Revert 095bebf61a46 ("sched/numa: Do not move past the balance point if unbalanced")
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 579 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
316c1608 837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
e4991b24
RR
1201 long imb, old_imb;
1202 long orig_src_load, orig_dst_load;
28a21745
RR
1203 long src_capacity, dst_capacity;
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1214
1215 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1216 if (dst_load < src_load)
1217 swap(dst_load, src_load);
e63da036
RR
1218
1219 /* Is the difference below the threshold? */
e4991b24
RR
1220 imb = dst_load * src_capacity * 100 -
1221 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1222 if (imb <= 0)
1223 return false;
1224
1225 /*
1226 * The imbalance is above the allowed threshold.
e4991b24 1227 * Compare it with the old imbalance.
e63da036 1228 */
28a21745 1229 orig_src_load = env->src_stats.load;
e4991b24 1230 orig_dst_load = env->dst_stats.load;
28a21745 1231
e4991b24
RR
1232 if (orig_dst_load < orig_src_load)
1233 swap(orig_dst_load, orig_src_load);
e63da036 1234
e4991b24
RR
1235 old_imb = orig_dst_load * src_capacity * 100 -
1236 orig_src_load * dst_capacity * env->imbalance_pct;
1237
1238 /* Would this change make things worse? */
1239 return (imb > old_imb);
e63da036
RR
1240}
1241
fb13c7ee
MG
1242/*
1243 * This checks if the overall compute and NUMA accesses of the system would
1244 * be improved if the source tasks was migrated to the target dst_cpu taking
1245 * into account that it might be best if task running on the dst_cpu should
1246 * be exchanged with the source task
1247 */
887c290e
RR
1248static void task_numa_compare(struct task_numa_env *env,
1249 long taskimp, long groupimp)
fb13c7ee
MG
1250{
1251 struct rq *src_rq = cpu_rq(env->src_cpu);
1252 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1253 struct task_struct *cur;
28a21745 1254 long src_load, dst_load;
fb13c7ee 1255 long load;
1c5d3eb3 1256 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1257 long moveimp = imp;
7bd95320 1258 int dist = env->dist;
fb13c7ee
MG
1259
1260 rcu_read_lock();
1effd9f1
KT
1261
1262 raw_spin_lock_irq(&dst_rq->lock);
1263 cur = dst_rq->curr;
1264 /*
1265 * No need to move the exiting task, and this ensures that ->curr
1266 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1267 * is safe under RCU read lock.
1268 * Note that rcu_read_lock() itself can't protect from the final
1269 * put_task_struct() after the last schedule().
1270 */
1271 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1272 cur = NULL;
1effd9f1 1273 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1274
7af68335
PZ
1275 /*
1276 * Because we have preemption enabled we can get migrated around and
1277 * end try selecting ourselves (current == env->p) as a swap candidate.
1278 */
1279 if (cur == env->p)
1280 goto unlock;
1281
fb13c7ee
MG
1282 /*
1283 * "imp" is the fault differential for the source task between the
1284 * source and destination node. Calculate the total differential for
1285 * the source task and potential destination task. The more negative
1286 * the value is, the more rmeote accesses that would be expected to
1287 * be incurred if the tasks were swapped.
1288 */
1289 if (cur) {
1290 /* Skip this swap candidate if cannot move to the source cpu */
1291 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1292 goto unlock;
1293
887c290e
RR
1294 /*
1295 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1296 * in any group then look only at task weights.
887c290e 1297 */
ca28aa53 1298 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1299 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1300 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1301 /*
1302 * Add some hysteresis to prevent swapping the
1303 * tasks within a group over tiny differences.
1304 */
1305 if (cur->numa_group)
1306 imp -= imp/16;
887c290e 1307 } else {
ca28aa53
RR
1308 /*
1309 * Compare the group weights. If a task is all by
1310 * itself (not part of a group), use the task weight
1311 * instead.
1312 */
ca28aa53 1313 if (cur->numa_group)
7bd95320
RR
1314 imp += group_weight(cur, env->src_nid, dist) -
1315 group_weight(cur, env->dst_nid, dist);
ca28aa53 1316 else
7bd95320
RR
1317 imp += task_weight(cur, env->src_nid, dist) -
1318 task_weight(cur, env->dst_nid, dist);
887c290e 1319 }
fb13c7ee
MG
1320 }
1321
0132c3e1 1322 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1323 goto unlock;
1324
1325 if (!cur) {
1326 /* Is there capacity at our destination? */
b932c03c 1327 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1328 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1329 goto unlock;
1330
1331 goto balance;
1332 }
1333
1334 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1335 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1336 dst_rq->nr_running == 1)
fb13c7ee
MG
1337 goto assign;
1338
1339 /*
1340 * In the overloaded case, try and keep the load balanced.
1341 */
1342balance:
e720fff6
PZ
1343 load = task_h_load(env->p);
1344 dst_load = env->dst_stats.load + load;
1345 src_load = env->src_stats.load - load;
fb13c7ee 1346
0132c3e1
RR
1347 if (moveimp > imp && moveimp > env->best_imp) {
1348 /*
1349 * If the improvement from just moving env->p direction is
1350 * better than swapping tasks around, check if a move is
1351 * possible. Store a slightly smaller score than moveimp,
1352 * so an actually idle CPU will win.
1353 */
1354 if (!load_too_imbalanced(src_load, dst_load, env)) {
1355 imp = moveimp - 1;
1356 cur = NULL;
1357 goto assign;
1358 }
1359 }
1360
1361 if (imp <= env->best_imp)
1362 goto unlock;
1363
fb13c7ee 1364 if (cur) {
e720fff6
PZ
1365 load = task_h_load(cur);
1366 dst_load -= load;
1367 src_load += load;
fb13c7ee
MG
1368 }
1369
28a21745 1370 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1371 goto unlock;
1372
ba7e5a27
RR
1373 /*
1374 * One idle CPU per node is evaluated for a task numa move.
1375 * Call select_idle_sibling to maybe find a better one.
1376 */
1377 if (!cur)
1378 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379
fb13c7ee
MG
1380assign:
1381 task_numa_assign(env, cur, imp);
1382unlock:
1383 rcu_read_unlock();
1384}
1385
887c290e
RR
1386static void task_numa_find_cpu(struct task_numa_env *env,
1387 long taskimp, long groupimp)
2c8a50aa
MG
1388{
1389 int cpu;
1390
1391 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1392 /* Skip this CPU if the source task cannot migrate */
1393 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1394 continue;
1395
1396 env->dst_cpu = cpu;
887c290e 1397 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1398 }
1399}
1400
58d081b5
MG
1401static int task_numa_migrate(struct task_struct *p)
1402{
58d081b5
MG
1403 struct task_numa_env env = {
1404 .p = p,
fb13c7ee 1405
58d081b5 1406 .src_cpu = task_cpu(p),
b32e86b4 1407 .src_nid = task_node(p),
fb13c7ee
MG
1408
1409 .imbalance_pct = 112,
1410
1411 .best_task = NULL,
1412 .best_imp = 0,
1413 .best_cpu = -1
58d081b5
MG
1414 };
1415 struct sched_domain *sd;
887c290e 1416 unsigned long taskweight, groupweight;
7bd95320 1417 int nid, ret, dist;
887c290e 1418 long taskimp, groupimp;
e6628d5b 1419
58d081b5 1420 /*
fb13c7ee
MG
1421 * Pick the lowest SD_NUMA domain, as that would have the smallest
1422 * imbalance and would be the first to start moving tasks about.
1423 *
1424 * And we want to avoid any moving of tasks about, as that would create
1425 * random movement of tasks -- counter the numa conditions we're trying
1426 * to satisfy here.
58d081b5
MG
1427 */
1428 rcu_read_lock();
fb13c7ee 1429 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1430 if (sd)
1431 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1432 rcu_read_unlock();
1433
46a73e8a
RR
1434 /*
1435 * Cpusets can break the scheduler domain tree into smaller
1436 * balance domains, some of which do not cross NUMA boundaries.
1437 * Tasks that are "trapped" in such domains cannot be migrated
1438 * elsewhere, so there is no point in (re)trying.
1439 */
1440 if (unlikely(!sd)) {
de1b301a 1441 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1442 return -EINVAL;
1443 }
1444
2c8a50aa 1445 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1446 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1447 taskweight = task_weight(p, env.src_nid, dist);
1448 groupweight = group_weight(p, env.src_nid, dist);
1449 update_numa_stats(&env.src_stats, env.src_nid);
1450 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1451 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1452 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1453
a43455a1
RR
1454 /* Try to find a spot on the preferred nid. */
1455 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1456
9de05d48
RR
1457 /*
1458 * Look at other nodes in these cases:
1459 * - there is no space available on the preferred_nid
1460 * - the task is part of a numa_group that is interleaved across
1461 * multiple NUMA nodes; in order to better consolidate the group,
1462 * we need to check other locations.
1463 */
1464 if (env.best_cpu == -1 || (p->numa_group &&
1465 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1466 for_each_online_node(nid) {
1467 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1468 continue;
58d081b5 1469
7bd95320 1470 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1471 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1472 dist != env.dist) {
1473 taskweight = task_weight(p, env.src_nid, dist);
1474 groupweight = group_weight(p, env.src_nid, dist);
1475 }
7bd95320 1476
83e1d2cd 1477 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1478 taskimp = task_weight(p, nid, dist) - taskweight;
1479 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1480 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1481 continue;
1482
7bd95320 1483 env.dist = dist;
2c8a50aa
MG
1484 env.dst_nid = nid;
1485 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1486 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1487 }
1488 }
1489
68d1b02a
RR
1490 /*
1491 * If the task is part of a workload that spans multiple NUMA nodes,
1492 * and is migrating into one of the workload's active nodes, remember
1493 * this node as the task's preferred numa node, so the workload can
1494 * settle down.
1495 * A task that migrated to a second choice node will be better off
1496 * trying for a better one later. Do not set the preferred node here.
1497 */
db015dae
RR
1498 if (p->numa_group) {
1499 if (env.best_cpu == -1)
1500 nid = env.src_nid;
1501 else
1502 nid = env.dst_nid;
1503
1504 if (node_isset(nid, p->numa_group->active_nodes))
1505 sched_setnuma(p, env.dst_nid);
1506 }
1507
1508 /* No better CPU than the current one was found. */
1509 if (env.best_cpu == -1)
1510 return -EAGAIN;
0ec8aa00 1511
04bb2f94
RR
1512 /*
1513 * Reset the scan period if the task is being rescheduled on an
1514 * alternative node to recheck if the tasks is now properly placed.
1515 */
1516 p->numa_scan_period = task_scan_min(p);
1517
fb13c7ee 1518 if (env.best_task == NULL) {
286549dc
MG
1519 ret = migrate_task_to(p, env.best_cpu);
1520 if (ret != 0)
1521 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1522 return ret;
1523 }
1524
1525 ret = migrate_swap(p, env.best_task);
286549dc
MG
1526 if (ret != 0)
1527 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1528 put_task_struct(env.best_task);
1529 return ret;
e6628d5b
MG
1530}
1531
6b9a7460
MG
1532/* Attempt to migrate a task to a CPU on the preferred node. */
1533static void numa_migrate_preferred(struct task_struct *p)
1534{
5085e2a3
RR
1535 unsigned long interval = HZ;
1536
2739d3ee 1537 /* This task has no NUMA fault statistics yet */
44dba3d5 1538 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1539 return;
1540
2739d3ee 1541 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1542 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1543 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1544
1545 /* Success if task is already running on preferred CPU */
de1b301a 1546 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1547 return;
1548
1549 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1550 task_numa_migrate(p);
6b9a7460
MG
1551}
1552
20e07dea
RR
1553/*
1554 * Find the nodes on which the workload is actively running. We do this by
1555 * tracking the nodes from which NUMA hinting faults are triggered. This can
1556 * be different from the set of nodes where the workload's memory is currently
1557 * located.
1558 *
1559 * The bitmask is used to make smarter decisions on when to do NUMA page
1560 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1561 * are added when they cause over 6/16 of the maximum number of faults, but
1562 * only removed when they drop below 3/16.
1563 */
1564static void update_numa_active_node_mask(struct numa_group *numa_group)
1565{
1566 unsigned long faults, max_faults = 0;
1567 int nid;
1568
1569 for_each_online_node(nid) {
1570 faults = group_faults_cpu(numa_group, nid);
1571 if (faults > max_faults)
1572 max_faults = faults;
1573 }
1574
1575 for_each_online_node(nid) {
1576 faults = group_faults_cpu(numa_group, nid);
1577 if (!node_isset(nid, numa_group->active_nodes)) {
1578 if (faults > max_faults * 6 / 16)
1579 node_set(nid, numa_group->active_nodes);
1580 } else if (faults < max_faults * 3 / 16)
1581 node_clear(nid, numa_group->active_nodes);
1582 }
1583}
1584
04bb2f94
RR
1585/*
1586 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1587 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1588 * period will be for the next scan window. If local/(local+remote) ratio is
1589 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1590 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1591 */
1592#define NUMA_PERIOD_SLOTS 10
a22b4b01 1593#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1594
1595/*
1596 * Increase the scan period (slow down scanning) if the majority of
1597 * our memory is already on our local node, or if the majority of
1598 * the page accesses are shared with other processes.
1599 * Otherwise, decrease the scan period.
1600 */
1601static void update_task_scan_period(struct task_struct *p,
1602 unsigned long shared, unsigned long private)
1603{
1604 unsigned int period_slot;
1605 int ratio;
1606 int diff;
1607
1608 unsigned long remote = p->numa_faults_locality[0];
1609 unsigned long local = p->numa_faults_locality[1];
1610
1611 /*
1612 * If there were no record hinting faults then either the task is
1613 * completely idle or all activity is areas that are not of interest
074c2381
MG
1614 * to automatic numa balancing. Related to that, if there were failed
1615 * migration then it implies we are migrating too quickly or the local
1616 * node is overloaded. In either case, scan slower
04bb2f94 1617 */
074c2381 1618 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1619 p->numa_scan_period = min(p->numa_scan_period_max,
1620 p->numa_scan_period << 1);
1621
1622 p->mm->numa_next_scan = jiffies +
1623 msecs_to_jiffies(p->numa_scan_period);
1624
1625 return;
1626 }
1627
1628 /*
1629 * Prepare to scale scan period relative to the current period.
1630 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1631 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1632 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1633 */
1634 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1635 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1636 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1637 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1638 if (!slot)
1639 slot = 1;
1640 diff = slot * period_slot;
1641 } else {
1642 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1643
1644 /*
1645 * Scale scan rate increases based on sharing. There is an
1646 * inverse relationship between the degree of sharing and
1647 * the adjustment made to the scanning period. Broadly
1648 * speaking the intent is that there is little point
1649 * scanning faster if shared accesses dominate as it may
1650 * simply bounce migrations uselessly
1651 */
2847c90e 1652 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1653 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1654 }
1655
1656 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1657 task_scan_min(p), task_scan_max(p));
1658 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1659}
1660
7e2703e6
RR
1661/*
1662 * Get the fraction of time the task has been running since the last
1663 * NUMA placement cycle. The scheduler keeps similar statistics, but
1664 * decays those on a 32ms period, which is orders of magnitude off
1665 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1666 * stats only if the task is so new there are no NUMA statistics yet.
1667 */
1668static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1669{
1670 u64 runtime, delta, now;
1671 /* Use the start of this time slice to avoid calculations. */
1672 now = p->se.exec_start;
1673 runtime = p->se.sum_exec_runtime;
1674
1675 if (p->last_task_numa_placement) {
1676 delta = runtime - p->last_sum_exec_runtime;
1677 *period = now - p->last_task_numa_placement;
1678 } else {
1679 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1680 *period = p->se.avg.avg_period;
7e2703e6
RR
1681 }
1682
1683 p->last_sum_exec_runtime = runtime;
1684 p->last_task_numa_placement = now;
1685
1686 return delta;
1687}
1688
54009416
RR
1689/*
1690 * Determine the preferred nid for a task in a numa_group. This needs to
1691 * be done in a way that produces consistent results with group_weight,
1692 * otherwise workloads might not converge.
1693 */
1694static int preferred_group_nid(struct task_struct *p, int nid)
1695{
1696 nodemask_t nodes;
1697 int dist;
1698
1699 /* Direct connections between all NUMA nodes. */
1700 if (sched_numa_topology_type == NUMA_DIRECT)
1701 return nid;
1702
1703 /*
1704 * On a system with glueless mesh NUMA topology, group_weight
1705 * scores nodes according to the number of NUMA hinting faults on
1706 * both the node itself, and on nearby nodes.
1707 */
1708 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1709 unsigned long score, max_score = 0;
1710 int node, max_node = nid;
1711
1712 dist = sched_max_numa_distance;
1713
1714 for_each_online_node(node) {
1715 score = group_weight(p, node, dist);
1716 if (score > max_score) {
1717 max_score = score;
1718 max_node = node;
1719 }
1720 }
1721 return max_node;
1722 }
1723
1724 /*
1725 * Finding the preferred nid in a system with NUMA backplane
1726 * interconnect topology is more involved. The goal is to locate
1727 * tasks from numa_groups near each other in the system, and
1728 * untangle workloads from different sides of the system. This requires
1729 * searching down the hierarchy of node groups, recursively searching
1730 * inside the highest scoring group of nodes. The nodemask tricks
1731 * keep the complexity of the search down.
1732 */
1733 nodes = node_online_map;
1734 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1735 unsigned long max_faults = 0;
81907478 1736 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1737 int a, b;
1738
1739 /* Are there nodes at this distance from each other? */
1740 if (!find_numa_distance(dist))
1741 continue;
1742
1743 for_each_node_mask(a, nodes) {
1744 unsigned long faults = 0;
1745 nodemask_t this_group;
1746 nodes_clear(this_group);
1747
1748 /* Sum group's NUMA faults; includes a==b case. */
1749 for_each_node_mask(b, nodes) {
1750 if (node_distance(a, b) < dist) {
1751 faults += group_faults(p, b);
1752 node_set(b, this_group);
1753 node_clear(b, nodes);
1754 }
1755 }
1756
1757 /* Remember the top group. */
1758 if (faults > max_faults) {
1759 max_faults = faults;
1760 max_group = this_group;
1761 /*
1762 * subtle: at the smallest distance there is
1763 * just one node left in each "group", the
1764 * winner is the preferred nid.
1765 */
1766 nid = a;
1767 }
1768 }
1769 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1770 if (!max_faults)
1771 break;
54009416
RR
1772 nodes = max_group;
1773 }
1774 return nid;
1775}
1776
cbee9f88
PZ
1777static void task_numa_placement(struct task_struct *p)
1778{
83e1d2cd
MG
1779 int seq, nid, max_nid = -1, max_group_nid = -1;
1780 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1781 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1782 unsigned long total_faults;
1783 u64 runtime, period;
7dbd13ed 1784 spinlock_t *group_lock = NULL;
cbee9f88 1785
7e5a2c17
JL
1786 /*
1787 * The p->mm->numa_scan_seq field gets updated without
1788 * exclusive access. Use READ_ONCE() here to ensure
1789 * that the field is read in a single access:
1790 */
316c1608 1791 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1792 if (p->numa_scan_seq == seq)
1793 return;
1794 p->numa_scan_seq = seq;
598f0ec0 1795 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1796
7e2703e6
RR
1797 total_faults = p->numa_faults_locality[0] +
1798 p->numa_faults_locality[1];
1799 runtime = numa_get_avg_runtime(p, &period);
1800
7dbd13ed
MG
1801 /* If the task is part of a group prevent parallel updates to group stats */
1802 if (p->numa_group) {
1803 group_lock = &p->numa_group->lock;
60e69eed 1804 spin_lock_irq(group_lock);
7dbd13ed
MG
1805 }
1806
688b7585
MG
1807 /* Find the node with the highest number of faults */
1808 for_each_online_node(nid) {
44dba3d5
IM
1809 /* Keep track of the offsets in numa_faults array */
1810 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1811 unsigned long faults = 0, group_faults = 0;
44dba3d5 1812 int priv;
745d6147 1813
be1e4e76 1814 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1815 long diff, f_diff, f_weight;
8c8a743c 1816
44dba3d5
IM
1817 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1818 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1819 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1820 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1821
ac8e895b 1822 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1823 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1824 fault_types[priv] += p->numa_faults[membuf_idx];
1825 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1826
7e2703e6
RR
1827 /*
1828 * Normalize the faults_from, so all tasks in a group
1829 * count according to CPU use, instead of by the raw
1830 * number of faults. Tasks with little runtime have
1831 * little over-all impact on throughput, and thus their
1832 * faults are less important.
1833 */
1834 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1835 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1836 (total_faults + 1);
44dba3d5
IM
1837 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1838 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1839
44dba3d5
IM
1840 p->numa_faults[mem_idx] += diff;
1841 p->numa_faults[cpu_idx] += f_diff;
1842 faults += p->numa_faults[mem_idx];
83e1d2cd 1843 p->total_numa_faults += diff;
8c8a743c 1844 if (p->numa_group) {
44dba3d5
IM
1845 /*
1846 * safe because we can only change our own group
1847 *
1848 * mem_idx represents the offset for a given
1849 * nid and priv in a specific region because it
1850 * is at the beginning of the numa_faults array.
1851 */
1852 p->numa_group->faults[mem_idx] += diff;
1853 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1854 p->numa_group->total_faults += diff;
44dba3d5 1855 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1856 }
ac8e895b
MG
1857 }
1858
688b7585
MG
1859 if (faults > max_faults) {
1860 max_faults = faults;
1861 max_nid = nid;
1862 }
83e1d2cd
MG
1863
1864 if (group_faults > max_group_faults) {
1865 max_group_faults = group_faults;
1866 max_group_nid = nid;
1867 }
1868 }
1869
04bb2f94
RR
1870 update_task_scan_period(p, fault_types[0], fault_types[1]);
1871
7dbd13ed 1872 if (p->numa_group) {
20e07dea 1873 update_numa_active_node_mask(p->numa_group);
60e69eed 1874 spin_unlock_irq(group_lock);
54009416 1875 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1876 }
1877
bb97fc31
RR
1878 if (max_faults) {
1879 /* Set the new preferred node */
1880 if (max_nid != p->numa_preferred_nid)
1881 sched_setnuma(p, max_nid);
1882
1883 if (task_node(p) != p->numa_preferred_nid)
1884 numa_migrate_preferred(p);
3a7053b3 1885 }
cbee9f88
PZ
1886}
1887
8c8a743c
PZ
1888static inline int get_numa_group(struct numa_group *grp)
1889{
1890 return atomic_inc_not_zero(&grp->refcount);
1891}
1892
1893static inline void put_numa_group(struct numa_group *grp)
1894{
1895 if (atomic_dec_and_test(&grp->refcount))
1896 kfree_rcu(grp, rcu);
1897}
1898
3e6a9418
MG
1899static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1900 int *priv)
8c8a743c
PZ
1901{
1902 struct numa_group *grp, *my_grp;
1903 struct task_struct *tsk;
1904 bool join = false;
1905 int cpu = cpupid_to_cpu(cpupid);
1906 int i;
1907
1908 if (unlikely(!p->numa_group)) {
1909 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1910 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1911
1912 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1913 if (!grp)
1914 return;
1915
1916 atomic_set(&grp->refcount, 1);
1917 spin_lock_init(&grp->lock);
e29cf08b 1918 grp->gid = p->pid;
50ec8a40 1919 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1920 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1921 nr_node_ids;
8c8a743c 1922
20e07dea
RR
1923 node_set(task_node(current), grp->active_nodes);
1924
be1e4e76 1925 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1926 grp->faults[i] = p->numa_faults[i];
8c8a743c 1927
989348b5 1928 grp->total_faults = p->total_numa_faults;
83e1d2cd 1929
8c8a743c
PZ
1930 grp->nr_tasks++;
1931 rcu_assign_pointer(p->numa_group, grp);
1932 }
1933
1934 rcu_read_lock();
316c1608 1935 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1936
1937 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1938 goto no_join;
8c8a743c
PZ
1939
1940 grp = rcu_dereference(tsk->numa_group);
1941 if (!grp)
3354781a 1942 goto no_join;
8c8a743c
PZ
1943
1944 my_grp = p->numa_group;
1945 if (grp == my_grp)
3354781a 1946 goto no_join;
8c8a743c
PZ
1947
1948 /*
1949 * Only join the other group if its bigger; if we're the bigger group,
1950 * the other task will join us.
1951 */
1952 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1953 goto no_join;
8c8a743c
PZ
1954
1955 /*
1956 * Tie-break on the grp address.
1957 */
1958 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1959 goto no_join;
8c8a743c 1960
dabe1d99
RR
1961 /* Always join threads in the same process. */
1962 if (tsk->mm == current->mm)
1963 join = true;
1964
1965 /* Simple filter to avoid false positives due to PID collisions */
1966 if (flags & TNF_SHARED)
1967 join = true;
8c8a743c 1968
3e6a9418
MG
1969 /* Update priv based on whether false sharing was detected */
1970 *priv = !join;
1971
dabe1d99 1972 if (join && !get_numa_group(grp))
3354781a 1973 goto no_join;
8c8a743c 1974
8c8a743c
PZ
1975 rcu_read_unlock();
1976
1977 if (!join)
1978 return;
1979
60e69eed
MG
1980 BUG_ON(irqs_disabled());
1981 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1982
be1e4e76 1983 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1984 my_grp->faults[i] -= p->numa_faults[i];
1985 grp->faults[i] += p->numa_faults[i];
8c8a743c 1986 }
989348b5
MG
1987 my_grp->total_faults -= p->total_numa_faults;
1988 grp->total_faults += p->total_numa_faults;
8c8a743c 1989
8c8a743c
PZ
1990 my_grp->nr_tasks--;
1991 grp->nr_tasks++;
1992
1993 spin_unlock(&my_grp->lock);
60e69eed 1994 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1995
1996 rcu_assign_pointer(p->numa_group, grp);
1997
1998 put_numa_group(my_grp);
3354781a
PZ
1999 return;
2000
2001no_join:
2002 rcu_read_unlock();
2003 return;
8c8a743c
PZ
2004}
2005
2006void task_numa_free(struct task_struct *p)
2007{
2008 struct numa_group *grp = p->numa_group;
44dba3d5 2009 void *numa_faults = p->numa_faults;
e9dd685c
SR
2010 unsigned long flags;
2011 int i;
8c8a743c
PZ
2012
2013 if (grp) {
e9dd685c 2014 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2016 grp->faults[i] -= p->numa_faults[i];
989348b5 2017 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2018
8c8a743c 2019 grp->nr_tasks--;
e9dd685c 2020 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2021 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2022 put_numa_group(grp);
2023 }
2024
44dba3d5 2025 p->numa_faults = NULL;
82727018 2026 kfree(numa_faults);
8c8a743c
PZ
2027}
2028
cbee9f88
PZ
2029/*
2030 * Got a PROT_NONE fault for a page on @node.
2031 */
58b46da3 2032void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2033{
2034 struct task_struct *p = current;
6688cc05 2035 bool migrated = flags & TNF_MIGRATED;
58b46da3 2036 int cpu_node = task_node(current);
792568ec 2037 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2038 int priv;
cbee9f88 2039
10e84b97 2040 if (!numabalancing_enabled)
1a687c2e
MG
2041 return;
2042
9ff1d9ff
MG
2043 /* for example, ksmd faulting in a user's mm */
2044 if (!p->mm)
2045 return;
2046
f809ca9a 2047 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2048 if (unlikely(!p->numa_faults)) {
2049 int size = sizeof(*p->numa_faults) *
be1e4e76 2050 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2051
44dba3d5
IM
2052 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2053 if (!p->numa_faults)
f809ca9a 2054 return;
745d6147 2055
83e1d2cd 2056 p->total_numa_faults = 0;
04bb2f94 2057 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2058 }
cbee9f88 2059
8c8a743c
PZ
2060 /*
2061 * First accesses are treated as private, otherwise consider accesses
2062 * to be private if the accessing pid has not changed
2063 */
2064 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2065 priv = 1;
2066 } else {
2067 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2068 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2069 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2070 }
2071
792568ec
RR
2072 /*
2073 * If a workload spans multiple NUMA nodes, a shared fault that
2074 * occurs wholly within the set of nodes that the workload is
2075 * actively using should be counted as local. This allows the
2076 * scan rate to slow down when a workload has settled down.
2077 */
2078 if (!priv && !local && p->numa_group &&
2079 node_isset(cpu_node, p->numa_group->active_nodes) &&
2080 node_isset(mem_node, p->numa_group->active_nodes))
2081 local = 1;
2082
cbee9f88 2083 task_numa_placement(p);
f809ca9a 2084
2739d3ee
RR
2085 /*
2086 * Retry task to preferred node migration periodically, in case it
2087 * case it previously failed, or the scheduler moved us.
2088 */
2089 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2090 numa_migrate_preferred(p);
2091
b32e86b4
IM
2092 if (migrated)
2093 p->numa_pages_migrated += pages;
074c2381
MG
2094 if (flags & TNF_MIGRATE_FAIL)
2095 p->numa_faults_locality[2] += pages;
b32e86b4 2096
44dba3d5
IM
2097 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2098 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2099 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2100}
2101
6e5fb223
PZ
2102static void reset_ptenuma_scan(struct task_struct *p)
2103{
7e5a2c17
JL
2104 /*
2105 * We only did a read acquisition of the mmap sem, so
2106 * p->mm->numa_scan_seq is written to without exclusive access
2107 * and the update is not guaranteed to be atomic. That's not
2108 * much of an issue though, since this is just used for
2109 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2110 * expensive, to avoid any form of compiler optimizations:
2111 */
316c1608 2112 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2113 p->mm->numa_scan_offset = 0;
2114}
2115
cbee9f88
PZ
2116/*
2117 * The expensive part of numa migration is done from task_work context.
2118 * Triggered from task_tick_numa().
2119 */
2120void task_numa_work(struct callback_head *work)
2121{
2122 unsigned long migrate, next_scan, now = jiffies;
2123 struct task_struct *p = current;
2124 struct mm_struct *mm = p->mm;
6e5fb223 2125 struct vm_area_struct *vma;
9f40604c 2126 unsigned long start, end;
598f0ec0 2127 unsigned long nr_pte_updates = 0;
9f40604c 2128 long pages;
cbee9f88
PZ
2129
2130 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2131
2132 work->next = work; /* protect against double add */
2133 /*
2134 * Who cares about NUMA placement when they're dying.
2135 *
2136 * NOTE: make sure not to dereference p->mm before this check,
2137 * exit_task_work() happens _after_ exit_mm() so we could be called
2138 * without p->mm even though we still had it when we enqueued this
2139 * work.
2140 */
2141 if (p->flags & PF_EXITING)
2142 return;
2143
930aa174 2144 if (!mm->numa_next_scan) {
7e8d16b6
MG
2145 mm->numa_next_scan = now +
2146 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2147 }
2148
cbee9f88
PZ
2149 /*
2150 * Enforce maximal scan/migration frequency..
2151 */
2152 migrate = mm->numa_next_scan;
2153 if (time_before(now, migrate))
2154 return;
2155
598f0ec0
MG
2156 if (p->numa_scan_period == 0) {
2157 p->numa_scan_period_max = task_scan_max(p);
2158 p->numa_scan_period = task_scan_min(p);
2159 }
cbee9f88 2160
fb003b80 2161 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2162 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2163 return;
2164
19a78d11
PZ
2165 /*
2166 * Delay this task enough that another task of this mm will likely win
2167 * the next time around.
2168 */
2169 p->node_stamp += 2 * TICK_NSEC;
2170
9f40604c
MG
2171 start = mm->numa_scan_offset;
2172 pages = sysctl_numa_balancing_scan_size;
2173 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2174 if (!pages)
2175 return;
cbee9f88 2176
6e5fb223 2177 down_read(&mm->mmap_sem);
9f40604c 2178 vma = find_vma(mm, start);
6e5fb223
PZ
2179 if (!vma) {
2180 reset_ptenuma_scan(p);
9f40604c 2181 start = 0;
6e5fb223
PZ
2182 vma = mm->mmap;
2183 }
9f40604c 2184 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2185 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2186 is_vm_hugetlb_page(vma)) {
6e5fb223 2187 continue;
6b79c57b 2188 }
6e5fb223 2189
4591ce4f
MG
2190 /*
2191 * Shared library pages mapped by multiple processes are not
2192 * migrated as it is expected they are cache replicated. Avoid
2193 * hinting faults in read-only file-backed mappings or the vdso
2194 * as migrating the pages will be of marginal benefit.
2195 */
2196 if (!vma->vm_mm ||
2197 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2198 continue;
2199
3c67f474
MG
2200 /*
2201 * Skip inaccessible VMAs to avoid any confusion between
2202 * PROT_NONE and NUMA hinting ptes
2203 */
2204 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2205 continue;
4591ce4f 2206
9f40604c
MG
2207 do {
2208 start = max(start, vma->vm_start);
2209 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2210 end = min(end, vma->vm_end);
598f0ec0
MG
2211 nr_pte_updates += change_prot_numa(vma, start, end);
2212
2213 /*
2214 * Scan sysctl_numa_balancing_scan_size but ensure that
2215 * at least one PTE is updated so that unused virtual
2216 * address space is quickly skipped.
2217 */
2218 if (nr_pte_updates)
2219 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2220
9f40604c
MG
2221 start = end;
2222 if (pages <= 0)
2223 goto out;
3cf1962c
RR
2224
2225 cond_resched();
9f40604c 2226 } while (end != vma->vm_end);
cbee9f88 2227 }
6e5fb223 2228
9f40604c 2229out:
6e5fb223 2230 /*
c69307d5
PZ
2231 * It is possible to reach the end of the VMA list but the last few
2232 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2233 * would find the !migratable VMA on the next scan but not reset the
2234 * scanner to the start so check it now.
6e5fb223
PZ
2235 */
2236 if (vma)
9f40604c 2237 mm->numa_scan_offset = start;
6e5fb223
PZ
2238 else
2239 reset_ptenuma_scan(p);
2240 up_read(&mm->mmap_sem);
cbee9f88
PZ
2241}
2242
2243/*
2244 * Drive the periodic memory faults..
2245 */
2246void task_tick_numa(struct rq *rq, struct task_struct *curr)
2247{
2248 struct callback_head *work = &curr->numa_work;
2249 u64 period, now;
2250
2251 /*
2252 * We don't care about NUMA placement if we don't have memory.
2253 */
2254 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2255 return;
2256
2257 /*
2258 * Using runtime rather than walltime has the dual advantage that
2259 * we (mostly) drive the selection from busy threads and that the
2260 * task needs to have done some actual work before we bother with
2261 * NUMA placement.
2262 */
2263 now = curr->se.sum_exec_runtime;
2264 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2265
2266 if (now - curr->node_stamp > period) {
4b96a29b 2267 if (!curr->node_stamp)
598f0ec0 2268 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2269 curr->node_stamp += period;
cbee9f88
PZ
2270
2271 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2272 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2273 task_work_add(curr, work, true);
2274 }
2275 }
2276}
2277#else
2278static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280}
0ec8aa00
PZ
2281
2282static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2283{
2284}
2285
2286static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2287{
2288}
cbee9f88
PZ
2289#endif /* CONFIG_NUMA_BALANCING */
2290
30cfdcfc
DA
2291static void
2292account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2293{
2294 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2295 if (!parent_entity(se))
029632fb 2296 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2297#ifdef CONFIG_SMP
0ec8aa00
PZ
2298 if (entity_is_task(se)) {
2299 struct rq *rq = rq_of(cfs_rq);
2300
2301 account_numa_enqueue(rq, task_of(se));
2302 list_add(&se->group_node, &rq->cfs_tasks);
2303 }
367456c7 2304#endif
30cfdcfc 2305 cfs_rq->nr_running++;
30cfdcfc
DA
2306}
2307
2308static void
2309account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2310{
2311 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2312 if (!parent_entity(se))
029632fb 2313 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2314 if (entity_is_task(se)) {
2315 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2316 list_del_init(&se->group_node);
0ec8aa00 2317 }
30cfdcfc 2318 cfs_rq->nr_running--;
30cfdcfc
DA
2319}
2320
3ff6dcac
YZ
2321#ifdef CONFIG_FAIR_GROUP_SCHED
2322# ifdef CONFIG_SMP
cf5f0acf
PZ
2323static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2324{
2325 long tg_weight;
2326
2327 /*
2328 * Use this CPU's actual weight instead of the last load_contribution
2329 * to gain a more accurate current total weight. See
2330 * update_cfs_rq_load_contribution().
2331 */
bf5b986e 2332 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2333 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2334 tg_weight += cfs_rq->load.weight;
2335
2336 return tg_weight;
2337}
2338
6d5ab293 2339static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2340{
cf5f0acf 2341 long tg_weight, load, shares;
3ff6dcac 2342
cf5f0acf 2343 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2344 load = cfs_rq->load.weight;
3ff6dcac 2345
3ff6dcac 2346 shares = (tg->shares * load);
cf5f0acf
PZ
2347 if (tg_weight)
2348 shares /= tg_weight;
3ff6dcac
YZ
2349
2350 if (shares < MIN_SHARES)
2351 shares = MIN_SHARES;
2352 if (shares > tg->shares)
2353 shares = tg->shares;
2354
2355 return shares;
2356}
3ff6dcac 2357# else /* CONFIG_SMP */
6d5ab293 2358static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2359{
2360 return tg->shares;
2361}
3ff6dcac 2362# endif /* CONFIG_SMP */
2069dd75
PZ
2363static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2364 unsigned long weight)
2365{
19e5eebb
PT
2366 if (se->on_rq) {
2367 /* commit outstanding execution time */
2368 if (cfs_rq->curr == se)
2369 update_curr(cfs_rq);
2069dd75 2370 account_entity_dequeue(cfs_rq, se);
19e5eebb 2371 }
2069dd75
PZ
2372
2373 update_load_set(&se->load, weight);
2374
2375 if (se->on_rq)
2376 account_entity_enqueue(cfs_rq, se);
2377}
2378
82958366
PT
2379static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2380
6d5ab293 2381static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2382{
2383 struct task_group *tg;
2384 struct sched_entity *se;
3ff6dcac 2385 long shares;
2069dd75 2386
2069dd75
PZ
2387 tg = cfs_rq->tg;
2388 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2389 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2390 return;
3ff6dcac
YZ
2391#ifndef CONFIG_SMP
2392 if (likely(se->load.weight == tg->shares))
2393 return;
2394#endif
6d5ab293 2395 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2396
2397 reweight_entity(cfs_rq_of(se), se, shares);
2398}
2399#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2400static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2401{
2402}
2403#endif /* CONFIG_FAIR_GROUP_SCHED */
2404
141965c7 2405#ifdef CONFIG_SMP
5b51f2f8
PT
2406/*
2407 * We choose a half-life close to 1 scheduling period.
2408 * Note: The tables below are dependent on this value.
2409 */
2410#define LOAD_AVG_PERIOD 32
2411#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2412#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2413
2414/* Precomputed fixed inverse multiplies for multiplication by y^n */
2415static const u32 runnable_avg_yN_inv[] = {
2416 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2417 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2418 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2419 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2420 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2421 0x85aac367, 0x82cd8698,
2422};
2423
2424/*
2425 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2426 * over-estimates when re-combining.
2427 */
2428static const u32 runnable_avg_yN_sum[] = {
2429 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2430 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2431 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2432};
2433
9d85f21c
PT
2434/*
2435 * Approximate:
2436 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2437 */
2438static __always_inline u64 decay_load(u64 val, u64 n)
2439{
5b51f2f8
PT
2440 unsigned int local_n;
2441
2442 if (!n)
2443 return val;
2444 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2445 return 0;
2446
2447 /* after bounds checking we can collapse to 32-bit */
2448 local_n = n;
2449
2450 /*
2451 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2452 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2453 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2454 *
2455 * To achieve constant time decay_load.
2456 */
2457 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2458 val >>= local_n / LOAD_AVG_PERIOD;
2459 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2460 }
2461
5b51f2f8
PT
2462 val *= runnable_avg_yN_inv[local_n];
2463 /* We don't use SRR here since we always want to round down. */
2464 return val >> 32;
2465}
2466
2467/*
2468 * For updates fully spanning n periods, the contribution to runnable
2469 * average will be: \Sum 1024*y^n
2470 *
2471 * We can compute this reasonably efficiently by combining:
2472 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2473 */
2474static u32 __compute_runnable_contrib(u64 n)
2475{
2476 u32 contrib = 0;
2477
2478 if (likely(n <= LOAD_AVG_PERIOD))
2479 return runnable_avg_yN_sum[n];
2480 else if (unlikely(n >= LOAD_AVG_MAX_N))
2481 return LOAD_AVG_MAX;
2482
2483 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2484 do {
2485 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2486 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2487
2488 n -= LOAD_AVG_PERIOD;
2489 } while (n > LOAD_AVG_PERIOD);
2490
2491 contrib = decay_load(contrib, n);
2492 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2493}
2494
2495/*
2496 * We can represent the historical contribution to runnable average as the
2497 * coefficients of a geometric series. To do this we sub-divide our runnable
2498 * history into segments of approximately 1ms (1024us); label the segment that
2499 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2500 *
2501 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2502 * p0 p1 p2
2503 * (now) (~1ms ago) (~2ms ago)
2504 *
2505 * Let u_i denote the fraction of p_i that the entity was runnable.
2506 *
2507 * We then designate the fractions u_i as our co-efficients, yielding the
2508 * following representation of historical load:
2509 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2510 *
2511 * We choose y based on the with of a reasonably scheduling period, fixing:
2512 * y^32 = 0.5
2513 *
2514 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2515 * approximately half as much as the contribution to load within the last ms
2516 * (u_0).
2517 *
2518 * When a period "rolls over" and we have new u_0`, multiplying the previous
2519 * sum again by y is sufficient to update:
2520 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2521 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2522 */
0c1dc6b2 2523static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2524 struct sched_avg *sa,
36ee28e4
VG
2525 int runnable,
2526 int running)
9d85f21c 2527{
5b51f2f8
PT
2528 u64 delta, periods;
2529 u32 runnable_contrib;
9d85f21c 2530 int delta_w, decayed = 0;
0c1dc6b2 2531 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2532
2533 delta = now - sa->last_runnable_update;
2534 /*
2535 * This should only happen when time goes backwards, which it
2536 * unfortunately does during sched clock init when we swap over to TSC.
2537 */
2538 if ((s64)delta < 0) {
2539 sa->last_runnable_update = now;
2540 return 0;
2541 }
2542
2543 /*
2544 * Use 1024ns as the unit of measurement since it's a reasonable
2545 * approximation of 1us and fast to compute.
2546 */
2547 delta >>= 10;
2548 if (!delta)
2549 return 0;
2550 sa->last_runnable_update = now;
2551
2552 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2553 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2554 if (delta + delta_w >= 1024) {
2555 /* period roll-over */
2556 decayed = 1;
2557
2558 /*
2559 * Now that we know we're crossing a period boundary, figure
2560 * out how much from delta we need to complete the current
2561 * period and accrue it.
2562 */
2563 delta_w = 1024 - delta_w;
5b51f2f8
PT
2564 if (runnable)
2565 sa->runnable_avg_sum += delta_w;
36ee28e4 2566 if (running)
0c1dc6b2
MR
2567 sa->running_avg_sum += delta_w * scale_freq
2568 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2569 sa->avg_period += delta_w;
5b51f2f8
PT
2570
2571 delta -= delta_w;
2572
2573 /* Figure out how many additional periods this update spans */
2574 periods = delta / 1024;
2575 delta %= 1024;
2576
2577 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2578 periods + 1);
36ee28e4
VG
2579 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2580 periods + 1);
2581 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2582 periods + 1);
2583
2584 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2585 runnable_contrib = __compute_runnable_contrib(periods);
2586 if (runnable)
2587 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2588 if (running)
0c1dc6b2
MR
2589 sa->running_avg_sum += runnable_contrib * scale_freq
2590 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2591 sa->avg_period += runnable_contrib;
9d85f21c
PT
2592 }
2593
2594 /* Remainder of delta accrued against u_0` */
2595 if (runnable)
2596 sa->runnable_avg_sum += delta;
36ee28e4 2597 if (running)
0c1dc6b2
MR
2598 sa->running_avg_sum += delta * scale_freq
2599 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2600 sa->avg_period += delta;
9d85f21c
PT
2601
2602 return decayed;
2603}
2604
9ee474f5 2605/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2606static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2607{
2608 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2609 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2610
2611 decays -= se->avg.decay_count;
63847600 2612 se->avg.decay_count = 0;
9ee474f5 2613 if (!decays)
aff3e498 2614 return 0;
9ee474f5
PT
2615
2616 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2617 se->avg.utilization_avg_contrib =
2618 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2619
2620 return decays;
9ee474f5
PT
2621}
2622
c566e8e9
PT
2623#ifdef CONFIG_FAIR_GROUP_SCHED
2624static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2625 int force_update)
2626{
2627 struct task_group *tg = cfs_rq->tg;
bf5b986e 2628 long tg_contrib;
c566e8e9
PT
2629
2630 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2631 tg_contrib -= cfs_rq->tg_load_contrib;
2632
8236d907
JL
2633 if (!tg_contrib)
2634 return;
2635
bf5b986e
AS
2636 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2637 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2638 cfs_rq->tg_load_contrib += tg_contrib;
2639 }
2640}
8165e145 2641
bb17f655
PT
2642/*
2643 * Aggregate cfs_rq runnable averages into an equivalent task_group
2644 * representation for computing load contributions.
2645 */
2646static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2647 struct cfs_rq *cfs_rq)
2648{
2649 struct task_group *tg = cfs_rq->tg;
2650 long contrib;
2651
2652 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2653 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2654 sa->avg_period + 1);
bb17f655
PT
2655 contrib -= cfs_rq->tg_runnable_contrib;
2656
2657 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2658 atomic_add(contrib, &tg->runnable_avg);
2659 cfs_rq->tg_runnable_contrib += contrib;
2660 }
2661}
2662
8165e145
PT
2663static inline void __update_group_entity_contrib(struct sched_entity *se)
2664{
2665 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2666 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2667 int runnable_avg;
2668
8165e145
PT
2669 u64 contrib;
2670
2671 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2672 se->avg.load_avg_contrib = div_u64(contrib,
2673 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2674
2675 /*
2676 * For group entities we need to compute a correction term in the case
2677 * that they are consuming <1 cpu so that we would contribute the same
2678 * load as a task of equal weight.
2679 *
2680 * Explicitly co-ordinating this measurement would be expensive, but
2681 * fortunately the sum of each cpus contribution forms a usable
2682 * lower-bound on the true value.
2683 *
2684 * Consider the aggregate of 2 contributions. Either they are disjoint
2685 * (and the sum represents true value) or they are disjoint and we are
2686 * understating by the aggregate of their overlap.
2687 *
2688 * Extending this to N cpus, for a given overlap, the maximum amount we
2689 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2690 * cpus that overlap for this interval and w_i is the interval width.
2691 *
2692 * On a small machine; the first term is well-bounded which bounds the
2693 * total error since w_i is a subset of the period. Whereas on a
2694 * larger machine, while this first term can be larger, if w_i is the
2695 * of consequential size guaranteed to see n_i*w_i quickly converge to
2696 * our upper bound of 1-cpu.
2697 */
2698 runnable_avg = atomic_read(&tg->runnable_avg);
2699 if (runnable_avg < NICE_0_LOAD) {
2700 se->avg.load_avg_contrib *= runnable_avg;
2701 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2702 }
8165e145 2703}
f5f9739d
DE
2704
2705static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2706{
0c1dc6b2
MR
2707 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2708 runnable, runnable);
f5f9739d
DE
2709 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2710}
6e83125c 2711#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2712static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2713 int force_update) {}
bb17f655
PT
2714static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2715 struct cfs_rq *cfs_rq) {}
8165e145 2716static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2717static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2718#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2719
8165e145
PT
2720static inline void __update_task_entity_contrib(struct sched_entity *se)
2721{
2722 u32 contrib;
2723
2724 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2725 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2726 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2727 se->avg.load_avg_contrib = scale_load(contrib);
2728}
2729
2dac754e
PT
2730/* Compute the current contribution to load_avg by se, return any delta */
2731static long __update_entity_load_avg_contrib(struct sched_entity *se)
2732{
2733 long old_contrib = se->avg.load_avg_contrib;
2734
8165e145
PT
2735 if (entity_is_task(se)) {
2736 __update_task_entity_contrib(se);
2737 } else {
bb17f655 2738 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2739 __update_group_entity_contrib(se);
2740 }
2dac754e
PT
2741
2742 return se->avg.load_avg_contrib - old_contrib;
2743}
2744
36ee28e4
VG
2745
2746static inline void __update_task_entity_utilization(struct sched_entity *se)
2747{
2748 u32 contrib;
2749
2750 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2751 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2752 contrib /= (se->avg.avg_period + 1);
2753 se->avg.utilization_avg_contrib = scale_load(contrib);
2754}
2755
2756static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2757{
2758 long old_contrib = se->avg.utilization_avg_contrib;
2759
2760 if (entity_is_task(se))
2761 __update_task_entity_utilization(se);
21f44866
MR
2762 else
2763 se->avg.utilization_avg_contrib =
2764 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2765
2766 return se->avg.utilization_avg_contrib - old_contrib;
2767}
2768
9ee474f5
PT
2769static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2770 long load_contrib)
2771{
2772 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2773 cfs_rq->blocked_load_avg -= load_contrib;
2774 else
2775 cfs_rq->blocked_load_avg = 0;
2776}
2777
f1b17280
PT
2778static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2779
9d85f21c 2780/* Update a sched_entity's runnable average */
9ee474f5
PT
2781static inline void update_entity_load_avg(struct sched_entity *se,
2782 int update_cfs_rq)
9d85f21c 2783{
2dac754e 2784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2785 long contrib_delta, utilization_delta;
0c1dc6b2 2786 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2787 u64 now;
2dac754e 2788
f1b17280
PT
2789 /*
2790 * For a group entity we need to use their owned cfs_rq_clock_task() in
2791 * case they are the parent of a throttled hierarchy.
2792 */
2793 if (entity_is_task(se))
2794 now = cfs_rq_clock_task(cfs_rq);
2795 else
2796 now = cfs_rq_clock_task(group_cfs_rq(se));
2797
0c1dc6b2 2798 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2799 cfs_rq->curr == se))
2dac754e
PT
2800 return;
2801
2802 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2803 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2804
2805 if (!update_cfs_rq)
2806 return;
2807
36ee28e4 2808 if (se->on_rq) {
2dac754e 2809 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2810 cfs_rq->utilization_load_avg += utilization_delta;
2811 } else {
9ee474f5 2812 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2813 }
9ee474f5
PT
2814}
2815
2816/*
2817 * Decay the load contributed by all blocked children and account this so that
2818 * their contribution may appropriately discounted when they wake up.
2819 */
aff3e498 2820static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2821{
f1b17280 2822 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2823 u64 decays;
2824
2825 decays = now - cfs_rq->last_decay;
aff3e498 2826 if (!decays && !force_update)
9ee474f5
PT
2827 return;
2828
2509940f
AS
2829 if (atomic_long_read(&cfs_rq->removed_load)) {
2830 unsigned long removed_load;
2831 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2832 subtract_blocked_load_contrib(cfs_rq, removed_load);
2833 }
9ee474f5 2834
aff3e498
PT
2835 if (decays) {
2836 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2837 decays);
2838 atomic64_add(decays, &cfs_rq->decay_counter);
2839 cfs_rq->last_decay = now;
2840 }
c566e8e9
PT
2841
2842 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2843}
18bf2805 2844
2dac754e
PT
2845/* Add the load generated by se into cfs_rq's child load-average */
2846static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2847 struct sched_entity *se,
2848 int wakeup)
2dac754e 2849{
aff3e498
PT
2850 /*
2851 * We track migrations using entity decay_count <= 0, on a wake-up
2852 * migration we use a negative decay count to track the remote decays
2853 * accumulated while sleeping.
a75cdaa9
AS
2854 *
2855 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2856 * are seen by enqueue_entity_load_avg() as a migration with an already
2857 * constructed load_avg_contrib.
aff3e498
PT
2858 */
2859 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2860 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2861 if (se->avg.decay_count) {
2862 /*
2863 * In a wake-up migration we have to approximate the
2864 * time sleeping. This is because we can't synchronize
2865 * clock_task between the two cpus, and it is not
2866 * guaranteed to be read-safe. Instead, we can
2867 * approximate this using our carried decays, which are
2868 * explicitly atomically readable.
2869 */
2870 se->avg.last_runnable_update -= (-se->avg.decay_count)
2871 << 20;
2872 update_entity_load_avg(se, 0);
2873 /* Indicate that we're now synchronized and on-rq */
2874 se->avg.decay_count = 0;
2875 }
9ee474f5
PT
2876 wakeup = 0;
2877 } else {
9390675a 2878 __synchronize_entity_decay(se);
9ee474f5
PT
2879 }
2880
aff3e498
PT
2881 /* migrated tasks did not contribute to our blocked load */
2882 if (wakeup) {
9ee474f5 2883 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2884 update_entity_load_avg(se, 0);
2885 }
9ee474f5 2886
2dac754e 2887 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2888 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2889 /* we force update consideration on load-balancer moves */
2890 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2891}
2892
9ee474f5
PT
2893/*
2894 * Remove se's load from this cfs_rq child load-average, if the entity is
2895 * transitioning to a blocked state we track its projected decay using
2896 * blocked_load_avg.
2897 */
2dac754e 2898static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2899 struct sched_entity *se,
2900 int sleep)
2dac754e 2901{
9ee474f5 2902 update_entity_load_avg(se, 1);
aff3e498
PT
2903 /* we force update consideration on load-balancer moves */
2904 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2905
2dac754e 2906 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2907 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2908 if (sleep) {
2909 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2910 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2911 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2912}
642dbc39
VG
2913
2914/*
2915 * Update the rq's load with the elapsed running time before entering
2916 * idle. if the last scheduled task is not a CFS task, idle_enter will
2917 * be the only way to update the runnable statistic.
2918 */
2919void idle_enter_fair(struct rq *this_rq)
2920{
2921 update_rq_runnable_avg(this_rq, 1);
2922}
2923
2924/*
2925 * Update the rq's load with the elapsed idle time before a task is
2926 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2927 * be the only way to update the runnable statistic.
2928 */
2929void idle_exit_fair(struct rq *this_rq)
2930{
2931 update_rq_runnable_avg(this_rq, 0);
2932}
2933
6e83125c
PZ
2934static int idle_balance(struct rq *this_rq);
2935
38033c37
PZ
2936#else /* CONFIG_SMP */
2937
9ee474f5
PT
2938static inline void update_entity_load_avg(struct sched_entity *se,
2939 int update_cfs_rq) {}
18bf2805 2940static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2941static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2942 struct sched_entity *se,
2943 int wakeup) {}
2dac754e 2944static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2945 struct sched_entity *se,
2946 int sleep) {}
aff3e498
PT
2947static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2948 int force_update) {}
6e83125c
PZ
2949
2950static inline int idle_balance(struct rq *rq)
2951{
2952 return 0;
2953}
2954
38033c37 2955#endif /* CONFIG_SMP */
9d85f21c 2956
2396af69 2957static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2958{
bf0f6f24 2959#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2960 struct task_struct *tsk = NULL;
2961
2962 if (entity_is_task(se))
2963 tsk = task_of(se);
2964
41acab88 2965 if (se->statistics.sleep_start) {
78becc27 2966 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2967
2968 if ((s64)delta < 0)
2969 delta = 0;
2970
41acab88
LDM
2971 if (unlikely(delta > se->statistics.sleep_max))
2972 se->statistics.sleep_max = delta;
bf0f6f24 2973
8c79a045 2974 se->statistics.sleep_start = 0;
41acab88 2975 se->statistics.sum_sleep_runtime += delta;
9745512c 2976
768d0c27 2977 if (tsk) {
e414314c 2978 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2979 trace_sched_stat_sleep(tsk, delta);
2980 }
bf0f6f24 2981 }
41acab88 2982 if (se->statistics.block_start) {
78becc27 2983 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2984
2985 if ((s64)delta < 0)
2986 delta = 0;
2987
41acab88
LDM
2988 if (unlikely(delta > se->statistics.block_max))
2989 se->statistics.block_max = delta;
bf0f6f24 2990
8c79a045 2991 se->statistics.block_start = 0;
41acab88 2992 se->statistics.sum_sleep_runtime += delta;
30084fbd 2993
e414314c 2994 if (tsk) {
8f0dfc34 2995 if (tsk->in_iowait) {
41acab88
LDM
2996 se->statistics.iowait_sum += delta;
2997 se->statistics.iowait_count++;
768d0c27 2998 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2999 }
3000
b781a602
AV
3001 trace_sched_stat_blocked(tsk, delta);
3002
e414314c
PZ
3003 /*
3004 * Blocking time is in units of nanosecs, so shift by
3005 * 20 to get a milliseconds-range estimation of the
3006 * amount of time that the task spent sleeping:
3007 */
3008 if (unlikely(prof_on == SLEEP_PROFILING)) {
3009 profile_hits(SLEEP_PROFILING,
3010 (void *)get_wchan(tsk),
3011 delta >> 20);
3012 }
3013 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3014 }
bf0f6f24
IM
3015 }
3016#endif
3017}
3018
ddc97297
PZ
3019static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3020{
3021#ifdef CONFIG_SCHED_DEBUG
3022 s64 d = se->vruntime - cfs_rq->min_vruntime;
3023
3024 if (d < 0)
3025 d = -d;
3026
3027 if (d > 3*sysctl_sched_latency)
3028 schedstat_inc(cfs_rq, nr_spread_over);
3029#endif
3030}
3031
aeb73b04
PZ
3032static void
3033place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3034{
1af5f730 3035 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3036
2cb8600e
PZ
3037 /*
3038 * The 'current' period is already promised to the current tasks,
3039 * however the extra weight of the new task will slow them down a
3040 * little, place the new task so that it fits in the slot that
3041 * stays open at the end.
3042 */
94dfb5e7 3043 if (initial && sched_feat(START_DEBIT))
f9c0b095 3044 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3045
a2e7a7eb 3046 /* sleeps up to a single latency don't count. */
5ca9880c 3047 if (!initial) {
a2e7a7eb 3048 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3049
a2e7a7eb
MG
3050 /*
3051 * Halve their sleep time's effect, to allow
3052 * for a gentler effect of sleepers:
3053 */
3054 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3055 thresh >>= 1;
51e0304c 3056
a2e7a7eb 3057 vruntime -= thresh;
aeb73b04
PZ
3058 }
3059
b5d9d734 3060 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3061 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3062}
3063
d3d9dc33
PT
3064static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3065
bf0f6f24 3066static void
88ec22d3 3067enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3068{
88ec22d3
PZ
3069 /*
3070 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3071 * through calling update_curr().
88ec22d3 3072 */
371fd7e7 3073 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3074 se->vruntime += cfs_rq->min_vruntime;
3075
bf0f6f24 3076 /*
a2a2d680 3077 * Update run-time statistics of the 'current'.
bf0f6f24 3078 */
b7cc0896 3079 update_curr(cfs_rq);
f269ae04 3080 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3081 account_entity_enqueue(cfs_rq, se);
3082 update_cfs_shares(cfs_rq);
bf0f6f24 3083
88ec22d3 3084 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3085 place_entity(cfs_rq, se, 0);
2396af69 3086 enqueue_sleeper(cfs_rq, se);
e9acbff6 3087 }
bf0f6f24 3088
d2417e5a 3089 update_stats_enqueue(cfs_rq, se);
ddc97297 3090 check_spread(cfs_rq, se);
83b699ed
SV
3091 if (se != cfs_rq->curr)
3092 __enqueue_entity(cfs_rq, se);
2069dd75 3093 se->on_rq = 1;
3d4b47b4 3094
d3d9dc33 3095 if (cfs_rq->nr_running == 1) {
3d4b47b4 3096 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3097 check_enqueue_throttle(cfs_rq);
3098 }
bf0f6f24
IM
3099}
3100
2c13c919 3101static void __clear_buddies_last(struct sched_entity *se)
2002c695 3102{
2c13c919
RR
3103 for_each_sched_entity(se) {
3104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3105 if (cfs_rq->last != se)
2c13c919 3106 break;
f1044799
PZ
3107
3108 cfs_rq->last = NULL;
2c13c919
RR
3109 }
3110}
2002c695 3111
2c13c919
RR
3112static void __clear_buddies_next(struct sched_entity *se)
3113{
3114 for_each_sched_entity(se) {
3115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3116 if (cfs_rq->next != se)
2c13c919 3117 break;
f1044799
PZ
3118
3119 cfs_rq->next = NULL;
2c13c919 3120 }
2002c695
PZ
3121}
3122
ac53db59
RR
3123static void __clear_buddies_skip(struct sched_entity *se)
3124{
3125 for_each_sched_entity(se) {
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3127 if (cfs_rq->skip != se)
ac53db59 3128 break;
f1044799
PZ
3129
3130 cfs_rq->skip = NULL;
ac53db59
RR
3131 }
3132}
3133
a571bbea
PZ
3134static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3135{
2c13c919
RR
3136 if (cfs_rq->last == se)
3137 __clear_buddies_last(se);
3138
3139 if (cfs_rq->next == se)
3140 __clear_buddies_next(se);
ac53db59
RR
3141
3142 if (cfs_rq->skip == se)
3143 __clear_buddies_skip(se);
a571bbea
PZ
3144}
3145
6c16a6dc 3146static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3147
bf0f6f24 3148static void
371fd7e7 3149dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3150{
a2a2d680
DA
3151 /*
3152 * Update run-time statistics of the 'current'.
3153 */
3154 update_curr(cfs_rq);
17bc14b7 3155 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3156
19b6a2e3 3157 update_stats_dequeue(cfs_rq, se);
371fd7e7 3158 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3159#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3160 if (entity_is_task(se)) {
3161 struct task_struct *tsk = task_of(se);
3162
3163 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3164 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3165 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3166 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3167 }
db36cc7d 3168#endif
67e9fb2a
PZ
3169 }
3170
2002c695 3171 clear_buddies(cfs_rq, se);
4793241b 3172
83b699ed 3173 if (se != cfs_rq->curr)
30cfdcfc 3174 __dequeue_entity(cfs_rq, se);
17bc14b7 3175 se->on_rq = 0;
30cfdcfc 3176 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3177
3178 /*
3179 * Normalize the entity after updating the min_vruntime because the
3180 * update can refer to the ->curr item and we need to reflect this
3181 * movement in our normalized position.
3182 */
371fd7e7 3183 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3184 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3185
d8b4986d
PT
3186 /* return excess runtime on last dequeue */
3187 return_cfs_rq_runtime(cfs_rq);
3188
1e876231 3189 update_min_vruntime(cfs_rq);
17bc14b7 3190 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3191}
3192
3193/*
3194 * Preempt the current task with a newly woken task if needed:
3195 */
7c92e54f 3196static void
2e09bf55 3197check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3198{
11697830 3199 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3200 struct sched_entity *se;
3201 s64 delta;
11697830 3202
6d0f0ebd 3203 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3204 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3205 if (delta_exec > ideal_runtime) {
8875125e 3206 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3207 /*
3208 * The current task ran long enough, ensure it doesn't get
3209 * re-elected due to buddy favours.
3210 */
3211 clear_buddies(cfs_rq, curr);
f685ceac
MG
3212 return;
3213 }
3214
3215 /*
3216 * Ensure that a task that missed wakeup preemption by a
3217 * narrow margin doesn't have to wait for a full slice.
3218 * This also mitigates buddy induced latencies under load.
3219 */
f685ceac
MG
3220 if (delta_exec < sysctl_sched_min_granularity)
3221 return;
3222
f4cfb33e
WX
3223 se = __pick_first_entity(cfs_rq);
3224 delta = curr->vruntime - se->vruntime;
f685ceac 3225
f4cfb33e
WX
3226 if (delta < 0)
3227 return;
d7d82944 3228
f4cfb33e 3229 if (delta > ideal_runtime)
8875125e 3230 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3231}
3232
83b699ed 3233static void
8494f412 3234set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3235{
83b699ed
SV
3236 /* 'current' is not kept within the tree. */
3237 if (se->on_rq) {
3238 /*
3239 * Any task has to be enqueued before it get to execute on
3240 * a CPU. So account for the time it spent waiting on the
3241 * runqueue.
3242 */
3243 update_stats_wait_end(cfs_rq, se);
3244 __dequeue_entity(cfs_rq, se);
36ee28e4 3245 update_entity_load_avg(se, 1);
83b699ed
SV
3246 }
3247
79303e9e 3248 update_stats_curr_start(cfs_rq, se);
429d43bc 3249 cfs_rq->curr = se;
eba1ed4b
IM
3250#ifdef CONFIG_SCHEDSTATS
3251 /*
3252 * Track our maximum slice length, if the CPU's load is at
3253 * least twice that of our own weight (i.e. dont track it
3254 * when there are only lesser-weight tasks around):
3255 */
495eca49 3256 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3257 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3258 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3259 }
3260#endif
4a55b450 3261 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3262}
3263
3f3a4904
PZ
3264static int
3265wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3266
ac53db59
RR
3267/*
3268 * Pick the next process, keeping these things in mind, in this order:
3269 * 1) keep things fair between processes/task groups
3270 * 2) pick the "next" process, since someone really wants that to run
3271 * 3) pick the "last" process, for cache locality
3272 * 4) do not run the "skip" process, if something else is available
3273 */
678d5718
PZ
3274static struct sched_entity *
3275pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3276{
678d5718
PZ
3277 struct sched_entity *left = __pick_first_entity(cfs_rq);
3278 struct sched_entity *se;
3279
3280 /*
3281 * If curr is set we have to see if its left of the leftmost entity
3282 * still in the tree, provided there was anything in the tree at all.
3283 */
3284 if (!left || (curr && entity_before(curr, left)))
3285 left = curr;
3286
3287 se = left; /* ideally we run the leftmost entity */
f4b6755f 3288
ac53db59
RR
3289 /*
3290 * Avoid running the skip buddy, if running something else can
3291 * be done without getting too unfair.
3292 */
3293 if (cfs_rq->skip == se) {
678d5718
PZ
3294 struct sched_entity *second;
3295
3296 if (se == curr) {
3297 second = __pick_first_entity(cfs_rq);
3298 } else {
3299 second = __pick_next_entity(se);
3300 if (!second || (curr && entity_before(curr, second)))
3301 second = curr;
3302 }
3303
ac53db59
RR
3304 if (second && wakeup_preempt_entity(second, left) < 1)
3305 se = second;
3306 }
aa2ac252 3307
f685ceac
MG
3308 /*
3309 * Prefer last buddy, try to return the CPU to a preempted task.
3310 */
3311 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3312 se = cfs_rq->last;
3313
ac53db59
RR
3314 /*
3315 * Someone really wants this to run. If it's not unfair, run it.
3316 */
3317 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3318 se = cfs_rq->next;
3319
f685ceac 3320 clear_buddies(cfs_rq, se);
4793241b
PZ
3321
3322 return se;
aa2ac252
PZ
3323}
3324
678d5718 3325static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3326
ab6cde26 3327static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3328{
3329 /*
3330 * If still on the runqueue then deactivate_task()
3331 * was not called and update_curr() has to be done:
3332 */
3333 if (prev->on_rq)
b7cc0896 3334 update_curr(cfs_rq);
bf0f6f24 3335
d3d9dc33
PT
3336 /* throttle cfs_rqs exceeding runtime */
3337 check_cfs_rq_runtime(cfs_rq);
3338
ddc97297 3339 check_spread(cfs_rq, prev);
30cfdcfc 3340 if (prev->on_rq) {
5870db5b 3341 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3342 /* Put 'current' back into the tree. */
3343 __enqueue_entity(cfs_rq, prev);
9d85f21c 3344 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3345 update_entity_load_avg(prev, 1);
30cfdcfc 3346 }
429d43bc 3347 cfs_rq->curr = NULL;
bf0f6f24
IM
3348}
3349
8f4d37ec
PZ
3350static void
3351entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3352{
bf0f6f24 3353 /*
30cfdcfc 3354 * Update run-time statistics of the 'current'.
bf0f6f24 3355 */
30cfdcfc 3356 update_curr(cfs_rq);
bf0f6f24 3357
9d85f21c
PT
3358 /*
3359 * Ensure that runnable average is periodically updated.
3360 */
9ee474f5 3361 update_entity_load_avg(curr, 1);
aff3e498 3362 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3363 update_cfs_shares(cfs_rq);
9d85f21c 3364
8f4d37ec
PZ
3365#ifdef CONFIG_SCHED_HRTICK
3366 /*
3367 * queued ticks are scheduled to match the slice, so don't bother
3368 * validating it and just reschedule.
3369 */
983ed7a6 3370 if (queued) {
8875125e 3371 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3372 return;
3373 }
8f4d37ec
PZ
3374 /*
3375 * don't let the period tick interfere with the hrtick preemption
3376 */
3377 if (!sched_feat(DOUBLE_TICK) &&
3378 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3379 return;
3380#endif
3381
2c2efaed 3382 if (cfs_rq->nr_running > 1)
2e09bf55 3383 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3384}
3385
ab84d31e
PT
3386
3387/**************************************************
3388 * CFS bandwidth control machinery
3389 */
3390
3391#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3392
3393#ifdef HAVE_JUMP_LABEL
c5905afb 3394static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3395
3396static inline bool cfs_bandwidth_used(void)
3397{
c5905afb 3398 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3399}
3400
1ee14e6c 3401void cfs_bandwidth_usage_inc(void)
029632fb 3402{
1ee14e6c
BS
3403 static_key_slow_inc(&__cfs_bandwidth_used);
3404}
3405
3406void cfs_bandwidth_usage_dec(void)
3407{
3408 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3409}
3410#else /* HAVE_JUMP_LABEL */
3411static bool cfs_bandwidth_used(void)
3412{
3413 return true;
3414}
3415
1ee14e6c
BS
3416void cfs_bandwidth_usage_inc(void) {}
3417void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3418#endif /* HAVE_JUMP_LABEL */
3419
ab84d31e
PT
3420/*
3421 * default period for cfs group bandwidth.
3422 * default: 0.1s, units: nanoseconds
3423 */
3424static inline u64 default_cfs_period(void)
3425{
3426 return 100000000ULL;
3427}
ec12cb7f
PT
3428
3429static inline u64 sched_cfs_bandwidth_slice(void)
3430{
3431 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3432}
3433
a9cf55b2
PT
3434/*
3435 * Replenish runtime according to assigned quota and update expiration time.
3436 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3437 * additional synchronization around rq->lock.
3438 *
3439 * requires cfs_b->lock
3440 */
029632fb 3441void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3442{
3443 u64 now;
3444
3445 if (cfs_b->quota == RUNTIME_INF)
3446 return;
3447
3448 now = sched_clock_cpu(smp_processor_id());
3449 cfs_b->runtime = cfs_b->quota;
3450 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3451}
3452
029632fb
PZ
3453static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3454{
3455 return &tg->cfs_bandwidth;
3456}
3457
f1b17280
PT
3458/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3459static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3460{
3461 if (unlikely(cfs_rq->throttle_count))
3462 return cfs_rq->throttled_clock_task;
3463
78becc27 3464 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3465}
3466
85dac906
PT
3467/* returns 0 on failure to allocate runtime */
3468static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3469{
3470 struct task_group *tg = cfs_rq->tg;
3471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3472 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3473
3474 /* note: this is a positive sum as runtime_remaining <= 0 */
3475 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3476
3477 raw_spin_lock(&cfs_b->lock);
3478 if (cfs_b->quota == RUNTIME_INF)
3479 amount = min_amount;
58088ad0 3480 else {
a9cf55b2
PT
3481 /*
3482 * If the bandwidth pool has become inactive, then at least one
3483 * period must have elapsed since the last consumption.
3484 * Refresh the global state and ensure bandwidth timer becomes
3485 * active.
3486 */
3487 if (!cfs_b->timer_active) {
3488 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3489 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3490 }
58088ad0
PT
3491
3492 if (cfs_b->runtime > 0) {
3493 amount = min(cfs_b->runtime, min_amount);
3494 cfs_b->runtime -= amount;
3495 cfs_b->idle = 0;
3496 }
ec12cb7f 3497 }
a9cf55b2 3498 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3499 raw_spin_unlock(&cfs_b->lock);
3500
3501 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3502 /*
3503 * we may have advanced our local expiration to account for allowed
3504 * spread between our sched_clock and the one on which runtime was
3505 * issued.
3506 */
3507 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3508 cfs_rq->runtime_expires = expires;
85dac906
PT
3509
3510 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3511}
3512
a9cf55b2
PT
3513/*
3514 * Note: This depends on the synchronization provided by sched_clock and the
3515 * fact that rq->clock snapshots this value.
3516 */
3517static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3518{
a9cf55b2 3519 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3520
3521 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3522 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3523 return;
3524
a9cf55b2
PT
3525 if (cfs_rq->runtime_remaining < 0)
3526 return;
3527
3528 /*
3529 * If the local deadline has passed we have to consider the
3530 * possibility that our sched_clock is 'fast' and the global deadline
3531 * has not truly expired.
3532 *
3533 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3534 * whether the global deadline has advanced. It is valid to compare
3535 * cfs_b->runtime_expires without any locks since we only care about
3536 * exact equality, so a partial write will still work.
a9cf55b2
PT
3537 */
3538
51f2176d 3539 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3540 /* extend local deadline, drift is bounded above by 2 ticks */
3541 cfs_rq->runtime_expires += TICK_NSEC;
3542 } else {
3543 /* global deadline is ahead, expiration has passed */
3544 cfs_rq->runtime_remaining = 0;
3545 }
3546}
3547
9dbdb155 3548static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3549{
3550 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3551 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3552 expire_cfs_rq_runtime(cfs_rq);
3553
3554 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3555 return;
3556
85dac906
PT
3557 /*
3558 * if we're unable to extend our runtime we resched so that the active
3559 * hierarchy can be throttled
3560 */
3561 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3562 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3563}
3564
6c16a6dc 3565static __always_inline
9dbdb155 3566void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3567{
56f570e5 3568 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3569 return;
3570
3571 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3572}
3573
85dac906
PT
3574static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3575{
56f570e5 3576 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3577}
3578
64660c86
PT
3579/* check whether cfs_rq, or any parent, is throttled */
3580static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3581{
56f570e5 3582 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3583}
3584
3585/*
3586 * Ensure that neither of the group entities corresponding to src_cpu or
3587 * dest_cpu are members of a throttled hierarchy when performing group
3588 * load-balance operations.
3589 */
3590static inline int throttled_lb_pair(struct task_group *tg,
3591 int src_cpu, int dest_cpu)
3592{
3593 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3594
3595 src_cfs_rq = tg->cfs_rq[src_cpu];
3596 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3597
3598 return throttled_hierarchy(src_cfs_rq) ||
3599 throttled_hierarchy(dest_cfs_rq);
3600}
3601
3602/* updated child weight may affect parent so we have to do this bottom up */
3603static int tg_unthrottle_up(struct task_group *tg, void *data)
3604{
3605 struct rq *rq = data;
3606 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3607
3608 cfs_rq->throttle_count--;
3609#ifdef CONFIG_SMP
3610 if (!cfs_rq->throttle_count) {
f1b17280 3611 /* adjust cfs_rq_clock_task() */
78becc27 3612 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3613 cfs_rq->throttled_clock_task;
64660c86
PT
3614 }
3615#endif
3616
3617 return 0;
3618}
3619
3620static int tg_throttle_down(struct task_group *tg, void *data)
3621{
3622 struct rq *rq = data;
3623 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3624
82958366
PT
3625 /* group is entering throttled state, stop time */
3626 if (!cfs_rq->throttle_count)
78becc27 3627 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3628 cfs_rq->throttle_count++;
3629
3630 return 0;
3631}
3632
d3d9dc33 3633static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3634{
3635 struct rq *rq = rq_of(cfs_rq);
3636 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3637 struct sched_entity *se;
3638 long task_delta, dequeue = 1;
3639
3640 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3641
f1b17280 3642 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3643 rcu_read_lock();
3644 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3645 rcu_read_unlock();
85dac906
PT
3646
3647 task_delta = cfs_rq->h_nr_running;
3648 for_each_sched_entity(se) {
3649 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3650 /* throttled entity or throttle-on-deactivate */
3651 if (!se->on_rq)
3652 break;
3653
3654 if (dequeue)
3655 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3656 qcfs_rq->h_nr_running -= task_delta;
3657
3658 if (qcfs_rq->load.weight)
3659 dequeue = 0;
3660 }
3661
3662 if (!se)
72465447 3663 sub_nr_running(rq, task_delta);
85dac906
PT
3664
3665 cfs_rq->throttled = 1;
78becc27 3666 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3667 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3668 /*
3669 * Add to the _head_ of the list, so that an already-started
3670 * distribute_cfs_runtime will not see us
3671 */
3672 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3673 if (!cfs_b->timer_active)
09dc4ab0 3674 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3675 raw_spin_unlock(&cfs_b->lock);
3676}
3677
029632fb 3678void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3679{
3680 struct rq *rq = rq_of(cfs_rq);
3681 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3682 struct sched_entity *se;
3683 int enqueue = 1;
3684 long task_delta;
3685
22b958d8 3686 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3687
3688 cfs_rq->throttled = 0;
1a55af2e
FW
3689
3690 update_rq_clock(rq);
3691
671fd9da 3692 raw_spin_lock(&cfs_b->lock);
78becc27 3693 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3694 list_del_rcu(&cfs_rq->throttled_list);
3695 raw_spin_unlock(&cfs_b->lock);
3696
64660c86
PT
3697 /* update hierarchical throttle state */
3698 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3699
671fd9da
PT
3700 if (!cfs_rq->load.weight)
3701 return;
3702
3703 task_delta = cfs_rq->h_nr_running;
3704 for_each_sched_entity(se) {
3705 if (se->on_rq)
3706 enqueue = 0;
3707
3708 cfs_rq = cfs_rq_of(se);
3709 if (enqueue)
3710 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3711 cfs_rq->h_nr_running += task_delta;
3712
3713 if (cfs_rq_throttled(cfs_rq))
3714 break;
3715 }
3716
3717 if (!se)
72465447 3718 add_nr_running(rq, task_delta);
671fd9da
PT
3719
3720 /* determine whether we need to wake up potentially idle cpu */
3721 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3722 resched_curr(rq);
671fd9da
PT
3723}
3724
3725static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3726 u64 remaining, u64 expires)
3727{
3728 struct cfs_rq *cfs_rq;
c06f04c7
BS
3729 u64 runtime;
3730 u64 starting_runtime = remaining;
671fd9da
PT
3731
3732 rcu_read_lock();
3733 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3734 throttled_list) {
3735 struct rq *rq = rq_of(cfs_rq);
3736
3737 raw_spin_lock(&rq->lock);
3738 if (!cfs_rq_throttled(cfs_rq))
3739 goto next;
3740
3741 runtime = -cfs_rq->runtime_remaining + 1;
3742 if (runtime > remaining)
3743 runtime = remaining;
3744 remaining -= runtime;
3745
3746 cfs_rq->runtime_remaining += runtime;
3747 cfs_rq->runtime_expires = expires;
3748
3749 /* we check whether we're throttled above */
3750 if (cfs_rq->runtime_remaining > 0)
3751 unthrottle_cfs_rq(cfs_rq);
3752
3753next:
3754 raw_spin_unlock(&rq->lock);
3755
3756 if (!remaining)
3757 break;
3758 }
3759 rcu_read_unlock();
3760
c06f04c7 3761 return starting_runtime - remaining;
671fd9da
PT
3762}
3763
58088ad0
PT
3764/*
3765 * Responsible for refilling a task_group's bandwidth and unthrottling its
3766 * cfs_rqs as appropriate. If there has been no activity within the last
3767 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3768 * used to track this state.
3769 */
3770static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3771{
671fd9da 3772 u64 runtime, runtime_expires;
51f2176d 3773 int throttled;
58088ad0 3774
58088ad0
PT
3775 /* no need to continue the timer with no bandwidth constraint */
3776 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3777 goto out_deactivate;
58088ad0 3778
671fd9da 3779 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3780 cfs_b->nr_periods += overrun;
671fd9da 3781
51f2176d
BS
3782 /*
3783 * idle depends on !throttled (for the case of a large deficit), and if
3784 * we're going inactive then everything else can be deferred
3785 */
3786 if (cfs_b->idle && !throttled)
3787 goto out_deactivate;
a9cf55b2 3788
927b54fc
BS
3789 /*
3790 * if we have relooped after returning idle once, we need to update our
3791 * status as actually running, so that other cpus doing
3792 * __start_cfs_bandwidth will stop trying to cancel us.
3793 */
3794 cfs_b->timer_active = 1;
3795
a9cf55b2
PT
3796 __refill_cfs_bandwidth_runtime(cfs_b);
3797
671fd9da
PT
3798 if (!throttled) {
3799 /* mark as potentially idle for the upcoming period */
3800 cfs_b->idle = 1;
51f2176d 3801 return 0;
671fd9da
PT
3802 }
3803
e8da1b18
NR
3804 /* account preceding periods in which throttling occurred */
3805 cfs_b->nr_throttled += overrun;
3806
671fd9da 3807 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3808
3809 /*
c06f04c7
BS
3810 * This check is repeated as we are holding onto the new bandwidth while
3811 * we unthrottle. This can potentially race with an unthrottled group
3812 * trying to acquire new bandwidth from the global pool. This can result
3813 * in us over-using our runtime if it is all used during this loop, but
3814 * only by limited amounts in that extreme case.
671fd9da 3815 */
c06f04c7
BS
3816 while (throttled && cfs_b->runtime > 0) {
3817 runtime = cfs_b->runtime;
671fd9da
PT
3818 raw_spin_unlock(&cfs_b->lock);
3819 /* we can't nest cfs_b->lock while distributing bandwidth */
3820 runtime = distribute_cfs_runtime(cfs_b, runtime,
3821 runtime_expires);
3822 raw_spin_lock(&cfs_b->lock);
3823
3824 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3825
3826 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3827 }
58088ad0 3828
671fd9da
PT
3829 /*
3830 * While we are ensured activity in the period following an
3831 * unthrottle, this also covers the case in which the new bandwidth is
3832 * insufficient to cover the existing bandwidth deficit. (Forcing the
3833 * timer to remain active while there are any throttled entities.)
3834 */
3835 cfs_b->idle = 0;
58088ad0 3836
51f2176d
BS
3837 return 0;
3838
3839out_deactivate:
3840 cfs_b->timer_active = 0;
3841 return 1;
58088ad0 3842}
d3d9dc33 3843
d8b4986d
PT
3844/* a cfs_rq won't donate quota below this amount */
3845static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3846/* minimum remaining period time to redistribute slack quota */
3847static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3848/* how long we wait to gather additional slack before distributing */
3849static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3850
db06e78c
BS
3851/*
3852 * Are we near the end of the current quota period?
3853 *
3854 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3855 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3856 * migrate_hrtimers, base is never cleared, so we are fine.
3857 */
d8b4986d
PT
3858static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3859{
3860 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3861 u64 remaining;
3862
3863 /* if the call-back is running a quota refresh is already occurring */
3864 if (hrtimer_callback_running(refresh_timer))
3865 return 1;
3866
3867 /* is a quota refresh about to occur? */
3868 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3869 if (remaining < min_expire)
3870 return 1;
3871
3872 return 0;
3873}
3874
3875static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3876{
3877 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3878
3879 /* if there's a quota refresh soon don't bother with slack */
3880 if (runtime_refresh_within(cfs_b, min_left))
3881 return;
3882
3883 start_bandwidth_timer(&cfs_b->slack_timer,
3884 ns_to_ktime(cfs_bandwidth_slack_period));
3885}
3886
3887/* we know any runtime found here is valid as update_curr() precedes return */
3888static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3889{
3890 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3891 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3892
3893 if (slack_runtime <= 0)
3894 return;
3895
3896 raw_spin_lock(&cfs_b->lock);
3897 if (cfs_b->quota != RUNTIME_INF &&
3898 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3899 cfs_b->runtime += slack_runtime;
3900
3901 /* we are under rq->lock, defer unthrottling using a timer */
3902 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3903 !list_empty(&cfs_b->throttled_cfs_rq))
3904 start_cfs_slack_bandwidth(cfs_b);
3905 }
3906 raw_spin_unlock(&cfs_b->lock);
3907
3908 /* even if it's not valid for return we don't want to try again */
3909 cfs_rq->runtime_remaining -= slack_runtime;
3910}
3911
3912static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3913{
56f570e5
PT
3914 if (!cfs_bandwidth_used())
3915 return;
3916
fccfdc6f 3917 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3918 return;
3919
3920 __return_cfs_rq_runtime(cfs_rq);
3921}
3922
3923/*
3924 * This is done with a timer (instead of inline with bandwidth return) since
3925 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3926 */
3927static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3928{
3929 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3930 u64 expires;
3931
3932 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3933 raw_spin_lock(&cfs_b->lock);
3934 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3935 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3936 return;
db06e78c 3937 }
d8b4986d 3938
c06f04c7 3939 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3940 runtime = cfs_b->runtime;
c06f04c7 3941
d8b4986d
PT
3942 expires = cfs_b->runtime_expires;
3943 raw_spin_unlock(&cfs_b->lock);
3944
3945 if (!runtime)
3946 return;
3947
3948 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3949
3950 raw_spin_lock(&cfs_b->lock);
3951 if (expires == cfs_b->runtime_expires)
c06f04c7 3952 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3953 raw_spin_unlock(&cfs_b->lock);
3954}
3955
d3d9dc33
PT
3956/*
3957 * When a group wakes up we want to make sure that its quota is not already
3958 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3959 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3960 */
3961static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3962{
56f570e5
PT
3963 if (!cfs_bandwidth_used())
3964 return;
3965
d3d9dc33
PT
3966 /* an active group must be handled by the update_curr()->put() path */
3967 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3968 return;
3969
3970 /* ensure the group is not already throttled */
3971 if (cfs_rq_throttled(cfs_rq))
3972 return;
3973
3974 /* update runtime allocation */
3975 account_cfs_rq_runtime(cfs_rq, 0);
3976 if (cfs_rq->runtime_remaining <= 0)
3977 throttle_cfs_rq(cfs_rq);
3978}
3979
3980/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3981static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3982{
56f570e5 3983 if (!cfs_bandwidth_used())
678d5718 3984 return false;
56f570e5 3985
d3d9dc33 3986 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3987 return false;
d3d9dc33
PT
3988
3989 /*
3990 * it's possible for a throttled entity to be forced into a running
3991 * state (e.g. set_curr_task), in this case we're finished.
3992 */
3993 if (cfs_rq_throttled(cfs_rq))
678d5718 3994 return true;
d3d9dc33
PT
3995
3996 throttle_cfs_rq(cfs_rq);
678d5718 3997 return true;
d3d9dc33 3998}
029632fb 3999
029632fb
PZ
4000static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4001{
4002 struct cfs_bandwidth *cfs_b =
4003 container_of(timer, struct cfs_bandwidth, slack_timer);
4004 do_sched_cfs_slack_timer(cfs_b);
4005
4006 return HRTIMER_NORESTART;
4007}
4008
4009static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4010{
4011 struct cfs_bandwidth *cfs_b =
4012 container_of(timer, struct cfs_bandwidth, period_timer);
4013 ktime_t now;
4014 int overrun;
4015 int idle = 0;
4016
51f2176d 4017 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4018 for (;;) {
4019 now = hrtimer_cb_get_time(timer);
4020 overrun = hrtimer_forward(timer, now, cfs_b->period);
4021
4022 if (!overrun)
4023 break;
4024
4025 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4026 }
51f2176d 4027 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4028
4029 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4030}
4031
4032void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4033{
4034 raw_spin_lock_init(&cfs_b->lock);
4035 cfs_b->runtime = 0;
4036 cfs_b->quota = RUNTIME_INF;
4037 cfs_b->period = ns_to_ktime(default_cfs_period());
4038
4039 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4040 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 cfs_b->period_timer.function = sched_cfs_period_timer;
4042 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4043 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4044}
4045
4046static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4047{
4048 cfs_rq->runtime_enabled = 0;
4049 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4050}
4051
4052/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4053void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4054{
4055 /*
4056 * The timer may be active because we're trying to set a new bandwidth
4057 * period or because we're racing with the tear-down path
4058 * (timer_active==0 becomes visible before the hrtimer call-back
4059 * terminates). In either case we ensure that it's re-programmed
4060 */
927b54fc
BS
4061 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4062 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4063 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4064 raw_spin_unlock(&cfs_b->lock);
927b54fc 4065 cpu_relax();
029632fb
PZ
4066 raw_spin_lock(&cfs_b->lock);
4067 /* if someone else restarted the timer then we're done */
09dc4ab0 4068 if (!force && cfs_b->timer_active)
029632fb
PZ
4069 return;
4070 }
4071
4072 cfs_b->timer_active = 1;
4073 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4074}
4075
4076static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4077{
7f1a169b
TH
4078 /* init_cfs_bandwidth() was not called */
4079 if (!cfs_b->throttled_cfs_rq.next)
4080 return;
4081
029632fb
PZ
4082 hrtimer_cancel(&cfs_b->period_timer);
4083 hrtimer_cancel(&cfs_b->slack_timer);
4084}
4085
0e59bdae
KT
4086static void __maybe_unused update_runtime_enabled(struct rq *rq)
4087{
4088 struct cfs_rq *cfs_rq;
4089
4090 for_each_leaf_cfs_rq(rq, cfs_rq) {
4091 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4092
4093 raw_spin_lock(&cfs_b->lock);
4094 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4095 raw_spin_unlock(&cfs_b->lock);
4096 }
4097}
4098
38dc3348 4099static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4100{
4101 struct cfs_rq *cfs_rq;
4102
4103 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4104 if (!cfs_rq->runtime_enabled)
4105 continue;
4106
4107 /*
4108 * clock_task is not advancing so we just need to make sure
4109 * there's some valid quota amount
4110 */
51f2176d 4111 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4112 /*
4113 * Offline rq is schedulable till cpu is completely disabled
4114 * in take_cpu_down(), so we prevent new cfs throttling here.
4115 */
4116 cfs_rq->runtime_enabled = 0;
4117
029632fb
PZ
4118 if (cfs_rq_throttled(cfs_rq))
4119 unthrottle_cfs_rq(cfs_rq);
4120 }
4121}
4122
4123#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4124static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4125{
78becc27 4126 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4127}
4128
9dbdb155 4129static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4130static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4131static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4132static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4133
4134static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4135{
4136 return 0;
4137}
64660c86
PT
4138
4139static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4140{
4141 return 0;
4142}
4143
4144static inline int throttled_lb_pair(struct task_group *tg,
4145 int src_cpu, int dest_cpu)
4146{
4147 return 0;
4148}
029632fb
PZ
4149
4150void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4151
4152#ifdef CONFIG_FAIR_GROUP_SCHED
4153static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4154#endif
4155
029632fb
PZ
4156static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4157{
4158 return NULL;
4159}
4160static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4161static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4162static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4163
4164#endif /* CONFIG_CFS_BANDWIDTH */
4165
bf0f6f24
IM
4166/**************************************************
4167 * CFS operations on tasks:
4168 */
4169
8f4d37ec
PZ
4170#ifdef CONFIG_SCHED_HRTICK
4171static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4172{
8f4d37ec
PZ
4173 struct sched_entity *se = &p->se;
4174 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4175
4176 WARN_ON(task_rq(p) != rq);
4177
b39e66ea 4178 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4179 u64 slice = sched_slice(cfs_rq, se);
4180 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4181 s64 delta = slice - ran;
4182
4183 if (delta < 0) {
4184 if (rq->curr == p)
8875125e 4185 resched_curr(rq);
8f4d37ec
PZ
4186 return;
4187 }
31656519 4188 hrtick_start(rq, delta);
8f4d37ec
PZ
4189 }
4190}
a4c2f00f
PZ
4191
4192/*
4193 * called from enqueue/dequeue and updates the hrtick when the
4194 * current task is from our class and nr_running is low enough
4195 * to matter.
4196 */
4197static void hrtick_update(struct rq *rq)
4198{
4199 struct task_struct *curr = rq->curr;
4200
b39e66ea 4201 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4202 return;
4203
4204 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4205 hrtick_start_fair(rq, curr);
4206}
55e12e5e 4207#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4208static inline void
4209hrtick_start_fair(struct rq *rq, struct task_struct *p)
4210{
4211}
a4c2f00f
PZ
4212
4213static inline void hrtick_update(struct rq *rq)
4214{
4215}
8f4d37ec
PZ
4216#endif
4217
bf0f6f24
IM
4218/*
4219 * The enqueue_task method is called before nr_running is
4220 * increased. Here we update the fair scheduling stats and
4221 * then put the task into the rbtree:
4222 */
ea87bb78 4223static void
371fd7e7 4224enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4225{
4226 struct cfs_rq *cfs_rq;
62fb1851 4227 struct sched_entity *se = &p->se;
bf0f6f24
IM
4228
4229 for_each_sched_entity(se) {
62fb1851 4230 if (se->on_rq)
bf0f6f24
IM
4231 break;
4232 cfs_rq = cfs_rq_of(se);
88ec22d3 4233 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4234
4235 /*
4236 * end evaluation on encountering a throttled cfs_rq
4237 *
4238 * note: in the case of encountering a throttled cfs_rq we will
4239 * post the final h_nr_running increment below.
4240 */
4241 if (cfs_rq_throttled(cfs_rq))
4242 break;
953bfcd1 4243 cfs_rq->h_nr_running++;
85dac906 4244
88ec22d3 4245 flags = ENQUEUE_WAKEUP;
bf0f6f24 4246 }
8f4d37ec 4247
2069dd75 4248 for_each_sched_entity(se) {
0f317143 4249 cfs_rq = cfs_rq_of(se);
953bfcd1 4250 cfs_rq->h_nr_running++;
2069dd75 4251
85dac906
PT
4252 if (cfs_rq_throttled(cfs_rq))
4253 break;
4254
17bc14b7 4255 update_cfs_shares(cfs_rq);
9ee474f5 4256 update_entity_load_avg(se, 1);
2069dd75
PZ
4257 }
4258
18bf2805
BS
4259 if (!se) {
4260 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4261 add_nr_running(rq, 1);
18bf2805 4262 }
a4c2f00f 4263 hrtick_update(rq);
bf0f6f24
IM
4264}
4265
2f36825b
VP
4266static void set_next_buddy(struct sched_entity *se);
4267
bf0f6f24
IM
4268/*
4269 * The dequeue_task method is called before nr_running is
4270 * decreased. We remove the task from the rbtree and
4271 * update the fair scheduling stats:
4272 */
371fd7e7 4273static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4274{
4275 struct cfs_rq *cfs_rq;
62fb1851 4276 struct sched_entity *se = &p->se;
2f36825b 4277 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4278
4279 for_each_sched_entity(se) {
4280 cfs_rq = cfs_rq_of(se);
371fd7e7 4281 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4282
4283 /*
4284 * end evaluation on encountering a throttled cfs_rq
4285 *
4286 * note: in the case of encountering a throttled cfs_rq we will
4287 * post the final h_nr_running decrement below.
4288 */
4289 if (cfs_rq_throttled(cfs_rq))
4290 break;
953bfcd1 4291 cfs_rq->h_nr_running--;
2069dd75 4292
bf0f6f24 4293 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4294 if (cfs_rq->load.weight) {
4295 /*
4296 * Bias pick_next to pick a task from this cfs_rq, as
4297 * p is sleeping when it is within its sched_slice.
4298 */
4299 if (task_sleep && parent_entity(se))
4300 set_next_buddy(parent_entity(se));
9598c82d
PT
4301
4302 /* avoid re-evaluating load for this entity */
4303 se = parent_entity(se);
bf0f6f24 4304 break;
2f36825b 4305 }
371fd7e7 4306 flags |= DEQUEUE_SLEEP;
bf0f6f24 4307 }
8f4d37ec 4308
2069dd75 4309 for_each_sched_entity(se) {
0f317143 4310 cfs_rq = cfs_rq_of(se);
953bfcd1 4311 cfs_rq->h_nr_running--;
2069dd75 4312
85dac906
PT
4313 if (cfs_rq_throttled(cfs_rq))
4314 break;
4315
17bc14b7 4316 update_cfs_shares(cfs_rq);
9ee474f5 4317 update_entity_load_avg(se, 1);
2069dd75
PZ
4318 }
4319
18bf2805 4320 if (!se) {
72465447 4321 sub_nr_running(rq, 1);
18bf2805
BS
4322 update_rq_runnable_avg(rq, 1);
4323 }
a4c2f00f 4324 hrtick_update(rq);
bf0f6f24
IM
4325}
4326
e7693a36 4327#ifdef CONFIG_SMP
3289bdb4
PZ
4328
4329/*
4330 * per rq 'load' arrray crap; XXX kill this.
4331 */
4332
4333/*
4334 * The exact cpuload at various idx values, calculated at every tick would be
4335 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4336 *
4337 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4338 * on nth tick when cpu may be busy, then we have:
4339 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4340 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4341 *
4342 * decay_load_missed() below does efficient calculation of
4343 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4344 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4345 *
4346 * The calculation is approximated on a 128 point scale.
4347 * degrade_zero_ticks is the number of ticks after which load at any
4348 * particular idx is approximated to be zero.
4349 * degrade_factor is a precomputed table, a row for each load idx.
4350 * Each column corresponds to degradation factor for a power of two ticks,
4351 * based on 128 point scale.
4352 * Example:
4353 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4354 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4355 *
4356 * With this power of 2 load factors, we can degrade the load n times
4357 * by looking at 1 bits in n and doing as many mult/shift instead of
4358 * n mult/shifts needed by the exact degradation.
4359 */
4360#define DEGRADE_SHIFT 7
4361static const unsigned char
4362 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4363static const unsigned char
4364 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4365 {0, 0, 0, 0, 0, 0, 0, 0},
4366 {64, 32, 8, 0, 0, 0, 0, 0},
4367 {96, 72, 40, 12, 1, 0, 0},
4368 {112, 98, 75, 43, 15, 1, 0},
4369 {120, 112, 98, 76, 45, 16, 2} };
4370
4371/*
4372 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4373 * would be when CPU is idle and so we just decay the old load without
4374 * adding any new load.
4375 */
4376static unsigned long
4377decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4378{
4379 int j = 0;
4380
4381 if (!missed_updates)
4382 return load;
4383
4384 if (missed_updates >= degrade_zero_ticks[idx])
4385 return 0;
4386
4387 if (idx == 1)
4388 return load >> missed_updates;
4389
4390 while (missed_updates) {
4391 if (missed_updates % 2)
4392 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4393
4394 missed_updates >>= 1;
4395 j++;
4396 }
4397 return load;
4398}
4399
4400/*
4401 * Update rq->cpu_load[] statistics. This function is usually called every
4402 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4403 * every tick. We fix it up based on jiffies.
4404 */
4405static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4406 unsigned long pending_updates)
4407{
4408 int i, scale;
4409
4410 this_rq->nr_load_updates++;
4411
4412 /* Update our load: */
4413 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4414 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4415 unsigned long old_load, new_load;
4416
4417 /* scale is effectively 1 << i now, and >> i divides by scale */
4418
4419 old_load = this_rq->cpu_load[i];
4420 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4421 new_load = this_load;
4422 /*
4423 * Round up the averaging division if load is increasing. This
4424 * prevents us from getting stuck on 9 if the load is 10, for
4425 * example.
4426 */
4427 if (new_load > old_load)
4428 new_load += scale - 1;
4429
4430 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4431 }
4432
4433 sched_avg_update(this_rq);
4434}
4435
4436#ifdef CONFIG_NO_HZ_COMMON
4437/*
4438 * There is no sane way to deal with nohz on smp when using jiffies because the
4439 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4440 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4441 *
4442 * Therefore we cannot use the delta approach from the regular tick since that
4443 * would seriously skew the load calculation. However we'll make do for those
4444 * updates happening while idle (nohz_idle_balance) or coming out of idle
4445 * (tick_nohz_idle_exit).
4446 *
4447 * This means we might still be one tick off for nohz periods.
4448 */
4449
4450/*
4451 * Called from nohz_idle_balance() to update the load ratings before doing the
4452 * idle balance.
4453 */
4454static void update_idle_cpu_load(struct rq *this_rq)
4455{
316c1608 4456 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4457 unsigned long load = this_rq->cfs.runnable_load_avg;
4458 unsigned long pending_updates;
4459
4460 /*
4461 * bail if there's load or we're actually up-to-date.
4462 */
4463 if (load || curr_jiffies == this_rq->last_load_update_tick)
4464 return;
4465
4466 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4467 this_rq->last_load_update_tick = curr_jiffies;
4468
4469 __update_cpu_load(this_rq, load, pending_updates);
4470}
4471
4472/*
4473 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4474 */
4475void update_cpu_load_nohz(void)
4476{
4477 struct rq *this_rq = this_rq();
316c1608 4478 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4479 unsigned long pending_updates;
4480
4481 if (curr_jiffies == this_rq->last_load_update_tick)
4482 return;
4483
4484 raw_spin_lock(&this_rq->lock);
4485 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4486 if (pending_updates) {
4487 this_rq->last_load_update_tick = curr_jiffies;
4488 /*
4489 * We were idle, this means load 0, the current load might be
4490 * !0 due to remote wakeups and the sort.
4491 */
4492 __update_cpu_load(this_rq, 0, pending_updates);
4493 }
4494 raw_spin_unlock(&this_rq->lock);
4495}
4496#endif /* CONFIG_NO_HZ */
4497
4498/*
4499 * Called from scheduler_tick()
4500 */
4501void update_cpu_load_active(struct rq *this_rq)
4502{
4503 unsigned long load = this_rq->cfs.runnable_load_avg;
4504 /*
4505 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4506 */
4507 this_rq->last_load_update_tick = jiffies;
4508 __update_cpu_load(this_rq, load, 1);
4509}
4510
029632fb
PZ
4511/* Used instead of source_load when we know the type == 0 */
4512static unsigned long weighted_cpuload(const int cpu)
4513{
b92486cb 4514 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4515}
4516
4517/*
4518 * Return a low guess at the load of a migration-source cpu weighted
4519 * according to the scheduling class and "nice" value.
4520 *
4521 * We want to under-estimate the load of migration sources, to
4522 * balance conservatively.
4523 */
4524static unsigned long source_load(int cpu, int type)
4525{
4526 struct rq *rq = cpu_rq(cpu);
4527 unsigned long total = weighted_cpuload(cpu);
4528
4529 if (type == 0 || !sched_feat(LB_BIAS))
4530 return total;
4531
4532 return min(rq->cpu_load[type-1], total);
4533}
4534
4535/*
4536 * Return a high guess at the load of a migration-target cpu weighted
4537 * according to the scheduling class and "nice" value.
4538 */
4539static unsigned long target_load(int cpu, int type)
4540{
4541 struct rq *rq = cpu_rq(cpu);
4542 unsigned long total = weighted_cpuload(cpu);
4543
4544 if (type == 0 || !sched_feat(LB_BIAS))
4545 return total;
4546
4547 return max(rq->cpu_load[type-1], total);
4548}
4549
ced549fa 4550static unsigned long capacity_of(int cpu)
029632fb 4551{
ced549fa 4552 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4553}
4554
ca6d75e6
VG
4555static unsigned long capacity_orig_of(int cpu)
4556{
4557 return cpu_rq(cpu)->cpu_capacity_orig;
4558}
4559
029632fb
PZ
4560static unsigned long cpu_avg_load_per_task(int cpu)
4561{
4562 struct rq *rq = cpu_rq(cpu);
316c1608 4563 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
b92486cb 4564 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4565
4566 if (nr_running)
b92486cb 4567 return load_avg / nr_running;
029632fb
PZ
4568
4569 return 0;
4570}
4571
62470419
MW
4572static void record_wakee(struct task_struct *p)
4573{
4574 /*
4575 * Rough decay (wiping) for cost saving, don't worry
4576 * about the boundary, really active task won't care
4577 * about the loss.
4578 */
2538d960 4579 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4580 current->wakee_flips >>= 1;
62470419
MW
4581 current->wakee_flip_decay_ts = jiffies;
4582 }
4583
4584 if (current->last_wakee != p) {
4585 current->last_wakee = p;
4586 current->wakee_flips++;
4587 }
4588}
098fb9db 4589
74f8e4b2 4590static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4591{
4592 struct sched_entity *se = &p->se;
4593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4594 u64 min_vruntime;
4595
4596#ifndef CONFIG_64BIT
4597 u64 min_vruntime_copy;
88ec22d3 4598
3fe1698b
PZ
4599 do {
4600 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4601 smp_rmb();
4602 min_vruntime = cfs_rq->min_vruntime;
4603 } while (min_vruntime != min_vruntime_copy);
4604#else
4605 min_vruntime = cfs_rq->min_vruntime;
4606#endif
88ec22d3 4607
3fe1698b 4608 se->vruntime -= min_vruntime;
62470419 4609 record_wakee(p);
88ec22d3
PZ
4610}
4611
bb3469ac 4612#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4613/*
4614 * effective_load() calculates the load change as seen from the root_task_group
4615 *
4616 * Adding load to a group doesn't make a group heavier, but can cause movement
4617 * of group shares between cpus. Assuming the shares were perfectly aligned one
4618 * can calculate the shift in shares.
cf5f0acf
PZ
4619 *
4620 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4621 * on this @cpu and results in a total addition (subtraction) of @wg to the
4622 * total group weight.
4623 *
4624 * Given a runqueue weight distribution (rw_i) we can compute a shares
4625 * distribution (s_i) using:
4626 *
4627 * s_i = rw_i / \Sum rw_j (1)
4628 *
4629 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4630 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4631 * shares distribution (s_i):
4632 *
4633 * rw_i = { 2, 4, 1, 0 }
4634 * s_i = { 2/7, 4/7, 1/7, 0 }
4635 *
4636 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4637 * task used to run on and the CPU the waker is running on), we need to
4638 * compute the effect of waking a task on either CPU and, in case of a sync
4639 * wakeup, compute the effect of the current task going to sleep.
4640 *
4641 * So for a change of @wl to the local @cpu with an overall group weight change
4642 * of @wl we can compute the new shares distribution (s'_i) using:
4643 *
4644 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4645 *
4646 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4647 * differences in waking a task to CPU 0. The additional task changes the
4648 * weight and shares distributions like:
4649 *
4650 * rw'_i = { 3, 4, 1, 0 }
4651 * s'_i = { 3/8, 4/8, 1/8, 0 }
4652 *
4653 * We can then compute the difference in effective weight by using:
4654 *
4655 * dw_i = S * (s'_i - s_i) (3)
4656 *
4657 * Where 'S' is the group weight as seen by its parent.
4658 *
4659 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4660 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4661 * 4/7) times the weight of the group.
f5bfb7d9 4662 */
2069dd75 4663static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4664{
4be9daaa 4665 struct sched_entity *se = tg->se[cpu];
f1d239f7 4666
9722c2da 4667 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4668 return wl;
4669
4be9daaa 4670 for_each_sched_entity(se) {
cf5f0acf 4671 long w, W;
4be9daaa 4672
977dda7c 4673 tg = se->my_q->tg;
bb3469ac 4674
cf5f0acf
PZ
4675 /*
4676 * W = @wg + \Sum rw_j
4677 */
4678 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4679
cf5f0acf
PZ
4680 /*
4681 * w = rw_i + @wl
4682 */
4683 w = se->my_q->load.weight + wl;
940959e9 4684
cf5f0acf
PZ
4685 /*
4686 * wl = S * s'_i; see (2)
4687 */
4688 if (W > 0 && w < W)
32a8df4e 4689 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4690 else
4691 wl = tg->shares;
940959e9 4692
cf5f0acf
PZ
4693 /*
4694 * Per the above, wl is the new se->load.weight value; since
4695 * those are clipped to [MIN_SHARES, ...) do so now. See
4696 * calc_cfs_shares().
4697 */
977dda7c
PT
4698 if (wl < MIN_SHARES)
4699 wl = MIN_SHARES;
cf5f0acf
PZ
4700
4701 /*
4702 * wl = dw_i = S * (s'_i - s_i); see (3)
4703 */
977dda7c 4704 wl -= se->load.weight;
cf5f0acf
PZ
4705
4706 /*
4707 * Recursively apply this logic to all parent groups to compute
4708 * the final effective load change on the root group. Since
4709 * only the @tg group gets extra weight, all parent groups can
4710 * only redistribute existing shares. @wl is the shift in shares
4711 * resulting from this level per the above.
4712 */
4be9daaa 4713 wg = 0;
4be9daaa 4714 }
bb3469ac 4715
4be9daaa 4716 return wl;
bb3469ac
PZ
4717}
4718#else
4be9daaa 4719
58d081b5 4720static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4721{
83378269 4722 return wl;
bb3469ac 4723}
4be9daaa 4724
bb3469ac
PZ
4725#endif
4726
62470419
MW
4727static int wake_wide(struct task_struct *p)
4728{
7d9ffa89 4729 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4730
4731 /*
4732 * Yeah, it's the switching-frequency, could means many wakee or
4733 * rapidly switch, use factor here will just help to automatically
4734 * adjust the loose-degree, so bigger node will lead to more pull.
4735 */
4736 if (p->wakee_flips > factor) {
4737 /*
4738 * wakee is somewhat hot, it needs certain amount of cpu
4739 * resource, so if waker is far more hot, prefer to leave
4740 * it alone.
4741 */
4742 if (current->wakee_flips > (factor * p->wakee_flips))
4743 return 1;
4744 }
4745
4746 return 0;
4747}
4748
c88d5910 4749static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4750{
e37b6a7b 4751 s64 this_load, load;
bd61c98f 4752 s64 this_eff_load, prev_eff_load;
c88d5910 4753 int idx, this_cpu, prev_cpu;
c88d5910 4754 struct task_group *tg;
83378269 4755 unsigned long weight;
b3137bc8 4756 int balanced;
098fb9db 4757
62470419
MW
4758 /*
4759 * If we wake multiple tasks be careful to not bounce
4760 * ourselves around too much.
4761 */
4762 if (wake_wide(p))
4763 return 0;
4764
c88d5910
PZ
4765 idx = sd->wake_idx;
4766 this_cpu = smp_processor_id();
4767 prev_cpu = task_cpu(p);
4768 load = source_load(prev_cpu, idx);
4769 this_load = target_load(this_cpu, idx);
098fb9db 4770
b3137bc8
MG
4771 /*
4772 * If sync wakeup then subtract the (maximum possible)
4773 * effect of the currently running task from the load
4774 * of the current CPU:
4775 */
83378269
PZ
4776 if (sync) {
4777 tg = task_group(current);
4778 weight = current->se.load.weight;
4779
c88d5910 4780 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4781 load += effective_load(tg, prev_cpu, 0, -weight);
4782 }
b3137bc8 4783
83378269
PZ
4784 tg = task_group(p);
4785 weight = p->se.load.weight;
b3137bc8 4786
71a29aa7
PZ
4787 /*
4788 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4789 * due to the sync cause above having dropped this_load to 0, we'll
4790 * always have an imbalance, but there's really nothing you can do
4791 * about that, so that's good too.
71a29aa7
PZ
4792 *
4793 * Otherwise check if either cpus are near enough in load to allow this
4794 * task to be woken on this_cpu.
4795 */
bd61c98f
VG
4796 this_eff_load = 100;
4797 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4798
bd61c98f
VG
4799 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4800 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4801
bd61c98f 4802 if (this_load > 0) {
e51fd5e2
PZ
4803 this_eff_load *= this_load +
4804 effective_load(tg, this_cpu, weight, weight);
4805
e51fd5e2 4806 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4807 }
e51fd5e2 4808
bd61c98f 4809 balanced = this_eff_load <= prev_eff_load;
098fb9db 4810
41acab88 4811 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4812
05bfb65f
VG
4813 if (!balanced)
4814 return 0;
098fb9db 4815
05bfb65f
VG
4816 schedstat_inc(sd, ttwu_move_affine);
4817 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4818
4819 return 1;
098fb9db
IM
4820}
4821
aaee1203
PZ
4822/*
4823 * find_idlest_group finds and returns the least busy CPU group within the
4824 * domain.
4825 */
4826static struct sched_group *
78e7ed53 4827find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4828 int this_cpu, int sd_flag)
e7693a36 4829{
b3bd3de6 4830 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4831 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4832 int load_idx = sd->forkexec_idx;
aaee1203 4833 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4834
c44f2a02
VG
4835 if (sd_flag & SD_BALANCE_WAKE)
4836 load_idx = sd->wake_idx;
4837
aaee1203
PZ
4838 do {
4839 unsigned long load, avg_load;
4840 int local_group;
4841 int i;
e7693a36 4842
aaee1203
PZ
4843 /* Skip over this group if it has no CPUs allowed */
4844 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4845 tsk_cpus_allowed(p)))
aaee1203
PZ
4846 continue;
4847
4848 local_group = cpumask_test_cpu(this_cpu,
4849 sched_group_cpus(group));
4850
4851 /* Tally up the load of all CPUs in the group */
4852 avg_load = 0;
4853
4854 for_each_cpu(i, sched_group_cpus(group)) {
4855 /* Bias balancing toward cpus of our domain */
4856 if (local_group)
4857 load = source_load(i, load_idx);
4858 else
4859 load = target_load(i, load_idx);
4860
4861 avg_load += load;
4862 }
4863
63b2ca30 4864 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4865 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4866
4867 if (local_group) {
4868 this_load = avg_load;
aaee1203
PZ
4869 } else if (avg_load < min_load) {
4870 min_load = avg_load;
4871 idlest = group;
4872 }
4873 } while (group = group->next, group != sd->groups);
4874
4875 if (!idlest || 100*this_load < imbalance*min_load)
4876 return NULL;
4877 return idlest;
4878}
4879
4880/*
4881 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4882 */
4883static int
4884find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4885{
4886 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4887 unsigned int min_exit_latency = UINT_MAX;
4888 u64 latest_idle_timestamp = 0;
4889 int least_loaded_cpu = this_cpu;
4890 int shallowest_idle_cpu = -1;
aaee1203
PZ
4891 int i;
4892
4893 /* Traverse only the allowed CPUs */
fa17b507 4894 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4895 if (idle_cpu(i)) {
4896 struct rq *rq = cpu_rq(i);
4897 struct cpuidle_state *idle = idle_get_state(rq);
4898 if (idle && idle->exit_latency < min_exit_latency) {
4899 /*
4900 * We give priority to a CPU whose idle state
4901 * has the smallest exit latency irrespective
4902 * of any idle timestamp.
4903 */
4904 min_exit_latency = idle->exit_latency;
4905 latest_idle_timestamp = rq->idle_stamp;
4906 shallowest_idle_cpu = i;
4907 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4908 rq->idle_stamp > latest_idle_timestamp) {
4909 /*
4910 * If equal or no active idle state, then
4911 * the most recently idled CPU might have
4912 * a warmer cache.
4913 */
4914 latest_idle_timestamp = rq->idle_stamp;
4915 shallowest_idle_cpu = i;
4916 }
9f96742a 4917 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4918 load = weighted_cpuload(i);
4919 if (load < min_load || (load == min_load && i == this_cpu)) {
4920 min_load = load;
4921 least_loaded_cpu = i;
4922 }
e7693a36
GH
4923 }
4924 }
4925
83a0a96a 4926 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4927}
e7693a36 4928
a50bde51
PZ
4929/*
4930 * Try and locate an idle CPU in the sched_domain.
4931 */
99bd5e2f 4932static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4933{
99bd5e2f 4934 struct sched_domain *sd;
37407ea7 4935 struct sched_group *sg;
e0a79f52 4936 int i = task_cpu(p);
a50bde51 4937
e0a79f52
MG
4938 if (idle_cpu(target))
4939 return target;
99bd5e2f
SS
4940
4941 /*
e0a79f52 4942 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4943 */
e0a79f52
MG
4944 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4945 return i;
a50bde51
PZ
4946
4947 /*
37407ea7 4948 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4949 */
518cd623 4950 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4951 for_each_lower_domain(sd) {
37407ea7
LT
4952 sg = sd->groups;
4953 do {
4954 if (!cpumask_intersects(sched_group_cpus(sg),
4955 tsk_cpus_allowed(p)))
4956 goto next;
4957
4958 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4959 if (i == target || !idle_cpu(i))
37407ea7
LT
4960 goto next;
4961 }
970e1789 4962
37407ea7
LT
4963 target = cpumask_first_and(sched_group_cpus(sg),
4964 tsk_cpus_allowed(p));
4965 goto done;
4966next:
4967 sg = sg->next;
4968 } while (sg != sd->groups);
4969 }
4970done:
a50bde51
PZ
4971 return target;
4972}
8bb5b00c
VG
4973/*
4974 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4975 * tasks. The unit of the return value must be the one of capacity so we can
4976 * compare the usage with the capacity of the CPU that is available for CFS
4977 * task (ie cpu_capacity).
4978 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4979 * CPU. It represents the amount of utilization of a CPU in the range
4980 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4981 * capacity of the CPU because it's about the running time on this CPU.
4982 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4983 * because of unfortunate rounding in avg_period and running_load_avg or just
4984 * after migrating tasks until the average stabilizes with the new running
4985 * time. So we need to check that the usage stays into the range
4986 * [0..cpu_capacity_orig] and cap if necessary.
4987 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4988 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4989 */
4990static int get_cpu_usage(int cpu)
4991{
4992 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4993 unsigned long capacity = capacity_orig_of(cpu);
4994
4995 if (usage >= SCHED_LOAD_SCALE)
4996 return capacity;
4997
4998 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4999}
a50bde51 5000
aaee1203 5001/*
de91b9cb
MR
5002 * select_task_rq_fair: Select target runqueue for the waking task in domains
5003 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5004 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5005 *
de91b9cb
MR
5006 * Balances load by selecting the idlest cpu in the idlest group, or under
5007 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5008 *
de91b9cb 5009 * Returns the target cpu number.
aaee1203
PZ
5010 *
5011 * preempt must be disabled.
5012 */
0017d735 5013static int
ac66f547 5014select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5015{
29cd8bae 5016 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5017 int cpu = smp_processor_id();
c88d5910 5018 int new_cpu = cpu;
99bd5e2f 5019 int want_affine = 0;
5158f4e4 5020 int sync = wake_flags & WF_SYNC;
c88d5910 5021
a8edd075
KT
5022 if (sd_flag & SD_BALANCE_WAKE)
5023 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5024
dce840a0 5025 rcu_read_lock();
aaee1203 5026 for_each_domain(cpu, tmp) {
e4f42888
PZ
5027 if (!(tmp->flags & SD_LOAD_BALANCE))
5028 continue;
5029
fe3bcfe1 5030 /*
99bd5e2f
SS
5031 * If both cpu and prev_cpu are part of this domain,
5032 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5033 */
99bd5e2f
SS
5034 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5035 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5036 affine_sd = tmp;
29cd8bae 5037 break;
f03542a7 5038 }
29cd8bae 5039
f03542a7 5040 if (tmp->flags & sd_flag)
29cd8bae
PZ
5041 sd = tmp;
5042 }
5043
8bf21433
RR
5044 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5045 prev_cpu = cpu;
dce840a0 5046
8bf21433 5047 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
5048 new_cpu = select_idle_sibling(p, prev_cpu);
5049 goto unlock;
8b911acd 5050 }
e7693a36 5051
aaee1203
PZ
5052 while (sd) {
5053 struct sched_group *group;
c88d5910 5054 int weight;
098fb9db 5055
0763a660 5056 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5057 sd = sd->child;
5058 continue;
5059 }
098fb9db 5060
c44f2a02 5061 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5062 if (!group) {
5063 sd = sd->child;
5064 continue;
5065 }
4ae7d5ce 5066
d7c33c49 5067 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5068 if (new_cpu == -1 || new_cpu == cpu) {
5069 /* Now try balancing at a lower domain level of cpu */
5070 sd = sd->child;
5071 continue;
e7693a36 5072 }
aaee1203
PZ
5073
5074 /* Now try balancing at a lower domain level of new_cpu */
5075 cpu = new_cpu;
669c55e9 5076 weight = sd->span_weight;
aaee1203
PZ
5077 sd = NULL;
5078 for_each_domain(cpu, tmp) {
669c55e9 5079 if (weight <= tmp->span_weight)
aaee1203 5080 break;
0763a660 5081 if (tmp->flags & sd_flag)
aaee1203
PZ
5082 sd = tmp;
5083 }
5084 /* while loop will break here if sd == NULL */
e7693a36 5085 }
dce840a0
PZ
5086unlock:
5087 rcu_read_unlock();
e7693a36 5088
c88d5910 5089 return new_cpu;
e7693a36 5090}
0a74bef8
PT
5091
5092/*
5093 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5094 * cfs_rq_of(p) references at time of call are still valid and identify the
5095 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5096 * other assumptions, including the state of rq->lock, should be made.
5097 */
5098static void
5099migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5100{
aff3e498
PT
5101 struct sched_entity *se = &p->se;
5102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5103
5104 /*
5105 * Load tracking: accumulate removed load so that it can be processed
5106 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5107 * to blocked load iff they have a positive decay-count. It can never
5108 * be negative here since on-rq tasks have decay-count == 0.
5109 */
5110 if (se->avg.decay_count) {
5111 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5112 atomic_long_add(se->avg.load_avg_contrib,
5113 &cfs_rq->removed_load);
aff3e498 5114 }
3944a927
BS
5115
5116 /* We have migrated, no longer consider this task hot */
5117 se->exec_start = 0;
0a74bef8 5118}
e7693a36
GH
5119#endif /* CONFIG_SMP */
5120
e52fb7c0
PZ
5121static unsigned long
5122wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5123{
5124 unsigned long gran = sysctl_sched_wakeup_granularity;
5125
5126 /*
e52fb7c0
PZ
5127 * Since its curr running now, convert the gran from real-time
5128 * to virtual-time in his units.
13814d42
MG
5129 *
5130 * By using 'se' instead of 'curr' we penalize light tasks, so
5131 * they get preempted easier. That is, if 'se' < 'curr' then
5132 * the resulting gran will be larger, therefore penalizing the
5133 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5134 * be smaller, again penalizing the lighter task.
5135 *
5136 * This is especially important for buddies when the leftmost
5137 * task is higher priority than the buddy.
0bbd3336 5138 */
f4ad9bd2 5139 return calc_delta_fair(gran, se);
0bbd3336
PZ
5140}
5141
464b7527
PZ
5142/*
5143 * Should 'se' preempt 'curr'.
5144 *
5145 * |s1
5146 * |s2
5147 * |s3
5148 * g
5149 * |<--->|c
5150 *
5151 * w(c, s1) = -1
5152 * w(c, s2) = 0
5153 * w(c, s3) = 1
5154 *
5155 */
5156static int
5157wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5158{
5159 s64 gran, vdiff = curr->vruntime - se->vruntime;
5160
5161 if (vdiff <= 0)
5162 return -1;
5163
e52fb7c0 5164 gran = wakeup_gran(curr, se);
464b7527
PZ
5165 if (vdiff > gran)
5166 return 1;
5167
5168 return 0;
5169}
5170
02479099
PZ
5171static void set_last_buddy(struct sched_entity *se)
5172{
69c80f3e
VP
5173 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5174 return;
5175
5176 for_each_sched_entity(se)
5177 cfs_rq_of(se)->last = se;
02479099
PZ
5178}
5179
5180static void set_next_buddy(struct sched_entity *se)
5181{
69c80f3e
VP
5182 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5183 return;
5184
5185 for_each_sched_entity(se)
5186 cfs_rq_of(se)->next = se;
02479099
PZ
5187}
5188
ac53db59
RR
5189static void set_skip_buddy(struct sched_entity *se)
5190{
69c80f3e
VP
5191 for_each_sched_entity(se)
5192 cfs_rq_of(se)->skip = se;
ac53db59
RR
5193}
5194
bf0f6f24
IM
5195/*
5196 * Preempt the current task with a newly woken task if needed:
5197 */
5a9b86f6 5198static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5199{
5200 struct task_struct *curr = rq->curr;
8651a86c 5201 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5202 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5203 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5204 int next_buddy_marked = 0;
bf0f6f24 5205
4ae7d5ce
IM
5206 if (unlikely(se == pse))
5207 return;
5208
5238cdd3 5209 /*
163122b7 5210 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5211 * unconditionally check_prempt_curr() after an enqueue (which may have
5212 * lead to a throttle). This both saves work and prevents false
5213 * next-buddy nomination below.
5214 */
5215 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5216 return;
5217
2f36825b 5218 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5219 set_next_buddy(pse);
2f36825b
VP
5220 next_buddy_marked = 1;
5221 }
57fdc26d 5222
aec0a514
BR
5223 /*
5224 * We can come here with TIF_NEED_RESCHED already set from new task
5225 * wake up path.
5238cdd3
PT
5226 *
5227 * Note: this also catches the edge-case of curr being in a throttled
5228 * group (e.g. via set_curr_task), since update_curr() (in the
5229 * enqueue of curr) will have resulted in resched being set. This
5230 * prevents us from potentially nominating it as a false LAST_BUDDY
5231 * below.
aec0a514
BR
5232 */
5233 if (test_tsk_need_resched(curr))
5234 return;
5235
a2f5c9ab
DH
5236 /* Idle tasks are by definition preempted by non-idle tasks. */
5237 if (unlikely(curr->policy == SCHED_IDLE) &&
5238 likely(p->policy != SCHED_IDLE))
5239 goto preempt;
5240
91c234b4 5241 /*
a2f5c9ab
DH
5242 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5243 * is driven by the tick):
91c234b4 5244 */
8ed92e51 5245 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5246 return;
bf0f6f24 5247
464b7527 5248 find_matching_se(&se, &pse);
9bbd7374 5249 update_curr(cfs_rq_of(se));
002f128b 5250 BUG_ON(!pse);
2f36825b
VP
5251 if (wakeup_preempt_entity(se, pse) == 1) {
5252 /*
5253 * Bias pick_next to pick the sched entity that is
5254 * triggering this preemption.
5255 */
5256 if (!next_buddy_marked)
5257 set_next_buddy(pse);
3a7e73a2 5258 goto preempt;
2f36825b 5259 }
464b7527 5260
3a7e73a2 5261 return;
a65ac745 5262
3a7e73a2 5263preempt:
8875125e 5264 resched_curr(rq);
3a7e73a2
PZ
5265 /*
5266 * Only set the backward buddy when the current task is still
5267 * on the rq. This can happen when a wakeup gets interleaved
5268 * with schedule on the ->pre_schedule() or idle_balance()
5269 * point, either of which can * drop the rq lock.
5270 *
5271 * Also, during early boot the idle thread is in the fair class,
5272 * for obvious reasons its a bad idea to schedule back to it.
5273 */
5274 if (unlikely(!se->on_rq || curr == rq->idle))
5275 return;
5276
5277 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5278 set_last_buddy(se);
bf0f6f24
IM
5279}
5280
606dba2e
PZ
5281static struct task_struct *
5282pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5283{
5284 struct cfs_rq *cfs_rq = &rq->cfs;
5285 struct sched_entity *se;
678d5718 5286 struct task_struct *p;
37e117c0 5287 int new_tasks;
678d5718 5288
6e83125c 5289again:
678d5718
PZ
5290#ifdef CONFIG_FAIR_GROUP_SCHED
5291 if (!cfs_rq->nr_running)
38033c37 5292 goto idle;
678d5718 5293
3f1d2a31 5294 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5295 goto simple;
5296
5297 /*
5298 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5299 * likely that a next task is from the same cgroup as the current.
5300 *
5301 * Therefore attempt to avoid putting and setting the entire cgroup
5302 * hierarchy, only change the part that actually changes.
5303 */
5304
5305 do {
5306 struct sched_entity *curr = cfs_rq->curr;
5307
5308 /*
5309 * Since we got here without doing put_prev_entity() we also
5310 * have to consider cfs_rq->curr. If it is still a runnable
5311 * entity, update_curr() will update its vruntime, otherwise
5312 * forget we've ever seen it.
5313 */
54d27365
BS
5314 if (curr) {
5315 if (curr->on_rq)
5316 update_curr(cfs_rq);
5317 else
5318 curr = NULL;
678d5718 5319
54d27365
BS
5320 /*
5321 * This call to check_cfs_rq_runtime() will do the
5322 * throttle and dequeue its entity in the parent(s).
5323 * Therefore the 'simple' nr_running test will indeed
5324 * be correct.
5325 */
5326 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5327 goto simple;
5328 }
678d5718
PZ
5329
5330 se = pick_next_entity(cfs_rq, curr);
5331 cfs_rq = group_cfs_rq(se);
5332 } while (cfs_rq);
5333
5334 p = task_of(se);
5335
5336 /*
5337 * Since we haven't yet done put_prev_entity and if the selected task
5338 * is a different task than we started out with, try and touch the
5339 * least amount of cfs_rqs.
5340 */
5341 if (prev != p) {
5342 struct sched_entity *pse = &prev->se;
5343
5344 while (!(cfs_rq = is_same_group(se, pse))) {
5345 int se_depth = se->depth;
5346 int pse_depth = pse->depth;
5347
5348 if (se_depth <= pse_depth) {
5349 put_prev_entity(cfs_rq_of(pse), pse);
5350 pse = parent_entity(pse);
5351 }
5352 if (se_depth >= pse_depth) {
5353 set_next_entity(cfs_rq_of(se), se);
5354 se = parent_entity(se);
5355 }
5356 }
5357
5358 put_prev_entity(cfs_rq, pse);
5359 set_next_entity(cfs_rq, se);
5360 }
5361
5362 if (hrtick_enabled(rq))
5363 hrtick_start_fair(rq, p);
5364
5365 return p;
5366simple:
5367 cfs_rq = &rq->cfs;
5368#endif
bf0f6f24 5369
36ace27e 5370 if (!cfs_rq->nr_running)
38033c37 5371 goto idle;
bf0f6f24 5372
3f1d2a31 5373 put_prev_task(rq, prev);
606dba2e 5374
bf0f6f24 5375 do {
678d5718 5376 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5377 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5378 cfs_rq = group_cfs_rq(se);
5379 } while (cfs_rq);
5380
8f4d37ec 5381 p = task_of(se);
678d5718 5382
b39e66ea
MG
5383 if (hrtick_enabled(rq))
5384 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5385
5386 return p;
38033c37
PZ
5387
5388idle:
e4aa358b 5389 new_tasks = idle_balance(rq);
37e117c0
PZ
5390 /*
5391 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5392 * possible for any higher priority task to appear. In that case we
5393 * must re-start the pick_next_entity() loop.
5394 */
e4aa358b 5395 if (new_tasks < 0)
37e117c0
PZ
5396 return RETRY_TASK;
5397
e4aa358b 5398 if (new_tasks > 0)
38033c37 5399 goto again;
38033c37
PZ
5400
5401 return NULL;
bf0f6f24
IM
5402}
5403
5404/*
5405 * Account for a descheduled task:
5406 */
31ee529c 5407static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5408{
5409 struct sched_entity *se = &prev->se;
5410 struct cfs_rq *cfs_rq;
5411
5412 for_each_sched_entity(se) {
5413 cfs_rq = cfs_rq_of(se);
ab6cde26 5414 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5415 }
5416}
5417
ac53db59
RR
5418/*
5419 * sched_yield() is very simple
5420 *
5421 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5422 */
5423static void yield_task_fair(struct rq *rq)
5424{
5425 struct task_struct *curr = rq->curr;
5426 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5427 struct sched_entity *se = &curr->se;
5428
5429 /*
5430 * Are we the only task in the tree?
5431 */
5432 if (unlikely(rq->nr_running == 1))
5433 return;
5434
5435 clear_buddies(cfs_rq, se);
5436
5437 if (curr->policy != SCHED_BATCH) {
5438 update_rq_clock(rq);
5439 /*
5440 * Update run-time statistics of the 'current'.
5441 */
5442 update_curr(cfs_rq);
916671c0
MG
5443 /*
5444 * Tell update_rq_clock() that we've just updated,
5445 * so we don't do microscopic update in schedule()
5446 * and double the fastpath cost.
5447 */
9edfbfed 5448 rq_clock_skip_update(rq, true);
ac53db59
RR
5449 }
5450
5451 set_skip_buddy(se);
5452}
5453
d95f4122
MG
5454static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5455{
5456 struct sched_entity *se = &p->se;
5457
5238cdd3
PT
5458 /* throttled hierarchies are not runnable */
5459 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5460 return false;
5461
5462 /* Tell the scheduler that we'd really like pse to run next. */
5463 set_next_buddy(se);
5464
d95f4122
MG
5465 yield_task_fair(rq);
5466
5467 return true;
5468}
5469
681f3e68 5470#ifdef CONFIG_SMP
bf0f6f24 5471/**************************************************
e9c84cb8
PZ
5472 * Fair scheduling class load-balancing methods.
5473 *
5474 * BASICS
5475 *
5476 * The purpose of load-balancing is to achieve the same basic fairness the
5477 * per-cpu scheduler provides, namely provide a proportional amount of compute
5478 * time to each task. This is expressed in the following equation:
5479 *
5480 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5481 *
5482 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5483 * W_i,0 is defined as:
5484 *
5485 * W_i,0 = \Sum_j w_i,j (2)
5486 *
5487 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5488 * is derived from the nice value as per prio_to_weight[].
5489 *
5490 * The weight average is an exponential decay average of the instantaneous
5491 * weight:
5492 *
5493 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5494 *
ced549fa 5495 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5496 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5497 * can also include other factors [XXX].
5498 *
5499 * To achieve this balance we define a measure of imbalance which follows
5500 * directly from (1):
5501 *
ced549fa 5502 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5503 *
5504 * We them move tasks around to minimize the imbalance. In the continuous
5505 * function space it is obvious this converges, in the discrete case we get
5506 * a few fun cases generally called infeasible weight scenarios.
5507 *
5508 * [XXX expand on:
5509 * - infeasible weights;
5510 * - local vs global optima in the discrete case. ]
5511 *
5512 *
5513 * SCHED DOMAINS
5514 *
5515 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5516 * for all i,j solution, we create a tree of cpus that follows the hardware
5517 * topology where each level pairs two lower groups (or better). This results
5518 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5519 * tree to only the first of the previous level and we decrease the frequency
5520 * of load-balance at each level inv. proportional to the number of cpus in
5521 * the groups.
5522 *
5523 * This yields:
5524 *
5525 * log_2 n 1 n
5526 * \Sum { --- * --- * 2^i } = O(n) (5)
5527 * i = 0 2^i 2^i
5528 * `- size of each group
5529 * | | `- number of cpus doing load-balance
5530 * | `- freq
5531 * `- sum over all levels
5532 *
5533 * Coupled with a limit on how many tasks we can migrate every balance pass,
5534 * this makes (5) the runtime complexity of the balancer.
5535 *
5536 * An important property here is that each CPU is still (indirectly) connected
5537 * to every other cpu in at most O(log n) steps:
5538 *
5539 * The adjacency matrix of the resulting graph is given by:
5540 *
5541 * log_2 n
5542 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5543 * k = 0
5544 *
5545 * And you'll find that:
5546 *
5547 * A^(log_2 n)_i,j != 0 for all i,j (7)
5548 *
5549 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5550 * The task movement gives a factor of O(m), giving a convergence complexity
5551 * of:
5552 *
5553 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5554 *
5555 *
5556 * WORK CONSERVING
5557 *
5558 * In order to avoid CPUs going idle while there's still work to do, new idle
5559 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5560 * tree itself instead of relying on other CPUs to bring it work.
5561 *
5562 * This adds some complexity to both (5) and (8) but it reduces the total idle
5563 * time.
5564 *
5565 * [XXX more?]
5566 *
5567 *
5568 * CGROUPS
5569 *
5570 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5571 *
5572 * s_k,i
5573 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5574 * S_k
5575 *
5576 * Where
5577 *
5578 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5579 *
5580 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5581 *
5582 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5583 * property.
5584 *
5585 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5586 * rewrite all of this once again.]
5587 */
bf0f6f24 5588
ed387b78
HS
5589static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5590
0ec8aa00
PZ
5591enum fbq_type { regular, remote, all };
5592
ddcdf6e7 5593#define LBF_ALL_PINNED 0x01
367456c7 5594#define LBF_NEED_BREAK 0x02
6263322c
PZ
5595#define LBF_DST_PINNED 0x04
5596#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5597
5598struct lb_env {
5599 struct sched_domain *sd;
5600
ddcdf6e7 5601 struct rq *src_rq;
85c1e7da 5602 int src_cpu;
ddcdf6e7
PZ
5603
5604 int dst_cpu;
5605 struct rq *dst_rq;
5606
88b8dac0
SV
5607 struct cpumask *dst_grpmask;
5608 int new_dst_cpu;
ddcdf6e7 5609 enum cpu_idle_type idle;
bd939f45 5610 long imbalance;
b9403130
MW
5611 /* The set of CPUs under consideration for load-balancing */
5612 struct cpumask *cpus;
5613
ddcdf6e7 5614 unsigned int flags;
367456c7
PZ
5615
5616 unsigned int loop;
5617 unsigned int loop_break;
5618 unsigned int loop_max;
0ec8aa00
PZ
5619
5620 enum fbq_type fbq_type;
163122b7 5621 struct list_head tasks;
ddcdf6e7
PZ
5622};
5623
029632fb
PZ
5624/*
5625 * Is this task likely cache-hot:
5626 */
5d5e2b1b 5627static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5628{
5629 s64 delta;
5630
e5673f28
KT
5631 lockdep_assert_held(&env->src_rq->lock);
5632
029632fb
PZ
5633 if (p->sched_class != &fair_sched_class)
5634 return 0;
5635
5636 if (unlikely(p->policy == SCHED_IDLE))
5637 return 0;
5638
5639 /*
5640 * Buddy candidates are cache hot:
5641 */
5d5e2b1b 5642 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5643 (&p->se == cfs_rq_of(&p->se)->next ||
5644 &p->se == cfs_rq_of(&p->se)->last))
5645 return 1;
5646
5647 if (sysctl_sched_migration_cost == -1)
5648 return 1;
5649 if (sysctl_sched_migration_cost == 0)
5650 return 0;
5651
5d5e2b1b 5652 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5653
5654 return delta < (s64)sysctl_sched_migration_cost;
5655}
5656
3a7053b3 5657#ifdef CONFIG_NUMA_BALANCING
c1ceac62
RR
5658/*
5659 * Returns true if the destination node is the preferred node.
5660 * Needs to match fbq_classify_rq(): if there is a runnable task
5661 * that is not on its preferred node, we should identify it.
5662 */
3a7053b3
MG
5663static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5664{
b1ad065e 5665 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5666 unsigned long src_faults, dst_faults;
3a7053b3
MG
5667 int src_nid, dst_nid;
5668
44dba3d5 5669 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5670 !(env->sd->flags & SD_NUMA)) {
5671 return false;
5672 }
5673
5674 src_nid = cpu_to_node(env->src_cpu);
5675 dst_nid = cpu_to_node(env->dst_cpu);
5676
83e1d2cd 5677 if (src_nid == dst_nid)
3a7053b3
MG
5678 return false;
5679
b1ad065e
RR
5680 /* Encourage migration to the preferred node. */
5681 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5682 return true;
5683
c1ceac62
RR
5684 /* Migrating away from the preferred node is bad. */
5685 if (src_nid == p->numa_preferred_nid)
5686 return false;
5687
5688 if (numa_group) {
5689 src_faults = group_faults(p, src_nid);
5690 dst_faults = group_faults(p, dst_nid);
5691 } else {
5692 src_faults = task_faults(p, src_nid);
5693 dst_faults = task_faults(p, dst_nid);
5694 }
5695
5696 return dst_faults > src_faults;
3a7053b3 5697}
7a0f3083
MG
5698
5699
5700static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5701{
b1ad065e 5702 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5703 unsigned long src_faults, dst_faults;
7a0f3083
MG
5704 int src_nid, dst_nid;
5705
5706 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5707 return false;
5708
44dba3d5 5709 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5710 return false;
5711
5712 src_nid = cpu_to_node(env->src_cpu);
5713 dst_nid = cpu_to_node(env->dst_cpu);
5714
83e1d2cd 5715 if (src_nid == dst_nid)
7a0f3083
MG
5716 return false;
5717
c1ceac62
RR
5718 /* Migrating away from the preferred node is bad. */
5719 if (src_nid == p->numa_preferred_nid)
5720 return true;
b1ad065e 5721
c1ceac62
RR
5722 /* Encourage migration to the preferred node. */
5723 if (dst_nid == p->numa_preferred_nid)
5724 return false;
b1ad065e 5725
c1ceac62
RR
5726 if (numa_group) {
5727 src_faults = group_faults(p, src_nid);
5728 dst_faults = group_faults(p, dst_nid);
5729 } else {
5730 src_faults = task_faults(p, src_nid);
5731 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5732 }
5733
c1ceac62 5734 return dst_faults < src_faults;
7a0f3083
MG
5735}
5736
3a7053b3
MG
5737#else
5738static inline bool migrate_improves_locality(struct task_struct *p,
5739 struct lb_env *env)
5740{
5741 return false;
5742}
7a0f3083
MG
5743
5744static inline bool migrate_degrades_locality(struct task_struct *p,
5745 struct lb_env *env)
5746{
5747 return false;
5748}
3a7053b3
MG
5749#endif
5750
1e3c88bd
PZ
5751/*
5752 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5753 */
5754static
8e45cb54 5755int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5756{
5757 int tsk_cache_hot = 0;
e5673f28
KT
5758
5759 lockdep_assert_held(&env->src_rq->lock);
5760
1e3c88bd
PZ
5761 /*
5762 * We do not migrate tasks that are:
d3198084 5763 * 1) throttled_lb_pair, or
1e3c88bd 5764 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5765 * 3) running (obviously), or
5766 * 4) are cache-hot on their current CPU.
1e3c88bd 5767 */
d3198084
JK
5768 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5769 return 0;
5770
ddcdf6e7 5771 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5772 int cpu;
88b8dac0 5773
41acab88 5774 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5775
6263322c
PZ
5776 env->flags |= LBF_SOME_PINNED;
5777
88b8dac0
SV
5778 /*
5779 * Remember if this task can be migrated to any other cpu in
5780 * our sched_group. We may want to revisit it if we couldn't
5781 * meet load balance goals by pulling other tasks on src_cpu.
5782 *
5783 * Also avoid computing new_dst_cpu if we have already computed
5784 * one in current iteration.
5785 */
6263322c 5786 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5787 return 0;
5788
e02e60c1
JK
5789 /* Prevent to re-select dst_cpu via env's cpus */
5790 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5791 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5792 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5793 env->new_dst_cpu = cpu;
5794 break;
5795 }
88b8dac0 5796 }
e02e60c1 5797
1e3c88bd
PZ
5798 return 0;
5799 }
88b8dac0
SV
5800
5801 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5802 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5803
ddcdf6e7 5804 if (task_running(env->src_rq, p)) {
41acab88 5805 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5806 return 0;
5807 }
5808
5809 /*
5810 * Aggressive migration if:
3a7053b3
MG
5811 * 1) destination numa is preferred
5812 * 2) task is cache cold, or
5813 * 3) too many balance attempts have failed.
1e3c88bd 5814 */
5d5e2b1b 5815 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5816 if (!tsk_cache_hot)
5817 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5818
7a96c231
KT
5819 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5820 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5821 if (tsk_cache_hot) {
5822 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5823 schedstat_inc(p, se.statistics.nr_forced_migrations);
5824 }
1e3c88bd
PZ
5825 return 1;
5826 }
5827
4e2dcb73
ZH
5828 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5829 return 0;
1e3c88bd
PZ
5830}
5831
897c395f 5832/*
163122b7
KT
5833 * detach_task() -- detach the task for the migration specified in env
5834 */
5835static void detach_task(struct task_struct *p, struct lb_env *env)
5836{
5837 lockdep_assert_held(&env->src_rq->lock);
5838
5839 deactivate_task(env->src_rq, p, 0);
5840 p->on_rq = TASK_ON_RQ_MIGRATING;
5841 set_task_cpu(p, env->dst_cpu);
5842}
5843
897c395f 5844/*
e5673f28 5845 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5846 * part of active balancing operations within "domain".
897c395f 5847 *
e5673f28 5848 * Returns a task if successful and NULL otherwise.
897c395f 5849 */
e5673f28 5850static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5851{
5852 struct task_struct *p, *n;
897c395f 5853
e5673f28
KT
5854 lockdep_assert_held(&env->src_rq->lock);
5855
367456c7 5856 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5857 if (!can_migrate_task(p, env))
5858 continue;
897c395f 5859
163122b7 5860 detach_task(p, env);
e5673f28 5861
367456c7 5862 /*
e5673f28 5863 * Right now, this is only the second place where
163122b7 5864 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5865 * so we can safely collect stats here rather than
163122b7 5866 * inside detach_tasks().
367456c7
PZ
5867 */
5868 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5869 return p;
897c395f 5870 }
e5673f28 5871 return NULL;
897c395f
PZ
5872}
5873
eb95308e
PZ
5874static const unsigned int sched_nr_migrate_break = 32;
5875
5d6523eb 5876/*
163122b7
KT
5877 * detach_tasks() -- tries to detach up to imbalance weighted load from
5878 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5879 *
163122b7 5880 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5881 */
163122b7 5882static int detach_tasks(struct lb_env *env)
1e3c88bd 5883{
5d6523eb
PZ
5884 struct list_head *tasks = &env->src_rq->cfs_tasks;
5885 struct task_struct *p;
367456c7 5886 unsigned long load;
163122b7
KT
5887 int detached = 0;
5888
5889 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5890
bd939f45 5891 if (env->imbalance <= 0)
5d6523eb 5892 return 0;
1e3c88bd 5893
5d6523eb
PZ
5894 while (!list_empty(tasks)) {
5895 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5896
367456c7
PZ
5897 env->loop++;
5898 /* We've more or less seen every task there is, call it quits */
5d6523eb 5899 if (env->loop > env->loop_max)
367456c7 5900 break;
5d6523eb
PZ
5901
5902 /* take a breather every nr_migrate tasks */
367456c7 5903 if (env->loop > env->loop_break) {
eb95308e 5904 env->loop_break += sched_nr_migrate_break;
8e45cb54 5905 env->flags |= LBF_NEED_BREAK;
ee00e66f 5906 break;
a195f004 5907 }
1e3c88bd 5908
d3198084 5909 if (!can_migrate_task(p, env))
367456c7
PZ
5910 goto next;
5911
5912 load = task_h_load(p);
5d6523eb 5913
eb95308e 5914 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5915 goto next;
5916
bd939f45 5917 if ((load / 2) > env->imbalance)
367456c7 5918 goto next;
1e3c88bd 5919
163122b7
KT
5920 detach_task(p, env);
5921 list_add(&p->se.group_node, &env->tasks);
5922
5923 detached++;
bd939f45 5924 env->imbalance -= load;
1e3c88bd
PZ
5925
5926#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5927 /*
5928 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5929 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5930 * the critical section.
5931 */
5d6523eb 5932 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5933 break;
1e3c88bd
PZ
5934#endif
5935
ee00e66f
PZ
5936 /*
5937 * We only want to steal up to the prescribed amount of
5938 * weighted load.
5939 */
bd939f45 5940 if (env->imbalance <= 0)
ee00e66f 5941 break;
367456c7
PZ
5942
5943 continue;
5944next:
5d6523eb 5945 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5946 }
5d6523eb 5947
1e3c88bd 5948 /*
163122b7
KT
5949 * Right now, this is one of only two places we collect this stat
5950 * so we can safely collect detach_one_task() stats here rather
5951 * than inside detach_one_task().
1e3c88bd 5952 */
163122b7 5953 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5954
163122b7
KT
5955 return detached;
5956}
5957
5958/*
5959 * attach_task() -- attach the task detached by detach_task() to its new rq.
5960 */
5961static void attach_task(struct rq *rq, struct task_struct *p)
5962{
5963 lockdep_assert_held(&rq->lock);
5964
5965 BUG_ON(task_rq(p) != rq);
5966 p->on_rq = TASK_ON_RQ_QUEUED;
5967 activate_task(rq, p, 0);
5968 check_preempt_curr(rq, p, 0);
5969}
5970
5971/*
5972 * attach_one_task() -- attaches the task returned from detach_one_task() to
5973 * its new rq.
5974 */
5975static void attach_one_task(struct rq *rq, struct task_struct *p)
5976{
5977 raw_spin_lock(&rq->lock);
5978 attach_task(rq, p);
5979 raw_spin_unlock(&rq->lock);
5980}
5981
5982/*
5983 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5984 * new rq.
5985 */
5986static void attach_tasks(struct lb_env *env)
5987{
5988 struct list_head *tasks = &env->tasks;
5989 struct task_struct *p;
5990
5991 raw_spin_lock(&env->dst_rq->lock);
5992
5993 while (!list_empty(tasks)) {
5994 p = list_first_entry(tasks, struct task_struct, se.group_node);
5995 list_del_init(&p->se.group_node);
1e3c88bd 5996
163122b7
KT
5997 attach_task(env->dst_rq, p);
5998 }
5999
6000 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6001}
6002
230059de 6003#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
6004/*
6005 * update tg->load_weight by folding this cpu's load_avg
6006 */
48a16753 6007static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 6008{
48a16753
PT
6009 struct sched_entity *se = tg->se[cpu];
6010 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 6011
48a16753
PT
6012 /* throttled entities do not contribute to load */
6013 if (throttled_hierarchy(cfs_rq))
6014 return;
9e3081ca 6015
aff3e498 6016 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 6017
82958366
PT
6018 if (se) {
6019 update_entity_load_avg(se, 1);
6020 /*
6021 * We pivot on our runnable average having decayed to zero for
6022 * list removal. This generally implies that all our children
6023 * have also been removed (modulo rounding error or bandwidth
6024 * control); however, such cases are rare and we can fix these
6025 * at enqueue.
6026 *
6027 * TODO: fix up out-of-order children on enqueue.
6028 */
6029 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6030 list_del_leaf_cfs_rq(cfs_rq);
6031 } else {
48a16753 6032 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6033 update_rq_runnable_avg(rq, rq->nr_running);
6034 }
9e3081ca
PZ
6035}
6036
48a16753 6037static void update_blocked_averages(int cpu)
9e3081ca 6038{
9e3081ca 6039 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6040 struct cfs_rq *cfs_rq;
6041 unsigned long flags;
9e3081ca 6042
48a16753
PT
6043 raw_spin_lock_irqsave(&rq->lock, flags);
6044 update_rq_clock(rq);
9763b67f
PZ
6045 /*
6046 * Iterates the task_group tree in a bottom up fashion, see
6047 * list_add_leaf_cfs_rq() for details.
6048 */
64660c86 6049 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6050 /*
6051 * Note: We may want to consider periodically releasing
6052 * rq->lock about these updates so that creating many task
6053 * groups does not result in continually extending hold time.
6054 */
6055 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6056 }
48a16753
PT
6057
6058 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6059}
6060
9763b67f 6061/*
68520796 6062 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6063 * This needs to be done in a top-down fashion because the load of a child
6064 * group is a fraction of its parents load.
6065 */
68520796 6066static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6067{
68520796
VD
6068 struct rq *rq = rq_of(cfs_rq);
6069 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6070 unsigned long now = jiffies;
68520796 6071 unsigned long load;
a35b6466 6072
68520796 6073 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6074 return;
6075
68520796
VD
6076 cfs_rq->h_load_next = NULL;
6077 for_each_sched_entity(se) {
6078 cfs_rq = cfs_rq_of(se);
6079 cfs_rq->h_load_next = se;
6080 if (cfs_rq->last_h_load_update == now)
6081 break;
6082 }
a35b6466 6083
68520796 6084 if (!se) {
7e3115ef 6085 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6086 cfs_rq->last_h_load_update = now;
6087 }
6088
6089 while ((se = cfs_rq->h_load_next) != NULL) {
6090 load = cfs_rq->h_load;
6091 load = div64_ul(load * se->avg.load_avg_contrib,
6092 cfs_rq->runnable_load_avg + 1);
6093 cfs_rq = group_cfs_rq(se);
6094 cfs_rq->h_load = load;
6095 cfs_rq->last_h_load_update = now;
6096 }
9763b67f
PZ
6097}
6098
367456c7 6099static unsigned long task_h_load(struct task_struct *p)
230059de 6100{
367456c7 6101 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6102
68520796 6103 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6104 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6105 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6106}
6107#else
48a16753 6108static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6109{
6110}
6111
367456c7 6112static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6113{
a003a25b 6114 return p->se.avg.load_avg_contrib;
1e3c88bd 6115}
230059de 6116#endif
1e3c88bd 6117
1e3c88bd 6118/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6119
6120enum group_type {
6121 group_other = 0,
6122 group_imbalanced,
6123 group_overloaded,
6124};
6125
1e3c88bd
PZ
6126/*
6127 * sg_lb_stats - stats of a sched_group required for load_balancing
6128 */
6129struct sg_lb_stats {
6130 unsigned long avg_load; /*Avg load across the CPUs of the group */
6131 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6132 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6133 unsigned long load_per_task;
63b2ca30 6134 unsigned long group_capacity;
8bb5b00c 6135 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6136 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6137 unsigned int idle_cpus;
6138 unsigned int group_weight;
caeb178c 6139 enum group_type group_type;
ea67821b 6140 int group_no_capacity;
0ec8aa00
PZ
6141#ifdef CONFIG_NUMA_BALANCING
6142 unsigned int nr_numa_running;
6143 unsigned int nr_preferred_running;
6144#endif
1e3c88bd
PZ
6145};
6146
56cf515b
JK
6147/*
6148 * sd_lb_stats - Structure to store the statistics of a sched_domain
6149 * during load balancing.
6150 */
6151struct sd_lb_stats {
6152 struct sched_group *busiest; /* Busiest group in this sd */
6153 struct sched_group *local; /* Local group in this sd */
6154 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6155 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6156 unsigned long avg_load; /* Average load across all groups in sd */
6157
56cf515b 6158 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6159 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6160};
6161
147c5fc2
PZ
6162static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6163{
6164 /*
6165 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6166 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6167 * We must however clear busiest_stat::avg_load because
6168 * update_sd_pick_busiest() reads this before assignment.
6169 */
6170 *sds = (struct sd_lb_stats){
6171 .busiest = NULL,
6172 .local = NULL,
6173 .total_load = 0UL,
63b2ca30 6174 .total_capacity = 0UL,
147c5fc2
PZ
6175 .busiest_stat = {
6176 .avg_load = 0UL,
caeb178c
RR
6177 .sum_nr_running = 0,
6178 .group_type = group_other,
147c5fc2
PZ
6179 },
6180 };
6181}
6182
1e3c88bd
PZ
6183/**
6184 * get_sd_load_idx - Obtain the load index for a given sched domain.
6185 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6186 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6187 *
6188 * Return: The load index.
1e3c88bd
PZ
6189 */
6190static inline int get_sd_load_idx(struct sched_domain *sd,
6191 enum cpu_idle_type idle)
6192{
6193 int load_idx;
6194
6195 switch (idle) {
6196 case CPU_NOT_IDLE:
6197 load_idx = sd->busy_idx;
6198 break;
6199
6200 case CPU_NEWLY_IDLE:
6201 load_idx = sd->newidle_idx;
6202 break;
6203 default:
6204 load_idx = sd->idle_idx;
6205 break;
6206 }
6207
6208 return load_idx;
6209}
6210
26bc3c50 6211static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6212{
26bc3c50
VG
6213 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6214 return sd->smt_gain / sd->span_weight;
1e3c88bd 6215
26bc3c50 6216 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6217}
6218
26bc3c50 6219unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6220{
26bc3c50 6221 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6222}
6223
ced549fa 6224static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6225{
6226 struct rq *rq = cpu_rq(cpu);
b5b4860d 6227 u64 total, used, age_stamp, avg;
cadefd3d 6228 s64 delta;
1e3c88bd 6229
b654f7de
PZ
6230 /*
6231 * Since we're reading these variables without serialization make sure
6232 * we read them once before doing sanity checks on them.
6233 */
316c1608
JL
6234 age_stamp = READ_ONCE(rq->age_stamp);
6235 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6236 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6237
cadefd3d
PZ
6238 if (unlikely(delta < 0))
6239 delta = 0;
6240
6241 total = sched_avg_period() + delta;
aa483808 6242
b5b4860d 6243 used = div_u64(avg, total);
1e3c88bd 6244
b5b4860d
VG
6245 if (likely(used < SCHED_CAPACITY_SCALE))
6246 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6247
b5b4860d 6248 return 1;
1e3c88bd
PZ
6249}
6250
ced549fa 6251static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6252{
ca8ce3d0 6253 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6254 struct sched_group *sdg = sd->groups;
6255
26bc3c50
VG
6256 if (sched_feat(ARCH_CAPACITY))
6257 capacity *= arch_scale_cpu_capacity(sd, cpu);
6258 else
6259 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6260
26bc3c50 6261 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6262
ca6d75e6 6263 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6264
ced549fa 6265 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6266 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6267
ced549fa
NP
6268 if (!capacity)
6269 capacity = 1;
1e3c88bd 6270
ced549fa
NP
6271 cpu_rq(cpu)->cpu_capacity = capacity;
6272 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6273}
6274
63b2ca30 6275void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6276{
6277 struct sched_domain *child = sd->child;
6278 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6279 unsigned long capacity;
4ec4412e
VG
6280 unsigned long interval;
6281
6282 interval = msecs_to_jiffies(sd->balance_interval);
6283 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6284 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6285
6286 if (!child) {
ced549fa 6287 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6288 return;
6289 }
6290
dc7ff76e 6291 capacity = 0;
1e3c88bd 6292
74a5ce20
PZ
6293 if (child->flags & SD_OVERLAP) {
6294 /*
6295 * SD_OVERLAP domains cannot assume that child groups
6296 * span the current group.
6297 */
6298
863bffc8 6299 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6300 struct sched_group_capacity *sgc;
9abf24d4 6301 struct rq *rq = cpu_rq(cpu);
863bffc8 6302
9abf24d4 6303 /*
63b2ca30 6304 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6305 * gets here before we've attached the domains to the
6306 * runqueues.
6307 *
ced549fa
NP
6308 * Use capacity_of(), which is set irrespective of domains
6309 * in update_cpu_capacity().
9abf24d4 6310 *
dc7ff76e 6311 * This avoids capacity from being 0 and
9abf24d4 6312 * causing divide-by-zero issues on boot.
9abf24d4
SD
6313 */
6314 if (unlikely(!rq->sd)) {
ced549fa 6315 capacity += capacity_of(cpu);
9abf24d4
SD
6316 continue;
6317 }
863bffc8 6318
63b2ca30 6319 sgc = rq->sd->groups->sgc;
63b2ca30 6320 capacity += sgc->capacity;
863bffc8 6321 }
74a5ce20
PZ
6322 } else {
6323 /*
6324 * !SD_OVERLAP domains can assume that child groups
6325 * span the current group.
6326 */
6327
6328 group = child->groups;
6329 do {
63b2ca30 6330 capacity += group->sgc->capacity;
74a5ce20
PZ
6331 group = group->next;
6332 } while (group != child->groups);
6333 }
1e3c88bd 6334
63b2ca30 6335 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6336}
6337
9d5efe05 6338/*
ea67821b
VG
6339 * Check whether the capacity of the rq has been noticeably reduced by side
6340 * activity. The imbalance_pct is used for the threshold.
6341 * Return true is the capacity is reduced
9d5efe05
SV
6342 */
6343static inline int
ea67821b 6344check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6345{
ea67821b
VG
6346 return ((rq->cpu_capacity * sd->imbalance_pct) <
6347 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6348}
6349
30ce5dab
PZ
6350/*
6351 * Group imbalance indicates (and tries to solve) the problem where balancing
6352 * groups is inadequate due to tsk_cpus_allowed() constraints.
6353 *
6354 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6355 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6356 * Something like:
6357 *
6358 * { 0 1 2 3 } { 4 5 6 7 }
6359 * * * * *
6360 *
6361 * If we were to balance group-wise we'd place two tasks in the first group and
6362 * two tasks in the second group. Clearly this is undesired as it will overload
6363 * cpu 3 and leave one of the cpus in the second group unused.
6364 *
6365 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6366 * by noticing the lower domain failed to reach balance and had difficulty
6367 * moving tasks due to affinity constraints.
30ce5dab
PZ
6368 *
6369 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6370 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6371 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6372 * to create an effective group imbalance.
6373 *
6374 * This is a somewhat tricky proposition since the next run might not find the
6375 * group imbalance and decide the groups need to be balanced again. A most
6376 * subtle and fragile situation.
6377 */
6378
6263322c 6379static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6380{
63b2ca30 6381 return group->sgc->imbalance;
30ce5dab
PZ
6382}
6383
b37d9316 6384/*
ea67821b
VG
6385 * group_has_capacity returns true if the group has spare capacity that could
6386 * be used by some tasks.
6387 * We consider that a group has spare capacity if the * number of task is
6388 * smaller than the number of CPUs or if the usage is lower than the available
6389 * capacity for CFS tasks.
6390 * For the latter, we use a threshold to stabilize the state, to take into
6391 * account the variance of the tasks' load and to return true if the available
6392 * capacity in meaningful for the load balancer.
6393 * As an example, an available capacity of 1% can appear but it doesn't make
6394 * any benefit for the load balance.
b37d9316 6395 */
ea67821b
VG
6396static inline bool
6397group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6398{
ea67821b
VG
6399 if (sgs->sum_nr_running < sgs->group_weight)
6400 return true;
c61037e9 6401
ea67821b
VG
6402 if ((sgs->group_capacity * 100) >
6403 (sgs->group_usage * env->sd->imbalance_pct))
6404 return true;
b37d9316 6405
ea67821b
VG
6406 return false;
6407}
6408
6409/*
6410 * group_is_overloaded returns true if the group has more tasks than it can
6411 * handle.
6412 * group_is_overloaded is not equals to !group_has_capacity because a group
6413 * with the exact right number of tasks, has no more spare capacity but is not
6414 * overloaded so both group_has_capacity and group_is_overloaded return
6415 * false.
6416 */
6417static inline bool
6418group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6419{
6420 if (sgs->sum_nr_running <= sgs->group_weight)
6421 return false;
b37d9316 6422
ea67821b
VG
6423 if ((sgs->group_capacity * 100) <
6424 (sgs->group_usage * env->sd->imbalance_pct))
6425 return true;
b37d9316 6426
ea67821b 6427 return false;
b37d9316
PZ
6428}
6429
ea67821b
VG
6430static enum group_type group_classify(struct lb_env *env,
6431 struct sched_group *group,
6432 struct sg_lb_stats *sgs)
caeb178c 6433{
ea67821b 6434 if (sgs->group_no_capacity)
caeb178c
RR
6435 return group_overloaded;
6436
6437 if (sg_imbalanced(group))
6438 return group_imbalanced;
6439
6440 return group_other;
6441}
6442
1e3c88bd
PZ
6443/**
6444 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6445 * @env: The load balancing environment.
1e3c88bd 6446 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6447 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6448 * @local_group: Does group contain this_cpu.
1e3c88bd 6449 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6450 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6451 */
bd939f45
PZ
6452static inline void update_sg_lb_stats(struct lb_env *env,
6453 struct sched_group *group, int load_idx,
4486edd1
TC
6454 int local_group, struct sg_lb_stats *sgs,
6455 bool *overload)
1e3c88bd 6456{
30ce5dab 6457 unsigned long load;
bd939f45 6458 int i;
1e3c88bd 6459
b72ff13c
PZ
6460 memset(sgs, 0, sizeof(*sgs));
6461
b9403130 6462 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6463 struct rq *rq = cpu_rq(i);
6464
1e3c88bd 6465 /* Bias balancing toward cpus of our domain */
6263322c 6466 if (local_group)
04f733b4 6467 load = target_load(i, load_idx);
6263322c 6468 else
1e3c88bd 6469 load = source_load(i, load_idx);
1e3c88bd
PZ
6470
6471 sgs->group_load += load;
8bb5b00c 6472 sgs->group_usage += get_cpu_usage(i);
65fdac08 6473 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6474
6475 if (rq->nr_running > 1)
6476 *overload = true;
6477
0ec8aa00
PZ
6478#ifdef CONFIG_NUMA_BALANCING
6479 sgs->nr_numa_running += rq->nr_numa_running;
6480 sgs->nr_preferred_running += rq->nr_preferred_running;
6481#endif
1e3c88bd 6482 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6483 if (idle_cpu(i))
6484 sgs->idle_cpus++;
1e3c88bd
PZ
6485 }
6486
63b2ca30
NP
6487 /* Adjust by relative CPU capacity of the group */
6488 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6489 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6490
dd5feea1 6491 if (sgs->sum_nr_running)
38d0f770 6492 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6493
aae6d3dd 6494 sgs->group_weight = group->group_weight;
b37d9316 6495
ea67821b
VG
6496 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6497 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6498}
6499
532cb4c4
MN
6500/**
6501 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6502 * @env: The load balancing environment.
532cb4c4
MN
6503 * @sds: sched_domain statistics
6504 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6505 * @sgs: sched_group statistics
532cb4c4
MN
6506 *
6507 * Determine if @sg is a busier group than the previously selected
6508 * busiest group.
e69f6186
YB
6509 *
6510 * Return: %true if @sg is a busier group than the previously selected
6511 * busiest group. %false otherwise.
532cb4c4 6512 */
bd939f45 6513static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6514 struct sd_lb_stats *sds,
6515 struct sched_group *sg,
bd939f45 6516 struct sg_lb_stats *sgs)
532cb4c4 6517{
caeb178c 6518 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6519
caeb178c 6520 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6521 return true;
6522
caeb178c
RR
6523 if (sgs->group_type < busiest->group_type)
6524 return false;
6525
6526 if (sgs->avg_load <= busiest->avg_load)
6527 return false;
6528
6529 /* This is the busiest node in its class. */
6530 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6531 return true;
6532
6533 /*
6534 * ASYM_PACKING needs to move all the work to the lowest
6535 * numbered CPUs in the group, therefore mark all groups
6536 * higher than ourself as busy.
6537 */
caeb178c 6538 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6539 if (!sds->busiest)
6540 return true;
6541
6542 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6543 return true;
6544 }
6545
6546 return false;
6547}
6548
0ec8aa00
PZ
6549#ifdef CONFIG_NUMA_BALANCING
6550static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6551{
6552 if (sgs->sum_nr_running > sgs->nr_numa_running)
6553 return regular;
6554 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6555 return remote;
6556 return all;
6557}
6558
6559static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6560{
6561 if (rq->nr_running > rq->nr_numa_running)
6562 return regular;
6563 if (rq->nr_running > rq->nr_preferred_running)
6564 return remote;
6565 return all;
6566}
6567#else
6568static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6569{
6570 return all;
6571}
6572
6573static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6574{
6575 return regular;
6576}
6577#endif /* CONFIG_NUMA_BALANCING */
6578
1e3c88bd 6579/**
461819ac 6580 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6581 * @env: The load balancing environment.
1e3c88bd
PZ
6582 * @sds: variable to hold the statistics for this sched_domain.
6583 */
0ec8aa00 6584static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6585{
bd939f45
PZ
6586 struct sched_domain *child = env->sd->child;
6587 struct sched_group *sg = env->sd->groups;
56cf515b 6588 struct sg_lb_stats tmp_sgs;
1e3c88bd 6589 int load_idx, prefer_sibling = 0;
4486edd1 6590 bool overload = false;
1e3c88bd
PZ
6591
6592 if (child && child->flags & SD_PREFER_SIBLING)
6593 prefer_sibling = 1;
6594
bd939f45 6595 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6596
6597 do {
56cf515b 6598 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6599 int local_group;
6600
bd939f45 6601 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6602 if (local_group) {
6603 sds->local = sg;
6604 sgs = &sds->local_stat;
b72ff13c
PZ
6605
6606 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6607 time_after_eq(jiffies, sg->sgc->next_update))
6608 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6609 }
1e3c88bd 6610
4486edd1
TC
6611 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6612 &overload);
1e3c88bd 6613
b72ff13c
PZ
6614 if (local_group)
6615 goto next_group;
6616
1e3c88bd
PZ
6617 /*
6618 * In case the child domain prefers tasks go to siblings
ea67821b 6619 * first, lower the sg capacity so that we'll try
75dd321d
NR
6620 * and move all the excess tasks away. We lower the capacity
6621 * of a group only if the local group has the capacity to fit
ea67821b
VG
6622 * these excess tasks. The extra check prevents the case where
6623 * you always pull from the heaviest group when it is already
6624 * under-utilized (possible with a large weight task outweighs
6625 * the tasks on the system).
1e3c88bd 6626 */
b72ff13c 6627 if (prefer_sibling && sds->local &&
ea67821b
VG
6628 group_has_capacity(env, &sds->local_stat) &&
6629 (sgs->sum_nr_running > 1)) {
6630 sgs->group_no_capacity = 1;
6631 sgs->group_type = group_overloaded;
cb0b9f24 6632 }
1e3c88bd 6633
b72ff13c 6634 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6635 sds->busiest = sg;
56cf515b 6636 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6637 }
6638
b72ff13c
PZ
6639next_group:
6640 /* Now, start updating sd_lb_stats */
6641 sds->total_load += sgs->group_load;
63b2ca30 6642 sds->total_capacity += sgs->group_capacity;
b72ff13c 6643
532cb4c4 6644 sg = sg->next;
bd939f45 6645 } while (sg != env->sd->groups);
0ec8aa00
PZ
6646
6647 if (env->sd->flags & SD_NUMA)
6648 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6649
6650 if (!env->sd->parent) {
6651 /* update overload indicator if we are at root domain */
6652 if (env->dst_rq->rd->overload != overload)
6653 env->dst_rq->rd->overload = overload;
6654 }
6655
532cb4c4
MN
6656}
6657
532cb4c4
MN
6658/**
6659 * check_asym_packing - Check to see if the group is packed into the
6660 * sched doman.
6661 *
6662 * This is primarily intended to used at the sibling level. Some
6663 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6664 * case of POWER7, it can move to lower SMT modes only when higher
6665 * threads are idle. When in lower SMT modes, the threads will
6666 * perform better since they share less core resources. Hence when we
6667 * have idle threads, we want them to be the higher ones.
6668 *
6669 * This packing function is run on idle threads. It checks to see if
6670 * the busiest CPU in this domain (core in the P7 case) has a higher
6671 * CPU number than the packing function is being run on. Here we are
6672 * assuming lower CPU number will be equivalent to lower a SMT thread
6673 * number.
6674 *
e69f6186 6675 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6676 * this CPU. The amount of the imbalance is returned in *imbalance.
6677 *
cd96891d 6678 * @env: The load balancing environment.
532cb4c4 6679 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6680 */
bd939f45 6681static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6682{
6683 int busiest_cpu;
6684
bd939f45 6685 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6686 return 0;
6687
6688 if (!sds->busiest)
6689 return 0;
6690
6691 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6692 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6693 return 0;
6694
bd939f45 6695 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6696 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6697 SCHED_CAPACITY_SCALE);
bd939f45 6698
532cb4c4 6699 return 1;
1e3c88bd
PZ
6700}
6701
6702/**
6703 * fix_small_imbalance - Calculate the minor imbalance that exists
6704 * amongst the groups of a sched_domain, during
6705 * load balancing.
cd96891d 6706 * @env: The load balancing environment.
1e3c88bd 6707 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6708 */
bd939f45
PZ
6709static inline
6710void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6711{
63b2ca30 6712 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6713 unsigned int imbn = 2;
dd5feea1 6714 unsigned long scaled_busy_load_per_task;
56cf515b 6715 struct sg_lb_stats *local, *busiest;
1e3c88bd 6716
56cf515b
JK
6717 local = &sds->local_stat;
6718 busiest = &sds->busiest_stat;
1e3c88bd 6719
56cf515b
JK
6720 if (!local->sum_nr_running)
6721 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6722 else if (busiest->load_per_task > local->load_per_task)
6723 imbn = 1;
dd5feea1 6724
56cf515b 6725 scaled_busy_load_per_task =
ca8ce3d0 6726 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6727 busiest->group_capacity;
56cf515b 6728
3029ede3
VD
6729 if (busiest->avg_load + scaled_busy_load_per_task >=
6730 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6731 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6732 return;
6733 }
6734
6735 /*
6736 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6737 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6738 * moving them.
6739 */
6740
63b2ca30 6741 capa_now += busiest->group_capacity *
56cf515b 6742 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6743 capa_now += local->group_capacity *
56cf515b 6744 min(local->load_per_task, local->avg_load);
ca8ce3d0 6745 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6746
6747 /* Amount of load we'd subtract */
a2cd4260 6748 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6749 capa_move += busiest->group_capacity *
56cf515b 6750 min(busiest->load_per_task,
a2cd4260 6751 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6752 }
1e3c88bd
PZ
6753
6754 /* Amount of load we'd add */
63b2ca30 6755 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6756 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6757 tmp = (busiest->avg_load * busiest->group_capacity) /
6758 local->group_capacity;
56cf515b 6759 } else {
ca8ce3d0 6760 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6761 local->group_capacity;
56cf515b 6762 }
63b2ca30 6763 capa_move += local->group_capacity *
3ae11c90 6764 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6765 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6766
6767 /* Move if we gain throughput */
63b2ca30 6768 if (capa_move > capa_now)
56cf515b 6769 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6770}
6771
6772/**
6773 * calculate_imbalance - Calculate the amount of imbalance present within the
6774 * groups of a given sched_domain during load balance.
bd939f45 6775 * @env: load balance environment
1e3c88bd 6776 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6777 */
bd939f45 6778static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6779{
dd5feea1 6780 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6781 struct sg_lb_stats *local, *busiest;
6782
6783 local = &sds->local_stat;
56cf515b 6784 busiest = &sds->busiest_stat;
dd5feea1 6785
caeb178c 6786 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6787 /*
6788 * In the group_imb case we cannot rely on group-wide averages
6789 * to ensure cpu-load equilibrium, look at wider averages. XXX
6790 */
56cf515b
JK
6791 busiest->load_per_task =
6792 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6793 }
6794
1e3c88bd
PZ
6795 /*
6796 * In the presence of smp nice balancing, certain scenarios can have
6797 * max load less than avg load(as we skip the groups at or below
ced549fa 6798 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6799 */
b1885550
VD
6800 if (busiest->avg_load <= sds->avg_load ||
6801 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6802 env->imbalance = 0;
6803 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6804 }
6805
9a5d9ba6
PZ
6806 /*
6807 * If there aren't any idle cpus, avoid creating some.
6808 */
6809 if (busiest->group_type == group_overloaded &&
6810 local->group_type == group_overloaded) {
ea67821b
VG
6811 load_above_capacity = busiest->sum_nr_running *
6812 SCHED_LOAD_SCALE;
6813 if (load_above_capacity > busiest->group_capacity)
6814 load_above_capacity -= busiest->group_capacity;
6815 else
6816 load_above_capacity = ~0UL;
dd5feea1
SS
6817 }
6818
6819 /*
6820 * We're trying to get all the cpus to the average_load, so we don't
6821 * want to push ourselves above the average load, nor do we wish to
6822 * reduce the max loaded cpu below the average load. At the same time,
6823 * we also don't want to reduce the group load below the group capacity
6824 * (so that we can implement power-savings policies etc). Thus we look
6825 * for the minimum possible imbalance.
dd5feea1 6826 */
30ce5dab 6827 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6828
6829 /* How much load to actually move to equalise the imbalance */
56cf515b 6830 env->imbalance = min(
63b2ca30
NP
6831 max_pull * busiest->group_capacity,
6832 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6833 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6834
6835 /*
6836 * if *imbalance is less than the average load per runnable task
25985edc 6837 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6838 * a think about bumping its value to force at least one task to be
6839 * moved
6840 */
56cf515b 6841 if (env->imbalance < busiest->load_per_task)
bd939f45 6842 return fix_small_imbalance(env, sds);
1e3c88bd 6843}
fab47622 6844
1e3c88bd
PZ
6845/******* find_busiest_group() helpers end here *********************/
6846
6847/**
6848 * find_busiest_group - Returns the busiest group within the sched_domain
6849 * if there is an imbalance. If there isn't an imbalance, and
6850 * the user has opted for power-savings, it returns a group whose
6851 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6852 * such a group exists.
6853 *
6854 * Also calculates the amount of weighted load which should be moved
6855 * to restore balance.
6856 *
cd96891d 6857 * @env: The load balancing environment.
1e3c88bd 6858 *
e69f6186 6859 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6860 * - If no imbalance and user has opted for power-savings balance,
6861 * return the least loaded group whose CPUs can be
6862 * put to idle by rebalancing its tasks onto our group.
6863 */
56cf515b 6864static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6865{
56cf515b 6866 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6867 struct sd_lb_stats sds;
6868
147c5fc2 6869 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6870
6871 /*
6872 * Compute the various statistics relavent for load balancing at
6873 * this level.
6874 */
23f0d209 6875 update_sd_lb_stats(env, &sds);
56cf515b
JK
6876 local = &sds.local_stat;
6877 busiest = &sds.busiest_stat;
1e3c88bd 6878
ea67821b 6879 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6880 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6881 check_asym_packing(env, &sds))
532cb4c4
MN
6882 return sds.busiest;
6883
cc57aa8f 6884 /* There is no busy sibling group to pull tasks from */
56cf515b 6885 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6886 goto out_balanced;
6887
ca8ce3d0
NP
6888 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6889 / sds.total_capacity;
b0432d8f 6890
866ab43e
PZ
6891 /*
6892 * If the busiest group is imbalanced the below checks don't
30ce5dab 6893 * work because they assume all things are equal, which typically
866ab43e
PZ
6894 * isn't true due to cpus_allowed constraints and the like.
6895 */
caeb178c 6896 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6897 goto force_balance;
6898
cc57aa8f 6899 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6900 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6901 busiest->group_no_capacity)
fab47622
NR
6902 goto force_balance;
6903
cc57aa8f 6904 /*
9c58c79a 6905 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6906 * don't try and pull any tasks.
6907 */
56cf515b 6908 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6909 goto out_balanced;
6910
cc57aa8f
PZ
6911 /*
6912 * Don't pull any tasks if this group is already above the domain
6913 * average load.
6914 */
56cf515b 6915 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6916 goto out_balanced;
6917
bd939f45 6918 if (env->idle == CPU_IDLE) {
aae6d3dd 6919 /*
43f4d666
VG
6920 * This cpu is idle. If the busiest group is not overloaded
6921 * and there is no imbalance between this and busiest group
6922 * wrt idle cpus, it is balanced. The imbalance becomes
6923 * significant if the diff is greater than 1 otherwise we
6924 * might end up to just move the imbalance on another group
aae6d3dd 6925 */
43f4d666
VG
6926 if ((busiest->group_type != group_overloaded) &&
6927 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6928 goto out_balanced;
c186fafe
PZ
6929 } else {
6930 /*
6931 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6932 * imbalance_pct to be conservative.
6933 */
56cf515b
JK
6934 if (100 * busiest->avg_load <=
6935 env->sd->imbalance_pct * local->avg_load)
c186fafe 6936 goto out_balanced;
aae6d3dd 6937 }
1e3c88bd 6938
fab47622 6939force_balance:
1e3c88bd 6940 /* Looks like there is an imbalance. Compute it */
bd939f45 6941 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6942 return sds.busiest;
6943
6944out_balanced:
bd939f45 6945 env->imbalance = 0;
1e3c88bd
PZ
6946 return NULL;
6947}
6948
6949/*
6950 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6951 */
bd939f45 6952static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6953 struct sched_group *group)
1e3c88bd
PZ
6954{
6955 struct rq *busiest = NULL, *rq;
ced549fa 6956 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6957 int i;
6958
6906a408 6959 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6960 unsigned long capacity, wl;
0ec8aa00
PZ
6961 enum fbq_type rt;
6962
6963 rq = cpu_rq(i);
6964 rt = fbq_classify_rq(rq);
1e3c88bd 6965
0ec8aa00
PZ
6966 /*
6967 * We classify groups/runqueues into three groups:
6968 * - regular: there are !numa tasks
6969 * - remote: there are numa tasks that run on the 'wrong' node
6970 * - all: there is no distinction
6971 *
6972 * In order to avoid migrating ideally placed numa tasks,
6973 * ignore those when there's better options.
6974 *
6975 * If we ignore the actual busiest queue to migrate another
6976 * task, the next balance pass can still reduce the busiest
6977 * queue by moving tasks around inside the node.
6978 *
6979 * If we cannot move enough load due to this classification
6980 * the next pass will adjust the group classification and
6981 * allow migration of more tasks.
6982 *
6983 * Both cases only affect the total convergence complexity.
6984 */
6985 if (rt > env->fbq_type)
6986 continue;
6987
ced549fa 6988 capacity = capacity_of(i);
9d5efe05 6989
6e40f5bb 6990 wl = weighted_cpuload(i);
1e3c88bd 6991
6e40f5bb
TG
6992 /*
6993 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6994 * which is not scaled with the cpu capacity.
6e40f5bb 6995 */
ea67821b
VG
6996
6997 if (rq->nr_running == 1 && wl > env->imbalance &&
6998 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6999 continue;
7000
6e40f5bb
TG
7001 /*
7002 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7003 * the weighted_cpuload() scaled with the cpu capacity, so
7004 * that the load can be moved away from the cpu that is
7005 * potentially running at a lower capacity.
95a79b80 7006 *
ced549fa 7007 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7008 * multiplication to rid ourselves of the division works out
ced549fa
NP
7009 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7010 * our previous maximum.
6e40f5bb 7011 */
ced549fa 7012 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7013 busiest_load = wl;
ced549fa 7014 busiest_capacity = capacity;
1e3c88bd
PZ
7015 busiest = rq;
7016 }
7017 }
7018
7019 return busiest;
7020}
7021
7022/*
7023 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7024 * so long as it is large enough.
7025 */
7026#define MAX_PINNED_INTERVAL 512
7027
7028/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7029DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7030
bd939f45 7031static int need_active_balance(struct lb_env *env)
1af3ed3d 7032{
bd939f45
PZ
7033 struct sched_domain *sd = env->sd;
7034
7035 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7036
7037 /*
7038 * ASYM_PACKING needs to force migrate tasks from busy but
7039 * higher numbered CPUs in order to pack all tasks in the
7040 * lowest numbered CPUs.
7041 */
bd939f45 7042 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7043 return 1;
1af3ed3d
PZ
7044 }
7045
1aaf90a4
VG
7046 /*
7047 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7048 * It's worth migrating the task if the src_cpu's capacity is reduced
7049 * because of other sched_class or IRQs if more capacity stays
7050 * available on dst_cpu.
7051 */
7052 if ((env->idle != CPU_NOT_IDLE) &&
7053 (env->src_rq->cfs.h_nr_running == 1)) {
7054 if ((check_cpu_capacity(env->src_rq, sd)) &&
7055 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7056 return 1;
7057 }
7058
1af3ed3d
PZ
7059 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7060}
7061
969c7921
TH
7062static int active_load_balance_cpu_stop(void *data);
7063
23f0d209
JK
7064static int should_we_balance(struct lb_env *env)
7065{
7066 struct sched_group *sg = env->sd->groups;
7067 struct cpumask *sg_cpus, *sg_mask;
7068 int cpu, balance_cpu = -1;
7069
7070 /*
7071 * In the newly idle case, we will allow all the cpu's
7072 * to do the newly idle load balance.
7073 */
7074 if (env->idle == CPU_NEWLY_IDLE)
7075 return 1;
7076
7077 sg_cpus = sched_group_cpus(sg);
7078 sg_mask = sched_group_mask(sg);
7079 /* Try to find first idle cpu */
7080 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7081 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7082 continue;
7083
7084 balance_cpu = cpu;
7085 break;
7086 }
7087
7088 if (balance_cpu == -1)
7089 balance_cpu = group_balance_cpu(sg);
7090
7091 /*
7092 * First idle cpu or the first cpu(busiest) in this sched group
7093 * is eligible for doing load balancing at this and above domains.
7094 */
b0cff9d8 7095 return balance_cpu == env->dst_cpu;
23f0d209
JK
7096}
7097
1e3c88bd
PZ
7098/*
7099 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7100 * tasks if there is an imbalance.
7101 */
7102static int load_balance(int this_cpu, struct rq *this_rq,
7103 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7104 int *continue_balancing)
1e3c88bd 7105{
88b8dac0 7106 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7107 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7108 struct sched_group *group;
1e3c88bd
PZ
7109 struct rq *busiest;
7110 unsigned long flags;
4ba29684 7111 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7112
8e45cb54
PZ
7113 struct lb_env env = {
7114 .sd = sd,
ddcdf6e7
PZ
7115 .dst_cpu = this_cpu,
7116 .dst_rq = this_rq,
88b8dac0 7117 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7118 .idle = idle,
eb95308e 7119 .loop_break = sched_nr_migrate_break,
b9403130 7120 .cpus = cpus,
0ec8aa00 7121 .fbq_type = all,
163122b7 7122 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7123 };
7124
cfc03118
JK
7125 /*
7126 * For NEWLY_IDLE load_balancing, we don't need to consider
7127 * other cpus in our group
7128 */
e02e60c1 7129 if (idle == CPU_NEWLY_IDLE)
cfc03118 7130 env.dst_grpmask = NULL;
cfc03118 7131
1e3c88bd
PZ
7132 cpumask_copy(cpus, cpu_active_mask);
7133
1e3c88bd
PZ
7134 schedstat_inc(sd, lb_count[idle]);
7135
7136redo:
23f0d209
JK
7137 if (!should_we_balance(&env)) {
7138 *continue_balancing = 0;
1e3c88bd 7139 goto out_balanced;
23f0d209 7140 }
1e3c88bd 7141
23f0d209 7142 group = find_busiest_group(&env);
1e3c88bd
PZ
7143 if (!group) {
7144 schedstat_inc(sd, lb_nobusyg[idle]);
7145 goto out_balanced;
7146 }
7147
b9403130 7148 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7149 if (!busiest) {
7150 schedstat_inc(sd, lb_nobusyq[idle]);
7151 goto out_balanced;
7152 }
7153
78feefc5 7154 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7155
bd939f45 7156 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7157
1aaf90a4
VG
7158 env.src_cpu = busiest->cpu;
7159 env.src_rq = busiest;
7160
1e3c88bd
PZ
7161 ld_moved = 0;
7162 if (busiest->nr_running > 1) {
7163 /*
7164 * Attempt to move tasks. If find_busiest_group has found
7165 * an imbalance but busiest->nr_running <= 1, the group is
7166 * still unbalanced. ld_moved simply stays zero, so it is
7167 * correctly treated as an imbalance.
7168 */
8e45cb54 7169 env.flags |= LBF_ALL_PINNED;
c82513e5 7170 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7171
5d6523eb 7172more_balance:
163122b7 7173 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7174
7175 /*
7176 * cur_ld_moved - load moved in current iteration
7177 * ld_moved - cumulative load moved across iterations
7178 */
163122b7 7179 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7180
7181 /*
163122b7
KT
7182 * We've detached some tasks from busiest_rq. Every
7183 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7184 * unlock busiest->lock, and we are able to be sure
7185 * that nobody can manipulate the tasks in parallel.
7186 * See task_rq_lock() family for the details.
1e3c88bd 7187 */
163122b7
KT
7188
7189 raw_spin_unlock(&busiest->lock);
7190
7191 if (cur_ld_moved) {
7192 attach_tasks(&env);
7193 ld_moved += cur_ld_moved;
7194 }
7195
1e3c88bd 7196 local_irq_restore(flags);
88b8dac0 7197
f1cd0858
JK
7198 if (env.flags & LBF_NEED_BREAK) {
7199 env.flags &= ~LBF_NEED_BREAK;
7200 goto more_balance;
7201 }
7202
88b8dac0
SV
7203 /*
7204 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7205 * us and move them to an alternate dst_cpu in our sched_group
7206 * where they can run. The upper limit on how many times we
7207 * iterate on same src_cpu is dependent on number of cpus in our
7208 * sched_group.
7209 *
7210 * This changes load balance semantics a bit on who can move
7211 * load to a given_cpu. In addition to the given_cpu itself
7212 * (or a ilb_cpu acting on its behalf where given_cpu is
7213 * nohz-idle), we now have balance_cpu in a position to move
7214 * load to given_cpu. In rare situations, this may cause
7215 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7216 * _independently_ and at _same_ time to move some load to
7217 * given_cpu) causing exceess load to be moved to given_cpu.
7218 * This however should not happen so much in practice and
7219 * moreover subsequent load balance cycles should correct the
7220 * excess load moved.
7221 */
6263322c 7222 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7223
7aff2e3a
VD
7224 /* Prevent to re-select dst_cpu via env's cpus */
7225 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7226
78feefc5 7227 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7228 env.dst_cpu = env.new_dst_cpu;
6263322c 7229 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7230 env.loop = 0;
7231 env.loop_break = sched_nr_migrate_break;
e02e60c1 7232
88b8dac0
SV
7233 /*
7234 * Go back to "more_balance" rather than "redo" since we
7235 * need to continue with same src_cpu.
7236 */
7237 goto more_balance;
7238 }
1e3c88bd 7239
6263322c
PZ
7240 /*
7241 * We failed to reach balance because of affinity.
7242 */
7243 if (sd_parent) {
63b2ca30 7244 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7245
afdeee05 7246 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7247 *group_imbalance = 1;
6263322c
PZ
7248 }
7249
1e3c88bd 7250 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7251 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7252 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7253 if (!cpumask_empty(cpus)) {
7254 env.loop = 0;
7255 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7256 goto redo;
bbf18b19 7257 }
afdeee05 7258 goto out_all_pinned;
1e3c88bd
PZ
7259 }
7260 }
7261
7262 if (!ld_moved) {
7263 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7264 /*
7265 * Increment the failure counter only on periodic balance.
7266 * We do not want newidle balance, which can be very
7267 * frequent, pollute the failure counter causing
7268 * excessive cache_hot migrations and active balances.
7269 */
7270 if (idle != CPU_NEWLY_IDLE)
7271 sd->nr_balance_failed++;
1e3c88bd 7272
bd939f45 7273 if (need_active_balance(&env)) {
1e3c88bd
PZ
7274 raw_spin_lock_irqsave(&busiest->lock, flags);
7275
969c7921
TH
7276 /* don't kick the active_load_balance_cpu_stop,
7277 * if the curr task on busiest cpu can't be
7278 * moved to this_cpu
1e3c88bd
PZ
7279 */
7280 if (!cpumask_test_cpu(this_cpu,
fa17b507 7281 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7282 raw_spin_unlock_irqrestore(&busiest->lock,
7283 flags);
8e45cb54 7284 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7285 goto out_one_pinned;
7286 }
7287
969c7921
TH
7288 /*
7289 * ->active_balance synchronizes accesses to
7290 * ->active_balance_work. Once set, it's cleared
7291 * only after active load balance is finished.
7292 */
1e3c88bd
PZ
7293 if (!busiest->active_balance) {
7294 busiest->active_balance = 1;
7295 busiest->push_cpu = this_cpu;
7296 active_balance = 1;
7297 }
7298 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7299
bd939f45 7300 if (active_balance) {
969c7921
TH
7301 stop_one_cpu_nowait(cpu_of(busiest),
7302 active_load_balance_cpu_stop, busiest,
7303 &busiest->active_balance_work);
bd939f45 7304 }
1e3c88bd
PZ
7305
7306 /*
7307 * We've kicked active balancing, reset the failure
7308 * counter.
7309 */
7310 sd->nr_balance_failed = sd->cache_nice_tries+1;
7311 }
7312 } else
7313 sd->nr_balance_failed = 0;
7314
7315 if (likely(!active_balance)) {
7316 /* We were unbalanced, so reset the balancing interval */
7317 sd->balance_interval = sd->min_interval;
7318 } else {
7319 /*
7320 * If we've begun active balancing, start to back off. This
7321 * case may not be covered by the all_pinned logic if there
7322 * is only 1 task on the busy runqueue (because we don't call
163122b7 7323 * detach_tasks).
1e3c88bd
PZ
7324 */
7325 if (sd->balance_interval < sd->max_interval)
7326 sd->balance_interval *= 2;
7327 }
7328
1e3c88bd
PZ
7329 goto out;
7330
7331out_balanced:
afdeee05
VG
7332 /*
7333 * We reach balance although we may have faced some affinity
7334 * constraints. Clear the imbalance flag if it was set.
7335 */
7336 if (sd_parent) {
7337 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7338
7339 if (*group_imbalance)
7340 *group_imbalance = 0;
7341 }
7342
7343out_all_pinned:
7344 /*
7345 * We reach balance because all tasks are pinned at this level so
7346 * we can't migrate them. Let the imbalance flag set so parent level
7347 * can try to migrate them.
7348 */
1e3c88bd
PZ
7349 schedstat_inc(sd, lb_balanced[idle]);
7350
7351 sd->nr_balance_failed = 0;
7352
7353out_one_pinned:
7354 /* tune up the balancing interval */
8e45cb54 7355 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7356 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7357 (sd->balance_interval < sd->max_interval))
7358 sd->balance_interval *= 2;
7359
46e49b38 7360 ld_moved = 0;
1e3c88bd 7361out:
1e3c88bd
PZ
7362 return ld_moved;
7363}
7364
52a08ef1
JL
7365static inline unsigned long
7366get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7367{
7368 unsigned long interval = sd->balance_interval;
7369
7370 if (cpu_busy)
7371 interval *= sd->busy_factor;
7372
7373 /* scale ms to jiffies */
7374 interval = msecs_to_jiffies(interval);
7375 interval = clamp(interval, 1UL, max_load_balance_interval);
7376
7377 return interval;
7378}
7379
7380static inline void
7381update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7382{
7383 unsigned long interval, next;
7384
7385 interval = get_sd_balance_interval(sd, cpu_busy);
7386 next = sd->last_balance + interval;
7387
7388 if (time_after(*next_balance, next))
7389 *next_balance = next;
7390}
7391
1e3c88bd
PZ
7392/*
7393 * idle_balance is called by schedule() if this_cpu is about to become
7394 * idle. Attempts to pull tasks from other CPUs.
7395 */
6e83125c 7396static int idle_balance(struct rq *this_rq)
1e3c88bd 7397{
52a08ef1
JL
7398 unsigned long next_balance = jiffies + HZ;
7399 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7400 struct sched_domain *sd;
7401 int pulled_task = 0;
9bd721c5 7402 u64 curr_cost = 0;
1e3c88bd 7403
6e83125c 7404 idle_enter_fair(this_rq);
0e5b5337 7405
6e83125c
PZ
7406 /*
7407 * We must set idle_stamp _before_ calling idle_balance(), such that we
7408 * measure the duration of idle_balance() as idle time.
7409 */
7410 this_rq->idle_stamp = rq_clock(this_rq);
7411
4486edd1
TC
7412 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7413 !this_rq->rd->overload) {
52a08ef1
JL
7414 rcu_read_lock();
7415 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7416 if (sd)
7417 update_next_balance(sd, 0, &next_balance);
7418 rcu_read_unlock();
7419
6e83125c 7420 goto out;
52a08ef1 7421 }
1e3c88bd 7422
f492e12e
PZ
7423 /*
7424 * Drop the rq->lock, but keep IRQ/preempt disabled.
7425 */
7426 raw_spin_unlock(&this_rq->lock);
7427
48a16753 7428 update_blocked_averages(this_cpu);
dce840a0 7429 rcu_read_lock();
1e3c88bd 7430 for_each_domain(this_cpu, sd) {
23f0d209 7431 int continue_balancing = 1;
9bd721c5 7432 u64 t0, domain_cost;
1e3c88bd
PZ
7433
7434 if (!(sd->flags & SD_LOAD_BALANCE))
7435 continue;
7436
52a08ef1
JL
7437 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7438 update_next_balance(sd, 0, &next_balance);
9bd721c5 7439 break;
52a08ef1 7440 }
9bd721c5 7441
f492e12e 7442 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7443 t0 = sched_clock_cpu(this_cpu);
7444
f492e12e 7445 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7446 sd, CPU_NEWLY_IDLE,
7447 &continue_balancing);
9bd721c5
JL
7448
7449 domain_cost = sched_clock_cpu(this_cpu) - t0;
7450 if (domain_cost > sd->max_newidle_lb_cost)
7451 sd->max_newidle_lb_cost = domain_cost;
7452
7453 curr_cost += domain_cost;
f492e12e 7454 }
1e3c88bd 7455
52a08ef1 7456 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7457
7458 /*
7459 * Stop searching for tasks to pull if there are
7460 * now runnable tasks on this rq.
7461 */
7462 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7463 break;
1e3c88bd 7464 }
dce840a0 7465 rcu_read_unlock();
f492e12e
PZ
7466
7467 raw_spin_lock(&this_rq->lock);
7468
0e5b5337
JL
7469 if (curr_cost > this_rq->max_idle_balance_cost)
7470 this_rq->max_idle_balance_cost = curr_cost;
7471
e5fc6611 7472 /*
0e5b5337
JL
7473 * While browsing the domains, we released the rq lock, a task could
7474 * have been enqueued in the meantime. Since we're not going idle,
7475 * pretend we pulled a task.
e5fc6611 7476 */
0e5b5337 7477 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7478 pulled_task = 1;
e5fc6611 7479
52a08ef1
JL
7480out:
7481 /* Move the next balance forward */
7482 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7483 this_rq->next_balance = next_balance;
9bd721c5 7484
e4aa358b 7485 /* Is there a task of a high priority class? */
46383648 7486 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7487 pulled_task = -1;
7488
7489 if (pulled_task) {
7490 idle_exit_fair(this_rq);
6e83125c 7491 this_rq->idle_stamp = 0;
e4aa358b 7492 }
6e83125c 7493
3c4017c1 7494 return pulled_task;
1e3c88bd
PZ
7495}
7496
7497/*
969c7921
TH
7498 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7499 * running tasks off the busiest CPU onto idle CPUs. It requires at
7500 * least 1 task to be running on each physical CPU where possible, and
7501 * avoids physical / logical imbalances.
1e3c88bd 7502 */
969c7921 7503static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7504{
969c7921
TH
7505 struct rq *busiest_rq = data;
7506 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7507 int target_cpu = busiest_rq->push_cpu;
969c7921 7508 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7509 struct sched_domain *sd;
e5673f28 7510 struct task_struct *p = NULL;
969c7921
TH
7511
7512 raw_spin_lock_irq(&busiest_rq->lock);
7513
7514 /* make sure the requested cpu hasn't gone down in the meantime */
7515 if (unlikely(busiest_cpu != smp_processor_id() ||
7516 !busiest_rq->active_balance))
7517 goto out_unlock;
1e3c88bd
PZ
7518
7519 /* Is there any task to move? */
7520 if (busiest_rq->nr_running <= 1)
969c7921 7521 goto out_unlock;
1e3c88bd
PZ
7522
7523 /*
7524 * This condition is "impossible", if it occurs
7525 * we need to fix it. Originally reported by
7526 * Bjorn Helgaas on a 128-cpu setup.
7527 */
7528 BUG_ON(busiest_rq == target_rq);
7529
1e3c88bd 7530 /* Search for an sd spanning us and the target CPU. */
dce840a0 7531 rcu_read_lock();
1e3c88bd
PZ
7532 for_each_domain(target_cpu, sd) {
7533 if ((sd->flags & SD_LOAD_BALANCE) &&
7534 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7535 break;
7536 }
7537
7538 if (likely(sd)) {
8e45cb54
PZ
7539 struct lb_env env = {
7540 .sd = sd,
ddcdf6e7
PZ
7541 .dst_cpu = target_cpu,
7542 .dst_rq = target_rq,
7543 .src_cpu = busiest_rq->cpu,
7544 .src_rq = busiest_rq,
8e45cb54
PZ
7545 .idle = CPU_IDLE,
7546 };
7547
1e3c88bd
PZ
7548 schedstat_inc(sd, alb_count);
7549
e5673f28
KT
7550 p = detach_one_task(&env);
7551 if (p)
1e3c88bd
PZ
7552 schedstat_inc(sd, alb_pushed);
7553 else
7554 schedstat_inc(sd, alb_failed);
7555 }
dce840a0 7556 rcu_read_unlock();
969c7921
TH
7557out_unlock:
7558 busiest_rq->active_balance = 0;
e5673f28
KT
7559 raw_spin_unlock(&busiest_rq->lock);
7560
7561 if (p)
7562 attach_one_task(target_rq, p);
7563
7564 local_irq_enable();
7565
969c7921 7566 return 0;
1e3c88bd
PZ
7567}
7568
d987fc7f
MG
7569static inline int on_null_domain(struct rq *rq)
7570{
7571 return unlikely(!rcu_dereference_sched(rq->sd));
7572}
7573
3451d024 7574#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7575/*
7576 * idle load balancing details
83cd4fe2
VP
7577 * - When one of the busy CPUs notice that there may be an idle rebalancing
7578 * needed, they will kick the idle load balancer, which then does idle
7579 * load balancing for all the idle CPUs.
7580 */
1e3c88bd 7581static struct {
83cd4fe2 7582 cpumask_var_t idle_cpus_mask;
0b005cf5 7583 atomic_t nr_cpus;
83cd4fe2
VP
7584 unsigned long next_balance; /* in jiffy units */
7585} nohz ____cacheline_aligned;
1e3c88bd 7586
3dd0337d 7587static inline int find_new_ilb(void)
1e3c88bd 7588{
0b005cf5 7589 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7590
786d6dc7
SS
7591 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7592 return ilb;
7593
7594 return nr_cpu_ids;
1e3c88bd 7595}
1e3c88bd 7596
83cd4fe2
VP
7597/*
7598 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7599 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7600 * CPU (if there is one).
7601 */
0aeeeeba 7602static void nohz_balancer_kick(void)
83cd4fe2
VP
7603{
7604 int ilb_cpu;
7605
7606 nohz.next_balance++;
7607
3dd0337d 7608 ilb_cpu = find_new_ilb();
83cd4fe2 7609
0b005cf5
SS
7610 if (ilb_cpu >= nr_cpu_ids)
7611 return;
83cd4fe2 7612
cd490c5b 7613 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7614 return;
7615 /*
7616 * Use smp_send_reschedule() instead of resched_cpu().
7617 * This way we generate a sched IPI on the target cpu which
7618 * is idle. And the softirq performing nohz idle load balance
7619 * will be run before returning from the IPI.
7620 */
7621 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7622 return;
7623}
7624
c1cc017c 7625static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7626{
7627 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7628 /*
7629 * Completely isolated CPUs don't ever set, so we must test.
7630 */
7631 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7632 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7633 atomic_dec(&nohz.nr_cpus);
7634 }
71325960
SS
7635 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7636 }
7637}
7638
69e1e811
SS
7639static inline void set_cpu_sd_state_busy(void)
7640{
7641 struct sched_domain *sd;
37dc6b50 7642 int cpu = smp_processor_id();
69e1e811 7643
69e1e811 7644 rcu_read_lock();
37dc6b50 7645 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7646
7647 if (!sd || !sd->nohz_idle)
7648 goto unlock;
7649 sd->nohz_idle = 0;
7650
63b2ca30 7651 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7652unlock:
69e1e811
SS
7653 rcu_read_unlock();
7654}
7655
7656void set_cpu_sd_state_idle(void)
7657{
7658 struct sched_domain *sd;
37dc6b50 7659 int cpu = smp_processor_id();
69e1e811 7660
69e1e811 7661 rcu_read_lock();
37dc6b50 7662 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7663
7664 if (!sd || sd->nohz_idle)
7665 goto unlock;
7666 sd->nohz_idle = 1;
7667
63b2ca30 7668 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7669unlock:
69e1e811
SS
7670 rcu_read_unlock();
7671}
7672
1e3c88bd 7673/*
c1cc017c 7674 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7675 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7676 */
c1cc017c 7677void nohz_balance_enter_idle(int cpu)
1e3c88bd 7678{
71325960
SS
7679 /*
7680 * If this cpu is going down, then nothing needs to be done.
7681 */
7682 if (!cpu_active(cpu))
7683 return;
7684
c1cc017c
AS
7685 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7686 return;
1e3c88bd 7687
d987fc7f
MG
7688 /*
7689 * If we're a completely isolated CPU, we don't play.
7690 */
7691 if (on_null_domain(cpu_rq(cpu)))
7692 return;
7693
c1cc017c
AS
7694 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7695 atomic_inc(&nohz.nr_cpus);
7696 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7697}
71325960 7698
0db0628d 7699static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7700 unsigned long action, void *hcpu)
7701{
7702 switch (action & ~CPU_TASKS_FROZEN) {
7703 case CPU_DYING:
c1cc017c 7704 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7705 return NOTIFY_OK;
7706 default:
7707 return NOTIFY_DONE;
7708 }
7709}
1e3c88bd
PZ
7710#endif
7711
7712static DEFINE_SPINLOCK(balancing);
7713
49c022e6
PZ
7714/*
7715 * Scale the max load_balance interval with the number of CPUs in the system.
7716 * This trades load-balance latency on larger machines for less cross talk.
7717 */
029632fb 7718void update_max_interval(void)
49c022e6
PZ
7719{
7720 max_load_balance_interval = HZ*num_online_cpus()/10;
7721}
7722
1e3c88bd
PZ
7723/*
7724 * It checks each scheduling domain to see if it is due to be balanced,
7725 * and initiates a balancing operation if so.
7726 *
b9b0853a 7727 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7728 */
f7ed0a89 7729static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7730{
23f0d209 7731 int continue_balancing = 1;
f7ed0a89 7732 int cpu = rq->cpu;
1e3c88bd 7733 unsigned long interval;
04f733b4 7734 struct sched_domain *sd;
1e3c88bd
PZ
7735 /* Earliest time when we have to do rebalance again */
7736 unsigned long next_balance = jiffies + 60*HZ;
7737 int update_next_balance = 0;
f48627e6
JL
7738 int need_serialize, need_decay = 0;
7739 u64 max_cost = 0;
1e3c88bd 7740
48a16753 7741 update_blocked_averages(cpu);
2069dd75 7742
dce840a0 7743 rcu_read_lock();
1e3c88bd 7744 for_each_domain(cpu, sd) {
f48627e6
JL
7745 /*
7746 * Decay the newidle max times here because this is a regular
7747 * visit to all the domains. Decay ~1% per second.
7748 */
7749 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7750 sd->max_newidle_lb_cost =
7751 (sd->max_newidle_lb_cost * 253) / 256;
7752 sd->next_decay_max_lb_cost = jiffies + HZ;
7753 need_decay = 1;
7754 }
7755 max_cost += sd->max_newidle_lb_cost;
7756
1e3c88bd
PZ
7757 if (!(sd->flags & SD_LOAD_BALANCE))
7758 continue;
7759
f48627e6
JL
7760 /*
7761 * Stop the load balance at this level. There is another
7762 * CPU in our sched group which is doing load balancing more
7763 * actively.
7764 */
7765 if (!continue_balancing) {
7766 if (need_decay)
7767 continue;
7768 break;
7769 }
7770
52a08ef1 7771 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7772
7773 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7774 if (need_serialize) {
7775 if (!spin_trylock(&balancing))
7776 goto out;
7777 }
7778
7779 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7780 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7781 /*
6263322c 7782 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7783 * env->dst_cpu, so we can't know our idle
7784 * state even if we migrated tasks. Update it.
1e3c88bd 7785 */
de5eb2dd 7786 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7787 }
7788 sd->last_balance = jiffies;
52a08ef1 7789 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7790 }
7791 if (need_serialize)
7792 spin_unlock(&balancing);
7793out:
7794 if (time_after(next_balance, sd->last_balance + interval)) {
7795 next_balance = sd->last_balance + interval;
7796 update_next_balance = 1;
7797 }
f48627e6
JL
7798 }
7799 if (need_decay) {
1e3c88bd 7800 /*
f48627e6
JL
7801 * Ensure the rq-wide value also decays but keep it at a
7802 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7803 */
f48627e6
JL
7804 rq->max_idle_balance_cost =
7805 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7806 }
dce840a0 7807 rcu_read_unlock();
1e3c88bd
PZ
7808
7809 /*
7810 * next_balance will be updated only when there is a need.
7811 * When the cpu is attached to null domain for ex, it will not be
7812 * updated.
7813 */
7814 if (likely(update_next_balance))
7815 rq->next_balance = next_balance;
7816}
7817
3451d024 7818#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7819/*
3451d024 7820 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7821 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7822 */
208cb16b 7823static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7824{
208cb16b 7825 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7826 struct rq *rq;
7827 int balance_cpu;
7828
1c792db7
SS
7829 if (idle != CPU_IDLE ||
7830 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7831 goto end;
83cd4fe2
VP
7832
7833 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7834 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7835 continue;
7836
7837 /*
7838 * If this cpu gets work to do, stop the load balancing
7839 * work being done for other cpus. Next load
7840 * balancing owner will pick it up.
7841 */
1c792db7 7842 if (need_resched())
83cd4fe2 7843 break;
83cd4fe2 7844
5ed4f1d9
VG
7845 rq = cpu_rq(balance_cpu);
7846
ed61bbc6
TC
7847 /*
7848 * If time for next balance is due,
7849 * do the balance.
7850 */
7851 if (time_after_eq(jiffies, rq->next_balance)) {
7852 raw_spin_lock_irq(&rq->lock);
7853 update_rq_clock(rq);
7854 update_idle_cpu_load(rq);
7855 raw_spin_unlock_irq(&rq->lock);
7856 rebalance_domains(rq, CPU_IDLE);
7857 }
83cd4fe2 7858
83cd4fe2
VP
7859 if (time_after(this_rq->next_balance, rq->next_balance))
7860 this_rq->next_balance = rq->next_balance;
7861 }
7862 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7863end:
7864 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7865}
7866
7867/*
0b005cf5 7868 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7869 * of an idle cpu in the system.
0b005cf5 7870 * - This rq has more than one task.
1aaf90a4
VG
7871 * - This rq has at least one CFS task and the capacity of the CPU is
7872 * significantly reduced because of RT tasks or IRQs.
7873 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7874 * multiple busy cpu.
0b005cf5
SS
7875 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7876 * domain span are idle.
83cd4fe2 7877 */
1aaf90a4 7878static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7879{
7880 unsigned long now = jiffies;
0b005cf5 7881 struct sched_domain *sd;
63b2ca30 7882 struct sched_group_capacity *sgc;
4a725627 7883 int nr_busy, cpu = rq->cpu;
1aaf90a4 7884 bool kick = false;
83cd4fe2 7885
4a725627 7886 if (unlikely(rq->idle_balance))
1aaf90a4 7887 return false;
83cd4fe2 7888
1c792db7
SS
7889 /*
7890 * We may be recently in ticked or tickless idle mode. At the first
7891 * busy tick after returning from idle, we will update the busy stats.
7892 */
69e1e811 7893 set_cpu_sd_state_busy();
c1cc017c 7894 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7895
7896 /*
7897 * None are in tickless mode and hence no need for NOHZ idle load
7898 * balancing.
7899 */
7900 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7901 return false;
1c792db7
SS
7902
7903 if (time_before(now, nohz.next_balance))
1aaf90a4 7904 return false;
83cd4fe2 7905
0b005cf5 7906 if (rq->nr_running >= 2)
1aaf90a4 7907 return true;
83cd4fe2 7908
067491b7 7909 rcu_read_lock();
37dc6b50 7910 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7911 if (sd) {
63b2ca30
NP
7912 sgc = sd->groups->sgc;
7913 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7914
1aaf90a4
VG
7915 if (nr_busy > 1) {
7916 kick = true;
7917 goto unlock;
7918 }
7919
83cd4fe2 7920 }
37dc6b50 7921
1aaf90a4
VG
7922 sd = rcu_dereference(rq->sd);
7923 if (sd) {
7924 if ((rq->cfs.h_nr_running >= 1) &&
7925 check_cpu_capacity(rq, sd)) {
7926 kick = true;
7927 goto unlock;
7928 }
7929 }
37dc6b50 7930
1aaf90a4 7931 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7932 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7933 sched_domain_span(sd)) < cpu)) {
7934 kick = true;
7935 goto unlock;
7936 }
067491b7 7937
1aaf90a4 7938unlock:
067491b7 7939 rcu_read_unlock();
1aaf90a4 7940 return kick;
83cd4fe2
VP
7941}
7942#else
208cb16b 7943static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7944#endif
7945
7946/*
7947 * run_rebalance_domains is triggered when needed from the scheduler tick.
7948 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7949 */
1e3c88bd
PZ
7950static void run_rebalance_domains(struct softirq_action *h)
7951{
208cb16b 7952 struct rq *this_rq = this_rq();
6eb57e0d 7953 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7954 CPU_IDLE : CPU_NOT_IDLE;
7955
1e3c88bd 7956 /*
83cd4fe2 7957 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7958 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7959 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7960 * give the idle cpus a chance to load balance. Else we may
7961 * load balance only within the local sched_domain hierarchy
7962 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7963 */
208cb16b 7964 nohz_idle_balance(this_rq, idle);
d4573c3e 7965 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7966}
7967
1e3c88bd
PZ
7968/*
7969 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7970 */
7caff66f 7971void trigger_load_balance(struct rq *rq)
1e3c88bd 7972{
1e3c88bd 7973 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7974 if (unlikely(on_null_domain(rq)))
7975 return;
7976
7977 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7978 raise_softirq(SCHED_SOFTIRQ);
3451d024 7979#ifdef CONFIG_NO_HZ_COMMON
c726099e 7980 if (nohz_kick_needed(rq))
0aeeeeba 7981 nohz_balancer_kick();
83cd4fe2 7982#endif
1e3c88bd
PZ
7983}
7984
0bcdcf28
CE
7985static void rq_online_fair(struct rq *rq)
7986{
7987 update_sysctl();
0e59bdae
KT
7988
7989 update_runtime_enabled(rq);
0bcdcf28
CE
7990}
7991
7992static void rq_offline_fair(struct rq *rq)
7993{
7994 update_sysctl();
a4c96ae3
PB
7995
7996 /* Ensure any throttled groups are reachable by pick_next_task */
7997 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7998}
7999
55e12e5e 8000#endif /* CONFIG_SMP */
e1d1484f 8001
bf0f6f24
IM
8002/*
8003 * scheduler tick hitting a task of our scheduling class:
8004 */
8f4d37ec 8005static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8006{
8007 struct cfs_rq *cfs_rq;
8008 struct sched_entity *se = &curr->se;
8009
8010 for_each_sched_entity(se) {
8011 cfs_rq = cfs_rq_of(se);
8f4d37ec 8012 entity_tick(cfs_rq, se, queued);
bf0f6f24 8013 }
18bf2805 8014
10e84b97 8015 if (numabalancing_enabled)
cbee9f88 8016 task_tick_numa(rq, curr);
3d59eebc 8017
18bf2805 8018 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
8019}
8020
8021/*
cd29fe6f
PZ
8022 * called on fork with the child task as argument from the parent's context
8023 * - child not yet on the tasklist
8024 * - preemption disabled
bf0f6f24 8025 */
cd29fe6f 8026static void task_fork_fair(struct task_struct *p)
bf0f6f24 8027{
4fc420c9
DN
8028 struct cfs_rq *cfs_rq;
8029 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8030 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8031 struct rq *rq = this_rq();
8032 unsigned long flags;
8033
05fa785c 8034 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8035
861d034e
PZ
8036 update_rq_clock(rq);
8037
4fc420c9
DN
8038 cfs_rq = task_cfs_rq(current);
8039 curr = cfs_rq->curr;
8040
6c9a27f5
DN
8041 /*
8042 * Not only the cpu but also the task_group of the parent might have
8043 * been changed after parent->se.parent,cfs_rq were copied to
8044 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8045 * of child point to valid ones.
8046 */
8047 rcu_read_lock();
8048 __set_task_cpu(p, this_cpu);
8049 rcu_read_unlock();
bf0f6f24 8050
7109c442 8051 update_curr(cfs_rq);
cd29fe6f 8052
b5d9d734
MG
8053 if (curr)
8054 se->vruntime = curr->vruntime;
aeb73b04 8055 place_entity(cfs_rq, se, 1);
4d78e7b6 8056
cd29fe6f 8057 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8058 /*
edcb60a3
IM
8059 * Upon rescheduling, sched_class::put_prev_task() will place
8060 * 'current' within the tree based on its new key value.
8061 */
4d78e7b6 8062 swap(curr->vruntime, se->vruntime);
8875125e 8063 resched_curr(rq);
4d78e7b6 8064 }
bf0f6f24 8065
88ec22d3
PZ
8066 se->vruntime -= cfs_rq->min_vruntime;
8067
05fa785c 8068 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8069}
8070
cb469845
SR
8071/*
8072 * Priority of the task has changed. Check to see if we preempt
8073 * the current task.
8074 */
da7a735e
PZ
8075static void
8076prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8077{
da0c1e65 8078 if (!task_on_rq_queued(p))
da7a735e
PZ
8079 return;
8080
cb469845
SR
8081 /*
8082 * Reschedule if we are currently running on this runqueue and
8083 * our priority decreased, or if we are not currently running on
8084 * this runqueue and our priority is higher than the current's
8085 */
da7a735e 8086 if (rq->curr == p) {
cb469845 8087 if (p->prio > oldprio)
8875125e 8088 resched_curr(rq);
cb469845 8089 } else
15afe09b 8090 check_preempt_curr(rq, p, 0);
cb469845
SR
8091}
8092
da7a735e
PZ
8093static void switched_from_fair(struct rq *rq, struct task_struct *p)
8094{
8095 struct sched_entity *se = &p->se;
8096 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8097
8098 /*
791c9e02 8099 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8100 * switched back to the fair class the enqueue_entity(.flags=0) will
8101 * do the right thing.
8102 *
da0c1e65
KT
8103 * If it's queued, then the dequeue_entity(.flags=0) will already
8104 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8105 * the task is sleeping will it still have non-normalized vruntime.
8106 */
da0c1e65 8107 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8108 /*
8109 * Fix up our vruntime so that the current sleep doesn't
8110 * cause 'unlimited' sleep bonus.
8111 */
8112 place_entity(cfs_rq, se, 0);
8113 se->vruntime -= cfs_rq->min_vruntime;
8114 }
9ee474f5 8115
141965c7 8116#ifdef CONFIG_SMP
9ee474f5
PT
8117 /*
8118 * Remove our load from contribution when we leave sched_fair
8119 * and ensure we don't carry in an old decay_count if we
8120 * switch back.
8121 */
87e3c8ae
KT
8122 if (se->avg.decay_count) {
8123 __synchronize_entity_decay(se);
8124 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8125 }
8126#endif
da7a735e
PZ
8127}
8128
cb469845
SR
8129/*
8130 * We switched to the sched_fair class.
8131 */
da7a735e 8132static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8133{
eb7a59b2 8134#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8135 struct sched_entity *se = &p->se;
eb7a59b2
M
8136 /*
8137 * Since the real-depth could have been changed (only FAIR
8138 * class maintain depth value), reset depth properly.
8139 */
8140 se->depth = se->parent ? se->parent->depth + 1 : 0;
8141#endif
da0c1e65 8142 if (!task_on_rq_queued(p))
da7a735e
PZ
8143 return;
8144
cb469845
SR
8145 /*
8146 * We were most likely switched from sched_rt, so
8147 * kick off the schedule if running, otherwise just see
8148 * if we can still preempt the current task.
8149 */
da7a735e 8150 if (rq->curr == p)
8875125e 8151 resched_curr(rq);
cb469845 8152 else
15afe09b 8153 check_preempt_curr(rq, p, 0);
cb469845
SR
8154}
8155
83b699ed
SV
8156/* Account for a task changing its policy or group.
8157 *
8158 * This routine is mostly called to set cfs_rq->curr field when a task
8159 * migrates between groups/classes.
8160 */
8161static void set_curr_task_fair(struct rq *rq)
8162{
8163 struct sched_entity *se = &rq->curr->se;
8164
ec12cb7f
PT
8165 for_each_sched_entity(se) {
8166 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8167
8168 set_next_entity(cfs_rq, se);
8169 /* ensure bandwidth has been allocated on our new cfs_rq */
8170 account_cfs_rq_runtime(cfs_rq, 0);
8171 }
83b699ed
SV
8172}
8173
029632fb
PZ
8174void init_cfs_rq(struct cfs_rq *cfs_rq)
8175{
8176 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8177 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8178#ifndef CONFIG_64BIT
8179 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8180#endif
141965c7 8181#ifdef CONFIG_SMP
9ee474f5 8182 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8183 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8184#endif
029632fb
PZ
8185}
8186
810b3817 8187#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8188static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8189{
fed14d45 8190 struct sched_entity *se = &p->se;
aff3e498 8191 struct cfs_rq *cfs_rq;
fed14d45 8192
b2b5ce02
PZ
8193 /*
8194 * If the task was not on the rq at the time of this cgroup movement
8195 * it must have been asleep, sleeping tasks keep their ->vruntime
8196 * absolute on their old rq until wakeup (needed for the fair sleeper
8197 * bonus in place_entity()).
8198 *
8199 * If it was on the rq, we've just 'preempted' it, which does convert
8200 * ->vruntime to a relative base.
8201 *
8202 * Make sure both cases convert their relative position when migrating
8203 * to another cgroup's rq. This does somewhat interfere with the
8204 * fair sleeper stuff for the first placement, but who cares.
8205 */
7ceff013 8206 /*
da0c1e65 8207 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8208 * But there are some cases where it has already been normalized:
8209 *
8210 * - Moving a forked child which is waiting for being woken up by
8211 * wake_up_new_task().
62af3783
DN
8212 * - Moving a task which has been woken up by try_to_wake_up() and
8213 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8214 *
8215 * To prevent boost or penalty in the new cfs_rq caused by delta
8216 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8217 */
da0c1e65
KT
8218 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8219 queued = 1;
7ceff013 8220
da0c1e65 8221 if (!queued)
fed14d45 8222 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8223 set_task_rq(p, task_cpu(p));
fed14d45 8224 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8225 if (!queued) {
fed14d45
PZ
8226 cfs_rq = cfs_rq_of(se);
8227 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8228#ifdef CONFIG_SMP
8229 /*
8230 * migrate_task_rq_fair() will have removed our previous
8231 * contribution, but we must synchronize for ongoing future
8232 * decay.
8233 */
fed14d45
PZ
8234 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8235 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8236#endif
8237 }
810b3817 8238}
029632fb
PZ
8239
8240void free_fair_sched_group(struct task_group *tg)
8241{
8242 int i;
8243
8244 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8245
8246 for_each_possible_cpu(i) {
8247 if (tg->cfs_rq)
8248 kfree(tg->cfs_rq[i]);
8249 if (tg->se)
8250 kfree(tg->se[i]);
8251 }
8252
8253 kfree(tg->cfs_rq);
8254 kfree(tg->se);
8255}
8256
8257int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8258{
8259 struct cfs_rq *cfs_rq;
8260 struct sched_entity *se;
8261 int i;
8262
8263 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8264 if (!tg->cfs_rq)
8265 goto err;
8266 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8267 if (!tg->se)
8268 goto err;
8269
8270 tg->shares = NICE_0_LOAD;
8271
8272 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8273
8274 for_each_possible_cpu(i) {
8275 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8276 GFP_KERNEL, cpu_to_node(i));
8277 if (!cfs_rq)
8278 goto err;
8279
8280 se = kzalloc_node(sizeof(struct sched_entity),
8281 GFP_KERNEL, cpu_to_node(i));
8282 if (!se)
8283 goto err_free_rq;
8284
8285 init_cfs_rq(cfs_rq);
8286 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8287 }
8288
8289 return 1;
8290
8291err_free_rq:
8292 kfree(cfs_rq);
8293err:
8294 return 0;
8295}
8296
8297void unregister_fair_sched_group(struct task_group *tg, int cpu)
8298{
8299 struct rq *rq = cpu_rq(cpu);
8300 unsigned long flags;
8301
8302 /*
8303 * Only empty task groups can be destroyed; so we can speculatively
8304 * check on_list without danger of it being re-added.
8305 */
8306 if (!tg->cfs_rq[cpu]->on_list)
8307 return;
8308
8309 raw_spin_lock_irqsave(&rq->lock, flags);
8310 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8311 raw_spin_unlock_irqrestore(&rq->lock, flags);
8312}
8313
8314void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8315 struct sched_entity *se, int cpu,
8316 struct sched_entity *parent)
8317{
8318 struct rq *rq = cpu_rq(cpu);
8319
8320 cfs_rq->tg = tg;
8321 cfs_rq->rq = rq;
029632fb
PZ
8322 init_cfs_rq_runtime(cfs_rq);
8323
8324 tg->cfs_rq[cpu] = cfs_rq;
8325 tg->se[cpu] = se;
8326
8327 /* se could be NULL for root_task_group */
8328 if (!se)
8329 return;
8330
fed14d45 8331 if (!parent) {
029632fb 8332 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8333 se->depth = 0;
8334 } else {
029632fb 8335 se->cfs_rq = parent->my_q;
fed14d45
PZ
8336 se->depth = parent->depth + 1;
8337 }
029632fb
PZ
8338
8339 se->my_q = cfs_rq;
0ac9b1c2
PT
8340 /* guarantee group entities always have weight */
8341 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8342 se->parent = parent;
8343}
8344
8345static DEFINE_MUTEX(shares_mutex);
8346
8347int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8348{
8349 int i;
8350 unsigned long flags;
8351
8352 /*
8353 * We can't change the weight of the root cgroup.
8354 */
8355 if (!tg->se[0])
8356 return -EINVAL;
8357
8358 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8359
8360 mutex_lock(&shares_mutex);
8361 if (tg->shares == shares)
8362 goto done;
8363
8364 tg->shares = shares;
8365 for_each_possible_cpu(i) {
8366 struct rq *rq = cpu_rq(i);
8367 struct sched_entity *se;
8368
8369 se = tg->se[i];
8370 /* Propagate contribution to hierarchy */
8371 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8372
8373 /* Possible calls to update_curr() need rq clock */
8374 update_rq_clock(rq);
17bc14b7 8375 for_each_sched_entity(se)
029632fb
PZ
8376 update_cfs_shares(group_cfs_rq(se));
8377 raw_spin_unlock_irqrestore(&rq->lock, flags);
8378 }
8379
8380done:
8381 mutex_unlock(&shares_mutex);
8382 return 0;
8383}
8384#else /* CONFIG_FAIR_GROUP_SCHED */
8385
8386void free_fair_sched_group(struct task_group *tg) { }
8387
8388int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8389{
8390 return 1;
8391}
8392
8393void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8394
8395#endif /* CONFIG_FAIR_GROUP_SCHED */
8396
810b3817 8397
6d686f45 8398static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8399{
8400 struct sched_entity *se = &task->se;
0d721cea
PW
8401 unsigned int rr_interval = 0;
8402
8403 /*
8404 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8405 * idle runqueue:
8406 */
0d721cea 8407 if (rq->cfs.load.weight)
a59f4e07 8408 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8409
8410 return rr_interval;
8411}
8412
bf0f6f24
IM
8413/*
8414 * All the scheduling class methods:
8415 */
029632fb 8416const struct sched_class fair_sched_class = {
5522d5d5 8417 .next = &idle_sched_class,
bf0f6f24
IM
8418 .enqueue_task = enqueue_task_fair,
8419 .dequeue_task = dequeue_task_fair,
8420 .yield_task = yield_task_fair,
d95f4122 8421 .yield_to_task = yield_to_task_fair,
bf0f6f24 8422
2e09bf55 8423 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8424
8425 .pick_next_task = pick_next_task_fair,
8426 .put_prev_task = put_prev_task_fair,
8427
681f3e68 8428#ifdef CONFIG_SMP
4ce72a2c 8429 .select_task_rq = select_task_rq_fair,
0a74bef8 8430 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8431
0bcdcf28
CE
8432 .rq_online = rq_online_fair,
8433 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8434
8435 .task_waking = task_waking_fair,
681f3e68 8436#endif
bf0f6f24 8437
83b699ed 8438 .set_curr_task = set_curr_task_fair,
bf0f6f24 8439 .task_tick = task_tick_fair,
cd29fe6f 8440 .task_fork = task_fork_fair,
cb469845
SR
8441
8442 .prio_changed = prio_changed_fair,
da7a735e 8443 .switched_from = switched_from_fair,
cb469845 8444 .switched_to = switched_to_fair,
810b3817 8445
0d721cea
PW
8446 .get_rr_interval = get_rr_interval_fair,
8447
6e998916
SG
8448 .update_curr = update_curr_fair,
8449
810b3817 8450#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8451 .task_move_group = task_move_group_fair,
810b3817 8452#endif
bf0f6f24
IM
8453};
8454
8455#ifdef CONFIG_SCHED_DEBUG
029632fb 8456void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8457{
bf0f6f24
IM
8458 struct cfs_rq *cfs_rq;
8459
5973e5b9 8460 rcu_read_lock();
c3b64f1e 8461 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8462 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8463 rcu_read_unlock();
bf0f6f24
IM
8464}
8465#endif
029632fb
PZ
8466
8467__init void init_sched_fair_class(void)
8468{
8469#ifdef CONFIG_SMP
8470 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8471
3451d024 8472#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8473 nohz.next_balance = jiffies;
029632fb 8474 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8475 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8476#endif
8477#endif /* SMP */
8478
8479}