sched/fair: Fix a comment in task_numa_fault()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25
IM
40unsigned int sysctl_sched_latency = 6000000ULL;
41unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
2b4d5b25
IM
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
2b4d5b25
IM
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
97#endif
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
2b4d5b25
IM
108 * (default: 5 msec, units: microseconds)
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
111#endif
112
3273163c
MR
113/*
114 * The margin used when comparing utilization with CPU capacity:
893c5d22 115 * util * margin < capacity * 1024
2b4d5b25
IM
116 *
117 * (default: ~20%)
3273163c 118 */
2b4d5b25 119unsigned int capacity_margin = 1280;
3273163c 120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 251
62160e3f 252/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254{
62160e3f 255 return cfs_rq->rq;
bf0f6f24
IM
256}
257
8f48894f
PZ
258static inline struct task_struct *task_of(struct sched_entity *se)
259{
9148a3a1 260 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
3d4b47b4
PZ
285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286{
287 if (!cfs_rq->on_list) {
9c2791f9
VG
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
67e86250
PT
290 /*
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
67e86250
PT
298 */
299 if (cfs_rq->tg->parent &&
9c2791f9
VG
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 /*
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
306 */
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 /*
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
313 */
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
316 /*
317 * cfs rq without parent should be put
318 * at the tail of the list.
319 */
67e86250 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
321 &rq->leaf_cfs_rq_list);
322 /*
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
325 */
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
328 /*
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
333 */
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
336 /*
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
339 */
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 341 }
3d4b47b4
PZ
342
343 cfs_rq->on_list = 1;
344 }
345}
346
347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348{
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
352 }
353}
354
b758149c 355/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
356#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
358 leaf_cfs_rq_list)
b758149c
PZ
359
360/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 361static inline struct cfs_rq *
b758149c
PZ
362is_same_group(struct sched_entity *se, struct sched_entity *pse)
363{
364 if (se->cfs_rq == pse->cfs_rq)
fed14d45 365 return se->cfs_rq;
b758149c 366
fed14d45 367 return NULL;
b758149c
PZ
368}
369
370static inline struct sched_entity *parent_entity(struct sched_entity *se)
371{
372 return se->parent;
373}
374
464b7527
PZ
375static void
376find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377{
378 int se_depth, pse_depth;
379
380 /*
381 * preemption test can be made between sibling entities who are in the
382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 * both tasks until we find their ancestors who are siblings of common
384 * parent.
385 */
386
387 /* First walk up until both entities are at same depth */
fed14d45
PZ
388 se_depth = (*se)->depth;
389 pse_depth = (*pse)->depth;
464b7527
PZ
390
391 while (se_depth > pse_depth) {
392 se_depth--;
393 *se = parent_entity(*se);
394 }
395
396 while (pse_depth > se_depth) {
397 pse_depth--;
398 *pse = parent_entity(*pse);
399 }
400
401 while (!is_same_group(*se, *pse)) {
402 *se = parent_entity(*se);
403 *pse = parent_entity(*pse);
404 }
405}
406
8f48894f
PZ
407#else /* !CONFIG_FAIR_GROUP_SCHED */
408
409static inline struct task_struct *task_of(struct sched_entity *se)
410{
411 return container_of(se, struct task_struct, se);
412}
bf0f6f24 413
62160e3f
IM
414static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415{
416 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
417}
418
bf0f6f24 419
b758149c
PZ
420#define for_each_sched_entity(se) \
421 for (; se; se = NULL)
bf0f6f24 422
b758149c 423static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 424{
b758149c 425 return &task_rq(p)->cfs;
bf0f6f24
IM
426}
427
b758149c
PZ
428static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429{
430 struct task_struct *p = task_of(se);
431 struct rq *rq = task_rq(p);
432
433 return &rq->cfs;
434}
435
436/* runqueue "owned" by this group */
437static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438{
439 return NULL;
440}
441
3d4b47b4
PZ
442static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443{
444}
445
446static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447{
448}
449
a9e7f654
TH
450#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 452
b758149c
PZ
453static inline struct sched_entity *parent_entity(struct sched_entity *se)
454{
455 return NULL;
456}
457
464b7527
PZ
458static inline void
459find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460{
461}
462
b758149c
PZ
463#endif /* CONFIG_FAIR_GROUP_SCHED */
464
6c16a6dc 465static __always_inline
9dbdb155 466void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
467
468/**************************************************************
469 * Scheduling class tree data structure manipulation methods:
470 */
471
1bf08230 472static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 473{
1bf08230 474 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 475 if (delta > 0)
1bf08230 476 max_vruntime = vruntime;
02e0431a 477
1bf08230 478 return max_vruntime;
02e0431a
PZ
479}
480
0702e3eb 481static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
482{
483 s64 delta = (s64)(vruntime - min_vruntime);
484 if (delta < 0)
485 min_vruntime = vruntime;
486
487 return min_vruntime;
488}
489
54fdc581
FC
490static inline int entity_before(struct sched_entity *a,
491 struct sched_entity *b)
492{
493 return (s64)(a->vruntime - b->vruntime) < 0;
494}
495
1af5f730
PZ
496static void update_min_vruntime(struct cfs_rq *cfs_rq)
497{
b60205c7 498 struct sched_entity *curr = cfs_rq->curr;
bfb06889 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 500
1af5f730
PZ
501 u64 vruntime = cfs_rq->min_vruntime;
502
b60205c7
PZ
503 if (curr) {
504 if (curr->on_rq)
505 vruntime = curr->vruntime;
506 else
507 curr = NULL;
508 }
1af5f730 509
bfb06889
DB
510 if (leftmost) { /* non-empty tree */
511 struct sched_entity *se;
512 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 513
b60205c7 514 if (!curr)
1af5f730
PZ
515 vruntime = se->vruntime;
516 else
517 vruntime = min_vruntime(vruntime, se->vruntime);
518 }
519
1bf08230 520 /* ensure we never gain time by being placed backwards. */
1af5f730 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
522#ifndef CONFIG_64BIT
523 smp_wmb();
524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525#endif
1af5f730
PZ
526}
527
bf0f6f24
IM
528/*
529 * Enqueue an entity into the rb-tree:
530 */
0702e3eb 531static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bfb06889 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
534 struct rb_node *parent = NULL;
535 struct sched_entity *entry;
bfb06889 536 bool leftmost = true;
bf0f6f24
IM
537
538 /*
539 * Find the right place in the rbtree:
540 */
541 while (*link) {
542 parent = *link;
543 entry = rb_entry(parent, struct sched_entity, run_node);
544 /*
545 * We dont care about collisions. Nodes with
546 * the same key stay together.
547 */
2bd2d6f2 548 if (entity_before(se, entry)) {
bf0f6f24
IM
549 link = &parent->rb_left;
550 } else {
551 link = &parent->rb_right;
bfb06889 552 leftmost = false;
bf0f6f24
IM
553 }
554 }
555
bf0f6f24 556 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
557 rb_insert_color_cached(&se->run_node,
558 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
559}
560
0702e3eb 561static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 562{
bfb06889 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
564}
565
029632fb 566struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 567{
bfb06889 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
569
570 if (!left)
571 return NULL;
572
573 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
574}
575
ac53db59
RR
576static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577{
578 struct rb_node *next = rb_next(&se->run_node);
579
580 if (!next)
581 return NULL;
582
583 return rb_entry(next, struct sched_entity, run_node);
584}
585
586#ifdef CONFIG_SCHED_DEBUG
029632fb 587struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 588{
bfb06889 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 590
70eee74b
BS
591 if (!last)
592 return NULL;
7eee3e67
IM
593
594 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
595}
596
bf0f6f24
IM
597/**************************************************************
598 * Scheduling class statistics methods:
599 */
600
acb4a848 601int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 602 void __user *buffer, size_t *lenp,
b2be5e96
PZ
603 loff_t *ppos)
604{
8d65af78 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 606 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
607
608 if (ret || !write)
609 return ret;
610
611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 sysctl_sched_min_granularity);
613
acb4a848
CE
614#define WRT_SYSCTL(name) \
615 (normalized_sysctl_##name = sysctl_##name / (factor))
616 WRT_SYSCTL(sched_min_granularity);
617 WRT_SYSCTL(sched_latency);
618 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
619#undef WRT_SYSCTL
620
b2be5e96
PZ
621 return 0;
622}
623#endif
647e7cac 624
a7be37ac 625/*
f9c0b095 626 * delta /= w
a7be37ac 627 */
9dbdb155 628static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 629{
f9c0b095 630 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
632
633 return delta;
634}
635
647e7cac
IM
636/*
637 * The idea is to set a period in which each task runs once.
638 *
532b1858 639 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
640 * this period because otherwise the slices get too small.
641 *
642 * p = (nr <= nl) ? l : l*nr/nl
643 */
4d78e7b6
PZ
644static u64 __sched_period(unsigned long nr_running)
645{
8e2b0bf3
BF
646 if (unlikely(nr_running > sched_nr_latency))
647 return nr_running * sysctl_sched_min_granularity;
648 else
649 return sysctl_sched_latency;
4d78e7b6
PZ
650}
651
647e7cac
IM
652/*
653 * We calculate the wall-time slice from the period by taking a part
654 * proportional to the weight.
655 *
f9c0b095 656 * s = p*P[w/rw]
647e7cac 657 */
6d0f0ebd 658static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 659{
0a582440 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 661
0a582440 662 for_each_sched_entity(se) {
6272d68c 663 struct load_weight *load;
3104bf03 664 struct load_weight lw;
6272d68c
LM
665
666 cfs_rq = cfs_rq_of(se);
667 load = &cfs_rq->load;
f9c0b095 668
0a582440 669 if (unlikely(!se->on_rq)) {
3104bf03 670 lw = cfs_rq->load;
0a582440
MG
671
672 update_load_add(&lw, se->load.weight);
673 load = &lw;
674 }
9dbdb155 675 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
676 }
677 return slice;
bf0f6f24
IM
678}
679
647e7cac 680/*
660cc00f 681 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 682 *
f9c0b095 683 * vs = s/w
647e7cac 684 */
f9c0b095 685static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 686{
f9c0b095 687 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
688}
689
a75cdaa9 690#ifdef CONFIG_SMP
c0796298 691#include "pelt.h"
283e2ed3
PZ
692#include "sched-pelt.h"
693
772bd008 694static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 695static unsigned long task_h_load(struct task_struct *p);
3b1baa64 696static unsigned long capacity_of(int cpu);
fb13c7ee 697
540247fb
YD
698/* Give new sched_entity start runnable values to heavy its load in infant time */
699void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 700{
540247fb 701 struct sched_avg *sa = &se->avg;
a75cdaa9 702
f207934f
PZ
703 memset(sa, 0, sizeof(*sa));
704
b5a9b340
VG
705 /*
706 * Tasks are intialized with full load to be seen as heavy tasks until
707 * they get a chance to stabilize to their real load level.
708 * Group entities are intialized with zero load to reflect the fact that
709 * nothing has been attached to the task group yet.
710 */
711 if (entity_is_task(se))
1ea6c46a 712 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 713
f207934f
PZ
714 se->runnable_weight = se->load.weight;
715
9d89c257 716 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 717}
7ea241af 718
7dc603c9 719static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 720static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 721
2b8c41da
YD
722/*
723 * With new tasks being created, their initial util_avgs are extrapolated
724 * based on the cfs_rq's current util_avg:
725 *
726 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727 *
728 * However, in many cases, the above util_avg does not give a desired
729 * value. Moreover, the sum of the util_avgs may be divergent, such
730 * as when the series is a harmonic series.
731 *
732 * To solve this problem, we also cap the util_avg of successive tasks to
733 * only 1/2 of the left utilization budget:
734 *
8fe5c5a9 735 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 736 *
8fe5c5a9 737 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 738 *
8fe5c5a9
QP
739 * For example, for a CPU with 1024 of capacity, a simplest series from
740 * the beginning would be like:
2b8c41da
YD
741 *
742 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
743 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744 *
745 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746 * if util_avg > util_avg_cap.
747 */
748void post_init_entity_util_avg(struct sched_entity *se)
749{
750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
752 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
754
755 if (cap > 0) {
756 if (cfs_rq->avg.util_avg != 0) {
757 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
758 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759
760 if (sa->util_avg > cap)
761 sa->util_avg = cap;
762 } else {
763 sa->util_avg = cap;
764 }
2b8c41da 765 }
7dc603c9
PZ
766
767 if (entity_is_task(se)) {
768 struct task_struct *p = task_of(se);
769 if (p->sched_class != &fair_sched_class) {
770 /*
771 * For !fair tasks do:
772 *
3a123bbb 773 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 774 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
775 switched_from_fair(rq, p);
776 *
777 * such that the next switched_to_fair() has the
778 * expected state.
779 */
df217913 780 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
781 return;
782 }
783 }
784
df217913 785 attach_entity_cfs_rq(se);
2b8c41da
YD
786}
787
7dc603c9 788#else /* !CONFIG_SMP */
540247fb 789void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
790{
791}
2b8c41da
YD
792void post_init_entity_util_avg(struct sched_entity *se)
793{
794}
3d30544f
PZ
795static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796{
797}
7dc603c9 798#endif /* CONFIG_SMP */
a75cdaa9 799
bf0f6f24 800/*
9dbdb155 801 * Update the current task's runtime statistics.
bf0f6f24 802 */
b7cc0896 803static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 804{
429d43bc 805 struct sched_entity *curr = cfs_rq->curr;
78becc27 806 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 807 u64 delta_exec;
bf0f6f24
IM
808
809 if (unlikely(!curr))
810 return;
811
9dbdb155
PZ
812 delta_exec = now - curr->exec_start;
813 if (unlikely((s64)delta_exec <= 0))
34f28ecd 814 return;
bf0f6f24 815
8ebc91d9 816 curr->exec_start = now;
d842de87 817
9dbdb155
PZ
818 schedstat_set(curr->statistics.exec_max,
819 max(delta_exec, curr->statistics.exec_max));
820
821 curr->sum_exec_runtime += delta_exec;
ae92882e 822 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
823
824 curr->vruntime += calc_delta_fair(delta_exec, curr);
825 update_min_vruntime(cfs_rq);
826
d842de87
SV
827 if (entity_is_task(curr)) {
828 struct task_struct *curtask = task_of(curr);
829
f977bb49 830 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 831 cgroup_account_cputime(curtask, delta_exec);
f06febc9 832 account_group_exec_runtime(curtask, delta_exec);
d842de87 833 }
ec12cb7f
PT
834
835 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
836}
837
6e998916
SG
838static void update_curr_fair(struct rq *rq)
839{
840 update_curr(cfs_rq_of(&rq->curr->se));
841}
842
bf0f6f24 843static inline void
5870db5b 844update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 845{
4fa8d299
JP
846 u64 wait_start, prev_wait_start;
847
848 if (!schedstat_enabled())
849 return;
850
851 wait_start = rq_clock(rq_of(cfs_rq));
852 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
853
854 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
855 likely(wait_start > prev_wait_start))
856 wait_start -= prev_wait_start;
3ea94de1 857
2ed41a55 858 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
859}
860
4fa8d299 861static inline void
3ea94de1
JP
862update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863{
864 struct task_struct *p;
cb251765
MG
865 u64 delta;
866
4fa8d299
JP
867 if (!schedstat_enabled())
868 return;
869
870 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
871
872 if (entity_is_task(se)) {
873 p = task_of(se);
874 if (task_on_rq_migrating(p)) {
875 /*
876 * Preserve migrating task's wait time so wait_start
877 * time stamp can be adjusted to accumulate wait time
878 * prior to migration.
879 */
2ed41a55 880 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
881 return;
882 }
883 trace_sched_stat_wait(p, delta);
884 }
885
2ed41a55 886 __schedstat_set(se->statistics.wait_max,
4fa8d299 887 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
888 __schedstat_inc(se->statistics.wait_count);
889 __schedstat_add(se->statistics.wait_sum, delta);
890 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 891}
3ea94de1 892
4fa8d299 893static inline void
1a3d027c
JP
894update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895{
896 struct task_struct *tsk = NULL;
4fa8d299
JP
897 u64 sleep_start, block_start;
898
899 if (!schedstat_enabled())
900 return;
901
902 sleep_start = schedstat_val(se->statistics.sleep_start);
903 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
904
905 if (entity_is_task(se))
906 tsk = task_of(se);
907
4fa8d299
JP
908 if (sleep_start) {
909 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
910
911 if ((s64)delta < 0)
912 delta = 0;
913
4fa8d299 914 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 915 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 916
2ed41a55
PZ
917 __schedstat_set(se->statistics.sleep_start, 0);
918 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
919
920 if (tsk) {
921 account_scheduler_latency(tsk, delta >> 10, 1);
922 trace_sched_stat_sleep(tsk, delta);
923 }
924 }
4fa8d299
JP
925 if (block_start) {
926 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
927
928 if ((s64)delta < 0)
929 delta = 0;
930
4fa8d299 931 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 932 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 933
2ed41a55
PZ
934 __schedstat_set(se->statistics.block_start, 0);
935 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
936
937 if (tsk) {
938 if (tsk->in_iowait) {
2ed41a55
PZ
939 __schedstat_add(se->statistics.iowait_sum, delta);
940 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
941 trace_sched_stat_iowait(tsk, delta);
942 }
943
944 trace_sched_stat_blocked(tsk, delta);
945
946 /*
947 * Blocking time is in units of nanosecs, so shift by
948 * 20 to get a milliseconds-range estimation of the
949 * amount of time that the task spent sleeping:
950 */
951 if (unlikely(prof_on == SLEEP_PROFILING)) {
952 profile_hits(SLEEP_PROFILING,
953 (void *)get_wchan(tsk),
954 delta >> 20);
955 }
956 account_scheduler_latency(tsk, delta >> 10, 0);
957 }
958 }
3ea94de1 959}
3ea94de1 960
bf0f6f24
IM
961/*
962 * Task is being enqueued - update stats:
963 */
cb251765 964static inline void
1a3d027c 965update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 966{
4fa8d299
JP
967 if (!schedstat_enabled())
968 return;
969
bf0f6f24
IM
970 /*
971 * Are we enqueueing a waiting task? (for current tasks
972 * a dequeue/enqueue event is a NOP)
973 */
429d43bc 974 if (se != cfs_rq->curr)
5870db5b 975 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
976
977 if (flags & ENQUEUE_WAKEUP)
978 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
979}
980
bf0f6f24 981static inline void
cb251765 982update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 983{
4fa8d299
JP
984
985 if (!schedstat_enabled())
986 return;
987
bf0f6f24
IM
988 /*
989 * Mark the end of the wait period if dequeueing a
990 * waiting task:
991 */
429d43bc 992 if (se != cfs_rq->curr)
9ef0a961 993 update_stats_wait_end(cfs_rq, se);
cb251765 994
4fa8d299
JP
995 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 struct task_struct *tsk = task_of(se);
cb251765 997
4fa8d299 998 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 999 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1000 rq_clock(rq_of(cfs_rq)));
1001 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1002 __schedstat_set(se->statistics.block_start,
4fa8d299 1003 rq_clock(rq_of(cfs_rq)));
cb251765 1004 }
cb251765
MG
1005}
1006
bf0f6f24
IM
1007/*
1008 * We are picking a new current task - update its stats:
1009 */
1010static inline void
79303e9e 1011update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1012{
1013 /*
1014 * We are starting a new run period:
1015 */
78becc27 1016 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1017}
1018
bf0f6f24
IM
1019/**************************************************
1020 * Scheduling class queueing methods:
1021 */
1022
cbee9f88
PZ
1023#ifdef CONFIG_NUMA_BALANCING
1024/*
598f0ec0
MG
1025 * Approximate time to scan a full NUMA task in ms. The task scan period is
1026 * calculated based on the tasks virtual memory size and
1027 * numa_balancing_scan_size.
cbee9f88 1028 */
598f0ec0
MG
1029unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1031
1032/* Portion of address space to scan in MB */
1033unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1034
4b96a29b
PZ
1035/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036unsigned int sysctl_numa_balancing_scan_delay = 1000;
1037
b5dd77c8
RR
1038struct numa_group {
1039 atomic_t refcount;
1040
1041 spinlock_t lock; /* nr_tasks, tasks */
1042 int nr_tasks;
1043 pid_t gid;
1044 int active_nodes;
1045
1046 struct rcu_head rcu;
1047 unsigned long total_faults;
1048 unsigned long max_faults_cpu;
1049 /*
1050 * Faults_cpu is used to decide whether memory should move
1051 * towards the CPU. As a consequence, these stats are weighted
1052 * more by CPU use than by memory faults.
1053 */
1054 unsigned long *faults_cpu;
1055 unsigned long faults[0];
1056};
1057
1058static inline unsigned long group_faults_priv(struct numa_group *ng);
1059static inline unsigned long group_faults_shared(struct numa_group *ng);
1060
598f0ec0
MG
1061static unsigned int task_nr_scan_windows(struct task_struct *p)
1062{
1063 unsigned long rss = 0;
1064 unsigned long nr_scan_pages;
1065
1066 /*
1067 * Calculations based on RSS as non-present and empty pages are skipped
1068 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 * on resident pages
1070 */
1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 rss = get_mm_rss(p->mm);
1073 if (!rss)
1074 rss = nr_scan_pages;
1075
1076 rss = round_up(rss, nr_scan_pages);
1077 return rss / nr_scan_pages;
1078}
1079
1080/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081#define MAX_SCAN_WINDOW 2560
1082
1083static unsigned int task_scan_min(struct task_struct *p)
1084{
316c1608 1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1086 unsigned int scan, floor;
1087 unsigned int windows = 1;
1088
64192658
KT
1089 if (scan_size < MAX_SCAN_WINDOW)
1090 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1091 floor = 1000 / windows;
1092
1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 return max_t(unsigned int, floor, scan);
1095}
1096
b5dd77c8
RR
1097static unsigned int task_scan_start(struct task_struct *p)
1098{
1099 unsigned long smin = task_scan_min(p);
1100 unsigned long period = smin;
1101
1102 /* Scale the maximum scan period with the amount of shared memory. */
1103 if (p->numa_group) {
1104 struct numa_group *ng = p->numa_group;
1105 unsigned long shared = group_faults_shared(ng);
1106 unsigned long private = group_faults_priv(ng);
1107
1108 period *= atomic_read(&ng->refcount);
1109 period *= shared + 1;
1110 period /= private + shared + 1;
1111 }
1112
1113 return max(smin, period);
1114}
1115
598f0ec0
MG
1116static unsigned int task_scan_max(struct task_struct *p)
1117{
b5dd77c8
RR
1118 unsigned long smin = task_scan_min(p);
1119 unsigned long smax;
598f0ec0
MG
1120
1121 /* Watch for min being lower than max due to floor calculations */
1122 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1123
1124 /* Scale the maximum scan period with the amount of shared memory. */
1125 if (p->numa_group) {
1126 struct numa_group *ng = p->numa_group;
1127 unsigned long shared = group_faults_shared(ng);
1128 unsigned long private = group_faults_priv(ng);
1129 unsigned long period = smax;
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134
1135 smax = max(smax, period);
1136 }
1137
598f0ec0
MG
1138 return max(smin, smax);
1139}
1140
13784475
MG
1141void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1142{
1143 int mm_users = 0;
1144 struct mm_struct *mm = p->mm;
1145
1146 if (mm) {
1147 mm_users = atomic_read(&mm->mm_users);
1148 if (mm_users == 1) {
1149 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 mm->numa_scan_seq = 0;
1151 }
1152 }
1153 p->node_stamp = 0;
1154 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1155 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1156 p->numa_work.next = &p->numa_work;
1157 p->numa_faults = NULL;
1158 p->numa_group = NULL;
1159 p->last_task_numa_placement = 0;
1160 p->last_sum_exec_runtime = 0;
1161
1162 /* New address space, reset the preferred nid */
1163 if (!(clone_flags & CLONE_VM)) {
1164 p->numa_preferred_nid = -1;
1165 return;
1166 }
1167
1168 /*
1169 * New thread, keep existing numa_preferred_nid which should be copied
1170 * already by arch_dup_task_struct but stagger when scans start.
1171 */
1172 if (mm) {
1173 unsigned int delay;
1174
1175 delay = min_t(unsigned int, task_scan_max(current),
1176 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 delay += 2 * TICK_NSEC;
1178 p->node_stamp = delay;
1179 }
1180}
1181
0ec8aa00
PZ
1182static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183{
1184 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186}
1187
1188static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189{
1190 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192}
1193
be1e4e76
RR
1194/* Shared or private faults. */
1195#define NR_NUMA_HINT_FAULT_TYPES 2
1196
1197/* Memory and CPU locality */
1198#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199
1200/* Averaged statistics, and temporary buffers. */
1201#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202
e29cf08b
MG
1203pid_t task_numa_group_id(struct task_struct *p)
1204{
1205 return p->numa_group ? p->numa_group->gid : 0;
1206}
1207
44dba3d5 1208/*
97fb7a0a 1209 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1210 * occupy the first half of the array. The second half of the
1211 * array is for current counters, which are averaged into the
1212 * first set by task_numa_placement.
1213 */
1214static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1215{
44dba3d5 1216 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1217}
1218
1219static inline unsigned long task_faults(struct task_struct *p, int nid)
1220{
44dba3d5 1221 if (!p->numa_faults)
ac8e895b
MG
1222 return 0;
1223
44dba3d5
IM
1224 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1226}
1227
83e1d2cd
MG
1228static inline unsigned long group_faults(struct task_struct *p, int nid)
1229{
1230 if (!p->numa_group)
1231 return 0;
1232
44dba3d5
IM
1233 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1235}
1236
20e07dea
RR
1237static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238{
44dba3d5
IM
1239 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1241}
1242
b5dd77c8
RR
1243static inline unsigned long group_faults_priv(struct numa_group *ng)
1244{
1245 unsigned long faults = 0;
1246 int node;
1247
1248 for_each_online_node(node) {
1249 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 }
1251
1252 return faults;
1253}
1254
1255static inline unsigned long group_faults_shared(struct numa_group *ng)
1256{
1257 unsigned long faults = 0;
1258 int node;
1259
1260 for_each_online_node(node) {
1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 }
1263
1264 return faults;
1265}
1266
4142c3eb
RR
1267/*
1268 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269 * considered part of a numa group's pseudo-interleaving set. Migrations
1270 * between these nodes are slowed down, to allow things to settle down.
1271 */
1272#define ACTIVE_NODE_FRACTION 3
1273
1274static bool numa_is_active_node(int nid, struct numa_group *ng)
1275{
1276 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277}
1278
6c6b1193
RR
1279/* Handle placement on systems where not all nodes are directly connected. */
1280static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 int maxdist, bool task)
1282{
1283 unsigned long score = 0;
1284 int node;
1285
1286 /*
1287 * All nodes are directly connected, and the same distance
1288 * from each other. No need for fancy placement algorithms.
1289 */
1290 if (sched_numa_topology_type == NUMA_DIRECT)
1291 return 0;
1292
1293 /*
1294 * This code is called for each node, introducing N^2 complexity,
1295 * which should be ok given the number of nodes rarely exceeds 8.
1296 */
1297 for_each_online_node(node) {
1298 unsigned long faults;
1299 int dist = node_distance(nid, node);
1300
1301 /*
1302 * The furthest away nodes in the system are not interesting
1303 * for placement; nid was already counted.
1304 */
1305 if (dist == sched_max_numa_distance || node == nid)
1306 continue;
1307
1308 /*
1309 * On systems with a backplane NUMA topology, compare groups
1310 * of nodes, and move tasks towards the group with the most
1311 * memory accesses. When comparing two nodes at distance
1312 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 * of each group. Skip other nodes.
1314 */
1315 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1316 dist >= maxdist)
6c6b1193
RR
1317 continue;
1318
1319 /* Add up the faults from nearby nodes. */
1320 if (task)
1321 faults = task_faults(p, node);
1322 else
1323 faults = group_faults(p, node);
1324
1325 /*
1326 * On systems with a glueless mesh NUMA topology, there are
1327 * no fixed "groups of nodes". Instead, nodes that are not
1328 * directly connected bounce traffic through intermediate
1329 * nodes; a numa_group can occupy any set of nodes.
1330 * The further away a node is, the less the faults count.
1331 * This seems to result in good task placement.
1332 */
1333 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 faults *= (sched_max_numa_distance - dist);
1335 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 }
1337
1338 score += faults;
1339 }
1340
1341 return score;
1342}
1343
83e1d2cd
MG
1344/*
1345 * These return the fraction of accesses done by a particular task, or
1346 * task group, on a particular numa node. The group weight is given a
1347 * larger multiplier, in order to group tasks together that are almost
1348 * evenly spread out between numa nodes.
1349 */
7bd95320
RR
1350static inline unsigned long task_weight(struct task_struct *p, int nid,
1351 int dist)
83e1d2cd 1352{
7bd95320 1353 unsigned long faults, total_faults;
83e1d2cd 1354
44dba3d5 1355 if (!p->numa_faults)
83e1d2cd
MG
1356 return 0;
1357
1358 total_faults = p->total_numa_faults;
1359
1360 if (!total_faults)
1361 return 0;
1362
7bd95320 1363 faults = task_faults(p, nid);
6c6b1193
RR
1364 faults += score_nearby_nodes(p, nid, dist, true);
1365
7bd95320 1366 return 1000 * faults / total_faults;
83e1d2cd
MG
1367}
1368
7bd95320
RR
1369static inline unsigned long group_weight(struct task_struct *p, int nid,
1370 int dist)
83e1d2cd 1371{
7bd95320
RR
1372 unsigned long faults, total_faults;
1373
1374 if (!p->numa_group)
1375 return 0;
1376
1377 total_faults = p->numa_group->total_faults;
1378
1379 if (!total_faults)
83e1d2cd
MG
1380 return 0;
1381
7bd95320 1382 faults = group_faults(p, nid);
6c6b1193
RR
1383 faults += score_nearby_nodes(p, nid, dist, false);
1384
7bd95320 1385 return 1000 * faults / total_faults;
83e1d2cd
MG
1386}
1387
10f39042
RR
1388bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 int src_nid, int dst_cpu)
1390{
1391 struct numa_group *ng = p->numa_group;
1392 int dst_nid = cpu_to_node(dst_cpu);
1393 int last_cpupid, this_cpupid;
1394
1395 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397
1398 /*
1399 * Allow first faults or private faults to migrate immediately early in
1400 * the lifetime of a task. The magic number 4 is based on waiting for
1401 * two full passes of the "multi-stage node selection" test that is
1402 * executed below.
1403 */
1404 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1406 return true;
10f39042
RR
1407
1408 /*
1409 * Multi-stage node selection is used in conjunction with a periodic
1410 * migration fault to build a temporal task<->page relation. By using
1411 * a two-stage filter we remove short/unlikely relations.
1412 *
1413 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 * a task's usage of a particular page (n_p) per total usage of this
1415 * page (n_t) (in a given time-span) to a probability.
1416 *
1417 * Our periodic faults will sample this probability and getting the
1418 * same result twice in a row, given these samples are fully
1419 * independent, is then given by P(n)^2, provided our sample period
1420 * is sufficiently short compared to the usage pattern.
1421 *
1422 * This quadric squishes small probabilities, making it less likely we
1423 * act on an unlikely task<->page relation.
1424 */
10f39042
RR
1425 if (!cpupid_pid_unset(last_cpupid) &&
1426 cpupid_to_nid(last_cpupid) != dst_nid)
1427 return false;
1428
1429 /* Always allow migrate on private faults */
1430 if (cpupid_match_pid(p, last_cpupid))
1431 return true;
1432
1433 /* A shared fault, but p->numa_group has not been set up yet. */
1434 if (!ng)
1435 return true;
1436
1437 /*
4142c3eb
RR
1438 * Destination node is much more heavily used than the source
1439 * node? Allow migration.
10f39042 1440 */
4142c3eb
RR
1441 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 ACTIVE_NODE_FRACTION)
10f39042
RR
1443 return true;
1444
1445 /*
4142c3eb
RR
1446 * Distribute memory according to CPU & memory use on each node,
1447 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 *
1449 * faults_cpu(dst) 3 faults_cpu(src)
1450 * --------------- * - > ---------------
1451 * faults_mem(dst) 4 faults_mem(src)
10f39042 1452 */
4142c3eb
RR
1453 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1455}
1456
c7132dd6 1457static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
58d081b5 1460
fb13c7ee 1461/* Cached statistics for all CPUs within a node */
58d081b5
MG
1462struct numa_stats {
1463 unsigned long load;
fb13c7ee
MG
1464
1465 /* Total compute capacity of CPUs on a node */
5ef20ca1 1466 unsigned long compute_capacity;
58d081b5 1467};
e6628d5b 1468
fb13c7ee
MG
1469/*
1470 * XXX borrowed from update_sg_lb_stats
1471 */
1472static void update_numa_stats(struct numa_stats *ns, int nid)
1473{
d90707eb 1474 int cpu;
fb13c7ee
MG
1475
1476 memset(ns, 0, sizeof(*ns));
1477 for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 struct rq *rq = cpu_rq(cpu);
1479
c7132dd6 1480 ns->load += weighted_cpuload(rq);
ced549fa 1481 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1482 }
1483
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
a4739eca
SD
1505 struct rq *rq = cpu_rq(env->dst_cpu);
1506
1507 /* Bail out if run-queue part of active NUMA balance. */
1508 if (xchg(&rq->numa_migrate_on, 1))
1509 return;
1510
1511 /*
1512 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 * found a better CPU to move/swap.
1514 */
1515 if (env->best_cpu != -1) {
1516 rq = cpu_rq(env->best_cpu);
1517 WRITE_ONCE(rq->numa_migrate_on, 0);
1518 }
1519
fb13c7ee
MG
1520 if (env->best_task)
1521 put_task_struct(env->best_task);
bac78573
ON
1522 if (p)
1523 get_task_struct(p);
fb13c7ee
MG
1524
1525 env->best_task = p;
1526 env->best_imp = imp;
1527 env->best_cpu = env->dst_cpu;
1528}
1529
28a21745 1530static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1531 struct task_numa_env *env)
1532{
e4991b24
RR
1533 long imb, old_imb;
1534 long orig_src_load, orig_dst_load;
28a21745
RR
1535 long src_capacity, dst_capacity;
1536
1537 /*
1538 * The load is corrected for the CPU capacity available on each node.
1539 *
1540 * src_load dst_load
1541 * ------------ vs ---------
1542 * src_capacity dst_capacity
1543 */
1544 src_capacity = env->src_stats.compute_capacity;
1545 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1546
5f95ba7a 1547 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1548
28a21745 1549 orig_src_load = env->src_stats.load;
e4991b24 1550 orig_dst_load = env->dst_stats.load;
28a21745 1551
5f95ba7a 1552 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1553
1554 /* Would this change make things worse? */
1555 return (imb > old_imb);
e63da036
RR
1556}
1557
6fd98e77
SD
1558/*
1559 * Maximum NUMA importance can be 1998 (2*999);
1560 * SMALLIMP @ 30 would be close to 1998/64.
1561 * Used to deter task migration.
1562 */
1563#define SMALLIMP 30
1564
fb13c7ee
MG
1565/*
1566 * This checks if the overall compute and NUMA accesses of the system would
1567 * be improved if the source tasks was migrated to the target dst_cpu taking
1568 * into account that it might be best if task running on the dst_cpu should
1569 * be exchanged with the source task
1570 */
887c290e 1571static void task_numa_compare(struct task_numa_env *env,
305c1fac 1572 long taskimp, long groupimp, bool maymove)
fb13c7ee 1573{
fb13c7ee
MG
1574 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 struct task_struct *cur;
28a21745 1576 long src_load, dst_load;
fb13c7ee 1577 long load;
1c5d3eb3 1578 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1579 long moveimp = imp;
7bd95320 1580 int dist = env->dist;
fb13c7ee 1581
a4739eca
SD
1582 if (READ_ONCE(dst_rq->numa_migrate_on))
1583 return;
1584
fb13c7ee 1585 rcu_read_lock();
bac78573
ON
1586 cur = task_rcu_dereference(&dst_rq->curr);
1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1588 cur = NULL;
1589
7af68335
PZ
1590 /*
1591 * Because we have preemption enabled we can get migrated around and
1592 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 */
1594 if (cur == env->p)
1595 goto unlock;
1596
305c1fac 1597 if (!cur) {
6fd98e77 1598 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1599 goto assign;
1600 else
1601 goto unlock;
1602 }
1603
fb13c7ee
MG
1604 /*
1605 * "imp" is the fault differential for the source task between the
1606 * source and destination node. Calculate the total differential for
1607 * the source task and potential destination task. The more negative
305c1fac 1608 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1609 * be incurred if the tasks were swapped.
1610 */
305c1fac
SD
1611 /* Skip this swap candidate if cannot move to the source cpu */
1612 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1613 goto unlock;
fb13c7ee 1614
305c1fac
SD
1615 /*
1616 * If dst and source tasks are in the same NUMA group, or not
1617 * in any group then look only at task weights.
1618 */
1619 if (cur->numa_group == env->p->numa_group) {
1620 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 task_weight(cur, env->dst_nid, dist);
887c290e 1622 /*
305c1fac
SD
1623 * Add some hysteresis to prevent swapping the
1624 * tasks within a group over tiny differences.
887c290e 1625 */
305c1fac
SD
1626 if (cur->numa_group)
1627 imp -= imp / 16;
1628 } else {
1629 /*
1630 * Compare the group weights. If a task is all by itself
1631 * (not part of a group), use the task weight instead.
1632 */
1633 if (cur->numa_group && env->p->numa_group)
1634 imp += group_weight(cur, env->src_nid, dist) -
1635 group_weight(cur, env->dst_nid, dist);
1636 else
1637 imp += task_weight(cur, env->src_nid, dist) -
1638 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1639 }
1640
305c1fac 1641 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1642 imp = moveimp;
305c1fac 1643 cur = NULL;
fb13c7ee 1644 goto assign;
305c1fac 1645 }
fb13c7ee 1646
6fd98e77
SD
1647 /*
1648 * If the NUMA importance is less than SMALLIMP,
1649 * task migration might only result in ping pong
1650 * of tasks and also hurt performance due to cache
1651 * misses.
1652 */
1653 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1654 goto unlock;
1655
fb13c7ee
MG
1656 /*
1657 * In the overloaded case, try and keep the load balanced.
1658 */
305c1fac
SD
1659 load = task_h_load(env->p) - task_h_load(cur);
1660 if (!load)
1661 goto assign;
1662
e720fff6
PZ
1663 dst_load = env->dst_stats.load + load;
1664 src_load = env->src_stats.load - load;
fb13c7ee 1665
28a21745 1666 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1667 goto unlock;
1668
305c1fac 1669assign:
ba7e5a27
RR
1670 /*
1671 * One idle CPU per node is evaluated for a task numa move.
1672 * Call select_idle_sibling to maybe find a better one.
1673 */
10e2f1ac
PZ
1674 if (!cur) {
1675 /*
97fb7a0a 1676 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1677 * can be used from IRQ context.
1678 */
1679 local_irq_disable();
772bd008
MR
1680 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1681 env->dst_cpu);
10e2f1ac
PZ
1682 local_irq_enable();
1683 }
ba7e5a27 1684
fb13c7ee
MG
1685 task_numa_assign(env, cur, imp);
1686unlock:
1687 rcu_read_unlock();
1688}
1689
887c290e
RR
1690static void task_numa_find_cpu(struct task_numa_env *env,
1691 long taskimp, long groupimp)
2c8a50aa 1692{
305c1fac
SD
1693 long src_load, dst_load, load;
1694 bool maymove = false;
2c8a50aa
MG
1695 int cpu;
1696
305c1fac
SD
1697 load = task_h_load(env->p);
1698 dst_load = env->dst_stats.load + load;
1699 src_load = env->src_stats.load - load;
1700
1701 /*
1702 * If the improvement from just moving env->p direction is better
1703 * than swapping tasks around, check if a move is possible.
1704 */
1705 maymove = !load_too_imbalanced(src_load, dst_load, env);
1706
2c8a50aa
MG
1707 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 /* Skip this CPU if the source task cannot migrate */
0c98d344 1709 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1710 continue;
1711
1712 env->dst_cpu = cpu;
305c1fac 1713 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1714 }
1715}
1716
58d081b5
MG
1717static int task_numa_migrate(struct task_struct *p)
1718{
58d081b5
MG
1719 struct task_numa_env env = {
1720 .p = p,
fb13c7ee 1721
58d081b5 1722 .src_cpu = task_cpu(p),
b32e86b4 1723 .src_nid = task_node(p),
fb13c7ee
MG
1724
1725 .imbalance_pct = 112,
1726
1727 .best_task = NULL,
1728 .best_imp = 0,
4142c3eb 1729 .best_cpu = -1,
58d081b5
MG
1730 };
1731 struct sched_domain *sd;
a4739eca 1732 struct rq *best_rq;
887c290e 1733 unsigned long taskweight, groupweight;
7bd95320 1734 int nid, ret, dist;
887c290e 1735 long taskimp, groupimp;
e6628d5b 1736
58d081b5 1737 /*
fb13c7ee
MG
1738 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 * imbalance and would be the first to start moving tasks about.
1740 *
1741 * And we want to avoid any moving of tasks about, as that would create
1742 * random movement of tasks -- counter the numa conditions we're trying
1743 * to satisfy here.
58d081b5
MG
1744 */
1745 rcu_read_lock();
fb13c7ee 1746 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1747 if (sd)
1748 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1749 rcu_read_unlock();
1750
46a73e8a
RR
1751 /*
1752 * Cpusets can break the scheduler domain tree into smaller
1753 * balance domains, some of which do not cross NUMA boundaries.
1754 * Tasks that are "trapped" in such domains cannot be migrated
1755 * elsewhere, so there is no point in (re)trying.
1756 */
1757 if (unlikely(!sd)) {
8cd45eee 1758 sched_setnuma(p, task_node(p));
46a73e8a
RR
1759 return -EINVAL;
1760 }
1761
2c8a50aa 1762 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1763 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 taskweight = task_weight(p, env.src_nid, dist);
1765 groupweight = group_weight(p, env.src_nid, dist);
1766 update_numa_stats(&env.src_stats, env.src_nid);
1767 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1769 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1770
a43455a1 1771 /* Try to find a spot on the preferred nid. */
2d4056fa 1772 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1773
9de05d48
RR
1774 /*
1775 * Look at other nodes in these cases:
1776 * - there is no space available on the preferred_nid
1777 * - the task is part of a numa_group that is interleaved across
1778 * multiple NUMA nodes; in order to better consolidate the group,
1779 * we need to check other locations.
1780 */
4142c3eb 1781 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1782 for_each_online_node(nid) {
1783 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1784 continue;
58d081b5 1785
7bd95320 1786 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1787 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 dist != env.dist) {
1789 taskweight = task_weight(p, env.src_nid, dist);
1790 groupweight = group_weight(p, env.src_nid, dist);
1791 }
7bd95320 1792
83e1d2cd 1793 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1794 taskimp = task_weight(p, nid, dist) - taskweight;
1795 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1796 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1797 continue;
1798
7bd95320 1799 env.dist = dist;
2c8a50aa
MG
1800 env.dst_nid = nid;
1801 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1802 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1803 }
1804 }
1805
68d1b02a
RR
1806 /*
1807 * If the task is part of a workload that spans multiple NUMA nodes,
1808 * and is migrating into one of the workload's active nodes, remember
1809 * this node as the task's preferred numa node, so the workload can
1810 * settle down.
1811 * A task that migrated to a second choice node will be better off
1812 * trying for a better one later. Do not set the preferred node here.
1813 */
db015dae
RR
1814 if (p->numa_group) {
1815 if (env.best_cpu == -1)
1816 nid = env.src_nid;
1817 else
8cd45eee 1818 nid = cpu_to_node(env.best_cpu);
db015dae 1819
8cd45eee
SD
1820 if (nid != p->numa_preferred_nid)
1821 sched_setnuma(p, nid);
db015dae
RR
1822 }
1823
1824 /* No better CPU than the current one was found. */
1825 if (env.best_cpu == -1)
1826 return -EAGAIN;
0ec8aa00 1827
a4739eca 1828 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1829 if (env.best_task == NULL) {
286549dc 1830 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1831 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1832 if (ret != 0)
1833 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1834 return ret;
1835 }
1836
0ad4e3df 1837 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1838 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1839
286549dc
MG
1840 if (ret != 0)
1841 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1842 put_task_struct(env.best_task);
1843 return ret;
e6628d5b
MG
1844}
1845
6b9a7460
MG
1846/* Attempt to migrate a task to a CPU on the preferred node. */
1847static void numa_migrate_preferred(struct task_struct *p)
1848{
5085e2a3
RR
1849 unsigned long interval = HZ;
1850
2739d3ee 1851 /* This task has no NUMA fault statistics yet */
44dba3d5 1852 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1853 return;
1854
2739d3ee 1855 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1856 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1857 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1858
1859 /* Success if task is already running on preferred CPU */
de1b301a 1860 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1861 return;
1862
1863 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1864 task_numa_migrate(p);
6b9a7460
MG
1865}
1866
20e07dea 1867/*
4142c3eb 1868 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1869 * tracking the nodes from which NUMA hinting faults are triggered. This can
1870 * be different from the set of nodes where the workload's memory is currently
1871 * located.
20e07dea 1872 */
4142c3eb 1873static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1874{
1875 unsigned long faults, max_faults = 0;
4142c3eb 1876 int nid, active_nodes = 0;
20e07dea
RR
1877
1878 for_each_online_node(nid) {
1879 faults = group_faults_cpu(numa_group, nid);
1880 if (faults > max_faults)
1881 max_faults = faults;
1882 }
1883
1884 for_each_online_node(nid) {
1885 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1886 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1887 active_nodes++;
20e07dea 1888 }
4142c3eb
RR
1889
1890 numa_group->max_faults_cpu = max_faults;
1891 numa_group->active_nodes = active_nodes;
20e07dea
RR
1892}
1893
04bb2f94
RR
1894/*
1895 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1897 * period will be for the next scan window. If local/(local+remote) ratio is
1898 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1900 */
1901#define NUMA_PERIOD_SLOTS 10
a22b4b01 1902#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1903
1904/*
1905 * Increase the scan period (slow down scanning) if the majority of
1906 * our memory is already on our local node, or if the majority of
1907 * the page accesses are shared with other processes.
1908 * Otherwise, decrease the scan period.
1909 */
1910static void update_task_scan_period(struct task_struct *p,
1911 unsigned long shared, unsigned long private)
1912{
1913 unsigned int period_slot;
37ec97de 1914 int lr_ratio, ps_ratio;
04bb2f94
RR
1915 int diff;
1916
1917 unsigned long remote = p->numa_faults_locality[0];
1918 unsigned long local = p->numa_faults_locality[1];
1919
1920 /*
1921 * If there were no record hinting faults then either the task is
1922 * completely idle or all activity is areas that are not of interest
074c2381
MG
1923 * to automatic numa balancing. Related to that, if there were failed
1924 * migration then it implies we are migrating too quickly or the local
1925 * node is overloaded. In either case, scan slower
04bb2f94 1926 */
074c2381 1927 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1928 p->numa_scan_period = min(p->numa_scan_period_max,
1929 p->numa_scan_period << 1);
1930
1931 p->mm->numa_next_scan = jiffies +
1932 msecs_to_jiffies(p->numa_scan_period);
1933
1934 return;
1935 }
1936
1937 /*
1938 * Prepare to scale scan period relative to the current period.
1939 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 */
1943 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1944 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946
1947 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 /*
1949 * Most memory accesses are local. There is no need to
1950 * do fast NUMA scanning, since memory is already local.
1951 */
1952 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1953 if (!slot)
1954 slot = 1;
1955 diff = slot * period_slot;
1956 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 /*
1958 * Most memory accesses are shared with other tasks.
1959 * There is no point in continuing fast NUMA scanning,
1960 * since other tasks may just move the memory elsewhere.
1961 */
1962 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1963 if (!slot)
1964 slot = 1;
1965 diff = slot * period_slot;
1966 } else {
04bb2f94 1967 /*
37ec97de
RR
1968 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 * yet they are not on the local NUMA node. Speed up
1970 * NUMA scanning to get the memory moved over.
04bb2f94 1971 */
37ec97de
RR
1972 int ratio = max(lr_ratio, ps_ratio);
1973 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1974 }
1975
1976 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 task_scan_min(p), task_scan_max(p));
1978 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1979}
1980
7e2703e6
RR
1981/*
1982 * Get the fraction of time the task has been running since the last
1983 * NUMA placement cycle. The scheduler keeps similar statistics, but
1984 * decays those on a 32ms period, which is orders of magnitude off
1985 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986 * stats only if the task is so new there are no NUMA statistics yet.
1987 */
1988static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989{
1990 u64 runtime, delta, now;
1991 /* Use the start of this time slice to avoid calculations. */
1992 now = p->se.exec_start;
1993 runtime = p->se.sum_exec_runtime;
1994
1995 if (p->last_task_numa_placement) {
1996 delta = runtime - p->last_sum_exec_runtime;
1997 *period = now - p->last_task_numa_placement;
1998 } else {
c7b50216 1999 delta = p->se.avg.load_sum;
9d89c257 2000 *period = LOAD_AVG_MAX;
7e2703e6
RR
2001 }
2002
2003 p->last_sum_exec_runtime = runtime;
2004 p->last_task_numa_placement = now;
2005
2006 return delta;
2007}
2008
54009416
RR
2009/*
2010 * Determine the preferred nid for a task in a numa_group. This needs to
2011 * be done in a way that produces consistent results with group_weight,
2012 * otherwise workloads might not converge.
2013 */
2014static int preferred_group_nid(struct task_struct *p, int nid)
2015{
2016 nodemask_t nodes;
2017 int dist;
2018
2019 /* Direct connections between all NUMA nodes. */
2020 if (sched_numa_topology_type == NUMA_DIRECT)
2021 return nid;
2022
2023 /*
2024 * On a system with glueless mesh NUMA topology, group_weight
2025 * scores nodes according to the number of NUMA hinting faults on
2026 * both the node itself, and on nearby nodes.
2027 */
2028 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 unsigned long score, max_score = 0;
2030 int node, max_node = nid;
2031
2032 dist = sched_max_numa_distance;
2033
2034 for_each_online_node(node) {
2035 score = group_weight(p, node, dist);
2036 if (score > max_score) {
2037 max_score = score;
2038 max_node = node;
2039 }
2040 }
2041 return max_node;
2042 }
2043
2044 /*
2045 * Finding the preferred nid in a system with NUMA backplane
2046 * interconnect topology is more involved. The goal is to locate
2047 * tasks from numa_groups near each other in the system, and
2048 * untangle workloads from different sides of the system. This requires
2049 * searching down the hierarchy of node groups, recursively searching
2050 * inside the highest scoring group of nodes. The nodemask tricks
2051 * keep the complexity of the search down.
2052 */
2053 nodes = node_online_map;
2054 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 unsigned long max_faults = 0;
81907478 2056 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2057 int a, b;
2058
2059 /* Are there nodes at this distance from each other? */
2060 if (!find_numa_distance(dist))
2061 continue;
2062
2063 for_each_node_mask(a, nodes) {
2064 unsigned long faults = 0;
2065 nodemask_t this_group;
2066 nodes_clear(this_group);
2067
2068 /* Sum group's NUMA faults; includes a==b case. */
2069 for_each_node_mask(b, nodes) {
2070 if (node_distance(a, b) < dist) {
2071 faults += group_faults(p, b);
2072 node_set(b, this_group);
2073 node_clear(b, nodes);
2074 }
2075 }
2076
2077 /* Remember the top group. */
2078 if (faults > max_faults) {
2079 max_faults = faults;
2080 max_group = this_group;
2081 /*
2082 * subtle: at the smallest distance there is
2083 * just one node left in each "group", the
2084 * winner is the preferred nid.
2085 */
2086 nid = a;
2087 }
2088 }
2089 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2090 if (!max_faults)
2091 break;
54009416
RR
2092 nodes = max_group;
2093 }
2094 return nid;
2095}
2096
cbee9f88
PZ
2097static void task_numa_placement(struct task_struct *p)
2098{
f03bb676
SD
2099 int seq, nid, max_nid = -1;
2100 unsigned long max_faults = 0;
04bb2f94 2101 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2102 unsigned long total_faults;
2103 u64 runtime, period;
7dbd13ed 2104 spinlock_t *group_lock = NULL;
cbee9f88 2105
7e5a2c17
JL
2106 /*
2107 * The p->mm->numa_scan_seq field gets updated without
2108 * exclusive access. Use READ_ONCE() here to ensure
2109 * that the field is read in a single access:
2110 */
316c1608 2111 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2112 if (p->numa_scan_seq == seq)
2113 return;
2114 p->numa_scan_seq = seq;
598f0ec0 2115 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2116
7e2703e6
RR
2117 total_faults = p->numa_faults_locality[0] +
2118 p->numa_faults_locality[1];
2119 runtime = numa_get_avg_runtime(p, &period);
2120
7dbd13ed
MG
2121 /* If the task is part of a group prevent parallel updates to group stats */
2122 if (p->numa_group) {
2123 group_lock = &p->numa_group->lock;
60e69eed 2124 spin_lock_irq(group_lock);
7dbd13ed
MG
2125 }
2126
688b7585
MG
2127 /* Find the node with the highest number of faults */
2128 for_each_online_node(nid) {
44dba3d5
IM
2129 /* Keep track of the offsets in numa_faults array */
2130 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2131 unsigned long faults = 0, group_faults = 0;
44dba3d5 2132 int priv;
745d6147 2133
be1e4e76 2134 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2135 long diff, f_diff, f_weight;
8c8a743c 2136
44dba3d5
IM
2137 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2141
ac8e895b 2142 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2143 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 fault_types[priv] += p->numa_faults[membuf_idx];
2145 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2146
7e2703e6
RR
2147 /*
2148 * Normalize the faults_from, so all tasks in a group
2149 * count according to CPU use, instead of by the raw
2150 * number of faults. Tasks with little runtime have
2151 * little over-all impact on throughput, and thus their
2152 * faults are less important.
2153 */
2154 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2155 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2156 (total_faults + 1);
44dba3d5
IM
2157 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2159
44dba3d5
IM
2160 p->numa_faults[mem_idx] += diff;
2161 p->numa_faults[cpu_idx] += f_diff;
2162 faults += p->numa_faults[mem_idx];
83e1d2cd 2163 p->total_numa_faults += diff;
8c8a743c 2164 if (p->numa_group) {
44dba3d5
IM
2165 /*
2166 * safe because we can only change our own group
2167 *
2168 * mem_idx represents the offset for a given
2169 * nid and priv in a specific region because it
2170 * is at the beginning of the numa_faults array.
2171 */
2172 p->numa_group->faults[mem_idx] += diff;
2173 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2174 p->numa_group->total_faults += diff;
44dba3d5 2175 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2176 }
ac8e895b
MG
2177 }
2178
f03bb676
SD
2179 if (!p->numa_group) {
2180 if (faults > max_faults) {
2181 max_faults = faults;
2182 max_nid = nid;
2183 }
2184 } else if (group_faults > max_faults) {
2185 max_faults = group_faults;
688b7585
MG
2186 max_nid = nid;
2187 }
83e1d2cd
MG
2188 }
2189
7dbd13ed 2190 if (p->numa_group) {
4142c3eb 2191 numa_group_count_active_nodes(p->numa_group);
60e69eed 2192 spin_unlock_irq(group_lock);
f03bb676 2193 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2194 }
2195
bb97fc31
RR
2196 if (max_faults) {
2197 /* Set the new preferred node */
2198 if (max_nid != p->numa_preferred_nid)
2199 sched_setnuma(p, max_nid);
3a7053b3 2200 }
30619c89
SD
2201
2202 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2203}
2204
8c8a743c
PZ
2205static inline int get_numa_group(struct numa_group *grp)
2206{
2207 return atomic_inc_not_zero(&grp->refcount);
2208}
2209
2210static inline void put_numa_group(struct numa_group *grp)
2211{
2212 if (atomic_dec_and_test(&grp->refcount))
2213 kfree_rcu(grp, rcu);
2214}
2215
3e6a9418
MG
2216static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2217 int *priv)
8c8a743c
PZ
2218{
2219 struct numa_group *grp, *my_grp;
2220 struct task_struct *tsk;
2221 bool join = false;
2222 int cpu = cpupid_to_cpu(cpupid);
2223 int i;
2224
2225 if (unlikely(!p->numa_group)) {
2226 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2227 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2228
2229 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2230 if (!grp)
2231 return;
2232
2233 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2234 grp->active_nodes = 1;
2235 grp->max_faults_cpu = 0;
8c8a743c 2236 spin_lock_init(&grp->lock);
e29cf08b 2237 grp->gid = p->pid;
50ec8a40 2238 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2239 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2240 nr_node_ids;
8c8a743c 2241
be1e4e76 2242 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2243 grp->faults[i] = p->numa_faults[i];
8c8a743c 2244
989348b5 2245 grp->total_faults = p->total_numa_faults;
83e1d2cd 2246
8c8a743c
PZ
2247 grp->nr_tasks++;
2248 rcu_assign_pointer(p->numa_group, grp);
2249 }
2250
2251 rcu_read_lock();
316c1608 2252 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2253
2254 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2255 goto no_join;
8c8a743c
PZ
2256
2257 grp = rcu_dereference(tsk->numa_group);
2258 if (!grp)
3354781a 2259 goto no_join;
8c8a743c
PZ
2260
2261 my_grp = p->numa_group;
2262 if (grp == my_grp)
3354781a 2263 goto no_join;
8c8a743c
PZ
2264
2265 /*
2266 * Only join the other group if its bigger; if we're the bigger group,
2267 * the other task will join us.
2268 */
2269 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2270 goto no_join;
8c8a743c
PZ
2271
2272 /*
2273 * Tie-break on the grp address.
2274 */
2275 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2276 goto no_join;
8c8a743c 2277
dabe1d99
RR
2278 /* Always join threads in the same process. */
2279 if (tsk->mm == current->mm)
2280 join = true;
2281
2282 /* Simple filter to avoid false positives due to PID collisions */
2283 if (flags & TNF_SHARED)
2284 join = true;
8c8a743c 2285
3e6a9418
MG
2286 /* Update priv based on whether false sharing was detected */
2287 *priv = !join;
2288
dabe1d99 2289 if (join && !get_numa_group(grp))
3354781a 2290 goto no_join;
8c8a743c 2291
8c8a743c
PZ
2292 rcu_read_unlock();
2293
2294 if (!join)
2295 return;
2296
60e69eed
MG
2297 BUG_ON(irqs_disabled());
2298 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2299
be1e4e76 2300 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2301 my_grp->faults[i] -= p->numa_faults[i];
2302 grp->faults[i] += p->numa_faults[i];
8c8a743c 2303 }
989348b5
MG
2304 my_grp->total_faults -= p->total_numa_faults;
2305 grp->total_faults += p->total_numa_faults;
8c8a743c 2306
8c8a743c
PZ
2307 my_grp->nr_tasks--;
2308 grp->nr_tasks++;
2309
2310 spin_unlock(&my_grp->lock);
60e69eed 2311 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2312
2313 rcu_assign_pointer(p->numa_group, grp);
2314
2315 put_numa_group(my_grp);
3354781a
PZ
2316 return;
2317
2318no_join:
2319 rcu_read_unlock();
2320 return;
8c8a743c
PZ
2321}
2322
2323void task_numa_free(struct task_struct *p)
2324{
2325 struct numa_group *grp = p->numa_group;
44dba3d5 2326 void *numa_faults = p->numa_faults;
e9dd685c
SR
2327 unsigned long flags;
2328 int i;
8c8a743c
PZ
2329
2330 if (grp) {
e9dd685c 2331 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2333 grp->faults[i] -= p->numa_faults[i];
989348b5 2334 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2335
8c8a743c 2336 grp->nr_tasks--;
e9dd685c 2337 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2338 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2339 put_numa_group(grp);
2340 }
2341
44dba3d5 2342 p->numa_faults = NULL;
82727018 2343 kfree(numa_faults);
8c8a743c
PZ
2344}
2345
cbee9f88
PZ
2346/*
2347 * Got a PROT_NONE fault for a page on @node.
2348 */
58b46da3 2349void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2350{
2351 struct task_struct *p = current;
6688cc05 2352 bool migrated = flags & TNF_MIGRATED;
58b46da3 2353 int cpu_node = task_node(current);
792568ec 2354 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2355 struct numa_group *ng;
ac8e895b 2356 int priv;
cbee9f88 2357
2a595721 2358 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2359 return;
2360
9ff1d9ff
MG
2361 /* for example, ksmd faulting in a user's mm */
2362 if (!p->mm)
2363 return;
2364
f809ca9a 2365 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2366 if (unlikely(!p->numa_faults)) {
2367 int size = sizeof(*p->numa_faults) *
be1e4e76 2368 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2369
44dba3d5
IM
2370 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 if (!p->numa_faults)
f809ca9a 2372 return;
745d6147 2373
83e1d2cd 2374 p->total_numa_faults = 0;
04bb2f94 2375 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2376 }
cbee9f88 2377
8c8a743c
PZ
2378 /*
2379 * First accesses are treated as private, otherwise consider accesses
2380 * to be private if the accessing pid has not changed
2381 */
2382 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2383 priv = 1;
2384 } else {
2385 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2386 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2387 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2388 }
2389
792568ec
RR
2390 /*
2391 * If a workload spans multiple NUMA nodes, a shared fault that
2392 * occurs wholly within the set of nodes that the workload is
2393 * actively using should be counted as local. This allows the
2394 * scan rate to slow down when a workload has settled down.
2395 */
4142c3eb
RR
2396 ng = p->numa_group;
2397 if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 numa_is_active_node(cpu_node, ng) &&
2399 numa_is_active_node(mem_node, ng))
792568ec
RR
2400 local = 1;
2401
2739d3ee 2402 /*
e1ff516a
YW
2403 * Retry to migrate task to preferred node periodically, in case it
2404 * previously failed, or the scheduler moved us.
2739d3ee 2405 */
b6a60cf3
SD
2406 if (time_after(jiffies, p->numa_migrate_retry)) {
2407 task_numa_placement(p);
6b9a7460 2408 numa_migrate_preferred(p);
b6a60cf3 2409 }
6b9a7460 2410
b32e86b4
IM
2411 if (migrated)
2412 p->numa_pages_migrated += pages;
074c2381
MG
2413 if (flags & TNF_MIGRATE_FAIL)
2414 p->numa_faults_locality[2] += pages;
b32e86b4 2415
44dba3d5
IM
2416 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2418 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2419}
2420
6e5fb223
PZ
2421static void reset_ptenuma_scan(struct task_struct *p)
2422{
7e5a2c17
JL
2423 /*
2424 * We only did a read acquisition of the mmap sem, so
2425 * p->mm->numa_scan_seq is written to without exclusive access
2426 * and the update is not guaranteed to be atomic. That's not
2427 * much of an issue though, since this is just used for
2428 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 * expensive, to avoid any form of compiler optimizations:
2430 */
316c1608 2431 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2432 p->mm->numa_scan_offset = 0;
2433}
2434
cbee9f88
PZ
2435/*
2436 * The expensive part of numa migration is done from task_work context.
2437 * Triggered from task_tick_numa().
2438 */
2439void task_numa_work(struct callback_head *work)
2440{
2441 unsigned long migrate, next_scan, now = jiffies;
2442 struct task_struct *p = current;
2443 struct mm_struct *mm = p->mm;
51170840 2444 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2445 struct vm_area_struct *vma;
9f40604c 2446 unsigned long start, end;
598f0ec0 2447 unsigned long nr_pte_updates = 0;
4620f8c1 2448 long pages, virtpages;
cbee9f88 2449
9148a3a1 2450 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2451
2452 work->next = work; /* protect against double add */
2453 /*
2454 * Who cares about NUMA placement when they're dying.
2455 *
2456 * NOTE: make sure not to dereference p->mm before this check,
2457 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 * without p->mm even though we still had it when we enqueued this
2459 * work.
2460 */
2461 if (p->flags & PF_EXITING)
2462 return;
2463
930aa174 2464 if (!mm->numa_next_scan) {
7e8d16b6
MG
2465 mm->numa_next_scan = now +
2466 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2467 }
2468
cbee9f88
PZ
2469 /*
2470 * Enforce maximal scan/migration frequency..
2471 */
2472 migrate = mm->numa_next_scan;
2473 if (time_before(now, migrate))
2474 return;
2475
598f0ec0
MG
2476 if (p->numa_scan_period == 0) {
2477 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2478 p->numa_scan_period = task_scan_start(p);
598f0ec0 2479 }
cbee9f88 2480
fb003b80 2481 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2482 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2483 return;
2484
19a78d11
PZ
2485 /*
2486 * Delay this task enough that another task of this mm will likely win
2487 * the next time around.
2488 */
2489 p->node_stamp += 2 * TICK_NSEC;
2490
9f40604c
MG
2491 start = mm->numa_scan_offset;
2492 pages = sysctl_numa_balancing_scan_size;
2493 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2494 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2495 if (!pages)
2496 return;
cbee9f88 2497
4620f8c1 2498
8655d549
VB
2499 if (!down_read_trylock(&mm->mmap_sem))
2500 return;
9f40604c 2501 vma = find_vma(mm, start);
6e5fb223
PZ
2502 if (!vma) {
2503 reset_ptenuma_scan(p);
9f40604c 2504 start = 0;
6e5fb223
PZ
2505 vma = mm->mmap;
2506 }
9f40604c 2507 for (; vma; vma = vma->vm_next) {
6b79c57b 2508 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2509 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2510 continue;
6b79c57b 2511 }
6e5fb223 2512
4591ce4f
MG
2513 /*
2514 * Shared library pages mapped by multiple processes are not
2515 * migrated as it is expected they are cache replicated. Avoid
2516 * hinting faults in read-only file-backed mappings or the vdso
2517 * as migrating the pages will be of marginal benefit.
2518 */
2519 if (!vma->vm_mm ||
2520 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2521 continue;
2522
3c67f474
MG
2523 /*
2524 * Skip inaccessible VMAs to avoid any confusion between
2525 * PROT_NONE and NUMA hinting ptes
2526 */
2527 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2528 continue;
4591ce4f 2529
9f40604c
MG
2530 do {
2531 start = max(start, vma->vm_start);
2532 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 end = min(end, vma->vm_end);
4620f8c1 2534 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2535
2536 /*
4620f8c1
RR
2537 * Try to scan sysctl_numa_balancing_size worth of
2538 * hpages that have at least one present PTE that
2539 * is not already pte-numa. If the VMA contains
2540 * areas that are unused or already full of prot_numa
2541 * PTEs, scan up to virtpages, to skip through those
2542 * areas faster.
598f0ec0
MG
2543 */
2544 if (nr_pte_updates)
2545 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2546 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2547
9f40604c 2548 start = end;
4620f8c1 2549 if (pages <= 0 || virtpages <= 0)
9f40604c 2550 goto out;
3cf1962c
RR
2551
2552 cond_resched();
9f40604c 2553 } while (end != vma->vm_end);
cbee9f88 2554 }
6e5fb223 2555
9f40604c 2556out:
6e5fb223 2557 /*
c69307d5
PZ
2558 * It is possible to reach the end of the VMA list but the last few
2559 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 * would find the !migratable VMA on the next scan but not reset the
2561 * scanner to the start so check it now.
6e5fb223
PZ
2562 */
2563 if (vma)
9f40604c 2564 mm->numa_scan_offset = start;
6e5fb223
PZ
2565 else
2566 reset_ptenuma_scan(p);
2567 up_read(&mm->mmap_sem);
51170840
RR
2568
2569 /*
2570 * Make sure tasks use at least 32x as much time to run other code
2571 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 * Usually update_task_scan_period slows down scanning enough; on an
2573 * overloaded system we need to limit overhead on a per task basis.
2574 */
2575 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 u64 diff = p->se.sum_exec_runtime - runtime;
2577 p->node_stamp += 32 * diff;
2578 }
cbee9f88
PZ
2579}
2580
2581/*
2582 * Drive the periodic memory faults..
2583 */
2584void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585{
2586 struct callback_head *work = &curr->numa_work;
2587 u64 period, now;
2588
2589 /*
2590 * We don't care about NUMA placement if we don't have memory.
2591 */
2592 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2593 return;
2594
2595 /*
2596 * Using runtime rather than walltime has the dual advantage that
2597 * we (mostly) drive the selection from busy threads and that the
2598 * task needs to have done some actual work before we bother with
2599 * NUMA placement.
2600 */
2601 now = curr->se.sum_exec_runtime;
2602 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603
25b3e5a3 2604 if (now > curr->node_stamp + period) {
4b96a29b 2605 if (!curr->node_stamp)
b5dd77c8 2606 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2607 curr->node_stamp += period;
cbee9f88
PZ
2608
2609 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 task_work_add(curr, work, true);
2612 }
2613 }
2614}
3fed382b 2615
3f9672ba
SD
2616static void update_scan_period(struct task_struct *p, int new_cpu)
2617{
2618 int src_nid = cpu_to_node(task_cpu(p));
2619 int dst_nid = cpu_to_node(new_cpu);
2620
05cbdf4f
MG
2621 if (!static_branch_likely(&sched_numa_balancing))
2622 return;
2623
3f9672ba
SD
2624 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2625 return;
2626
05cbdf4f
MG
2627 if (src_nid == dst_nid)
2628 return;
2629
2630 /*
2631 * Allow resets if faults have been trapped before one scan
2632 * has completed. This is most likely due to a new task that
2633 * is pulled cross-node due to wakeups or load balancing.
2634 */
2635 if (p->numa_scan_seq) {
2636 /*
2637 * Avoid scan adjustments if moving to the preferred
2638 * node or if the task was not previously running on
2639 * the preferred node.
2640 */
2641 if (dst_nid == p->numa_preferred_nid ||
2642 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2643 return;
2644 }
2645
2646 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2647}
2648
cbee9f88
PZ
2649#else
2650static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651{
2652}
0ec8aa00
PZ
2653
2654static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655{
2656}
2657
2658static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659{
2660}
3fed382b 2661
3f9672ba
SD
2662static inline void update_scan_period(struct task_struct *p, int new_cpu)
2663{
2664}
2665
cbee9f88
PZ
2666#endif /* CONFIG_NUMA_BALANCING */
2667
30cfdcfc
DA
2668static void
2669account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670{
2671 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2672 if (!parent_entity(se))
029632fb 2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2674#ifdef CONFIG_SMP
0ec8aa00
PZ
2675 if (entity_is_task(se)) {
2676 struct rq *rq = rq_of(cfs_rq);
2677
2678 account_numa_enqueue(rq, task_of(se));
2679 list_add(&se->group_node, &rq->cfs_tasks);
2680 }
367456c7 2681#endif
30cfdcfc 2682 cfs_rq->nr_running++;
30cfdcfc
DA
2683}
2684
2685static void
2686account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687{
2688 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2689 if (!parent_entity(se))
029632fb 2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2691#ifdef CONFIG_SMP
0ec8aa00
PZ
2692 if (entity_is_task(se)) {
2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2694 list_del_init(&se->group_node);
0ec8aa00 2695 }
bfdb198c 2696#endif
30cfdcfc 2697 cfs_rq->nr_running--;
30cfdcfc
DA
2698}
2699
8d5b9025
PZ
2700/*
2701 * Signed add and clamp on underflow.
2702 *
2703 * Explicitly do a load-store to ensure the intermediate value never hits
2704 * memory. This allows lockless observations without ever seeing the negative
2705 * values.
2706 */
2707#define add_positive(_ptr, _val) do { \
2708 typeof(_ptr) ptr = (_ptr); \
2709 typeof(_val) val = (_val); \
2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2711 \
2712 res = var + val; \
2713 \
2714 if (val < 0 && res > var) \
2715 res = 0; \
2716 \
2717 WRITE_ONCE(*ptr, res); \
2718} while (0)
2719
2720/*
2721 * Unsigned subtract and clamp on underflow.
2722 *
2723 * Explicitly do a load-store to ensure the intermediate value never hits
2724 * memory. This allows lockless observations without ever seeing the negative
2725 * values.
2726 */
2727#define sub_positive(_ptr, _val) do { \
2728 typeof(_ptr) ptr = (_ptr); \
2729 typeof(*ptr) val = (_val); \
2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2731 res = var - val; \
2732 if (res > var) \
2733 res = 0; \
2734 WRITE_ONCE(*ptr, res); \
2735} while (0)
2736
2737#ifdef CONFIG_SMP
8d5b9025
PZ
2738static inline void
2739enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740{
1ea6c46a
PZ
2741 cfs_rq->runnable_weight += se->runnable_weight;
2742
2743 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2744 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2745}
2746
2747static inline void
2748dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749{
1ea6c46a
PZ
2750 cfs_rq->runnable_weight -= se->runnable_weight;
2751
2752 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2753 sub_positive(&cfs_rq->avg.runnable_load_sum,
2754 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2755}
2756
2757static inline void
2758enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2759{
2760 cfs_rq->avg.load_avg += se->avg.load_avg;
2761 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2762}
2763
2764static inline void
2765dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2766{
2767 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2768 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2769}
2770#else
2771static inline void
2772enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773static inline void
2774dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775static inline void
2776enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777static inline void
2778dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2779#endif
2780
9059393e 2781static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2782 unsigned long weight, unsigned long runnable)
9059393e
VG
2783{
2784 if (se->on_rq) {
2785 /* commit outstanding execution time */
2786 if (cfs_rq->curr == se)
2787 update_curr(cfs_rq);
2788 account_entity_dequeue(cfs_rq, se);
2789 dequeue_runnable_load_avg(cfs_rq, se);
2790 }
2791 dequeue_load_avg(cfs_rq, se);
2792
1ea6c46a 2793 se->runnable_weight = runnable;
9059393e
VG
2794 update_load_set(&se->load, weight);
2795
2796#ifdef CONFIG_SMP
1ea6c46a
PZ
2797 do {
2798 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2799
2800 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2801 se->avg.runnable_load_avg =
2802 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2803 } while (0);
9059393e
VG
2804#endif
2805
2806 enqueue_load_avg(cfs_rq, se);
2807 if (se->on_rq) {
2808 account_entity_enqueue(cfs_rq, se);
2809 enqueue_runnable_load_avg(cfs_rq, se);
2810 }
2811}
2812
2813void reweight_task(struct task_struct *p, int prio)
2814{
2815 struct sched_entity *se = &p->se;
2816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 struct load_weight *load = &se->load;
2818 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2819
1ea6c46a 2820 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2821 load->inv_weight = sched_prio_to_wmult[prio];
2822}
2823
3ff6dcac 2824#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2825#ifdef CONFIG_SMP
cef27403
PZ
2826/*
2827 * All this does is approximate the hierarchical proportion which includes that
2828 * global sum we all love to hate.
2829 *
2830 * That is, the weight of a group entity, is the proportional share of the
2831 * group weight based on the group runqueue weights. That is:
2832 *
2833 * tg->weight * grq->load.weight
2834 * ge->load.weight = ----------------------------- (1)
2835 * \Sum grq->load.weight
2836 *
2837 * Now, because computing that sum is prohibitively expensive to compute (been
2838 * there, done that) we approximate it with this average stuff. The average
2839 * moves slower and therefore the approximation is cheaper and more stable.
2840 *
2841 * So instead of the above, we substitute:
2842 *
2843 * grq->load.weight -> grq->avg.load_avg (2)
2844 *
2845 * which yields the following:
2846 *
2847 * tg->weight * grq->avg.load_avg
2848 * ge->load.weight = ------------------------------ (3)
2849 * tg->load_avg
2850 *
2851 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2852 *
2853 * That is shares_avg, and it is right (given the approximation (2)).
2854 *
2855 * The problem with it is that because the average is slow -- it was designed
2856 * to be exactly that of course -- this leads to transients in boundary
2857 * conditions. In specific, the case where the group was idle and we start the
2858 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2859 * yielding bad latency etc..
2860 *
2861 * Now, in that special case (1) reduces to:
2862 *
2863 * tg->weight * grq->load.weight
17de4ee0 2864 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2865 * grp->load.weight
2866 *
2867 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2868 *
2869 * So what we do is modify our approximation (3) to approach (4) in the (near)
2870 * UP case, like:
2871 *
2872 * ge->load.weight =
2873 *
2874 * tg->weight * grq->load.weight
2875 * --------------------------------------------------- (5)
2876 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2877 *
17de4ee0
PZ
2878 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2879 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2880 *
2881 *
2882 * tg->weight * grq->load.weight
2883 * ge->load.weight = ----------------------------- (6)
2884 * tg_load_avg'
2885 *
2886 * Where:
2887 *
2888 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2889 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2890 *
2891 * And that is shares_weight and is icky. In the (near) UP case it approaches
2892 * (4) while in the normal case it approaches (3). It consistently
2893 * overestimates the ge->load.weight and therefore:
2894 *
2895 * \Sum ge->load.weight >= tg->weight
2896 *
2897 * hence icky!
2898 */
2c8e4dce 2899static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2900{
7c80cfc9
PZ
2901 long tg_weight, tg_shares, load, shares;
2902 struct task_group *tg = cfs_rq->tg;
2903
2904 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2905
3d4b60d3 2906 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2907
ea1dc6fc 2908 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2909
ea1dc6fc
PZ
2910 /* Ensure tg_weight >= load */
2911 tg_weight -= cfs_rq->tg_load_avg_contrib;
2912 tg_weight += load;
3ff6dcac 2913
7c80cfc9 2914 shares = (tg_shares * load);
cf5f0acf
PZ
2915 if (tg_weight)
2916 shares /= tg_weight;
3ff6dcac 2917
b8fd8423
DE
2918 /*
2919 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2920 * of a group with small tg->shares value. It is a floor value which is
2921 * assigned as a minimum load.weight to the sched_entity representing
2922 * the group on a CPU.
2923 *
2924 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2925 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2926 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2927 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2928 * instead of 0.
2929 */
7c80cfc9 2930 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2931}
2c8e4dce
JB
2932
2933/*
17de4ee0
PZ
2934 * This calculates the effective runnable weight for a group entity based on
2935 * the group entity weight calculated above.
2936 *
2937 * Because of the above approximation (2), our group entity weight is
2938 * an load_avg based ratio (3). This means that it includes blocked load and
2939 * does not represent the runnable weight.
2940 *
2941 * Approximate the group entity's runnable weight per ratio from the group
2942 * runqueue:
2943 *
2944 * grq->avg.runnable_load_avg
2945 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2946 * grq->avg.load_avg
2947 *
2948 * However, analogous to above, since the avg numbers are slow, this leads to
2949 * transients in the from-idle case. Instead we use:
2950 *
2951 * ge->runnable_weight = ge->load.weight *
2952 *
2953 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2954 * ----------------------------------------------------- (8)
2955 * max(grq->avg.load_avg, grq->load.weight)
2956 *
2957 * Where these max() serve both to use the 'instant' values to fix the slow
2958 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2959 */
2960static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2961{
17de4ee0
PZ
2962 long runnable, load_avg;
2963
2964 load_avg = max(cfs_rq->avg.load_avg,
2965 scale_load_down(cfs_rq->load.weight));
2966
2967 runnable = max(cfs_rq->avg.runnable_load_avg,
2968 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2969
2970 runnable *= shares;
2971 if (load_avg)
2972 runnable /= load_avg;
17de4ee0 2973
2c8e4dce
JB
2974 return clamp_t(long, runnable, MIN_SHARES, shares);
2975}
387f77cc 2976#endif /* CONFIG_SMP */
ea1dc6fc 2977
82958366
PT
2978static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2979
1ea6c46a
PZ
2980/*
2981 * Recomputes the group entity based on the current state of its group
2982 * runqueue.
2983 */
2984static void update_cfs_group(struct sched_entity *se)
2069dd75 2985{
1ea6c46a
PZ
2986 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2987 long shares, runnable;
2069dd75 2988
1ea6c46a 2989 if (!gcfs_rq)
89ee048f
VG
2990 return;
2991
1ea6c46a 2992 if (throttled_hierarchy(gcfs_rq))
2069dd75 2993 return;
89ee048f 2994
3ff6dcac 2995#ifndef CONFIG_SMP
1ea6c46a 2996 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
2997
2998 if (likely(se->load.weight == shares))
3ff6dcac 2999 return;
7c80cfc9 3000#else
2c8e4dce
JB
3001 shares = calc_group_shares(gcfs_rq);
3002 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3003#endif
2069dd75 3004
1ea6c46a 3005 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3006}
89ee048f 3007
2069dd75 3008#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3009static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3010{
3011}
3012#endif /* CONFIG_FAIR_GROUP_SCHED */
3013
ea14b57e 3014static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3015{
43964409
LT
3016 struct rq *rq = rq_of(cfs_rq);
3017
ea14b57e 3018 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3019 /*
3020 * There are a few boundary cases this might miss but it should
3021 * get called often enough that that should (hopefully) not be
9783be2c 3022 * a real problem.
a030d738
VK
3023 *
3024 * It will not get called when we go idle, because the idle
3025 * thread is a different class (!fair), nor will the utilization
3026 * number include things like RT tasks.
3027 *
3028 * As is, the util number is not freq-invariant (we'd have to
3029 * implement arch_scale_freq_capacity() for that).
3030 *
3031 * See cpu_util().
3032 */
ea14b57e 3033 cpufreq_update_util(rq, flags);
a030d738
VK
3034 }
3035}
3036
141965c7 3037#ifdef CONFIG_SMP
c566e8e9 3038#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3039/**
3040 * update_tg_load_avg - update the tg's load avg
3041 * @cfs_rq: the cfs_rq whose avg changed
3042 * @force: update regardless of how small the difference
3043 *
3044 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3045 * However, because tg->load_avg is a global value there are performance
3046 * considerations.
3047 *
3048 * In order to avoid having to look at the other cfs_rq's, we use a
3049 * differential update where we store the last value we propagated. This in
3050 * turn allows skipping updates if the differential is 'small'.
3051 *
815abf5a 3052 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3053 */
9d89c257 3054static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3055{
9d89c257 3056 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3057
aa0b7ae0
WL
3058 /*
3059 * No need to update load_avg for root_task_group as it is not used.
3060 */
3061 if (cfs_rq->tg == &root_task_group)
3062 return;
3063
9d89c257
YD
3064 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3065 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3066 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3067 }
8165e145 3068}
f5f9739d 3069
ad936d86 3070/*
97fb7a0a 3071 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3072 * caller only guarantees p->pi_lock is held; no other assumptions,
3073 * including the state of rq->lock, should be made.
3074 */
3075void set_task_rq_fair(struct sched_entity *se,
3076 struct cfs_rq *prev, struct cfs_rq *next)
3077{
0ccb977f
PZ
3078 u64 p_last_update_time;
3079 u64 n_last_update_time;
3080
ad936d86
BP
3081 if (!sched_feat(ATTACH_AGE_LOAD))
3082 return;
3083
3084 /*
3085 * We are supposed to update the task to "current" time, then its up to
3086 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3087 * getting what current time is, so simply throw away the out-of-date
3088 * time. This will result in the wakee task is less decayed, but giving
3089 * the wakee more load sounds not bad.
3090 */
0ccb977f
PZ
3091 if (!(se->avg.last_update_time && prev))
3092 return;
ad936d86
BP
3093
3094#ifndef CONFIG_64BIT
0ccb977f 3095 {
ad936d86
BP
3096 u64 p_last_update_time_copy;
3097 u64 n_last_update_time_copy;
3098
3099 do {
3100 p_last_update_time_copy = prev->load_last_update_time_copy;
3101 n_last_update_time_copy = next->load_last_update_time_copy;
3102
3103 smp_rmb();
3104
3105 p_last_update_time = prev->avg.last_update_time;
3106 n_last_update_time = next->avg.last_update_time;
3107
3108 } while (p_last_update_time != p_last_update_time_copy ||
3109 n_last_update_time != n_last_update_time_copy);
0ccb977f 3110 }
ad936d86 3111#else
0ccb977f
PZ
3112 p_last_update_time = prev->avg.last_update_time;
3113 n_last_update_time = next->avg.last_update_time;
ad936d86 3114#endif
0ccb977f
PZ
3115 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3116 se->avg.last_update_time = n_last_update_time;
ad936d86 3117}
09a43ace 3118
0e2d2aaa
PZ
3119
3120/*
3121 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3122 * propagate its contribution. The key to this propagation is the invariant
3123 * that for each group:
3124 *
3125 * ge->avg == grq->avg (1)
3126 *
3127 * _IFF_ we look at the pure running and runnable sums. Because they
3128 * represent the very same entity, just at different points in the hierarchy.
3129 *
a4c3c049
VG
3130 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3131 * sum over (but still wrong, because the group entity and group rq do not have
3132 * their PELT windows aligned).
0e2d2aaa
PZ
3133 *
3134 * However, update_tg_cfs_runnable() is more complex. So we have:
3135 *
3136 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3137 *
3138 * And since, like util, the runnable part should be directly transferable,
3139 * the following would _appear_ to be the straight forward approach:
3140 *
a4c3c049 3141 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3142 *
3143 * And per (1) we have:
3144 *
a4c3c049 3145 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3146 *
3147 * Which gives:
3148 *
3149 * ge->load.weight * grq->avg.load_avg
3150 * ge->avg.load_avg = ----------------------------------- (4)
3151 * grq->load.weight
3152 *
3153 * Except that is wrong!
3154 *
3155 * Because while for entities historical weight is not important and we
3156 * really only care about our future and therefore can consider a pure
3157 * runnable sum, runqueues can NOT do this.
3158 *
3159 * We specifically want runqueues to have a load_avg that includes
3160 * historical weights. Those represent the blocked load, the load we expect
3161 * to (shortly) return to us. This only works by keeping the weights as
3162 * integral part of the sum. We therefore cannot decompose as per (3).
3163 *
a4c3c049
VG
3164 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3165 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3166 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3167 * runnable section of these tasks overlap (or not). If they were to perfectly
3168 * align the rq as a whole would be runnable 2/3 of the time. If however we
3169 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3170 *
a4c3c049 3171 * So we'll have to approximate.. :/
0e2d2aaa 3172 *
a4c3c049 3173 * Given the constraint:
0e2d2aaa 3174 *
a4c3c049 3175 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3176 *
a4c3c049
VG
3177 * We can construct a rule that adds runnable to a rq by assuming minimal
3178 * overlap.
0e2d2aaa 3179 *
a4c3c049 3180 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3181 *
a4c3c049 3182 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3183 *
a4c3c049 3184 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3185 *
0e2d2aaa
PZ
3186 */
3187
09a43ace 3188static inline void
0e2d2aaa 3189update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3190{
09a43ace
VG
3191 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3192
3193 /* Nothing to update */
3194 if (!delta)
3195 return;
3196
a4c3c049
VG
3197 /*
3198 * The relation between sum and avg is:
3199 *
3200 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3201 *
3202 * however, the PELT windows are not aligned between grq and gse.
3203 */
3204
09a43ace
VG
3205 /* Set new sched_entity's utilization */
3206 se->avg.util_avg = gcfs_rq->avg.util_avg;
3207 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3208
3209 /* Update parent cfs_rq utilization */
3210 add_positive(&cfs_rq->avg.util_avg, delta);
3211 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3212}
3213
09a43ace 3214static inline void
0e2d2aaa 3215update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3216{
a4c3c049
VG
3217 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3218 unsigned long runnable_load_avg, load_avg;
3219 u64 runnable_load_sum, load_sum = 0;
3220 s64 delta_sum;
09a43ace 3221
0e2d2aaa
PZ
3222 if (!runnable_sum)
3223 return;
09a43ace 3224
0e2d2aaa 3225 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3226
a4c3c049
VG
3227 if (runnable_sum >= 0) {
3228 /*
3229 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3230 * the CPU is saturated running == runnable.
3231 */
3232 runnable_sum += se->avg.load_sum;
3233 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3234 } else {
3235 /*
3236 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3237 * assuming all tasks are equally runnable.
3238 */
3239 if (scale_load_down(gcfs_rq->load.weight)) {
3240 load_sum = div_s64(gcfs_rq->avg.load_sum,
3241 scale_load_down(gcfs_rq->load.weight));
3242 }
3243
3244 /* But make sure to not inflate se's runnable */
3245 runnable_sum = min(se->avg.load_sum, load_sum);
3246 }
3247
3248 /*
3249 * runnable_sum can't be lower than running_sum
97fb7a0a 3250 * As running sum is scale with CPU capacity wehreas the runnable sum
a4c3c049
VG
3251 * is not we rescale running_sum 1st
3252 */
3253 running_sum = se->avg.util_sum /
3254 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3255 runnable_sum = max(runnable_sum, running_sum);
3256
0e2d2aaa
PZ
3257 load_sum = (s64)se_weight(se) * runnable_sum;
3258 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3259
a4c3c049
VG
3260 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3261 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3262
a4c3c049
VG
3263 se->avg.load_sum = runnable_sum;
3264 se->avg.load_avg = load_avg;
3265 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3266 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3267
1ea6c46a
PZ
3268 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3269 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3270 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3271 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3272
a4c3c049
VG
3273 se->avg.runnable_load_sum = runnable_sum;
3274 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3275
09a43ace 3276 if (se->on_rq) {
a4c3c049
VG
3277 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3278 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3279 }
3280}
3281
0e2d2aaa 3282static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3283{
0e2d2aaa
PZ
3284 cfs_rq->propagate = 1;
3285 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3286}
3287
3288/* Update task and its cfs_rq load average */
3289static inline int propagate_entity_load_avg(struct sched_entity *se)
3290{
0e2d2aaa 3291 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3292
3293 if (entity_is_task(se))
3294 return 0;
3295
0e2d2aaa
PZ
3296 gcfs_rq = group_cfs_rq(se);
3297 if (!gcfs_rq->propagate)
09a43ace
VG
3298 return 0;
3299
0e2d2aaa
PZ
3300 gcfs_rq->propagate = 0;
3301
09a43ace
VG
3302 cfs_rq = cfs_rq_of(se);
3303
0e2d2aaa 3304 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3305
0e2d2aaa
PZ
3306 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3307 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3308
3309 return 1;
3310}
3311
bc427898
VG
3312/*
3313 * Check if we need to update the load and the utilization of a blocked
3314 * group_entity:
3315 */
3316static inline bool skip_blocked_update(struct sched_entity *se)
3317{
3318 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3319
3320 /*
3321 * If sched_entity still have not zero load or utilization, we have to
3322 * decay it:
3323 */
3324 if (se->avg.load_avg || se->avg.util_avg)
3325 return false;
3326
3327 /*
3328 * If there is a pending propagation, we have to update the load and
3329 * the utilization of the sched_entity:
3330 */
0e2d2aaa 3331 if (gcfs_rq->propagate)
bc427898
VG
3332 return false;
3333
3334 /*
3335 * Otherwise, the load and the utilization of the sched_entity is
3336 * already zero and there is no pending propagation, so it will be a
3337 * waste of time to try to decay it:
3338 */
3339 return true;
3340}
3341
6e83125c 3342#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3343
9d89c257 3344static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3345
3346static inline int propagate_entity_load_avg(struct sched_entity *se)
3347{
3348 return 0;
3349}
3350
0e2d2aaa 3351static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3352
6e83125c 3353#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3354
3d30544f
PZ
3355/**
3356 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3357 * @now: current time, as per cfs_rq_clock_task()
3358 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3359 *
3360 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3361 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3362 * post_init_entity_util_avg().
3363 *
3364 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3365 *
7c3edd2c
PZ
3366 * Returns true if the load decayed or we removed load.
3367 *
3368 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3369 * call update_tg_load_avg() when this function returns true.
3d30544f 3370 */
a2c6c91f 3371static inline int
3a123bbb 3372update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3373{
0e2d2aaa 3374 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3375 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3376 int decayed = 0;
2dac754e 3377
2a2f5d4e
PZ
3378 if (cfs_rq->removed.nr) {
3379 unsigned long r;
9a2dd585 3380 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3381
3382 raw_spin_lock(&cfs_rq->removed.lock);
3383 swap(cfs_rq->removed.util_avg, removed_util);
3384 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3385 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3386 cfs_rq->removed.nr = 0;
3387 raw_spin_unlock(&cfs_rq->removed.lock);
3388
2a2f5d4e 3389 r = removed_load;
89741892 3390 sub_positive(&sa->load_avg, r);
9a2dd585 3391 sub_positive(&sa->load_sum, r * divider);
2dac754e 3392
2a2f5d4e 3393 r = removed_util;
89741892 3394 sub_positive(&sa->util_avg, r);
9a2dd585 3395 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3396
0e2d2aaa 3397 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3398
3399 decayed = 1;
9d89c257 3400 }
36ee28e4 3401
2a2f5d4e 3402 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3403
9d89c257
YD
3404#ifndef CONFIG_64BIT
3405 smp_wmb();
3406 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3407#endif
36ee28e4 3408
2a2f5d4e 3409 if (decayed)
ea14b57e 3410 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3411
2a2f5d4e 3412 return decayed;
21e96f88
SM
3413}
3414
3d30544f
PZ
3415/**
3416 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3417 * @cfs_rq: cfs_rq to attach to
3418 * @se: sched_entity to attach
882a78a9 3419 * @flags: migration hints
3d30544f
PZ
3420 *
3421 * Must call update_cfs_rq_load_avg() before this, since we rely on
3422 * cfs_rq->avg.last_update_time being current.
3423 */
ea14b57e 3424static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3425{
f207934f
PZ
3426 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3427
3428 /*
3429 * When we attach the @se to the @cfs_rq, we must align the decay
3430 * window because without that, really weird and wonderful things can
3431 * happen.
3432 *
3433 * XXX illustrate
3434 */
a05e8c51 3435 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3436 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3437
3438 /*
3439 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3440 * period_contrib. This isn't strictly correct, but since we're
3441 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3442 * _sum a little.
3443 */
3444 se->avg.util_sum = se->avg.util_avg * divider;
3445
3446 se->avg.load_sum = divider;
3447 if (se_weight(se)) {
3448 se->avg.load_sum =
3449 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3450 }
3451
3452 se->avg.runnable_load_sum = se->avg.load_sum;
3453
8d5b9025 3454 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3455 cfs_rq->avg.util_avg += se->avg.util_avg;
3456 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3457
3458 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3459
ea14b57e 3460 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3461}
3462
3d30544f
PZ
3463/**
3464 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3465 * @cfs_rq: cfs_rq to detach from
3466 * @se: sched_entity to detach
3467 *
3468 * Must call update_cfs_rq_load_avg() before this, since we rely on
3469 * cfs_rq->avg.last_update_time being current.
3470 */
a05e8c51
BP
3471static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3472{
8d5b9025 3473 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3474 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3475 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3476
3477 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3478
ea14b57e 3479 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3480}
3481
b382a531
PZ
3482/*
3483 * Optional action to be done while updating the load average
3484 */
3485#define UPDATE_TG 0x1
3486#define SKIP_AGE_LOAD 0x2
3487#define DO_ATTACH 0x4
3488
3489/* Update task and its cfs_rq load average */
3490static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3491{
3492 u64 now = cfs_rq_clock_task(cfs_rq);
3493 struct rq *rq = rq_of(cfs_rq);
3494 int cpu = cpu_of(rq);
3495 int decayed;
3496
3497 /*
3498 * Track task load average for carrying it to new CPU after migrated, and
3499 * track group sched_entity load average for task_h_load calc in migration
3500 */
3501 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3502 __update_load_avg_se(now, cpu, cfs_rq, se);
3503
3504 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3505 decayed |= propagate_entity_load_avg(se);
3506
3507 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3508
ea14b57e
PZ
3509 /*
3510 * DO_ATTACH means we're here from enqueue_entity().
3511 * !last_update_time means we've passed through
3512 * migrate_task_rq_fair() indicating we migrated.
3513 *
3514 * IOW we're enqueueing a task on a new CPU.
3515 */
3516 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3517 update_tg_load_avg(cfs_rq, 0);
3518
3519 } else if (decayed && (flags & UPDATE_TG))
3520 update_tg_load_avg(cfs_rq, 0);
3521}
3522
9d89c257 3523#ifndef CONFIG_64BIT
0905f04e
YD
3524static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3525{
9d89c257 3526 u64 last_update_time_copy;
0905f04e 3527 u64 last_update_time;
9ee474f5 3528
9d89c257
YD
3529 do {
3530 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3531 smp_rmb();
3532 last_update_time = cfs_rq->avg.last_update_time;
3533 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3534
3535 return last_update_time;
3536}
9d89c257 3537#else
0905f04e
YD
3538static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3539{
3540 return cfs_rq->avg.last_update_time;
3541}
9d89c257
YD
3542#endif
3543
104cb16d
MR
3544/*
3545 * Synchronize entity load avg of dequeued entity without locking
3546 * the previous rq.
3547 */
3548void sync_entity_load_avg(struct sched_entity *se)
3549{
3550 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3551 u64 last_update_time;
3552
3553 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3554 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3555}
3556
0905f04e
YD
3557/*
3558 * Task first catches up with cfs_rq, and then subtract
3559 * itself from the cfs_rq (task must be off the queue now).
3560 */
3561void remove_entity_load_avg(struct sched_entity *se)
3562{
3563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3564 unsigned long flags;
0905f04e
YD
3565
3566 /*
7dc603c9
PZ
3567 * tasks cannot exit without having gone through wake_up_new_task() ->
3568 * post_init_entity_util_avg() which will have added things to the
3569 * cfs_rq, so we can remove unconditionally.
3570 *
3571 * Similarly for groups, they will have passed through
3572 * post_init_entity_util_avg() before unregister_sched_fair_group()
3573 * calls this.
0905f04e 3574 */
0905f04e 3575
104cb16d 3576 sync_entity_load_avg(se);
2a2f5d4e
PZ
3577
3578 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3579 ++cfs_rq->removed.nr;
3580 cfs_rq->removed.util_avg += se->avg.util_avg;
3581 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3582 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3583 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3584}
642dbc39 3585
7ea241af
YD
3586static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3587{
1ea6c46a 3588 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3589}
3590
3591static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3592{
3593 return cfs_rq->avg.load_avg;
3594}
3595
46f69fa3 3596static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3597
7f65ea42
PB
3598static inline unsigned long task_util(struct task_struct *p)
3599{
3600 return READ_ONCE(p->se.avg.util_avg);
3601}
3602
3603static inline unsigned long _task_util_est(struct task_struct *p)
3604{
3605 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3606
3607 return max(ue.ewma, ue.enqueued);
3608}
3609
3610static inline unsigned long task_util_est(struct task_struct *p)
3611{
3612 return max(task_util(p), _task_util_est(p));
3613}
3614
3615static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3616 struct task_struct *p)
3617{
3618 unsigned int enqueued;
3619
3620 if (!sched_feat(UTIL_EST))
3621 return;
3622
3623 /* Update root cfs_rq's estimated utilization */
3624 enqueued = cfs_rq->avg.util_est.enqueued;
d519329f 3625 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3626 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3627}
3628
3629/*
3630 * Check if a (signed) value is within a specified (unsigned) margin,
3631 * based on the observation that:
3632 *
3633 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3634 *
3635 * NOTE: this only works when value + maring < INT_MAX.
3636 */
3637static inline bool within_margin(int value, int margin)
3638{
3639 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3640}
3641
3642static void
3643util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3644{
3645 long last_ewma_diff;
3646 struct util_est ue;
3647
3648 if (!sched_feat(UTIL_EST))
3649 return;
3650
3482d98b
VG
3651 /* Update root cfs_rq's estimated utilization */
3652 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3653 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3654 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
7f65ea42
PB
3655 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3656
3657 /*
3658 * Skip update of task's estimated utilization when the task has not
3659 * yet completed an activation, e.g. being migrated.
3660 */
3661 if (!task_sleep)
3662 return;
3663
d519329f
PB
3664 /*
3665 * If the PELT values haven't changed since enqueue time,
3666 * skip the util_est update.
3667 */
3668 ue = p->se.avg.util_est;
3669 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3670 return;
3671
7f65ea42
PB
3672 /*
3673 * Skip update of task's estimated utilization when its EWMA is
3674 * already ~1% close to its last activation value.
3675 */
d519329f 3676 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3677 last_ewma_diff = ue.enqueued - ue.ewma;
3678 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3679 return;
3680
3681 /*
3682 * Update Task's estimated utilization
3683 *
3684 * When *p completes an activation we can consolidate another sample
3685 * of the task size. This is done by storing the current PELT value
3686 * as ue.enqueued and by using this value to update the Exponential
3687 * Weighted Moving Average (EWMA):
3688 *
3689 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3690 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3691 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3692 * = w * ( last_ewma_diff ) + ewma(t-1)
3693 * = w * (last_ewma_diff + ewma(t-1) / w)
3694 *
3695 * Where 'w' is the weight of new samples, which is configured to be
3696 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3697 */
3698 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3699 ue.ewma += last_ewma_diff;
3700 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3701 WRITE_ONCE(p->se.avg.util_est, ue);
3702}
3703
3b1baa64
MR
3704static inline int task_fits_capacity(struct task_struct *p, long capacity)
3705{
3706 return capacity * 1024 > task_util_est(p) * capacity_margin;
3707}
3708
3709static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3710{
3711 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3712 return;
3713
3714 if (!p) {
3715 rq->misfit_task_load = 0;
3716 return;
3717 }
3718
3719 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3720 rq->misfit_task_load = 0;
3721 return;
3722 }
3723
3724 rq->misfit_task_load = task_h_load(p);
3725}
3726
38033c37
PZ
3727#else /* CONFIG_SMP */
3728
d31b1a66
VG
3729#define UPDATE_TG 0x0
3730#define SKIP_AGE_LOAD 0x0
b382a531 3731#define DO_ATTACH 0x0
d31b1a66 3732
88c0616e 3733static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3734{
ea14b57e 3735 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3736}
3737
9d89c257 3738static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3739
a05e8c51 3740static inline void
ea14b57e 3741attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3742static inline void
3743detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3744
46f69fa3 3745static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3746{
3747 return 0;
3748}
3749
7f65ea42
PB
3750static inline void
3751util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3752
3753static inline void
3754util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3755 bool task_sleep) {}
3b1baa64 3756static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3757
38033c37 3758#endif /* CONFIG_SMP */
9d85f21c 3759
ddc97297
PZ
3760static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3761{
3762#ifdef CONFIG_SCHED_DEBUG
3763 s64 d = se->vruntime - cfs_rq->min_vruntime;
3764
3765 if (d < 0)
3766 d = -d;
3767
3768 if (d > 3*sysctl_sched_latency)
ae92882e 3769 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3770#endif
3771}
3772
aeb73b04
PZ
3773static void
3774place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3775{
1af5f730 3776 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3777
2cb8600e
PZ
3778 /*
3779 * The 'current' period is already promised to the current tasks,
3780 * however the extra weight of the new task will slow them down a
3781 * little, place the new task so that it fits in the slot that
3782 * stays open at the end.
3783 */
94dfb5e7 3784 if (initial && sched_feat(START_DEBIT))
f9c0b095 3785 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3786
a2e7a7eb 3787 /* sleeps up to a single latency don't count. */
5ca9880c 3788 if (!initial) {
a2e7a7eb 3789 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3790
a2e7a7eb
MG
3791 /*
3792 * Halve their sleep time's effect, to allow
3793 * for a gentler effect of sleepers:
3794 */
3795 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3796 thresh >>= 1;
51e0304c 3797
a2e7a7eb 3798 vruntime -= thresh;
aeb73b04
PZ
3799 }
3800
b5d9d734 3801 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3802 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3803}
3804
d3d9dc33
PT
3805static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3806
cb251765
MG
3807static inline void check_schedstat_required(void)
3808{
3809#ifdef CONFIG_SCHEDSTATS
3810 if (schedstat_enabled())
3811 return;
3812
3813 /* Force schedstat enabled if a dependent tracepoint is active */
3814 if (trace_sched_stat_wait_enabled() ||
3815 trace_sched_stat_sleep_enabled() ||
3816 trace_sched_stat_iowait_enabled() ||
3817 trace_sched_stat_blocked_enabled() ||
3818 trace_sched_stat_runtime_enabled()) {
eda8dca5 3819 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3820 "stat_blocked and stat_runtime require the "
f67abed5 3821 "kernel parameter schedstats=enable or "
cb251765
MG
3822 "kernel.sched_schedstats=1\n");
3823 }
3824#endif
3825}
3826
b5179ac7
PZ
3827
3828/*
3829 * MIGRATION
3830 *
3831 * dequeue
3832 * update_curr()
3833 * update_min_vruntime()
3834 * vruntime -= min_vruntime
3835 *
3836 * enqueue
3837 * update_curr()
3838 * update_min_vruntime()
3839 * vruntime += min_vruntime
3840 *
3841 * this way the vruntime transition between RQs is done when both
3842 * min_vruntime are up-to-date.
3843 *
3844 * WAKEUP (remote)
3845 *
59efa0ba 3846 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3847 * vruntime -= min_vruntime
3848 *
3849 * enqueue
3850 * update_curr()
3851 * update_min_vruntime()
3852 * vruntime += min_vruntime
3853 *
3854 * this way we don't have the most up-to-date min_vruntime on the originating
3855 * CPU and an up-to-date min_vruntime on the destination CPU.
3856 */
3857
bf0f6f24 3858static void
88ec22d3 3859enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3860{
2f950354
PZ
3861 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3862 bool curr = cfs_rq->curr == se;
3863
88ec22d3 3864 /*
2f950354
PZ
3865 * If we're the current task, we must renormalise before calling
3866 * update_curr().
88ec22d3 3867 */
2f950354 3868 if (renorm && curr)
88ec22d3
PZ
3869 se->vruntime += cfs_rq->min_vruntime;
3870
2f950354
PZ
3871 update_curr(cfs_rq);
3872
bf0f6f24 3873 /*
2f950354
PZ
3874 * Otherwise, renormalise after, such that we're placed at the current
3875 * moment in time, instead of some random moment in the past. Being
3876 * placed in the past could significantly boost this task to the
3877 * fairness detriment of existing tasks.
bf0f6f24 3878 */
2f950354
PZ
3879 if (renorm && !curr)
3880 se->vruntime += cfs_rq->min_vruntime;
3881
89ee048f
VG
3882 /*
3883 * When enqueuing a sched_entity, we must:
3884 * - Update loads to have both entity and cfs_rq synced with now.
3885 * - Add its load to cfs_rq->runnable_avg
3886 * - For group_entity, update its weight to reflect the new share of
3887 * its group cfs_rq
3888 * - Add its new weight to cfs_rq->load.weight
3889 */
b382a531 3890 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3891 update_cfs_group(se);
b5b3e35f 3892 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3893 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3894
1a3d027c 3895 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3896 place_entity(cfs_rq, se, 0);
bf0f6f24 3897
cb251765 3898 check_schedstat_required();
4fa8d299
JP
3899 update_stats_enqueue(cfs_rq, se, flags);
3900 check_spread(cfs_rq, se);
2f950354 3901 if (!curr)
83b699ed 3902 __enqueue_entity(cfs_rq, se);
2069dd75 3903 se->on_rq = 1;
3d4b47b4 3904
d3d9dc33 3905 if (cfs_rq->nr_running == 1) {
3d4b47b4 3906 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3907 check_enqueue_throttle(cfs_rq);
3908 }
bf0f6f24
IM
3909}
3910
2c13c919 3911static void __clear_buddies_last(struct sched_entity *se)
2002c695 3912{
2c13c919
RR
3913 for_each_sched_entity(se) {
3914 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3915 if (cfs_rq->last != se)
2c13c919 3916 break;
f1044799
PZ
3917
3918 cfs_rq->last = NULL;
2c13c919
RR
3919 }
3920}
2002c695 3921
2c13c919
RR
3922static void __clear_buddies_next(struct sched_entity *se)
3923{
3924 for_each_sched_entity(se) {
3925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3926 if (cfs_rq->next != se)
2c13c919 3927 break;
f1044799
PZ
3928
3929 cfs_rq->next = NULL;
2c13c919 3930 }
2002c695
PZ
3931}
3932
ac53db59
RR
3933static void __clear_buddies_skip(struct sched_entity *se)
3934{
3935 for_each_sched_entity(se) {
3936 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3937 if (cfs_rq->skip != se)
ac53db59 3938 break;
f1044799
PZ
3939
3940 cfs_rq->skip = NULL;
ac53db59
RR
3941 }
3942}
3943
a571bbea
PZ
3944static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3945{
2c13c919
RR
3946 if (cfs_rq->last == se)
3947 __clear_buddies_last(se);
3948
3949 if (cfs_rq->next == se)
3950 __clear_buddies_next(se);
ac53db59
RR
3951
3952 if (cfs_rq->skip == se)
3953 __clear_buddies_skip(se);
a571bbea
PZ
3954}
3955
6c16a6dc 3956static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3957
bf0f6f24 3958static void
371fd7e7 3959dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3960{
a2a2d680
DA
3961 /*
3962 * Update run-time statistics of the 'current'.
3963 */
3964 update_curr(cfs_rq);
89ee048f
VG
3965
3966 /*
3967 * When dequeuing a sched_entity, we must:
3968 * - Update loads to have both entity and cfs_rq synced with now.
3969 * - Substract its load from the cfs_rq->runnable_avg.
3970 * - Substract its previous weight from cfs_rq->load.weight.
3971 * - For group entity, update its weight to reflect the new share
3972 * of its group cfs_rq.
3973 */
88c0616e 3974 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3975 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3976
4fa8d299 3977 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3978
2002c695 3979 clear_buddies(cfs_rq, se);
4793241b 3980
83b699ed 3981 if (se != cfs_rq->curr)
30cfdcfc 3982 __dequeue_entity(cfs_rq, se);
17bc14b7 3983 se->on_rq = 0;
30cfdcfc 3984 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3985
3986 /*
b60205c7
PZ
3987 * Normalize after update_curr(); which will also have moved
3988 * min_vruntime if @se is the one holding it back. But before doing
3989 * update_min_vruntime() again, which will discount @se's position and
3990 * can move min_vruntime forward still more.
88ec22d3 3991 */
371fd7e7 3992 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3993 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3994
d8b4986d
PT
3995 /* return excess runtime on last dequeue */
3996 return_cfs_rq_runtime(cfs_rq);
3997
1ea6c46a 3998 update_cfs_group(se);
b60205c7
PZ
3999
4000 /*
4001 * Now advance min_vruntime if @se was the entity holding it back,
4002 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4003 * put back on, and if we advance min_vruntime, we'll be placed back
4004 * further than we started -- ie. we'll be penalized.
4005 */
9845c49c 4006 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4007 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4008}
4009
4010/*
4011 * Preempt the current task with a newly woken task if needed:
4012 */
7c92e54f 4013static void
2e09bf55 4014check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4015{
11697830 4016 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4017 struct sched_entity *se;
4018 s64 delta;
11697830 4019
6d0f0ebd 4020 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4021 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4022 if (delta_exec > ideal_runtime) {
8875125e 4023 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4024 /*
4025 * The current task ran long enough, ensure it doesn't get
4026 * re-elected due to buddy favours.
4027 */
4028 clear_buddies(cfs_rq, curr);
f685ceac
MG
4029 return;
4030 }
4031
4032 /*
4033 * Ensure that a task that missed wakeup preemption by a
4034 * narrow margin doesn't have to wait for a full slice.
4035 * This also mitigates buddy induced latencies under load.
4036 */
f685ceac
MG
4037 if (delta_exec < sysctl_sched_min_granularity)
4038 return;
4039
f4cfb33e
WX
4040 se = __pick_first_entity(cfs_rq);
4041 delta = curr->vruntime - se->vruntime;
f685ceac 4042
f4cfb33e
WX
4043 if (delta < 0)
4044 return;
d7d82944 4045
f4cfb33e 4046 if (delta > ideal_runtime)
8875125e 4047 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4048}
4049
83b699ed 4050static void
8494f412 4051set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4052{
83b699ed
SV
4053 /* 'current' is not kept within the tree. */
4054 if (se->on_rq) {
4055 /*
4056 * Any task has to be enqueued before it get to execute on
4057 * a CPU. So account for the time it spent waiting on the
4058 * runqueue.
4059 */
4fa8d299 4060 update_stats_wait_end(cfs_rq, se);
83b699ed 4061 __dequeue_entity(cfs_rq, se);
88c0616e 4062 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4063 }
4064
79303e9e 4065 update_stats_curr_start(cfs_rq, se);
429d43bc 4066 cfs_rq->curr = se;
4fa8d299 4067
eba1ed4b
IM
4068 /*
4069 * Track our maximum slice length, if the CPU's load is at
4070 * least twice that of our own weight (i.e. dont track it
4071 * when there are only lesser-weight tasks around):
4072 */
cb251765 4073 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4074 schedstat_set(se->statistics.slice_max,
4075 max((u64)schedstat_val(se->statistics.slice_max),
4076 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4077 }
4fa8d299 4078
4a55b450 4079 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4080}
4081
3f3a4904
PZ
4082static int
4083wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4084
ac53db59
RR
4085/*
4086 * Pick the next process, keeping these things in mind, in this order:
4087 * 1) keep things fair between processes/task groups
4088 * 2) pick the "next" process, since someone really wants that to run
4089 * 3) pick the "last" process, for cache locality
4090 * 4) do not run the "skip" process, if something else is available
4091 */
678d5718
PZ
4092static struct sched_entity *
4093pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4094{
678d5718
PZ
4095 struct sched_entity *left = __pick_first_entity(cfs_rq);
4096 struct sched_entity *se;
4097
4098 /*
4099 * If curr is set we have to see if its left of the leftmost entity
4100 * still in the tree, provided there was anything in the tree at all.
4101 */
4102 if (!left || (curr && entity_before(curr, left)))
4103 left = curr;
4104
4105 se = left; /* ideally we run the leftmost entity */
f4b6755f 4106
ac53db59
RR
4107 /*
4108 * Avoid running the skip buddy, if running something else can
4109 * be done without getting too unfair.
4110 */
4111 if (cfs_rq->skip == se) {
678d5718
PZ
4112 struct sched_entity *second;
4113
4114 if (se == curr) {
4115 second = __pick_first_entity(cfs_rq);
4116 } else {
4117 second = __pick_next_entity(se);
4118 if (!second || (curr && entity_before(curr, second)))
4119 second = curr;
4120 }
4121
ac53db59
RR
4122 if (second && wakeup_preempt_entity(second, left) < 1)
4123 se = second;
4124 }
aa2ac252 4125
f685ceac
MG
4126 /*
4127 * Prefer last buddy, try to return the CPU to a preempted task.
4128 */
4129 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4130 se = cfs_rq->last;
4131
ac53db59
RR
4132 /*
4133 * Someone really wants this to run. If it's not unfair, run it.
4134 */
4135 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4136 se = cfs_rq->next;
4137
f685ceac 4138 clear_buddies(cfs_rq, se);
4793241b
PZ
4139
4140 return se;
aa2ac252
PZ
4141}
4142
678d5718 4143static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4144
ab6cde26 4145static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4146{
4147 /*
4148 * If still on the runqueue then deactivate_task()
4149 * was not called and update_curr() has to be done:
4150 */
4151 if (prev->on_rq)
b7cc0896 4152 update_curr(cfs_rq);
bf0f6f24 4153
d3d9dc33
PT
4154 /* throttle cfs_rqs exceeding runtime */
4155 check_cfs_rq_runtime(cfs_rq);
4156
4fa8d299 4157 check_spread(cfs_rq, prev);
cb251765 4158
30cfdcfc 4159 if (prev->on_rq) {
4fa8d299 4160 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4161 /* Put 'current' back into the tree. */
4162 __enqueue_entity(cfs_rq, prev);
9d85f21c 4163 /* in !on_rq case, update occurred at dequeue */
88c0616e 4164 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4165 }
429d43bc 4166 cfs_rq->curr = NULL;
bf0f6f24
IM
4167}
4168
8f4d37ec
PZ
4169static void
4170entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4171{
bf0f6f24 4172 /*
30cfdcfc 4173 * Update run-time statistics of the 'current'.
bf0f6f24 4174 */
30cfdcfc 4175 update_curr(cfs_rq);
bf0f6f24 4176
9d85f21c
PT
4177 /*
4178 * Ensure that runnable average is periodically updated.
4179 */
88c0616e 4180 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4181 update_cfs_group(curr);
9d85f21c 4182
8f4d37ec
PZ
4183#ifdef CONFIG_SCHED_HRTICK
4184 /*
4185 * queued ticks are scheduled to match the slice, so don't bother
4186 * validating it and just reschedule.
4187 */
983ed7a6 4188 if (queued) {
8875125e 4189 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4190 return;
4191 }
8f4d37ec
PZ
4192 /*
4193 * don't let the period tick interfere with the hrtick preemption
4194 */
4195 if (!sched_feat(DOUBLE_TICK) &&
4196 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4197 return;
4198#endif
4199
2c2efaed 4200 if (cfs_rq->nr_running > 1)
2e09bf55 4201 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4202}
4203
ab84d31e
PT
4204
4205/**************************************************
4206 * CFS bandwidth control machinery
4207 */
4208
4209#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4210
4211#ifdef HAVE_JUMP_LABEL
c5905afb 4212static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4213
4214static inline bool cfs_bandwidth_used(void)
4215{
c5905afb 4216 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4217}
4218
1ee14e6c 4219void cfs_bandwidth_usage_inc(void)
029632fb 4220{
ce48c146 4221 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4222}
4223
4224void cfs_bandwidth_usage_dec(void)
4225{
ce48c146 4226 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb
PZ
4227}
4228#else /* HAVE_JUMP_LABEL */
4229static bool cfs_bandwidth_used(void)
4230{
4231 return true;
4232}
4233
1ee14e6c
BS
4234void cfs_bandwidth_usage_inc(void) {}
4235void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4236#endif /* HAVE_JUMP_LABEL */
4237
ab84d31e
PT
4238/*
4239 * default period for cfs group bandwidth.
4240 * default: 0.1s, units: nanoseconds
4241 */
4242static inline u64 default_cfs_period(void)
4243{
4244 return 100000000ULL;
4245}
ec12cb7f
PT
4246
4247static inline u64 sched_cfs_bandwidth_slice(void)
4248{
4249 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4250}
4251
a9cf55b2
PT
4252/*
4253 * Replenish runtime according to assigned quota and update expiration time.
4254 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4255 * additional synchronization around rq->lock.
4256 *
4257 * requires cfs_b->lock
4258 */
029632fb 4259void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4260{
4261 u64 now;
4262
4263 if (cfs_b->quota == RUNTIME_INF)
4264 return;
4265
4266 now = sched_clock_cpu(smp_processor_id());
4267 cfs_b->runtime = cfs_b->quota;
4268 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4269 cfs_b->expires_seq++;
a9cf55b2
PT
4270}
4271
029632fb
PZ
4272static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4273{
4274 return &tg->cfs_bandwidth;
4275}
4276
f1b17280
PT
4277/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4278static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4279{
4280 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4281 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4282
78becc27 4283 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4284}
4285
85dac906
PT
4286/* returns 0 on failure to allocate runtime */
4287static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4288{
4289 struct task_group *tg = cfs_rq->tg;
4290 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4291 u64 amount = 0, min_amount, expires;
512ac999 4292 int expires_seq;
ec12cb7f
PT
4293
4294 /* note: this is a positive sum as runtime_remaining <= 0 */
4295 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4296
4297 raw_spin_lock(&cfs_b->lock);
4298 if (cfs_b->quota == RUNTIME_INF)
4299 amount = min_amount;
58088ad0 4300 else {
77a4d1a1 4301 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4302
4303 if (cfs_b->runtime > 0) {
4304 amount = min(cfs_b->runtime, min_amount);
4305 cfs_b->runtime -= amount;
4306 cfs_b->idle = 0;
4307 }
ec12cb7f 4308 }
512ac999 4309 expires_seq = cfs_b->expires_seq;
a9cf55b2 4310 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4311 raw_spin_unlock(&cfs_b->lock);
4312
4313 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4314 /*
4315 * we may have advanced our local expiration to account for allowed
4316 * spread between our sched_clock and the one on which runtime was
4317 * issued.
4318 */
512ac999
XP
4319 if (cfs_rq->expires_seq != expires_seq) {
4320 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4321 cfs_rq->runtime_expires = expires;
512ac999 4322 }
85dac906
PT
4323
4324 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4325}
4326
a9cf55b2
PT
4327/*
4328 * Note: This depends on the synchronization provided by sched_clock and the
4329 * fact that rq->clock snapshots this value.
4330 */
4331static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4332{
a9cf55b2 4333 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4334
4335 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4336 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4337 return;
4338
a9cf55b2
PT
4339 if (cfs_rq->runtime_remaining < 0)
4340 return;
4341
4342 /*
4343 * If the local deadline has passed we have to consider the
4344 * possibility that our sched_clock is 'fast' and the global deadline
4345 * has not truly expired.
4346 *
4347 * Fortunately we can check determine whether this the case by checking
512ac999 4348 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4349 */
512ac999 4350 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4351 /* extend local deadline, drift is bounded above by 2 ticks */
4352 cfs_rq->runtime_expires += TICK_NSEC;
4353 } else {
4354 /* global deadline is ahead, expiration has passed */
4355 cfs_rq->runtime_remaining = 0;
4356 }
4357}
4358
9dbdb155 4359static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4360{
4361 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4362 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4363 expire_cfs_rq_runtime(cfs_rq);
4364
4365 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4366 return;
4367
85dac906
PT
4368 /*
4369 * if we're unable to extend our runtime we resched so that the active
4370 * hierarchy can be throttled
4371 */
4372 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4373 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4374}
4375
6c16a6dc 4376static __always_inline
9dbdb155 4377void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4378{
56f570e5 4379 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4380 return;
4381
4382 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4383}
4384
85dac906
PT
4385static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4386{
56f570e5 4387 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4388}
4389
64660c86
PT
4390/* check whether cfs_rq, or any parent, is throttled */
4391static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4392{
56f570e5 4393 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4394}
4395
4396/*
4397 * Ensure that neither of the group entities corresponding to src_cpu or
4398 * dest_cpu are members of a throttled hierarchy when performing group
4399 * load-balance operations.
4400 */
4401static inline int throttled_lb_pair(struct task_group *tg,
4402 int src_cpu, int dest_cpu)
4403{
4404 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4405
4406 src_cfs_rq = tg->cfs_rq[src_cpu];
4407 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4408
4409 return throttled_hierarchy(src_cfs_rq) ||
4410 throttled_hierarchy(dest_cfs_rq);
4411}
4412
64660c86
PT
4413static int tg_unthrottle_up(struct task_group *tg, void *data)
4414{
4415 struct rq *rq = data;
4416 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4417
4418 cfs_rq->throttle_count--;
64660c86 4419 if (!cfs_rq->throttle_count) {
f1b17280 4420 /* adjust cfs_rq_clock_task() */
78becc27 4421 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4422 cfs_rq->throttled_clock_task;
64660c86 4423 }
64660c86
PT
4424
4425 return 0;
4426}
4427
4428static int tg_throttle_down(struct task_group *tg, void *data)
4429{
4430 struct rq *rq = data;
4431 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4432
82958366
PT
4433 /* group is entering throttled state, stop time */
4434 if (!cfs_rq->throttle_count)
78becc27 4435 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4436 cfs_rq->throttle_count++;
4437
4438 return 0;
4439}
4440
d3d9dc33 4441static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4442{
4443 struct rq *rq = rq_of(cfs_rq);
4444 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4445 struct sched_entity *se;
4446 long task_delta, dequeue = 1;
77a4d1a1 4447 bool empty;
85dac906
PT
4448
4449 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4450
f1b17280 4451 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4452 rcu_read_lock();
4453 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4454 rcu_read_unlock();
85dac906
PT
4455
4456 task_delta = cfs_rq->h_nr_running;
4457 for_each_sched_entity(se) {
4458 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4459 /* throttled entity or throttle-on-deactivate */
4460 if (!se->on_rq)
4461 break;
4462
4463 if (dequeue)
4464 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4465 qcfs_rq->h_nr_running -= task_delta;
4466
4467 if (qcfs_rq->load.weight)
4468 dequeue = 0;
4469 }
4470
4471 if (!se)
72465447 4472 sub_nr_running(rq, task_delta);
85dac906
PT
4473
4474 cfs_rq->throttled = 1;
78becc27 4475 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4476 raw_spin_lock(&cfs_b->lock);
d49db342 4477 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4478
c06f04c7
BS
4479 /*
4480 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4481 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4482 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4483 */
baa9be4f
PA
4484 if (cfs_b->distribute_running)
4485 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4486 else
4487 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4488
4489 /*
4490 * If we're the first throttled task, make sure the bandwidth
4491 * timer is running.
4492 */
4493 if (empty)
4494 start_cfs_bandwidth(cfs_b);
4495
85dac906
PT
4496 raw_spin_unlock(&cfs_b->lock);
4497}
4498
029632fb 4499void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4500{
4501 struct rq *rq = rq_of(cfs_rq);
4502 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4503 struct sched_entity *se;
4504 int enqueue = 1;
4505 long task_delta;
4506
22b958d8 4507 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4508
4509 cfs_rq->throttled = 0;
1a55af2e
FW
4510
4511 update_rq_clock(rq);
4512
671fd9da 4513 raw_spin_lock(&cfs_b->lock);
78becc27 4514 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4515 list_del_rcu(&cfs_rq->throttled_list);
4516 raw_spin_unlock(&cfs_b->lock);
4517
64660c86
PT
4518 /* update hierarchical throttle state */
4519 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4520
671fd9da
PT
4521 if (!cfs_rq->load.weight)
4522 return;
4523
4524 task_delta = cfs_rq->h_nr_running;
4525 for_each_sched_entity(se) {
4526 if (se->on_rq)
4527 enqueue = 0;
4528
4529 cfs_rq = cfs_rq_of(se);
4530 if (enqueue)
4531 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4532 cfs_rq->h_nr_running += task_delta;
4533
4534 if (cfs_rq_throttled(cfs_rq))
4535 break;
4536 }
4537
4538 if (!se)
72465447 4539 add_nr_running(rq, task_delta);
671fd9da 4540
97fb7a0a 4541 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4542 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4543 resched_curr(rq);
671fd9da
PT
4544}
4545
4546static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4547 u64 remaining, u64 expires)
4548{
4549 struct cfs_rq *cfs_rq;
c06f04c7
BS
4550 u64 runtime;
4551 u64 starting_runtime = remaining;
671fd9da
PT
4552
4553 rcu_read_lock();
4554 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4555 throttled_list) {
4556 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4557 struct rq_flags rf;
671fd9da 4558
8a8c69c3 4559 rq_lock(rq, &rf);
671fd9da
PT
4560 if (!cfs_rq_throttled(cfs_rq))
4561 goto next;
4562
4563 runtime = -cfs_rq->runtime_remaining + 1;
4564 if (runtime > remaining)
4565 runtime = remaining;
4566 remaining -= runtime;
4567
4568 cfs_rq->runtime_remaining += runtime;
4569 cfs_rq->runtime_expires = expires;
4570
4571 /* we check whether we're throttled above */
4572 if (cfs_rq->runtime_remaining > 0)
4573 unthrottle_cfs_rq(cfs_rq);
4574
4575next:
8a8c69c3 4576 rq_unlock(rq, &rf);
671fd9da
PT
4577
4578 if (!remaining)
4579 break;
4580 }
4581 rcu_read_unlock();
4582
c06f04c7 4583 return starting_runtime - remaining;
671fd9da
PT
4584}
4585
58088ad0
PT
4586/*
4587 * Responsible for refilling a task_group's bandwidth and unthrottling its
4588 * cfs_rqs as appropriate. If there has been no activity within the last
4589 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4590 * used to track this state.
4591 */
4592static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4593{
671fd9da 4594 u64 runtime, runtime_expires;
51f2176d 4595 int throttled;
58088ad0 4596
58088ad0
PT
4597 /* no need to continue the timer with no bandwidth constraint */
4598 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4599 goto out_deactivate;
58088ad0 4600
671fd9da 4601 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4602 cfs_b->nr_periods += overrun;
671fd9da 4603
51f2176d
BS
4604 /*
4605 * idle depends on !throttled (for the case of a large deficit), and if
4606 * we're going inactive then everything else can be deferred
4607 */
4608 if (cfs_b->idle && !throttled)
4609 goto out_deactivate;
a9cf55b2
PT
4610
4611 __refill_cfs_bandwidth_runtime(cfs_b);
4612
671fd9da
PT
4613 if (!throttled) {
4614 /* mark as potentially idle for the upcoming period */
4615 cfs_b->idle = 1;
51f2176d 4616 return 0;
671fd9da
PT
4617 }
4618
e8da1b18
NR
4619 /* account preceding periods in which throttling occurred */
4620 cfs_b->nr_throttled += overrun;
4621
671fd9da 4622 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4623
4624 /*
c06f04c7
BS
4625 * This check is repeated as we are holding onto the new bandwidth while
4626 * we unthrottle. This can potentially race with an unthrottled group
4627 * trying to acquire new bandwidth from the global pool. This can result
4628 * in us over-using our runtime if it is all used during this loop, but
4629 * only by limited amounts in that extreme case.
671fd9da 4630 */
baa9be4f 4631 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4632 runtime = cfs_b->runtime;
baa9be4f 4633 cfs_b->distribute_running = 1;
671fd9da
PT
4634 raw_spin_unlock(&cfs_b->lock);
4635 /* we can't nest cfs_b->lock while distributing bandwidth */
4636 runtime = distribute_cfs_runtime(cfs_b, runtime,
4637 runtime_expires);
4638 raw_spin_lock(&cfs_b->lock);
4639
baa9be4f 4640 cfs_b->distribute_running = 0;
671fd9da 4641 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4642
4643 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4644 }
58088ad0 4645
671fd9da
PT
4646 /*
4647 * While we are ensured activity in the period following an
4648 * unthrottle, this also covers the case in which the new bandwidth is
4649 * insufficient to cover the existing bandwidth deficit. (Forcing the
4650 * timer to remain active while there are any throttled entities.)
4651 */
4652 cfs_b->idle = 0;
58088ad0 4653
51f2176d
BS
4654 return 0;
4655
4656out_deactivate:
51f2176d 4657 return 1;
58088ad0 4658}
d3d9dc33 4659
d8b4986d
PT
4660/* a cfs_rq won't donate quota below this amount */
4661static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4662/* minimum remaining period time to redistribute slack quota */
4663static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4664/* how long we wait to gather additional slack before distributing */
4665static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4666
db06e78c
BS
4667/*
4668 * Are we near the end of the current quota period?
4669 *
4670 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4671 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4672 * migrate_hrtimers, base is never cleared, so we are fine.
4673 */
d8b4986d
PT
4674static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4675{
4676 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4677 u64 remaining;
4678
4679 /* if the call-back is running a quota refresh is already occurring */
4680 if (hrtimer_callback_running(refresh_timer))
4681 return 1;
4682
4683 /* is a quota refresh about to occur? */
4684 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4685 if (remaining < min_expire)
4686 return 1;
4687
4688 return 0;
4689}
4690
4691static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4692{
4693 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4694
4695 /* if there's a quota refresh soon don't bother with slack */
4696 if (runtime_refresh_within(cfs_b, min_left))
4697 return;
4698
4cfafd30
PZ
4699 hrtimer_start(&cfs_b->slack_timer,
4700 ns_to_ktime(cfs_bandwidth_slack_period),
4701 HRTIMER_MODE_REL);
d8b4986d
PT
4702}
4703
4704/* we know any runtime found here is valid as update_curr() precedes return */
4705static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4706{
4707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4708 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4709
4710 if (slack_runtime <= 0)
4711 return;
4712
4713 raw_spin_lock(&cfs_b->lock);
4714 if (cfs_b->quota != RUNTIME_INF &&
4715 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4716 cfs_b->runtime += slack_runtime;
4717
4718 /* we are under rq->lock, defer unthrottling using a timer */
4719 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4720 !list_empty(&cfs_b->throttled_cfs_rq))
4721 start_cfs_slack_bandwidth(cfs_b);
4722 }
4723 raw_spin_unlock(&cfs_b->lock);
4724
4725 /* even if it's not valid for return we don't want to try again */
4726 cfs_rq->runtime_remaining -= slack_runtime;
4727}
4728
4729static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4730{
56f570e5
PT
4731 if (!cfs_bandwidth_used())
4732 return;
4733
fccfdc6f 4734 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4735 return;
4736
4737 __return_cfs_rq_runtime(cfs_rq);
4738}
4739
4740/*
4741 * This is done with a timer (instead of inline with bandwidth return) since
4742 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4743 */
4744static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4745{
4746 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4747 u64 expires;
4748
4749 /* confirm we're still not at a refresh boundary */
db06e78c 4750 raw_spin_lock(&cfs_b->lock);
baa9be4f
PA
4751 if (cfs_b->distribute_running) {
4752 raw_spin_unlock(&cfs_b->lock);
4753 return;
4754 }
4755
db06e78c
BS
4756 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4757 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4758 return;
db06e78c 4759 }
d8b4986d 4760
c06f04c7 4761 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4762 runtime = cfs_b->runtime;
c06f04c7 4763
d8b4986d 4764 expires = cfs_b->runtime_expires;
baa9be4f
PA
4765 if (runtime)
4766 cfs_b->distribute_running = 1;
4767
d8b4986d
PT
4768 raw_spin_unlock(&cfs_b->lock);
4769
4770 if (!runtime)
4771 return;
4772
4773 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4774
4775 raw_spin_lock(&cfs_b->lock);
4776 if (expires == cfs_b->runtime_expires)
c06f04c7 4777 cfs_b->runtime -= min(runtime, cfs_b->runtime);
baa9be4f 4778 cfs_b->distribute_running = 0;
d8b4986d
PT
4779 raw_spin_unlock(&cfs_b->lock);
4780}
4781
d3d9dc33
PT
4782/*
4783 * When a group wakes up we want to make sure that its quota is not already
4784 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4785 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4786 */
4787static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4788{
56f570e5
PT
4789 if (!cfs_bandwidth_used())
4790 return;
4791
d3d9dc33
PT
4792 /* an active group must be handled by the update_curr()->put() path */
4793 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4794 return;
4795
4796 /* ensure the group is not already throttled */
4797 if (cfs_rq_throttled(cfs_rq))
4798 return;
4799
4800 /* update runtime allocation */
4801 account_cfs_rq_runtime(cfs_rq, 0);
4802 if (cfs_rq->runtime_remaining <= 0)
4803 throttle_cfs_rq(cfs_rq);
4804}
4805
55e16d30
PZ
4806static void sync_throttle(struct task_group *tg, int cpu)
4807{
4808 struct cfs_rq *pcfs_rq, *cfs_rq;
4809
4810 if (!cfs_bandwidth_used())
4811 return;
4812
4813 if (!tg->parent)
4814 return;
4815
4816 cfs_rq = tg->cfs_rq[cpu];
4817 pcfs_rq = tg->parent->cfs_rq[cpu];
4818
4819 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4820 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4821}
4822
d3d9dc33 4823/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4824static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4825{
56f570e5 4826 if (!cfs_bandwidth_used())
678d5718 4827 return false;
56f570e5 4828
d3d9dc33 4829 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4830 return false;
d3d9dc33
PT
4831
4832 /*
4833 * it's possible for a throttled entity to be forced into a running
4834 * state (e.g. set_curr_task), in this case we're finished.
4835 */
4836 if (cfs_rq_throttled(cfs_rq))
678d5718 4837 return true;
d3d9dc33
PT
4838
4839 throttle_cfs_rq(cfs_rq);
678d5718 4840 return true;
d3d9dc33 4841}
029632fb 4842
029632fb
PZ
4843static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4844{
4845 struct cfs_bandwidth *cfs_b =
4846 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4847
029632fb
PZ
4848 do_sched_cfs_slack_timer(cfs_b);
4849
4850 return HRTIMER_NORESTART;
4851}
4852
4853static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4854{
4855 struct cfs_bandwidth *cfs_b =
4856 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4857 int overrun;
4858 int idle = 0;
4859
51f2176d 4860 raw_spin_lock(&cfs_b->lock);
029632fb 4861 for (;;) {
77a4d1a1 4862 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4863 if (!overrun)
4864 break;
4865
4866 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4867 }
4cfafd30
PZ
4868 if (idle)
4869 cfs_b->period_active = 0;
51f2176d 4870 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4871
4872 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4873}
4874
4875void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4876{
4877 raw_spin_lock_init(&cfs_b->lock);
4878 cfs_b->runtime = 0;
4879 cfs_b->quota = RUNTIME_INF;
4880 cfs_b->period = ns_to_ktime(default_cfs_period());
4881
4882 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4883 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4884 cfs_b->period_timer.function = sched_cfs_period_timer;
4885 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4886 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4887 cfs_b->distribute_running = 0;
029632fb
PZ
4888}
4889
4890static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4891{
4892 cfs_rq->runtime_enabled = 0;
4893 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4894}
4895
77a4d1a1 4896void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4897{
f1d1be8a
XP
4898 u64 overrun;
4899
4cfafd30 4900 lockdep_assert_held(&cfs_b->lock);
029632fb 4901
f1d1be8a
XP
4902 if (cfs_b->period_active)
4903 return;
4904
4905 cfs_b->period_active = 1;
4906 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4907 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4908 cfs_b->expires_seq++;
4909 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4910}
4911
4912static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4913{
7f1a169b
TH
4914 /* init_cfs_bandwidth() was not called */
4915 if (!cfs_b->throttled_cfs_rq.next)
4916 return;
4917
029632fb
PZ
4918 hrtimer_cancel(&cfs_b->period_timer);
4919 hrtimer_cancel(&cfs_b->slack_timer);
4920}
4921
502ce005 4922/*
97fb7a0a 4923 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4924 *
4925 * The race is harmless, since modifying bandwidth settings of unhooked group
4926 * bits doesn't do much.
4927 */
4928
4929/* cpu online calback */
0e59bdae
KT
4930static void __maybe_unused update_runtime_enabled(struct rq *rq)
4931{
502ce005 4932 struct task_group *tg;
0e59bdae 4933
502ce005
PZ
4934 lockdep_assert_held(&rq->lock);
4935
4936 rcu_read_lock();
4937 list_for_each_entry_rcu(tg, &task_groups, list) {
4938 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4939 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4940
4941 raw_spin_lock(&cfs_b->lock);
4942 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4943 raw_spin_unlock(&cfs_b->lock);
4944 }
502ce005 4945 rcu_read_unlock();
0e59bdae
KT
4946}
4947
502ce005 4948/* cpu offline callback */
38dc3348 4949static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4950{
502ce005
PZ
4951 struct task_group *tg;
4952
4953 lockdep_assert_held(&rq->lock);
4954
4955 rcu_read_lock();
4956 list_for_each_entry_rcu(tg, &task_groups, list) {
4957 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4958
029632fb
PZ
4959 if (!cfs_rq->runtime_enabled)
4960 continue;
4961
4962 /*
4963 * clock_task is not advancing so we just need to make sure
4964 * there's some valid quota amount
4965 */
51f2176d 4966 cfs_rq->runtime_remaining = 1;
0e59bdae 4967 /*
97fb7a0a 4968 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
4969 * in take_cpu_down(), so we prevent new cfs throttling here.
4970 */
4971 cfs_rq->runtime_enabled = 0;
4972
029632fb
PZ
4973 if (cfs_rq_throttled(cfs_rq))
4974 unthrottle_cfs_rq(cfs_rq);
4975 }
502ce005 4976 rcu_read_unlock();
029632fb
PZ
4977}
4978
4979#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4980static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4981{
78becc27 4982 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4983}
4984
9dbdb155 4985static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4986static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4987static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4988static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4989static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4990
4991static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4992{
4993 return 0;
4994}
64660c86
PT
4995
4996static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4997{
4998 return 0;
4999}
5000
5001static inline int throttled_lb_pair(struct task_group *tg,
5002 int src_cpu, int dest_cpu)
5003{
5004 return 0;
5005}
029632fb
PZ
5006
5007void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5008
5009#ifdef CONFIG_FAIR_GROUP_SCHED
5010static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5011#endif
5012
029632fb
PZ
5013static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5014{
5015 return NULL;
5016}
5017static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5018static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5019static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5020
5021#endif /* CONFIG_CFS_BANDWIDTH */
5022
bf0f6f24
IM
5023/**************************************************
5024 * CFS operations on tasks:
5025 */
5026
8f4d37ec
PZ
5027#ifdef CONFIG_SCHED_HRTICK
5028static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5029{
8f4d37ec
PZ
5030 struct sched_entity *se = &p->se;
5031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5032
9148a3a1 5033 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5034
8bf46a39 5035 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5036 u64 slice = sched_slice(cfs_rq, se);
5037 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5038 s64 delta = slice - ran;
5039
5040 if (delta < 0) {
5041 if (rq->curr == p)
8875125e 5042 resched_curr(rq);
8f4d37ec
PZ
5043 return;
5044 }
31656519 5045 hrtick_start(rq, delta);
8f4d37ec
PZ
5046 }
5047}
a4c2f00f
PZ
5048
5049/*
5050 * called from enqueue/dequeue and updates the hrtick when the
5051 * current task is from our class and nr_running is low enough
5052 * to matter.
5053 */
5054static void hrtick_update(struct rq *rq)
5055{
5056 struct task_struct *curr = rq->curr;
5057
b39e66ea 5058 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5059 return;
5060
5061 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5062 hrtick_start_fair(rq, curr);
5063}
55e12e5e 5064#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5065static inline void
5066hrtick_start_fair(struct rq *rq, struct task_struct *p)
5067{
5068}
a4c2f00f
PZ
5069
5070static inline void hrtick_update(struct rq *rq)
5071{
5072}
8f4d37ec
PZ
5073#endif
5074
bf0f6f24
IM
5075/*
5076 * The enqueue_task method is called before nr_running is
5077 * increased. Here we update the fair scheduling stats and
5078 * then put the task into the rbtree:
5079 */
ea87bb78 5080static void
371fd7e7 5081enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5082{
5083 struct cfs_rq *cfs_rq;
62fb1851 5084 struct sched_entity *se = &p->se;
bf0f6f24 5085
2539fc82
PB
5086 /*
5087 * The code below (indirectly) updates schedutil which looks at
5088 * the cfs_rq utilization to select a frequency.
5089 * Let's add the task's estimated utilization to the cfs_rq's
5090 * estimated utilization, before we update schedutil.
5091 */
5092 util_est_enqueue(&rq->cfs, p);
5093
8c34ab19
RW
5094 /*
5095 * If in_iowait is set, the code below may not trigger any cpufreq
5096 * utilization updates, so do it here explicitly with the IOWAIT flag
5097 * passed.
5098 */
5099 if (p->in_iowait)
674e7541 5100 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5101
bf0f6f24 5102 for_each_sched_entity(se) {
62fb1851 5103 if (se->on_rq)
bf0f6f24
IM
5104 break;
5105 cfs_rq = cfs_rq_of(se);
88ec22d3 5106 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5107
5108 /*
5109 * end evaluation on encountering a throttled cfs_rq
5110 *
5111 * note: in the case of encountering a throttled cfs_rq we will
5112 * post the final h_nr_running increment below.
e210bffd 5113 */
85dac906
PT
5114 if (cfs_rq_throttled(cfs_rq))
5115 break;
953bfcd1 5116 cfs_rq->h_nr_running++;
85dac906 5117
88ec22d3 5118 flags = ENQUEUE_WAKEUP;
bf0f6f24 5119 }
8f4d37ec 5120
2069dd75 5121 for_each_sched_entity(se) {
0f317143 5122 cfs_rq = cfs_rq_of(se);
953bfcd1 5123 cfs_rq->h_nr_running++;
2069dd75 5124
85dac906
PT
5125 if (cfs_rq_throttled(cfs_rq))
5126 break;
5127
88c0616e 5128 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5129 update_cfs_group(se);
2069dd75
PZ
5130 }
5131
cd126afe 5132 if (!se)
72465447 5133 add_nr_running(rq, 1);
cd126afe 5134
a4c2f00f 5135 hrtick_update(rq);
bf0f6f24
IM
5136}
5137
2f36825b
VP
5138static void set_next_buddy(struct sched_entity *se);
5139
bf0f6f24
IM
5140/*
5141 * The dequeue_task method is called before nr_running is
5142 * decreased. We remove the task from the rbtree and
5143 * update the fair scheduling stats:
5144 */
371fd7e7 5145static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5146{
5147 struct cfs_rq *cfs_rq;
62fb1851 5148 struct sched_entity *se = &p->se;
2f36825b 5149 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5150
5151 for_each_sched_entity(se) {
5152 cfs_rq = cfs_rq_of(se);
371fd7e7 5153 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5154
5155 /*
5156 * end evaluation on encountering a throttled cfs_rq
5157 *
5158 * note: in the case of encountering a throttled cfs_rq we will
5159 * post the final h_nr_running decrement below.
5160 */
5161 if (cfs_rq_throttled(cfs_rq))
5162 break;
953bfcd1 5163 cfs_rq->h_nr_running--;
2069dd75 5164
bf0f6f24 5165 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5166 if (cfs_rq->load.weight) {
754bd598
KK
5167 /* Avoid re-evaluating load for this entity: */
5168 se = parent_entity(se);
2f36825b
VP
5169 /*
5170 * Bias pick_next to pick a task from this cfs_rq, as
5171 * p is sleeping when it is within its sched_slice.
5172 */
754bd598
KK
5173 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5174 set_next_buddy(se);
bf0f6f24 5175 break;
2f36825b 5176 }
371fd7e7 5177 flags |= DEQUEUE_SLEEP;
bf0f6f24 5178 }
8f4d37ec 5179
2069dd75 5180 for_each_sched_entity(se) {
0f317143 5181 cfs_rq = cfs_rq_of(se);
953bfcd1 5182 cfs_rq->h_nr_running--;
2069dd75 5183
85dac906
PT
5184 if (cfs_rq_throttled(cfs_rq))
5185 break;
5186
88c0616e 5187 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5188 update_cfs_group(se);
2069dd75
PZ
5189 }
5190
cd126afe 5191 if (!se)
72465447 5192 sub_nr_running(rq, 1);
cd126afe 5193
7f65ea42 5194 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5195 hrtick_update(rq);
bf0f6f24
IM
5196}
5197
e7693a36 5198#ifdef CONFIG_SMP
10e2f1ac
PZ
5199
5200/* Working cpumask for: load_balance, load_balance_newidle. */
5201DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5202DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5203
9fd81dd5 5204#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5205/*
5206 * per rq 'load' arrray crap; XXX kill this.
5207 */
5208
5209/*
d937cdc5 5210 * The exact cpuload calculated at every tick would be:
3289bdb4 5211 *
d937cdc5
PZ
5212 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5213 *
97fb7a0a
IM
5214 * If a CPU misses updates for n ticks (as it was idle) and update gets
5215 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5216 *
5217 * load_n = (1 - 1/2^i)^n * load_0
5218 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5219 *
5220 * decay_load_missed() below does efficient calculation of
3289bdb4 5221 *
d937cdc5
PZ
5222 * load' = (1 - 1/2^i)^n * load
5223 *
5224 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5225 * This allows us to precompute the above in said factors, thereby allowing the
5226 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5227 * fixed_power_int())
3289bdb4 5228 *
d937cdc5 5229 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5230 */
5231#define DEGRADE_SHIFT 7
d937cdc5
PZ
5232
5233static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5234static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5235 { 0, 0, 0, 0, 0, 0, 0, 0 },
5236 { 64, 32, 8, 0, 0, 0, 0, 0 },
5237 { 96, 72, 40, 12, 1, 0, 0, 0 },
5238 { 112, 98, 75, 43, 15, 1, 0, 0 },
5239 { 120, 112, 98, 76, 45, 16, 2, 0 }
5240};
3289bdb4
PZ
5241
5242/*
5243 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5244 * would be when CPU is idle and so we just decay the old load without
5245 * adding any new load.
5246 */
5247static unsigned long
5248decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5249{
5250 int j = 0;
5251
5252 if (!missed_updates)
5253 return load;
5254
5255 if (missed_updates >= degrade_zero_ticks[idx])
5256 return 0;
5257
5258 if (idx == 1)
5259 return load >> missed_updates;
5260
5261 while (missed_updates) {
5262 if (missed_updates % 2)
5263 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5264
5265 missed_updates >>= 1;
5266 j++;
5267 }
5268 return load;
5269}
e022e0d3
PZ
5270
5271static struct {
5272 cpumask_var_t idle_cpus_mask;
5273 atomic_t nr_cpus;
f643ea22 5274 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5275 unsigned long next_balance; /* in jiffy units */
f643ea22 5276 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5277} nohz ____cacheline_aligned;
5278
9fd81dd5 5279#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5280
59543275 5281/**
cee1afce 5282 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5283 * @this_rq: The rq to update statistics for
5284 * @this_load: The current load
5285 * @pending_updates: The number of missed updates
59543275 5286 *
3289bdb4 5287 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5288 * scheduler tick (TICK_NSEC).
5289 *
5290 * This function computes a decaying average:
5291 *
5292 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5293 *
5294 * Because of NOHZ it might not get called on every tick which gives need for
5295 * the @pending_updates argument.
5296 *
5297 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5298 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5299 * = A * (A * load[i]_n-2 + B) + B
5300 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5301 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5302 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5303 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5304 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5305 *
5306 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5307 * any change in load would have resulted in the tick being turned back on.
5308 *
5309 * For regular NOHZ, this reduces to:
5310 *
5311 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5312 *
5313 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5314 * term.
3289bdb4 5315 */
1f41906a
FW
5316static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5317 unsigned long pending_updates)
3289bdb4 5318{
9fd81dd5 5319 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5320 int i, scale;
5321
5322 this_rq->nr_load_updates++;
5323
5324 /* Update our load: */
5325 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5326 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5327 unsigned long old_load, new_load;
5328
5329 /* scale is effectively 1 << i now, and >> i divides by scale */
5330
7400d3bb 5331 old_load = this_rq->cpu_load[i];
9fd81dd5 5332#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5333 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5334 if (tickless_load) {
5335 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5336 /*
5337 * old_load can never be a negative value because a
5338 * decayed tickless_load cannot be greater than the
5339 * original tickless_load.
5340 */
5341 old_load += tickless_load;
5342 }
9fd81dd5 5343#endif
3289bdb4
PZ
5344 new_load = this_load;
5345 /*
5346 * Round up the averaging division if load is increasing. This
5347 * prevents us from getting stuck on 9 if the load is 10, for
5348 * example.
5349 */
5350 if (new_load > old_load)
5351 new_load += scale - 1;
5352
5353 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5354 }
3289bdb4
PZ
5355}
5356
7ea241af 5357/* Used instead of source_load when we know the type == 0 */
c7132dd6 5358static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5359{
c7132dd6 5360 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5361}
5362
3289bdb4 5363#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5364/*
5365 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5366 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5367 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5368 *
5369 * Therefore we need to avoid the delta approach from the regular tick when
5370 * possible since that would seriously skew the load calculation. This is why we
5371 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5372 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5373 * loop exit, nohz_idle_balance, nohz full exit...)
5374 *
5375 * This means we might still be one tick off for nohz periods.
5376 */
5377
5378static void cpu_load_update_nohz(struct rq *this_rq,
5379 unsigned long curr_jiffies,
5380 unsigned long load)
be68a682
FW
5381{
5382 unsigned long pending_updates;
5383
5384 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5385 if (pending_updates) {
5386 this_rq->last_load_update_tick = curr_jiffies;
5387 /*
5388 * In the regular NOHZ case, we were idle, this means load 0.
5389 * In the NOHZ_FULL case, we were non-idle, we should consider
5390 * its weighted load.
5391 */
1f41906a 5392 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5393 }
5394}
5395
3289bdb4
PZ
5396/*
5397 * Called from nohz_idle_balance() to update the load ratings before doing the
5398 * idle balance.
5399 */
cee1afce 5400static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5401{
3289bdb4
PZ
5402 /*
5403 * bail if there's load or we're actually up-to-date.
5404 */
c7132dd6 5405 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5406 return;
5407
1f41906a 5408 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5409}
5410
5411/*
1f41906a
FW
5412 * Record CPU load on nohz entry so we know the tickless load to account
5413 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5414 * than other cpu_load[idx] but it should be fine as cpu_load readers
5415 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5416 */
1f41906a 5417void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5418{
5419 struct rq *this_rq = this_rq();
1f41906a
FW
5420
5421 /*
5422 * This is all lockless but should be fine. If weighted_cpuload changes
5423 * concurrently we'll exit nohz. And cpu_load write can race with
5424 * cpu_load_update_idle() but both updater would be writing the same.
5425 */
c7132dd6 5426 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5427}
5428
5429/*
5430 * Account the tickless load in the end of a nohz frame.
5431 */
5432void cpu_load_update_nohz_stop(void)
5433{
316c1608 5434 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5435 struct rq *this_rq = this_rq();
5436 unsigned long load;
8a8c69c3 5437 struct rq_flags rf;
3289bdb4
PZ
5438
5439 if (curr_jiffies == this_rq->last_load_update_tick)
5440 return;
5441
c7132dd6 5442 load = weighted_cpuload(this_rq);
8a8c69c3 5443 rq_lock(this_rq, &rf);
b52fad2d 5444 update_rq_clock(this_rq);
1f41906a 5445 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5446 rq_unlock(this_rq, &rf);
3289bdb4 5447}
1f41906a
FW
5448#else /* !CONFIG_NO_HZ_COMMON */
5449static inline void cpu_load_update_nohz(struct rq *this_rq,
5450 unsigned long curr_jiffies,
5451 unsigned long load) { }
5452#endif /* CONFIG_NO_HZ_COMMON */
5453
5454static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5455{
9fd81dd5 5456#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5457 /* See the mess around cpu_load_update_nohz(). */
5458 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5459#endif
1f41906a
FW
5460 cpu_load_update(this_rq, load, 1);
5461}
3289bdb4
PZ
5462
5463/*
5464 * Called from scheduler_tick()
5465 */
cee1afce 5466void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5467{
c7132dd6 5468 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5469
5470 if (tick_nohz_tick_stopped())
5471 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5472 else
5473 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5474}
5475
029632fb 5476/*
97fb7a0a 5477 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5478 * according to the scheduling class and "nice" value.
5479 *
5480 * We want to under-estimate the load of migration sources, to
5481 * balance conservatively.
5482 */
5483static unsigned long source_load(int cpu, int type)
5484{
5485 struct rq *rq = cpu_rq(cpu);
c7132dd6 5486 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5487
5488 if (type == 0 || !sched_feat(LB_BIAS))
5489 return total;
5490
5491 return min(rq->cpu_load[type-1], total);
5492}
5493
5494/*
97fb7a0a 5495 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5496 * according to the scheduling class and "nice" value.
5497 */
5498static unsigned long target_load(int cpu, int type)
5499{
5500 struct rq *rq = cpu_rq(cpu);
c7132dd6 5501 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5502
5503 if (type == 0 || !sched_feat(LB_BIAS))
5504 return total;
5505
5506 return max(rq->cpu_load[type-1], total);
5507}
5508
ced549fa 5509static unsigned long capacity_of(int cpu)
029632fb 5510{
ced549fa 5511 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5512}
5513
ca6d75e6
VG
5514static unsigned long capacity_orig_of(int cpu)
5515{
5516 return cpu_rq(cpu)->cpu_capacity_orig;
5517}
5518
029632fb
PZ
5519static unsigned long cpu_avg_load_per_task(int cpu)
5520{
5521 struct rq *rq = cpu_rq(cpu);
316c1608 5522 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5523 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5524
5525 if (nr_running)
b92486cb 5526 return load_avg / nr_running;
029632fb
PZ
5527
5528 return 0;
5529}
5530
c58d25f3
PZ
5531static void record_wakee(struct task_struct *p)
5532{
5533 /*
5534 * Only decay a single time; tasks that have less then 1 wakeup per
5535 * jiffy will not have built up many flips.
5536 */
5537 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5538 current->wakee_flips >>= 1;
5539 current->wakee_flip_decay_ts = jiffies;
5540 }
5541
5542 if (current->last_wakee != p) {
5543 current->last_wakee = p;
5544 current->wakee_flips++;
5545 }
5546}
5547
63b0e9ed
MG
5548/*
5549 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5550 *
63b0e9ed 5551 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5552 * at a frequency roughly N times higher than one of its wakees.
5553 *
5554 * In order to determine whether we should let the load spread vs consolidating
5555 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5556 * partner, and a factor of lls_size higher frequency in the other.
5557 *
5558 * With both conditions met, we can be relatively sure that the relationship is
5559 * non-monogamous, with partner count exceeding socket size.
5560 *
5561 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5562 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5563 * socket size.
63b0e9ed 5564 */
62470419
MW
5565static int wake_wide(struct task_struct *p)
5566{
63b0e9ed
MG
5567 unsigned int master = current->wakee_flips;
5568 unsigned int slave = p->wakee_flips;
7d9ffa89 5569 int factor = this_cpu_read(sd_llc_size);
62470419 5570
63b0e9ed
MG
5571 if (master < slave)
5572 swap(master, slave);
5573 if (slave < factor || master < slave * factor)
5574 return 0;
5575 return 1;
62470419
MW
5576}
5577
90001d67 5578/*
d153b153
PZ
5579 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5580 * soonest. For the purpose of speed we only consider the waking and previous
5581 * CPU.
90001d67 5582 *
7332dec0
MG
5583 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5584 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5585 *
5586 * wake_affine_weight() - considers the weight to reflect the average
5587 * scheduling latency of the CPUs. This seems to work
5588 * for the overloaded case.
90001d67 5589 */
3b76c4a3 5590static int
89a55f56 5591wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5592{
7332dec0
MG
5593 /*
5594 * If this_cpu is idle, it implies the wakeup is from interrupt
5595 * context. Only allow the move if cache is shared. Otherwise an
5596 * interrupt intensive workload could force all tasks onto one
5597 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5598 *
5599 * If the prev_cpu is idle and cache affine then avoid a migration.
5600 * There is no guarantee that the cache hot data from an interrupt
5601 * is more important than cache hot data on the prev_cpu and from
5602 * a cpufreq perspective, it's better to have higher utilisation
5603 * on one CPU.
7332dec0 5604 */
943d355d
RJ
5605 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5606 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5607
d153b153 5608 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5609 return this_cpu;
90001d67 5610
3b76c4a3 5611 return nr_cpumask_bits;
90001d67
PZ
5612}
5613
3b76c4a3 5614static int
f2cdd9cc
PZ
5615wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5616 int this_cpu, int prev_cpu, int sync)
90001d67 5617{
90001d67
PZ
5618 s64 this_eff_load, prev_eff_load;
5619 unsigned long task_load;
5620
f2cdd9cc 5621 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5622
90001d67
PZ
5623 if (sync) {
5624 unsigned long current_load = task_h_load(current);
5625
f2cdd9cc 5626 if (current_load > this_eff_load)
3b76c4a3 5627 return this_cpu;
90001d67 5628
f2cdd9cc 5629 this_eff_load -= current_load;
90001d67
PZ
5630 }
5631
90001d67
PZ
5632 task_load = task_h_load(p);
5633
f2cdd9cc
PZ
5634 this_eff_load += task_load;
5635 if (sched_feat(WA_BIAS))
5636 this_eff_load *= 100;
5637 this_eff_load *= capacity_of(prev_cpu);
90001d67 5638
eeb60398 5639 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5640 prev_eff_load -= task_load;
5641 if (sched_feat(WA_BIAS))
5642 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5643 prev_eff_load *= capacity_of(this_cpu);
90001d67 5644
082f764a
MG
5645 /*
5646 * If sync, adjust the weight of prev_eff_load such that if
5647 * prev_eff == this_eff that select_idle_sibling() will consider
5648 * stacking the wakee on top of the waker if no other CPU is
5649 * idle.
5650 */
5651 if (sync)
5652 prev_eff_load += 1;
5653
5654 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5655}
5656
772bd008 5657static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5658 int this_cpu, int prev_cpu, int sync)
098fb9db 5659{
3b76c4a3 5660 int target = nr_cpumask_bits;
098fb9db 5661
89a55f56 5662 if (sched_feat(WA_IDLE))
3b76c4a3 5663 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5664
3b76c4a3
MG
5665 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5666 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5667
ae92882e 5668 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5669 if (target == nr_cpumask_bits)
5670 return prev_cpu;
098fb9db 5671
3b76c4a3
MG
5672 schedstat_inc(sd->ttwu_move_affine);
5673 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5674 return target;
098fb9db
IM
5675}
5676
f01415fd 5677static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
6a0b19c0
MR
5678
5679static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5680{
f453ae22 5681 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
6a0b19c0
MR
5682}
5683
aaee1203
PZ
5684/*
5685 * find_idlest_group finds and returns the least busy CPU group within the
5686 * domain.
6fee85cc
BJ
5687 *
5688 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5689 */
5690static struct sched_group *
78e7ed53 5691find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5692 int this_cpu, int sd_flag)
e7693a36 5693{
b3bd3de6 5694 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5695 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5696 unsigned long min_runnable_load = ULONG_MAX;
5697 unsigned long this_runnable_load = ULONG_MAX;
5698 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5699 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5700 int load_idx = sd->forkexec_idx;
6b94780e
VG
5701 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5702 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5703 (sd->imbalance_pct-100) / 100;
e7693a36 5704
c44f2a02
VG
5705 if (sd_flag & SD_BALANCE_WAKE)
5706 load_idx = sd->wake_idx;
5707
aaee1203 5708 do {
6b94780e
VG
5709 unsigned long load, avg_load, runnable_load;
5710 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5711 int local_group;
5712 int i;
e7693a36 5713
aaee1203 5714 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5715 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5716 &p->cpus_allowed))
aaee1203
PZ
5717 continue;
5718
5719 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5720 sched_group_span(group));
aaee1203 5721
6a0b19c0
MR
5722 /*
5723 * Tally up the load of all CPUs in the group and find
5724 * the group containing the CPU with most spare capacity.
5725 */
aaee1203 5726 avg_load = 0;
6b94780e 5727 runnable_load = 0;
6a0b19c0 5728 max_spare_cap = 0;
aaee1203 5729
ae4df9d6 5730 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5731 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5732 if (local_group)
5733 load = source_load(i, load_idx);
5734 else
5735 load = target_load(i, load_idx);
5736
6b94780e
VG
5737 runnable_load += load;
5738
5739 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5740
5741 spare_cap = capacity_spare_wake(i, p);
5742
5743 if (spare_cap > max_spare_cap)
5744 max_spare_cap = spare_cap;
aaee1203
PZ
5745 }
5746
63b2ca30 5747 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5748 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5749 group->sgc->capacity;
5750 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5751 group->sgc->capacity;
aaee1203
PZ
5752
5753 if (local_group) {
6b94780e
VG
5754 this_runnable_load = runnable_load;
5755 this_avg_load = avg_load;
6a0b19c0
MR
5756 this_spare = max_spare_cap;
5757 } else {
6b94780e
VG
5758 if (min_runnable_load > (runnable_load + imbalance)) {
5759 /*
5760 * The runnable load is significantly smaller
97fb7a0a 5761 * so we can pick this new CPU:
6b94780e
VG
5762 */
5763 min_runnable_load = runnable_load;
5764 min_avg_load = avg_load;
5765 idlest = group;
5766 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5767 (100*min_avg_load > imbalance_scale*avg_load)) {
5768 /*
5769 * The runnable loads are close so take the
97fb7a0a 5770 * blocked load into account through avg_load:
6b94780e
VG
5771 */
5772 min_avg_load = avg_load;
6a0b19c0
MR
5773 idlest = group;
5774 }
5775
5776 if (most_spare < max_spare_cap) {
5777 most_spare = max_spare_cap;
5778 most_spare_sg = group;
5779 }
aaee1203
PZ
5780 }
5781 } while (group = group->next, group != sd->groups);
5782
6a0b19c0
MR
5783 /*
5784 * The cross-over point between using spare capacity or least load
5785 * is too conservative for high utilization tasks on partially
5786 * utilized systems if we require spare_capacity > task_util(p),
5787 * so we allow for some task stuffing by using
5788 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5789 *
5790 * Spare capacity can't be used for fork because the utilization has
5791 * not been set yet, we must first select a rq to compute the initial
5792 * utilization.
6a0b19c0 5793 */
f519a3f1
VG
5794 if (sd_flag & SD_BALANCE_FORK)
5795 goto skip_spare;
5796
6a0b19c0 5797 if (this_spare > task_util(p) / 2 &&
6b94780e 5798 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5799 return NULL;
6b94780e
VG
5800
5801 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5802 return most_spare_sg;
5803
f519a3f1 5804skip_spare:
6b94780e
VG
5805 if (!idlest)
5806 return NULL;
5807
2c833627
MG
5808 /*
5809 * When comparing groups across NUMA domains, it's possible for the
5810 * local domain to be very lightly loaded relative to the remote
5811 * domains but "imbalance" skews the comparison making remote CPUs
5812 * look much more favourable. When considering cross-domain, add
5813 * imbalance to the runnable load on the remote node and consider
5814 * staying local.
5815 */
5816 if ((sd->flags & SD_NUMA) &&
5817 min_runnable_load + imbalance >= this_runnable_load)
5818 return NULL;
5819
6b94780e 5820 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5821 return NULL;
6b94780e
VG
5822
5823 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5824 (100*this_avg_load < imbalance_scale*min_avg_load))
5825 return NULL;
5826
aaee1203
PZ
5827 return idlest;
5828}
5829
5830/*
97fb7a0a 5831 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5832 */
5833static int
18bd1b4b 5834find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5835{
5836 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5837 unsigned int min_exit_latency = UINT_MAX;
5838 u64 latest_idle_timestamp = 0;
5839 int least_loaded_cpu = this_cpu;
5840 int shallowest_idle_cpu = -1;
aaee1203
PZ
5841 int i;
5842
eaecf41f
MR
5843 /* Check if we have any choice: */
5844 if (group->group_weight == 1)
ae4df9d6 5845 return cpumask_first(sched_group_span(group));
eaecf41f 5846
aaee1203 5847 /* Traverse only the allowed CPUs */
ae4df9d6 5848 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5849 if (available_idle_cpu(i)) {
83a0a96a
NP
5850 struct rq *rq = cpu_rq(i);
5851 struct cpuidle_state *idle = idle_get_state(rq);
5852 if (idle && idle->exit_latency < min_exit_latency) {
5853 /*
5854 * We give priority to a CPU whose idle state
5855 * has the smallest exit latency irrespective
5856 * of any idle timestamp.
5857 */
5858 min_exit_latency = idle->exit_latency;
5859 latest_idle_timestamp = rq->idle_stamp;
5860 shallowest_idle_cpu = i;
5861 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5862 rq->idle_stamp > latest_idle_timestamp) {
5863 /*
5864 * If equal or no active idle state, then
5865 * the most recently idled CPU might have
5866 * a warmer cache.
5867 */
5868 latest_idle_timestamp = rq->idle_stamp;
5869 shallowest_idle_cpu = i;
5870 }
9f96742a 5871 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5872 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5873 if (load < min_load) {
83a0a96a
NP
5874 min_load = load;
5875 least_loaded_cpu = i;
5876 }
e7693a36
GH
5877 }
5878 }
5879
83a0a96a 5880 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5881}
e7693a36 5882
18bd1b4b
BJ
5883static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5884 int cpu, int prev_cpu, int sd_flag)
5885{
93f50f90 5886 int new_cpu = cpu;
18bd1b4b 5887
6fee85cc
BJ
5888 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5889 return prev_cpu;
5890
c976a862
VK
5891 /*
5892 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5893 * last_update_time.
5894 */
5895 if (!(sd_flag & SD_BALANCE_FORK))
5896 sync_entity_load_avg(&p->se);
5897
18bd1b4b
BJ
5898 while (sd) {
5899 struct sched_group *group;
5900 struct sched_domain *tmp;
5901 int weight;
5902
5903 if (!(sd->flags & sd_flag)) {
5904 sd = sd->child;
5905 continue;
5906 }
5907
5908 group = find_idlest_group(sd, p, cpu, sd_flag);
5909 if (!group) {
5910 sd = sd->child;
5911 continue;
5912 }
5913
5914 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5915 if (new_cpu == cpu) {
97fb7a0a 5916 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5917 sd = sd->child;
5918 continue;
5919 }
5920
97fb7a0a 5921 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5922 cpu = new_cpu;
5923 weight = sd->span_weight;
5924 sd = NULL;
5925 for_each_domain(cpu, tmp) {
5926 if (weight <= tmp->span_weight)
5927 break;
5928 if (tmp->flags & sd_flag)
5929 sd = tmp;
5930 }
18bd1b4b
BJ
5931 }
5932
5933 return new_cpu;
5934}
5935
10e2f1ac 5936#ifdef CONFIG_SCHED_SMT
ba2591a5 5937DEFINE_STATIC_KEY_FALSE(sched_smt_present);
10e2f1ac
PZ
5938
5939static inline void set_idle_cores(int cpu, int val)
5940{
5941 struct sched_domain_shared *sds;
5942
5943 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5944 if (sds)
5945 WRITE_ONCE(sds->has_idle_cores, val);
5946}
5947
5948static inline bool test_idle_cores(int cpu, bool def)
5949{
5950 struct sched_domain_shared *sds;
5951
5952 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5953 if (sds)
5954 return READ_ONCE(sds->has_idle_cores);
5955
5956 return def;
5957}
5958
5959/*
5960 * Scans the local SMT mask to see if the entire core is idle, and records this
5961 * information in sd_llc_shared->has_idle_cores.
5962 *
5963 * Since SMT siblings share all cache levels, inspecting this limited remote
5964 * state should be fairly cheap.
5965 */
1b568f0a 5966void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5967{
5968 int core = cpu_of(rq);
5969 int cpu;
5970
5971 rcu_read_lock();
5972 if (test_idle_cores(core, true))
5973 goto unlock;
5974
5975 for_each_cpu(cpu, cpu_smt_mask(core)) {
5976 if (cpu == core)
5977 continue;
5978
943d355d 5979 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5980 goto unlock;
5981 }
5982
5983 set_idle_cores(core, 1);
5984unlock:
5985 rcu_read_unlock();
5986}
5987
5988/*
5989 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5990 * there are no idle cores left in the system; tracked through
5991 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5992 */
5993static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5994{
5995 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5996 int core, cpu;
10e2f1ac 5997
1b568f0a
PZ
5998 if (!static_branch_likely(&sched_smt_present))
5999 return -1;
6000
10e2f1ac
PZ
6001 if (!test_idle_cores(target, false))
6002 return -1;
6003
0c98d344 6004 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6005
c743f0a5 6006 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6007 bool idle = true;
6008
6009 for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 cpumask_clear_cpu(cpu, cpus);
943d355d 6011 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6012 idle = false;
6013 }
6014
6015 if (idle)
6016 return core;
6017 }
6018
6019 /*
6020 * Failed to find an idle core; stop looking for one.
6021 */
6022 set_idle_cores(target, 0);
6023
6024 return -1;
6025}
6026
6027/*
6028 * Scan the local SMT mask for idle CPUs.
6029 */
6030static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6031{
6032 int cpu;
6033
1b568f0a
PZ
6034 if (!static_branch_likely(&sched_smt_present))
6035 return -1;
6036
10e2f1ac 6037 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6038 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6039 continue;
943d355d 6040 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6041 return cpu;
6042 }
6043
6044 return -1;
6045}
6046
6047#else /* CONFIG_SCHED_SMT */
6048
6049static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6050{
6051 return -1;
6052}
6053
6054static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6055{
6056 return -1;
6057}
6058
6059#endif /* CONFIG_SCHED_SMT */
6060
6061/*
6062 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6063 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6064 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6065 */
10e2f1ac
PZ
6066static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6067{
9cfb38a7 6068 struct sched_domain *this_sd;
1ad3aaf3 6069 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6070 u64 time, cost;
6071 s64 delta;
1ad3aaf3 6072 int cpu, nr = INT_MAX;
10e2f1ac 6073
9cfb38a7
WL
6074 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6075 if (!this_sd)
6076 return -1;
6077
10e2f1ac
PZ
6078 /*
6079 * Due to large variance we need a large fuzz factor; hackbench in
6080 * particularly is sensitive here.
6081 */
1ad3aaf3
PZ
6082 avg_idle = this_rq()->avg_idle / 512;
6083 avg_cost = this_sd->avg_scan_cost + 1;
6084
6085 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6086 return -1;
6087
1ad3aaf3
PZ
6088 if (sched_feat(SIS_PROP)) {
6089 u64 span_avg = sd->span_weight * avg_idle;
6090 if (span_avg > 4*avg_cost)
6091 nr = div_u64(span_avg, avg_cost);
6092 else
6093 nr = 4;
6094 }
6095
10e2f1ac
PZ
6096 time = local_clock();
6097
c743f0a5 6098 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6099 if (!--nr)
6100 return -1;
0c98d344 6101 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6102 continue;
943d355d 6103 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6104 break;
6105 }
6106
6107 time = local_clock() - time;
6108 cost = this_sd->avg_scan_cost;
6109 delta = (s64)(time - cost) / 8;
6110 this_sd->avg_scan_cost += delta;
6111
6112 return cpu;
6113}
6114
6115/*
6116 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6117 */
772bd008 6118static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6119{
99bd5e2f 6120 struct sched_domain *sd;
32e839dd 6121 int i, recent_used_cpu;
a50bde51 6122
943d355d 6123 if (available_idle_cpu(target))
e0a79f52 6124 return target;
99bd5e2f
SS
6125
6126 /*
97fb7a0a 6127 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6128 */
943d355d 6129 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6130 return prev;
a50bde51 6131
97fb7a0a 6132 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6133 recent_used_cpu = p->recent_used_cpu;
6134 if (recent_used_cpu != prev &&
6135 recent_used_cpu != target &&
6136 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6137 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6138 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6139 /*
6140 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6141 * candidate for the next wake:
32e839dd
MG
6142 */
6143 p->recent_used_cpu = prev;
6144 return recent_used_cpu;
6145 }
6146
518cd623 6147 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6148 if (!sd)
6149 return target;
772bd008 6150
10e2f1ac
PZ
6151 i = select_idle_core(p, sd, target);
6152 if ((unsigned)i < nr_cpumask_bits)
6153 return i;
37407ea7 6154
10e2f1ac
PZ
6155 i = select_idle_cpu(p, sd, target);
6156 if ((unsigned)i < nr_cpumask_bits)
6157 return i;
6158
6159 i = select_idle_smt(p, sd, target);
6160 if ((unsigned)i < nr_cpumask_bits)
6161 return i;
970e1789 6162
a50bde51
PZ
6163 return target;
6164}
231678b7 6165
f9be3e59
PB
6166/**
6167 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6168 * @cpu: the CPU to get the utilization of
6169 *
6170 * The unit of the return value must be the one of capacity so we can compare
6171 * the utilization with the capacity of the CPU that is available for CFS task
6172 * (ie cpu_capacity).
231678b7
DE
6173 *
6174 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6175 * recent utilization of currently non-runnable tasks on a CPU. It represents
6176 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6177 * capacity_orig is the cpu_capacity available at the highest frequency
6178 * (arch_scale_freq_capacity()).
6179 * The utilization of a CPU converges towards a sum equal to or less than the
6180 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6181 * the running time on this CPU scaled by capacity_curr.
6182 *
f9be3e59
PB
6183 * The estimated utilization of a CPU is defined to be the maximum between its
6184 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6185 * currently RUNNABLE on that CPU.
6186 * This allows to properly represent the expected utilization of a CPU which
6187 * has just got a big task running since a long sleep period. At the same time
6188 * however it preserves the benefits of the "blocked utilization" in
6189 * describing the potential for other tasks waking up on the same CPU.
6190 *
231678b7
DE
6191 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6192 * higher than capacity_orig because of unfortunate rounding in
6193 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6194 * the average stabilizes with the new running time. We need to check that the
6195 * utilization stays within the range of [0..capacity_orig] and cap it if
6196 * necessary. Without utilization capping, a group could be seen as overloaded
6197 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6198 * available capacity. We allow utilization to overshoot capacity_curr (but not
6199 * capacity_orig) as it useful for predicting the capacity required after task
6200 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6201 *
6202 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6203 */
f9be3e59 6204static inline unsigned long cpu_util(int cpu)
8bb5b00c 6205{
f9be3e59
PB
6206 struct cfs_rq *cfs_rq;
6207 unsigned int util;
6208
6209 cfs_rq = &cpu_rq(cpu)->cfs;
6210 util = READ_ONCE(cfs_rq->avg.util_avg);
6211
6212 if (sched_feat(UTIL_EST))
6213 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6214
f9be3e59 6215 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6216}
a50bde51 6217
104cb16d 6218/*
97fb7a0a 6219 * cpu_util_wake: Compute CPU utilization with any contributions from
104cb16d
MR
6220 * the waking task p removed.
6221 */
f01415fd 6222static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
104cb16d 6223{
f9be3e59
PB
6224 struct cfs_rq *cfs_rq;
6225 unsigned int util;
104cb16d
MR
6226
6227 /* Task has no contribution or is new */
f9be3e59 6228 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6229 return cpu_util(cpu);
6230
f9be3e59
PB
6231 cfs_rq = &cpu_rq(cpu)->cfs;
6232 util = READ_ONCE(cfs_rq->avg.util_avg);
6233
6234 /* Discount task's blocked util from CPU's util */
6235 util -= min_t(unsigned int, util, task_util(p));
104cb16d 6236
f9be3e59
PB
6237 /*
6238 * Covered cases:
6239 *
6240 * a) if *p is the only task sleeping on this CPU, then:
6241 * cpu_util (== task_util) > util_est (== 0)
6242 * and thus we return:
6243 * cpu_util_wake = (cpu_util - task_util) = 0
6244 *
6245 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6246 * IDLE, then:
6247 * cpu_util >= task_util
6248 * cpu_util > util_est (== 0)
6249 * and thus we discount *p's blocked utilization to return:
6250 * cpu_util_wake = (cpu_util - task_util) >= 0
6251 *
6252 * c) if other tasks are RUNNABLE on that CPU and
6253 * util_est > cpu_util
6254 * then we use util_est since it returns a more restrictive
6255 * estimation of the spare capacity on that CPU, by just
6256 * considering the expected utilization of tasks already
6257 * runnable on that CPU.
6258 *
6259 * Cases a) and b) are covered by the above code, while case c) is
6260 * covered by the following code when estimated utilization is
6261 * enabled.
6262 */
6263 if (sched_feat(UTIL_EST))
6264 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6265
6266 /*
6267 * Utilization (estimated) can exceed the CPU capacity, thus let's
6268 * clamp to the maximum CPU capacity to ensure consistency with
6269 * the cpu_util call.
6270 */
6271 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6272}
6273
3273163c
MR
6274/*
6275 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6276 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6277 *
6278 * In that case WAKE_AFFINE doesn't make sense and we'll let
6279 * BALANCE_WAKE sort things out.
6280 */
6281static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6282{
6283 long min_cap, max_cap;
6284
df054e84
MR
6285 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6286 return 0;
6287
3273163c
MR
6288 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6289 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6290
6291 /* Minimum capacity is close to max, no need to abort wake_affine */
6292 if (max_cap - min_cap < max_cap >> 3)
6293 return 0;
6294
104cb16d
MR
6295 /* Bring task utilization in sync with prev_cpu */
6296 sync_entity_load_avg(&p->se);
6297
3b1baa64 6298 return !task_fits_capacity(p, min_cap);
3273163c
MR
6299}
6300
aaee1203 6301/*
de91b9cb
MR
6302 * select_task_rq_fair: Select target runqueue for the waking task in domains
6303 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6304 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6305 *
97fb7a0a
IM
6306 * Balances load by selecting the idlest CPU in the idlest group, or under
6307 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6308 *
97fb7a0a 6309 * Returns the target CPU number.
aaee1203
PZ
6310 *
6311 * preempt must be disabled.
6312 */
0017d735 6313static int
ac66f547 6314select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6315{
f1d88b44 6316 struct sched_domain *tmp, *sd = NULL;
c88d5910 6317 int cpu = smp_processor_id();
63b0e9ed 6318 int new_cpu = prev_cpu;
99bd5e2f 6319 int want_affine = 0;
24d0c1d6 6320 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6321
c58d25f3
PZ
6322 if (sd_flag & SD_BALANCE_WAKE) {
6323 record_wakee(p);
3273163c 6324 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6325 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6326 }
aaee1203 6327
dce840a0 6328 rcu_read_lock();
aaee1203 6329 for_each_domain(cpu, tmp) {
e4f42888 6330 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6331 break;
e4f42888 6332
fe3bcfe1 6333 /*
97fb7a0a 6334 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6335 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6336 */
99bd5e2f
SS
6337 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6338 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6339 if (cpu != prev_cpu)
6340 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6341
6342 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6343 break;
f03542a7 6344 }
29cd8bae 6345
f03542a7 6346 if (tmp->flags & sd_flag)
29cd8bae 6347 sd = tmp;
63b0e9ed
MG
6348 else if (!want_affine)
6349 break;
29cd8bae
PZ
6350 }
6351
f1d88b44
VK
6352 if (unlikely(sd)) {
6353 /* Slow path */
18bd1b4b 6354 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6355 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6356 /* Fast path */
6357
6358 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6359
6360 if (want_affine)
6361 current->recent_used_cpu = cpu;
e7693a36 6362 }
dce840a0 6363 rcu_read_unlock();
e7693a36 6364
c88d5910 6365 return new_cpu;
e7693a36 6366}
0a74bef8 6367
144d8487
PZ
6368static void detach_entity_cfs_rq(struct sched_entity *se);
6369
0a74bef8 6370/*
97fb7a0a 6371 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6372 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6373 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6374 */
3f9672ba 6375static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6376{
59efa0ba
PZ
6377 /*
6378 * As blocked tasks retain absolute vruntime the migration needs to
6379 * deal with this by subtracting the old and adding the new
6380 * min_vruntime -- the latter is done by enqueue_entity() when placing
6381 * the task on the new runqueue.
6382 */
6383 if (p->state == TASK_WAKING) {
6384 struct sched_entity *se = &p->se;
6385 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6386 u64 min_vruntime;
6387
6388#ifndef CONFIG_64BIT
6389 u64 min_vruntime_copy;
6390
6391 do {
6392 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6393 smp_rmb();
6394 min_vruntime = cfs_rq->min_vruntime;
6395 } while (min_vruntime != min_vruntime_copy);
6396#else
6397 min_vruntime = cfs_rq->min_vruntime;
6398#endif
6399
6400 se->vruntime -= min_vruntime;
6401 }
6402
144d8487
PZ
6403 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6404 /*
6405 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6406 * rq->lock and can modify state directly.
6407 */
6408 lockdep_assert_held(&task_rq(p)->lock);
6409 detach_entity_cfs_rq(&p->se);
6410
6411 } else {
6412 /*
6413 * We are supposed to update the task to "current" time, then
6414 * its up to date and ready to go to new CPU/cfs_rq. But we
6415 * have difficulty in getting what current time is, so simply
6416 * throw away the out-of-date time. This will result in the
6417 * wakee task is less decayed, but giving the wakee more load
6418 * sounds not bad.
6419 */
6420 remove_entity_load_avg(&p->se);
6421 }
9d89c257
YD
6422
6423 /* Tell new CPU we are migrated */
6424 p->se.avg.last_update_time = 0;
3944a927
BS
6425
6426 /* We have migrated, no longer consider this task hot */
9d89c257 6427 p->se.exec_start = 0;
3f9672ba
SD
6428
6429 update_scan_period(p, new_cpu);
0a74bef8 6430}
12695578
YD
6431
6432static void task_dead_fair(struct task_struct *p)
6433{
6434 remove_entity_load_avg(&p->se);
6435}
e7693a36
GH
6436#endif /* CONFIG_SMP */
6437
a555e9d8 6438static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6439{
6440 unsigned long gran = sysctl_sched_wakeup_granularity;
6441
6442 /*
e52fb7c0
PZ
6443 * Since its curr running now, convert the gran from real-time
6444 * to virtual-time in his units.
13814d42
MG
6445 *
6446 * By using 'se' instead of 'curr' we penalize light tasks, so
6447 * they get preempted easier. That is, if 'se' < 'curr' then
6448 * the resulting gran will be larger, therefore penalizing the
6449 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6450 * be smaller, again penalizing the lighter task.
6451 *
6452 * This is especially important for buddies when the leftmost
6453 * task is higher priority than the buddy.
0bbd3336 6454 */
f4ad9bd2 6455 return calc_delta_fair(gran, se);
0bbd3336
PZ
6456}
6457
464b7527
PZ
6458/*
6459 * Should 'se' preempt 'curr'.
6460 *
6461 * |s1
6462 * |s2
6463 * |s3
6464 * g
6465 * |<--->|c
6466 *
6467 * w(c, s1) = -1
6468 * w(c, s2) = 0
6469 * w(c, s3) = 1
6470 *
6471 */
6472static int
6473wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6474{
6475 s64 gran, vdiff = curr->vruntime - se->vruntime;
6476
6477 if (vdiff <= 0)
6478 return -1;
6479
a555e9d8 6480 gran = wakeup_gran(se);
464b7527
PZ
6481 if (vdiff > gran)
6482 return 1;
6483
6484 return 0;
6485}
6486
02479099
PZ
6487static void set_last_buddy(struct sched_entity *se)
6488{
69c80f3e
VP
6489 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6490 return;
6491
c5ae366e
DA
6492 for_each_sched_entity(se) {
6493 if (SCHED_WARN_ON(!se->on_rq))
6494 return;
69c80f3e 6495 cfs_rq_of(se)->last = se;
c5ae366e 6496 }
02479099
PZ
6497}
6498
6499static void set_next_buddy(struct sched_entity *se)
6500{
69c80f3e
VP
6501 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6502 return;
6503
c5ae366e
DA
6504 for_each_sched_entity(se) {
6505 if (SCHED_WARN_ON(!se->on_rq))
6506 return;
69c80f3e 6507 cfs_rq_of(se)->next = se;
c5ae366e 6508 }
02479099
PZ
6509}
6510
ac53db59
RR
6511static void set_skip_buddy(struct sched_entity *se)
6512{
69c80f3e
VP
6513 for_each_sched_entity(se)
6514 cfs_rq_of(se)->skip = se;
ac53db59
RR
6515}
6516
bf0f6f24
IM
6517/*
6518 * Preempt the current task with a newly woken task if needed:
6519 */
5a9b86f6 6520static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6521{
6522 struct task_struct *curr = rq->curr;
8651a86c 6523 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6524 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6525 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6526 int next_buddy_marked = 0;
bf0f6f24 6527
4ae7d5ce
IM
6528 if (unlikely(se == pse))
6529 return;
6530
5238cdd3 6531 /*
163122b7 6532 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6533 * unconditionally check_prempt_curr() after an enqueue (which may have
6534 * lead to a throttle). This both saves work and prevents false
6535 * next-buddy nomination below.
6536 */
6537 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6538 return;
6539
2f36825b 6540 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6541 set_next_buddy(pse);
2f36825b
VP
6542 next_buddy_marked = 1;
6543 }
57fdc26d 6544
aec0a514
BR
6545 /*
6546 * We can come here with TIF_NEED_RESCHED already set from new task
6547 * wake up path.
5238cdd3
PT
6548 *
6549 * Note: this also catches the edge-case of curr being in a throttled
6550 * group (e.g. via set_curr_task), since update_curr() (in the
6551 * enqueue of curr) will have resulted in resched being set. This
6552 * prevents us from potentially nominating it as a false LAST_BUDDY
6553 * below.
aec0a514
BR
6554 */
6555 if (test_tsk_need_resched(curr))
6556 return;
6557
a2f5c9ab
DH
6558 /* Idle tasks are by definition preempted by non-idle tasks. */
6559 if (unlikely(curr->policy == SCHED_IDLE) &&
6560 likely(p->policy != SCHED_IDLE))
6561 goto preempt;
6562
91c234b4 6563 /*
a2f5c9ab
DH
6564 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6565 * is driven by the tick):
91c234b4 6566 */
8ed92e51 6567 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6568 return;
bf0f6f24 6569
464b7527 6570 find_matching_se(&se, &pse);
9bbd7374 6571 update_curr(cfs_rq_of(se));
002f128b 6572 BUG_ON(!pse);
2f36825b
VP
6573 if (wakeup_preempt_entity(se, pse) == 1) {
6574 /*
6575 * Bias pick_next to pick the sched entity that is
6576 * triggering this preemption.
6577 */
6578 if (!next_buddy_marked)
6579 set_next_buddy(pse);
3a7e73a2 6580 goto preempt;
2f36825b 6581 }
464b7527 6582
3a7e73a2 6583 return;
a65ac745 6584
3a7e73a2 6585preempt:
8875125e 6586 resched_curr(rq);
3a7e73a2
PZ
6587 /*
6588 * Only set the backward buddy when the current task is still
6589 * on the rq. This can happen when a wakeup gets interleaved
6590 * with schedule on the ->pre_schedule() or idle_balance()
6591 * point, either of which can * drop the rq lock.
6592 *
6593 * Also, during early boot the idle thread is in the fair class,
6594 * for obvious reasons its a bad idea to schedule back to it.
6595 */
6596 if (unlikely(!se->on_rq || curr == rq->idle))
6597 return;
6598
6599 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6600 set_last_buddy(se);
bf0f6f24
IM
6601}
6602
606dba2e 6603static struct task_struct *
d8ac8971 6604pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6605{
6606 struct cfs_rq *cfs_rq = &rq->cfs;
6607 struct sched_entity *se;
678d5718 6608 struct task_struct *p;
37e117c0 6609 int new_tasks;
678d5718 6610
6e83125c 6611again:
678d5718 6612 if (!cfs_rq->nr_running)
38033c37 6613 goto idle;
678d5718 6614
9674f5ca 6615#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6616 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6617 goto simple;
6618
6619 /*
6620 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6621 * likely that a next task is from the same cgroup as the current.
6622 *
6623 * Therefore attempt to avoid putting and setting the entire cgroup
6624 * hierarchy, only change the part that actually changes.
6625 */
6626
6627 do {
6628 struct sched_entity *curr = cfs_rq->curr;
6629
6630 /*
6631 * Since we got here without doing put_prev_entity() we also
6632 * have to consider cfs_rq->curr. If it is still a runnable
6633 * entity, update_curr() will update its vruntime, otherwise
6634 * forget we've ever seen it.
6635 */
54d27365
BS
6636 if (curr) {
6637 if (curr->on_rq)
6638 update_curr(cfs_rq);
6639 else
6640 curr = NULL;
678d5718 6641
54d27365
BS
6642 /*
6643 * This call to check_cfs_rq_runtime() will do the
6644 * throttle and dequeue its entity in the parent(s).
9674f5ca 6645 * Therefore the nr_running test will indeed
54d27365
BS
6646 * be correct.
6647 */
9674f5ca
VK
6648 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6649 cfs_rq = &rq->cfs;
6650
6651 if (!cfs_rq->nr_running)
6652 goto idle;
6653
54d27365 6654 goto simple;
9674f5ca 6655 }
54d27365 6656 }
678d5718
PZ
6657
6658 se = pick_next_entity(cfs_rq, curr);
6659 cfs_rq = group_cfs_rq(se);
6660 } while (cfs_rq);
6661
6662 p = task_of(se);
6663
6664 /*
6665 * Since we haven't yet done put_prev_entity and if the selected task
6666 * is a different task than we started out with, try and touch the
6667 * least amount of cfs_rqs.
6668 */
6669 if (prev != p) {
6670 struct sched_entity *pse = &prev->se;
6671
6672 while (!(cfs_rq = is_same_group(se, pse))) {
6673 int se_depth = se->depth;
6674 int pse_depth = pse->depth;
6675
6676 if (se_depth <= pse_depth) {
6677 put_prev_entity(cfs_rq_of(pse), pse);
6678 pse = parent_entity(pse);
6679 }
6680 if (se_depth >= pse_depth) {
6681 set_next_entity(cfs_rq_of(se), se);
6682 se = parent_entity(se);
6683 }
6684 }
6685
6686 put_prev_entity(cfs_rq, pse);
6687 set_next_entity(cfs_rq, se);
6688 }
6689
93824900 6690 goto done;
678d5718 6691simple:
678d5718 6692#endif
bf0f6f24 6693
3f1d2a31 6694 put_prev_task(rq, prev);
606dba2e 6695
bf0f6f24 6696 do {
678d5718 6697 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6698 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6699 cfs_rq = group_cfs_rq(se);
6700 } while (cfs_rq);
6701
8f4d37ec 6702 p = task_of(se);
678d5718 6703
13a453c2 6704done: __maybe_unused;
93824900
UR
6705#ifdef CONFIG_SMP
6706 /*
6707 * Move the next running task to the front of
6708 * the list, so our cfs_tasks list becomes MRU
6709 * one.
6710 */
6711 list_move(&p->se.group_node, &rq->cfs_tasks);
6712#endif
6713
b39e66ea
MG
6714 if (hrtick_enabled(rq))
6715 hrtick_start_fair(rq, p);
8f4d37ec 6716
3b1baa64
MR
6717 update_misfit_status(p, rq);
6718
8f4d37ec 6719 return p;
38033c37
PZ
6720
6721idle:
3b1baa64 6722 update_misfit_status(NULL, rq);
46f69fa3
MF
6723 new_tasks = idle_balance(rq, rf);
6724
37e117c0
PZ
6725 /*
6726 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6727 * possible for any higher priority task to appear. In that case we
6728 * must re-start the pick_next_entity() loop.
6729 */
e4aa358b 6730 if (new_tasks < 0)
37e117c0
PZ
6731 return RETRY_TASK;
6732
e4aa358b 6733 if (new_tasks > 0)
38033c37 6734 goto again;
38033c37
PZ
6735
6736 return NULL;
bf0f6f24
IM
6737}
6738
6739/*
6740 * Account for a descheduled task:
6741 */
31ee529c 6742static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6743{
6744 struct sched_entity *se = &prev->se;
6745 struct cfs_rq *cfs_rq;
6746
6747 for_each_sched_entity(se) {
6748 cfs_rq = cfs_rq_of(se);
ab6cde26 6749 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6750 }
6751}
6752
ac53db59
RR
6753/*
6754 * sched_yield() is very simple
6755 *
6756 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6757 */
6758static void yield_task_fair(struct rq *rq)
6759{
6760 struct task_struct *curr = rq->curr;
6761 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6762 struct sched_entity *se = &curr->se;
6763
6764 /*
6765 * Are we the only task in the tree?
6766 */
6767 if (unlikely(rq->nr_running == 1))
6768 return;
6769
6770 clear_buddies(cfs_rq, se);
6771
6772 if (curr->policy != SCHED_BATCH) {
6773 update_rq_clock(rq);
6774 /*
6775 * Update run-time statistics of the 'current'.
6776 */
6777 update_curr(cfs_rq);
916671c0
MG
6778 /*
6779 * Tell update_rq_clock() that we've just updated,
6780 * so we don't do microscopic update in schedule()
6781 * and double the fastpath cost.
6782 */
adcc8da8 6783 rq_clock_skip_update(rq);
ac53db59
RR
6784 }
6785
6786 set_skip_buddy(se);
6787}
6788
d95f4122
MG
6789static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6790{
6791 struct sched_entity *se = &p->se;
6792
5238cdd3
PT
6793 /* throttled hierarchies are not runnable */
6794 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6795 return false;
6796
6797 /* Tell the scheduler that we'd really like pse to run next. */
6798 set_next_buddy(se);
6799
d95f4122
MG
6800 yield_task_fair(rq);
6801
6802 return true;
6803}
6804
681f3e68 6805#ifdef CONFIG_SMP
bf0f6f24 6806/**************************************************
e9c84cb8
PZ
6807 * Fair scheduling class load-balancing methods.
6808 *
6809 * BASICS
6810 *
6811 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6812 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6813 * time to each task. This is expressed in the following equation:
6814 *
6815 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6816 *
97fb7a0a 6817 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6818 * W_i,0 is defined as:
6819 *
6820 * W_i,0 = \Sum_j w_i,j (2)
6821 *
97fb7a0a 6822 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6823 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6824 *
6825 * The weight average is an exponential decay average of the instantaneous
6826 * weight:
6827 *
6828 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6829 *
97fb7a0a 6830 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6831 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6832 * can also include other factors [XXX].
6833 *
6834 * To achieve this balance we define a measure of imbalance which follows
6835 * directly from (1):
6836 *
ced549fa 6837 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6838 *
6839 * We them move tasks around to minimize the imbalance. In the continuous
6840 * function space it is obvious this converges, in the discrete case we get
6841 * a few fun cases generally called infeasible weight scenarios.
6842 *
6843 * [XXX expand on:
6844 * - infeasible weights;
6845 * - local vs global optima in the discrete case. ]
6846 *
6847 *
6848 * SCHED DOMAINS
6849 *
6850 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6851 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6852 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6853 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6854 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 6855 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
6856 * the groups.
6857 *
6858 * This yields:
6859 *
6860 * log_2 n 1 n
6861 * \Sum { --- * --- * 2^i } = O(n) (5)
6862 * i = 0 2^i 2^i
6863 * `- size of each group
97fb7a0a 6864 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
6865 * | `- freq
6866 * `- sum over all levels
6867 *
6868 * Coupled with a limit on how many tasks we can migrate every balance pass,
6869 * this makes (5) the runtime complexity of the balancer.
6870 *
6871 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 6872 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
6873 *
6874 * The adjacency matrix of the resulting graph is given by:
6875 *
97a7142f 6876 * log_2 n
e9c84cb8
PZ
6877 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6878 * k = 0
6879 *
6880 * And you'll find that:
6881 *
6882 * A^(log_2 n)_i,j != 0 for all i,j (7)
6883 *
97fb7a0a 6884 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
6885 * The task movement gives a factor of O(m), giving a convergence complexity
6886 * of:
6887 *
6888 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6889 *
6890 *
6891 * WORK CONSERVING
6892 *
6893 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 6894 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
6895 * tree itself instead of relying on other CPUs to bring it work.
6896 *
6897 * This adds some complexity to both (5) and (8) but it reduces the total idle
6898 * time.
6899 *
6900 * [XXX more?]
6901 *
6902 *
6903 * CGROUPS
6904 *
6905 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6906 *
6907 * s_k,i
6908 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6909 * S_k
6910 *
6911 * Where
6912 *
6913 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6914 *
97fb7a0a 6915 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
6916 *
6917 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6918 * property.
6919 *
6920 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6921 * rewrite all of this once again.]
97a7142f 6922 */
bf0f6f24 6923
ed387b78
HS
6924static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6925
0ec8aa00
PZ
6926enum fbq_type { regular, remote, all };
6927
3b1baa64
MR
6928enum group_type {
6929 group_other = 0,
6930 group_misfit_task,
6931 group_imbalanced,
6932 group_overloaded,
6933};
6934
ddcdf6e7 6935#define LBF_ALL_PINNED 0x01
367456c7 6936#define LBF_NEED_BREAK 0x02
6263322c
PZ
6937#define LBF_DST_PINNED 0x04
6938#define LBF_SOME_PINNED 0x08
e022e0d3 6939#define LBF_NOHZ_STATS 0x10
f643ea22 6940#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
6941
6942struct lb_env {
6943 struct sched_domain *sd;
6944
ddcdf6e7 6945 struct rq *src_rq;
85c1e7da 6946 int src_cpu;
ddcdf6e7
PZ
6947
6948 int dst_cpu;
6949 struct rq *dst_rq;
6950
88b8dac0
SV
6951 struct cpumask *dst_grpmask;
6952 int new_dst_cpu;
ddcdf6e7 6953 enum cpu_idle_type idle;
bd939f45 6954 long imbalance;
b9403130
MW
6955 /* The set of CPUs under consideration for load-balancing */
6956 struct cpumask *cpus;
6957
ddcdf6e7 6958 unsigned int flags;
367456c7
PZ
6959
6960 unsigned int loop;
6961 unsigned int loop_break;
6962 unsigned int loop_max;
0ec8aa00
PZ
6963
6964 enum fbq_type fbq_type;
cad68e55 6965 enum group_type src_grp_type;
163122b7 6966 struct list_head tasks;
ddcdf6e7
PZ
6967};
6968
029632fb
PZ
6969/*
6970 * Is this task likely cache-hot:
6971 */
5d5e2b1b 6972static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6973{
6974 s64 delta;
6975
e5673f28
KT
6976 lockdep_assert_held(&env->src_rq->lock);
6977
029632fb
PZ
6978 if (p->sched_class != &fair_sched_class)
6979 return 0;
6980
6981 if (unlikely(p->policy == SCHED_IDLE))
6982 return 0;
6983
6984 /*
6985 * Buddy candidates are cache hot:
6986 */
5d5e2b1b 6987 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6988 (&p->se == cfs_rq_of(&p->se)->next ||
6989 &p->se == cfs_rq_of(&p->se)->last))
6990 return 1;
6991
6992 if (sysctl_sched_migration_cost == -1)
6993 return 1;
6994 if (sysctl_sched_migration_cost == 0)
6995 return 0;
6996
5d5e2b1b 6997 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6998
6999 return delta < (s64)sysctl_sched_migration_cost;
7000}
7001
3a7053b3 7002#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7003/*
2a1ed24c
SD
7004 * Returns 1, if task migration degrades locality
7005 * Returns 0, if task migration improves locality i.e migration preferred.
7006 * Returns -1, if task migration is not affected by locality.
c1ceac62 7007 */
2a1ed24c 7008static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7009{
b1ad065e 7010 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7011 unsigned long src_weight, dst_weight;
7012 int src_nid, dst_nid, dist;
3a7053b3 7013
2a595721 7014 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7015 return -1;
7016
c3b9bc5b 7017 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7018 return -1;
7a0f3083
MG
7019
7020 src_nid = cpu_to_node(env->src_cpu);
7021 dst_nid = cpu_to_node(env->dst_cpu);
7022
83e1d2cd 7023 if (src_nid == dst_nid)
2a1ed24c 7024 return -1;
7a0f3083 7025
2a1ed24c
SD
7026 /* Migrating away from the preferred node is always bad. */
7027 if (src_nid == p->numa_preferred_nid) {
7028 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7029 return 1;
7030 else
7031 return -1;
7032 }
b1ad065e 7033
c1ceac62
RR
7034 /* Encourage migration to the preferred node. */
7035 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7036 return 0;
b1ad065e 7037
739294fb 7038 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7039 if (env->idle == CPU_IDLE)
739294fb
RR
7040 return -1;
7041
f35678b6 7042 dist = node_distance(src_nid, dst_nid);
c1ceac62 7043 if (numa_group) {
f35678b6
SD
7044 src_weight = group_weight(p, src_nid, dist);
7045 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7046 } else {
f35678b6
SD
7047 src_weight = task_weight(p, src_nid, dist);
7048 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7049 }
7050
f35678b6 7051 return dst_weight < src_weight;
7a0f3083
MG
7052}
7053
3a7053b3 7054#else
2a1ed24c 7055static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7056 struct lb_env *env)
7057{
2a1ed24c 7058 return -1;
7a0f3083 7059}
3a7053b3
MG
7060#endif
7061
1e3c88bd
PZ
7062/*
7063 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7064 */
7065static
8e45cb54 7066int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7067{
2a1ed24c 7068 int tsk_cache_hot;
e5673f28
KT
7069
7070 lockdep_assert_held(&env->src_rq->lock);
7071
1e3c88bd
PZ
7072 /*
7073 * We do not migrate tasks that are:
d3198084 7074 * 1) throttled_lb_pair, or
1e3c88bd 7075 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7076 * 3) running (obviously), or
7077 * 4) are cache-hot on their current CPU.
1e3c88bd 7078 */
d3198084
JK
7079 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7080 return 0;
7081
0c98d344 7082 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7083 int cpu;
88b8dac0 7084
ae92882e 7085 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7086
6263322c
PZ
7087 env->flags |= LBF_SOME_PINNED;
7088
88b8dac0 7089 /*
97fb7a0a 7090 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7091 * our sched_group. We may want to revisit it if we couldn't
7092 * meet load balance goals by pulling other tasks on src_cpu.
7093 *
65a4433a
JH
7094 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7095 * already computed one in current iteration.
88b8dac0 7096 */
65a4433a 7097 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7098 return 0;
7099
97fb7a0a 7100 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7101 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7102 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7103 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7104 env->new_dst_cpu = cpu;
7105 break;
7106 }
88b8dac0 7107 }
e02e60c1 7108
1e3c88bd
PZ
7109 return 0;
7110 }
88b8dac0
SV
7111
7112 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7113 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7114
ddcdf6e7 7115 if (task_running(env->src_rq, p)) {
ae92882e 7116 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7117 return 0;
7118 }
7119
7120 /*
7121 * Aggressive migration if:
3a7053b3
MG
7122 * 1) destination numa is preferred
7123 * 2) task is cache cold, or
7124 * 3) too many balance attempts have failed.
1e3c88bd 7125 */
2a1ed24c
SD
7126 tsk_cache_hot = migrate_degrades_locality(p, env);
7127 if (tsk_cache_hot == -1)
7128 tsk_cache_hot = task_hot(p, env);
3a7053b3 7129
2a1ed24c 7130 if (tsk_cache_hot <= 0 ||
7a96c231 7131 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7132 if (tsk_cache_hot == 1) {
ae92882e
JP
7133 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7134 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7135 }
1e3c88bd
PZ
7136 return 1;
7137 }
7138
ae92882e 7139 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7140 return 0;
1e3c88bd
PZ
7141}
7142
897c395f 7143/*
163122b7
KT
7144 * detach_task() -- detach the task for the migration specified in env
7145 */
7146static void detach_task(struct task_struct *p, struct lb_env *env)
7147{
7148 lockdep_assert_held(&env->src_rq->lock);
7149
163122b7 7150 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7151 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7152 set_task_cpu(p, env->dst_cpu);
7153}
7154
897c395f 7155/*
e5673f28 7156 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7157 * part of active balancing operations within "domain".
897c395f 7158 *
e5673f28 7159 * Returns a task if successful and NULL otherwise.
897c395f 7160 */
e5673f28 7161static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7162{
93824900 7163 struct task_struct *p;
897c395f 7164
e5673f28
KT
7165 lockdep_assert_held(&env->src_rq->lock);
7166
93824900
UR
7167 list_for_each_entry_reverse(p,
7168 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7169 if (!can_migrate_task(p, env))
7170 continue;
897c395f 7171
163122b7 7172 detach_task(p, env);
e5673f28 7173
367456c7 7174 /*
e5673f28 7175 * Right now, this is only the second place where
163122b7 7176 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7177 * so we can safely collect stats here rather than
163122b7 7178 * inside detach_tasks().
367456c7 7179 */
ae92882e 7180 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7181 return p;
897c395f 7182 }
e5673f28 7183 return NULL;
897c395f
PZ
7184}
7185
eb95308e
PZ
7186static const unsigned int sched_nr_migrate_break = 32;
7187
5d6523eb 7188/*
163122b7
KT
7189 * detach_tasks() -- tries to detach up to imbalance weighted load from
7190 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7191 *
163122b7 7192 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7193 */
163122b7 7194static int detach_tasks(struct lb_env *env)
1e3c88bd 7195{
5d6523eb
PZ
7196 struct list_head *tasks = &env->src_rq->cfs_tasks;
7197 struct task_struct *p;
367456c7 7198 unsigned long load;
163122b7
KT
7199 int detached = 0;
7200
7201 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7202
bd939f45 7203 if (env->imbalance <= 0)
5d6523eb 7204 return 0;
1e3c88bd 7205
5d6523eb 7206 while (!list_empty(tasks)) {
985d3a4c
YD
7207 /*
7208 * We don't want to steal all, otherwise we may be treated likewise,
7209 * which could at worst lead to a livelock crash.
7210 */
7211 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7212 break;
7213
93824900 7214 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7215
367456c7
PZ
7216 env->loop++;
7217 /* We've more or less seen every task there is, call it quits */
5d6523eb 7218 if (env->loop > env->loop_max)
367456c7 7219 break;
5d6523eb
PZ
7220
7221 /* take a breather every nr_migrate tasks */
367456c7 7222 if (env->loop > env->loop_break) {
eb95308e 7223 env->loop_break += sched_nr_migrate_break;
8e45cb54 7224 env->flags |= LBF_NEED_BREAK;
ee00e66f 7225 break;
a195f004 7226 }
1e3c88bd 7227
d3198084 7228 if (!can_migrate_task(p, env))
367456c7
PZ
7229 goto next;
7230
7231 load = task_h_load(p);
5d6523eb 7232
eb95308e 7233 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7234 goto next;
7235
bd939f45 7236 if ((load / 2) > env->imbalance)
367456c7 7237 goto next;
1e3c88bd 7238
163122b7
KT
7239 detach_task(p, env);
7240 list_add(&p->se.group_node, &env->tasks);
7241
7242 detached++;
bd939f45 7243 env->imbalance -= load;
1e3c88bd
PZ
7244
7245#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7246 /*
7247 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7248 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7249 * the critical section.
7250 */
5d6523eb 7251 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7252 break;
1e3c88bd
PZ
7253#endif
7254
ee00e66f
PZ
7255 /*
7256 * We only want to steal up to the prescribed amount of
7257 * weighted load.
7258 */
bd939f45 7259 if (env->imbalance <= 0)
ee00e66f 7260 break;
367456c7
PZ
7261
7262 continue;
7263next:
93824900 7264 list_move(&p->se.group_node, tasks);
1e3c88bd 7265 }
5d6523eb 7266
1e3c88bd 7267 /*
163122b7
KT
7268 * Right now, this is one of only two places we collect this stat
7269 * so we can safely collect detach_one_task() stats here rather
7270 * than inside detach_one_task().
1e3c88bd 7271 */
ae92882e 7272 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7273
163122b7
KT
7274 return detached;
7275}
7276
7277/*
7278 * attach_task() -- attach the task detached by detach_task() to its new rq.
7279 */
7280static void attach_task(struct rq *rq, struct task_struct *p)
7281{
7282 lockdep_assert_held(&rq->lock);
7283
7284 BUG_ON(task_rq(p) != rq);
5704ac0a 7285 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7286 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7287 check_preempt_curr(rq, p, 0);
7288}
7289
7290/*
7291 * attach_one_task() -- attaches the task returned from detach_one_task() to
7292 * its new rq.
7293 */
7294static void attach_one_task(struct rq *rq, struct task_struct *p)
7295{
8a8c69c3
PZ
7296 struct rq_flags rf;
7297
7298 rq_lock(rq, &rf);
5704ac0a 7299 update_rq_clock(rq);
163122b7 7300 attach_task(rq, p);
8a8c69c3 7301 rq_unlock(rq, &rf);
163122b7
KT
7302}
7303
7304/*
7305 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7306 * new rq.
7307 */
7308static void attach_tasks(struct lb_env *env)
7309{
7310 struct list_head *tasks = &env->tasks;
7311 struct task_struct *p;
8a8c69c3 7312 struct rq_flags rf;
163122b7 7313
8a8c69c3 7314 rq_lock(env->dst_rq, &rf);
5704ac0a 7315 update_rq_clock(env->dst_rq);
163122b7
KT
7316
7317 while (!list_empty(tasks)) {
7318 p = list_first_entry(tasks, struct task_struct, se.group_node);
7319 list_del_init(&p->se.group_node);
1e3c88bd 7320
163122b7
KT
7321 attach_task(env->dst_rq, p);
7322 }
7323
8a8c69c3 7324 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7325}
7326
1936c53c
VG
7327static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7328{
7329 if (cfs_rq->avg.load_avg)
7330 return true;
7331
7332 if (cfs_rq->avg.util_avg)
7333 return true;
7334
7335 return false;
7336}
7337
91c27493 7338static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7339{
7340 if (READ_ONCE(rq->avg_rt.util_avg))
7341 return true;
7342
3727e0e1
VG
7343 if (READ_ONCE(rq->avg_dl.util_avg))
7344 return true;
7345
11d4afd4 7346#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7347 if (READ_ONCE(rq->avg_irq.util_avg))
7348 return true;
7349#endif
7350
371bf427
VG
7351 return false;
7352}
7353
1936c53c
VG
7354#ifdef CONFIG_FAIR_GROUP_SCHED
7355
a9e7f654
TH
7356static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7357{
7358 if (cfs_rq->load.weight)
7359 return false;
7360
7361 if (cfs_rq->avg.load_sum)
7362 return false;
7363
7364 if (cfs_rq->avg.util_sum)
7365 return false;
7366
1ea6c46a 7367 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7368 return false;
7369
7370 return true;
7371}
7372
48a16753 7373static void update_blocked_averages(int cpu)
9e3081ca 7374{
9e3081ca 7375 struct rq *rq = cpu_rq(cpu);
a9e7f654 7376 struct cfs_rq *cfs_rq, *pos;
12b04875 7377 const struct sched_class *curr_class;
8a8c69c3 7378 struct rq_flags rf;
f643ea22 7379 bool done = true;
9e3081ca 7380
8a8c69c3 7381 rq_lock_irqsave(rq, &rf);
48a16753 7382 update_rq_clock(rq);
9d89c257 7383
9763b67f
PZ
7384 /*
7385 * Iterates the task_group tree in a bottom up fashion, see
7386 * list_add_leaf_cfs_rq() for details.
7387 */
a9e7f654 7388 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7389 struct sched_entity *se;
7390
9d89c257
YD
7391 /* throttled entities do not contribute to load */
7392 if (throttled_hierarchy(cfs_rq))
7393 continue;
48a16753 7394
3a123bbb 7395 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7396 update_tg_load_avg(cfs_rq, 0);
4e516076 7397
bc427898
VG
7398 /* Propagate pending load changes to the parent, if any: */
7399 se = cfs_rq->tg->se[cpu];
7400 if (se && !skip_blocked_update(se))
88c0616e 7401 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7402
7403 /*
7404 * There can be a lot of idle CPU cgroups. Don't let fully
7405 * decayed cfs_rqs linger on the list.
7406 */
7407 if (cfs_rq_is_decayed(cfs_rq))
7408 list_del_leaf_cfs_rq(cfs_rq);
1936c53c
VG
7409
7410 /* Don't need periodic decay once load/util_avg are null */
7411 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7412 done = false;
9d89c257 7413 }
12b04875
VG
7414
7415 curr_class = rq->curr->sched_class;
7416 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7417 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7418 update_irq_load_avg(rq, 0);
371bf427 7419 /* Don't need periodic decay once load/util_avg are null */
91c27493 7420 if (others_have_blocked(rq))
371bf427 7421 done = false;
e022e0d3
PZ
7422
7423#ifdef CONFIG_NO_HZ_COMMON
7424 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7425 if (done)
7426 rq->has_blocked_load = 0;
e022e0d3 7427#endif
8a8c69c3 7428 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7429}
7430
9763b67f 7431/*
68520796 7432 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7433 * This needs to be done in a top-down fashion because the load of a child
7434 * group is a fraction of its parents load.
7435 */
68520796 7436static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7437{
68520796
VD
7438 struct rq *rq = rq_of(cfs_rq);
7439 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7440 unsigned long now = jiffies;
68520796 7441 unsigned long load;
a35b6466 7442
68520796 7443 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7444 return;
7445
68520796
VD
7446 cfs_rq->h_load_next = NULL;
7447 for_each_sched_entity(se) {
7448 cfs_rq = cfs_rq_of(se);
7449 cfs_rq->h_load_next = se;
7450 if (cfs_rq->last_h_load_update == now)
7451 break;
7452 }
a35b6466 7453
68520796 7454 if (!se) {
7ea241af 7455 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7456 cfs_rq->last_h_load_update = now;
7457 }
7458
7459 while ((se = cfs_rq->h_load_next) != NULL) {
7460 load = cfs_rq->h_load;
7ea241af
YD
7461 load = div64_ul(load * se->avg.load_avg,
7462 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7463 cfs_rq = group_cfs_rq(se);
7464 cfs_rq->h_load = load;
7465 cfs_rq->last_h_load_update = now;
7466 }
9763b67f
PZ
7467}
7468
367456c7 7469static unsigned long task_h_load(struct task_struct *p)
230059de 7470{
367456c7 7471 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7472
68520796 7473 update_cfs_rq_h_load(cfs_rq);
9d89c257 7474 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7475 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7476}
7477#else
48a16753 7478static inline void update_blocked_averages(int cpu)
9e3081ca 7479{
6c1d47c0
VG
7480 struct rq *rq = cpu_rq(cpu);
7481 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7482 const struct sched_class *curr_class;
8a8c69c3 7483 struct rq_flags rf;
6c1d47c0 7484
8a8c69c3 7485 rq_lock_irqsave(rq, &rf);
6c1d47c0 7486 update_rq_clock(rq);
3a123bbb 7487 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
12b04875
VG
7488
7489 curr_class = rq->curr->sched_class;
7490 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7491 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
91c27493 7492 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7493#ifdef CONFIG_NO_HZ_COMMON
7494 rq->last_blocked_load_update_tick = jiffies;
91c27493 7495 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7496 rq->has_blocked_load = 0;
e022e0d3 7497#endif
8a8c69c3 7498 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7499}
7500
367456c7 7501static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7502{
9d89c257 7503 return p->se.avg.load_avg;
1e3c88bd 7504}
230059de 7505#endif
1e3c88bd 7506
1e3c88bd 7507/********** Helpers for find_busiest_group ************************/
caeb178c 7508
1e3c88bd
PZ
7509/*
7510 * sg_lb_stats - stats of a sched_group required for load_balancing
7511 */
7512struct sg_lb_stats {
7513 unsigned long avg_load; /*Avg load across the CPUs of the group */
7514 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7515 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7516 unsigned long load_per_task;
63b2ca30 7517 unsigned long group_capacity;
9e91d61d 7518 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7519 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7520 unsigned int idle_cpus;
7521 unsigned int group_weight;
caeb178c 7522 enum group_type group_type;
ea67821b 7523 int group_no_capacity;
3b1baa64 7524 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7525#ifdef CONFIG_NUMA_BALANCING
7526 unsigned int nr_numa_running;
7527 unsigned int nr_preferred_running;
7528#endif
1e3c88bd
PZ
7529};
7530
56cf515b
JK
7531/*
7532 * sd_lb_stats - Structure to store the statistics of a sched_domain
7533 * during load balancing.
7534 */
7535struct sd_lb_stats {
7536 struct sched_group *busiest; /* Busiest group in this sd */
7537 struct sched_group *local; /* Local group in this sd */
90001d67 7538 unsigned long total_running;
56cf515b 7539 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7540 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7541 unsigned long avg_load; /* Average load across all groups in sd */
7542
56cf515b 7543 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7544 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7545};
7546
147c5fc2
PZ
7547static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7548{
7549 /*
7550 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7551 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7552 * We must however clear busiest_stat::avg_load because
7553 * update_sd_pick_busiest() reads this before assignment.
7554 */
7555 *sds = (struct sd_lb_stats){
7556 .busiest = NULL,
7557 .local = NULL,
90001d67 7558 .total_running = 0UL,
147c5fc2 7559 .total_load = 0UL,
63b2ca30 7560 .total_capacity = 0UL,
147c5fc2
PZ
7561 .busiest_stat = {
7562 .avg_load = 0UL,
caeb178c
RR
7563 .sum_nr_running = 0,
7564 .group_type = group_other,
147c5fc2
PZ
7565 },
7566 };
7567}
7568
1e3c88bd
PZ
7569/**
7570 * get_sd_load_idx - Obtain the load index for a given sched domain.
7571 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7572 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7573 *
7574 * Return: The load index.
1e3c88bd
PZ
7575 */
7576static inline int get_sd_load_idx(struct sched_domain *sd,
7577 enum cpu_idle_type idle)
7578{
7579 int load_idx;
7580
7581 switch (idle) {
7582 case CPU_NOT_IDLE:
7583 load_idx = sd->busy_idx;
7584 break;
7585
7586 case CPU_NEWLY_IDLE:
7587 load_idx = sd->newidle_idx;
7588 break;
7589 default:
7590 load_idx = sd->idle_idx;
7591 break;
7592 }
7593
7594 return load_idx;
7595}
7596
287cdaac 7597static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7598{
7599 struct rq *rq = cpu_rq(cpu);
287cdaac 7600 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
523e979d 7601 unsigned long used, free;
523e979d 7602 unsigned long irq;
b654f7de 7603
2e62c474 7604 irq = cpu_util_irq(rq);
cadefd3d 7605
523e979d
VG
7606 if (unlikely(irq >= max))
7607 return 1;
aa483808 7608
523e979d
VG
7609 used = READ_ONCE(rq->avg_rt.util_avg);
7610 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7611
523e979d
VG
7612 if (unlikely(used >= max))
7613 return 1;
1e3c88bd 7614
523e979d 7615 free = max - used;
2e62c474
VG
7616
7617 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7618}
7619
ced549fa 7620static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7621{
287cdaac 7622 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7623 struct sched_group *sdg = sd->groups;
7624
523e979d 7625 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7626
ced549fa
NP
7627 if (!capacity)
7628 capacity = 1;
1e3c88bd 7629
ced549fa
NP
7630 cpu_rq(cpu)->cpu_capacity = capacity;
7631 sdg->sgc->capacity = capacity;
bf475ce0 7632 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7633 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7634}
7635
63b2ca30 7636void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7637{
7638 struct sched_domain *child = sd->child;
7639 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7640 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7641 unsigned long interval;
7642
7643 interval = msecs_to_jiffies(sd->balance_interval);
7644 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7645 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7646
7647 if (!child) {
ced549fa 7648 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7649 return;
7650 }
7651
dc7ff76e 7652 capacity = 0;
bf475ce0 7653 min_capacity = ULONG_MAX;
e3d6d0cb 7654 max_capacity = 0;
1e3c88bd 7655
74a5ce20
PZ
7656 if (child->flags & SD_OVERLAP) {
7657 /*
7658 * SD_OVERLAP domains cannot assume that child groups
7659 * span the current group.
7660 */
7661
ae4df9d6 7662 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7663 struct sched_group_capacity *sgc;
9abf24d4 7664 struct rq *rq = cpu_rq(cpu);
863bffc8 7665
9abf24d4 7666 /*
63b2ca30 7667 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7668 * gets here before we've attached the domains to the
7669 * runqueues.
7670 *
ced549fa
NP
7671 * Use capacity_of(), which is set irrespective of domains
7672 * in update_cpu_capacity().
9abf24d4 7673 *
dc7ff76e 7674 * This avoids capacity from being 0 and
9abf24d4 7675 * causing divide-by-zero issues on boot.
9abf24d4
SD
7676 */
7677 if (unlikely(!rq->sd)) {
ced549fa 7678 capacity += capacity_of(cpu);
bf475ce0
MR
7679 } else {
7680 sgc = rq->sd->groups->sgc;
7681 capacity += sgc->capacity;
9abf24d4 7682 }
863bffc8 7683
bf475ce0 7684 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7685 max_capacity = max(capacity, max_capacity);
863bffc8 7686 }
74a5ce20
PZ
7687 } else {
7688 /*
7689 * !SD_OVERLAP domains can assume that child groups
7690 * span the current group.
97a7142f 7691 */
74a5ce20
PZ
7692
7693 group = child->groups;
7694 do {
bf475ce0
MR
7695 struct sched_group_capacity *sgc = group->sgc;
7696
7697 capacity += sgc->capacity;
7698 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7699 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7700 group = group->next;
7701 } while (group != child->groups);
7702 }
1e3c88bd 7703
63b2ca30 7704 sdg->sgc->capacity = capacity;
bf475ce0 7705 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7706 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7707}
7708
9d5efe05 7709/*
ea67821b
VG
7710 * Check whether the capacity of the rq has been noticeably reduced by side
7711 * activity. The imbalance_pct is used for the threshold.
7712 * Return true is the capacity is reduced
9d5efe05
SV
7713 */
7714static inline int
ea67821b 7715check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7716{
ea67821b
VG
7717 return ((rq->cpu_capacity * sd->imbalance_pct) <
7718 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7719}
7720
30ce5dab
PZ
7721/*
7722 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7723 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 7724 *
97fb7a0a
IM
7725 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7726 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7727 * Something like:
7728 *
2b4d5b25
IM
7729 * { 0 1 2 3 } { 4 5 6 7 }
7730 * * * * *
30ce5dab
PZ
7731 *
7732 * If we were to balance group-wise we'd place two tasks in the first group and
7733 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7734 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7735 *
7736 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7737 * by noticing the lower domain failed to reach balance and had difficulty
7738 * moving tasks due to affinity constraints.
30ce5dab
PZ
7739 *
7740 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7741 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7742 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7743 * to create an effective group imbalance.
7744 *
7745 * This is a somewhat tricky proposition since the next run might not find the
7746 * group imbalance and decide the groups need to be balanced again. A most
7747 * subtle and fragile situation.
7748 */
7749
6263322c 7750static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7751{
63b2ca30 7752 return group->sgc->imbalance;
30ce5dab
PZ
7753}
7754
b37d9316 7755/*
ea67821b
VG
7756 * group_has_capacity returns true if the group has spare capacity that could
7757 * be used by some tasks.
7758 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7759 * smaller than the number of CPUs or if the utilization is lower than the
7760 * available capacity for CFS tasks.
ea67821b
VG
7761 * For the latter, we use a threshold to stabilize the state, to take into
7762 * account the variance of the tasks' load and to return true if the available
7763 * capacity in meaningful for the load balancer.
7764 * As an example, an available capacity of 1% can appear but it doesn't make
7765 * any benefit for the load balance.
b37d9316 7766 */
ea67821b
VG
7767static inline bool
7768group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7769{
ea67821b
VG
7770 if (sgs->sum_nr_running < sgs->group_weight)
7771 return true;
c61037e9 7772
ea67821b 7773 if ((sgs->group_capacity * 100) >
9e91d61d 7774 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7775 return true;
b37d9316 7776
ea67821b
VG
7777 return false;
7778}
7779
7780/*
7781 * group_is_overloaded returns true if the group has more tasks than it can
7782 * handle.
7783 * group_is_overloaded is not equals to !group_has_capacity because a group
7784 * with the exact right number of tasks, has no more spare capacity but is not
7785 * overloaded so both group_has_capacity and group_is_overloaded return
7786 * false.
7787 */
7788static inline bool
7789group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7790{
7791 if (sgs->sum_nr_running <= sgs->group_weight)
7792 return false;
b37d9316 7793
ea67821b 7794 if ((sgs->group_capacity * 100) <
9e91d61d 7795 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7796 return true;
b37d9316 7797
ea67821b 7798 return false;
b37d9316
PZ
7799}
7800
9e0994c0 7801/*
e3d6d0cb 7802 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7803 * per-CPU capacity than sched_group ref.
7804 */
7805static inline bool
e3d6d0cb 7806group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
7807{
7808 return sg->sgc->min_capacity * capacity_margin <
7809 ref->sgc->min_capacity * 1024;
7810}
7811
e3d6d0cb
MR
7812/*
7813 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7814 * per-CPU capacity_orig than sched_group ref.
7815 */
7816static inline bool
7817group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7818{
7819 return sg->sgc->max_capacity * capacity_margin <
7820 ref->sgc->max_capacity * 1024;
7821}
7822
79a89f92
LY
7823static inline enum
7824group_type group_classify(struct sched_group *group,
7825 struct sg_lb_stats *sgs)
caeb178c 7826{
ea67821b 7827 if (sgs->group_no_capacity)
caeb178c
RR
7828 return group_overloaded;
7829
7830 if (sg_imbalanced(group))
7831 return group_imbalanced;
7832
3b1baa64
MR
7833 if (sgs->group_misfit_task_load)
7834 return group_misfit_task;
7835
caeb178c
RR
7836 return group_other;
7837}
7838
63928384 7839static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7840{
7841#ifdef CONFIG_NO_HZ_COMMON
7842 unsigned int cpu = rq->cpu;
7843
f643ea22
VG
7844 if (!rq->has_blocked_load)
7845 return false;
7846
e022e0d3 7847 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7848 return false;
e022e0d3 7849
63928384 7850 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7851 return true;
e022e0d3
PZ
7852
7853 update_blocked_averages(cpu);
f643ea22
VG
7854
7855 return rq->has_blocked_load;
7856#else
7857 return false;
e022e0d3
PZ
7858#endif
7859}
7860
1e3c88bd
PZ
7861/**
7862 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7863 * @env: The load balancing environment.
1e3c88bd 7864 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7865 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7866 * @local_group: Does group contain this_cpu.
1e3c88bd 7867 * @sgs: variable to hold the statistics for this group.
757ffdd7 7868 * @overload: Indicate pullable load (e.g. >1 runnable task).
1e3c88bd 7869 */
bd939f45
PZ
7870static inline void update_sg_lb_stats(struct lb_env *env,
7871 struct sched_group *group, int load_idx,
4486edd1
TC
7872 int local_group, struct sg_lb_stats *sgs,
7873 bool *overload)
1e3c88bd 7874{
30ce5dab 7875 unsigned long load;
a426f99c 7876 int i, nr_running;
1e3c88bd 7877
b72ff13c
PZ
7878 memset(sgs, 0, sizeof(*sgs));
7879
ae4df9d6 7880 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7881 struct rq *rq = cpu_rq(i);
7882
63928384 7883 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 7884 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 7885
97fb7a0a 7886 /* Bias balancing toward CPUs of our domain: */
6263322c 7887 if (local_group)
04f733b4 7888 load = target_load(i, load_idx);
6263322c 7889 else
1e3c88bd 7890 load = source_load(i, load_idx);
1e3c88bd
PZ
7891
7892 sgs->group_load += load;
9e91d61d 7893 sgs->group_util += cpu_util(i);
65fdac08 7894 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7895
a426f99c
WL
7896 nr_running = rq->nr_running;
7897 if (nr_running > 1)
4486edd1
TC
7898 *overload = true;
7899
0ec8aa00
PZ
7900#ifdef CONFIG_NUMA_BALANCING
7901 sgs->nr_numa_running += rq->nr_numa_running;
7902 sgs->nr_preferred_running += rq->nr_preferred_running;
7903#endif
c7132dd6 7904 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7905 /*
7906 * No need to call idle_cpu() if nr_running is not 0
7907 */
7908 if (!nr_running && idle_cpu(i))
aae6d3dd 7909 sgs->idle_cpus++;
3b1baa64
MR
7910
7911 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 7912 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 7913 sgs->group_misfit_task_load = rq->misfit_task_load;
757ffdd7
VS
7914 *overload = 1;
7915 }
1e3c88bd
PZ
7916 }
7917
63b2ca30
NP
7918 /* Adjust by relative CPU capacity of the group */
7919 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7920 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7921
dd5feea1 7922 if (sgs->sum_nr_running)
38d0f770 7923 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7924
aae6d3dd 7925 sgs->group_weight = group->group_weight;
b37d9316 7926
ea67821b 7927 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7928 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7929}
7930
532cb4c4
MN
7931/**
7932 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7933 * @env: The load balancing environment.
532cb4c4
MN
7934 * @sds: sched_domain statistics
7935 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7936 * @sgs: sched_group statistics
532cb4c4
MN
7937 *
7938 * Determine if @sg is a busier group than the previously selected
7939 * busiest group.
e69f6186
YB
7940 *
7941 * Return: %true if @sg is a busier group than the previously selected
7942 * busiest group. %false otherwise.
532cb4c4 7943 */
bd939f45 7944static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7945 struct sd_lb_stats *sds,
7946 struct sched_group *sg,
bd939f45 7947 struct sg_lb_stats *sgs)
532cb4c4 7948{
caeb178c 7949 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7950
cad68e55
MR
7951 /*
7952 * Don't try to pull misfit tasks we can't help.
7953 * We can use max_capacity here as reduction in capacity on some
7954 * CPUs in the group should either be possible to resolve
7955 * internally or be covered by avg_load imbalance (eventually).
7956 */
7957 if (sgs->group_type == group_misfit_task &&
7958 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
7959 !group_has_capacity(env, &sds->local_stat)))
7960 return false;
7961
caeb178c 7962 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7963 return true;
7964
caeb178c
RR
7965 if (sgs->group_type < busiest->group_type)
7966 return false;
7967
7968 if (sgs->avg_load <= busiest->avg_load)
7969 return false;
7970
9e0994c0
MR
7971 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7972 goto asym_packing;
7973
7974 /*
7975 * Candidate sg has no more than one task per CPU and
7976 * has higher per-CPU capacity. Migrating tasks to less
7977 * capable CPUs may harm throughput. Maximize throughput,
7978 * power/energy consequences are not considered.
7979 */
7980 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 7981 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
7982 return false;
7983
cad68e55
MR
7984 /*
7985 * If we have more than one misfit sg go with the biggest misfit.
7986 */
7987 if (sgs->group_type == group_misfit_task &&
7988 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
7989 return false;
7990
7991asym_packing:
caeb178c
RR
7992 /* This is the busiest node in its class. */
7993 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7994 return true;
7995
97fb7a0a 7996 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
7997 if (env->idle == CPU_NOT_IDLE)
7998 return true;
532cb4c4 7999 /*
afe06efd
TC
8000 * ASYM_PACKING needs to move all the work to the highest
8001 * prority CPUs in the group, therefore mark all groups
8002 * of lower priority than ourself as busy.
532cb4c4 8003 */
afe06efd
TC
8004 if (sgs->sum_nr_running &&
8005 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8006 if (!sds->busiest)
8007 return true;
8008
97fb7a0a 8009 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8010 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8011 sg->asym_prefer_cpu))
532cb4c4
MN
8012 return true;
8013 }
8014
8015 return false;
8016}
8017
0ec8aa00
PZ
8018#ifdef CONFIG_NUMA_BALANCING
8019static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8020{
8021 if (sgs->sum_nr_running > sgs->nr_numa_running)
8022 return regular;
8023 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8024 return remote;
8025 return all;
8026}
8027
8028static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8029{
8030 if (rq->nr_running > rq->nr_numa_running)
8031 return regular;
8032 if (rq->nr_running > rq->nr_preferred_running)
8033 return remote;
8034 return all;
8035}
8036#else
8037static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8038{
8039 return all;
8040}
8041
8042static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8043{
8044 return regular;
8045}
8046#endif /* CONFIG_NUMA_BALANCING */
8047
1e3c88bd 8048/**
461819ac 8049 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8050 * @env: The load balancing environment.
1e3c88bd
PZ
8051 * @sds: variable to hold the statistics for this sched_domain.
8052 */
0ec8aa00 8053static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8054{
bd939f45
PZ
8055 struct sched_domain *child = env->sd->child;
8056 struct sched_group *sg = env->sd->groups;
05b40e05 8057 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8058 struct sg_lb_stats tmp_sgs;
dbbad719 8059 int load_idx;
4486edd1 8060 bool overload = false;
dbbad719 8061 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
1e3c88bd 8062
e022e0d3 8063#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8064 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8065 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8066#endif
8067
bd939f45 8068 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
8069
8070 do {
56cf515b 8071 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8072 int local_group;
8073
ae4df9d6 8074 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8075 if (local_group) {
8076 sds->local = sg;
05b40e05 8077 sgs = local;
b72ff13c
PZ
8078
8079 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8080 time_after_eq(jiffies, sg->sgc->next_update))
8081 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8082 }
1e3c88bd 8083
4486edd1
TC
8084 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8085 &overload);
1e3c88bd 8086
b72ff13c
PZ
8087 if (local_group)
8088 goto next_group;
8089
1e3c88bd
PZ
8090 /*
8091 * In case the child domain prefers tasks go to siblings
ea67821b 8092 * first, lower the sg capacity so that we'll try
75dd321d
NR
8093 * and move all the excess tasks away. We lower the capacity
8094 * of a group only if the local group has the capacity to fit
ea67821b
VG
8095 * these excess tasks. The extra check prevents the case where
8096 * you always pull from the heaviest group when it is already
8097 * under-utilized (possible with a large weight task outweighs
8098 * the tasks on the system).
1e3c88bd 8099 */
b72ff13c 8100 if (prefer_sibling && sds->local &&
05b40e05
SD
8101 group_has_capacity(env, local) &&
8102 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8103 sgs->group_no_capacity = 1;
79a89f92 8104 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8105 }
1e3c88bd 8106
b72ff13c 8107 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8108 sds->busiest = sg;
56cf515b 8109 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8110 }
8111
b72ff13c
PZ
8112next_group:
8113 /* Now, start updating sd_lb_stats */
90001d67 8114 sds->total_running += sgs->sum_nr_running;
b72ff13c 8115 sds->total_load += sgs->group_load;
63b2ca30 8116 sds->total_capacity += sgs->group_capacity;
b72ff13c 8117
532cb4c4 8118 sg = sg->next;
bd939f45 8119 } while (sg != env->sd->groups);
0ec8aa00 8120
f643ea22
VG
8121#ifdef CONFIG_NO_HZ_COMMON
8122 if ((env->flags & LBF_NOHZ_AGAIN) &&
8123 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8124
8125 WRITE_ONCE(nohz.next_blocked,
8126 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8127 }
8128#endif
8129
0ec8aa00
PZ
8130 if (env->sd->flags & SD_NUMA)
8131 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8132
8133 if (!env->sd->parent) {
8134 /* update overload indicator if we are at root domain */
e90c8fe1
VS
8135 if (READ_ONCE(env->dst_rq->rd->overload) != overload)
8136 WRITE_ONCE(env->dst_rq->rd->overload, overload);
4486edd1 8137 }
532cb4c4
MN
8138}
8139
532cb4c4
MN
8140/**
8141 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8142 * sched domain.
532cb4c4
MN
8143 *
8144 * This is primarily intended to used at the sibling level. Some
8145 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8146 * case of POWER7, it can move to lower SMT modes only when higher
8147 * threads are idle. When in lower SMT modes, the threads will
8148 * perform better since they share less core resources. Hence when we
8149 * have idle threads, we want them to be the higher ones.
8150 *
8151 * This packing function is run on idle threads. It checks to see if
8152 * the busiest CPU in this domain (core in the P7 case) has a higher
8153 * CPU number than the packing function is being run on. Here we are
8154 * assuming lower CPU number will be equivalent to lower a SMT thread
8155 * number.
8156 *
e69f6186 8157 * Return: 1 when packing is required and a task should be moved to
46123355 8158 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8159 *
cd96891d 8160 * @env: The load balancing environment.
532cb4c4 8161 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8162 */
bd939f45 8163static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8164{
8165 int busiest_cpu;
8166
bd939f45 8167 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8168 return 0;
8169
1f621e02
SD
8170 if (env->idle == CPU_NOT_IDLE)
8171 return 0;
8172
532cb4c4
MN
8173 if (!sds->busiest)
8174 return 0;
8175
afe06efd
TC
8176 busiest_cpu = sds->busiest->asym_prefer_cpu;
8177 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8178 return 0;
8179
bd939f45 8180 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 8181 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 8182 SCHED_CAPACITY_SCALE);
bd939f45 8183
532cb4c4 8184 return 1;
1e3c88bd
PZ
8185}
8186
8187/**
8188 * fix_small_imbalance - Calculate the minor imbalance that exists
8189 * amongst the groups of a sched_domain, during
8190 * load balancing.
cd96891d 8191 * @env: The load balancing environment.
1e3c88bd 8192 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8193 */
bd939f45
PZ
8194static inline
8195void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8196{
63b2ca30 8197 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8198 unsigned int imbn = 2;
dd5feea1 8199 unsigned long scaled_busy_load_per_task;
56cf515b 8200 struct sg_lb_stats *local, *busiest;
1e3c88bd 8201
56cf515b
JK
8202 local = &sds->local_stat;
8203 busiest = &sds->busiest_stat;
1e3c88bd 8204
56cf515b
JK
8205 if (!local->sum_nr_running)
8206 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8207 else if (busiest->load_per_task > local->load_per_task)
8208 imbn = 1;
dd5feea1 8209
56cf515b 8210 scaled_busy_load_per_task =
ca8ce3d0 8211 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8212 busiest->group_capacity;
56cf515b 8213
3029ede3
VD
8214 if (busiest->avg_load + scaled_busy_load_per_task >=
8215 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8216 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8217 return;
8218 }
8219
8220 /*
8221 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8222 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8223 * moving them.
8224 */
8225
63b2ca30 8226 capa_now += busiest->group_capacity *
56cf515b 8227 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8228 capa_now += local->group_capacity *
56cf515b 8229 min(local->load_per_task, local->avg_load);
ca8ce3d0 8230 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8231
8232 /* Amount of load we'd subtract */
a2cd4260 8233 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8234 capa_move += busiest->group_capacity *
56cf515b 8235 min(busiest->load_per_task,
a2cd4260 8236 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8237 }
1e3c88bd
PZ
8238
8239 /* Amount of load we'd add */
63b2ca30 8240 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8241 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8242 tmp = (busiest->avg_load * busiest->group_capacity) /
8243 local->group_capacity;
56cf515b 8244 } else {
ca8ce3d0 8245 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8246 local->group_capacity;
56cf515b 8247 }
63b2ca30 8248 capa_move += local->group_capacity *
3ae11c90 8249 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8250 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8251
8252 /* Move if we gain throughput */
63b2ca30 8253 if (capa_move > capa_now)
56cf515b 8254 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8255}
8256
8257/**
8258 * calculate_imbalance - Calculate the amount of imbalance present within the
8259 * groups of a given sched_domain during load balance.
bd939f45 8260 * @env: load balance environment
1e3c88bd 8261 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8262 */
bd939f45 8263static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8264{
dd5feea1 8265 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8266 struct sg_lb_stats *local, *busiest;
8267
8268 local = &sds->local_stat;
56cf515b 8269 busiest = &sds->busiest_stat;
dd5feea1 8270
caeb178c 8271 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8272 /*
8273 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8274 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8275 */
56cf515b
JK
8276 busiest->load_per_task =
8277 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8278 }
8279
1e3c88bd 8280 /*
885e542c
DE
8281 * Avg load of busiest sg can be less and avg load of local sg can
8282 * be greater than avg load across all sgs of sd because avg load
8283 * factors in sg capacity and sgs with smaller group_type are
8284 * skipped when updating the busiest sg:
1e3c88bd 8285 */
cad68e55
MR
8286 if (busiest->group_type != group_misfit_task &&
8287 (busiest->avg_load <= sds->avg_load ||
8288 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8289 env->imbalance = 0;
8290 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8291 }
8292
9a5d9ba6 8293 /*
97fb7a0a 8294 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8295 */
8296 if (busiest->group_type == group_overloaded &&
8297 local->group_type == group_overloaded) {
1be0eb2a 8298 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8299 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8300 load_above_capacity -= busiest->group_capacity;
26656215 8301 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8302 load_above_capacity /= busiest->group_capacity;
8303 } else
ea67821b 8304 load_above_capacity = ~0UL;
dd5feea1
SS
8305 }
8306
8307 /*
97fb7a0a 8308 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8309 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8310 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8311 * we also don't want to reduce the group load below the group
8312 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8313 */
30ce5dab 8314 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8315
8316 /* How much load to actually move to equalise the imbalance */
56cf515b 8317 env->imbalance = min(
63b2ca30
NP
8318 max_pull * busiest->group_capacity,
8319 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8320 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8321
cad68e55
MR
8322 /* Boost imbalance to allow misfit task to be balanced. */
8323 if (busiest->group_type == group_misfit_task) {
8324 env->imbalance = max_t(long, env->imbalance,
8325 busiest->group_misfit_task_load);
8326 }
8327
1e3c88bd
PZ
8328 /*
8329 * if *imbalance is less than the average load per runnable task
25985edc 8330 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8331 * a think about bumping its value to force at least one task to be
8332 * moved
8333 */
56cf515b 8334 if (env->imbalance < busiest->load_per_task)
bd939f45 8335 return fix_small_imbalance(env, sds);
1e3c88bd 8336}
fab47622 8337
1e3c88bd
PZ
8338/******* find_busiest_group() helpers end here *********************/
8339
8340/**
8341 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8342 * if there is an imbalance.
1e3c88bd
PZ
8343 *
8344 * Also calculates the amount of weighted load which should be moved
8345 * to restore balance.
8346 *
cd96891d 8347 * @env: The load balancing environment.
1e3c88bd 8348 *
e69f6186 8349 * Return: - The busiest group if imbalance exists.
1e3c88bd 8350 */
56cf515b 8351static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8352{
56cf515b 8353 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8354 struct sd_lb_stats sds;
8355
147c5fc2 8356 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8357
8358 /*
8359 * Compute the various statistics relavent for load balancing at
8360 * this level.
8361 */
23f0d209 8362 update_sd_lb_stats(env, &sds);
56cf515b
JK
8363 local = &sds.local_stat;
8364 busiest = &sds.busiest_stat;
1e3c88bd 8365
ea67821b 8366 /* ASYM feature bypasses nice load balance check */
1f621e02 8367 if (check_asym_packing(env, &sds))
532cb4c4
MN
8368 return sds.busiest;
8369
cc57aa8f 8370 /* There is no busy sibling group to pull tasks from */
56cf515b 8371 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8372 goto out_balanced;
8373
90001d67 8374 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8375 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8376 / sds.total_capacity;
b0432d8f 8377
866ab43e
PZ
8378 /*
8379 * If the busiest group is imbalanced the below checks don't
30ce5dab 8380 * work because they assume all things are equal, which typically
866ab43e
PZ
8381 * isn't true due to cpus_allowed constraints and the like.
8382 */
caeb178c 8383 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8384 goto force_balance;
8385
583ffd99
BJ
8386 /*
8387 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8388 * capacities from resulting in underutilization due to avg_load.
8389 */
8390 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8391 busiest->group_no_capacity)
fab47622
NR
8392 goto force_balance;
8393
cad68e55
MR
8394 /* Misfit tasks should be dealt with regardless of the avg load */
8395 if (busiest->group_type == group_misfit_task)
8396 goto force_balance;
8397
cc57aa8f 8398 /*
9c58c79a 8399 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8400 * don't try and pull any tasks.
8401 */
56cf515b 8402 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8403 goto out_balanced;
8404
cc57aa8f
PZ
8405 /*
8406 * Don't pull any tasks if this group is already above the domain
8407 * average load.
8408 */
56cf515b 8409 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8410 goto out_balanced;
8411
bd939f45 8412 if (env->idle == CPU_IDLE) {
aae6d3dd 8413 /*
97fb7a0a 8414 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8415 * and there is no imbalance between this and busiest group
97fb7a0a 8416 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8417 * significant if the diff is greater than 1 otherwise we
8418 * might end up to just move the imbalance on another group
aae6d3dd 8419 */
43f4d666
VG
8420 if ((busiest->group_type != group_overloaded) &&
8421 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8422 goto out_balanced;
c186fafe
PZ
8423 } else {
8424 /*
8425 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8426 * imbalance_pct to be conservative.
8427 */
56cf515b
JK
8428 if (100 * busiest->avg_load <=
8429 env->sd->imbalance_pct * local->avg_load)
c186fafe 8430 goto out_balanced;
aae6d3dd 8431 }
1e3c88bd 8432
fab47622 8433force_balance:
1e3c88bd 8434 /* Looks like there is an imbalance. Compute it */
cad68e55 8435 env->src_grp_type = busiest->group_type;
bd939f45 8436 calculate_imbalance(env, &sds);
bb3485c8 8437 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8438
8439out_balanced:
bd939f45 8440 env->imbalance = 0;
1e3c88bd
PZ
8441 return NULL;
8442}
8443
8444/*
97fb7a0a 8445 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8446 */
bd939f45 8447static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8448 struct sched_group *group)
1e3c88bd
PZ
8449{
8450 struct rq *busiest = NULL, *rq;
ced549fa 8451 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8452 int i;
8453
ae4df9d6 8454 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8455 unsigned long capacity, wl;
0ec8aa00
PZ
8456 enum fbq_type rt;
8457
8458 rq = cpu_rq(i);
8459 rt = fbq_classify_rq(rq);
1e3c88bd 8460
0ec8aa00
PZ
8461 /*
8462 * We classify groups/runqueues into three groups:
8463 * - regular: there are !numa tasks
8464 * - remote: there are numa tasks that run on the 'wrong' node
8465 * - all: there is no distinction
8466 *
8467 * In order to avoid migrating ideally placed numa tasks,
8468 * ignore those when there's better options.
8469 *
8470 * If we ignore the actual busiest queue to migrate another
8471 * task, the next balance pass can still reduce the busiest
8472 * queue by moving tasks around inside the node.
8473 *
8474 * If we cannot move enough load due to this classification
8475 * the next pass will adjust the group classification and
8476 * allow migration of more tasks.
8477 *
8478 * Both cases only affect the total convergence complexity.
8479 */
8480 if (rt > env->fbq_type)
8481 continue;
8482
cad68e55
MR
8483 /*
8484 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8485 * seek the "biggest" misfit task.
8486 */
8487 if (env->src_grp_type == group_misfit_task) {
8488 if (rq->misfit_task_load > busiest_load) {
8489 busiest_load = rq->misfit_task_load;
8490 busiest = rq;
8491 }
8492
8493 continue;
8494 }
8495
ced549fa 8496 capacity = capacity_of(i);
9d5efe05 8497
4ad3831a
CR
8498 /*
8499 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8500 * eventually lead to active_balancing high->low capacity.
8501 * Higher per-CPU capacity is considered better than balancing
8502 * average load.
8503 */
8504 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8505 capacity_of(env->dst_cpu) < capacity &&
8506 rq->nr_running == 1)
8507 continue;
8508
c7132dd6 8509 wl = weighted_cpuload(rq);
1e3c88bd 8510
6e40f5bb
TG
8511 /*
8512 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8513 * which is not scaled with the CPU capacity.
6e40f5bb 8514 */
ea67821b
VG
8515
8516 if (rq->nr_running == 1 && wl > env->imbalance &&
8517 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8518 continue;
8519
6e40f5bb 8520 /*
97fb7a0a
IM
8521 * For the load comparisons with the other CPU's, consider
8522 * the weighted_cpuload() scaled with the CPU capacity, so
8523 * that the load can be moved away from the CPU that is
ced549fa 8524 * potentially running at a lower capacity.
95a79b80 8525 *
ced549fa 8526 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8527 * multiplication to rid ourselves of the division works out
ced549fa
NP
8528 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8529 * our previous maximum.
6e40f5bb 8530 */
ced549fa 8531 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8532 busiest_load = wl;
ced549fa 8533 busiest_capacity = capacity;
1e3c88bd
PZ
8534 busiest = rq;
8535 }
8536 }
8537
8538 return busiest;
8539}
8540
8541/*
8542 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8543 * so long as it is large enough.
8544 */
8545#define MAX_PINNED_INTERVAL 512
8546
bd939f45 8547static int need_active_balance(struct lb_env *env)
1af3ed3d 8548{
bd939f45
PZ
8549 struct sched_domain *sd = env->sd;
8550
8551 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8552
8553 /*
8554 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8555 * lower priority CPUs in order to pack all tasks in the
8556 * highest priority CPUs.
532cb4c4 8557 */
afe06efd
TC
8558 if ((sd->flags & SD_ASYM_PACKING) &&
8559 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8560 return 1;
1af3ed3d
PZ
8561 }
8562
1aaf90a4
VG
8563 /*
8564 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8565 * It's worth migrating the task if the src_cpu's capacity is reduced
8566 * because of other sched_class or IRQs if more capacity stays
8567 * available on dst_cpu.
8568 */
8569 if ((env->idle != CPU_NOT_IDLE) &&
8570 (env->src_rq->cfs.h_nr_running == 1)) {
8571 if ((check_cpu_capacity(env->src_rq, sd)) &&
8572 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8573 return 1;
8574 }
8575
cad68e55
MR
8576 if (env->src_grp_type == group_misfit_task)
8577 return 1;
8578
1af3ed3d
PZ
8579 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8580}
8581
969c7921
TH
8582static int active_load_balance_cpu_stop(void *data);
8583
23f0d209
JK
8584static int should_we_balance(struct lb_env *env)
8585{
8586 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8587 int cpu, balance_cpu = -1;
8588
024c9d2f
PZ
8589 /*
8590 * Ensure the balancing environment is consistent; can happen
8591 * when the softirq triggers 'during' hotplug.
8592 */
8593 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8594 return 0;
8595
23f0d209 8596 /*
97fb7a0a 8597 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8598 * to do the newly idle load balance.
8599 */
8600 if (env->idle == CPU_NEWLY_IDLE)
8601 return 1;
8602
97fb7a0a 8603 /* Try to find first idle CPU */
e5c14b1f 8604 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8605 if (!idle_cpu(cpu))
23f0d209
JK
8606 continue;
8607
8608 balance_cpu = cpu;
8609 break;
8610 }
8611
8612 if (balance_cpu == -1)
8613 balance_cpu = group_balance_cpu(sg);
8614
8615 /*
97fb7a0a 8616 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8617 * is eligible for doing load balancing at this and above domains.
8618 */
b0cff9d8 8619 return balance_cpu == env->dst_cpu;
23f0d209
JK
8620}
8621
1e3c88bd
PZ
8622/*
8623 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8624 * tasks if there is an imbalance.
8625 */
8626static int load_balance(int this_cpu, struct rq *this_rq,
8627 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8628 int *continue_balancing)
1e3c88bd 8629{
88b8dac0 8630 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8631 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8632 struct sched_group *group;
1e3c88bd 8633 struct rq *busiest;
8a8c69c3 8634 struct rq_flags rf;
4ba29684 8635 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8636
8e45cb54
PZ
8637 struct lb_env env = {
8638 .sd = sd,
ddcdf6e7
PZ
8639 .dst_cpu = this_cpu,
8640 .dst_rq = this_rq,
ae4df9d6 8641 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8642 .idle = idle,
eb95308e 8643 .loop_break = sched_nr_migrate_break,
b9403130 8644 .cpus = cpus,
0ec8aa00 8645 .fbq_type = all,
163122b7 8646 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8647 };
8648
65a4433a 8649 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8650
ae92882e 8651 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8652
8653redo:
23f0d209
JK
8654 if (!should_we_balance(&env)) {
8655 *continue_balancing = 0;
1e3c88bd 8656 goto out_balanced;
23f0d209 8657 }
1e3c88bd 8658
23f0d209 8659 group = find_busiest_group(&env);
1e3c88bd 8660 if (!group) {
ae92882e 8661 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8662 goto out_balanced;
8663 }
8664
b9403130 8665 busiest = find_busiest_queue(&env, group);
1e3c88bd 8666 if (!busiest) {
ae92882e 8667 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8668 goto out_balanced;
8669 }
8670
78feefc5 8671 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8672
ae92882e 8673 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8674
1aaf90a4
VG
8675 env.src_cpu = busiest->cpu;
8676 env.src_rq = busiest;
8677
1e3c88bd
PZ
8678 ld_moved = 0;
8679 if (busiest->nr_running > 1) {
8680 /*
8681 * Attempt to move tasks. If find_busiest_group has found
8682 * an imbalance but busiest->nr_running <= 1, the group is
8683 * still unbalanced. ld_moved simply stays zero, so it is
8684 * correctly treated as an imbalance.
8685 */
8e45cb54 8686 env.flags |= LBF_ALL_PINNED;
c82513e5 8687 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8688
5d6523eb 8689more_balance:
8a8c69c3 8690 rq_lock_irqsave(busiest, &rf);
3bed5e21 8691 update_rq_clock(busiest);
88b8dac0
SV
8692
8693 /*
8694 * cur_ld_moved - load moved in current iteration
8695 * ld_moved - cumulative load moved across iterations
8696 */
163122b7 8697 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8698
8699 /*
163122b7
KT
8700 * We've detached some tasks from busiest_rq. Every
8701 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8702 * unlock busiest->lock, and we are able to be sure
8703 * that nobody can manipulate the tasks in parallel.
8704 * See task_rq_lock() family for the details.
1e3c88bd 8705 */
163122b7 8706
8a8c69c3 8707 rq_unlock(busiest, &rf);
163122b7
KT
8708
8709 if (cur_ld_moved) {
8710 attach_tasks(&env);
8711 ld_moved += cur_ld_moved;
8712 }
8713
8a8c69c3 8714 local_irq_restore(rf.flags);
88b8dac0 8715
f1cd0858
JK
8716 if (env.flags & LBF_NEED_BREAK) {
8717 env.flags &= ~LBF_NEED_BREAK;
8718 goto more_balance;
8719 }
8720
88b8dac0
SV
8721 /*
8722 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8723 * us and move them to an alternate dst_cpu in our sched_group
8724 * where they can run. The upper limit on how many times we
97fb7a0a 8725 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8726 * sched_group.
8727 *
8728 * This changes load balance semantics a bit on who can move
8729 * load to a given_cpu. In addition to the given_cpu itself
8730 * (or a ilb_cpu acting on its behalf where given_cpu is
8731 * nohz-idle), we now have balance_cpu in a position to move
8732 * load to given_cpu. In rare situations, this may cause
8733 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8734 * _independently_ and at _same_ time to move some load to
8735 * given_cpu) causing exceess load to be moved to given_cpu.
8736 * This however should not happen so much in practice and
8737 * moreover subsequent load balance cycles should correct the
8738 * excess load moved.
8739 */
6263322c 8740 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8741
97fb7a0a 8742 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
8743 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8744
78feefc5 8745 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8746 env.dst_cpu = env.new_dst_cpu;
6263322c 8747 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8748 env.loop = 0;
8749 env.loop_break = sched_nr_migrate_break;
e02e60c1 8750
88b8dac0
SV
8751 /*
8752 * Go back to "more_balance" rather than "redo" since we
8753 * need to continue with same src_cpu.
8754 */
8755 goto more_balance;
8756 }
1e3c88bd 8757
6263322c
PZ
8758 /*
8759 * We failed to reach balance because of affinity.
8760 */
8761 if (sd_parent) {
63b2ca30 8762 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8763
afdeee05 8764 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8765 *group_imbalance = 1;
6263322c
PZ
8766 }
8767
1e3c88bd 8768 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8769 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8770 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8771 /*
8772 * Attempting to continue load balancing at the current
8773 * sched_domain level only makes sense if there are
8774 * active CPUs remaining as possible busiest CPUs to
8775 * pull load from which are not contained within the
8776 * destination group that is receiving any migrated
8777 * load.
8778 */
8779 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8780 env.loop = 0;
8781 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8782 goto redo;
bbf18b19 8783 }
afdeee05 8784 goto out_all_pinned;
1e3c88bd
PZ
8785 }
8786 }
8787
8788 if (!ld_moved) {
ae92882e 8789 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8790 /*
8791 * Increment the failure counter only on periodic balance.
8792 * We do not want newidle balance, which can be very
8793 * frequent, pollute the failure counter causing
8794 * excessive cache_hot migrations and active balances.
8795 */
8796 if (idle != CPU_NEWLY_IDLE)
8797 sd->nr_balance_failed++;
1e3c88bd 8798
bd939f45 8799 if (need_active_balance(&env)) {
8a8c69c3
PZ
8800 unsigned long flags;
8801
1e3c88bd
PZ
8802 raw_spin_lock_irqsave(&busiest->lock, flags);
8803
97fb7a0a
IM
8804 /*
8805 * Don't kick the active_load_balance_cpu_stop,
8806 * if the curr task on busiest CPU can't be
8807 * moved to this_cpu:
1e3c88bd 8808 */
0c98d344 8809 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8810 raw_spin_unlock_irqrestore(&busiest->lock,
8811 flags);
8e45cb54 8812 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8813 goto out_one_pinned;
8814 }
8815
969c7921
TH
8816 /*
8817 * ->active_balance synchronizes accesses to
8818 * ->active_balance_work. Once set, it's cleared
8819 * only after active load balance is finished.
8820 */
1e3c88bd
PZ
8821 if (!busiest->active_balance) {
8822 busiest->active_balance = 1;
8823 busiest->push_cpu = this_cpu;
8824 active_balance = 1;
8825 }
8826 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8827
bd939f45 8828 if (active_balance) {
969c7921
TH
8829 stop_one_cpu_nowait(cpu_of(busiest),
8830 active_load_balance_cpu_stop, busiest,
8831 &busiest->active_balance_work);
bd939f45 8832 }
1e3c88bd 8833
d02c0711 8834 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8835 sd->nr_balance_failed = sd->cache_nice_tries+1;
8836 }
8837 } else
8838 sd->nr_balance_failed = 0;
8839
8840 if (likely(!active_balance)) {
8841 /* We were unbalanced, so reset the balancing interval */
8842 sd->balance_interval = sd->min_interval;
8843 } else {
8844 /*
8845 * If we've begun active balancing, start to back off. This
8846 * case may not be covered by the all_pinned logic if there
8847 * is only 1 task on the busy runqueue (because we don't call
163122b7 8848 * detach_tasks).
1e3c88bd
PZ
8849 */
8850 if (sd->balance_interval < sd->max_interval)
8851 sd->balance_interval *= 2;
8852 }
8853
1e3c88bd
PZ
8854 goto out;
8855
8856out_balanced:
afdeee05
VG
8857 /*
8858 * We reach balance although we may have faced some affinity
8859 * constraints. Clear the imbalance flag if it was set.
8860 */
8861 if (sd_parent) {
8862 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8863
8864 if (*group_imbalance)
8865 *group_imbalance = 0;
8866 }
8867
8868out_all_pinned:
8869 /*
8870 * We reach balance because all tasks are pinned at this level so
8871 * we can't migrate them. Let the imbalance flag set so parent level
8872 * can try to migrate them.
8873 */
ae92882e 8874 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8875
8876 sd->nr_balance_failed = 0;
8877
8878out_one_pinned:
8879 /* tune up the balancing interval */
8e45cb54 8880 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8881 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8882 (sd->balance_interval < sd->max_interval))
8883 sd->balance_interval *= 2;
8884
46e49b38 8885 ld_moved = 0;
1e3c88bd 8886out:
1e3c88bd
PZ
8887 return ld_moved;
8888}
8889
52a08ef1
JL
8890static inline unsigned long
8891get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8892{
8893 unsigned long interval = sd->balance_interval;
8894
8895 if (cpu_busy)
8896 interval *= sd->busy_factor;
8897
8898 /* scale ms to jiffies */
8899 interval = msecs_to_jiffies(interval);
8900 interval = clamp(interval, 1UL, max_load_balance_interval);
8901
8902 return interval;
8903}
8904
8905static inline void
31851a98 8906update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8907{
8908 unsigned long interval, next;
8909
31851a98
LY
8910 /* used by idle balance, so cpu_busy = 0 */
8911 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8912 next = sd->last_balance + interval;
8913
8914 if (time_after(*next_balance, next))
8915 *next_balance = next;
8916}
8917
1e3c88bd 8918/*
97fb7a0a 8919 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
8920 * running tasks off the busiest CPU onto idle CPUs. It requires at
8921 * least 1 task to be running on each physical CPU where possible, and
8922 * avoids physical / logical imbalances.
1e3c88bd 8923 */
969c7921 8924static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8925{
969c7921
TH
8926 struct rq *busiest_rq = data;
8927 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8928 int target_cpu = busiest_rq->push_cpu;
969c7921 8929 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8930 struct sched_domain *sd;
e5673f28 8931 struct task_struct *p = NULL;
8a8c69c3 8932 struct rq_flags rf;
969c7921 8933
8a8c69c3 8934 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8935 /*
8936 * Between queueing the stop-work and running it is a hole in which
8937 * CPUs can become inactive. We should not move tasks from or to
8938 * inactive CPUs.
8939 */
8940 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8941 goto out_unlock;
969c7921 8942
97fb7a0a 8943 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
8944 if (unlikely(busiest_cpu != smp_processor_id() ||
8945 !busiest_rq->active_balance))
8946 goto out_unlock;
1e3c88bd
PZ
8947
8948 /* Is there any task to move? */
8949 if (busiest_rq->nr_running <= 1)
969c7921 8950 goto out_unlock;
1e3c88bd
PZ
8951
8952 /*
8953 * This condition is "impossible", if it occurs
8954 * we need to fix it. Originally reported by
97fb7a0a 8955 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
8956 */
8957 BUG_ON(busiest_rq == target_rq);
8958
1e3c88bd 8959 /* Search for an sd spanning us and the target CPU. */
dce840a0 8960 rcu_read_lock();
1e3c88bd
PZ
8961 for_each_domain(target_cpu, sd) {
8962 if ((sd->flags & SD_LOAD_BALANCE) &&
8963 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8964 break;
8965 }
8966
8967 if (likely(sd)) {
8e45cb54
PZ
8968 struct lb_env env = {
8969 .sd = sd,
ddcdf6e7
PZ
8970 .dst_cpu = target_cpu,
8971 .dst_rq = target_rq,
8972 .src_cpu = busiest_rq->cpu,
8973 .src_rq = busiest_rq,
8e45cb54 8974 .idle = CPU_IDLE,
65a4433a
JH
8975 /*
8976 * can_migrate_task() doesn't need to compute new_dst_cpu
8977 * for active balancing. Since we have CPU_IDLE, but no
8978 * @dst_grpmask we need to make that test go away with lying
8979 * about DST_PINNED.
8980 */
8981 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8982 };
8983
ae92882e 8984 schedstat_inc(sd->alb_count);
3bed5e21 8985 update_rq_clock(busiest_rq);
1e3c88bd 8986
e5673f28 8987 p = detach_one_task(&env);
d02c0711 8988 if (p) {
ae92882e 8989 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8990 /* Active balancing done, reset the failure counter. */
8991 sd->nr_balance_failed = 0;
8992 } else {
ae92882e 8993 schedstat_inc(sd->alb_failed);
d02c0711 8994 }
1e3c88bd 8995 }
dce840a0 8996 rcu_read_unlock();
969c7921
TH
8997out_unlock:
8998 busiest_rq->active_balance = 0;
8a8c69c3 8999 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9000
9001 if (p)
9002 attach_one_task(target_rq, p);
9003
9004 local_irq_enable();
9005
969c7921 9006 return 0;
1e3c88bd
PZ
9007}
9008
af3fe03c
PZ
9009static DEFINE_SPINLOCK(balancing);
9010
9011/*
9012 * Scale the max load_balance interval with the number of CPUs in the system.
9013 * This trades load-balance latency on larger machines for less cross talk.
9014 */
9015void update_max_interval(void)
9016{
9017 max_load_balance_interval = HZ*num_online_cpus()/10;
9018}
9019
9020/*
9021 * It checks each scheduling domain to see if it is due to be balanced,
9022 * and initiates a balancing operation if so.
9023 *
9024 * Balancing parameters are set up in init_sched_domains.
9025 */
9026static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9027{
9028 int continue_balancing = 1;
9029 int cpu = rq->cpu;
9030 unsigned long interval;
9031 struct sched_domain *sd;
9032 /* Earliest time when we have to do rebalance again */
9033 unsigned long next_balance = jiffies + 60*HZ;
9034 int update_next_balance = 0;
9035 int need_serialize, need_decay = 0;
9036 u64 max_cost = 0;
9037
9038 rcu_read_lock();
9039 for_each_domain(cpu, sd) {
9040 /*
9041 * Decay the newidle max times here because this is a regular
9042 * visit to all the domains. Decay ~1% per second.
9043 */
9044 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9045 sd->max_newidle_lb_cost =
9046 (sd->max_newidle_lb_cost * 253) / 256;
9047 sd->next_decay_max_lb_cost = jiffies + HZ;
9048 need_decay = 1;
9049 }
9050 max_cost += sd->max_newidle_lb_cost;
9051
9052 if (!(sd->flags & SD_LOAD_BALANCE))
9053 continue;
9054
9055 /*
9056 * Stop the load balance at this level. There is another
9057 * CPU in our sched group which is doing load balancing more
9058 * actively.
9059 */
9060 if (!continue_balancing) {
9061 if (need_decay)
9062 continue;
9063 break;
9064 }
9065
9066 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9067
9068 need_serialize = sd->flags & SD_SERIALIZE;
9069 if (need_serialize) {
9070 if (!spin_trylock(&balancing))
9071 goto out;
9072 }
9073
9074 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9075 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9076 /*
9077 * The LBF_DST_PINNED logic could have changed
9078 * env->dst_cpu, so we can't know our idle
9079 * state even if we migrated tasks. Update it.
9080 */
9081 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9082 }
9083 sd->last_balance = jiffies;
9084 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9085 }
9086 if (need_serialize)
9087 spin_unlock(&balancing);
9088out:
9089 if (time_after(next_balance, sd->last_balance + interval)) {
9090 next_balance = sd->last_balance + interval;
9091 update_next_balance = 1;
9092 }
9093 }
9094 if (need_decay) {
9095 /*
9096 * Ensure the rq-wide value also decays but keep it at a
9097 * reasonable floor to avoid funnies with rq->avg_idle.
9098 */
9099 rq->max_idle_balance_cost =
9100 max((u64)sysctl_sched_migration_cost, max_cost);
9101 }
9102 rcu_read_unlock();
9103
9104 /*
9105 * next_balance will be updated only when there is a need.
9106 * When the cpu is attached to null domain for ex, it will not be
9107 * updated.
9108 */
9109 if (likely(update_next_balance)) {
9110 rq->next_balance = next_balance;
9111
9112#ifdef CONFIG_NO_HZ_COMMON
9113 /*
9114 * If this CPU has been elected to perform the nohz idle
9115 * balance. Other idle CPUs have already rebalanced with
9116 * nohz_idle_balance() and nohz.next_balance has been
9117 * updated accordingly. This CPU is now running the idle load
9118 * balance for itself and we need to update the
9119 * nohz.next_balance accordingly.
9120 */
9121 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9122 nohz.next_balance = rq->next_balance;
9123#endif
9124 }
9125}
9126
d987fc7f
MG
9127static inline int on_null_domain(struct rq *rq)
9128{
9129 return unlikely(!rcu_dereference_sched(rq->sd));
9130}
9131
3451d024 9132#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9133/*
9134 * idle load balancing details
83cd4fe2
VP
9135 * - When one of the busy CPUs notice that there may be an idle rebalancing
9136 * needed, they will kick the idle load balancer, which then does idle
9137 * load balancing for all the idle CPUs.
9138 */
1e3c88bd 9139
3dd0337d 9140static inline int find_new_ilb(void)
1e3c88bd 9141{
0b005cf5 9142 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9143
786d6dc7
SS
9144 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9145 return ilb;
9146
9147 return nr_cpu_ids;
1e3c88bd 9148}
1e3c88bd 9149
83cd4fe2
VP
9150/*
9151 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9152 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9153 * CPU (if there is one).
9154 */
a4064fb6 9155static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9156{
9157 int ilb_cpu;
9158
9159 nohz.next_balance++;
9160
3dd0337d 9161 ilb_cpu = find_new_ilb();
83cd4fe2 9162
0b005cf5
SS
9163 if (ilb_cpu >= nr_cpu_ids)
9164 return;
83cd4fe2 9165
a4064fb6 9166 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9167 if (flags & NOHZ_KICK_MASK)
1c792db7 9168 return;
4550487a 9169
1c792db7
SS
9170 /*
9171 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9172 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9173 * is idle. And the softirq performing nohz idle load balance
9174 * will be run before returning from the IPI.
9175 */
9176 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9177}
9178
9179/*
9180 * Current heuristic for kicking the idle load balancer in the presence
9181 * of an idle cpu in the system.
9182 * - This rq has more than one task.
9183 * - This rq has at least one CFS task and the capacity of the CPU is
9184 * significantly reduced because of RT tasks or IRQs.
9185 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9186 * multiple busy cpu.
9187 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9188 * domain span are idle.
9189 */
9190static void nohz_balancer_kick(struct rq *rq)
9191{
9192 unsigned long now = jiffies;
9193 struct sched_domain_shared *sds;
9194 struct sched_domain *sd;
9195 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9196 unsigned int flags = 0;
4550487a
PZ
9197
9198 if (unlikely(rq->idle_balance))
9199 return;
9200
9201 /*
9202 * We may be recently in ticked or tickless idle mode. At the first
9203 * busy tick after returning from idle, we will update the busy stats.
9204 */
00357f5e 9205 nohz_balance_exit_idle(rq);
4550487a
PZ
9206
9207 /*
9208 * None are in tickless mode and hence no need for NOHZ idle load
9209 * balancing.
9210 */
9211 if (likely(!atomic_read(&nohz.nr_cpus)))
9212 return;
9213
f643ea22
VG
9214 if (READ_ONCE(nohz.has_blocked) &&
9215 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9216 flags = NOHZ_STATS_KICK;
9217
4550487a 9218 if (time_before(now, nohz.next_balance))
a4064fb6 9219 goto out;
4550487a 9220
5fbdfae5 9221 if (rq->nr_running >= 2 || rq->misfit_task_load) {
a4064fb6 9222 flags = NOHZ_KICK_MASK;
4550487a
PZ
9223 goto out;
9224 }
9225
9226 rcu_read_lock();
9227 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9228 if (sds) {
9229 /*
9230 * XXX: write a coherent comment on why we do this.
9231 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9232 */
9233 nr_busy = atomic_read(&sds->nr_busy_cpus);
9234 if (nr_busy > 1) {
a4064fb6 9235 flags = NOHZ_KICK_MASK;
4550487a
PZ
9236 goto unlock;
9237 }
9238
9239 }
9240
9241 sd = rcu_dereference(rq->sd);
9242 if (sd) {
9243 if ((rq->cfs.h_nr_running >= 1) &&
9244 check_cpu_capacity(rq, sd)) {
a4064fb6 9245 flags = NOHZ_KICK_MASK;
4550487a
PZ
9246 goto unlock;
9247 }
9248 }
9249
9250 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9251 if (sd) {
9252 for_each_cpu(i, sched_domain_span(sd)) {
9253 if (i == cpu ||
9254 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9255 continue;
9256
9257 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9258 flags = NOHZ_KICK_MASK;
4550487a
PZ
9259 goto unlock;
9260 }
9261 }
9262 }
9263unlock:
9264 rcu_read_unlock();
9265out:
a4064fb6
PZ
9266 if (flags)
9267 kick_ilb(flags);
83cd4fe2
VP
9268}
9269
00357f5e 9270static void set_cpu_sd_state_busy(int cpu)
71325960 9271{
00357f5e 9272 struct sched_domain *sd;
a22e47a4 9273
00357f5e
PZ
9274 rcu_read_lock();
9275 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9276
00357f5e
PZ
9277 if (!sd || !sd->nohz_idle)
9278 goto unlock;
9279 sd->nohz_idle = 0;
9280
9281 atomic_inc(&sd->shared->nr_busy_cpus);
9282unlock:
9283 rcu_read_unlock();
71325960
SS
9284}
9285
00357f5e
PZ
9286void nohz_balance_exit_idle(struct rq *rq)
9287{
9288 SCHED_WARN_ON(rq != this_rq());
9289
9290 if (likely(!rq->nohz_tick_stopped))
9291 return;
9292
9293 rq->nohz_tick_stopped = 0;
9294 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9295 atomic_dec(&nohz.nr_cpus);
9296
9297 set_cpu_sd_state_busy(rq->cpu);
9298}
9299
9300static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9301{
9302 struct sched_domain *sd;
69e1e811 9303
69e1e811 9304 rcu_read_lock();
0e369d75 9305 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9306
9307 if (!sd || sd->nohz_idle)
9308 goto unlock;
9309 sd->nohz_idle = 1;
9310
0e369d75 9311 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9312unlock:
69e1e811
SS
9313 rcu_read_unlock();
9314}
9315
1e3c88bd 9316/*
97fb7a0a 9317 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9318 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9319 */
c1cc017c 9320void nohz_balance_enter_idle(int cpu)
1e3c88bd 9321{
00357f5e
PZ
9322 struct rq *rq = cpu_rq(cpu);
9323
9324 SCHED_WARN_ON(cpu != smp_processor_id());
9325
97fb7a0a 9326 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9327 if (!cpu_active(cpu))
9328 return;
9329
387bc8b5 9330 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9331 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9332 return;
9333
f643ea22
VG
9334 /*
9335 * Can be set safely without rq->lock held
9336 * If a clear happens, it will have evaluated last additions because
9337 * rq->lock is held during the check and the clear
9338 */
9339 rq->has_blocked_load = 1;
9340
9341 /*
9342 * The tick is still stopped but load could have been added in the
9343 * meantime. We set the nohz.has_blocked flag to trig a check of the
9344 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9345 * of nohz.has_blocked can only happen after checking the new load
9346 */
00357f5e 9347 if (rq->nohz_tick_stopped)
f643ea22 9348 goto out;
1e3c88bd 9349
97fb7a0a 9350 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9351 if (on_null_domain(rq))
d987fc7f
MG
9352 return;
9353
00357f5e
PZ
9354 rq->nohz_tick_stopped = 1;
9355
c1cc017c
AS
9356 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9357 atomic_inc(&nohz.nr_cpus);
00357f5e 9358
f643ea22
VG
9359 /*
9360 * Ensures that if nohz_idle_balance() fails to observe our
9361 * @idle_cpus_mask store, it must observe the @has_blocked
9362 * store.
9363 */
9364 smp_mb__after_atomic();
9365
00357f5e 9366 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9367
9368out:
9369 /*
9370 * Each time a cpu enter idle, we assume that it has blocked load and
9371 * enable the periodic update of the load of idle cpus
9372 */
9373 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9374}
1e3c88bd 9375
1e3c88bd 9376/*
31e77c93
VG
9377 * Internal function that runs load balance for all idle cpus. The load balance
9378 * can be a simple update of blocked load or a complete load balance with
9379 * tasks movement depending of flags.
9380 * The function returns false if the loop has stopped before running
9381 * through all idle CPUs.
1e3c88bd 9382 */
31e77c93
VG
9383static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9384 enum cpu_idle_type idle)
83cd4fe2 9385{
c5afb6a8 9386 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9387 unsigned long now = jiffies;
9388 unsigned long next_balance = now + 60*HZ;
f643ea22 9389 bool has_blocked_load = false;
c5afb6a8 9390 int update_next_balance = 0;
b7031a02 9391 int this_cpu = this_rq->cpu;
b7031a02 9392 int balance_cpu;
31e77c93 9393 int ret = false;
b7031a02 9394 struct rq *rq;
83cd4fe2 9395
b7031a02 9396 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9397
f643ea22
VG
9398 /*
9399 * We assume there will be no idle load after this update and clear
9400 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9401 * set the has_blocked flag and trig another update of idle load.
9402 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9403 * setting the flag, we are sure to not clear the state and not
9404 * check the load of an idle cpu.
9405 */
9406 WRITE_ONCE(nohz.has_blocked, 0);
9407
9408 /*
9409 * Ensures that if we miss the CPU, we must see the has_blocked
9410 * store from nohz_balance_enter_idle().
9411 */
9412 smp_mb();
9413
83cd4fe2 9414 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9415 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9416 continue;
9417
9418 /*
97fb7a0a
IM
9419 * If this CPU gets work to do, stop the load balancing
9420 * work being done for other CPUs. Next load
83cd4fe2
VP
9421 * balancing owner will pick it up.
9422 */
f643ea22
VG
9423 if (need_resched()) {
9424 has_blocked_load = true;
9425 goto abort;
9426 }
83cd4fe2 9427
5ed4f1d9
VG
9428 rq = cpu_rq(balance_cpu);
9429
63928384 9430 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9431
ed61bbc6
TC
9432 /*
9433 * If time for next balance is due,
9434 * do the balance.
9435 */
9436 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9437 struct rq_flags rf;
9438
31e77c93 9439 rq_lock_irqsave(rq, &rf);
ed61bbc6 9440 update_rq_clock(rq);
cee1afce 9441 cpu_load_update_idle(rq);
31e77c93 9442 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9443
b7031a02
PZ
9444 if (flags & NOHZ_BALANCE_KICK)
9445 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9446 }
83cd4fe2 9447
c5afb6a8
VG
9448 if (time_after(next_balance, rq->next_balance)) {
9449 next_balance = rq->next_balance;
9450 update_next_balance = 1;
9451 }
83cd4fe2 9452 }
c5afb6a8 9453
31e77c93
VG
9454 /* Newly idle CPU doesn't need an update */
9455 if (idle != CPU_NEWLY_IDLE) {
9456 update_blocked_averages(this_cpu);
9457 has_blocked_load |= this_rq->has_blocked_load;
9458 }
9459
b7031a02
PZ
9460 if (flags & NOHZ_BALANCE_KICK)
9461 rebalance_domains(this_rq, CPU_IDLE);
9462
f643ea22
VG
9463 WRITE_ONCE(nohz.next_blocked,
9464 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9465
31e77c93
VG
9466 /* The full idle balance loop has been done */
9467 ret = true;
9468
f643ea22
VG
9469abort:
9470 /* There is still blocked load, enable periodic update */
9471 if (has_blocked_load)
9472 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9473
c5afb6a8
VG
9474 /*
9475 * next_balance will be updated only when there is a need.
9476 * When the CPU is attached to null domain for ex, it will not be
9477 * updated.
9478 */
9479 if (likely(update_next_balance))
9480 nohz.next_balance = next_balance;
b7031a02 9481
31e77c93
VG
9482 return ret;
9483}
9484
9485/*
9486 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9487 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9488 */
9489static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9490{
9491 int this_cpu = this_rq->cpu;
9492 unsigned int flags;
9493
9494 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9495 return false;
9496
9497 if (idle != CPU_IDLE) {
9498 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9499 return false;
9500 }
9501
9502 /*
9503 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9504 */
9505 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9506 if (!(flags & NOHZ_KICK_MASK))
9507 return false;
9508
9509 _nohz_idle_balance(this_rq, flags, idle);
9510
b7031a02 9511 return true;
83cd4fe2 9512}
31e77c93
VG
9513
9514static void nohz_newidle_balance(struct rq *this_rq)
9515{
9516 int this_cpu = this_rq->cpu;
9517
9518 /*
9519 * This CPU doesn't want to be disturbed by scheduler
9520 * housekeeping
9521 */
9522 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9523 return;
9524
9525 /* Will wake up very soon. No time for doing anything else*/
9526 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9527 return;
9528
9529 /* Don't need to update blocked load of idle CPUs*/
9530 if (!READ_ONCE(nohz.has_blocked) ||
9531 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9532 return;
9533
9534 raw_spin_unlock(&this_rq->lock);
9535 /*
9536 * This CPU is going to be idle and blocked load of idle CPUs
9537 * need to be updated. Run the ilb locally as it is a good
9538 * candidate for ilb instead of waking up another idle CPU.
9539 * Kick an normal ilb if we failed to do the update.
9540 */
9541 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9542 kick_ilb(NOHZ_STATS_KICK);
9543 raw_spin_lock(&this_rq->lock);
9544}
9545
dd707247
PZ
9546#else /* !CONFIG_NO_HZ_COMMON */
9547static inline void nohz_balancer_kick(struct rq *rq) { }
9548
31e77c93 9549static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9550{
9551 return false;
9552}
31e77c93
VG
9553
9554static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9555#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9556
47ea5412
PZ
9557/*
9558 * idle_balance is called by schedule() if this_cpu is about to become
9559 * idle. Attempts to pull tasks from other CPUs.
9560 */
9561static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9562{
9563 unsigned long next_balance = jiffies + HZ;
9564 int this_cpu = this_rq->cpu;
9565 struct sched_domain *sd;
9566 int pulled_task = 0;
9567 u64 curr_cost = 0;
9568
9569 /*
9570 * We must set idle_stamp _before_ calling idle_balance(), such that we
9571 * measure the duration of idle_balance() as idle time.
9572 */
9573 this_rq->idle_stamp = rq_clock(this_rq);
9574
9575 /*
9576 * Do not pull tasks towards !active CPUs...
9577 */
9578 if (!cpu_active(this_cpu))
9579 return 0;
9580
9581 /*
9582 * This is OK, because current is on_cpu, which avoids it being picked
9583 * for load-balance and preemption/IRQs are still disabled avoiding
9584 * further scheduler activity on it and we're being very careful to
9585 * re-start the picking loop.
9586 */
9587 rq_unpin_lock(this_rq, rf);
9588
9589 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9590 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9591
47ea5412
PZ
9592 rcu_read_lock();
9593 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9594 if (sd)
9595 update_next_balance(sd, &next_balance);
9596 rcu_read_unlock();
9597
31e77c93
VG
9598 nohz_newidle_balance(this_rq);
9599
47ea5412
PZ
9600 goto out;
9601 }
9602
9603 raw_spin_unlock(&this_rq->lock);
9604
9605 update_blocked_averages(this_cpu);
9606 rcu_read_lock();
9607 for_each_domain(this_cpu, sd) {
9608 int continue_balancing = 1;
9609 u64 t0, domain_cost;
9610
9611 if (!(sd->flags & SD_LOAD_BALANCE))
9612 continue;
9613
9614 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9615 update_next_balance(sd, &next_balance);
9616 break;
9617 }
9618
9619 if (sd->flags & SD_BALANCE_NEWIDLE) {
9620 t0 = sched_clock_cpu(this_cpu);
9621
9622 pulled_task = load_balance(this_cpu, this_rq,
9623 sd, CPU_NEWLY_IDLE,
9624 &continue_balancing);
9625
9626 domain_cost = sched_clock_cpu(this_cpu) - t0;
9627 if (domain_cost > sd->max_newidle_lb_cost)
9628 sd->max_newidle_lb_cost = domain_cost;
9629
9630 curr_cost += domain_cost;
9631 }
9632
9633 update_next_balance(sd, &next_balance);
9634
9635 /*
9636 * Stop searching for tasks to pull if there are
9637 * now runnable tasks on this rq.
9638 */
9639 if (pulled_task || this_rq->nr_running > 0)
9640 break;
9641 }
9642 rcu_read_unlock();
9643
9644 raw_spin_lock(&this_rq->lock);
9645
9646 if (curr_cost > this_rq->max_idle_balance_cost)
9647 this_rq->max_idle_balance_cost = curr_cost;
9648
457be908 9649out:
47ea5412
PZ
9650 /*
9651 * While browsing the domains, we released the rq lock, a task could
9652 * have been enqueued in the meantime. Since we're not going idle,
9653 * pretend we pulled a task.
9654 */
9655 if (this_rq->cfs.h_nr_running && !pulled_task)
9656 pulled_task = 1;
9657
47ea5412
PZ
9658 /* Move the next balance forward */
9659 if (time_after(this_rq->next_balance, next_balance))
9660 this_rq->next_balance = next_balance;
9661
9662 /* Is there a task of a high priority class? */
9663 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9664 pulled_task = -1;
9665
9666 if (pulled_task)
9667 this_rq->idle_stamp = 0;
9668
9669 rq_repin_lock(this_rq, rf);
9670
9671 return pulled_task;
9672}
9673
83cd4fe2
VP
9674/*
9675 * run_rebalance_domains is triggered when needed from the scheduler tick.
9676 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9677 */
0766f788 9678static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9679{
208cb16b 9680 struct rq *this_rq = this_rq();
6eb57e0d 9681 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9682 CPU_IDLE : CPU_NOT_IDLE;
9683
1e3c88bd 9684 /*
97fb7a0a
IM
9685 * If this CPU has a pending nohz_balance_kick, then do the
9686 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9687 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9688 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9689 * load balance only within the local sched_domain hierarchy
9690 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9691 */
b7031a02
PZ
9692 if (nohz_idle_balance(this_rq, idle))
9693 return;
9694
9695 /* normal load balance */
9696 update_blocked_averages(this_rq->cpu);
d4573c3e 9697 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9698}
9699
1e3c88bd
PZ
9700/*
9701 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9702 */
7caff66f 9703void trigger_load_balance(struct rq *rq)
1e3c88bd 9704{
1e3c88bd 9705 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9706 if (unlikely(on_null_domain(rq)))
9707 return;
9708
9709 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9710 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9711
9712 nohz_balancer_kick(rq);
1e3c88bd
PZ
9713}
9714
0bcdcf28
CE
9715static void rq_online_fair(struct rq *rq)
9716{
9717 update_sysctl();
0e59bdae
KT
9718
9719 update_runtime_enabled(rq);
0bcdcf28
CE
9720}
9721
9722static void rq_offline_fair(struct rq *rq)
9723{
9724 update_sysctl();
a4c96ae3
PB
9725
9726 /* Ensure any throttled groups are reachable by pick_next_task */
9727 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9728}
9729
55e12e5e 9730#endif /* CONFIG_SMP */
e1d1484f 9731
bf0f6f24 9732/*
d84b3131
FW
9733 * scheduler tick hitting a task of our scheduling class.
9734 *
9735 * NOTE: This function can be called remotely by the tick offload that
9736 * goes along full dynticks. Therefore no local assumption can be made
9737 * and everything must be accessed through the @rq and @curr passed in
9738 * parameters.
bf0f6f24 9739 */
8f4d37ec 9740static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9741{
9742 struct cfs_rq *cfs_rq;
9743 struct sched_entity *se = &curr->se;
9744
9745 for_each_sched_entity(se) {
9746 cfs_rq = cfs_rq_of(se);
8f4d37ec 9747 entity_tick(cfs_rq, se, queued);
bf0f6f24 9748 }
18bf2805 9749
b52da86e 9750 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9751 task_tick_numa(rq, curr);
3b1baa64
MR
9752
9753 update_misfit_status(curr, rq);
bf0f6f24
IM
9754}
9755
9756/*
cd29fe6f
PZ
9757 * called on fork with the child task as argument from the parent's context
9758 * - child not yet on the tasklist
9759 * - preemption disabled
bf0f6f24 9760 */
cd29fe6f 9761static void task_fork_fair(struct task_struct *p)
bf0f6f24 9762{
4fc420c9
DN
9763 struct cfs_rq *cfs_rq;
9764 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9765 struct rq *rq = this_rq();
8a8c69c3 9766 struct rq_flags rf;
bf0f6f24 9767
8a8c69c3 9768 rq_lock(rq, &rf);
861d034e
PZ
9769 update_rq_clock(rq);
9770
4fc420c9
DN
9771 cfs_rq = task_cfs_rq(current);
9772 curr = cfs_rq->curr;
e210bffd
PZ
9773 if (curr) {
9774 update_curr(cfs_rq);
b5d9d734 9775 se->vruntime = curr->vruntime;
e210bffd 9776 }
aeb73b04 9777 place_entity(cfs_rq, se, 1);
4d78e7b6 9778
cd29fe6f 9779 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9780 /*
edcb60a3
IM
9781 * Upon rescheduling, sched_class::put_prev_task() will place
9782 * 'current' within the tree based on its new key value.
9783 */
4d78e7b6 9784 swap(curr->vruntime, se->vruntime);
8875125e 9785 resched_curr(rq);
4d78e7b6 9786 }
bf0f6f24 9787
88ec22d3 9788 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9789 rq_unlock(rq, &rf);
bf0f6f24
IM
9790}
9791
cb469845
SR
9792/*
9793 * Priority of the task has changed. Check to see if we preempt
9794 * the current task.
9795 */
da7a735e
PZ
9796static void
9797prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9798{
da0c1e65 9799 if (!task_on_rq_queued(p))
da7a735e
PZ
9800 return;
9801
cb469845
SR
9802 /*
9803 * Reschedule if we are currently running on this runqueue and
9804 * our priority decreased, or if we are not currently running on
9805 * this runqueue and our priority is higher than the current's
9806 */
da7a735e 9807 if (rq->curr == p) {
cb469845 9808 if (p->prio > oldprio)
8875125e 9809 resched_curr(rq);
cb469845 9810 } else
15afe09b 9811 check_preempt_curr(rq, p, 0);
cb469845
SR
9812}
9813
daa59407 9814static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9815{
9816 struct sched_entity *se = &p->se;
da7a735e
PZ
9817
9818 /*
daa59407
BP
9819 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9820 * the dequeue_entity(.flags=0) will already have normalized the
9821 * vruntime.
9822 */
9823 if (p->on_rq)
9824 return true;
9825
9826 /*
9827 * When !on_rq, vruntime of the task has usually NOT been normalized.
9828 * But there are some cases where it has already been normalized:
da7a735e 9829 *
daa59407
BP
9830 * - A forked child which is waiting for being woken up by
9831 * wake_up_new_task().
9832 * - A task which has been woken up by try_to_wake_up() and
9833 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9834 */
d0cdb3ce
SM
9835 if (!se->sum_exec_runtime ||
9836 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
9837 return true;
9838
9839 return false;
9840}
9841
09a43ace
VG
9842#ifdef CONFIG_FAIR_GROUP_SCHED
9843/*
9844 * Propagate the changes of the sched_entity across the tg tree to make it
9845 * visible to the root
9846 */
9847static void propagate_entity_cfs_rq(struct sched_entity *se)
9848{
9849 struct cfs_rq *cfs_rq;
9850
9851 /* Start to propagate at parent */
9852 se = se->parent;
9853
9854 for_each_sched_entity(se) {
9855 cfs_rq = cfs_rq_of(se);
9856
9857 if (cfs_rq_throttled(cfs_rq))
9858 break;
9859
88c0616e 9860 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9861 }
9862}
9863#else
9864static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9865#endif
9866
df217913 9867static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9868{
daa59407
BP
9869 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9870
9d89c257 9871 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9872 update_load_avg(cfs_rq, se, 0);
a05e8c51 9873 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9874 update_tg_load_avg(cfs_rq, false);
09a43ace 9875 propagate_entity_cfs_rq(se);
da7a735e
PZ
9876}
9877
df217913 9878static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9879{
daa59407 9880 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9881
9882#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9883 /*
9884 * Since the real-depth could have been changed (only FAIR
9885 * class maintain depth value), reset depth properly.
9886 */
9887 se->depth = se->parent ? se->parent->depth + 1 : 0;
9888#endif
7855a35a 9889
df217913 9890 /* Synchronize entity with its cfs_rq */
88c0616e 9891 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 9892 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 9893 update_tg_load_avg(cfs_rq, false);
09a43ace 9894 propagate_entity_cfs_rq(se);
df217913
VG
9895}
9896
9897static void detach_task_cfs_rq(struct task_struct *p)
9898{
9899 struct sched_entity *se = &p->se;
9900 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9901
9902 if (!vruntime_normalized(p)) {
9903 /*
9904 * Fix up our vruntime so that the current sleep doesn't
9905 * cause 'unlimited' sleep bonus.
9906 */
9907 place_entity(cfs_rq, se, 0);
9908 se->vruntime -= cfs_rq->min_vruntime;
9909 }
9910
9911 detach_entity_cfs_rq(se);
9912}
9913
9914static void attach_task_cfs_rq(struct task_struct *p)
9915{
9916 struct sched_entity *se = &p->se;
9917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9918
9919 attach_entity_cfs_rq(se);
daa59407
BP
9920
9921 if (!vruntime_normalized(p))
9922 se->vruntime += cfs_rq->min_vruntime;
9923}
6efdb105 9924
daa59407
BP
9925static void switched_from_fair(struct rq *rq, struct task_struct *p)
9926{
9927 detach_task_cfs_rq(p);
9928}
9929
9930static void switched_to_fair(struct rq *rq, struct task_struct *p)
9931{
9932 attach_task_cfs_rq(p);
7855a35a 9933
daa59407 9934 if (task_on_rq_queued(p)) {
7855a35a 9935 /*
daa59407
BP
9936 * We were most likely switched from sched_rt, so
9937 * kick off the schedule if running, otherwise just see
9938 * if we can still preempt the current task.
7855a35a 9939 */
daa59407
BP
9940 if (rq->curr == p)
9941 resched_curr(rq);
9942 else
9943 check_preempt_curr(rq, p, 0);
7855a35a 9944 }
cb469845
SR
9945}
9946
83b699ed
SV
9947/* Account for a task changing its policy or group.
9948 *
9949 * This routine is mostly called to set cfs_rq->curr field when a task
9950 * migrates between groups/classes.
9951 */
9952static void set_curr_task_fair(struct rq *rq)
9953{
9954 struct sched_entity *se = &rq->curr->se;
9955
ec12cb7f
PT
9956 for_each_sched_entity(se) {
9957 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9958
9959 set_next_entity(cfs_rq, se);
9960 /* ensure bandwidth has been allocated on our new cfs_rq */
9961 account_cfs_rq_runtime(cfs_rq, 0);
9962 }
83b699ed
SV
9963}
9964
029632fb
PZ
9965void init_cfs_rq(struct cfs_rq *cfs_rq)
9966{
bfb06889 9967 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9968 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9969#ifndef CONFIG_64BIT
9970 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9971#endif
141965c7 9972#ifdef CONFIG_SMP
2a2f5d4e 9973 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9974#endif
029632fb
PZ
9975}
9976
810b3817 9977#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9978static void task_set_group_fair(struct task_struct *p)
9979{
9980 struct sched_entity *se = &p->se;
9981
9982 set_task_rq(p, task_cpu(p));
9983 se->depth = se->parent ? se->parent->depth + 1 : 0;
9984}
9985
bc54da21 9986static void task_move_group_fair(struct task_struct *p)
810b3817 9987{
daa59407 9988 detach_task_cfs_rq(p);
b2b5ce02 9989 set_task_rq(p, task_cpu(p));
6efdb105
BP
9990
9991#ifdef CONFIG_SMP
9992 /* Tell se's cfs_rq has been changed -- migrated */
9993 p->se.avg.last_update_time = 0;
9994#endif
daa59407 9995 attach_task_cfs_rq(p);
810b3817 9996}
029632fb 9997
ea86cb4b
VG
9998static void task_change_group_fair(struct task_struct *p, int type)
9999{
10000 switch (type) {
10001 case TASK_SET_GROUP:
10002 task_set_group_fair(p);
10003 break;
10004
10005 case TASK_MOVE_GROUP:
10006 task_move_group_fair(p);
10007 break;
10008 }
10009}
10010
029632fb
PZ
10011void free_fair_sched_group(struct task_group *tg)
10012{
10013 int i;
10014
10015 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10016
10017 for_each_possible_cpu(i) {
10018 if (tg->cfs_rq)
10019 kfree(tg->cfs_rq[i]);
6fe1f348 10020 if (tg->se)
029632fb
PZ
10021 kfree(tg->se[i]);
10022 }
10023
10024 kfree(tg->cfs_rq);
10025 kfree(tg->se);
10026}
10027
10028int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10029{
029632fb 10030 struct sched_entity *se;
b7fa30c9 10031 struct cfs_rq *cfs_rq;
029632fb
PZ
10032 int i;
10033
6396bb22 10034 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10035 if (!tg->cfs_rq)
10036 goto err;
6396bb22 10037 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10038 if (!tg->se)
10039 goto err;
10040
10041 tg->shares = NICE_0_LOAD;
10042
10043 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10044
10045 for_each_possible_cpu(i) {
10046 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10047 GFP_KERNEL, cpu_to_node(i));
10048 if (!cfs_rq)
10049 goto err;
10050
10051 se = kzalloc_node(sizeof(struct sched_entity),
10052 GFP_KERNEL, cpu_to_node(i));
10053 if (!se)
10054 goto err_free_rq;
10055
10056 init_cfs_rq(cfs_rq);
10057 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10058 init_entity_runnable_average(se);
029632fb
PZ
10059 }
10060
10061 return 1;
10062
10063err_free_rq:
10064 kfree(cfs_rq);
10065err:
10066 return 0;
10067}
10068
8663e24d
PZ
10069void online_fair_sched_group(struct task_group *tg)
10070{
10071 struct sched_entity *se;
10072 struct rq *rq;
10073 int i;
10074
10075 for_each_possible_cpu(i) {
10076 rq = cpu_rq(i);
10077 se = tg->se[i];
10078
10079 raw_spin_lock_irq(&rq->lock);
4126bad6 10080 update_rq_clock(rq);
d0326691 10081 attach_entity_cfs_rq(se);
55e16d30 10082 sync_throttle(tg, i);
8663e24d
PZ
10083 raw_spin_unlock_irq(&rq->lock);
10084 }
10085}
10086
6fe1f348 10087void unregister_fair_sched_group(struct task_group *tg)
029632fb 10088{
029632fb 10089 unsigned long flags;
6fe1f348
PZ
10090 struct rq *rq;
10091 int cpu;
029632fb 10092
6fe1f348
PZ
10093 for_each_possible_cpu(cpu) {
10094 if (tg->se[cpu])
10095 remove_entity_load_avg(tg->se[cpu]);
029632fb 10096
6fe1f348
PZ
10097 /*
10098 * Only empty task groups can be destroyed; so we can speculatively
10099 * check on_list without danger of it being re-added.
10100 */
10101 if (!tg->cfs_rq[cpu]->on_list)
10102 continue;
10103
10104 rq = cpu_rq(cpu);
10105
10106 raw_spin_lock_irqsave(&rq->lock, flags);
10107 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10108 raw_spin_unlock_irqrestore(&rq->lock, flags);
10109 }
029632fb
PZ
10110}
10111
10112void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10113 struct sched_entity *se, int cpu,
10114 struct sched_entity *parent)
10115{
10116 struct rq *rq = cpu_rq(cpu);
10117
10118 cfs_rq->tg = tg;
10119 cfs_rq->rq = rq;
029632fb
PZ
10120 init_cfs_rq_runtime(cfs_rq);
10121
10122 tg->cfs_rq[cpu] = cfs_rq;
10123 tg->se[cpu] = se;
10124
10125 /* se could be NULL for root_task_group */
10126 if (!se)
10127 return;
10128
fed14d45 10129 if (!parent) {
029632fb 10130 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10131 se->depth = 0;
10132 } else {
029632fb 10133 se->cfs_rq = parent->my_q;
fed14d45
PZ
10134 se->depth = parent->depth + 1;
10135 }
029632fb
PZ
10136
10137 se->my_q = cfs_rq;
0ac9b1c2
PT
10138 /* guarantee group entities always have weight */
10139 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10140 se->parent = parent;
10141}
10142
10143static DEFINE_MUTEX(shares_mutex);
10144
10145int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10146{
10147 int i;
029632fb
PZ
10148
10149 /*
10150 * We can't change the weight of the root cgroup.
10151 */
10152 if (!tg->se[0])
10153 return -EINVAL;
10154
10155 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10156
10157 mutex_lock(&shares_mutex);
10158 if (tg->shares == shares)
10159 goto done;
10160
10161 tg->shares = shares;
10162 for_each_possible_cpu(i) {
10163 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10164 struct sched_entity *se = tg->se[i];
10165 struct rq_flags rf;
029632fb 10166
029632fb 10167 /* Propagate contribution to hierarchy */
8a8c69c3 10168 rq_lock_irqsave(rq, &rf);
71b1da46 10169 update_rq_clock(rq);
89ee048f 10170 for_each_sched_entity(se) {
88c0616e 10171 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10172 update_cfs_group(se);
89ee048f 10173 }
8a8c69c3 10174 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10175 }
10176
10177done:
10178 mutex_unlock(&shares_mutex);
10179 return 0;
10180}
10181#else /* CONFIG_FAIR_GROUP_SCHED */
10182
10183void free_fair_sched_group(struct task_group *tg) { }
10184
10185int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10186{
10187 return 1;
10188}
10189
8663e24d
PZ
10190void online_fair_sched_group(struct task_group *tg) { }
10191
6fe1f348 10192void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10193
10194#endif /* CONFIG_FAIR_GROUP_SCHED */
10195
810b3817 10196
6d686f45 10197static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10198{
10199 struct sched_entity *se = &task->se;
0d721cea
PW
10200 unsigned int rr_interval = 0;
10201
10202 /*
10203 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10204 * idle runqueue:
10205 */
0d721cea 10206 if (rq->cfs.load.weight)
a59f4e07 10207 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10208
10209 return rr_interval;
10210}
10211
bf0f6f24
IM
10212/*
10213 * All the scheduling class methods:
10214 */
029632fb 10215const struct sched_class fair_sched_class = {
5522d5d5 10216 .next = &idle_sched_class,
bf0f6f24
IM
10217 .enqueue_task = enqueue_task_fair,
10218 .dequeue_task = dequeue_task_fair,
10219 .yield_task = yield_task_fair,
d95f4122 10220 .yield_to_task = yield_to_task_fair,
bf0f6f24 10221
2e09bf55 10222 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10223
10224 .pick_next_task = pick_next_task_fair,
10225 .put_prev_task = put_prev_task_fair,
10226
681f3e68 10227#ifdef CONFIG_SMP
4ce72a2c 10228 .select_task_rq = select_task_rq_fair,
0a74bef8 10229 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10230
0bcdcf28
CE
10231 .rq_online = rq_online_fair,
10232 .rq_offline = rq_offline_fair,
88ec22d3 10233
12695578 10234 .task_dead = task_dead_fair,
c5b28038 10235 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10236#endif
bf0f6f24 10237
83b699ed 10238 .set_curr_task = set_curr_task_fair,
bf0f6f24 10239 .task_tick = task_tick_fair,
cd29fe6f 10240 .task_fork = task_fork_fair,
cb469845
SR
10241
10242 .prio_changed = prio_changed_fair,
da7a735e 10243 .switched_from = switched_from_fair,
cb469845 10244 .switched_to = switched_to_fair,
810b3817 10245
0d721cea
PW
10246 .get_rr_interval = get_rr_interval_fair,
10247
6e998916
SG
10248 .update_curr = update_curr_fair,
10249
810b3817 10250#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10251 .task_change_group = task_change_group_fair,
810b3817 10252#endif
bf0f6f24
IM
10253};
10254
10255#ifdef CONFIG_SCHED_DEBUG
029632fb 10256void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10257{
a9e7f654 10258 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10259
5973e5b9 10260 rcu_read_lock();
a9e7f654 10261 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10262 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10263 rcu_read_unlock();
bf0f6f24 10264}
397f2378
SD
10265
10266#ifdef CONFIG_NUMA_BALANCING
10267void show_numa_stats(struct task_struct *p, struct seq_file *m)
10268{
10269 int node;
10270 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10271
10272 for_each_online_node(node) {
10273 if (p->numa_faults) {
10274 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10275 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10276 }
10277 if (p->numa_group) {
10278 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10279 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10280 }
10281 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10282 }
10283}
10284#endif /* CONFIG_NUMA_BALANCING */
10285#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10286
10287__init void init_sched_fair_class(void)
10288{
10289#ifdef CONFIG_SMP
10290 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10291
3451d024 10292#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10293 nohz.next_balance = jiffies;
f643ea22 10294 nohz.next_blocked = jiffies;
029632fb 10295 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10296#endif
10297#endif /* SMP */
10298
10299}