cfs_rq);
2610
2611 account_numa_enqueue(rq, task_of(se));
2612 list_add(&se->group_node, &rq->cfs_tasks);
2613 }
367456c7 2614#endif
30cfdcfc 2615 cfs_rq->nr_running++;
30cfdcfc
DA
2616}
2617
2618static void
2619account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620{
2621 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2622 if (!parent_entity(se))
029632fb 2623 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2624#ifdef CONFIG_SMP
0ec8aa00
PZ
2625 if (entity_is_task(se)) {
2626 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2627 list_del_init(&se->group_node);
0ec8aa00 2628 }
bfdb198c 2629#endif
30cfdcfc 2630 cfs_rq->nr_running--;
30cfdcfc
DA
2631}
2632
3ff6dcac
YZ
2633#ifdef CONFIG_FAIR_GROUP_SCHED
2634# ifdef CONFIG_SMP
ea1dc6fc 2635static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2636{
ea1dc6fc 2637 long tg_weight, load, shares;
cf5f0acf
PZ
2638
2639 /*
ea1dc6fc
PZ
2640 * This really should be: cfs_rq->avg.load_avg, but instead we use
2641 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2642 * the shares for small weight interactive tasks.
cf5f0acf 2643 */
ea1dc6fc 2644 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2645
ea1dc6fc 2646 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2647
ea1dc6fc
PZ
2648 /* Ensure tg_weight >= load */
2649 tg_weight -= cfs_rq->tg_load_avg_contrib;
2650 tg_weight += load;
3ff6dcac 2651
3ff6dcac 2652 shares = (tg->shares * load);
cf5f0acf
PZ
2653 if (tg_weight)
2654 shares /= tg_weight;
3ff6dcac 2655
b8fd8423
DE
2656 /*
2657 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2658 * of a group with small tg->shares value. It is a floor value which is
2659 * assigned as a minimum load.weight to the sched_entity representing
2660 * the group on a CPU.
2661 *
2662 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2663 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2664 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2665 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2666 * instead of 0.
2667 */
3ff6dcac
YZ
2668 if (shares < MIN_SHARES)
2669 shares = MIN_SHARES;
2670 if (shares > tg->shares)
2671 shares = tg->shares;
2672
2673 return shares;
2674}
3ff6dcac 2675# else /* CONFIG_SMP */
6d5ab293 2676static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2677{
2678 return tg->shares;
2679}
3ff6dcac 2680# endif /* CONFIG_SMP */
ea1dc6fc 2681
2069dd75
PZ
2682static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2683 unsigned long weight)
2684{
19e5eebb
PT
2685 if (se->on_rq) {
2686 /* commit outstanding execution time */
2687 if (cfs_rq->curr == se)
2688 update_curr(cfs_rq);
2069dd75 2689 account_entity_dequeue(cfs_rq, se);
19e5eebb 2690 }
2069dd75
PZ
2691
2692 update_load_set(&se->load, weight);
2693
2694 if (se->on_rq)
2695 account_entity_enqueue(cfs_rq, se);
2696}
2697
82958366
PT
2698static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2699
89ee048f 2700static void update_cfs_shares(struct sched_entity *se)
2069dd75 2701{
89ee048f 2702 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2703 struct task_group *tg;
3ff6dcac 2704 long shares;
2069dd75 2705
89ee048f
VG
2706 if (!cfs_rq)
2707 return;
2708
2709 if (throttled_hierarchy(cfs_rq))
2069dd75 2710 return;
89ee048f
VG
2711
2712 tg = cfs_rq->tg;
2713
3ff6dcac
YZ
2714#ifndef CONFIG_SMP
2715 if (likely(se->load.weight == tg->shares))
2716 return;
2717#endif
6d5ab293 2718 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2719
2720 reweight_entity(cfs_rq_of(se), se, shares);
2721}
89ee048f 2722
2069dd75 2723#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2724static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2725{
2726}
2727#endif /* CONFIG_FAIR_GROUP_SCHED */
2728
141965c7 2729#ifdef CONFIG_SMP
9d85f21c
PT
2730/*
2731 * Approximate:
2732 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2733 */
a481db34 2734static u64 decay_load(u64 val, u64 n)
9d85f21c 2735{
5b51f2f8
PT
2736 unsigned int local_n;
2737
05296e75 2738 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2739 return 0;
2740
2741 /* after bounds checking we can collapse to 32-bit */
2742 local_n = n;
2743
2744 /*
2745 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2746 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2747 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2748 *
2749 * To achieve constant time decay_load.
2750 */
2751 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2752 val >>= local_n / LOAD_AVG_PERIOD;
2753 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2754 }
2755
9d89c257
YD
2756 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2757 return val;
5b51f2f8
PT
2758}
2759
05296e75 2760static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2761{
05296e75 2762 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2763
a481db34 2764 /*
3841cdc3 2765 * c1 = d1 y^p
a481db34 2766 */
05296e75 2767 c1 = decay_load((u64)d1, periods);
a481db34 2768
a481db34 2769 /*
3841cdc3 2770 * p-1
05296e75
PZ
2771 * c2 = 1024 \Sum y^n
2772 * n=1
a481db34 2773 *
05296e75
PZ
2774 * inf inf
2775 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2776 * n=0 n=p
a481db34 2777 */
05296e75 2778 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2779
2780 return c1 + c2 + c3;
9d85f21c
PT
2781}
2782
54a21385 2783#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2784
a481db34
YD
2785/*
2786 * Accumulate the three separate parts of the sum; d1 the remainder
2787 * of the last (incomplete) period, d2 the span of full periods and d3
2788 * the remainder of the (incomplete) current period.
2789 *
2790 * d1 d2 d3
2791 * ^ ^ ^
2792 * | | |
2793 * |<->|<----------------->|<--->|
2794 * ... |---x---|------| ... |------|-----x (now)
2795 *
3841cdc3
PZ
2796 * p-1
2797 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2798 * n=1
a481db34 2799 *
3841cdc3 2800 * = u y^p + (Step 1)
a481db34 2801 *
3841cdc3
PZ
2802 * p-1
2803 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2804 * n=1
a481db34
YD
2805 */
2806static __always_inline u32
2807accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2808 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2809{
2810 unsigned long scale_freq, scale_cpu;
05296e75 2811 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2812 u64 periods;
a481db34
YD
2813
2814 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2815 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2816
2817 delta += sa->period_contrib;
2818 periods = delta / 1024; /* A period is 1024us (~1ms) */
2819
2820 /*
2821 * Step 1: decay old *_sum if we crossed period boundaries.
2822 */
2823 if (periods) {
2824 sa->load_sum = decay_load(sa->load_sum, periods);
2825 if (cfs_rq) {
2826 cfs_rq->runnable_load_sum =
2827 decay_load(cfs_rq->runnable_load_sum, periods);
2828 }
2829 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2830
05296e75
PZ
2831 /*
2832 * Step 2
2833 */
2834 delta %= 1024;
2835 contrib = __accumulate_pelt_segments(periods,
2836 1024 - sa->period_contrib, delta);
2837 }
a481db34
YD
2838 sa->period_contrib = delta;
2839
2840 contrib = cap_scale(contrib, scale_freq);
2841 if (weight) {
2842 sa->load_sum += weight * contrib;
2843 if (cfs_rq)
2844 cfs_rq->runnable_load_sum += weight * contrib;
2845 }
2846 if (running)
2847 sa->util_sum += contrib * scale_cpu;
2848
2849 return periods;
2850}
2851
9d85f21c
PT
2852/*
2853 * We can represent the historical contribution to runnable average as the
2854 * coefficients of a geometric series. To do this we sub-divide our runnable
2855 * history into segments of approximately 1ms (1024us); label the segment that
2856 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2857 *
2858 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2859 * p0 p1 p2
2860 * (now) (~1ms ago) (~2ms ago)
2861 *
2862 * Let u_i denote the fraction of p_i that the entity was runnable.
2863 *
2864 * We then designate the fractions u_i as our co-efficients, yielding the
2865 * following representation of historical load:
2866 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2867 *
2868 * We choose y based on the with of a reasonably scheduling period, fixing:
2869 * y^32 = 0.5
2870 *
2871 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2872 * approximately half as much as the contribution to load within the last ms
2873 * (u_0).
2874 *
2875 * When a period "rolls over" and we have new u_0`, multiplying the previous
2876 * sum again by y is sufficient to update:
2877 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2878 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2879 */
9d89c257 2880static __always_inline int
0ccb977f 2881___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2882 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2883{
a481db34 2884 u64 delta;
9d85f21c 2885
9d89c257 2886 delta = now - sa->last_update_time;
9d85f21c
PT
2887 /*
2888 * This should only happen when time goes backwards, which it
2889 * unfortunately does during sched clock init when we swap over to TSC.
2890 */
2891 if ((s64)delta < 0) {
9d89c257 2892 sa->last_update_time = now;
9d85f21c
PT
2893 return 0;
2894 }
2895
2896 /*
2897 * Use 1024ns as the unit of measurement since it's a reasonable
2898 * approximation of 1us and fast to compute.
2899 */
2900 delta >>= 10;
2901 if (!delta)
2902 return 0;
bb0bd044
PZ
2903
2904 sa->last_update_time += delta << 10;
9d85f21c 2905
a481db34
YD
2906 /*
2907 * Now we know we crossed measurement unit boundaries. The *_avg
2908 * accrues by two steps:
2909 *
2910 * Step 1: accumulate *_sum since last_update_time. If we haven't
2911 * crossed period boundaries, finish.
2912 */
2913 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2914 return 0;
9ee474f5 2915
a481db34
YD
2916 /*
2917 * Step 2: update *_avg.
2918 */
625ed2bf 2919 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
2920 if (cfs_rq) {
2921 cfs_rq->runnable_load_avg =
625ed2bf 2922 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 2923 }
625ed2bf 2924 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 2925
a481db34 2926 return 1;
9ee474f5
PT
2927}
2928
0ccb977f
PZ
2929static int
2930__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2931{
2932 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2933}
2934
2935static int
2936__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2937{
2938 return ___update_load_avg(now, cpu, &se->avg,
2939 se->on_rq * scale_load_down(se->load.weight),
2940 cfs_rq->curr == se, NULL);
2941}
2942
2943static int
2944__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2945{
2946 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2947 scale_load_down(cfs_rq->load.weight),
2948 cfs_rq->curr != NULL, cfs_rq);
2949}
2950
09a43ace
VG
2951/*
2952 * Signed add and clamp on underflow.
2953 *
2954 * Explicitly do a load-store to ensure the intermediate value never hits
2955 * memory. This allows lockless observations without ever seeing the negative
2956 * values.
2957 */
2958#define add_positive(_ptr, _val) do { \
2959 typeof(_ptr) ptr = (_ptr); \
2960 typeof(_val) val = (_val); \
2961 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2962 \
2963 res = var + val; \
2964 \
2965 if (val < 0 && res > var) \
2966 res = 0; \
2967 \
2968 WRITE_ONCE(*ptr, res); \
2969} while (0)
2970
c566e8e9 2971#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2972/**
2973 * update_tg_load_avg - update the tg's load avg
2974 * @cfs_rq: the cfs_rq whose avg changed
2975 * @force: update regardless of how small the difference
2976 *
2977 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2978 * However, because tg->load_avg is a global value there are performance
2979 * considerations.
2980 *
2981 * In order to avoid having to look at the other cfs_rq's, we use a
2982 * differential update where we store the last value we propagated. This in
2983 * turn allows skipping updates if the differential is 'small'.
2984 *
2985 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2986 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2987 */
9d89c257 2988static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2989{
9d89c257 2990 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2991
aa0b7ae0
WL
2992 /*
2993 * No need to update load_avg for root_task_group as it is not used.
2994 */
2995 if (cfs_rq->tg == &root_task_group)
2996 return;
2997
9d89c257
YD
2998 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2999 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3000 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3001 }
8165e145 3002}
f5f9739d 3003
ad936d86
BP
3004/*
3005 * Called within set_task_rq() right before setting a task's cpu. The
3006 * caller only guarantees p->pi_lock is held; no other assumptions,
3007 * including the state of rq->lock, should be made.
3008 */
3009void set_task_rq_fair(struct sched_entity *se,
3010 struct cfs_rq *prev, struct cfs_rq *next)
3011{
0ccb977f
PZ
3012 u64 p_last_update_time;
3013 u64 n_last_update_time;
3014
ad936d86
BP
3015 if (!sched_feat(ATTACH_AGE_LOAD))
3016 return;
3017
3018 /*
3019 * We are supposed to update the task to "current" time, then its up to
3020 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3021 * getting what current time is, so simply throw away the out-of-date
3022 * time. This will result in the wakee task is less decayed, but giving
3023 * the wakee more load sounds not bad.
3024 */
0ccb977f
PZ
3025 if (!(se->avg.last_update_time && prev))
3026 return;
ad936d86
BP
3027
3028#ifndef CONFIG_64BIT
0ccb977f 3029 {
ad936d86
BP
3030 u64 p_last_update_time_copy;
3031 u64 n_last_update_time_copy;
3032
3033 do {
3034 p_last_update_time_copy = prev->load_last_update_time_copy;
3035 n_last_update_time_copy = next->load_last_update_time_copy;
3036
3037 smp_rmb();
3038
3039 p_last_update_time = prev->avg.last_update_time;
3040 n_last_update_time = next->avg.last_update_time;
3041
3042 } while (p_last_update_time != p_last_update_time_copy ||
3043 n_last_update_time != n_last_update_time_copy);
0ccb977f 3044 }
ad936d86 3045#else
0ccb977f
PZ
3046 p_last_update_time = prev->avg.last_update_time;
3047 n_last_update_time = next->avg.last_update_time;
ad936d86 3048#endif
0ccb977f
PZ
3049 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3050 se->avg.last_update_time = n_last_update_time;
ad936d86 3051}
09a43ace
VG
3052
3053/* Take into account change of utilization of a child task group */
3054static inline void
3055update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3056{
3057 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3058 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3059
3060 /* Nothing to update */
3061 if (!delta)
3062 return;
3063
3064 /* Set new sched_entity's utilization */
3065 se->avg.util_avg = gcfs_rq->avg.util_avg;
3066 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3067
3068 /* Update parent cfs_rq utilization */
3069 add_positive(&cfs_rq->avg.util_avg, delta);
3070 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3071}
3072
3073/* Take into account change of load of a child task group */
3074static inline void
3075update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076{
3077 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3078 long delta, load = gcfs_rq->avg.load_avg;
3079
3080 /*
3081 * If the load of group cfs_rq is null, the load of the
3082 * sched_entity will also be null so we can skip the formula
3083 */
3084 if (load) {
3085 long tg_load;
3086
3087 /* Get tg's load and ensure tg_load > 0 */
3088 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3089
3090 /* Ensure tg_load >= load and updated with current load*/
3091 tg_load -= gcfs_rq->tg_load_avg_contrib;
3092 tg_load += load;
3093
3094 /*
3095 * We need to compute a correction term in the case that the
3096 * task group is consuming more CPU than a task of equal
3097 * weight. A task with a weight equals to tg->shares will have
3098 * a load less or equal to scale_load_down(tg->shares).
3099 * Similarly, the sched_entities that represent the task group
3100 * at parent level, can't have a load higher than
3101 * scale_load_down(tg->shares). And the Sum of sched_entities'
3102 * load must be <= scale_load_down(tg->shares).
3103 */
3104 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3105 /* scale gcfs_rq's load into tg's shares*/
3106 load *= scale_load_down(gcfs_rq->tg->shares);
3107 load /= tg_load;
3108 }
3109 }
3110
3111 delta = load - se->avg.load_avg;
3112
3113 /* Nothing to update */
3114 if (!delta)
3115 return;
3116
3117 /* Set new sched_entity's load */
3118 se->avg.load_avg = load;
3119 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3120
3121 /* Update parent cfs_rq load */
3122 add_positive(&cfs_rq->avg.load_avg, delta);
3123 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3124
3125 /*
3126 * If the sched_entity is already enqueued, we also have to update the
3127 * runnable load avg.
3128 */
3129 if (se->on_rq) {
3130 /* Update parent cfs_rq runnable_load_avg */
3131 add_positive(&cfs_rq->runnable_load_avg, delta);
3132 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3133 }
3134}
3135
3136static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3137{
3138 cfs_rq->propagate_avg = 1;
3139}
3140
3141static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3142{
3143 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3144
3145 if (!cfs_rq->propagate_avg)
3146 return 0;
3147
3148 cfs_rq->propagate_avg = 0;
3149 return 1;
3150}
3151
3152/* Update task and its cfs_rq load average */
3153static inline int propagate_entity_load_avg(struct sched_entity *se)
3154{
3155 struct cfs_rq *cfs_rq;
3156
3157 if (entity_is_task(se))
3158 return 0;
3159
3160 if (!test_and_clear_tg_cfs_propagate(se))
3161 return 0;
3162
3163 cfs_rq = cfs_rq_of(se);
3164
3165 set_tg_cfs_propagate(cfs_rq);
3166
3167 update_tg_cfs_util(cfs_rq, se);
3168 update_tg_cfs_load(cfs_rq, se);
3169
3170 return 1;
3171}
3172
bc427898
VG
3173/*
3174 * Check if we need to update the load and the utilization of a blocked
3175 * group_entity:
3176 */
3177static inline bool skip_blocked_update(struct sched_entity *se)
3178{
3179 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3180
3181 /*
3182 * If sched_entity still have not zero load or utilization, we have to
3183 * decay it:
3184 */
3185 if (se->avg.load_avg || se->avg.util_avg)
3186 return false;
3187
3188 /*
3189 * If there is a pending propagation, we have to update the load and
3190 * the utilization of the sched_entity:
3191 */
3192 if (gcfs_rq->propagate_avg)
3193 return false;
3194
3195 /*
3196 * Otherwise, the load and the utilization of the sched_entity is
3197 * already zero and there is no pending propagation, so it will be a
3198 * waste of time to try to decay it:
3199 */
3200 return true;
3201}
3202
6e83125c 3203#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3204
9d89c257 3205static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3206
3207static inline int propagate_entity_load_avg(struct sched_entity *se)
3208{
3209 return 0;
3210}
3211
3212static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3213
6e83125c 3214#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3215
a2c6c91f
SM
3216static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3217{
58919e83 3218 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3219 /*
3220 * There are a few boundary cases this might miss but it should
3221 * get called often enough that that should (hopefully) not be
3222 * a real problem -- added to that it only calls on the local
3223 * CPU, so if we enqueue remotely we'll miss an update, but
3224 * the next tick/schedule should update.
3225 *
3226 * It will not get called when we go idle, because the idle
3227 * thread is a different class (!fair), nor will the utilization
3228 * number include things like RT tasks.
3229 *
3230 * As is, the util number is not freq-invariant (we'd have to
3231 * implement arch_scale_freq_capacity() for that).
3232 *
3233 * See cpu_util().
3234 */
12bde33d 3235 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3236 }
3237}
3238
89741892
PZ
3239/*
3240 * Unsigned subtract and clamp on underflow.
3241 *
3242 * Explicitly do a load-store to ensure the intermediate value never hits
3243 * memory. This allows lockless observations without ever seeing the negative
3244 * values.
3245 */
3246#define sub_positive(_ptr, _val) do { \
3247 typeof(_ptr) ptr = (_ptr); \
3248 typeof(*ptr) val = (_val); \
3249 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3250 res = var - val; \
3251 if (res > var) \
3252 res = 0; \
3253 WRITE_ONCE(*ptr, res); \
3254} while (0)
3255
3d30544f
PZ
3256/**
3257 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3258 * @now: current time, as per cfs_rq_clock_task()
3259 * @cfs_rq: cfs_rq to update
3260 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3261 *
3262 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3263 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3264 * post_init_entity_util_avg().
3265 *
3266 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3267 *
7c3edd2c
PZ
3268 * Returns true if the load decayed or we removed load.
3269 *
3270 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3271 * call update_tg_load_avg() when this function returns true.
3d30544f 3272 */
a2c6c91f
SM
3273static inline int
3274update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3275{
9d89c257 3276 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3277 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3278
9d89c257 3279 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3280 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3281 sub_positive(&sa->load_avg, r);
3282 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3283 removed_load = 1;
4e516076 3284 set_tg_cfs_propagate(cfs_rq);
8165e145 3285 }
2dac754e 3286
9d89c257
YD
3287 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3288 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3289 sub_positive(&sa->util_avg, r);
3290 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3291 removed_util = 1;
4e516076 3292 set_tg_cfs_propagate(cfs_rq);
9d89c257 3293 }
36ee28e4 3294
0ccb977f 3295 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3296
9d89c257
YD
3297#ifndef CONFIG_64BIT
3298 smp_wmb();
3299 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3300#endif
36ee28e4 3301
a2c6c91f
SM
3302 if (update_freq && (decayed || removed_util))
3303 cfs_rq_util_change(cfs_rq);
21e96f88 3304
41e0d37f 3305 return decayed || removed_load;
21e96f88
SM
3306}
3307
d31b1a66
VG
3308/*
3309 * Optional action to be done while updating the load average
3310 */
3311#define UPDATE_TG 0x1
3312#define SKIP_AGE_LOAD 0x2
3313
21e96f88 3314/* Update task and its cfs_rq load average */
d31b1a66 3315static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3316{
3317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3318 u64 now = cfs_rq_clock_task(cfs_rq);
3319 struct rq *rq = rq_of(cfs_rq);
3320 int cpu = cpu_of(rq);
09a43ace 3321 int decayed;
21e96f88
SM
3322
3323 /*
3324 * Track task load average for carrying it to new CPU after migrated, and
3325 * track group sched_entity load average for task_h_load calc in migration
3326 */
0ccb977f
PZ
3327 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3328 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3329
09a43ace
VG
3330 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3331 decayed |= propagate_entity_load_avg(se);
3332
3333 if (decayed && (flags & UPDATE_TG))
21e96f88 3334 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3335}
3336
3d30544f
PZ
3337/**
3338 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3339 * @cfs_rq: cfs_rq to attach to
3340 * @se: sched_entity to attach
3341 *
3342 * Must call update_cfs_rq_load_avg() before this, since we rely on
3343 * cfs_rq->avg.last_update_time being current.
3344 */
a05e8c51
BP
3345static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3346{
3347 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3348 cfs_rq->avg.load_avg += se->avg.load_avg;
3349 cfs_rq->avg.load_sum += se->avg.load_sum;
3350 cfs_rq->avg.util_avg += se->avg.util_avg;
3351 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3352 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3353
3354 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3355}
3356
3d30544f
PZ
3357/**
3358 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3359 * @cfs_rq: cfs_rq to detach from
3360 * @se: sched_entity to detach
3361 *
3362 * Must call update_cfs_rq_load_avg() before this, since we rely on
3363 * cfs_rq->avg.last_update_time being current.
3364 */
a05e8c51
BP
3365static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3366{
a05e8c51 3367
89741892
PZ
3368 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3369 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3370 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3371 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3372 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3373
3374 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3375}
3376
9d89c257
YD
3377/* Add the load generated by se into cfs_rq's load average */
3378static inline void
3379enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3380{
9d89c257 3381 struct sched_avg *sa = &se->avg;
18bf2805 3382
13962234
YD
3383 cfs_rq->runnable_load_avg += sa->load_avg;
3384 cfs_rq->runnable_load_sum += sa->load_sum;
3385
d31b1a66 3386 if (!sa->last_update_time) {
a05e8c51 3387 attach_entity_load_avg(cfs_rq, se);
9d89c257 3388 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3389 }
2dac754e
PT
3390}
3391
13962234
YD
3392/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3393static inline void
3394dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3395{
13962234
YD
3396 cfs_rq->runnable_load_avg =
3397 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3398 cfs_rq->runnable_load_sum =
a05e8c51 3399 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3400}
3401
9d89c257 3402#ifndef CONFIG_64BIT
0905f04e
YD
3403static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3404{
9d89c257 3405 u64 last_update_time_copy;
0905f04e 3406 u64 last_update_time;
9ee474f5 3407
9d89c257
YD
3408 do {
3409 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3410 smp_rmb();
3411 last_update_time = cfs_rq->avg.last_update_time;
3412 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3413
3414 return last_update_time;
3415}
9d89c257 3416#else
0905f04e
YD
3417static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3418{
3419 return cfs_rq->avg.last_update_time;
3420}
9d89c257
YD
3421#endif
3422
104cb16d
MR
3423/*
3424 * Synchronize entity load avg of dequeued entity without locking
3425 * the previous rq.
3426 */
3427void sync_entity_load_avg(struct sched_entity *se)
3428{
3429 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3430 u64 last_update_time;
3431
3432 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3433 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3434}
3435
0905f04e
YD
3436/*
3437 * Task first catches up with cfs_rq, and then subtract
3438 * itself from the cfs_rq (task must be off the queue now).
3439 */
3440void remove_entity_load_avg(struct sched_entity *se)
3441{
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3443
3444 /*
7dc603c9
PZ
3445 * tasks cannot exit without having gone through wake_up_new_task() ->
3446 * post_init_entity_util_avg() which will have added things to the
3447 * cfs_rq, so we can remove unconditionally.
3448 *
3449 * Similarly for groups, they will have passed through
3450 * post_init_entity_util_avg() before unregister_sched_fair_group()
3451 * calls this.
0905f04e 3452 */
0905f04e 3453
104cb16d 3454 sync_entity_load_avg(se);
9d89c257
YD
3455 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3456 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3457}
642dbc39 3458
7ea241af
YD
3459static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3460{
3461 return cfs_rq->runnable_load_avg;
3462}
3463
3464static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3465{
3466 return cfs_rq->avg.load_avg;
3467}
3468
46f69fa3 3469static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3470
38033c37
PZ
3471#else /* CONFIG_SMP */
3472
01011473
PZ
3473static inline int
3474update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3475{
3476 return 0;
3477}
3478
d31b1a66
VG
3479#define UPDATE_TG 0x0
3480#define SKIP_AGE_LOAD 0x0
3481
3482static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3483{
12bde33d 3484 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3485}
3486
9d89c257
YD
3487static inline void
3488enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3489static inline void
3490dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3491static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3492
a05e8c51
BP
3493static inline void
3494attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3495static inline void
3496detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3497
46f69fa3 3498static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3499{
3500 return 0;
3501}
3502
38033c37 3503#endif /* CONFIG_SMP */
9d85f21c 3504
ddc97297
PZ
3505static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3506{
3507#ifdef CONFIG_SCHED_DEBUG
3508 s64 d = se->vruntime - cfs_rq->min_vruntime;
3509
3510 if (d < 0)
3511 d = -d;
3512
3513 if (d > 3*sysctl_sched_latency)
ae92882e 3514 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3515#endif
3516}
3517
aeb73b04
PZ
3518static void
3519place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3520{
1af5f730 3521 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3522
2cb8600e
PZ
3523 /*
3524 * The 'current' period is already promised to the current tasks,
3525 * however the extra weight of the new task will slow them down a
3526 * little, place the new task so that it fits in the slot that
3527 * stays open at the end.
3528 */
94dfb5e7 3529 if (initial && sched_feat(START_DEBIT))
f9c0b095 3530 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3531
a2e7a7eb 3532 /* sleeps up to a single latency don't count. */
5ca9880c 3533 if (!initial) {
a2e7a7eb 3534 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3535
a2e7a7eb
MG
3536 /*
3537 * Halve their sleep time's effect, to allow
3538 * for a gentler effect of sleepers:
3539 */
3540 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3541 thresh >>= 1;
51e0304c 3542
a2e7a7eb 3543 vruntime -= thresh;
aeb73b04
PZ
3544 }
3545
b5d9d734 3546 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3547 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3548}
3549
d3d9dc33
PT
3550static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3551
cb251765
MG
3552static inline void check_schedstat_required(void)
3553{
3554#ifdef CONFIG_SCHEDSTATS
3555 if (schedstat_enabled())
3556 return;
3557
3558 /* Force schedstat enabled if a dependent tracepoint is active */
3559 if (trace_sched_stat_wait_enabled() ||
3560 trace_sched_stat_sleep_enabled() ||
3561 trace_sched_stat_iowait_enabled() ||
3562 trace_sched_stat_blocked_enabled() ||
3563 trace_sched_stat_runtime_enabled()) {
eda8dca5 3564 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3565 "stat_blocked and stat_runtime require the "
3566 "kernel parameter schedstats=enabled or "
3567 "kernel.sched_schedstats=1\n");
3568 }
3569#endif
3570}
3571
b5179ac7
PZ
3572
3573/*
3574 * MIGRATION
3575 *
3576 * dequeue
3577 * update_curr()
3578 * update_min_vruntime()
3579 * vruntime -= min_vruntime
3580 *
3581 * enqueue
3582 * update_curr()
3583 * update_min_vruntime()
3584 * vruntime += min_vruntime
3585 *
3586 * this way the vruntime transition between RQs is done when both
3587 * min_vruntime are up-to-date.
3588 *
3589 * WAKEUP (remote)
3590 *
59efa0ba 3591 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3592 * vruntime -= min_vruntime
3593 *
3594 * enqueue
3595 * update_curr()
3596 * update_min_vruntime()
3597 * vruntime += min_vruntime
3598 *
3599 * this way we don't have the most up-to-date min_vruntime on the originating
3600 * CPU and an up-to-date min_vruntime on the destination CPU.
3601 */
3602
bf0f6f24 3603static void
88ec22d3 3604enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3605{
2f950354
PZ
3606 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3607 bool curr = cfs_rq->curr == se;
3608
88ec22d3 3609 /*
2f950354
PZ
3610 * If we're the current task, we must renormalise before calling
3611 * update_curr().
88ec22d3 3612 */
2f950354 3613 if (renorm && curr)
88ec22d3
PZ
3614 se->vruntime += cfs_rq->min_vruntime;
3615
2f950354
PZ
3616 update_curr(cfs_rq);
3617
bf0f6f24 3618 /*
2f950354
PZ
3619 * Otherwise, renormalise after, such that we're placed at the current
3620 * moment in time, instead of some random moment in the past. Being
3621 * placed in the past could significantly boost this task to the
3622 * fairness detriment of existing tasks.
bf0f6f24 3623 */
2f950354
PZ
3624 if (renorm && !curr)
3625 se->vruntime += cfs_rq->min_vruntime;
3626
89ee048f
VG
3627 /*
3628 * When enqueuing a sched_entity, we must:
3629 * - Update loads to have both entity and cfs_rq synced with now.
3630 * - Add its load to cfs_rq->runnable_avg
3631 * - For group_entity, update its weight to reflect the new share of
3632 * its group cfs_rq
3633 * - Add its new weight to cfs_rq->load.weight
3634 */
d31b1a66 3635 update_load_avg(se, UPDATE_TG);
9d89c257 3636 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3637 update_cfs_shares(se);
17bc14b7 3638 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3639
1a3d027c 3640 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3641 place_entity(cfs_rq, se, 0);
bf0f6f24 3642
cb251765 3643 check_schedstat_required();
4fa8d299
JP
3644 update_stats_enqueue(cfs_rq, se, flags);
3645 check_spread(cfs_rq, se);
2f950354 3646 if (!curr)
83b699ed 3647 __enqueue_entity(cfs_rq, se);
2069dd75 3648 se->on_rq = 1;
3d4b47b4 3649
d3d9dc33 3650 if (cfs_rq->nr_running == 1) {
3d4b47b4 3651 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3652 check_enqueue_throttle(cfs_rq);
3653 }
bf0f6f24
IM
3654}
3655
2c13c919 3656static void __clear_buddies_last(struct sched_entity *se)
2002c695 3657{
2c13c919
RR
3658 for_each_sched_entity(se) {
3659 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3660 if (cfs_rq->last != se)
2c13c919 3661 break;
f1044799
PZ
3662
3663 cfs_rq->last = NULL;
2c13c919
RR
3664 }
3665}
2002c695 3666
2c13c919
RR
3667static void __clear_buddies_next(struct sched_entity *se)
3668{
3669 for_each_sched_entity(se) {
3670 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3671 if (cfs_rq->next != se)
2c13c919 3672 break;
f1044799
PZ
3673
3674 cfs_rq->next = NULL;
2c13c919 3675 }
2002c695
PZ
3676}
3677
ac53db59
RR
3678static void __clear_buddies_skip(struct sched_entity *se)
3679{
3680 for_each_sched_entity(se) {
3681 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3682 if (cfs_rq->skip != se)
ac53db59 3683 break;
f1044799
PZ
3684
3685 cfs_rq->skip = NULL;
ac53db59
RR
3686 }
3687}
3688
a571bbea
PZ
3689static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690{
2c13c919
RR
3691 if (cfs_rq->last == se)
3692 __clear_buddies_last(se);
3693
3694 if (cfs_rq->next == se)
3695 __clear_buddies_next(se);
ac53db59
RR
3696
3697 if (cfs_rq->skip == se)
3698 __clear_buddies_skip(se);
a571bbea
PZ
3699}
3700
6c16a6dc 3701static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3702
bf0f6f24 3703static void
371fd7e7 3704dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3705{
a2a2d680
DA
3706 /*
3707 * Update run-time statistics of the 'current'.
3708 */
3709 update_curr(cfs_rq);
89ee048f
VG
3710
3711 /*
3712 * When dequeuing a sched_entity, we must:
3713 * - Update loads to have both entity and cfs_rq synced with now.
3714 * - Substract its load from the cfs_rq->runnable_avg.
3715 * - Substract its previous weight from cfs_rq->load.weight.
3716 * - For group entity, update its weight to reflect the new share
3717 * of its group cfs_rq.
3718 */
d31b1a66 3719 update_load_avg(se, UPDATE_TG);
13962234 3720 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3721
4fa8d299 3722 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3723
2002c695 3724 clear_buddies(cfs_rq, se);
4793241b 3725
83b699ed 3726 if (se != cfs_rq->curr)
30cfdcfc 3727 __dequeue_entity(cfs_rq, se);
17bc14b7 3728 se->on_rq = 0;
30cfdcfc 3729 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3730
3731 /*
b60205c7
PZ
3732 * Normalize after update_curr(); which will also have moved
3733 * min_vruntime if @se is the one holding it back. But before doing
3734 * update_min_vruntime() again, which will discount @se's position and
3735 * can move min_vruntime forward still more.
88ec22d3 3736 */
371fd7e7 3737 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3738 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3739
d8b4986d
PT
3740 /* return excess runtime on last dequeue */
3741 return_cfs_rq_runtime(cfs_rq);
3742
89ee048f 3743 update_cfs_shares(se);
b60205c7
PZ
3744
3745 /*
3746 * Now advance min_vruntime if @se was the entity holding it back,
3747 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3748 * put back on, and if we advance min_vruntime, we'll be placed back
3749 * further than we started -- ie. we'll be penalized.
3750 */
3751 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3752 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3753}
3754
3755/*
3756 * Preempt the current task with a newly woken task if needed:
3757 */
7c92e54f 3758static void
2e09bf55 3759check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3760{
11697830 3761 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3762 struct sched_entity *se;
3763 s64 delta;
11697830 3764
6d0f0ebd 3765 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3766 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3767 if (delta_exec > ideal_runtime) {
8875125e 3768 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3769 /*
3770 * The current task ran long enough, ensure it doesn't get
3771 * re-elected due to buddy favours.
3772 */
3773 clear_buddies(cfs_rq, curr);
f685ceac
MG
3774 return;
3775 }
3776
3777 /*
3778 * Ensure that a task that missed wakeup preemption by a
3779 * narrow margin doesn't have to wait for a full slice.
3780 * This also mitigates buddy induced latencies under load.
3781 */
f685ceac
MG
3782 if (delta_exec < sysctl_sched_min_granularity)
3783 return;
3784
f4cfb33e
WX
3785 se = __pick_first_entity(cfs_rq);
3786 delta = curr->vruntime - se->vruntime;
f685ceac 3787
f4cfb33e
WX
3788 if (delta < 0)
3789 return;
d7d82944 3790
f4cfb33e 3791 if (delta > ideal_runtime)
8875125e 3792 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3793}
3794
83b699ed 3795static void
8494f412 3796set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3797{
83b699ed
SV
3798 /* 'current' is not kept within the tree. */
3799 if (se->on_rq) {
3800 /*
3801 * Any task has to be enqueued before it get to execute on
3802 * a CPU. So account for the time it spent waiting on the
3803 * runqueue.
3804 */
4fa8d299 3805 update_stats_wait_end(cfs_rq, se);
83b699ed 3806 __dequeue_entity(cfs_rq, se);
d31b1a66 3807 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3808 }
3809
79303e9e 3810 update_stats_curr_start(cfs_rq, se);
429d43bc 3811 cfs_rq->curr = se;
4fa8d299 3812
eba1ed4b
IM
3813 /*
3814 * Track our maximum slice length, if the CPU's load is at
3815 * least twice that of our own weight (i.e. dont track it
3816 * when there are only lesser-weight tasks around):
3817 */
cb251765 3818 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3819 schedstat_set(se->statistics.slice_max,
3820 max((u64)schedstat_val(se->statistics.slice_max),
3821 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3822 }
4fa8d299 3823
4a55b450 3824 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3825}
3826
3f3a4904
PZ
3827static int
3828wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3829
ac53db59
RR
3830/*
3831 * Pick the next process, keeping these things in mind, in this order:
3832 * 1) keep things fair between processes/task groups
3833 * 2) pick the "next" process, since someone really wants that to run
3834 * 3) pick the "last" process, for cache locality
3835 * 4) do not run the "skip" process, if something else is available
3836 */
678d5718
PZ
3837static struct sched_entity *
3838pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3839{
678d5718
PZ
3840 struct sched_entity *left = __pick_first_entity(cfs_rq);
3841 struct sched_entity *se;
3842
3843 /*
3844 * If curr is set we have to see if its left of the leftmost entity
3845 * still in the tree, provided there was anything in the tree at all.
3846 */
3847 if (!left || (curr && entity_before(curr, left)))
3848 left = curr;
3849
3850 se = left; /* ideally we run the leftmost entity */
f4b6755f 3851
ac53db59
RR
3852 /*
3853 * Avoid running the skip buddy, if running something else can
3854 * be done without getting too unfair.
3855 */
3856 if (cfs_rq->skip == se) {
678d5718
PZ
3857 struct sched_entity *second;
3858
3859 if (se == curr) {
3860 second = __pick_first_entity(cfs_rq);
3861 } else {
3862 second = __pick_next_entity(se);
3863 if (!second || (curr && entity_before(curr, second)))
3864 second = curr;
3865 }
3866
ac53db59
RR
3867 if (second && wakeup_preempt_entity(second, left) < 1)
3868 se = second;
3869 }
aa2ac252 3870
f685ceac
MG
3871 /*
3872 * Prefer last buddy, try to return the CPU to a preempted task.
3873 */
3874 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3875 se = cfs_rq->last;
3876
ac53db59
RR
3877 /*
3878 * Someone really wants this to run. If it's not unfair, run it.
3879 */
3880 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3881 se = cfs_rq->next;
3882
f685ceac 3883 clear_buddies(cfs_rq, se);
4793241b
PZ
3884
3885 return se;
aa2ac252
PZ
3886}
3887
678d5718 3888static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3889
ab6cde26 3890static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3891{
3892 /*
3893 * If still on the runqueue then deactivate_task()
3894 * was not called and update_curr() has to be done:
3895 */
3896 if (prev->on_rq)
b7cc0896 3897 update_curr(cfs_rq);
bf0f6f24 3898
d3d9dc33
PT
3899 /* throttle cfs_rqs exceeding runtime */
3900 check_cfs_rq_runtime(cfs_rq);
3901
4fa8d299 3902 check_spread(cfs_rq, prev);
cb251765 3903
30cfdcfc 3904 if (prev->on_rq) {
4fa8d299 3905 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3906 /* Put 'current' back into the tree. */
3907 __enqueue_entity(cfs_rq, prev);
9d85f21c 3908 /* in !on_rq case, update occurred at dequeue */
9d89c257 3909 update_load_avg(prev, 0);
30cfdcfc 3910 }
429d43bc 3911 cfs_rq->curr = NULL;
bf0f6f24
IM
3912}
3913
8f4d37ec
PZ
3914static void
3915entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3916{
bf0f6f24 3917 /*
30cfdcfc 3918 * Update run-time statistics of the 'current'.
bf0f6f24 3919 */
30cfdcfc 3920 update_curr(cfs_rq);
bf0f6f24 3921
9d85f21c
PT
3922 /*
3923 * Ensure that runnable average is periodically updated.
3924 */
d31b1a66 3925 update_load_avg(curr, UPDATE_TG);
89ee048f 3926 update_cfs_shares(curr);
9d85f21c 3927
8f4d37ec
PZ
3928#ifdef CONFIG_SCHED_HRTICK
3929 /*
3930 * queued ticks are scheduled to match the slice, so don't bother
3931 * validating it and just reschedule.
3932 */
983ed7a6 3933 if (queued) {
8875125e 3934 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3935 return;
3936 }
8f4d37ec
PZ
3937 /*
3938 * don't let the period tick interfere with the hrtick preemption
3939 */
3940 if (!sched_feat(DOUBLE_TICK) &&
3941 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3942 return;
3943#endif
3944
2c2efaed 3945 if (cfs_rq->nr_running > 1)
2e09bf55 3946 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3947}
3948
ab84d31e
PT
3949
3950/**************************************************
3951 * CFS bandwidth control machinery
3952 */
3953
3954#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3955
3956#ifdef HAVE_JUMP_LABEL
c5905afb 3957static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3958
3959static inline bool cfs_bandwidth_used(void)
3960{
c5905afb 3961 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3962}
3963
1ee14e6c 3964void cfs_bandwidth_usage_inc(void)
029632fb 3965{
1ee14e6c
BS
3966 static_key_slow_inc(&__cfs_bandwidth_used);
3967}
3968
3969void cfs_bandwidth_usage_dec(void)
3970{
3971 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3972}
3973#else /* HAVE_JUMP_LABEL */
3974static bool cfs_bandwidth_used(void)
3975{
3976 return true;
3977}
3978
1ee14e6c
BS
3979void cfs_bandwidth_usage_inc(void) {}
3980void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3981#endif /* HAVE_JUMP_LABEL */
3982
ab84d31e
PT
3983/*
3984 * default period for cfs group bandwidth.
3985 * default: 0.1s, units: nanoseconds
3986 */
3987static inline u64 default_cfs_period(void)
3988{
3989 return 100000000ULL;
3990}
ec12cb7f
PT
3991
3992static inline u64 sched_cfs_bandwidth_slice(void)
3993{
3994 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3995}
3996
a9cf55b2
PT
3997/*
3998 * Replenish runtime according to assigned quota and update expiration time.
3999 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4000 * additional synchronization around rq->lock.
4001 *
4002 * requires cfs_b->lock
4003 */
029632fb 4004void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4005{
4006 u64 now;
4007
4008 if (cfs_b->quota == RUNTIME_INF)
4009 return;
4010
4011 now = sched_clock_cpu(smp_processor_id());
4012 cfs_b->runtime = cfs_b->quota;
4013 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4014}
4015
029632fb
PZ
4016static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4017{
4018 return &tg->cfs_bandwidth;
4019}
4020
f1b17280
PT
4021/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4022static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4023{
4024 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4025 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4026
78becc27 4027 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4028}
4029
85dac906
PT
4030/* returns 0 on failure to allocate runtime */
4031static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4032{
4033 struct task_group *tg = cfs_rq->tg;
4034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4035 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4036
4037 /* note: this is a positive sum as runtime_remaining <= 0 */
4038 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4039
4040 raw_spin_lock(&cfs_b->lock);
4041 if (cfs_b->quota == RUNTIME_INF)
4042 amount = min_amount;
58088ad0 4043 else {
77a4d1a1 4044 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4045
4046 if (cfs_b->runtime > 0) {
4047 amount = min(cfs_b->runtime, min_amount);
4048 cfs_b->runtime -= amount;
4049 cfs_b->idle = 0;
4050 }
ec12cb7f 4051 }
a9cf55b2 4052 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4053 raw_spin_unlock(&cfs_b->lock);
4054
4055 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4056 /*
4057 * we may have advanced our local expiration to account for allowed
4058 * spread between our sched_clock and the one on which runtime was
4059 * issued.
4060 */
4061 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4062 cfs_rq->runtime_expires = expires;
85dac906
PT
4063
4064 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4065}
4066
a9cf55b2
PT
4067/*
4068 * Note: This depends on the synchronization provided by sched_clock and the
4069 * fact that rq->clock snapshots this value.
4070 */
4071static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4072{
a9cf55b2 4073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4074
4075 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4076 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4077 return;
4078
a9cf55b2
PT
4079 if (cfs_rq->runtime_remaining < 0)
4080 return;
4081
4082 /*
4083 * If the local deadline has passed we have to consider the
4084 * possibility that our sched_clock is 'fast' and the global deadline
4085 * has not truly expired.
4086 *
4087 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4088 * whether the global deadline has advanced. It is valid to compare
4089 * cfs_b->runtime_expires without any locks since we only care about
4090 * exact equality, so a partial write will still work.
a9cf55b2
PT
4091 */
4092
51f2176d 4093 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4094 /* extend local deadline, drift is bounded above by 2 ticks */
4095 cfs_rq->runtime_expires += TICK_NSEC;
4096 } else {
4097 /* global deadline is ahead, expiration has passed */
4098 cfs_rq->runtime_remaining = 0;
4099 }
4100}
4101
9dbdb155 4102static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4103{
4104 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4105 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4106 expire_cfs_rq_runtime(cfs_rq);
4107
4108 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4109 return;
4110
85dac906
PT
4111 /*
4112 * if we're unable to extend our runtime we resched so that the active
4113 * hierarchy can be throttled
4114 */
4115 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4116 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4117}
4118
6c16a6dc 4119static __always_inline
9dbdb155 4120void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4121{
56f570e5 4122 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4123 return;
4124
4125 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4126}
4127
85dac906
PT
4128static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4129{
56f570e5 4130 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4131}
4132
64660c86
PT
4133/* check whether cfs_rq, or any parent, is throttled */
4134static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4135{
56f570e5 4136 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4137}
4138
4139/*
4140 * Ensure that neither of the group entities corresponding to src_cpu or
4141 * dest_cpu are members of a throttled hierarchy when performing group
4142 * load-balance operations.
4143 */
4144static inline int throttled_lb_pair(struct task_group *tg,
4145 int src_cpu, int dest_cpu)
4146{
4147 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4148
4149 src_cfs_rq = tg->cfs_rq[src_cpu];
4150 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4151
4152 return throttled_hierarchy(src_cfs_rq) ||
4153 throttled_hierarchy(dest_cfs_rq);
4154}
4155
4156/* updated child weight may affect parent so we have to do this bottom up */
4157static int tg_unthrottle_up(struct task_group *tg, void *data)
4158{
4159 struct rq *rq = data;
4160 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4161
4162 cfs_rq->throttle_count--;
64660c86 4163 if (!cfs_rq->throttle_count) {
f1b17280 4164 /* adjust cfs_rq_clock_task() */
78becc27 4165 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4166 cfs_rq->throttled_clock_task;
64660c86 4167 }
64660c86
PT
4168
4169 return 0;
4170}
4171
4172static int tg_throttle_down(struct task_group *tg, void *data)
4173{
4174 struct rq *rq = data;
4175 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4176
82958366
PT
4177 /* group is entering throttled state, stop time */
4178 if (!cfs_rq->throttle_count)
78becc27 4179 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4180 cfs_rq->throttle_count++;
4181
4182 return 0;
4183}
4184
d3d9dc33 4185static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4186{
4187 struct rq *rq = rq_of(cfs_rq);
4188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4189 struct sched_entity *se;
4190 long task_delta, dequeue = 1;
77a4d1a1 4191 bool empty;
85dac906
PT
4192
4193 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4194
f1b17280 4195 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4196 rcu_read_lock();
4197 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4198 rcu_read_unlock();
85dac906
PT
4199
4200 task_delta = cfs_rq->h_nr_running;
4201 for_each_sched_entity(se) {
4202 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4203 /* throttled entity or throttle-on-deactivate */
4204 if (!se->on_rq)
4205 break;
4206
4207 if (dequeue)
4208 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4209 qcfs_rq->h_nr_running -= task_delta;
4210
4211 if (qcfs_rq->load.weight)
4212 dequeue = 0;
4213 }
4214
4215 if (!se)
72465447 4216 sub_nr_running(rq, task_delta);
85dac906
PT
4217
4218 cfs_rq->throttled = 1;
78becc27 4219 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4220 raw_spin_lock(&cfs_b->lock);
d49db342 4221 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4222
c06f04c7
BS
4223 /*
4224 * Add to the _head_ of the list, so that an already-started
4225 * distribute_cfs_runtime will not see us
4226 */
4227 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4228
4229 /*
4230 * If we're the first throttled task, make sure the bandwidth
4231 * timer is running.
4232 */
4233 if (empty)
4234 start_cfs_bandwidth(cfs_b);
4235
85dac906
PT
4236 raw_spin_unlock(&cfs_b->lock);
4237}
4238
029632fb 4239void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4240{
4241 struct rq *rq = rq_of(cfs_rq);
4242 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4243 struct sched_entity *se;
4244 int enqueue = 1;
4245 long task_delta;
4246
22b958d8 4247 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4248
4249 cfs_rq->throttled = 0;
1a55af2e
FW
4250
4251 update_rq_clock(rq);
4252
671fd9da 4253 raw_spin_lock(&cfs_b->lock);
78becc27 4254 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4255 list_del_rcu(&cfs_rq->throttled_list);
4256 raw_spin_unlock(&cfs_b->lock);
4257
64660c86
PT
4258 /* update hierarchical throttle state */
4259 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4260
671fd9da
PT
4261 if (!cfs_rq->load.weight)
4262 return;
4263
4264 task_delta = cfs_rq->h_nr_running;
4265 for_each_sched_entity(se) {
4266 if (se->on_rq)
4267 enqueue = 0;
4268
4269 cfs_rq = cfs_rq_of(se);
4270 if (enqueue)
4271 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4272 cfs_rq->h_nr_running += task_delta;
4273
4274 if (cfs_rq_throttled(cfs_rq))
4275 break;
4276 }
4277
4278 if (!se)
72465447 4279 add_nr_running(rq, task_delta);
671fd9da
PT
4280
4281 /* determine whether we need to wake up potentially idle cpu */
4282 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4283 resched_curr(rq);
671fd9da
PT
4284}
4285
4286static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4287 u64 remaining, u64 expires)
4288{
4289 struct cfs_rq *cfs_rq;
c06f04c7
BS
4290 u64 runtime;
4291 u64 starting_runtime = remaining;
671fd9da
PT
4292
4293 rcu_read_lock();
4294 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4295 throttled_list) {
4296 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4297 struct rq_flags rf;
671fd9da 4298
8a8c69c3 4299 rq_lock(rq, &rf);
671fd9da
PT
4300 if (!cfs_rq_throttled(cfs_rq))
4301 goto next;
4302
4303 runtime = -cfs_rq->runtime_remaining + 1;
4304 if (runtime > remaining)
4305 runtime = remaining;
4306 remaining -= runtime;
4307
4308 cfs_rq->runtime_remaining += runtime;
4309 cfs_rq->runtime_expires = expires;
4310
4311 /* we check whether we're throttled above */
4312 if (cfs_rq->runtime_remaining > 0)
4313 unthrottle_cfs_rq(cfs_rq);
4314
4315next:
8a8c69c3 4316 rq_unlock(rq, &rf);
671fd9da
PT
4317
4318 if (!remaining)
4319 break;
4320 }
4321 rcu_read_unlock();
4322
c06f04c7 4323 return starting_runtime - remaining;
671fd9da
PT
4324}
4325
58088ad0
PT
4326/*
4327 * Responsible for refilling a task_group's bandwidth and unthrottling its
4328 * cfs_rqs as appropriate. If there has been no activity within the last
4329 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4330 * used to track this state.
4331 */
4332static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4333{
671fd9da 4334 u64 runtime, runtime_expires;
51f2176d 4335 int throttled;
58088ad0 4336
58088ad0
PT
4337 /* no need to continue the timer with no bandwidth constraint */
4338 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4339 goto out_deactivate;
58088ad0 4340
671fd9da 4341 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4342 cfs_b->nr_periods += overrun;
671fd9da 4343
51f2176d
BS
4344 /*
4345 * idle depends on !throttled (for the case of a large deficit), and if
4346 * we're going inactive then everything else can be deferred
4347 */
4348 if (cfs_b->idle && !throttled)
4349 goto out_deactivate;
a9cf55b2
PT
4350
4351 __refill_cfs_bandwidth_runtime(cfs_b);
4352
671fd9da
PT
4353 if (!throttled) {
4354 /* mark as potentially idle for the upcoming period */
4355 cfs_b->idle = 1;
51f2176d 4356 return 0;
671fd9da
PT
4357 }
4358
e8da1b18
NR
4359 /* account preceding periods in which throttling occurred */
4360 cfs_b->nr_throttled += overrun;
4361
671fd9da 4362 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4363
4364 /*
c06f04c7
BS
4365 * This check is repeated as we are holding onto the new bandwidth while
4366 * we unthrottle. This can potentially race with an unthrottled group
4367 * trying to acquire new bandwidth from the global pool. This can result
4368 * in us over-using our runtime if it is all used during this loop, but
4369 * only by limited amounts in that extreme case.
671fd9da 4370 */
c06f04c7
BS
4371 while (throttled && cfs_b->runtime > 0) {
4372 runtime = cfs_b->runtime;
671fd9da
PT
4373 raw_spin_unlock(&cfs_b->lock);
4374 /* we can't nest cfs_b->lock while distributing bandwidth */
4375 runtime = distribute_cfs_runtime(cfs_b, runtime,
4376 runtime_expires);
4377 raw_spin_lock(&cfs_b->lock);
4378
4379 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4380
4381 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4382 }
58088ad0 4383
671fd9da
PT
4384 /*
4385 * While we are ensured activity in the period following an
4386 * unthrottle, this also covers the case in which the new bandwidth is
4387 * insufficient to cover the existing bandwidth deficit. (Forcing the
4388 * timer to remain active while there are any throttled entities.)
4389 */
4390 cfs_b->idle = 0;
58088ad0 4391
51f2176d
BS
4392 return 0;
4393
4394out_deactivate:
51f2176d 4395 return 1;
58088ad0 4396}
d3d9dc33 4397
d8b4986d
PT
4398/* a cfs_rq won't donate quota below this amount */
4399static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4400/* minimum remaining period time to redistribute slack quota */
4401static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4402/* how long we wait to gather additional slack before distributing */
4403static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4404
db06e78c
BS
4405/*
4406 * Are we near the end of the current quota period?
4407 *
4408 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4409 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4410 * migrate_hrtimers, base is never cleared, so we are fine.
4411 */
d8b4986d
PT
4412static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4413{
4414 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4415 u64 remaining;
4416
4417 /* if the call-back is running a quota refresh is already occurring */
4418 if (hrtimer_callback_running(refresh_timer))
4419 return 1;
4420
4421 /* is a quota refresh about to occur? */
4422 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4423 if (remaining < min_expire)
4424 return 1;
4425
4426 return 0;
4427}
4428
4429static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4430{
4431 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4432
4433 /* if there's a quota refresh soon don't bother with slack */
4434 if (runtime_refresh_within(cfs_b, min_left))
4435 return;
4436
4cfafd30
PZ
4437 hrtimer_start(&cfs_b->slack_timer,
4438 ns_to_ktime(cfs_bandwidth_slack_period),
4439 HRTIMER_MODE_REL);
d8b4986d
PT
4440}
4441
4442/* we know any runtime found here is valid as update_curr() precedes return */
4443static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4444{
4445 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4446 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4447
4448 if (slack_runtime <= 0)
4449 return;
4450
4451 raw_spin_lock(&cfs_b->lock);
4452 if (cfs_b->quota != RUNTIME_INF &&
4453 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4454 cfs_b->runtime += slack_runtime;
4455
4456 /* we are under rq->lock, defer unthrottling using a timer */
4457 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4458 !list_empty(&cfs_b->throttled_cfs_rq))
4459 start_cfs_slack_bandwidth(cfs_b);
4460 }
4461 raw_spin_unlock(&cfs_b->lock);
4462
4463 /* even if it's not valid for return we don't want to try again */
4464 cfs_rq->runtime_remaining -= slack_runtime;
4465}
4466
4467static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4468{
56f570e5
PT
4469 if (!cfs_bandwidth_used())
4470 return;
4471
fccfdc6f 4472 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4473 return;
4474
4475 __return_cfs_rq_runtime(cfs_rq);
4476}
4477
4478/*
4479 * This is done with a timer (instead of inline with bandwidth return) since
4480 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4481 */
4482static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4483{
4484 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4485 u64 expires;
4486
4487 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4488 raw_spin_lock(&cfs_b->lock);
4489 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4490 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4491 return;
db06e78c 4492 }
d8b4986d 4493
c06f04c7 4494 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4495 runtime = cfs_b->runtime;
c06f04c7 4496
d8b4986d
PT
4497 expires = cfs_b->runtime_expires;
4498 raw_spin_unlock(&cfs_b->lock);
4499
4500 if (!runtime)
4501 return;
4502
4503 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4504
4505 raw_spin_lock(&cfs_b->lock);
4506 if (expires == cfs_b->runtime_expires)
c06f04c7 4507 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4508 raw_spin_unlock(&cfs_b->lock);
4509}
4510
d3d9dc33
PT
4511/*
4512 * When a group wakes up we want to make sure that its quota is not already
4513 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4514 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4515 */
4516static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4517{
56f570e5
PT
4518 if (!cfs_bandwidth_used())
4519 return;
4520
d3d9dc33
PT
4521 /* an active group must be handled by the update_curr()->put() path */
4522 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4523 return;
4524
4525 /* ensure the group is not already throttled */
4526 if (cfs_rq_throttled(cfs_rq))
4527 return;
4528
4529 /* update runtime allocation */
4530 account_cfs_rq_runtime(cfs_rq, 0);
4531 if (cfs_rq->runtime_remaining <= 0)
4532 throttle_cfs_rq(cfs_rq);
4533}
4534
55e16d30
PZ
4535static void sync_throttle(struct task_group *tg, int cpu)
4536{
4537 struct cfs_rq *pcfs_rq, *cfs_rq;
4538
4539 if (!cfs_bandwidth_used())
4540 return;
4541
4542 if (!tg->parent)
4543 return;
4544
4545 cfs_rq = tg->cfs_rq[cpu];
4546 pcfs_rq = tg->parent->cfs_rq[cpu];
4547
4548 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4549 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4550}
4551
d3d9dc33 4552/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4553static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4554{
56f570e5 4555 if (!cfs_bandwidth_used())
678d5718 4556 return false;
56f570e5 4557
d3d9dc33 4558 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4559 return false;
d3d9dc33
PT
4560
4561 /*
4562 * it's possible for a throttled entity to be forced into a running
4563 * state (e.g. set_curr_task), in this case we're finished.
4564 */
4565 if (cfs_rq_throttled(cfs_rq))
678d5718 4566 return true;
d3d9dc33
PT
4567
4568 throttle_cfs_rq(cfs_rq);
678d5718 4569 return true;
d3d9dc33 4570}
029632fb 4571
029632fb
PZ
4572static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4573{
4574 struct cfs_bandwidth *cfs_b =
4575 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4576
029632fb
PZ
4577 do_sched_cfs_slack_timer(cfs_b);
4578
4579 return HRTIMER_NORESTART;
4580}
4581
4582static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4583{
4584 struct cfs_bandwidth *cfs_b =
4585 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4586 int overrun;
4587 int idle = 0;
4588
51f2176d 4589 raw_spin_lock(&cfs_b->lock);
029632fb 4590 for (;;) {
77a4d1a1 4591 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4592 if (!overrun)
4593 break;
4594
4595 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4596 }
4cfafd30
PZ
4597 if (idle)
4598 cfs_b->period_active = 0;
51f2176d 4599 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4600
4601 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4602}
4603
4604void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4605{
4606 raw_spin_lock_init(&cfs_b->lock);
4607 cfs_b->runtime = 0;
4608 cfs_b->quota = RUNTIME_INF;
4609 cfs_b->period = ns_to_ktime(default_cfs_period());
4610
4611 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4612 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4613 cfs_b->period_timer.function = sched_cfs_period_timer;
4614 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4615 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4616}
4617
4618static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4619{
4620 cfs_rq->runtime_enabled = 0;
4621 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4622}
4623
77a4d1a1 4624void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4625{
4cfafd30 4626 lockdep_assert_held(&cfs_b->lock);
029632fb 4627
4cfafd30
PZ
4628 if (!cfs_b->period_active) {
4629 cfs_b->period_active = 1;
4630 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4631 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4632 }
029632fb
PZ
4633}
4634
4635static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4636{
7f1a169b
TH
4637 /* init_cfs_bandwidth() was not called */
4638 if (!cfs_b->throttled_cfs_rq.next)
4639 return;
4640
029632fb
PZ
4641 hrtimer_cancel(&cfs_b->period_timer);
4642 hrtimer_cancel(&cfs_b->slack_timer);
4643}
4644
0e59bdae
KT
4645static void __maybe_unused update_runtime_enabled(struct rq *rq)
4646{
4647 struct cfs_rq *cfs_rq;
4648
4649 for_each_leaf_cfs_rq(rq, cfs_rq) {
4650 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4651
4652 raw_spin_lock(&cfs_b->lock);
4653 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4654 raw_spin_unlock(&cfs_b->lock);
4655 }
4656}
4657
38dc3348 4658static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4659{
4660 struct cfs_rq *cfs_rq;
4661
4662 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4663 if (!cfs_rq->runtime_enabled)
4664 continue;
4665
4666 /*
4667 * clock_task is not advancing so we just need to make sure
4668 * there's some valid quota amount
4669 */
51f2176d 4670 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4671 /*
4672 * Offline rq is schedulable till cpu is completely disabled
4673 * in take_cpu_down(), so we prevent new cfs throttling here.
4674 */
4675 cfs_rq->runtime_enabled = 0;
4676
029632fb
PZ
4677 if (cfs_rq_throttled(cfs_rq))
4678 unthrottle_cfs_rq(cfs_rq);
4679 }
4680}
4681
4682#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4683static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4684{
78becc27 4685 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4686}
4687
9dbdb155 4688static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4689static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4690static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4691static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4692static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4693
4694static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4695{
4696 return 0;
4697}
64660c86
PT
4698
4699static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4700{
4701 return 0;
4702}
4703
4704static inline int throttled_lb_pair(struct task_group *tg,
4705 int src_cpu, int dest_cpu)
4706{
4707 return 0;
4708}
029632fb
PZ
4709
4710void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4711
4712#ifdef CONFIG_FAIR_GROUP_SCHED
4713static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4714#endif
4715
029632fb
PZ
4716static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4717{
4718 return NULL;
4719}
4720static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4721static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4722static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4723
4724#endif /* CONFIG_CFS_BANDWIDTH */
4725
bf0f6f24
IM
4726/**************************************************
4727 * CFS operations on tasks:
4728 */
4729
8f4d37ec
PZ
4730#ifdef CONFIG_SCHED_HRTICK
4731static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4732{
8f4d37ec
PZ
4733 struct sched_entity *se = &p->se;
4734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4735
9148a3a1 4736 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4737
8bf46a39 4738 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4739 u64 slice = sched_slice(cfs_rq, se);
4740 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4741 s64 delta = slice - ran;
4742
4743 if (delta < 0) {
4744 if (rq->curr == p)
8875125e 4745 resched_curr(rq);
8f4d37ec
PZ
4746 return;
4747 }
31656519 4748 hrtick_start(rq, delta);
8f4d37ec
PZ
4749 }
4750}
a4c2f00f
PZ
4751
4752/*
4753 * called from enqueue/dequeue and updates the hrtick when the
4754 * current task is from our class and nr_running is low enough
4755 * to matter.
4756 */
4757static void hrtick_update(struct rq *rq)
4758{
4759 struct task_struct *curr = rq->curr;
4760
b39e66ea 4761 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4762 return;
4763
4764 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4765 hrtick_start_fair(rq, curr);
4766}
55e12e5e 4767#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4768static inline void
4769hrtick_start_fair(struct rq *rq, struct task_struct *p)
4770{
4771}
a4c2f00f
PZ
4772
4773static inline void hrtick_update(struct rq *rq)
4774{
4775}
8f4d37ec
PZ
4776#endif
4777
bf0f6f24
IM
4778/*
4779 * The enqueue_task method is called before nr_running is
4780 * increased. Here we update the fair scheduling stats and
4781 * then put the task into the rbtree:
4782 */
ea87bb78 4783static void
371fd7e7 4784enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4785{
4786 struct cfs_rq *cfs_rq;
62fb1851 4787 struct sched_entity *se = &p->se;
bf0f6f24 4788
8c34ab19
RW
4789 /*
4790 * If in_iowait is set, the code below may not trigger any cpufreq
4791 * utilization updates, so do it here explicitly with the IOWAIT flag
4792 * passed.
4793 */
4794 if (p->in_iowait)
4795 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4796
bf0f6f24 4797 for_each_sched_entity(se) {
62fb1851 4798 if (se->on_rq)
bf0f6f24
IM
4799 break;
4800 cfs_rq = cfs_rq_of(se);
88ec22d3 4801 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4802
4803 /*
4804 * end evaluation on encountering a throttled cfs_rq
4805 *
4806 * note: in the case of encountering a throttled cfs_rq we will
4807 * post the final h_nr_running increment below.
e210bffd 4808 */
85dac906
PT
4809 if (cfs_rq_throttled(cfs_rq))
4810 break;
953bfcd1 4811 cfs_rq->h_nr_running++;
85dac906 4812
88ec22d3 4813 flags = ENQUEUE_WAKEUP;
bf0f6f24 4814 }
8f4d37ec 4815
2069dd75 4816 for_each_sched_entity(se) {
0f317143 4817 cfs_rq = cfs_rq_of(se);
953bfcd1 4818 cfs_rq->h_nr_running++;
2069dd75 4819
85dac906
PT
4820 if (cfs_rq_throttled(cfs_rq))
4821 break;
4822
d31b1a66 4823 update_load_avg(se, UPDATE_TG);
89ee048f 4824 update_cfs_shares(se);
2069dd75
PZ
4825 }
4826
cd126afe 4827 if (!se)
72465447 4828 add_nr_running(rq, 1);
cd126afe 4829
a4c2f00f 4830 hrtick_update(rq);
bf0f6f24
IM
4831}
4832
2f36825b
VP
4833static void set_next_buddy(struct sched_entity *se);
4834
bf0f6f24
IM
4835/*
4836 * The dequeue_task method is called before nr_running is
4837 * decreased. We remove the task from the rbtree and
4838 * update the fair scheduling stats:
4839 */
371fd7e7 4840static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4841{
4842 struct cfs_rq *cfs_rq;
62fb1851 4843 struct sched_entity *se = &p->se;
2f36825b 4844 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4845
4846 for_each_sched_entity(se) {
4847 cfs_rq = cfs_rq_of(se);
371fd7e7 4848 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4849
4850 /*
4851 * end evaluation on encountering a throttled cfs_rq
4852 *
4853 * note: in the case of encountering a throttled cfs_rq we will
4854 * post the final h_nr_running decrement below.
4855 */
4856 if (cfs_rq_throttled(cfs_rq))
4857 break;
953bfcd1 4858 cfs_rq->h_nr_running--;
2069dd75 4859
bf0f6f24 4860 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4861 if (cfs_rq->load.weight) {
754bd598
KK
4862 /* Avoid re-evaluating load for this entity: */
4863 se = parent_entity(se);
2f36825b
VP
4864 /*
4865 * Bias pick_next to pick a task from this cfs_rq, as
4866 * p is sleeping when it is within its sched_slice.
4867 */
754bd598
KK
4868 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4869 set_next_buddy(se);
bf0f6f24 4870 break;
2f36825b 4871 }
371fd7e7 4872 flags |= DEQUEUE_SLEEP;
bf0f6f24 4873 }
8f4d37ec 4874
2069dd75 4875 for_each_sched_entity(se) {
0f317143 4876 cfs_rq = cfs_rq_of(se);
953bfcd1 4877 cfs_rq->h_nr_running--;
2069dd75 4878
85dac906
PT
4879 if (cfs_rq_throttled(cfs_rq))
4880 break;
4881
d31b1a66 4882 update_load_avg(se, UPDATE_TG);
89ee048f 4883 update_cfs_shares(se);
2069dd75
PZ
4884 }
4885
cd126afe 4886 if (!se)
72465447 4887 sub_nr_running(rq, 1);
cd126afe 4888
a4c2f00f 4889 hrtick_update(rq);
bf0f6f24
IM
4890}
4891
e7693a36 4892#ifdef CONFIG_SMP
10e2f1ac
PZ
4893
4894/* Working cpumask for: load_balance, load_balance_newidle. */
4895DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4896DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4897
9fd81dd5 4898#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4899/*
4900 * per rq 'load' arrray crap; XXX kill this.
4901 */
4902
4903/*
d937cdc5 4904 * The exact cpuload calculated at every tick would be:
3289bdb4 4905 *
d937cdc5
PZ
4906 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4907 *
4908 * If a cpu misses updates for n ticks (as it was idle) and update gets
4909 * called on the n+1-th tick when cpu may be busy, then we have:
4910 *
4911 * load_n = (1 - 1/2^i)^n * load_0
4912 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4913 *
4914 * decay_load_missed() below does efficient calculation of
3289bdb4 4915 *
d937cdc5
PZ
4916 * load' = (1 - 1/2^i)^n * load
4917 *
4918 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4919 * This allows us to precompute the above in said factors, thereby allowing the
4920 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4921 * fixed_power_int())
3289bdb4 4922 *
d937cdc5 4923 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4924 */
4925#define DEGRADE_SHIFT 7
d937cdc5
PZ
4926
4927static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4928static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4929 { 0, 0, 0, 0, 0, 0, 0, 0 },
4930 { 64, 32, 8, 0, 0, 0, 0, 0 },
4931 { 96, 72, 40, 12, 1, 0, 0, 0 },
4932 { 112, 98, 75, 43, 15, 1, 0, 0 },
4933 { 120, 112, 98, 76, 45, 16, 2, 0 }
4934};
3289bdb4
PZ
4935
4936/*
4937 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4938 * would be when CPU is idle and so we just decay the old load without
4939 * adding any new load.
4940 */
4941static unsigned long
4942decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4943{
4944 int j = 0;
4945
4946 if (!missed_updates)
4947 return load;
4948
4949 if (missed_updates >= degrade_zero_ticks[idx])
4950 return 0;
4951
4952 if (idx == 1)
4953 return load >> missed_updates;
4954
4955 while (missed_updates) {
4956 if (missed_updates % 2)
4957 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4958
4959 missed_updates >>= 1;
4960 j++;
4961 }
4962 return load;
4963}
9fd81dd5 4964#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4965
59543275 4966/**
cee1afce 4967 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4968 * @this_rq: The rq to update statistics for
4969 * @this_load: The current load
4970 * @pending_updates: The number of missed updates
59543275 4971 *
3289bdb4 4972 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4973 * scheduler tick (TICK_NSEC).
4974 *
4975 * This function computes a decaying average:
4976 *
4977 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4978 *
4979 * Because of NOHZ it might not get called on every tick which gives need for
4980 * the @pending_updates argument.
4981 *
4982 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4983 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4984 * = A * (A * load[i]_n-2 + B) + B
4985 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4986 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4987 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4988 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4989 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4990 *
4991 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4992 * any change in load would have resulted in the tick being turned back on.
4993 *
4994 * For regular NOHZ, this reduces to:
4995 *
4996 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4997 *
4998 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4999 * term.
3289bdb4 5000 */
1f41906a
FW
5001static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5002 unsigned long pending_updates)
3289bdb4 5003{
9fd81dd5 5004 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5005 int i, scale;
5006
5007 this_rq->nr_load_updates++;
5008
5009 /* Update our load: */
5010 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5011 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5012 unsigned long old_load, new_load;
5013
5014 /* scale is effectively 1 << i now, and >> i divides by scale */
5015
7400d3bb 5016 old_load = this_rq->cpu_load[i];
9fd81dd5 5017#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5018 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5019 if (tickless_load) {
5020 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5021 /*
5022 * old_load can never be a negative value because a
5023 * decayed tickless_load cannot be greater than the
5024 * original tickless_load.
5025 */
5026 old_load += tickless_load;
5027 }
9fd81dd5 5028#endif
3289bdb4
PZ
5029 new_load = this_load;
5030 /*
5031 * Round up the averaging division if load is increasing. This
5032 * prevents us from getting stuck on 9 if the load is 10, for
5033 * example.
5034 */
5035 if (new_load > old_load)
5036 new_load += scale - 1;
5037
5038 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5039 }
5040
5041 sched_avg_update(this_rq);
5042}
5043
7ea241af
YD
5044/* Used instead of source_load when we know the type == 0 */
5045static unsigned long weighted_cpuload(const int cpu)
5046{
5047 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5048}
5049
3289bdb4 5050#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5051/*
5052 * There is no sane way to deal with nohz on smp when using jiffies because the
5053 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5054 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5055 *
5056 * Therefore we need to avoid the delta approach from the regular tick when
5057 * possible since that would seriously skew the load calculation. This is why we
5058 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5059 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5060 * loop exit, nohz_idle_balance, nohz full exit...)
5061 *
5062 * This means we might still be one tick off for nohz periods.
5063 */
5064
5065static void cpu_load_update_nohz(struct rq *this_rq,
5066 unsigned long curr_jiffies,
5067 unsigned long load)
be68a682
FW
5068{
5069 unsigned long pending_updates;
5070
5071 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5072 if (pending_updates) {
5073 this_rq->last_load_update_tick = curr_jiffies;
5074 /*
5075 * In the regular NOHZ case, we were idle, this means load 0.
5076 * In the NOHZ_FULL case, we were non-idle, we should consider
5077 * its weighted load.
5078 */
1f41906a 5079 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5080 }
5081}
5082
3289bdb4
PZ
5083/*
5084 * Called from nohz_idle_balance() to update the load ratings before doing the
5085 * idle balance.
5086 */
cee1afce 5087static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5088{
3289bdb4
PZ
5089 /*
5090 * bail if there's load or we're actually up-to-date.
5091 */
be68a682 5092 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5093 return;
5094
1f41906a 5095 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5096}
5097
5098/*
1f41906a
FW
5099 * Record CPU load on nohz entry so we know the tickless load to account
5100 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5101 * than other cpu_load[idx] but it should be fine as cpu_load readers
5102 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5103 */
1f41906a 5104void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5105{
5106 struct rq *this_rq = this_rq();
1f41906a
FW
5107
5108 /*
5109 * This is all lockless but should be fine. If weighted_cpuload changes
5110 * concurrently we'll exit nohz. And cpu_load write can race with
5111 * cpu_load_update_idle() but both updater would be writing the same.
5112 */
5113 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5114}
5115
5116/*
5117 * Account the tickless load in the end of a nohz frame.
5118 */
5119void cpu_load_update_nohz_stop(void)
5120{
316c1608 5121 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5122 struct rq *this_rq = this_rq();
5123 unsigned long load;
8a8c69c3 5124 struct rq_flags rf;
3289bdb4
PZ
5125
5126 if (curr_jiffies == this_rq->last_load_update_tick)
5127 return;
5128
1f41906a 5129 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5130 rq_lock(this_rq, &rf);
b52fad2d 5131 update_rq_clock(this_rq);
1f41906a 5132 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5133 rq_unlock(this_rq, &rf);
3289bdb4 5134}
1f41906a
FW
5135#else /* !CONFIG_NO_HZ_COMMON */
5136static inline void cpu_load_update_nohz(struct rq *this_rq,
5137 unsigned long curr_jiffies,
5138 unsigned long load) { }
5139#endif /* CONFIG_NO_HZ_COMMON */
5140
5141static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5142{
9fd81dd5 5143#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5144 /* See the mess around cpu_load_update_nohz(). */
5145 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5146#endif
1f41906a
FW
5147 cpu_load_update(this_rq, load, 1);
5148}
3289bdb4
PZ
5149
5150/*
5151 * Called from scheduler_tick()
5152 */
cee1afce 5153void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5154{
7ea241af 5155 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5156
5157 if (tick_nohz_tick_stopped())
5158 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5159 else
5160 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5161}
5162
029632fb
PZ
5163/*
5164 * Return a low guess at the load of a migration-source cpu weighted
5165 * according to the scheduling class and "nice" value.
5166 *
5167 * We want to under-estimate the load of migration sources, to
5168 * balance conservatively.
5169 */
5170static unsigned long source_load(int cpu, int type)
5171{
5172 struct rq *rq = cpu_rq(cpu);
5173 unsigned long total = weighted_cpuload(cpu);
5174
5175 if (type == 0 || !sched_feat(LB_BIAS))
5176 return total;
5177
5178 return min(rq->cpu_load[type-1], total);
5179}
5180
5181/*
5182 * Return a high guess at the load of a migration-target cpu weighted
5183 * according to the scheduling class and "nice" value.
5184 */
5185static unsigned long target_load(int cpu, int type)
5186{
5187 struct rq *rq = cpu_rq(cpu);
5188 unsigned long total = weighted_cpuload(cpu);
5189
5190 if (type == 0 || !sched_feat(LB_BIAS))
5191 return total;
5192
5193 return max(rq->cpu_load[type-1], total);
5194}
5195
ced549fa 5196static unsigned long capacity_of(int cpu)
029632fb 5197{
ced549fa 5198 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5199}
5200
ca6d75e6
VG
5201static unsigned long capacity_orig_of(int cpu)
5202{
5203 return cpu_rq(cpu)->cpu_capacity_orig;
5204}
5205
029632fb
PZ
5206static unsigned long cpu_avg_load_per_task(int cpu)
5207{
5208 struct rq *rq = cpu_rq(cpu);
316c1608 5209 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5210 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5211
5212 if (nr_running)
b92486cb 5213 return load_avg / nr_running;
029632fb
PZ
5214
5215 return 0;
5216}
5217
bb3469ac 5218#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5219/*
5220 * effective_load() calculates the load change as seen from the root_task_group
5221 *
5222 * Adding load to a group doesn't make a group heavier, but can cause movement
5223 * of group shares between cpus. Assuming the shares were perfectly aligned one
5224 * can calculate the shift in shares.
cf5f0acf
PZ
5225 *
5226 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5227 * on this @cpu and results in a total addition (subtraction) of @wg to the
5228 * total group weight.
5229 *
5230 * Given a runqueue weight distribution (rw_i) we can compute a shares
5231 * distribution (s_i) using:
5232 *
5233 * s_i = rw_i / \Sum rw_j (1)
5234 *
5235 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5236 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5237 * shares distribution (s_i):
5238 *
5239 * rw_i = { 2, 4, 1, 0 }
5240 * s_i = { 2/7, 4/7, 1/7, 0 }
5241 *
5242 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5243 * task used to run on and the CPU the waker is running on), we need to
5244 * compute the effect of waking a task on either CPU and, in case of a sync
5245 * wakeup, compute the effect of the current task going to sleep.
5246 *
5247 * So for a change of @wl to the local @cpu with an overall group weight change
5248 * of @wl we can compute the new shares distribution (s'_i) using:
5249 *
5250 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5251 *
5252 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5253 * differences in waking a task to CPU 0. The additional task changes the
5254 * weight and shares distributions like:
5255 *
5256 * rw'_i = { 3, 4, 1, 0 }
5257 * s'_i = { 3/8, 4/8, 1/8, 0 }
5258 *
5259 * We can then compute the difference in effective weight by using:
5260 *
5261 * dw_i = S * (s'_i - s_i) (3)
5262 *
5263 * Where 'S' is the group weight as seen by its parent.
5264 *
5265 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5266 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5267 * 4/7) times the weight of the group.
f5bfb7d9 5268 */
2069dd75 5269static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5270{
4be9daaa 5271 struct sched_entity *se = tg->se[cpu];
f1d239f7 5272
9722c2da 5273 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5274 return wl;
5275
4be9daaa 5276 for_each_sched_entity(se) {
7dd49125
PZ
5277 struct cfs_rq *cfs_rq = se->my_q;
5278 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5279
7dd49125 5280 tg = cfs_rq->tg;
bb3469ac 5281
cf5f0acf
PZ
5282 /*
5283 * W = @wg + \Sum rw_j
5284 */
7dd49125
PZ
5285 W = wg + atomic_long_read(&tg->load_avg);
5286
5287 /* Ensure \Sum rw_j >= rw_i */
5288 W -= cfs_rq->tg_load_avg_contrib;
5289 W += w;
4be9daaa 5290
cf5f0acf
PZ
5291 /*
5292 * w = rw_i + @wl
5293 */
7dd49125 5294 w += wl;
940959e9 5295
cf5f0acf
PZ
5296 /*
5297 * wl = S * s'_i; see (2)
5298 */
5299 if (W > 0 && w < W)
ab522e33 5300 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5301 else
ab522e33 5302 wl = scale_load_down(tg->shares);
940959e9 5303
cf5f0acf
PZ
5304 /*
5305 * Per the above, wl is the new se->load.weight value; since
5306 * those are clipped to [MIN_SHARES, ...) do so now. See
5307 * calc_cfs_shares().
5308 */
977dda7c
PT
5309 if (wl < MIN_SHARES)
5310 wl = MIN_SHARES;
cf5f0acf
PZ
5311
5312 /*
5313 * wl = dw_i = S * (s'_i - s_i); see (3)
5314 */
9d89c257 5315 wl -= se->avg.load_avg;
cf5f0acf
PZ
5316
5317 /*
5318 * Recursively apply this logic to all parent groups to compute
5319 * the final effective load change on the root group. Since
5320 * only the @tg group gets extra weight, all parent groups can
5321 * only redistribute existing shares. @wl is the shift in shares
5322 * resulting from this level per the above.
5323 */
4be9daaa 5324 wg = 0;
4be9daaa 5325 }
bb3469ac 5326
4be9daaa 5327 return wl;
bb3469ac
PZ
5328}
5329#else
4be9daaa 5330
58d081b5 5331static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5332{
83378269 5333 return wl;
bb3469ac 5334}
4be9daaa 5335
bb3469ac
PZ
5336#endif
5337
c58d25f3
PZ
5338static void record_wakee(struct task_struct *p)
5339{
5340 /*
5341 * Only decay a single time; tasks that have less then 1 wakeup per
5342 * jiffy will not have built up many flips.
5343 */
5344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5345 current->wakee_flips >>= 1;
5346 current->wakee_flip_decay_ts = jiffies;
5347 }
5348
5349 if (current->last_wakee != p) {
5350 current->last_wakee = p;
5351 current->wakee_flips++;
5352 }
5353}
5354
63b0e9ed
MG
5355/*
5356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5357 *
63b0e9ed 5358 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5359 * at a frequency roughly N times higher than one of its wakees.
5360 *
5361 * In order to determine whether we should let the load spread vs consolidating
5362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5363 * partner, and a factor of lls_size higher frequency in the other.
5364 *
5365 * With both conditions met, we can be relatively sure that the relationship is
5366 * non-monogamous, with partner count exceeding socket size.
5367 *
5368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5369 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5370 * socket size.
63b0e9ed 5371 */
62470419
MW
5372static int wake_wide(struct task_struct *p)
5373{
63b0e9ed
MG
5374 unsigned int master = current->wakee_flips;
5375 unsigned int slave = p->wakee_flips;
7d9ffa89 5376 int factor = this_cpu_read(sd_llc_size);
62470419 5377
63b0e9ed
MG
5378 if (master < slave)
5379 swap(master, slave);
5380 if (slave < factor || master < slave * factor)
5381 return 0;
5382 return 1;
62470419
MW
5383}
5384
772bd008
MR
5385static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5386 int prev_cpu, int sync)
098fb9db 5387{
e37b6a7b 5388 s64 this_load, load;
bd61c98f 5389 s64 this_eff_load, prev_eff_load;
772bd008 5390 int idx, this_cpu;
c88d5910 5391 struct task_group *tg;
83378269 5392 unsigned long weight;
b3137bc8 5393 int balanced;
098fb9db 5394
c88d5910
PZ
5395 idx = sd->wake_idx;
5396 this_cpu = smp_processor_id();
c88d5910
PZ
5397 load = source_load(prev_cpu, idx);
5398 this_load = target_load(this_cpu, idx);
098fb9db 5399
b3137bc8
MG
5400 /*
5401 * If sync wakeup then subtract the (maximum possible)
5402 * effect of the currently running task from the load
5403 * of the current CPU:
5404 */
83378269
PZ
5405 if (sync) {
5406 tg = task_group(current);
9d89c257 5407 weight = current->se.avg.load_avg;
83378269 5408
c88d5910 5409 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5410 load += effective_load(tg, prev_cpu, 0, -weight);
5411 }
b3137bc8 5412
83378269 5413 tg = task_group(p);
9d89c257 5414 weight = p->se.avg.load_avg;
b3137bc8 5415
71a29aa7
PZ
5416 /*
5417 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5418 * due to the sync cause above having dropped this_load to 0, we'll
5419 * always have an imbalance, but there's really nothing you can do
5420 * about that, so that's good too.
71a29aa7
PZ
5421 *
5422 * Otherwise check if either cpus are near enough in load to allow this
5423 * task to be woken on this_cpu.
5424 */
bd61c98f
VG
5425 this_eff_load = 100;
5426 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5427
bd61c98f
VG
5428 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5429 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5430
bd61c98f 5431 if (this_load > 0) {
e51fd5e2
PZ
5432 this_eff_load *= this_load +
5433 effective_load(tg, this_cpu, weight, weight);
5434
e51fd5e2 5435 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5436 }
e51fd5e2 5437
bd61c98f 5438 balanced = this_eff_load <= prev_eff_load;
098fb9db 5439
ae92882e 5440 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5441
05bfb65f
VG
5442 if (!balanced)
5443 return 0;
098fb9db 5444
ae92882e
JP
5445 schedstat_inc(sd->ttwu_move_affine);
5446 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5447
5448 return 1;
098fb9db
IM
5449}
5450
6a0b19c0
MR
5451static inline int task_util(struct task_struct *p);
5452static int cpu_util_wake(int cpu, struct task_struct *p);
5453
5454static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5455{
5456 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5457}
5458
aaee1203
PZ
5459/*
5460 * find_idlest_group finds and returns the least busy CPU group within the
5461 * domain.
5462 */
5463static struct sched_group *
78e7ed53 5464find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5465 int this_cpu, int sd_flag)
e7693a36 5466{
b3bd3de6 5467 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5468 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5469 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5470 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5471 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5472 int load_idx = sd->forkexec_idx;
6b94780e
VG
5473 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5474 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5475 (sd->imbalance_pct-100) / 100;
e7693a36 5476
c44f2a02
VG
5477 if (sd_flag & SD_BALANCE_WAKE)
5478 load_idx = sd->wake_idx;
5479
aaee1203 5480 do {
6b94780e
VG
5481 unsigned long load, avg_load, runnable_load;
5482 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5483 int local_group;
5484 int i;
e7693a36 5485
aaee1203
PZ
5486 /* Skip over this group if it has no CPUs allowed */
5487 if (!cpumask_intersects(sched_group_cpus(group),
0c98d344 5488 &p->cpus_allowed))
aaee1203
PZ
5489 continue;
5490
5491 local_group = cpumask_test_cpu(this_cpu,
5492 sched_group_cpus(group));
5493
6a0b19c0
MR
5494 /*
5495 * Tally up the load of all CPUs in the group and find
5496 * the group containing the CPU with most spare capacity.
5497 */
aaee1203 5498 avg_load = 0;
6b94780e 5499 runnable_load = 0;
6a0b19c0 5500 max_spare_cap = 0;
aaee1203
PZ
5501
5502 for_each_cpu(i, sched_group_cpus(group)) {
5503 /* Bias balancing toward cpus of our domain */
5504 if (local_group)
5505 load = source_load(i, load_idx);
5506 else
5507 load = target_load(i, load_idx);
5508
6b94780e
VG
5509 runnable_load += load;
5510
5511 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5512
5513 spare_cap = capacity_spare_wake(i, p);
5514
5515 if (spare_cap > max_spare_cap)
5516 max_spare_cap = spare_cap;
aaee1203
PZ
5517 }
5518
63b2ca30 5519 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5520 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5521 group->sgc->capacity;
5522 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5523 group->sgc->capacity;
aaee1203
PZ
5524
5525 if (local_group) {
6b94780e
VG
5526 this_runnable_load = runnable_load;
5527 this_avg_load = avg_load;
6a0b19c0
MR
5528 this_spare = max_spare_cap;
5529 } else {
6b94780e
VG
5530 if (min_runnable_load > (runnable_load + imbalance)) {
5531 /*
5532 * The runnable load is significantly smaller
5533 * so we can pick this new cpu
5534 */
5535 min_runnable_load = runnable_load;
5536 min_avg_load = avg_load;
5537 idlest = group;
5538 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5539 (100*min_avg_load > imbalance_scale*avg_load)) {
5540 /*
5541 * The runnable loads are close so take the
5542 * blocked load into account through avg_load.
5543 */
5544 min_avg_load = avg_load;
6a0b19c0
MR
5545 idlest = group;
5546 }
5547
5548 if (most_spare < max_spare_cap) {
5549 most_spare = max_spare_cap;
5550 most_spare_sg = group;
5551 }
aaee1203
PZ
5552 }
5553 } while (group = group->next, group != sd->groups);
5554
6a0b19c0
MR
5555 /*
5556 * The cross-over point between using spare capacity or least load
5557 * is too conservative for high utilization tasks on partially
5558 * utilized systems if we require spare_capacity > task_util(p),
5559 * so we allow for some task stuffing by using
5560 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5561 *
5562 * Spare capacity can't be used for fork because the utilization has
5563 * not been set yet, we must first select a rq to compute the initial
5564 * utilization.
6a0b19c0 5565 */
f519a3f1
VG
5566 if (sd_flag & SD_BALANCE_FORK)
5567 goto skip_spare;
5568
6a0b19c0 5569 if (this_spare > task_util(p) / 2 &&
6b94780e 5570 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5571 return NULL;
6b94780e
VG
5572
5573 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5574 return most_spare_sg;
5575
f519a3f1 5576skip_spare:
6b94780e
VG
5577 if (!idlest)
5578 return NULL;
5579
5580 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5581 return NULL;
6b94780e
VG
5582
5583 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5584 (100*this_avg_load < imbalance_scale*min_avg_load))
5585 return NULL;
5586
aaee1203
PZ
5587 return idlest;
5588}
5589
5590/*
5591 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5592 */
5593static int
5594find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5595{
5596 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5597 unsigned int min_exit_latency = UINT_MAX;
5598 u64 latest_idle_timestamp = 0;
5599 int least_loaded_cpu = this_cpu;
5600 int shallowest_idle_cpu = -1;
aaee1203
PZ
5601 int i;
5602
eaecf41f
MR
5603 /* Check if we have any choice: */
5604 if (group->group_weight == 1)
5605 return cpumask_first(sched_group_cpus(group));
5606
aaee1203 5607 /* Traverse only the allowed CPUs */
0c98d344 5608 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
83a0a96a
NP
5609 if (idle_cpu(i)) {
5610 struct rq *rq = cpu_rq(i);
5611 struct cpuidle_state *idle = idle_get_state(rq);
5612 if (idle && idle->exit_latency < min_exit_latency) {
5613 /*
5614 * We give priority to a CPU whose idle state
5615 * has the smallest exit latency irrespective
5616 * of any idle timestamp.
5617 */
5618 min_exit_latency = idle->exit_latency;
5619 latest_idle_timestamp = rq->idle_stamp;
5620 shallowest_idle_cpu = i;
5621 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5622 rq->idle_stamp > latest_idle_timestamp) {
5623 /*
5624 * If equal or no active idle state, then
5625 * the most recently idled CPU might have
5626 * a warmer cache.
5627 */
5628 latest_idle_timestamp = rq->idle_stamp;
5629 shallowest_idle_cpu = i;
5630 }
9f96742a 5631 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5632 load = weighted_cpuload(i);
5633 if (load < min_load || (load == min_load && i == this_cpu)) {
5634 min_load = load;
5635 least_loaded_cpu = i;
5636 }
e7693a36
GH
5637 }
5638 }
5639
83a0a96a 5640 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5641}
e7693a36 5642
10e2f1ac
PZ
5643#ifdef CONFIG_SCHED_SMT
5644
5645static inline void set_idle_cores(int cpu, int val)
5646{
5647 struct sched_domain_shared *sds;
5648
5649 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5650 if (sds)
5651 WRITE_ONCE(sds->has_idle_cores, val);
5652}
5653
5654static inline bool test_idle_cores(int cpu, bool def)
5655{
5656 struct sched_domain_shared *sds;
5657
5658 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5659 if (sds)
5660 return READ_ONCE(sds->has_idle_cores);
5661
5662 return def;
5663}
5664
5665/*
5666 * Scans the local SMT mask to see if the entire core is idle, and records this
5667 * information in sd_llc_shared->has_idle_cores.
5668 *
5669 * Since SMT siblings share all cache levels, inspecting this limited remote
5670 * state should be fairly cheap.
5671 */
1b568f0a 5672void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5673{
5674 int core = cpu_of(rq);
5675 int cpu;
5676
5677 rcu_read_lock();
5678 if (test_idle_cores(core, true))
5679 goto unlock;
5680
5681 for_each_cpu(cpu, cpu_smt_mask(core)) {
5682 if (cpu == core)
5683 continue;
5684
5685 if (!idle_cpu(cpu))
5686 goto unlock;
5687 }
5688
5689 set_idle_cores(core, 1);
5690unlock:
5691 rcu_read_unlock();
5692}
5693
5694/*
5695 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5696 * there are no idle cores left in the system; tracked through
5697 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5698 */
5699static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5700{
5701 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5702 int core, cpu;
10e2f1ac 5703
1b568f0a
PZ
5704 if (!static_branch_likely(&sched_smt_present))
5705 return -1;
5706
10e2f1ac
PZ
5707 if (!test_idle_cores(target, false))
5708 return -1;
5709
0c98d344 5710 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5711
c743f0a5 5712 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5713 bool idle = true;
5714
5715 for_each_cpu(cpu, cpu_smt_mask(core)) {
5716 cpumask_clear_cpu(cpu, cpus);
5717 if (!idle_cpu(cpu))
5718 idle = false;
5719 }
5720
5721 if (idle)
5722 return core;
5723 }
5724
5725 /*
5726 * Failed to find an idle core; stop looking for one.
5727 */
5728 set_idle_cores(target, 0);
5729
5730 return -1;
5731}
5732
5733/*
5734 * Scan the local SMT mask for idle CPUs.
5735 */
5736static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5737{
5738 int cpu;
5739
1b568f0a
PZ
5740 if (!static_branch_likely(&sched_smt_present))
5741 return -1;
5742
10e2f1ac 5743 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5744 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5745 continue;
5746 if (idle_cpu(cpu))
5747 return cpu;
5748 }
5749
5750 return -1;
5751}
5752
5753#else /* CONFIG_SCHED_SMT */
5754
5755static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5756{
5757 return -1;
5758}
5759
5760static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5761{
5762 return -1;
5763}
5764
5765#endif /* CONFIG_SCHED_SMT */
5766
5767/*
5768 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5769 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5770 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5771 */
10e2f1ac
PZ
5772static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5773{
9cfb38a7
WL
5774 struct sched_domain *this_sd;
5775 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5776 u64 time, cost;
5777 s64 delta;
c743f0a5 5778 int cpu;
10e2f1ac 5779
9cfb38a7
WL
5780 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5781 if (!this_sd)
5782 return -1;
5783
5784 avg_cost = this_sd->avg_scan_cost;
5785
10e2f1ac
PZ
5786 /*
5787 * Due to large variance we need a large fuzz factor; hackbench in
5788 * particularly is sensitive here.
5789 */
4c77b18c 5790 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5791 return -1;
5792
5793 time = local_clock();
5794
c743f0a5 5795 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
0c98d344 5796 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5797 continue;
5798 if (idle_cpu(cpu))
5799 break;
5800 }
5801
5802 time = local_clock() - time;
5803 cost = this_sd->avg_scan_cost;
5804 delta = (s64)(time - cost) / 8;
5805 this_sd->avg_scan_cost += delta;
5806
5807 return cpu;
5808}
5809
5810/*
5811 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5812 */
772bd008 5813static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5814{
99bd5e2f 5815 struct sched_domain *sd;
10e2f1ac 5816 int i;
a50bde51 5817
e0a79f52
MG
5818 if (idle_cpu(target))
5819 return target;
99bd5e2f
SS
5820
5821 /*
10e2f1ac 5822 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5823 */
772bd008
MR
5824 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5825 return prev;
a50bde51 5826
518cd623 5827 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5828 if (!sd)
5829 return target;
772bd008 5830
10e2f1ac
PZ
5831 i = select_idle_core(p, sd, target);
5832 if ((unsigned)i < nr_cpumask_bits)
5833 return i;
37407ea7 5834
10e2f1ac
PZ
5835 i = select_idle_cpu(p, sd, target);
5836 if ((unsigned)i < nr_cpumask_bits)
5837 return i;
5838
5839 i = select_idle_smt(p, sd, target);
5840 if ((unsigned)i < nr_cpumask_bits)
5841 return i;
970e1789 5842
a50bde51
PZ
5843 return target;
5844}
231678b7 5845
8bb5b00c 5846/*
9e91d61d 5847 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5848 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5849 * compare the utilization with the capacity of the CPU that is available for
5850 * CFS task (ie cpu_capacity).
231678b7
DE
5851 *
5852 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5853 * recent utilization of currently non-runnable tasks on a CPU. It represents
5854 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5855 * capacity_orig is the cpu_capacity available at the highest frequency
5856 * (arch_scale_freq_capacity()).
5857 * The utilization of a CPU converges towards a sum equal to or less than the
5858 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5859 * the running time on this CPU scaled by capacity_curr.
5860 *
5861 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5862 * higher than capacity_orig because of unfortunate rounding in
5863 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5864 * the average stabilizes with the new running time. We need to check that the
5865 * utilization stays within the range of [0..capacity_orig] and cap it if
5866 * necessary. Without utilization capping, a group could be seen as overloaded
5867 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5868 * available capacity. We allow utilization to overshoot capacity_curr (but not
5869 * capacity_orig) as it useful for predicting the capacity required after task
5870 * migrations (scheduler-driven DVFS).
8bb5b00c 5871 */
9e91d61d 5872static int cpu_util(int cpu)
8bb5b00c 5873{
9e91d61d 5874 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5875 unsigned long capacity = capacity_orig_of(cpu);
5876
231678b7 5877 return (util >= capacity) ? capacity : util;
8bb5b00c 5878}
a50bde51 5879
3273163c
MR
5880static inline int task_util(struct task_struct *p)
5881{
5882 return p->se.avg.util_avg;
5883}
5884
104cb16d
MR
5885/*
5886 * cpu_util_wake: Compute cpu utilization with any contributions from
5887 * the waking task p removed.
5888 */
5889static int cpu_util_wake(int cpu, struct task_struct *p)
5890{
5891 unsigned long util, capacity;
5892
5893 /* Task has no contribution or is new */
5894 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5895 return cpu_util(cpu);
5896
5897 capacity = capacity_orig_of(cpu);
5898 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5899
5900 return (util >= capacity) ? capacity : util;
5901}
5902
3273163c
MR
5903/*
5904 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5905 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5906 *
5907 * In that case WAKE_AFFINE doesn't make sense and we'll let
5908 * BALANCE_WAKE sort things out.
5909 */
5910static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5911{
5912 long min_cap, max_cap;
5913
5914 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5915 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5916
5917 /* Minimum capacity is close to max, no need to abort wake_affine */
5918 if (max_cap - min_cap < max_cap >> 3)
5919 return 0;
5920
104cb16d
MR
5921 /* Bring task utilization in sync with prev_cpu */
5922 sync_entity_load_avg(&p->se);
5923
3273163c
MR
5924 return min_cap * 1024 < task_util(p) * capacity_margin;
5925}
5926
aaee1203 5927/*
de91b9cb
MR
5928 * select_task_rq_fair: Select target runqueue for the waking task in domains
5929 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5930 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5931 *
de91b9cb
MR
5932 * Balances load by selecting the idlest cpu in the idlest group, or under
5933 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5934 *
de91b9cb 5935 * Returns the target cpu number.
aaee1203
PZ
5936 *
5937 * preempt must be disabled.
5938 */
0017d735 5939static int
ac66f547 5940select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5941{
29cd8bae 5942 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5943 int cpu = smp_processor_id();
63b0e9ed 5944 int new_cpu = prev_cpu;
99bd5e2f 5945 int want_affine = 0;
5158f4e4 5946 int sync = wake_flags & WF_SYNC;
c88d5910 5947
c58d25f3
PZ
5948 if (sd_flag & SD_BALANCE_WAKE) {
5949 record_wakee(p);
3273163c 5950 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5951 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5952 }
aaee1203 5953
dce840a0 5954 rcu_read_lock();
aaee1203 5955 for_each_domain(cpu, tmp) {
e4f42888 5956 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5957 break;
e4f42888 5958
fe3bcfe1 5959 /*
99bd5e2f
SS
5960 * If both cpu and prev_cpu are part of this domain,
5961 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5962 */
99bd5e2f
SS
5963 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5964 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5965 affine_sd = tmp;
29cd8bae 5966 break;
f03542a7 5967 }
29cd8bae 5968
f03542a7 5969 if (tmp->flags & sd_flag)
29cd8bae 5970 sd = tmp;
63b0e9ed
MG
5971 else if (!want_affine)
5972 break;
29cd8bae
PZ
5973 }
5974
63b0e9ed
MG
5975 if (affine_sd) {
5976 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5977 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5978 new_cpu = cpu;
8b911acd 5979 }
e7693a36 5980
63b0e9ed
MG
5981 if (!sd) {
5982 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5983 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5984
5985 } else while (sd) {
aaee1203 5986 struct sched_group *group;
c88d5910 5987 int weight;
098fb9db 5988
0763a660 5989 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5990 sd = sd->child;
5991 continue;
5992 }
098fb9db 5993
c44f2a02 5994 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5995 if (!group) {
5996 sd = sd->child;
5997 continue;
5998 }
4ae7d5ce 5999
d7c33c49 6000 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6001 if (new_cpu == -1 || new_cpu == cpu) {
6002 /* Now try balancing at a lower domain level of cpu */
6003 sd = sd->child;
6004 continue;
e7693a36 6005 }
aaee1203
PZ
6006
6007 /* Now try balancing at a lower domain level of new_cpu */
6008 cpu = new_cpu;
669c55e9 6009 weight = sd->span_weight;
aaee1203
PZ
6010 sd = NULL;
6011 for_each_domain(cpu, tmp) {
669c55e9 6012 if (weight <= tmp->span_weight)
aaee1203 6013 break;
0763a660 6014 if (tmp->flags & sd_flag)
aaee1203
PZ
6015 sd = tmp;
6016 }
6017 /* while loop will break here if sd == NULL */
e7693a36 6018 }
dce840a0 6019 rcu_read_unlock();
e7693a36 6020
c88d5910 6021 return new_cpu;
e7693a36 6022}
0a74bef8
PT
6023
6024/*
6025 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6026 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6027 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6028 */
5a4fd036 6029static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6030{
59efa0ba
PZ
6031 /*
6032 * As blocked tasks retain absolute vruntime the migration needs to
6033 * deal with this by subtracting the old and adding the new
6034 * min_vruntime -- the latter is done by enqueue_entity() when placing
6035 * the task on the new runqueue.
6036 */
6037 if (p->state == TASK_WAKING) {
6038 struct sched_entity *se = &p->se;
6039 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6040 u64 min_vruntime;
6041
6042#ifndef CONFIG_64BIT
6043 u64 min_vruntime_copy;
6044
6045 do {
6046 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6047 smp_rmb();
6048 min_vruntime = cfs_rq->min_vruntime;
6049 } while (min_vruntime != min_vruntime_copy);
6050#else
6051 min_vruntime = cfs_rq->min_vruntime;
6052#endif
6053
6054 se->vruntime -= min_vruntime;
6055 }
6056
aff3e498 6057 /*
9d89c257
YD
6058 * We are supposed to update the task to "current" time, then its up to date
6059 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6060 * what current time is, so simply throw away the out-of-date time. This
6061 * will result in the wakee task is less decayed, but giving the wakee more
6062 * load sounds not bad.
aff3e498 6063 */
9d89c257
YD
6064 remove_entity_load_avg(&p->se);
6065
6066 /* Tell new CPU we are migrated */
6067 p->se.avg.last_update_time = 0;
3944a927
BS
6068
6069 /* We have migrated, no longer consider this task hot */
9d89c257 6070 p->se.exec_start = 0;
0a74bef8 6071}
12695578
YD
6072
6073static void task_dead_fair(struct task_struct *p)
6074{
6075 remove_entity_load_avg(&p->se);
6076}
e7693a36
GH
6077#endif /* CONFIG_SMP */
6078
e52fb7c0
PZ
6079static unsigned long
6080wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6081{
6082 unsigned long gran = sysctl_sched_wakeup_granularity;
6083
6084 /*
e52fb7c0
PZ
6085 * Since its curr running now, convert the gran from real-time
6086 * to virtual-time in his units.
13814d42
MG
6087 *
6088 * By using 'se' instead of 'curr' we penalize light tasks, so
6089 * they get preempted easier. That is, if 'se' < 'curr' then
6090 * the resulting gran will be larger, therefore penalizing the
6091 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6092 * be smaller, again penalizing the lighter task.
6093 *
6094 * This is especially important for buddies when the leftmost
6095 * task is higher priority than the buddy.
0bbd3336 6096 */
f4ad9bd2 6097 return calc_delta_fair(gran, se);
0bbd3336
PZ
6098}
6099
464b7527
PZ
6100/*
6101 * Should 'se' preempt 'curr'.
6102 *
6103 * |s1
6104 * |s2
6105 * |s3
6106 * g
6107 * |<--->|c
6108 *
6109 * w(c, s1) = -1
6110 * w(c, s2) = 0
6111 * w(c, s3) = 1
6112 *
6113 */
6114static int
6115wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6116{
6117 s64 gran, vdiff = curr->vruntime - se->vruntime;
6118
6119 if (vdiff <= 0)
6120 return -1;
6121
e52fb7c0 6122 gran = wakeup_gran(curr, se);
464b7527
PZ
6123 if (vdiff > gran)
6124 return 1;
6125
6126 return 0;
6127}
6128
02479099
PZ
6129static void set_last_buddy(struct sched_entity *se)
6130{
69c80f3e
VP
6131 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6132 return;
6133
6134 for_each_sched_entity(se)
6135 cfs_rq_of(se)->last = se;
02479099
PZ
6136}
6137
6138static void set_next_buddy(struct sched_entity *se)
6139{
69c80f3e
VP
6140 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6141 return;
6142
6143 for_each_sched_entity(se)
6144 cfs_rq_of(se)->next = se;
02479099
PZ
6145}
6146
ac53db59
RR
6147static void set_skip_buddy(struct sched_entity *se)
6148{
69c80f3e
VP
6149 for_each_sched_entity(se)
6150 cfs_rq_of(se)->skip = se;
ac53db59
RR
6151}
6152
bf0f6f24
IM
6153/*
6154 * Preempt the current task with a newly woken task if needed:
6155 */
5a9b86f6 6156static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6157{
6158 struct task_struct *curr = rq->curr;
8651a86c 6159 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6160 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6161 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6162 int next_buddy_marked = 0;
bf0f6f24 6163
4ae7d5ce
IM
6164 if (unlikely(se == pse))
6165 return;
6166
5238cdd3 6167 /*
163122b7 6168 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6169 * unconditionally check_prempt_curr() after an enqueue (which may have
6170 * lead to a throttle). This both saves work and prevents false
6171 * next-buddy nomination below.
6172 */
6173 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6174 return;
6175
2f36825b 6176 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6177 set_next_buddy(pse);
2f36825b
VP
6178 next_buddy_marked = 1;
6179 }
57fdc26d 6180
aec0a514
BR
6181 /*
6182 * We can come here with TIF_NEED_RESCHED already set from new task
6183 * wake up path.
5238cdd3
PT
6184 *
6185 * Note: this also catches the edge-case of curr being in a throttled
6186 * group (e.g. via set_curr_task), since update_curr() (in the
6187 * enqueue of curr) will have resulted in resched being set. This
6188 * prevents us from potentially nominating it as a false LAST_BUDDY
6189 * below.
aec0a514
BR
6190 */
6191 if (test_tsk_need_resched(curr))
6192 return;
6193
a2f5c9ab
DH
6194 /* Idle tasks are by definition preempted by non-idle tasks. */
6195 if (unlikely(curr->policy == SCHED_IDLE) &&
6196 likely(p->policy != SCHED_IDLE))
6197 goto preempt;
6198
91c234b4 6199 /*
a2f5c9ab
DH
6200 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6201 * is driven by the tick):
91c234b4 6202 */
8ed92e51 6203 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6204 return;
bf0f6f24 6205
464b7527 6206 find_matching_se(&se, &pse);
9bbd7374 6207 update_curr(cfs_rq_of(se));
002f128b 6208 BUG_ON(!pse);
2f36825b
VP
6209 if (wakeup_preempt_entity(se, pse) == 1) {
6210 /*
6211 * Bias pick_next to pick the sched entity that is
6212 * triggering this preemption.
6213 */
6214 if (!next_buddy_marked)
6215 set_next_buddy(pse);
3a7e73a2 6216 goto preempt;
2f36825b 6217 }
464b7527 6218
3a7e73a2 6219 return;
a65ac745 6220
3a7e73a2 6221preempt:
8875125e 6222 resched_curr(rq);
3a7e73a2
PZ
6223 /*
6224 * Only set the backward buddy when the current task is still
6225 * on the rq. This can happen when a wakeup gets interleaved
6226 * with schedule on the ->pre_schedule() or idle_balance()
6227 * point, either of which can * drop the rq lock.
6228 *
6229 * Also, during early boot the idle thread is in the fair class,
6230 * for obvious reasons its a bad idea to schedule back to it.
6231 */
6232 if (unlikely(!se->on_rq || curr == rq->idle))
6233 return;
6234
6235 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6236 set_last_buddy(se);
bf0f6f24
IM
6237}
6238
606dba2e 6239static struct task_struct *
d8ac8971 6240pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6241{
6242 struct cfs_rq *cfs_rq = &rq->cfs;
6243 struct sched_entity *se;
678d5718 6244 struct task_struct *p;
37e117c0 6245 int new_tasks;
678d5718 6246
6e83125c 6247again:
678d5718
PZ
6248#ifdef CONFIG_FAIR_GROUP_SCHED
6249 if (!cfs_rq->nr_running)
38033c37 6250 goto idle;
678d5718 6251
3f1d2a31 6252 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6253 goto simple;
6254
6255 /*
6256 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6257 * likely that a next task is from the same cgroup as the current.
6258 *
6259 * Therefore attempt to avoid putting and setting the entire cgroup
6260 * hierarchy, only change the part that actually changes.
6261 */
6262
6263 do {
6264 struct sched_entity *curr = cfs_rq->curr;
6265
6266 /*
6267 * Since we got here without doing put_prev_entity() we also
6268 * have to consider cfs_rq->curr. If it is still a runnable
6269 * entity, update_curr() will update its vruntime, otherwise
6270 * forget we've ever seen it.
6271 */
54d27365
BS
6272 if (curr) {
6273 if (curr->on_rq)
6274 update_curr(cfs_rq);
6275 else
6276 curr = NULL;
678d5718 6277
54d27365
BS
6278 /*
6279 * This call to check_cfs_rq_runtime() will do the
6280 * throttle and dequeue its entity in the parent(s).
6281 * Therefore the 'simple' nr_running test will indeed
6282 * be correct.
6283 */
6284 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6285 goto simple;
6286 }
678d5718
PZ
6287
6288 se = pick_next_entity(cfs_rq, curr);
6289 cfs_rq = group_cfs_rq(se);
6290 } while (cfs_rq);
6291
6292 p = task_of(se);
6293
6294 /*
6295 * Since we haven't yet done put_prev_entity and if the selected task
6296 * is a different task than we started out with, try and touch the
6297 * least amount of cfs_rqs.
6298 */
6299 if (prev != p) {
6300 struct sched_entity *pse = &prev->se;
6301
6302 while (!(cfs_rq = is_same_group(se, pse))) {
6303 int se_depth = se->depth;
6304 int pse_depth = pse->depth;
6305
6306 if (se_depth <= pse_depth) {
6307 put_prev_entity(cfs_rq_of(pse), pse);
6308 pse = parent_entity(pse);
6309 }
6310 if (se_depth >= pse_depth) {
6311 set_next_entity(cfs_rq_of(se), se);
6312 se = parent_entity(se);
6313 }
6314 }
6315
6316 put_prev_entity(cfs_rq, pse);
6317 set_next_entity(cfs_rq, se);
6318 }
6319
6320 if (hrtick_enabled(rq))
6321 hrtick_start_fair(rq, p);
6322
6323 return p;
6324simple:
6325 cfs_rq = &rq->cfs;
6326#endif
bf0f6f24 6327
36ace27e 6328 if (!cfs_rq->nr_running)
38033c37 6329 goto idle;
bf0f6f24 6330
3f1d2a31 6331 put_prev_task(rq, prev);
606dba2e 6332
bf0f6f24 6333 do {
678d5718 6334 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6335 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6336 cfs_rq = group_cfs_rq(se);
6337 } while (cfs_rq);
6338
8f4d37ec 6339 p = task_of(se);
678d5718 6340
b39e66ea
MG
6341 if (hrtick_enabled(rq))
6342 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6343
6344 return p;
38033c37
PZ
6345
6346idle:
46f69fa3
MF
6347 new_tasks = idle_balance(rq, rf);
6348
37e117c0
PZ
6349 /*
6350 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6351 * possible for any higher priority task to appear. In that case we
6352 * must re-start the pick_next_entity() loop.
6353 */
e4aa358b 6354 if (new_tasks < 0)
37e117c0
PZ
6355 return RETRY_TASK;
6356
e4aa358b 6357 if (new_tasks > 0)
38033c37 6358 goto again;
38033c37
PZ
6359
6360 return NULL;
bf0f6f24
IM
6361}
6362
6363/*
6364 * Account for a descheduled task:
6365 */
31ee529c 6366static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6367{
6368 struct sched_entity *se = &prev->se;
6369 struct cfs_rq *cfs_rq;
6370
6371 for_each_sched_entity(se) {
6372 cfs_rq = cfs_rq_of(se);
ab6cde26 6373 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6374 }
6375}
6376
ac53db59
RR
6377/*
6378 * sched_yield() is very simple
6379 *
6380 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6381 */
6382static void yield_task_fair(struct rq *rq)
6383{
6384 struct task_struct *curr = rq->curr;
6385 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6386 struct sched_entity *se = &curr->se;
6387
6388 /*
6389 * Are we the only task in the tree?
6390 */
6391 if (unlikely(rq->nr_running == 1))
6392 return;
6393
6394 clear_buddies(cfs_rq, se);
6395
6396 if (curr->policy != SCHED_BATCH) {
6397 update_rq_clock(rq);
6398 /*
6399 * Update run-time statistics of the 'current'.
6400 */
6401 update_curr(cfs_rq);
916671c0
MG
6402 /*
6403 * Tell update_rq_clock() that we've just updated,
6404 * so we don't do microscopic update in schedule()
6405 * and double the fastpath cost.
6406 */
9edfbfed 6407 rq_clock_skip_update(rq, true);
ac53db59
RR
6408 }
6409
6410 set_skip_buddy(se);
6411}
6412
d95f4122
MG
6413static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6414{
6415 struct sched_entity *se = &p->se;
6416
5238cdd3
PT
6417 /* throttled hierarchies are not runnable */
6418 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6419 return false;
6420
6421 /* Tell the scheduler that we'd really like pse to run next. */
6422 set_next_buddy(se);
6423
d95f4122
MG
6424 yield_task_fair(rq);
6425
6426 return true;
6427}
6428
681f3e68 6429#ifdef CONFIG_SMP
bf0f6f24 6430/**************************************************
e9c84cb8
PZ
6431 * Fair scheduling class load-balancing methods.
6432 *
6433 * BASICS
6434 *
6435 * The purpose of load-balancing is to achieve the same basic fairness the
6436 * per-cpu scheduler provides, namely provide a proportional amount of compute
6437 * time to each task. This is expressed in the following equation:
6438 *
6439 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6440 *
6441 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6442 * W_i,0 is defined as:
6443 *
6444 * W_i,0 = \Sum_j w_i,j (2)
6445 *
6446 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6447 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6448 *
6449 * The weight average is an exponential decay average of the instantaneous
6450 * weight:
6451 *
6452 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6453 *
ced549fa 6454 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6455 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6456 * can also include other factors [XXX].
6457 *
6458 * To achieve this balance we define a measure of imbalance which follows
6459 * directly from (1):
6460 *
ced549fa 6461 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6462 *
6463 * We them move tasks around to minimize the imbalance. In the continuous
6464 * function space it is obvious this converges, in the discrete case we get
6465 * a few fun cases generally called infeasible weight scenarios.
6466 *
6467 * [XXX expand on:
6468 * - infeasible weights;
6469 * - local vs global optima in the discrete case. ]
6470 *
6471 *
6472 * SCHED DOMAINS
6473 *
6474 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6475 * for all i,j solution, we create a tree of cpus that follows the hardware
6476 * topology where each level pairs two lower groups (or better). This results
6477 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6478 * tree to only the first of the previous level and we decrease the frequency
6479 * of load-balance at each level inv. proportional to the number of cpus in
6480 * the groups.
6481 *
6482 * This yields:
6483 *
6484 * log_2 n 1 n
6485 * \Sum { --- * --- * 2^i } = O(n) (5)
6486 * i = 0 2^i 2^i
6487 * `- size of each group
6488 * | | `- number of cpus doing load-balance
6489 * | `- freq
6490 * `- sum over all levels
6491 *
6492 * Coupled with a limit on how many tasks we can migrate every balance pass,
6493 * this makes (5) the runtime complexity of the balancer.
6494 *
6495 * An important property here is that each CPU is still (indirectly) connected
6496 * to every other cpu in at most O(log n) steps:
6497 *
6498 * The adjacency matrix of the resulting graph is given by:
6499 *
97a7142f 6500 * log_2 n
e9c84cb8
PZ
6501 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6502 * k = 0
6503 *
6504 * And you'll find that:
6505 *
6506 * A^(log_2 n)_i,j != 0 for all i,j (7)
6507 *
6508 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6509 * The task movement gives a factor of O(m), giving a convergence complexity
6510 * of:
6511 *
6512 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6513 *
6514 *
6515 * WORK CONSERVING
6516 *
6517 * In order to avoid CPUs going idle while there's still work to do, new idle
6518 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6519 * tree itself instead of relying on other CPUs to bring it work.
6520 *
6521 * This adds some complexity to both (5) and (8) but it reduces the total idle
6522 * time.
6523 *
6524 * [XXX more?]
6525 *
6526 *
6527 * CGROUPS
6528 *
6529 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6530 *
6531 * s_k,i
6532 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6533 * S_k
6534 *
6535 * Where
6536 *
6537 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6538 *
6539 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6540 *
6541 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6542 * property.
6543 *
6544 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6545 * rewrite all of this once again.]
97a7142f 6546 */
bf0f6f24 6547
ed387b78
HS
6548static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6549
0ec8aa00
PZ
6550enum fbq_type { regular, remote, all };
6551
ddcdf6e7 6552#define LBF_ALL_PINNED 0x01
367456c7 6553#define LBF_NEED_BREAK 0x02
6263322c
PZ
6554#define LBF_DST_PINNED 0x04
6555#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6556
6557struct lb_env {
6558 struct sched_domain *sd;
6559
ddcdf6e7 6560 struct rq *src_rq;
85c1e7da 6561 int src_cpu;
ddcdf6e7
PZ
6562
6563 int dst_cpu;
6564 struct rq *dst_rq;
6565
88b8dac0
SV
6566 struct cpumask *dst_grpmask;
6567 int new_dst_cpu;
ddcdf6e7 6568 enum cpu_idle_type idle;
bd939f45 6569 long imbalance;
b9403130
MW
6570 /* The set of CPUs under consideration for load-balancing */
6571 struct cpumask *cpus;
6572
ddcdf6e7 6573 unsigned int flags;
367456c7
PZ
6574
6575 unsigned int loop;
6576 unsigned int loop_break;
6577 unsigned int loop_max;
0ec8aa00
PZ
6578
6579 enum fbq_type fbq_type;
163122b7 6580 struct list_head tasks;
ddcdf6e7
PZ
6581};
6582
029632fb
PZ
6583/*
6584 * Is this task likely cache-hot:
6585 */
5d5e2b1b 6586static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6587{
6588 s64 delta;
6589
e5673f28
KT
6590 lockdep_assert_held(&env->src_rq->lock);
6591
029632fb
PZ
6592 if (p->sched_class != &fair_sched_class)
6593 return 0;
6594
6595 if (unlikely(p->policy == SCHED_IDLE))
6596 return 0;
6597
6598 /*
6599 * Buddy candidates are cache hot:
6600 */
5d5e2b1b 6601 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6602 (&p->se == cfs_rq_of(&p->se)->next ||
6603 &p->se == cfs_rq_of(&p->se)->last))
6604 return 1;
6605
6606 if (sysctl_sched_migration_cost == -1)
6607 return 1;
6608 if (sysctl_sched_migration_cost == 0)
6609 return 0;
6610
5d5e2b1b 6611 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6612
6613 return delta < (s64)sysctl_sched_migration_cost;
6614}
6615
3a7053b3 6616#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6617/*
2a1ed24c
SD
6618 * Returns 1, if task migration degrades locality
6619 * Returns 0, if task migration improves locality i.e migration preferred.
6620 * Returns -1, if task migration is not affected by locality.
c1ceac62 6621 */
2a1ed24c 6622static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6623{
b1ad065e 6624 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6625 unsigned long src_faults, dst_faults;
3a7053b3
MG
6626 int src_nid, dst_nid;
6627
2a595721 6628 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6629 return -1;
6630
c3b9bc5b 6631 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6632 return -1;
7a0f3083
MG
6633
6634 src_nid = cpu_to_node(env->src_cpu);
6635 dst_nid = cpu_to_node(env->dst_cpu);
6636
83e1d2cd 6637 if (src_nid == dst_nid)
2a1ed24c 6638 return -1;
7a0f3083 6639
2a1ed24c
SD
6640 /* Migrating away from the preferred node is always bad. */
6641 if (src_nid == p->numa_preferred_nid) {
6642 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6643 return 1;
6644 else
6645 return -1;
6646 }
b1ad065e 6647
c1ceac62
RR
6648 /* Encourage migration to the preferred node. */
6649 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6650 return 0;
b1ad065e 6651
c1ceac62
RR
6652 if (numa_group) {
6653 src_faults = group_faults(p, src_nid);
6654 dst_faults = group_faults(p, dst_nid);
6655 } else {
6656 src_faults = task_faults(p, src_nid);
6657 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6658 }
6659
c1ceac62 6660 return dst_faults < src_faults;
7a0f3083
MG
6661}
6662
3a7053b3 6663#else
2a1ed24c 6664static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6665 struct lb_env *env)
6666{
2a1ed24c 6667 return -1;
7a0f3083 6668}
3a7053b3
MG
6669#endif
6670
1e3c88bd
PZ
6671/*
6672 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6673 */
6674static
8e45cb54 6675int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6676{
2a1ed24c 6677 int tsk_cache_hot;
e5673f28
KT
6678
6679 lockdep_assert_held(&env->src_rq->lock);
6680
1e3c88bd
PZ
6681 /*
6682 * We do not migrate tasks that are:
d3198084 6683 * 1) throttled_lb_pair, or
1e3c88bd 6684 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6685 * 3) running (obviously), or
6686 * 4) are cache-hot on their current CPU.
1e3c88bd 6687 */
d3198084
JK
6688 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6689 return 0;
6690
0c98d344 6691 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6692 int cpu;
88b8dac0 6693
ae92882e 6694 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6695
6263322c
PZ
6696 env->flags |= LBF_SOME_PINNED;
6697
88b8dac0
SV
6698 /*
6699 * Remember if this task can be migrated to any other cpu in
6700 * our sched_group. We may want to revisit it if we couldn't
6701 * meet load balance goals by pulling other tasks on src_cpu.
6702 *
6703 * Also avoid computing new_dst_cpu if we have already computed
6704 * one in current iteration.
6705 */
6263322c 6706 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6707 return 0;
6708
e02e60c1
JK
6709 /* Prevent to re-select dst_cpu via env's cpus */
6710 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6711 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6712 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6713 env->new_dst_cpu = cpu;
6714 break;
6715 }
88b8dac0 6716 }
e02e60c1 6717
1e3c88bd
PZ
6718 return 0;
6719 }
88b8dac0
SV
6720
6721 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6722 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6723
ddcdf6e7 6724 if (task_running(env->src_rq, p)) {
ae92882e 6725 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6726 return 0;
6727 }
6728
6729 /*
6730 * Aggressive migration if:
3a7053b3
MG
6731 * 1) destination numa is preferred
6732 * 2) task is cache cold, or
6733 * 3) too many balance attempts have failed.
1e3c88bd 6734 */
2a1ed24c
SD
6735 tsk_cache_hot = migrate_degrades_locality(p, env);
6736 if (tsk_cache_hot == -1)
6737 tsk_cache_hot = task_hot(p, env);
3a7053b3 6738
2a1ed24c 6739 if (tsk_cache_hot <= 0 ||
7a96c231 6740 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6741 if (tsk_cache_hot == 1) {
ae92882e
JP
6742 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6743 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6744 }
1e3c88bd
PZ
6745 return 1;
6746 }
6747
ae92882e 6748 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6749 return 0;
1e3c88bd
PZ
6750}
6751
897c395f 6752/*
163122b7
KT
6753 * detach_task() -- detach the task for the migration specified in env
6754 */
6755static void detach_task(struct task_struct *p, struct lb_env *env)
6756{
6757 lockdep_assert_held(&env->src_rq->lock);
6758
163122b7 6759 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6760 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6761 set_task_cpu(p, env->dst_cpu);
6762}
6763
897c395f 6764/*
e5673f28 6765 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6766 * part of active balancing operations within "domain".
897c395f 6767 *
e5673f28 6768 * Returns a task if successful and NULL otherwise.
897c395f 6769 */
e5673f28 6770static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6771{
6772 struct task_struct *p, *n;
897c395f 6773
e5673f28
KT
6774 lockdep_assert_held(&env->src_rq->lock);
6775
367456c7 6776 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6777 if (!can_migrate_task(p, env))
6778 continue;
897c395f 6779
163122b7 6780 detach_task(p, env);
e5673f28 6781
367456c7 6782 /*
e5673f28 6783 * Right now, this is only the second place where
163122b7 6784 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6785 * so we can safely collect stats here rather than
163122b7 6786 * inside detach_tasks().
367456c7 6787 */
ae92882e 6788 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6789 return p;
897c395f 6790 }
e5673f28 6791 return NULL;
897c395f
PZ
6792}
6793
eb95308e
PZ
6794static const unsigned int sched_nr_migrate_break = 32;
6795
5d6523eb 6796/*
163122b7
KT
6797 * detach_tasks() -- tries to detach up to imbalance weighted load from
6798 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6799 *
163122b7 6800 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6801 */
163122b7 6802static int detach_tasks(struct lb_env *env)
1e3c88bd 6803{
5d6523eb
PZ
6804 struct list_head *tasks = &env->src_rq->cfs_tasks;
6805 struct task_struct *p;
367456c7 6806 unsigned long load;
163122b7
KT
6807 int detached = 0;
6808
6809 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6810
bd939f45 6811 if (env->imbalance <= 0)
5d6523eb 6812 return 0;
1e3c88bd 6813
5d6523eb 6814 while (!list_empty(tasks)) {
985d3a4c
YD
6815 /*
6816 * We don't want to steal all, otherwise we may be treated likewise,
6817 * which could at worst lead to a livelock crash.
6818 */
6819 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6820 break;
6821
5d6523eb 6822 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6823
367456c7
PZ
6824 env->loop++;
6825 /* We've more or less seen every task there is, call it quits */
5d6523eb 6826 if (env->loop > env->loop_max)
367456c7 6827 break;
5d6523eb
PZ
6828
6829 /* take a breather every nr_migrate tasks */
367456c7 6830 if (env->loop > env->loop_break) {
eb95308e 6831 env->loop_break += sched_nr_migrate_break;
8e45cb54 6832 env->flags |= LBF_NEED_BREAK;
ee00e66f 6833 break;
a195f004 6834 }
1e3c88bd 6835
d3198084 6836 if (!can_migrate_task(p, env))
367456c7
PZ
6837 goto next;
6838
6839 load = task_h_load(p);
5d6523eb 6840
eb95308e 6841 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6842 goto next;
6843
bd939f45 6844 if ((load / 2) > env->imbalance)
367456c7 6845 goto next;
1e3c88bd 6846
163122b7
KT
6847 detach_task(p, env);
6848 list_add(&p->se.group_node, &env->tasks);
6849
6850 detached++;
bd939f45 6851 env->imbalance -= load;
1e3c88bd
PZ
6852
6853#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6854 /*
6855 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6856 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6857 * the critical section.
6858 */
5d6523eb 6859 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6860 break;
1e3c88bd
PZ
6861#endif
6862
ee00e66f
PZ
6863 /*
6864 * We only want to steal up to the prescribed amount of
6865 * weighted load.
6866 */
bd939f45 6867 if (env->imbalance <= 0)
ee00e66f 6868 break;
367456c7
PZ
6869
6870 continue;
6871next:
5d6523eb 6872 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6873 }
5d6523eb 6874
1e3c88bd 6875 /*
163122b7
KT
6876 * Right now, this is one of only two places we collect this stat
6877 * so we can safely collect detach_one_task() stats here rather
6878 * than inside detach_one_task().
1e3c88bd 6879 */
ae92882e 6880 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6881
163122b7
KT
6882 return detached;
6883}
6884
6885/*
6886 * attach_task() -- attach the task detached by detach_task() to its new rq.
6887 */
6888static void attach_task(struct rq *rq, struct task_struct *p)
6889{
6890 lockdep_assert_held(&rq->lock);
6891
6892 BUG_ON(task_rq(p) != rq);
5704ac0a 6893 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6894 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6895 check_preempt_curr(rq, p, 0);
6896}
6897
6898/*
6899 * attach_one_task() -- attaches the task returned from detach_one_task() to
6900 * its new rq.
6901 */
6902static void attach_one_task(struct rq *rq, struct task_struct *p)
6903{
8a8c69c3
PZ
6904 struct rq_flags rf;
6905
6906 rq_lock(rq, &rf);
5704ac0a 6907 update_rq_clock(rq);
163122b7 6908 attach_task(rq, p);
8a8c69c3 6909 rq_unlock(rq, &rf);
163122b7
KT
6910}
6911
6912/*
6913 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6914 * new rq.
6915 */
6916static void attach_tasks(struct lb_env *env)
6917{
6918 struct list_head *tasks = &env->tasks;
6919 struct task_struct *p;
8a8c69c3 6920 struct rq_flags rf;
163122b7 6921
8a8c69c3 6922 rq_lock(env->dst_rq, &rf);
5704ac0a 6923 update_rq_clock(env->dst_rq);
163122b7
KT
6924
6925 while (!list_empty(tasks)) {
6926 p = list_first_entry(tasks, struct task_struct, se.group_node);
6927 list_del_init(&p->se.group_node);
1e3c88bd 6928
163122b7
KT
6929 attach_task(env->dst_rq, p);
6930 }
6931
8a8c69c3 6932 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6933}
6934
230059de 6935#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6936static void update_blocked_averages(int cpu)
9e3081ca 6937{
9e3081ca 6938 struct rq *rq = cpu_rq(cpu);
48a16753 6939 struct cfs_rq *cfs_rq;
8a8c69c3 6940 struct rq_flags rf;
9e3081ca 6941
8a8c69c3 6942 rq_lock_irqsave(rq, &rf);
48a16753 6943 update_rq_clock(rq);
9d89c257 6944
9763b67f
PZ
6945 /*
6946 * Iterates the task_group tree in a bottom up fashion, see
6947 * list_add_leaf_cfs_rq() for details.
6948 */
64660c86 6949 for_each_leaf_cfs_rq(rq, cfs_rq) {
bc427898
VG
6950 struct sched_entity *se;
6951
9d89c257
YD
6952 /* throttled entities do not contribute to load */
6953 if (throttled_hierarchy(cfs_rq))
6954 continue;
48a16753 6955
a2c6c91f 6956 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6957 update_tg_load_avg(cfs_rq, 0);
4e516076 6958
bc427898
VG
6959 /* Propagate pending load changes to the parent, if any: */
6960 se = cfs_rq->tg->se[cpu];
6961 if (se && !skip_blocked_update(se))
6962 update_load_avg(se, 0);
9d89c257 6963 }
8a8c69c3 6964 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6965}
6966
9763b67f 6967/*
68520796 6968 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6969 * This needs to be done in a top-down fashion because the load of a child
6970 * group is a fraction of its parents load.
6971 */
68520796 6972static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6973{
68520796
VD
6974 struct rq *rq = rq_of(cfs_rq);
6975 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6976 unsigned long now = jiffies;
68520796 6977 unsigned long load;
a35b6466 6978
68520796 6979 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6980 return;
6981
68520796
VD
6982 cfs_rq->h_load_next = NULL;
6983 for_each_sched_entity(se) {
6984 cfs_rq = cfs_rq_of(se);
6985 cfs_rq->h_load_next = se;
6986 if (cfs_rq->last_h_load_update == now)
6987 break;
6988 }
a35b6466 6989
68520796 6990 if (!se) {
7ea241af 6991 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6992 cfs_rq->last_h_load_update = now;
6993 }
6994
6995 while ((se = cfs_rq->h_load_next) != NULL) {
6996 load = cfs_rq->h_load;
7ea241af
YD
6997 load = div64_ul(load * se->avg.load_avg,
6998 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6999 cfs_rq = group_cfs_rq(se);
7000 cfs_rq->h_load = load;
7001 cfs_rq->last_h_load_update = now;
7002 }
9763b67f
PZ
7003}
7004
367456c7 7005static unsigned long task_h_load(struct task_struct *p)
230059de 7006{
367456c7 7007 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7008
68520796 7009 update_cfs_rq_h_load(cfs_rq);
9d89c257 7010 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7011 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7012}
7013#else
48a16753 7014static inline void update_blocked_averages(int cpu)
9e3081ca 7015{
6c1d47c0
VG
7016 struct rq *rq = cpu_rq(cpu);
7017 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7018 struct rq_flags rf;
6c1d47c0 7019
8a8c69c3 7020 rq_lock_irqsave(rq, &rf);
6c1d47c0 7021 update_rq_clock(rq);
a2c6c91f 7022 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 7023 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7024}
7025
367456c7 7026static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7027{
9d89c257 7028 return p->se.avg.load_avg;
1e3c88bd 7029}
230059de 7030#endif
1e3c88bd 7031
1e3c88bd 7032/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7033
7034enum group_type {
7035 group_other = 0,
7036 group_imbalanced,
7037 group_overloaded,
7038};
7039
1e3c88bd
PZ
7040/*
7041 * sg_lb_stats - stats of a sched_group required for load_balancing
7042 */
7043struct sg_lb_stats {
7044 unsigned long avg_load; /*Avg load across the CPUs of the group */
7045 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7046 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7047 unsigned long load_per_task;
63b2ca30 7048 unsigned long group_capacity;
9e91d61d 7049 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7050 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7051 unsigned int idle_cpus;
7052 unsigned int group_weight;
caeb178c 7053 enum group_type group_type;
ea67821b 7054 int group_no_capacity;
0ec8aa00
PZ
7055#ifdef CONFIG_NUMA_BALANCING
7056 unsigned int nr_numa_running;
7057 unsigned int nr_preferred_running;
7058#endif
1e3c88bd
PZ
7059};
7060
56cf515b
JK
7061/*
7062 * sd_lb_stats - Structure to store the statistics of a sched_domain
7063 * during load balancing.
7064 */
7065struct sd_lb_stats {
7066 struct sched_group *busiest; /* Busiest group in this sd */
7067 struct sched_group *local; /* Local group in this sd */
7068 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7069 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7070 unsigned long avg_load; /* Average load across all groups in sd */
7071
56cf515b 7072 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7073 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7074};
7075
147c5fc2
PZ
7076static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7077{
7078 /*
7079 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7080 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7081 * We must however clear busiest_stat::avg_load because
7082 * update_sd_pick_busiest() reads this before assignment.
7083 */
7084 *sds = (struct sd_lb_stats){
7085 .busiest = NULL,
7086 .local = NULL,
7087 .total_load = 0UL,
63b2ca30 7088 .total_capacity = 0UL,
147c5fc2
PZ
7089 .busiest_stat = {
7090 .avg_load = 0UL,
caeb178c
RR
7091 .sum_nr_running = 0,
7092 .group_type = group_other,
147c5fc2
PZ
7093 },
7094 };
7095}
7096
1e3c88bd
PZ
7097/**
7098 * get_sd_load_idx - Obtain the load index for a given sched domain.
7099 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7100 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7101 *
7102 * Return: The load index.
1e3c88bd
PZ
7103 */
7104static inline int get_sd_load_idx(struct sched_domain *sd,
7105 enum cpu_idle_type idle)
7106{
7107 int load_idx;
7108
7109 switch (idle) {
7110 case CPU_NOT_IDLE:
7111 load_idx = sd->busy_idx;
7112 break;
7113
7114 case CPU_NEWLY_IDLE:
7115 load_idx = sd->newidle_idx;
7116 break;
7117 default:
7118 load_idx = sd->idle_idx;
7119 break;
7120 }
7121
7122 return load_idx;
7123}
7124
ced549fa 7125static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7126{
7127 struct rq *rq = cpu_rq(cpu);
b5b4860d 7128 u64 total, used, age_stamp, avg;
cadefd3d 7129 s64 delta;
1e3c88bd 7130
b654f7de
PZ
7131 /*
7132 * Since we're reading these variables without serialization make sure
7133 * we read them once before doing sanity checks on them.
7134 */
316c1608
JL
7135 age_stamp = READ_ONCE(rq->age_stamp);
7136 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7137 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7138
cadefd3d
PZ
7139 if (unlikely(delta < 0))
7140 delta = 0;
7141
7142 total = sched_avg_period() + delta;
aa483808 7143
b5b4860d 7144 used = div_u64(avg, total);
1e3c88bd 7145
b5b4860d
VG
7146 if (likely(used < SCHED_CAPACITY_SCALE))
7147 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7148
b5b4860d 7149 return 1;
1e3c88bd
PZ
7150}
7151
ced549fa 7152static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7153{
8cd5601c 7154 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7155 struct sched_group *sdg = sd->groups;
7156
ca6d75e6 7157 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7158
ced549fa 7159 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7160 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7161
ced549fa
NP
7162 if (!capacity)
7163 capacity = 1;
1e3c88bd 7164
ced549fa
NP
7165 cpu_rq(cpu)->cpu_capacity = capacity;
7166 sdg->sgc->capacity = capacity;
bf475ce0 7167 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7168}
7169
63b2ca30 7170void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7171{
7172 struct sched_domain *child = sd->child;
7173 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7174 unsigned long capacity, min_capacity;
4ec4412e
VG
7175 unsigned long interval;
7176
7177 interval = msecs_to_jiffies(sd->balance_interval);
7178 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7179 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7180
7181 if (!child) {
ced549fa 7182 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7183 return;
7184 }
7185
dc7ff76e 7186 capacity = 0;
bf475ce0 7187 min_capacity = ULONG_MAX;
1e3c88bd 7188
74a5ce20
PZ
7189 if (child->flags & SD_OVERLAP) {
7190 /*
7191 * SD_OVERLAP domains cannot assume that child groups
7192 * span the current group.
7193 */
7194
863bffc8 7195 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7196 struct sched_group_capacity *sgc;
9abf24d4 7197 struct rq *rq = cpu_rq(cpu);
863bffc8 7198
9abf24d4 7199 /*
63b2ca30 7200 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7201 * gets here before we've attached the domains to the
7202 * runqueues.
7203 *
ced549fa
NP
7204 * Use capacity_of(), which is set irrespective of domains
7205 * in update_cpu_capacity().
9abf24d4 7206 *
dc7ff76e 7207 * This avoids capacity from being 0 and
9abf24d4 7208 * causing divide-by-zero issues on boot.
9abf24d4
SD
7209 */
7210 if (unlikely(!rq->sd)) {
ced549fa 7211 capacity += capacity_of(cpu);
bf475ce0
MR
7212 } else {
7213 sgc = rq->sd->groups->sgc;
7214 capacity += sgc->capacity;
9abf24d4 7215 }
863bffc8 7216
bf475ce0 7217 min_capacity = min(capacity, min_capacity);
863bffc8 7218 }
74a5ce20
PZ
7219 } else {
7220 /*
7221 * !SD_OVERLAP domains can assume that child groups
7222 * span the current group.
97a7142f 7223 */
74a5ce20
PZ
7224
7225 group = child->groups;
7226 do {
bf475ce0
MR
7227 struct sched_group_capacity *sgc = group->sgc;
7228
7229 capacity += sgc->capacity;
7230 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7231 group = group->next;
7232 } while (group != child->groups);
7233 }
1e3c88bd 7234
63b2ca30 7235 sdg->sgc->capacity = capacity;
bf475ce0 7236 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7237}
7238
9d5efe05 7239/*
ea67821b
VG
7240 * Check whether the capacity of the rq has been noticeably reduced by side
7241 * activity. The imbalance_pct is used for the threshold.
7242 * Return true is the capacity is reduced
9d5efe05
SV
7243 */
7244static inline int
ea67821b 7245check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7246{
ea67821b
VG
7247 return ((rq->cpu_capacity * sd->imbalance_pct) <
7248 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7249}
7250
30ce5dab
PZ
7251/*
7252 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7253 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7254 *
7255 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7256 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7257 * Something like:
7258 *
2b4d5b25
IM
7259 * { 0 1 2 3 } { 4 5 6 7 }
7260 * * * * *
30ce5dab
PZ
7261 *
7262 * If we were to balance group-wise we'd place two tasks in the first group and
7263 * two tasks in the second group. Clearly this is undesired as it will overload
7264 * cpu 3 and leave one of the cpus in the second group unused.
7265 *
7266 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7267 * by noticing the lower domain failed to reach balance and had difficulty
7268 * moving tasks due to affinity constraints.
30ce5dab
PZ
7269 *
7270 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7271 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7272 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7273 * to create an effective group imbalance.
7274 *
7275 * This is a somewhat tricky proposition since the next run might not find the
7276 * group imbalance and decide the groups need to be balanced again. A most
7277 * subtle and fragile situation.
7278 */
7279
6263322c 7280static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7281{
63b2ca30 7282 return group->sgc->imbalance;
30ce5dab
PZ
7283}
7284
b37d9316 7285/*
ea67821b
VG
7286 * group_has_capacity returns true if the group has spare capacity that could
7287 * be used by some tasks.
7288 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7289 * smaller than the number of CPUs or if the utilization is lower than the
7290 * available capacity for CFS tasks.
ea67821b
VG
7291 * For the latter, we use a threshold to stabilize the state, to take into
7292 * account the variance of the tasks' load and to return true if the available
7293 * capacity in meaningful for the load balancer.
7294 * As an example, an available capacity of 1% can appear but it doesn't make
7295 * any benefit for the load balance.
b37d9316 7296 */
ea67821b
VG
7297static inline bool
7298group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7299{
ea67821b
VG
7300 if (sgs->sum_nr_running < sgs->group_weight)
7301 return true;
c61037e9 7302
ea67821b 7303 if ((sgs->group_capacity * 100) >
9e91d61d 7304 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7305 return true;
b37d9316 7306
ea67821b
VG
7307 return false;
7308}
7309
7310/*
7311 * group_is_overloaded returns true if the group has more tasks than it can
7312 * handle.
7313 * group_is_overloaded is not equals to !group_has_capacity because a group
7314 * with the exact right number of tasks, has no more spare capacity but is not
7315 * overloaded so both group_has_capacity and group_is_overloaded return
7316 * false.
7317 */
7318static inline bool
7319group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7320{
7321 if (sgs->sum_nr_running <= sgs->group_weight)
7322 return false;
b37d9316 7323
ea67821b 7324 if ((sgs->group_capacity * 100) <
9e91d61d 7325 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7326 return true;
b37d9316 7327
ea67821b 7328 return false;
b37d9316
PZ
7329}
7330
9e0994c0
MR
7331/*
7332 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7333 * per-CPU capacity than sched_group ref.
7334 */
7335static inline bool
7336group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7337{
7338 return sg->sgc->min_capacity * capacity_margin <
7339 ref->sgc->min_capacity * 1024;
7340}
7341
79a89f92
LY
7342static inline enum
7343group_type group_classify(struct sched_group *group,
7344 struct sg_lb_stats *sgs)
caeb178c 7345{
ea67821b 7346 if (sgs->group_no_capacity)
caeb178c
RR
7347 return group_overloaded;
7348
7349 if (sg_imbalanced(group))
7350 return group_imbalanced;
7351
7352 return group_other;
7353}
7354
1e3c88bd
PZ
7355/**
7356 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7357 * @env: The load balancing environment.
1e3c88bd 7358 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7359 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7360 * @local_group: Does group contain this_cpu.
1e3c88bd 7361 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7362 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7363 */
bd939f45
PZ
7364static inline void update_sg_lb_stats(struct lb_env *env,
7365 struct sched_group *group, int load_idx,
4486edd1
TC
7366 int local_group, struct sg_lb_stats *sgs,
7367 bool *overload)
1e3c88bd 7368{
30ce5dab 7369 unsigned long load;
a426f99c 7370 int i, nr_running;
1e3c88bd 7371
b72ff13c
PZ
7372 memset(sgs, 0, sizeof(*sgs));
7373
b9403130 7374 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7375 struct rq *rq = cpu_rq(i);
7376
1e3c88bd 7377 /* Bias balancing toward cpus of our domain */
6263322c 7378 if (local_group)
04f733b4 7379 load = target_load(i, load_idx);
6263322c 7380 else
1e3c88bd 7381 load = source_load(i, load_idx);
1e3c88bd
PZ
7382
7383 sgs->group_load += load;
9e91d61d 7384 sgs->group_util += cpu_util(i);
65fdac08 7385 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7386
a426f99c
WL
7387 nr_running = rq->nr_running;
7388 if (nr_running > 1)
4486edd1
TC
7389 *overload = true;
7390
0ec8aa00
PZ
7391#ifdef CONFIG_NUMA_BALANCING
7392 sgs->nr_numa_running += rq->nr_numa_running;
7393 sgs->nr_preferred_running += rq->nr_preferred_running;
7394#endif
1e3c88bd 7395 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7396 /*
7397 * No need to call idle_cpu() if nr_running is not 0
7398 */
7399 if (!nr_running && idle_cpu(i))
aae6d3dd 7400 sgs->idle_cpus++;
1e3c88bd
PZ
7401 }
7402
63b2ca30
NP
7403 /* Adjust by relative CPU capacity of the group */
7404 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7405 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7406
dd5feea1 7407 if (sgs->sum_nr_running)
38d0f770 7408 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7409
aae6d3dd 7410 sgs->group_weight = group->group_weight;
b37d9316 7411
ea67821b 7412 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7413 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7414}
7415
532cb4c4
MN
7416/**
7417 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7418 * @env: The load balancing environment.
532cb4c4
MN
7419 * @sds: sched_domain statistics
7420 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7421 * @sgs: sched_group statistics
532cb4c4
MN
7422 *
7423 * Determine if @sg is a busier group than the previously selected
7424 * busiest group.
e69f6186
YB
7425 *
7426 * Return: %true if @sg is a busier group than the previously selected
7427 * busiest group. %false otherwise.
532cb4c4 7428 */
bd939f45 7429static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7430 struct sd_lb_stats *sds,
7431 struct sched_group *sg,
bd939f45 7432 struct sg_lb_stats *sgs)
532cb4c4 7433{
caeb178c 7434 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7435
caeb178c 7436 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7437 return true;
7438
caeb178c
RR
7439 if (sgs->group_type < busiest->group_type)
7440 return false;
7441
7442 if (sgs->avg_load <= busiest->avg_load)
7443 return false;
7444
9e0994c0
MR
7445 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7446 goto asym_packing;
7447
7448 /*
7449 * Candidate sg has no more than one task per CPU and
7450 * has higher per-CPU capacity. Migrating tasks to less
7451 * capable CPUs may harm throughput. Maximize throughput,
7452 * power/energy consequences are not considered.
7453 */
7454 if (sgs->sum_nr_running <= sgs->group_weight &&
7455 group_smaller_cpu_capacity(sds->local, sg))
7456 return false;
7457
7458asym_packing:
caeb178c
RR
7459 /* This is the busiest node in its class. */
7460 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7461 return true;
7462
1f621e02
SD
7463 /* No ASYM_PACKING if target cpu is already busy */
7464 if (env->idle == CPU_NOT_IDLE)
7465 return true;
532cb4c4 7466 /*
afe06efd
TC
7467 * ASYM_PACKING needs to move all the work to the highest
7468 * prority CPUs in the group, therefore mark all groups
7469 * of lower priority than ourself as busy.
532cb4c4 7470 */
afe06efd
TC
7471 if (sgs->sum_nr_running &&
7472 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7473 if (!sds->busiest)
7474 return true;
7475
afe06efd
TC
7476 /* Prefer to move from lowest priority cpu's work */
7477 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7478 sg->asym_prefer_cpu))
532cb4c4
MN
7479 return true;
7480 }
7481
7482 return false;
7483}
7484
0ec8aa00
PZ
7485#ifdef CONFIG_NUMA_BALANCING
7486static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7487{
7488 if (sgs->sum_nr_running > sgs->nr_numa_running)
7489 return regular;
7490 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7491 return remote;
7492 return all;
7493}
7494
7495static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7496{
7497 if (rq->nr_running > rq->nr_numa_running)
7498 return regular;
7499 if (rq->nr_running > rq->nr_preferred_running)
7500 return remote;
7501 return all;
7502}
7503#else
7504static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7505{
7506 return all;
7507}
7508
7509static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7510{
7511 return regular;
7512}
7513#endif /* CONFIG_NUMA_BALANCING */
7514
1e3c88bd 7515/**
461819ac 7516 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7517 * @env: The load balancing environment.
1e3c88bd
PZ
7518 * @sds: variable to hold the statistics for this sched_domain.
7519 */
0ec8aa00 7520static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7521{
bd939f45
PZ
7522 struct sched_domain *child = env->sd->child;
7523 struct sched_group *sg = env->sd->groups;
05b40e05 7524 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7525 struct sg_lb_stats tmp_sgs;
1e3c88bd 7526 int load_idx, prefer_sibling = 0;
4486edd1 7527 bool overload = false;
1e3c88bd
PZ
7528
7529 if (child && child->flags & SD_PREFER_SIBLING)
7530 prefer_sibling = 1;
7531
bd939f45 7532 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7533
7534 do {
56cf515b 7535 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7536 int local_group;
7537
bd939f45 7538 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7539 if (local_group) {
7540 sds->local = sg;
05b40e05 7541 sgs = local;
b72ff13c
PZ
7542
7543 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7544 time_after_eq(jiffies, sg->sgc->next_update))
7545 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7546 }
1e3c88bd 7547
4486edd1
TC
7548 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7549 &overload);
1e3c88bd 7550
b72ff13c
PZ
7551 if (local_group)
7552 goto next_group;
7553
1e3c88bd
PZ
7554 /*
7555 * In case the child domain prefers tasks go to siblings
ea67821b 7556 * first, lower the sg capacity so that we'll try
75dd321d
NR
7557 * and move all the excess tasks away. We lower the capacity
7558 * of a group only if the local group has the capacity to fit
ea67821b
VG
7559 * these excess tasks. The extra check prevents the case where
7560 * you always pull from the heaviest group when it is already
7561 * under-utilized (possible with a large weight task outweighs
7562 * the tasks on the system).
1e3c88bd 7563 */
b72ff13c 7564 if (prefer_sibling && sds->local &&
05b40e05
SD
7565 group_has_capacity(env, local) &&
7566 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7567 sgs->group_no_capacity = 1;
79a89f92 7568 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7569 }
1e3c88bd 7570
b72ff13c 7571 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7572 sds->busiest = sg;
56cf515b 7573 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7574 }
7575
b72ff13c
PZ
7576next_group:
7577 /* Now, start updating sd_lb_stats */
7578 sds->total_load += sgs->group_load;
63b2ca30 7579 sds->total_capacity += sgs->group_capacity;
b72ff13c 7580
532cb4c4 7581 sg = sg->next;
bd939f45 7582 } while (sg != env->sd->groups);
0ec8aa00
PZ
7583
7584 if (env->sd->flags & SD_NUMA)
7585 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7586
7587 if (!env->sd->parent) {
7588 /* update overload indicator if we are at root domain */
7589 if (env->dst_rq->rd->overload != overload)
7590 env->dst_rq->rd->overload = overload;
7591 }
7592
532cb4c4
MN
7593}
7594
532cb4c4
MN
7595/**
7596 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7597 * sched domain.
532cb4c4
MN
7598 *
7599 * This is primarily intended to used at the sibling level. Some
7600 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7601 * case of POWER7, it can move to lower SMT modes only when higher
7602 * threads are idle. When in lower SMT modes, the threads will
7603 * perform better since they share less core resources. Hence when we
7604 * have idle threads, we want them to be the higher ones.
7605 *
7606 * This packing function is run on idle threads. It checks to see if
7607 * the busiest CPU in this domain (core in the P7 case) has a higher
7608 * CPU number than the packing function is being run on. Here we are
7609 * assuming lower CPU number will be equivalent to lower a SMT thread
7610 * number.
7611 *
e69f6186 7612 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7613 * this CPU. The amount of the imbalance is returned in *imbalance.
7614 *
cd96891d 7615 * @env: The load balancing environment.
532cb4c4 7616 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7617 */
bd939f45 7618static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7619{
7620 int busiest_cpu;
7621
bd939f45 7622 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7623 return 0;
7624
1f621e02
SD
7625 if (env->idle == CPU_NOT_IDLE)
7626 return 0;
7627
532cb4c4
MN
7628 if (!sds->busiest)
7629 return 0;
7630
afe06efd
TC
7631 busiest_cpu = sds->busiest->asym_prefer_cpu;
7632 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7633 return 0;
7634
bd939f45 7635 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7636 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7637 SCHED_CAPACITY_SCALE);
bd939f45 7638
532cb4c4 7639 return 1;
1e3c88bd
PZ
7640}
7641
7642/**
7643 * fix_small_imbalance - Calculate the minor imbalance that exists
7644 * amongst the groups of a sched_domain, during
7645 * load balancing.
cd96891d 7646 * @env: The load balancing environment.
1e3c88bd 7647 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7648 */
bd939f45
PZ
7649static inline
7650void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7651{
63b2ca30 7652 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7653 unsigned int imbn = 2;
dd5feea1 7654 unsigned long scaled_busy_load_per_task;
56cf515b 7655 struct sg_lb_stats *local, *busiest;
1e3c88bd 7656
56cf515b
JK
7657 local = &sds->local_stat;
7658 busiest = &sds->busiest_stat;
1e3c88bd 7659
56cf515b
JK
7660 if (!local->sum_nr_running)
7661 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7662 else if (busiest->load_per_task > local->load_per_task)
7663 imbn = 1;
dd5feea1 7664
56cf515b 7665 scaled_busy_load_per_task =
ca8ce3d0 7666 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7667 busiest->group_capacity;
56cf515b 7668
3029ede3
VD
7669 if (busiest->avg_load + scaled_busy_load_per_task >=
7670 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7671 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7672 return;
7673 }
7674
7675 /*
7676 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7677 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7678 * moving them.
7679 */
7680
63b2ca30 7681 capa_now += busiest->group_capacity *
56cf515b 7682 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7683 capa_now += local->group_capacity *
56cf515b 7684 min(local->load_per_task, local->avg_load);
ca8ce3d0 7685 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7686
7687 /* Amount of load we'd subtract */
a2cd4260 7688 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7689 capa_move += busiest->group_capacity *
56cf515b 7690 min(busiest->load_per_task,
a2cd4260 7691 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7692 }
1e3c88bd
PZ
7693
7694 /* Amount of load we'd add */
63b2ca30 7695 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7696 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7697 tmp = (busiest->avg_load * busiest->group_capacity) /
7698 local->group_capacity;
56cf515b 7699 } else {
ca8ce3d0 7700 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7701 local->group_capacity;
56cf515b 7702 }
63b2ca30 7703 capa_move += local->group_capacity *
3ae11c90 7704 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7705 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7706
7707 /* Move if we gain throughput */
63b2ca30 7708 if (capa_move > capa_now)
56cf515b 7709 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7710}
7711
7712/**
7713 * calculate_imbalance - Calculate the amount of imbalance present within the
7714 * groups of a given sched_domain during load balance.
bd939f45 7715 * @env: load balance environment
1e3c88bd 7716 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7717 */
bd939f45 7718static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7719{
dd5feea1 7720 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7721 struct sg_lb_stats *local, *busiest;
7722
7723 local = &sds->local_stat;
56cf515b 7724 busiest = &sds->busiest_stat;
dd5feea1 7725
caeb178c 7726 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7727 /*
7728 * In the group_imb case we cannot rely on group-wide averages
7729 * to ensure cpu-load equilibrium, look at wider averages. XXX
7730 */
56cf515b
JK
7731 busiest->load_per_task =
7732 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7733 }
7734
1e3c88bd 7735 /*
885e542c
DE
7736 * Avg load of busiest sg can be less and avg load of local sg can
7737 * be greater than avg load across all sgs of sd because avg load
7738 * factors in sg capacity and sgs with smaller group_type are
7739 * skipped when updating the busiest sg:
1e3c88bd 7740 */
b1885550
VD
7741 if (busiest->avg_load <= sds->avg_load ||
7742 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7743 env->imbalance = 0;
7744 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7745 }
7746
9a5d9ba6
PZ
7747 /*
7748 * If there aren't any idle cpus, avoid creating some.
7749 */
7750 if (busiest->group_type == group_overloaded &&
7751 local->group_type == group_overloaded) {
1be0eb2a 7752 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7753 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7754 load_above_capacity -= busiest->group_capacity;
26656215 7755 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7756 load_above_capacity /= busiest->group_capacity;
7757 } else
ea67821b 7758 load_above_capacity = ~0UL;
dd5feea1
SS
7759 }
7760
7761 /*
7762 * We're trying to get all the cpus to the average_load, so we don't
7763 * want to push ourselves above the average load, nor do we wish to
7764 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7765 * we also don't want to reduce the group load below the group
7766 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7767 */
30ce5dab 7768 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7769
7770 /* How much load to actually move to equalise the imbalance */
56cf515b 7771 env->imbalance = min(
63b2ca30
NP
7772 max_pull * busiest->group_capacity,
7773 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7774 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7775
7776 /*
7777 * if *imbalance is less than the average load per runnable task
25985edc 7778 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7779 * a think about bumping its value to force at least one task to be
7780 * moved
7781 */
56cf515b 7782 if (env->imbalance < busiest->load_per_task)
bd939f45 7783 return fix_small_imbalance(env, sds);
1e3c88bd 7784}
fab47622 7785
1e3c88bd
PZ
7786/******* find_busiest_group() helpers end here *********************/
7787
7788/**
7789 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7790 * if there is an imbalance.
1e3c88bd
PZ
7791 *
7792 * Also calculates the amount of weighted load which should be moved
7793 * to restore balance.
7794 *
cd96891d 7795 * @env: The load balancing environment.
1e3c88bd 7796 *
e69f6186 7797 * Return: - The busiest group if imbalance exists.
1e3c88bd 7798 */
56cf515b 7799static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7800{
56cf515b 7801 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7802 struct sd_lb_stats sds;
7803
147c5fc2 7804 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7805
7806 /*
7807 * Compute the various statistics relavent for load balancing at
7808 * this level.
7809 */
23f0d209 7810 update_sd_lb_stats(env, &sds);
56cf515b
JK
7811 local = &sds.local_stat;
7812 busiest = &sds.busiest_stat;
1e3c88bd 7813
ea67821b 7814 /* ASYM feature bypasses nice load balance check */
1f621e02 7815 if (check_asym_packing(env, &sds))
532cb4c4
MN
7816 return sds.busiest;
7817
cc57aa8f 7818 /* There is no busy sibling group to pull tasks from */
56cf515b 7819 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7820 goto out_balanced;
7821
ca8ce3d0
NP
7822 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7823 / sds.total_capacity;
b0432d8f 7824
866ab43e
PZ
7825 /*
7826 * If the busiest group is imbalanced the below checks don't
30ce5dab 7827 * work because they assume all things are equal, which typically
866ab43e
PZ
7828 * isn't true due to cpus_allowed constraints and the like.
7829 */
caeb178c 7830 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7831 goto force_balance;
7832
cc57aa8f 7833 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7834 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7835 busiest->group_no_capacity)
fab47622
NR
7836 goto force_balance;
7837
cc57aa8f 7838 /*
9c58c79a 7839 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7840 * don't try and pull any tasks.
7841 */
56cf515b 7842 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7843 goto out_balanced;
7844
cc57aa8f
PZ
7845 /*
7846 * Don't pull any tasks if this group is already above the domain
7847 * average load.
7848 */
56cf515b 7849 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7850 goto out_balanced;
7851
bd939f45 7852 if (env->idle == CPU_IDLE) {
aae6d3dd 7853 /*
43f4d666
VG
7854 * This cpu is idle. If the busiest group is not overloaded
7855 * and there is no imbalance between this and busiest group
7856 * wrt idle cpus, it is balanced. The imbalance becomes
7857 * significant if the diff is greater than 1 otherwise we
7858 * might end up to just move the imbalance on another group
aae6d3dd 7859 */
43f4d666
VG
7860 if ((busiest->group_type != group_overloaded) &&
7861 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7862 goto out_balanced;
c186fafe
PZ
7863 } else {
7864 /*
7865 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7866 * imbalance_pct to be conservative.
7867 */
56cf515b
JK
7868 if (100 * busiest->avg_load <=
7869 env->sd->imbalance_pct * local->avg_load)
c186fafe 7870 goto out_balanced;
aae6d3dd 7871 }
1e3c88bd 7872
fab47622 7873force_balance:
1e3c88bd 7874 /* Looks like there is an imbalance. Compute it */
bd939f45 7875 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7876 return sds.busiest;
7877
7878out_balanced:
bd939f45 7879 env->imbalance = 0;
1e3c88bd
PZ
7880 return NULL;
7881}
7882
7883/*
7884 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7885 */
bd939f45 7886static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7887 struct sched_group *group)
1e3c88bd
PZ
7888{
7889 struct rq *busiest = NULL, *rq;
ced549fa 7890 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7891 int i;
7892
6906a408 7893 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7894 unsigned long capacity, wl;
0ec8aa00
PZ
7895 enum fbq_type rt;
7896
7897 rq = cpu_rq(i);
7898 rt = fbq_classify_rq(rq);
1e3c88bd 7899
0ec8aa00
PZ
7900 /*
7901 * We classify groups/runqueues into three groups:
7902 * - regular: there are !numa tasks
7903 * - remote: there are numa tasks that run on the 'wrong' node
7904 * - all: there is no distinction
7905 *
7906 * In order to avoid migrating ideally placed numa tasks,
7907 * ignore those when there's better options.
7908 *
7909 * If we ignore the actual busiest queue to migrate another
7910 * task, the next balance pass can still reduce the busiest
7911 * queue by moving tasks around inside the node.
7912 *
7913 * If we cannot move enough load due to this classification
7914 * the next pass will adjust the group classification and
7915 * allow migration of more tasks.
7916 *
7917 * Both cases only affect the total convergence complexity.
7918 */
7919 if (rt > env->fbq_type)
7920 continue;
7921
ced549fa 7922 capacity = capacity_of(i);
9d5efe05 7923
6e40f5bb 7924 wl = weighted_cpuload(i);
1e3c88bd 7925
6e40f5bb
TG
7926 /*
7927 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7928 * which is not scaled with the cpu capacity.
6e40f5bb 7929 */
ea67821b
VG
7930
7931 if (rq->nr_running == 1 && wl > env->imbalance &&
7932 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7933 continue;
7934
6e40f5bb
TG
7935 /*
7936 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7937 * the weighted_cpuload() scaled with the cpu capacity, so
7938 * that the load can be moved away from the cpu that is
7939 * potentially running at a lower capacity.
95a79b80 7940 *
ced549fa 7941 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7942 * multiplication to rid ourselves of the division works out
ced549fa
NP
7943 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7944 * our previous maximum.
6e40f5bb 7945 */
ced549fa 7946 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7947 busiest_load = wl;
ced549fa 7948 busiest_capacity = capacity;
1e3c88bd
PZ
7949 busiest = rq;
7950 }
7951 }
7952
7953 return busiest;
7954}
7955
7956/*
7957 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7958 * so long as it is large enough.
7959 */
7960#define MAX_PINNED_INTERVAL 512
7961
bd939f45 7962static int need_active_balance(struct lb_env *env)
1af3ed3d 7963{
bd939f45
PZ
7964 struct sched_domain *sd = env->sd;
7965
7966 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7967
7968 /*
7969 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7970 * lower priority CPUs in order to pack all tasks in the
7971 * highest priority CPUs.
532cb4c4 7972 */
afe06efd
TC
7973 if ((sd->flags & SD_ASYM_PACKING) &&
7974 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7975 return 1;
1af3ed3d
PZ
7976 }
7977
1aaf90a4
VG
7978 /*
7979 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7980 * It's worth migrating the task if the src_cpu's capacity is reduced
7981 * because of other sched_class or IRQs if more capacity stays
7982 * available on dst_cpu.
7983 */
7984 if ((env->idle != CPU_NOT_IDLE) &&
7985 (env->src_rq->cfs.h_nr_running == 1)) {
7986 if ((check_cpu_capacity(env->src_rq, sd)) &&
7987 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7988 return 1;
7989 }
7990
1af3ed3d
PZ
7991 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7992}
7993
969c7921
TH
7994static int active_load_balance_cpu_stop(void *data);
7995
23f0d209
JK
7996static int should_we_balance(struct lb_env *env)
7997{
7998 struct sched_group *sg = env->sd->groups;
23f0d209
JK
7999 int cpu, balance_cpu = -1;
8000
8001 /*
8002 * In the newly idle case, we will allow all the cpu's
8003 * to do the newly idle load balance.
8004 */
8005 if (env->idle == CPU_NEWLY_IDLE)
8006 return 1;
8007
23f0d209 8008 /* Try to find first idle cpu */
e5c14b1f 8009 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8010 if (!idle_cpu(cpu))
23f0d209
JK
8011 continue;
8012
8013 balance_cpu = cpu;
8014 break;
8015 }
8016
8017 if (balance_cpu == -1)
8018 balance_cpu = group_balance_cpu(sg);
8019
8020 /*
8021 * First idle cpu or the first cpu(busiest) in this sched group
8022 * is eligible for doing load balancing at this and above domains.
8023 */
b0cff9d8 8024 return balance_cpu == env->dst_cpu;
23f0d209
JK
8025}
8026
1e3c88bd
PZ
8027/*
8028 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8029 * tasks if there is an imbalance.
8030 */
8031static int load_balance(int this_cpu, struct rq *this_rq,
8032 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8033 int *continue_balancing)
1e3c88bd 8034{
88b8dac0 8035 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8036 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8037 struct sched_group *group;
1e3c88bd 8038 struct rq *busiest;
8a8c69c3 8039 struct rq_flags rf;
4ba29684 8040 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8041
8e45cb54
PZ
8042 struct lb_env env = {
8043 .sd = sd,
ddcdf6e7
PZ
8044 .dst_cpu = this_cpu,
8045 .dst_rq = this_rq,
88b8dac0 8046 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8047 .idle = idle,
eb95308e 8048 .loop_break = sched_nr_migrate_break,
b9403130 8049 .cpus = cpus,
0ec8aa00 8050 .fbq_type = all,
163122b7 8051 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8052 };
8053
cfc03118
JK
8054 /*
8055 * For NEWLY_IDLE load_balancing, we don't need to consider
8056 * other cpus in our group
8057 */
e02e60c1 8058 if (idle == CPU_NEWLY_IDLE)
cfc03118 8059 env.dst_grpmask = NULL;
cfc03118 8060
1e3c88bd
PZ
8061 cpumask_copy(cpus, cpu_active_mask);
8062
ae92882e 8063 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8064
8065redo:
23f0d209
JK
8066 if (!should_we_balance(&env)) {
8067 *continue_balancing = 0;
1e3c88bd 8068 goto out_balanced;
23f0d209 8069 }
1e3c88bd 8070
23f0d209 8071 group = find_busiest_group(&env);
1e3c88bd 8072 if (!group) {
ae92882e 8073 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8074 goto out_balanced;
8075 }
8076
b9403130 8077 busiest = find_busiest_queue(&env, group);
1e3c88bd 8078 if (!busiest) {
ae92882e 8079 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8080 goto out_balanced;
8081 }
8082
78feefc5 8083 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8084
ae92882e 8085 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8086
1aaf90a4
VG
8087 env.src_cpu = busiest->cpu;
8088 env.src_rq = busiest;
8089
1e3c88bd
PZ
8090 ld_moved = 0;
8091 if (busiest->nr_running > 1) {
8092 /*
8093 * Attempt to move tasks. If find_busiest_group has found
8094 * an imbalance but busiest->nr_running <= 1, the group is
8095 * still unbalanced. ld_moved simply stays zero, so it is
8096 * correctly treated as an imbalance.
8097 */
8e45cb54 8098 env.flags |= LBF_ALL_PINNED;
c82513e5 8099 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8100
5d6523eb 8101more_balance:
8a8c69c3 8102 rq_lock_irqsave(busiest, &rf);
3bed5e21 8103 update_rq_clock(busiest);
88b8dac0
SV
8104
8105 /*
8106 * cur_ld_moved - load moved in current iteration
8107 * ld_moved - cumulative load moved across iterations
8108 */
163122b7 8109 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8110
8111 /*
163122b7
KT
8112 * We've detached some tasks from busiest_rq. Every
8113 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8114 * unlock busiest->lock, and we are able to be sure
8115 * that nobody can manipulate the tasks in parallel.
8116 * See task_rq_lock() family for the details.
1e3c88bd 8117 */
163122b7 8118
8a8c69c3 8119 rq_unlock(busiest, &rf);
163122b7
KT
8120
8121 if (cur_ld_moved) {
8122 attach_tasks(&env);
8123 ld_moved += cur_ld_moved;
8124 }
8125
8a8c69c3 8126 local_irq_restore(rf.flags);
88b8dac0 8127
f1cd0858
JK
8128 if (env.flags & LBF_NEED_BREAK) {
8129 env.flags &= ~LBF_NEED_BREAK;
8130 goto more_balance;
8131 }
8132
88b8dac0
SV
8133 /*
8134 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8135 * us and move them to an alternate dst_cpu in our sched_group
8136 * where they can run. The upper limit on how many times we
8137 * iterate on same src_cpu is dependent on number of cpus in our
8138 * sched_group.
8139 *
8140 * This changes load balance semantics a bit on who can move
8141 * load to a given_cpu. In addition to the given_cpu itself
8142 * (or a ilb_cpu acting on its behalf where given_cpu is
8143 * nohz-idle), we now have balance_cpu in a position to move
8144 * load to given_cpu. In rare situations, this may cause
8145 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8146 * _independently_ and at _same_ time to move some load to
8147 * given_cpu) causing exceess load to be moved to given_cpu.
8148 * This however should not happen so much in practice and
8149 * moreover subsequent load balance cycles should correct the
8150 * excess load moved.
8151 */
6263322c 8152 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8153
7aff2e3a
VD
8154 /* Prevent to re-select dst_cpu via env's cpus */
8155 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8156
78feefc5 8157 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8158 env.dst_cpu = env.new_dst_cpu;
6263322c 8159 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8160 env.loop = 0;
8161 env.loop_break = sched_nr_migrate_break;
e02e60c1 8162
88b8dac0
SV
8163 /*
8164 * Go back to "more_balance" rather than "redo" since we
8165 * need to continue with same src_cpu.
8166 */
8167 goto more_balance;
8168 }
1e3c88bd 8169
6263322c
PZ
8170 /*
8171 * We failed to reach balance because of affinity.
8172 */
8173 if (sd_parent) {
63b2ca30 8174 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8175
afdeee05 8176 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8177 *group_imbalance = 1;
6263322c
PZ
8178 }
8179
1e3c88bd 8180 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8181 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8182 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8183 if (!cpumask_empty(cpus)) {
8184 env.loop = 0;
8185 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8186 goto redo;
bbf18b19 8187 }
afdeee05 8188 goto out_all_pinned;
1e3c88bd
PZ
8189 }
8190 }
8191
8192 if (!ld_moved) {
ae92882e 8193 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8194 /*
8195 * Increment the failure counter only on periodic balance.
8196 * We do not want newidle balance, which can be very
8197 * frequent, pollute the failure counter causing
8198 * excessive cache_hot migrations and active balances.
8199 */
8200 if (idle != CPU_NEWLY_IDLE)
8201 sd->nr_balance_failed++;
1e3c88bd 8202
bd939f45 8203 if (need_active_balance(&env)) {
8a8c69c3
PZ
8204 unsigned long flags;
8205
1e3c88bd
PZ
8206 raw_spin_lock_irqsave(&busiest->lock, flags);
8207
969c7921
TH
8208 /* don't kick the active_load_balance_cpu_stop,
8209 * if the curr task on busiest cpu can't be
8210 * moved to this_cpu
1e3c88bd 8211 */
0c98d344 8212 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8213 raw_spin_unlock_irqrestore(&busiest->lock,
8214 flags);
8e45cb54 8215 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8216 goto out_one_pinned;
8217 }
8218
969c7921
TH
8219 /*
8220 * ->active_balance synchronizes accesses to
8221 * ->active_balance_work. Once set, it's cleared
8222 * only after active load balance is finished.
8223 */
1e3c88bd
PZ
8224 if (!busiest->active_balance) {
8225 busiest->active_balance = 1;
8226 busiest->push_cpu = this_cpu;
8227 active_balance = 1;
8228 }
8229 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8230
bd939f45 8231 if (active_balance) {
969c7921
TH
8232 stop_one_cpu_nowait(cpu_of(busiest),
8233 active_load_balance_cpu_stop, busiest,
8234 &busiest->active_balance_work);
bd939f45 8235 }
1e3c88bd 8236
d02c0711 8237 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8238 sd->nr_balance_failed = sd->cache_nice_tries+1;
8239 }
8240 } else
8241 sd->nr_balance_failed = 0;
8242
8243 if (likely(!active_balance)) {
8244 /* We were unbalanced, so reset the balancing interval */
8245 sd->balance_interval = sd->min_interval;
8246 } else {
8247 /*
8248 * If we've begun active balancing, start to back off. This
8249 * case may not be covered by the all_pinned logic if there
8250 * is only 1 task on the busy runqueue (because we don't call
163122b7 8251 * detach_tasks).
1e3c88bd
PZ
8252 */
8253 if (sd->balance_interval < sd->max_interval)
8254 sd->balance_interval *= 2;
8255 }
8256
1e3c88bd
PZ
8257 goto out;
8258
8259out_balanced:
afdeee05
VG
8260 /*
8261 * We reach balance although we may have faced some affinity
8262 * constraints. Clear the imbalance flag if it was set.
8263 */
8264 if (sd_parent) {
8265 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8266
8267 if (*group_imbalance)
8268 *group_imbalance = 0;
8269 }
8270
8271out_all_pinned:
8272 /*
8273 * We reach balance because all tasks are pinned at this level so
8274 * we can't migrate them. Let the imbalance flag set so parent level
8275 * can try to migrate them.
8276 */
ae92882e 8277 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8278
8279 sd->nr_balance_failed = 0;
8280
8281out_one_pinned:
8282 /* tune up the balancing interval */
8e45cb54 8283 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8284 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8285 (sd->balance_interval < sd->max_interval))
8286 sd->balance_interval *= 2;
8287
46e49b38 8288 ld_moved = 0;
1e3c88bd 8289out:
1e3c88bd
PZ
8290 return ld_moved;
8291}
8292
52a08ef1
JL
8293static inline unsigned long
8294get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8295{
8296 unsigned long interval = sd->balance_interval;
8297
8298 if (cpu_busy)
8299 interval *= sd->busy_factor;
8300
8301 /* scale ms to jiffies */
8302 interval = msecs_to_jiffies(interval);
8303 interval = clamp(interval, 1UL, max_load_balance_interval);
8304
8305 return interval;
8306}
8307
8308static inline void
31851a98 8309update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8310{
8311 unsigned long interval, next;
8312
31851a98
LY
8313 /* used by idle balance, so cpu_busy = 0 */
8314 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8315 next = sd->last_balance + interval;
8316
8317 if (time_after(*next_balance, next))
8318 *next_balance = next;
8319}
8320
1e3c88bd
PZ
8321/*
8322 * idle_balance is called by schedule() if this_cpu is about to become
8323 * idle. Attempts to pull tasks from other CPUs.
8324 */
46f69fa3 8325static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8326{
52a08ef1
JL
8327 unsigned long next_balance = jiffies + HZ;
8328 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8329 struct sched_domain *sd;
8330 int pulled_task = 0;
9bd721c5 8331 u64 curr_cost = 0;
1e3c88bd 8332
6e83125c
PZ
8333 /*
8334 * We must set idle_stamp _before_ calling idle_balance(), such that we
8335 * measure the duration of idle_balance() as idle time.
8336 */
8337 this_rq->idle_stamp = rq_clock(this_rq);
8338
46f69fa3
MF
8339 /*
8340 * This is OK, because current is on_cpu, which avoids it being picked
8341 * for load-balance and preemption/IRQs are still disabled avoiding
8342 * further scheduler activity on it and we're being very careful to
8343 * re-start the picking loop.
8344 */
8345 rq_unpin_lock(this_rq, rf);
8346
4486edd1
TC
8347 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8348 !this_rq->rd->overload) {
52a08ef1
JL
8349 rcu_read_lock();
8350 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8351 if (sd)
31851a98 8352 update_next_balance(sd, &next_balance);
52a08ef1
JL
8353 rcu_read_unlock();
8354
6e83125c 8355 goto out;
52a08ef1 8356 }
1e3c88bd 8357
f492e12e
PZ
8358 raw_spin_unlock(&this_rq->lock);
8359
48a16753 8360 update_blocked_averages(this_cpu);
dce840a0 8361 rcu_read_lock();
1e3c88bd 8362 for_each_domain(this_cpu, sd) {
23f0d209 8363 int continue_balancing = 1;
9bd721c5 8364 u64 t0, domain_cost;
1e3c88bd
PZ
8365
8366 if (!(sd->flags & SD_LOAD_BALANCE))
8367 continue;
8368
52a08ef1 8369 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8370 update_next_balance(sd, &next_balance);
9bd721c5 8371 break;
52a08ef1 8372 }
9bd721c5 8373
f492e12e 8374 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8375 t0 = sched_clock_cpu(this_cpu);
8376
f492e12e 8377 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8378 sd, CPU_NEWLY_IDLE,
8379 &continue_balancing);
9bd721c5
JL
8380
8381 domain_cost = sched_clock_cpu(this_cpu) - t0;
8382 if (domain_cost > sd->max_newidle_lb_cost)
8383 sd->max_newidle_lb_cost = domain_cost;
8384
8385 curr_cost += domain_cost;
f492e12e 8386 }
1e3c88bd 8387
31851a98 8388 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8389
8390 /*
8391 * Stop searching for tasks to pull if there are
8392 * now runnable tasks on this rq.
8393 */
8394 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8395 break;
1e3c88bd 8396 }
dce840a0 8397 rcu_read_unlock();
f492e12e
PZ
8398
8399 raw_spin_lock(&this_rq->lock);
8400
0e5b5337
JL
8401 if (curr_cost > this_rq->max_idle_balance_cost)
8402 this_rq->max_idle_balance_cost = curr_cost;
8403
e5fc6611 8404 /*
0e5b5337
JL
8405 * While browsing the domains, we released the rq lock, a task could
8406 * have been enqueued in the meantime. Since we're not going idle,
8407 * pretend we pulled a task.
e5fc6611 8408 */
0e5b5337 8409 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8410 pulled_task = 1;
e5fc6611 8411
52a08ef1
JL
8412out:
8413 /* Move the next balance forward */
8414 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8415 this_rq->next_balance = next_balance;
9bd721c5 8416
e4aa358b 8417 /* Is there a task of a high priority class? */
46383648 8418 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8419 pulled_task = -1;
8420
38c6ade2 8421 if (pulled_task)
6e83125c
PZ
8422 this_rq->idle_stamp = 0;
8423
46f69fa3
MF
8424 rq_repin_lock(this_rq, rf);
8425
3c4017c1 8426 return pulled_task;
1e3c88bd
PZ
8427}
8428
8429/*
969c7921
TH
8430 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8431 * running tasks off the busiest CPU onto idle CPUs. It requires at
8432 * least 1 task to be running on each physical CPU where possible, and
8433 * avoids physical / logical imbalances.
1e3c88bd 8434 */
969c7921 8435static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8436{
969c7921
TH
8437 struct rq *busiest_rq = data;
8438 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8439 int target_cpu = busiest_rq->push_cpu;
969c7921 8440 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8441 struct sched_domain *sd;
e5673f28 8442 struct task_struct *p = NULL;
8a8c69c3 8443 struct rq_flags rf;
969c7921 8444
8a8c69c3 8445 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8446
8447 /* make sure the requested cpu hasn't gone down in the meantime */
8448 if (unlikely(busiest_cpu != smp_processor_id() ||
8449 !busiest_rq->active_balance))
8450 goto out_unlock;
1e3c88bd
PZ
8451
8452 /* Is there any task to move? */
8453 if (busiest_rq->nr_running <= 1)
969c7921 8454 goto out_unlock;
1e3c88bd
PZ
8455
8456 /*
8457 * This condition is "impossible", if it occurs
8458 * we need to fix it. Originally reported by
8459 * Bjorn Helgaas on a 128-cpu setup.
8460 */
8461 BUG_ON(busiest_rq == target_rq);
8462
1e3c88bd 8463 /* Search for an sd spanning us and the target CPU. */
dce840a0 8464 rcu_read_lock();
1e3c88bd
PZ
8465 for_each_domain(target_cpu, sd) {
8466 if ((sd->flags & SD_LOAD_BALANCE) &&
8467 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8468 break;
8469 }
8470
8471 if (likely(sd)) {
8e45cb54
PZ
8472 struct lb_env env = {
8473 .sd = sd,
ddcdf6e7
PZ
8474 .dst_cpu = target_cpu,
8475 .dst_rq = target_rq,
8476 .src_cpu = busiest_rq->cpu,
8477 .src_rq = busiest_rq,
8e45cb54
PZ
8478 .idle = CPU_IDLE,
8479 };
8480
ae92882e 8481 schedstat_inc(sd->alb_count);
3bed5e21 8482 update_rq_clock(busiest_rq);
1e3c88bd 8483
e5673f28 8484 p = detach_one_task(&env);
d02c0711 8485 if (p) {
ae92882e 8486 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8487 /* Active balancing done, reset the failure counter. */
8488 sd->nr_balance_failed = 0;
8489 } else {
ae92882e 8490 schedstat_inc(sd->alb_failed);
d02c0711 8491 }
1e3c88bd 8492 }
dce840a0 8493 rcu_read_unlock();
969c7921
TH
8494out_unlock:
8495 busiest_rq->active_balance = 0;
8a8c69c3 8496 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8497
8498 if (p)
8499 attach_one_task(target_rq, p);
8500
8501 local_irq_enable();
8502
969c7921 8503 return 0;
1e3c88bd
PZ
8504}
8505
d987fc7f
MG
8506static inline int on_null_domain(struct rq *rq)
8507{
8508 return unlikely(!rcu_dereference_sched(rq->sd));
8509}
8510
3451d024 8511#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8512/*
8513 * idle load balancing details
83cd4fe2
VP
8514 * - When one of the busy CPUs notice that there may be an idle rebalancing
8515 * needed, they will kick the idle load balancer, which then does idle
8516 * load balancing for all the idle CPUs.
8517 */
1e3c88bd 8518static struct {
83cd4fe2 8519 cpumask_var_t idle_cpus_mask;
0b005cf5 8520 atomic_t nr_cpus;
83cd4fe2
VP
8521 unsigned long next_balance; /* in jiffy units */
8522} nohz ____cacheline_aligned;
1e3c88bd 8523
3dd0337d 8524static inline int find_new_ilb(void)
1e3c88bd 8525{
0b005cf5 8526 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8527
786d6dc7
SS
8528 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8529 return ilb;
8530
8531 return nr_cpu_ids;
1e3c88bd 8532}
1e3c88bd 8533
83cd4fe2
VP
8534/*
8535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8537 * CPU (if there is one).
8538 */
0aeeeeba 8539static void nohz_balancer_kick(void)
83cd4fe2
VP
8540{
8541 int ilb_cpu;
8542
8543 nohz.next_balance++;
8544
3dd0337d 8545 ilb_cpu = find_new_ilb();
83cd4fe2 8546
0b005cf5
SS
8547 if (ilb_cpu >= nr_cpu_ids)
8548 return;
83cd4fe2 8549
cd490c5b 8550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8551 return;
8552 /*
8553 * Use smp_send_reschedule() instead of resched_cpu().
8554 * This way we generate a sched IPI on the target cpu which
8555 * is idle. And the softirq performing nohz idle load balance
8556 * will be run before returning from the IPI.
8557 */
8558 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8559 return;
8560}
8561
20a5c8cc 8562void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8563{
8564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8565 /*
8566 * Completely isolated CPUs don't ever set, so we must test.
8567 */
8568 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8569 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8570 atomic_dec(&nohz.nr_cpus);
8571 }
71325960
SS
8572 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8573 }
8574}
8575
69e1e811
SS
8576static inline void set_cpu_sd_state_busy(void)
8577{
8578 struct sched_domain *sd;
37dc6b50 8579 int cpu = smp_processor_id();
69e1e811 8580
69e1e811 8581 rcu_read_lock();
0e369d75 8582 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8583
8584 if (!sd || !sd->nohz_idle)
8585 goto unlock;
8586 sd->nohz_idle = 0;
8587
0e369d75 8588 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8589unlock:
69e1e811
SS
8590 rcu_read_unlock();
8591}
8592
8593void set_cpu_sd_state_idle(void)
8594{
8595 struct sched_domain *sd;
37dc6b50 8596 int cpu = smp_processor_id();
69e1e811 8597
69e1e811 8598 rcu_read_lock();
0e369d75 8599 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8600
8601 if (!sd || sd->nohz_idle)
8602 goto unlock;
8603 sd->nohz_idle = 1;
8604
0e369d75 8605 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8606unlock:
69e1e811
SS
8607 rcu_read_unlock();
8608}
8609
1e3c88bd 8610/*
c1cc017c 8611 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8612 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8613 */
c1cc017c 8614void nohz_balance_enter_idle(int cpu)
1e3c88bd 8615{
71325960
SS
8616 /*
8617 * If this cpu is going down, then nothing needs to be done.
8618 */
8619 if (!cpu_active(cpu))
8620 return;
8621
c1cc017c
AS
8622 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8623 return;
1e3c88bd 8624
d987fc7f
MG
8625 /*
8626 * If we're a completely isolated CPU, we don't play.
8627 */
8628 if (on_null_domain(cpu_rq(cpu)))
8629 return;
8630
c1cc017c
AS
8631 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8632 atomic_inc(&nohz.nr_cpus);
8633 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8634}
8635#endif
8636
8637static DEFINE_SPINLOCK(balancing);
8638
49c022e6
PZ
8639/*
8640 * Scale the max load_balance interval with the number of CPUs in the system.
8641 * This trades load-balance latency on larger machines for less cross talk.
8642 */
029632fb 8643void update_max_interval(void)
49c022e6
PZ
8644{
8645 max_load_balance_interval = HZ*num_online_cpus()/10;
8646}
8647
1e3c88bd
PZ
8648/*
8649 * It checks each scheduling domain to see if it is due to be balanced,
8650 * and initiates a balancing operation if so.
8651 *
b9b0853a 8652 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8653 */
f7ed0a89 8654static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8655{
23f0d209 8656 int continue_balancing = 1;
f7ed0a89 8657 int cpu = rq->cpu;
1e3c88bd 8658 unsigned long interval;
04f733b4 8659 struct sched_domain *sd;
1e3c88bd
PZ
8660 /* Earliest time when we have to do rebalance again */
8661 unsigned long next_balance = jiffies + 60*HZ;
8662 int update_next_balance = 0;
f48627e6
JL
8663 int need_serialize, need_decay = 0;
8664 u64 max_cost = 0;
1e3c88bd 8665
48a16753 8666 update_blocked_averages(cpu);
2069dd75 8667
dce840a0 8668 rcu_read_lock();
1e3c88bd 8669 for_each_domain(cpu, sd) {
f48627e6
JL
8670 /*
8671 * Decay the newidle max times here because this is a regular
8672 * visit to all the domains. Decay ~1% per second.
8673 */
8674 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8675 sd->max_newidle_lb_cost =
8676 (sd->max_newidle_lb_cost * 253) / 256;
8677 sd->next_decay_max_lb_cost = jiffies + HZ;
8678 need_decay = 1;
8679 }
8680 max_cost += sd->max_newidle_lb_cost;
8681
1e3c88bd
PZ
8682 if (!(sd->flags & SD_LOAD_BALANCE))
8683 continue;
8684
f48627e6
JL
8685 /*
8686 * Stop the load balance at this level. There is another
8687 * CPU in our sched group which is doing load balancing more
8688 * actively.
8689 */
8690 if (!continue_balancing) {
8691 if (need_decay)
8692 continue;
8693 break;
8694 }
8695
52a08ef1 8696 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8697
8698 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8699 if (need_serialize) {
8700 if (!spin_trylock(&balancing))
8701 goto out;
8702 }
8703
8704 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8705 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8706 /*
6263322c 8707 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8708 * env->dst_cpu, so we can't know our idle
8709 * state even if we migrated tasks. Update it.
1e3c88bd 8710 */
de5eb2dd 8711 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8712 }
8713 sd->last_balance = jiffies;
52a08ef1 8714 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8715 }
8716 if (need_serialize)
8717 spin_unlock(&balancing);
8718out:
8719 if (time_after(next_balance, sd->last_balance + interval)) {
8720 next_balance = sd->last_balance + interval;
8721 update_next_balance = 1;
8722 }
f48627e6
JL
8723 }
8724 if (need_decay) {
1e3c88bd 8725 /*
f48627e6
JL
8726 * Ensure the rq-wide value also decays but keep it at a
8727 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8728 */
f48627e6
JL
8729 rq->max_idle_balance_cost =
8730 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8731 }
dce840a0 8732 rcu_read_unlock();
1e3c88bd
PZ
8733
8734 /*
8735 * next_balance will be updated only when there is a need.
8736 * When the cpu is attached to null domain for ex, it will not be
8737 * updated.
8738 */
c5afb6a8 8739 if (likely(update_next_balance)) {
1e3c88bd 8740 rq->next_balance = next_balance;
c5afb6a8
VG
8741
8742#ifdef CONFIG_NO_HZ_COMMON
8743 /*
8744 * If this CPU has been elected to perform the nohz idle
8745 * balance. Other idle CPUs have already rebalanced with
8746 * nohz_idle_balance() and nohz.next_balance has been
8747 * updated accordingly. This CPU is now running the idle load
8748 * balance for itself and we need to update the
8749 * nohz.next_balance accordingly.
8750 */
8751 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8752 nohz.next_balance = rq->next_balance;
8753#endif
8754 }
1e3c88bd
PZ
8755}
8756
3451d024 8757#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8758/*
3451d024 8759 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8760 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8761 */
208cb16b 8762static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8763{
208cb16b 8764 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8765 struct rq *rq;
8766 int balance_cpu;
c5afb6a8
VG
8767 /* Earliest time when we have to do rebalance again */
8768 unsigned long next_balance = jiffies + 60*HZ;
8769 int update_next_balance = 0;
83cd4fe2 8770
1c792db7
SS
8771 if (idle != CPU_IDLE ||
8772 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8773 goto end;
83cd4fe2
VP
8774
8775 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8776 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8777 continue;
8778
8779 /*
8780 * If this cpu gets work to do, stop the load balancing
8781 * work being done for other cpus. Next load
8782 * balancing owner will pick it up.
8783 */
1c792db7 8784 if (need_resched())
83cd4fe2 8785 break;
83cd4fe2 8786
5ed4f1d9
VG
8787 rq = cpu_rq(balance_cpu);
8788
ed61bbc6
TC
8789 /*
8790 * If time for next balance is due,
8791 * do the balance.
8792 */
8793 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8794 struct rq_flags rf;
8795
8796 rq_lock_irq(rq, &rf);
ed61bbc6 8797 update_rq_clock(rq);
cee1afce 8798 cpu_load_update_idle(rq);
8a8c69c3
PZ
8799 rq_unlock_irq(rq, &rf);
8800
ed61bbc6
TC
8801 rebalance_domains(rq, CPU_IDLE);
8802 }
83cd4fe2 8803
c5afb6a8
VG
8804 if (time_after(next_balance, rq->next_balance)) {
8805 next_balance = rq->next_balance;
8806 update_next_balance = 1;
8807 }
83cd4fe2 8808 }
c5afb6a8
VG
8809
8810 /*
8811 * next_balance will be updated only when there is a need.
8812 * When the CPU is attached to null domain for ex, it will not be
8813 * updated.
8814 */
8815 if (likely(update_next_balance))
8816 nohz.next_balance = next_balance;
1c792db7
SS
8817end:
8818 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8819}
8820
8821/*
0b005cf5 8822 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8823 * of an idle cpu in the system.
0b005cf5 8824 * - This rq has more than one task.
1aaf90a4
VG
8825 * - This rq has at least one CFS task and the capacity of the CPU is
8826 * significantly reduced because of RT tasks or IRQs.
8827 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8828 * multiple busy cpu.
0b005cf5
SS
8829 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8830 * domain span are idle.
83cd4fe2 8831 */
1aaf90a4 8832static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8833{
8834 unsigned long now = jiffies;
0e369d75 8835 struct sched_domain_shared *sds;
0b005cf5 8836 struct sched_domain *sd;
afe06efd 8837 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8838 bool kick = false;
83cd4fe2 8839
4a725627 8840 if (unlikely(rq->idle_balance))
1aaf90a4 8841 return false;
83cd4fe2 8842
1c792db7
SS
8843 /*
8844 * We may be recently in ticked or tickless idle mode. At the first
8845 * busy tick after returning from idle, we will update the busy stats.
8846 */
69e1e811 8847 set_cpu_sd_state_busy();
c1cc017c 8848 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8849
8850 /*
8851 * None are in tickless mode and hence no need for NOHZ idle load
8852 * balancing.
8853 */
8854 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8855 return false;
1c792db7
SS
8856
8857 if (time_before(now, nohz.next_balance))
1aaf90a4 8858 return false;
83cd4fe2 8859
0b005cf5 8860 if (rq->nr_running >= 2)
1aaf90a4 8861 return true;
83cd4fe2 8862
067491b7 8863 rcu_read_lock();
0e369d75
PZ
8864 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8865 if (sds) {
8866 /*
8867 * XXX: write a coherent comment on why we do this.
8868 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8869 */
8870 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8871 if (nr_busy > 1) {
8872 kick = true;
8873 goto unlock;
8874 }
8875
83cd4fe2 8876 }
37dc6b50 8877
1aaf90a4
VG
8878 sd = rcu_dereference(rq->sd);
8879 if (sd) {
8880 if ((rq->cfs.h_nr_running >= 1) &&
8881 check_cpu_capacity(rq, sd)) {
8882 kick = true;
8883 goto unlock;
8884 }
8885 }
37dc6b50 8886
1aaf90a4 8887 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8888 if (sd) {
8889 for_each_cpu(i, sched_domain_span(sd)) {
8890 if (i == cpu ||
8891 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8892 continue;
067491b7 8893
afe06efd
TC
8894 if (sched_asym_prefer(i, cpu)) {
8895 kick = true;
8896 goto unlock;
8897 }
8898 }
8899 }
1aaf90a4 8900unlock:
067491b7 8901 rcu_read_unlock();
1aaf90a4 8902 return kick;
83cd4fe2
VP
8903}
8904#else
208cb16b 8905static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8906#endif
8907
8908/*
8909 * run_rebalance_domains is triggered when needed from the scheduler tick.
8910 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8911 */
0766f788 8912static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8913{
208cb16b 8914 struct rq *this_rq = this_rq();
6eb57e0d 8915 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8916 CPU_IDLE : CPU_NOT_IDLE;
8917
1e3c88bd 8918 /*
83cd4fe2 8919 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8920 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8921 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8922 * give the idle cpus a chance to load balance. Else we may
8923 * load balance only within the local sched_domain hierarchy
8924 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8925 */
208cb16b 8926 nohz_idle_balance(this_rq, idle);
d4573c3e 8927 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8928}
8929
1e3c88bd
PZ
8930/*
8931 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8932 */
7caff66f 8933void trigger_load_balance(struct rq *rq)
1e3c88bd 8934{
1e3c88bd 8935 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8936 if (unlikely(on_null_domain(rq)))
8937 return;
8938
8939 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8940 raise_softirq(SCHED_SOFTIRQ);
3451d024 8941#ifdef CONFIG_NO_HZ_COMMON
c726099e 8942 if (nohz_kick_needed(rq))
0aeeeeba 8943 nohz_balancer_kick();
83cd4fe2 8944#endif
1e3c88bd
PZ
8945}
8946
0bcdcf28
CE
8947static void rq_online_fair(struct rq *rq)
8948{
8949 update_sysctl();
0e59bdae
KT
8950
8951 update_runtime_enabled(rq);
0bcdcf28
CE
8952}
8953
8954static void rq_offline_fair(struct rq *rq)
8955{
8956 update_sysctl();
a4c96ae3
PB
8957
8958 /* Ensure any throttled groups are reachable by pick_next_task */
8959 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8960}
8961
55e12e5e 8962#endif /* CONFIG_SMP */
e1d1484f 8963
bf0f6f24
IM
8964/*
8965 * scheduler tick hitting a task of our scheduling class:
8966 */
8f4d37ec 8967static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8968{
8969 struct cfs_rq *cfs_rq;
8970 struct sched_entity *se = &curr->se;
8971
8972 for_each_sched_entity(se) {
8973 cfs_rq = cfs_rq_of(se);
8f4d37ec 8974 entity_tick(cfs_rq, se, queued);
bf0f6f24 8975 }
18bf2805 8976
b52da86e 8977 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8978 task_tick_numa(rq, curr);
bf0f6f24
IM
8979}
8980
8981/*
cd29fe6f
PZ
8982 * called on fork with the child task as argument from the parent's context
8983 * - child not yet on the tasklist
8984 * - preemption disabled
bf0f6f24 8985 */
cd29fe6f 8986static void task_fork_fair(struct task_struct *p)
bf0f6f24 8987{
4fc420c9
DN
8988 struct cfs_rq *cfs_rq;
8989 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8990 struct rq *rq = this_rq();
8a8c69c3 8991 struct rq_flags rf;
bf0f6f24 8992
8a8c69c3 8993 rq_lock(rq, &rf);
861d034e
PZ
8994 update_rq_clock(rq);
8995
4fc420c9
DN
8996 cfs_rq = task_cfs_rq(current);
8997 curr = cfs_rq->curr;
e210bffd
PZ
8998 if (curr) {
8999 update_curr(cfs_rq);
b5d9d734 9000 se->vruntime = curr->vruntime;
e210bffd 9001 }
aeb73b04 9002 place_entity(cfs_rq, se, 1);
4d78e7b6 9003
cd29fe6f 9004 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9005 /*
edcb60a3
IM
9006 * Upon rescheduling, sched_class::put_prev_task() will place
9007 * 'current' within the tree based on its new key value.
9008 */
4d78e7b6 9009 swap(curr->vruntime, se->vruntime);
8875125e 9010 resched_curr(rq);
4d78e7b6 9011 }
bf0f6f24 9012
88ec22d3 9013 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9014 rq_unlock(rq, &rf);
bf0f6f24
IM
9015}
9016
cb469845
SR
9017/*
9018 * Priority of the task has changed. Check to see if we preempt
9019 * the current task.
9020 */
da7a735e
PZ
9021static void
9022prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9023{
da0c1e65 9024 if (!task_on_rq_queued(p))
da7a735e
PZ
9025 return;
9026
cb469845
SR
9027 /*
9028 * Reschedule if we are currently running on this runqueue and
9029 * our priority decreased, or if we are not currently running on
9030 * this runqueue and our priority is higher than the current's
9031 */
da7a735e 9032 if (rq->curr == p) {
cb469845 9033 if (p->prio > oldprio)
8875125e 9034 resched_curr(rq);
cb469845 9035 } else
15afe09b 9036 check_preempt_curr(rq, p, 0);
cb469845
SR
9037}
9038
daa59407 9039static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9040{
9041 struct sched_entity *se = &p->se;
da7a735e
PZ
9042
9043 /*
daa59407
BP
9044 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9045 * the dequeue_entity(.flags=0) will already have normalized the
9046 * vruntime.
9047 */
9048 if (p->on_rq)
9049 return true;
9050
9051 /*
9052 * When !on_rq, vruntime of the task has usually NOT been normalized.
9053 * But there are some cases where it has already been normalized:
da7a735e 9054 *
daa59407
BP
9055 * - A forked child which is waiting for being woken up by
9056 * wake_up_new_task().
9057 * - A task which has been woken up by try_to_wake_up() and
9058 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9059 */
daa59407
BP
9060 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9061 return true;
9062
9063 return false;
9064}
9065
09a43ace
VG
9066#ifdef CONFIG_FAIR_GROUP_SCHED
9067/*
9068 * Propagate the changes of the sched_entity across the tg tree to make it
9069 * visible to the root
9070 */
9071static void propagate_entity_cfs_rq(struct sched_entity *se)
9072{
9073 struct cfs_rq *cfs_rq;
9074
9075 /* Start to propagate at parent */
9076 se = se->parent;
9077
9078 for_each_sched_entity(se) {
9079 cfs_rq = cfs_rq_of(se);
9080
9081 if (cfs_rq_throttled(cfs_rq))
9082 break;
9083
9084 update_load_avg(se, UPDATE_TG);
9085 }
9086}
9087#else
9088static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9089#endif
9090
df217913 9091static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9092{
daa59407
BP
9093 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9094
9d89c257 9095 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9096 update_load_avg(se, 0);
a05e8c51 9097 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9098 update_tg_load_avg(cfs_rq, false);
09a43ace 9099 propagate_entity_cfs_rq(se);
da7a735e
PZ
9100}
9101
df217913 9102static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9103{
daa59407 9104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9105
9106#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9107 /*
9108 * Since the real-depth could have been changed (only FAIR
9109 * class maintain depth value), reset depth properly.
9110 */
9111 se->depth = se->parent ? se->parent->depth + 1 : 0;
9112#endif
7855a35a 9113
df217913 9114 /* Synchronize entity with its cfs_rq */
d31b1a66 9115 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9116 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9117 update_tg_load_avg(cfs_rq, false);
09a43ace 9118 propagate_entity_cfs_rq(se);
df217913
VG
9119}
9120
9121static void detach_task_cfs_rq(struct task_struct *p)
9122{
9123 struct sched_entity *se = &p->se;
9124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9125
9126 if (!vruntime_normalized(p)) {
9127 /*
9128 * Fix up our vruntime so that the current sleep doesn't
9129 * cause 'unlimited' sleep bonus.
9130 */
9131 place_entity(cfs_rq, se, 0);
9132 se->vruntime -= cfs_rq->min_vruntime;
9133 }
9134
9135 detach_entity_cfs_rq(se);
9136}
9137
9138static void attach_task_cfs_rq(struct task_struct *p)
9139{
9140 struct sched_entity *se = &p->se;
9141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9142
9143 attach_entity_cfs_rq(se);
daa59407
BP
9144
9145 if (!vruntime_normalized(p))
9146 se->vruntime += cfs_rq->min_vruntime;
9147}
6efdb105 9148
daa59407
BP
9149static void switched_from_fair(struct rq *rq, struct task_struct *p)
9150{
9151 detach_task_cfs_rq(p);
9152}
9153
9154static void switched_to_fair(struct rq *rq, struct task_struct *p)
9155{
9156 attach_task_cfs_rq(p);
7855a35a 9157
daa59407 9158 if (task_on_rq_queued(p)) {
7855a35a 9159 /*
daa59407
BP
9160 * We were most likely switched from sched_rt, so
9161 * kick off the schedule if running, otherwise just see
9162 * if we can still preempt the current task.
7855a35a 9163 */
daa59407
BP
9164 if (rq->curr == p)
9165 resched_curr(rq);
9166 else
9167 check_preempt_curr(rq, p, 0);
7855a35a 9168 }
cb469845
SR
9169}
9170
83b699ed
SV
9171/* Account for a task changing its policy or group.
9172 *
9173 * This routine is mostly called to set cfs_rq->curr field when a task
9174 * migrates between groups/classes.
9175 */
9176static void set_curr_task_fair(struct rq *rq)
9177{
9178 struct sched_entity *se = &rq->curr->se;
9179
ec12cb7f
PT
9180 for_each_sched_entity(se) {
9181 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9182
9183 set_next_entity(cfs_rq, se);
9184 /* ensure bandwidth has been allocated on our new cfs_rq */
9185 account_cfs_rq_runtime(cfs_rq, 0);
9186 }
83b699ed
SV
9187}
9188
029632fb
PZ
9189void init_cfs_rq(struct cfs_rq *cfs_rq)
9190{
9191 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9192 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9193#ifndef CONFIG_64BIT
9194 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9195#endif
141965c7 9196#ifdef CONFIG_SMP
09a43ace
VG
9197#ifdef CONFIG_FAIR_GROUP_SCHED
9198 cfs_rq->propagate_avg = 0;
9199#endif
9d89c257
YD
9200 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9201 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9202#endif
029632fb
PZ
9203}
9204
810b3817 9205#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9206static void task_set_group_fair(struct task_struct *p)
9207{
9208 struct sched_entity *se = &p->se;
9209
9210 set_task_rq(p, task_cpu(p));
9211 se->depth = se->parent ? se->parent->depth + 1 : 0;
9212}
9213
bc54da21 9214static void task_move_group_fair(struct task_struct *p)
810b3817 9215{
daa59407 9216 detach_task_cfs_rq(p);
b2b5ce02 9217 set_task_rq(p, task_cpu(p));
6efdb105
BP
9218
9219#ifdef CONFIG_SMP
9220 /* Tell se's cfs_rq has been changed -- migrated */
9221 p->se.avg.last_update_time = 0;
9222#endif
daa59407 9223 attach_task_cfs_rq(p);
810b3817 9224}
029632fb 9225
ea86cb4b
VG
9226static void task_change_group_fair(struct task_struct *p, int type)
9227{
9228 switch (type) {
9229 case TASK_SET_GROUP:
9230 task_set_group_fair(p);
9231 break;
9232
9233 case TASK_MOVE_GROUP:
9234 task_move_group_fair(p);
9235 break;
9236 }
9237}
9238
029632fb
PZ
9239void free_fair_sched_group(struct task_group *tg)
9240{
9241 int i;
9242
9243 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9244
9245 for_each_possible_cpu(i) {
9246 if (tg->cfs_rq)
9247 kfree(tg->cfs_rq[i]);
6fe1f348 9248 if (tg->se)
029632fb
PZ
9249 kfree(tg->se[i]);
9250 }
9251
9252 kfree(tg->cfs_rq);
9253 kfree(tg->se);
9254}
9255
9256int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9257{
029632fb 9258 struct sched_entity *se;
b7fa30c9 9259 struct cfs_rq *cfs_rq;
029632fb
PZ
9260 int i;
9261
9262 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9263 if (!tg->cfs_rq)
9264 goto err;
9265 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9266 if (!tg->se)
9267 goto err;
9268
9269 tg->shares = NICE_0_LOAD;
9270
9271 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9272
9273 for_each_possible_cpu(i) {
9274 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9275 GFP_KERNEL, cpu_to_node(i));
9276 if (!cfs_rq)
9277 goto err;
9278
9279 se = kzalloc_node(sizeof(struct sched_entity),
9280 GFP_KERNEL, cpu_to_node(i));
9281 if (!se)
9282 goto err_free_rq;
9283
9284 init_cfs_rq(cfs_rq);
9285 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9286 init_entity_runnable_average(se);
029632fb
PZ
9287 }
9288
9289 return 1;
9290
9291err_free_rq:
9292 kfree(cfs_rq);
9293err:
9294 return 0;
9295}
9296
8663e24d
PZ
9297void online_fair_sched_group(struct task_group *tg)
9298{
9299 struct sched_entity *se;
9300 struct rq *rq;
9301 int i;
9302
9303 for_each_possible_cpu(i) {
9304 rq = cpu_rq(i);
9305 se = tg->se[i];
9306
9307 raw_spin_lock_irq(&rq->lock);
4126bad6 9308 update_rq_clock(rq);
d0326691 9309 attach_entity_cfs_rq(se);
55e16d30 9310 sync_throttle(tg, i);
8663e24d
PZ
9311 raw_spin_unlock_irq(&rq->lock);
9312 }
9313}
9314
6fe1f348 9315void unregister_fair_sched_group(struct task_group *tg)
029632fb 9316{
029632fb 9317 unsigned long flags;
6fe1f348
PZ
9318 struct rq *rq;
9319 int cpu;
029632fb 9320
6fe1f348
PZ
9321 for_each_possible_cpu(cpu) {
9322 if (tg->se[cpu])
9323 remove_entity_load_avg(tg->se[cpu]);
029632fb 9324
6fe1f348
PZ
9325 /*
9326 * Only empty task groups can be destroyed; so we can speculatively
9327 * check on_list without danger of it being re-added.
9328 */
9329 if (!tg->cfs_rq[cpu]->on_list)
9330 continue;
9331
9332 rq = cpu_rq(cpu);
9333
9334 raw_spin_lock_irqsave(&rq->lock, flags);
9335 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9336 raw_spin_unlock_irqrestore(&rq->lock, flags);
9337 }
029632fb
PZ
9338}
9339
9340void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9341 struct sched_entity *se, int cpu,
9342 struct sched_entity *parent)
9343{
9344 struct rq *rq = cpu_rq(cpu);
9345
9346 cfs_rq->tg = tg;
9347 cfs_rq->rq = rq;
029632fb
PZ
9348 init_cfs_rq_runtime(cfs_rq);
9349
9350 tg->cfs_rq[cpu] = cfs_rq;
9351 tg->se[cpu] = se;
9352
9353 /* se could be NULL for root_task_group */
9354 if (!se)
9355 return;
9356
fed14d45 9357 if (!parent) {
029632fb 9358 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9359 se->depth = 0;
9360 } else {
029632fb 9361 se->cfs_rq = parent->my_q;
fed14d45
PZ
9362 se->depth = parent->depth + 1;
9363 }
029632fb
PZ
9364
9365 se->my_q = cfs_rq;
0ac9b1c2
PT
9366 /* guarantee group entities always have weight */
9367 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9368 se->parent = parent;
9369}
9370
9371static DEFINE_MUTEX(shares_mutex);
9372
9373int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9374{
9375 int i;
029632fb
PZ
9376
9377 /*
9378 * We can't change the weight of the root cgroup.
9379 */
9380 if (!tg->se[0])
9381 return -EINVAL;
9382
9383 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9384
9385 mutex_lock(&shares_mutex);
9386 if (tg->shares == shares)
9387 goto done;
9388
9389 tg->shares = shares;
9390 for_each_possible_cpu(i) {
9391 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9392 struct sched_entity *se = tg->se[i];
9393 struct rq_flags rf;
029632fb 9394
029632fb 9395 /* Propagate contribution to hierarchy */
8a8c69c3 9396 rq_lock_irqsave(rq, &rf);
71b1da46 9397 update_rq_clock(rq);
89ee048f
VG
9398 for_each_sched_entity(se) {
9399 update_load_avg(se, UPDATE_TG);
9400 update_cfs_shares(se);
9401 }
8a8c69c3 9402 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9403 }
9404
9405done:
9406 mutex_unlock(&shares_mutex);
9407 return 0;
9408}
9409#else /* CONFIG_FAIR_GROUP_SCHED */
9410
9411void free_fair_sched_group(struct task_group *tg) { }
9412
9413int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9414{
9415 return 1;
9416}
9417
8663e24d
PZ
9418void online_fair_sched_group(struct task_group *tg) { }
9419
6fe1f348 9420void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9421
9422#endif /* CONFIG_FAIR_GROUP_SCHED */
9423
810b3817 9424
6d686f45 9425static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9426{
9427 struct sched_entity *se = &task->se;
0d721cea
PW
9428 unsigned int rr_interval = 0;
9429
9430 /*
9431 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9432 * idle runqueue:
9433 */
0d721cea 9434 if (rq->cfs.load.weight)
a59f4e07 9435 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9436
9437 return rr_interval;
9438}
9439
bf0f6f24
IM
9440/*
9441 * All the scheduling class methods:
9442 */
029632fb 9443const struct sched_class fair_sched_class = {
5522d5d5 9444 .next = &idle_sched_class,
bf0f6f24
IM
9445 .enqueue_task = enqueue_task_fair,
9446 .dequeue_task = dequeue_task_fair,
9447 .yield_task = yield_task_fair,
d95f4122 9448 .yield_to_task = yield_to_task_fair,
bf0f6f24 9449
2e09bf55 9450 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9451
9452 .pick_next_task = pick_next_task_fair,
9453 .put_prev_task = put_prev_task_fair,
9454
681f3e68 9455#ifdef CONFIG_SMP
4ce72a2c 9456 .select_task_rq = select_task_rq_fair,
0a74bef8 9457 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9458
0bcdcf28
CE
9459 .rq_online = rq_online_fair,
9460 .rq_offline = rq_offline_fair,
88ec22d3 9461
12695578 9462 .task_dead = task_dead_fair,
c5b28038 9463 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9464#endif
bf0f6f24 9465
83b699ed 9466 .set_curr_task = set_curr_task_fair,
bf0f6f24 9467 .task_tick = task_tick_fair,
cd29fe6f 9468 .task_fork = task_fork_fair,
cb469845
SR
9469
9470 .prio_changed = prio_changed_fair,
da7a735e 9471 .switched_from = switched_from_fair,
cb469845 9472 .switched_to = switched_to_fair,
810b3817 9473
0d721cea
PW
9474 .get_rr_interval = get_rr_interval_fair,
9475
6e998916
SG
9476 .update_curr = update_curr_fair,
9477
810b3817 9478#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9479 .task_change_group = task_change_group_fair,
810b3817 9480#endif
bf0f6f24
IM
9481};
9482
9483#ifdef CONFIG_SCHED_DEBUG
029632fb 9484void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9485{
bf0f6f24
IM
9486 struct cfs_rq *cfs_rq;
9487
5973e5b9 9488 rcu_read_lock();
c3b64f1e 9489 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9490 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9491 rcu_read_unlock();
bf0f6f24 9492}
397f2378
SD
9493
9494#ifdef CONFIG_NUMA_BALANCING
9495void show_numa_stats(struct task_struct *p, struct seq_file *m)
9496{
9497 int node;
9498 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9499
9500 for_each_online_node(node) {
9501 if (p->numa_faults) {
9502 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9503 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9504 }
9505 if (p->numa_group) {
9506 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9507 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9508 }
9509 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9510 }
9511}
9512#endif /* CONFIG_NUMA_BALANCING */
9513#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9514
9515__init void init_sched_fair_class(void)
9516{
9517#ifdef CONFIG_SMP
9518 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9519
3451d024 9520#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9521 nohz.next_balance = jiffies;
029632fb 9522 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9523#endif
9524#endif /* SMP */
9525
9526}