mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task...
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
3d4b47b4
PZ
265static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266{
267 if (!cfs_rq->on_list) {
67e86250
PT
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 281 }
3d4b47b4
PZ
282
283 cfs_rq->on_list = 1;
284 }
285}
286
287static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288{
289 if (cfs_rq->on_list) {
290 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
291 cfs_rq->on_list = 0;
292 }
293}
294
b758149c
PZ
295/* Iterate thr' all leaf cfs_rq's on a runqueue */
296#define for_each_leaf_cfs_rq(rq, cfs_rq) \
297 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
298
299/* Do the two (enqueued) entities belong to the same group ? */
300static inline int
301is_same_group(struct sched_entity *se, struct sched_entity *pse)
302{
303 if (se->cfs_rq == pse->cfs_rq)
304 return 1;
305
306 return 0;
307}
308
309static inline struct sched_entity *parent_entity(struct sched_entity *se)
310{
311 return se->parent;
312}
313
464b7527
PZ
314/* return depth at which a sched entity is present in the hierarchy */
315static inline int depth_se(struct sched_entity *se)
316{
317 int depth = 0;
318
319 for_each_sched_entity(se)
320 depth++;
321
322 return depth;
323}
324
325static void
326find_matching_se(struct sched_entity **se, struct sched_entity **pse)
327{
328 int se_depth, pse_depth;
329
330 /*
331 * preemption test can be made between sibling entities who are in the
332 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
333 * both tasks until we find their ancestors who are siblings of common
334 * parent.
335 */
336
337 /* First walk up until both entities are at same depth */
338 se_depth = depth_se(*se);
339 pse_depth = depth_se(*pse);
340
341 while (se_depth > pse_depth) {
342 se_depth--;
343 *se = parent_entity(*se);
344 }
345
346 while (pse_depth > se_depth) {
347 pse_depth--;
348 *pse = parent_entity(*pse);
349 }
350
351 while (!is_same_group(*se, *pse)) {
352 *se = parent_entity(*se);
353 *pse = parent_entity(*pse);
354 }
355}
356
8f48894f
PZ
357#else /* !CONFIG_FAIR_GROUP_SCHED */
358
359static inline struct task_struct *task_of(struct sched_entity *se)
360{
361 return container_of(se, struct task_struct, se);
362}
bf0f6f24 363
62160e3f
IM
364static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
365{
366 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
367}
368
369#define entity_is_task(se) 1
370
b758149c
PZ
371#define for_each_sched_entity(se) \
372 for (; se; se = NULL)
bf0f6f24 373
b758149c 374static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 375{
b758149c 376 return &task_rq(p)->cfs;
bf0f6f24
IM
377}
378
b758149c
PZ
379static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
380{
381 struct task_struct *p = task_of(se);
382 struct rq *rq = task_rq(p);
383
384 return &rq->cfs;
385}
386
387/* runqueue "owned" by this group */
388static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
389{
390 return NULL;
391}
392
3d4b47b4
PZ
393static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394{
395}
396
397static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398{
399}
400
b758149c
PZ
401#define for_each_leaf_cfs_rq(rq, cfs_rq) \
402 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
403
404static inline int
405is_same_group(struct sched_entity *se, struct sched_entity *pse)
406{
407 return 1;
408}
409
410static inline struct sched_entity *parent_entity(struct sched_entity *se)
411{
412 return NULL;
413}
414
464b7527
PZ
415static inline void
416find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417{
418}
419
b758149c
PZ
420#endif /* CONFIG_FAIR_GROUP_SCHED */
421
6c16a6dc
PZ
422static __always_inline
423void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
424
425/**************************************************************
426 * Scheduling class tree data structure manipulation methods:
427 */
428
0702e3eb 429static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 430{
368059a9
PZ
431 s64 delta = (s64)(vruntime - min_vruntime);
432 if (delta > 0)
02e0431a
PZ
433 min_vruntime = vruntime;
434
435 return min_vruntime;
436}
437
0702e3eb 438static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
439{
440 s64 delta = (s64)(vruntime - min_vruntime);
441 if (delta < 0)
442 min_vruntime = vruntime;
443
444 return min_vruntime;
445}
446
54fdc581
FC
447static inline int entity_before(struct sched_entity *a,
448 struct sched_entity *b)
449{
450 return (s64)(a->vruntime - b->vruntime) < 0;
451}
452
1af5f730
PZ
453static void update_min_vruntime(struct cfs_rq *cfs_rq)
454{
455 u64 vruntime = cfs_rq->min_vruntime;
456
457 if (cfs_rq->curr)
458 vruntime = cfs_rq->curr->vruntime;
459
460 if (cfs_rq->rb_leftmost) {
461 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
462 struct sched_entity,
463 run_node);
464
e17036da 465 if (!cfs_rq->curr)
1af5f730
PZ
466 vruntime = se->vruntime;
467 else
468 vruntime = min_vruntime(vruntime, se->vruntime);
469 }
470
471 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
472#ifndef CONFIG_64BIT
473 smp_wmb();
474 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
475#endif
1af5f730
PZ
476}
477
bf0f6f24
IM
478/*
479 * Enqueue an entity into the rb-tree:
480 */
0702e3eb 481static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
482{
483 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
484 struct rb_node *parent = NULL;
485 struct sched_entity *entry;
bf0f6f24
IM
486 int leftmost = 1;
487
488 /*
489 * Find the right place in the rbtree:
490 */
491 while (*link) {
492 parent = *link;
493 entry = rb_entry(parent, struct sched_entity, run_node);
494 /*
495 * We dont care about collisions. Nodes with
496 * the same key stay together.
497 */
2bd2d6f2 498 if (entity_before(se, entry)) {
bf0f6f24
IM
499 link = &parent->rb_left;
500 } else {
501 link = &parent->rb_right;
502 leftmost = 0;
503 }
504 }
505
506 /*
507 * Maintain a cache of leftmost tree entries (it is frequently
508 * used):
509 */
1af5f730 510 if (leftmost)
57cb499d 511 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
512
513 rb_link_node(&se->run_node, parent, link);
514 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
515}
516
0702e3eb 517static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 518{
3fe69747
PZ
519 if (cfs_rq->rb_leftmost == &se->run_node) {
520 struct rb_node *next_node;
3fe69747
PZ
521
522 next_node = rb_next(&se->run_node);
523 cfs_rq->rb_leftmost = next_node;
3fe69747 524 }
e9acbff6 525
bf0f6f24 526 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
527}
528
029632fb 529struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 530{
f4b6755f
PZ
531 struct rb_node *left = cfs_rq->rb_leftmost;
532
533 if (!left)
534 return NULL;
535
536 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
537}
538
ac53db59
RR
539static struct sched_entity *__pick_next_entity(struct sched_entity *se)
540{
541 struct rb_node *next = rb_next(&se->run_node);
542
543 if (!next)
544 return NULL;
545
546 return rb_entry(next, struct sched_entity, run_node);
547}
548
549#ifdef CONFIG_SCHED_DEBUG
029632fb 550struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 551{
7eee3e67 552 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 553
70eee74b
BS
554 if (!last)
555 return NULL;
7eee3e67
IM
556
557 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
558}
559
bf0f6f24
IM
560/**************************************************************
561 * Scheduling class statistics methods:
562 */
563
acb4a848 564int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 565 void __user *buffer, size_t *lenp,
b2be5e96
PZ
566 loff_t *ppos)
567{
8d65af78 568 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 569 int factor = get_update_sysctl_factor();
b2be5e96
PZ
570
571 if (ret || !write)
572 return ret;
573
574 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
575 sysctl_sched_min_granularity);
576
acb4a848
CE
577#define WRT_SYSCTL(name) \
578 (normalized_sysctl_##name = sysctl_##name / (factor))
579 WRT_SYSCTL(sched_min_granularity);
580 WRT_SYSCTL(sched_latency);
581 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
582#undef WRT_SYSCTL
583
b2be5e96
PZ
584 return 0;
585}
586#endif
647e7cac 587
a7be37ac 588/*
f9c0b095 589 * delta /= w
a7be37ac
PZ
590 */
591static inline unsigned long
592calc_delta_fair(unsigned long delta, struct sched_entity *se)
593{
f9c0b095
PZ
594 if (unlikely(se->load.weight != NICE_0_LOAD))
595 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
596
597 return delta;
598}
599
647e7cac
IM
600/*
601 * The idea is to set a period in which each task runs once.
602 *
532b1858 603 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
604 * this period because otherwise the slices get too small.
605 *
606 * p = (nr <= nl) ? l : l*nr/nl
607 */
4d78e7b6
PZ
608static u64 __sched_period(unsigned long nr_running)
609{
610 u64 period = sysctl_sched_latency;
b2be5e96 611 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
612
613 if (unlikely(nr_running > nr_latency)) {
4bf0b771 614 period = sysctl_sched_min_granularity;
4d78e7b6 615 period *= nr_running;
4d78e7b6
PZ
616 }
617
618 return period;
619}
620
647e7cac
IM
621/*
622 * We calculate the wall-time slice from the period by taking a part
623 * proportional to the weight.
624 *
f9c0b095 625 * s = p*P[w/rw]
647e7cac 626 */
6d0f0ebd 627static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 628{
0a582440 629 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 630
0a582440 631 for_each_sched_entity(se) {
6272d68c 632 struct load_weight *load;
3104bf03 633 struct load_weight lw;
6272d68c
LM
634
635 cfs_rq = cfs_rq_of(se);
636 load = &cfs_rq->load;
f9c0b095 637
0a582440 638 if (unlikely(!se->on_rq)) {
3104bf03 639 lw = cfs_rq->load;
0a582440
MG
640
641 update_load_add(&lw, se->load.weight);
642 load = &lw;
643 }
644 slice = calc_delta_mine(slice, se->load.weight, load);
645 }
646 return slice;
bf0f6f24
IM
647}
648
647e7cac 649/*
ac884dec 650 * We calculate the vruntime slice of a to be inserted task
647e7cac 651 *
f9c0b095 652 * vs = s/w
647e7cac 653 */
f9c0b095 654static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 655{
f9c0b095 656 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
657}
658
d6b55918 659static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 660static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 661
bf0f6f24
IM
662/*
663 * Update the current task's runtime statistics. Skip current tasks that
664 * are not in our scheduling class.
665 */
666static inline void
8ebc91d9
IM
667__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
668 unsigned long delta_exec)
bf0f6f24 669{
bbdba7c0 670 unsigned long delta_exec_weighted;
bf0f6f24 671
41acab88
LDM
672 schedstat_set(curr->statistics.exec_max,
673 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
674
675 curr->sum_exec_runtime += delta_exec;
7a62eabc 676 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 677 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 678
e9acbff6 679 curr->vruntime += delta_exec_weighted;
1af5f730 680 update_min_vruntime(cfs_rq);
3b3d190e 681
70caf8a6 682#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 683 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 684#endif
bf0f6f24
IM
685}
686
b7cc0896 687static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 688{
429d43bc 689 struct sched_entity *curr = cfs_rq->curr;
305e6835 690 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
691 unsigned long delta_exec;
692
693 if (unlikely(!curr))
694 return;
695
696 /*
697 * Get the amount of time the current task was running
698 * since the last time we changed load (this cannot
699 * overflow on 32 bits):
700 */
8ebc91d9 701 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
702 if (!delta_exec)
703 return;
bf0f6f24 704
8ebc91d9
IM
705 __update_curr(cfs_rq, curr, delta_exec);
706 curr->exec_start = now;
d842de87
SV
707
708 if (entity_is_task(curr)) {
709 struct task_struct *curtask = task_of(curr);
710
f977bb49 711 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 712 cpuacct_charge(curtask, delta_exec);
f06febc9 713 account_group_exec_runtime(curtask, delta_exec);
d842de87 714 }
ec12cb7f
PT
715
716 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
717}
718
719static inline void
5870db5b 720update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 721{
41acab88 722 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
723}
724
bf0f6f24
IM
725/*
726 * Task is being enqueued - update stats:
727 */
d2417e5a 728static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
bf0f6f24
IM
730 /*
731 * Are we enqueueing a waiting task? (for current tasks
732 * a dequeue/enqueue event is a NOP)
733 */
429d43bc 734 if (se != cfs_rq->curr)
5870db5b 735 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
736}
737
bf0f6f24 738static void
9ef0a961 739update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 740{
41acab88
LDM
741 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
742 rq_of(cfs_rq)->clock - se->statistics.wait_start));
743 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
744 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
745 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
746#ifdef CONFIG_SCHEDSTATS
747 if (entity_is_task(se)) {
748 trace_sched_stat_wait(task_of(se),
41acab88 749 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
750 }
751#endif
41acab88 752 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
753}
754
755static inline void
19b6a2e3 756update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
bf0f6f24
IM
758 /*
759 * Mark the end of the wait period if dequeueing a
760 * waiting task:
761 */
429d43bc 762 if (se != cfs_rq->curr)
9ef0a961 763 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
764}
765
766/*
767 * We are picking a new current task - update its stats:
768 */
769static inline void
79303e9e 770update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
771{
772 /*
773 * We are starting a new run period:
774 */
305e6835 775 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
776}
777
bf0f6f24
IM
778/**************************************************
779 * Scheduling class queueing methods:
780 */
781
cbee9f88
PZ
782#ifdef CONFIG_NUMA_BALANCING
783/*
6e5fb223 784 * numa task sample period in ms
cbee9f88 785 */
6e5fb223
PZ
786unsigned int sysctl_numa_balancing_scan_period_min = 100;
787unsigned int sysctl_numa_balancing_scan_period_max = 100*16;
788
789/* Portion of address space to scan in MB */
790unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 791
4b96a29b
PZ
792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
cbee9f88
PZ
795static void task_numa_placement(struct task_struct *p)
796{
797 int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
798
799 if (p->numa_scan_seq == seq)
800 return;
801 p->numa_scan_seq = seq;
802
803 /* FIXME: Scheduling placement policy hints go here */
804}
805
806/*
807 * Got a PROT_NONE fault for a page on @node.
808 */
809void task_numa_fault(int node, int pages)
810{
811 struct task_struct *p = current;
812
813 /* FIXME: Allocate task-specific structure for placement policy here */
814
fb003b80
MG
815 /*
816 * Assume that as faults occur that pages are getting properly placed
817 * and fewer NUMA hints are required. Note that this is a big
818 * assumption, it assumes processes reach a steady steady with no
819 * further phase changes.
820 */
821 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
822 p->numa_scan_period + jiffies_to_msecs(2));
823
cbee9f88
PZ
824 task_numa_placement(p);
825}
826
6e5fb223
PZ
827static void reset_ptenuma_scan(struct task_struct *p)
828{
829 ACCESS_ONCE(p->mm->numa_scan_seq)++;
830 p->mm->numa_scan_offset = 0;
831}
832
cbee9f88
PZ
833/*
834 * The expensive part of numa migration is done from task_work context.
835 * Triggered from task_tick_numa().
836 */
837void task_numa_work(struct callback_head *work)
838{
839 unsigned long migrate, next_scan, now = jiffies;
840 struct task_struct *p = current;
841 struct mm_struct *mm = p->mm;
6e5fb223 842 struct vm_area_struct *vma;
9f40604c
MG
843 unsigned long start, end;
844 long pages;
cbee9f88
PZ
845
846 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
847
848 work->next = work; /* protect against double add */
849 /*
850 * Who cares about NUMA placement when they're dying.
851 *
852 * NOTE: make sure not to dereference p->mm before this check,
853 * exit_task_work() happens _after_ exit_mm() so we could be called
854 * without p->mm even though we still had it when we enqueued this
855 * work.
856 */
857 if (p->flags & PF_EXITING)
858 return;
859
860 /*
861 * Enforce maximal scan/migration frequency..
862 */
863 migrate = mm->numa_next_scan;
864 if (time_before(now, migrate))
865 return;
866
867 if (p->numa_scan_period == 0)
868 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
869
fb003b80 870 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
871 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
872 return;
873
e14808b4
MG
874 /*
875 * Do not set pte_numa if the current running node is rate-limited.
876 * This loses statistics on the fault but if we are unwilling to
877 * migrate to this node, it is less likely we can do useful work
878 */
879 if (migrate_ratelimited(numa_node_id()))
880 return;
881
9f40604c
MG
882 start = mm->numa_scan_offset;
883 pages = sysctl_numa_balancing_scan_size;
884 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
885 if (!pages)
886 return;
cbee9f88 887
6e5fb223 888 down_read(&mm->mmap_sem);
9f40604c 889 vma = find_vma(mm, start);
6e5fb223
PZ
890 if (!vma) {
891 reset_ptenuma_scan(p);
9f40604c 892 start = 0;
6e5fb223
PZ
893 vma = mm->mmap;
894 }
9f40604c 895 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
896 if (!vma_migratable(vma))
897 continue;
898
899 /* Skip small VMAs. They are not likely to be of relevance */
900 if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
901 continue;
902
9f40604c
MG
903 do {
904 start = max(start, vma->vm_start);
905 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
906 end = min(end, vma->vm_end);
907 pages -= change_prot_numa(vma, start, end);
6e5fb223 908
9f40604c
MG
909 start = end;
910 if (pages <= 0)
911 goto out;
912 } while (end != vma->vm_end);
cbee9f88 913 }
6e5fb223 914
9f40604c 915out:
6e5fb223
PZ
916 /*
917 * It is possible to reach the end of the VMA list but the last few VMAs are
918 * not guaranteed to the vma_migratable. If they are not, we would find the
919 * !migratable VMA on the next scan but not reset the scanner to the start
920 * so check it now.
921 */
922 if (vma)
9f40604c 923 mm->numa_scan_offset = start;
6e5fb223
PZ
924 else
925 reset_ptenuma_scan(p);
926 up_read(&mm->mmap_sem);
cbee9f88
PZ
927}
928
929/*
930 * Drive the periodic memory faults..
931 */
932void task_tick_numa(struct rq *rq, struct task_struct *curr)
933{
934 struct callback_head *work = &curr->numa_work;
935 u64 period, now;
936
937 /*
938 * We don't care about NUMA placement if we don't have memory.
939 */
940 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
941 return;
942
943 /*
944 * Using runtime rather than walltime has the dual advantage that
945 * we (mostly) drive the selection from busy threads and that the
946 * task needs to have done some actual work before we bother with
947 * NUMA placement.
948 */
949 now = curr->se.sum_exec_runtime;
950 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
951
952 if (now - curr->node_stamp > period) {
4b96a29b
PZ
953 if (!curr->node_stamp)
954 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
955 curr->node_stamp = now;
956
957 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
958 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
959 task_work_add(curr, work, true);
960 }
961 }
962}
963#else
964static void task_tick_numa(struct rq *rq, struct task_struct *curr)
965{
966}
967#endif /* CONFIG_NUMA_BALANCING */
968
30cfdcfc
DA
969static void
970account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
971{
972 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 973 if (!parent_entity(se))
029632fb 974 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
975#ifdef CONFIG_SMP
976 if (entity_is_task(se))
eb95308e 977 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 978#endif
30cfdcfc 979 cfs_rq->nr_running++;
30cfdcfc
DA
980}
981
982static void
983account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
984{
985 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 986 if (!parent_entity(se))
029632fb 987 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 988 if (entity_is_task(se))
b87f1724 989 list_del_init(&se->group_node);
30cfdcfc 990 cfs_rq->nr_running--;
30cfdcfc
DA
991}
992
3ff6dcac 993#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
994/* we need this in update_cfs_load and load-balance functions below */
995static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 996# ifdef CONFIG_SMP
d6b55918
PT
997static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
998 int global_update)
999{
1000 struct task_group *tg = cfs_rq->tg;
1001 long load_avg;
1002
1003 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
1004 load_avg -= cfs_rq->load_contribution;
1005
1006 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
1007 atomic_add(load_avg, &tg->load_weight);
1008 cfs_rq->load_contribution += load_avg;
1009 }
1010}
1011
1012static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 1013{
a7a4f8a7 1014 u64 period = sysctl_sched_shares_window;
2069dd75 1015 u64 now, delta;
e33078ba 1016 unsigned long load = cfs_rq->load.weight;
2069dd75 1017
64660c86 1018 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
1019 return;
1020
05ca62c6 1021 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
1022 delta = now - cfs_rq->load_stamp;
1023
e33078ba
PT
1024 /* truncate load history at 4 idle periods */
1025 if (cfs_rq->load_stamp > cfs_rq->load_last &&
1026 now - cfs_rq->load_last > 4 * period) {
1027 cfs_rq->load_period = 0;
1028 cfs_rq->load_avg = 0;
f07333bf 1029 delta = period - 1;
e33078ba
PT
1030 }
1031
2069dd75 1032 cfs_rq->load_stamp = now;
3b3d190e 1033 cfs_rq->load_unacc_exec_time = 0;
2069dd75 1034 cfs_rq->load_period += delta;
e33078ba
PT
1035 if (load) {
1036 cfs_rq->load_last = now;
1037 cfs_rq->load_avg += delta * load;
1038 }
2069dd75 1039
d6b55918
PT
1040 /* consider updating load contribution on each fold or truncate */
1041 if (global_update || cfs_rq->load_period > period
1042 || !cfs_rq->load_period)
1043 update_cfs_rq_load_contribution(cfs_rq, global_update);
1044
2069dd75
PZ
1045 while (cfs_rq->load_period > period) {
1046 /*
1047 * Inline assembly required to prevent the compiler
1048 * optimising this loop into a divmod call.
1049 * See __iter_div_u64_rem() for another example of this.
1050 */
1051 asm("" : "+rm" (cfs_rq->load_period));
1052 cfs_rq->load_period /= 2;
1053 cfs_rq->load_avg /= 2;
1054 }
3d4b47b4 1055
e33078ba
PT
1056 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
1057 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
1058}
1059
cf5f0acf
PZ
1060static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1061{
1062 long tg_weight;
1063
1064 /*
1065 * Use this CPU's actual weight instead of the last load_contribution
1066 * to gain a more accurate current total weight. See
1067 * update_cfs_rq_load_contribution().
1068 */
1069 tg_weight = atomic_read(&tg->load_weight);
1070 tg_weight -= cfs_rq->load_contribution;
1071 tg_weight += cfs_rq->load.weight;
1072
1073 return tg_weight;
1074}
1075
6d5ab293 1076static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1077{
cf5f0acf 1078 long tg_weight, load, shares;
3ff6dcac 1079
cf5f0acf 1080 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1081 load = cfs_rq->load.weight;
3ff6dcac 1082
3ff6dcac 1083 shares = (tg->shares * load);
cf5f0acf
PZ
1084 if (tg_weight)
1085 shares /= tg_weight;
3ff6dcac
YZ
1086
1087 if (shares < MIN_SHARES)
1088 shares = MIN_SHARES;
1089 if (shares > tg->shares)
1090 shares = tg->shares;
1091
1092 return shares;
1093}
1094
1095static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1096{
1097 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
1098 update_cfs_load(cfs_rq, 0);
6d5ab293 1099 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
1100 }
1101}
1102# else /* CONFIG_SMP */
1103static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1104{
1105}
1106
6d5ab293 1107static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1108{
1109 return tg->shares;
1110}
1111
1112static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1113{
1114}
1115# endif /* CONFIG_SMP */
2069dd75
PZ
1116static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1117 unsigned long weight)
1118{
19e5eebb
PT
1119 if (se->on_rq) {
1120 /* commit outstanding execution time */
1121 if (cfs_rq->curr == se)
1122 update_curr(cfs_rq);
2069dd75 1123 account_entity_dequeue(cfs_rq, se);
19e5eebb 1124 }
2069dd75
PZ
1125
1126 update_load_set(&se->load, weight);
1127
1128 if (se->on_rq)
1129 account_entity_enqueue(cfs_rq, se);
1130}
1131
6d5ab293 1132static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1133{
1134 struct task_group *tg;
1135 struct sched_entity *se;
3ff6dcac 1136 long shares;
2069dd75 1137
2069dd75
PZ
1138 tg = cfs_rq->tg;
1139 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1140 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1141 return;
3ff6dcac
YZ
1142#ifndef CONFIG_SMP
1143 if (likely(se->load.weight == tg->shares))
1144 return;
1145#endif
6d5ab293 1146 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1147
1148 reweight_entity(cfs_rq_of(se), se, shares);
1149}
1150#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 1151static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
1152{
1153}
1154
6d5ab293 1155static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1156{
1157}
43365bd7
PT
1158
1159static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1160{
1161}
2069dd75
PZ
1162#endif /* CONFIG_FAIR_GROUP_SCHED */
1163
2396af69 1164static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1165{
bf0f6f24 1166#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1167 struct task_struct *tsk = NULL;
1168
1169 if (entity_is_task(se))
1170 tsk = task_of(se);
1171
41acab88
LDM
1172 if (se->statistics.sleep_start) {
1173 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1174
1175 if ((s64)delta < 0)
1176 delta = 0;
1177
41acab88
LDM
1178 if (unlikely(delta > se->statistics.sleep_max))
1179 se->statistics.sleep_max = delta;
bf0f6f24 1180
8c79a045 1181 se->statistics.sleep_start = 0;
41acab88 1182 se->statistics.sum_sleep_runtime += delta;
9745512c 1183
768d0c27 1184 if (tsk) {
e414314c 1185 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1186 trace_sched_stat_sleep(tsk, delta);
1187 }
bf0f6f24 1188 }
41acab88
LDM
1189 if (se->statistics.block_start) {
1190 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1191
1192 if ((s64)delta < 0)
1193 delta = 0;
1194
41acab88
LDM
1195 if (unlikely(delta > se->statistics.block_max))
1196 se->statistics.block_max = delta;
bf0f6f24 1197
8c79a045 1198 se->statistics.block_start = 0;
41acab88 1199 se->statistics.sum_sleep_runtime += delta;
30084fbd 1200
e414314c 1201 if (tsk) {
8f0dfc34 1202 if (tsk->in_iowait) {
41acab88
LDM
1203 se->statistics.iowait_sum += delta;
1204 se->statistics.iowait_count++;
768d0c27 1205 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1206 }
1207
b781a602
AV
1208 trace_sched_stat_blocked(tsk, delta);
1209
e414314c
PZ
1210 /*
1211 * Blocking time is in units of nanosecs, so shift by
1212 * 20 to get a milliseconds-range estimation of the
1213 * amount of time that the task spent sleeping:
1214 */
1215 if (unlikely(prof_on == SLEEP_PROFILING)) {
1216 profile_hits(SLEEP_PROFILING,
1217 (void *)get_wchan(tsk),
1218 delta >> 20);
1219 }
1220 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1221 }
bf0f6f24
IM
1222 }
1223#endif
1224}
1225
ddc97297
PZ
1226static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1227{
1228#ifdef CONFIG_SCHED_DEBUG
1229 s64 d = se->vruntime - cfs_rq->min_vruntime;
1230
1231 if (d < 0)
1232 d = -d;
1233
1234 if (d > 3*sysctl_sched_latency)
1235 schedstat_inc(cfs_rq, nr_spread_over);
1236#endif
1237}
1238
aeb73b04
PZ
1239static void
1240place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1241{
1af5f730 1242 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1243
2cb8600e
PZ
1244 /*
1245 * The 'current' period is already promised to the current tasks,
1246 * however the extra weight of the new task will slow them down a
1247 * little, place the new task so that it fits in the slot that
1248 * stays open at the end.
1249 */
94dfb5e7 1250 if (initial && sched_feat(START_DEBIT))
f9c0b095 1251 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1252
a2e7a7eb 1253 /* sleeps up to a single latency don't count. */
5ca9880c 1254 if (!initial) {
a2e7a7eb 1255 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1256
a2e7a7eb
MG
1257 /*
1258 * Halve their sleep time's effect, to allow
1259 * for a gentler effect of sleepers:
1260 */
1261 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1262 thresh >>= 1;
51e0304c 1263
a2e7a7eb 1264 vruntime -= thresh;
aeb73b04
PZ
1265 }
1266
b5d9d734
MG
1267 /* ensure we never gain time by being placed backwards. */
1268 vruntime = max_vruntime(se->vruntime, vruntime);
1269
67e9fb2a 1270 se->vruntime = vruntime;
aeb73b04
PZ
1271}
1272
d3d9dc33
PT
1273static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1274
bf0f6f24 1275static void
88ec22d3 1276enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1277{
88ec22d3
PZ
1278 /*
1279 * Update the normalized vruntime before updating min_vruntime
1280 * through callig update_curr().
1281 */
371fd7e7 1282 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1283 se->vruntime += cfs_rq->min_vruntime;
1284
bf0f6f24 1285 /*
a2a2d680 1286 * Update run-time statistics of the 'current'.
bf0f6f24 1287 */
b7cc0896 1288 update_curr(cfs_rq);
d6b55918 1289 update_cfs_load(cfs_rq, 0);
a992241d 1290 account_entity_enqueue(cfs_rq, se);
6d5ab293 1291 update_cfs_shares(cfs_rq);
bf0f6f24 1292
88ec22d3 1293 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1294 place_entity(cfs_rq, se, 0);
2396af69 1295 enqueue_sleeper(cfs_rq, se);
e9acbff6 1296 }
bf0f6f24 1297
d2417e5a 1298 update_stats_enqueue(cfs_rq, se);
ddc97297 1299 check_spread(cfs_rq, se);
83b699ed
SV
1300 if (se != cfs_rq->curr)
1301 __enqueue_entity(cfs_rq, se);
2069dd75 1302 se->on_rq = 1;
3d4b47b4 1303
d3d9dc33 1304 if (cfs_rq->nr_running == 1) {
3d4b47b4 1305 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1306 check_enqueue_throttle(cfs_rq);
1307 }
bf0f6f24
IM
1308}
1309
2c13c919 1310static void __clear_buddies_last(struct sched_entity *se)
2002c695 1311{
2c13c919
RR
1312 for_each_sched_entity(se) {
1313 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1314 if (cfs_rq->last == se)
1315 cfs_rq->last = NULL;
1316 else
1317 break;
1318 }
1319}
2002c695 1320
2c13c919
RR
1321static void __clear_buddies_next(struct sched_entity *se)
1322{
1323 for_each_sched_entity(se) {
1324 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1325 if (cfs_rq->next == se)
1326 cfs_rq->next = NULL;
1327 else
1328 break;
1329 }
2002c695
PZ
1330}
1331
ac53db59
RR
1332static void __clear_buddies_skip(struct sched_entity *se)
1333{
1334 for_each_sched_entity(se) {
1335 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1336 if (cfs_rq->skip == se)
1337 cfs_rq->skip = NULL;
1338 else
1339 break;
1340 }
1341}
1342
a571bbea
PZ
1343static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1344{
2c13c919
RR
1345 if (cfs_rq->last == se)
1346 __clear_buddies_last(se);
1347
1348 if (cfs_rq->next == se)
1349 __clear_buddies_next(se);
ac53db59
RR
1350
1351 if (cfs_rq->skip == se)
1352 __clear_buddies_skip(se);
a571bbea
PZ
1353}
1354
6c16a6dc 1355static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1356
bf0f6f24 1357static void
371fd7e7 1358dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1359{
a2a2d680
DA
1360 /*
1361 * Update run-time statistics of the 'current'.
1362 */
1363 update_curr(cfs_rq);
1364
19b6a2e3 1365 update_stats_dequeue(cfs_rq, se);
371fd7e7 1366 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1367#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1368 if (entity_is_task(se)) {
1369 struct task_struct *tsk = task_of(se);
1370
1371 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1372 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1373 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1374 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1375 }
db36cc7d 1376#endif
67e9fb2a
PZ
1377 }
1378
2002c695 1379 clear_buddies(cfs_rq, se);
4793241b 1380
83b699ed 1381 if (se != cfs_rq->curr)
30cfdcfc 1382 __dequeue_entity(cfs_rq, se);
2069dd75 1383 se->on_rq = 0;
d6b55918 1384 update_cfs_load(cfs_rq, 0);
30cfdcfc 1385 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1386
1387 /*
1388 * Normalize the entity after updating the min_vruntime because the
1389 * update can refer to the ->curr item and we need to reflect this
1390 * movement in our normalized position.
1391 */
371fd7e7 1392 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1393 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1394
d8b4986d
PT
1395 /* return excess runtime on last dequeue */
1396 return_cfs_rq_runtime(cfs_rq);
1397
1e876231
PZ
1398 update_min_vruntime(cfs_rq);
1399 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1400}
1401
1402/*
1403 * Preempt the current task with a newly woken task if needed:
1404 */
7c92e54f 1405static void
2e09bf55 1406check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1407{
11697830 1408 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1409 struct sched_entity *se;
1410 s64 delta;
11697830 1411
6d0f0ebd 1412 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1413 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1414 if (delta_exec > ideal_runtime) {
bf0f6f24 1415 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1416 /*
1417 * The current task ran long enough, ensure it doesn't get
1418 * re-elected due to buddy favours.
1419 */
1420 clear_buddies(cfs_rq, curr);
f685ceac
MG
1421 return;
1422 }
1423
1424 /*
1425 * Ensure that a task that missed wakeup preemption by a
1426 * narrow margin doesn't have to wait for a full slice.
1427 * This also mitigates buddy induced latencies under load.
1428 */
f685ceac
MG
1429 if (delta_exec < sysctl_sched_min_granularity)
1430 return;
1431
f4cfb33e
WX
1432 se = __pick_first_entity(cfs_rq);
1433 delta = curr->vruntime - se->vruntime;
f685ceac 1434
f4cfb33e
WX
1435 if (delta < 0)
1436 return;
d7d82944 1437
f4cfb33e
WX
1438 if (delta > ideal_runtime)
1439 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1440}
1441
83b699ed 1442static void
8494f412 1443set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1444{
83b699ed
SV
1445 /* 'current' is not kept within the tree. */
1446 if (se->on_rq) {
1447 /*
1448 * Any task has to be enqueued before it get to execute on
1449 * a CPU. So account for the time it spent waiting on the
1450 * runqueue.
1451 */
1452 update_stats_wait_end(cfs_rq, se);
1453 __dequeue_entity(cfs_rq, se);
1454 }
1455
79303e9e 1456 update_stats_curr_start(cfs_rq, se);
429d43bc 1457 cfs_rq->curr = se;
eba1ed4b
IM
1458#ifdef CONFIG_SCHEDSTATS
1459 /*
1460 * Track our maximum slice length, if the CPU's load is at
1461 * least twice that of our own weight (i.e. dont track it
1462 * when there are only lesser-weight tasks around):
1463 */
495eca49 1464 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1465 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1466 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1467 }
1468#endif
4a55b450 1469 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1470}
1471
3f3a4904
PZ
1472static int
1473wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1474
ac53db59
RR
1475/*
1476 * Pick the next process, keeping these things in mind, in this order:
1477 * 1) keep things fair between processes/task groups
1478 * 2) pick the "next" process, since someone really wants that to run
1479 * 3) pick the "last" process, for cache locality
1480 * 4) do not run the "skip" process, if something else is available
1481 */
f4b6755f 1482static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1483{
ac53db59 1484 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1485 struct sched_entity *left = se;
f4b6755f 1486
ac53db59
RR
1487 /*
1488 * Avoid running the skip buddy, if running something else can
1489 * be done without getting too unfair.
1490 */
1491 if (cfs_rq->skip == se) {
1492 struct sched_entity *second = __pick_next_entity(se);
1493 if (second && wakeup_preempt_entity(second, left) < 1)
1494 se = second;
1495 }
aa2ac252 1496
f685ceac
MG
1497 /*
1498 * Prefer last buddy, try to return the CPU to a preempted task.
1499 */
1500 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1501 se = cfs_rq->last;
1502
ac53db59
RR
1503 /*
1504 * Someone really wants this to run. If it's not unfair, run it.
1505 */
1506 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1507 se = cfs_rq->next;
1508
f685ceac 1509 clear_buddies(cfs_rq, se);
4793241b
PZ
1510
1511 return se;
aa2ac252
PZ
1512}
1513
d3d9dc33
PT
1514static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1515
ab6cde26 1516static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1517{
1518 /*
1519 * If still on the runqueue then deactivate_task()
1520 * was not called and update_curr() has to be done:
1521 */
1522 if (prev->on_rq)
b7cc0896 1523 update_curr(cfs_rq);
bf0f6f24 1524
d3d9dc33
PT
1525 /* throttle cfs_rqs exceeding runtime */
1526 check_cfs_rq_runtime(cfs_rq);
1527
ddc97297 1528 check_spread(cfs_rq, prev);
30cfdcfc 1529 if (prev->on_rq) {
5870db5b 1530 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1531 /* Put 'current' back into the tree. */
1532 __enqueue_entity(cfs_rq, prev);
1533 }
429d43bc 1534 cfs_rq->curr = NULL;
bf0f6f24
IM
1535}
1536
8f4d37ec
PZ
1537static void
1538entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1539{
bf0f6f24 1540 /*
30cfdcfc 1541 * Update run-time statistics of the 'current'.
bf0f6f24 1542 */
30cfdcfc 1543 update_curr(cfs_rq);
bf0f6f24 1544
43365bd7
PT
1545 /*
1546 * Update share accounting for long-running entities.
1547 */
1548 update_entity_shares_tick(cfs_rq);
1549
8f4d37ec
PZ
1550#ifdef CONFIG_SCHED_HRTICK
1551 /*
1552 * queued ticks are scheduled to match the slice, so don't bother
1553 * validating it and just reschedule.
1554 */
983ed7a6
HH
1555 if (queued) {
1556 resched_task(rq_of(cfs_rq)->curr);
1557 return;
1558 }
8f4d37ec
PZ
1559 /*
1560 * don't let the period tick interfere with the hrtick preemption
1561 */
1562 if (!sched_feat(DOUBLE_TICK) &&
1563 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1564 return;
1565#endif
1566
2c2efaed 1567 if (cfs_rq->nr_running > 1)
2e09bf55 1568 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1569}
1570
ab84d31e
PT
1571
1572/**************************************************
1573 * CFS bandwidth control machinery
1574 */
1575
1576#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1577
1578#ifdef HAVE_JUMP_LABEL
c5905afb 1579static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1580
1581static inline bool cfs_bandwidth_used(void)
1582{
c5905afb 1583 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1584}
1585
1586void account_cfs_bandwidth_used(int enabled, int was_enabled)
1587{
1588 /* only need to count groups transitioning between enabled/!enabled */
1589 if (enabled && !was_enabled)
c5905afb 1590 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1591 else if (!enabled && was_enabled)
c5905afb 1592 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1593}
1594#else /* HAVE_JUMP_LABEL */
1595static bool cfs_bandwidth_used(void)
1596{
1597 return true;
1598}
1599
1600void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1601#endif /* HAVE_JUMP_LABEL */
1602
ab84d31e
PT
1603/*
1604 * default period for cfs group bandwidth.
1605 * default: 0.1s, units: nanoseconds
1606 */
1607static inline u64 default_cfs_period(void)
1608{
1609 return 100000000ULL;
1610}
ec12cb7f
PT
1611
1612static inline u64 sched_cfs_bandwidth_slice(void)
1613{
1614 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1615}
1616
a9cf55b2
PT
1617/*
1618 * Replenish runtime according to assigned quota and update expiration time.
1619 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1620 * additional synchronization around rq->lock.
1621 *
1622 * requires cfs_b->lock
1623 */
029632fb 1624void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1625{
1626 u64 now;
1627
1628 if (cfs_b->quota == RUNTIME_INF)
1629 return;
1630
1631 now = sched_clock_cpu(smp_processor_id());
1632 cfs_b->runtime = cfs_b->quota;
1633 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1634}
1635
029632fb
PZ
1636static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1637{
1638 return &tg->cfs_bandwidth;
1639}
1640
85dac906
PT
1641/* returns 0 on failure to allocate runtime */
1642static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1643{
1644 struct task_group *tg = cfs_rq->tg;
1645 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1646 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1647
1648 /* note: this is a positive sum as runtime_remaining <= 0 */
1649 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1650
1651 raw_spin_lock(&cfs_b->lock);
1652 if (cfs_b->quota == RUNTIME_INF)
1653 amount = min_amount;
58088ad0 1654 else {
a9cf55b2
PT
1655 /*
1656 * If the bandwidth pool has become inactive, then at least one
1657 * period must have elapsed since the last consumption.
1658 * Refresh the global state and ensure bandwidth timer becomes
1659 * active.
1660 */
1661 if (!cfs_b->timer_active) {
1662 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1663 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1664 }
58088ad0
PT
1665
1666 if (cfs_b->runtime > 0) {
1667 amount = min(cfs_b->runtime, min_amount);
1668 cfs_b->runtime -= amount;
1669 cfs_b->idle = 0;
1670 }
ec12cb7f 1671 }
a9cf55b2 1672 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1673 raw_spin_unlock(&cfs_b->lock);
1674
1675 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1676 /*
1677 * we may have advanced our local expiration to account for allowed
1678 * spread between our sched_clock and the one on which runtime was
1679 * issued.
1680 */
1681 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1682 cfs_rq->runtime_expires = expires;
85dac906
PT
1683
1684 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1685}
1686
a9cf55b2
PT
1687/*
1688 * Note: This depends on the synchronization provided by sched_clock and the
1689 * fact that rq->clock snapshots this value.
1690 */
1691static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1692{
a9cf55b2
PT
1693 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1694 struct rq *rq = rq_of(cfs_rq);
1695
1696 /* if the deadline is ahead of our clock, nothing to do */
1697 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1698 return;
1699
a9cf55b2
PT
1700 if (cfs_rq->runtime_remaining < 0)
1701 return;
1702
1703 /*
1704 * If the local deadline has passed we have to consider the
1705 * possibility that our sched_clock is 'fast' and the global deadline
1706 * has not truly expired.
1707 *
1708 * Fortunately we can check determine whether this the case by checking
1709 * whether the global deadline has advanced.
1710 */
1711
1712 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1713 /* extend local deadline, drift is bounded above by 2 ticks */
1714 cfs_rq->runtime_expires += TICK_NSEC;
1715 } else {
1716 /* global deadline is ahead, expiration has passed */
1717 cfs_rq->runtime_remaining = 0;
1718 }
1719}
1720
1721static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1722 unsigned long delta_exec)
1723{
1724 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1725 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1726 expire_cfs_rq_runtime(cfs_rq);
1727
1728 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1729 return;
1730
85dac906
PT
1731 /*
1732 * if we're unable to extend our runtime we resched so that the active
1733 * hierarchy can be throttled
1734 */
1735 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1736 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1737}
1738
6c16a6dc
PZ
1739static __always_inline
1740void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1741{
56f570e5 1742 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1743 return;
1744
1745 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1746}
1747
85dac906
PT
1748static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1749{
56f570e5 1750 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1751}
1752
64660c86
PT
1753/* check whether cfs_rq, or any parent, is throttled */
1754static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1755{
56f570e5 1756 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1757}
1758
1759/*
1760 * Ensure that neither of the group entities corresponding to src_cpu or
1761 * dest_cpu are members of a throttled hierarchy when performing group
1762 * load-balance operations.
1763 */
1764static inline int throttled_lb_pair(struct task_group *tg,
1765 int src_cpu, int dest_cpu)
1766{
1767 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1768
1769 src_cfs_rq = tg->cfs_rq[src_cpu];
1770 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1771
1772 return throttled_hierarchy(src_cfs_rq) ||
1773 throttled_hierarchy(dest_cfs_rq);
1774}
1775
1776/* updated child weight may affect parent so we have to do this bottom up */
1777static int tg_unthrottle_up(struct task_group *tg, void *data)
1778{
1779 struct rq *rq = data;
1780 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1781
1782 cfs_rq->throttle_count--;
1783#ifdef CONFIG_SMP
1784 if (!cfs_rq->throttle_count) {
1785 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1786
1787 /* leaving throttled state, advance shares averaging windows */
1788 cfs_rq->load_stamp += delta;
1789 cfs_rq->load_last += delta;
1790
1791 /* update entity weight now that we are on_rq again */
1792 update_cfs_shares(cfs_rq);
1793 }
1794#endif
1795
1796 return 0;
1797}
1798
1799static int tg_throttle_down(struct task_group *tg, void *data)
1800{
1801 struct rq *rq = data;
1802 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1803
1804 /* group is entering throttled state, record last load */
1805 if (!cfs_rq->throttle_count)
1806 update_cfs_load(cfs_rq, 0);
1807 cfs_rq->throttle_count++;
1808
1809 return 0;
1810}
1811
d3d9dc33 1812static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1813{
1814 struct rq *rq = rq_of(cfs_rq);
1815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1816 struct sched_entity *se;
1817 long task_delta, dequeue = 1;
1818
1819 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1820
1821 /* account load preceding throttle */
64660c86
PT
1822 rcu_read_lock();
1823 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1824 rcu_read_unlock();
85dac906
PT
1825
1826 task_delta = cfs_rq->h_nr_running;
1827 for_each_sched_entity(se) {
1828 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1829 /* throttled entity or throttle-on-deactivate */
1830 if (!se->on_rq)
1831 break;
1832
1833 if (dequeue)
1834 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1835 qcfs_rq->h_nr_running -= task_delta;
1836
1837 if (qcfs_rq->load.weight)
1838 dequeue = 0;
1839 }
1840
1841 if (!se)
1842 rq->nr_running -= task_delta;
1843
1844 cfs_rq->throttled = 1;
e8da1b18 1845 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1846 raw_spin_lock(&cfs_b->lock);
1847 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1848 raw_spin_unlock(&cfs_b->lock);
1849}
1850
029632fb 1851void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1852{
1853 struct rq *rq = rq_of(cfs_rq);
1854 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1855 struct sched_entity *se;
1856 int enqueue = 1;
1857 long task_delta;
1858
1859 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1860
1861 cfs_rq->throttled = 0;
1862 raw_spin_lock(&cfs_b->lock);
e8da1b18 1863 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1864 list_del_rcu(&cfs_rq->throttled_list);
1865 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1866 cfs_rq->throttled_timestamp = 0;
671fd9da 1867
64660c86
PT
1868 update_rq_clock(rq);
1869 /* update hierarchical throttle state */
1870 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1871
671fd9da
PT
1872 if (!cfs_rq->load.weight)
1873 return;
1874
1875 task_delta = cfs_rq->h_nr_running;
1876 for_each_sched_entity(se) {
1877 if (se->on_rq)
1878 enqueue = 0;
1879
1880 cfs_rq = cfs_rq_of(se);
1881 if (enqueue)
1882 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1883 cfs_rq->h_nr_running += task_delta;
1884
1885 if (cfs_rq_throttled(cfs_rq))
1886 break;
1887 }
1888
1889 if (!se)
1890 rq->nr_running += task_delta;
1891
1892 /* determine whether we need to wake up potentially idle cpu */
1893 if (rq->curr == rq->idle && rq->cfs.nr_running)
1894 resched_task(rq->curr);
1895}
1896
1897static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1898 u64 remaining, u64 expires)
1899{
1900 struct cfs_rq *cfs_rq;
1901 u64 runtime = remaining;
1902
1903 rcu_read_lock();
1904 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1905 throttled_list) {
1906 struct rq *rq = rq_of(cfs_rq);
1907
1908 raw_spin_lock(&rq->lock);
1909 if (!cfs_rq_throttled(cfs_rq))
1910 goto next;
1911
1912 runtime = -cfs_rq->runtime_remaining + 1;
1913 if (runtime > remaining)
1914 runtime = remaining;
1915 remaining -= runtime;
1916
1917 cfs_rq->runtime_remaining += runtime;
1918 cfs_rq->runtime_expires = expires;
1919
1920 /* we check whether we're throttled above */
1921 if (cfs_rq->runtime_remaining > 0)
1922 unthrottle_cfs_rq(cfs_rq);
1923
1924next:
1925 raw_spin_unlock(&rq->lock);
1926
1927 if (!remaining)
1928 break;
1929 }
1930 rcu_read_unlock();
1931
1932 return remaining;
1933}
1934
58088ad0
PT
1935/*
1936 * Responsible for refilling a task_group's bandwidth and unthrottling its
1937 * cfs_rqs as appropriate. If there has been no activity within the last
1938 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1939 * used to track this state.
1940 */
1941static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1942{
671fd9da
PT
1943 u64 runtime, runtime_expires;
1944 int idle = 1, throttled;
58088ad0
PT
1945
1946 raw_spin_lock(&cfs_b->lock);
1947 /* no need to continue the timer with no bandwidth constraint */
1948 if (cfs_b->quota == RUNTIME_INF)
1949 goto out_unlock;
1950
671fd9da
PT
1951 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1952 /* idle depends on !throttled (for the case of a large deficit) */
1953 idle = cfs_b->idle && !throttled;
e8da1b18 1954 cfs_b->nr_periods += overrun;
671fd9da 1955
a9cf55b2
PT
1956 /* if we're going inactive then everything else can be deferred */
1957 if (idle)
1958 goto out_unlock;
1959
1960 __refill_cfs_bandwidth_runtime(cfs_b);
1961
671fd9da
PT
1962 if (!throttled) {
1963 /* mark as potentially idle for the upcoming period */
1964 cfs_b->idle = 1;
1965 goto out_unlock;
1966 }
1967
e8da1b18
NR
1968 /* account preceding periods in which throttling occurred */
1969 cfs_b->nr_throttled += overrun;
1970
671fd9da
PT
1971 /*
1972 * There are throttled entities so we must first use the new bandwidth
1973 * to unthrottle them before making it generally available. This
1974 * ensures that all existing debts will be paid before a new cfs_rq is
1975 * allowed to run.
1976 */
1977 runtime = cfs_b->runtime;
1978 runtime_expires = cfs_b->runtime_expires;
1979 cfs_b->runtime = 0;
1980
1981 /*
1982 * This check is repeated as we are holding onto the new bandwidth
1983 * while we unthrottle. This can potentially race with an unthrottled
1984 * group trying to acquire new bandwidth from the global pool.
1985 */
1986 while (throttled && runtime > 0) {
1987 raw_spin_unlock(&cfs_b->lock);
1988 /* we can't nest cfs_b->lock while distributing bandwidth */
1989 runtime = distribute_cfs_runtime(cfs_b, runtime,
1990 runtime_expires);
1991 raw_spin_lock(&cfs_b->lock);
1992
1993 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1994 }
58088ad0 1995
671fd9da
PT
1996 /* return (any) remaining runtime */
1997 cfs_b->runtime = runtime;
1998 /*
1999 * While we are ensured activity in the period following an
2000 * unthrottle, this also covers the case in which the new bandwidth is
2001 * insufficient to cover the existing bandwidth deficit. (Forcing the
2002 * timer to remain active while there are any throttled entities.)
2003 */
2004 cfs_b->idle = 0;
58088ad0
PT
2005out_unlock:
2006 if (idle)
2007 cfs_b->timer_active = 0;
2008 raw_spin_unlock(&cfs_b->lock);
2009
2010 return idle;
2011}
d3d9dc33 2012
d8b4986d
PT
2013/* a cfs_rq won't donate quota below this amount */
2014static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2015/* minimum remaining period time to redistribute slack quota */
2016static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2017/* how long we wait to gather additional slack before distributing */
2018static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2019
2020/* are we near the end of the current quota period? */
2021static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2022{
2023 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2024 u64 remaining;
2025
2026 /* if the call-back is running a quota refresh is already occurring */
2027 if (hrtimer_callback_running(refresh_timer))
2028 return 1;
2029
2030 /* is a quota refresh about to occur? */
2031 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2032 if (remaining < min_expire)
2033 return 1;
2034
2035 return 0;
2036}
2037
2038static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2039{
2040 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2041
2042 /* if there's a quota refresh soon don't bother with slack */
2043 if (runtime_refresh_within(cfs_b, min_left))
2044 return;
2045
2046 start_bandwidth_timer(&cfs_b->slack_timer,
2047 ns_to_ktime(cfs_bandwidth_slack_period));
2048}
2049
2050/* we know any runtime found here is valid as update_curr() precedes return */
2051static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2052{
2053 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2054 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2055
2056 if (slack_runtime <= 0)
2057 return;
2058
2059 raw_spin_lock(&cfs_b->lock);
2060 if (cfs_b->quota != RUNTIME_INF &&
2061 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2062 cfs_b->runtime += slack_runtime;
2063
2064 /* we are under rq->lock, defer unthrottling using a timer */
2065 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2066 !list_empty(&cfs_b->throttled_cfs_rq))
2067 start_cfs_slack_bandwidth(cfs_b);
2068 }
2069 raw_spin_unlock(&cfs_b->lock);
2070
2071 /* even if it's not valid for return we don't want to try again */
2072 cfs_rq->runtime_remaining -= slack_runtime;
2073}
2074
2075static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2076{
56f570e5
PT
2077 if (!cfs_bandwidth_used())
2078 return;
2079
fccfdc6f 2080 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2081 return;
2082
2083 __return_cfs_rq_runtime(cfs_rq);
2084}
2085
2086/*
2087 * This is done with a timer (instead of inline with bandwidth return) since
2088 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2089 */
2090static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2091{
2092 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2093 u64 expires;
2094
2095 /* confirm we're still not at a refresh boundary */
2096 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2097 return;
2098
2099 raw_spin_lock(&cfs_b->lock);
2100 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2101 runtime = cfs_b->runtime;
2102 cfs_b->runtime = 0;
2103 }
2104 expires = cfs_b->runtime_expires;
2105 raw_spin_unlock(&cfs_b->lock);
2106
2107 if (!runtime)
2108 return;
2109
2110 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2111
2112 raw_spin_lock(&cfs_b->lock);
2113 if (expires == cfs_b->runtime_expires)
2114 cfs_b->runtime = runtime;
2115 raw_spin_unlock(&cfs_b->lock);
2116}
2117
d3d9dc33
PT
2118/*
2119 * When a group wakes up we want to make sure that its quota is not already
2120 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2121 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2122 */
2123static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2124{
56f570e5
PT
2125 if (!cfs_bandwidth_used())
2126 return;
2127
d3d9dc33
PT
2128 /* an active group must be handled by the update_curr()->put() path */
2129 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2130 return;
2131
2132 /* ensure the group is not already throttled */
2133 if (cfs_rq_throttled(cfs_rq))
2134 return;
2135
2136 /* update runtime allocation */
2137 account_cfs_rq_runtime(cfs_rq, 0);
2138 if (cfs_rq->runtime_remaining <= 0)
2139 throttle_cfs_rq(cfs_rq);
2140}
2141
2142/* conditionally throttle active cfs_rq's from put_prev_entity() */
2143static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2144{
56f570e5
PT
2145 if (!cfs_bandwidth_used())
2146 return;
2147
d3d9dc33
PT
2148 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2149 return;
2150
2151 /*
2152 * it's possible for a throttled entity to be forced into a running
2153 * state (e.g. set_curr_task), in this case we're finished.
2154 */
2155 if (cfs_rq_throttled(cfs_rq))
2156 return;
2157
2158 throttle_cfs_rq(cfs_rq);
2159}
029632fb
PZ
2160
2161static inline u64 default_cfs_period(void);
2162static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2163static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2164
2165static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2166{
2167 struct cfs_bandwidth *cfs_b =
2168 container_of(timer, struct cfs_bandwidth, slack_timer);
2169 do_sched_cfs_slack_timer(cfs_b);
2170
2171 return HRTIMER_NORESTART;
2172}
2173
2174static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2175{
2176 struct cfs_bandwidth *cfs_b =
2177 container_of(timer, struct cfs_bandwidth, period_timer);
2178 ktime_t now;
2179 int overrun;
2180 int idle = 0;
2181
2182 for (;;) {
2183 now = hrtimer_cb_get_time(timer);
2184 overrun = hrtimer_forward(timer, now, cfs_b->period);
2185
2186 if (!overrun)
2187 break;
2188
2189 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2190 }
2191
2192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2193}
2194
2195void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2196{
2197 raw_spin_lock_init(&cfs_b->lock);
2198 cfs_b->runtime = 0;
2199 cfs_b->quota = RUNTIME_INF;
2200 cfs_b->period = ns_to_ktime(default_cfs_period());
2201
2202 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2203 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2204 cfs_b->period_timer.function = sched_cfs_period_timer;
2205 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2206 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2207}
2208
2209static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2210{
2211 cfs_rq->runtime_enabled = 0;
2212 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2213}
2214
2215/* requires cfs_b->lock, may release to reprogram timer */
2216void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2217{
2218 /*
2219 * The timer may be active because we're trying to set a new bandwidth
2220 * period or because we're racing with the tear-down path
2221 * (timer_active==0 becomes visible before the hrtimer call-back
2222 * terminates). In either case we ensure that it's re-programmed
2223 */
2224 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2225 raw_spin_unlock(&cfs_b->lock);
2226 /* ensure cfs_b->lock is available while we wait */
2227 hrtimer_cancel(&cfs_b->period_timer);
2228
2229 raw_spin_lock(&cfs_b->lock);
2230 /* if someone else restarted the timer then we're done */
2231 if (cfs_b->timer_active)
2232 return;
2233 }
2234
2235 cfs_b->timer_active = 1;
2236 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2237}
2238
2239static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2240{
2241 hrtimer_cancel(&cfs_b->period_timer);
2242 hrtimer_cancel(&cfs_b->slack_timer);
2243}
2244
a4c96ae3 2245static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2246{
2247 struct cfs_rq *cfs_rq;
2248
2249 for_each_leaf_cfs_rq(rq, cfs_rq) {
2250 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2251
2252 if (!cfs_rq->runtime_enabled)
2253 continue;
2254
2255 /*
2256 * clock_task is not advancing so we just need to make sure
2257 * there's some valid quota amount
2258 */
2259 cfs_rq->runtime_remaining = cfs_b->quota;
2260 if (cfs_rq_throttled(cfs_rq))
2261 unthrottle_cfs_rq(cfs_rq);
2262 }
2263}
2264
2265#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2266static __always_inline
2267void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2268static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2269static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2270static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2271
2272static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2273{
2274 return 0;
2275}
64660c86
PT
2276
2277static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2278{
2279 return 0;
2280}
2281
2282static inline int throttled_lb_pair(struct task_group *tg,
2283 int src_cpu, int dest_cpu)
2284{
2285 return 0;
2286}
029632fb
PZ
2287
2288void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2289
2290#ifdef CONFIG_FAIR_GROUP_SCHED
2291static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2292#endif
2293
029632fb
PZ
2294static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2295{
2296 return NULL;
2297}
2298static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2299static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2300
2301#endif /* CONFIG_CFS_BANDWIDTH */
2302
bf0f6f24
IM
2303/**************************************************
2304 * CFS operations on tasks:
2305 */
2306
8f4d37ec
PZ
2307#ifdef CONFIG_SCHED_HRTICK
2308static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2309{
8f4d37ec
PZ
2310 struct sched_entity *se = &p->se;
2311 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2312
2313 WARN_ON(task_rq(p) != rq);
2314
b39e66ea 2315 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2316 u64 slice = sched_slice(cfs_rq, se);
2317 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2318 s64 delta = slice - ran;
2319
2320 if (delta < 0) {
2321 if (rq->curr == p)
2322 resched_task(p);
2323 return;
2324 }
2325
2326 /*
2327 * Don't schedule slices shorter than 10000ns, that just
2328 * doesn't make sense. Rely on vruntime for fairness.
2329 */
31656519 2330 if (rq->curr != p)
157124c1 2331 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2332
31656519 2333 hrtick_start(rq, delta);
8f4d37ec
PZ
2334 }
2335}
a4c2f00f
PZ
2336
2337/*
2338 * called from enqueue/dequeue and updates the hrtick when the
2339 * current task is from our class and nr_running is low enough
2340 * to matter.
2341 */
2342static void hrtick_update(struct rq *rq)
2343{
2344 struct task_struct *curr = rq->curr;
2345
b39e66ea 2346 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2347 return;
2348
2349 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2350 hrtick_start_fair(rq, curr);
2351}
55e12e5e 2352#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2353static inline void
2354hrtick_start_fair(struct rq *rq, struct task_struct *p)
2355{
2356}
a4c2f00f
PZ
2357
2358static inline void hrtick_update(struct rq *rq)
2359{
2360}
8f4d37ec
PZ
2361#endif
2362
bf0f6f24
IM
2363/*
2364 * The enqueue_task method is called before nr_running is
2365 * increased. Here we update the fair scheduling stats and
2366 * then put the task into the rbtree:
2367 */
ea87bb78 2368static void
371fd7e7 2369enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2370{
2371 struct cfs_rq *cfs_rq;
62fb1851 2372 struct sched_entity *se = &p->se;
bf0f6f24
IM
2373
2374 for_each_sched_entity(se) {
62fb1851 2375 if (se->on_rq)
bf0f6f24
IM
2376 break;
2377 cfs_rq = cfs_rq_of(se);
88ec22d3 2378 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2379
2380 /*
2381 * end evaluation on encountering a throttled cfs_rq
2382 *
2383 * note: in the case of encountering a throttled cfs_rq we will
2384 * post the final h_nr_running increment below.
2385 */
2386 if (cfs_rq_throttled(cfs_rq))
2387 break;
953bfcd1 2388 cfs_rq->h_nr_running++;
85dac906 2389
88ec22d3 2390 flags = ENQUEUE_WAKEUP;
bf0f6f24 2391 }
8f4d37ec 2392
2069dd75 2393 for_each_sched_entity(se) {
0f317143 2394 cfs_rq = cfs_rq_of(se);
953bfcd1 2395 cfs_rq->h_nr_running++;
2069dd75 2396
85dac906
PT
2397 if (cfs_rq_throttled(cfs_rq))
2398 break;
2399
d6b55918 2400 update_cfs_load(cfs_rq, 0);
6d5ab293 2401 update_cfs_shares(cfs_rq);
2069dd75
PZ
2402 }
2403
85dac906
PT
2404 if (!se)
2405 inc_nr_running(rq);
a4c2f00f 2406 hrtick_update(rq);
bf0f6f24
IM
2407}
2408
2f36825b
VP
2409static void set_next_buddy(struct sched_entity *se);
2410
bf0f6f24
IM
2411/*
2412 * The dequeue_task method is called before nr_running is
2413 * decreased. We remove the task from the rbtree and
2414 * update the fair scheduling stats:
2415 */
371fd7e7 2416static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2417{
2418 struct cfs_rq *cfs_rq;
62fb1851 2419 struct sched_entity *se = &p->se;
2f36825b 2420 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2421
2422 for_each_sched_entity(se) {
2423 cfs_rq = cfs_rq_of(se);
371fd7e7 2424 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2425
2426 /*
2427 * end evaluation on encountering a throttled cfs_rq
2428 *
2429 * note: in the case of encountering a throttled cfs_rq we will
2430 * post the final h_nr_running decrement below.
2431 */
2432 if (cfs_rq_throttled(cfs_rq))
2433 break;
953bfcd1 2434 cfs_rq->h_nr_running--;
2069dd75 2435
bf0f6f24 2436 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2437 if (cfs_rq->load.weight) {
2438 /*
2439 * Bias pick_next to pick a task from this cfs_rq, as
2440 * p is sleeping when it is within its sched_slice.
2441 */
2442 if (task_sleep && parent_entity(se))
2443 set_next_buddy(parent_entity(se));
9598c82d
PT
2444
2445 /* avoid re-evaluating load for this entity */
2446 se = parent_entity(se);
bf0f6f24 2447 break;
2f36825b 2448 }
371fd7e7 2449 flags |= DEQUEUE_SLEEP;
bf0f6f24 2450 }
8f4d37ec 2451
2069dd75 2452 for_each_sched_entity(se) {
0f317143 2453 cfs_rq = cfs_rq_of(se);
953bfcd1 2454 cfs_rq->h_nr_running--;
2069dd75 2455
85dac906
PT
2456 if (cfs_rq_throttled(cfs_rq))
2457 break;
2458
d6b55918 2459 update_cfs_load(cfs_rq, 0);
6d5ab293 2460 update_cfs_shares(cfs_rq);
2069dd75
PZ
2461 }
2462
85dac906
PT
2463 if (!se)
2464 dec_nr_running(rq);
a4c2f00f 2465 hrtick_update(rq);
bf0f6f24
IM
2466}
2467
e7693a36 2468#ifdef CONFIG_SMP
029632fb
PZ
2469/* Used instead of source_load when we know the type == 0 */
2470static unsigned long weighted_cpuload(const int cpu)
2471{
2472 return cpu_rq(cpu)->load.weight;
2473}
2474
2475/*
2476 * Return a low guess at the load of a migration-source cpu weighted
2477 * according to the scheduling class and "nice" value.
2478 *
2479 * We want to under-estimate the load of migration sources, to
2480 * balance conservatively.
2481 */
2482static unsigned long source_load(int cpu, int type)
2483{
2484 struct rq *rq = cpu_rq(cpu);
2485 unsigned long total = weighted_cpuload(cpu);
2486
2487 if (type == 0 || !sched_feat(LB_BIAS))
2488 return total;
2489
2490 return min(rq->cpu_load[type-1], total);
2491}
2492
2493/*
2494 * Return a high guess at the load of a migration-target cpu weighted
2495 * according to the scheduling class and "nice" value.
2496 */
2497static unsigned long target_load(int cpu, int type)
2498{
2499 struct rq *rq = cpu_rq(cpu);
2500 unsigned long total = weighted_cpuload(cpu);
2501
2502 if (type == 0 || !sched_feat(LB_BIAS))
2503 return total;
2504
2505 return max(rq->cpu_load[type-1], total);
2506}
2507
2508static unsigned long power_of(int cpu)
2509{
2510 return cpu_rq(cpu)->cpu_power;
2511}
2512
2513static unsigned long cpu_avg_load_per_task(int cpu)
2514{
2515 struct rq *rq = cpu_rq(cpu);
2516 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2517
2518 if (nr_running)
2519 return rq->load.weight / nr_running;
2520
2521 return 0;
2522}
2523
098fb9db 2524
74f8e4b2 2525static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2526{
2527 struct sched_entity *se = &p->se;
2528 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2529 u64 min_vruntime;
2530
2531#ifndef CONFIG_64BIT
2532 u64 min_vruntime_copy;
88ec22d3 2533
3fe1698b
PZ
2534 do {
2535 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2536 smp_rmb();
2537 min_vruntime = cfs_rq->min_vruntime;
2538 } while (min_vruntime != min_vruntime_copy);
2539#else
2540 min_vruntime = cfs_rq->min_vruntime;
2541#endif
88ec22d3 2542
3fe1698b 2543 se->vruntime -= min_vruntime;
88ec22d3
PZ
2544}
2545
bb3469ac 2546#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2547/*
2548 * effective_load() calculates the load change as seen from the root_task_group
2549 *
2550 * Adding load to a group doesn't make a group heavier, but can cause movement
2551 * of group shares between cpus. Assuming the shares were perfectly aligned one
2552 * can calculate the shift in shares.
cf5f0acf
PZ
2553 *
2554 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2555 * on this @cpu and results in a total addition (subtraction) of @wg to the
2556 * total group weight.
2557 *
2558 * Given a runqueue weight distribution (rw_i) we can compute a shares
2559 * distribution (s_i) using:
2560 *
2561 * s_i = rw_i / \Sum rw_j (1)
2562 *
2563 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2564 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2565 * shares distribution (s_i):
2566 *
2567 * rw_i = { 2, 4, 1, 0 }
2568 * s_i = { 2/7, 4/7, 1/7, 0 }
2569 *
2570 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2571 * task used to run on and the CPU the waker is running on), we need to
2572 * compute the effect of waking a task on either CPU and, in case of a sync
2573 * wakeup, compute the effect of the current task going to sleep.
2574 *
2575 * So for a change of @wl to the local @cpu with an overall group weight change
2576 * of @wl we can compute the new shares distribution (s'_i) using:
2577 *
2578 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2579 *
2580 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2581 * differences in waking a task to CPU 0. The additional task changes the
2582 * weight and shares distributions like:
2583 *
2584 * rw'_i = { 3, 4, 1, 0 }
2585 * s'_i = { 3/8, 4/8, 1/8, 0 }
2586 *
2587 * We can then compute the difference in effective weight by using:
2588 *
2589 * dw_i = S * (s'_i - s_i) (3)
2590 *
2591 * Where 'S' is the group weight as seen by its parent.
2592 *
2593 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2594 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2595 * 4/7) times the weight of the group.
f5bfb7d9 2596 */
2069dd75 2597static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2598{
4be9daaa 2599 struct sched_entity *se = tg->se[cpu];
f1d239f7 2600
cf5f0acf 2601 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2602 return wl;
2603
4be9daaa 2604 for_each_sched_entity(se) {
cf5f0acf 2605 long w, W;
4be9daaa 2606
977dda7c 2607 tg = se->my_q->tg;
bb3469ac 2608
cf5f0acf
PZ
2609 /*
2610 * W = @wg + \Sum rw_j
2611 */
2612 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2613
cf5f0acf
PZ
2614 /*
2615 * w = rw_i + @wl
2616 */
2617 w = se->my_q->load.weight + wl;
940959e9 2618
cf5f0acf
PZ
2619 /*
2620 * wl = S * s'_i; see (2)
2621 */
2622 if (W > 0 && w < W)
2623 wl = (w * tg->shares) / W;
977dda7c
PT
2624 else
2625 wl = tg->shares;
940959e9 2626
cf5f0acf
PZ
2627 /*
2628 * Per the above, wl is the new se->load.weight value; since
2629 * those are clipped to [MIN_SHARES, ...) do so now. See
2630 * calc_cfs_shares().
2631 */
977dda7c
PT
2632 if (wl < MIN_SHARES)
2633 wl = MIN_SHARES;
cf5f0acf
PZ
2634
2635 /*
2636 * wl = dw_i = S * (s'_i - s_i); see (3)
2637 */
977dda7c 2638 wl -= se->load.weight;
cf5f0acf
PZ
2639
2640 /*
2641 * Recursively apply this logic to all parent groups to compute
2642 * the final effective load change on the root group. Since
2643 * only the @tg group gets extra weight, all parent groups can
2644 * only redistribute existing shares. @wl is the shift in shares
2645 * resulting from this level per the above.
2646 */
4be9daaa 2647 wg = 0;
4be9daaa 2648 }
bb3469ac 2649
4be9daaa 2650 return wl;
bb3469ac
PZ
2651}
2652#else
4be9daaa 2653
83378269
PZ
2654static inline unsigned long effective_load(struct task_group *tg, int cpu,
2655 unsigned long wl, unsigned long wg)
4be9daaa 2656{
83378269 2657 return wl;
bb3469ac 2658}
4be9daaa 2659
bb3469ac
PZ
2660#endif
2661
c88d5910 2662static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2663{
e37b6a7b 2664 s64 this_load, load;
c88d5910 2665 int idx, this_cpu, prev_cpu;
098fb9db 2666 unsigned long tl_per_task;
c88d5910 2667 struct task_group *tg;
83378269 2668 unsigned long weight;
b3137bc8 2669 int balanced;
098fb9db 2670
c88d5910
PZ
2671 idx = sd->wake_idx;
2672 this_cpu = smp_processor_id();
2673 prev_cpu = task_cpu(p);
2674 load = source_load(prev_cpu, idx);
2675 this_load = target_load(this_cpu, idx);
098fb9db 2676
b3137bc8
MG
2677 /*
2678 * If sync wakeup then subtract the (maximum possible)
2679 * effect of the currently running task from the load
2680 * of the current CPU:
2681 */
83378269
PZ
2682 if (sync) {
2683 tg = task_group(current);
2684 weight = current->se.load.weight;
2685
c88d5910 2686 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2687 load += effective_load(tg, prev_cpu, 0, -weight);
2688 }
b3137bc8 2689
83378269
PZ
2690 tg = task_group(p);
2691 weight = p->se.load.weight;
b3137bc8 2692
71a29aa7
PZ
2693 /*
2694 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2695 * due to the sync cause above having dropped this_load to 0, we'll
2696 * always have an imbalance, but there's really nothing you can do
2697 * about that, so that's good too.
71a29aa7
PZ
2698 *
2699 * Otherwise check if either cpus are near enough in load to allow this
2700 * task to be woken on this_cpu.
2701 */
e37b6a7b
PT
2702 if (this_load > 0) {
2703 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2704
2705 this_eff_load = 100;
2706 this_eff_load *= power_of(prev_cpu);
2707 this_eff_load *= this_load +
2708 effective_load(tg, this_cpu, weight, weight);
2709
2710 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2711 prev_eff_load *= power_of(this_cpu);
2712 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2713
2714 balanced = this_eff_load <= prev_eff_load;
2715 } else
2716 balanced = true;
b3137bc8 2717
098fb9db 2718 /*
4ae7d5ce
IM
2719 * If the currently running task will sleep within
2720 * a reasonable amount of time then attract this newly
2721 * woken task:
098fb9db 2722 */
2fb7635c
PZ
2723 if (sync && balanced)
2724 return 1;
098fb9db 2725
41acab88 2726 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2727 tl_per_task = cpu_avg_load_per_task(this_cpu);
2728
c88d5910
PZ
2729 if (balanced ||
2730 (this_load <= load &&
2731 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2732 /*
2733 * This domain has SD_WAKE_AFFINE and
2734 * p is cache cold in this domain, and
2735 * there is no bad imbalance.
2736 */
c88d5910 2737 schedstat_inc(sd, ttwu_move_affine);
41acab88 2738 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2739
2740 return 1;
2741 }
2742 return 0;
2743}
2744
aaee1203
PZ
2745/*
2746 * find_idlest_group finds and returns the least busy CPU group within the
2747 * domain.
2748 */
2749static struct sched_group *
78e7ed53 2750find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2751 int this_cpu, int load_idx)
e7693a36 2752{
b3bd3de6 2753 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2754 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2755 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2756
aaee1203
PZ
2757 do {
2758 unsigned long load, avg_load;
2759 int local_group;
2760 int i;
e7693a36 2761
aaee1203
PZ
2762 /* Skip over this group if it has no CPUs allowed */
2763 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2764 tsk_cpus_allowed(p)))
aaee1203
PZ
2765 continue;
2766
2767 local_group = cpumask_test_cpu(this_cpu,
2768 sched_group_cpus(group));
2769
2770 /* Tally up the load of all CPUs in the group */
2771 avg_load = 0;
2772
2773 for_each_cpu(i, sched_group_cpus(group)) {
2774 /* Bias balancing toward cpus of our domain */
2775 if (local_group)
2776 load = source_load(i, load_idx);
2777 else
2778 load = target_load(i, load_idx);
2779
2780 avg_load += load;
2781 }
2782
2783 /* Adjust by relative CPU power of the group */
9c3f75cb 2784 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2785
2786 if (local_group) {
2787 this_load = avg_load;
aaee1203
PZ
2788 } else if (avg_load < min_load) {
2789 min_load = avg_load;
2790 idlest = group;
2791 }
2792 } while (group = group->next, group != sd->groups);
2793
2794 if (!idlest || 100*this_load < imbalance*min_load)
2795 return NULL;
2796 return idlest;
2797}
2798
2799/*
2800 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2801 */
2802static int
2803find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2804{
2805 unsigned long load, min_load = ULONG_MAX;
2806 int idlest = -1;
2807 int i;
2808
2809 /* Traverse only the allowed CPUs */
fa17b507 2810 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2811 load = weighted_cpuload(i);
2812
2813 if (load < min_load || (load == min_load && i == this_cpu)) {
2814 min_load = load;
2815 idlest = i;
e7693a36
GH
2816 }
2817 }
2818
aaee1203
PZ
2819 return idlest;
2820}
e7693a36 2821
a50bde51
PZ
2822/*
2823 * Try and locate an idle CPU in the sched_domain.
2824 */
99bd5e2f 2825static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2826{
2827 int cpu = smp_processor_id();
2828 int prev_cpu = task_cpu(p);
99bd5e2f 2829 struct sched_domain *sd;
37407ea7
LT
2830 struct sched_group *sg;
2831 int i;
a50bde51
PZ
2832
2833 /*
99bd5e2f
SS
2834 * If the task is going to be woken-up on this cpu and if it is
2835 * already idle, then it is the right target.
a50bde51 2836 */
99bd5e2f
SS
2837 if (target == cpu && idle_cpu(cpu))
2838 return cpu;
2839
2840 /*
2841 * If the task is going to be woken-up on the cpu where it previously
2842 * ran and if it is currently idle, then it the right target.
2843 */
2844 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2845 return prev_cpu;
a50bde51
PZ
2846
2847 /*
37407ea7 2848 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2849 */
518cd623 2850 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 2851 for_each_lower_domain(sd) {
37407ea7
LT
2852 sg = sd->groups;
2853 do {
2854 if (!cpumask_intersects(sched_group_cpus(sg),
2855 tsk_cpus_allowed(p)))
2856 goto next;
2857
2858 for_each_cpu(i, sched_group_cpus(sg)) {
2859 if (!idle_cpu(i))
2860 goto next;
2861 }
970e1789 2862
37407ea7
LT
2863 target = cpumask_first_and(sched_group_cpus(sg),
2864 tsk_cpus_allowed(p));
2865 goto done;
2866next:
2867 sg = sg->next;
2868 } while (sg != sd->groups);
2869 }
2870done:
a50bde51
PZ
2871 return target;
2872}
2873
aaee1203
PZ
2874/*
2875 * sched_balance_self: balance the current task (running on cpu) in domains
2876 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2877 * SD_BALANCE_EXEC.
2878 *
2879 * Balance, ie. select the least loaded group.
2880 *
2881 * Returns the target CPU number, or the same CPU if no balancing is needed.
2882 *
2883 * preempt must be disabled.
2884 */
0017d735 2885static int
7608dec2 2886select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2887{
29cd8bae 2888 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2889 int cpu = smp_processor_id();
2890 int prev_cpu = task_cpu(p);
2891 int new_cpu = cpu;
99bd5e2f 2892 int want_affine = 0;
5158f4e4 2893 int sync = wake_flags & WF_SYNC;
c88d5910 2894
29baa747 2895 if (p->nr_cpus_allowed == 1)
76854c7e
MG
2896 return prev_cpu;
2897
0763a660 2898 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2899 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2900 want_affine = 1;
2901 new_cpu = prev_cpu;
2902 }
aaee1203 2903
dce840a0 2904 rcu_read_lock();
aaee1203 2905 for_each_domain(cpu, tmp) {
e4f42888
PZ
2906 if (!(tmp->flags & SD_LOAD_BALANCE))
2907 continue;
2908
fe3bcfe1 2909 /*
99bd5e2f
SS
2910 * If both cpu and prev_cpu are part of this domain,
2911 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2912 */
99bd5e2f
SS
2913 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2914 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2915 affine_sd = tmp;
29cd8bae 2916 break;
f03542a7 2917 }
29cd8bae 2918
f03542a7 2919 if (tmp->flags & sd_flag)
29cd8bae
PZ
2920 sd = tmp;
2921 }
2922
8b911acd 2923 if (affine_sd) {
f03542a7 2924 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
2925 prev_cpu = cpu;
2926
2927 new_cpu = select_idle_sibling(p, prev_cpu);
2928 goto unlock;
8b911acd 2929 }
e7693a36 2930
aaee1203 2931 while (sd) {
5158f4e4 2932 int load_idx = sd->forkexec_idx;
aaee1203 2933 struct sched_group *group;
c88d5910 2934 int weight;
098fb9db 2935
0763a660 2936 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2937 sd = sd->child;
2938 continue;
2939 }
098fb9db 2940
5158f4e4
PZ
2941 if (sd_flag & SD_BALANCE_WAKE)
2942 load_idx = sd->wake_idx;
098fb9db 2943
5158f4e4 2944 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2945 if (!group) {
2946 sd = sd->child;
2947 continue;
2948 }
4ae7d5ce 2949
d7c33c49 2950 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2951 if (new_cpu == -1 || new_cpu == cpu) {
2952 /* Now try balancing at a lower domain level of cpu */
2953 sd = sd->child;
2954 continue;
e7693a36 2955 }
aaee1203
PZ
2956
2957 /* Now try balancing at a lower domain level of new_cpu */
2958 cpu = new_cpu;
669c55e9 2959 weight = sd->span_weight;
aaee1203
PZ
2960 sd = NULL;
2961 for_each_domain(cpu, tmp) {
669c55e9 2962 if (weight <= tmp->span_weight)
aaee1203 2963 break;
0763a660 2964 if (tmp->flags & sd_flag)
aaee1203
PZ
2965 sd = tmp;
2966 }
2967 /* while loop will break here if sd == NULL */
e7693a36 2968 }
dce840a0
PZ
2969unlock:
2970 rcu_read_unlock();
e7693a36 2971
c88d5910 2972 return new_cpu;
e7693a36
GH
2973}
2974#endif /* CONFIG_SMP */
2975
e52fb7c0
PZ
2976static unsigned long
2977wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2978{
2979 unsigned long gran = sysctl_sched_wakeup_granularity;
2980
2981 /*
e52fb7c0
PZ
2982 * Since its curr running now, convert the gran from real-time
2983 * to virtual-time in his units.
13814d42
MG
2984 *
2985 * By using 'se' instead of 'curr' we penalize light tasks, so
2986 * they get preempted easier. That is, if 'se' < 'curr' then
2987 * the resulting gran will be larger, therefore penalizing the
2988 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2989 * be smaller, again penalizing the lighter task.
2990 *
2991 * This is especially important for buddies when the leftmost
2992 * task is higher priority than the buddy.
0bbd3336 2993 */
f4ad9bd2 2994 return calc_delta_fair(gran, se);
0bbd3336
PZ
2995}
2996
464b7527
PZ
2997/*
2998 * Should 'se' preempt 'curr'.
2999 *
3000 * |s1
3001 * |s2
3002 * |s3
3003 * g
3004 * |<--->|c
3005 *
3006 * w(c, s1) = -1
3007 * w(c, s2) = 0
3008 * w(c, s3) = 1
3009 *
3010 */
3011static int
3012wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3013{
3014 s64 gran, vdiff = curr->vruntime - se->vruntime;
3015
3016 if (vdiff <= 0)
3017 return -1;
3018
e52fb7c0 3019 gran = wakeup_gran(curr, se);
464b7527
PZ
3020 if (vdiff > gran)
3021 return 1;
3022
3023 return 0;
3024}
3025
02479099
PZ
3026static void set_last_buddy(struct sched_entity *se)
3027{
69c80f3e
VP
3028 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3029 return;
3030
3031 for_each_sched_entity(se)
3032 cfs_rq_of(se)->last = se;
02479099
PZ
3033}
3034
3035static void set_next_buddy(struct sched_entity *se)
3036{
69c80f3e
VP
3037 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3038 return;
3039
3040 for_each_sched_entity(se)
3041 cfs_rq_of(se)->next = se;
02479099
PZ
3042}
3043
ac53db59
RR
3044static void set_skip_buddy(struct sched_entity *se)
3045{
69c80f3e
VP
3046 for_each_sched_entity(se)
3047 cfs_rq_of(se)->skip = se;
ac53db59
RR
3048}
3049
bf0f6f24
IM
3050/*
3051 * Preempt the current task with a newly woken task if needed:
3052 */
5a9b86f6 3053static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3054{
3055 struct task_struct *curr = rq->curr;
8651a86c 3056 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3057 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3058 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3059 int next_buddy_marked = 0;
bf0f6f24 3060
4ae7d5ce
IM
3061 if (unlikely(se == pse))
3062 return;
3063
5238cdd3 3064 /*
ddcdf6e7 3065 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3066 * unconditionally check_prempt_curr() after an enqueue (which may have
3067 * lead to a throttle). This both saves work and prevents false
3068 * next-buddy nomination below.
3069 */
3070 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3071 return;
3072
2f36825b 3073 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3074 set_next_buddy(pse);
2f36825b
VP
3075 next_buddy_marked = 1;
3076 }
57fdc26d 3077
aec0a514
BR
3078 /*
3079 * We can come here with TIF_NEED_RESCHED already set from new task
3080 * wake up path.
5238cdd3
PT
3081 *
3082 * Note: this also catches the edge-case of curr being in a throttled
3083 * group (e.g. via set_curr_task), since update_curr() (in the
3084 * enqueue of curr) will have resulted in resched being set. This
3085 * prevents us from potentially nominating it as a false LAST_BUDDY
3086 * below.
aec0a514
BR
3087 */
3088 if (test_tsk_need_resched(curr))
3089 return;
3090
a2f5c9ab
DH
3091 /* Idle tasks are by definition preempted by non-idle tasks. */
3092 if (unlikely(curr->policy == SCHED_IDLE) &&
3093 likely(p->policy != SCHED_IDLE))
3094 goto preempt;
3095
91c234b4 3096 /*
a2f5c9ab
DH
3097 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3098 * is driven by the tick):
91c234b4 3099 */
6bc912b7 3100 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 3101 return;
bf0f6f24 3102
464b7527 3103 find_matching_se(&se, &pse);
9bbd7374 3104 update_curr(cfs_rq_of(se));
002f128b 3105 BUG_ON(!pse);
2f36825b
VP
3106 if (wakeup_preempt_entity(se, pse) == 1) {
3107 /*
3108 * Bias pick_next to pick the sched entity that is
3109 * triggering this preemption.
3110 */
3111 if (!next_buddy_marked)
3112 set_next_buddy(pse);
3a7e73a2 3113 goto preempt;
2f36825b 3114 }
464b7527 3115
3a7e73a2 3116 return;
a65ac745 3117
3a7e73a2
PZ
3118preempt:
3119 resched_task(curr);
3120 /*
3121 * Only set the backward buddy when the current task is still
3122 * on the rq. This can happen when a wakeup gets interleaved
3123 * with schedule on the ->pre_schedule() or idle_balance()
3124 * point, either of which can * drop the rq lock.
3125 *
3126 * Also, during early boot the idle thread is in the fair class,
3127 * for obvious reasons its a bad idea to schedule back to it.
3128 */
3129 if (unlikely(!se->on_rq || curr == rq->idle))
3130 return;
3131
3132 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3133 set_last_buddy(se);
bf0f6f24
IM
3134}
3135
fb8d4724 3136static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3137{
8f4d37ec 3138 struct task_struct *p;
bf0f6f24
IM
3139 struct cfs_rq *cfs_rq = &rq->cfs;
3140 struct sched_entity *se;
3141
36ace27e 3142 if (!cfs_rq->nr_running)
bf0f6f24
IM
3143 return NULL;
3144
3145 do {
9948f4b2 3146 se = pick_next_entity(cfs_rq);
f4b6755f 3147 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3148 cfs_rq = group_cfs_rq(se);
3149 } while (cfs_rq);
3150
8f4d37ec 3151 p = task_of(se);
b39e66ea
MG
3152 if (hrtick_enabled(rq))
3153 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3154
3155 return p;
bf0f6f24
IM
3156}
3157
3158/*
3159 * Account for a descheduled task:
3160 */
31ee529c 3161static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3162{
3163 struct sched_entity *se = &prev->se;
3164 struct cfs_rq *cfs_rq;
3165
3166 for_each_sched_entity(se) {
3167 cfs_rq = cfs_rq_of(se);
ab6cde26 3168 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3169 }
3170}
3171
ac53db59
RR
3172/*
3173 * sched_yield() is very simple
3174 *
3175 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3176 */
3177static void yield_task_fair(struct rq *rq)
3178{
3179 struct task_struct *curr = rq->curr;
3180 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3181 struct sched_entity *se = &curr->se;
3182
3183 /*
3184 * Are we the only task in the tree?
3185 */
3186 if (unlikely(rq->nr_running == 1))
3187 return;
3188
3189 clear_buddies(cfs_rq, se);
3190
3191 if (curr->policy != SCHED_BATCH) {
3192 update_rq_clock(rq);
3193 /*
3194 * Update run-time statistics of the 'current'.
3195 */
3196 update_curr(cfs_rq);
916671c0
MG
3197 /*
3198 * Tell update_rq_clock() that we've just updated,
3199 * so we don't do microscopic update in schedule()
3200 * and double the fastpath cost.
3201 */
3202 rq->skip_clock_update = 1;
ac53db59
RR
3203 }
3204
3205 set_skip_buddy(se);
3206}
3207
d95f4122
MG
3208static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3209{
3210 struct sched_entity *se = &p->se;
3211
5238cdd3
PT
3212 /* throttled hierarchies are not runnable */
3213 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3214 return false;
3215
3216 /* Tell the scheduler that we'd really like pse to run next. */
3217 set_next_buddy(se);
3218
d95f4122
MG
3219 yield_task_fair(rq);
3220
3221 return true;
3222}
3223
681f3e68 3224#ifdef CONFIG_SMP
bf0f6f24
IM
3225/**************************************************
3226 * Fair scheduling class load-balancing methods:
3227 */
3228
ed387b78
HS
3229static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3230
ddcdf6e7 3231#define LBF_ALL_PINNED 0x01
367456c7 3232#define LBF_NEED_BREAK 0x02
88b8dac0 3233#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3234
3235struct lb_env {
3236 struct sched_domain *sd;
3237
ddcdf6e7 3238 struct rq *src_rq;
85c1e7da 3239 int src_cpu;
ddcdf6e7
PZ
3240
3241 int dst_cpu;
3242 struct rq *dst_rq;
3243
88b8dac0
SV
3244 struct cpumask *dst_grpmask;
3245 int new_dst_cpu;
ddcdf6e7 3246 enum cpu_idle_type idle;
bd939f45 3247 long imbalance;
b9403130
MW
3248 /* The set of CPUs under consideration for load-balancing */
3249 struct cpumask *cpus;
3250
ddcdf6e7 3251 unsigned int flags;
367456c7
PZ
3252
3253 unsigned int loop;
3254 unsigned int loop_break;
3255 unsigned int loop_max;
ddcdf6e7
PZ
3256};
3257
1e3c88bd 3258/*
ddcdf6e7 3259 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3260 * Both runqueues must be locked.
3261 */
ddcdf6e7 3262static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3263{
ddcdf6e7
PZ
3264 deactivate_task(env->src_rq, p, 0);
3265 set_task_cpu(p, env->dst_cpu);
3266 activate_task(env->dst_rq, p, 0);
3267 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3268}
3269
029632fb
PZ
3270/*
3271 * Is this task likely cache-hot:
3272 */
3273static int
3274task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3275{
3276 s64 delta;
3277
3278 if (p->sched_class != &fair_sched_class)
3279 return 0;
3280
3281 if (unlikely(p->policy == SCHED_IDLE))
3282 return 0;
3283
3284 /*
3285 * Buddy candidates are cache hot:
3286 */
3287 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3288 (&p->se == cfs_rq_of(&p->se)->next ||
3289 &p->se == cfs_rq_of(&p->se)->last))
3290 return 1;
3291
3292 if (sysctl_sched_migration_cost == -1)
3293 return 1;
3294 if (sysctl_sched_migration_cost == 0)
3295 return 0;
3296
3297 delta = now - p->se.exec_start;
3298
3299 return delta < (s64)sysctl_sched_migration_cost;
3300}
3301
1e3c88bd
PZ
3302/*
3303 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3304 */
3305static
8e45cb54 3306int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3307{
3308 int tsk_cache_hot = 0;
3309 /*
3310 * We do not migrate tasks that are:
3311 * 1) running (obviously), or
3312 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3313 * 3) are cache-hot on their current CPU.
3314 */
ddcdf6e7 3315 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3316 int new_dst_cpu;
3317
41acab88 3318 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3319
3320 /*
3321 * Remember if this task can be migrated to any other cpu in
3322 * our sched_group. We may want to revisit it if we couldn't
3323 * meet load balance goals by pulling other tasks on src_cpu.
3324 *
3325 * Also avoid computing new_dst_cpu if we have already computed
3326 * one in current iteration.
3327 */
3328 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3329 return 0;
3330
3331 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3332 tsk_cpus_allowed(p));
3333 if (new_dst_cpu < nr_cpu_ids) {
3334 env->flags |= LBF_SOME_PINNED;
3335 env->new_dst_cpu = new_dst_cpu;
3336 }
1e3c88bd
PZ
3337 return 0;
3338 }
88b8dac0
SV
3339
3340 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3341 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3342
ddcdf6e7 3343 if (task_running(env->src_rq, p)) {
41acab88 3344 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3345 return 0;
3346 }
3347
3348 /*
3349 * Aggressive migration if:
3350 * 1) task is cache cold, or
3351 * 2) too many balance attempts have failed.
3352 */
3353
ddcdf6e7 3354 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3355 if (!tsk_cache_hot ||
8e45cb54 3356 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3357#ifdef CONFIG_SCHEDSTATS
3358 if (tsk_cache_hot) {
8e45cb54 3359 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3360 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3361 }
3362#endif
3363 return 1;
3364 }
3365
3366 if (tsk_cache_hot) {
41acab88 3367 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3368 return 0;
3369 }
3370 return 1;
3371}
3372
897c395f
PZ
3373/*
3374 * move_one_task tries to move exactly one task from busiest to this_rq, as
3375 * part of active balancing operations within "domain".
3376 * Returns 1 if successful and 0 otherwise.
3377 *
3378 * Called with both runqueues locked.
3379 */
8e45cb54 3380static int move_one_task(struct lb_env *env)
897c395f
PZ
3381{
3382 struct task_struct *p, *n;
897c395f 3383
367456c7
PZ
3384 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3385 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3386 continue;
897c395f 3387
367456c7
PZ
3388 if (!can_migrate_task(p, env))
3389 continue;
897c395f 3390
367456c7
PZ
3391 move_task(p, env);
3392 /*
3393 * Right now, this is only the second place move_task()
3394 * is called, so we can safely collect move_task()
3395 * stats here rather than inside move_task().
3396 */
3397 schedstat_inc(env->sd, lb_gained[env->idle]);
3398 return 1;
897c395f 3399 }
897c395f
PZ
3400 return 0;
3401}
3402
367456c7
PZ
3403static unsigned long task_h_load(struct task_struct *p);
3404
eb95308e
PZ
3405static const unsigned int sched_nr_migrate_break = 32;
3406
5d6523eb 3407/*
bd939f45 3408 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3409 * this_rq, as part of a balancing operation within domain "sd".
3410 * Returns 1 if successful and 0 otherwise.
3411 *
3412 * Called with both runqueues locked.
3413 */
3414static int move_tasks(struct lb_env *env)
1e3c88bd 3415{
5d6523eb
PZ
3416 struct list_head *tasks = &env->src_rq->cfs_tasks;
3417 struct task_struct *p;
367456c7
PZ
3418 unsigned long load;
3419 int pulled = 0;
1e3c88bd 3420
bd939f45 3421 if (env->imbalance <= 0)
5d6523eb 3422 return 0;
1e3c88bd 3423
5d6523eb
PZ
3424 while (!list_empty(tasks)) {
3425 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3426
367456c7
PZ
3427 env->loop++;
3428 /* We've more or less seen every task there is, call it quits */
5d6523eb 3429 if (env->loop > env->loop_max)
367456c7 3430 break;
5d6523eb
PZ
3431
3432 /* take a breather every nr_migrate tasks */
367456c7 3433 if (env->loop > env->loop_break) {
eb95308e 3434 env->loop_break += sched_nr_migrate_break;
8e45cb54 3435 env->flags |= LBF_NEED_BREAK;
ee00e66f 3436 break;
a195f004 3437 }
1e3c88bd 3438
5d6523eb 3439 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3440 goto next;
3441
3442 load = task_h_load(p);
5d6523eb 3443
eb95308e 3444 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3445 goto next;
3446
bd939f45 3447 if ((load / 2) > env->imbalance)
367456c7 3448 goto next;
1e3c88bd 3449
367456c7
PZ
3450 if (!can_migrate_task(p, env))
3451 goto next;
1e3c88bd 3452
ddcdf6e7 3453 move_task(p, env);
ee00e66f 3454 pulled++;
bd939f45 3455 env->imbalance -= load;
1e3c88bd
PZ
3456
3457#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3458 /*
3459 * NEWIDLE balancing is a source of latency, so preemptible
3460 * kernels will stop after the first task is pulled to minimize
3461 * the critical section.
3462 */
5d6523eb 3463 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3464 break;
1e3c88bd
PZ
3465#endif
3466
ee00e66f
PZ
3467 /*
3468 * We only want to steal up to the prescribed amount of
3469 * weighted load.
3470 */
bd939f45 3471 if (env->imbalance <= 0)
ee00e66f 3472 break;
367456c7
PZ
3473
3474 continue;
3475next:
5d6523eb 3476 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3477 }
5d6523eb 3478
1e3c88bd 3479 /*
ddcdf6e7
PZ
3480 * Right now, this is one of only two places move_task() is called,
3481 * so we can safely collect move_task() stats here rather than
3482 * inside move_task().
1e3c88bd 3483 */
8e45cb54 3484 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3485
5d6523eb 3486 return pulled;
1e3c88bd
PZ
3487}
3488
230059de 3489#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3490/*
3491 * update tg->load_weight by folding this cpu's load_avg
3492 */
67e86250 3493static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3494{
3495 struct cfs_rq *cfs_rq;
3496 unsigned long flags;
3497 struct rq *rq;
9e3081ca
PZ
3498
3499 if (!tg->se[cpu])
3500 return 0;
3501
3502 rq = cpu_rq(cpu);
3503 cfs_rq = tg->cfs_rq[cpu];
3504
3505 raw_spin_lock_irqsave(&rq->lock, flags);
3506
3507 update_rq_clock(rq);
d6b55918 3508 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3509
3510 /*
3511 * We need to update shares after updating tg->load_weight in
3512 * order to adjust the weight of groups with long running tasks.
3513 */
6d5ab293 3514 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3515
3516 raw_spin_unlock_irqrestore(&rq->lock, flags);
3517
3518 return 0;
3519}
3520
3521static void update_shares(int cpu)
3522{
3523 struct cfs_rq *cfs_rq;
3524 struct rq *rq = cpu_rq(cpu);
3525
3526 rcu_read_lock();
9763b67f
PZ
3527 /*
3528 * Iterates the task_group tree in a bottom up fashion, see
3529 * list_add_leaf_cfs_rq() for details.
3530 */
64660c86
PT
3531 for_each_leaf_cfs_rq(rq, cfs_rq) {
3532 /* throttled entities do not contribute to load */
3533 if (throttled_hierarchy(cfs_rq))
3534 continue;
3535
67e86250 3536 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3537 }
9e3081ca
PZ
3538 rcu_read_unlock();
3539}
3540
9763b67f
PZ
3541/*
3542 * Compute the cpu's hierarchical load factor for each task group.
3543 * This needs to be done in a top-down fashion because the load of a child
3544 * group is a fraction of its parents load.
3545 */
3546static int tg_load_down(struct task_group *tg, void *data)
3547{
3548 unsigned long load;
3549 long cpu = (long)data;
3550
3551 if (!tg->parent) {
3552 load = cpu_rq(cpu)->load.weight;
3553 } else {
3554 load = tg->parent->cfs_rq[cpu]->h_load;
3555 load *= tg->se[cpu]->load.weight;
3556 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3557 }
3558
3559 tg->cfs_rq[cpu]->h_load = load;
3560
3561 return 0;
3562}
3563
3564static void update_h_load(long cpu)
3565{
a35b6466
PZ
3566 struct rq *rq = cpu_rq(cpu);
3567 unsigned long now = jiffies;
3568
3569 if (rq->h_load_throttle == now)
3570 return;
3571
3572 rq->h_load_throttle = now;
3573
367456c7 3574 rcu_read_lock();
9763b67f 3575 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3576 rcu_read_unlock();
9763b67f
PZ
3577}
3578
367456c7 3579static unsigned long task_h_load(struct task_struct *p)
230059de 3580{
367456c7
PZ
3581 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3582 unsigned long load;
230059de 3583
367456c7
PZ
3584 load = p->se.load.weight;
3585 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3586
367456c7 3587 return load;
230059de
PZ
3588}
3589#else
9e3081ca
PZ
3590static inline void update_shares(int cpu)
3591{
3592}
3593
367456c7 3594static inline void update_h_load(long cpu)
230059de 3595{
230059de 3596}
230059de 3597
367456c7 3598static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3599{
367456c7 3600 return p->se.load.weight;
1e3c88bd 3601}
230059de 3602#endif
1e3c88bd 3603
1e3c88bd
PZ
3604/********** Helpers for find_busiest_group ************************/
3605/*
3606 * sd_lb_stats - Structure to store the statistics of a sched_domain
3607 * during load balancing.
3608 */
3609struct sd_lb_stats {
3610 struct sched_group *busiest; /* Busiest group in this sd */
3611 struct sched_group *this; /* Local group in this sd */
3612 unsigned long total_load; /* Total load of all groups in sd */
3613 unsigned long total_pwr; /* Total power of all groups in sd */
3614 unsigned long avg_load; /* Average load across all groups in sd */
3615
3616 /** Statistics of this group */
3617 unsigned long this_load;
3618 unsigned long this_load_per_task;
3619 unsigned long this_nr_running;
fab47622 3620 unsigned long this_has_capacity;
aae6d3dd 3621 unsigned int this_idle_cpus;
1e3c88bd
PZ
3622
3623 /* Statistics of the busiest group */
aae6d3dd 3624 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3625 unsigned long max_load;
3626 unsigned long busiest_load_per_task;
3627 unsigned long busiest_nr_running;
dd5feea1 3628 unsigned long busiest_group_capacity;
fab47622 3629 unsigned long busiest_has_capacity;
aae6d3dd 3630 unsigned int busiest_group_weight;
1e3c88bd
PZ
3631
3632 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3633};
3634
3635/*
3636 * sg_lb_stats - stats of a sched_group required for load_balancing
3637 */
3638struct sg_lb_stats {
3639 unsigned long avg_load; /*Avg load across the CPUs of the group */
3640 unsigned long group_load; /* Total load over the CPUs of the group */
3641 unsigned long sum_nr_running; /* Nr tasks running in the group */
3642 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3643 unsigned long group_capacity;
aae6d3dd
SS
3644 unsigned long idle_cpus;
3645 unsigned long group_weight;
1e3c88bd 3646 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3647 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3648};
3649
1e3c88bd
PZ
3650/**
3651 * get_sd_load_idx - Obtain the load index for a given sched domain.
3652 * @sd: The sched_domain whose load_idx is to be obtained.
3653 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3654 */
3655static inline int get_sd_load_idx(struct sched_domain *sd,
3656 enum cpu_idle_type idle)
3657{
3658 int load_idx;
3659
3660 switch (idle) {
3661 case CPU_NOT_IDLE:
3662 load_idx = sd->busy_idx;
3663 break;
3664
3665 case CPU_NEWLY_IDLE:
3666 load_idx = sd->newidle_idx;
3667 break;
3668 default:
3669 load_idx = sd->idle_idx;
3670 break;
3671 }
3672
3673 return load_idx;
3674}
3675
1e3c88bd
PZ
3676unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3677{
1399fa78 3678 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3679}
3680
3681unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3682{
3683 return default_scale_freq_power(sd, cpu);
3684}
3685
3686unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3687{
669c55e9 3688 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3689 unsigned long smt_gain = sd->smt_gain;
3690
3691 smt_gain /= weight;
3692
3693 return smt_gain;
3694}
3695
3696unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3697{
3698 return default_scale_smt_power(sd, cpu);
3699}
3700
3701unsigned long scale_rt_power(int cpu)
3702{
3703 struct rq *rq = cpu_rq(cpu);
b654f7de 3704 u64 total, available, age_stamp, avg;
1e3c88bd 3705
b654f7de
PZ
3706 /*
3707 * Since we're reading these variables without serialization make sure
3708 * we read them once before doing sanity checks on them.
3709 */
3710 age_stamp = ACCESS_ONCE(rq->age_stamp);
3711 avg = ACCESS_ONCE(rq->rt_avg);
3712
3713 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3714
b654f7de 3715 if (unlikely(total < avg)) {
aa483808
VP
3716 /* Ensures that power won't end up being negative */
3717 available = 0;
3718 } else {
b654f7de 3719 available = total - avg;
aa483808 3720 }
1e3c88bd 3721
1399fa78
NR
3722 if (unlikely((s64)total < SCHED_POWER_SCALE))
3723 total = SCHED_POWER_SCALE;
1e3c88bd 3724
1399fa78 3725 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3726
3727 return div_u64(available, total);
3728}
3729
3730static void update_cpu_power(struct sched_domain *sd, int cpu)
3731{
669c55e9 3732 unsigned long weight = sd->span_weight;
1399fa78 3733 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3734 struct sched_group *sdg = sd->groups;
3735
1e3c88bd
PZ
3736 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3737 if (sched_feat(ARCH_POWER))
3738 power *= arch_scale_smt_power(sd, cpu);
3739 else
3740 power *= default_scale_smt_power(sd, cpu);
3741
1399fa78 3742 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3743 }
3744
9c3f75cb 3745 sdg->sgp->power_orig = power;
9d5efe05
SV
3746
3747 if (sched_feat(ARCH_POWER))
3748 power *= arch_scale_freq_power(sd, cpu);
3749 else
3750 power *= default_scale_freq_power(sd, cpu);
3751
1399fa78 3752 power >>= SCHED_POWER_SHIFT;
9d5efe05 3753
1e3c88bd 3754 power *= scale_rt_power(cpu);
1399fa78 3755 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3756
3757 if (!power)
3758 power = 1;
3759
e51fd5e2 3760 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3761 sdg->sgp->power = power;
1e3c88bd
PZ
3762}
3763
029632fb 3764void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3765{
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group, *sdg = sd->groups;
3768 unsigned long power;
4ec4412e
VG
3769 unsigned long interval;
3770
3771 interval = msecs_to_jiffies(sd->balance_interval);
3772 interval = clamp(interval, 1UL, max_load_balance_interval);
3773 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3774
3775 if (!child) {
3776 update_cpu_power(sd, cpu);
3777 return;
3778 }
3779
3780 power = 0;
3781
74a5ce20
PZ
3782 if (child->flags & SD_OVERLAP) {
3783 /*
3784 * SD_OVERLAP domains cannot assume that child groups
3785 * span the current group.
3786 */
3787
3788 for_each_cpu(cpu, sched_group_cpus(sdg))
3789 power += power_of(cpu);
3790 } else {
3791 /*
3792 * !SD_OVERLAP domains can assume that child groups
3793 * span the current group.
3794 */
3795
3796 group = child->groups;
3797 do {
3798 power += group->sgp->power;
3799 group = group->next;
3800 } while (group != child->groups);
3801 }
1e3c88bd 3802
c3decf0d 3803 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3804}
3805
9d5efe05
SV
3806/*
3807 * Try and fix up capacity for tiny siblings, this is needed when
3808 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3809 * which on its own isn't powerful enough.
3810 *
3811 * See update_sd_pick_busiest() and check_asym_packing().
3812 */
3813static inline int
3814fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3815{
3816 /*
1399fa78 3817 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3818 */
a6c75f2f 3819 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3820 return 0;
3821
3822 /*
3823 * If ~90% of the cpu_power is still there, we're good.
3824 */
9c3f75cb 3825 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3826 return 1;
3827
3828 return 0;
3829}
3830
1e3c88bd
PZ
3831/**
3832 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3833 * @env: The load balancing environment.
1e3c88bd 3834 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3835 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 3836 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
3837 * @balance: Should we balance.
3838 * @sgs: variable to hold the statistics for this group.
3839 */
bd939f45
PZ
3840static inline void update_sg_lb_stats(struct lb_env *env,
3841 struct sched_group *group, int load_idx,
b9403130 3842 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 3843{
e44bc5c5
PZ
3844 unsigned long nr_running, max_nr_running, min_nr_running;
3845 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 3846 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3847 unsigned long avg_load_per_task = 0;
bd939f45 3848 int i;
1e3c88bd 3849
871e35bc 3850 if (local_group)
c1174876 3851 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
3852
3853 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3854 max_cpu_load = 0;
3855 min_cpu_load = ~0UL;
2582f0eb 3856 max_nr_running = 0;
e44bc5c5 3857 min_nr_running = ~0UL;
1e3c88bd 3858
b9403130 3859 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
3860 struct rq *rq = cpu_rq(i);
3861
e44bc5c5
PZ
3862 nr_running = rq->nr_running;
3863
1e3c88bd
PZ
3864 /* Bias balancing toward cpus of our domain */
3865 if (local_group) {
c1174876
PZ
3866 if (idle_cpu(i) && !first_idle_cpu &&
3867 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 3868 first_idle_cpu = 1;
1e3c88bd
PZ
3869 balance_cpu = i;
3870 }
04f733b4
PZ
3871
3872 load = target_load(i, load_idx);
1e3c88bd
PZ
3873 } else {
3874 load = source_load(i, load_idx);
e44bc5c5 3875 if (load > max_cpu_load)
1e3c88bd
PZ
3876 max_cpu_load = load;
3877 if (min_cpu_load > load)
3878 min_cpu_load = load;
e44bc5c5
PZ
3879
3880 if (nr_running > max_nr_running)
3881 max_nr_running = nr_running;
3882 if (min_nr_running > nr_running)
3883 min_nr_running = nr_running;
1e3c88bd
PZ
3884 }
3885
3886 sgs->group_load += load;
e44bc5c5 3887 sgs->sum_nr_running += nr_running;
1e3c88bd 3888 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3889 if (idle_cpu(i))
3890 sgs->idle_cpus++;
1e3c88bd
PZ
3891 }
3892
3893 /*
3894 * First idle cpu or the first cpu(busiest) in this sched group
3895 * is eligible for doing load balancing at this and above
3896 * domains. In the newly idle case, we will allow all the cpu's
3897 * to do the newly idle load balance.
3898 */
4ec4412e 3899 if (local_group) {
bd939f45 3900 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 3901 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
3902 *balance = 0;
3903 return;
3904 }
bd939f45 3905 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3906 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3907 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3908 }
3909
3910 /* Adjust by relative CPU power of the group */
9c3f75cb 3911 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3912
1e3c88bd
PZ
3913 /*
3914 * Consider the group unbalanced when the imbalance is larger
866ab43e 3915 * than the average weight of a task.
1e3c88bd
PZ
3916 *
3917 * APZ: with cgroup the avg task weight can vary wildly and
3918 * might not be a suitable number - should we keep a
3919 * normalized nr_running number somewhere that negates
3920 * the hierarchy?
3921 */
dd5feea1
SS
3922 if (sgs->sum_nr_running)
3923 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3924
e44bc5c5
PZ
3925 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3926 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
3927 sgs->group_imb = 1;
3928
9c3f75cb 3929 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3930 SCHED_POWER_SCALE);
9d5efe05 3931 if (!sgs->group_capacity)
bd939f45 3932 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3933 sgs->group_weight = group->group_weight;
fab47622
NR
3934
3935 if (sgs->group_capacity > sgs->sum_nr_running)
3936 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3937}
3938
532cb4c4
MN
3939/**
3940 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 3941 * @env: The load balancing environment.
532cb4c4
MN
3942 * @sds: sched_domain statistics
3943 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 3944 * @sgs: sched_group statistics
532cb4c4
MN
3945 *
3946 * Determine if @sg is a busier group than the previously selected
3947 * busiest group.
3948 */
bd939f45 3949static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3950 struct sd_lb_stats *sds,
3951 struct sched_group *sg,
bd939f45 3952 struct sg_lb_stats *sgs)
532cb4c4
MN
3953{
3954 if (sgs->avg_load <= sds->max_load)
3955 return false;
3956
3957 if (sgs->sum_nr_running > sgs->group_capacity)
3958 return true;
3959
3960 if (sgs->group_imb)
3961 return true;
3962
3963 /*
3964 * ASYM_PACKING needs to move all the work to the lowest
3965 * numbered CPUs in the group, therefore mark all groups
3966 * higher than ourself as busy.
3967 */
bd939f45
PZ
3968 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3969 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3970 if (!sds->busiest)
3971 return true;
3972
3973 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3974 return true;
3975 }
3976
3977 return false;
3978}
3979
1e3c88bd 3980/**
461819ac 3981 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 3982 * @env: The load balancing environment.
1e3c88bd
PZ
3983 * @balance: Should we balance.
3984 * @sds: variable to hold the statistics for this sched_domain.
3985 */
bd939f45 3986static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 3987 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3988{
bd939f45
PZ
3989 struct sched_domain *child = env->sd->child;
3990 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3991 struct sg_lb_stats sgs;
3992 int load_idx, prefer_sibling = 0;
3993
3994 if (child && child->flags & SD_PREFER_SIBLING)
3995 prefer_sibling = 1;
3996
bd939f45 3997 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3998
3999 do {
4000 int local_group;
4001
bd939f45 4002 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4003 memset(&sgs, 0, sizeof(sgs));
b9403130 4004 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4005
8f190fb3 4006 if (local_group && !(*balance))
1e3c88bd
PZ
4007 return;
4008
4009 sds->total_load += sgs.group_load;
9c3f75cb 4010 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4011
4012 /*
4013 * In case the child domain prefers tasks go to siblings
532cb4c4 4014 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4015 * and move all the excess tasks away. We lower the capacity
4016 * of a group only if the local group has the capacity to fit
4017 * these excess tasks, i.e. nr_running < group_capacity. The
4018 * extra check prevents the case where you always pull from the
4019 * heaviest group when it is already under-utilized (possible
4020 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4021 */
75dd321d 4022 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4023 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4024
4025 if (local_group) {
4026 sds->this_load = sgs.avg_load;
532cb4c4 4027 sds->this = sg;
1e3c88bd
PZ
4028 sds->this_nr_running = sgs.sum_nr_running;
4029 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4030 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4031 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4032 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4033 sds->max_load = sgs.avg_load;
532cb4c4 4034 sds->busiest = sg;
1e3c88bd 4035 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4036 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4037 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4038 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4039 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4040 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4041 sds->group_imb = sgs.group_imb;
4042 }
4043
532cb4c4 4044 sg = sg->next;
bd939f45 4045 } while (sg != env->sd->groups);
532cb4c4
MN
4046}
4047
532cb4c4
MN
4048/**
4049 * check_asym_packing - Check to see if the group is packed into the
4050 * sched doman.
4051 *
4052 * This is primarily intended to used at the sibling level. Some
4053 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4054 * case of POWER7, it can move to lower SMT modes only when higher
4055 * threads are idle. When in lower SMT modes, the threads will
4056 * perform better since they share less core resources. Hence when we
4057 * have idle threads, we want them to be the higher ones.
4058 *
4059 * This packing function is run on idle threads. It checks to see if
4060 * the busiest CPU in this domain (core in the P7 case) has a higher
4061 * CPU number than the packing function is being run on. Here we are
4062 * assuming lower CPU number will be equivalent to lower a SMT thread
4063 * number.
4064 *
b6b12294
MN
4065 * Returns 1 when packing is required and a task should be moved to
4066 * this CPU. The amount of the imbalance is returned in *imbalance.
4067 *
cd96891d 4068 * @env: The load balancing environment.
532cb4c4 4069 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4070 */
bd939f45 4071static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4072{
4073 int busiest_cpu;
4074
bd939f45 4075 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4076 return 0;
4077
4078 if (!sds->busiest)
4079 return 0;
4080
4081 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4082 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4083 return 0;
4084
bd939f45
PZ
4085 env->imbalance = DIV_ROUND_CLOSEST(
4086 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4087
532cb4c4 4088 return 1;
1e3c88bd
PZ
4089}
4090
4091/**
4092 * fix_small_imbalance - Calculate the minor imbalance that exists
4093 * amongst the groups of a sched_domain, during
4094 * load balancing.
cd96891d 4095 * @env: The load balancing environment.
1e3c88bd 4096 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4097 */
bd939f45
PZ
4098static inline
4099void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4100{
4101 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4102 unsigned int imbn = 2;
dd5feea1 4103 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4104
4105 if (sds->this_nr_running) {
4106 sds->this_load_per_task /= sds->this_nr_running;
4107 if (sds->busiest_load_per_task >
4108 sds->this_load_per_task)
4109 imbn = 1;
bd939f45 4110 } else {
1e3c88bd 4111 sds->this_load_per_task =
bd939f45
PZ
4112 cpu_avg_load_per_task(env->dst_cpu);
4113 }
1e3c88bd 4114
dd5feea1 4115 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4116 * SCHED_POWER_SCALE;
9c3f75cb 4117 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4118
4119 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4120 (scaled_busy_load_per_task * imbn)) {
bd939f45 4121 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4122 return;
4123 }
4124
4125 /*
4126 * OK, we don't have enough imbalance to justify moving tasks,
4127 * however we may be able to increase total CPU power used by
4128 * moving them.
4129 */
4130
9c3f75cb 4131 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4132 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4133 pwr_now += sds->this->sgp->power *
1e3c88bd 4134 min(sds->this_load_per_task, sds->this_load);
1399fa78 4135 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4136
4137 /* Amount of load we'd subtract */
1399fa78 4138 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4139 sds->busiest->sgp->power;
1e3c88bd 4140 if (sds->max_load > tmp)
9c3f75cb 4141 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4142 min(sds->busiest_load_per_task, sds->max_load - tmp);
4143
4144 /* Amount of load we'd add */
9c3f75cb 4145 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4146 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4147 tmp = (sds->max_load * sds->busiest->sgp->power) /
4148 sds->this->sgp->power;
1e3c88bd 4149 else
1399fa78 4150 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4151 sds->this->sgp->power;
4152 pwr_move += sds->this->sgp->power *
1e3c88bd 4153 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4154 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4155
4156 /* Move if we gain throughput */
4157 if (pwr_move > pwr_now)
bd939f45 4158 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4159}
4160
4161/**
4162 * calculate_imbalance - Calculate the amount of imbalance present within the
4163 * groups of a given sched_domain during load balance.
bd939f45 4164 * @env: load balance environment
1e3c88bd 4165 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4166 */
bd939f45 4167static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4168{
dd5feea1
SS
4169 unsigned long max_pull, load_above_capacity = ~0UL;
4170
4171 sds->busiest_load_per_task /= sds->busiest_nr_running;
4172 if (sds->group_imb) {
4173 sds->busiest_load_per_task =
4174 min(sds->busiest_load_per_task, sds->avg_load);
4175 }
4176
1e3c88bd
PZ
4177 /*
4178 * In the presence of smp nice balancing, certain scenarios can have
4179 * max load less than avg load(as we skip the groups at or below
4180 * its cpu_power, while calculating max_load..)
4181 */
4182 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4183 env->imbalance = 0;
4184 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4185 }
4186
dd5feea1
SS
4187 if (!sds->group_imb) {
4188 /*
4189 * Don't want to pull so many tasks that a group would go idle.
4190 */
4191 load_above_capacity = (sds->busiest_nr_running -
4192 sds->busiest_group_capacity);
4193
1399fa78 4194 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4195
9c3f75cb 4196 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4197 }
4198
4199 /*
4200 * We're trying to get all the cpus to the average_load, so we don't
4201 * want to push ourselves above the average load, nor do we wish to
4202 * reduce the max loaded cpu below the average load. At the same time,
4203 * we also don't want to reduce the group load below the group capacity
4204 * (so that we can implement power-savings policies etc). Thus we look
4205 * for the minimum possible imbalance.
4206 * Be careful of negative numbers as they'll appear as very large values
4207 * with unsigned longs.
4208 */
4209 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4210
4211 /* How much load to actually move to equalise the imbalance */
bd939f45 4212 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4213 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4214 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4215
4216 /*
4217 * if *imbalance is less than the average load per runnable task
25985edc 4218 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4219 * a think about bumping its value to force at least one task to be
4220 * moved
4221 */
bd939f45
PZ
4222 if (env->imbalance < sds->busiest_load_per_task)
4223 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4224
4225}
fab47622 4226
1e3c88bd
PZ
4227/******* find_busiest_group() helpers end here *********************/
4228
4229/**
4230 * find_busiest_group - Returns the busiest group within the sched_domain
4231 * if there is an imbalance. If there isn't an imbalance, and
4232 * the user has opted for power-savings, it returns a group whose
4233 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4234 * such a group exists.
4235 *
4236 * Also calculates the amount of weighted load which should be moved
4237 * to restore balance.
4238 *
cd96891d 4239 * @env: The load balancing environment.
1e3c88bd
PZ
4240 * @balance: Pointer to a variable indicating if this_cpu
4241 * is the appropriate cpu to perform load balancing at this_level.
4242 *
4243 * Returns: - the busiest group if imbalance exists.
4244 * - If no imbalance and user has opted for power-savings balance,
4245 * return the least loaded group whose CPUs can be
4246 * put to idle by rebalancing its tasks onto our group.
4247 */
4248static struct sched_group *
b9403130 4249find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4250{
4251 struct sd_lb_stats sds;
4252
4253 memset(&sds, 0, sizeof(sds));
4254
4255 /*
4256 * Compute the various statistics relavent for load balancing at
4257 * this level.
4258 */
b9403130 4259 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4260
cc57aa8f
PZ
4261 /*
4262 * this_cpu is not the appropriate cpu to perform load balancing at
4263 * this level.
1e3c88bd 4264 */
8f190fb3 4265 if (!(*balance))
1e3c88bd
PZ
4266 goto ret;
4267
bd939f45
PZ
4268 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4269 check_asym_packing(env, &sds))
532cb4c4
MN
4270 return sds.busiest;
4271
cc57aa8f 4272 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4273 if (!sds.busiest || sds.busiest_nr_running == 0)
4274 goto out_balanced;
4275
1399fa78 4276 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4277
866ab43e
PZ
4278 /*
4279 * If the busiest group is imbalanced the below checks don't
4280 * work because they assumes all things are equal, which typically
4281 * isn't true due to cpus_allowed constraints and the like.
4282 */
4283 if (sds.group_imb)
4284 goto force_balance;
4285
cc57aa8f 4286 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4287 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4288 !sds.busiest_has_capacity)
4289 goto force_balance;
4290
cc57aa8f
PZ
4291 /*
4292 * If the local group is more busy than the selected busiest group
4293 * don't try and pull any tasks.
4294 */
1e3c88bd
PZ
4295 if (sds.this_load >= sds.max_load)
4296 goto out_balanced;
4297
cc57aa8f
PZ
4298 /*
4299 * Don't pull any tasks if this group is already above the domain
4300 * average load.
4301 */
1e3c88bd
PZ
4302 if (sds.this_load >= sds.avg_load)
4303 goto out_balanced;
4304
bd939f45 4305 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4306 /*
4307 * This cpu is idle. If the busiest group load doesn't
4308 * have more tasks than the number of available cpu's and
4309 * there is no imbalance between this and busiest group
4310 * wrt to idle cpu's, it is balanced.
4311 */
c186fafe 4312 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4313 sds.busiest_nr_running <= sds.busiest_group_weight)
4314 goto out_balanced;
c186fafe
PZ
4315 } else {
4316 /*
4317 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4318 * imbalance_pct to be conservative.
4319 */
bd939f45 4320 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4321 goto out_balanced;
aae6d3dd 4322 }
1e3c88bd 4323
fab47622 4324force_balance:
1e3c88bd 4325 /* Looks like there is an imbalance. Compute it */
bd939f45 4326 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4327 return sds.busiest;
4328
4329out_balanced:
1e3c88bd 4330ret:
bd939f45 4331 env->imbalance = 0;
1e3c88bd
PZ
4332 return NULL;
4333}
4334
4335/*
4336 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4337 */
bd939f45 4338static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4339 struct sched_group *group)
1e3c88bd
PZ
4340{
4341 struct rq *busiest = NULL, *rq;
4342 unsigned long max_load = 0;
4343 int i;
4344
4345 for_each_cpu(i, sched_group_cpus(group)) {
4346 unsigned long power = power_of(i);
1399fa78
NR
4347 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4348 SCHED_POWER_SCALE);
1e3c88bd
PZ
4349 unsigned long wl;
4350
9d5efe05 4351 if (!capacity)
bd939f45 4352 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4353
b9403130 4354 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4355 continue;
4356
4357 rq = cpu_rq(i);
6e40f5bb 4358 wl = weighted_cpuload(i);
1e3c88bd 4359
6e40f5bb
TG
4360 /*
4361 * When comparing with imbalance, use weighted_cpuload()
4362 * which is not scaled with the cpu power.
4363 */
bd939f45 4364 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4365 continue;
4366
6e40f5bb
TG
4367 /*
4368 * For the load comparisons with the other cpu's, consider
4369 * the weighted_cpuload() scaled with the cpu power, so that
4370 * the load can be moved away from the cpu that is potentially
4371 * running at a lower capacity.
4372 */
1399fa78 4373 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4374
1e3c88bd
PZ
4375 if (wl > max_load) {
4376 max_load = wl;
4377 busiest = rq;
4378 }
4379 }
4380
4381 return busiest;
4382}
4383
4384/*
4385 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4386 * so long as it is large enough.
4387 */
4388#define MAX_PINNED_INTERVAL 512
4389
4390/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4391DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4392
bd939f45 4393static int need_active_balance(struct lb_env *env)
1af3ed3d 4394{
bd939f45
PZ
4395 struct sched_domain *sd = env->sd;
4396
4397 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4398
4399 /*
4400 * ASYM_PACKING needs to force migrate tasks from busy but
4401 * higher numbered CPUs in order to pack all tasks in the
4402 * lowest numbered CPUs.
4403 */
bd939f45 4404 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4405 return 1;
1af3ed3d
PZ
4406 }
4407
4408 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4409}
4410
969c7921
TH
4411static int active_load_balance_cpu_stop(void *data);
4412
1e3c88bd
PZ
4413/*
4414 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4415 * tasks if there is an imbalance.
4416 */
4417static int load_balance(int this_cpu, struct rq *this_rq,
4418 struct sched_domain *sd, enum cpu_idle_type idle,
4419 int *balance)
4420{
88b8dac0
SV
4421 int ld_moved, cur_ld_moved, active_balance = 0;
4422 int lb_iterations, max_lb_iterations;
1e3c88bd 4423 struct sched_group *group;
1e3c88bd
PZ
4424 struct rq *busiest;
4425 unsigned long flags;
4426 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4427
8e45cb54
PZ
4428 struct lb_env env = {
4429 .sd = sd,
ddcdf6e7
PZ
4430 .dst_cpu = this_cpu,
4431 .dst_rq = this_rq,
88b8dac0 4432 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4433 .idle = idle,
eb95308e 4434 .loop_break = sched_nr_migrate_break,
b9403130 4435 .cpus = cpus,
8e45cb54
PZ
4436 };
4437
1e3c88bd 4438 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4439 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4440
1e3c88bd
PZ
4441 schedstat_inc(sd, lb_count[idle]);
4442
4443redo:
b9403130 4444 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4445
4446 if (*balance == 0)
4447 goto out_balanced;
4448
4449 if (!group) {
4450 schedstat_inc(sd, lb_nobusyg[idle]);
4451 goto out_balanced;
4452 }
4453
b9403130 4454 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4455 if (!busiest) {
4456 schedstat_inc(sd, lb_nobusyq[idle]);
4457 goto out_balanced;
4458 }
4459
78feefc5 4460 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4461
bd939f45 4462 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4463
4464 ld_moved = 0;
88b8dac0 4465 lb_iterations = 1;
1e3c88bd
PZ
4466 if (busiest->nr_running > 1) {
4467 /*
4468 * Attempt to move tasks. If find_busiest_group has found
4469 * an imbalance but busiest->nr_running <= 1, the group is
4470 * still unbalanced. ld_moved simply stays zero, so it is
4471 * correctly treated as an imbalance.
4472 */
8e45cb54 4473 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4474 env.src_cpu = busiest->cpu;
4475 env.src_rq = busiest;
4476 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4477
a35b6466 4478 update_h_load(env.src_cpu);
5d6523eb 4479more_balance:
1e3c88bd 4480 local_irq_save(flags);
78feefc5 4481 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4482
4483 /*
4484 * cur_ld_moved - load moved in current iteration
4485 * ld_moved - cumulative load moved across iterations
4486 */
4487 cur_ld_moved = move_tasks(&env);
4488 ld_moved += cur_ld_moved;
78feefc5 4489 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4490 local_irq_restore(flags);
4491
5d6523eb
PZ
4492 if (env.flags & LBF_NEED_BREAK) {
4493 env.flags &= ~LBF_NEED_BREAK;
4494 goto more_balance;
4495 }
4496
1e3c88bd
PZ
4497 /*
4498 * some other cpu did the load balance for us.
4499 */
88b8dac0
SV
4500 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4501 resched_cpu(env.dst_cpu);
4502
4503 /*
4504 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4505 * us and move them to an alternate dst_cpu in our sched_group
4506 * where they can run. The upper limit on how many times we
4507 * iterate on same src_cpu is dependent on number of cpus in our
4508 * sched_group.
4509 *
4510 * This changes load balance semantics a bit on who can move
4511 * load to a given_cpu. In addition to the given_cpu itself
4512 * (or a ilb_cpu acting on its behalf where given_cpu is
4513 * nohz-idle), we now have balance_cpu in a position to move
4514 * load to given_cpu. In rare situations, this may cause
4515 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4516 * _independently_ and at _same_ time to move some load to
4517 * given_cpu) causing exceess load to be moved to given_cpu.
4518 * This however should not happen so much in practice and
4519 * moreover subsequent load balance cycles should correct the
4520 * excess load moved.
4521 */
4522 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4523 lb_iterations++ < max_lb_iterations) {
4524
78feefc5 4525 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4526 env.dst_cpu = env.new_dst_cpu;
4527 env.flags &= ~LBF_SOME_PINNED;
4528 env.loop = 0;
4529 env.loop_break = sched_nr_migrate_break;
4530 /*
4531 * Go back to "more_balance" rather than "redo" since we
4532 * need to continue with same src_cpu.
4533 */
4534 goto more_balance;
4535 }
1e3c88bd
PZ
4536
4537 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4538 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4539 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4540 if (!cpumask_empty(cpus)) {
4541 env.loop = 0;
4542 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4543 goto redo;
bbf18b19 4544 }
1e3c88bd
PZ
4545 goto out_balanced;
4546 }
4547 }
4548
4549 if (!ld_moved) {
4550 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4551 /*
4552 * Increment the failure counter only on periodic balance.
4553 * We do not want newidle balance, which can be very
4554 * frequent, pollute the failure counter causing
4555 * excessive cache_hot migrations and active balances.
4556 */
4557 if (idle != CPU_NEWLY_IDLE)
4558 sd->nr_balance_failed++;
1e3c88bd 4559
bd939f45 4560 if (need_active_balance(&env)) {
1e3c88bd
PZ
4561 raw_spin_lock_irqsave(&busiest->lock, flags);
4562
969c7921
TH
4563 /* don't kick the active_load_balance_cpu_stop,
4564 * if the curr task on busiest cpu can't be
4565 * moved to this_cpu
1e3c88bd
PZ
4566 */
4567 if (!cpumask_test_cpu(this_cpu,
fa17b507 4568 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4569 raw_spin_unlock_irqrestore(&busiest->lock,
4570 flags);
8e45cb54 4571 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4572 goto out_one_pinned;
4573 }
4574
969c7921
TH
4575 /*
4576 * ->active_balance synchronizes accesses to
4577 * ->active_balance_work. Once set, it's cleared
4578 * only after active load balance is finished.
4579 */
1e3c88bd
PZ
4580 if (!busiest->active_balance) {
4581 busiest->active_balance = 1;
4582 busiest->push_cpu = this_cpu;
4583 active_balance = 1;
4584 }
4585 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4586
bd939f45 4587 if (active_balance) {
969c7921
TH
4588 stop_one_cpu_nowait(cpu_of(busiest),
4589 active_load_balance_cpu_stop, busiest,
4590 &busiest->active_balance_work);
bd939f45 4591 }
1e3c88bd
PZ
4592
4593 /*
4594 * We've kicked active balancing, reset the failure
4595 * counter.
4596 */
4597 sd->nr_balance_failed = sd->cache_nice_tries+1;
4598 }
4599 } else
4600 sd->nr_balance_failed = 0;
4601
4602 if (likely(!active_balance)) {
4603 /* We were unbalanced, so reset the balancing interval */
4604 sd->balance_interval = sd->min_interval;
4605 } else {
4606 /*
4607 * If we've begun active balancing, start to back off. This
4608 * case may not be covered by the all_pinned logic if there
4609 * is only 1 task on the busy runqueue (because we don't call
4610 * move_tasks).
4611 */
4612 if (sd->balance_interval < sd->max_interval)
4613 sd->balance_interval *= 2;
4614 }
4615
1e3c88bd
PZ
4616 goto out;
4617
4618out_balanced:
4619 schedstat_inc(sd, lb_balanced[idle]);
4620
4621 sd->nr_balance_failed = 0;
4622
4623out_one_pinned:
4624 /* tune up the balancing interval */
8e45cb54 4625 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4626 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4627 (sd->balance_interval < sd->max_interval))
4628 sd->balance_interval *= 2;
4629
46e49b38 4630 ld_moved = 0;
1e3c88bd 4631out:
1e3c88bd
PZ
4632 return ld_moved;
4633}
4634
1e3c88bd
PZ
4635/*
4636 * idle_balance is called by schedule() if this_cpu is about to become
4637 * idle. Attempts to pull tasks from other CPUs.
4638 */
029632fb 4639void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4640{
4641 struct sched_domain *sd;
4642 int pulled_task = 0;
4643 unsigned long next_balance = jiffies + HZ;
4644
4645 this_rq->idle_stamp = this_rq->clock;
4646
4647 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4648 return;
4649
f492e12e
PZ
4650 /*
4651 * Drop the rq->lock, but keep IRQ/preempt disabled.
4652 */
4653 raw_spin_unlock(&this_rq->lock);
4654
c66eaf61 4655 update_shares(this_cpu);
dce840a0 4656 rcu_read_lock();
1e3c88bd
PZ
4657 for_each_domain(this_cpu, sd) {
4658 unsigned long interval;
f492e12e 4659 int balance = 1;
1e3c88bd
PZ
4660
4661 if (!(sd->flags & SD_LOAD_BALANCE))
4662 continue;
4663
f492e12e 4664 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4665 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4666 pulled_task = load_balance(this_cpu, this_rq,
4667 sd, CPU_NEWLY_IDLE, &balance);
4668 }
1e3c88bd
PZ
4669
4670 interval = msecs_to_jiffies(sd->balance_interval);
4671 if (time_after(next_balance, sd->last_balance + interval))
4672 next_balance = sd->last_balance + interval;
d5ad140b
NR
4673 if (pulled_task) {
4674 this_rq->idle_stamp = 0;
1e3c88bd 4675 break;
d5ad140b 4676 }
1e3c88bd 4677 }
dce840a0 4678 rcu_read_unlock();
f492e12e
PZ
4679
4680 raw_spin_lock(&this_rq->lock);
4681
1e3c88bd
PZ
4682 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4683 /*
4684 * We are going idle. next_balance may be set based on
4685 * a busy processor. So reset next_balance.
4686 */
4687 this_rq->next_balance = next_balance;
4688 }
4689}
4690
4691/*
969c7921
TH
4692 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4693 * running tasks off the busiest CPU onto idle CPUs. It requires at
4694 * least 1 task to be running on each physical CPU where possible, and
4695 * avoids physical / logical imbalances.
1e3c88bd 4696 */
969c7921 4697static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4698{
969c7921
TH
4699 struct rq *busiest_rq = data;
4700 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4701 int target_cpu = busiest_rq->push_cpu;
969c7921 4702 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4703 struct sched_domain *sd;
969c7921
TH
4704
4705 raw_spin_lock_irq(&busiest_rq->lock);
4706
4707 /* make sure the requested cpu hasn't gone down in the meantime */
4708 if (unlikely(busiest_cpu != smp_processor_id() ||
4709 !busiest_rq->active_balance))
4710 goto out_unlock;
1e3c88bd
PZ
4711
4712 /* Is there any task to move? */
4713 if (busiest_rq->nr_running <= 1)
969c7921 4714 goto out_unlock;
1e3c88bd
PZ
4715
4716 /*
4717 * This condition is "impossible", if it occurs
4718 * we need to fix it. Originally reported by
4719 * Bjorn Helgaas on a 128-cpu setup.
4720 */
4721 BUG_ON(busiest_rq == target_rq);
4722
4723 /* move a task from busiest_rq to target_rq */
4724 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4725
4726 /* Search for an sd spanning us and the target CPU. */
dce840a0 4727 rcu_read_lock();
1e3c88bd
PZ
4728 for_each_domain(target_cpu, sd) {
4729 if ((sd->flags & SD_LOAD_BALANCE) &&
4730 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4731 break;
4732 }
4733
4734 if (likely(sd)) {
8e45cb54
PZ
4735 struct lb_env env = {
4736 .sd = sd,
ddcdf6e7
PZ
4737 .dst_cpu = target_cpu,
4738 .dst_rq = target_rq,
4739 .src_cpu = busiest_rq->cpu,
4740 .src_rq = busiest_rq,
8e45cb54
PZ
4741 .idle = CPU_IDLE,
4742 };
4743
1e3c88bd
PZ
4744 schedstat_inc(sd, alb_count);
4745
8e45cb54 4746 if (move_one_task(&env))
1e3c88bd
PZ
4747 schedstat_inc(sd, alb_pushed);
4748 else
4749 schedstat_inc(sd, alb_failed);
4750 }
dce840a0 4751 rcu_read_unlock();
1e3c88bd 4752 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4753out_unlock:
4754 busiest_rq->active_balance = 0;
4755 raw_spin_unlock_irq(&busiest_rq->lock);
4756 return 0;
1e3c88bd
PZ
4757}
4758
4759#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4760/*
4761 * idle load balancing details
83cd4fe2
VP
4762 * - When one of the busy CPUs notice that there may be an idle rebalancing
4763 * needed, they will kick the idle load balancer, which then does idle
4764 * load balancing for all the idle CPUs.
4765 */
1e3c88bd 4766static struct {
83cd4fe2 4767 cpumask_var_t idle_cpus_mask;
0b005cf5 4768 atomic_t nr_cpus;
83cd4fe2
VP
4769 unsigned long next_balance; /* in jiffy units */
4770} nohz ____cacheline_aligned;
1e3c88bd 4771
8e7fbcbc 4772static inline int find_new_ilb(int call_cpu)
1e3c88bd 4773{
0b005cf5 4774 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4775
786d6dc7
SS
4776 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4777 return ilb;
4778
4779 return nr_cpu_ids;
1e3c88bd 4780}
1e3c88bd 4781
83cd4fe2
VP
4782/*
4783 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4784 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4785 * CPU (if there is one).
4786 */
4787static void nohz_balancer_kick(int cpu)
4788{
4789 int ilb_cpu;
4790
4791 nohz.next_balance++;
4792
0b005cf5 4793 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4794
0b005cf5
SS
4795 if (ilb_cpu >= nr_cpu_ids)
4796 return;
83cd4fe2 4797
cd490c5b 4798 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4799 return;
4800 /*
4801 * Use smp_send_reschedule() instead of resched_cpu().
4802 * This way we generate a sched IPI on the target cpu which
4803 * is idle. And the softirq performing nohz idle load balance
4804 * will be run before returning from the IPI.
4805 */
4806 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4807 return;
4808}
4809
c1cc017c 4810static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
4811{
4812 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4813 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4814 atomic_dec(&nohz.nr_cpus);
4815 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4816 }
4817}
4818
69e1e811
SS
4819static inline void set_cpu_sd_state_busy(void)
4820{
4821 struct sched_domain *sd;
4822 int cpu = smp_processor_id();
4823
4824 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4825 return;
4826 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4827
4828 rcu_read_lock();
4829 for_each_domain(cpu, sd)
4830 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4831 rcu_read_unlock();
4832}
4833
4834void set_cpu_sd_state_idle(void)
4835{
4836 struct sched_domain *sd;
4837 int cpu = smp_processor_id();
4838
4839 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4840 return;
4841 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4842
4843 rcu_read_lock();
4844 for_each_domain(cpu, sd)
4845 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4846 rcu_read_unlock();
4847}
4848
1e3c88bd 4849/*
c1cc017c 4850 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 4851 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4852 */
c1cc017c 4853void nohz_balance_enter_idle(int cpu)
1e3c88bd 4854{
71325960
SS
4855 /*
4856 * If this cpu is going down, then nothing needs to be done.
4857 */
4858 if (!cpu_active(cpu))
4859 return;
4860
c1cc017c
AS
4861 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4862 return;
1e3c88bd 4863
c1cc017c
AS
4864 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4865 atomic_inc(&nohz.nr_cpus);
4866 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4867}
71325960
SS
4868
4869static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4870 unsigned long action, void *hcpu)
4871{
4872 switch (action & ~CPU_TASKS_FROZEN) {
4873 case CPU_DYING:
c1cc017c 4874 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
4875 return NOTIFY_OK;
4876 default:
4877 return NOTIFY_DONE;
4878 }
4879}
1e3c88bd
PZ
4880#endif
4881
4882static DEFINE_SPINLOCK(balancing);
4883
49c022e6
PZ
4884/*
4885 * Scale the max load_balance interval with the number of CPUs in the system.
4886 * This trades load-balance latency on larger machines for less cross talk.
4887 */
029632fb 4888void update_max_interval(void)
49c022e6
PZ
4889{
4890 max_load_balance_interval = HZ*num_online_cpus()/10;
4891}
4892
1e3c88bd
PZ
4893/*
4894 * It checks each scheduling domain to see if it is due to be balanced,
4895 * and initiates a balancing operation if so.
4896 *
4897 * Balancing parameters are set up in arch_init_sched_domains.
4898 */
4899static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4900{
4901 int balance = 1;
4902 struct rq *rq = cpu_rq(cpu);
4903 unsigned long interval;
04f733b4 4904 struct sched_domain *sd;
1e3c88bd
PZ
4905 /* Earliest time when we have to do rebalance again */
4906 unsigned long next_balance = jiffies + 60*HZ;
4907 int update_next_balance = 0;
4908 int need_serialize;
4909
2069dd75
PZ
4910 update_shares(cpu);
4911
dce840a0 4912 rcu_read_lock();
1e3c88bd
PZ
4913 for_each_domain(cpu, sd) {
4914 if (!(sd->flags & SD_LOAD_BALANCE))
4915 continue;
4916
4917 interval = sd->balance_interval;
4918 if (idle != CPU_IDLE)
4919 interval *= sd->busy_factor;
4920
4921 /* scale ms to jiffies */
4922 interval = msecs_to_jiffies(interval);
49c022e6 4923 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4924
4925 need_serialize = sd->flags & SD_SERIALIZE;
4926
4927 if (need_serialize) {
4928 if (!spin_trylock(&balancing))
4929 goto out;
4930 }
4931
4932 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4933 if (load_balance(cpu, rq, sd, idle, &balance)) {
4934 /*
4935 * We've pulled tasks over so either we're no
c186fafe 4936 * longer idle.
1e3c88bd
PZ
4937 */
4938 idle = CPU_NOT_IDLE;
4939 }
4940 sd->last_balance = jiffies;
4941 }
4942 if (need_serialize)
4943 spin_unlock(&balancing);
4944out:
4945 if (time_after(next_balance, sd->last_balance + interval)) {
4946 next_balance = sd->last_balance + interval;
4947 update_next_balance = 1;
4948 }
4949
4950 /*
4951 * Stop the load balance at this level. There is another
4952 * CPU in our sched group which is doing load balancing more
4953 * actively.
4954 */
4955 if (!balance)
4956 break;
4957 }
dce840a0 4958 rcu_read_unlock();
1e3c88bd
PZ
4959
4960 /*
4961 * next_balance will be updated only when there is a need.
4962 * When the cpu is attached to null domain for ex, it will not be
4963 * updated.
4964 */
4965 if (likely(update_next_balance))
4966 rq->next_balance = next_balance;
4967}
4968
83cd4fe2 4969#ifdef CONFIG_NO_HZ
1e3c88bd 4970/*
83cd4fe2 4971 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4972 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4973 */
83cd4fe2
VP
4974static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4975{
4976 struct rq *this_rq = cpu_rq(this_cpu);
4977 struct rq *rq;
4978 int balance_cpu;
4979
1c792db7
SS
4980 if (idle != CPU_IDLE ||
4981 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4982 goto end;
83cd4fe2
VP
4983
4984 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 4985 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
4986 continue;
4987
4988 /*
4989 * If this cpu gets work to do, stop the load balancing
4990 * work being done for other cpus. Next load
4991 * balancing owner will pick it up.
4992 */
1c792db7 4993 if (need_resched())
83cd4fe2 4994 break;
83cd4fe2 4995
5ed4f1d9
VG
4996 rq = cpu_rq(balance_cpu);
4997
4998 raw_spin_lock_irq(&rq->lock);
4999 update_rq_clock(rq);
5000 update_idle_cpu_load(rq);
5001 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5002
5003 rebalance_domains(balance_cpu, CPU_IDLE);
5004
83cd4fe2
VP
5005 if (time_after(this_rq->next_balance, rq->next_balance))
5006 this_rq->next_balance = rq->next_balance;
5007 }
5008 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5009end:
5010 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5011}
5012
5013/*
0b005cf5
SS
5014 * Current heuristic for kicking the idle load balancer in the presence
5015 * of an idle cpu is the system.
5016 * - This rq has more than one task.
5017 * - At any scheduler domain level, this cpu's scheduler group has multiple
5018 * busy cpu's exceeding the group's power.
5019 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5020 * domain span are idle.
83cd4fe2
VP
5021 */
5022static inline int nohz_kick_needed(struct rq *rq, int cpu)
5023{
5024 unsigned long now = jiffies;
0b005cf5 5025 struct sched_domain *sd;
83cd4fe2 5026
1c792db7 5027 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5028 return 0;
5029
1c792db7
SS
5030 /*
5031 * We may be recently in ticked or tickless idle mode. At the first
5032 * busy tick after returning from idle, we will update the busy stats.
5033 */
69e1e811 5034 set_cpu_sd_state_busy();
c1cc017c 5035 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5036
5037 /*
5038 * None are in tickless mode and hence no need for NOHZ idle load
5039 * balancing.
5040 */
5041 if (likely(!atomic_read(&nohz.nr_cpus)))
5042 return 0;
1c792db7
SS
5043
5044 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5045 return 0;
5046
0b005cf5
SS
5047 if (rq->nr_running >= 2)
5048 goto need_kick;
83cd4fe2 5049
067491b7 5050 rcu_read_lock();
0b005cf5
SS
5051 for_each_domain(cpu, sd) {
5052 struct sched_group *sg = sd->groups;
5053 struct sched_group_power *sgp = sg->sgp;
5054 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5055
0b005cf5 5056 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5057 goto need_kick_unlock;
0b005cf5
SS
5058
5059 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5060 && (cpumask_first_and(nohz.idle_cpus_mask,
5061 sched_domain_span(sd)) < cpu))
067491b7 5062 goto need_kick_unlock;
0b005cf5
SS
5063
5064 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5065 break;
83cd4fe2 5066 }
067491b7 5067 rcu_read_unlock();
83cd4fe2 5068 return 0;
067491b7
PZ
5069
5070need_kick_unlock:
5071 rcu_read_unlock();
0b005cf5
SS
5072need_kick:
5073 return 1;
83cd4fe2
VP
5074}
5075#else
5076static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5077#endif
5078
5079/*
5080 * run_rebalance_domains is triggered when needed from the scheduler tick.
5081 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5082 */
1e3c88bd
PZ
5083static void run_rebalance_domains(struct softirq_action *h)
5084{
5085 int this_cpu = smp_processor_id();
5086 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5087 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5088 CPU_IDLE : CPU_NOT_IDLE;
5089
5090 rebalance_domains(this_cpu, idle);
5091
1e3c88bd 5092 /*
83cd4fe2 5093 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5094 * balancing on behalf of the other idle cpus whose ticks are
5095 * stopped.
5096 */
83cd4fe2 5097 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5098}
5099
5100static inline int on_null_domain(int cpu)
5101{
90a6501f 5102 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5103}
5104
5105/*
5106 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5107 */
029632fb 5108void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5109{
1e3c88bd
PZ
5110 /* Don't need to rebalance while attached to NULL domain */
5111 if (time_after_eq(jiffies, rq->next_balance) &&
5112 likely(!on_null_domain(cpu)))
5113 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5114#ifdef CONFIG_NO_HZ
1c792db7 5115 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5116 nohz_balancer_kick(cpu);
5117#endif
1e3c88bd
PZ
5118}
5119
0bcdcf28
CE
5120static void rq_online_fair(struct rq *rq)
5121{
5122 update_sysctl();
5123}
5124
5125static void rq_offline_fair(struct rq *rq)
5126{
5127 update_sysctl();
a4c96ae3
PB
5128
5129 /* Ensure any throttled groups are reachable by pick_next_task */
5130 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5131}
5132
55e12e5e 5133#endif /* CONFIG_SMP */
e1d1484f 5134
bf0f6f24
IM
5135/*
5136 * scheduler tick hitting a task of our scheduling class:
5137 */
8f4d37ec 5138static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5139{
5140 struct cfs_rq *cfs_rq;
5141 struct sched_entity *se = &curr->se;
5142
5143 for_each_sched_entity(se) {
5144 cfs_rq = cfs_rq_of(se);
8f4d37ec 5145 entity_tick(cfs_rq, se, queued);
bf0f6f24 5146 }
cbee9f88
PZ
5147
5148 if (sched_feat_numa(NUMA))
5149 task_tick_numa(rq, curr);
bf0f6f24
IM
5150}
5151
5152/*
cd29fe6f
PZ
5153 * called on fork with the child task as argument from the parent's context
5154 * - child not yet on the tasklist
5155 * - preemption disabled
bf0f6f24 5156 */
cd29fe6f 5157static void task_fork_fair(struct task_struct *p)
bf0f6f24 5158{
4fc420c9
DN
5159 struct cfs_rq *cfs_rq;
5160 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5161 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5162 struct rq *rq = this_rq();
5163 unsigned long flags;
5164
05fa785c 5165 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5166
861d034e
PZ
5167 update_rq_clock(rq);
5168
4fc420c9
DN
5169 cfs_rq = task_cfs_rq(current);
5170 curr = cfs_rq->curr;
5171
b0a0f667
PM
5172 if (unlikely(task_cpu(p) != this_cpu)) {
5173 rcu_read_lock();
cd29fe6f 5174 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5175 rcu_read_unlock();
5176 }
bf0f6f24 5177
7109c442 5178 update_curr(cfs_rq);
cd29fe6f 5179
b5d9d734
MG
5180 if (curr)
5181 se->vruntime = curr->vruntime;
aeb73b04 5182 place_entity(cfs_rq, se, 1);
4d78e7b6 5183
cd29fe6f 5184 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5185 /*
edcb60a3
IM
5186 * Upon rescheduling, sched_class::put_prev_task() will place
5187 * 'current' within the tree based on its new key value.
5188 */
4d78e7b6 5189 swap(curr->vruntime, se->vruntime);
aec0a514 5190 resched_task(rq->curr);
4d78e7b6 5191 }
bf0f6f24 5192
88ec22d3
PZ
5193 se->vruntime -= cfs_rq->min_vruntime;
5194
05fa785c 5195 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5196}
5197
cb469845
SR
5198/*
5199 * Priority of the task has changed. Check to see if we preempt
5200 * the current task.
5201 */
da7a735e
PZ
5202static void
5203prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5204{
da7a735e
PZ
5205 if (!p->se.on_rq)
5206 return;
5207
cb469845
SR
5208 /*
5209 * Reschedule if we are currently running on this runqueue and
5210 * our priority decreased, or if we are not currently running on
5211 * this runqueue and our priority is higher than the current's
5212 */
da7a735e 5213 if (rq->curr == p) {
cb469845
SR
5214 if (p->prio > oldprio)
5215 resched_task(rq->curr);
5216 } else
15afe09b 5217 check_preempt_curr(rq, p, 0);
cb469845
SR
5218}
5219
da7a735e
PZ
5220static void switched_from_fair(struct rq *rq, struct task_struct *p)
5221{
5222 struct sched_entity *se = &p->se;
5223 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5224
5225 /*
5226 * Ensure the task's vruntime is normalized, so that when its
5227 * switched back to the fair class the enqueue_entity(.flags=0) will
5228 * do the right thing.
5229 *
5230 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5231 * have normalized the vruntime, if it was !on_rq, then only when
5232 * the task is sleeping will it still have non-normalized vruntime.
5233 */
5234 if (!se->on_rq && p->state != TASK_RUNNING) {
5235 /*
5236 * Fix up our vruntime so that the current sleep doesn't
5237 * cause 'unlimited' sleep bonus.
5238 */
5239 place_entity(cfs_rq, se, 0);
5240 se->vruntime -= cfs_rq->min_vruntime;
5241 }
5242}
5243
cb469845
SR
5244/*
5245 * We switched to the sched_fair class.
5246 */
da7a735e 5247static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5248{
da7a735e
PZ
5249 if (!p->se.on_rq)
5250 return;
5251
cb469845
SR
5252 /*
5253 * We were most likely switched from sched_rt, so
5254 * kick off the schedule if running, otherwise just see
5255 * if we can still preempt the current task.
5256 */
da7a735e 5257 if (rq->curr == p)
cb469845
SR
5258 resched_task(rq->curr);
5259 else
15afe09b 5260 check_preempt_curr(rq, p, 0);
cb469845
SR
5261}
5262
83b699ed
SV
5263/* Account for a task changing its policy or group.
5264 *
5265 * This routine is mostly called to set cfs_rq->curr field when a task
5266 * migrates between groups/classes.
5267 */
5268static void set_curr_task_fair(struct rq *rq)
5269{
5270 struct sched_entity *se = &rq->curr->se;
5271
ec12cb7f
PT
5272 for_each_sched_entity(se) {
5273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5274
5275 set_next_entity(cfs_rq, se);
5276 /* ensure bandwidth has been allocated on our new cfs_rq */
5277 account_cfs_rq_runtime(cfs_rq, 0);
5278 }
83b699ed
SV
5279}
5280
029632fb
PZ
5281void init_cfs_rq(struct cfs_rq *cfs_rq)
5282{
5283 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5284 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5285#ifndef CONFIG_64BIT
5286 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5287#endif
5288}
5289
810b3817 5290#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5291static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5292{
b2b5ce02
PZ
5293 /*
5294 * If the task was not on the rq at the time of this cgroup movement
5295 * it must have been asleep, sleeping tasks keep their ->vruntime
5296 * absolute on their old rq until wakeup (needed for the fair sleeper
5297 * bonus in place_entity()).
5298 *
5299 * If it was on the rq, we've just 'preempted' it, which does convert
5300 * ->vruntime to a relative base.
5301 *
5302 * Make sure both cases convert their relative position when migrating
5303 * to another cgroup's rq. This does somewhat interfere with the
5304 * fair sleeper stuff for the first placement, but who cares.
5305 */
7ceff013
DN
5306 /*
5307 * When !on_rq, vruntime of the task has usually NOT been normalized.
5308 * But there are some cases where it has already been normalized:
5309 *
5310 * - Moving a forked child which is waiting for being woken up by
5311 * wake_up_new_task().
62af3783
DN
5312 * - Moving a task which has been woken up by try_to_wake_up() and
5313 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5314 *
5315 * To prevent boost or penalty in the new cfs_rq caused by delta
5316 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5317 */
62af3783 5318 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5319 on_rq = 1;
5320
b2b5ce02
PZ
5321 if (!on_rq)
5322 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5323 set_task_rq(p, task_cpu(p));
88ec22d3 5324 if (!on_rq)
b2b5ce02 5325 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5326}
029632fb
PZ
5327
5328void free_fair_sched_group(struct task_group *tg)
5329{
5330 int i;
5331
5332 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5333
5334 for_each_possible_cpu(i) {
5335 if (tg->cfs_rq)
5336 kfree(tg->cfs_rq[i]);
5337 if (tg->se)
5338 kfree(tg->se[i]);
5339 }
5340
5341 kfree(tg->cfs_rq);
5342 kfree(tg->se);
5343}
5344
5345int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5346{
5347 struct cfs_rq *cfs_rq;
5348 struct sched_entity *se;
5349 int i;
5350
5351 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5352 if (!tg->cfs_rq)
5353 goto err;
5354 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5355 if (!tg->se)
5356 goto err;
5357
5358 tg->shares = NICE_0_LOAD;
5359
5360 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5361
5362 for_each_possible_cpu(i) {
5363 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5364 GFP_KERNEL, cpu_to_node(i));
5365 if (!cfs_rq)
5366 goto err;
5367
5368 se = kzalloc_node(sizeof(struct sched_entity),
5369 GFP_KERNEL, cpu_to_node(i));
5370 if (!se)
5371 goto err_free_rq;
5372
5373 init_cfs_rq(cfs_rq);
5374 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5375 }
5376
5377 return 1;
5378
5379err_free_rq:
5380 kfree(cfs_rq);
5381err:
5382 return 0;
5383}
5384
5385void unregister_fair_sched_group(struct task_group *tg, int cpu)
5386{
5387 struct rq *rq = cpu_rq(cpu);
5388 unsigned long flags;
5389
5390 /*
5391 * Only empty task groups can be destroyed; so we can speculatively
5392 * check on_list without danger of it being re-added.
5393 */
5394 if (!tg->cfs_rq[cpu]->on_list)
5395 return;
5396
5397 raw_spin_lock_irqsave(&rq->lock, flags);
5398 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5399 raw_spin_unlock_irqrestore(&rq->lock, flags);
5400}
5401
5402void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5403 struct sched_entity *se, int cpu,
5404 struct sched_entity *parent)
5405{
5406 struct rq *rq = cpu_rq(cpu);
5407
5408 cfs_rq->tg = tg;
5409 cfs_rq->rq = rq;
5410#ifdef CONFIG_SMP
5411 /* allow initial update_cfs_load() to truncate */
5412 cfs_rq->load_stamp = 1;
810b3817 5413#endif
029632fb
PZ
5414 init_cfs_rq_runtime(cfs_rq);
5415
5416 tg->cfs_rq[cpu] = cfs_rq;
5417 tg->se[cpu] = se;
5418
5419 /* se could be NULL for root_task_group */
5420 if (!se)
5421 return;
5422
5423 if (!parent)
5424 se->cfs_rq = &rq->cfs;
5425 else
5426 se->cfs_rq = parent->my_q;
5427
5428 se->my_q = cfs_rq;
5429 update_load_set(&se->load, 0);
5430 se->parent = parent;
5431}
5432
5433static DEFINE_MUTEX(shares_mutex);
5434
5435int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5436{
5437 int i;
5438 unsigned long flags;
5439
5440 /*
5441 * We can't change the weight of the root cgroup.
5442 */
5443 if (!tg->se[0])
5444 return -EINVAL;
5445
5446 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5447
5448 mutex_lock(&shares_mutex);
5449 if (tg->shares == shares)
5450 goto done;
5451
5452 tg->shares = shares;
5453 for_each_possible_cpu(i) {
5454 struct rq *rq = cpu_rq(i);
5455 struct sched_entity *se;
5456
5457 se = tg->se[i];
5458 /* Propagate contribution to hierarchy */
5459 raw_spin_lock_irqsave(&rq->lock, flags);
5460 for_each_sched_entity(se)
5461 update_cfs_shares(group_cfs_rq(se));
5462 raw_spin_unlock_irqrestore(&rq->lock, flags);
5463 }
5464
5465done:
5466 mutex_unlock(&shares_mutex);
5467 return 0;
5468}
5469#else /* CONFIG_FAIR_GROUP_SCHED */
5470
5471void free_fair_sched_group(struct task_group *tg) { }
5472
5473int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5474{
5475 return 1;
5476}
5477
5478void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5479
5480#endif /* CONFIG_FAIR_GROUP_SCHED */
5481
810b3817 5482
6d686f45 5483static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5484{
5485 struct sched_entity *se = &task->se;
0d721cea
PW
5486 unsigned int rr_interval = 0;
5487
5488 /*
5489 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5490 * idle runqueue:
5491 */
0d721cea
PW
5492 if (rq->cfs.load.weight)
5493 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5494
5495 return rr_interval;
5496}
5497
bf0f6f24
IM
5498/*
5499 * All the scheduling class methods:
5500 */
029632fb 5501const struct sched_class fair_sched_class = {
5522d5d5 5502 .next = &idle_sched_class,
bf0f6f24
IM
5503 .enqueue_task = enqueue_task_fair,
5504 .dequeue_task = dequeue_task_fair,
5505 .yield_task = yield_task_fair,
d95f4122 5506 .yield_to_task = yield_to_task_fair,
bf0f6f24 5507
2e09bf55 5508 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5509
5510 .pick_next_task = pick_next_task_fair,
5511 .put_prev_task = put_prev_task_fair,
5512
681f3e68 5513#ifdef CONFIG_SMP
4ce72a2c
LZ
5514 .select_task_rq = select_task_rq_fair,
5515
0bcdcf28
CE
5516 .rq_online = rq_online_fair,
5517 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5518
5519 .task_waking = task_waking_fair,
681f3e68 5520#endif
bf0f6f24 5521
83b699ed 5522 .set_curr_task = set_curr_task_fair,
bf0f6f24 5523 .task_tick = task_tick_fair,
cd29fe6f 5524 .task_fork = task_fork_fair,
cb469845
SR
5525
5526 .prio_changed = prio_changed_fair,
da7a735e 5527 .switched_from = switched_from_fair,
cb469845 5528 .switched_to = switched_to_fair,
810b3817 5529
0d721cea
PW
5530 .get_rr_interval = get_rr_interval_fair,
5531
810b3817 5532#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5533 .task_move_group = task_move_group_fair,
810b3817 5534#endif
bf0f6f24
IM
5535};
5536
5537#ifdef CONFIG_SCHED_DEBUG
029632fb 5538void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5539{
bf0f6f24
IM
5540 struct cfs_rq *cfs_rq;
5541
5973e5b9 5542 rcu_read_lock();
c3b64f1e 5543 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5544 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5545 rcu_read_unlock();
bf0f6f24
IM
5546}
5547#endif
029632fb
PZ
5548
5549__init void init_sched_fair_class(void)
5550{
5551#ifdef CONFIG_SMP
5552 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5553
5554#ifdef CONFIG_NO_HZ
554cecaf 5555 nohz.next_balance = jiffies;
029632fb 5556 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5557 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5558#endif
5559#endif /* SMP */
5560
5561}