mm: numa: Rate limit setting of pte_numa if node is saturated
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
3d4b47b4
PZ
265static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266{
267 if (!cfs_rq->on_list) {
67e86250
PT
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 281 }
3d4b47b4
PZ
282
283 cfs_rq->on_list = 1;
284 }
285}
286
287static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288{
289 if (cfs_rq->on_list) {
290 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
291 cfs_rq->on_list = 0;
292 }
293}
294
b758149c
PZ
295/* Iterate thr' all leaf cfs_rq's on a runqueue */
296#define for_each_leaf_cfs_rq(rq, cfs_rq) \
297 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
298
299/* Do the two (enqueued) entities belong to the same group ? */
300static inline int
301is_same_group(struct sched_entity *se, struct sched_entity *pse)
302{
303 if (se->cfs_rq == pse->cfs_rq)
304 return 1;
305
306 return 0;
307}
308
309static inline struct sched_entity *parent_entity(struct sched_entity *se)
310{
311 return se->parent;
312}
313
464b7527
PZ
314/* return depth at which a sched entity is present in the hierarchy */
315static inline int depth_se(struct sched_entity *se)
316{
317 int depth = 0;
318
319 for_each_sched_entity(se)
320 depth++;
321
322 return depth;
323}
324
325static void
326find_matching_se(struct sched_entity **se, struct sched_entity **pse)
327{
328 int se_depth, pse_depth;
329
330 /*
331 * preemption test can be made between sibling entities who are in the
332 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
333 * both tasks until we find their ancestors who are siblings of common
334 * parent.
335 */
336
337 /* First walk up until both entities are at same depth */
338 se_depth = depth_se(*se);
339 pse_depth = depth_se(*pse);
340
341 while (se_depth > pse_depth) {
342 se_depth--;
343 *se = parent_entity(*se);
344 }
345
346 while (pse_depth > se_depth) {
347 pse_depth--;
348 *pse = parent_entity(*pse);
349 }
350
351 while (!is_same_group(*se, *pse)) {
352 *se = parent_entity(*se);
353 *pse = parent_entity(*pse);
354 }
355}
356
8f48894f
PZ
357#else /* !CONFIG_FAIR_GROUP_SCHED */
358
359static inline struct task_struct *task_of(struct sched_entity *se)
360{
361 return container_of(se, struct task_struct, se);
362}
bf0f6f24 363
62160e3f
IM
364static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
365{
366 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
367}
368
369#define entity_is_task(se) 1
370
b758149c
PZ
371#define for_each_sched_entity(se) \
372 for (; se; se = NULL)
bf0f6f24 373
b758149c 374static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 375{
b758149c 376 return &task_rq(p)->cfs;
bf0f6f24
IM
377}
378
b758149c
PZ
379static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
380{
381 struct task_struct *p = task_of(se);
382 struct rq *rq = task_rq(p);
383
384 return &rq->cfs;
385}
386
387/* runqueue "owned" by this group */
388static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
389{
390 return NULL;
391}
392
3d4b47b4
PZ
393static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394{
395}
396
397static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398{
399}
400
b758149c
PZ
401#define for_each_leaf_cfs_rq(rq, cfs_rq) \
402 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
403
404static inline int
405is_same_group(struct sched_entity *se, struct sched_entity *pse)
406{
407 return 1;
408}
409
410static inline struct sched_entity *parent_entity(struct sched_entity *se)
411{
412 return NULL;
413}
414
464b7527
PZ
415static inline void
416find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417{
418}
419
b758149c
PZ
420#endif /* CONFIG_FAIR_GROUP_SCHED */
421
6c16a6dc
PZ
422static __always_inline
423void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
424
425/**************************************************************
426 * Scheduling class tree data structure manipulation methods:
427 */
428
0702e3eb 429static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 430{
368059a9
PZ
431 s64 delta = (s64)(vruntime - min_vruntime);
432 if (delta > 0)
02e0431a
PZ
433 min_vruntime = vruntime;
434
435 return min_vruntime;
436}
437
0702e3eb 438static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
439{
440 s64 delta = (s64)(vruntime - min_vruntime);
441 if (delta < 0)
442 min_vruntime = vruntime;
443
444 return min_vruntime;
445}
446
54fdc581
FC
447static inline int entity_before(struct sched_entity *a,
448 struct sched_entity *b)
449{
450 return (s64)(a->vruntime - b->vruntime) < 0;
451}
452
1af5f730
PZ
453static void update_min_vruntime(struct cfs_rq *cfs_rq)
454{
455 u64 vruntime = cfs_rq->min_vruntime;
456
457 if (cfs_rq->curr)
458 vruntime = cfs_rq->curr->vruntime;
459
460 if (cfs_rq->rb_leftmost) {
461 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
462 struct sched_entity,
463 run_node);
464
e17036da 465 if (!cfs_rq->curr)
1af5f730
PZ
466 vruntime = se->vruntime;
467 else
468 vruntime = min_vruntime(vruntime, se->vruntime);
469 }
470
471 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
472#ifndef CONFIG_64BIT
473 smp_wmb();
474 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
475#endif
1af5f730
PZ
476}
477
bf0f6f24
IM
478/*
479 * Enqueue an entity into the rb-tree:
480 */
0702e3eb 481static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
482{
483 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
484 struct rb_node *parent = NULL;
485 struct sched_entity *entry;
bf0f6f24
IM
486 int leftmost = 1;
487
488 /*
489 * Find the right place in the rbtree:
490 */
491 while (*link) {
492 parent = *link;
493 entry = rb_entry(parent, struct sched_entity, run_node);
494 /*
495 * We dont care about collisions. Nodes with
496 * the same key stay together.
497 */
2bd2d6f2 498 if (entity_before(se, entry)) {
bf0f6f24
IM
499 link = &parent->rb_left;
500 } else {
501 link = &parent->rb_right;
502 leftmost = 0;
503 }
504 }
505
506 /*
507 * Maintain a cache of leftmost tree entries (it is frequently
508 * used):
509 */
1af5f730 510 if (leftmost)
57cb499d 511 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
512
513 rb_link_node(&se->run_node, parent, link);
514 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
515}
516
0702e3eb 517static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 518{
3fe69747
PZ
519 if (cfs_rq->rb_leftmost == &se->run_node) {
520 struct rb_node *next_node;
3fe69747
PZ
521
522 next_node = rb_next(&se->run_node);
523 cfs_rq->rb_leftmost = next_node;
3fe69747 524 }
e9acbff6 525
bf0f6f24 526 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
527}
528
029632fb 529struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 530{
f4b6755f
PZ
531 struct rb_node *left = cfs_rq->rb_leftmost;
532
533 if (!left)
534 return NULL;
535
536 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
537}
538
ac53db59
RR
539static struct sched_entity *__pick_next_entity(struct sched_entity *se)
540{
541 struct rb_node *next = rb_next(&se->run_node);
542
543 if (!next)
544 return NULL;
545
546 return rb_entry(next, struct sched_entity, run_node);
547}
548
549#ifdef CONFIG_SCHED_DEBUG
029632fb 550struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 551{
7eee3e67 552 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 553
70eee74b
BS
554 if (!last)
555 return NULL;
7eee3e67
IM
556
557 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
558}
559
bf0f6f24
IM
560/**************************************************************
561 * Scheduling class statistics methods:
562 */
563
acb4a848 564int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 565 void __user *buffer, size_t *lenp,
b2be5e96
PZ
566 loff_t *ppos)
567{
8d65af78 568 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 569 int factor = get_update_sysctl_factor();
b2be5e96
PZ
570
571 if (ret || !write)
572 return ret;
573
574 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
575 sysctl_sched_min_granularity);
576
acb4a848
CE
577#define WRT_SYSCTL(name) \
578 (normalized_sysctl_##name = sysctl_##name / (factor))
579 WRT_SYSCTL(sched_min_granularity);
580 WRT_SYSCTL(sched_latency);
581 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
582#undef WRT_SYSCTL
583
b2be5e96
PZ
584 return 0;
585}
586#endif
647e7cac 587
a7be37ac 588/*
f9c0b095 589 * delta /= w
a7be37ac
PZ
590 */
591static inline unsigned long
592calc_delta_fair(unsigned long delta, struct sched_entity *se)
593{
f9c0b095
PZ
594 if (unlikely(se->load.weight != NICE_0_LOAD))
595 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
596
597 return delta;
598}
599
647e7cac
IM
600/*
601 * The idea is to set a period in which each task runs once.
602 *
532b1858 603 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
604 * this period because otherwise the slices get too small.
605 *
606 * p = (nr <= nl) ? l : l*nr/nl
607 */
4d78e7b6
PZ
608static u64 __sched_period(unsigned long nr_running)
609{
610 u64 period = sysctl_sched_latency;
b2be5e96 611 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
612
613 if (unlikely(nr_running > nr_latency)) {
4bf0b771 614 period = sysctl_sched_min_granularity;
4d78e7b6 615 period *= nr_running;
4d78e7b6
PZ
616 }
617
618 return period;
619}
620
647e7cac
IM
621/*
622 * We calculate the wall-time slice from the period by taking a part
623 * proportional to the weight.
624 *
f9c0b095 625 * s = p*P[w/rw]
647e7cac 626 */
6d0f0ebd 627static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 628{
0a582440 629 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 630
0a582440 631 for_each_sched_entity(se) {
6272d68c 632 struct load_weight *load;
3104bf03 633 struct load_weight lw;
6272d68c
LM
634
635 cfs_rq = cfs_rq_of(se);
636 load = &cfs_rq->load;
f9c0b095 637
0a582440 638 if (unlikely(!se->on_rq)) {
3104bf03 639 lw = cfs_rq->load;
0a582440
MG
640
641 update_load_add(&lw, se->load.weight);
642 load = &lw;
643 }
644 slice = calc_delta_mine(slice, se->load.weight, load);
645 }
646 return slice;
bf0f6f24
IM
647}
648
647e7cac 649/*
ac884dec 650 * We calculate the vruntime slice of a to be inserted task
647e7cac 651 *
f9c0b095 652 * vs = s/w
647e7cac 653 */
f9c0b095 654static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 655{
f9c0b095 656 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
657}
658
d6b55918 659static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 660static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 661
bf0f6f24
IM
662/*
663 * Update the current task's runtime statistics. Skip current tasks that
664 * are not in our scheduling class.
665 */
666static inline void
8ebc91d9
IM
667__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
668 unsigned long delta_exec)
bf0f6f24 669{
bbdba7c0 670 unsigned long delta_exec_weighted;
bf0f6f24 671
41acab88
LDM
672 schedstat_set(curr->statistics.exec_max,
673 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
674
675 curr->sum_exec_runtime += delta_exec;
7a62eabc 676 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 677 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 678
e9acbff6 679 curr->vruntime += delta_exec_weighted;
1af5f730 680 update_min_vruntime(cfs_rq);
3b3d190e 681
70caf8a6 682#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 683 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 684#endif
bf0f6f24
IM
685}
686
b7cc0896 687static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 688{
429d43bc 689 struct sched_entity *curr = cfs_rq->curr;
305e6835 690 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
691 unsigned long delta_exec;
692
693 if (unlikely(!curr))
694 return;
695
696 /*
697 * Get the amount of time the current task was running
698 * since the last time we changed load (this cannot
699 * overflow on 32 bits):
700 */
8ebc91d9 701 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
702 if (!delta_exec)
703 return;
bf0f6f24 704
8ebc91d9
IM
705 __update_curr(cfs_rq, curr, delta_exec);
706 curr->exec_start = now;
d842de87
SV
707
708 if (entity_is_task(curr)) {
709 struct task_struct *curtask = task_of(curr);
710
f977bb49 711 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 712 cpuacct_charge(curtask, delta_exec);
f06febc9 713 account_group_exec_runtime(curtask, delta_exec);
d842de87 714 }
ec12cb7f
PT
715
716 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
717}
718
719static inline void
5870db5b 720update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 721{
41acab88 722 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
723}
724
bf0f6f24
IM
725/*
726 * Task is being enqueued - update stats:
727 */
d2417e5a 728static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
bf0f6f24
IM
730 /*
731 * Are we enqueueing a waiting task? (for current tasks
732 * a dequeue/enqueue event is a NOP)
733 */
429d43bc 734 if (se != cfs_rq->curr)
5870db5b 735 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
736}
737
bf0f6f24 738static void
9ef0a961 739update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 740{
41acab88
LDM
741 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
742 rq_of(cfs_rq)->clock - se->statistics.wait_start));
743 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
744 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
745 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
746#ifdef CONFIG_SCHEDSTATS
747 if (entity_is_task(se)) {
748 trace_sched_stat_wait(task_of(se),
41acab88 749 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
750 }
751#endif
41acab88 752 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
753}
754
755static inline void
19b6a2e3 756update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
bf0f6f24
IM
758 /*
759 * Mark the end of the wait period if dequeueing a
760 * waiting task:
761 */
429d43bc 762 if (se != cfs_rq->curr)
9ef0a961 763 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
764}
765
766/*
767 * We are picking a new current task - update its stats:
768 */
769static inline void
79303e9e 770update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
771{
772 /*
773 * We are starting a new run period:
774 */
305e6835 775 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
776}
777
bf0f6f24
IM
778/**************************************************
779 * Scheduling class queueing methods:
780 */
781
cbee9f88
PZ
782#ifdef CONFIG_NUMA_BALANCING
783/*
6e5fb223 784 * numa task sample period in ms
cbee9f88 785 */
6e5fb223
PZ
786unsigned int sysctl_numa_balancing_scan_period_min = 100;
787unsigned int sysctl_numa_balancing_scan_period_max = 100*16;
788
789/* Portion of address space to scan in MB */
790unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 791
4b96a29b
PZ
792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
cbee9f88
PZ
795static void task_numa_placement(struct task_struct *p)
796{
797 int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
798
799 if (p->numa_scan_seq == seq)
800 return;
801 p->numa_scan_seq = seq;
802
803 /* FIXME: Scheduling placement policy hints go here */
804}
805
806/*
807 * Got a PROT_NONE fault for a page on @node.
808 */
809void task_numa_fault(int node, int pages)
810{
811 struct task_struct *p = current;
812
813 /* FIXME: Allocate task-specific structure for placement policy here */
814
815 task_numa_placement(p);
816}
817
6e5fb223
PZ
818static void reset_ptenuma_scan(struct task_struct *p)
819{
820 ACCESS_ONCE(p->mm->numa_scan_seq)++;
821 p->mm->numa_scan_offset = 0;
822}
823
cbee9f88
PZ
824/*
825 * The expensive part of numa migration is done from task_work context.
826 * Triggered from task_tick_numa().
827 */
828void task_numa_work(struct callback_head *work)
829{
830 unsigned long migrate, next_scan, now = jiffies;
831 struct task_struct *p = current;
832 struct mm_struct *mm = p->mm;
6e5fb223 833 struct vm_area_struct *vma;
9f40604c
MG
834 unsigned long start, end;
835 long pages;
cbee9f88
PZ
836
837 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
838
839 work->next = work; /* protect against double add */
840 /*
841 * Who cares about NUMA placement when they're dying.
842 *
843 * NOTE: make sure not to dereference p->mm before this check,
844 * exit_task_work() happens _after_ exit_mm() so we could be called
845 * without p->mm even though we still had it when we enqueued this
846 * work.
847 */
848 if (p->flags & PF_EXITING)
849 return;
850
851 /*
852 * Enforce maximal scan/migration frequency..
853 */
854 migrate = mm->numa_next_scan;
855 if (time_before(now, migrate))
856 return;
857
858 if (p->numa_scan_period == 0)
859 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
860
861 next_scan = now + 2*msecs_to_jiffies(p->numa_scan_period);
862 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
863 return;
864
e14808b4
MG
865 /*
866 * Do not set pte_numa if the current running node is rate-limited.
867 * This loses statistics on the fault but if we are unwilling to
868 * migrate to this node, it is less likely we can do useful work
869 */
870 if (migrate_ratelimited(numa_node_id()))
871 return;
872
9f40604c
MG
873 start = mm->numa_scan_offset;
874 pages = sysctl_numa_balancing_scan_size;
875 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
876 if (!pages)
877 return;
cbee9f88 878
6e5fb223 879 down_read(&mm->mmap_sem);
9f40604c 880 vma = find_vma(mm, start);
6e5fb223
PZ
881 if (!vma) {
882 reset_ptenuma_scan(p);
9f40604c 883 start = 0;
6e5fb223
PZ
884 vma = mm->mmap;
885 }
9f40604c 886 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
887 if (!vma_migratable(vma))
888 continue;
889
890 /* Skip small VMAs. They are not likely to be of relevance */
891 if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
892 continue;
893
9f40604c
MG
894 do {
895 start = max(start, vma->vm_start);
896 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
897 end = min(end, vma->vm_end);
898 pages -= change_prot_numa(vma, start, end);
6e5fb223 899
9f40604c
MG
900 start = end;
901 if (pages <= 0)
902 goto out;
903 } while (end != vma->vm_end);
cbee9f88 904 }
6e5fb223 905
9f40604c 906out:
6e5fb223
PZ
907 /*
908 * It is possible to reach the end of the VMA list but the last few VMAs are
909 * not guaranteed to the vma_migratable. If they are not, we would find the
910 * !migratable VMA on the next scan but not reset the scanner to the start
911 * so check it now.
912 */
913 if (vma)
9f40604c 914 mm->numa_scan_offset = start;
6e5fb223
PZ
915 else
916 reset_ptenuma_scan(p);
917 up_read(&mm->mmap_sem);
cbee9f88
PZ
918}
919
920/*
921 * Drive the periodic memory faults..
922 */
923void task_tick_numa(struct rq *rq, struct task_struct *curr)
924{
925 struct callback_head *work = &curr->numa_work;
926 u64 period, now;
927
928 /*
929 * We don't care about NUMA placement if we don't have memory.
930 */
931 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
932 return;
933
934 /*
935 * Using runtime rather than walltime has the dual advantage that
936 * we (mostly) drive the selection from busy threads and that the
937 * task needs to have done some actual work before we bother with
938 * NUMA placement.
939 */
940 now = curr->se.sum_exec_runtime;
941 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
942
943 if (now - curr->node_stamp > period) {
4b96a29b
PZ
944 if (!curr->node_stamp)
945 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
946 curr->node_stamp = now;
947
948 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
949 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
950 task_work_add(curr, work, true);
951 }
952 }
953}
954#else
955static void task_tick_numa(struct rq *rq, struct task_struct *curr)
956{
957}
958#endif /* CONFIG_NUMA_BALANCING */
959
30cfdcfc
DA
960static void
961account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
962{
963 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 964 if (!parent_entity(se))
029632fb 965 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
966#ifdef CONFIG_SMP
967 if (entity_is_task(se))
eb95308e 968 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 969#endif
30cfdcfc 970 cfs_rq->nr_running++;
30cfdcfc
DA
971}
972
973static void
974account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
975{
976 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 977 if (!parent_entity(se))
029632fb 978 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 979 if (entity_is_task(se))
b87f1724 980 list_del_init(&se->group_node);
30cfdcfc 981 cfs_rq->nr_running--;
30cfdcfc
DA
982}
983
3ff6dcac 984#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
985/* we need this in update_cfs_load and load-balance functions below */
986static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 987# ifdef CONFIG_SMP
d6b55918
PT
988static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
989 int global_update)
990{
991 struct task_group *tg = cfs_rq->tg;
992 long load_avg;
993
994 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
995 load_avg -= cfs_rq->load_contribution;
996
997 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
998 atomic_add(load_avg, &tg->load_weight);
999 cfs_rq->load_contribution += load_avg;
1000 }
1001}
1002
1003static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 1004{
a7a4f8a7 1005 u64 period = sysctl_sched_shares_window;
2069dd75 1006 u64 now, delta;
e33078ba 1007 unsigned long load = cfs_rq->load.weight;
2069dd75 1008
64660c86 1009 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
1010 return;
1011
05ca62c6 1012 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
1013 delta = now - cfs_rq->load_stamp;
1014
e33078ba
PT
1015 /* truncate load history at 4 idle periods */
1016 if (cfs_rq->load_stamp > cfs_rq->load_last &&
1017 now - cfs_rq->load_last > 4 * period) {
1018 cfs_rq->load_period = 0;
1019 cfs_rq->load_avg = 0;
f07333bf 1020 delta = period - 1;
e33078ba
PT
1021 }
1022
2069dd75 1023 cfs_rq->load_stamp = now;
3b3d190e 1024 cfs_rq->load_unacc_exec_time = 0;
2069dd75 1025 cfs_rq->load_period += delta;
e33078ba
PT
1026 if (load) {
1027 cfs_rq->load_last = now;
1028 cfs_rq->load_avg += delta * load;
1029 }
2069dd75 1030
d6b55918
PT
1031 /* consider updating load contribution on each fold or truncate */
1032 if (global_update || cfs_rq->load_period > period
1033 || !cfs_rq->load_period)
1034 update_cfs_rq_load_contribution(cfs_rq, global_update);
1035
2069dd75
PZ
1036 while (cfs_rq->load_period > period) {
1037 /*
1038 * Inline assembly required to prevent the compiler
1039 * optimising this loop into a divmod call.
1040 * See __iter_div_u64_rem() for another example of this.
1041 */
1042 asm("" : "+rm" (cfs_rq->load_period));
1043 cfs_rq->load_period /= 2;
1044 cfs_rq->load_avg /= 2;
1045 }
3d4b47b4 1046
e33078ba
PT
1047 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
1048 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
1049}
1050
cf5f0acf
PZ
1051static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1052{
1053 long tg_weight;
1054
1055 /*
1056 * Use this CPU's actual weight instead of the last load_contribution
1057 * to gain a more accurate current total weight. See
1058 * update_cfs_rq_load_contribution().
1059 */
1060 tg_weight = atomic_read(&tg->load_weight);
1061 tg_weight -= cfs_rq->load_contribution;
1062 tg_weight += cfs_rq->load.weight;
1063
1064 return tg_weight;
1065}
1066
6d5ab293 1067static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1068{
cf5f0acf 1069 long tg_weight, load, shares;
3ff6dcac 1070
cf5f0acf 1071 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1072 load = cfs_rq->load.weight;
3ff6dcac 1073
3ff6dcac 1074 shares = (tg->shares * load);
cf5f0acf
PZ
1075 if (tg_weight)
1076 shares /= tg_weight;
3ff6dcac
YZ
1077
1078 if (shares < MIN_SHARES)
1079 shares = MIN_SHARES;
1080 if (shares > tg->shares)
1081 shares = tg->shares;
1082
1083 return shares;
1084}
1085
1086static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1087{
1088 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
1089 update_cfs_load(cfs_rq, 0);
6d5ab293 1090 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
1091 }
1092}
1093# else /* CONFIG_SMP */
1094static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1095{
1096}
1097
6d5ab293 1098static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1099{
1100 return tg->shares;
1101}
1102
1103static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1104{
1105}
1106# endif /* CONFIG_SMP */
2069dd75
PZ
1107static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1108 unsigned long weight)
1109{
19e5eebb
PT
1110 if (se->on_rq) {
1111 /* commit outstanding execution time */
1112 if (cfs_rq->curr == se)
1113 update_curr(cfs_rq);
2069dd75 1114 account_entity_dequeue(cfs_rq, se);
19e5eebb 1115 }
2069dd75
PZ
1116
1117 update_load_set(&se->load, weight);
1118
1119 if (se->on_rq)
1120 account_entity_enqueue(cfs_rq, se);
1121}
1122
6d5ab293 1123static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1124{
1125 struct task_group *tg;
1126 struct sched_entity *se;
3ff6dcac 1127 long shares;
2069dd75 1128
2069dd75
PZ
1129 tg = cfs_rq->tg;
1130 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1131 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1132 return;
3ff6dcac
YZ
1133#ifndef CONFIG_SMP
1134 if (likely(se->load.weight == tg->shares))
1135 return;
1136#endif
6d5ab293 1137 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1138
1139 reweight_entity(cfs_rq_of(se), se, shares);
1140}
1141#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 1142static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
1143{
1144}
1145
6d5ab293 1146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1147{
1148}
43365bd7
PT
1149
1150static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1151{
1152}
2069dd75
PZ
1153#endif /* CONFIG_FAIR_GROUP_SCHED */
1154
2396af69 1155static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1156{
bf0f6f24 1157#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1158 struct task_struct *tsk = NULL;
1159
1160 if (entity_is_task(se))
1161 tsk = task_of(se);
1162
41acab88
LDM
1163 if (se->statistics.sleep_start) {
1164 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1165
1166 if ((s64)delta < 0)
1167 delta = 0;
1168
41acab88
LDM
1169 if (unlikely(delta > se->statistics.sleep_max))
1170 se->statistics.sleep_max = delta;
bf0f6f24 1171
8c79a045 1172 se->statistics.sleep_start = 0;
41acab88 1173 se->statistics.sum_sleep_runtime += delta;
9745512c 1174
768d0c27 1175 if (tsk) {
e414314c 1176 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1177 trace_sched_stat_sleep(tsk, delta);
1178 }
bf0f6f24 1179 }
41acab88
LDM
1180 if (se->statistics.block_start) {
1181 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1182
1183 if ((s64)delta < 0)
1184 delta = 0;
1185
41acab88
LDM
1186 if (unlikely(delta > se->statistics.block_max))
1187 se->statistics.block_max = delta;
bf0f6f24 1188
8c79a045 1189 se->statistics.block_start = 0;
41acab88 1190 se->statistics.sum_sleep_runtime += delta;
30084fbd 1191
e414314c 1192 if (tsk) {
8f0dfc34 1193 if (tsk->in_iowait) {
41acab88
LDM
1194 se->statistics.iowait_sum += delta;
1195 se->statistics.iowait_count++;
768d0c27 1196 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1197 }
1198
b781a602
AV
1199 trace_sched_stat_blocked(tsk, delta);
1200
e414314c
PZ
1201 /*
1202 * Blocking time is in units of nanosecs, so shift by
1203 * 20 to get a milliseconds-range estimation of the
1204 * amount of time that the task spent sleeping:
1205 */
1206 if (unlikely(prof_on == SLEEP_PROFILING)) {
1207 profile_hits(SLEEP_PROFILING,
1208 (void *)get_wchan(tsk),
1209 delta >> 20);
1210 }
1211 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1212 }
bf0f6f24
IM
1213 }
1214#endif
1215}
1216
ddc97297
PZ
1217static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1218{
1219#ifdef CONFIG_SCHED_DEBUG
1220 s64 d = se->vruntime - cfs_rq->min_vruntime;
1221
1222 if (d < 0)
1223 d = -d;
1224
1225 if (d > 3*sysctl_sched_latency)
1226 schedstat_inc(cfs_rq, nr_spread_over);
1227#endif
1228}
1229
aeb73b04
PZ
1230static void
1231place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1232{
1af5f730 1233 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1234
2cb8600e
PZ
1235 /*
1236 * The 'current' period is already promised to the current tasks,
1237 * however the extra weight of the new task will slow them down a
1238 * little, place the new task so that it fits in the slot that
1239 * stays open at the end.
1240 */
94dfb5e7 1241 if (initial && sched_feat(START_DEBIT))
f9c0b095 1242 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1243
a2e7a7eb 1244 /* sleeps up to a single latency don't count. */
5ca9880c 1245 if (!initial) {
a2e7a7eb 1246 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1247
a2e7a7eb
MG
1248 /*
1249 * Halve their sleep time's effect, to allow
1250 * for a gentler effect of sleepers:
1251 */
1252 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1253 thresh >>= 1;
51e0304c 1254
a2e7a7eb 1255 vruntime -= thresh;
aeb73b04
PZ
1256 }
1257
b5d9d734
MG
1258 /* ensure we never gain time by being placed backwards. */
1259 vruntime = max_vruntime(se->vruntime, vruntime);
1260
67e9fb2a 1261 se->vruntime = vruntime;
aeb73b04
PZ
1262}
1263
d3d9dc33
PT
1264static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1265
bf0f6f24 1266static void
88ec22d3 1267enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1268{
88ec22d3
PZ
1269 /*
1270 * Update the normalized vruntime before updating min_vruntime
1271 * through callig update_curr().
1272 */
371fd7e7 1273 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1274 se->vruntime += cfs_rq->min_vruntime;
1275
bf0f6f24 1276 /*
a2a2d680 1277 * Update run-time statistics of the 'current'.
bf0f6f24 1278 */
b7cc0896 1279 update_curr(cfs_rq);
d6b55918 1280 update_cfs_load(cfs_rq, 0);
a992241d 1281 account_entity_enqueue(cfs_rq, se);
6d5ab293 1282 update_cfs_shares(cfs_rq);
bf0f6f24 1283
88ec22d3 1284 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1285 place_entity(cfs_rq, se, 0);
2396af69 1286 enqueue_sleeper(cfs_rq, se);
e9acbff6 1287 }
bf0f6f24 1288
d2417e5a 1289 update_stats_enqueue(cfs_rq, se);
ddc97297 1290 check_spread(cfs_rq, se);
83b699ed
SV
1291 if (se != cfs_rq->curr)
1292 __enqueue_entity(cfs_rq, se);
2069dd75 1293 se->on_rq = 1;
3d4b47b4 1294
d3d9dc33 1295 if (cfs_rq->nr_running == 1) {
3d4b47b4 1296 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1297 check_enqueue_throttle(cfs_rq);
1298 }
bf0f6f24
IM
1299}
1300
2c13c919 1301static void __clear_buddies_last(struct sched_entity *se)
2002c695 1302{
2c13c919
RR
1303 for_each_sched_entity(se) {
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 if (cfs_rq->last == se)
1306 cfs_rq->last = NULL;
1307 else
1308 break;
1309 }
1310}
2002c695 1311
2c13c919
RR
1312static void __clear_buddies_next(struct sched_entity *se)
1313{
1314 for_each_sched_entity(se) {
1315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1316 if (cfs_rq->next == se)
1317 cfs_rq->next = NULL;
1318 else
1319 break;
1320 }
2002c695
PZ
1321}
1322
ac53db59
RR
1323static void __clear_buddies_skip(struct sched_entity *se)
1324{
1325 for_each_sched_entity(se) {
1326 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1327 if (cfs_rq->skip == se)
1328 cfs_rq->skip = NULL;
1329 else
1330 break;
1331 }
1332}
1333
a571bbea
PZ
1334static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1335{
2c13c919
RR
1336 if (cfs_rq->last == se)
1337 __clear_buddies_last(se);
1338
1339 if (cfs_rq->next == se)
1340 __clear_buddies_next(se);
ac53db59
RR
1341
1342 if (cfs_rq->skip == se)
1343 __clear_buddies_skip(se);
a571bbea
PZ
1344}
1345
6c16a6dc 1346static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1347
bf0f6f24 1348static void
371fd7e7 1349dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1350{
a2a2d680
DA
1351 /*
1352 * Update run-time statistics of the 'current'.
1353 */
1354 update_curr(cfs_rq);
1355
19b6a2e3 1356 update_stats_dequeue(cfs_rq, se);
371fd7e7 1357 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1358#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1359 if (entity_is_task(se)) {
1360 struct task_struct *tsk = task_of(se);
1361
1362 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1363 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1364 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1365 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1366 }
db36cc7d 1367#endif
67e9fb2a
PZ
1368 }
1369
2002c695 1370 clear_buddies(cfs_rq, se);
4793241b 1371
83b699ed 1372 if (se != cfs_rq->curr)
30cfdcfc 1373 __dequeue_entity(cfs_rq, se);
2069dd75 1374 se->on_rq = 0;
d6b55918 1375 update_cfs_load(cfs_rq, 0);
30cfdcfc 1376 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1377
1378 /*
1379 * Normalize the entity after updating the min_vruntime because the
1380 * update can refer to the ->curr item and we need to reflect this
1381 * movement in our normalized position.
1382 */
371fd7e7 1383 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1384 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1385
d8b4986d
PT
1386 /* return excess runtime on last dequeue */
1387 return_cfs_rq_runtime(cfs_rq);
1388
1e876231
PZ
1389 update_min_vruntime(cfs_rq);
1390 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1391}
1392
1393/*
1394 * Preempt the current task with a newly woken task if needed:
1395 */
7c92e54f 1396static void
2e09bf55 1397check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1398{
11697830 1399 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1400 struct sched_entity *se;
1401 s64 delta;
11697830 1402
6d0f0ebd 1403 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1404 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1405 if (delta_exec > ideal_runtime) {
bf0f6f24 1406 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1407 /*
1408 * The current task ran long enough, ensure it doesn't get
1409 * re-elected due to buddy favours.
1410 */
1411 clear_buddies(cfs_rq, curr);
f685ceac
MG
1412 return;
1413 }
1414
1415 /*
1416 * Ensure that a task that missed wakeup preemption by a
1417 * narrow margin doesn't have to wait for a full slice.
1418 * This also mitigates buddy induced latencies under load.
1419 */
f685ceac
MG
1420 if (delta_exec < sysctl_sched_min_granularity)
1421 return;
1422
f4cfb33e
WX
1423 se = __pick_first_entity(cfs_rq);
1424 delta = curr->vruntime - se->vruntime;
f685ceac 1425
f4cfb33e
WX
1426 if (delta < 0)
1427 return;
d7d82944 1428
f4cfb33e
WX
1429 if (delta > ideal_runtime)
1430 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1431}
1432
83b699ed 1433static void
8494f412 1434set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1435{
83b699ed
SV
1436 /* 'current' is not kept within the tree. */
1437 if (se->on_rq) {
1438 /*
1439 * Any task has to be enqueued before it get to execute on
1440 * a CPU. So account for the time it spent waiting on the
1441 * runqueue.
1442 */
1443 update_stats_wait_end(cfs_rq, se);
1444 __dequeue_entity(cfs_rq, se);
1445 }
1446
79303e9e 1447 update_stats_curr_start(cfs_rq, se);
429d43bc 1448 cfs_rq->curr = se;
eba1ed4b
IM
1449#ifdef CONFIG_SCHEDSTATS
1450 /*
1451 * Track our maximum slice length, if the CPU's load is at
1452 * least twice that of our own weight (i.e. dont track it
1453 * when there are only lesser-weight tasks around):
1454 */
495eca49 1455 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1456 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1457 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1458 }
1459#endif
4a55b450 1460 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1461}
1462
3f3a4904
PZ
1463static int
1464wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1465
ac53db59
RR
1466/*
1467 * Pick the next process, keeping these things in mind, in this order:
1468 * 1) keep things fair between processes/task groups
1469 * 2) pick the "next" process, since someone really wants that to run
1470 * 3) pick the "last" process, for cache locality
1471 * 4) do not run the "skip" process, if something else is available
1472 */
f4b6755f 1473static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1474{
ac53db59 1475 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1476 struct sched_entity *left = se;
f4b6755f 1477
ac53db59
RR
1478 /*
1479 * Avoid running the skip buddy, if running something else can
1480 * be done without getting too unfair.
1481 */
1482 if (cfs_rq->skip == se) {
1483 struct sched_entity *second = __pick_next_entity(se);
1484 if (second && wakeup_preempt_entity(second, left) < 1)
1485 se = second;
1486 }
aa2ac252 1487
f685ceac
MG
1488 /*
1489 * Prefer last buddy, try to return the CPU to a preempted task.
1490 */
1491 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1492 se = cfs_rq->last;
1493
ac53db59
RR
1494 /*
1495 * Someone really wants this to run. If it's not unfair, run it.
1496 */
1497 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1498 se = cfs_rq->next;
1499
f685ceac 1500 clear_buddies(cfs_rq, se);
4793241b
PZ
1501
1502 return se;
aa2ac252
PZ
1503}
1504
d3d9dc33
PT
1505static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1506
ab6cde26 1507static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1508{
1509 /*
1510 * If still on the runqueue then deactivate_task()
1511 * was not called and update_curr() has to be done:
1512 */
1513 if (prev->on_rq)
b7cc0896 1514 update_curr(cfs_rq);
bf0f6f24 1515
d3d9dc33
PT
1516 /* throttle cfs_rqs exceeding runtime */
1517 check_cfs_rq_runtime(cfs_rq);
1518
ddc97297 1519 check_spread(cfs_rq, prev);
30cfdcfc 1520 if (prev->on_rq) {
5870db5b 1521 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1522 /* Put 'current' back into the tree. */
1523 __enqueue_entity(cfs_rq, prev);
1524 }
429d43bc 1525 cfs_rq->curr = NULL;
bf0f6f24
IM
1526}
1527
8f4d37ec
PZ
1528static void
1529entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1530{
bf0f6f24 1531 /*
30cfdcfc 1532 * Update run-time statistics of the 'current'.
bf0f6f24 1533 */
30cfdcfc 1534 update_curr(cfs_rq);
bf0f6f24 1535
43365bd7
PT
1536 /*
1537 * Update share accounting for long-running entities.
1538 */
1539 update_entity_shares_tick(cfs_rq);
1540
8f4d37ec
PZ
1541#ifdef CONFIG_SCHED_HRTICK
1542 /*
1543 * queued ticks are scheduled to match the slice, so don't bother
1544 * validating it and just reschedule.
1545 */
983ed7a6
HH
1546 if (queued) {
1547 resched_task(rq_of(cfs_rq)->curr);
1548 return;
1549 }
8f4d37ec
PZ
1550 /*
1551 * don't let the period tick interfere with the hrtick preemption
1552 */
1553 if (!sched_feat(DOUBLE_TICK) &&
1554 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1555 return;
1556#endif
1557
2c2efaed 1558 if (cfs_rq->nr_running > 1)
2e09bf55 1559 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1560}
1561
ab84d31e
PT
1562
1563/**************************************************
1564 * CFS bandwidth control machinery
1565 */
1566
1567#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1568
1569#ifdef HAVE_JUMP_LABEL
c5905afb 1570static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1571
1572static inline bool cfs_bandwidth_used(void)
1573{
c5905afb 1574 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1575}
1576
1577void account_cfs_bandwidth_used(int enabled, int was_enabled)
1578{
1579 /* only need to count groups transitioning between enabled/!enabled */
1580 if (enabled && !was_enabled)
c5905afb 1581 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1582 else if (!enabled && was_enabled)
c5905afb 1583 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1584}
1585#else /* HAVE_JUMP_LABEL */
1586static bool cfs_bandwidth_used(void)
1587{
1588 return true;
1589}
1590
1591void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1592#endif /* HAVE_JUMP_LABEL */
1593
ab84d31e
PT
1594/*
1595 * default period for cfs group bandwidth.
1596 * default: 0.1s, units: nanoseconds
1597 */
1598static inline u64 default_cfs_period(void)
1599{
1600 return 100000000ULL;
1601}
ec12cb7f
PT
1602
1603static inline u64 sched_cfs_bandwidth_slice(void)
1604{
1605 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1606}
1607
a9cf55b2
PT
1608/*
1609 * Replenish runtime according to assigned quota and update expiration time.
1610 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1611 * additional synchronization around rq->lock.
1612 *
1613 * requires cfs_b->lock
1614 */
029632fb 1615void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1616{
1617 u64 now;
1618
1619 if (cfs_b->quota == RUNTIME_INF)
1620 return;
1621
1622 now = sched_clock_cpu(smp_processor_id());
1623 cfs_b->runtime = cfs_b->quota;
1624 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1625}
1626
029632fb
PZ
1627static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1628{
1629 return &tg->cfs_bandwidth;
1630}
1631
85dac906
PT
1632/* returns 0 on failure to allocate runtime */
1633static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1634{
1635 struct task_group *tg = cfs_rq->tg;
1636 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1637 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1638
1639 /* note: this is a positive sum as runtime_remaining <= 0 */
1640 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1641
1642 raw_spin_lock(&cfs_b->lock);
1643 if (cfs_b->quota == RUNTIME_INF)
1644 amount = min_amount;
58088ad0 1645 else {
a9cf55b2
PT
1646 /*
1647 * If the bandwidth pool has become inactive, then at least one
1648 * period must have elapsed since the last consumption.
1649 * Refresh the global state and ensure bandwidth timer becomes
1650 * active.
1651 */
1652 if (!cfs_b->timer_active) {
1653 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1654 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1655 }
58088ad0
PT
1656
1657 if (cfs_b->runtime > 0) {
1658 amount = min(cfs_b->runtime, min_amount);
1659 cfs_b->runtime -= amount;
1660 cfs_b->idle = 0;
1661 }
ec12cb7f 1662 }
a9cf55b2 1663 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1664 raw_spin_unlock(&cfs_b->lock);
1665
1666 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1667 /*
1668 * we may have advanced our local expiration to account for allowed
1669 * spread between our sched_clock and the one on which runtime was
1670 * issued.
1671 */
1672 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1673 cfs_rq->runtime_expires = expires;
85dac906
PT
1674
1675 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1676}
1677
a9cf55b2
PT
1678/*
1679 * Note: This depends on the synchronization provided by sched_clock and the
1680 * fact that rq->clock snapshots this value.
1681 */
1682static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1683{
a9cf55b2
PT
1684 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1685 struct rq *rq = rq_of(cfs_rq);
1686
1687 /* if the deadline is ahead of our clock, nothing to do */
1688 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1689 return;
1690
a9cf55b2
PT
1691 if (cfs_rq->runtime_remaining < 0)
1692 return;
1693
1694 /*
1695 * If the local deadline has passed we have to consider the
1696 * possibility that our sched_clock is 'fast' and the global deadline
1697 * has not truly expired.
1698 *
1699 * Fortunately we can check determine whether this the case by checking
1700 * whether the global deadline has advanced.
1701 */
1702
1703 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1704 /* extend local deadline, drift is bounded above by 2 ticks */
1705 cfs_rq->runtime_expires += TICK_NSEC;
1706 } else {
1707 /* global deadline is ahead, expiration has passed */
1708 cfs_rq->runtime_remaining = 0;
1709 }
1710}
1711
1712static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1713 unsigned long delta_exec)
1714{
1715 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1716 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1717 expire_cfs_rq_runtime(cfs_rq);
1718
1719 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1720 return;
1721
85dac906
PT
1722 /*
1723 * if we're unable to extend our runtime we resched so that the active
1724 * hierarchy can be throttled
1725 */
1726 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1727 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1728}
1729
6c16a6dc
PZ
1730static __always_inline
1731void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1732{
56f570e5 1733 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1734 return;
1735
1736 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1737}
1738
85dac906
PT
1739static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1740{
56f570e5 1741 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1742}
1743
64660c86
PT
1744/* check whether cfs_rq, or any parent, is throttled */
1745static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1746{
56f570e5 1747 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1748}
1749
1750/*
1751 * Ensure that neither of the group entities corresponding to src_cpu or
1752 * dest_cpu are members of a throttled hierarchy when performing group
1753 * load-balance operations.
1754 */
1755static inline int throttled_lb_pair(struct task_group *tg,
1756 int src_cpu, int dest_cpu)
1757{
1758 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1759
1760 src_cfs_rq = tg->cfs_rq[src_cpu];
1761 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1762
1763 return throttled_hierarchy(src_cfs_rq) ||
1764 throttled_hierarchy(dest_cfs_rq);
1765}
1766
1767/* updated child weight may affect parent so we have to do this bottom up */
1768static int tg_unthrottle_up(struct task_group *tg, void *data)
1769{
1770 struct rq *rq = data;
1771 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1772
1773 cfs_rq->throttle_count--;
1774#ifdef CONFIG_SMP
1775 if (!cfs_rq->throttle_count) {
1776 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1777
1778 /* leaving throttled state, advance shares averaging windows */
1779 cfs_rq->load_stamp += delta;
1780 cfs_rq->load_last += delta;
1781
1782 /* update entity weight now that we are on_rq again */
1783 update_cfs_shares(cfs_rq);
1784 }
1785#endif
1786
1787 return 0;
1788}
1789
1790static int tg_throttle_down(struct task_group *tg, void *data)
1791{
1792 struct rq *rq = data;
1793 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1794
1795 /* group is entering throttled state, record last load */
1796 if (!cfs_rq->throttle_count)
1797 update_cfs_load(cfs_rq, 0);
1798 cfs_rq->throttle_count++;
1799
1800 return 0;
1801}
1802
d3d9dc33 1803static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1804{
1805 struct rq *rq = rq_of(cfs_rq);
1806 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1807 struct sched_entity *se;
1808 long task_delta, dequeue = 1;
1809
1810 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1811
1812 /* account load preceding throttle */
64660c86
PT
1813 rcu_read_lock();
1814 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1815 rcu_read_unlock();
85dac906
PT
1816
1817 task_delta = cfs_rq->h_nr_running;
1818 for_each_sched_entity(se) {
1819 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1820 /* throttled entity or throttle-on-deactivate */
1821 if (!se->on_rq)
1822 break;
1823
1824 if (dequeue)
1825 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1826 qcfs_rq->h_nr_running -= task_delta;
1827
1828 if (qcfs_rq->load.weight)
1829 dequeue = 0;
1830 }
1831
1832 if (!se)
1833 rq->nr_running -= task_delta;
1834
1835 cfs_rq->throttled = 1;
e8da1b18 1836 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1837 raw_spin_lock(&cfs_b->lock);
1838 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1839 raw_spin_unlock(&cfs_b->lock);
1840}
1841
029632fb 1842void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1843{
1844 struct rq *rq = rq_of(cfs_rq);
1845 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1846 struct sched_entity *se;
1847 int enqueue = 1;
1848 long task_delta;
1849
1850 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1851
1852 cfs_rq->throttled = 0;
1853 raw_spin_lock(&cfs_b->lock);
e8da1b18 1854 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1855 list_del_rcu(&cfs_rq->throttled_list);
1856 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1857 cfs_rq->throttled_timestamp = 0;
671fd9da 1858
64660c86
PT
1859 update_rq_clock(rq);
1860 /* update hierarchical throttle state */
1861 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1862
671fd9da
PT
1863 if (!cfs_rq->load.weight)
1864 return;
1865
1866 task_delta = cfs_rq->h_nr_running;
1867 for_each_sched_entity(se) {
1868 if (se->on_rq)
1869 enqueue = 0;
1870
1871 cfs_rq = cfs_rq_of(se);
1872 if (enqueue)
1873 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1874 cfs_rq->h_nr_running += task_delta;
1875
1876 if (cfs_rq_throttled(cfs_rq))
1877 break;
1878 }
1879
1880 if (!se)
1881 rq->nr_running += task_delta;
1882
1883 /* determine whether we need to wake up potentially idle cpu */
1884 if (rq->curr == rq->idle && rq->cfs.nr_running)
1885 resched_task(rq->curr);
1886}
1887
1888static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1889 u64 remaining, u64 expires)
1890{
1891 struct cfs_rq *cfs_rq;
1892 u64 runtime = remaining;
1893
1894 rcu_read_lock();
1895 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1896 throttled_list) {
1897 struct rq *rq = rq_of(cfs_rq);
1898
1899 raw_spin_lock(&rq->lock);
1900 if (!cfs_rq_throttled(cfs_rq))
1901 goto next;
1902
1903 runtime = -cfs_rq->runtime_remaining + 1;
1904 if (runtime > remaining)
1905 runtime = remaining;
1906 remaining -= runtime;
1907
1908 cfs_rq->runtime_remaining += runtime;
1909 cfs_rq->runtime_expires = expires;
1910
1911 /* we check whether we're throttled above */
1912 if (cfs_rq->runtime_remaining > 0)
1913 unthrottle_cfs_rq(cfs_rq);
1914
1915next:
1916 raw_spin_unlock(&rq->lock);
1917
1918 if (!remaining)
1919 break;
1920 }
1921 rcu_read_unlock();
1922
1923 return remaining;
1924}
1925
58088ad0
PT
1926/*
1927 * Responsible for refilling a task_group's bandwidth and unthrottling its
1928 * cfs_rqs as appropriate. If there has been no activity within the last
1929 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1930 * used to track this state.
1931 */
1932static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1933{
671fd9da
PT
1934 u64 runtime, runtime_expires;
1935 int idle = 1, throttled;
58088ad0
PT
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 /* no need to continue the timer with no bandwidth constraint */
1939 if (cfs_b->quota == RUNTIME_INF)
1940 goto out_unlock;
1941
671fd9da
PT
1942 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1943 /* idle depends on !throttled (for the case of a large deficit) */
1944 idle = cfs_b->idle && !throttled;
e8da1b18 1945 cfs_b->nr_periods += overrun;
671fd9da 1946
a9cf55b2
PT
1947 /* if we're going inactive then everything else can be deferred */
1948 if (idle)
1949 goto out_unlock;
1950
1951 __refill_cfs_bandwidth_runtime(cfs_b);
1952
671fd9da
PT
1953 if (!throttled) {
1954 /* mark as potentially idle for the upcoming period */
1955 cfs_b->idle = 1;
1956 goto out_unlock;
1957 }
1958
e8da1b18
NR
1959 /* account preceding periods in which throttling occurred */
1960 cfs_b->nr_throttled += overrun;
1961
671fd9da
PT
1962 /*
1963 * There are throttled entities so we must first use the new bandwidth
1964 * to unthrottle them before making it generally available. This
1965 * ensures that all existing debts will be paid before a new cfs_rq is
1966 * allowed to run.
1967 */
1968 runtime = cfs_b->runtime;
1969 runtime_expires = cfs_b->runtime_expires;
1970 cfs_b->runtime = 0;
1971
1972 /*
1973 * This check is repeated as we are holding onto the new bandwidth
1974 * while we unthrottle. This can potentially race with an unthrottled
1975 * group trying to acquire new bandwidth from the global pool.
1976 */
1977 while (throttled && runtime > 0) {
1978 raw_spin_unlock(&cfs_b->lock);
1979 /* we can't nest cfs_b->lock while distributing bandwidth */
1980 runtime = distribute_cfs_runtime(cfs_b, runtime,
1981 runtime_expires);
1982 raw_spin_lock(&cfs_b->lock);
1983
1984 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1985 }
58088ad0 1986
671fd9da
PT
1987 /* return (any) remaining runtime */
1988 cfs_b->runtime = runtime;
1989 /*
1990 * While we are ensured activity in the period following an
1991 * unthrottle, this also covers the case in which the new bandwidth is
1992 * insufficient to cover the existing bandwidth deficit. (Forcing the
1993 * timer to remain active while there are any throttled entities.)
1994 */
1995 cfs_b->idle = 0;
58088ad0
PT
1996out_unlock:
1997 if (idle)
1998 cfs_b->timer_active = 0;
1999 raw_spin_unlock(&cfs_b->lock);
2000
2001 return idle;
2002}
d3d9dc33 2003
d8b4986d
PT
2004/* a cfs_rq won't donate quota below this amount */
2005static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2006/* minimum remaining period time to redistribute slack quota */
2007static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2008/* how long we wait to gather additional slack before distributing */
2009static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2010
2011/* are we near the end of the current quota period? */
2012static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2013{
2014 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2015 u64 remaining;
2016
2017 /* if the call-back is running a quota refresh is already occurring */
2018 if (hrtimer_callback_running(refresh_timer))
2019 return 1;
2020
2021 /* is a quota refresh about to occur? */
2022 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2023 if (remaining < min_expire)
2024 return 1;
2025
2026 return 0;
2027}
2028
2029static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2030{
2031 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2032
2033 /* if there's a quota refresh soon don't bother with slack */
2034 if (runtime_refresh_within(cfs_b, min_left))
2035 return;
2036
2037 start_bandwidth_timer(&cfs_b->slack_timer,
2038 ns_to_ktime(cfs_bandwidth_slack_period));
2039}
2040
2041/* we know any runtime found here is valid as update_curr() precedes return */
2042static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2043{
2044 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2045 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2046
2047 if (slack_runtime <= 0)
2048 return;
2049
2050 raw_spin_lock(&cfs_b->lock);
2051 if (cfs_b->quota != RUNTIME_INF &&
2052 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2053 cfs_b->runtime += slack_runtime;
2054
2055 /* we are under rq->lock, defer unthrottling using a timer */
2056 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2057 !list_empty(&cfs_b->throttled_cfs_rq))
2058 start_cfs_slack_bandwidth(cfs_b);
2059 }
2060 raw_spin_unlock(&cfs_b->lock);
2061
2062 /* even if it's not valid for return we don't want to try again */
2063 cfs_rq->runtime_remaining -= slack_runtime;
2064}
2065
2066static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2067{
56f570e5
PT
2068 if (!cfs_bandwidth_used())
2069 return;
2070
fccfdc6f 2071 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2072 return;
2073
2074 __return_cfs_rq_runtime(cfs_rq);
2075}
2076
2077/*
2078 * This is done with a timer (instead of inline with bandwidth return) since
2079 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2080 */
2081static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2082{
2083 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2084 u64 expires;
2085
2086 /* confirm we're still not at a refresh boundary */
2087 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2088 return;
2089
2090 raw_spin_lock(&cfs_b->lock);
2091 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2092 runtime = cfs_b->runtime;
2093 cfs_b->runtime = 0;
2094 }
2095 expires = cfs_b->runtime_expires;
2096 raw_spin_unlock(&cfs_b->lock);
2097
2098 if (!runtime)
2099 return;
2100
2101 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2102
2103 raw_spin_lock(&cfs_b->lock);
2104 if (expires == cfs_b->runtime_expires)
2105 cfs_b->runtime = runtime;
2106 raw_spin_unlock(&cfs_b->lock);
2107}
2108
d3d9dc33
PT
2109/*
2110 * When a group wakes up we want to make sure that its quota is not already
2111 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2112 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2113 */
2114static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2115{
56f570e5
PT
2116 if (!cfs_bandwidth_used())
2117 return;
2118
d3d9dc33
PT
2119 /* an active group must be handled by the update_curr()->put() path */
2120 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2121 return;
2122
2123 /* ensure the group is not already throttled */
2124 if (cfs_rq_throttled(cfs_rq))
2125 return;
2126
2127 /* update runtime allocation */
2128 account_cfs_rq_runtime(cfs_rq, 0);
2129 if (cfs_rq->runtime_remaining <= 0)
2130 throttle_cfs_rq(cfs_rq);
2131}
2132
2133/* conditionally throttle active cfs_rq's from put_prev_entity() */
2134static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2135{
56f570e5
PT
2136 if (!cfs_bandwidth_used())
2137 return;
2138
d3d9dc33
PT
2139 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2140 return;
2141
2142 /*
2143 * it's possible for a throttled entity to be forced into a running
2144 * state (e.g. set_curr_task), in this case we're finished.
2145 */
2146 if (cfs_rq_throttled(cfs_rq))
2147 return;
2148
2149 throttle_cfs_rq(cfs_rq);
2150}
029632fb
PZ
2151
2152static inline u64 default_cfs_period(void);
2153static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2154static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2155
2156static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2157{
2158 struct cfs_bandwidth *cfs_b =
2159 container_of(timer, struct cfs_bandwidth, slack_timer);
2160 do_sched_cfs_slack_timer(cfs_b);
2161
2162 return HRTIMER_NORESTART;
2163}
2164
2165static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2166{
2167 struct cfs_bandwidth *cfs_b =
2168 container_of(timer, struct cfs_bandwidth, period_timer);
2169 ktime_t now;
2170 int overrun;
2171 int idle = 0;
2172
2173 for (;;) {
2174 now = hrtimer_cb_get_time(timer);
2175 overrun = hrtimer_forward(timer, now, cfs_b->period);
2176
2177 if (!overrun)
2178 break;
2179
2180 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2181 }
2182
2183 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2184}
2185
2186void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2187{
2188 raw_spin_lock_init(&cfs_b->lock);
2189 cfs_b->runtime = 0;
2190 cfs_b->quota = RUNTIME_INF;
2191 cfs_b->period = ns_to_ktime(default_cfs_period());
2192
2193 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2194 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2195 cfs_b->period_timer.function = sched_cfs_period_timer;
2196 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2197 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2198}
2199
2200static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2201{
2202 cfs_rq->runtime_enabled = 0;
2203 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2204}
2205
2206/* requires cfs_b->lock, may release to reprogram timer */
2207void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2208{
2209 /*
2210 * The timer may be active because we're trying to set a new bandwidth
2211 * period or because we're racing with the tear-down path
2212 * (timer_active==0 becomes visible before the hrtimer call-back
2213 * terminates). In either case we ensure that it's re-programmed
2214 */
2215 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2216 raw_spin_unlock(&cfs_b->lock);
2217 /* ensure cfs_b->lock is available while we wait */
2218 hrtimer_cancel(&cfs_b->period_timer);
2219
2220 raw_spin_lock(&cfs_b->lock);
2221 /* if someone else restarted the timer then we're done */
2222 if (cfs_b->timer_active)
2223 return;
2224 }
2225
2226 cfs_b->timer_active = 1;
2227 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2228}
2229
2230static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2231{
2232 hrtimer_cancel(&cfs_b->period_timer);
2233 hrtimer_cancel(&cfs_b->slack_timer);
2234}
2235
a4c96ae3 2236static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2237{
2238 struct cfs_rq *cfs_rq;
2239
2240 for_each_leaf_cfs_rq(rq, cfs_rq) {
2241 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2242
2243 if (!cfs_rq->runtime_enabled)
2244 continue;
2245
2246 /*
2247 * clock_task is not advancing so we just need to make sure
2248 * there's some valid quota amount
2249 */
2250 cfs_rq->runtime_remaining = cfs_b->quota;
2251 if (cfs_rq_throttled(cfs_rq))
2252 unthrottle_cfs_rq(cfs_rq);
2253 }
2254}
2255
2256#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2257static __always_inline
2258void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2259static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2260static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2261static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2262
2263static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2264{
2265 return 0;
2266}
64660c86
PT
2267
2268static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2269{
2270 return 0;
2271}
2272
2273static inline int throttled_lb_pair(struct task_group *tg,
2274 int src_cpu, int dest_cpu)
2275{
2276 return 0;
2277}
029632fb
PZ
2278
2279void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2280
2281#ifdef CONFIG_FAIR_GROUP_SCHED
2282static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2283#endif
2284
029632fb
PZ
2285static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2286{
2287 return NULL;
2288}
2289static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2290static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2291
2292#endif /* CONFIG_CFS_BANDWIDTH */
2293
bf0f6f24
IM
2294/**************************************************
2295 * CFS operations on tasks:
2296 */
2297
8f4d37ec
PZ
2298#ifdef CONFIG_SCHED_HRTICK
2299static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2300{
8f4d37ec
PZ
2301 struct sched_entity *se = &p->se;
2302 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2303
2304 WARN_ON(task_rq(p) != rq);
2305
b39e66ea 2306 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2307 u64 slice = sched_slice(cfs_rq, se);
2308 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2309 s64 delta = slice - ran;
2310
2311 if (delta < 0) {
2312 if (rq->curr == p)
2313 resched_task(p);
2314 return;
2315 }
2316
2317 /*
2318 * Don't schedule slices shorter than 10000ns, that just
2319 * doesn't make sense. Rely on vruntime for fairness.
2320 */
31656519 2321 if (rq->curr != p)
157124c1 2322 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2323
31656519 2324 hrtick_start(rq, delta);
8f4d37ec
PZ
2325 }
2326}
a4c2f00f
PZ
2327
2328/*
2329 * called from enqueue/dequeue and updates the hrtick when the
2330 * current task is from our class and nr_running is low enough
2331 * to matter.
2332 */
2333static void hrtick_update(struct rq *rq)
2334{
2335 struct task_struct *curr = rq->curr;
2336
b39e66ea 2337 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2338 return;
2339
2340 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2341 hrtick_start_fair(rq, curr);
2342}
55e12e5e 2343#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2344static inline void
2345hrtick_start_fair(struct rq *rq, struct task_struct *p)
2346{
2347}
a4c2f00f
PZ
2348
2349static inline void hrtick_update(struct rq *rq)
2350{
2351}
8f4d37ec
PZ
2352#endif
2353
bf0f6f24
IM
2354/*
2355 * The enqueue_task method is called before nr_running is
2356 * increased. Here we update the fair scheduling stats and
2357 * then put the task into the rbtree:
2358 */
ea87bb78 2359static void
371fd7e7 2360enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2361{
2362 struct cfs_rq *cfs_rq;
62fb1851 2363 struct sched_entity *se = &p->se;
bf0f6f24
IM
2364
2365 for_each_sched_entity(se) {
62fb1851 2366 if (se->on_rq)
bf0f6f24
IM
2367 break;
2368 cfs_rq = cfs_rq_of(se);
88ec22d3 2369 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2370
2371 /*
2372 * end evaluation on encountering a throttled cfs_rq
2373 *
2374 * note: in the case of encountering a throttled cfs_rq we will
2375 * post the final h_nr_running increment below.
2376 */
2377 if (cfs_rq_throttled(cfs_rq))
2378 break;
953bfcd1 2379 cfs_rq->h_nr_running++;
85dac906 2380
88ec22d3 2381 flags = ENQUEUE_WAKEUP;
bf0f6f24 2382 }
8f4d37ec 2383
2069dd75 2384 for_each_sched_entity(se) {
0f317143 2385 cfs_rq = cfs_rq_of(se);
953bfcd1 2386 cfs_rq->h_nr_running++;
2069dd75 2387
85dac906
PT
2388 if (cfs_rq_throttled(cfs_rq))
2389 break;
2390
d6b55918 2391 update_cfs_load(cfs_rq, 0);
6d5ab293 2392 update_cfs_shares(cfs_rq);
2069dd75
PZ
2393 }
2394
85dac906
PT
2395 if (!se)
2396 inc_nr_running(rq);
a4c2f00f 2397 hrtick_update(rq);
bf0f6f24
IM
2398}
2399
2f36825b
VP
2400static void set_next_buddy(struct sched_entity *se);
2401
bf0f6f24
IM
2402/*
2403 * The dequeue_task method is called before nr_running is
2404 * decreased. We remove the task from the rbtree and
2405 * update the fair scheduling stats:
2406 */
371fd7e7 2407static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2408{
2409 struct cfs_rq *cfs_rq;
62fb1851 2410 struct sched_entity *se = &p->se;
2f36825b 2411 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2412
2413 for_each_sched_entity(se) {
2414 cfs_rq = cfs_rq_of(se);
371fd7e7 2415 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2416
2417 /*
2418 * end evaluation on encountering a throttled cfs_rq
2419 *
2420 * note: in the case of encountering a throttled cfs_rq we will
2421 * post the final h_nr_running decrement below.
2422 */
2423 if (cfs_rq_throttled(cfs_rq))
2424 break;
953bfcd1 2425 cfs_rq->h_nr_running--;
2069dd75 2426
bf0f6f24 2427 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2428 if (cfs_rq->load.weight) {
2429 /*
2430 * Bias pick_next to pick a task from this cfs_rq, as
2431 * p is sleeping when it is within its sched_slice.
2432 */
2433 if (task_sleep && parent_entity(se))
2434 set_next_buddy(parent_entity(se));
9598c82d
PT
2435
2436 /* avoid re-evaluating load for this entity */
2437 se = parent_entity(se);
bf0f6f24 2438 break;
2f36825b 2439 }
371fd7e7 2440 flags |= DEQUEUE_SLEEP;
bf0f6f24 2441 }
8f4d37ec 2442
2069dd75 2443 for_each_sched_entity(se) {
0f317143 2444 cfs_rq = cfs_rq_of(se);
953bfcd1 2445 cfs_rq->h_nr_running--;
2069dd75 2446
85dac906
PT
2447 if (cfs_rq_throttled(cfs_rq))
2448 break;
2449
d6b55918 2450 update_cfs_load(cfs_rq, 0);
6d5ab293 2451 update_cfs_shares(cfs_rq);
2069dd75
PZ
2452 }
2453
85dac906
PT
2454 if (!se)
2455 dec_nr_running(rq);
a4c2f00f 2456 hrtick_update(rq);
bf0f6f24
IM
2457}
2458
e7693a36 2459#ifdef CONFIG_SMP
029632fb
PZ
2460/* Used instead of source_load when we know the type == 0 */
2461static unsigned long weighted_cpuload(const int cpu)
2462{
2463 return cpu_rq(cpu)->load.weight;
2464}
2465
2466/*
2467 * Return a low guess at the load of a migration-source cpu weighted
2468 * according to the scheduling class and "nice" value.
2469 *
2470 * We want to under-estimate the load of migration sources, to
2471 * balance conservatively.
2472 */
2473static unsigned long source_load(int cpu, int type)
2474{
2475 struct rq *rq = cpu_rq(cpu);
2476 unsigned long total = weighted_cpuload(cpu);
2477
2478 if (type == 0 || !sched_feat(LB_BIAS))
2479 return total;
2480
2481 return min(rq->cpu_load[type-1], total);
2482}
2483
2484/*
2485 * Return a high guess at the load of a migration-target cpu weighted
2486 * according to the scheduling class and "nice" value.
2487 */
2488static unsigned long target_load(int cpu, int type)
2489{
2490 struct rq *rq = cpu_rq(cpu);
2491 unsigned long total = weighted_cpuload(cpu);
2492
2493 if (type == 0 || !sched_feat(LB_BIAS))
2494 return total;
2495
2496 return max(rq->cpu_load[type-1], total);
2497}
2498
2499static unsigned long power_of(int cpu)
2500{
2501 return cpu_rq(cpu)->cpu_power;
2502}
2503
2504static unsigned long cpu_avg_load_per_task(int cpu)
2505{
2506 struct rq *rq = cpu_rq(cpu);
2507 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2508
2509 if (nr_running)
2510 return rq->load.weight / nr_running;
2511
2512 return 0;
2513}
2514
098fb9db 2515
74f8e4b2 2516static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2517{
2518 struct sched_entity *se = &p->se;
2519 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2520 u64 min_vruntime;
2521
2522#ifndef CONFIG_64BIT
2523 u64 min_vruntime_copy;
88ec22d3 2524
3fe1698b
PZ
2525 do {
2526 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2527 smp_rmb();
2528 min_vruntime = cfs_rq->min_vruntime;
2529 } while (min_vruntime != min_vruntime_copy);
2530#else
2531 min_vruntime = cfs_rq->min_vruntime;
2532#endif
88ec22d3 2533
3fe1698b 2534 se->vruntime -= min_vruntime;
88ec22d3
PZ
2535}
2536
bb3469ac 2537#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2538/*
2539 * effective_load() calculates the load change as seen from the root_task_group
2540 *
2541 * Adding load to a group doesn't make a group heavier, but can cause movement
2542 * of group shares between cpus. Assuming the shares were perfectly aligned one
2543 * can calculate the shift in shares.
cf5f0acf
PZ
2544 *
2545 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2546 * on this @cpu and results in a total addition (subtraction) of @wg to the
2547 * total group weight.
2548 *
2549 * Given a runqueue weight distribution (rw_i) we can compute a shares
2550 * distribution (s_i) using:
2551 *
2552 * s_i = rw_i / \Sum rw_j (1)
2553 *
2554 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2555 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2556 * shares distribution (s_i):
2557 *
2558 * rw_i = { 2, 4, 1, 0 }
2559 * s_i = { 2/7, 4/7, 1/7, 0 }
2560 *
2561 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2562 * task used to run on and the CPU the waker is running on), we need to
2563 * compute the effect of waking a task on either CPU and, in case of a sync
2564 * wakeup, compute the effect of the current task going to sleep.
2565 *
2566 * So for a change of @wl to the local @cpu with an overall group weight change
2567 * of @wl we can compute the new shares distribution (s'_i) using:
2568 *
2569 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2570 *
2571 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2572 * differences in waking a task to CPU 0. The additional task changes the
2573 * weight and shares distributions like:
2574 *
2575 * rw'_i = { 3, 4, 1, 0 }
2576 * s'_i = { 3/8, 4/8, 1/8, 0 }
2577 *
2578 * We can then compute the difference in effective weight by using:
2579 *
2580 * dw_i = S * (s'_i - s_i) (3)
2581 *
2582 * Where 'S' is the group weight as seen by its parent.
2583 *
2584 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2585 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2586 * 4/7) times the weight of the group.
f5bfb7d9 2587 */
2069dd75 2588static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2589{
4be9daaa 2590 struct sched_entity *se = tg->se[cpu];
f1d239f7 2591
cf5f0acf 2592 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2593 return wl;
2594
4be9daaa 2595 for_each_sched_entity(se) {
cf5f0acf 2596 long w, W;
4be9daaa 2597
977dda7c 2598 tg = se->my_q->tg;
bb3469ac 2599
cf5f0acf
PZ
2600 /*
2601 * W = @wg + \Sum rw_j
2602 */
2603 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2604
cf5f0acf
PZ
2605 /*
2606 * w = rw_i + @wl
2607 */
2608 w = se->my_q->load.weight + wl;
940959e9 2609
cf5f0acf
PZ
2610 /*
2611 * wl = S * s'_i; see (2)
2612 */
2613 if (W > 0 && w < W)
2614 wl = (w * tg->shares) / W;
977dda7c
PT
2615 else
2616 wl = tg->shares;
940959e9 2617
cf5f0acf
PZ
2618 /*
2619 * Per the above, wl is the new se->load.weight value; since
2620 * those are clipped to [MIN_SHARES, ...) do so now. See
2621 * calc_cfs_shares().
2622 */
977dda7c
PT
2623 if (wl < MIN_SHARES)
2624 wl = MIN_SHARES;
cf5f0acf
PZ
2625
2626 /*
2627 * wl = dw_i = S * (s'_i - s_i); see (3)
2628 */
977dda7c 2629 wl -= se->load.weight;
cf5f0acf
PZ
2630
2631 /*
2632 * Recursively apply this logic to all parent groups to compute
2633 * the final effective load change on the root group. Since
2634 * only the @tg group gets extra weight, all parent groups can
2635 * only redistribute existing shares. @wl is the shift in shares
2636 * resulting from this level per the above.
2637 */
4be9daaa 2638 wg = 0;
4be9daaa 2639 }
bb3469ac 2640
4be9daaa 2641 return wl;
bb3469ac
PZ
2642}
2643#else
4be9daaa 2644
83378269
PZ
2645static inline unsigned long effective_load(struct task_group *tg, int cpu,
2646 unsigned long wl, unsigned long wg)
4be9daaa 2647{
83378269 2648 return wl;
bb3469ac 2649}
4be9daaa 2650
bb3469ac
PZ
2651#endif
2652
c88d5910 2653static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2654{
e37b6a7b 2655 s64 this_load, load;
c88d5910 2656 int idx, this_cpu, prev_cpu;
098fb9db 2657 unsigned long tl_per_task;
c88d5910 2658 struct task_group *tg;
83378269 2659 unsigned long weight;
b3137bc8 2660 int balanced;
098fb9db 2661
c88d5910
PZ
2662 idx = sd->wake_idx;
2663 this_cpu = smp_processor_id();
2664 prev_cpu = task_cpu(p);
2665 load = source_load(prev_cpu, idx);
2666 this_load = target_load(this_cpu, idx);
098fb9db 2667
b3137bc8
MG
2668 /*
2669 * If sync wakeup then subtract the (maximum possible)
2670 * effect of the currently running task from the load
2671 * of the current CPU:
2672 */
83378269
PZ
2673 if (sync) {
2674 tg = task_group(current);
2675 weight = current->se.load.weight;
2676
c88d5910 2677 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2678 load += effective_load(tg, prev_cpu, 0, -weight);
2679 }
b3137bc8 2680
83378269
PZ
2681 tg = task_group(p);
2682 weight = p->se.load.weight;
b3137bc8 2683
71a29aa7
PZ
2684 /*
2685 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2686 * due to the sync cause above having dropped this_load to 0, we'll
2687 * always have an imbalance, but there's really nothing you can do
2688 * about that, so that's good too.
71a29aa7
PZ
2689 *
2690 * Otherwise check if either cpus are near enough in load to allow this
2691 * task to be woken on this_cpu.
2692 */
e37b6a7b
PT
2693 if (this_load > 0) {
2694 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2695
2696 this_eff_load = 100;
2697 this_eff_load *= power_of(prev_cpu);
2698 this_eff_load *= this_load +
2699 effective_load(tg, this_cpu, weight, weight);
2700
2701 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2702 prev_eff_load *= power_of(this_cpu);
2703 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2704
2705 balanced = this_eff_load <= prev_eff_load;
2706 } else
2707 balanced = true;
b3137bc8 2708
098fb9db 2709 /*
4ae7d5ce
IM
2710 * If the currently running task will sleep within
2711 * a reasonable amount of time then attract this newly
2712 * woken task:
098fb9db 2713 */
2fb7635c
PZ
2714 if (sync && balanced)
2715 return 1;
098fb9db 2716
41acab88 2717 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2718 tl_per_task = cpu_avg_load_per_task(this_cpu);
2719
c88d5910
PZ
2720 if (balanced ||
2721 (this_load <= load &&
2722 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2723 /*
2724 * This domain has SD_WAKE_AFFINE and
2725 * p is cache cold in this domain, and
2726 * there is no bad imbalance.
2727 */
c88d5910 2728 schedstat_inc(sd, ttwu_move_affine);
41acab88 2729 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2730
2731 return 1;
2732 }
2733 return 0;
2734}
2735
aaee1203
PZ
2736/*
2737 * find_idlest_group finds and returns the least busy CPU group within the
2738 * domain.
2739 */
2740static struct sched_group *
78e7ed53 2741find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2742 int this_cpu, int load_idx)
e7693a36 2743{
b3bd3de6 2744 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2745 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2746 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2747
aaee1203
PZ
2748 do {
2749 unsigned long load, avg_load;
2750 int local_group;
2751 int i;
e7693a36 2752
aaee1203
PZ
2753 /* Skip over this group if it has no CPUs allowed */
2754 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2755 tsk_cpus_allowed(p)))
aaee1203
PZ
2756 continue;
2757
2758 local_group = cpumask_test_cpu(this_cpu,
2759 sched_group_cpus(group));
2760
2761 /* Tally up the load of all CPUs in the group */
2762 avg_load = 0;
2763
2764 for_each_cpu(i, sched_group_cpus(group)) {
2765 /* Bias balancing toward cpus of our domain */
2766 if (local_group)
2767 load = source_load(i, load_idx);
2768 else
2769 load = target_load(i, load_idx);
2770
2771 avg_load += load;
2772 }
2773
2774 /* Adjust by relative CPU power of the group */
9c3f75cb 2775 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2776
2777 if (local_group) {
2778 this_load = avg_load;
aaee1203
PZ
2779 } else if (avg_load < min_load) {
2780 min_load = avg_load;
2781 idlest = group;
2782 }
2783 } while (group = group->next, group != sd->groups);
2784
2785 if (!idlest || 100*this_load < imbalance*min_load)
2786 return NULL;
2787 return idlest;
2788}
2789
2790/*
2791 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2792 */
2793static int
2794find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2795{
2796 unsigned long load, min_load = ULONG_MAX;
2797 int idlest = -1;
2798 int i;
2799
2800 /* Traverse only the allowed CPUs */
fa17b507 2801 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2802 load = weighted_cpuload(i);
2803
2804 if (load < min_load || (load == min_load && i == this_cpu)) {
2805 min_load = load;
2806 idlest = i;
e7693a36
GH
2807 }
2808 }
2809
aaee1203
PZ
2810 return idlest;
2811}
e7693a36 2812
a50bde51
PZ
2813/*
2814 * Try and locate an idle CPU in the sched_domain.
2815 */
99bd5e2f 2816static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2817{
2818 int cpu = smp_processor_id();
2819 int prev_cpu = task_cpu(p);
99bd5e2f 2820 struct sched_domain *sd;
37407ea7
LT
2821 struct sched_group *sg;
2822 int i;
a50bde51
PZ
2823
2824 /*
99bd5e2f
SS
2825 * If the task is going to be woken-up on this cpu and if it is
2826 * already idle, then it is the right target.
a50bde51 2827 */
99bd5e2f
SS
2828 if (target == cpu && idle_cpu(cpu))
2829 return cpu;
2830
2831 /*
2832 * If the task is going to be woken-up on the cpu where it previously
2833 * ran and if it is currently idle, then it the right target.
2834 */
2835 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2836 return prev_cpu;
a50bde51
PZ
2837
2838 /*
37407ea7 2839 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2840 */
518cd623 2841 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 2842 for_each_lower_domain(sd) {
37407ea7
LT
2843 sg = sd->groups;
2844 do {
2845 if (!cpumask_intersects(sched_group_cpus(sg),
2846 tsk_cpus_allowed(p)))
2847 goto next;
2848
2849 for_each_cpu(i, sched_group_cpus(sg)) {
2850 if (!idle_cpu(i))
2851 goto next;
2852 }
970e1789 2853
37407ea7
LT
2854 target = cpumask_first_and(sched_group_cpus(sg),
2855 tsk_cpus_allowed(p));
2856 goto done;
2857next:
2858 sg = sg->next;
2859 } while (sg != sd->groups);
2860 }
2861done:
a50bde51
PZ
2862 return target;
2863}
2864
aaee1203
PZ
2865/*
2866 * sched_balance_self: balance the current task (running on cpu) in domains
2867 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2868 * SD_BALANCE_EXEC.
2869 *
2870 * Balance, ie. select the least loaded group.
2871 *
2872 * Returns the target CPU number, or the same CPU if no balancing is needed.
2873 *
2874 * preempt must be disabled.
2875 */
0017d735 2876static int
7608dec2 2877select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2878{
29cd8bae 2879 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2880 int cpu = smp_processor_id();
2881 int prev_cpu = task_cpu(p);
2882 int new_cpu = cpu;
99bd5e2f 2883 int want_affine = 0;
5158f4e4 2884 int sync = wake_flags & WF_SYNC;
c88d5910 2885
29baa747 2886 if (p->nr_cpus_allowed == 1)
76854c7e
MG
2887 return prev_cpu;
2888
0763a660 2889 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2890 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2891 want_affine = 1;
2892 new_cpu = prev_cpu;
2893 }
aaee1203 2894
dce840a0 2895 rcu_read_lock();
aaee1203 2896 for_each_domain(cpu, tmp) {
e4f42888
PZ
2897 if (!(tmp->flags & SD_LOAD_BALANCE))
2898 continue;
2899
fe3bcfe1 2900 /*
99bd5e2f
SS
2901 * If both cpu and prev_cpu are part of this domain,
2902 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2903 */
99bd5e2f
SS
2904 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2905 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2906 affine_sd = tmp;
29cd8bae 2907 break;
f03542a7 2908 }
29cd8bae 2909
f03542a7 2910 if (tmp->flags & sd_flag)
29cd8bae
PZ
2911 sd = tmp;
2912 }
2913
8b911acd 2914 if (affine_sd) {
f03542a7 2915 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
2916 prev_cpu = cpu;
2917
2918 new_cpu = select_idle_sibling(p, prev_cpu);
2919 goto unlock;
8b911acd 2920 }
e7693a36 2921
aaee1203 2922 while (sd) {
5158f4e4 2923 int load_idx = sd->forkexec_idx;
aaee1203 2924 struct sched_group *group;
c88d5910 2925 int weight;
098fb9db 2926
0763a660 2927 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2928 sd = sd->child;
2929 continue;
2930 }
098fb9db 2931
5158f4e4
PZ
2932 if (sd_flag & SD_BALANCE_WAKE)
2933 load_idx = sd->wake_idx;
098fb9db 2934
5158f4e4 2935 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2936 if (!group) {
2937 sd = sd->child;
2938 continue;
2939 }
4ae7d5ce 2940
d7c33c49 2941 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2942 if (new_cpu == -1 || new_cpu == cpu) {
2943 /* Now try balancing at a lower domain level of cpu */
2944 sd = sd->child;
2945 continue;
e7693a36 2946 }
aaee1203
PZ
2947
2948 /* Now try balancing at a lower domain level of new_cpu */
2949 cpu = new_cpu;
669c55e9 2950 weight = sd->span_weight;
aaee1203
PZ
2951 sd = NULL;
2952 for_each_domain(cpu, tmp) {
669c55e9 2953 if (weight <= tmp->span_weight)
aaee1203 2954 break;
0763a660 2955 if (tmp->flags & sd_flag)
aaee1203
PZ
2956 sd = tmp;
2957 }
2958 /* while loop will break here if sd == NULL */
e7693a36 2959 }
dce840a0
PZ
2960unlock:
2961 rcu_read_unlock();
e7693a36 2962
c88d5910 2963 return new_cpu;
e7693a36
GH
2964}
2965#endif /* CONFIG_SMP */
2966
e52fb7c0
PZ
2967static unsigned long
2968wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2969{
2970 unsigned long gran = sysctl_sched_wakeup_granularity;
2971
2972 /*
e52fb7c0
PZ
2973 * Since its curr running now, convert the gran from real-time
2974 * to virtual-time in his units.
13814d42
MG
2975 *
2976 * By using 'se' instead of 'curr' we penalize light tasks, so
2977 * they get preempted easier. That is, if 'se' < 'curr' then
2978 * the resulting gran will be larger, therefore penalizing the
2979 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2980 * be smaller, again penalizing the lighter task.
2981 *
2982 * This is especially important for buddies when the leftmost
2983 * task is higher priority than the buddy.
0bbd3336 2984 */
f4ad9bd2 2985 return calc_delta_fair(gran, se);
0bbd3336
PZ
2986}
2987
464b7527
PZ
2988/*
2989 * Should 'se' preempt 'curr'.
2990 *
2991 * |s1
2992 * |s2
2993 * |s3
2994 * g
2995 * |<--->|c
2996 *
2997 * w(c, s1) = -1
2998 * w(c, s2) = 0
2999 * w(c, s3) = 1
3000 *
3001 */
3002static int
3003wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3004{
3005 s64 gran, vdiff = curr->vruntime - se->vruntime;
3006
3007 if (vdiff <= 0)
3008 return -1;
3009
e52fb7c0 3010 gran = wakeup_gran(curr, se);
464b7527
PZ
3011 if (vdiff > gran)
3012 return 1;
3013
3014 return 0;
3015}
3016
02479099
PZ
3017static void set_last_buddy(struct sched_entity *se)
3018{
69c80f3e
VP
3019 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3020 return;
3021
3022 for_each_sched_entity(se)
3023 cfs_rq_of(se)->last = se;
02479099
PZ
3024}
3025
3026static void set_next_buddy(struct sched_entity *se)
3027{
69c80f3e
VP
3028 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3029 return;
3030
3031 for_each_sched_entity(se)
3032 cfs_rq_of(se)->next = se;
02479099
PZ
3033}
3034
ac53db59
RR
3035static void set_skip_buddy(struct sched_entity *se)
3036{
69c80f3e
VP
3037 for_each_sched_entity(se)
3038 cfs_rq_of(se)->skip = se;
ac53db59
RR
3039}
3040
bf0f6f24
IM
3041/*
3042 * Preempt the current task with a newly woken task if needed:
3043 */
5a9b86f6 3044static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3045{
3046 struct task_struct *curr = rq->curr;
8651a86c 3047 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3048 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3049 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3050 int next_buddy_marked = 0;
bf0f6f24 3051
4ae7d5ce
IM
3052 if (unlikely(se == pse))
3053 return;
3054
5238cdd3 3055 /*
ddcdf6e7 3056 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3057 * unconditionally check_prempt_curr() after an enqueue (which may have
3058 * lead to a throttle). This both saves work and prevents false
3059 * next-buddy nomination below.
3060 */
3061 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3062 return;
3063
2f36825b 3064 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3065 set_next_buddy(pse);
2f36825b
VP
3066 next_buddy_marked = 1;
3067 }
57fdc26d 3068
aec0a514
BR
3069 /*
3070 * We can come here with TIF_NEED_RESCHED already set from new task
3071 * wake up path.
5238cdd3
PT
3072 *
3073 * Note: this also catches the edge-case of curr being in a throttled
3074 * group (e.g. via set_curr_task), since update_curr() (in the
3075 * enqueue of curr) will have resulted in resched being set. This
3076 * prevents us from potentially nominating it as a false LAST_BUDDY
3077 * below.
aec0a514
BR
3078 */
3079 if (test_tsk_need_resched(curr))
3080 return;
3081
a2f5c9ab
DH
3082 /* Idle tasks are by definition preempted by non-idle tasks. */
3083 if (unlikely(curr->policy == SCHED_IDLE) &&
3084 likely(p->policy != SCHED_IDLE))
3085 goto preempt;
3086
91c234b4 3087 /*
a2f5c9ab
DH
3088 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3089 * is driven by the tick):
91c234b4 3090 */
6bc912b7 3091 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 3092 return;
bf0f6f24 3093
464b7527 3094 find_matching_se(&se, &pse);
9bbd7374 3095 update_curr(cfs_rq_of(se));
002f128b 3096 BUG_ON(!pse);
2f36825b
VP
3097 if (wakeup_preempt_entity(se, pse) == 1) {
3098 /*
3099 * Bias pick_next to pick the sched entity that is
3100 * triggering this preemption.
3101 */
3102 if (!next_buddy_marked)
3103 set_next_buddy(pse);
3a7e73a2 3104 goto preempt;
2f36825b 3105 }
464b7527 3106
3a7e73a2 3107 return;
a65ac745 3108
3a7e73a2
PZ
3109preempt:
3110 resched_task(curr);
3111 /*
3112 * Only set the backward buddy when the current task is still
3113 * on the rq. This can happen when a wakeup gets interleaved
3114 * with schedule on the ->pre_schedule() or idle_balance()
3115 * point, either of which can * drop the rq lock.
3116 *
3117 * Also, during early boot the idle thread is in the fair class,
3118 * for obvious reasons its a bad idea to schedule back to it.
3119 */
3120 if (unlikely(!se->on_rq || curr == rq->idle))
3121 return;
3122
3123 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3124 set_last_buddy(se);
bf0f6f24
IM
3125}
3126
fb8d4724 3127static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3128{
8f4d37ec 3129 struct task_struct *p;
bf0f6f24
IM
3130 struct cfs_rq *cfs_rq = &rq->cfs;
3131 struct sched_entity *se;
3132
36ace27e 3133 if (!cfs_rq->nr_running)
bf0f6f24
IM
3134 return NULL;
3135
3136 do {
9948f4b2 3137 se = pick_next_entity(cfs_rq);
f4b6755f 3138 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3139 cfs_rq = group_cfs_rq(se);
3140 } while (cfs_rq);
3141
8f4d37ec 3142 p = task_of(se);
b39e66ea
MG
3143 if (hrtick_enabled(rq))
3144 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3145
3146 return p;
bf0f6f24
IM
3147}
3148
3149/*
3150 * Account for a descheduled task:
3151 */
31ee529c 3152static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3153{
3154 struct sched_entity *se = &prev->se;
3155 struct cfs_rq *cfs_rq;
3156
3157 for_each_sched_entity(se) {
3158 cfs_rq = cfs_rq_of(se);
ab6cde26 3159 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3160 }
3161}
3162
ac53db59
RR
3163/*
3164 * sched_yield() is very simple
3165 *
3166 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3167 */
3168static void yield_task_fair(struct rq *rq)
3169{
3170 struct task_struct *curr = rq->curr;
3171 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3172 struct sched_entity *se = &curr->se;
3173
3174 /*
3175 * Are we the only task in the tree?
3176 */
3177 if (unlikely(rq->nr_running == 1))
3178 return;
3179
3180 clear_buddies(cfs_rq, se);
3181
3182 if (curr->policy != SCHED_BATCH) {
3183 update_rq_clock(rq);
3184 /*
3185 * Update run-time statistics of the 'current'.
3186 */
3187 update_curr(cfs_rq);
916671c0
MG
3188 /*
3189 * Tell update_rq_clock() that we've just updated,
3190 * so we don't do microscopic update in schedule()
3191 * and double the fastpath cost.
3192 */
3193 rq->skip_clock_update = 1;
ac53db59
RR
3194 }
3195
3196 set_skip_buddy(se);
3197}
3198
d95f4122
MG
3199static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3200{
3201 struct sched_entity *se = &p->se;
3202
5238cdd3
PT
3203 /* throttled hierarchies are not runnable */
3204 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3205 return false;
3206
3207 /* Tell the scheduler that we'd really like pse to run next. */
3208 set_next_buddy(se);
3209
d95f4122
MG
3210 yield_task_fair(rq);
3211
3212 return true;
3213}
3214
681f3e68 3215#ifdef CONFIG_SMP
bf0f6f24
IM
3216/**************************************************
3217 * Fair scheduling class load-balancing methods:
3218 */
3219
ed387b78
HS
3220static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3221
ddcdf6e7 3222#define LBF_ALL_PINNED 0x01
367456c7 3223#define LBF_NEED_BREAK 0x02
88b8dac0 3224#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3225
3226struct lb_env {
3227 struct sched_domain *sd;
3228
ddcdf6e7 3229 struct rq *src_rq;
85c1e7da 3230 int src_cpu;
ddcdf6e7
PZ
3231
3232 int dst_cpu;
3233 struct rq *dst_rq;
3234
88b8dac0
SV
3235 struct cpumask *dst_grpmask;
3236 int new_dst_cpu;
ddcdf6e7 3237 enum cpu_idle_type idle;
bd939f45 3238 long imbalance;
b9403130
MW
3239 /* The set of CPUs under consideration for load-balancing */
3240 struct cpumask *cpus;
3241
ddcdf6e7 3242 unsigned int flags;
367456c7
PZ
3243
3244 unsigned int loop;
3245 unsigned int loop_break;
3246 unsigned int loop_max;
ddcdf6e7
PZ
3247};
3248
1e3c88bd 3249/*
ddcdf6e7 3250 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3251 * Both runqueues must be locked.
3252 */
ddcdf6e7 3253static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3254{
ddcdf6e7
PZ
3255 deactivate_task(env->src_rq, p, 0);
3256 set_task_cpu(p, env->dst_cpu);
3257 activate_task(env->dst_rq, p, 0);
3258 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3259}
3260
029632fb
PZ
3261/*
3262 * Is this task likely cache-hot:
3263 */
3264static int
3265task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3266{
3267 s64 delta;
3268
3269 if (p->sched_class != &fair_sched_class)
3270 return 0;
3271
3272 if (unlikely(p->policy == SCHED_IDLE))
3273 return 0;
3274
3275 /*
3276 * Buddy candidates are cache hot:
3277 */
3278 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3279 (&p->se == cfs_rq_of(&p->se)->next ||
3280 &p->se == cfs_rq_of(&p->se)->last))
3281 return 1;
3282
3283 if (sysctl_sched_migration_cost == -1)
3284 return 1;
3285 if (sysctl_sched_migration_cost == 0)
3286 return 0;
3287
3288 delta = now - p->se.exec_start;
3289
3290 return delta < (s64)sysctl_sched_migration_cost;
3291}
3292
1e3c88bd
PZ
3293/*
3294 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3295 */
3296static
8e45cb54 3297int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3298{
3299 int tsk_cache_hot = 0;
3300 /*
3301 * We do not migrate tasks that are:
3302 * 1) running (obviously), or
3303 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3304 * 3) are cache-hot on their current CPU.
3305 */
ddcdf6e7 3306 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3307 int new_dst_cpu;
3308
41acab88 3309 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3310
3311 /*
3312 * Remember if this task can be migrated to any other cpu in
3313 * our sched_group. We may want to revisit it if we couldn't
3314 * meet load balance goals by pulling other tasks on src_cpu.
3315 *
3316 * Also avoid computing new_dst_cpu if we have already computed
3317 * one in current iteration.
3318 */
3319 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3320 return 0;
3321
3322 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3323 tsk_cpus_allowed(p));
3324 if (new_dst_cpu < nr_cpu_ids) {
3325 env->flags |= LBF_SOME_PINNED;
3326 env->new_dst_cpu = new_dst_cpu;
3327 }
1e3c88bd
PZ
3328 return 0;
3329 }
88b8dac0
SV
3330
3331 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3332 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3333
ddcdf6e7 3334 if (task_running(env->src_rq, p)) {
41acab88 3335 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3336 return 0;
3337 }
3338
3339 /*
3340 * Aggressive migration if:
3341 * 1) task is cache cold, or
3342 * 2) too many balance attempts have failed.
3343 */
3344
ddcdf6e7 3345 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3346 if (!tsk_cache_hot ||
8e45cb54 3347 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3348#ifdef CONFIG_SCHEDSTATS
3349 if (tsk_cache_hot) {
8e45cb54 3350 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3351 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3352 }
3353#endif
3354 return 1;
3355 }
3356
3357 if (tsk_cache_hot) {
41acab88 3358 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3359 return 0;
3360 }
3361 return 1;
3362}
3363
897c395f
PZ
3364/*
3365 * move_one_task tries to move exactly one task from busiest to this_rq, as
3366 * part of active balancing operations within "domain".
3367 * Returns 1 if successful and 0 otherwise.
3368 *
3369 * Called with both runqueues locked.
3370 */
8e45cb54 3371static int move_one_task(struct lb_env *env)
897c395f
PZ
3372{
3373 struct task_struct *p, *n;
897c395f 3374
367456c7
PZ
3375 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3376 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3377 continue;
897c395f 3378
367456c7
PZ
3379 if (!can_migrate_task(p, env))
3380 continue;
897c395f 3381
367456c7
PZ
3382 move_task(p, env);
3383 /*
3384 * Right now, this is only the second place move_task()
3385 * is called, so we can safely collect move_task()
3386 * stats here rather than inside move_task().
3387 */
3388 schedstat_inc(env->sd, lb_gained[env->idle]);
3389 return 1;
897c395f 3390 }
897c395f
PZ
3391 return 0;
3392}
3393
367456c7
PZ
3394static unsigned long task_h_load(struct task_struct *p);
3395
eb95308e
PZ
3396static const unsigned int sched_nr_migrate_break = 32;
3397
5d6523eb 3398/*
bd939f45 3399 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3400 * this_rq, as part of a balancing operation within domain "sd".
3401 * Returns 1 if successful and 0 otherwise.
3402 *
3403 * Called with both runqueues locked.
3404 */
3405static int move_tasks(struct lb_env *env)
1e3c88bd 3406{
5d6523eb
PZ
3407 struct list_head *tasks = &env->src_rq->cfs_tasks;
3408 struct task_struct *p;
367456c7
PZ
3409 unsigned long load;
3410 int pulled = 0;
1e3c88bd 3411
bd939f45 3412 if (env->imbalance <= 0)
5d6523eb 3413 return 0;
1e3c88bd 3414
5d6523eb
PZ
3415 while (!list_empty(tasks)) {
3416 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3417
367456c7
PZ
3418 env->loop++;
3419 /* We've more or less seen every task there is, call it quits */
5d6523eb 3420 if (env->loop > env->loop_max)
367456c7 3421 break;
5d6523eb
PZ
3422
3423 /* take a breather every nr_migrate tasks */
367456c7 3424 if (env->loop > env->loop_break) {
eb95308e 3425 env->loop_break += sched_nr_migrate_break;
8e45cb54 3426 env->flags |= LBF_NEED_BREAK;
ee00e66f 3427 break;
a195f004 3428 }
1e3c88bd 3429
5d6523eb 3430 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3431 goto next;
3432
3433 load = task_h_load(p);
5d6523eb 3434
eb95308e 3435 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3436 goto next;
3437
bd939f45 3438 if ((load / 2) > env->imbalance)
367456c7 3439 goto next;
1e3c88bd 3440
367456c7
PZ
3441 if (!can_migrate_task(p, env))
3442 goto next;
1e3c88bd 3443
ddcdf6e7 3444 move_task(p, env);
ee00e66f 3445 pulled++;
bd939f45 3446 env->imbalance -= load;
1e3c88bd
PZ
3447
3448#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3449 /*
3450 * NEWIDLE balancing is a source of latency, so preemptible
3451 * kernels will stop after the first task is pulled to minimize
3452 * the critical section.
3453 */
5d6523eb 3454 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3455 break;
1e3c88bd
PZ
3456#endif
3457
ee00e66f
PZ
3458 /*
3459 * We only want to steal up to the prescribed amount of
3460 * weighted load.
3461 */
bd939f45 3462 if (env->imbalance <= 0)
ee00e66f 3463 break;
367456c7
PZ
3464
3465 continue;
3466next:
5d6523eb 3467 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3468 }
5d6523eb 3469
1e3c88bd 3470 /*
ddcdf6e7
PZ
3471 * Right now, this is one of only two places move_task() is called,
3472 * so we can safely collect move_task() stats here rather than
3473 * inside move_task().
1e3c88bd 3474 */
8e45cb54 3475 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3476
5d6523eb 3477 return pulled;
1e3c88bd
PZ
3478}
3479
230059de 3480#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3481/*
3482 * update tg->load_weight by folding this cpu's load_avg
3483 */
67e86250 3484static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3485{
3486 struct cfs_rq *cfs_rq;
3487 unsigned long flags;
3488 struct rq *rq;
9e3081ca
PZ
3489
3490 if (!tg->se[cpu])
3491 return 0;
3492
3493 rq = cpu_rq(cpu);
3494 cfs_rq = tg->cfs_rq[cpu];
3495
3496 raw_spin_lock_irqsave(&rq->lock, flags);
3497
3498 update_rq_clock(rq);
d6b55918 3499 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3500
3501 /*
3502 * We need to update shares after updating tg->load_weight in
3503 * order to adjust the weight of groups with long running tasks.
3504 */
6d5ab293 3505 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3506
3507 raw_spin_unlock_irqrestore(&rq->lock, flags);
3508
3509 return 0;
3510}
3511
3512static void update_shares(int cpu)
3513{
3514 struct cfs_rq *cfs_rq;
3515 struct rq *rq = cpu_rq(cpu);
3516
3517 rcu_read_lock();
9763b67f
PZ
3518 /*
3519 * Iterates the task_group tree in a bottom up fashion, see
3520 * list_add_leaf_cfs_rq() for details.
3521 */
64660c86
PT
3522 for_each_leaf_cfs_rq(rq, cfs_rq) {
3523 /* throttled entities do not contribute to load */
3524 if (throttled_hierarchy(cfs_rq))
3525 continue;
3526
67e86250 3527 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3528 }
9e3081ca
PZ
3529 rcu_read_unlock();
3530}
3531
9763b67f
PZ
3532/*
3533 * Compute the cpu's hierarchical load factor for each task group.
3534 * This needs to be done in a top-down fashion because the load of a child
3535 * group is a fraction of its parents load.
3536 */
3537static int tg_load_down(struct task_group *tg, void *data)
3538{
3539 unsigned long load;
3540 long cpu = (long)data;
3541
3542 if (!tg->parent) {
3543 load = cpu_rq(cpu)->load.weight;
3544 } else {
3545 load = tg->parent->cfs_rq[cpu]->h_load;
3546 load *= tg->se[cpu]->load.weight;
3547 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3548 }
3549
3550 tg->cfs_rq[cpu]->h_load = load;
3551
3552 return 0;
3553}
3554
3555static void update_h_load(long cpu)
3556{
a35b6466
PZ
3557 struct rq *rq = cpu_rq(cpu);
3558 unsigned long now = jiffies;
3559
3560 if (rq->h_load_throttle == now)
3561 return;
3562
3563 rq->h_load_throttle = now;
3564
367456c7 3565 rcu_read_lock();
9763b67f 3566 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3567 rcu_read_unlock();
9763b67f
PZ
3568}
3569
367456c7 3570static unsigned long task_h_load(struct task_struct *p)
230059de 3571{
367456c7
PZ
3572 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3573 unsigned long load;
230059de 3574
367456c7
PZ
3575 load = p->se.load.weight;
3576 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3577
367456c7 3578 return load;
230059de
PZ
3579}
3580#else
9e3081ca
PZ
3581static inline void update_shares(int cpu)
3582{
3583}
3584
367456c7 3585static inline void update_h_load(long cpu)
230059de 3586{
230059de 3587}
230059de 3588
367456c7 3589static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3590{
367456c7 3591 return p->se.load.weight;
1e3c88bd 3592}
230059de 3593#endif
1e3c88bd 3594
1e3c88bd
PZ
3595/********** Helpers for find_busiest_group ************************/
3596/*
3597 * sd_lb_stats - Structure to store the statistics of a sched_domain
3598 * during load balancing.
3599 */
3600struct sd_lb_stats {
3601 struct sched_group *busiest; /* Busiest group in this sd */
3602 struct sched_group *this; /* Local group in this sd */
3603 unsigned long total_load; /* Total load of all groups in sd */
3604 unsigned long total_pwr; /* Total power of all groups in sd */
3605 unsigned long avg_load; /* Average load across all groups in sd */
3606
3607 /** Statistics of this group */
3608 unsigned long this_load;
3609 unsigned long this_load_per_task;
3610 unsigned long this_nr_running;
fab47622 3611 unsigned long this_has_capacity;
aae6d3dd 3612 unsigned int this_idle_cpus;
1e3c88bd
PZ
3613
3614 /* Statistics of the busiest group */
aae6d3dd 3615 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3616 unsigned long max_load;
3617 unsigned long busiest_load_per_task;
3618 unsigned long busiest_nr_running;
dd5feea1 3619 unsigned long busiest_group_capacity;
fab47622 3620 unsigned long busiest_has_capacity;
aae6d3dd 3621 unsigned int busiest_group_weight;
1e3c88bd
PZ
3622
3623 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3624};
3625
3626/*
3627 * sg_lb_stats - stats of a sched_group required for load_balancing
3628 */
3629struct sg_lb_stats {
3630 unsigned long avg_load; /*Avg load across the CPUs of the group */
3631 unsigned long group_load; /* Total load over the CPUs of the group */
3632 unsigned long sum_nr_running; /* Nr tasks running in the group */
3633 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3634 unsigned long group_capacity;
aae6d3dd
SS
3635 unsigned long idle_cpus;
3636 unsigned long group_weight;
1e3c88bd 3637 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3638 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3639};
3640
1e3c88bd
PZ
3641/**
3642 * get_sd_load_idx - Obtain the load index for a given sched domain.
3643 * @sd: The sched_domain whose load_idx is to be obtained.
3644 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3645 */
3646static inline int get_sd_load_idx(struct sched_domain *sd,
3647 enum cpu_idle_type idle)
3648{
3649 int load_idx;
3650
3651 switch (idle) {
3652 case CPU_NOT_IDLE:
3653 load_idx = sd->busy_idx;
3654 break;
3655
3656 case CPU_NEWLY_IDLE:
3657 load_idx = sd->newidle_idx;
3658 break;
3659 default:
3660 load_idx = sd->idle_idx;
3661 break;
3662 }
3663
3664 return load_idx;
3665}
3666
1e3c88bd
PZ
3667unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3668{
1399fa78 3669 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3670}
3671
3672unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3673{
3674 return default_scale_freq_power(sd, cpu);
3675}
3676
3677unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3678{
669c55e9 3679 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3680 unsigned long smt_gain = sd->smt_gain;
3681
3682 smt_gain /= weight;
3683
3684 return smt_gain;
3685}
3686
3687unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3688{
3689 return default_scale_smt_power(sd, cpu);
3690}
3691
3692unsigned long scale_rt_power(int cpu)
3693{
3694 struct rq *rq = cpu_rq(cpu);
b654f7de 3695 u64 total, available, age_stamp, avg;
1e3c88bd 3696
b654f7de
PZ
3697 /*
3698 * Since we're reading these variables without serialization make sure
3699 * we read them once before doing sanity checks on them.
3700 */
3701 age_stamp = ACCESS_ONCE(rq->age_stamp);
3702 avg = ACCESS_ONCE(rq->rt_avg);
3703
3704 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3705
b654f7de 3706 if (unlikely(total < avg)) {
aa483808
VP
3707 /* Ensures that power won't end up being negative */
3708 available = 0;
3709 } else {
b654f7de 3710 available = total - avg;
aa483808 3711 }
1e3c88bd 3712
1399fa78
NR
3713 if (unlikely((s64)total < SCHED_POWER_SCALE))
3714 total = SCHED_POWER_SCALE;
1e3c88bd 3715
1399fa78 3716 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3717
3718 return div_u64(available, total);
3719}
3720
3721static void update_cpu_power(struct sched_domain *sd, int cpu)
3722{
669c55e9 3723 unsigned long weight = sd->span_weight;
1399fa78 3724 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3725 struct sched_group *sdg = sd->groups;
3726
1e3c88bd
PZ
3727 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3728 if (sched_feat(ARCH_POWER))
3729 power *= arch_scale_smt_power(sd, cpu);
3730 else
3731 power *= default_scale_smt_power(sd, cpu);
3732
1399fa78 3733 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3734 }
3735
9c3f75cb 3736 sdg->sgp->power_orig = power;
9d5efe05
SV
3737
3738 if (sched_feat(ARCH_POWER))
3739 power *= arch_scale_freq_power(sd, cpu);
3740 else
3741 power *= default_scale_freq_power(sd, cpu);
3742
1399fa78 3743 power >>= SCHED_POWER_SHIFT;
9d5efe05 3744
1e3c88bd 3745 power *= scale_rt_power(cpu);
1399fa78 3746 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3747
3748 if (!power)
3749 power = 1;
3750
e51fd5e2 3751 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3752 sdg->sgp->power = power;
1e3c88bd
PZ
3753}
3754
029632fb 3755void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3756{
3757 struct sched_domain *child = sd->child;
3758 struct sched_group *group, *sdg = sd->groups;
3759 unsigned long power;
4ec4412e
VG
3760 unsigned long interval;
3761
3762 interval = msecs_to_jiffies(sd->balance_interval);
3763 interval = clamp(interval, 1UL, max_load_balance_interval);
3764 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3765
3766 if (!child) {
3767 update_cpu_power(sd, cpu);
3768 return;
3769 }
3770
3771 power = 0;
3772
74a5ce20
PZ
3773 if (child->flags & SD_OVERLAP) {
3774 /*
3775 * SD_OVERLAP domains cannot assume that child groups
3776 * span the current group.
3777 */
3778
3779 for_each_cpu(cpu, sched_group_cpus(sdg))
3780 power += power_of(cpu);
3781 } else {
3782 /*
3783 * !SD_OVERLAP domains can assume that child groups
3784 * span the current group.
3785 */
3786
3787 group = child->groups;
3788 do {
3789 power += group->sgp->power;
3790 group = group->next;
3791 } while (group != child->groups);
3792 }
1e3c88bd 3793
c3decf0d 3794 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3795}
3796
9d5efe05
SV
3797/*
3798 * Try and fix up capacity for tiny siblings, this is needed when
3799 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3800 * which on its own isn't powerful enough.
3801 *
3802 * See update_sd_pick_busiest() and check_asym_packing().
3803 */
3804static inline int
3805fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3806{
3807 /*
1399fa78 3808 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3809 */
a6c75f2f 3810 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3811 return 0;
3812
3813 /*
3814 * If ~90% of the cpu_power is still there, we're good.
3815 */
9c3f75cb 3816 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3817 return 1;
3818
3819 return 0;
3820}
3821
1e3c88bd
PZ
3822/**
3823 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3824 * @env: The load balancing environment.
1e3c88bd 3825 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3826 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 3827 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
3828 * @balance: Should we balance.
3829 * @sgs: variable to hold the statistics for this group.
3830 */
bd939f45
PZ
3831static inline void update_sg_lb_stats(struct lb_env *env,
3832 struct sched_group *group, int load_idx,
b9403130 3833 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 3834{
e44bc5c5
PZ
3835 unsigned long nr_running, max_nr_running, min_nr_running;
3836 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 3837 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3838 unsigned long avg_load_per_task = 0;
bd939f45 3839 int i;
1e3c88bd 3840
871e35bc 3841 if (local_group)
c1174876 3842 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
3843
3844 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3845 max_cpu_load = 0;
3846 min_cpu_load = ~0UL;
2582f0eb 3847 max_nr_running = 0;
e44bc5c5 3848 min_nr_running = ~0UL;
1e3c88bd 3849
b9403130 3850 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
3851 struct rq *rq = cpu_rq(i);
3852
e44bc5c5
PZ
3853 nr_running = rq->nr_running;
3854
1e3c88bd
PZ
3855 /* Bias balancing toward cpus of our domain */
3856 if (local_group) {
c1174876
PZ
3857 if (idle_cpu(i) && !first_idle_cpu &&
3858 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 3859 first_idle_cpu = 1;
1e3c88bd
PZ
3860 balance_cpu = i;
3861 }
04f733b4
PZ
3862
3863 load = target_load(i, load_idx);
1e3c88bd
PZ
3864 } else {
3865 load = source_load(i, load_idx);
e44bc5c5 3866 if (load > max_cpu_load)
1e3c88bd
PZ
3867 max_cpu_load = load;
3868 if (min_cpu_load > load)
3869 min_cpu_load = load;
e44bc5c5
PZ
3870
3871 if (nr_running > max_nr_running)
3872 max_nr_running = nr_running;
3873 if (min_nr_running > nr_running)
3874 min_nr_running = nr_running;
1e3c88bd
PZ
3875 }
3876
3877 sgs->group_load += load;
e44bc5c5 3878 sgs->sum_nr_running += nr_running;
1e3c88bd 3879 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3880 if (idle_cpu(i))
3881 sgs->idle_cpus++;
1e3c88bd
PZ
3882 }
3883
3884 /*
3885 * First idle cpu or the first cpu(busiest) in this sched group
3886 * is eligible for doing load balancing at this and above
3887 * domains. In the newly idle case, we will allow all the cpu's
3888 * to do the newly idle load balance.
3889 */
4ec4412e 3890 if (local_group) {
bd939f45 3891 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 3892 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
3893 *balance = 0;
3894 return;
3895 }
bd939f45 3896 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3897 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3898 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3899 }
3900
3901 /* Adjust by relative CPU power of the group */
9c3f75cb 3902 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3903
1e3c88bd
PZ
3904 /*
3905 * Consider the group unbalanced when the imbalance is larger
866ab43e 3906 * than the average weight of a task.
1e3c88bd
PZ
3907 *
3908 * APZ: with cgroup the avg task weight can vary wildly and
3909 * might not be a suitable number - should we keep a
3910 * normalized nr_running number somewhere that negates
3911 * the hierarchy?
3912 */
dd5feea1
SS
3913 if (sgs->sum_nr_running)
3914 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3915
e44bc5c5
PZ
3916 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3917 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
3918 sgs->group_imb = 1;
3919
9c3f75cb 3920 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3921 SCHED_POWER_SCALE);
9d5efe05 3922 if (!sgs->group_capacity)
bd939f45 3923 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3924 sgs->group_weight = group->group_weight;
fab47622
NR
3925
3926 if (sgs->group_capacity > sgs->sum_nr_running)
3927 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3928}
3929
532cb4c4
MN
3930/**
3931 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 3932 * @env: The load balancing environment.
532cb4c4
MN
3933 * @sds: sched_domain statistics
3934 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 3935 * @sgs: sched_group statistics
532cb4c4
MN
3936 *
3937 * Determine if @sg is a busier group than the previously selected
3938 * busiest group.
3939 */
bd939f45 3940static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3941 struct sd_lb_stats *sds,
3942 struct sched_group *sg,
bd939f45 3943 struct sg_lb_stats *sgs)
532cb4c4
MN
3944{
3945 if (sgs->avg_load <= sds->max_load)
3946 return false;
3947
3948 if (sgs->sum_nr_running > sgs->group_capacity)
3949 return true;
3950
3951 if (sgs->group_imb)
3952 return true;
3953
3954 /*
3955 * ASYM_PACKING needs to move all the work to the lowest
3956 * numbered CPUs in the group, therefore mark all groups
3957 * higher than ourself as busy.
3958 */
bd939f45
PZ
3959 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3960 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3961 if (!sds->busiest)
3962 return true;
3963
3964 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3965 return true;
3966 }
3967
3968 return false;
3969}
3970
1e3c88bd 3971/**
461819ac 3972 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 3973 * @env: The load balancing environment.
1e3c88bd
PZ
3974 * @balance: Should we balance.
3975 * @sds: variable to hold the statistics for this sched_domain.
3976 */
bd939f45 3977static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 3978 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3979{
bd939f45
PZ
3980 struct sched_domain *child = env->sd->child;
3981 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3982 struct sg_lb_stats sgs;
3983 int load_idx, prefer_sibling = 0;
3984
3985 if (child && child->flags & SD_PREFER_SIBLING)
3986 prefer_sibling = 1;
3987
bd939f45 3988 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3989
3990 do {
3991 int local_group;
3992
bd939f45 3993 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 3994 memset(&sgs, 0, sizeof(sgs));
b9403130 3995 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 3996
8f190fb3 3997 if (local_group && !(*balance))
1e3c88bd
PZ
3998 return;
3999
4000 sds->total_load += sgs.group_load;
9c3f75cb 4001 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4002
4003 /*
4004 * In case the child domain prefers tasks go to siblings
532cb4c4 4005 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4006 * and move all the excess tasks away. We lower the capacity
4007 * of a group only if the local group has the capacity to fit
4008 * these excess tasks, i.e. nr_running < group_capacity. The
4009 * extra check prevents the case where you always pull from the
4010 * heaviest group when it is already under-utilized (possible
4011 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4012 */
75dd321d 4013 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4014 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4015
4016 if (local_group) {
4017 sds->this_load = sgs.avg_load;
532cb4c4 4018 sds->this = sg;
1e3c88bd
PZ
4019 sds->this_nr_running = sgs.sum_nr_running;
4020 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4021 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4022 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4023 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4024 sds->max_load = sgs.avg_load;
532cb4c4 4025 sds->busiest = sg;
1e3c88bd 4026 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4027 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4028 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4029 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4030 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4031 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4032 sds->group_imb = sgs.group_imb;
4033 }
4034
532cb4c4 4035 sg = sg->next;
bd939f45 4036 } while (sg != env->sd->groups);
532cb4c4
MN
4037}
4038
532cb4c4
MN
4039/**
4040 * check_asym_packing - Check to see if the group is packed into the
4041 * sched doman.
4042 *
4043 * This is primarily intended to used at the sibling level. Some
4044 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4045 * case of POWER7, it can move to lower SMT modes only when higher
4046 * threads are idle. When in lower SMT modes, the threads will
4047 * perform better since they share less core resources. Hence when we
4048 * have idle threads, we want them to be the higher ones.
4049 *
4050 * This packing function is run on idle threads. It checks to see if
4051 * the busiest CPU in this domain (core in the P7 case) has a higher
4052 * CPU number than the packing function is being run on. Here we are
4053 * assuming lower CPU number will be equivalent to lower a SMT thread
4054 * number.
4055 *
b6b12294
MN
4056 * Returns 1 when packing is required and a task should be moved to
4057 * this CPU. The amount of the imbalance is returned in *imbalance.
4058 *
cd96891d 4059 * @env: The load balancing environment.
532cb4c4 4060 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4061 */
bd939f45 4062static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4063{
4064 int busiest_cpu;
4065
bd939f45 4066 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4067 return 0;
4068
4069 if (!sds->busiest)
4070 return 0;
4071
4072 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4073 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4074 return 0;
4075
bd939f45
PZ
4076 env->imbalance = DIV_ROUND_CLOSEST(
4077 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4078
532cb4c4 4079 return 1;
1e3c88bd
PZ
4080}
4081
4082/**
4083 * fix_small_imbalance - Calculate the minor imbalance that exists
4084 * amongst the groups of a sched_domain, during
4085 * load balancing.
cd96891d 4086 * @env: The load balancing environment.
1e3c88bd 4087 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4088 */
bd939f45
PZ
4089static inline
4090void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4091{
4092 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4093 unsigned int imbn = 2;
dd5feea1 4094 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4095
4096 if (sds->this_nr_running) {
4097 sds->this_load_per_task /= sds->this_nr_running;
4098 if (sds->busiest_load_per_task >
4099 sds->this_load_per_task)
4100 imbn = 1;
bd939f45 4101 } else {
1e3c88bd 4102 sds->this_load_per_task =
bd939f45
PZ
4103 cpu_avg_load_per_task(env->dst_cpu);
4104 }
1e3c88bd 4105
dd5feea1 4106 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4107 * SCHED_POWER_SCALE;
9c3f75cb 4108 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4109
4110 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4111 (scaled_busy_load_per_task * imbn)) {
bd939f45 4112 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4113 return;
4114 }
4115
4116 /*
4117 * OK, we don't have enough imbalance to justify moving tasks,
4118 * however we may be able to increase total CPU power used by
4119 * moving them.
4120 */
4121
9c3f75cb 4122 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4123 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4124 pwr_now += sds->this->sgp->power *
1e3c88bd 4125 min(sds->this_load_per_task, sds->this_load);
1399fa78 4126 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4127
4128 /* Amount of load we'd subtract */
1399fa78 4129 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4130 sds->busiest->sgp->power;
1e3c88bd 4131 if (sds->max_load > tmp)
9c3f75cb 4132 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4133 min(sds->busiest_load_per_task, sds->max_load - tmp);
4134
4135 /* Amount of load we'd add */
9c3f75cb 4136 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4137 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4138 tmp = (sds->max_load * sds->busiest->sgp->power) /
4139 sds->this->sgp->power;
1e3c88bd 4140 else
1399fa78 4141 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4142 sds->this->sgp->power;
4143 pwr_move += sds->this->sgp->power *
1e3c88bd 4144 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4145 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4146
4147 /* Move if we gain throughput */
4148 if (pwr_move > pwr_now)
bd939f45 4149 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4150}
4151
4152/**
4153 * calculate_imbalance - Calculate the amount of imbalance present within the
4154 * groups of a given sched_domain during load balance.
bd939f45 4155 * @env: load balance environment
1e3c88bd 4156 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4157 */
bd939f45 4158static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4159{
dd5feea1
SS
4160 unsigned long max_pull, load_above_capacity = ~0UL;
4161
4162 sds->busiest_load_per_task /= sds->busiest_nr_running;
4163 if (sds->group_imb) {
4164 sds->busiest_load_per_task =
4165 min(sds->busiest_load_per_task, sds->avg_load);
4166 }
4167
1e3c88bd
PZ
4168 /*
4169 * In the presence of smp nice balancing, certain scenarios can have
4170 * max load less than avg load(as we skip the groups at or below
4171 * its cpu_power, while calculating max_load..)
4172 */
4173 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4174 env->imbalance = 0;
4175 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4176 }
4177
dd5feea1
SS
4178 if (!sds->group_imb) {
4179 /*
4180 * Don't want to pull so many tasks that a group would go idle.
4181 */
4182 load_above_capacity = (sds->busiest_nr_running -
4183 sds->busiest_group_capacity);
4184
1399fa78 4185 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4186
9c3f75cb 4187 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4188 }
4189
4190 /*
4191 * We're trying to get all the cpus to the average_load, so we don't
4192 * want to push ourselves above the average load, nor do we wish to
4193 * reduce the max loaded cpu below the average load. At the same time,
4194 * we also don't want to reduce the group load below the group capacity
4195 * (so that we can implement power-savings policies etc). Thus we look
4196 * for the minimum possible imbalance.
4197 * Be careful of negative numbers as they'll appear as very large values
4198 * with unsigned longs.
4199 */
4200 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4201
4202 /* How much load to actually move to equalise the imbalance */
bd939f45 4203 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4204 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4205 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4206
4207 /*
4208 * if *imbalance is less than the average load per runnable task
25985edc 4209 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4210 * a think about bumping its value to force at least one task to be
4211 * moved
4212 */
bd939f45
PZ
4213 if (env->imbalance < sds->busiest_load_per_task)
4214 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4215
4216}
fab47622 4217
1e3c88bd
PZ
4218/******* find_busiest_group() helpers end here *********************/
4219
4220/**
4221 * find_busiest_group - Returns the busiest group within the sched_domain
4222 * if there is an imbalance. If there isn't an imbalance, and
4223 * the user has opted for power-savings, it returns a group whose
4224 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4225 * such a group exists.
4226 *
4227 * Also calculates the amount of weighted load which should be moved
4228 * to restore balance.
4229 *
cd96891d 4230 * @env: The load balancing environment.
1e3c88bd
PZ
4231 * @balance: Pointer to a variable indicating if this_cpu
4232 * is the appropriate cpu to perform load balancing at this_level.
4233 *
4234 * Returns: - the busiest group if imbalance exists.
4235 * - If no imbalance and user has opted for power-savings balance,
4236 * return the least loaded group whose CPUs can be
4237 * put to idle by rebalancing its tasks onto our group.
4238 */
4239static struct sched_group *
b9403130 4240find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4241{
4242 struct sd_lb_stats sds;
4243
4244 memset(&sds, 0, sizeof(sds));
4245
4246 /*
4247 * Compute the various statistics relavent for load balancing at
4248 * this level.
4249 */
b9403130 4250 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4251
cc57aa8f
PZ
4252 /*
4253 * this_cpu is not the appropriate cpu to perform load balancing at
4254 * this level.
1e3c88bd 4255 */
8f190fb3 4256 if (!(*balance))
1e3c88bd
PZ
4257 goto ret;
4258
bd939f45
PZ
4259 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4260 check_asym_packing(env, &sds))
532cb4c4
MN
4261 return sds.busiest;
4262
cc57aa8f 4263 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4264 if (!sds.busiest || sds.busiest_nr_running == 0)
4265 goto out_balanced;
4266
1399fa78 4267 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4268
866ab43e
PZ
4269 /*
4270 * If the busiest group is imbalanced the below checks don't
4271 * work because they assumes all things are equal, which typically
4272 * isn't true due to cpus_allowed constraints and the like.
4273 */
4274 if (sds.group_imb)
4275 goto force_balance;
4276
cc57aa8f 4277 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4278 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4279 !sds.busiest_has_capacity)
4280 goto force_balance;
4281
cc57aa8f
PZ
4282 /*
4283 * If the local group is more busy than the selected busiest group
4284 * don't try and pull any tasks.
4285 */
1e3c88bd
PZ
4286 if (sds.this_load >= sds.max_load)
4287 goto out_balanced;
4288
cc57aa8f
PZ
4289 /*
4290 * Don't pull any tasks if this group is already above the domain
4291 * average load.
4292 */
1e3c88bd
PZ
4293 if (sds.this_load >= sds.avg_load)
4294 goto out_balanced;
4295
bd939f45 4296 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4297 /*
4298 * This cpu is idle. If the busiest group load doesn't
4299 * have more tasks than the number of available cpu's and
4300 * there is no imbalance between this and busiest group
4301 * wrt to idle cpu's, it is balanced.
4302 */
c186fafe 4303 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4304 sds.busiest_nr_running <= sds.busiest_group_weight)
4305 goto out_balanced;
c186fafe
PZ
4306 } else {
4307 /*
4308 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4309 * imbalance_pct to be conservative.
4310 */
bd939f45 4311 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4312 goto out_balanced;
aae6d3dd 4313 }
1e3c88bd 4314
fab47622 4315force_balance:
1e3c88bd 4316 /* Looks like there is an imbalance. Compute it */
bd939f45 4317 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4318 return sds.busiest;
4319
4320out_balanced:
1e3c88bd 4321ret:
bd939f45 4322 env->imbalance = 0;
1e3c88bd
PZ
4323 return NULL;
4324}
4325
4326/*
4327 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4328 */
bd939f45 4329static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4330 struct sched_group *group)
1e3c88bd
PZ
4331{
4332 struct rq *busiest = NULL, *rq;
4333 unsigned long max_load = 0;
4334 int i;
4335
4336 for_each_cpu(i, sched_group_cpus(group)) {
4337 unsigned long power = power_of(i);
1399fa78
NR
4338 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4339 SCHED_POWER_SCALE);
1e3c88bd
PZ
4340 unsigned long wl;
4341
9d5efe05 4342 if (!capacity)
bd939f45 4343 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4344
b9403130 4345 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4346 continue;
4347
4348 rq = cpu_rq(i);
6e40f5bb 4349 wl = weighted_cpuload(i);
1e3c88bd 4350
6e40f5bb
TG
4351 /*
4352 * When comparing with imbalance, use weighted_cpuload()
4353 * which is not scaled with the cpu power.
4354 */
bd939f45 4355 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4356 continue;
4357
6e40f5bb
TG
4358 /*
4359 * For the load comparisons with the other cpu's, consider
4360 * the weighted_cpuload() scaled with the cpu power, so that
4361 * the load can be moved away from the cpu that is potentially
4362 * running at a lower capacity.
4363 */
1399fa78 4364 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4365
1e3c88bd
PZ
4366 if (wl > max_load) {
4367 max_load = wl;
4368 busiest = rq;
4369 }
4370 }
4371
4372 return busiest;
4373}
4374
4375/*
4376 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4377 * so long as it is large enough.
4378 */
4379#define MAX_PINNED_INTERVAL 512
4380
4381/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4382DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4383
bd939f45 4384static int need_active_balance(struct lb_env *env)
1af3ed3d 4385{
bd939f45
PZ
4386 struct sched_domain *sd = env->sd;
4387
4388 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4389
4390 /*
4391 * ASYM_PACKING needs to force migrate tasks from busy but
4392 * higher numbered CPUs in order to pack all tasks in the
4393 * lowest numbered CPUs.
4394 */
bd939f45 4395 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4396 return 1;
1af3ed3d
PZ
4397 }
4398
4399 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4400}
4401
969c7921
TH
4402static int active_load_balance_cpu_stop(void *data);
4403
1e3c88bd
PZ
4404/*
4405 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4406 * tasks if there is an imbalance.
4407 */
4408static int load_balance(int this_cpu, struct rq *this_rq,
4409 struct sched_domain *sd, enum cpu_idle_type idle,
4410 int *balance)
4411{
88b8dac0
SV
4412 int ld_moved, cur_ld_moved, active_balance = 0;
4413 int lb_iterations, max_lb_iterations;
1e3c88bd 4414 struct sched_group *group;
1e3c88bd
PZ
4415 struct rq *busiest;
4416 unsigned long flags;
4417 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4418
8e45cb54
PZ
4419 struct lb_env env = {
4420 .sd = sd,
ddcdf6e7
PZ
4421 .dst_cpu = this_cpu,
4422 .dst_rq = this_rq,
88b8dac0 4423 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4424 .idle = idle,
eb95308e 4425 .loop_break = sched_nr_migrate_break,
b9403130 4426 .cpus = cpus,
8e45cb54
PZ
4427 };
4428
1e3c88bd 4429 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4430 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4431
1e3c88bd
PZ
4432 schedstat_inc(sd, lb_count[idle]);
4433
4434redo:
b9403130 4435 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4436
4437 if (*balance == 0)
4438 goto out_balanced;
4439
4440 if (!group) {
4441 schedstat_inc(sd, lb_nobusyg[idle]);
4442 goto out_balanced;
4443 }
4444
b9403130 4445 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4446 if (!busiest) {
4447 schedstat_inc(sd, lb_nobusyq[idle]);
4448 goto out_balanced;
4449 }
4450
78feefc5 4451 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4452
bd939f45 4453 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4454
4455 ld_moved = 0;
88b8dac0 4456 lb_iterations = 1;
1e3c88bd
PZ
4457 if (busiest->nr_running > 1) {
4458 /*
4459 * Attempt to move tasks. If find_busiest_group has found
4460 * an imbalance but busiest->nr_running <= 1, the group is
4461 * still unbalanced. ld_moved simply stays zero, so it is
4462 * correctly treated as an imbalance.
4463 */
8e45cb54 4464 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4465 env.src_cpu = busiest->cpu;
4466 env.src_rq = busiest;
4467 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4468
a35b6466 4469 update_h_load(env.src_cpu);
5d6523eb 4470more_balance:
1e3c88bd 4471 local_irq_save(flags);
78feefc5 4472 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4473
4474 /*
4475 * cur_ld_moved - load moved in current iteration
4476 * ld_moved - cumulative load moved across iterations
4477 */
4478 cur_ld_moved = move_tasks(&env);
4479 ld_moved += cur_ld_moved;
78feefc5 4480 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4481 local_irq_restore(flags);
4482
5d6523eb
PZ
4483 if (env.flags & LBF_NEED_BREAK) {
4484 env.flags &= ~LBF_NEED_BREAK;
4485 goto more_balance;
4486 }
4487
1e3c88bd
PZ
4488 /*
4489 * some other cpu did the load balance for us.
4490 */
88b8dac0
SV
4491 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4492 resched_cpu(env.dst_cpu);
4493
4494 /*
4495 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4496 * us and move them to an alternate dst_cpu in our sched_group
4497 * where they can run. The upper limit on how many times we
4498 * iterate on same src_cpu is dependent on number of cpus in our
4499 * sched_group.
4500 *
4501 * This changes load balance semantics a bit on who can move
4502 * load to a given_cpu. In addition to the given_cpu itself
4503 * (or a ilb_cpu acting on its behalf where given_cpu is
4504 * nohz-idle), we now have balance_cpu in a position to move
4505 * load to given_cpu. In rare situations, this may cause
4506 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4507 * _independently_ and at _same_ time to move some load to
4508 * given_cpu) causing exceess load to be moved to given_cpu.
4509 * This however should not happen so much in practice and
4510 * moreover subsequent load balance cycles should correct the
4511 * excess load moved.
4512 */
4513 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4514 lb_iterations++ < max_lb_iterations) {
4515
78feefc5 4516 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4517 env.dst_cpu = env.new_dst_cpu;
4518 env.flags &= ~LBF_SOME_PINNED;
4519 env.loop = 0;
4520 env.loop_break = sched_nr_migrate_break;
4521 /*
4522 * Go back to "more_balance" rather than "redo" since we
4523 * need to continue with same src_cpu.
4524 */
4525 goto more_balance;
4526 }
1e3c88bd
PZ
4527
4528 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4529 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4530 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4531 if (!cpumask_empty(cpus)) {
4532 env.loop = 0;
4533 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4534 goto redo;
bbf18b19 4535 }
1e3c88bd
PZ
4536 goto out_balanced;
4537 }
4538 }
4539
4540 if (!ld_moved) {
4541 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4542 /*
4543 * Increment the failure counter only on periodic balance.
4544 * We do not want newidle balance, which can be very
4545 * frequent, pollute the failure counter causing
4546 * excessive cache_hot migrations and active balances.
4547 */
4548 if (idle != CPU_NEWLY_IDLE)
4549 sd->nr_balance_failed++;
1e3c88bd 4550
bd939f45 4551 if (need_active_balance(&env)) {
1e3c88bd
PZ
4552 raw_spin_lock_irqsave(&busiest->lock, flags);
4553
969c7921
TH
4554 /* don't kick the active_load_balance_cpu_stop,
4555 * if the curr task on busiest cpu can't be
4556 * moved to this_cpu
1e3c88bd
PZ
4557 */
4558 if (!cpumask_test_cpu(this_cpu,
fa17b507 4559 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4560 raw_spin_unlock_irqrestore(&busiest->lock,
4561 flags);
8e45cb54 4562 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4563 goto out_one_pinned;
4564 }
4565
969c7921
TH
4566 /*
4567 * ->active_balance synchronizes accesses to
4568 * ->active_balance_work. Once set, it's cleared
4569 * only after active load balance is finished.
4570 */
1e3c88bd
PZ
4571 if (!busiest->active_balance) {
4572 busiest->active_balance = 1;
4573 busiest->push_cpu = this_cpu;
4574 active_balance = 1;
4575 }
4576 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4577
bd939f45 4578 if (active_balance) {
969c7921
TH
4579 stop_one_cpu_nowait(cpu_of(busiest),
4580 active_load_balance_cpu_stop, busiest,
4581 &busiest->active_balance_work);
bd939f45 4582 }
1e3c88bd
PZ
4583
4584 /*
4585 * We've kicked active balancing, reset the failure
4586 * counter.
4587 */
4588 sd->nr_balance_failed = sd->cache_nice_tries+1;
4589 }
4590 } else
4591 sd->nr_balance_failed = 0;
4592
4593 if (likely(!active_balance)) {
4594 /* We were unbalanced, so reset the balancing interval */
4595 sd->balance_interval = sd->min_interval;
4596 } else {
4597 /*
4598 * If we've begun active balancing, start to back off. This
4599 * case may not be covered by the all_pinned logic if there
4600 * is only 1 task on the busy runqueue (because we don't call
4601 * move_tasks).
4602 */
4603 if (sd->balance_interval < sd->max_interval)
4604 sd->balance_interval *= 2;
4605 }
4606
1e3c88bd
PZ
4607 goto out;
4608
4609out_balanced:
4610 schedstat_inc(sd, lb_balanced[idle]);
4611
4612 sd->nr_balance_failed = 0;
4613
4614out_one_pinned:
4615 /* tune up the balancing interval */
8e45cb54 4616 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4617 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4618 (sd->balance_interval < sd->max_interval))
4619 sd->balance_interval *= 2;
4620
46e49b38 4621 ld_moved = 0;
1e3c88bd 4622out:
1e3c88bd
PZ
4623 return ld_moved;
4624}
4625
1e3c88bd
PZ
4626/*
4627 * idle_balance is called by schedule() if this_cpu is about to become
4628 * idle. Attempts to pull tasks from other CPUs.
4629 */
029632fb 4630void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4631{
4632 struct sched_domain *sd;
4633 int pulled_task = 0;
4634 unsigned long next_balance = jiffies + HZ;
4635
4636 this_rq->idle_stamp = this_rq->clock;
4637
4638 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4639 return;
4640
f492e12e
PZ
4641 /*
4642 * Drop the rq->lock, but keep IRQ/preempt disabled.
4643 */
4644 raw_spin_unlock(&this_rq->lock);
4645
c66eaf61 4646 update_shares(this_cpu);
dce840a0 4647 rcu_read_lock();
1e3c88bd
PZ
4648 for_each_domain(this_cpu, sd) {
4649 unsigned long interval;
f492e12e 4650 int balance = 1;
1e3c88bd
PZ
4651
4652 if (!(sd->flags & SD_LOAD_BALANCE))
4653 continue;
4654
f492e12e 4655 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4656 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4657 pulled_task = load_balance(this_cpu, this_rq,
4658 sd, CPU_NEWLY_IDLE, &balance);
4659 }
1e3c88bd
PZ
4660
4661 interval = msecs_to_jiffies(sd->balance_interval);
4662 if (time_after(next_balance, sd->last_balance + interval))
4663 next_balance = sd->last_balance + interval;
d5ad140b
NR
4664 if (pulled_task) {
4665 this_rq->idle_stamp = 0;
1e3c88bd 4666 break;
d5ad140b 4667 }
1e3c88bd 4668 }
dce840a0 4669 rcu_read_unlock();
f492e12e
PZ
4670
4671 raw_spin_lock(&this_rq->lock);
4672
1e3c88bd
PZ
4673 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4674 /*
4675 * We are going idle. next_balance may be set based on
4676 * a busy processor. So reset next_balance.
4677 */
4678 this_rq->next_balance = next_balance;
4679 }
4680}
4681
4682/*
969c7921
TH
4683 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4684 * running tasks off the busiest CPU onto idle CPUs. It requires at
4685 * least 1 task to be running on each physical CPU where possible, and
4686 * avoids physical / logical imbalances.
1e3c88bd 4687 */
969c7921 4688static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4689{
969c7921
TH
4690 struct rq *busiest_rq = data;
4691 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4692 int target_cpu = busiest_rq->push_cpu;
969c7921 4693 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4694 struct sched_domain *sd;
969c7921
TH
4695
4696 raw_spin_lock_irq(&busiest_rq->lock);
4697
4698 /* make sure the requested cpu hasn't gone down in the meantime */
4699 if (unlikely(busiest_cpu != smp_processor_id() ||
4700 !busiest_rq->active_balance))
4701 goto out_unlock;
1e3c88bd
PZ
4702
4703 /* Is there any task to move? */
4704 if (busiest_rq->nr_running <= 1)
969c7921 4705 goto out_unlock;
1e3c88bd
PZ
4706
4707 /*
4708 * This condition is "impossible", if it occurs
4709 * we need to fix it. Originally reported by
4710 * Bjorn Helgaas on a 128-cpu setup.
4711 */
4712 BUG_ON(busiest_rq == target_rq);
4713
4714 /* move a task from busiest_rq to target_rq */
4715 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4716
4717 /* Search for an sd spanning us and the target CPU. */
dce840a0 4718 rcu_read_lock();
1e3c88bd
PZ
4719 for_each_domain(target_cpu, sd) {
4720 if ((sd->flags & SD_LOAD_BALANCE) &&
4721 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4722 break;
4723 }
4724
4725 if (likely(sd)) {
8e45cb54
PZ
4726 struct lb_env env = {
4727 .sd = sd,
ddcdf6e7
PZ
4728 .dst_cpu = target_cpu,
4729 .dst_rq = target_rq,
4730 .src_cpu = busiest_rq->cpu,
4731 .src_rq = busiest_rq,
8e45cb54
PZ
4732 .idle = CPU_IDLE,
4733 };
4734
1e3c88bd
PZ
4735 schedstat_inc(sd, alb_count);
4736
8e45cb54 4737 if (move_one_task(&env))
1e3c88bd
PZ
4738 schedstat_inc(sd, alb_pushed);
4739 else
4740 schedstat_inc(sd, alb_failed);
4741 }
dce840a0 4742 rcu_read_unlock();
1e3c88bd 4743 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4744out_unlock:
4745 busiest_rq->active_balance = 0;
4746 raw_spin_unlock_irq(&busiest_rq->lock);
4747 return 0;
1e3c88bd
PZ
4748}
4749
4750#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4751/*
4752 * idle load balancing details
83cd4fe2
VP
4753 * - When one of the busy CPUs notice that there may be an idle rebalancing
4754 * needed, they will kick the idle load balancer, which then does idle
4755 * load balancing for all the idle CPUs.
4756 */
1e3c88bd 4757static struct {
83cd4fe2 4758 cpumask_var_t idle_cpus_mask;
0b005cf5 4759 atomic_t nr_cpus;
83cd4fe2
VP
4760 unsigned long next_balance; /* in jiffy units */
4761} nohz ____cacheline_aligned;
1e3c88bd 4762
8e7fbcbc 4763static inline int find_new_ilb(int call_cpu)
1e3c88bd 4764{
0b005cf5 4765 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4766
786d6dc7
SS
4767 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4768 return ilb;
4769
4770 return nr_cpu_ids;
1e3c88bd 4771}
1e3c88bd 4772
83cd4fe2
VP
4773/*
4774 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4775 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4776 * CPU (if there is one).
4777 */
4778static void nohz_balancer_kick(int cpu)
4779{
4780 int ilb_cpu;
4781
4782 nohz.next_balance++;
4783
0b005cf5 4784 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4785
0b005cf5
SS
4786 if (ilb_cpu >= nr_cpu_ids)
4787 return;
83cd4fe2 4788
cd490c5b 4789 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4790 return;
4791 /*
4792 * Use smp_send_reschedule() instead of resched_cpu().
4793 * This way we generate a sched IPI on the target cpu which
4794 * is idle. And the softirq performing nohz idle load balance
4795 * will be run before returning from the IPI.
4796 */
4797 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4798 return;
4799}
4800
c1cc017c 4801static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
4802{
4803 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4804 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4805 atomic_dec(&nohz.nr_cpus);
4806 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4807 }
4808}
4809
69e1e811
SS
4810static inline void set_cpu_sd_state_busy(void)
4811{
4812 struct sched_domain *sd;
4813 int cpu = smp_processor_id();
4814
4815 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4816 return;
4817 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4818
4819 rcu_read_lock();
4820 for_each_domain(cpu, sd)
4821 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4822 rcu_read_unlock();
4823}
4824
4825void set_cpu_sd_state_idle(void)
4826{
4827 struct sched_domain *sd;
4828 int cpu = smp_processor_id();
4829
4830 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4831 return;
4832 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4833
4834 rcu_read_lock();
4835 for_each_domain(cpu, sd)
4836 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4837 rcu_read_unlock();
4838}
4839
1e3c88bd 4840/*
c1cc017c 4841 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 4842 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4843 */
c1cc017c 4844void nohz_balance_enter_idle(int cpu)
1e3c88bd 4845{
71325960
SS
4846 /*
4847 * If this cpu is going down, then nothing needs to be done.
4848 */
4849 if (!cpu_active(cpu))
4850 return;
4851
c1cc017c
AS
4852 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4853 return;
1e3c88bd 4854
c1cc017c
AS
4855 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4856 atomic_inc(&nohz.nr_cpus);
4857 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4858}
71325960
SS
4859
4860static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4861 unsigned long action, void *hcpu)
4862{
4863 switch (action & ~CPU_TASKS_FROZEN) {
4864 case CPU_DYING:
c1cc017c 4865 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
4866 return NOTIFY_OK;
4867 default:
4868 return NOTIFY_DONE;
4869 }
4870}
1e3c88bd
PZ
4871#endif
4872
4873static DEFINE_SPINLOCK(balancing);
4874
49c022e6
PZ
4875/*
4876 * Scale the max load_balance interval with the number of CPUs in the system.
4877 * This trades load-balance latency on larger machines for less cross talk.
4878 */
029632fb 4879void update_max_interval(void)
49c022e6
PZ
4880{
4881 max_load_balance_interval = HZ*num_online_cpus()/10;
4882}
4883
1e3c88bd
PZ
4884/*
4885 * It checks each scheduling domain to see if it is due to be balanced,
4886 * and initiates a balancing operation if so.
4887 *
4888 * Balancing parameters are set up in arch_init_sched_domains.
4889 */
4890static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4891{
4892 int balance = 1;
4893 struct rq *rq = cpu_rq(cpu);
4894 unsigned long interval;
04f733b4 4895 struct sched_domain *sd;
1e3c88bd
PZ
4896 /* Earliest time when we have to do rebalance again */
4897 unsigned long next_balance = jiffies + 60*HZ;
4898 int update_next_balance = 0;
4899 int need_serialize;
4900
2069dd75
PZ
4901 update_shares(cpu);
4902
dce840a0 4903 rcu_read_lock();
1e3c88bd
PZ
4904 for_each_domain(cpu, sd) {
4905 if (!(sd->flags & SD_LOAD_BALANCE))
4906 continue;
4907
4908 interval = sd->balance_interval;
4909 if (idle != CPU_IDLE)
4910 interval *= sd->busy_factor;
4911
4912 /* scale ms to jiffies */
4913 interval = msecs_to_jiffies(interval);
49c022e6 4914 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4915
4916 need_serialize = sd->flags & SD_SERIALIZE;
4917
4918 if (need_serialize) {
4919 if (!spin_trylock(&balancing))
4920 goto out;
4921 }
4922
4923 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4924 if (load_balance(cpu, rq, sd, idle, &balance)) {
4925 /*
4926 * We've pulled tasks over so either we're no
c186fafe 4927 * longer idle.
1e3c88bd
PZ
4928 */
4929 idle = CPU_NOT_IDLE;
4930 }
4931 sd->last_balance = jiffies;
4932 }
4933 if (need_serialize)
4934 spin_unlock(&balancing);
4935out:
4936 if (time_after(next_balance, sd->last_balance + interval)) {
4937 next_balance = sd->last_balance + interval;
4938 update_next_balance = 1;
4939 }
4940
4941 /*
4942 * Stop the load balance at this level. There is another
4943 * CPU in our sched group which is doing load balancing more
4944 * actively.
4945 */
4946 if (!balance)
4947 break;
4948 }
dce840a0 4949 rcu_read_unlock();
1e3c88bd
PZ
4950
4951 /*
4952 * next_balance will be updated only when there is a need.
4953 * When the cpu is attached to null domain for ex, it will not be
4954 * updated.
4955 */
4956 if (likely(update_next_balance))
4957 rq->next_balance = next_balance;
4958}
4959
83cd4fe2 4960#ifdef CONFIG_NO_HZ
1e3c88bd 4961/*
83cd4fe2 4962 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4963 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4964 */
83cd4fe2
VP
4965static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4966{
4967 struct rq *this_rq = cpu_rq(this_cpu);
4968 struct rq *rq;
4969 int balance_cpu;
4970
1c792db7
SS
4971 if (idle != CPU_IDLE ||
4972 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4973 goto end;
83cd4fe2
VP
4974
4975 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 4976 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
4977 continue;
4978
4979 /*
4980 * If this cpu gets work to do, stop the load balancing
4981 * work being done for other cpus. Next load
4982 * balancing owner will pick it up.
4983 */
1c792db7 4984 if (need_resched())
83cd4fe2 4985 break;
83cd4fe2 4986
5ed4f1d9
VG
4987 rq = cpu_rq(balance_cpu);
4988
4989 raw_spin_lock_irq(&rq->lock);
4990 update_rq_clock(rq);
4991 update_idle_cpu_load(rq);
4992 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
4993
4994 rebalance_domains(balance_cpu, CPU_IDLE);
4995
83cd4fe2
VP
4996 if (time_after(this_rq->next_balance, rq->next_balance))
4997 this_rq->next_balance = rq->next_balance;
4998 }
4999 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5000end:
5001 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5002}
5003
5004/*
0b005cf5
SS
5005 * Current heuristic for kicking the idle load balancer in the presence
5006 * of an idle cpu is the system.
5007 * - This rq has more than one task.
5008 * - At any scheduler domain level, this cpu's scheduler group has multiple
5009 * busy cpu's exceeding the group's power.
5010 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5011 * domain span are idle.
83cd4fe2
VP
5012 */
5013static inline int nohz_kick_needed(struct rq *rq, int cpu)
5014{
5015 unsigned long now = jiffies;
0b005cf5 5016 struct sched_domain *sd;
83cd4fe2 5017
1c792db7 5018 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5019 return 0;
5020
1c792db7
SS
5021 /*
5022 * We may be recently in ticked or tickless idle mode. At the first
5023 * busy tick after returning from idle, we will update the busy stats.
5024 */
69e1e811 5025 set_cpu_sd_state_busy();
c1cc017c 5026 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5027
5028 /*
5029 * None are in tickless mode and hence no need for NOHZ idle load
5030 * balancing.
5031 */
5032 if (likely(!atomic_read(&nohz.nr_cpus)))
5033 return 0;
1c792db7
SS
5034
5035 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5036 return 0;
5037
0b005cf5
SS
5038 if (rq->nr_running >= 2)
5039 goto need_kick;
83cd4fe2 5040
067491b7 5041 rcu_read_lock();
0b005cf5
SS
5042 for_each_domain(cpu, sd) {
5043 struct sched_group *sg = sd->groups;
5044 struct sched_group_power *sgp = sg->sgp;
5045 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5046
0b005cf5 5047 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5048 goto need_kick_unlock;
0b005cf5
SS
5049
5050 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5051 && (cpumask_first_and(nohz.idle_cpus_mask,
5052 sched_domain_span(sd)) < cpu))
067491b7 5053 goto need_kick_unlock;
0b005cf5
SS
5054
5055 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5056 break;
83cd4fe2 5057 }
067491b7 5058 rcu_read_unlock();
83cd4fe2 5059 return 0;
067491b7
PZ
5060
5061need_kick_unlock:
5062 rcu_read_unlock();
0b005cf5
SS
5063need_kick:
5064 return 1;
83cd4fe2
VP
5065}
5066#else
5067static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5068#endif
5069
5070/*
5071 * run_rebalance_domains is triggered when needed from the scheduler tick.
5072 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5073 */
1e3c88bd
PZ
5074static void run_rebalance_domains(struct softirq_action *h)
5075{
5076 int this_cpu = smp_processor_id();
5077 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5078 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5079 CPU_IDLE : CPU_NOT_IDLE;
5080
5081 rebalance_domains(this_cpu, idle);
5082
1e3c88bd 5083 /*
83cd4fe2 5084 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5085 * balancing on behalf of the other idle cpus whose ticks are
5086 * stopped.
5087 */
83cd4fe2 5088 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5089}
5090
5091static inline int on_null_domain(int cpu)
5092{
90a6501f 5093 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5094}
5095
5096/*
5097 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5098 */
029632fb 5099void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5100{
1e3c88bd
PZ
5101 /* Don't need to rebalance while attached to NULL domain */
5102 if (time_after_eq(jiffies, rq->next_balance) &&
5103 likely(!on_null_domain(cpu)))
5104 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5105#ifdef CONFIG_NO_HZ
1c792db7 5106 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5107 nohz_balancer_kick(cpu);
5108#endif
1e3c88bd
PZ
5109}
5110
0bcdcf28
CE
5111static void rq_online_fair(struct rq *rq)
5112{
5113 update_sysctl();
5114}
5115
5116static void rq_offline_fair(struct rq *rq)
5117{
5118 update_sysctl();
a4c96ae3
PB
5119
5120 /* Ensure any throttled groups are reachable by pick_next_task */
5121 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5122}
5123
55e12e5e 5124#endif /* CONFIG_SMP */
e1d1484f 5125
bf0f6f24
IM
5126/*
5127 * scheduler tick hitting a task of our scheduling class:
5128 */
8f4d37ec 5129static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5130{
5131 struct cfs_rq *cfs_rq;
5132 struct sched_entity *se = &curr->se;
5133
5134 for_each_sched_entity(se) {
5135 cfs_rq = cfs_rq_of(se);
8f4d37ec 5136 entity_tick(cfs_rq, se, queued);
bf0f6f24 5137 }
cbee9f88
PZ
5138
5139 if (sched_feat_numa(NUMA))
5140 task_tick_numa(rq, curr);
bf0f6f24
IM
5141}
5142
5143/*
cd29fe6f
PZ
5144 * called on fork with the child task as argument from the parent's context
5145 * - child not yet on the tasklist
5146 * - preemption disabled
bf0f6f24 5147 */
cd29fe6f 5148static void task_fork_fair(struct task_struct *p)
bf0f6f24 5149{
4fc420c9
DN
5150 struct cfs_rq *cfs_rq;
5151 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5152 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5153 struct rq *rq = this_rq();
5154 unsigned long flags;
5155
05fa785c 5156 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5157
861d034e
PZ
5158 update_rq_clock(rq);
5159
4fc420c9
DN
5160 cfs_rq = task_cfs_rq(current);
5161 curr = cfs_rq->curr;
5162
b0a0f667
PM
5163 if (unlikely(task_cpu(p) != this_cpu)) {
5164 rcu_read_lock();
cd29fe6f 5165 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5166 rcu_read_unlock();
5167 }
bf0f6f24 5168
7109c442 5169 update_curr(cfs_rq);
cd29fe6f 5170
b5d9d734
MG
5171 if (curr)
5172 se->vruntime = curr->vruntime;
aeb73b04 5173 place_entity(cfs_rq, se, 1);
4d78e7b6 5174
cd29fe6f 5175 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5176 /*
edcb60a3
IM
5177 * Upon rescheduling, sched_class::put_prev_task() will place
5178 * 'current' within the tree based on its new key value.
5179 */
4d78e7b6 5180 swap(curr->vruntime, se->vruntime);
aec0a514 5181 resched_task(rq->curr);
4d78e7b6 5182 }
bf0f6f24 5183
88ec22d3
PZ
5184 se->vruntime -= cfs_rq->min_vruntime;
5185
05fa785c 5186 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5187}
5188
cb469845
SR
5189/*
5190 * Priority of the task has changed. Check to see if we preempt
5191 * the current task.
5192 */
da7a735e
PZ
5193static void
5194prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5195{
da7a735e
PZ
5196 if (!p->se.on_rq)
5197 return;
5198
cb469845
SR
5199 /*
5200 * Reschedule if we are currently running on this runqueue and
5201 * our priority decreased, or if we are not currently running on
5202 * this runqueue and our priority is higher than the current's
5203 */
da7a735e 5204 if (rq->curr == p) {
cb469845
SR
5205 if (p->prio > oldprio)
5206 resched_task(rq->curr);
5207 } else
15afe09b 5208 check_preempt_curr(rq, p, 0);
cb469845
SR
5209}
5210
da7a735e
PZ
5211static void switched_from_fair(struct rq *rq, struct task_struct *p)
5212{
5213 struct sched_entity *se = &p->se;
5214 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5215
5216 /*
5217 * Ensure the task's vruntime is normalized, so that when its
5218 * switched back to the fair class the enqueue_entity(.flags=0) will
5219 * do the right thing.
5220 *
5221 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5222 * have normalized the vruntime, if it was !on_rq, then only when
5223 * the task is sleeping will it still have non-normalized vruntime.
5224 */
5225 if (!se->on_rq && p->state != TASK_RUNNING) {
5226 /*
5227 * Fix up our vruntime so that the current sleep doesn't
5228 * cause 'unlimited' sleep bonus.
5229 */
5230 place_entity(cfs_rq, se, 0);
5231 se->vruntime -= cfs_rq->min_vruntime;
5232 }
5233}
5234
cb469845
SR
5235/*
5236 * We switched to the sched_fair class.
5237 */
da7a735e 5238static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5239{
da7a735e
PZ
5240 if (!p->se.on_rq)
5241 return;
5242
cb469845
SR
5243 /*
5244 * We were most likely switched from sched_rt, so
5245 * kick off the schedule if running, otherwise just see
5246 * if we can still preempt the current task.
5247 */
da7a735e 5248 if (rq->curr == p)
cb469845
SR
5249 resched_task(rq->curr);
5250 else
15afe09b 5251 check_preempt_curr(rq, p, 0);
cb469845
SR
5252}
5253
83b699ed
SV
5254/* Account for a task changing its policy or group.
5255 *
5256 * This routine is mostly called to set cfs_rq->curr field when a task
5257 * migrates between groups/classes.
5258 */
5259static void set_curr_task_fair(struct rq *rq)
5260{
5261 struct sched_entity *se = &rq->curr->se;
5262
ec12cb7f
PT
5263 for_each_sched_entity(se) {
5264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5265
5266 set_next_entity(cfs_rq, se);
5267 /* ensure bandwidth has been allocated on our new cfs_rq */
5268 account_cfs_rq_runtime(cfs_rq, 0);
5269 }
83b699ed
SV
5270}
5271
029632fb
PZ
5272void init_cfs_rq(struct cfs_rq *cfs_rq)
5273{
5274 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5275 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5276#ifndef CONFIG_64BIT
5277 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5278#endif
5279}
5280
810b3817 5281#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5282static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5283{
b2b5ce02
PZ
5284 /*
5285 * If the task was not on the rq at the time of this cgroup movement
5286 * it must have been asleep, sleeping tasks keep their ->vruntime
5287 * absolute on their old rq until wakeup (needed for the fair sleeper
5288 * bonus in place_entity()).
5289 *
5290 * If it was on the rq, we've just 'preempted' it, which does convert
5291 * ->vruntime to a relative base.
5292 *
5293 * Make sure both cases convert their relative position when migrating
5294 * to another cgroup's rq. This does somewhat interfere with the
5295 * fair sleeper stuff for the first placement, but who cares.
5296 */
7ceff013
DN
5297 /*
5298 * When !on_rq, vruntime of the task has usually NOT been normalized.
5299 * But there are some cases where it has already been normalized:
5300 *
5301 * - Moving a forked child which is waiting for being woken up by
5302 * wake_up_new_task().
62af3783
DN
5303 * - Moving a task which has been woken up by try_to_wake_up() and
5304 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5305 *
5306 * To prevent boost or penalty in the new cfs_rq caused by delta
5307 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5308 */
62af3783 5309 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5310 on_rq = 1;
5311
b2b5ce02
PZ
5312 if (!on_rq)
5313 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5314 set_task_rq(p, task_cpu(p));
88ec22d3 5315 if (!on_rq)
b2b5ce02 5316 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5317}
029632fb
PZ
5318
5319void free_fair_sched_group(struct task_group *tg)
5320{
5321 int i;
5322
5323 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5324
5325 for_each_possible_cpu(i) {
5326 if (tg->cfs_rq)
5327 kfree(tg->cfs_rq[i]);
5328 if (tg->se)
5329 kfree(tg->se[i]);
5330 }
5331
5332 kfree(tg->cfs_rq);
5333 kfree(tg->se);
5334}
5335
5336int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5337{
5338 struct cfs_rq *cfs_rq;
5339 struct sched_entity *se;
5340 int i;
5341
5342 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5343 if (!tg->cfs_rq)
5344 goto err;
5345 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5346 if (!tg->se)
5347 goto err;
5348
5349 tg->shares = NICE_0_LOAD;
5350
5351 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5352
5353 for_each_possible_cpu(i) {
5354 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5355 GFP_KERNEL, cpu_to_node(i));
5356 if (!cfs_rq)
5357 goto err;
5358
5359 se = kzalloc_node(sizeof(struct sched_entity),
5360 GFP_KERNEL, cpu_to_node(i));
5361 if (!se)
5362 goto err_free_rq;
5363
5364 init_cfs_rq(cfs_rq);
5365 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5366 }
5367
5368 return 1;
5369
5370err_free_rq:
5371 kfree(cfs_rq);
5372err:
5373 return 0;
5374}
5375
5376void unregister_fair_sched_group(struct task_group *tg, int cpu)
5377{
5378 struct rq *rq = cpu_rq(cpu);
5379 unsigned long flags;
5380
5381 /*
5382 * Only empty task groups can be destroyed; so we can speculatively
5383 * check on_list without danger of it being re-added.
5384 */
5385 if (!tg->cfs_rq[cpu]->on_list)
5386 return;
5387
5388 raw_spin_lock_irqsave(&rq->lock, flags);
5389 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5390 raw_spin_unlock_irqrestore(&rq->lock, flags);
5391}
5392
5393void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5394 struct sched_entity *se, int cpu,
5395 struct sched_entity *parent)
5396{
5397 struct rq *rq = cpu_rq(cpu);
5398
5399 cfs_rq->tg = tg;
5400 cfs_rq->rq = rq;
5401#ifdef CONFIG_SMP
5402 /* allow initial update_cfs_load() to truncate */
5403 cfs_rq->load_stamp = 1;
810b3817 5404#endif
029632fb
PZ
5405 init_cfs_rq_runtime(cfs_rq);
5406
5407 tg->cfs_rq[cpu] = cfs_rq;
5408 tg->se[cpu] = se;
5409
5410 /* se could be NULL for root_task_group */
5411 if (!se)
5412 return;
5413
5414 if (!parent)
5415 se->cfs_rq = &rq->cfs;
5416 else
5417 se->cfs_rq = parent->my_q;
5418
5419 se->my_q = cfs_rq;
5420 update_load_set(&se->load, 0);
5421 se->parent = parent;
5422}
5423
5424static DEFINE_MUTEX(shares_mutex);
5425
5426int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5427{
5428 int i;
5429 unsigned long flags;
5430
5431 /*
5432 * We can't change the weight of the root cgroup.
5433 */
5434 if (!tg->se[0])
5435 return -EINVAL;
5436
5437 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5438
5439 mutex_lock(&shares_mutex);
5440 if (tg->shares == shares)
5441 goto done;
5442
5443 tg->shares = shares;
5444 for_each_possible_cpu(i) {
5445 struct rq *rq = cpu_rq(i);
5446 struct sched_entity *se;
5447
5448 se = tg->se[i];
5449 /* Propagate contribution to hierarchy */
5450 raw_spin_lock_irqsave(&rq->lock, flags);
5451 for_each_sched_entity(se)
5452 update_cfs_shares(group_cfs_rq(se));
5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
5454 }
5455
5456done:
5457 mutex_unlock(&shares_mutex);
5458 return 0;
5459}
5460#else /* CONFIG_FAIR_GROUP_SCHED */
5461
5462void free_fair_sched_group(struct task_group *tg) { }
5463
5464int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5465{
5466 return 1;
5467}
5468
5469void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5470
5471#endif /* CONFIG_FAIR_GROUP_SCHED */
5472
810b3817 5473
6d686f45 5474static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5475{
5476 struct sched_entity *se = &task->se;
0d721cea
PW
5477 unsigned int rr_interval = 0;
5478
5479 /*
5480 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5481 * idle runqueue:
5482 */
0d721cea
PW
5483 if (rq->cfs.load.weight)
5484 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5485
5486 return rr_interval;
5487}
5488
bf0f6f24
IM
5489/*
5490 * All the scheduling class methods:
5491 */
029632fb 5492const struct sched_class fair_sched_class = {
5522d5d5 5493 .next = &idle_sched_class,
bf0f6f24
IM
5494 .enqueue_task = enqueue_task_fair,
5495 .dequeue_task = dequeue_task_fair,
5496 .yield_task = yield_task_fair,
d95f4122 5497 .yield_to_task = yield_to_task_fair,
bf0f6f24 5498
2e09bf55 5499 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5500
5501 .pick_next_task = pick_next_task_fair,
5502 .put_prev_task = put_prev_task_fair,
5503
681f3e68 5504#ifdef CONFIG_SMP
4ce72a2c
LZ
5505 .select_task_rq = select_task_rq_fair,
5506
0bcdcf28
CE
5507 .rq_online = rq_online_fair,
5508 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5509
5510 .task_waking = task_waking_fair,
681f3e68 5511#endif
bf0f6f24 5512
83b699ed 5513 .set_curr_task = set_curr_task_fair,
bf0f6f24 5514 .task_tick = task_tick_fair,
cd29fe6f 5515 .task_fork = task_fork_fair,
cb469845
SR
5516
5517 .prio_changed = prio_changed_fair,
da7a735e 5518 .switched_from = switched_from_fair,
cb469845 5519 .switched_to = switched_to_fair,
810b3817 5520
0d721cea
PW
5521 .get_rr_interval = get_rr_interval_fair,
5522
810b3817 5523#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5524 .task_move_group = task_move_group_fair,
810b3817 5525#endif
bf0f6f24
IM
5526};
5527
5528#ifdef CONFIG_SCHED_DEBUG
029632fb 5529void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5530{
bf0f6f24
IM
5531 struct cfs_rq *cfs_rq;
5532
5973e5b9 5533 rcu_read_lock();
c3b64f1e 5534 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5535 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5536 rcu_read_unlock();
bf0f6f24
IM
5537}
5538#endif
029632fb
PZ
5539
5540__init void init_sched_fair_class(void)
5541{
5542#ifdef CONFIG_SMP
5543 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5544
5545#ifdef CONFIG_NO_HZ
554cecaf 5546 nohz.next_balance = jiffies;
029632fb 5547 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5548 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5549#endif
5550#endif /* SMP */
5551
5552}