sched: Optimize freq invariant accounting
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
64192658 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
1625 * to automatic numa balancing. Scan slower
1626 */
1627 if (local + shared == 0) {
1628 p->numa_scan_period = min(p->numa_scan_period_max,
1629 p->numa_scan_period << 1);
1630
1631 p->mm->numa_next_scan = jiffies +
1632 msecs_to_jiffies(p->numa_scan_period);
1633
1634 return;
1635 }
1636
1637 /*
1638 * Prepare to scale scan period relative to the current period.
1639 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1640 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1641 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1642 */
1643 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1644 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1645 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1646 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1647 if (!slot)
1648 slot = 1;
1649 diff = slot * period_slot;
1650 } else {
1651 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1652
1653 /*
1654 * Scale scan rate increases based on sharing. There is an
1655 * inverse relationship between the degree of sharing and
1656 * the adjustment made to the scanning period. Broadly
1657 * speaking the intent is that there is little point
1658 * scanning faster if shared accesses dominate as it may
1659 * simply bounce migrations uselessly
1660 */
2847c90e 1661 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1662 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1663 }
1664
1665 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1666 task_scan_min(p), task_scan_max(p));
1667 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1668}
1669
7e2703e6
RR
1670/*
1671 * Get the fraction of time the task has been running since the last
1672 * NUMA placement cycle. The scheduler keeps similar statistics, but
1673 * decays those on a 32ms period, which is orders of magnitude off
1674 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1675 * stats only if the task is so new there are no NUMA statistics yet.
1676 */
1677static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1678{
1679 u64 runtime, delta, now;
1680 /* Use the start of this time slice to avoid calculations. */
1681 now = p->se.exec_start;
1682 runtime = p->se.sum_exec_runtime;
1683
1684 if (p->last_task_numa_placement) {
1685 delta = runtime - p->last_sum_exec_runtime;
1686 *period = now - p->last_task_numa_placement;
1687 } else {
1688 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1689 *period = p->se.avg.avg_period;
7e2703e6
RR
1690 }
1691
1692 p->last_sum_exec_runtime = runtime;
1693 p->last_task_numa_placement = now;
1694
1695 return delta;
1696}
1697
54009416
RR
1698/*
1699 * Determine the preferred nid for a task in a numa_group. This needs to
1700 * be done in a way that produces consistent results with group_weight,
1701 * otherwise workloads might not converge.
1702 */
1703static int preferred_group_nid(struct task_struct *p, int nid)
1704{
1705 nodemask_t nodes;
1706 int dist;
1707
1708 /* Direct connections between all NUMA nodes. */
1709 if (sched_numa_topology_type == NUMA_DIRECT)
1710 return nid;
1711
1712 /*
1713 * On a system with glueless mesh NUMA topology, group_weight
1714 * scores nodes according to the number of NUMA hinting faults on
1715 * both the node itself, and on nearby nodes.
1716 */
1717 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1718 unsigned long score, max_score = 0;
1719 int node, max_node = nid;
1720
1721 dist = sched_max_numa_distance;
1722
1723 for_each_online_node(node) {
1724 score = group_weight(p, node, dist);
1725 if (score > max_score) {
1726 max_score = score;
1727 max_node = node;
1728 }
1729 }
1730 return max_node;
1731 }
1732
1733 /*
1734 * Finding the preferred nid in a system with NUMA backplane
1735 * interconnect topology is more involved. The goal is to locate
1736 * tasks from numa_groups near each other in the system, and
1737 * untangle workloads from different sides of the system. This requires
1738 * searching down the hierarchy of node groups, recursively searching
1739 * inside the highest scoring group of nodes. The nodemask tricks
1740 * keep the complexity of the search down.
1741 */
1742 nodes = node_online_map;
1743 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1744 unsigned long max_faults = 0;
81907478 1745 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1746 int a, b;
1747
1748 /* Are there nodes at this distance from each other? */
1749 if (!find_numa_distance(dist))
1750 continue;
1751
1752 for_each_node_mask(a, nodes) {
1753 unsigned long faults = 0;
1754 nodemask_t this_group;
1755 nodes_clear(this_group);
1756
1757 /* Sum group's NUMA faults; includes a==b case. */
1758 for_each_node_mask(b, nodes) {
1759 if (node_distance(a, b) < dist) {
1760 faults += group_faults(p, b);
1761 node_set(b, this_group);
1762 node_clear(b, nodes);
1763 }
1764 }
1765
1766 /* Remember the top group. */
1767 if (faults > max_faults) {
1768 max_faults = faults;
1769 max_group = this_group;
1770 /*
1771 * subtle: at the smallest distance there is
1772 * just one node left in each "group", the
1773 * winner is the preferred nid.
1774 */
1775 nid = a;
1776 }
1777 }
1778 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1779 if (!max_faults)
1780 break;
54009416
RR
1781 nodes = max_group;
1782 }
1783 return nid;
1784}
1785
cbee9f88
PZ
1786static void task_numa_placement(struct task_struct *p)
1787{
83e1d2cd
MG
1788 int seq, nid, max_nid = -1, max_group_nid = -1;
1789 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1790 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1791 unsigned long total_faults;
1792 u64 runtime, period;
7dbd13ed 1793 spinlock_t *group_lock = NULL;
cbee9f88 1794
2832bc19 1795 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1796 if (p->numa_scan_seq == seq)
1797 return;
1798 p->numa_scan_seq = seq;
598f0ec0 1799 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1800
7e2703e6
RR
1801 total_faults = p->numa_faults_locality[0] +
1802 p->numa_faults_locality[1];
1803 runtime = numa_get_avg_runtime(p, &period);
1804
7dbd13ed
MG
1805 /* If the task is part of a group prevent parallel updates to group stats */
1806 if (p->numa_group) {
1807 group_lock = &p->numa_group->lock;
60e69eed 1808 spin_lock_irq(group_lock);
7dbd13ed
MG
1809 }
1810
688b7585
MG
1811 /* Find the node with the highest number of faults */
1812 for_each_online_node(nid) {
44dba3d5
IM
1813 /* Keep track of the offsets in numa_faults array */
1814 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1815 unsigned long faults = 0, group_faults = 0;
44dba3d5 1816 int priv;
745d6147 1817
be1e4e76 1818 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1819 long diff, f_diff, f_weight;
8c8a743c 1820
44dba3d5
IM
1821 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1822 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1823 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1824 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1825
ac8e895b 1826 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1827 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1828 fault_types[priv] += p->numa_faults[membuf_idx];
1829 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1830
7e2703e6
RR
1831 /*
1832 * Normalize the faults_from, so all tasks in a group
1833 * count according to CPU use, instead of by the raw
1834 * number of faults. Tasks with little runtime have
1835 * little over-all impact on throughput, and thus their
1836 * faults are less important.
1837 */
1838 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1839 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1840 (total_faults + 1);
44dba3d5
IM
1841 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1842 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1843
44dba3d5
IM
1844 p->numa_faults[mem_idx] += diff;
1845 p->numa_faults[cpu_idx] += f_diff;
1846 faults += p->numa_faults[mem_idx];
83e1d2cd 1847 p->total_numa_faults += diff;
8c8a743c 1848 if (p->numa_group) {
44dba3d5
IM
1849 /*
1850 * safe because we can only change our own group
1851 *
1852 * mem_idx represents the offset for a given
1853 * nid and priv in a specific region because it
1854 * is at the beginning of the numa_faults array.
1855 */
1856 p->numa_group->faults[mem_idx] += diff;
1857 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1858 p->numa_group->total_faults += diff;
44dba3d5 1859 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1860 }
ac8e895b
MG
1861 }
1862
688b7585
MG
1863 if (faults > max_faults) {
1864 max_faults = faults;
1865 max_nid = nid;
1866 }
83e1d2cd
MG
1867
1868 if (group_faults > max_group_faults) {
1869 max_group_faults = group_faults;
1870 max_group_nid = nid;
1871 }
1872 }
1873
04bb2f94
RR
1874 update_task_scan_period(p, fault_types[0], fault_types[1]);
1875
7dbd13ed 1876 if (p->numa_group) {
20e07dea 1877 update_numa_active_node_mask(p->numa_group);
60e69eed 1878 spin_unlock_irq(group_lock);
54009416 1879 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1880 }
1881
bb97fc31
RR
1882 if (max_faults) {
1883 /* Set the new preferred node */
1884 if (max_nid != p->numa_preferred_nid)
1885 sched_setnuma(p, max_nid);
1886
1887 if (task_node(p) != p->numa_preferred_nid)
1888 numa_migrate_preferred(p);
3a7053b3 1889 }
cbee9f88
PZ
1890}
1891
8c8a743c
PZ
1892static inline int get_numa_group(struct numa_group *grp)
1893{
1894 return atomic_inc_not_zero(&grp->refcount);
1895}
1896
1897static inline void put_numa_group(struct numa_group *grp)
1898{
1899 if (atomic_dec_and_test(&grp->refcount))
1900 kfree_rcu(grp, rcu);
1901}
1902
3e6a9418
MG
1903static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1904 int *priv)
8c8a743c
PZ
1905{
1906 struct numa_group *grp, *my_grp;
1907 struct task_struct *tsk;
1908 bool join = false;
1909 int cpu = cpupid_to_cpu(cpupid);
1910 int i;
1911
1912 if (unlikely(!p->numa_group)) {
1913 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1914 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1915
1916 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1917 if (!grp)
1918 return;
1919
1920 atomic_set(&grp->refcount, 1);
1921 spin_lock_init(&grp->lock);
e29cf08b 1922 grp->gid = p->pid;
50ec8a40 1923 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1924 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1925 nr_node_ids;
8c8a743c 1926
20e07dea
RR
1927 node_set(task_node(current), grp->active_nodes);
1928
be1e4e76 1929 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1930 grp->faults[i] = p->numa_faults[i];
8c8a743c 1931
989348b5 1932 grp->total_faults = p->total_numa_faults;
83e1d2cd 1933
8c8a743c
PZ
1934 grp->nr_tasks++;
1935 rcu_assign_pointer(p->numa_group, grp);
1936 }
1937
1938 rcu_read_lock();
1939 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1940
1941 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1942 goto no_join;
8c8a743c
PZ
1943
1944 grp = rcu_dereference(tsk->numa_group);
1945 if (!grp)
3354781a 1946 goto no_join;
8c8a743c
PZ
1947
1948 my_grp = p->numa_group;
1949 if (grp == my_grp)
3354781a 1950 goto no_join;
8c8a743c
PZ
1951
1952 /*
1953 * Only join the other group if its bigger; if we're the bigger group,
1954 * the other task will join us.
1955 */
1956 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1957 goto no_join;
8c8a743c
PZ
1958
1959 /*
1960 * Tie-break on the grp address.
1961 */
1962 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1963 goto no_join;
8c8a743c 1964
dabe1d99
RR
1965 /* Always join threads in the same process. */
1966 if (tsk->mm == current->mm)
1967 join = true;
1968
1969 /* Simple filter to avoid false positives due to PID collisions */
1970 if (flags & TNF_SHARED)
1971 join = true;
8c8a743c 1972
3e6a9418
MG
1973 /* Update priv based on whether false sharing was detected */
1974 *priv = !join;
1975
dabe1d99 1976 if (join && !get_numa_group(grp))
3354781a 1977 goto no_join;
8c8a743c 1978
8c8a743c
PZ
1979 rcu_read_unlock();
1980
1981 if (!join)
1982 return;
1983
60e69eed
MG
1984 BUG_ON(irqs_disabled());
1985 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1986
be1e4e76 1987 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1988 my_grp->faults[i] -= p->numa_faults[i];
1989 grp->faults[i] += p->numa_faults[i];
8c8a743c 1990 }
989348b5
MG
1991 my_grp->total_faults -= p->total_numa_faults;
1992 grp->total_faults += p->total_numa_faults;
8c8a743c 1993
8c8a743c
PZ
1994 my_grp->nr_tasks--;
1995 grp->nr_tasks++;
1996
1997 spin_unlock(&my_grp->lock);
60e69eed 1998 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1999
2000 rcu_assign_pointer(p->numa_group, grp);
2001
2002 put_numa_group(my_grp);
3354781a
PZ
2003 return;
2004
2005no_join:
2006 rcu_read_unlock();
2007 return;
8c8a743c
PZ
2008}
2009
2010void task_numa_free(struct task_struct *p)
2011{
2012 struct numa_group *grp = p->numa_group;
44dba3d5 2013 void *numa_faults = p->numa_faults;
e9dd685c
SR
2014 unsigned long flags;
2015 int i;
8c8a743c
PZ
2016
2017 if (grp) {
e9dd685c 2018 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2019 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2020 grp->faults[i] -= p->numa_faults[i];
989348b5 2021 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2022
8c8a743c 2023 grp->nr_tasks--;
e9dd685c 2024 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2025 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2026 put_numa_group(grp);
2027 }
2028
44dba3d5 2029 p->numa_faults = NULL;
82727018 2030 kfree(numa_faults);
8c8a743c
PZ
2031}
2032
cbee9f88
PZ
2033/*
2034 * Got a PROT_NONE fault for a page on @node.
2035 */
58b46da3 2036void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2037{
2038 struct task_struct *p = current;
6688cc05 2039 bool migrated = flags & TNF_MIGRATED;
58b46da3 2040 int cpu_node = task_node(current);
792568ec 2041 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2042 int priv;
cbee9f88 2043
10e84b97 2044 if (!numabalancing_enabled)
1a687c2e
MG
2045 return;
2046
9ff1d9ff
MG
2047 /* for example, ksmd faulting in a user's mm */
2048 if (!p->mm)
2049 return;
2050
f809ca9a 2051 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2052 if (unlikely(!p->numa_faults)) {
2053 int size = sizeof(*p->numa_faults) *
be1e4e76 2054 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2055
44dba3d5
IM
2056 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2057 if (!p->numa_faults)
f809ca9a 2058 return;
745d6147 2059
83e1d2cd 2060 p->total_numa_faults = 0;
04bb2f94 2061 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2062 }
cbee9f88 2063
8c8a743c
PZ
2064 /*
2065 * First accesses are treated as private, otherwise consider accesses
2066 * to be private if the accessing pid has not changed
2067 */
2068 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2069 priv = 1;
2070 } else {
2071 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2072 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2073 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2074 }
2075
792568ec
RR
2076 /*
2077 * If a workload spans multiple NUMA nodes, a shared fault that
2078 * occurs wholly within the set of nodes that the workload is
2079 * actively using should be counted as local. This allows the
2080 * scan rate to slow down when a workload has settled down.
2081 */
2082 if (!priv && !local && p->numa_group &&
2083 node_isset(cpu_node, p->numa_group->active_nodes) &&
2084 node_isset(mem_node, p->numa_group->active_nodes))
2085 local = 1;
2086
cbee9f88 2087 task_numa_placement(p);
f809ca9a 2088
2739d3ee
RR
2089 /*
2090 * Retry task to preferred node migration periodically, in case it
2091 * case it previously failed, or the scheduler moved us.
2092 */
2093 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2094 numa_migrate_preferred(p);
2095
b32e86b4
IM
2096 if (migrated)
2097 p->numa_pages_migrated += pages;
2098
44dba3d5
IM
2099 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2100 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2101 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2102}
2103
6e5fb223
PZ
2104static void reset_ptenuma_scan(struct task_struct *p)
2105{
2106 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2107 p->mm->numa_scan_offset = 0;
2108}
2109
cbee9f88
PZ
2110/*
2111 * The expensive part of numa migration is done from task_work context.
2112 * Triggered from task_tick_numa().
2113 */
2114void task_numa_work(struct callback_head *work)
2115{
2116 unsigned long migrate, next_scan, now = jiffies;
2117 struct task_struct *p = current;
2118 struct mm_struct *mm = p->mm;
6e5fb223 2119 struct vm_area_struct *vma;
9f40604c 2120 unsigned long start, end;
598f0ec0 2121 unsigned long nr_pte_updates = 0;
9f40604c 2122 long pages;
cbee9f88
PZ
2123
2124 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2125
2126 work->next = work; /* protect against double add */
2127 /*
2128 * Who cares about NUMA placement when they're dying.
2129 *
2130 * NOTE: make sure not to dereference p->mm before this check,
2131 * exit_task_work() happens _after_ exit_mm() so we could be called
2132 * without p->mm even though we still had it when we enqueued this
2133 * work.
2134 */
2135 if (p->flags & PF_EXITING)
2136 return;
2137
930aa174 2138 if (!mm->numa_next_scan) {
7e8d16b6
MG
2139 mm->numa_next_scan = now +
2140 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2141 }
2142
cbee9f88
PZ
2143 /*
2144 * Enforce maximal scan/migration frequency..
2145 */
2146 migrate = mm->numa_next_scan;
2147 if (time_before(now, migrate))
2148 return;
2149
598f0ec0
MG
2150 if (p->numa_scan_period == 0) {
2151 p->numa_scan_period_max = task_scan_max(p);
2152 p->numa_scan_period = task_scan_min(p);
2153 }
cbee9f88 2154
fb003b80 2155 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2156 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2157 return;
2158
19a78d11
PZ
2159 /*
2160 * Delay this task enough that another task of this mm will likely win
2161 * the next time around.
2162 */
2163 p->node_stamp += 2 * TICK_NSEC;
2164
9f40604c
MG
2165 start = mm->numa_scan_offset;
2166 pages = sysctl_numa_balancing_scan_size;
2167 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2168 if (!pages)
2169 return;
cbee9f88 2170
6e5fb223 2171 down_read(&mm->mmap_sem);
9f40604c 2172 vma = find_vma(mm, start);
6e5fb223
PZ
2173 if (!vma) {
2174 reset_ptenuma_scan(p);
9f40604c 2175 start = 0;
6e5fb223
PZ
2176 vma = mm->mmap;
2177 }
9f40604c 2178 for (; vma; vma = vma->vm_next) {
6b6482bb 2179 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2180 continue;
2181
4591ce4f
MG
2182 /*
2183 * Shared library pages mapped by multiple processes are not
2184 * migrated as it is expected they are cache replicated. Avoid
2185 * hinting faults in read-only file-backed mappings or the vdso
2186 * as migrating the pages will be of marginal benefit.
2187 */
2188 if (!vma->vm_mm ||
2189 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2190 continue;
2191
3c67f474
MG
2192 /*
2193 * Skip inaccessible VMAs to avoid any confusion between
2194 * PROT_NONE and NUMA hinting ptes
2195 */
2196 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2197 continue;
4591ce4f 2198
9f40604c
MG
2199 do {
2200 start = max(start, vma->vm_start);
2201 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2202 end = min(end, vma->vm_end);
598f0ec0
MG
2203 nr_pte_updates += change_prot_numa(vma, start, end);
2204
2205 /*
2206 * Scan sysctl_numa_balancing_scan_size but ensure that
2207 * at least one PTE is updated so that unused virtual
2208 * address space is quickly skipped.
2209 */
2210 if (nr_pte_updates)
2211 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2212
9f40604c
MG
2213 start = end;
2214 if (pages <= 0)
2215 goto out;
3cf1962c
RR
2216
2217 cond_resched();
9f40604c 2218 } while (end != vma->vm_end);
cbee9f88 2219 }
6e5fb223 2220
9f40604c 2221out:
6e5fb223 2222 /*
c69307d5
PZ
2223 * It is possible to reach the end of the VMA list but the last few
2224 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2225 * would find the !migratable VMA on the next scan but not reset the
2226 * scanner to the start so check it now.
6e5fb223
PZ
2227 */
2228 if (vma)
9f40604c 2229 mm->numa_scan_offset = start;
6e5fb223
PZ
2230 else
2231 reset_ptenuma_scan(p);
2232 up_read(&mm->mmap_sem);
cbee9f88
PZ
2233}
2234
2235/*
2236 * Drive the periodic memory faults..
2237 */
2238void task_tick_numa(struct rq *rq, struct task_struct *curr)
2239{
2240 struct callback_head *work = &curr->numa_work;
2241 u64 period, now;
2242
2243 /*
2244 * We don't care about NUMA placement if we don't have memory.
2245 */
2246 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2247 return;
2248
2249 /*
2250 * Using runtime rather than walltime has the dual advantage that
2251 * we (mostly) drive the selection from busy threads and that the
2252 * task needs to have done some actual work before we bother with
2253 * NUMA placement.
2254 */
2255 now = curr->se.sum_exec_runtime;
2256 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2257
2258 if (now - curr->node_stamp > period) {
4b96a29b 2259 if (!curr->node_stamp)
598f0ec0 2260 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2261 curr->node_stamp += period;
cbee9f88
PZ
2262
2263 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2264 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2265 task_work_add(curr, work, true);
2266 }
2267 }
2268}
2269#else
2270static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2271{
2272}
0ec8aa00
PZ
2273
2274static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2275{
2276}
2277
2278static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2279{
2280}
cbee9f88
PZ
2281#endif /* CONFIG_NUMA_BALANCING */
2282
30cfdcfc
DA
2283static void
2284account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2285{
2286 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2287 if (!parent_entity(se))
029632fb 2288 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2289#ifdef CONFIG_SMP
0ec8aa00
PZ
2290 if (entity_is_task(se)) {
2291 struct rq *rq = rq_of(cfs_rq);
2292
2293 account_numa_enqueue(rq, task_of(se));
2294 list_add(&se->group_node, &rq->cfs_tasks);
2295 }
367456c7 2296#endif
30cfdcfc 2297 cfs_rq->nr_running++;
30cfdcfc
DA
2298}
2299
2300static void
2301account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2302{
2303 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2304 if (!parent_entity(se))
029632fb 2305 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2306 if (entity_is_task(se)) {
2307 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2308 list_del_init(&se->group_node);
0ec8aa00 2309 }
30cfdcfc 2310 cfs_rq->nr_running--;
30cfdcfc
DA
2311}
2312
3ff6dcac
YZ
2313#ifdef CONFIG_FAIR_GROUP_SCHED
2314# ifdef CONFIG_SMP
cf5f0acf
PZ
2315static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2316{
2317 long tg_weight;
2318
2319 /*
2320 * Use this CPU's actual weight instead of the last load_contribution
2321 * to gain a more accurate current total weight. See
2322 * update_cfs_rq_load_contribution().
2323 */
bf5b986e 2324 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2325 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2326 tg_weight += cfs_rq->load.weight;
2327
2328 return tg_weight;
2329}
2330
6d5ab293 2331static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2332{
cf5f0acf 2333 long tg_weight, load, shares;
3ff6dcac 2334
cf5f0acf 2335 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2336 load = cfs_rq->load.weight;
3ff6dcac 2337
3ff6dcac 2338 shares = (tg->shares * load);
cf5f0acf
PZ
2339 if (tg_weight)
2340 shares /= tg_weight;
3ff6dcac
YZ
2341
2342 if (shares < MIN_SHARES)
2343 shares = MIN_SHARES;
2344 if (shares > tg->shares)
2345 shares = tg->shares;
2346
2347 return shares;
2348}
3ff6dcac 2349# else /* CONFIG_SMP */
6d5ab293 2350static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2351{
2352 return tg->shares;
2353}
3ff6dcac 2354# endif /* CONFIG_SMP */
2069dd75
PZ
2355static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2356 unsigned long weight)
2357{
19e5eebb
PT
2358 if (se->on_rq) {
2359 /* commit outstanding execution time */
2360 if (cfs_rq->curr == se)
2361 update_curr(cfs_rq);
2069dd75 2362 account_entity_dequeue(cfs_rq, se);
19e5eebb 2363 }
2069dd75
PZ
2364
2365 update_load_set(&se->load, weight);
2366
2367 if (se->on_rq)
2368 account_entity_enqueue(cfs_rq, se);
2369}
2370
82958366
PT
2371static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2372
6d5ab293 2373static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2374{
2375 struct task_group *tg;
2376 struct sched_entity *se;
3ff6dcac 2377 long shares;
2069dd75 2378
2069dd75
PZ
2379 tg = cfs_rq->tg;
2380 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2381 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2382 return;
3ff6dcac
YZ
2383#ifndef CONFIG_SMP
2384 if (likely(se->load.weight == tg->shares))
2385 return;
2386#endif
6d5ab293 2387 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2388
2389 reweight_entity(cfs_rq_of(se), se, shares);
2390}
2391#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2392static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2393{
2394}
2395#endif /* CONFIG_FAIR_GROUP_SCHED */
2396
141965c7 2397#ifdef CONFIG_SMP
5b51f2f8
PT
2398/*
2399 * We choose a half-life close to 1 scheduling period.
2400 * Note: The tables below are dependent on this value.
2401 */
2402#define LOAD_AVG_PERIOD 32
2403#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2404#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2405
2406/* Precomputed fixed inverse multiplies for multiplication by y^n */
2407static const u32 runnable_avg_yN_inv[] = {
2408 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2409 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2410 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2411 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2412 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2413 0x85aac367, 0x82cd8698,
2414};
2415
2416/*
2417 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2418 * over-estimates when re-combining.
2419 */
2420static const u32 runnable_avg_yN_sum[] = {
2421 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2422 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2423 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2424};
2425
9d85f21c
PT
2426/*
2427 * Approximate:
2428 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2429 */
2430static __always_inline u64 decay_load(u64 val, u64 n)
2431{
5b51f2f8
PT
2432 unsigned int local_n;
2433
2434 if (!n)
2435 return val;
2436 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2437 return 0;
2438
2439 /* after bounds checking we can collapse to 32-bit */
2440 local_n = n;
2441
2442 /*
2443 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2444 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2445 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2446 *
2447 * To achieve constant time decay_load.
2448 */
2449 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2450 val >>= local_n / LOAD_AVG_PERIOD;
2451 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2452 }
2453
5b51f2f8
PT
2454 val *= runnable_avg_yN_inv[local_n];
2455 /* We don't use SRR here since we always want to round down. */
2456 return val >> 32;
2457}
2458
2459/*
2460 * For updates fully spanning n periods, the contribution to runnable
2461 * average will be: \Sum 1024*y^n
2462 *
2463 * We can compute this reasonably efficiently by combining:
2464 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2465 */
2466static u32 __compute_runnable_contrib(u64 n)
2467{
2468 u32 contrib = 0;
2469
2470 if (likely(n <= LOAD_AVG_PERIOD))
2471 return runnable_avg_yN_sum[n];
2472 else if (unlikely(n >= LOAD_AVG_MAX_N))
2473 return LOAD_AVG_MAX;
2474
2475 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2476 do {
2477 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2478 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2479
2480 n -= LOAD_AVG_PERIOD;
2481 } while (n > LOAD_AVG_PERIOD);
2482
2483 contrib = decay_load(contrib, n);
2484 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2485}
2486
2487/*
2488 * We can represent the historical contribution to runnable average as the
2489 * coefficients of a geometric series. To do this we sub-divide our runnable
2490 * history into segments of approximately 1ms (1024us); label the segment that
2491 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2492 *
2493 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2494 * p0 p1 p2
2495 * (now) (~1ms ago) (~2ms ago)
2496 *
2497 * Let u_i denote the fraction of p_i that the entity was runnable.
2498 *
2499 * We then designate the fractions u_i as our co-efficients, yielding the
2500 * following representation of historical load:
2501 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2502 *
2503 * We choose y based on the with of a reasonably scheduling period, fixing:
2504 * y^32 = 0.5
2505 *
2506 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2507 * approximately half as much as the contribution to load within the last ms
2508 * (u_0).
2509 *
2510 * When a period "rolls over" and we have new u_0`, multiplying the previous
2511 * sum again by y is sufficient to update:
2512 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2513 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2514 */
0c1dc6b2 2515static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2516 struct sched_avg *sa,
36ee28e4
VG
2517 int runnable,
2518 int running)
9d85f21c 2519{
5b51f2f8
PT
2520 u64 delta, periods;
2521 u32 runnable_contrib;
9d85f21c 2522 int delta_w, decayed = 0;
0c1dc6b2 2523 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2524
2525 delta = now - sa->last_runnable_update;
2526 /*
2527 * This should only happen when time goes backwards, which it
2528 * unfortunately does during sched clock init when we swap over to TSC.
2529 */
2530 if ((s64)delta < 0) {
2531 sa->last_runnable_update = now;
2532 return 0;
2533 }
2534
2535 /*
2536 * Use 1024ns as the unit of measurement since it's a reasonable
2537 * approximation of 1us and fast to compute.
2538 */
2539 delta >>= 10;
2540 if (!delta)
2541 return 0;
2542 sa->last_runnable_update = now;
2543
2544 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2545 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2546 if (delta + delta_w >= 1024) {
2547 /* period roll-over */
2548 decayed = 1;
2549
2550 /*
2551 * Now that we know we're crossing a period boundary, figure
2552 * out how much from delta we need to complete the current
2553 * period and accrue it.
2554 */
2555 delta_w = 1024 - delta_w;
5b51f2f8
PT
2556 if (runnable)
2557 sa->runnable_avg_sum += delta_w;
36ee28e4 2558 if (running)
0c1dc6b2
MR
2559 sa->running_avg_sum += delta_w * scale_freq
2560 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2561 sa->avg_period += delta_w;
5b51f2f8
PT
2562
2563 delta -= delta_w;
2564
2565 /* Figure out how many additional periods this update spans */
2566 periods = delta / 1024;
2567 delta %= 1024;
2568
2569 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2570 periods + 1);
36ee28e4
VG
2571 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2572 periods + 1);
2573 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2574 periods + 1);
2575
2576 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2577 runnable_contrib = __compute_runnable_contrib(periods);
2578 if (runnable)
2579 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2580 if (running)
0c1dc6b2
MR
2581 sa->running_avg_sum += runnable_contrib * scale_freq
2582 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2583 sa->avg_period += runnable_contrib;
9d85f21c
PT
2584 }
2585
2586 /* Remainder of delta accrued against u_0` */
2587 if (runnable)
2588 sa->runnable_avg_sum += delta;
36ee28e4 2589 if (running)
0c1dc6b2
MR
2590 sa->running_avg_sum += delta * scale_freq
2591 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2592 sa->avg_period += delta;
9d85f21c
PT
2593
2594 return decayed;
2595}
2596
9ee474f5 2597/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2598static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2599{
2600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2602
2603 decays -= se->avg.decay_count;
63847600 2604 se->avg.decay_count = 0;
9ee474f5 2605 if (!decays)
aff3e498 2606 return 0;
9ee474f5
PT
2607
2608 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2609 se->avg.utilization_avg_contrib =
2610 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2611
2612 return decays;
9ee474f5
PT
2613}
2614
c566e8e9
PT
2615#ifdef CONFIG_FAIR_GROUP_SCHED
2616static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2617 int force_update)
2618{
2619 struct task_group *tg = cfs_rq->tg;
bf5b986e 2620 long tg_contrib;
c566e8e9
PT
2621
2622 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2623 tg_contrib -= cfs_rq->tg_load_contrib;
2624
8236d907
JL
2625 if (!tg_contrib)
2626 return;
2627
bf5b986e
AS
2628 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2629 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2630 cfs_rq->tg_load_contrib += tg_contrib;
2631 }
2632}
8165e145 2633
bb17f655
PT
2634/*
2635 * Aggregate cfs_rq runnable averages into an equivalent task_group
2636 * representation for computing load contributions.
2637 */
2638static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2639 struct cfs_rq *cfs_rq)
2640{
2641 struct task_group *tg = cfs_rq->tg;
2642 long contrib;
2643
2644 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2645 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2646 sa->avg_period + 1);
bb17f655
PT
2647 contrib -= cfs_rq->tg_runnable_contrib;
2648
2649 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2650 atomic_add(contrib, &tg->runnable_avg);
2651 cfs_rq->tg_runnable_contrib += contrib;
2652 }
2653}
2654
8165e145
PT
2655static inline void __update_group_entity_contrib(struct sched_entity *se)
2656{
2657 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2658 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2659 int runnable_avg;
2660
8165e145
PT
2661 u64 contrib;
2662
2663 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2664 se->avg.load_avg_contrib = div_u64(contrib,
2665 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2666
2667 /*
2668 * For group entities we need to compute a correction term in the case
2669 * that they are consuming <1 cpu so that we would contribute the same
2670 * load as a task of equal weight.
2671 *
2672 * Explicitly co-ordinating this measurement would be expensive, but
2673 * fortunately the sum of each cpus contribution forms a usable
2674 * lower-bound on the true value.
2675 *
2676 * Consider the aggregate of 2 contributions. Either they are disjoint
2677 * (and the sum represents true value) or they are disjoint and we are
2678 * understating by the aggregate of their overlap.
2679 *
2680 * Extending this to N cpus, for a given overlap, the maximum amount we
2681 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2682 * cpus that overlap for this interval and w_i is the interval width.
2683 *
2684 * On a small machine; the first term is well-bounded which bounds the
2685 * total error since w_i is a subset of the period. Whereas on a
2686 * larger machine, while this first term can be larger, if w_i is the
2687 * of consequential size guaranteed to see n_i*w_i quickly converge to
2688 * our upper bound of 1-cpu.
2689 */
2690 runnable_avg = atomic_read(&tg->runnable_avg);
2691 if (runnable_avg < NICE_0_LOAD) {
2692 se->avg.load_avg_contrib *= runnable_avg;
2693 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2694 }
8165e145 2695}
f5f9739d
DE
2696
2697static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2698{
0c1dc6b2
MR
2699 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2700 runnable, runnable);
f5f9739d
DE
2701 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2702}
6e83125c 2703#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2704static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2705 int force_update) {}
bb17f655
PT
2706static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2707 struct cfs_rq *cfs_rq) {}
8165e145 2708static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2709static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2710#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2711
8165e145
PT
2712static inline void __update_task_entity_contrib(struct sched_entity *se)
2713{
2714 u32 contrib;
2715
2716 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2717 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2718 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2719 se->avg.load_avg_contrib = scale_load(contrib);
2720}
2721
2dac754e
PT
2722/* Compute the current contribution to load_avg by se, return any delta */
2723static long __update_entity_load_avg_contrib(struct sched_entity *se)
2724{
2725 long old_contrib = se->avg.load_avg_contrib;
2726
8165e145
PT
2727 if (entity_is_task(se)) {
2728 __update_task_entity_contrib(se);
2729 } else {
bb17f655 2730 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2731 __update_group_entity_contrib(se);
2732 }
2dac754e
PT
2733
2734 return se->avg.load_avg_contrib - old_contrib;
2735}
2736
36ee28e4
VG
2737
2738static inline void __update_task_entity_utilization(struct sched_entity *se)
2739{
2740 u32 contrib;
2741
2742 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2743 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2744 contrib /= (se->avg.avg_period + 1);
2745 se->avg.utilization_avg_contrib = scale_load(contrib);
2746}
2747
2748static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2749{
2750 long old_contrib = se->avg.utilization_avg_contrib;
2751
2752 if (entity_is_task(se))
2753 __update_task_entity_utilization(se);
21f44866
MR
2754 else
2755 se->avg.utilization_avg_contrib =
2756 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2757
2758 return se->avg.utilization_avg_contrib - old_contrib;
2759}
2760
9ee474f5
PT
2761static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2762 long load_contrib)
2763{
2764 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2765 cfs_rq->blocked_load_avg -= load_contrib;
2766 else
2767 cfs_rq->blocked_load_avg = 0;
2768}
2769
f1b17280
PT
2770static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2771
9d85f21c 2772/* Update a sched_entity's runnable average */
9ee474f5
PT
2773static inline void update_entity_load_avg(struct sched_entity *se,
2774 int update_cfs_rq)
9d85f21c 2775{
2dac754e 2776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2777 long contrib_delta, utilization_delta;
0c1dc6b2 2778 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2779 u64 now;
2dac754e 2780
f1b17280
PT
2781 /*
2782 * For a group entity we need to use their owned cfs_rq_clock_task() in
2783 * case they are the parent of a throttled hierarchy.
2784 */
2785 if (entity_is_task(se))
2786 now = cfs_rq_clock_task(cfs_rq);
2787 else
2788 now = cfs_rq_clock_task(group_cfs_rq(se));
2789
0c1dc6b2 2790 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2791 cfs_rq->curr == se))
2dac754e
PT
2792 return;
2793
2794 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2795 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2796
2797 if (!update_cfs_rq)
2798 return;
2799
36ee28e4 2800 if (se->on_rq) {
2dac754e 2801 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2802 cfs_rq->utilization_load_avg += utilization_delta;
2803 } else {
9ee474f5 2804 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2805 }
9ee474f5
PT
2806}
2807
2808/*
2809 * Decay the load contributed by all blocked children and account this so that
2810 * their contribution may appropriately discounted when they wake up.
2811 */
aff3e498 2812static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2813{
f1b17280 2814 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2815 u64 decays;
2816
2817 decays = now - cfs_rq->last_decay;
aff3e498 2818 if (!decays && !force_update)
9ee474f5
PT
2819 return;
2820
2509940f
AS
2821 if (atomic_long_read(&cfs_rq->removed_load)) {
2822 unsigned long removed_load;
2823 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2824 subtract_blocked_load_contrib(cfs_rq, removed_load);
2825 }
9ee474f5 2826
aff3e498
PT
2827 if (decays) {
2828 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2829 decays);
2830 atomic64_add(decays, &cfs_rq->decay_counter);
2831 cfs_rq->last_decay = now;
2832 }
c566e8e9
PT
2833
2834 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2835}
18bf2805 2836
2dac754e
PT
2837/* Add the load generated by se into cfs_rq's child load-average */
2838static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2839 struct sched_entity *se,
2840 int wakeup)
2dac754e 2841{
aff3e498
PT
2842 /*
2843 * We track migrations using entity decay_count <= 0, on a wake-up
2844 * migration we use a negative decay count to track the remote decays
2845 * accumulated while sleeping.
a75cdaa9
AS
2846 *
2847 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2848 * are seen by enqueue_entity_load_avg() as a migration with an already
2849 * constructed load_avg_contrib.
aff3e498
PT
2850 */
2851 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2852 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2853 if (se->avg.decay_count) {
2854 /*
2855 * In a wake-up migration we have to approximate the
2856 * time sleeping. This is because we can't synchronize
2857 * clock_task between the two cpus, and it is not
2858 * guaranteed to be read-safe. Instead, we can
2859 * approximate this using our carried decays, which are
2860 * explicitly atomically readable.
2861 */
2862 se->avg.last_runnable_update -= (-se->avg.decay_count)
2863 << 20;
2864 update_entity_load_avg(se, 0);
2865 /* Indicate that we're now synchronized and on-rq */
2866 se->avg.decay_count = 0;
2867 }
9ee474f5
PT
2868 wakeup = 0;
2869 } else {
9390675a 2870 __synchronize_entity_decay(se);
9ee474f5
PT
2871 }
2872
aff3e498
PT
2873 /* migrated tasks did not contribute to our blocked load */
2874 if (wakeup) {
9ee474f5 2875 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2876 update_entity_load_avg(se, 0);
2877 }
9ee474f5 2878
2dac754e 2879 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2880 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2881 /* we force update consideration on load-balancer moves */
2882 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2883}
2884
9ee474f5
PT
2885/*
2886 * Remove se's load from this cfs_rq child load-average, if the entity is
2887 * transitioning to a blocked state we track its projected decay using
2888 * blocked_load_avg.
2889 */
2dac754e 2890static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2891 struct sched_entity *se,
2892 int sleep)
2dac754e 2893{
9ee474f5 2894 update_entity_load_avg(se, 1);
aff3e498
PT
2895 /* we force update consideration on load-balancer moves */
2896 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2897
2dac754e 2898 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2899 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2900 if (sleep) {
2901 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2902 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2903 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2904}
642dbc39
VG
2905
2906/*
2907 * Update the rq's load with the elapsed running time before entering
2908 * idle. if the last scheduled task is not a CFS task, idle_enter will
2909 * be the only way to update the runnable statistic.
2910 */
2911void idle_enter_fair(struct rq *this_rq)
2912{
2913 update_rq_runnable_avg(this_rq, 1);
2914}
2915
2916/*
2917 * Update the rq's load with the elapsed idle time before a task is
2918 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2919 * be the only way to update the runnable statistic.
2920 */
2921void idle_exit_fair(struct rq *this_rq)
2922{
2923 update_rq_runnable_avg(this_rq, 0);
2924}
2925
6e83125c
PZ
2926static int idle_balance(struct rq *this_rq);
2927
38033c37
PZ
2928#else /* CONFIG_SMP */
2929
9ee474f5
PT
2930static inline void update_entity_load_avg(struct sched_entity *se,
2931 int update_cfs_rq) {}
18bf2805 2932static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2933static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2934 struct sched_entity *se,
2935 int wakeup) {}
2dac754e 2936static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2937 struct sched_entity *se,
2938 int sleep) {}
aff3e498
PT
2939static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2940 int force_update) {}
6e83125c
PZ
2941
2942static inline int idle_balance(struct rq *rq)
2943{
2944 return 0;
2945}
2946
38033c37 2947#endif /* CONFIG_SMP */
9d85f21c 2948
2396af69 2949static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2950{
bf0f6f24 2951#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2952 struct task_struct *tsk = NULL;
2953
2954 if (entity_is_task(se))
2955 tsk = task_of(se);
2956
41acab88 2957 if (se->statistics.sleep_start) {
78becc27 2958 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2959
2960 if ((s64)delta < 0)
2961 delta = 0;
2962
41acab88
LDM
2963 if (unlikely(delta > se->statistics.sleep_max))
2964 se->statistics.sleep_max = delta;
bf0f6f24 2965
8c79a045 2966 se->statistics.sleep_start = 0;
41acab88 2967 se->statistics.sum_sleep_runtime += delta;
9745512c 2968
768d0c27 2969 if (tsk) {
e414314c 2970 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2971 trace_sched_stat_sleep(tsk, delta);
2972 }
bf0f6f24 2973 }
41acab88 2974 if (se->statistics.block_start) {
78becc27 2975 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2976
2977 if ((s64)delta < 0)
2978 delta = 0;
2979
41acab88
LDM
2980 if (unlikely(delta > se->statistics.block_max))
2981 se->statistics.block_max = delta;
bf0f6f24 2982
8c79a045 2983 se->statistics.block_start = 0;
41acab88 2984 se->statistics.sum_sleep_runtime += delta;
30084fbd 2985
e414314c 2986 if (tsk) {
8f0dfc34 2987 if (tsk->in_iowait) {
41acab88
LDM
2988 se->statistics.iowait_sum += delta;
2989 se->statistics.iowait_count++;
768d0c27 2990 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2991 }
2992
b781a602
AV
2993 trace_sched_stat_blocked(tsk, delta);
2994
e414314c
PZ
2995 /*
2996 * Blocking time is in units of nanosecs, so shift by
2997 * 20 to get a milliseconds-range estimation of the
2998 * amount of time that the task spent sleeping:
2999 */
3000 if (unlikely(prof_on == SLEEP_PROFILING)) {
3001 profile_hits(SLEEP_PROFILING,
3002 (void *)get_wchan(tsk),
3003 delta >> 20);
3004 }
3005 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3006 }
bf0f6f24
IM
3007 }
3008#endif
3009}
3010
ddc97297
PZ
3011static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3012{
3013#ifdef CONFIG_SCHED_DEBUG
3014 s64 d = se->vruntime - cfs_rq->min_vruntime;
3015
3016 if (d < 0)
3017 d = -d;
3018
3019 if (d > 3*sysctl_sched_latency)
3020 schedstat_inc(cfs_rq, nr_spread_over);
3021#endif
3022}
3023
aeb73b04
PZ
3024static void
3025place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3026{
1af5f730 3027 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3028
2cb8600e
PZ
3029 /*
3030 * The 'current' period is already promised to the current tasks,
3031 * however the extra weight of the new task will slow them down a
3032 * little, place the new task so that it fits in the slot that
3033 * stays open at the end.
3034 */
94dfb5e7 3035 if (initial && sched_feat(START_DEBIT))
f9c0b095 3036 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3037
a2e7a7eb 3038 /* sleeps up to a single latency don't count. */
5ca9880c 3039 if (!initial) {
a2e7a7eb 3040 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3041
a2e7a7eb
MG
3042 /*
3043 * Halve their sleep time's effect, to allow
3044 * for a gentler effect of sleepers:
3045 */
3046 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3047 thresh >>= 1;
51e0304c 3048
a2e7a7eb 3049 vruntime -= thresh;
aeb73b04
PZ
3050 }
3051
b5d9d734 3052 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3053 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3054}
3055
d3d9dc33
PT
3056static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3057
bf0f6f24 3058static void
88ec22d3 3059enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3060{
88ec22d3
PZ
3061 /*
3062 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3063 * through calling update_curr().
88ec22d3 3064 */
371fd7e7 3065 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3066 se->vruntime += cfs_rq->min_vruntime;
3067
bf0f6f24 3068 /*
a2a2d680 3069 * Update run-time statistics of the 'current'.
bf0f6f24 3070 */
b7cc0896 3071 update_curr(cfs_rq);
f269ae04 3072 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3073 account_entity_enqueue(cfs_rq, se);
3074 update_cfs_shares(cfs_rq);
bf0f6f24 3075
88ec22d3 3076 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3077 place_entity(cfs_rq, se, 0);
2396af69 3078 enqueue_sleeper(cfs_rq, se);
e9acbff6 3079 }
bf0f6f24 3080
d2417e5a 3081 update_stats_enqueue(cfs_rq, se);
ddc97297 3082 check_spread(cfs_rq, se);
83b699ed
SV
3083 if (se != cfs_rq->curr)
3084 __enqueue_entity(cfs_rq, se);
2069dd75 3085 se->on_rq = 1;
3d4b47b4 3086
d3d9dc33 3087 if (cfs_rq->nr_running == 1) {
3d4b47b4 3088 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3089 check_enqueue_throttle(cfs_rq);
3090 }
bf0f6f24
IM
3091}
3092
2c13c919 3093static void __clear_buddies_last(struct sched_entity *se)
2002c695 3094{
2c13c919
RR
3095 for_each_sched_entity(se) {
3096 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3097 if (cfs_rq->last != se)
2c13c919 3098 break;
f1044799
PZ
3099
3100 cfs_rq->last = NULL;
2c13c919
RR
3101 }
3102}
2002c695 3103
2c13c919
RR
3104static void __clear_buddies_next(struct sched_entity *se)
3105{
3106 for_each_sched_entity(se) {
3107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3108 if (cfs_rq->next != se)
2c13c919 3109 break;
f1044799
PZ
3110
3111 cfs_rq->next = NULL;
2c13c919 3112 }
2002c695
PZ
3113}
3114
ac53db59
RR
3115static void __clear_buddies_skip(struct sched_entity *se)
3116{
3117 for_each_sched_entity(se) {
3118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3119 if (cfs_rq->skip != se)
ac53db59 3120 break;
f1044799
PZ
3121
3122 cfs_rq->skip = NULL;
ac53db59
RR
3123 }
3124}
3125
a571bbea
PZ
3126static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3127{
2c13c919
RR
3128 if (cfs_rq->last == se)
3129 __clear_buddies_last(se);
3130
3131 if (cfs_rq->next == se)
3132 __clear_buddies_next(se);
ac53db59
RR
3133
3134 if (cfs_rq->skip == se)
3135 __clear_buddies_skip(se);
a571bbea
PZ
3136}
3137
6c16a6dc 3138static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3139
bf0f6f24 3140static void
371fd7e7 3141dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3142{
a2a2d680
DA
3143 /*
3144 * Update run-time statistics of the 'current'.
3145 */
3146 update_curr(cfs_rq);
17bc14b7 3147 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3148
19b6a2e3 3149 update_stats_dequeue(cfs_rq, se);
371fd7e7 3150 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3151#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3152 if (entity_is_task(se)) {
3153 struct task_struct *tsk = task_of(se);
3154
3155 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3156 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3157 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3158 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3159 }
db36cc7d 3160#endif
67e9fb2a
PZ
3161 }
3162
2002c695 3163 clear_buddies(cfs_rq, se);
4793241b 3164
83b699ed 3165 if (se != cfs_rq->curr)
30cfdcfc 3166 __dequeue_entity(cfs_rq, se);
17bc14b7 3167 se->on_rq = 0;
30cfdcfc 3168 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3169
3170 /*
3171 * Normalize the entity after updating the min_vruntime because the
3172 * update can refer to the ->curr item and we need to reflect this
3173 * movement in our normalized position.
3174 */
371fd7e7 3175 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3176 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3177
d8b4986d
PT
3178 /* return excess runtime on last dequeue */
3179 return_cfs_rq_runtime(cfs_rq);
3180
1e876231 3181 update_min_vruntime(cfs_rq);
17bc14b7 3182 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3183}
3184
3185/*
3186 * Preempt the current task with a newly woken task if needed:
3187 */
7c92e54f 3188static void
2e09bf55 3189check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3190{
11697830 3191 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3192 struct sched_entity *se;
3193 s64 delta;
11697830 3194
6d0f0ebd 3195 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3196 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3197 if (delta_exec > ideal_runtime) {
8875125e 3198 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3199 /*
3200 * The current task ran long enough, ensure it doesn't get
3201 * re-elected due to buddy favours.
3202 */
3203 clear_buddies(cfs_rq, curr);
f685ceac
MG
3204 return;
3205 }
3206
3207 /*
3208 * Ensure that a task that missed wakeup preemption by a
3209 * narrow margin doesn't have to wait for a full slice.
3210 * This also mitigates buddy induced latencies under load.
3211 */
f685ceac
MG
3212 if (delta_exec < sysctl_sched_min_granularity)
3213 return;
3214
f4cfb33e
WX
3215 se = __pick_first_entity(cfs_rq);
3216 delta = curr->vruntime - se->vruntime;
f685ceac 3217
f4cfb33e
WX
3218 if (delta < 0)
3219 return;
d7d82944 3220
f4cfb33e 3221 if (delta > ideal_runtime)
8875125e 3222 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3223}
3224
83b699ed 3225static void
8494f412 3226set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3227{
83b699ed
SV
3228 /* 'current' is not kept within the tree. */
3229 if (se->on_rq) {
3230 /*
3231 * Any task has to be enqueued before it get to execute on
3232 * a CPU. So account for the time it spent waiting on the
3233 * runqueue.
3234 */
3235 update_stats_wait_end(cfs_rq, se);
3236 __dequeue_entity(cfs_rq, se);
36ee28e4 3237 update_entity_load_avg(se, 1);
83b699ed
SV
3238 }
3239
79303e9e 3240 update_stats_curr_start(cfs_rq, se);
429d43bc 3241 cfs_rq->curr = se;
eba1ed4b
IM
3242#ifdef CONFIG_SCHEDSTATS
3243 /*
3244 * Track our maximum slice length, if the CPU's load is at
3245 * least twice that of our own weight (i.e. dont track it
3246 * when there are only lesser-weight tasks around):
3247 */
495eca49 3248 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3249 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3250 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3251 }
3252#endif
4a55b450 3253 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3254}
3255
3f3a4904
PZ
3256static int
3257wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3258
ac53db59
RR
3259/*
3260 * Pick the next process, keeping these things in mind, in this order:
3261 * 1) keep things fair between processes/task groups
3262 * 2) pick the "next" process, since someone really wants that to run
3263 * 3) pick the "last" process, for cache locality
3264 * 4) do not run the "skip" process, if something else is available
3265 */
678d5718
PZ
3266static struct sched_entity *
3267pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3268{
678d5718
PZ
3269 struct sched_entity *left = __pick_first_entity(cfs_rq);
3270 struct sched_entity *se;
3271
3272 /*
3273 * If curr is set we have to see if its left of the leftmost entity
3274 * still in the tree, provided there was anything in the tree at all.
3275 */
3276 if (!left || (curr && entity_before(curr, left)))
3277 left = curr;
3278
3279 se = left; /* ideally we run the leftmost entity */
f4b6755f 3280
ac53db59
RR
3281 /*
3282 * Avoid running the skip buddy, if running something else can
3283 * be done without getting too unfair.
3284 */
3285 if (cfs_rq->skip == se) {
678d5718
PZ
3286 struct sched_entity *second;
3287
3288 if (se == curr) {
3289 second = __pick_first_entity(cfs_rq);
3290 } else {
3291 second = __pick_next_entity(se);
3292 if (!second || (curr && entity_before(curr, second)))
3293 second = curr;
3294 }
3295
ac53db59
RR
3296 if (second && wakeup_preempt_entity(second, left) < 1)
3297 se = second;
3298 }
aa2ac252 3299
f685ceac
MG
3300 /*
3301 * Prefer last buddy, try to return the CPU to a preempted task.
3302 */
3303 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3304 se = cfs_rq->last;
3305
ac53db59
RR
3306 /*
3307 * Someone really wants this to run. If it's not unfair, run it.
3308 */
3309 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3310 se = cfs_rq->next;
3311
f685ceac 3312 clear_buddies(cfs_rq, se);
4793241b
PZ
3313
3314 return se;
aa2ac252
PZ
3315}
3316
678d5718 3317static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3318
ab6cde26 3319static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3320{
3321 /*
3322 * If still on the runqueue then deactivate_task()
3323 * was not called and update_curr() has to be done:
3324 */
3325 if (prev->on_rq)
b7cc0896 3326 update_curr(cfs_rq);
bf0f6f24 3327
d3d9dc33
PT
3328 /* throttle cfs_rqs exceeding runtime */
3329 check_cfs_rq_runtime(cfs_rq);
3330
ddc97297 3331 check_spread(cfs_rq, prev);
30cfdcfc 3332 if (prev->on_rq) {
5870db5b 3333 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3334 /* Put 'current' back into the tree. */
3335 __enqueue_entity(cfs_rq, prev);
9d85f21c 3336 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3337 update_entity_load_avg(prev, 1);
30cfdcfc 3338 }
429d43bc 3339 cfs_rq->curr = NULL;
bf0f6f24
IM
3340}
3341
8f4d37ec
PZ
3342static void
3343entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3344{
bf0f6f24 3345 /*
30cfdcfc 3346 * Update run-time statistics of the 'current'.
bf0f6f24 3347 */
30cfdcfc 3348 update_curr(cfs_rq);
bf0f6f24 3349
9d85f21c
PT
3350 /*
3351 * Ensure that runnable average is periodically updated.
3352 */
9ee474f5 3353 update_entity_load_avg(curr, 1);
aff3e498 3354 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3355 update_cfs_shares(cfs_rq);
9d85f21c 3356
8f4d37ec
PZ
3357#ifdef CONFIG_SCHED_HRTICK
3358 /*
3359 * queued ticks are scheduled to match the slice, so don't bother
3360 * validating it and just reschedule.
3361 */
983ed7a6 3362 if (queued) {
8875125e 3363 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3364 return;
3365 }
8f4d37ec
PZ
3366 /*
3367 * don't let the period tick interfere with the hrtick preemption
3368 */
3369 if (!sched_feat(DOUBLE_TICK) &&
3370 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3371 return;
3372#endif
3373
2c2efaed 3374 if (cfs_rq->nr_running > 1)
2e09bf55 3375 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3376}
3377
ab84d31e
PT
3378
3379/**************************************************
3380 * CFS bandwidth control machinery
3381 */
3382
3383#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3384
3385#ifdef HAVE_JUMP_LABEL
c5905afb 3386static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3387
3388static inline bool cfs_bandwidth_used(void)
3389{
c5905afb 3390 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3391}
3392
1ee14e6c 3393void cfs_bandwidth_usage_inc(void)
029632fb 3394{
1ee14e6c
BS
3395 static_key_slow_inc(&__cfs_bandwidth_used);
3396}
3397
3398void cfs_bandwidth_usage_dec(void)
3399{
3400 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3401}
3402#else /* HAVE_JUMP_LABEL */
3403static bool cfs_bandwidth_used(void)
3404{
3405 return true;
3406}
3407
1ee14e6c
BS
3408void cfs_bandwidth_usage_inc(void) {}
3409void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3410#endif /* HAVE_JUMP_LABEL */
3411
ab84d31e
PT
3412/*
3413 * default period for cfs group bandwidth.
3414 * default: 0.1s, units: nanoseconds
3415 */
3416static inline u64 default_cfs_period(void)
3417{
3418 return 100000000ULL;
3419}
ec12cb7f
PT
3420
3421static inline u64 sched_cfs_bandwidth_slice(void)
3422{
3423 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3424}
3425
a9cf55b2
PT
3426/*
3427 * Replenish runtime according to assigned quota and update expiration time.
3428 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3429 * additional synchronization around rq->lock.
3430 *
3431 * requires cfs_b->lock
3432 */
029632fb 3433void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3434{
3435 u64 now;
3436
3437 if (cfs_b->quota == RUNTIME_INF)
3438 return;
3439
3440 now = sched_clock_cpu(smp_processor_id());
3441 cfs_b->runtime = cfs_b->quota;
3442 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3443}
3444
029632fb
PZ
3445static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3446{
3447 return &tg->cfs_bandwidth;
3448}
3449
f1b17280
PT
3450/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3451static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3452{
3453 if (unlikely(cfs_rq->throttle_count))
3454 return cfs_rq->throttled_clock_task;
3455
78becc27 3456 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3457}
3458
85dac906
PT
3459/* returns 0 on failure to allocate runtime */
3460static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3461{
3462 struct task_group *tg = cfs_rq->tg;
3463 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3464 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3465
3466 /* note: this is a positive sum as runtime_remaining <= 0 */
3467 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3468
3469 raw_spin_lock(&cfs_b->lock);
3470 if (cfs_b->quota == RUNTIME_INF)
3471 amount = min_amount;
58088ad0 3472 else {
a9cf55b2
PT
3473 /*
3474 * If the bandwidth pool has become inactive, then at least one
3475 * period must have elapsed since the last consumption.
3476 * Refresh the global state and ensure bandwidth timer becomes
3477 * active.
3478 */
3479 if (!cfs_b->timer_active) {
3480 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3481 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3482 }
58088ad0
PT
3483
3484 if (cfs_b->runtime > 0) {
3485 amount = min(cfs_b->runtime, min_amount);
3486 cfs_b->runtime -= amount;
3487 cfs_b->idle = 0;
3488 }
ec12cb7f 3489 }
a9cf55b2 3490 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3491 raw_spin_unlock(&cfs_b->lock);
3492
3493 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3494 /*
3495 * we may have advanced our local expiration to account for allowed
3496 * spread between our sched_clock and the one on which runtime was
3497 * issued.
3498 */
3499 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3500 cfs_rq->runtime_expires = expires;
85dac906
PT
3501
3502 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3503}
3504
a9cf55b2
PT
3505/*
3506 * Note: This depends on the synchronization provided by sched_clock and the
3507 * fact that rq->clock snapshots this value.
3508 */
3509static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3510{
a9cf55b2 3511 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3512
3513 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3514 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3515 return;
3516
a9cf55b2
PT
3517 if (cfs_rq->runtime_remaining < 0)
3518 return;
3519
3520 /*
3521 * If the local deadline has passed we have to consider the
3522 * possibility that our sched_clock is 'fast' and the global deadline
3523 * has not truly expired.
3524 *
3525 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3526 * whether the global deadline has advanced. It is valid to compare
3527 * cfs_b->runtime_expires without any locks since we only care about
3528 * exact equality, so a partial write will still work.
a9cf55b2
PT
3529 */
3530
51f2176d 3531 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3532 /* extend local deadline, drift is bounded above by 2 ticks */
3533 cfs_rq->runtime_expires += TICK_NSEC;
3534 } else {
3535 /* global deadline is ahead, expiration has passed */
3536 cfs_rq->runtime_remaining = 0;
3537 }
3538}
3539
9dbdb155 3540static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3541{
3542 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3543 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3544 expire_cfs_rq_runtime(cfs_rq);
3545
3546 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3547 return;
3548
85dac906
PT
3549 /*
3550 * if we're unable to extend our runtime we resched so that the active
3551 * hierarchy can be throttled
3552 */
3553 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3554 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3555}
3556
6c16a6dc 3557static __always_inline
9dbdb155 3558void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3559{
56f570e5 3560 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3561 return;
3562
3563 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3564}
3565
85dac906
PT
3566static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3567{
56f570e5 3568 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3569}
3570
64660c86
PT
3571/* check whether cfs_rq, or any parent, is throttled */
3572static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3573{
56f570e5 3574 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3575}
3576
3577/*
3578 * Ensure that neither of the group entities corresponding to src_cpu or
3579 * dest_cpu are members of a throttled hierarchy when performing group
3580 * load-balance operations.
3581 */
3582static inline int throttled_lb_pair(struct task_group *tg,
3583 int src_cpu, int dest_cpu)
3584{
3585 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3586
3587 src_cfs_rq = tg->cfs_rq[src_cpu];
3588 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3589
3590 return throttled_hierarchy(src_cfs_rq) ||
3591 throttled_hierarchy(dest_cfs_rq);
3592}
3593
3594/* updated child weight may affect parent so we have to do this bottom up */
3595static int tg_unthrottle_up(struct task_group *tg, void *data)
3596{
3597 struct rq *rq = data;
3598 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3599
3600 cfs_rq->throttle_count--;
3601#ifdef CONFIG_SMP
3602 if (!cfs_rq->throttle_count) {
f1b17280 3603 /* adjust cfs_rq_clock_task() */
78becc27 3604 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3605 cfs_rq->throttled_clock_task;
64660c86
PT
3606 }
3607#endif
3608
3609 return 0;
3610}
3611
3612static int tg_throttle_down(struct task_group *tg, void *data)
3613{
3614 struct rq *rq = data;
3615 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3616
82958366
PT
3617 /* group is entering throttled state, stop time */
3618 if (!cfs_rq->throttle_count)
78becc27 3619 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3620 cfs_rq->throttle_count++;
3621
3622 return 0;
3623}
3624
d3d9dc33 3625static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3626{
3627 struct rq *rq = rq_of(cfs_rq);
3628 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3629 struct sched_entity *se;
3630 long task_delta, dequeue = 1;
3631
3632 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3633
f1b17280 3634 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3635 rcu_read_lock();
3636 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3637 rcu_read_unlock();
85dac906
PT
3638
3639 task_delta = cfs_rq->h_nr_running;
3640 for_each_sched_entity(se) {
3641 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3642 /* throttled entity or throttle-on-deactivate */
3643 if (!se->on_rq)
3644 break;
3645
3646 if (dequeue)
3647 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3648 qcfs_rq->h_nr_running -= task_delta;
3649
3650 if (qcfs_rq->load.weight)
3651 dequeue = 0;
3652 }
3653
3654 if (!se)
72465447 3655 sub_nr_running(rq, task_delta);
85dac906
PT
3656
3657 cfs_rq->throttled = 1;
78becc27 3658 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3659 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3660 /*
3661 * Add to the _head_ of the list, so that an already-started
3662 * distribute_cfs_runtime will not see us
3663 */
3664 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3665 if (!cfs_b->timer_active)
09dc4ab0 3666 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3667 raw_spin_unlock(&cfs_b->lock);
3668}
3669
029632fb 3670void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3671{
3672 struct rq *rq = rq_of(cfs_rq);
3673 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3674 struct sched_entity *se;
3675 int enqueue = 1;
3676 long task_delta;
3677
22b958d8 3678 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3679
3680 cfs_rq->throttled = 0;
1a55af2e
FW
3681
3682 update_rq_clock(rq);
3683
671fd9da 3684 raw_spin_lock(&cfs_b->lock);
78becc27 3685 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3686 list_del_rcu(&cfs_rq->throttled_list);
3687 raw_spin_unlock(&cfs_b->lock);
3688
64660c86
PT
3689 /* update hierarchical throttle state */
3690 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3691
671fd9da
PT
3692 if (!cfs_rq->load.weight)
3693 return;
3694
3695 task_delta = cfs_rq->h_nr_running;
3696 for_each_sched_entity(se) {
3697 if (se->on_rq)
3698 enqueue = 0;
3699
3700 cfs_rq = cfs_rq_of(se);
3701 if (enqueue)
3702 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3703 cfs_rq->h_nr_running += task_delta;
3704
3705 if (cfs_rq_throttled(cfs_rq))
3706 break;
3707 }
3708
3709 if (!se)
72465447 3710 add_nr_running(rq, task_delta);
671fd9da
PT
3711
3712 /* determine whether we need to wake up potentially idle cpu */
3713 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3714 resched_curr(rq);
671fd9da
PT
3715}
3716
3717static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3718 u64 remaining, u64 expires)
3719{
3720 struct cfs_rq *cfs_rq;
c06f04c7
BS
3721 u64 runtime;
3722 u64 starting_runtime = remaining;
671fd9da
PT
3723
3724 rcu_read_lock();
3725 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3726 throttled_list) {
3727 struct rq *rq = rq_of(cfs_rq);
3728
3729 raw_spin_lock(&rq->lock);
3730 if (!cfs_rq_throttled(cfs_rq))
3731 goto next;
3732
3733 runtime = -cfs_rq->runtime_remaining + 1;
3734 if (runtime > remaining)
3735 runtime = remaining;
3736 remaining -= runtime;
3737
3738 cfs_rq->runtime_remaining += runtime;
3739 cfs_rq->runtime_expires = expires;
3740
3741 /* we check whether we're throttled above */
3742 if (cfs_rq->runtime_remaining > 0)
3743 unthrottle_cfs_rq(cfs_rq);
3744
3745next:
3746 raw_spin_unlock(&rq->lock);
3747
3748 if (!remaining)
3749 break;
3750 }
3751 rcu_read_unlock();
3752
c06f04c7 3753 return starting_runtime - remaining;
671fd9da
PT
3754}
3755
58088ad0
PT
3756/*
3757 * Responsible for refilling a task_group's bandwidth and unthrottling its
3758 * cfs_rqs as appropriate. If there has been no activity within the last
3759 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3760 * used to track this state.
3761 */
3762static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3763{
671fd9da 3764 u64 runtime, runtime_expires;
51f2176d 3765 int throttled;
58088ad0 3766
58088ad0
PT
3767 /* no need to continue the timer with no bandwidth constraint */
3768 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3769 goto out_deactivate;
58088ad0 3770
671fd9da 3771 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3772 cfs_b->nr_periods += overrun;
671fd9da 3773
51f2176d
BS
3774 /*
3775 * idle depends on !throttled (for the case of a large deficit), and if
3776 * we're going inactive then everything else can be deferred
3777 */
3778 if (cfs_b->idle && !throttled)
3779 goto out_deactivate;
a9cf55b2 3780
927b54fc
BS
3781 /*
3782 * if we have relooped after returning idle once, we need to update our
3783 * status as actually running, so that other cpus doing
3784 * __start_cfs_bandwidth will stop trying to cancel us.
3785 */
3786 cfs_b->timer_active = 1;
3787
a9cf55b2
PT
3788 __refill_cfs_bandwidth_runtime(cfs_b);
3789
671fd9da
PT
3790 if (!throttled) {
3791 /* mark as potentially idle for the upcoming period */
3792 cfs_b->idle = 1;
51f2176d 3793 return 0;
671fd9da
PT
3794 }
3795
e8da1b18
NR
3796 /* account preceding periods in which throttling occurred */
3797 cfs_b->nr_throttled += overrun;
3798
671fd9da 3799 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3800
3801 /*
c06f04c7
BS
3802 * This check is repeated as we are holding onto the new bandwidth while
3803 * we unthrottle. This can potentially race with an unthrottled group
3804 * trying to acquire new bandwidth from the global pool. This can result
3805 * in us over-using our runtime if it is all used during this loop, but
3806 * only by limited amounts in that extreme case.
671fd9da 3807 */
c06f04c7
BS
3808 while (throttled && cfs_b->runtime > 0) {
3809 runtime = cfs_b->runtime;
671fd9da
PT
3810 raw_spin_unlock(&cfs_b->lock);
3811 /* we can't nest cfs_b->lock while distributing bandwidth */
3812 runtime = distribute_cfs_runtime(cfs_b, runtime,
3813 runtime_expires);
3814 raw_spin_lock(&cfs_b->lock);
3815
3816 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3817
3818 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3819 }
58088ad0 3820
671fd9da
PT
3821 /*
3822 * While we are ensured activity in the period following an
3823 * unthrottle, this also covers the case in which the new bandwidth is
3824 * insufficient to cover the existing bandwidth deficit. (Forcing the
3825 * timer to remain active while there are any throttled entities.)
3826 */
3827 cfs_b->idle = 0;
58088ad0 3828
51f2176d
BS
3829 return 0;
3830
3831out_deactivate:
3832 cfs_b->timer_active = 0;
3833 return 1;
58088ad0 3834}
d3d9dc33 3835
d8b4986d
PT
3836/* a cfs_rq won't donate quota below this amount */
3837static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3838/* minimum remaining period time to redistribute slack quota */
3839static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3840/* how long we wait to gather additional slack before distributing */
3841static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3842
db06e78c
BS
3843/*
3844 * Are we near the end of the current quota period?
3845 *
3846 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3847 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3848 * migrate_hrtimers, base is never cleared, so we are fine.
3849 */
d8b4986d
PT
3850static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3851{
3852 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3853 u64 remaining;
3854
3855 /* if the call-back is running a quota refresh is already occurring */
3856 if (hrtimer_callback_running(refresh_timer))
3857 return 1;
3858
3859 /* is a quota refresh about to occur? */
3860 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3861 if (remaining < min_expire)
3862 return 1;
3863
3864 return 0;
3865}
3866
3867static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3868{
3869 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3870
3871 /* if there's a quota refresh soon don't bother with slack */
3872 if (runtime_refresh_within(cfs_b, min_left))
3873 return;
3874
3875 start_bandwidth_timer(&cfs_b->slack_timer,
3876 ns_to_ktime(cfs_bandwidth_slack_period));
3877}
3878
3879/* we know any runtime found here is valid as update_curr() precedes return */
3880static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3881{
3882 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3883 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3884
3885 if (slack_runtime <= 0)
3886 return;
3887
3888 raw_spin_lock(&cfs_b->lock);
3889 if (cfs_b->quota != RUNTIME_INF &&
3890 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3891 cfs_b->runtime += slack_runtime;
3892
3893 /* we are under rq->lock, defer unthrottling using a timer */
3894 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3895 !list_empty(&cfs_b->throttled_cfs_rq))
3896 start_cfs_slack_bandwidth(cfs_b);
3897 }
3898 raw_spin_unlock(&cfs_b->lock);
3899
3900 /* even if it's not valid for return we don't want to try again */
3901 cfs_rq->runtime_remaining -= slack_runtime;
3902}
3903
3904static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3905{
56f570e5
PT
3906 if (!cfs_bandwidth_used())
3907 return;
3908
fccfdc6f 3909 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3910 return;
3911
3912 __return_cfs_rq_runtime(cfs_rq);
3913}
3914
3915/*
3916 * This is done with a timer (instead of inline with bandwidth return) since
3917 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3918 */
3919static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3920{
3921 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3922 u64 expires;
3923
3924 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3925 raw_spin_lock(&cfs_b->lock);
3926 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3927 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3928 return;
db06e78c 3929 }
d8b4986d 3930
c06f04c7 3931 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3932 runtime = cfs_b->runtime;
c06f04c7 3933
d8b4986d
PT
3934 expires = cfs_b->runtime_expires;
3935 raw_spin_unlock(&cfs_b->lock);
3936
3937 if (!runtime)
3938 return;
3939
3940 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3941
3942 raw_spin_lock(&cfs_b->lock);
3943 if (expires == cfs_b->runtime_expires)
c06f04c7 3944 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3945 raw_spin_unlock(&cfs_b->lock);
3946}
3947
d3d9dc33
PT
3948/*
3949 * When a group wakes up we want to make sure that its quota is not already
3950 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3951 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3952 */
3953static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3954{
56f570e5
PT
3955 if (!cfs_bandwidth_used())
3956 return;
3957
d3d9dc33
PT
3958 /* an active group must be handled by the update_curr()->put() path */
3959 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3960 return;
3961
3962 /* ensure the group is not already throttled */
3963 if (cfs_rq_throttled(cfs_rq))
3964 return;
3965
3966 /* update runtime allocation */
3967 account_cfs_rq_runtime(cfs_rq, 0);
3968 if (cfs_rq->runtime_remaining <= 0)
3969 throttle_cfs_rq(cfs_rq);
3970}
3971
3972/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3973static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3974{
56f570e5 3975 if (!cfs_bandwidth_used())
678d5718 3976 return false;
56f570e5 3977
d3d9dc33 3978 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3979 return false;
d3d9dc33
PT
3980
3981 /*
3982 * it's possible for a throttled entity to be forced into a running
3983 * state (e.g. set_curr_task), in this case we're finished.
3984 */
3985 if (cfs_rq_throttled(cfs_rq))
678d5718 3986 return true;
d3d9dc33
PT
3987
3988 throttle_cfs_rq(cfs_rq);
678d5718 3989 return true;
d3d9dc33 3990}
029632fb 3991
029632fb
PZ
3992static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3993{
3994 struct cfs_bandwidth *cfs_b =
3995 container_of(timer, struct cfs_bandwidth, slack_timer);
3996 do_sched_cfs_slack_timer(cfs_b);
3997
3998 return HRTIMER_NORESTART;
3999}
4000
4001static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4002{
4003 struct cfs_bandwidth *cfs_b =
4004 container_of(timer, struct cfs_bandwidth, period_timer);
4005 ktime_t now;
4006 int overrun;
4007 int idle = 0;
4008
51f2176d 4009 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4010 for (;;) {
4011 now = hrtimer_cb_get_time(timer);
4012 overrun = hrtimer_forward(timer, now, cfs_b->period);
4013
4014 if (!overrun)
4015 break;
4016
4017 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4018 }
51f2176d 4019 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4020
4021 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4022}
4023
4024void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4025{
4026 raw_spin_lock_init(&cfs_b->lock);
4027 cfs_b->runtime = 0;
4028 cfs_b->quota = RUNTIME_INF;
4029 cfs_b->period = ns_to_ktime(default_cfs_period());
4030
4031 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4032 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4033 cfs_b->period_timer.function = sched_cfs_period_timer;
4034 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4035 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4036}
4037
4038static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4039{
4040 cfs_rq->runtime_enabled = 0;
4041 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4042}
4043
4044/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4045void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4046{
4047 /*
4048 * The timer may be active because we're trying to set a new bandwidth
4049 * period or because we're racing with the tear-down path
4050 * (timer_active==0 becomes visible before the hrtimer call-back
4051 * terminates). In either case we ensure that it's re-programmed
4052 */
927b54fc
BS
4053 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4054 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4055 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4056 raw_spin_unlock(&cfs_b->lock);
927b54fc 4057 cpu_relax();
029632fb
PZ
4058 raw_spin_lock(&cfs_b->lock);
4059 /* if someone else restarted the timer then we're done */
09dc4ab0 4060 if (!force && cfs_b->timer_active)
029632fb
PZ
4061 return;
4062 }
4063
4064 cfs_b->timer_active = 1;
4065 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4066}
4067
4068static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4069{
7f1a169b
TH
4070 /* init_cfs_bandwidth() was not called */
4071 if (!cfs_b->throttled_cfs_rq.next)
4072 return;
4073
029632fb
PZ
4074 hrtimer_cancel(&cfs_b->period_timer);
4075 hrtimer_cancel(&cfs_b->slack_timer);
4076}
4077
0e59bdae
KT
4078static void __maybe_unused update_runtime_enabled(struct rq *rq)
4079{
4080 struct cfs_rq *cfs_rq;
4081
4082 for_each_leaf_cfs_rq(rq, cfs_rq) {
4083 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4084
4085 raw_spin_lock(&cfs_b->lock);
4086 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4087 raw_spin_unlock(&cfs_b->lock);
4088 }
4089}
4090
38dc3348 4091static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4092{
4093 struct cfs_rq *cfs_rq;
4094
4095 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4096 if (!cfs_rq->runtime_enabled)
4097 continue;
4098
4099 /*
4100 * clock_task is not advancing so we just need to make sure
4101 * there's some valid quota amount
4102 */
51f2176d 4103 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4104 /*
4105 * Offline rq is schedulable till cpu is completely disabled
4106 * in take_cpu_down(), so we prevent new cfs throttling here.
4107 */
4108 cfs_rq->runtime_enabled = 0;
4109
029632fb
PZ
4110 if (cfs_rq_throttled(cfs_rq))
4111 unthrottle_cfs_rq(cfs_rq);
4112 }
4113}
4114
4115#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4116static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4117{
78becc27 4118 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4119}
4120
9dbdb155 4121static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4122static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4123static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4124static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4125
4126static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4127{
4128 return 0;
4129}
64660c86
PT
4130
4131static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4132{
4133 return 0;
4134}
4135
4136static inline int throttled_lb_pair(struct task_group *tg,
4137 int src_cpu, int dest_cpu)
4138{
4139 return 0;
4140}
029632fb
PZ
4141
4142void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4143
4144#ifdef CONFIG_FAIR_GROUP_SCHED
4145static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4146#endif
4147
029632fb
PZ
4148static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4149{
4150 return NULL;
4151}
4152static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4153static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4154static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4155
4156#endif /* CONFIG_CFS_BANDWIDTH */
4157
bf0f6f24
IM
4158/**************************************************
4159 * CFS operations on tasks:
4160 */
4161
8f4d37ec
PZ
4162#ifdef CONFIG_SCHED_HRTICK
4163static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4164{
8f4d37ec
PZ
4165 struct sched_entity *se = &p->se;
4166 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4167
4168 WARN_ON(task_rq(p) != rq);
4169
b39e66ea 4170 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4171 u64 slice = sched_slice(cfs_rq, se);
4172 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4173 s64 delta = slice - ran;
4174
4175 if (delta < 0) {
4176 if (rq->curr == p)
8875125e 4177 resched_curr(rq);
8f4d37ec
PZ
4178 return;
4179 }
31656519 4180 hrtick_start(rq, delta);
8f4d37ec
PZ
4181 }
4182}
a4c2f00f
PZ
4183
4184/*
4185 * called from enqueue/dequeue and updates the hrtick when the
4186 * current task is from our class and nr_running is low enough
4187 * to matter.
4188 */
4189static void hrtick_update(struct rq *rq)
4190{
4191 struct task_struct *curr = rq->curr;
4192
b39e66ea 4193 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4194 return;
4195
4196 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4197 hrtick_start_fair(rq, curr);
4198}
55e12e5e 4199#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4200static inline void
4201hrtick_start_fair(struct rq *rq, struct task_struct *p)
4202{
4203}
a4c2f00f
PZ
4204
4205static inline void hrtick_update(struct rq *rq)
4206{
4207}
8f4d37ec
PZ
4208#endif
4209
bf0f6f24
IM
4210/*
4211 * The enqueue_task method is called before nr_running is
4212 * increased. Here we update the fair scheduling stats and
4213 * then put the task into the rbtree:
4214 */
ea87bb78 4215static void
371fd7e7 4216enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4217{
4218 struct cfs_rq *cfs_rq;
62fb1851 4219 struct sched_entity *se = &p->se;
bf0f6f24
IM
4220
4221 for_each_sched_entity(se) {
62fb1851 4222 if (se->on_rq)
bf0f6f24
IM
4223 break;
4224 cfs_rq = cfs_rq_of(se);
88ec22d3 4225 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4226
4227 /*
4228 * end evaluation on encountering a throttled cfs_rq
4229 *
4230 * note: in the case of encountering a throttled cfs_rq we will
4231 * post the final h_nr_running increment below.
4232 */
4233 if (cfs_rq_throttled(cfs_rq))
4234 break;
953bfcd1 4235 cfs_rq->h_nr_running++;
85dac906 4236
88ec22d3 4237 flags = ENQUEUE_WAKEUP;
bf0f6f24 4238 }
8f4d37ec 4239
2069dd75 4240 for_each_sched_entity(se) {
0f317143 4241 cfs_rq = cfs_rq_of(se);
953bfcd1 4242 cfs_rq->h_nr_running++;
2069dd75 4243
85dac906
PT
4244 if (cfs_rq_throttled(cfs_rq))
4245 break;
4246
17bc14b7 4247 update_cfs_shares(cfs_rq);
9ee474f5 4248 update_entity_load_avg(se, 1);
2069dd75
PZ
4249 }
4250
18bf2805
BS
4251 if (!se) {
4252 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4253 add_nr_running(rq, 1);
18bf2805 4254 }
a4c2f00f 4255 hrtick_update(rq);
bf0f6f24
IM
4256}
4257
2f36825b
VP
4258static void set_next_buddy(struct sched_entity *se);
4259
bf0f6f24
IM
4260/*
4261 * The dequeue_task method is called before nr_running is
4262 * decreased. We remove the task from the rbtree and
4263 * update the fair scheduling stats:
4264 */
371fd7e7 4265static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4266{
4267 struct cfs_rq *cfs_rq;
62fb1851 4268 struct sched_entity *se = &p->se;
2f36825b 4269 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4270
4271 for_each_sched_entity(se) {
4272 cfs_rq = cfs_rq_of(se);
371fd7e7 4273 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4274
4275 /*
4276 * end evaluation on encountering a throttled cfs_rq
4277 *
4278 * note: in the case of encountering a throttled cfs_rq we will
4279 * post the final h_nr_running decrement below.
4280 */
4281 if (cfs_rq_throttled(cfs_rq))
4282 break;
953bfcd1 4283 cfs_rq->h_nr_running--;
2069dd75 4284
bf0f6f24 4285 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4286 if (cfs_rq->load.weight) {
4287 /*
4288 * Bias pick_next to pick a task from this cfs_rq, as
4289 * p is sleeping when it is within its sched_slice.
4290 */
4291 if (task_sleep && parent_entity(se))
4292 set_next_buddy(parent_entity(se));
9598c82d
PT
4293
4294 /* avoid re-evaluating load for this entity */
4295 se = parent_entity(se);
bf0f6f24 4296 break;
2f36825b 4297 }
371fd7e7 4298 flags |= DEQUEUE_SLEEP;
bf0f6f24 4299 }
8f4d37ec 4300
2069dd75 4301 for_each_sched_entity(se) {
0f317143 4302 cfs_rq = cfs_rq_of(se);
953bfcd1 4303 cfs_rq->h_nr_running--;
2069dd75 4304
85dac906
PT
4305 if (cfs_rq_throttled(cfs_rq))
4306 break;
4307
17bc14b7 4308 update_cfs_shares(cfs_rq);
9ee474f5 4309 update_entity_load_avg(se, 1);
2069dd75
PZ
4310 }
4311
18bf2805 4312 if (!se) {
72465447 4313 sub_nr_running(rq, 1);
18bf2805
BS
4314 update_rq_runnable_avg(rq, 1);
4315 }
a4c2f00f 4316 hrtick_update(rq);
bf0f6f24
IM
4317}
4318
e7693a36 4319#ifdef CONFIG_SMP
029632fb
PZ
4320/* Used instead of source_load when we know the type == 0 */
4321static unsigned long weighted_cpuload(const int cpu)
4322{
b92486cb 4323 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4324}
4325
4326/*
4327 * Return a low guess at the load of a migration-source cpu weighted
4328 * according to the scheduling class and "nice" value.
4329 *
4330 * We want to under-estimate the load of migration sources, to
4331 * balance conservatively.
4332 */
4333static unsigned long source_load(int cpu, int type)
4334{
4335 struct rq *rq = cpu_rq(cpu);
4336 unsigned long total = weighted_cpuload(cpu);
4337
4338 if (type == 0 || !sched_feat(LB_BIAS))
4339 return total;
4340
4341 return min(rq->cpu_load[type-1], total);
4342}
4343
4344/*
4345 * Return a high guess at the load of a migration-target cpu weighted
4346 * according to the scheduling class and "nice" value.
4347 */
4348static unsigned long target_load(int cpu, int type)
4349{
4350 struct rq *rq = cpu_rq(cpu);
4351 unsigned long total = weighted_cpuload(cpu);
4352
4353 if (type == 0 || !sched_feat(LB_BIAS))
4354 return total;
4355
4356 return max(rq->cpu_load[type-1], total);
4357}
4358
ced549fa 4359static unsigned long capacity_of(int cpu)
029632fb 4360{
ced549fa 4361 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4362}
4363
ca6d75e6
VG
4364static unsigned long capacity_orig_of(int cpu)
4365{
4366 return cpu_rq(cpu)->cpu_capacity_orig;
4367}
4368
029632fb
PZ
4369static unsigned long cpu_avg_load_per_task(int cpu)
4370{
4371 struct rq *rq = cpu_rq(cpu);
65fdac08 4372 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4373 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4374
4375 if (nr_running)
b92486cb 4376 return load_avg / nr_running;
029632fb
PZ
4377
4378 return 0;
4379}
4380
62470419
MW
4381static void record_wakee(struct task_struct *p)
4382{
4383 /*
4384 * Rough decay (wiping) for cost saving, don't worry
4385 * about the boundary, really active task won't care
4386 * about the loss.
4387 */
2538d960 4388 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4389 current->wakee_flips >>= 1;
62470419
MW
4390 current->wakee_flip_decay_ts = jiffies;
4391 }
4392
4393 if (current->last_wakee != p) {
4394 current->last_wakee = p;
4395 current->wakee_flips++;
4396 }
4397}
098fb9db 4398
74f8e4b2 4399static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4400{
4401 struct sched_entity *se = &p->se;
4402 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4403 u64 min_vruntime;
4404
4405#ifndef CONFIG_64BIT
4406 u64 min_vruntime_copy;
88ec22d3 4407
3fe1698b
PZ
4408 do {
4409 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4410 smp_rmb();
4411 min_vruntime = cfs_rq->min_vruntime;
4412 } while (min_vruntime != min_vruntime_copy);
4413#else
4414 min_vruntime = cfs_rq->min_vruntime;
4415#endif
88ec22d3 4416
3fe1698b 4417 se->vruntime -= min_vruntime;
62470419 4418 record_wakee(p);
88ec22d3
PZ
4419}
4420
bb3469ac 4421#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4422/*
4423 * effective_load() calculates the load change as seen from the root_task_group
4424 *
4425 * Adding load to a group doesn't make a group heavier, but can cause movement
4426 * of group shares between cpus. Assuming the shares were perfectly aligned one
4427 * can calculate the shift in shares.
cf5f0acf
PZ
4428 *
4429 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4430 * on this @cpu and results in a total addition (subtraction) of @wg to the
4431 * total group weight.
4432 *
4433 * Given a runqueue weight distribution (rw_i) we can compute a shares
4434 * distribution (s_i) using:
4435 *
4436 * s_i = rw_i / \Sum rw_j (1)
4437 *
4438 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4439 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4440 * shares distribution (s_i):
4441 *
4442 * rw_i = { 2, 4, 1, 0 }
4443 * s_i = { 2/7, 4/7, 1/7, 0 }
4444 *
4445 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4446 * task used to run on and the CPU the waker is running on), we need to
4447 * compute the effect of waking a task on either CPU and, in case of a sync
4448 * wakeup, compute the effect of the current task going to sleep.
4449 *
4450 * So for a change of @wl to the local @cpu with an overall group weight change
4451 * of @wl we can compute the new shares distribution (s'_i) using:
4452 *
4453 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4454 *
4455 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4456 * differences in waking a task to CPU 0. The additional task changes the
4457 * weight and shares distributions like:
4458 *
4459 * rw'_i = { 3, 4, 1, 0 }
4460 * s'_i = { 3/8, 4/8, 1/8, 0 }
4461 *
4462 * We can then compute the difference in effective weight by using:
4463 *
4464 * dw_i = S * (s'_i - s_i) (3)
4465 *
4466 * Where 'S' is the group weight as seen by its parent.
4467 *
4468 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4469 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4470 * 4/7) times the weight of the group.
f5bfb7d9 4471 */
2069dd75 4472static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4473{
4be9daaa 4474 struct sched_entity *se = tg->se[cpu];
f1d239f7 4475
9722c2da 4476 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4477 return wl;
4478
4be9daaa 4479 for_each_sched_entity(se) {
cf5f0acf 4480 long w, W;
4be9daaa 4481
977dda7c 4482 tg = se->my_q->tg;
bb3469ac 4483
cf5f0acf
PZ
4484 /*
4485 * W = @wg + \Sum rw_j
4486 */
4487 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4488
cf5f0acf
PZ
4489 /*
4490 * w = rw_i + @wl
4491 */
4492 w = se->my_q->load.weight + wl;
940959e9 4493
cf5f0acf
PZ
4494 /*
4495 * wl = S * s'_i; see (2)
4496 */
4497 if (W > 0 && w < W)
32a8df4e 4498 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4499 else
4500 wl = tg->shares;
940959e9 4501
cf5f0acf
PZ
4502 /*
4503 * Per the above, wl is the new se->load.weight value; since
4504 * those are clipped to [MIN_SHARES, ...) do so now. See
4505 * calc_cfs_shares().
4506 */
977dda7c
PT
4507 if (wl < MIN_SHARES)
4508 wl = MIN_SHARES;
cf5f0acf
PZ
4509
4510 /*
4511 * wl = dw_i = S * (s'_i - s_i); see (3)
4512 */
977dda7c 4513 wl -= se->load.weight;
cf5f0acf
PZ
4514
4515 /*
4516 * Recursively apply this logic to all parent groups to compute
4517 * the final effective load change on the root group. Since
4518 * only the @tg group gets extra weight, all parent groups can
4519 * only redistribute existing shares. @wl is the shift in shares
4520 * resulting from this level per the above.
4521 */
4be9daaa 4522 wg = 0;
4be9daaa 4523 }
bb3469ac 4524
4be9daaa 4525 return wl;
bb3469ac
PZ
4526}
4527#else
4be9daaa 4528
58d081b5 4529static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4530{
83378269 4531 return wl;
bb3469ac 4532}
4be9daaa 4533
bb3469ac
PZ
4534#endif
4535
62470419
MW
4536static int wake_wide(struct task_struct *p)
4537{
7d9ffa89 4538 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4539
4540 /*
4541 * Yeah, it's the switching-frequency, could means many wakee or
4542 * rapidly switch, use factor here will just help to automatically
4543 * adjust the loose-degree, so bigger node will lead to more pull.
4544 */
4545 if (p->wakee_flips > factor) {
4546 /*
4547 * wakee is somewhat hot, it needs certain amount of cpu
4548 * resource, so if waker is far more hot, prefer to leave
4549 * it alone.
4550 */
4551 if (current->wakee_flips > (factor * p->wakee_flips))
4552 return 1;
4553 }
4554
4555 return 0;
4556}
4557
c88d5910 4558static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4559{
e37b6a7b 4560 s64 this_load, load;
bd61c98f 4561 s64 this_eff_load, prev_eff_load;
c88d5910 4562 int idx, this_cpu, prev_cpu;
c88d5910 4563 struct task_group *tg;
83378269 4564 unsigned long weight;
b3137bc8 4565 int balanced;
098fb9db 4566
62470419
MW
4567 /*
4568 * If we wake multiple tasks be careful to not bounce
4569 * ourselves around too much.
4570 */
4571 if (wake_wide(p))
4572 return 0;
4573
c88d5910
PZ
4574 idx = sd->wake_idx;
4575 this_cpu = smp_processor_id();
4576 prev_cpu = task_cpu(p);
4577 load = source_load(prev_cpu, idx);
4578 this_load = target_load(this_cpu, idx);
098fb9db 4579
b3137bc8
MG
4580 /*
4581 * If sync wakeup then subtract the (maximum possible)
4582 * effect of the currently running task from the load
4583 * of the current CPU:
4584 */
83378269
PZ
4585 if (sync) {
4586 tg = task_group(current);
4587 weight = current->se.load.weight;
4588
c88d5910 4589 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4590 load += effective_load(tg, prev_cpu, 0, -weight);
4591 }
b3137bc8 4592
83378269
PZ
4593 tg = task_group(p);
4594 weight = p->se.load.weight;
b3137bc8 4595
71a29aa7
PZ
4596 /*
4597 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4598 * due to the sync cause above having dropped this_load to 0, we'll
4599 * always have an imbalance, but there's really nothing you can do
4600 * about that, so that's good too.
71a29aa7
PZ
4601 *
4602 * Otherwise check if either cpus are near enough in load to allow this
4603 * task to be woken on this_cpu.
4604 */
bd61c98f
VG
4605 this_eff_load = 100;
4606 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4607
bd61c98f
VG
4608 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4609 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4610
bd61c98f 4611 if (this_load > 0) {
e51fd5e2
PZ
4612 this_eff_load *= this_load +
4613 effective_load(tg, this_cpu, weight, weight);
4614
e51fd5e2 4615 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4616 }
e51fd5e2 4617
bd61c98f 4618 balanced = this_eff_load <= prev_eff_load;
098fb9db 4619
41acab88 4620 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4621
05bfb65f
VG
4622 if (!balanced)
4623 return 0;
098fb9db 4624
05bfb65f
VG
4625 schedstat_inc(sd, ttwu_move_affine);
4626 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4627
4628 return 1;
098fb9db
IM
4629}
4630
aaee1203
PZ
4631/*
4632 * find_idlest_group finds and returns the least busy CPU group within the
4633 * domain.
4634 */
4635static struct sched_group *
78e7ed53 4636find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4637 int this_cpu, int sd_flag)
e7693a36 4638{
b3bd3de6 4639 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4640 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4641 int load_idx = sd->forkexec_idx;
aaee1203 4642 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4643
c44f2a02
VG
4644 if (sd_flag & SD_BALANCE_WAKE)
4645 load_idx = sd->wake_idx;
4646
aaee1203
PZ
4647 do {
4648 unsigned long load, avg_load;
4649 int local_group;
4650 int i;
e7693a36 4651
aaee1203
PZ
4652 /* Skip over this group if it has no CPUs allowed */
4653 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4654 tsk_cpus_allowed(p)))
aaee1203
PZ
4655 continue;
4656
4657 local_group = cpumask_test_cpu(this_cpu,
4658 sched_group_cpus(group));
4659
4660 /* Tally up the load of all CPUs in the group */
4661 avg_load = 0;
4662
4663 for_each_cpu(i, sched_group_cpus(group)) {
4664 /* Bias balancing toward cpus of our domain */
4665 if (local_group)
4666 load = source_load(i, load_idx);
4667 else
4668 load = target_load(i, load_idx);
4669
4670 avg_load += load;
4671 }
4672
63b2ca30 4673 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4674 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4675
4676 if (local_group) {
4677 this_load = avg_load;
aaee1203
PZ
4678 } else if (avg_load < min_load) {
4679 min_load = avg_load;
4680 idlest = group;
4681 }
4682 } while (group = group->next, group != sd->groups);
4683
4684 if (!idlest || 100*this_load < imbalance*min_load)
4685 return NULL;
4686 return idlest;
4687}
4688
4689/*
4690 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4691 */
4692static int
4693find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4694{
4695 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4696 unsigned int min_exit_latency = UINT_MAX;
4697 u64 latest_idle_timestamp = 0;
4698 int least_loaded_cpu = this_cpu;
4699 int shallowest_idle_cpu = -1;
aaee1203
PZ
4700 int i;
4701
4702 /* Traverse only the allowed CPUs */
fa17b507 4703 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4704 if (idle_cpu(i)) {
4705 struct rq *rq = cpu_rq(i);
4706 struct cpuidle_state *idle = idle_get_state(rq);
4707 if (idle && idle->exit_latency < min_exit_latency) {
4708 /*
4709 * We give priority to a CPU whose idle state
4710 * has the smallest exit latency irrespective
4711 * of any idle timestamp.
4712 */
4713 min_exit_latency = idle->exit_latency;
4714 latest_idle_timestamp = rq->idle_stamp;
4715 shallowest_idle_cpu = i;
4716 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4717 rq->idle_stamp > latest_idle_timestamp) {
4718 /*
4719 * If equal or no active idle state, then
4720 * the most recently idled CPU might have
4721 * a warmer cache.
4722 */
4723 latest_idle_timestamp = rq->idle_stamp;
4724 shallowest_idle_cpu = i;
4725 }
9f96742a 4726 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4727 load = weighted_cpuload(i);
4728 if (load < min_load || (load == min_load && i == this_cpu)) {
4729 min_load = load;
4730 least_loaded_cpu = i;
4731 }
e7693a36
GH
4732 }
4733 }
4734
83a0a96a 4735 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4736}
e7693a36 4737
a50bde51
PZ
4738/*
4739 * Try and locate an idle CPU in the sched_domain.
4740 */
99bd5e2f 4741static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4742{
99bd5e2f 4743 struct sched_domain *sd;
37407ea7 4744 struct sched_group *sg;
e0a79f52 4745 int i = task_cpu(p);
a50bde51 4746
e0a79f52
MG
4747 if (idle_cpu(target))
4748 return target;
99bd5e2f
SS
4749
4750 /*
e0a79f52 4751 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4752 */
e0a79f52
MG
4753 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4754 return i;
a50bde51
PZ
4755
4756 /*
37407ea7 4757 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4758 */
518cd623 4759 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4760 for_each_lower_domain(sd) {
37407ea7
LT
4761 sg = sd->groups;
4762 do {
4763 if (!cpumask_intersects(sched_group_cpus(sg),
4764 tsk_cpus_allowed(p)))
4765 goto next;
4766
4767 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4768 if (i == target || !idle_cpu(i))
37407ea7
LT
4769 goto next;
4770 }
970e1789 4771
37407ea7
LT
4772 target = cpumask_first_and(sched_group_cpus(sg),
4773 tsk_cpus_allowed(p));
4774 goto done;
4775next:
4776 sg = sg->next;
4777 } while (sg != sd->groups);
4778 }
4779done:
a50bde51
PZ
4780 return target;
4781}
8bb5b00c
VG
4782/*
4783 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4784 * tasks. The unit of the return value must be the one of capacity so we can
4785 * compare the usage with the capacity of the CPU that is available for CFS
4786 * task (ie cpu_capacity).
4787 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4788 * CPU. It represents the amount of utilization of a CPU in the range
4789 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4790 * capacity of the CPU because it's about the running time on this CPU.
4791 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4792 * because of unfortunate rounding in avg_period and running_load_avg or just
4793 * after migrating tasks until the average stabilizes with the new running
4794 * time. So we need to check that the usage stays into the range
4795 * [0..cpu_capacity_orig] and cap if necessary.
4796 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4797 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4798 */
4799static int get_cpu_usage(int cpu)
4800{
4801 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4802 unsigned long capacity = capacity_orig_of(cpu);
4803
4804 if (usage >= SCHED_LOAD_SCALE)
4805 return capacity;
4806
4807 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4808}
a50bde51 4809
aaee1203 4810/*
de91b9cb
MR
4811 * select_task_rq_fair: Select target runqueue for the waking task in domains
4812 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4813 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4814 *
de91b9cb
MR
4815 * Balances load by selecting the idlest cpu in the idlest group, or under
4816 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4817 *
de91b9cb 4818 * Returns the target cpu number.
aaee1203
PZ
4819 *
4820 * preempt must be disabled.
4821 */
0017d735 4822static int
ac66f547 4823select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4824{
29cd8bae 4825 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4826 int cpu = smp_processor_id();
c88d5910 4827 int new_cpu = cpu;
99bd5e2f 4828 int want_affine = 0;
5158f4e4 4829 int sync = wake_flags & WF_SYNC;
c88d5910 4830
a8edd075
KT
4831 if (sd_flag & SD_BALANCE_WAKE)
4832 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4833
dce840a0 4834 rcu_read_lock();
aaee1203 4835 for_each_domain(cpu, tmp) {
e4f42888
PZ
4836 if (!(tmp->flags & SD_LOAD_BALANCE))
4837 continue;
4838
fe3bcfe1 4839 /*
99bd5e2f
SS
4840 * If both cpu and prev_cpu are part of this domain,
4841 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4842 */
99bd5e2f
SS
4843 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4844 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4845 affine_sd = tmp;
29cd8bae 4846 break;
f03542a7 4847 }
29cd8bae 4848
f03542a7 4849 if (tmp->flags & sd_flag)
29cd8bae
PZ
4850 sd = tmp;
4851 }
4852
8bf21433
RR
4853 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4854 prev_cpu = cpu;
dce840a0 4855
8bf21433 4856 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4857 new_cpu = select_idle_sibling(p, prev_cpu);
4858 goto unlock;
8b911acd 4859 }
e7693a36 4860
aaee1203
PZ
4861 while (sd) {
4862 struct sched_group *group;
c88d5910 4863 int weight;
098fb9db 4864
0763a660 4865 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4866 sd = sd->child;
4867 continue;
4868 }
098fb9db 4869
c44f2a02 4870 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4871 if (!group) {
4872 sd = sd->child;
4873 continue;
4874 }
4ae7d5ce 4875
d7c33c49 4876 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4877 if (new_cpu == -1 || new_cpu == cpu) {
4878 /* Now try balancing at a lower domain level of cpu */
4879 sd = sd->child;
4880 continue;
e7693a36 4881 }
aaee1203
PZ
4882
4883 /* Now try balancing at a lower domain level of new_cpu */
4884 cpu = new_cpu;
669c55e9 4885 weight = sd->span_weight;
aaee1203
PZ
4886 sd = NULL;
4887 for_each_domain(cpu, tmp) {
669c55e9 4888 if (weight <= tmp->span_weight)
aaee1203 4889 break;
0763a660 4890 if (tmp->flags & sd_flag)
aaee1203
PZ
4891 sd = tmp;
4892 }
4893 /* while loop will break here if sd == NULL */
e7693a36 4894 }
dce840a0
PZ
4895unlock:
4896 rcu_read_unlock();
e7693a36 4897
c88d5910 4898 return new_cpu;
e7693a36 4899}
0a74bef8
PT
4900
4901/*
4902 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4903 * cfs_rq_of(p) references at time of call are still valid and identify the
4904 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4905 * other assumptions, including the state of rq->lock, should be made.
4906 */
4907static void
4908migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4909{
aff3e498
PT
4910 struct sched_entity *se = &p->se;
4911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4912
4913 /*
4914 * Load tracking: accumulate removed load so that it can be processed
4915 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4916 * to blocked load iff they have a positive decay-count. It can never
4917 * be negative here since on-rq tasks have decay-count == 0.
4918 */
4919 if (se->avg.decay_count) {
4920 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4921 atomic_long_add(se->avg.load_avg_contrib,
4922 &cfs_rq->removed_load);
aff3e498 4923 }
3944a927
BS
4924
4925 /* We have migrated, no longer consider this task hot */
4926 se->exec_start = 0;
0a74bef8 4927}
e7693a36
GH
4928#endif /* CONFIG_SMP */
4929
e52fb7c0
PZ
4930static unsigned long
4931wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4932{
4933 unsigned long gran = sysctl_sched_wakeup_granularity;
4934
4935 /*
e52fb7c0
PZ
4936 * Since its curr running now, convert the gran from real-time
4937 * to virtual-time in his units.
13814d42
MG
4938 *
4939 * By using 'se' instead of 'curr' we penalize light tasks, so
4940 * they get preempted easier. That is, if 'se' < 'curr' then
4941 * the resulting gran will be larger, therefore penalizing the
4942 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4943 * be smaller, again penalizing the lighter task.
4944 *
4945 * This is especially important for buddies when the leftmost
4946 * task is higher priority than the buddy.
0bbd3336 4947 */
f4ad9bd2 4948 return calc_delta_fair(gran, se);
0bbd3336
PZ
4949}
4950
464b7527
PZ
4951/*
4952 * Should 'se' preempt 'curr'.
4953 *
4954 * |s1
4955 * |s2
4956 * |s3
4957 * g
4958 * |<--->|c
4959 *
4960 * w(c, s1) = -1
4961 * w(c, s2) = 0
4962 * w(c, s3) = 1
4963 *
4964 */
4965static int
4966wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4967{
4968 s64 gran, vdiff = curr->vruntime - se->vruntime;
4969
4970 if (vdiff <= 0)
4971 return -1;
4972
e52fb7c0 4973 gran = wakeup_gran(curr, se);
464b7527
PZ
4974 if (vdiff > gran)
4975 return 1;
4976
4977 return 0;
4978}
4979
02479099
PZ
4980static void set_last_buddy(struct sched_entity *se)
4981{
69c80f3e
VP
4982 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4983 return;
4984
4985 for_each_sched_entity(se)
4986 cfs_rq_of(se)->last = se;
02479099
PZ
4987}
4988
4989static void set_next_buddy(struct sched_entity *se)
4990{
69c80f3e
VP
4991 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4992 return;
4993
4994 for_each_sched_entity(se)
4995 cfs_rq_of(se)->next = se;
02479099
PZ
4996}
4997
ac53db59
RR
4998static void set_skip_buddy(struct sched_entity *se)
4999{
69c80f3e
VP
5000 for_each_sched_entity(se)
5001 cfs_rq_of(se)->skip = se;
ac53db59
RR
5002}
5003
bf0f6f24
IM
5004/*
5005 * Preempt the current task with a newly woken task if needed:
5006 */
5a9b86f6 5007static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5008{
5009 struct task_struct *curr = rq->curr;
8651a86c 5010 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5011 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5012 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5013 int next_buddy_marked = 0;
bf0f6f24 5014
4ae7d5ce
IM
5015 if (unlikely(se == pse))
5016 return;
5017
5238cdd3 5018 /*
163122b7 5019 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5020 * unconditionally check_prempt_curr() after an enqueue (which may have
5021 * lead to a throttle). This both saves work and prevents false
5022 * next-buddy nomination below.
5023 */
5024 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5025 return;
5026
2f36825b 5027 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5028 set_next_buddy(pse);
2f36825b
VP
5029 next_buddy_marked = 1;
5030 }
57fdc26d 5031
aec0a514
BR
5032 /*
5033 * We can come here with TIF_NEED_RESCHED already set from new task
5034 * wake up path.
5238cdd3
PT
5035 *
5036 * Note: this also catches the edge-case of curr being in a throttled
5037 * group (e.g. via set_curr_task), since update_curr() (in the
5038 * enqueue of curr) will have resulted in resched being set. This
5039 * prevents us from potentially nominating it as a false LAST_BUDDY
5040 * below.
aec0a514
BR
5041 */
5042 if (test_tsk_need_resched(curr))
5043 return;
5044
a2f5c9ab
DH
5045 /* Idle tasks are by definition preempted by non-idle tasks. */
5046 if (unlikely(curr->policy == SCHED_IDLE) &&
5047 likely(p->policy != SCHED_IDLE))
5048 goto preempt;
5049
91c234b4 5050 /*
a2f5c9ab
DH
5051 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5052 * is driven by the tick):
91c234b4 5053 */
8ed92e51 5054 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5055 return;
bf0f6f24 5056
464b7527 5057 find_matching_se(&se, &pse);
9bbd7374 5058 update_curr(cfs_rq_of(se));
002f128b 5059 BUG_ON(!pse);
2f36825b
VP
5060 if (wakeup_preempt_entity(se, pse) == 1) {
5061 /*
5062 * Bias pick_next to pick the sched entity that is
5063 * triggering this preemption.
5064 */
5065 if (!next_buddy_marked)
5066 set_next_buddy(pse);
3a7e73a2 5067 goto preempt;
2f36825b 5068 }
464b7527 5069
3a7e73a2 5070 return;
a65ac745 5071
3a7e73a2 5072preempt:
8875125e 5073 resched_curr(rq);
3a7e73a2
PZ
5074 /*
5075 * Only set the backward buddy when the current task is still
5076 * on the rq. This can happen when a wakeup gets interleaved
5077 * with schedule on the ->pre_schedule() or idle_balance()
5078 * point, either of which can * drop the rq lock.
5079 *
5080 * Also, during early boot the idle thread is in the fair class,
5081 * for obvious reasons its a bad idea to schedule back to it.
5082 */
5083 if (unlikely(!se->on_rq || curr == rq->idle))
5084 return;
5085
5086 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5087 set_last_buddy(se);
bf0f6f24
IM
5088}
5089
606dba2e
PZ
5090static struct task_struct *
5091pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5092{
5093 struct cfs_rq *cfs_rq = &rq->cfs;
5094 struct sched_entity *se;
678d5718 5095 struct task_struct *p;
37e117c0 5096 int new_tasks;
678d5718 5097
6e83125c 5098again:
678d5718
PZ
5099#ifdef CONFIG_FAIR_GROUP_SCHED
5100 if (!cfs_rq->nr_running)
38033c37 5101 goto idle;
678d5718 5102
3f1d2a31 5103 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5104 goto simple;
5105
5106 /*
5107 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5108 * likely that a next task is from the same cgroup as the current.
5109 *
5110 * Therefore attempt to avoid putting and setting the entire cgroup
5111 * hierarchy, only change the part that actually changes.
5112 */
5113
5114 do {
5115 struct sched_entity *curr = cfs_rq->curr;
5116
5117 /*
5118 * Since we got here without doing put_prev_entity() we also
5119 * have to consider cfs_rq->curr. If it is still a runnable
5120 * entity, update_curr() will update its vruntime, otherwise
5121 * forget we've ever seen it.
5122 */
5123 if (curr && curr->on_rq)
5124 update_curr(cfs_rq);
5125 else
5126 curr = NULL;
5127
5128 /*
5129 * This call to check_cfs_rq_runtime() will do the throttle and
5130 * dequeue its entity in the parent(s). Therefore the 'simple'
5131 * nr_running test will indeed be correct.
5132 */
5133 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5134 goto simple;
5135
5136 se = pick_next_entity(cfs_rq, curr);
5137 cfs_rq = group_cfs_rq(se);
5138 } while (cfs_rq);
5139
5140 p = task_of(se);
5141
5142 /*
5143 * Since we haven't yet done put_prev_entity and if the selected task
5144 * is a different task than we started out with, try and touch the
5145 * least amount of cfs_rqs.
5146 */
5147 if (prev != p) {
5148 struct sched_entity *pse = &prev->se;
5149
5150 while (!(cfs_rq = is_same_group(se, pse))) {
5151 int se_depth = se->depth;
5152 int pse_depth = pse->depth;
5153
5154 if (se_depth <= pse_depth) {
5155 put_prev_entity(cfs_rq_of(pse), pse);
5156 pse = parent_entity(pse);
5157 }
5158 if (se_depth >= pse_depth) {
5159 set_next_entity(cfs_rq_of(se), se);
5160 se = parent_entity(se);
5161 }
5162 }
5163
5164 put_prev_entity(cfs_rq, pse);
5165 set_next_entity(cfs_rq, se);
5166 }
5167
5168 if (hrtick_enabled(rq))
5169 hrtick_start_fair(rq, p);
5170
5171 return p;
5172simple:
5173 cfs_rq = &rq->cfs;
5174#endif
bf0f6f24 5175
36ace27e 5176 if (!cfs_rq->nr_running)
38033c37 5177 goto idle;
bf0f6f24 5178
3f1d2a31 5179 put_prev_task(rq, prev);
606dba2e 5180
bf0f6f24 5181 do {
678d5718 5182 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5183 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5184 cfs_rq = group_cfs_rq(se);
5185 } while (cfs_rq);
5186
8f4d37ec 5187 p = task_of(se);
678d5718 5188
b39e66ea
MG
5189 if (hrtick_enabled(rq))
5190 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5191
5192 return p;
38033c37
PZ
5193
5194idle:
e4aa358b 5195 new_tasks = idle_balance(rq);
37e117c0
PZ
5196 /*
5197 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5198 * possible for any higher priority task to appear. In that case we
5199 * must re-start the pick_next_entity() loop.
5200 */
e4aa358b 5201 if (new_tasks < 0)
37e117c0
PZ
5202 return RETRY_TASK;
5203
e4aa358b 5204 if (new_tasks > 0)
38033c37 5205 goto again;
38033c37
PZ
5206
5207 return NULL;
bf0f6f24
IM
5208}
5209
5210/*
5211 * Account for a descheduled task:
5212 */
31ee529c 5213static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5214{
5215 struct sched_entity *se = &prev->se;
5216 struct cfs_rq *cfs_rq;
5217
5218 for_each_sched_entity(se) {
5219 cfs_rq = cfs_rq_of(se);
ab6cde26 5220 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5221 }
5222}
5223
ac53db59
RR
5224/*
5225 * sched_yield() is very simple
5226 *
5227 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5228 */
5229static void yield_task_fair(struct rq *rq)
5230{
5231 struct task_struct *curr = rq->curr;
5232 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5233 struct sched_entity *se = &curr->se;
5234
5235 /*
5236 * Are we the only task in the tree?
5237 */
5238 if (unlikely(rq->nr_running == 1))
5239 return;
5240
5241 clear_buddies(cfs_rq, se);
5242
5243 if (curr->policy != SCHED_BATCH) {
5244 update_rq_clock(rq);
5245 /*
5246 * Update run-time statistics of the 'current'.
5247 */
5248 update_curr(cfs_rq);
916671c0
MG
5249 /*
5250 * Tell update_rq_clock() that we've just updated,
5251 * so we don't do microscopic update in schedule()
5252 * and double the fastpath cost.
5253 */
9edfbfed 5254 rq_clock_skip_update(rq, true);
ac53db59
RR
5255 }
5256
5257 set_skip_buddy(se);
5258}
5259
d95f4122
MG
5260static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5261{
5262 struct sched_entity *se = &p->se;
5263
5238cdd3
PT
5264 /* throttled hierarchies are not runnable */
5265 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5266 return false;
5267
5268 /* Tell the scheduler that we'd really like pse to run next. */
5269 set_next_buddy(se);
5270
d95f4122
MG
5271 yield_task_fair(rq);
5272
5273 return true;
5274}
5275
681f3e68 5276#ifdef CONFIG_SMP
bf0f6f24 5277/**************************************************
e9c84cb8
PZ
5278 * Fair scheduling class load-balancing methods.
5279 *
5280 * BASICS
5281 *
5282 * The purpose of load-balancing is to achieve the same basic fairness the
5283 * per-cpu scheduler provides, namely provide a proportional amount of compute
5284 * time to each task. This is expressed in the following equation:
5285 *
5286 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5287 *
5288 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5289 * W_i,0 is defined as:
5290 *
5291 * W_i,0 = \Sum_j w_i,j (2)
5292 *
5293 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5294 * is derived from the nice value as per prio_to_weight[].
5295 *
5296 * The weight average is an exponential decay average of the instantaneous
5297 * weight:
5298 *
5299 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5300 *
ced549fa 5301 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5302 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5303 * can also include other factors [XXX].
5304 *
5305 * To achieve this balance we define a measure of imbalance which follows
5306 * directly from (1):
5307 *
ced549fa 5308 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5309 *
5310 * We them move tasks around to minimize the imbalance. In the continuous
5311 * function space it is obvious this converges, in the discrete case we get
5312 * a few fun cases generally called infeasible weight scenarios.
5313 *
5314 * [XXX expand on:
5315 * - infeasible weights;
5316 * - local vs global optima in the discrete case. ]
5317 *
5318 *
5319 * SCHED DOMAINS
5320 *
5321 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5322 * for all i,j solution, we create a tree of cpus that follows the hardware
5323 * topology where each level pairs two lower groups (or better). This results
5324 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5325 * tree to only the first of the previous level and we decrease the frequency
5326 * of load-balance at each level inv. proportional to the number of cpus in
5327 * the groups.
5328 *
5329 * This yields:
5330 *
5331 * log_2 n 1 n
5332 * \Sum { --- * --- * 2^i } = O(n) (5)
5333 * i = 0 2^i 2^i
5334 * `- size of each group
5335 * | | `- number of cpus doing load-balance
5336 * | `- freq
5337 * `- sum over all levels
5338 *
5339 * Coupled with a limit on how many tasks we can migrate every balance pass,
5340 * this makes (5) the runtime complexity of the balancer.
5341 *
5342 * An important property here is that each CPU is still (indirectly) connected
5343 * to every other cpu in at most O(log n) steps:
5344 *
5345 * The adjacency matrix of the resulting graph is given by:
5346 *
5347 * log_2 n
5348 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5349 * k = 0
5350 *
5351 * And you'll find that:
5352 *
5353 * A^(log_2 n)_i,j != 0 for all i,j (7)
5354 *
5355 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5356 * The task movement gives a factor of O(m), giving a convergence complexity
5357 * of:
5358 *
5359 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5360 *
5361 *
5362 * WORK CONSERVING
5363 *
5364 * In order to avoid CPUs going idle while there's still work to do, new idle
5365 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5366 * tree itself instead of relying on other CPUs to bring it work.
5367 *
5368 * This adds some complexity to both (5) and (8) but it reduces the total idle
5369 * time.
5370 *
5371 * [XXX more?]
5372 *
5373 *
5374 * CGROUPS
5375 *
5376 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5377 *
5378 * s_k,i
5379 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5380 * S_k
5381 *
5382 * Where
5383 *
5384 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5385 *
5386 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5387 *
5388 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5389 * property.
5390 *
5391 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5392 * rewrite all of this once again.]
5393 */
bf0f6f24 5394
ed387b78
HS
5395static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5396
0ec8aa00
PZ
5397enum fbq_type { regular, remote, all };
5398
ddcdf6e7 5399#define LBF_ALL_PINNED 0x01
367456c7 5400#define LBF_NEED_BREAK 0x02
6263322c
PZ
5401#define LBF_DST_PINNED 0x04
5402#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5403
5404struct lb_env {
5405 struct sched_domain *sd;
5406
ddcdf6e7 5407 struct rq *src_rq;
85c1e7da 5408 int src_cpu;
ddcdf6e7
PZ
5409
5410 int dst_cpu;
5411 struct rq *dst_rq;
5412
88b8dac0
SV
5413 struct cpumask *dst_grpmask;
5414 int new_dst_cpu;
ddcdf6e7 5415 enum cpu_idle_type idle;
bd939f45 5416 long imbalance;
b9403130
MW
5417 /* The set of CPUs under consideration for load-balancing */
5418 struct cpumask *cpus;
5419
ddcdf6e7 5420 unsigned int flags;
367456c7
PZ
5421
5422 unsigned int loop;
5423 unsigned int loop_break;
5424 unsigned int loop_max;
0ec8aa00
PZ
5425
5426 enum fbq_type fbq_type;
163122b7 5427 struct list_head tasks;
ddcdf6e7
PZ
5428};
5429
029632fb
PZ
5430/*
5431 * Is this task likely cache-hot:
5432 */
5d5e2b1b 5433static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5434{
5435 s64 delta;
5436
e5673f28
KT
5437 lockdep_assert_held(&env->src_rq->lock);
5438
029632fb
PZ
5439 if (p->sched_class != &fair_sched_class)
5440 return 0;
5441
5442 if (unlikely(p->policy == SCHED_IDLE))
5443 return 0;
5444
5445 /*
5446 * Buddy candidates are cache hot:
5447 */
5d5e2b1b 5448 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5449 (&p->se == cfs_rq_of(&p->se)->next ||
5450 &p->se == cfs_rq_of(&p->se)->last))
5451 return 1;
5452
5453 if (sysctl_sched_migration_cost == -1)
5454 return 1;
5455 if (sysctl_sched_migration_cost == 0)
5456 return 0;
5457
5d5e2b1b 5458 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5459
5460 return delta < (s64)sysctl_sched_migration_cost;
5461}
5462
3a7053b3
MG
5463#ifdef CONFIG_NUMA_BALANCING
5464/* Returns true if the destination node has incurred more faults */
5465static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5466{
b1ad065e 5467 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5468 int src_nid, dst_nid;
5469
44dba3d5 5470 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5471 !(env->sd->flags & SD_NUMA)) {
5472 return false;
5473 }
5474
5475 src_nid = cpu_to_node(env->src_cpu);
5476 dst_nid = cpu_to_node(env->dst_cpu);
5477
83e1d2cd 5478 if (src_nid == dst_nid)
3a7053b3
MG
5479 return false;
5480
b1ad065e
RR
5481 if (numa_group) {
5482 /* Task is already in the group's interleave set. */
5483 if (node_isset(src_nid, numa_group->active_nodes))
5484 return false;
83e1d2cd 5485
b1ad065e
RR
5486 /* Task is moving into the group's interleave set. */
5487 if (node_isset(dst_nid, numa_group->active_nodes))
5488 return true;
83e1d2cd 5489
b1ad065e
RR
5490 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5491 }
5492
5493 /* Encourage migration to the preferred node. */
5494 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5495 return true;
5496
b1ad065e 5497 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5498}
7a0f3083
MG
5499
5500
5501static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5502{
b1ad065e 5503 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5504 int src_nid, dst_nid;
5505
5506 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5507 return false;
5508
44dba3d5 5509 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5510 return false;
5511
5512 src_nid = cpu_to_node(env->src_cpu);
5513 dst_nid = cpu_to_node(env->dst_cpu);
5514
83e1d2cd 5515 if (src_nid == dst_nid)
7a0f3083
MG
5516 return false;
5517
b1ad065e
RR
5518 if (numa_group) {
5519 /* Task is moving within/into the group's interleave set. */
5520 if (node_isset(dst_nid, numa_group->active_nodes))
5521 return false;
5522
5523 /* Task is moving out of the group's interleave set. */
5524 if (node_isset(src_nid, numa_group->active_nodes))
5525 return true;
5526
5527 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5528 }
5529
83e1d2cd
MG
5530 /* Migrating away from the preferred node is always bad. */
5531 if (src_nid == p->numa_preferred_nid)
5532 return true;
5533
b1ad065e 5534 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5535}
5536
3a7053b3
MG
5537#else
5538static inline bool migrate_improves_locality(struct task_struct *p,
5539 struct lb_env *env)
5540{
5541 return false;
5542}
7a0f3083
MG
5543
5544static inline bool migrate_degrades_locality(struct task_struct *p,
5545 struct lb_env *env)
5546{
5547 return false;
5548}
3a7053b3
MG
5549#endif
5550
1e3c88bd
PZ
5551/*
5552 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5553 */
5554static
8e45cb54 5555int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5556{
5557 int tsk_cache_hot = 0;
e5673f28
KT
5558
5559 lockdep_assert_held(&env->src_rq->lock);
5560
1e3c88bd
PZ
5561 /*
5562 * We do not migrate tasks that are:
d3198084 5563 * 1) throttled_lb_pair, or
1e3c88bd 5564 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5565 * 3) running (obviously), or
5566 * 4) are cache-hot on their current CPU.
1e3c88bd 5567 */
d3198084
JK
5568 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5569 return 0;
5570
ddcdf6e7 5571 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5572 int cpu;
88b8dac0 5573
41acab88 5574 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5575
6263322c
PZ
5576 env->flags |= LBF_SOME_PINNED;
5577
88b8dac0
SV
5578 /*
5579 * Remember if this task can be migrated to any other cpu in
5580 * our sched_group. We may want to revisit it if we couldn't
5581 * meet load balance goals by pulling other tasks on src_cpu.
5582 *
5583 * Also avoid computing new_dst_cpu if we have already computed
5584 * one in current iteration.
5585 */
6263322c 5586 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5587 return 0;
5588
e02e60c1
JK
5589 /* Prevent to re-select dst_cpu via env's cpus */
5590 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5591 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5592 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5593 env->new_dst_cpu = cpu;
5594 break;
5595 }
88b8dac0 5596 }
e02e60c1 5597
1e3c88bd
PZ
5598 return 0;
5599 }
88b8dac0
SV
5600
5601 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5602 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5603
ddcdf6e7 5604 if (task_running(env->src_rq, p)) {
41acab88 5605 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5606 return 0;
5607 }
5608
5609 /*
5610 * Aggressive migration if:
3a7053b3
MG
5611 * 1) destination numa is preferred
5612 * 2) task is cache cold, or
5613 * 3) too many balance attempts have failed.
1e3c88bd 5614 */
5d5e2b1b 5615 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5616 if (!tsk_cache_hot)
5617 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5618
7a96c231
KT
5619 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5620 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5621 if (tsk_cache_hot) {
5622 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5623 schedstat_inc(p, se.statistics.nr_forced_migrations);
5624 }
1e3c88bd
PZ
5625 return 1;
5626 }
5627
4e2dcb73
ZH
5628 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5629 return 0;
1e3c88bd
PZ
5630}
5631
897c395f 5632/*
163122b7
KT
5633 * detach_task() -- detach the task for the migration specified in env
5634 */
5635static void detach_task(struct task_struct *p, struct lb_env *env)
5636{
5637 lockdep_assert_held(&env->src_rq->lock);
5638
5639 deactivate_task(env->src_rq, p, 0);
5640 p->on_rq = TASK_ON_RQ_MIGRATING;
5641 set_task_cpu(p, env->dst_cpu);
5642}
5643
897c395f 5644/*
e5673f28 5645 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5646 * part of active balancing operations within "domain".
897c395f 5647 *
e5673f28 5648 * Returns a task if successful and NULL otherwise.
897c395f 5649 */
e5673f28 5650static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5651{
5652 struct task_struct *p, *n;
897c395f 5653
e5673f28
KT
5654 lockdep_assert_held(&env->src_rq->lock);
5655
367456c7 5656 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5657 if (!can_migrate_task(p, env))
5658 continue;
897c395f 5659
163122b7 5660 detach_task(p, env);
e5673f28 5661
367456c7 5662 /*
e5673f28 5663 * Right now, this is only the second place where
163122b7 5664 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5665 * so we can safely collect stats here rather than
163122b7 5666 * inside detach_tasks().
367456c7
PZ
5667 */
5668 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5669 return p;
897c395f 5670 }
e5673f28 5671 return NULL;
897c395f
PZ
5672}
5673
eb95308e
PZ
5674static const unsigned int sched_nr_migrate_break = 32;
5675
5d6523eb 5676/*
163122b7
KT
5677 * detach_tasks() -- tries to detach up to imbalance weighted load from
5678 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5679 *
163122b7 5680 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5681 */
163122b7 5682static int detach_tasks(struct lb_env *env)
1e3c88bd 5683{
5d6523eb
PZ
5684 struct list_head *tasks = &env->src_rq->cfs_tasks;
5685 struct task_struct *p;
367456c7 5686 unsigned long load;
163122b7
KT
5687 int detached = 0;
5688
5689 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5690
bd939f45 5691 if (env->imbalance <= 0)
5d6523eb 5692 return 0;
1e3c88bd 5693
5d6523eb
PZ
5694 while (!list_empty(tasks)) {
5695 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5696
367456c7
PZ
5697 env->loop++;
5698 /* We've more or less seen every task there is, call it quits */
5d6523eb 5699 if (env->loop > env->loop_max)
367456c7 5700 break;
5d6523eb
PZ
5701
5702 /* take a breather every nr_migrate tasks */
367456c7 5703 if (env->loop > env->loop_break) {
eb95308e 5704 env->loop_break += sched_nr_migrate_break;
8e45cb54 5705 env->flags |= LBF_NEED_BREAK;
ee00e66f 5706 break;
a195f004 5707 }
1e3c88bd 5708
d3198084 5709 if (!can_migrate_task(p, env))
367456c7
PZ
5710 goto next;
5711
5712 load = task_h_load(p);
5d6523eb 5713
eb95308e 5714 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5715 goto next;
5716
bd939f45 5717 if ((load / 2) > env->imbalance)
367456c7 5718 goto next;
1e3c88bd 5719
163122b7
KT
5720 detach_task(p, env);
5721 list_add(&p->se.group_node, &env->tasks);
5722
5723 detached++;
bd939f45 5724 env->imbalance -= load;
1e3c88bd
PZ
5725
5726#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5727 /*
5728 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5729 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5730 * the critical section.
5731 */
5d6523eb 5732 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5733 break;
1e3c88bd
PZ
5734#endif
5735
ee00e66f
PZ
5736 /*
5737 * We only want to steal up to the prescribed amount of
5738 * weighted load.
5739 */
bd939f45 5740 if (env->imbalance <= 0)
ee00e66f 5741 break;
367456c7
PZ
5742
5743 continue;
5744next:
5d6523eb 5745 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5746 }
5d6523eb 5747
1e3c88bd 5748 /*
163122b7
KT
5749 * Right now, this is one of only two places we collect this stat
5750 * so we can safely collect detach_one_task() stats here rather
5751 * than inside detach_one_task().
1e3c88bd 5752 */
163122b7 5753 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5754
163122b7
KT
5755 return detached;
5756}
5757
5758/*
5759 * attach_task() -- attach the task detached by detach_task() to its new rq.
5760 */
5761static void attach_task(struct rq *rq, struct task_struct *p)
5762{
5763 lockdep_assert_held(&rq->lock);
5764
5765 BUG_ON(task_rq(p) != rq);
5766 p->on_rq = TASK_ON_RQ_QUEUED;
5767 activate_task(rq, p, 0);
5768 check_preempt_curr(rq, p, 0);
5769}
5770
5771/*
5772 * attach_one_task() -- attaches the task returned from detach_one_task() to
5773 * its new rq.
5774 */
5775static void attach_one_task(struct rq *rq, struct task_struct *p)
5776{
5777 raw_spin_lock(&rq->lock);
5778 attach_task(rq, p);
5779 raw_spin_unlock(&rq->lock);
5780}
5781
5782/*
5783 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5784 * new rq.
5785 */
5786static void attach_tasks(struct lb_env *env)
5787{
5788 struct list_head *tasks = &env->tasks;
5789 struct task_struct *p;
5790
5791 raw_spin_lock(&env->dst_rq->lock);
5792
5793 while (!list_empty(tasks)) {
5794 p = list_first_entry(tasks, struct task_struct, se.group_node);
5795 list_del_init(&p->se.group_node);
1e3c88bd 5796
163122b7
KT
5797 attach_task(env->dst_rq, p);
5798 }
5799
5800 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5801}
5802
230059de 5803#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5804/*
5805 * update tg->load_weight by folding this cpu's load_avg
5806 */
48a16753 5807static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5808{
48a16753
PT
5809 struct sched_entity *se = tg->se[cpu];
5810 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5811
48a16753
PT
5812 /* throttled entities do not contribute to load */
5813 if (throttled_hierarchy(cfs_rq))
5814 return;
9e3081ca 5815
aff3e498 5816 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5817
82958366
PT
5818 if (se) {
5819 update_entity_load_avg(se, 1);
5820 /*
5821 * We pivot on our runnable average having decayed to zero for
5822 * list removal. This generally implies that all our children
5823 * have also been removed (modulo rounding error or bandwidth
5824 * control); however, such cases are rare and we can fix these
5825 * at enqueue.
5826 *
5827 * TODO: fix up out-of-order children on enqueue.
5828 */
5829 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5830 list_del_leaf_cfs_rq(cfs_rq);
5831 } else {
48a16753 5832 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5833 update_rq_runnable_avg(rq, rq->nr_running);
5834 }
9e3081ca
PZ
5835}
5836
48a16753 5837static void update_blocked_averages(int cpu)
9e3081ca 5838{
9e3081ca 5839 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5840 struct cfs_rq *cfs_rq;
5841 unsigned long flags;
9e3081ca 5842
48a16753
PT
5843 raw_spin_lock_irqsave(&rq->lock, flags);
5844 update_rq_clock(rq);
9763b67f
PZ
5845 /*
5846 * Iterates the task_group tree in a bottom up fashion, see
5847 * list_add_leaf_cfs_rq() for details.
5848 */
64660c86 5849 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5850 /*
5851 * Note: We may want to consider periodically releasing
5852 * rq->lock about these updates so that creating many task
5853 * groups does not result in continually extending hold time.
5854 */
5855 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5856 }
48a16753
PT
5857
5858 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5859}
5860
9763b67f 5861/*
68520796 5862 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5863 * This needs to be done in a top-down fashion because the load of a child
5864 * group is a fraction of its parents load.
5865 */
68520796 5866static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5867{
68520796
VD
5868 struct rq *rq = rq_of(cfs_rq);
5869 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5870 unsigned long now = jiffies;
68520796 5871 unsigned long load;
a35b6466 5872
68520796 5873 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5874 return;
5875
68520796
VD
5876 cfs_rq->h_load_next = NULL;
5877 for_each_sched_entity(se) {
5878 cfs_rq = cfs_rq_of(se);
5879 cfs_rq->h_load_next = se;
5880 if (cfs_rq->last_h_load_update == now)
5881 break;
5882 }
a35b6466 5883
68520796 5884 if (!se) {
7e3115ef 5885 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5886 cfs_rq->last_h_load_update = now;
5887 }
5888
5889 while ((se = cfs_rq->h_load_next) != NULL) {
5890 load = cfs_rq->h_load;
5891 load = div64_ul(load * se->avg.load_avg_contrib,
5892 cfs_rq->runnable_load_avg + 1);
5893 cfs_rq = group_cfs_rq(se);
5894 cfs_rq->h_load = load;
5895 cfs_rq->last_h_load_update = now;
5896 }
9763b67f
PZ
5897}
5898
367456c7 5899static unsigned long task_h_load(struct task_struct *p)
230059de 5900{
367456c7 5901 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5902
68520796 5903 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5904 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5905 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5906}
5907#else
48a16753 5908static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5909{
5910}
5911
367456c7 5912static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5913{
a003a25b 5914 return p->se.avg.load_avg_contrib;
1e3c88bd 5915}
230059de 5916#endif
1e3c88bd 5917
1e3c88bd 5918/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5919
5920enum group_type {
5921 group_other = 0,
5922 group_imbalanced,
5923 group_overloaded,
5924};
5925
1e3c88bd
PZ
5926/*
5927 * sg_lb_stats - stats of a sched_group required for load_balancing
5928 */
5929struct sg_lb_stats {
5930 unsigned long avg_load; /*Avg load across the CPUs of the group */
5931 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5932 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5933 unsigned long load_per_task;
63b2ca30 5934 unsigned long group_capacity;
8bb5b00c 5935 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5936 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5937 unsigned int idle_cpus;
5938 unsigned int group_weight;
caeb178c 5939 enum group_type group_type;
ea67821b 5940 int group_no_capacity;
0ec8aa00
PZ
5941#ifdef CONFIG_NUMA_BALANCING
5942 unsigned int nr_numa_running;
5943 unsigned int nr_preferred_running;
5944#endif
1e3c88bd
PZ
5945};
5946
56cf515b
JK
5947/*
5948 * sd_lb_stats - Structure to store the statistics of a sched_domain
5949 * during load balancing.
5950 */
5951struct sd_lb_stats {
5952 struct sched_group *busiest; /* Busiest group in this sd */
5953 struct sched_group *local; /* Local group in this sd */
5954 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5955 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5956 unsigned long avg_load; /* Average load across all groups in sd */
5957
56cf515b 5958 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5959 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5960};
5961
147c5fc2
PZ
5962static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5963{
5964 /*
5965 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5966 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5967 * We must however clear busiest_stat::avg_load because
5968 * update_sd_pick_busiest() reads this before assignment.
5969 */
5970 *sds = (struct sd_lb_stats){
5971 .busiest = NULL,
5972 .local = NULL,
5973 .total_load = 0UL,
63b2ca30 5974 .total_capacity = 0UL,
147c5fc2
PZ
5975 .busiest_stat = {
5976 .avg_load = 0UL,
caeb178c
RR
5977 .sum_nr_running = 0,
5978 .group_type = group_other,
147c5fc2
PZ
5979 },
5980 };
5981}
5982
1e3c88bd
PZ
5983/**
5984 * get_sd_load_idx - Obtain the load index for a given sched domain.
5985 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5986 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5987 *
5988 * Return: The load index.
1e3c88bd
PZ
5989 */
5990static inline int get_sd_load_idx(struct sched_domain *sd,
5991 enum cpu_idle_type idle)
5992{
5993 int load_idx;
5994
5995 switch (idle) {
5996 case CPU_NOT_IDLE:
5997 load_idx = sd->busy_idx;
5998 break;
5999
6000 case CPU_NEWLY_IDLE:
6001 load_idx = sd->newidle_idx;
6002 break;
6003 default:
6004 load_idx = sd->idle_idx;
6005 break;
6006 }
6007
6008 return load_idx;
6009}
6010
26bc3c50 6011static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6012{
26bc3c50
VG
6013 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6014 return sd->smt_gain / sd->span_weight;
1e3c88bd 6015
26bc3c50 6016 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6017}
6018
26bc3c50 6019unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6020{
26bc3c50 6021 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6022}
6023
ced549fa 6024static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6025{
6026 struct rq *rq = cpu_rq(cpu);
b5b4860d 6027 u64 total, used, age_stamp, avg;
cadefd3d 6028 s64 delta;
1e3c88bd 6029
b654f7de
PZ
6030 /*
6031 * Since we're reading these variables without serialization make sure
6032 * we read them once before doing sanity checks on them.
6033 */
6034 age_stamp = ACCESS_ONCE(rq->age_stamp);
6035 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 6036 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6037
cadefd3d
PZ
6038 if (unlikely(delta < 0))
6039 delta = 0;
6040
6041 total = sched_avg_period() + delta;
aa483808 6042
b5b4860d 6043 used = div_u64(avg, total);
1e3c88bd 6044
b5b4860d
VG
6045 if (likely(used < SCHED_CAPACITY_SCALE))
6046 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6047
b5b4860d 6048 return 1;
1e3c88bd
PZ
6049}
6050
ced549fa 6051static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6052{
ca8ce3d0 6053 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6054 struct sched_group *sdg = sd->groups;
6055
26bc3c50
VG
6056 if (sched_feat(ARCH_CAPACITY))
6057 capacity *= arch_scale_cpu_capacity(sd, cpu);
6058 else
6059 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6060
26bc3c50 6061 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6062
ca6d75e6 6063 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6064
ced549fa 6065 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6066 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6067
ced549fa
NP
6068 if (!capacity)
6069 capacity = 1;
1e3c88bd 6070
ced549fa
NP
6071 cpu_rq(cpu)->cpu_capacity = capacity;
6072 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6073}
6074
63b2ca30 6075void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6076{
6077 struct sched_domain *child = sd->child;
6078 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6079 unsigned long capacity;
4ec4412e
VG
6080 unsigned long interval;
6081
6082 interval = msecs_to_jiffies(sd->balance_interval);
6083 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6084 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6085
6086 if (!child) {
ced549fa 6087 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6088 return;
6089 }
6090
dc7ff76e 6091 capacity = 0;
1e3c88bd 6092
74a5ce20
PZ
6093 if (child->flags & SD_OVERLAP) {
6094 /*
6095 * SD_OVERLAP domains cannot assume that child groups
6096 * span the current group.
6097 */
6098
863bffc8 6099 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6100 struct sched_group_capacity *sgc;
9abf24d4 6101 struct rq *rq = cpu_rq(cpu);
863bffc8 6102
9abf24d4 6103 /*
63b2ca30 6104 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6105 * gets here before we've attached the domains to the
6106 * runqueues.
6107 *
ced549fa
NP
6108 * Use capacity_of(), which is set irrespective of domains
6109 * in update_cpu_capacity().
9abf24d4 6110 *
dc7ff76e 6111 * This avoids capacity from being 0 and
9abf24d4 6112 * causing divide-by-zero issues on boot.
9abf24d4
SD
6113 */
6114 if (unlikely(!rq->sd)) {
ced549fa 6115 capacity += capacity_of(cpu);
9abf24d4
SD
6116 continue;
6117 }
863bffc8 6118
63b2ca30 6119 sgc = rq->sd->groups->sgc;
63b2ca30 6120 capacity += sgc->capacity;
863bffc8 6121 }
74a5ce20
PZ
6122 } else {
6123 /*
6124 * !SD_OVERLAP domains can assume that child groups
6125 * span the current group.
6126 */
6127
6128 group = child->groups;
6129 do {
63b2ca30 6130 capacity += group->sgc->capacity;
74a5ce20
PZ
6131 group = group->next;
6132 } while (group != child->groups);
6133 }
1e3c88bd 6134
63b2ca30 6135 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6136}
6137
9d5efe05 6138/*
ea67821b
VG
6139 * Check whether the capacity of the rq has been noticeably reduced by side
6140 * activity. The imbalance_pct is used for the threshold.
6141 * Return true is the capacity is reduced
9d5efe05
SV
6142 */
6143static inline int
ea67821b 6144check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6145{
ea67821b
VG
6146 return ((rq->cpu_capacity * sd->imbalance_pct) <
6147 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6148}
6149
30ce5dab
PZ
6150/*
6151 * Group imbalance indicates (and tries to solve) the problem where balancing
6152 * groups is inadequate due to tsk_cpus_allowed() constraints.
6153 *
6154 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6155 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6156 * Something like:
6157 *
6158 * { 0 1 2 3 } { 4 5 6 7 }
6159 * * * * *
6160 *
6161 * If we were to balance group-wise we'd place two tasks in the first group and
6162 * two tasks in the second group. Clearly this is undesired as it will overload
6163 * cpu 3 and leave one of the cpus in the second group unused.
6164 *
6165 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6166 * by noticing the lower domain failed to reach balance and had difficulty
6167 * moving tasks due to affinity constraints.
30ce5dab
PZ
6168 *
6169 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6170 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6171 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6172 * to create an effective group imbalance.
6173 *
6174 * This is a somewhat tricky proposition since the next run might not find the
6175 * group imbalance and decide the groups need to be balanced again. A most
6176 * subtle and fragile situation.
6177 */
6178
6263322c 6179static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6180{
63b2ca30 6181 return group->sgc->imbalance;
30ce5dab
PZ
6182}
6183
b37d9316 6184/*
ea67821b
VG
6185 * group_has_capacity returns true if the group has spare capacity that could
6186 * be used by some tasks.
6187 * We consider that a group has spare capacity if the * number of task is
6188 * smaller than the number of CPUs or if the usage is lower than the available
6189 * capacity for CFS tasks.
6190 * For the latter, we use a threshold to stabilize the state, to take into
6191 * account the variance of the tasks' load and to return true if the available
6192 * capacity in meaningful for the load balancer.
6193 * As an example, an available capacity of 1% can appear but it doesn't make
6194 * any benefit for the load balance.
b37d9316 6195 */
ea67821b
VG
6196static inline bool
6197group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6198{
ea67821b
VG
6199 if (sgs->sum_nr_running < sgs->group_weight)
6200 return true;
c61037e9 6201
ea67821b
VG
6202 if ((sgs->group_capacity * 100) >
6203 (sgs->group_usage * env->sd->imbalance_pct))
6204 return true;
b37d9316 6205
ea67821b
VG
6206 return false;
6207}
6208
6209/*
6210 * group_is_overloaded returns true if the group has more tasks than it can
6211 * handle.
6212 * group_is_overloaded is not equals to !group_has_capacity because a group
6213 * with the exact right number of tasks, has no more spare capacity but is not
6214 * overloaded so both group_has_capacity and group_is_overloaded return
6215 * false.
6216 */
6217static inline bool
6218group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6219{
6220 if (sgs->sum_nr_running <= sgs->group_weight)
6221 return false;
b37d9316 6222
ea67821b
VG
6223 if ((sgs->group_capacity * 100) <
6224 (sgs->group_usage * env->sd->imbalance_pct))
6225 return true;
b37d9316 6226
ea67821b 6227 return false;
b37d9316
PZ
6228}
6229
ea67821b
VG
6230static enum group_type group_classify(struct lb_env *env,
6231 struct sched_group *group,
6232 struct sg_lb_stats *sgs)
caeb178c 6233{
ea67821b 6234 if (sgs->group_no_capacity)
caeb178c
RR
6235 return group_overloaded;
6236
6237 if (sg_imbalanced(group))
6238 return group_imbalanced;
6239
6240 return group_other;
6241}
6242
1e3c88bd
PZ
6243/**
6244 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6245 * @env: The load balancing environment.
1e3c88bd 6246 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6247 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6248 * @local_group: Does group contain this_cpu.
1e3c88bd 6249 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6250 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6251 */
bd939f45
PZ
6252static inline void update_sg_lb_stats(struct lb_env *env,
6253 struct sched_group *group, int load_idx,
4486edd1
TC
6254 int local_group, struct sg_lb_stats *sgs,
6255 bool *overload)
1e3c88bd 6256{
30ce5dab 6257 unsigned long load;
bd939f45 6258 int i;
1e3c88bd 6259
b72ff13c
PZ
6260 memset(sgs, 0, sizeof(*sgs));
6261
b9403130 6262 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6263 struct rq *rq = cpu_rq(i);
6264
1e3c88bd 6265 /* Bias balancing toward cpus of our domain */
6263322c 6266 if (local_group)
04f733b4 6267 load = target_load(i, load_idx);
6263322c 6268 else
1e3c88bd 6269 load = source_load(i, load_idx);
1e3c88bd
PZ
6270
6271 sgs->group_load += load;
8bb5b00c 6272 sgs->group_usage += get_cpu_usage(i);
65fdac08 6273 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6274
6275 if (rq->nr_running > 1)
6276 *overload = true;
6277
0ec8aa00
PZ
6278#ifdef CONFIG_NUMA_BALANCING
6279 sgs->nr_numa_running += rq->nr_numa_running;
6280 sgs->nr_preferred_running += rq->nr_preferred_running;
6281#endif
1e3c88bd 6282 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6283 if (idle_cpu(i))
6284 sgs->idle_cpus++;
1e3c88bd
PZ
6285 }
6286
63b2ca30
NP
6287 /* Adjust by relative CPU capacity of the group */
6288 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6289 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6290
dd5feea1 6291 if (sgs->sum_nr_running)
38d0f770 6292 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6293
aae6d3dd 6294 sgs->group_weight = group->group_weight;
b37d9316 6295
ea67821b
VG
6296 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6297 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6298}
6299
532cb4c4
MN
6300/**
6301 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6302 * @env: The load balancing environment.
532cb4c4
MN
6303 * @sds: sched_domain statistics
6304 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6305 * @sgs: sched_group statistics
532cb4c4
MN
6306 *
6307 * Determine if @sg is a busier group than the previously selected
6308 * busiest group.
e69f6186
YB
6309 *
6310 * Return: %true if @sg is a busier group than the previously selected
6311 * busiest group. %false otherwise.
532cb4c4 6312 */
bd939f45 6313static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6314 struct sd_lb_stats *sds,
6315 struct sched_group *sg,
bd939f45 6316 struct sg_lb_stats *sgs)
532cb4c4 6317{
caeb178c 6318 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6319
caeb178c 6320 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6321 return true;
6322
caeb178c
RR
6323 if (sgs->group_type < busiest->group_type)
6324 return false;
6325
6326 if (sgs->avg_load <= busiest->avg_load)
6327 return false;
6328
6329 /* This is the busiest node in its class. */
6330 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6331 return true;
6332
6333 /*
6334 * ASYM_PACKING needs to move all the work to the lowest
6335 * numbered CPUs in the group, therefore mark all groups
6336 * higher than ourself as busy.
6337 */
caeb178c 6338 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6339 if (!sds->busiest)
6340 return true;
6341
6342 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6343 return true;
6344 }
6345
6346 return false;
6347}
6348
0ec8aa00
PZ
6349#ifdef CONFIG_NUMA_BALANCING
6350static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6351{
6352 if (sgs->sum_nr_running > sgs->nr_numa_running)
6353 return regular;
6354 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6355 return remote;
6356 return all;
6357}
6358
6359static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6360{
6361 if (rq->nr_running > rq->nr_numa_running)
6362 return regular;
6363 if (rq->nr_running > rq->nr_preferred_running)
6364 return remote;
6365 return all;
6366}
6367#else
6368static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6369{
6370 return all;
6371}
6372
6373static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6374{
6375 return regular;
6376}
6377#endif /* CONFIG_NUMA_BALANCING */
6378
1e3c88bd 6379/**
461819ac 6380 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6381 * @env: The load balancing environment.
1e3c88bd
PZ
6382 * @sds: variable to hold the statistics for this sched_domain.
6383 */
0ec8aa00 6384static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6385{
bd939f45
PZ
6386 struct sched_domain *child = env->sd->child;
6387 struct sched_group *sg = env->sd->groups;
56cf515b 6388 struct sg_lb_stats tmp_sgs;
1e3c88bd 6389 int load_idx, prefer_sibling = 0;
4486edd1 6390 bool overload = false;
1e3c88bd
PZ
6391
6392 if (child && child->flags & SD_PREFER_SIBLING)
6393 prefer_sibling = 1;
6394
bd939f45 6395 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6396
6397 do {
56cf515b 6398 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6399 int local_group;
6400
bd939f45 6401 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6402 if (local_group) {
6403 sds->local = sg;
6404 sgs = &sds->local_stat;
b72ff13c
PZ
6405
6406 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6407 time_after_eq(jiffies, sg->sgc->next_update))
6408 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6409 }
1e3c88bd 6410
4486edd1
TC
6411 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6412 &overload);
1e3c88bd 6413
b72ff13c
PZ
6414 if (local_group)
6415 goto next_group;
6416
1e3c88bd
PZ
6417 /*
6418 * In case the child domain prefers tasks go to siblings
ea67821b 6419 * first, lower the sg capacity so that we'll try
75dd321d
NR
6420 * and move all the excess tasks away. We lower the capacity
6421 * of a group only if the local group has the capacity to fit
ea67821b
VG
6422 * these excess tasks. The extra check prevents the case where
6423 * you always pull from the heaviest group when it is already
6424 * under-utilized (possible with a large weight task outweighs
6425 * the tasks on the system).
1e3c88bd 6426 */
b72ff13c 6427 if (prefer_sibling && sds->local &&
ea67821b
VG
6428 group_has_capacity(env, &sds->local_stat) &&
6429 (sgs->sum_nr_running > 1)) {
6430 sgs->group_no_capacity = 1;
6431 sgs->group_type = group_overloaded;
cb0b9f24 6432 }
1e3c88bd 6433
b72ff13c 6434 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6435 sds->busiest = sg;
56cf515b 6436 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6437 }
6438
b72ff13c
PZ
6439next_group:
6440 /* Now, start updating sd_lb_stats */
6441 sds->total_load += sgs->group_load;
63b2ca30 6442 sds->total_capacity += sgs->group_capacity;
b72ff13c 6443
532cb4c4 6444 sg = sg->next;
bd939f45 6445 } while (sg != env->sd->groups);
0ec8aa00
PZ
6446
6447 if (env->sd->flags & SD_NUMA)
6448 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6449
6450 if (!env->sd->parent) {
6451 /* update overload indicator if we are at root domain */
6452 if (env->dst_rq->rd->overload != overload)
6453 env->dst_rq->rd->overload = overload;
6454 }
6455
532cb4c4
MN
6456}
6457
532cb4c4
MN
6458/**
6459 * check_asym_packing - Check to see if the group is packed into the
6460 * sched doman.
6461 *
6462 * This is primarily intended to used at the sibling level. Some
6463 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6464 * case of POWER7, it can move to lower SMT modes only when higher
6465 * threads are idle. When in lower SMT modes, the threads will
6466 * perform better since they share less core resources. Hence when we
6467 * have idle threads, we want them to be the higher ones.
6468 *
6469 * This packing function is run on idle threads. It checks to see if
6470 * the busiest CPU in this domain (core in the P7 case) has a higher
6471 * CPU number than the packing function is being run on. Here we are
6472 * assuming lower CPU number will be equivalent to lower a SMT thread
6473 * number.
6474 *
e69f6186 6475 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6476 * this CPU. The amount of the imbalance is returned in *imbalance.
6477 *
cd96891d 6478 * @env: The load balancing environment.
532cb4c4 6479 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6480 */
bd939f45 6481static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6482{
6483 int busiest_cpu;
6484
bd939f45 6485 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6486 return 0;
6487
6488 if (!sds->busiest)
6489 return 0;
6490
6491 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6492 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6493 return 0;
6494
bd939f45 6495 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6496 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6497 SCHED_CAPACITY_SCALE);
bd939f45 6498
532cb4c4 6499 return 1;
1e3c88bd
PZ
6500}
6501
6502/**
6503 * fix_small_imbalance - Calculate the minor imbalance that exists
6504 * amongst the groups of a sched_domain, during
6505 * load balancing.
cd96891d 6506 * @env: The load balancing environment.
1e3c88bd 6507 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6508 */
bd939f45
PZ
6509static inline
6510void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6511{
63b2ca30 6512 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6513 unsigned int imbn = 2;
dd5feea1 6514 unsigned long scaled_busy_load_per_task;
56cf515b 6515 struct sg_lb_stats *local, *busiest;
1e3c88bd 6516
56cf515b
JK
6517 local = &sds->local_stat;
6518 busiest = &sds->busiest_stat;
1e3c88bd 6519
56cf515b
JK
6520 if (!local->sum_nr_running)
6521 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6522 else if (busiest->load_per_task > local->load_per_task)
6523 imbn = 1;
dd5feea1 6524
56cf515b 6525 scaled_busy_load_per_task =
ca8ce3d0 6526 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6527 busiest->group_capacity;
56cf515b 6528
3029ede3
VD
6529 if (busiest->avg_load + scaled_busy_load_per_task >=
6530 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6531 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6532 return;
6533 }
6534
6535 /*
6536 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6537 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6538 * moving them.
6539 */
6540
63b2ca30 6541 capa_now += busiest->group_capacity *
56cf515b 6542 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6543 capa_now += local->group_capacity *
56cf515b 6544 min(local->load_per_task, local->avg_load);
ca8ce3d0 6545 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6546
6547 /* Amount of load we'd subtract */
a2cd4260 6548 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6549 capa_move += busiest->group_capacity *
56cf515b 6550 min(busiest->load_per_task,
a2cd4260 6551 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6552 }
1e3c88bd
PZ
6553
6554 /* Amount of load we'd add */
63b2ca30 6555 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6556 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6557 tmp = (busiest->avg_load * busiest->group_capacity) /
6558 local->group_capacity;
56cf515b 6559 } else {
ca8ce3d0 6560 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6561 local->group_capacity;
56cf515b 6562 }
63b2ca30 6563 capa_move += local->group_capacity *
3ae11c90 6564 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6565 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6566
6567 /* Move if we gain throughput */
63b2ca30 6568 if (capa_move > capa_now)
56cf515b 6569 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6570}
6571
6572/**
6573 * calculate_imbalance - Calculate the amount of imbalance present within the
6574 * groups of a given sched_domain during load balance.
bd939f45 6575 * @env: load balance environment
1e3c88bd 6576 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6577 */
bd939f45 6578static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6579{
dd5feea1 6580 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6581 struct sg_lb_stats *local, *busiest;
6582
6583 local = &sds->local_stat;
56cf515b 6584 busiest = &sds->busiest_stat;
dd5feea1 6585
caeb178c 6586 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6587 /*
6588 * In the group_imb case we cannot rely on group-wide averages
6589 * to ensure cpu-load equilibrium, look at wider averages. XXX
6590 */
56cf515b
JK
6591 busiest->load_per_task =
6592 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6593 }
6594
1e3c88bd
PZ
6595 /*
6596 * In the presence of smp nice balancing, certain scenarios can have
6597 * max load less than avg load(as we skip the groups at or below
ced549fa 6598 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6599 */
b1885550
VD
6600 if (busiest->avg_load <= sds->avg_load ||
6601 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6602 env->imbalance = 0;
6603 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6604 }
6605
9a5d9ba6
PZ
6606 /*
6607 * If there aren't any idle cpus, avoid creating some.
6608 */
6609 if (busiest->group_type == group_overloaded &&
6610 local->group_type == group_overloaded) {
ea67821b
VG
6611 load_above_capacity = busiest->sum_nr_running *
6612 SCHED_LOAD_SCALE;
6613 if (load_above_capacity > busiest->group_capacity)
6614 load_above_capacity -= busiest->group_capacity;
6615 else
6616 load_above_capacity = ~0UL;
dd5feea1
SS
6617 }
6618
6619 /*
6620 * We're trying to get all the cpus to the average_load, so we don't
6621 * want to push ourselves above the average load, nor do we wish to
6622 * reduce the max loaded cpu below the average load. At the same time,
6623 * we also don't want to reduce the group load below the group capacity
6624 * (so that we can implement power-savings policies etc). Thus we look
6625 * for the minimum possible imbalance.
dd5feea1 6626 */
30ce5dab 6627 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6628
6629 /* How much load to actually move to equalise the imbalance */
56cf515b 6630 env->imbalance = min(
63b2ca30
NP
6631 max_pull * busiest->group_capacity,
6632 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6633 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6634
6635 /*
6636 * if *imbalance is less than the average load per runnable task
25985edc 6637 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6638 * a think about bumping its value to force at least one task to be
6639 * moved
6640 */
56cf515b 6641 if (env->imbalance < busiest->load_per_task)
bd939f45 6642 return fix_small_imbalance(env, sds);
1e3c88bd 6643}
fab47622 6644
1e3c88bd
PZ
6645/******* find_busiest_group() helpers end here *********************/
6646
6647/**
6648 * find_busiest_group - Returns the busiest group within the sched_domain
6649 * if there is an imbalance. If there isn't an imbalance, and
6650 * the user has opted for power-savings, it returns a group whose
6651 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6652 * such a group exists.
6653 *
6654 * Also calculates the amount of weighted load which should be moved
6655 * to restore balance.
6656 *
cd96891d 6657 * @env: The load balancing environment.
1e3c88bd 6658 *
e69f6186 6659 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6660 * - If no imbalance and user has opted for power-savings balance,
6661 * return the least loaded group whose CPUs can be
6662 * put to idle by rebalancing its tasks onto our group.
6663 */
56cf515b 6664static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6665{
56cf515b 6666 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6667 struct sd_lb_stats sds;
6668
147c5fc2 6669 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6670
6671 /*
6672 * Compute the various statistics relavent for load balancing at
6673 * this level.
6674 */
23f0d209 6675 update_sd_lb_stats(env, &sds);
56cf515b
JK
6676 local = &sds.local_stat;
6677 busiest = &sds.busiest_stat;
1e3c88bd 6678
ea67821b 6679 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6680 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6681 check_asym_packing(env, &sds))
532cb4c4
MN
6682 return sds.busiest;
6683
cc57aa8f 6684 /* There is no busy sibling group to pull tasks from */
56cf515b 6685 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6686 goto out_balanced;
6687
ca8ce3d0
NP
6688 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6689 / sds.total_capacity;
b0432d8f 6690
866ab43e
PZ
6691 /*
6692 * If the busiest group is imbalanced the below checks don't
30ce5dab 6693 * work because they assume all things are equal, which typically
866ab43e
PZ
6694 * isn't true due to cpus_allowed constraints and the like.
6695 */
caeb178c 6696 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6697 goto force_balance;
6698
cc57aa8f 6699 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6700 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6701 busiest->group_no_capacity)
fab47622
NR
6702 goto force_balance;
6703
cc57aa8f 6704 /*
9c58c79a 6705 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6706 * don't try and pull any tasks.
6707 */
56cf515b 6708 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6709 goto out_balanced;
6710
cc57aa8f
PZ
6711 /*
6712 * Don't pull any tasks if this group is already above the domain
6713 * average load.
6714 */
56cf515b 6715 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6716 goto out_balanced;
6717
bd939f45 6718 if (env->idle == CPU_IDLE) {
aae6d3dd 6719 /*
43f4d666
VG
6720 * This cpu is idle. If the busiest group is not overloaded
6721 * and there is no imbalance between this and busiest group
6722 * wrt idle cpus, it is balanced. The imbalance becomes
6723 * significant if the diff is greater than 1 otherwise we
6724 * might end up to just move the imbalance on another group
aae6d3dd 6725 */
43f4d666
VG
6726 if ((busiest->group_type != group_overloaded) &&
6727 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6728 goto out_balanced;
c186fafe
PZ
6729 } else {
6730 /*
6731 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6732 * imbalance_pct to be conservative.
6733 */
56cf515b
JK
6734 if (100 * busiest->avg_load <=
6735 env->sd->imbalance_pct * local->avg_load)
c186fafe 6736 goto out_balanced;
aae6d3dd 6737 }
1e3c88bd 6738
fab47622 6739force_balance:
1e3c88bd 6740 /* Looks like there is an imbalance. Compute it */
bd939f45 6741 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6742 return sds.busiest;
6743
6744out_balanced:
bd939f45 6745 env->imbalance = 0;
1e3c88bd
PZ
6746 return NULL;
6747}
6748
6749/*
6750 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6751 */
bd939f45 6752static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6753 struct sched_group *group)
1e3c88bd
PZ
6754{
6755 struct rq *busiest = NULL, *rq;
ced549fa 6756 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6757 int i;
6758
6906a408 6759 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6760 unsigned long capacity, wl;
0ec8aa00
PZ
6761 enum fbq_type rt;
6762
6763 rq = cpu_rq(i);
6764 rt = fbq_classify_rq(rq);
1e3c88bd 6765
0ec8aa00
PZ
6766 /*
6767 * We classify groups/runqueues into three groups:
6768 * - regular: there are !numa tasks
6769 * - remote: there are numa tasks that run on the 'wrong' node
6770 * - all: there is no distinction
6771 *
6772 * In order to avoid migrating ideally placed numa tasks,
6773 * ignore those when there's better options.
6774 *
6775 * If we ignore the actual busiest queue to migrate another
6776 * task, the next balance pass can still reduce the busiest
6777 * queue by moving tasks around inside the node.
6778 *
6779 * If we cannot move enough load due to this classification
6780 * the next pass will adjust the group classification and
6781 * allow migration of more tasks.
6782 *
6783 * Both cases only affect the total convergence complexity.
6784 */
6785 if (rt > env->fbq_type)
6786 continue;
6787
ced549fa 6788 capacity = capacity_of(i);
9d5efe05 6789
6e40f5bb 6790 wl = weighted_cpuload(i);
1e3c88bd 6791
6e40f5bb
TG
6792 /*
6793 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6794 * which is not scaled with the cpu capacity.
6e40f5bb 6795 */
ea67821b
VG
6796
6797 if (rq->nr_running == 1 && wl > env->imbalance &&
6798 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6799 continue;
6800
6e40f5bb
TG
6801 /*
6802 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6803 * the weighted_cpuload() scaled with the cpu capacity, so
6804 * that the load can be moved away from the cpu that is
6805 * potentially running at a lower capacity.
95a79b80 6806 *
ced549fa 6807 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6808 * multiplication to rid ourselves of the division works out
ced549fa
NP
6809 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6810 * our previous maximum.
6e40f5bb 6811 */
ced549fa 6812 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6813 busiest_load = wl;
ced549fa 6814 busiest_capacity = capacity;
1e3c88bd
PZ
6815 busiest = rq;
6816 }
6817 }
6818
6819 return busiest;
6820}
6821
6822/*
6823 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6824 * so long as it is large enough.
6825 */
6826#define MAX_PINNED_INTERVAL 512
6827
6828/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6829DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6830
bd939f45 6831static int need_active_balance(struct lb_env *env)
1af3ed3d 6832{
bd939f45
PZ
6833 struct sched_domain *sd = env->sd;
6834
6835 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6836
6837 /*
6838 * ASYM_PACKING needs to force migrate tasks from busy but
6839 * higher numbered CPUs in order to pack all tasks in the
6840 * lowest numbered CPUs.
6841 */
bd939f45 6842 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6843 return 1;
1af3ed3d
PZ
6844 }
6845
1aaf90a4
VG
6846 /*
6847 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6848 * It's worth migrating the task if the src_cpu's capacity is reduced
6849 * because of other sched_class or IRQs if more capacity stays
6850 * available on dst_cpu.
6851 */
6852 if ((env->idle != CPU_NOT_IDLE) &&
6853 (env->src_rq->cfs.h_nr_running == 1)) {
6854 if ((check_cpu_capacity(env->src_rq, sd)) &&
6855 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6856 return 1;
6857 }
6858
1af3ed3d
PZ
6859 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6860}
6861
969c7921
TH
6862static int active_load_balance_cpu_stop(void *data);
6863
23f0d209
JK
6864static int should_we_balance(struct lb_env *env)
6865{
6866 struct sched_group *sg = env->sd->groups;
6867 struct cpumask *sg_cpus, *sg_mask;
6868 int cpu, balance_cpu = -1;
6869
6870 /*
6871 * In the newly idle case, we will allow all the cpu's
6872 * to do the newly idle load balance.
6873 */
6874 if (env->idle == CPU_NEWLY_IDLE)
6875 return 1;
6876
6877 sg_cpus = sched_group_cpus(sg);
6878 sg_mask = sched_group_mask(sg);
6879 /* Try to find first idle cpu */
6880 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6881 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6882 continue;
6883
6884 balance_cpu = cpu;
6885 break;
6886 }
6887
6888 if (balance_cpu == -1)
6889 balance_cpu = group_balance_cpu(sg);
6890
6891 /*
6892 * First idle cpu or the first cpu(busiest) in this sched group
6893 * is eligible for doing load balancing at this and above domains.
6894 */
b0cff9d8 6895 return balance_cpu == env->dst_cpu;
23f0d209
JK
6896}
6897
1e3c88bd
PZ
6898/*
6899 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6900 * tasks if there is an imbalance.
6901 */
6902static int load_balance(int this_cpu, struct rq *this_rq,
6903 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6904 int *continue_balancing)
1e3c88bd 6905{
88b8dac0 6906 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6907 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6908 struct sched_group *group;
1e3c88bd
PZ
6909 struct rq *busiest;
6910 unsigned long flags;
4ba29684 6911 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6912
8e45cb54
PZ
6913 struct lb_env env = {
6914 .sd = sd,
ddcdf6e7
PZ
6915 .dst_cpu = this_cpu,
6916 .dst_rq = this_rq,
88b8dac0 6917 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6918 .idle = idle,
eb95308e 6919 .loop_break = sched_nr_migrate_break,
b9403130 6920 .cpus = cpus,
0ec8aa00 6921 .fbq_type = all,
163122b7 6922 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6923 };
6924
cfc03118
JK
6925 /*
6926 * For NEWLY_IDLE load_balancing, we don't need to consider
6927 * other cpus in our group
6928 */
e02e60c1 6929 if (idle == CPU_NEWLY_IDLE)
cfc03118 6930 env.dst_grpmask = NULL;
cfc03118 6931
1e3c88bd
PZ
6932 cpumask_copy(cpus, cpu_active_mask);
6933
1e3c88bd
PZ
6934 schedstat_inc(sd, lb_count[idle]);
6935
6936redo:
23f0d209
JK
6937 if (!should_we_balance(&env)) {
6938 *continue_balancing = 0;
1e3c88bd 6939 goto out_balanced;
23f0d209 6940 }
1e3c88bd 6941
23f0d209 6942 group = find_busiest_group(&env);
1e3c88bd
PZ
6943 if (!group) {
6944 schedstat_inc(sd, lb_nobusyg[idle]);
6945 goto out_balanced;
6946 }
6947
b9403130 6948 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6949 if (!busiest) {
6950 schedstat_inc(sd, lb_nobusyq[idle]);
6951 goto out_balanced;
6952 }
6953
78feefc5 6954 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6955
bd939f45 6956 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6957
1aaf90a4
VG
6958 env.src_cpu = busiest->cpu;
6959 env.src_rq = busiest;
6960
1e3c88bd
PZ
6961 ld_moved = 0;
6962 if (busiest->nr_running > 1) {
6963 /*
6964 * Attempt to move tasks. If find_busiest_group has found
6965 * an imbalance but busiest->nr_running <= 1, the group is
6966 * still unbalanced. ld_moved simply stays zero, so it is
6967 * correctly treated as an imbalance.
6968 */
8e45cb54 6969 env.flags |= LBF_ALL_PINNED;
c82513e5 6970 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6971
5d6523eb 6972more_balance:
163122b7 6973 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6974
6975 /*
6976 * cur_ld_moved - load moved in current iteration
6977 * ld_moved - cumulative load moved across iterations
6978 */
163122b7 6979 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6980
6981 /*
163122b7
KT
6982 * We've detached some tasks from busiest_rq. Every
6983 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6984 * unlock busiest->lock, and we are able to be sure
6985 * that nobody can manipulate the tasks in parallel.
6986 * See task_rq_lock() family for the details.
1e3c88bd 6987 */
163122b7
KT
6988
6989 raw_spin_unlock(&busiest->lock);
6990
6991 if (cur_ld_moved) {
6992 attach_tasks(&env);
6993 ld_moved += cur_ld_moved;
6994 }
6995
1e3c88bd 6996 local_irq_restore(flags);
88b8dac0 6997
f1cd0858
JK
6998 if (env.flags & LBF_NEED_BREAK) {
6999 env.flags &= ~LBF_NEED_BREAK;
7000 goto more_balance;
7001 }
7002
88b8dac0
SV
7003 /*
7004 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7005 * us and move them to an alternate dst_cpu in our sched_group
7006 * where they can run. The upper limit on how many times we
7007 * iterate on same src_cpu is dependent on number of cpus in our
7008 * sched_group.
7009 *
7010 * This changes load balance semantics a bit on who can move
7011 * load to a given_cpu. In addition to the given_cpu itself
7012 * (or a ilb_cpu acting on its behalf where given_cpu is
7013 * nohz-idle), we now have balance_cpu in a position to move
7014 * load to given_cpu. In rare situations, this may cause
7015 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7016 * _independently_ and at _same_ time to move some load to
7017 * given_cpu) causing exceess load to be moved to given_cpu.
7018 * This however should not happen so much in practice and
7019 * moreover subsequent load balance cycles should correct the
7020 * excess load moved.
7021 */
6263322c 7022 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7023
7aff2e3a
VD
7024 /* Prevent to re-select dst_cpu via env's cpus */
7025 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7026
78feefc5 7027 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7028 env.dst_cpu = env.new_dst_cpu;
6263322c 7029 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7030 env.loop = 0;
7031 env.loop_break = sched_nr_migrate_break;
e02e60c1 7032
88b8dac0
SV
7033 /*
7034 * Go back to "more_balance" rather than "redo" since we
7035 * need to continue with same src_cpu.
7036 */
7037 goto more_balance;
7038 }
1e3c88bd 7039
6263322c
PZ
7040 /*
7041 * We failed to reach balance because of affinity.
7042 */
7043 if (sd_parent) {
63b2ca30 7044 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7045
afdeee05 7046 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7047 *group_imbalance = 1;
6263322c
PZ
7048 }
7049
1e3c88bd 7050 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7051 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7052 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7053 if (!cpumask_empty(cpus)) {
7054 env.loop = 0;
7055 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7056 goto redo;
bbf18b19 7057 }
afdeee05 7058 goto out_all_pinned;
1e3c88bd
PZ
7059 }
7060 }
7061
7062 if (!ld_moved) {
7063 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7064 /*
7065 * Increment the failure counter only on periodic balance.
7066 * We do not want newidle balance, which can be very
7067 * frequent, pollute the failure counter causing
7068 * excessive cache_hot migrations and active balances.
7069 */
7070 if (idle != CPU_NEWLY_IDLE)
7071 sd->nr_balance_failed++;
1e3c88bd 7072
bd939f45 7073 if (need_active_balance(&env)) {
1e3c88bd
PZ
7074 raw_spin_lock_irqsave(&busiest->lock, flags);
7075
969c7921
TH
7076 /* don't kick the active_load_balance_cpu_stop,
7077 * if the curr task on busiest cpu can't be
7078 * moved to this_cpu
1e3c88bd
PZ
7079 */
7080 if (!cpumask_test_cpu(this_cpu,
fa17b507 7081 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7082 raw_spin_unlock_irqrestore(&busiest->lock,
7083 flags);
8e45cb54 7084 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7085 goto out_one_pinned;
7086 }
7087
969c7921
TH
7088 /*
7089 * ->active_balance synchronizes accesses to
7090 * ->active_balance_work. Once set, it's cleared
7091 * only after active load balance is finished.
7092 */
1e3c88bd
PZ
7093 if (!busiest->active_balance) {
7094 busiest->active_balance = 1;
7095 busiest->push_cpu = this_cpu;
7096 active_balance = 1;
7097 }
7098 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7099
bd939f45 7100 if (active_balance) {
969c7921
TH
7101 stop_one_cpu_nowait(cpu_of(busiest),
7102 active_load_balance_cpu_stop, busiest,
7103 &busiest->active_balance_work);
bd939f45 7104 }
1e3c88bd
PZ
7105
7106 /*
7107 * We've kicked active balancing, reset the failure
7108 * counter.
7109 */
7110 sd->nr_balance_failed = sd->cache_nice_tries+1;
7111 }
7112 } else
7113 sd->nr_balance_failed = 0;
7114
7115 if (likely(!active_balance)) {
7116 /* We were unbalanced, so reset the balancing interval */
7117 sd->balance_interval = sd->min_interval;
7118 } else {
7119 /*
7120 * If we've begun active balancing, start to back off. This
7121 * case may not be covered by the all_pinned logic if there
7122 * is only 1 task on the busy runqueue (because we don't call
163122b7 7123 * detach_tasks).
1e3c88bd
PZ
7124 */
7125 if (sd->balance_interval < sd->max_interval)
7126 sd->balance_interval *= 2;
7127 }
7128
1e3c88bd
PZ
7129 goto out;
7130
7131out_balanced:
afdeee05
VG
7132 /*
7133 * We reach balance although we may have faced some affinity
7134 * constraints. Clear the imbalance flag if it was set.
7135 */
7136 if (sd_parent) {
7137 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7138
7139 if (*group_imbalance)
7140 *group_imbalance = 0;
7141 }
7142
7143out_all_pinned:
7144 /*
7145 * We reach balance because all tasks are pinned at this level so
7146 * we can't migrate them. Let the imbalance flag set so parent level
7147 * can try to migrate them.
7148 */
1e3c88bd
PZ
7149 schedstat_inc(sd, lb_balanced[idle]);
7150
7151 sd->nr_balance_failed = 0;
7152
7153out_one_pinned:
7154 /* tune up the balancing interval */
8e45cb54 7155 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7156 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7157 (sd->balance_interval < sd->max_interval))
7158 sd->balance_interval *= 2;
7159
46e49b38 7160 ld_moved = 0;
1e3c88bd 7161out:
1e3c88bd
PZ
7162 return ld_moved;
7163}
7164
52a08ef1
JL
7165static inline unsigned long
7166get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7167{
7168 unsigned long interval = sd->balance_interval;
7169
7170 if (cpu_busy)
7171 interval *= sd->busy_factor;
7172
7173 /* scale ms to jiffies */
7174 interval = msecs_to_jiffies(interval);
7175 interval = clamp(interval, 1UL, max_load_balance_interval);
7176
7177 return interval;
7178}
7179
7180static inline void
7181update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7182{
7183 unsigned long interval, next;
7184
7185 interval = get_sd_balance_interval(sd, cpu_busy);
7186 next = sd->last_balance + interval;
7187
7188 if (time_after(*next_balance, next))
7189 *next_balance = next;
7190}
7191
1e3c88bd
PZ
7192/*
7193 * idle_balance is called by schedule() if this_cpu is about to become
7194 * idle. Attempts to pull tasks from other CPUs.
7195 */
6e83125c 7196static int idle_balance(struct rq *this_rq)
1e3c88bd 7197{
52a08ef1
JL
7198 unsigned long next_balance = jiffies + HZ;
7199 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7200 struct sched_domain *sd;
7201 int pulled_task = 0;
9bd721c5 7202 u64 curr_cost = 0;
1e3c88bd 7203
6e83125c 7204 idle_enter_fair(this_rq);
0e5b5337 7205
6e83125c
PZ
7206 /*
7207 * We must set idle_stamp _before_ calling idle_balance(), such that we
7208 * measure the duration of idle_balance() as idle time.
7209 */
7210 this_rq->idle_stamp = rq_clock(this_rq);
7211
4486edd1
TC
7212 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7213 !this_rq->rd->overload) {
52a08ef1
JL
7214 rcu_read_lock();
7215 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7216 if (sd)
7217 update_next_balance(sd, 0, &next_balance);
7218 rcu_read_unlock();
7219
6e83125c 7220 goto out;
52a08ef1 7221 }
1e3c88bd 7222
f492e12e
PZ
7223 /*
7224 * Drop the rq->lock, but keep IRQ/preempt disabled.
7225 */
7226 raw_spin_unlock(&this_rq->lock);
7227
48a16753 7228 update_blocked_averages(this_cpu);
dce840a0 7229 rcu_read_lock();
1e3c88bd 7230 for_each_domain(this_cpu, sd) {
23f0d209 7231 int continue_balancing = 1;
9bd721c5 7232 u64 t0, domain_cost;
1e3c88bd
PZ
7233
7234 if (!(sd->flags & SD_LOAD_BALANCE))
7235 continue;
7236
52a08ef1
JL
7237 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7238 update_next_balance(sd, 0, &next_balance);
9bd721c5 7239 break;
52a08ef1 7240 }
9bd721c5 7241
f492e12e 7242 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7243 t0 = sched_clock_cpu(this_cpu);
7244
f492e12e 7245 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7246 sd, CPU_NEWLY_IDLE,
7247 &continue_balancing);
9bd721c5
JL
7248
7249 domain_cost = sched_clock_cpu(this_cpu) - t0;
7250 if (domain_cost > sd->max_newidle_lb_cost)
7251 sd->max_newidle_lb_cost = domain_cost;
7252
7253 curr_cost += domain_cost;
f492e12e 7254 }
1e3c88bd 7255
52a08ef1 7256 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7257
7258 /*
7259 * Stop searching for tasks to pull if there are
7260 * now runnable tasks on this rq.
7261 */
7262 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7263 break;
1e3c88bd 7264 }
dce840a0 7265 rcu_read_unlock();
f492e12e
PZ
7266
7267 raw_spin_lock(&this_rq->lock);
7268
0e5b5337
JL
7269 if (curr_cost > this_rq->max_idle_balance_cost)
7270 this_rq->max_idle_balance_cost = curr_cost;
7271
e5fc6611 7272 /*
0e5b5337
JL
7273 * While browsing the domains, we released the rq lock, a task could
7274 * have been enqueued in the meantime. Since we're not going idle,
7275 * pretend we pulled a task.
e5fc6611 7276 */
0e5b5337 7277 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7278 pulled_task = 1;
e5fc6611 7279
52a08ef1
JL
7280out:
7281 /* Move the next balance forward */
7282 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7283 this_rq->next_balance = next_balance;
9bd721c5 7284
e4aa358b 7285 /* Is there a task of a high priority class? */
46383648 7286 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7287 pulled_task = -1;
7288
7289 if (pulled_task) {
7290 idle_exit_fair(this_rq);
6e83125c 7291 this_rq->idle_stamp = 0;
e4aa358b 7292 }
6e83125c 7293
3c4017c1 7294 return pulled_task;
1e3c88bd
PZ
7295}
7296
7297/*
969c7921
TH
7298 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7299 * running tasks off the busiest CPU onto idle CPUs. It requires at
7300 * least 1 task to be running on each physical CPU where possible, and
7301 * avoids physical / logical imbalances.
1e3c88bd 7302 */
969c7921 7303static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7304{
969c7921
TH
7305 struct rq *busiest_rq = data;
7306 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7307 int target_cpu = busiest_rq->push_cpu;
969c7921 7308 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7309 struct sched_domain *sd;
e5673f28 7310 struct task_struct *p = NULL;
969c7921
TH
7311
7312 raw_spin_lock_irq(&busiest_rq->lock);
7313
7314 /* make sure the requested cpu hasn't gone down in the meantime */
7315 if (unlikely(busiest_cpu != smp_processor_id() ||
7316 !busiest_rq->active_balance))
7317 goto out_unlock;
1e3c88bd
PZ
7318
7319 /* Is there any task to move? */
7320 if (busiest_rq->nr_running <= 1)
969c7921 7321 goto out_unlock;
1e3c88bd
PZ
7322
7323 /*
7324 * This condition is "impossible", if it occurs
7325 * we need to fix it. Originally reported by
7326 * Bjorn Helgaas on a 128-cpu setup.
7327 */
7328 BUG_ON(busiest_rq == target_rq);
7329
1e3c88bd 7330 /* Search for an sd spanning us and the target CPU. */
dce840a0 7331 rcu_read_lock();
1e3c88bd
PZ
7332 for_each_domain(target_cpu, sd) {
7333 if ((sd->flags & SD_LOAD_BALANCE) &&
7334 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7335 break;
7336 }
7337
7338 if (likely(sd)) {
8e45cb54
PZ
7339 struct lb_env env = {
7340 .sd = sd,
ddcdf6e7
PZ
7341 .dst_cpu = target_cpu,
7342 .dst_rq = target_rq,
7343 .src_cpu = busiest_rq->cpu,
7344 .src_rq = busiest_rq,
8e45cb54
PZ
7345 .idle = CPU_IDLE,
7346 };
7347
1e3c88bd
PZ
7348 schedstat_inc(sd, alb_count);
7349
e5673f28
KT
7350 p = detach_one_task(&env);
7351 if (p)
1e3c88bd
PZ
7352 schedstat_inc(sd, alb_pushed);
7353 else
7354 schedstat_inc(sd, alb_failed);
7355 }
dce840a0 7356 rcu_read_unlock();
969c7921
TH
7357out_unlock:
7358 busiest_rq->active_balance = 0;
e5673f28
KT
7359 raw_spin_unlock(&busiest_rq->lock);
7360
7361 if (p)
7362 attach_one_task(target_rq, p);
7363
7364 local_irq_enable();
7365
969c7921 7366 return 0;
1e3c88bd
PZ
7367}
7368
d987fc7f
MG
7369static inline int on_null_domain(struct rq *rq)
7370{
7371 return unlikely(!rcu_dereference_sched(rq->sd));
7372}
7373
3451d024 7374#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7375/*
7376 * idle load balancing details
83cd4fe2
VP
7377 * - When one of the busy CPUs notice that there may be an idle rebalancing
7378 * needed, they will kick the idle load balancer, which then does idle
7379 * load balancing for all the idle CPUs.
7380 */
1e3c88bd 7381static struct {
83cd4fe2 7382 cpumask_var_t idle_cpus_mask;
0b005cf5 7383 atomic_t nr_cpus;
83cd4fe2
VP
7384 unsigned long next_balance; /* in jiffy units */
7385} nohz ____cacheline_aligned;
1e3c88bd 7386
3dd0337d 7387static inline int find_new_ilb(void)
1e3c88bd 7388{
0b005cf5 7389 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7390
786d6dc7
SS
7391 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7392 return ilb;
7393
7394 return nr_cpu_ids;
1e3c88bd 7395}
1e3c88bd 7396
83cd4fe2
VP
7397/*
7398 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7399 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7400 * CPU (if there is one).
7401 */
0aeeeeba 7402static void nohz_balancer_kick(void)
83cd4fe2
VP
7403{
7404 int ilb_cpu;
7405
7406 nohz.next_balance++;
7407
3dd0337d 7408 ilb_cpu = find_new_ilb();
83cd4fe2 7409
0b005cf5
SS
7410 if (ilb_cpu >= nr_cpu_ids)
7411 return;
83cd4fe2 7412
cd490c5b 7413 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7414 return;
7415 /*
7416 * Use smp_send_reschedule() instead of resched_cpu().
7417 * This way we generate a sched IPI on the target cpu which
7418 * is idle. And the softirq performing nohz idle load balance
7419 * will be run before returning from the IPI.
7420 */
7421 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7422 return;
7423}
7424
c1cc017c 7425static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7426{
7427 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7428 /*
7429 * Completely isolated CPUs don't ever set, so we must test.
7430 */
7431 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7432 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7433 atomic_dec(&nohz.nr_cpus);
7434 }
71325960
SS
7435 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7436 }
7437}
7438
69e1e811
SS
7439static inline void set_cpu_sd_state_busy(void)
7440{
7441 struct sched_domain *sd;
37dc6b50 7442 int cpu = smp_processor_id();
69e1e811 7443
69e1e811 7444 rcu_read_lock();
37dc6b50 7445 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7446
7447 if (!sd || !sd->nohz_idle)
7448 goto unlock;
7449 sd->nohz_idle = 0;
7450
63b2ca30 7451 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7452unlock:
69e1e811
SS
7453 rcu_read_unlock();
7454}
7455
7456void set_cpu_sd_state_idle(void)
7457{
7458 struct sched_domain *sd;
37dc6b50 7459 int cpu = smp_processor_id();
69e1e811 7460
69e1e811 7461 rcu_read_lock();
37dc6b50 7462 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7463
7464 if (!sd || sd->nohz_idle)
7465 goto unlock;
7466 sd->nohz_idle = 1;
7467
63b2ca30 7468 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7469unlock:
69e1e811
SS
7470 rcu_read_unlock();
7471}
7472
1e3c88bd 7473/*
c1cc017c 7474 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7475 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7476 */
c1cc017c 7477void nohz_balance_enter_idle(int cpu)
1e3c88bd 7478{
71325960
SS
7479 /*
7480 * If this cpu is going down, then nothing needs to be done.
7481 */
7482 if (!cpu_active(cpu))
7483 return;
7484
c1cc017c
AS
7485 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7486 return;
1e3c88bd 7487
d987fc7f
MG
7488 /*
7489 * If we're a completely isolated CPU, we don't play.
7490 */
7491 if (on_null_domain(cpu_rq(cpu)))
7492 return;
7493
c1cc017c
AS
7494 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7495 atomic_inc(&nohz.nr_cpus);
7496 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7497}
71325960 7498
0db0628d 7499static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7500 unsigned long action, void *hcpu)
7501{
7502 switch (action & ~CPU_TASKS_FROZEN) {
7503 case CPU_DYING:
c1cc017c 7504 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7505 return NOTIFY_OK;
7506 default:
7507 return NOTIFY_DONE;
7508 }
7509}
1e3c88bd
PZ
7510#endif
7511
7512static DEFINE_SPINLOCK(balancing);
7513
49c022e6
PZ
7514/*
7515 * Scale the max load_balance interval with the number of CPUs in the system.
7516 * This trades load-balance latency on larger machines for less cross talk.
7517 */
029632fb 7518void update_max_interval(void)
49c022e6
PZ
7519{
7520 max_load_balance_interval = HZ*num_online_cpus()/10;
7521}
7522
1e3c88bd
PZ
7523/*
7524 * It checks each scheduling domain to see if it is due to be balanced,
7525 * and initiates a balancing operation if so.
7526 *
b9b0853a 7527 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7528 */
f7ed0a89 7529static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7530{
23f0d209 7531 int continue_balancing = 1;
f7ed0a89 7532 int cpu = rq->cpu;
1e3c88bd 7533 unsigned long interval;
04f733b4 7534 struct sched_domain *sd;
1e3c88bd
PZ
7535 /* Earliest time when we have to do rebalance again */
7536 unsigned long next_balance = jiffies + 60*HZ;
7537 int update_next_balance = 0;
f48627e6
JL
7538 int need_serialize, need_decay = 0;
7539 u64 max_cost = 0;
1e3c88bd 7540
48a16753 7541 update_blocked_averages(cpu);
2069dd75 7542
dce840a0 7543 rcu_read_lock();
1e3c88bd 7544 for_each_domain(cpu, sd) {
f48627e6
JL
7545 /*
7546 * Decay the newidle max times here because this is a regular
7547 * visit to all the domains. Decay ~1% per second.
7548 */
7549 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7550 sd->max_newidle_lb_cost =
7551 (sd->max_newidle_lb_cost * 253) / 256;
7552 sd->next_decay_max_lb_cost = jiffies + HZ;
7553 need_decay = 1;
7554 }
7555 max_cost += sd->max_newidle_lb_cost;
7556
1e3c88bd
PZ
7557 if (!(sd->flags & SD_LOAD_BALANCE))
7558 continue;
7559
f48627e6
JL
7560 /*
7561 * Stop the load balance at this level. There is another
7562 * CPU in our sched group which is doing load balancing more
7563 * actively.
7564 */
7565 if (!continue_balancing) {
7566 if (need_decay)
7567 continue;
7568 break;
7569 }
7570
52a08ef1 7571 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7572
7573 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7574 if (need_serialize) {
7575 if (!spin_trylock(&balancing))
7576 goto out;
7577 }
7578
7579 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7580 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7581 /*
6263322c 7582 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7583 * env->dst_cpu, so we can't know our idle
7584 * state even if we migrated tasks. Update it.
1e3c88bd 7585 */
de5eb2dd 7586 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7587 }
7588 sd->last_balance = jiffies;
52a08ef1 7589 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7590 }
7591 if (need_serialize)
7592 spin_unlock(&balancing);
7593out:
7594 if (time_after(next_balance, sd->last_balance + interval)) {
7595 next_balance = sd->last_balance + interval;
7596 update_next_balance = 1;
7597 }
f48627e6
JL
7598 }
7599 if (need_decay) {
1e3c88bd 7600 /*
f48627e6
JL
7601 * Ensure the rq-wide value also decays but keep it at a
7602 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7603 */
f48627e6
JL
7604 rq->max_idle_balance_cost =
7605 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7606 }
dce840a0 7607 rcu_read_unlock();
1e3c88bd
PZ
7608
7609 /*
7610 * next_balance will be updated only when there is a need.
7611 * When the cpu is attached to null domain for ex, it will not be
7612 * updated.
7613 */
7614 if (likely(update_next_balance))
7615 rq->next_balance = next_balance;
7616}
7617
3451d024 7618#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7619/*
3451d024 7620 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7621 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7622 */
208cb16b 7623static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7624{
208cb16b 7625 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7626 struct rq *rq;
7627 int balance_cpu;
7628
1c792db7
SS
7629 if (idle != CPU_IDLE ||
7630 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7631 goto end;
83cd4fe2
VP
7632
7633 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7634 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7635 continue;
7636
7637 /*
7638 * If this cpu gets work to do, stop the load balancing
7639 * work being done for other cpus. Next load
7640 * balancing owner will pick it up.
7641 */
1c792db7 7642 if (need_resched())
83cd4fe2 7643 break;
83cd4fe2 7644
5ed4f1d9
VG
7645 rq = cpu_rq(balance_cpu);
7646
ed61bbc6
TC
7647 /*
7648 * If time for next balance is due,
7649 * do the balance.
7650 */
7651 if (time_after_eq(jiffies, rq->next_balance)) {
7652 raw_spin_lock_irq(&rq->lock);
7653 update_rq_clock(rq);
7654 update_idle_cpu_load(rq);
7655 raw_spin_unlock_irq(&rq->lock);
7656 rebalance_domains(rq, CPU_IDLE);
7657 }
83cd4fe2 7658
83cd4fe2
VP
7659 if (time_after(this_rq->next_balance, rq->next_balance))
7660 this_rq->next_balance = rq->next_balance;
7661 }
7662 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7663end:
7664 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7665}
7666
7667/*
0b005cf5 7668 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7669 * of an idle cpu in the system.
0b005cf5 7670 * - This rq has more than one task.
1aaf90a4
VG
7671 * - This rq has at least one CFS task and the capacity of the CPU is
7672 * significantly reduced because of RT tasks or IRQs.
7673 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7674 * multiple busy cpu.
0b005cf5
SS
7675 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7676 * domain span are idle.
83cd4fe2 7677 */
1aaf90a4 7678static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7679{
7680 unsigned long now = jiffies;
0b005cf5 7681 struct sched_domain *sd;
63b2ca30 7682 struct sched_group_capacity *sgc;
4a725627 7683 int nr_busy, cpu = rq->cpu;
1aaf90a4 7684 bool kick = false;
83cd4fe2 7685
4a725627 7686 if (unlikely(rq->idle_balance))
1aaf90a4 7687 return false;
83cd4fe2 7688
1c792db7
SS
7689 /*
7690 * We may be recently in ticked or tickless idle mode. At the first
7691 * busy tick after returning from idle, we will update the busy stats.
7692 */
69e1e811 7693 set_cpu_sd_state_busy();
c1cc017c 7694 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7695
7696 /*
7697 * None are in tickless mode and hence no need for NOHZ idle load
7698 * balancing.
7699 */
7700 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7701 return false;
1c792db7
SS
7702
7703 if (time_before(now, nohz.next_balance))
1aaf90a4 7704 return false;
83cd4fe2 7705
0b005cf5 7706 if (rq->nr_running >= 2)
1aaf90a4 7707 return true;
83cd4fe2 7708
067491b7 7709 rcu_read_lock();
37dc6b50 7710 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7711 if (sd) {
63b2ca30
NP
7712 sgc = sd->groups->sgc;
7713 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7714
1aaf90a4
VG
7715 if (nr_busy > 1) {
7716 kick = true;
7717 goto unlock;
7718 }
7719
83cd4fe2 7720 }
37dc6b50 7721
1aaf90a4
VG
7722 sd = rcu_dereference(rq->sd);
7723 if (sd) {
7724 if ((rq->cfs.h_nr_running >= 1) &&
7725 check_cpu_capacity(rq, sd)) {
7726 kick = true;
7727 goto unlock;
7728 }
7729 }
37dc6b50 7730
1aaf90a4 7731 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7732 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7733 sched_domain_span(sd)) < cpu)) {
7734 kick = true;
7735 goto unlock;
7736 }
067491b7 7737
1aaf90a4 7738unlock:
067491b7 7739 rcu_read_unlock();
1aaf90a4 7740 return kick;
83cd4fe2
VP
7741}
7742#else
208cb16b 7743static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7744#endif
7745
7746/*
7747 * run_rebalance_domains is triggered when needed from the scheduler tick.
7748 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7749 */
1e3c88bd
PZ
7750static void run_rebalance_domains(struct softirq_action *h)
7751{
208cb16b 7752 struct rq *this_rq = this_rq();
6eb57e0d 7753 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7754 CPU_IDLE : CPU_NOT_IDLE;
7755
f7ed0a89 7756 rebalance_domains(this_rq, idle);
1e3c88bd 7757
1e3c88bd 7758 /*
83cd4fe2 7759 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7760 * balancing on behalf of the other idle cpus whose ticks are
7761 * stopped.
7762 */
208cb16b 7763 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7764}
7765
1e3c88bd
PZ
7766/*
7767 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7768 */
7caff66f 7769void trigger_load_balance(struct rq *rq)
1e3c88bd 7770{
1e3c88bd 7771 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7772 if (unlikely(on_null_domain(rq)))
7773 return;
7774
7775 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7776 raise_softirq(SCHED_SOFTIRQ);
3451d024 7777#ifdef CONFIG_NO_HZ_COMMON
c726099e 7778 if (nohz_kick_needed(rq))
0aeeeeba 7779 nohz_balancer_kick();
83cd4fe2 7780#endif
1e3c88bd
PZ
7781}
7782
0bcdcf28
CE
7783static void rq_online_fair(struct rq *rq)
7784{
7785 update_sysctl();
0e59bdae
KT
7786
7787 update_runtime_enabled(rq);
0bcdcf28
CE
7788}
7789
7790static void rq_offline_fair(struct rq *rq)
7791{
7792 update_sysctl();
a4c96ae3
PB
7793
7794 /* Ensure any throttled groups are reachable by pick_next_task */
7795 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7796}
7797
55e12e5e 7798#endif /* CONFIG_SMP */
e1d1484f 7799
bf0f6f24
IM
7800/*
7801 * scheduler tick hitting a task of our scheduling class:
7802 */
8f4d37ec 7803static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7804{
7805 struct cfs_rq *cfs_rq;
7806 struct sched_entity *se = &curr->se;
7807
7808 for_each_sched_entity(se) {
7809 cfs_rq = cfs_rq_of(se);
8f4d37ec 7810 entity_tick(cfs_rq, se, queued);
bf0f6f24 7811 }
18bf2805 7812
10e84b97 7813 if (numabalancing_enabled)
cbee9f88 7814 task_tick_numa(rq, curr);
3d59eebc 7815
18bf2805 7816 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7817}
7818
7819/*
cd29fe6f
PZ
7820 * called on fork with the child task as argument from the parent's context
7821 * - child not yet on the tasklist
7822 * - preemption disabled
bf0f6f24 7823 */
cd29fe6f 7824static void task_fork_fair(struct task_struct *p)
bf0f6f24 7825{
4fc420c9
DN
7826 struct cfs_rq *cfs_rq;
7827 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7828 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7829 struct rq *rq = this_rq();
7830 unsigned long flags;
7831
05fa785c 7832 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7833
861d034e
PZ
7834 update_rq_clock(rq);
7835
4fc420c9
DN
7836 cfs_rq = task_cfs_rq(current);
7837 curr = cfs_rq->curr;
7838
6c9a27f5
DN
7839 /*
7840 * Not only the cpu but also the task_group of the parent might have
7841 * been changed after parent->se.parent,cfs_rq were copied to
7842 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7843 * of child point to valid ones.
7844 */
7845 rcu_read_lock();
7846 __set_task_cpu(p, this_cpu);
7847 rcu_read_unlock();
bf0f6f24 7848
7109c442 7849 update_curr(cfs_rq);
cd29fe6f 7850
b5d9d734
MG
7851 if (curr)
7852 se->vruntime = curr->vruntime;
aeb73b04 7853 place_entity(cfs_rq, se, 1);
4d78e7b6 7854
cd29fe6f 7855 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7856 /*
edcb60a3
IM
7857 * Upon rescheduling, sched_class::put_prev_task() will place
7858 * 'current' within the tree based on its new key value.
7859 */
4d78e7b6 7860 swap(curr->vruntime, se->vruntime);
8875125e 7861 resched_curr(rq);
4d78e7b6 7862 }
bf0f6f24 7863
88ec22d3
PZ
7864 se->vruntime -= cfs_rq->min_vruntime;
7865
05fa785c 7866 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7867}
7868
cb469845
SR
7869/*
7870 * Priority of the task has changed. Check to see if we preempt
7871 * the current task.
7872 */
da7a735e
PZ
7873static void
7874prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7875{
da0c1e65 7876 if (!task_on_rq_queued(p))
da7a735e
PZ
7877 return;
7878
cb469845
SR
7879 /*
7880 * Reschedule if we are currently running on this runqueue and
7881 * our priority decreased, or if we are not currently running on
7882 * this runqueue and our priority is higher than the current's
7883 */
da7a735e 7884 if (rq->curr == p) {
cb469845 7885 if (p->prio > oldprio)
8875125e 7886 resched_curr(rq);
cb469845 7887 } else
15afe09b 7888 check_preempt_curr(rq, p, 0);
cb469845
SR
7889}
7890
da7a735e
PZ
7891static void switched_from_fair(struct rq *rq, struct task_struct *p)
7892{
7893 struct sched_entity *se = &p->se;
7894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7895
7896 /*
791c9e02 7897 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7898 * switched back to the fair class the enqueue_entity(.flags=0) will
7899 * do the right thing.
7900 *
da0c1e65
KT
7901 * If it's queued, then the dequeue_entity(.flags=0) will already
7902 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7903 * the task is sleeping will it still have non-normalized vruntime.
7904 */
da0c1e65 7905 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7906 /*
7907 * Fix up our vruntime so that the current sleep doesn't
7908 * cause 'unlimited' sleep bonus.
7909 */
7910 place_entity(cfs_rq, se, 0);
7911 se->vruntime -= cfs_rq->min_vruntime;
7912 }
9ee474f5 7913
141965c7 7914#ifdef CONFIG_SMP
9ee474f5
PT
7915 /*
7916 * Remove our load from contribution when we leave sched_fair
7917 * and ensure we don't carry in an old decay_count if we
7918 * switch back.
7919 */
87e3c8ae
KT
7920 if (se->avg.decay_count) {
7921 __synchronize_entity_decay(se);
7922 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7923 }
7924#endif
da7a735e
PZ
7925}
7926
cb469845
SR
7927/*
7928 * We switched to the sched_fair class.
7929 */
da7a735e 7930static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7931{
eb7a59b2 7932#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7933 struct sched_entity *se = &p->se;
eb7a59b2
M
7934 /*
7935 * Since the real-depth could have been changed (only FAIR
7936 * class maintain depth value), reset depth properly.
7937 */
7938 se->depth = se->parent ? se->parent->depth + 1 : 0;
7939#endif
da0c1e65 7940 if (!task_on_rq_queued(p))
da7a735e
PZ
7941 return;
7942
cb469845
SR
7943 /*
7944 * We were most likely switched from sched_rt, so
7945 * kick off the schedule if running, otherwise just see
7946 * if we can still preempt the current task.
7947 */
da7a735e 7948 if (rq->curr == p)
8875125e 7949 resched_curr(rq);
cb469845 7950 else
15afe09b 7951 check_preempt_curr(rq, p, 0);
cb469845
SR
7952}
7953
83b699ed
SV
7954/* Account for a task changing its policy or group.
7955 *
7956 * This routine is mostly called to set cfs_rq->curr field when a task
7957 * migrates between groups/classes.
7958 */
7959static void set_curr_task_fair(struct rq *rq)
7960{
7961 struct sched_entity *se = &rq->curr->se;
7962
ec12cb7f
PT
7963 for_each_sched_entity(se) {
7964 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7965
7966 set_next_entity(cfs_rq, se);
7967 /* ensure bandwidth has been allocated on our new cfs_rq */
7968 account_cfs_rq_runtime(cfs_rq, 0);
7969 }
83b699ed
SV
7970}
7971
029632fb
PZ
7972void init_cfs_rq(struct cfs_rq *cfs_rq)
7973{
7974 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7975 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7976#ifndef CONFIG_64BIT
7977 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7978#endif
141965c7 7979#ifdef CONFIG_SMP
9ee474f5 7980 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7981 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7982#endif
029632fb
PZ
7983}
7984
810b3817 7985#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7986static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7987{
fed14d45 7988 struct sched_entity *se = &p->se;
aff3e498 7989 struct cfs_rq *cfs_rq;
fed14d45 7990
b2b5ce02
PZ
7991 /*
7992 * If the task was not on the rq at the time of this cgroup movement
7993 * it must have been asleep, sleeping tasks keep their ->vruntime
7994 * absolute on their old rq until wakeup (needed for the fair sleeper
7995 * bonus in place_entity()).
7996 *
7997 * If it was on the rq, we've just 'preempted' it, which does convert
7998 * ->vruntime to a relative base.
7999 *
8000 * Make sure both cases convert their relative position when migrating
8001 * to another cgroup's rq. This does somewhat interfere with the
8002 * fair sleeper stuff for the first placement, but who cares.
8003 */
7ceff013 8004 /*
da0c1e65 8005 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8006 * But there are some cases where it has already been normalized:
8007 *
8008 * - Moving a forked child which is waiting for being woken up by
8009 * wake_up_new_task().
62af3783
DN
8010 * - Moving a task which has been woken up by try_to_wake_up() and
8011 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8012 *
8013 * To prevent boost or penalty in the new cfs_rq caused by delta
8014 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8015 */
da0c1e65
KT
8016 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8017 queued = 1;
7ceff013 8018
da0c1e65 8019 if (!queued)
fed14d45 8020 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8021 set_task_rq(p, task_cpu(p));
fed14d45 8022 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8023 if (!queued) {
fed14d45
PZ
8024 cfs_rq = cfs_rq_of(se);
8025 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8026#ifdef CONFIG_SMP
8027 /*
8028 * migrate_task_rq_fair() will have removed our previous
8029 * contribution, but we must synchronize for ongoing future
8030 * decay.
8031 */
fed14d45
PZ
8032 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8033 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8034#endif
8035 }
810b3817 8036}
029632fb
PZ
8037
8038void free_fair_sched_group(struct task_group *tg)
8039{
8040 int i;
8041
8042 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8043
8044 for_each_possible_cpu(i) {
8045 if (tg->cfs_rq)
8046 kfree(tg->cfs_rq[i]);
8047 if (tg->se)
8048 kfree(tg->se[i]);
8049 }
8050
8051 kfree(tg->cfs_rq);
8052 kfree(tg->se);
8053}
8054
8055int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8056{
8057 struct cfs_rq *cfs_rq;
8058 struct sched_entity *se;
8059 int i;
8060
8061 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8062 if (!tg->cfs_rq)
8063 goto err;
8064 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8065 if (!tg->se)
8066 goto err;
8067
8068 tg->shares = NICE_0_LOAD;
8069
8070 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8071
8072 for_each_possible_cpu(i) {
8073 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8074 GFP_KERNEL, cpu_to_node(i));
8075 if (!cfs_rq)
8076 goto err;
8077
8078 se = kzalloc_node(sizeof(struct sched_entity),
8079 GFP_KERNEL, cpu_to_node(i));
8080 if (!se)
8081 goto err_free_rq;
8082
8083 init_cfs_rq(cfs_rq);
8084 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8085 }
8086
8087 return 1;
8088
8089err_free_rq:
8090 kfree(cfs_rq);
8091err:
8092 return 0;
8093}
8094
8095void unregister_fair_sched_group(struct task_group *tg, int cpu)
8096{
8097 struct rq *rq = cpu_rq(cpu);
8098 unsigned long flags;
8099
8100 /*
8101 * Only empty task groups can be destroyed; so we can speculatively
8102 * check on_list without danger of it being re-added.
8103 */
8104 if (!tg->cfs_rq[cpu]->on_list)
8105 return;
8106
8107 raw_spin_lock_irqsave(&rq->lock, flags);
8108 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8109 raw_spin_unlock_irqrestore(&rq->lock, flags);
8110}
8111
8112void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8113 struct sched_entity *se, int cpu,
8114 struct sched_entity *parent)
8115{
8116 struct rq *rq = cpu_rq(cpu);
8117
8118 cfs_rq->tg = tg;
8119 cfs_rq->rq = rq;
029632fb
PZ
8120 init_cfs_rq_runtime(cfs_rq);
8121
8122 tg->cfs_rq[cpu] = cfs_rq;
8123 tg->se[cpu] = se;
8124
8125 /* se could be NULL for root_task_group */
8126 if (!se)
8127 return;
8128
fed14d45 8129 if (!parent) {
029632fb 8130 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8131 se->depth = 0;
8132 } else {
029632fb 8133 se->cfs_rq = parent->my_q;
fed14d45
PZ
8134 se->depth = parent->depth + 1;
8135 }
029632fb
PZ
8136
8137 se->my_q = cfs_rq;
0ac9b1c2
PT
8138 /* guarantee group entities always have weight */
8139 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8140 se->parent = parent;
8141}
8142
8143static DEFINE_MUTEX(shares_mutex);
8144
8145int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8146{
8147 int i;
8148 unsigned long flags;
8149
8150 /*
8151 * We can't change the weight of the root cgroup.
8152 */
8153 if (!tg->se[0])
8154 return -EINVAL;
8155
8156 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8157
8158 mutex_lock(&shares_mutex);
8159 if (tg->shares == shares)
8160 goto done;
8161
8162 tg->shares = shares;
8163 for_each_possible_cpu(i) {
8164 struct rq *rq = cpu_rq(i);
8165 struct sched_entity *se;
8166
8167 se = tg->se[i];
8168 /* Propagate contribution to hierarchy */
8169 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8170
8171 /* Possible calls to update_curr() need rq clock */
8172 update_rq_clock(rq);
17bc14b7 8173 for_each_sched_entity(se)
029632fb
PZ
8174 update_cfs_shares(group_cfs_rq(se));
8175 raw_spin_unlock_irqrestore(&rq->lock, flags);
8176 }
8177
8178done:
8179 mutex_unlock(&shares_mutex);
8180 return 0;
8181}
8182#else /* CONFIG_FAIR_GROUP_SCHED */
8183
8184void free_fair_sched_group(struct task_group *tg) { }
8185
8186int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8187{
8188 return 1;
8189}
8190
8191void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8192
8193#endif /* CONFIG_FAIR_GROUP_SCHED */
8194
810b3817 8195
6d686f45 8196static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8197{
8198 struct sched_entity *se = &task->se;
0d721cea
PW
8199 unsigned int rr_interval = 0;
8200
8201 /*
8202 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8203 * idle runqueue:
8204 */
0d721cea 8205 if (rq->cfs.load.weight)
a59f4e07 8206 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8207
8208 return rr_interval;
8209}
8210
bf0f6f24
IM
8211/*
8212 * All the scheduling class methods:
8213 */
029632fb 8214const struct sched_class fair_sched_class = {
5522d5d5 8215 .next = &idle_sched_class,
bf0f6f24
IM
8216 .enqueue_task = enqueue_task_fair,
8217 .dequeue_task = dequeue_task_fair,
8218 .yield_task = yield_task_fair,
d95f4122 8219 .yield_to_task = yield_to_task_fair,
bf0f6f24 8220
2e09bf55 8221 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8222
8223 .pick_next_task = pick_next_task_fair,
8224 .put_prev_task = put_prev_task_fair,
8225
681f3e68 8226#ifdef CONFIG_SMP
4ce72a2c 8227 .select_task_rq = select_task_rq_fair,
0a74bef8 8228 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8229
0bcdcf28
CE
8230 .rq_online = rq_online_fair,
8231 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8232
8233 .task_waking = task_waking_fair,
681f3e68 8234#endif
bf0f6f24 8235
83b699ed 8236 .set_curr_task = set_curr_task_fair,
bf0f6f24 8237 .task_tick = task_tick_fair,
cd29fe6f 8238 .task_fork = task_fork_fair,
cb469845
SR
8239
8240 .prio_changed = prio_changed_fair,
da7a735e 8241 .switched_from = switched_from_fair,
cb469845 8242 .switched_to = switched_to_fair,
810b3817 8243
0d721cea
PW
8244 .get_rr_interval = get_rr_interval_fair,
8245
6e998916
SG
8246 .update_curr = update_curr_fair,
8247
810b3817 8248#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8249 .task_move_group = task_move_group_fair,
810b3817 8250#endif
bf0f6f24
IM
8251};
8252
8253#ifdef CONFIG_SCHED_DEBUG
029632fb 8254void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8255{
bf0f6f24
IM
8256 struct cfs_rq *cfs_rq;
8257
5973e5b9 8258 rcu_read_lock();
c3b64f1e 8259 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8260 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8261 rcu_read_unlock();
bf0f6f24
IM
8262}
8263#endif
029632fb
PZ
8264
8265__init void init_sched_fair_class(void)
8266{
8267#ifdef CONFIG_SMP
8268 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8269
3451d024 8270#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8271 nohz.next_balance = jiffies;
029632fb 8272 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8273 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8274#endif
8275#endif /* SMP */
8276
8277}