sched: Explicitly cpu_idle_type checking in rebalance_domains()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
aff3e498
PT
265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
9ee474f5 267
3d4b47b4
PZ
268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
67e86250
PT
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 284 }
3d4b47b4
PZ
285
286 cfs_rq->on_list = 1;
9ee474f5 287 /* We should have no load, but we need to update last_decay. */
aff3e498 288 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
b758149c
PZ
300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
464b7527
PZ
319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
8f48894f
PZ
362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
bf0f6f24 368
62160e3f
IM
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
372}
373
374#define entity_is_task(se) 1
375
b758149c
PZ
376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
bf0f6f24 378
b758149c 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 380{
b758149c 381 return &task_rq(p)->cfs;
bf0f6f24
IM
382}
383
b758149c
PZ
384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
3d4b47b4
PZ
398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
b758149c
PZ
406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
464b7527
PZ
420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
b758149c
PZ
425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
6c16a6dc
PZ
427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
1bf08230 434static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 435{
1bf08230 436 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 437 if (delta > 0)
1bf08230 438 max_vruntime = vruntime;
02e0431a 439
1bf08230 440 return max_vruntime;
02e0431a
PZ
441}
442
0702e3eb 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
54fdc581
FC
452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
1af5f730
PZ
458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
e17036da 470 if (!cfs_rq->curr)
1af5f730
PZ
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
1bf08230 476 /* ensure we never gain time by being placed backwards. */
1af5f730 477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
478#ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481#endif
1af5f730
PZ
482}
483
bf0f6f24
IM
484/*
485 * Enqueue an entity into the rb-tree:
486 */
0702e3eb 487static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
488{
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
bf0f6f24
IM
492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
2bd2d6f2 504 if (entity_before(se, entry)) {
bf0f6f24
IM
505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
1af5f730 516 if (leftmost)
57cb499d 517 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
521}
522
0702e3eb 523static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 524{
3fe69747
PZ
525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
3fe69747
PZ
527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
3fe69747 530 }
e9acbff6 531
bf0f6f24 532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
533}
534
029632fb 535struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 536{
f4b6755f
PZ
537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
543}
544
ac53db59
RR
545static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546{
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553}
554
555#ifdef CONFIG_SCHED_DEBUG
029632fb 556struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 557{
7eee3e67 558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 559
70eee74b
BS
560 if (!last)
561 return NULL;
7eee3e67
IM
562
563 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
564}
565
bf0f6f24
IM
566/**************************************************************
567 * Scheduling class statistics methods:
568 */
569
acb4a848 570int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 571 void __user *buffer, size_t *lenp,
b2be5e96
PZ
572 loff_t *ppos)
573{
8d65af78 574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 575 int factor = get_update_sysctl_factor();
b2be5e96
PZ
576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
acb4a848
CE
583#define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
588#undef WRT_SYSCTL
589
b2be5e96
PZ
590 return 0;
591}
592#endif
647e7cac 593
a7be37ac 594/*
f9c0b095 595 * delta /= w
a7be37ac
PZ
596 */
597static inline unsigned long
598calc_delta_fair(unsigned long delta, struct sched_entity *se)
599{
f9c0b095
PZ
600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
602
603 return delta;
604}
605
647e7cac
IM
606/*
607 * The idea is to set a period in which each task runs once.
608 *
532b1858 609 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
4d78e7b6
PZ
614static u64 __sched_period(unsigned long nr_running)
615{
616 u64 period = sysctl_sched_latency;
b2be5e96 617 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
618
619 if (unlikely(nr_running > nr_latency)) {
4bf0b771 620 period = sysctl_sched_min_granularity;
4d78e7b6 621 period *= nr_running;
4d78e7b6
PZ
622 }
623
624 return period;
625}
626
647e7cac
IM
627/*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
f9c0b095 631 * s = p*P[w/rw]
647e7cac 632 */
6d0f0ebd 633static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 634{
0a582440 635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 636
0a582440 637 for_each_sched_entity(se) {
6272d68c 638 struct load_weight *load;
3104bf03 639 struct load_weight lw;
6272d68c
LM
640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
f9c0b095 643
0a582440 644 if (unlikely(!se->on_rq)) {
3104bf03 645 lw = cfs_rq->load;
0a582440
MG
646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
bf0f6f24
IM
653}
654
647e7cac 655/*
660cc00f 656 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 657 *
f9c0b095 658 * vs = s/w
647e7cac 659 */
f9c0b095 660static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 661{
f9c0b095 662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
663}
664
bf0f6f24
IM
665/*
666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669static inline void
8ebc91d9
IM
670__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
bf0f6f24 672{
bbdba7c0 673 unsigned long delta_exec_weighted;
bf0f6f24 674
41acab88
LDM
675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
677
678 curr->sum_exec_runtime += delta_exec;
7a62eabc 679 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 681
e9acbff6 682 curr->vruntime += delta_exec_weighted;
1af5f730 683 update_min_vruntime(cfs_rq);
bf0f6f24
IM
684}
685
b7cc0896 686static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 687{
429d43bc 688 struct sched_entity *curr = cfs_rq->curr;
305e6835 689 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
8ebc91d9 700 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
701 if (!delta_exec)
702 return;
bf0f6f24 703
8ebc91d9
IM
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
d842de87
SV
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
f977bb49 710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 711 cpuacct_charge(curtask, delta_exec);
f06febc9 712 account_group_exec_runtime(curtask, delta_exec);
d842de87 713 }
ec12cb7f
PT
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
716}
717
718static inline void
5870db5b 719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 720{
41acab88 721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
722}
723
bf0f6f24
IM
724/*
725 * Task is being enqueued - update stats:
726 */
d2417e5a 727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 728{
bf0f6f24
IM
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
429d43bc 733 if (se != cfs_rq->curr)
5870db5b 734 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
735}
736
bf0f6f24 737static void
9ef0a961 738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
41acab88
LDM
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745#ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
41acab88 748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
749 }
750#endif
41acab88 751 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
752}
753
754static inline void
19b6a2e3 755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
bf0f6f24
IM
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
429d43bc 761 if (se != cfs_rq->curr)
9ef0a961 762 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
763}
764
765/*
766 * We are picking a new current task - update its stats:
767 */
768static inline void
79303e9e 769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
770{
771 /*
772 * We are starting a new run period:
773 */
305e6835 774 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
775}
776
bf0f6f24
IM
777/**************************************************
778 * Scheduling class queueing methods:
779 */
780
cbee9f88
PZ
781#ifdef CONFIG_NUMA_BALANCING
782/*
6e5fb223 783 * numa task sample period in ms
cbee9f88 784 */
6e5fb223 785unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
786unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
788
789/* Portion of address space to scan in MB */
790unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 791
4b96a29b
PZ
792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
cbee9f88
PZ
795static void task_numa_placement(struct task_struct *p)
796{
2832bc19 797 int seq;
cbee9f88 798
2832bc19
HD
799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807}
808
809/*
810 * Got a PROT_NONE fault for a page on @node.
811 */
b8593bfd 812void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
813{
814 struct task_struct *p = current;
815
1a687c2e
MG
816 if (!sched_feat_numa(NUMA))
817 return;
818
cbee9f88
PZ
819 /* FIXME: Allocate task-specific structure for placement policy here */
820
fb003b80 821 /*
b8593bfd
MG
822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
fb003b80 824 */
b8593bfd
MG
825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 828
cbee9f88
PZ
829 task_numa_placement(p);
830}
831
6e5fb223
PZ
832static void reset_ptenuma_scan(struct task_struct *p)
833{
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836}
837
cbee9f88
PZ
838/*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
842void task_numa_work(struct callback_head *work)
843{
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
6e5fb223 847 struct vm_area_struct *vma;
9f40604c
MG
848 unsigned long start, end;
849 long pages;
cbee9f88
PZ
850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
5bca2303
MG
865 /*
866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
b8593bfd
MG
883 /*
884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
cbee9f88
PZ
896 /*
897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
fb003b80 906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
e14808b4
MG
910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
9f40604c
MG
918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
cbee9f88 923
6e5fb223 924 down_read(&mm->mmap_sem);
9f40604c 925 vma = find_vma(mm, start);
6e5fb223
PZ
926 if (!vma) {
927 reset_ptenuma_scan(p);
9f40604c 928 start = 0;
6e5fb223
PZ
929 vma = mm->mmap;
930 }
9f40604c 931 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
937 continue;
938
9f40604c
MG
939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
6e5fb223 944
9f40604c
MG
945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
cbee9f88 949 }
6e5fb223 950
9f40604c 951out:
6e5fb223
PZ
952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
9f40604c 959 mm->numa_scan_offset = start;
6e5fb223
PZ
960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
cbee9f88
PZ
963}
964
965/*
966 * Drive the periodic memory faults..
967 */
968void task_tick_numa(struct rq *rq, struct task_struct *curr)
969{
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
4b96a29b
PZ
989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998}
999#else
1000static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001{
1002}
1003#endif /* CONFIG_NUMA_BALANCING */
1004
30cfdcfc
DA
1005static void
1006account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007{
1008 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1009 if (!parent_entity(se))
029632fb 1010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1011#ifdef CONFIG_SMP
1012 if (entity_is_task(se))
eb95308e 1013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1014#endif
30cfdcfc 1015 cfs_rq->nr_running++;
30cfdcfc
DA
1016}
1017
1018static void
1019account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
1021 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1022 if (!parent_entity(se))
029632fb 1023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1024 if (entity_is_task(se))
b87f1724 1025 list_del_init(&se->group_node);
30cfdcfc 1026 cfs_rq->nr_running--;
30cfdcfc
DA
1027}
1028
3ff6dcac
YZ
1029#ifdef CONFIG_FAIR_GROUP_SCHED
1030# ifdef CONFIG_SMP
cf5f0acf
PZ
1031static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032{
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
82958366
PT
1040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045}
1046
6d5ab293 1047static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1048{
cf5f0acf 1049 long tg_weight, load, shares;
3ff6dcac 1050
cf5f0acf 1051 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1052 load = cfs_rq->load.weight;
3ff6dcac 1053
3ff6dcac 1054 shares = (tg->shares * load);
cf5f0acf
PZ
1055 if (tg_weight)
1056 shares /= tg_weight;
3ff6dcac
YZ
1057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064}
3ff6dcac 1065# else /* CONFIG_SMP */
6d5ab293 1066static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1067{
1068 return tg->shares;
1069}
3ff6dcac 1070# endif /* CONFIG_SMP */
2069dd75
PZ
1071static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073{
19e5eebb
PT
1074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
2069dd75 1078 account_entity_dequeue(cfs_rq, se);
19e5eebb 1079 }
2069dd75
PZ
1080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085}
1086
82958366
PT
1087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
6d5ab293 1089static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1090{
1091 struct task_group *tg;
1092 struct sched_entity *se;
3ff6dcac 1093 long shares;
2069dd75 1094
2069dd75
PZ
1095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1097 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1098 return;
3ff6dcac
YZ
1099#ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102#endif
6d5ab293 1103 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106}
1107#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1108static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1109{
1110}
1111#endif /* CONFIG_FAIR_GROUP_SCHED */
1112
f4e26b12
PT
1113/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1115/*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119#define LOAD_AVG_PERIOD 32
1120#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123/* Precomputed fixed inverse multiplies for multiplication by y^n */
1124static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131};
1132
1133/*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141};
1142
9d85f21c
PT
1143/*
1144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147static __always_inline u64 decay_load(u64 val, u64 n)
1148{
5b51f2f8
PT
1149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1169 }
1170
5b51f2f8
PT
1171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174}
1175
1176/*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
1183static u32 __compute_runnable_contrib(u64 n)
1184{
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1202}
1203
1204/*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235{
5b51f2f8
PT
1236 u64 delta, periods;
1237 u32 runnable_contrib;
9d85f21c
PT
1238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
5b51f2f8
PT
1271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
1274
1275 delta -= delta_w;
1276
1277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299}
1300
9ee474f5 1301/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1302static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1303{
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
aff3e498 1309 return 0;
9ee474f5
PT
1310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
aff3e498
PT
1313
1314 return decays;
9ee474f5
PT
1315}
1316
c566e8e9
PT
1317#ifdef CONFIG_FAIR_GROUP_SCHED
1318static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320{
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331}
8165e145 1332
bb17f655
PT
1333/*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339{
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352}
1353
8165e145
PT
1354static inline void __update_group_entity_contrib(struct sched_entity *se)
1355{
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1358 int runnable_avg;
1359
8165e145
PT
1360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
8165e145 1394}
c566e8e9
PT
1395#else
1396static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
bb17f655
PT
1398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
8165e145 1400static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1401#endif
1402
8165e145
PT
1403static inline void __update_task_entity_contrib(struct sched_entity *se)
1404{
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411}
1412
2dac754e
PT
1413/* Compute the current contribution to load_avg by se, return any delta */
1414static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415{
1416 long old_contrib = se->avg.load_avg_contrib;
1417
8165e145
PT
1418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
bb17f655 1421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1422 __update_group_entity_contrib(se);
1423 }
2dac754e
PT
1424
1425 return se->avg.load_avg_contrib - old_contrib;
1426}
1427
9ee474f5
PT
1428static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430{
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435}
1436
f1b17280
PT
1437static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
9d85f21c 1439/* Update a sched_entity's runnable average */
9ee474f5
PT
1440static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
9d85f21c 1442{
2dac754e
PT
1443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
f1b17280 1445 u64 now;
2dac754e 1446
f1b17280
PT
1447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1460
1461 if (!update_cfs_rq)
1462 return;
1463
2dac754e
PT
1464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468}
1469
1470/*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
aff3e498 1474static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1475{
f1b17280 1476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
aff3e498 1480 if (!decays && !force_update)
9ee474f5
PT
1481 return;
1482
aff3e498
PT
1483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
9ee474f5 1487
aff3e498
PT
1488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
c566e8e9
PT
1494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1496}
18bf2805
BS
1497
1498static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499{
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1502}
2dac754e
PT
1503
1504/* Add the load generated by se into cfs_rq's child load-average */
1505static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1506 struct sched_entity *se,
1507 int wakeup)
2dac754e 1508{
aff3e498
PT
1509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
9ee474f5
PT
1531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
aff3e498
PT
1536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
9ee474f5 1538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1539 update_entity_load_avg(se, 0);
1540 }
9ee474f5 1541
2dac754e 1542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1545}
1546
9ee474f5
PT
1547/*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
2dac754e 1552static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1553 struct sched_entity *se,
1554 int sleep)
2dac754e 1555{
9ee474f5 1556 update_entity_load_avg(se, 1);
aff3e498
PT
1557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1559
2dac754e 1560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1565}
642dbc39
VG
1566
1567/*
1568 * Update the rq's load with the elapsed running time before entering
1569 * idle. if the last scheduled task is not a CFS task, idle_enter will
1570 * be the only way to update the runnable statistic.
1571 */
1572void idle_enter_fair(struct rq *this_rq)
1573{
1574 update_rq_runnable_avg(this_rq, 1);
1575}
1576
1577/*
1578 * Update the rq's load with the elapsed idle time before a task is
1579 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1580 * be the only way to update the runnable statistic.
1581 */
1582void idle_exit_fair(struct rq *this_rq)
1583{
1584 update_rq_runnable_avg(this_rq, 0);
1585}
1586
9d85f21c 1587#else
9ee474f5
PT
1588static inline void update_entity_load_avg(struct sched_entity *se,
1589 int update_cfs_rq) {}
18bf2805 1590static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1591static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1592 struct sched_entity *se,
1593 int wakeup) {}
2dac754e 1594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1595 struct sched_entity *se,
1596 int sleep) {}
aff3e498
PT
1597static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1598 int force_update) {}
9d85f21c
PT
1599#endif
1600
2396af69 1601static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1602{
bf0f6f24 1603#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1604 struct task_struct *tsk = NULL;
1605
1606 if (entity_is_task(se))
1607 tsk = task_of(se);
1608
41acab88
LDM
1609 if (se->statistics.sleep_start) {
1610 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1611
1612 if ((s64)delta < 0)
1613 delta = 0;
1614
41acab88
LDM
1615 if (unlikely(delta > se->statistics.sleep_max))
1616 se->statistics.sleep_max = delta;
bf0f6f24 1617
8c79a045 1618 se->statistics.sleep_start = 0;
41acab88 1619 se->statistics.sum_sleep_runtime += delta;
9745512c 1620
768d0c27 1621 if (tsk) {
e414314c 1622 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1623 trace_sched_stat_sleep(tsk, delta);
1624 }
bf0f6f24 1625 }
41acab88
LDM
1626 if (se->statistics.block_start) {
1627 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1628
1629 if ((s64)delta < 0)
1630 delta = 0;
1631
41acab88
LDM
1632 if (unlikely(delta > se->statistics.block_max))
1633 se->statistics.block_max = delta;
bf0f6f24 1634
8c79a045 1635 se->statistics.block_start = 0;
41acab88 1636 se->statistics.sum_sleep_runtime += delta;
30084fbd 1637
e414314c 1638 if (tsk) {
8f0dfc34 1639 if (tsk->in_iowait) {
41acab88
LDM
1640 se->statistics.iowait_sum += delta;
1641 se->statistics.iowait_count++;
768d0c27 1642 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1643 }
1644
b781a602
AV
1645 trace_sched_stat_blocked(tsk, delta);
1646
e414314c
PZ
1647 /*
1648 * Blocking time is in units of nanosecs, so shift by
1649 * 20 to get a milliseconds-range estimation of the
1650 * amount of time that the task spent sleeping:
1651 */
1652 if (unlikely(prof_on == SLEEP_PROFILING)) {
1653 profile_hits(SLEEP_PROFILING,
1654 (void *)get_wchan(tsk),
1655 delta >> 20);
1656 }
1657 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1658 }
bf0f6f24
IM
1659 }
1660#endif
1661}
1662
ddc97297
PZ
1663static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1664{
1665#ifdef CONFIG_SCHED_DEBUG
1666 s64 d = se->vruntime - cfs_rq->min_vruntime;
1667
1668 if (d < 0)
1669 d = -d;
1670
1671 if (d > 3*sysctl_sched_latency)
1672 schedstat_inc(cfs_rq, nr_spread_over);
1673#endif
1674}
1675
aeb73b04
PZ
1676static void
1677place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1678{
1af5f730 1679 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1680
2cb8600e
PZ
1681 /*
1682 * The 'current' period is already promised to the current tasks,
1683 * however the extra weight of the new task will slow them down a
1684 * little, place the new task so that it fits in the slot that
1685 * stays open at the end.
1686 */
94dfb5e7 1687 if (initial && sched_feat(START_DEBIT))
f9c0b095 1688 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1689
a2e7a7eb 1690 /* sleeps up to a single latency don't count. */
5ca9880c 1691 if (!initial) {
a2e7a7eb 1692 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1693
a2e7a7eb
MG
1694 /*
1695 * Halve their sleep time's effect, to allow
1696 * for a gentler effect of sleepers:
1697 */
1698 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1699 thresh >>= 1;
51e0304c 1700
a2e7a7eb 1701 vruntime -= thresh;
aeb73b04
PZ
1702 }
1703
b5d9d734 1704 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1705 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1706}
1707
d3d9dc33
PT
1708static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1709
bf0f6f24 1710static void
88ec22d3 1711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1712{
88ec22d3
PZ
1713 /*
1714 * Update the normalized vruntime before updating min_vruntime
1715 * through callig update_curr().
1716 */
371fd7e7 1717 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1718 se->vruntime += cfs_rq->min_vruntime;
1719
bf0f6f24 1720 /*
a2a2d680 1721 * Update run-time statistics of the 'current'.
bf0f6f24 1722 */
b7cc0896 1723 update_curr(cfs_rq);
f269ae04 1724 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1725 account_entity_enqueue(cfs_rq, se);
1726 update_cfs_shares(cfs_rq);
bf0f6f24 1727
88ec22d3 1728 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1729 place_entity(cfs_rq, se, 0);
2396af69 1730 enqueue_sleeper(cfs_rq, se);
e9acbff6 1731 }
bf0f6f24 1732
d2417e5a 1733 update_stats_enqueue(cfs_rq, se);
ddc97297 1734 check_spread(cfs_rq, se);
83b699ed
SV
1735 if (se != cfs_rq->curr)
1736 __enqueue_entity(cfs_rq, se);
2069dd75 1737 se->on_rq = 1;
3d4b47b4 1738
d3d9dc33 1739 if (cfs_rq->nr_running == 1) {
3d4b47b4 1740 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1741 check_enqueue_throttle(cfs_rq);
1742 }
bf0f6f24
IM
1743}
1744
2c13c919 1745static void __clear_buddies_last(struct sched_entity *se)
2002c695 1746{
2c13c919
RR
1747 for_each_sched_entity(se) {
1748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749 if (cfs_rq->last == se)
1750 cfs_rq->last = NULL;
1751 else
1752 break;
1753 }
1754}
2002c695 1755
2c13c919
RR
1756static void __clear_buddies_next(struct sched_entity *se)
1757{
1758 for_each_sched_entity(se) {
1759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1760 if (cfs_rq->next == se)
1761 cfs_rq->next = NULL;
1762 else
1763 break;
1764 }
2002c695
PZ
1765}
1766
ac53db59
RR
1767static void __clear_buddies_skip(struct sched_entity *se)
1768{
1769 for_each_sched_entity(se) {
1770 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1771 if (cfs_rq->skip == se)
1772 cfs_rq->skip = NULL;
1773 else
1774 break;
1775 }
1776}
1777
a571bbea
PZ
1778static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1779{
2c13c919
RR
1780 if (cfs_rq->last == se)
1781 __clear_buddies_last(se);
1782
1783 if (cfs_rq->next == se)
1784 __clear_buddies_next(se);
ac53db59
RR
1785
1786 if (cfs_rq->skip == se)
1787 __clear_buddies_skip(se);
a571bbea
PZ
1788}
1789
6c16a6dc 1790static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1791
bf0f6f24 1792static void
371fd7e7 1793dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1794{
a2a2d680
DA
1795 /*
1796 * Update run-time statistics of the 'current'.
1797 */
1798 update_curr(cfs_rq);
17bc14b7 1799 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1800
19b6a2e3 1801 update_stats_dequeue(cfs_rq, se);
371fd7e7 1802 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1803#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1804 if (entity_is_task(se)) {
1805 struct task_struct *tsk = task_of(se);
1806
1807 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1808 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1809 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1810 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1811 }
db36cc7d 1812#endif
67e9fb2a
PZ
1813 }
1814
2002c695 1815 clear_buddies(cfs_rq, se);
4793241b 1816
83b699ed 1817 if (se != cfs_rq->curr)
30cfdcfc 1818 __dequeue_entity(cfs_rq, se);
17bc14b7 1819 se->on_rq = 0;
30cfdcfc 1820 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1821
1822 /*
1823 * Normalize the entity after updating the min_vruntime because the
1824 * update can refer to the ->curr item and we need to reflect this
1825 * movement in our normalized position.
1826 */
371fd7e7 1827 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1828 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1829
d8b4986d
PT
1830 /* return excess runtime on last dequeue */
1831 return_cfs_rq_runtime(cfs_rq);
1832
1e876231 1833 update_min_vruntime(cfs_rq);
17bc14b7 1834 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1835}
1836
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
7c92e54f 1840static void
2e09bf55 1841check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1842{
11697830 1843 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1844 struct sched_entity *se;
1845 s64 delta;
11697830 1846
6d0f0ebd 1847 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1848 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1849 if (delta_exec > ideal_runtime) {
bf0f6f24 1850 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1851 /*
1852 * The current task ran long enough, ensure it doesn't get
1853 * re-elected due to buddy favours.
1854 */
1855 clear_buddies(cfs_rq, curr);
f685ceac
MG
1856 return;
1857 }
1858
1859 /*
1860 * Ensure that a task that missed wakeup preemption by a
1861 * narrow margin doesn't have to wait for a full slice.
1862 * This also mitigates buddy induced latencies under load.
1863 */
f685ceac
MG
1864 if (delta_exec < sysctl_sched_min_granularity)
1865 return;
1866
f4cfb33e
WX
1867 se = __pick_first_entity(cfs_rq);
1868 delta = curr->vruntime - se->vruntime;
f685ceac 1869
f4cfb33e
WX
1870 if (delta < 0)
1871 return;
d7d82944 1872
f4cfb33e
WX
1873 if (delta > ideal_runtime)
1874 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1875}
1876
83b699ed 1877static void
8494f412 1878set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1879{
83b699ed
SV
1880 /* 'current' is not kept within the tree. */
1881 if (se->on_rq) {
1882 /*
1883 * Any task has to be enqueued before it get to execute on
1884 * a CPU. So account for the time it spent waiting on the
1885 * runqueue.
1886 */
1887 update_stats_wait_end(cfs_rq, se);
1888 __dequeue_entity(cfs_rq, se);
1889 }
1890
79303e9e 1891 update_stats_curr_start(cfs_rq, se);
429d43bc 1892 cfs_rq->curr = se;
eba1ed4b
IM
1893#ifdef CONFIG_SCHEDSTATS
1894 /*
1895 * Track our maximum slice length, if the CPU's load is at
1896 * least twice that of our own weight (i.e. dont track it
1897 * when there are only lesser-weight tasks around):
1898 */
495eca49 1899 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1900 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1901 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1902 }
1903#endif
4a55b450 1904 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1905}
1906
3f3a4904
PZ
1907static int
1908wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1909
ac53db59
RR
1910/*
1911 * Pick the next process, keeping these things in mind, in this order:
1912 * 1) keep things fair between processes/task groups
1913 * 2) pick the "next" process, since someone really wants that to run
1914 * 3) pick the "last" process, for cache locality
1915 * 4) do not run the "skip" process, if something else is available
1916 */
f4b6755f 1917static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1918{
ac53db59 1919 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1920 struct sched_entity *left = se;
f4b6755f 1921
ac53db59
RR
1922 /*
1923 * Avoid running the skip buddy, if running something else can
1924 * be done without getting too unfair.
1925 */
1926 if (cfs_rq->skip == se) {
1927 struct sched_entity *second = __pick_next_entity(se);
1928 if (second && wakeup_preempt_entity(second, left) < 1)
1929 se = second;
1930 }
aa2ac252 1931
f685ceac
MG
1932 /*
1933 * Prefer last buddy, try to return the CPU to a preempted task.
1934 */
1935 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1936 se = cfs_rq->last;
1937
ac53db59
RR
1938 /*
1939 * Someone really wants this to run. If it's not unfair, run it.
1940 */
1941 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1942 se = cfs_rq->next;
1943
f685ceac 1944 clear_buddies(cfs_rq, se);
4793241b
PZ
1945
1946 return se;
aa2ac252
PZ
1947}
1948
d3d9dc33
PT
1949static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1950
ab6cde26 1951static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1952{
1953 /*
1954 * If still on the runqueue then deactivate_task()
1955 * was not called and update_curr() has to be done:
1956 */
1957 if (prev->on_rq)
b7cc0896 1958 update_curr(cfs_rq);
bf0f6f24 1959
d3d9dc33
PT
1960 /* throttle cfs_rqs exceeding runtime */
1961 check_cfs_rq_runtime(cfs_rq);
1962
ddc97297 1963 check_spread(cfs_rq, prev);
30cfdcfc 1964 if (prev->on_rq) {
5870db5b 1965 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1966 /* Put 'current' back into the tree. */
1967 __enqueue_entity(cfs_rq, prev);
9d85f21c 1968 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1969 update_entity_load_avg(prev, 1);
30cfdcfc 1970 }
429d43bc 1971 cfs_rq->curr = NULL;
bf0f6f24
IM
1972}
1973
8f4d37ec
PZ
1974static void
1975entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1976{
bf0f6f24 1977 /*
30cfdcfc 1978 * Update run-time statistics of the 'current'.
bf0f6f24 1979 */
30cfdcfc 1980 update_curr(cfs_rq);
bf0f6f24 1981
9d85f21c
PT
1982 /*
1983 * Ensure that runnable average is periodically updated.
1984 */
9ee474f5 1985 update_entity_load_avg(curr, 1);
aff3e498 1986 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1987
8f4d37ec
PZ
1988#ifdef CONFIG_SCHED_HRTICK
1989 /*
1990 * queued ticks are scheduled to match the slice, so don't bother
1991 * validating it and just reschedule.
1992 */
983ed7a6
HH
1993 if (queued) {
1994 resched_task(rq_of(cfs_rq)->curr);
1995 return;
1996 }
8f4d37ec
PZ
1997 /*
1998 * don't let the period tick interfere with the hrtick preemption
1999 */
2000 if (!sched_feat(DOUBLE_TICK) &&
2001 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2002 return;
2003#endif
2004
2c2efaed 2005 if (cfs_rq->nr_running > 1)
2e09bf55 2006 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2007}
2008
ab84d31e
PT
2009
2010/**************************************************
2011 * CFS bandwidth control machinery
2012 */
2013
2014#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2015
2016#ifdef HAVE_JUMP_LABEL
c5905afb 2017static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2018
2019static inline bool cfs_bandwidth_used(void)
2020{
c5905afb 2021 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2022}
2023
2024void account_cfs_bandwidth_used(int enabled, int was_enabled)
2025{
2026 /* only need to count groups transitioning between enabled/!enabled */
2027 if (enabled && !was_enabled)
c5905afb 2028 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2029 else if (!enabled && was_enabled)
c5905afb 2030 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2031}
2032#else /* HAVE_JUMP_LABEL */
2033static bool cfs_bandwidth_used(void)
2034{
2035 return true;
2036}
2037
2038void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2039#endif /* HAVE_JUMP_LABEL */
2040
ab84d31e
PT
2041/*
2042 * default period for cfs group bandwidth.
2043 * default: 0.1s, units: nanoseconds
2044 */
2045static inline u64 default_cfs_period(void)
2046{
2047 return 100000000ULL;
2048}
ec12cb7f
PT
2049
2050static inline u64 sched_cfs_bandwidth_slice(void)
2051{
2052 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2053}
2054
a9cf55b2
PT
2055/*
2056 * Replenish runtime according to assigned quota and update expiration time.
2057 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2058 * additional synchronization around rq->lock.
2059 *
2060 * requires cfs_b->lock
2061 */
029632fb 2062void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2063{
2064 u64 now;
2065
2066 if (cfs_b->quota == RUNTIME_INF)
2067 return;
2068
2069 now = sched_clock_cpu(smp_processor_id());
2070 cfs_b->runtime = cfs_b->quota;
2071 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2072}
2073
029632fb
PZ
2074static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2075{
2076 return &tg->cfs_bandwidth;
2077}
2078
f1b17280
PT
2079/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2080static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2081{
2082 if (unlikely(cfs_rq->throttle_count))
2083 return cfs_rq->throttled_clock_task;
2084
2085 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2086}
2087
85dac906
PT
2088/* returns 0 on failure to allocate runtime */
2089static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2090{
2091 struct task_group *tg = cfs_rq->tg;
2092 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2093 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2094
2095 /* note: this is a positive sum as runtime_remaining <= 0 */
2096 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2097
2098 raw_spin_lock(&cfs_b->lock);
2099 if (cfs_b->quota == RUNTIME_INF)
2100 amount = min_amount;
58088ad0 2101 else {
a9cf55b2
PT
2102 /*
2103 * If the bandwidth pool has become inactive, then at least one
2104 * period must have elapsed since the last consumption.
2105 * Refresh the global state and ensure bandwidth timer becomes
2106 * active.
2107 */
2108 if (!cfs_b->timer_active) {
2109 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2110 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2111 }
58088ad0
PT
2112
2113 if (cfs_b->runtime > 0) {
2114 amount = min(cfs_b->runtime, min_amount);
2115 cfs_b->runtime -= amount;
2116 cfs_b->idle = 0;
2117 }
ec12cb7f 2118 }
a9cf55b2 2119 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2120 raw_spin_unlock(&cfs_b->lock);
2121
2122 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2123 /*
2124 * we may have advanced our local expiration to account for allowed
2125 * spread between our sched_clock and the one on which runtime was
2126 * issued.
2127 */
2128 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2129 cfs_rq->runtime_expires = expires;
85dac906
PT
2130
2131 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2132}
2133
a9cf55b2
PT
2134/*
2135 * Note: This depends on the synchronization provided by sched_clock and the
2136 * fact that rq->clock snapshots this value.
2137 */
2138static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2139{
a9cf55b2
PT
2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2141 struct rq *rq = rq_of(cfs_rq);
2142
2143 /* if the deadline is ahead of our clock, nothing to do */
2144 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2145 return;
2146
a9cf55b2
PT
2147 if (cfs_rq->runtime_remaining < 0)
2148 return;
2149
2150 /*
2151 * If the local deadline has passed we have to consider the
2152 * possibility that our sched_clock is 'fast' and the global deadline
2153 * has not truly expired.
2154 *
2155 * Fortunately we can check determine whether this the case by checking
2156 * whether the global deadline has advanced.
2157 */
2158
2159 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2160 /* extend local deadline, drift is bounded above by 2 ticks */
2161 cfs_rq->runtime_expires += TICK_NSEC;
2162 } else {
2163 /* global deadline is ahead, expiration has passed */
2164 cfs_rq->runtime_remaining = 0;
2165 }
2166}
2167
2168static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2169 unsigned long delta_exec)
2170{
2171 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2172 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2173 expire_cfs_rq_runtime(cfs_rq);
2174
2175 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2176 return;
2177
85dac906
PT
2178 /*
2179 * if we're unable to extend our runtime we resched so that the active
2180 * hierarchy can be throttled
2181 */
2182 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2183 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2184}
2185
6c16a6dc
PZ
2186static __always_inline
2187void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2188{
56f570e5 2189 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2190 return;
2191
2192 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2193}
2194
85dac906
PT
2195static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2196{
56f570e5 2197 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2198}
2199
64660c86
PT
2200/* check whether cfs_rq, or any parent, is throttled */
2201static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2202{
56f570e5 2203 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2204}
2205
2206/*
2207 * Ensure that neither of the group entities corresponding to src_cpu or
2208 * dest_cpu are members of a throttled hierarchy when performing group
2209 * load-balance operations.
2210 */
2211static inline int throttled_lb_pair(struct task_group *tg,
2212 int src_cpu, int dest_cpu)
2213{
2214 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2215
2216 src_cfs_rq = tg->cfs_rq[src_cpu];
2217 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2218
2219 return throttled_hierarchy(src_cfs_rq) ||
2220 throttled_hierarchy(dest_cfs_rq);
2221}
2222
2223/* updated child weight may affect parent so we have to do this bottom up */
2224static int tg_unthrottle_up(struct task_group *tg, void *data)
2225{
2226 struct rq *rq = data;
2227 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2228
2229 cfs_rq->throttle_count--;
2230#ifdef CONFIG_SMP
2231 if (!cfs_rq->throttle_count) {
f1b17280
PT
2232 /* adjust cfs_rq_clock_task() */
2233 cfs_rq->throttled_clock_task_time += rq->clock_task -
2234 cfs_rq->throttled_clock_task;
64660c86
PT
2235 }
2236#endif
2237
2238 return 0;
2239}
2240
2241static int tg_throttle_down(struct task_group *tg, void *data)
2242{
2243 struct rq *rq = data;
2244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
82958366
PT
2246 /* group is entering throttled state, stop time */
2247 if (!cfs_rq->throttle_count)
f1b17280 2248 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2249 cfs_rq->throttle_count++;
2250
2251 return 0;
2252}
2253
d3d9dc33 2254static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2255{
2256 struct rq *rq = rq_of(cfs_rq);
2257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2258 struct sched_entity *se;
2259 long task_delta, dequeue = 1;
2260
2261 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2262
f1b17280 2263 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2264 rcu_read_lock();
2265 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2266 rcu_read_unlock();
85dac906
PT
2267
2268 task_delta = cfs_rq->h_nr_running;
2269 for_each_sched_entity(se) {
2270 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2271 /* throttled entity or throttle-on-deactivate */
2272 if (!se->on_rq)
2273 break;
2274
2275 if (dequeue)
2276 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2277 qcfs_rq->h_nr_running -= task_delta;
2278
2279 if (qcfs_rq->load.weight)
2280 dequeue = 0;
2281 }
2282
2283 if (!se)
2284 rq->nr_running -= task_delta;
2285
2286 cfs_rq->throttled = 1;
f1b17280 2287 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2288 raw_spin_lock(&cfs_b->lock);
2289 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2290 raw_spin_unlock(&cfs_b->lock);
2291}
2292
029632fb 2293void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2294{
2295 struct rq *rq = rq_of(cfs_rq);
2296 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2297 struct sched_entity *se;
2298 int enqueue = 1;
2299 long task_delta;
2300
2301 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
2303 cfs_rq->throttled = 0;
2304 raw_spin_lock(&cfs_b->lock);
f1b17280 2305 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2306 list_del_rcu(&cfs_rq->throttled_list);
2307 raw_spin_unlock(&cfs_b->lock);
2308
64660c86
PT
2309 update_rq_clock(rq);
2310 /* update hierarchical throttle state */
2311 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2312
671fd9da
PT
2313 if (!cfs_rq->load.weight)
2314 return;
2315
2316 task_delta = cfs_rq->h_nr_running;
2317 for_each_sched_entity(se) {
2318 if (se->on_rq)
2319 enqueue = 0;
2320
2321 cfs_rq = cfs_rq_of(se);
2322 if (enqueue)
2323 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2324 cfs_rq->h_nr_running += task_delta;
2325
2326 if (cfs_rq_throttled(cfs_rq))
2327 break;
2328 }
2329
2330 if (!se)
2331 rq->nr_running += task_delta;
2332
2333 /* determine whether we need to wake up potentially idle cpu */
2334 if (rq->curr == rq->idle && rq->cfs.nr_running)
2335 resched_task(rq->curr);
2336}
2337
2338static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2339 u64 remaining, u64 expires)
2340{
2341 struct cfs_rq *cfs_rq;
2342 u64 runtime = remaining;
2343
2344 rcu_read_lock();
2345 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2346 throttled_list) {
2347 struct rq *rq = rq_of(cfs_rq);
2348
2349 raw_spin_lock(&rq->lock);
2350 if (!cfs_rq_throttled(cfs_rq))
2351 goto next;
2352
2353 runtime = -cfs_rq->runtime_remaining + 1;
2354 if (runtime > remaining)
2355 runtime = remaining;
2356 remaining -= runtime;
2357
2358 cfs_rq->runtime_remaining += runtime;
2359 cfs_rq->runtime_expires = expires;
2360
2361 /* we check whether we're throttled above */
2362 if (cfs_rq->runtime_remaining > 0)
2363 unthrottle_cfs_rq(cfs_rq);
2364
2365next:
2366 raw_spin_unlock(&rq->lock);
2367
2368 if (!remaining)
2369 break;
2370 }
2371 rcu_read_unlock();
2372
2373 return remaining;
2374}
2375
58088ad0
PT
2376/*
2377 * Responsible for refilling a task_group's bandwidth and unthrottling its
2378 * cfs_rqs as appropriate. If there has been no activity within the last
2379 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2380 * used to track this state.
2381 */
2382static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2383{
671fd9da
PT
2384 u64 runtime, runtime_expires;
2385 int idle = 1, throttled;
58088ad0
PT
2386
2387 raw_spin_lock(&cfs_b->lock);
2388 /* no need to continue the timer with no bandwidth constraint */
2389 if (cfs_b->quota == RUNTIME_INF)
2390 goto out_unlock;
2391
671fd9da
PT
2392 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2393 /* idle depends on !throttled (for the case of a large deficit) */
2394 idle = cfs_b->idle && !throttled;
e8da1b18 2395 cfs_b->nr_periods += overrun;
671fd9da 2396
a9cf55b2
PT
2397 /* if we're going inactive then everything else can be deferred */
2398 if (idle)
2399 goto out_unlock;
2400
2401 __refill_cfs_bandwidth_runtime(cfs_b);
2402
671fd9da
PT
2403 if (!throttled) {
2404 /* mark as potentially idle for the upcoming period */
2405 cfs_b->idle = 1;
2406 goto out_unlock;
2407 }
2408
e8da1b18
NR
2409 /* account preceding periods in which throttling occurred */
2410 cfs_b->nr_throttled += overrun;
2411
671fd9da
PT
2412 /*
2413 * There are throttled entities so we must first use the new bandwidth
2414 * to unthrottle them before making it generally available. This
2415 * ensures that all existing debts will be paid before a new cfs_rq is
2416 * allowed to run.
2417 */
2418 runtime = cfs_b->runtime;
2419 runtime_expires = cfs_b->runtime_expires;
2420 cfs_b->runtime = 0;
2421
2422 /*
2423 * This check is repeated as we are holding onto the new bandwidth
2424 * while we unthrottle. This can potentially race with an unthrottled
2425 * group trying to acquire new bandwidth from the global pool.
2426 */
2427 while (throttled && runtime > 0) {
2428 raw_spin_unlock(&cfs_b->lock);
2429 /* we can't nest cfs_b->lock while distributing bandwidth */
2430 runtime = distribute_cfs_runtime(cfs_b, runtime,
2431 runtime_expires);
2432 raw_spin_lock(&cfs_b->lock);
2433
2434 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435 }
58088ad0 2436
671fd9da
PT
2437 /* return (any) remaining runtime */
2438 cfs_b->runtime = runtime;
2439 /*
2440 * While we are ensured activity in the period following an
2441 * unthrottle, this also covers the case in which the new bandwidth is
2442 * insufficient to cover the existing bandwidth deficit. (Forcing the
2443 * timer to remain active while there are any throttled entities.)
2444 */
2445 cfs_b->idle = 0;
58088ad0
PT
2446out_unlock:
2447 if (idle)
2448 cfs_b->timer_active = 0;
2449 raw_spin_unlock(&cfs_b->lock);
2450
2451 return idle;
2452}
d3d9dc33 2453
d8b4986d
PT
2454/* a cfs_rq won't donate quota below this amount */
2455static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2456/* minimum remaining period time to redistribute slack quota */
2457static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2458/* how long we wait to gather additional slack before distributing */
2459static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2460
2461/* are we near the end of the current quota period? */
2462static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2463{
2464 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2465 u64 remaining;
2466
2467 /* if the call-back is running a quota refresh is already occurring */
2468 if (hrtimer_callback_running(refresh_timer))
2469 return 1;
2470
2471 /* is a quota refresh about to occur? */
2472 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2473 if (remaining < min_expire)
2474 return 1;
2475
2476 return 0;
2477}
2478
2479static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2480{
2481 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2482
2483 /* if there's a quota refresh soon don't bother with slack */
2484 if (runtime_refresh_within(cfs_b, min_left))
2485 return;
2486
2487 start_bandwidth_timer(&cfs_b->slack_timer,
2488 ns_to_ktime(cfs_bandwidth_slack_period));
2489}
2490
2491/* we know any runtime found here is valid as update_curr() precedes return */
2492static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2493{
2494 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2495 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2496
2497 if (slack_runtime <= 0)
2498 return;
2499
2500 raw_spin_lock(&cfs_b->lock);
2501 if (cfs_b->quota != RUNTIME_INF &&
2502 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2503 cfs_b->runtime += slack_runtime;
2504
2505 /* we are under rq->lock, defer unthrottling using a timer */
2506 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2507 !list_empty(&cfs_b->throttled_cfs_rq))
2508 start_cfs_slack_bandwidth(cfs_b);
2509 }
2510 raw_spin_unlock(&cfs_b->lock);
2511
2512 /* even if it's not valid for return we don't want to try again */
2513 cfs_rq->runtime_remaining -= slack_runtime;
2514}
2515
2516static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2517{
56f570e5
PT
2518 if (!cfs_bandwidth_used())
2519 return;
2520
fccfdc6f 2521 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2522 return;
2523
2524 __return_cfs_rq_runtime(cfs_rq);
2525}
2526
2527/*
2528 * This is done with a timer (instead of inline with bandwidth return) since
2529 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2530 */
2531static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2532{
2533 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2534 u64 expires;
2535
2536 /* confirm we're still not at a refresh boundary */
2537 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2538 return;
2539
2540 raw_spin_lock(&cfs_b->lock);
2541 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2542 runtime = cfs_b->runtime;
2543 cfs_b->runtime = 0;
2544 }
2545 expires = cfs_b->runtime_expires;
2546 raw_spin_unlock(&cfs_b->lock);
2547
2548 if (!runtime)
2549 return;
2550
2551 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2552
2553 raw_spin_lock(&cfs_b->lock);
2554 if (expires == cfs_b->runtime_expires)
2555 cfs_b->runtime = runtime;
2556 raw_spin_unlock(&cfs_b->lock);
2557}
2558
d3d9dc33
PT
2559/*
2560 * When a group wakes up we want to make sure that its quota is not already
2561 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2562 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2563 */
2564static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2565{
56f570e5
PT
2566 if (!cfs_bandwidth_used())
2567 return;
2568
d3d9dc33
PT
2569 /* an active group must be handled by the update_curr()->put() path */
2570 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2571 return;
2572
2573 /* ensure the group is not already throttled */
2574 if (cfs_rq_throttled(cfs_rq))
2575 return;
2576
2577 /* update runtime allocation */
2578 account_cfs_rq_runtime(cfs_rq, 0);
2579 if (cfs_rq->runtime_remaining <= 0)
2580 throttle_cfs_rq(cfs_rq);
2581}
2582
2583/* conditionally throttle active cfs_rq's from put_prev_entity() */
2584static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2585{
56f570e5
PT
2586 if (!cfs_bandwidth_used())
2587 return;
2588
d3d9dc33
PT
2589 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2590 return;
2591
2592 /*
2593 * it's possible for a throttled entity to be forced into a running
2594 * state (e.g. set_curr_task), in this case we're finished.
2595 */
2596 if (cfs_rq_throttled(cfs_rq))
2597 return;
2598
2599 throttle_cfs_rq(cfs_rq);
2600}
029632fb
PZ
2601
2602static inline u64 default_cfs_period(void);
2603static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2604static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2605
2606static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2607{
2608 struct cfs_bandwidth *cfs_b =
2609 container_of(timer, struct cfs_bandwidth, slack_timer);
2610 do_sched_cfs_slack_timer(cfs_b);
2611
2612 return HRTIMER_NORESTART;
2613}
2614
2615static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2616{
2617 struct cfs_bandwidth *cfs_b =
2618 container_of(timer, struct cfs_bandwidth, period_timer);
2619 ktime_t now;
2620 int overrun;
2621 int idle = 0;
2622
2623 for (;;) {
2624 now = hrtimer_cb_get_time(timer);
2625 overrun = hrtimer_forward(timer, now, cfs_b->period);
2626
2627 if (!overrun)
2628 break;
2629
2630 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2631 }
2632
2633 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2634}
2635
2636void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637{
2638 raw_spin_lock_init(&cfs_b->lock);
2639 cfs_b->runtime = 0;
2640 cfs_b->quota = RUNTIME_INF;
2641 cfs_b->period = ns_to_ktime(default_cfs_period());
2642
2643 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2644 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2645 cfs_b->period_timer.function = sched_cfs_period_timer;
2646 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2647 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2648}
2649
2650static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2651{
2652 cfs_rq->runtime_enabled = 0;
2653 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2654}
2655
2656/* requires cfs_b->lock, may release to reprogram timer */
2657void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658{
2659 /*
2660 * The timer may be active because we're trying to set a new bandwidth
2661 * period or because we're racing with the tear-down path
2662 * (timer_active==0 becomes visible before the hrtimer call-back
2663 * terminates). In either case we ensure that it's re-programmed
2664 */
2665 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2666 raw_spin_unlock(&cfs_b->lock);
2667 /* ensure cfs_b->lock is available while we wait */
2668 hrtimer_cancel(&cfs_b->period_timer);
2669
2670 raw_spin_lock(&cfs_b->lock);
2671 /* if someone else restarted the timer then we're done */
2672 if (cfs_b->timer_active)
2673 return;
2674 }
2675
2676 cfs_b->timer_active = 1;
2677 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2678}
2679
2680static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681{
2682 hrtimer_cancel(&cfs_b->period_timer);
2683 hrtimer_cancel(&cfs_b->slack_timer);
2684}
2685
38dc3348 2686static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2687{
2688 struct cfs_rq *cfs_rq;
2689
2690 for_each_leaf_cfs_rq(rq, cfs_rq) {
2691 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2692
2693 if (!cfs_rq->runtime_enabled)
2694 continue;
2695
2696 /*
2697 * clock_task is not advancing so we just need to make sure
2698 * there's some valid quota amount
2699 */
2700 cfs_rq->runtime_remaining = cfs_b->quota;
2701 if (cfs_rq_throttled(cfs_rq))
2702 unthrottle_cfs_rq(cfs_rq);
2703 }
2704}
2705
2706#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2707static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2708{
2709 return rq_of(cfs_rq)->clock_task;
2710}
2711
2712static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2713 unsigned long delta_exec) {}
d3d9dc33
PT
2714static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2715static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2716static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2717
2718static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2719{
2720 return 0;
2721}
64660c86
PT
2722
2723static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2724{
2725 return 0;
2726}
2727
2728static inline int throttled_lb_pair(struct task_group *tg,
2729 int src_cpu, int dest_cpu)
2730{
2731 return 0;
2732}
029632fb
PZ
2733
2734void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2735
2736#ifdef CONFIG_FAIR_GROUP_SCHED
2737static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2738#endif
2739
029632fb
PZ
2740static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2741{
2742 return NULL;
2743}
2744static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2745static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2746
2747#endif /* CONFIG_CFS_BANDWIDTH */
2748
bf0f6f24
IM
2749/**************************************************
2750 * CFS operations on tasks:
2751 */
2752
8f4d37ec
PZ
2753#ifdef CONFIG_SCHED_HRTICK
2754static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2755{
8f4d37ec
PZ
2756 struct sched_entity *se = &p->se;
2757 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2758
2759 WARN_ON(task_rq(p) != rq);
2760
b39e66ea 2761 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2762 u64 slice = sched_slice(cfs_rq, se);
2763 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2764 s64 delta = slice - ran;
2765
2766 if (delta < 0) {
2767 if (rq->curr == p)
2768 resched_task(p);
2769 return;
2770 }
2771
2772 /*
2773 * Don't schedule slices shorter than 10000ns, that just
2774 * doesn't make sense. Rely on vruntime for fairness.
2775 */
31656519 2776 if (rq->curr != p)
157124c1 2777 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2778
31656519 2779 hrtick_start(rq, delta);
8f4d37ec
PZ
2780 }
2781}
a4c2f00f
PZ
2782
2783/*
2784 * called from enqueue/dequeue and updates the hrtick when the
2785 * current task is from our class and nr_running is low enough
2786 * to matter.
2787 */
2788static void hrtick_update(struct rq *rq)
2789{
2790 struct task_struct *curr = rq->curr;
2791
b39e66ea 2792 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2793 return;
2794
2795 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2796 hrtick_start_fair(rq, curr);
2797}
55e12e5e 2798#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2799static inline void
2800hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801{
2802}
a4c2f00f
PZ
2803
2804static inline void hrtick_update(struct rq *rq)
2805{
2806}
8f4d37ec
PZ
2807#endif
2808
bf0f6f24
IM
2809/*
2810 * The enqueue_task method is called before nr_running is
2811 * increased. Here we update the fair scheduling stats and
2812 * then put the task into the rbtree:
2813 */
ea87bb78 2814static void
371fd7e7 2815enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2816{
2817 struct cfs_rq *cfs_rq;
62fb1851 2818 struct sched_entity *se = &p->se;
bf0f6f24
IM
2819
2820 for_each_sched_entity(se) {
62fb1851 2821 if (se->on_rq)
bf0f6f24
IM
2822 break;
2823 cfs_rq = cfs_rq_of(se);
88ec22d3 2824 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2825
2826 /*
2827 * end evaluation on encountering a throttled cfs_rq
2828 *
2829 * note: in the case of encountering a throttled cfs_rq we will
2830 * post the final h_nr_running increment below.
2831 */
2832 if (cfs_rq_throttled(cfs_rq))
2833 break;
953bfcd1 2834 cfs_rq->h_nr_running++;
85dac906 2835
88ec22d3 2836 flags = ENQUEUE_WAKEUP;
bf0f6f24 2837 }
8f4d37ec 2838
2069dd75 2839 for_each_sched_entity(se) {
0f317143 2840 cfs_rq = cfs_rq_of(se);
953bfcd1 2841 cfs_rq->h_nr_running++;
2069dd75 2842
85dac906
PT
2843 if (cfs_rq_throttled(cfs_rq))
2844 break;
2845
17bc14b7 2846 update_cfs_shares(cfs_rq);
9ee474f5 2847 update_entity_load_avg(se, 1);
2069dd75
PZ
2848 }
2849
18bf2805
BS
2850 if (!se) {
2851 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2852 inc_nr_running(rq);
18bf2805 2853 }
a4c2f00f 2854 hrtick_update(rq);
bf0f6f24
IM
2855}
2856
2f36825b
VP
2857static void set_next_buddy(struct sched_entity *se);
2858
bf0f6f24
IM
2859/*
2860 * The dequeue_task method is called before nr_running is
2861 * decreased. We remove the task from the rbtree and
2862 * update the fair scheduling stats:
2863 */
371fd7e7 2864static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2865{
2866 struct cfs_rq *cfs_rq;
62fb1851 2867 struct sched_entity *se = &p->se;
2f36825b 2868 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2869
2870 for_each_sched_entity(se) {
2871 cfs_rq = cfs_rq_of(se);
371fd7e7 2872 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2873
2874 /*
2875 * end evaluation on encountering a throttled cfs_rq
2876 *
2877 * note: in the case of encountering a throttled cfs_rq we will
2878 * post the final h_nr_running decrement below.
2879 */
2880 if (cfs_rq_throttled(cfs_rq))
2881 break;
953bfcd1 2882 cfs_rq->h_nr_running--;
2069dd75 2883
bf0f6f24 2884 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2885 if (cfs_rq->load.weight) {
2886 /*
2887 * Bias pick_next to pick a task from this cfs_rq, as
2888 * p is sleeping when it is within its sched_slice.
2889 */
2890 if (task_sleep && parent_entity(se))
2891 set_next_buddy(parent_entity(se));
9598c82d
PT
2892
2893 /* avoid re-evaluating load for this entity */
2894 se = parent_entity(se);
bf0f6f24 2895 break;
2f36825b 2896 }
371fd7e7 2897 flags |= DEQUEUE_SLEEP;
bf0f6f24 2898 }
8f4d37ec 2899
2069dd75 2900 for_each_sched_entity(se) {
0f317143 2901 cfs_rq = cfs_rq_of(se);
953bfcd1 2902 cfs_rq->h_nr_running--;
2069dd75 2903
85dac906
PT
2904 if (cfs_rq_throttled(cfs_rq))
2905 break;
2906
17bc14b7 2907 update_cfs_shares(cfs_rq);
9ee474f5 2908 update_entity_load_avg(se, 1);
2069dd75
PZ
2909 }
2910
18bf2805 2911 if (!se) {
85dac906 2912 dec_nr_running(rq);
18bf2805
BS
2913 update_rq_runnable_avg(rq, 1);
2914 }
a4c2f00f 2915 hrtick_update(rq);
bf0f6f24
IM
2916}
2917
e7693a36 2918#ifdef CONFIG_SMP
029632fb
PZ
2919/* Used instead of source_load when we know the type == 0 */
2920static unsigned long weighted_cpuload(const int cpu)
2921{
2922 return cpu_rq(cpu)->load.weight;
2923}
2924
2925/*
2926 * Return a low guess at the load of a migration-source cpu weighted
2927 * according to the scheduling class and "nice" value.
2928 *
2929 * We want to under-estimate the load of migration sources, to
2930 * balance conservatively.
2931 */
2932static unsigned long source_load(int cpu, int type)
2933{
2934 struct rq *rq = cpu_rq(cpu);
2935 unsigned long total = weighted_cpuload(cpu);
2936
2937 if (type == 0 || !sched_feat(LB_BIAS))
2938 return total;
2939
2940 return min(rq->cpu_load[type-1], total);
2941}
2942
2943/*
2944 * Return a high guess at the load of a migration-target cpu weighted
2945 * according to the scheduling class and "nice" value.
2946 */
2947static unsigned long target_load(int cpu, int type)
2948{
2949 struct rq *rq = cpu_rq(cpu);
2950 unsigned long total = weighted_cpuload(cpu);
2951
2952 if (type == 0 || !sched_feat(LB_BIAS))
2953 return total;
2954
2955 return max(rq->cpu_load[type-1], total);
2956}
2957
2958static unsigned long power_of(int cpu)
2959{
2960 return cpu_rq(cpu)->cpu_power;
2961}
2962
2963static unsigned long cpu_avg_load_per_task(int cpu)
2964{
2965 struct rq *rq = cpu_rq(cpu);
2966 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2967
2968 if (nr_running)
2969 return rq->load.weight / nr_running;
2970
2971 return 0;
2972}
2973
098fb9db 2974
74f8e4b2 2975static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2976{
2977 struct sched_entity *se = &p->se;
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2979 u64 min_vruntime;
2980
2981#ifndef CONFIG_64BIT
2982 u64 min_vruntime_copy;
88ec22d3 2983
3fe1698b
PZ
2984 do {
2985 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2986 smp_rmb();
2987 min_vruntime = cfs_rq->min_vruntime;
2988 } while (min_vruntime != min_vruntime_copy);
2989#else
2990 min_vruntime = cfs_rq->min_vruntime;
2991#endif
88ec22d3 2992
3fe1698b 2993 se->vruntime -= min_vruntime;
88ec22d3
PZ
2994}
2995
bb3469ac 2996#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2997/*
2998 * effective_load() calculates the load change as seen from the root_task_group
2999 *
3000 * Adding load to a group doesn't make a group heavier, but can cause movement
3001 * of group shares between cpus. Assuming the shares were perfectly aligned one
3002 * can calculate the shift in shares.
cf5f0acf
PZ
3003 *
3004 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3005 * on this @cpu and results in a total addition (subtraction) of @wg to the
3006 * total group weight.
3007 *
3008 * Given a runqueue weight distribution (rw_i) we can compute a shares
3009 * distribution (s_i) using:
3010 *
3011 * s_i = rw_i / \Sum rw_j (1)
3012 *
3013 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3014 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3015 * shares distribution (s_i):
3016 *
3017 * rw_i = { 2, 4, 1, 0 }
3018 * s_i = { 2/7, 4/7, 1/7, 0 }
3019 *
3020 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3021 * task used to run on and the CPU the waker is running on), we need to
3022 * compute the effect of waking a task on either CPU and, in case of a sync
3023 * wakeup, compute the effect of the current task going to sleep.
3024 *
3025 * So for a change of @wl to the local @cpu with an overall group weight change
3026 * of @wl we can compute the new shares distribution (s'_i) using:
3027 *
3028 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3029 *
3030 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3031 * differences in waking a task to CPU 0. The additional task changes the
3032 * weight and shares distributions like:
3033 *
3034 * rw'_i = { 3, 4, 1, 0 }
3035 * s'_i = { 3/8, 4/8, 1/8, 0 }
3036 *
3037 * We can then compute the difference in effective weight by using:
3038 *
3039 * dw_i = S * (s'_i - s_i) (3)
3040 *
3041 * Where 'S' is the group weight as seen by its parent.
3042 *
3043 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3044 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3045 * 4/7) times the weight of the group.
f5bfb7d9 3046 */
2069dd75 3047static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3048{
4be9daaa 3049 struct sched_entity *se = tg->se[cpu];
f1d239f7 3050
cf5f0acf 3051 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3052 return wl;
3053
4be9daaa 3054 for_each_sched_entity(se) {
cf5f0acf 3055 long w, W;
4be9daaa 3056
977dda7c 3057 tg = se->my_q->tg;
bb3469ac 3058
cf5f0acf
PZ
3059 /*
3060 * W = @wg + \Sum rw_j
3061 */
3062 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3063
cf5f0acf
PZ
3064 /*
3065 * w = rw_i + @wl
3066 */
3067 w = se->my_q->load.weight + wl;
940959e9 3068
cf5f0acf
PZ
3069 /*
3070 * wl = S * s'_i; see (2)
3071 */
3072 if (W > 0 && w < W)
3073 wl = (w * tg->shares) / W;
977dda7c
PT
3074 else
3075 wl = tg->shares;
940959e9 3076
cf5f0acf
PZ
3077 /*
3078 * Per the above, wl is the new se->load.weight value; since
3079 * those are clipped to [MIN_SHARES, ...) do so now. See
3080 * calc_cfs_shares().
3081 */
977dda7c
PT
3082 if (wl < MIN_SHARES)
3083 wl = MIN_SHARES;
cf5f0acf
PZ
3084
3085 /*
3086 * wl = dw_i = S * (s'_i - s_i); see (3)
3087 */
977dda7c 3088 wl -= se->load.weight;
cf5f0acf
PZ
3089
3090 /*
3091 * Recursively apply this logic to all parent groups to compute
3092 * the final effective load change on the root group. Since
3093 * only the @tg group gets extra weight, all parent groups can
3094 * only redistribute existing shares. @wl is the shift in shares
3095 * resulting from this level per the above.
3096 */
4be9daaa 3097 wg = 0;
4be9daaa 3098 }
bb3469ac 3099
4be9daaa 3100 return wl;
bb3469ac
PZ
3101}
3102#else
4be9daaa 3103
83378269
PZ
3104static inline unsigned long effective_load(struct task_group *tg, int cpu,
3105 unsigned long wl, unsigned long wg)
4be9daaa 3106{
83378269 3107 return wl;
bb3469ac 3108}
4be9daaa 3109
bb3469ac
PZ
3110#endif
3111
c88d5910 3112static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3113{
e37b6a7b 3114 s64 this_load, load;
c88d5910 3115 int idx, this_cpu, prev_cpu;
098fb9db 3116 unsigned long tl_per_task;
c88d5910 3117 struct task_group *tg;
83378269 3118 unsigned long weight;
b3137bc8 3119 int balanced;
098fb9db 3120
c88d5910
PZ
3121 idx = sd->wake_idx;
3122 this_cpu = smp_processor_id();
3123 prev_cpu = task_cpu(p);
3124 load = source_load(prev_cpu, idx);
3125 this_load = target_load(this_cpu, idx);
098fb9db 3126
b3137bc8
MG
3127 /*
3128 * If sync wakeup then subtract the (maximum possible)
3129 * effect of the currently running task from the load
3130 * of the current CPU:
3131 */
83378269
PZ
3132 if (sync) {
3133 tg = task_group(current);
3134 weight = current->se.load.weight;
3135
c88d5910 3136 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3137 load += effective_load(tg, prev_cpu, 0, -weight);
3138 }
b3137bc8 3139
83378269
PZ
3140 tg = task_group(p);
3141 weight = p->se.load.weight;
b3137bc8 3142
71a29aa7
PZ
3143 /*
3144 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3145 * due to the sync cause above having dropped this_load to 0, we'll
3146 * always have an imbalance, but there's really nothing you can do
3147 * about that, so that's good too.
71a29aa7
PZ
3148 *
3149 * Otherwise check if either cpus are near enough in load to allow this
3150 * task to be woken on this_cpu.
3151 */
e37b6a7b
PT
3152 if (this_load > 0) {
3153 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3154
3155 this_eff_load = 100;
3156 this_eff_load *= power_of(prev_cpu);
3157 this_eff_load *= this_load +
3158 effective_load(tg, this_cpu, weight, weight);
3159
3160 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3161 prev_eff_load *= power_of(this_cpu);
3162 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3163
3164 balanced = this_eff_load <= prev_eff_load;
3165 } else
3166 balanced = true;
b3137bc8 3167
098fb9db 3168 /*
4ae7d5ce
IM
3169 * If the currently running task will sleep within
3170 * a reasonable amount of time then attract this newly
3171 * woken task:
098fb9db 3172 */
2fb7635c
PZ
3173 if (sync && balanced)
3174 return 1;
098fb9db 3175
41acab88 3176 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3177 tl_per_task = cpu_avg_load_per_task(this_cpu);
3178
c88d5910
PZ
3179 if (balanced ||
3180 (this_load <= load &&
3181 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3182 /*
3183 * This domain has SD_WAKE_AFFINE and
3184 * p is cache cold in this domain, and
3185 * there is no bad imbalance.
3186 */
c88d5910 3187 schedstat_inc(sd, ttwu_move_affine);
41acab88 3188 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3189
3190 return 1;
3191 }
3192 return 0;
3193}
3194
aaee1203
PZ
3195/*
3196 * find_idlest_group finds and returns the least busy CPU group within the
3197 * domain.
3198 */
3199static struct sched_group *
78e7ed53 3200find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3201 int this_cpu, int load_idx)
e7693a36 3202{
b3bd3de6 3203 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3204 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3205 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3206
aaee1203
PZ
3207 do {
3208 unsigned long load, avg_load;
3209 int local_group;
3210 int i;
e7693a36 3211
aaee1203
PZ
3212 /* Skip over this group if it has no CPUs allowed */
3213 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3214 tsk_cpus_allowed(p)))
aaee1203
PZ
3215 continue;
3216
3217 local_group = cpumask_test_cpu(this_cpu,
3218 sched_group_cpus(group));
3219
3220 /* Tally up the load of all CPUs in the group */
3221 avg_load = 0;
3222
3223 for_each_cpu(i, sched_group_cpus(group)) {
3224 /* Bias balancing toward cpus of our domain */
3225 if (local_group)
3226 load = source_load(i, load_idx);
3227 else
3228 load = target_load(i, load_idx);
3229
3230 avg_load += load;
3231 }
3232
3233 /* Adjust by relative CPU power of the group */
9c3f75cb 3234 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3235
3236 if (local_group) {
3237 this_load = avg_load;
aaee1203
PZ
3238 } else if (avg_load < min_load) {
3239 min_load = avg_load;
3240 idlest = group;
3241 }
3242 } while (group = group->next, group != sd->groups);
3243
3244 if (!idlest || 100*this_load < imbalance*min_load)
3245 return NULL;
3246 return idlest;
3247}
3248
3249/*
3250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3251 */
3252static int
3253find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3254{
3255 unsigned long load, min_load = ULONG_MAX;
3256 int idlest = -1;
3257 int i;
3258
3259 /* Traverse only the allowed CPUs */
fa17b507 3260 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3261 load = weighted_cpuload(i);
3262
3263 if (load < min_load || (load == min_load && i == this_cpu)) {
3264 min_load = load;
3265 idlest = i;
e7693a36
GH
3266 }
3267 }
3268
aaee1203
PZ
3269 return idlest;
3270}
e7693a36 3271
a50bde51
PZ
3272/*
3273 * Try and locate an idle CPU in the sched_domain.
3274 */
99bd5e2f 3275static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3276{
99bd5e2f 3277 struct sched_domain *sd;
37407ea7 3278 struct sched_group *sg;
e0a79f52 3279 int i = task_cpu(p);
a50bde51 3280
e0a79f52
MG
3281 if (idle_cpu(target))
3282 return target;
99bd5e2f
SS
3283
3284 /*
e0a79f52 3285 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3286 */
e0a79f52
MG
3287 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3288 return i;
a50bde51
PZ
3289
3290 /*
37407ea7 3291 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3292 */
518cd623 3293 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3294 for_each_lower_domain(sd) {
37407ea7
LT
3295 sg = sd->groups;
3296 do {
3297 if (!cpumask_intersects(sched_group_cpus(sg),
3298 tsk_cpus_allowed(p)))
3299 goto next;
3300
3301 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3302 if (i == target || !idle_cpu(i))
37407ea7
LT
3303 goto next;
3304 }
970e1789 3305
37407ea7
LT
3306 target = cpumask_first_and(sched_group_cpus(sg),
3307 tsk_cpus_allowed(p));
3308 goto done;
3309next:
3310 sg = sg->next;
3311 } while (sg != sd->groups);
3312 }
3313done:
a50bde51
PZ
3314 return target;
3315}
3316
aaee1203
PZ
3317/*
3318 * sched_balance_self: balance the current task (running on cpu) in domains
3319 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3320 * SD_BALANCE_EXEC.
3321 *
3322 * Balance, ie. select the least loaded group.
3323 *
3324 * Returns the target CPU number, or the same CPU if no balancing is needed.
3325 *
3326 * preempt must be disabled.
3327 */
0017d735 3328static int
7608dec2 3329select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3330{
29cd8bae 3331 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3332 int cpu = smp_processor_id();
3333 int prev_cpu = task_cpu(p);
3334 int new_cpu = cpu;
99bd5e2f 3335 int want_affine = 0;
5158f4e4 3336 int sync = wake_flags & WF_SYNC;
c88d5910 3337
29baa747 3338 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3339 return prev_cpu;
3340
0763a660 3341 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3342 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3343 want_affine = 1;
3344 new_cpu = prev_cpu;
3345 }
aaee1203 3346
dce840a0 3347 rcu_read_lock();
aaee1203 3348 for_each_domain(cpu, tmp) {
e4f42888
PZ
3349 if (!(tmp->flags & SD_LOAD_BALANCE))
3350 continue;
3351
fe3bcfe1 3352 /*
99bd5e2f
SS
3353 * If both cpu and prev_cpu are part of this domain,
3354 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3355 */
99bd5e2f
SS
3356 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3357 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3358 affine_sd = tmp;
29cd8bae 3359 break;
f03542a7 3360 }
29cd8bae 3361
f03542a7 3362 if (tmp->flags & sd_flag)
29cd8bae
PZ
3363 sd = tmp;
3364 }
3365
8b911acd 3366 if (affine_sd) {
f03542a7 3367 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3368 prev_cpu = cpu;
3369
3370 new_cpu = select_idle_sibling(p, prev_cpu);
3371 goto unlock;
8b911acd 3372 }
e7693a36 3373
aaee1203 3374 while (sd) {
5158f4e4 3375 int load_idx = sd->forkexec_idx;
aaee1203 3376 struct sched_group *group;
c88d5910 3377 int weight;
098fb9db 3378
0763a660 3379 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3380 sd = sd->child;
3381 continue;
3382 }
098fb9db 3383
5158f4e4
PZ
3384 if (sd_flag & SD_BALANCE_WAKE)
3385 load_idx = sd->wake_idx;
098fb9db 3386
5158f4e4 3387 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3388 if (!group) {
3389 sd = sd->child;
3390 continue;
3391 }
4ae7d5ce 3392
d7c33c49 3393 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3394 if (new_cpu == -1 || new_cpu == cpu) {
3395 /* Now try balancing at a lower domain level of cpu */
3396 sd = sd->child;
3397 continue;
e7693a36 3398 }
aaee1203
PZ
3399
3400 /* Now try balancing at a lower domain level of new_cpu */
3401 cpu = new_cpu;
669c55e9 3402 weight = sd->span_weight;
aaee1203
PZ
3403 sd = NULL;
3404 for_each_domain(cpu, tmp) {
669c55e9 3405 if (weight <= tmp->span_weight)
aaee1203 3406 break;
0763a660 3407 if (tmp->flags & sd_flag)
aaee1203
PZ
3408 sd = tmp;
3409 }
3410 /* while loop will break here if sd == NULL */
e7693a36 3411 }
dce840a0
PZ
3412unlock:
3413 rcu_read_unlock();
e7693a36 3414
c88d5910 3415 return new_cpu;
e7693a36 3416}
0a74bef8 3417
f4e26b12
PT
3418/*
3419 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3420 * removed when useful for applications beyond shares distribution (e.g.
3421 * load-balance).
3422 */
3423#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3424/*
3425 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3426 * cfs_rq_of(p) references at time of call are still valid and identify the
3427 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3428 * other assumptions, including the state of rq->lock, should be made.
3429 */
3430static void
3431migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3432{
aff3e498
PT
3433 struct sched_entity *se = &p->se;
3434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3435
3436 /*
3437 * Load tracking: accumulate removed load so that it can be processed
3438 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3439 * to blocked load iff they have a positive decay-count. It can never
3440 * be negative here since on-rq tasks have decay-count == 0.
3441 */
3442 if (se->avg.decay_count) {
3443 se->avg.decay_count = -__synchronize_entity_decay(se);
3444 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3445 }
0a74bef8 3446}
f4e26b12 3447#endif
e7693a36
GH
3448#endif /* CONFIG_SMP */
3449
e52fb7c0
PZ
3450static unsigned long
3451wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3452{
3453 unsigned long gran = sysctl_sched_wakeup_granularity;
3454
3455 /*
e52fb7c0
PZ
3456 * Since its curr running now, convert the gran from real-time
3457 * to virtual-time in his units.
13814d42
MG
3458 *
3459 * By using 'se' instead of 'curr' we penalize light tasks, so
3460 * they get preempted easier. That is, if 'se' < 'curr' then
3461 * the resulting gran will be larger, therefore penalizing the
3462 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3463 * be smaller, again penalizing the lighter task.
3464 *
3465 * This is especially important for buddies when the leftmost
3466 * task is higher priority than the buddy.
0bbd3336 3467 */
f4ad9bd2 3468 return calc_delta_fair(gran, se);
0bbd3336
PZ
3469}
3470
464b7527
PZ
3471/*
3472 * Should 'se' preempt 'curr'.
3473 *
3474 * |s1
3475 * |s2
3476 * |s3
3477 * g
3478 * |<--->|c
3479 *
3480 * w(c, s1) = -1
3481 * w(c, s2) = 0
3482 * w(c, s3) = 1
3483 *
3484 */
3485static int
3486wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3487{
3488 s64 gran, vdiff = curr->vruntime - se->vruntime;
3489
3490 if (vdiff <= 0)
3491 return -1;
3492
e52fb7c0 3493 gran = wakeup_gran(curr, se);
464b7527
PZ
3494 if (vdiff > gran)
3495 return 1;
3496
3497 return 0;
3498}
3499
02479099
PZ
3500static void set_last_buddy(struct sched_entity *se)
3501{
69c80f3e
VP
3502 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3503 return;
3504
3505 for_each_sched_entity(se)
3506 cfs_rq_of(se)->last = se;
02479099
PZ
3507}
3508
3509static void set_next_buddy(struct sched_entity *se)
3510{
69c80f3e
VP
3511 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3512 return;
3513
3514 for_each_sched_entity(se)
3515 cfs_rq_of(se)->next = se;
02479099
PZ
3516}
3517
ac53db59
RR
3518static void set_skip_buddy(struct sched_entity *se)
3519{
69c80f3e
VP
3520 for_each_sched_entity(se)
3521 cfs_rq_of(se)->skip = se;
ac53db59
RR
3522}
3523
bf0f6f24
IM
3524/*
3525 * Preempt the current task with a newly woken task if needed:
3526 */
5a9b86f6 3527static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3528{
3529 struct task_struct *curr = rq->curr;
8651a86c 3530 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3531 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3532 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3533 int next_buddy_marked = 0;
bf0f6f24 3534
4ae7d5ce
IM
3535 if (unlikely(se == pse))
3536 return;
3537
5238cdd3 3538 /*
ddcdf6e7 3539 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3540 * unconditionally check_prempt_curr() after an enqueue (which may have
3541 * lead to a throttle). This both saves work and prevents false
3542 * next-buddy nomination below.
3543 */
3544 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3545 return;
3546
2f36825b 3547 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3548 set_next_buddy(pse);
2f36825b
VP
3549 next_buddy_marked = 1;
3550 }
57fdc26d 3551
aec0a514
BR
3552 /*
3553 * We can come here with TIF_NEED_RESCHED already set from new task
3554 * wake up path.
5238cdd3
PT
3555 *
3556 * Note: this also catches the edge-case of curr being in a throttled
3557 * group (e.g. via set_curr_task), since update_curr() (in the
3558 * enqueue of curr) will have resulted in resched being set. This
3559 * prevents us from potentially nominating it as a false LAST_BUDDY
3560 * below.
aec0a514
BR
3561 */
3562 if (test_tsk_need_resched(curr))
3563 return;
3564
a2f5c9ab
DH
3565 /* Idle tasks are by definition preempted by non-idle tasks. */
3566 if (unlikely(curr->policy == SCHED_IDLE) &&
3567 likely(p->policy != SCHED_IDLE))
3568 goto preempt;
3569
91c234b4 3570 /*
a2f5c9ab
DH
3571 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3572 * is driven by the tick):
91c234b4 3573 */
8ed92e51 3574 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3575 return;
bf0f6f24 3576
464b7527 3577 find_matching_se(&se, &pse);
9bbd7374 3578 update_curr(cfs_rq_of(se));
002f128b 3579 BUG_ON(!pse);
2f36825b
VP
3580 if (wakeup_preempt_entity(se, pse) == 1) {
3581 /*
3582 * Bias pick_next to pick the sched entity that is
3583 * triggering this preemption.
3584 */
3585 if (!next_buddy_marked)
3586 set_next_buddy(pse);
3a7e73a2 3587 goto preempt;
2f36825b 3588 }
464b7527 3589
3a7e73a2 3590 return;
a65ac745 3591
3a7e73a2
PZ
3592preempt:
3593 resched_task(curr);
3594 /*
3595 * Only set the backward buddy when the current task is still
3596 * on the rq. This can happen when a wakeup gets interleaved
3597 * with schedule on the ->pre_schedule() or idle_balance()
3598 * point, either of which can * drop the rq lock.
3599 *
3600 * Also, during early boot the idle thread is in the fair class,
3601 * for obvious reasons its a bad idea to schedule back to it.
3602 */
3603 if (unlikely(!se->on_rq || curr == rq->idle))
3604 return;
3605
3606 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3607 set_last_buddy(se);
bf0f6f24
IM
3608}
3609
fb8d4724 3610static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3611{
8f4d37ec 3612 struct task_struct *p;
bf0f6f24
IM
3613 struct cfs_rq *cfs_rq = &rq->cfs;
3614 struct sched_entity *se;
3615
36ace27e 3616 if (!cfs_rq->nr_running)
bf0f6f24
IM
3617 return NULL;
3618
3619 do {
9948f4b2 3620 se = pick_next_entity(cfs_rq);
f4b6755f 3621 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3622 cfs_rq = group_cfs_rq(se);
3623 } while (cfs_rq);
3624
8f4d37ec 3625 p = task_of(se);
b39e66ea
MG
3626 if (hrtick_enabled(rq))
3627 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3628
3629 return p;
bf0f6f24
IM
3630}
3631
3632/*
3633 * Account for a descheduled task:
3634 */
31ee529c 3635static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3636{
3637 struct sched_entity *se = &prev->se;
3638 struct cfs_rq *cfs_rq;
3639
3640 for_each_sched_entity(se) {
3641 cfs_rq = cfs_rq_of(se);
ab6cde26 3642 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3643 }
3644}
3645
ac53db59
RR
3646/*
3647 * sched_yield() is very simple
3648 *
3649 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3650 */
3651static void yield_task_fair(struct rq *rq)
3652{
3653 struct task_struct *curr = rq->curr;
3654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3655 struct sched_entity *se = &curr->se;
3656
3657 /*
3658 * Are we the only task in the tree?
3659 */
3660 if (unlikely(rq->nr_running == 1))
3661 return;
3662
3663 clear_buddies(cfs_rq, se);
3664
3665 if (curr->policy != SCHED_BATCH) {
3666 update_rq_clock(rq);
3667 /*
3668 * Update run-time statistics of the 'current'.
3669 */
3670 update_curr(cfs_rq);
916671c0
MG
3671 /*
3672 * Tell update_rq_clock() that we've just updated,
3673 * so we don't do microscopic update in schedule()
3674 * and double the fastpath cost.
3675 */
3676 rq->skip_clock_update = 1;
ac53db59
RR
3677 }
3678
3679 set_skip_buddy(se);
3680}
3681
d95f4122
MG
3682static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3683{
3684 struct sched_entity *se = &p->se;
3685
5238cdd3
PT
3686 /* throttled hierarchies are not runnable */
3687 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3688 return false;
3689
3690 /* Tell the scheduler that we'd really like pse to run next. */
3691 set_next_buddy(se);
3692
d95f4122
MG
3693 yield_task_fair(rq);
3694
3695 return true;
3696}
3697
681f3e68 3698#ifdef CONFIG_SMP
bf0f6f24 3699/**************************************************
e9c84cb8
PZ
3700 * Fair scheduling class load-balancing methods.
3701 *
3702 * BASICS
3703 *
3704 * The purpose of load-balancing is to achieve the same basic fairness the
3705 * per-cpu scheduler provides, namely provide a proportional amount of compute
3706 * time to each task. This is expressed in the following equation:
3707 *
3708 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3709 *
3710 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3711 * W_i,0 is defined as:
3712 *
3713 * W_i,0 = \Sum_j w_i,j (2)
3714 *
3715 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3716 * is derived from the nice value as per prio_to_weight[].
3717 *
3718 * The weight average is an exponential decay average of the instantaneous
3719 * weight:
3720 *
3721 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3722 *
3723 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3724 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3725 * can also include other factors [XXX].
3726 *
3727 * To achieve this balance we define a measure of imbalance which follows
3728 * directly from (1):
3729 *
3730 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3731 *
3732 * We them move tasks around to minimize the imbalance. In the continuous
3733 * function space it is obvious this converges, in the discrete case we get
3734 * a few fun cases generally called infeasible weight scenarios.
3735 *
3736 * [XXX expand on:
3737 * - infeasible weights;
3738 * - local vs global optima in the discrete case. ]
3739 *
3740 *
3741 * SCHED DOMAINS
3742 *
3743 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3744 * for all i,j solution, we create a tree of cpus that follows the hardware
3745 * topology where each level pairs two lower groups (or better). This results
3746 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3747 * tree to only the first of the previous level and we decrease the frequency
3748 * of load-balance at each level inv. proportional to the number of cpus in
3749 * the groups.
3750 *
3751 * This yields:
3752 *
3753 * log_2 n 1 n
3754 * \Sum { --- * --- * 2^i } = O(n) (5)
3755 * i = 0 2^i 2^i
3756 * `- size of each group
3757 * | | `- number of cpus doing load-balance
3758 * | `- freq
3759 * `- sum over all levels
3760 *
3761 * Coupled with a limit on how many tasks we can migrate every balance pass,
3762 * this makes (5) the runtime complexity of the balancer.
3763 *
3764 * An important property here is that each CPU is still (indirectly) connected
3765 * to every other cpu in at most O(log n) steps:
3766 *
3767 * The adjacency matrix of the resulting graph is given by:
3768 *
3769 * log_2 n
3770 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3771 * k = 0
3772 *
3773 * And you'll find that:
3774 *
3775 * A^(log_2 n)_i,j != 0 for all i,j (7)
3776 *
3777 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3778 * The task movement gives a factor of O(m), giving a convergence complexity
3779 * of:
3780 *
3781 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3782 *
3783 *
3784 * WORK CONSERVING
3785 *
3786 * In order to avoid CPUs going idle while there's still work to do, new idle
3787 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3788 * tree itself instead of relying on other CPUs to bring it work.
3789 *
3790 * This adds some complexity to both (5) and (8) but it reduces the total idle
3791 * time.
3792 *
3793 * [XXX more?]
3794 *
3795 *
3796 * CGROUPS
3797 *
3798 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3799 *
3800 * s_k,i
3801 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3802 * S_k
3803 *
3804 * Where
3805 *
3806 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3807 *
3808 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3809 *
3810 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3811 * property.
3812 *
3813 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3814 * rewrite all of this once again.]
3815 */
bf0f6f24 3816
ed387b78
HS
3817static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3818
ddcdf6e7 3819#define LBF_ALL_PINNED 0x01
367456c7 3820#define LBF_NEED_BREAK 0x02
88b8dac0 3821#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3822
3823struct lb_env {
3824 struct sched_domain *sd;
3825
ddcdf6e7 3826 struct rq *src_rq;
85c1e7da 3827 int src_cpu;
ddcdf6e7
PZ
3828
3829 int dst_cpu;
3830 struct rq *dst_rq;
3831
88b8dac0
SV
3832 struct cpumask *dst_grpmask;
3833 int new_dst_cpu;
ddcdf6e7 3834 enum cpu_idle_type idle;
bd939f45 3835 long imbalance;
b9403130
MW
3836 /* The set of CPUs under consideration for load-balancing */
3837 struct cpumask *cpus;
3838
ddcdf6e7 3839 unsigned int flags;
367456c7
PZ
3840
3841 unsigned int loop;
3842 unsigned int loop_break;
3843 unsigned int loop_max;
ddcdf6e7
PZ
3844};
3845
1e3c88bd 3846/*
ddcdf6e7 3847 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3848 * Both runqueues must be locked.
3849 */
ddcdf6e7 3850static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3851{
ddcdf6e7
PZ
3852 deactivate_task(env->src_rq, p, 0);
3853 set_task_cpu(p, env->dst_cpu);
3854 activate_task(env->dst_rq, p, 0);
3855 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3856}
3857
029632fb
PZ
3858/*
3859 * Is this task likely cache-hot:
3860 */
3861static int
3862task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3863{
3864 s64 delta;
3865
3866 if (p->sched_class != &fair_sched_class)
3867 return 0;
3868
3869 if (unlikely(p->policy == SCHED_IDLE))
3870 return 0;
3871
3872 /*
3873 * Buddy candidates are cache hot:
3874 */
3875 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3876 (&p->se == cfs_rq_of(&p->se)->next ||
3877 &p->se == cfs_rq_of(&p->se)->last))
3878 return 1;
3879
3880 if (sysctl_sched_migration_cost == -1)
3881 return 1;
3882 if (sysctl_sched_migration_cost == 0)
3883 return 0;
3884
3885 delta = now - p->se.exec_start;
3886
3887 return delta < (s64)sysctl_sched_migration_cost;
3888}
3889
1e3c88bd
PZ
3890/*
3891 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3892 */
3893static
8e45cb54 3894int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3895{
3896 int tsk_cache_hot = 0;
3897 /*
3898 * We do not migrate tasks that are:
3899 * 1) running (obviously), or
3900 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3901 * 3) are cache-hot on their current CPU.
3902 */
ddcdf6e7 3903 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3904 int new_dst_cpu;
3905
41acab88 3906 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3907
3908 /*
3909 * Remember if this task can be migrated to any other cpu in
3910 * our sched_group. We may want to revisit it if we couldn't
3911 * meet load balance goals by pulling other tasks on src_cpu.
3912 *
3913 * Also avoid computing new_dst_cpu if we have already computed
3914 * one in current iteration.
3915 */
3916 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3917 return 0;
3918
3919 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3920 tsk_cpus_allowed(p));
3921 if (new_dst_cpu < nr_cpu_ids) {
3922 env->flags |= LBF_SOME_PINNED;
3923 env->new_dst_cpu = new_dst_cpu;
3924 }
1e3c88bd
PZ
3925 return 0;
3926 }
88b8dac0
SV
3927
3928 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3929 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3930
ddcdf6e7 3931 if (task_running(env->src_rq, p)) {
41acab88 3932 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3933 return 0;
3934 }
3935
3936 /*
3937 * Aggressive migration if:
3938 * 1) task is cache cold, or
3939 * 2) too many balance attempts have failed.
3940 */
3941
ddcdf6e7 3942 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3943 if (!tsk_cache_hot ||
8e45cb54 3944 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3945
1e3c88bd 3946 if (tsk_cache_hot) {
8e45cb54 3947 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3948 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3949 }
4e2dcb73 3950
1e3c88bd
PZ
3951 return 1;
3952 }
3953
4e2dcb73
ZH
3954 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3955 return 0;
1e3c88bd
PZ
3956}
3957
897c395f
PZ
3958/*
3959 * move_one_task tries to move exactly one task from busiest to this_rq, as
3960 * part of active balancing operations within "domain".
3961 * Returns 1 if successful and 0 otherwise.
3962 *
3963 * Called with both runqueues locked.
3964 */
8e45cb54 3965static int move_one_task(struct lb_env *env)
897c395f
PZ
3966{
3967 struct task_struct *p, *n;
897c395f 3968
367456c7
PZ
3969 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3970 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3971 continue;
897c395f 3972
367456c7
PZ
3973 if (!can_migrate_task(p, env))
3974 continue;
897c395f 3975
367456c7
PZ
3976 move_task(p, env);
3977 /*
3978 * Right now, this is only the second place move_task()
3979 * is called, so we can safely collect move_task()
3980 * stats here rather than inside move_task().
3981 */
3982 schedstat_inc(env->sd, lb_gained[env->idle]);
3983 return 1;
897c395f 3984 }
897c395f
PZ
3985 return 0;
3986}
3987
367456c7
PZ
3988static unsigned long task_h_load(struct task_struct *p);
3989
eb95308e
PZ
3990static const unsigned int sched_nr_migrate_break = 32;
3991
5d6523eb 3992/*
bd939f45 3993 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3994 * this_rq, as part of a balancing operation within domain "sd".
3995 * Returns 1 if successful and 0 otherwise.
3996 *
3997 * Called with both runqueues locked.
3998 */
3999static int move_tasks(struct lb_env *env)
1e3c88bd 4000{
5d6523eb
PZ
4001 struct list_head *tasks = &env->src_rq->cfs_tasks;
4002 struct task_struct *p;
367456c7
PZ
4003 unsigned long load;
4004 int pulled = 0;
1e3c88bd 4005
bd939f45 4006 if (env->imbalance <= 0)
5d6523eb 4007 return 0;
1e3c88bd 4008
5d6523eb
PZ
4009 while (!list_empty(tasks)) {
4010 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4011
367456c7
PZ
4012 env->loop++;
4013 /* We've more or less seen every task there is, call it quits */
5d6523eb 4014 if (env->loop > env->loop_max)
367456c7 4015 break;
5d6523eb
PZ
4016
4017 /* take a breather every nr_migrate tasks */
367456c7 4018 if (env->loop > env->loop_break) {
eb95308e 4019 env->loop_break += sched_nr_migrate_break;
8e45cb54 4020 env->flags |= LBF_NEED_BREAK;
ee00e66f 4021 break;
a195f004 4022 }
1e3c88bd 4023
5d6523eb 4024 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
4025 goto next;
4026
4027 load = task_h_load(p);
5d6523eb 4028
eb95308e 4029 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4030 goto next;
4031
bd939f45 4032 if ((load / 2) > env->imbalance)
367456c7 4033 goto next;
1e3c88bd 4034
367456c7
PZ
4035 if (!can_migrate_task(p, env))
4036 goto next;
1e3c88bd 4037
ddcdf6e7 4038 move_task(p, env);
ee00e66f 4039 pulled++;
bd939f45 4040 env->imbalance -= load;
1e3c88bd
PZ
4041
4042#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4043 /*
4044 * NEWIDLE balancing is a source of latency, so preemptible
4045 * kernels will stop after the first task is pulled to minimize
4046 * the critical section.
4047 */
5d6523eb 4048 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4049 break;
1e3c88bd
PZ
4050#endif
4051
ee00e66f
PZ
4052 /*
4053 * We only want to steal up to the prescribed amount of
4054 * weighted load.
4055 */
bd939f45 4056 if (env->imbalance <= 0)
ee00e66f 4057 break;
367456c7
PZ
4058
4059 continue;
4060next:
5d6523eb 4061 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4062 }
5d6523eb 4063
1e3c88bd 4064 /*
ddcdf6e7
PZ
4065 * Right now, this is one of only two places move_task() is called,
4066 * so we can safely collect move_task() stats here rather than
4067 * inside move_task().
1e3c88bd 4068 */
8e45cb54 4069 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4070
5d6523eb 4071 return pulled;
1e3c88bd
PZ
4072}
4073
230059de 4074#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4075/*
4076 * update tg->load_weight by folding this cpu's load_avg
4077 */
48a16753 4078static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4079{
48a16753
PT
4080 struct sched_entity *se = tg->se[cpu];
4081 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4082
48a16753
PT
4083 /* throttled entities do not contribute to load */
4084 if (throttled_hierarchy(cfs_rq))
4085 return;
9e3081ca 4086
aff3e498 4087 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4088
82958366
PT
4089 if (se) {
4090 update_entity_load_avg(se, 1);
4091 /*
4092 * We pivot on our runnable average having decayed to zero for
4093 * list removal. This generally implies that all our children
4094 * have also been removed (modulo rounding error or bandwidth
4095 * control); however, such cases are rare and we can fix these
4096 * at enqueue.
4097 *
4098 * TODO: fix up out-of-order children on enqueue.
4099 */
4100 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4101 list_del_leaf_cfs_rq(cfs_rq);
4102 } else {
48a16753 4103 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4104 update_rq_runnable_avg(rq, rq->nr_running);
4105 }
9e3081ca
PZ
4106}
4107
48a16753 4108static void update_blocked_averages(int cpu)
9e3081ca 4109{
9e3081ca 4110 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4111 struct cfs_rq *cfs_rq;
4112 unsigned long flags;
9e3081ca 4113
48a16753
PT
4114 raw_spin_lock_irqsave(&rq->lock, flags);
4115 update_rq_clock(rq);
9763b67f
PZ
4116 /*
4117 * Iterates the task_group tree in a bottom up fashion, see
4118 * list_add_leaf_cfs_rq() for details.
4119 */
64660c86 4120 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4121 /*
4122 * Note: We may want to consider periodically releasing
4123 * rq->lock about these updates so that creating many task
4124 * groups does not result in continually extending hold time.
4125 */
4126 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4127 }
48a16753
PT
4128
4129 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4130}
4131
9763b67f
PZ
4132/*
4133 * Compute the cpu's hierarchical load factor for each task group.
4134 * This needs to be done in a top-down fashion because the load of a child
4135 * group is a fraction of its parents load.
4136 */
4137static int tg_load_down(struct task_group *tg, void *data)
4138{
4139 unsigned long load;
4140 long cpu = (long)data;
4141
4142 if (!tg->parent) {
4143 load = cpu_rq(cpu)->load.weight;
4144 } else {
4145 load = tg->parent->cfs_rq[cpu]->h_load;
4146 load *= tg->se[cpu]->load.weight;
4147 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4148 }
4149
4150 tg->cfs_rq[cpu]->h_load = load;
4151
4152 return 0;
4153}
4154
4155static void update_h_load(long cpu)
4156{
a35b6466
PZ
4157 struct rq *rq = cpu_rq(cpu);
4158 unsigned long now = jiffies;
4159
4160 if (rq->h_load_throttle == now)
4161 return;
4162
4163 rq->h_load_throttle = now;
4164
367456c7 4165 rcu_read_lock();
9763b67f 4166 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4167 rcu_read_unlock();
9763b67f
PZ
4168}
4169
367456c7 4170static unsigned long task_h_load(struct task_struct *p)
230059de 4171{
367456c7
PZ
4172 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4173 unsigned long load;
230059de 4174
367456c7
PZ
4175 load = p->se.load.weight;
4176 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4177
367456c7 4178 return load;
230059de
PZ
4179}
4180#else
48a16753 4181static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4182{
4183}
4184
367456c7 4185static inline void update_h_load(long cpu)
230059de 4186{
230059de 4187}
230059de 4188
367456c7 4189static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4190{
367456c7 4191 return p->se.load.weight;
1e3c88bd 4192}
230059de 4193#endif
1e3c88bd 4194
1e3c88bd
PZ
4195/********** Helpers for find_busiest_group ************************/
4196/*
4197 * sd_lb_stats - Structure to store the statistics of a sched_domain
4198 * during load balancing.
4199 */
4200struct sd_lb_stats {
4201 struct sched_group *busiest; /* Busiest group in this sd */
4202 struct sched_group *this; /* Local group in this sd */
4203 unsigned long total_load; /* Total load of all groups in sd */
4204 unsigned long total_pwr; /* Total power of all groups in sd */
4205 unsigned long avg_load; /* Average load across all groups in sd */
4206
4207 /** Statistics of this group */
4208 unsigned long this_load;
4209 unsigned long this_load_per_task;
4210 unsigned long this_nr_running;
fab47622 4211 unsigned long this_has_capacity;
aae6d3dd 4212 unsigned int this_idle_cpus;
1e3c88bd
PZ
4213
4214 /* Statistics of the busiest group */
aae6d3dd 4215 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4216 unsigned long max_load;
4217 unsigned long busiest_load_per_task;
4218 unsigned long busiest_nr_running;
dd5feea1 4219 unsigned long busiest_group_capacity;
fab47622 4220 unsigned long busiest_has_capacity;
aae6d3dd 4221 unsigned int busiest_group_weight;
1e3c88bd
PZ
4222
4223 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4224};
4225
4226/*
4227 * sg_lb_stats - stats of a sched_group required for load_balancing
4228 */
4229struct sg_lb_stats {
4230 unsigned long avg_load; /*Avg load across the CPUs of the group */
4231 unsigned long group_load; /* Total load over the CPUs of the group */
4232 unsigned long sum_nr_running; /* Nr tasks running in the group */
4233 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4234 unsigned long group_capacity;
aae6d3dd
SS
4235 unsigned long idle_cpus;
4236 unsigned long group_weight;
1e3c88bd 4237 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4238 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4239};
4240
1e3c88bd
PZ
4241/**
4242 * get_sd_load_idx - Obtain the load index for a given sched domain.
4243 * @sd: The sched_domain whose load_idx is to be obtained.
4244 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4245 */
4246static inline int get_sd_load_idx(struct sched_domain *sd,
4247 enum cpu_idle_type idle)
4248{
4249 int load_idx;
4250
4251 switch (idle) {
4252 case CPU_NOT_IDLE:
4253 load_idx = sd->busy_idx;
4254 break;
4255
4256 case CPU_NEWLY_IDLE:
4257 load_idx = sd->newidle_idx;
4258 break;
4259 default:
4260 load_idx = sd->idle_idx;
4261 break;
4262 }
4263
4264 return load_idx;
4265}
4266
15f803c9 4267static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4268{
1399fa78 4269 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4270}
4271
4272unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4273{
4274 return default_scale_freq_power(sd, cpu);
4275}
4276
15f803c9 4277static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4278{
669c55e9 4279 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4280 unsigned long smt_gain = sd->smt_gain;
4281
4282 smt_gain /= weight;
4283
4284 return smt_gain;
4285}
4286
4287unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4288{
4289 return default_scale_smt_power(sd, cpu);
4290}
4291
15f803c9 4292static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4293{
4294 struct rq *rq = cpu_rq(cpu);
b654f7de 4295 u64 total, available, age_stamp, avg;
1e3c88bd 4296
b654f7de
PZ
4297 /*
4298 * Since we're reading these variables without serialization make sure
4299 * we read them once before doing sanity checks on them.
4300 */
4301 age_stamp = ACCESS_ONCE(rq->age_stamp);
4302 avg = ACCESS_ONCE(rq->rt_avg);
4303
4304 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4305
b654f7de 4306 if (unlikely(total < avg)) {
aa483808
VP
4307 /* Ensures that power won't end up being negative */
4308 available = 0;
4309 } else {
b654f7de 4310 available = total - avg;
aa483808 4311 }
1e3c88bd 4312
1399fa78
NR
4313 if (unlikely((s64)total < SCHED_POWER_SCALE))
4314 total = SCHED_POWER_SCALE;
1e3c88bd 4315
1399fa78 4316 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4317
4318 return div_u64(available, total);
4319}
4320
4321static void update_cpu_power(struct sched_domain *sd, int cpu)
4322{
669c55e9 4323 unsigned long weight = sd->span_weight;
1399fa78 4324 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4325 struct sched_group *sdg = sd->groups;
4326
1e3c88bd
PZ
4327 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4328 if (sched_feat(ARCH_POWER))
4329 power *= arch_scale_smt_power(sd, cpu);
4330 else
4331 power *= default_scale_smt_power(sd, cpu);
4332
1399fa78 4333 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4334 }
4335
9c3f75cb 4336 sdg->sgp->power_orig = power;
9d5efe05
SV
4337
4338 if (sched_feat(ARCH_POWER))
4339 power *= arch_scale_freq_power(sd, cpu);
4340 else
4341 power *= default_scale_freq_power(sd, cpu);
4342
1399fa78 4343 power >>= SCHED_POWER_SHIFT;
9d5efe05 4344
1e3c88bd 4345 power *= scale_rt_power(cpu);
1399fa78 4346 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4347
4348 if (!power)
4349 power = 1;
4350
e51fd5e2 4351 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4352 sdg->sgp->power = power;
1e3c88bd
PZ
4353}
4354
029632fb 4355void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4356{
4357 struct sched_domain *child = sd->child;
4358 struct sched_group *group, *sdg = sd->groups;
4359 unsigned long power;
4ec4412e
VG
4360 unsigned long interval;
4361
4362 interval = msecs_to_jiffies(sd->balance_interval);
4363 interval = clamp(interval, 1UL, max_load_balance_interval);
4364 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4365
4366 if (!child) {
4367 update_cpu_power(sd, cpu);
4368 return;
4369 }
4370
4371 power = 0;
4372
74a5ce20
PZ
4373 if (child->flags & SD_OVERLAP) {
4374 /*
4375 * SD_OVERLAP domains cannot assume that child groups
4376 * span the current group.
4377 */
4378
4379 for_each_cpu(cpu, sched_group_cpus(sdg))
4380 power += power_of(cpu);
4381 } else {
4382 /*
4383 * !SD_OVERLAP domains can assume that child groups
4384 * span the current group.
4385 */
4386
4387 group = child->groups;
4388 do {
4389 power += group->sgp->power;
4390 group = group->next;
4391 } while (group != child->groups);
4392 }
1e3c88bd 4393
c3decf0d 4394 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4395}
4396
9d5efe05
SV
4397/*
4398 * Try and fix up capacity for tiny siblings, this is needed when
4399 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4400 * which on its own isn't powerful enough.
4401 *
4402 * See update_sd_pick_busiest() and check_asym_packing().
4403 */
4404static inline int
4405fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4406{
4407 /*
1399fa78 4408 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4409 */
a6c75f2f 4410 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4411 return 0;
4412
4413 /*
4414 * If ~90% of the cpu_power is still there, we're good.
4415 */
9c3f75cb 4416 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4417 return 1;
4418
4419 return 0;
4420}
4421
1e3c88bd
PZ
4422/**
4423 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4424 * @env: The load balancing environment.
1e3c88bd 4425 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4426 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4427 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4428 * @balance: Should we balance.
4429 * @sgs: variable to hold the statistics for this group.
4430 */
bd939f45
PZ
4431static inline void update_sg_lb_stats(struct lb_env *env,
4432 struct sched_group *group, int load_idx,
b9403130 4433 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4434{
e44bc5c5
PZ
4435 unsigned long nr_running, max_nr_running, min_nr_running;
4436 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4438 unsigned long avg_load_per_task = 0;
bd939f45 4439 int i;
1e3c88bd 4440
871e35bc 4441 if (local_group)
c1174876 4442 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4443
4444 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4445 max_cpu_load = 0;
4446 min_cpu_load = ~0UL;
2582f0eb 4447 max_nr_running = 0;
e44bc5c5 4448 min_nr_running = ~0UL;
1e3c88bd 4449
b9403130 4450 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4451 struct rq *rq = cpu_rq(i);
4452
e44bc5c5
PZ
4453 nr_running = rq->nr_running;
4454
1e3c88bd
PZ
4455 /* Bias balancing toward cpus of our domain */
4456 if (local_group) {
c1174876
PZ
4457 if (idle_cpu(i) && !first_idle_cpu &&
4458 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4459 first_idle_cpu = 1;
1e3c88bd
PZ
4460 balance_cpu = i;
4461 }
04f733b4
PZ
4462
4463 load = target_load(i, load_idx);
1e3c88bd
PZ
4464 } else {
4465 load = source_load(i, load_idx);
e44bc5c5 4466 if (load > max_cpu_load)
1e3c88bd
PZ
4467 max_cpu_load = load;
4468 if (min_cpu_load > load)
4469 min_cpu_load = load;
e44bc5c5
PZ
4470
4471 if (nr_running > max_nr_running)
4472 max_nr_running = nr_running;
4473 if (min_nr_running > nr_running)
4474 min_nr_running = nr_running;
1e3c88bd
PZ
4475 }
4476
4477 sgs->group_load += load;
e44bc5c5 4478 sgs->sum_nr_running += nr_running;
1e3c88bd 4479 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4480 if (idle_cpu(i))
4481 sgs->idle_cpus++;
1e3c88bd
PZ
4482 }
4483
4484 /*
4485 * First idle cpu or the first cpu(busiest) in this sched group
4486 * is eligible for doing load balancing at this and above
4487 * domains. In the newly idle case, we will allow all the cpu's
4488 * to do the newly idle load balance.
4489 */
4ec4412e 4490 if (local_group) {
bd939f45 4491 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4492 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4493 *balance = 0;
4494 return;
4495 }
bd939f45 4496 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4497 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4498 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4499 }
4500
4501 /* Adjust by relative CPU power of the group */
9c3f75cb 4502 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4503
1e3c88bd
PZ
4504 /*
4505 * Consider the group unbalanced when the imbalance is larger
866ab43e 4506 * than the average weight of a task.
1e3c88bd
PZ
4507 *
4508 * APZ: with cgroup the avg task weight can vary wildly and
4509 * might not be a suitable number - should we keep a
4510 * normalized nr_running number somewhere that negates
4511 * the hierarchy?
4512 */
dd5feea1
SS
4513 if (sgs->sum_nr_running)
4514 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4515
e44bc5c5
PZ
4516 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4517 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4518 sgs->group_imb = 1;
4519
9c3f75cb 4520 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4521 SCHED_POWER_SCALE);
9d5efe05 4522 if (!sgs->group_capacity)
bd939f45 4523 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4524 sgs->group_weight = group->group_weight;
fab47622
NR
4525
4526 if (sgs->group_capacity > sgs->sum_nr_running)
4527 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4528}
4529
532cb4c4
MN
4530/**
4531 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4532 * @env: The load balancing environment.
532cb4c4
MN
4533 * @sds: sched_domain statistics
4534 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4535 * @sgs: sched_group statistics
532cb4c4
MN
4536 *
4537 * Determine if @sg is a busier group than the previously selected
4538 * busiest group.
4539 */
bd939f45 4540static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4541 struct sd_lb_stats *sds,
4542 struct sched_group *sg,
bd939f45 4543 struct sg_lb_stats *sgs)
532cb4c4
MN
4544{
4545 if (sgs->avg_load <= sds->max_load)
4546 return false;
4547
4548 if (sgs->sum_nr_running > sgs->group_capacity)
4549 return true;
4550
4551 if (sgs->group_imb)
4552 return true;
4553
4554 /*
4555 * ASYM_PACKING needs to move all the work to the lowest
4556 * numbered CPUs in the group, therefore mark all groups
4557 * higher than ourself as busy.
4558 */
bd939f45
PZ
4559 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4560 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4561 if (!sds->busiest)
4562 return true;
4563
4564 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4565 return true;
4566 }
4567
4568 return false;
4569}
4570
1e3c88bd 4571/**
461819ac 4572 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4573 * @env: The load balancing environment.
1e3c88bd
PZ
4574 * @balance: Should we balance.
4575 * @sds: variable to hold the statistics for this sched_domain.
4576 */
bd939f45 4577static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4578 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4579{
bd939f45
PZ
4580 struct sched_domain *child = env->sd->child;
4581 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4582 struct sg_lb_stats sgs;
4583 int load_idx, prefer_sibling = 0;
4584
4585 if (child && child->flags & SD_PREFER_SIBLING)
4586 prefer_sibling = 1;
4587
bd939f45 4588 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4589
4590 do {
4591 int local_group;
4592
bd939f45 4593 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4594 memset(&sgs, 0, sizeof(sgs));
b9403130 4595 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4596
8f190fb3 4597 if (local_group && !(*balance))
1e3c88bd
PZ
4598 return;
4599
4600 sds->total_load += sgs.group_load;
9c3f75cb 4601 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4602
4603 /*
4604 * In case the child domain prefers tasks go to siblings
532cb4c4 4605 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4606 * and move all the excess tasks away. We lower the capacity
4607 * of a group only if the local group has the capacity to fit
4608 * these excess tasks, i.e. nr_running < group_capacity. The
4609 * extra check prevents the case where you always pull from the
4610 * heaviest group when it is already under-utilized (possible
4611 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4612 */
75dd321d 4613 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4614 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4615
4616 if (local_group) {
4617 sds->this_load = sgs.avg_load;
532cb4c4 4618 sds->this = sg;
1e3c88bd
PZ
4619 sds->this_nr_running = sgs.sum_nr_running;
4620 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4621 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4622 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4623 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4624 sds->max_load = sgs.avg_load;
532cb4c4 4625 sds->busiest = sg;
1e3c88bd 4626 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4627 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4628 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4629 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4630 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4631 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4632 sds->group_imb = sgs.group_imb;
4633 }
4634
532cb4c4 4635 sg = sg->next;
bd939f45 4636 } while (sg != env->sd->groups);
532cb4c4
MN
4637}
4638
532cb4c4
MN
4639/**
4640 * check_asym_packing - Check to see if the group is packed into the
4641 * sched doman.
4642 *
4643 * This is primarily intended to used at the sibling level. Some
4644 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4645 * case of POWER7, it can move to lower SMT modes only when higher
4646 * threads are idle. When in lower SMT modes, the threads will
4647 * perform better since they share less core resources. Hence when we
4648 * have idle threads, we want them to be the higher ones.
4649 *
4650 * This packing function is run on idle threads. It checks to see if
4651 * the busiest CPU in this domain (core in the P7 case) has a higher
4652 * CPU number than the packing function is being run on. Here we are
4653 * assuming lower CPU number will be equivalent to lower a SMT thread
4654 * number.
4655 *
b6b12294
MN
4656 * Returns 1 when packing is required and a task should be moved to
4657 * this CPU. The amount of the imbalance is returned in *imbalance.
4658 *
cd96891d 4659 * @env: The load balancing environment.
532cb4c4 4660 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4661 */
bd939f45 4662static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4663{
4664 int busiest_cpu;
4665
bd939f45 4666 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4667 return 0;
4668
4669 if (!sds->busiest)
4670 return 0;
4671
4672 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4673 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4674 return 0;
4675
bd939f45
PZ
4676 env->imbalance = DIV_ROUND_CLOSEST(
4677 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4678
532cb4c4 4679 return 1;
1e3c88bd
PZ
4680}
4681
4682/**
4683 * fix_small_imbalance - Calculate the minor imbalance that exists
4684 * amongst the groups of a sched_domain, during
4685 * load balancing.
cd96891d 4686 * @env: The load balancing environment.
1e3c88bd 4687 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4688 */
bd939f45
PZ
4689static inline
4690void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4691{
4692 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4693 unsigned int imbn = 2;
dd5feea1 4694 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4695
4696 if (sds->this_nr_running) {
4697 sds->this_load_per_task /= sds->this_nr_running;
4698 if (sds->busiest_load_per_task >
4699 sds->this_load_per_task)
4700 imbn = 1;
bd939f45 4701 } else {
1e3c88bd 4702 sds->this_load_per_task =
bd939f45
PZ
4703 cpu_avg_load_per_task(env->dst_cpu);
4704 }
1e3c88bd 4705
dd5feea1 4706 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4707 * SCHED_POWER_SCALE;
9c3f75cb 4708 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4709
4710 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4711 (scaled_busy_load_per_task * imbn)) {
bd939f45 4712 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4713 return;
4714 }
4715
4716 /*
4717 * OK, we don't have enough imbalance to justify moving tasks,
4718 * however we may be able to increase total CPU power used by
4719 * moving them.
4720 */
4721
9c3f75cb 4722 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4723 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4724 pwr_now += sds->this->sgp->power *
1e3c88bd 4725 min(sds->this_load_per_task, sds->this_load);
1399fa78 4726 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4727
4728 /* Amount of load we'd subtract */
1399fa78 4729 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4730 sds->busiest->sgp->power;
1e3c88bd 4731 if (sds->max_load > tmp)
9c3f75cb 4732 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4733 min(sds->busiest_load_per_task, sds->max_load - tmp);
4734
4735 /* Amount of load we'd add */
9c3f75cb 4736 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4737 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4738 tmp = (sds->max_load * sds->busiest->sgp->power) /
4739 sds->this->sgp->power;
1e3c88bd 4740 else
1399fa78 4741 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4742 sds->this->sgp->power;
4743 pwr_move += sds->this->sgp->power *
1e3c88bd 4744 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4745 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4746
4747 /* Move if we gain throughput */
4748 if (pwr_move > pwr_now)
bd939f45 4749 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4750}
4751
4752/**
4753 * calculate_imbalance - Calculate the amount of imbalance present within the
4754 * groups of a given sched_domain during load balance.
bd939f45 4755 * @env: load balance environment
1e3c88bd 4756 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4757 */
bd939f45 4758static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4759{
dd5feea1
SS
4760 unsigned long max_pull, load_above_capacity = ~0UL;
4761
4762 sds->busiest_load_per_task /= sds->busiest_nr_running;
4763 if (sds->group_imb) {
4764 sds->busiest_load_per_task =
4765 min(sds->busiest_load_per_task, sds->avg_load);
4766 }
4767
1e3c88bd
PZ
4768 /*
4769 * In the presence of smp nice balancing, certain scenarios can have
4770 * max load less than avg load(as we skip the groups at or below
4771 * its cpu_power, while calculating max_load..)
4772 */
4773 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4774 env->imbalance = 0;
4775 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4776 }
4777
dd5feea1
SS
4778 if (!sds->group_imb) {
4779 /*
4780 * Don't want to pull so many tasks that a group would go idle.
4781 */
4782 load_above_capacity = (sds->busiest_nr_running -
4783 sds->busiest_group_capacity);
4784
1399fa78 4785 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4786
9c3f75cb 4787 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4788 }
4789
4790 /*
4791 * We're trying to get all the cpus to the average_load, so we don't
4792 * want to push ourselves above the average load, nor do we wish to
4793 * reduce the max loaded cpu below the average load. At the same time,
4794 * we also don't want to reduce the group load below the group capacity
4795 * (so that we can implement power-savings policies etc). Thus we look
4796 * for the minimum possible imbalance.
4797 * Be careful of negative numbers as they'll appear as very large values
4798 * with unsigned longs.
4799 */
4800 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4801
4802 /* How much load to actually move to equalise the imbalance */
bd939f45 4803 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4804 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4805 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4806
4807 /*
4808 * if *imbalance is less than the average load per runnable task
25985edc 4809 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4810 * a think about bumping its value to force at least one task to be
4811 * moved
4812 */
bd939f45
PZ
4813 if (env->imbalance < sds->busiest_load_per_task)
4814 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4815
4816}
fab47622 4817
1e3c88bd
PZ
4818/******* find_busiest_group() helpers end here *********************/
4819
4820/**
4821 * find_busiest_group - Returns the busiest group within the sched_domain
4822 * if there is an imbalance. If there isn't an imbalance, and
4823 * the user has opted for power-savings, it returns a group whose
4824 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4825 * such a group exists.
4826 *
4827 * Also calculates the amount of weighted load which should be moved
4828 * to restore balance.
4829 *
cd96891d 4830 * @env: The load balancing environment.
1e3c88bd
PZ
4831 * @balance: Pointer to a variable indicating if this_cpu
4832 * is the appropriate cpu to perform load balancing at this_level.
4833 *
4834 * Returns: - the busiest group if imbalance exists.
4835 * - If no imbalance and user has opted for power-savings balance,
4836 * return the least loaded group whose CPUs can be
4837 * put to idle by rebalancing its tasks onto our group.
4838 */
4839static struct sched_group *
b9403130 4840find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4841{
4842 struct sd_lb_stats sds;
4843
4844 memset(&sds, 0, sizeof(sds));
4845
4846 /*
4847 * Compute the various statistics relavent for load balancing at
4848 * this level.
4849 */
b9403130 4850 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4851
cc57aa8f
PZ
4852 /*
4853 * this_cpu is not the appropriate cpu to perform load balancing at
4854 * this level.
1e3c88bd 4855 */
8f190fb3 4856 if (!(*balance))
1e3c88bd
PZ
4857 goto ret;
4858
bd939f45
PZ
4859 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4860 check_asym_packing(env, &sds))
532cb4c4
MN
4861 return sds.busiest;
4862
cc57aa8f 4863 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4864 if (!sds.busiest || sds.busiest_nr_running == 0)
4865 goto out_balanced;
4866
1399fa78 4867 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4868
866ab43e
PZ
4869 /*
4870 * If the busiest group is imbalanced the below checks don't
4871 * work because they assumes all things are equal, which typically
4872 * isn't true due to cpus_allowed constraints and the like.
4873 */
4874 if (sds.group_imb)
4875 goto force_balance;
4876
cc57aa8f 4877 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4878 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4879 !sds.busiest_has_capacity)
4880 goto force_balance;
4881
cc57aa8f
PZ
4882 /*
4883 * If the local group is more busy than the selected busiest group
4884 * don't try and pull any tasks.
4885 */
1e3c88bd
PZ
4886 if (sds.this_load >= sds.max_load)
4887 goto out_balanced;
4888
cc57aa8f
PZ
4889 /*
4890 * Don't pull any tasks if this group is already above the domain
4891 * average load.
4892 */
1e3c88bd
PZ
4893 if (sds.this_load >= sds.avg_load)
4894 goto out_balanced;
4895
bd939f45 4896 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4897 /*
4898 * This cpu is idle. If the busiest group load doesn't
4899 * have more tasks than the number of available cpu's and
4900 * there is no imbalance between this and busiest group
4901 * wrt to idle cpu's, it is balanced.
4902 */
c186fafe 4903 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4904 sds.busiest_nr_running <= sds.busiest_group_weight)
4905 goto out_balanced;
c186fafe
PZ
4906 } else {
4907 /*
4908 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4909 * imbalance_pct to be conservative.
4910 */
bd939f45 4911 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4912 goto out_balanced;
aae6d3dd 4913 }
1e3c88bd 4914
fab47622 4915force_balance:
1e3c88bd 4916 /* Looks like there is an imbalance. Compute it */
bd939f45 4917 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4918 return sds.busiest;
4919
4920out_balanced:
1e3c88bd 4921ret:
bd939f45 4922 env->imbalance = 0;
1e3c88bd
PZ
4923 return NULL;
4924}
4925
4926/*
4927 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4928 */
bd939f45 4929static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4930 struct sched_group *group)
1e3c88bd
PZ
4931{
4932 struct rq *busiest = NULL, *rq;
4933 unsigned long max_load = 0;
4934 int i;
4935
4936 for_each_cpu(i, sched_group_cpus(group)) {
4937 unsigned long power = power_of(i);
1399fa78
NR
4938 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4939 SCHED_POWER_SCALE);
1e3c88bd
PZ
4940 unsigned long wl;
4941
9d5efe05 4942 if (!capacity)
bd939f45 4943 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4944
b9403130 4945 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4946 continue;
4947
4948 rq = cpu_rq(i);
6e40f5bb 4949 wl = weighted_cpuload(i);
1e3c88bd 4950
6e40f5bb
TG
4951 /*
4952 * When comparing with imbalance, use weighted_cpuload()
4953 * which is not scaled with the cpu power.
4954 */
bd939f45 4955 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4956 continue;
4957
6e40f5bb
TG
4958 /*
4959 * For the load comparisons with the other cpu's, consider
4960 * the weighted_cpuload() scaled with the cpu power, so that
4961 * the load can be moved away from the cpu that is potentially
4962 * running at a lower capacity.
4963 */
1399fa78 4964 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4965
1e3c88bd
PZ
4966 if (wl > max_load) {
4967 max_load = wl;
4968 busiest = rq;
4969 }
4970 }
4971
4972 return busiest;
4973}
4974
4975/*
4976 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4977 * so long as it is large enough.
4978 */
4979#define MAX_PINNED_INTERVAL 512
4980
4981/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4982DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4983
bd939f45 4984static int need_active_balance(struct lb_env *env)
1af3ed3d 4985{
bd939f45
PZ
4986 struct sched_domain *sd = env->sd;
4987
4988 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4989
4990 /*
4991 * ASYM_PACKING needs to force migrate tasks from busy but
4992 * higher numbered CPUs in order to pack all tasks in the
4993 * lowest numbered CPUs.
4994 */
bd939f45 4995 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4996 return 1;
1af3ed3d
PZ
4997 }
4998
4999 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5000}
5001
969c7921
TH
5002static int active_load_balance_cpu_stop(void *data);
5003
1e3c88bd
PZ
5004/*
5005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5006 * tasks if there is an imbalance.
5007 */
5008static int load_balance(int this_cpu, struct rq *this_rq,
5009 struct sched_domain *sd, enum cpu_idle_type idle,
5010 int *balance)
5011{
88b8dac0
SV
5012 int ld_moved, cur_ld_moved, active_balance = 0;
5013 int lb_iterations, max_lb_iterations;
1e3c88bd 5014 struct sched_group *group;
1e3c88bd
PZ
5015 struct rq *busiest;
5016 unsigned long flags;
5017 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5018
8e45cb54
PZ
5019 struct lb_env env = {
5020 .sd = sd,
ddcdf6e7
PZ
5021 .dst_cpu = this_cpu,
5022 .dst_rq = this_rq,
88b8dac0 5023 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5024 .idle = idle,
eb95308e 5025 .loop_break = sched_nr_migrate_break,
b9403130 5026 .cpus = cpus,
8e45cb54
PZ
5027 };
5028
1e3c88bd 5029 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 5030 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 5031
1e3c88bd
PZ
5032 schedstat_inc(sd, lb_count[idle]);
5033
5034redo:
b9403130 5035 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5036
5037 if (*balance == 0)
5038 goto out_balanced;
5039
5040 if (!group) {
5041 schedstat_inc(sd, lb_nobusyg[idle]);
5042 goto out_balanced;
5043 }
5044
b9403130 5045 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5046 if (!busiest) {
5047 schedstat_inc(sd, lb_nobusyq[idle]);
5048 goto out_balanced;
5049 }
5050
78feefc5 5051 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5052
bd939f45 5053 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5054
5055 ld_moved = 0;
88b8dac0 5056 lb_iterations = 1;
1e3c88bd
PZ
5057 if (busiest->nr_running > 1) {
5058 /*
5059 * Attempt to move tasks. If find_busiest_group has found
5060 * an imbalance but busiest->nr_running <= 1, the group is
5061 * still unbalanced. ld_moved simply stays zero, so it is
5062 * correctly treated as an imbalance.
5063 */
8e45cb54 5064 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5065 env.src_cpu = busiest->cpu;
5066 env.src_rq = busiest;
5067 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5068
a35b6466 5069 update_h_load(env.src_cpu);
5d6523eb 5070more_balance:
1e3c88bd 5071 local_irq_save(flags);
78feefc5 5072 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5073
5074 /*
5075 * cur_ld_moved - load moved in current iteration
5076 * ld_moved - cumulative load moved across iterations
5077 */
5078 cur_ld_moved = move_tasks(&env);
5079 ld_moved += cur_ld_moved;
78feefc5 5080 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5081 local_irq_restore(flags);
5082
5083 /*
5084 * some other cpu did the load balance for us.
5085 */
88b8dac0
SV
5086 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5087 resched_cpu(env.dst_cpu);
5088
f1cd0858
JK
5089 if (env.flags & LBF_NEED_BREAK) {
5090 env.flags &= ~LBF_NEED_BREAK;
5091 goto more_balance;
5092 }
5093
88b8dac0
SV
5094 /*
5095 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5096 * us and move them to an alternate dst_cpu in our sched_group
5097 * where they can run. The upper limit on how many times we
5098 * iterate on same src_cpu is dependent on number of cpus in our
5099 * sched_group.
5100 *
5101 * This changes load balance semantics a bit on who can move
5102 * load to a given_cpu. In addition to the given_cpu itself
5103 * (or a ilb_cpu acting on its behalf where given_cpu is
5104 * nohz-idle), we now have balance_cpu in a position to move
5105 * load to given_cpu. In rare situations, this may cause
5106 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5107 * _independently_ and at _same_ time to move some load to
5108 * given_cpu) causing exceess load to be moved to given_cpu.
5109 * This however should not happen so much in practice and
5110 * moreover subsequent load balance cycles should correct the
5111 * excess load moved.
5112 */
5113 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5114 lb_iterations++ < max_lb_iterations) {
5115
78feefc5 5116 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5117 env.dst_cpu = env.new_dst_cpu;
5118 env.flags &= ~LBF_SOME_PINNED;
5119 env.loop = 0;
5120 env.loop_break = sched_nr_migrate_break;
5121 /*
5122 * Go back to "more_balance" rather than "redo" since we
5123 * need to continue with same src_cpu.
5124 */
5125 goto more_balance;
5126 }
1e3c88bd
PZ
5127
5128 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5129 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5130 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5131 if (!cpumask_empty(cpus)) {
5132 env.loop = 0;
5133 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5134 goto redo;
bbf18b19 5135 }
1e3c88bd
PZ
5136 goto out_balanced;
5137 }
5138 }
5139
5140 if (!ld_moved) {
5141 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5142 /*
5143 * Increment the failure counter only on periodic balance.
5144 * We do not want newidle balance, which can be very
5145 * frequent, pollute the failure counter causing
5146 * excessive cache_hot migrations and active balances.
5147 */
5148 if (idle != CPU_NEWLY_IDLE)
5149 sd->nr_balance_failed++;
1e3c88bd 5150
bd939f45 5151 if (need_active_balance(&env)) {
1e3c88bd
PZ
5152 raw_spin_lock_irqsave(&busiest->lock, flags);
5153
969c7921
TH
5154 /* don't kick the active_load_balance_cpu_stop,
5155 * if the curr task on busiest cpu can't be
5156 * moved to this_cpu
1e3c88bd
PZ
5157 */
5158 if (!cpumask_test_cpu(this_cpu,
fa17b507 5159 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5160 raw_spin_unlock_irqrestore(&busiest->lock,
5161 flags);
8e45cb54 5162 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5163 goto out_one_pinned;
5164 }
5165
969c7921
TH
5166 /*
5167 * ->active_balance synchronizes accesses to
5168 * ->active_balance_work. Once set, it's cleared
5169 * only after active load balance is finished.
5170 */
1e3c88bd
PZ
5171 if (!busiest->active_balance) {
5172 busiest->active_balance = 1;
5173 busiest->push_cpu = this_cpu;
5174 active_balance = 1;
5175 }
5176 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5177
bd939f45 5178 if (active_balance) {
969c7921
TH
5179 stop_one_cpu_nowait(cpu_of(busiest),
5180 active_load_balance_cpu_stop, busiest,
5181 &busiest->active_balance_work);
bd939f45 5182 }
1e3c88bd
PZ
5183
5184 /*
5185 * We've kicked active balancing, reset the failure
5186 * counter.
5187 */
5188 sd->nr_balance_failed = sd->cache_nice_tries+1;
5189 }
5190 } else
5191 sd->nr_balance_failed = 0;
5192
5193 if (likely(!active_balance)) {
5194 /* We were unbalanced, so reset the balancing interval */
5195 sd->balance_interval = sd->min_interval;
5196 } else {
5197 /*
5198 * If we've begun active balancing, start to back off. This
5199 * case may not be covered by the all_pinned logic if there
5200 * is only 1 task on the busy runqueue (because we don't call
5201 * move_tasks).
5202 */
5203 if (sd->balance_interval < sd->max_interval)
5204 sd->balance_interval *= 2;
5205 }
5206
1e3c88bd
PZ
5207 goto out;
5208
5209out_balanced:
5210 schedstat_inc(sd, lb_balanced[idle]);
5211
5212 sd->nr_balance_failed = 0;
5213
5214out_one_pinned:
5215 /* tune up the balancing interval */
8e45cb54 5216 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5217 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5218 (sd->balance_interval < sd->max_interval))
5219 sd->balance_interval *= 2;
5220
46e49b38 5221 ld_moved = 0;
1e3c88bd 5222out:
1e3c88bd
PZ
5223 return ld_moved;
5224}
5225
1e3c88bd
PZ
5226/*
5227 * idle_balance is called by schedule() if this_cpu is about to become
5228 * idle. Attempts to pull tasks from other CPUs.
5229 */
029632fb 5230void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5231{
5232 struct sched_domain *sd;
5233 int pulled_task = 0;
5234 unsigned long next_balance = jiffies + HZ;
5235
5236 this_rq->idle_stamp = this_rq->clock;
5237
5238 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5239 return;
5240
f492e12e
PZ
5241 /*
5242 * Drop the rq->lock, but keep IRQ/preempt disabled.
5243 */
5244 raw_spin_unlock(&this_rq->lock);
5245
48a16753 5246 update_blocked_averages(this_cpu);
dce840a0 5247 rcu_read_lock();
1e3c88bd
PZ
5248 for_each_domain(this_cpu, sd) {
5249 unsigned long interval;
f492e12e 5250 int balance = 1;
1e3c88bd
PZ
5251
5252 if (!(sd->flags & SD_LOAD_BALANCE))
5253 continue;
5254
f492e12e 5255 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5256 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5257 pulled_task = load_balance(this_cpu, this_rq,
5258 sd, CPU_NEWLY_IDLE, &balance);
5259 }
1e3c88bd
PZ
5260
5261 interval = msecs_to_jiffies(sd->balance_interval);
5262 if (time_after(next_balance, sd->last_balance + interval))
5263 next_balance = sd->last_balance + interval;
d5ad140b
NR
5264 if (pulled_task) {
5265 this_rq->idle_stamp = 0;
1e3c88bd 5266 break;
d5ad140b 5267 }
1e3c88bd 5268 }
dce840a0 5269 rcu_read_unlock();
f492e12e
PZ
5270
5271 raw_spin_lock(&this_rq->lock);
5272
1e3c88bd
PZ
5273 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5274 /*
5275 * We are going idle. next_balance may be set based on
5276 * a busy processor. So reset next_balance.
5277 */
5278 this_rq->next_balance = next_balance;
5279 }
5280}
5281
5282/*
969c7921
TH
5283 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5284 * running tasks off the busiest CPU onto idle CPUs. It requires at
5285 * least 1 task to be running on each physical CPU where possible, and
5286 * avoids physical / logical imbalances.
1e3c88bd 5287 */
969c7921 5288static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5289{
969c7921
TH
5290 struct rq *busiest_rq = data;
5291 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5292 int target_cpu = busiest_rq->push_cpu;
969c7921 5293 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5294 struct sched_domain *sd;
969c7921
TH
5295
5296 raw_spin_lock_irq(&busiest_rq->lock);
5297
5298 /* make sure the requested cpu hasn't gone down in the meantime */
5299 if (unlikely(busiest_cpu != smp_processor_id() ||
5300 !busiest_rq->active_balance))
5301 goto out_unlock;
1e3c88bd
PZ
5302
5303 /* Is there any task to move? */
5304 if (busiest_rq->nr_running <= 1)
969c7921 5305 goto out_unlock;
1e3c88bd
PZ
5306
5307 /*
5308 * This condition is "impossible", if it occurs
5309 * we need to fix it. Originally reported by
5310 * Bjorn Helgaas on a 128-cpu setup.
5311 */
5312 BUG_ON(busiest_rq == target_rq);
5313
5314 /* move a task from busiest_rq to target_rq */
5315 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5316
5317 /* Search for an sd spanning us and the target CPU. */
dce840a0 5318 rcu_read_lock();
1e3c88bd
PZ
5319 for_each_domain(target_cpu, sd) {
5320 if ((sd->flags & SD_LOAD_BALANCE) &&
5321 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5322 break;
5323 }
5324
5325 if (likely(sd)) {
8e45cb54
PZ
5326 struct lb_env env = {
5327 .sd = sd,
ddcdf6e7
PZ
5328 .dst_cpu = target_cpu,
5329 .dst_rq = target_rq,
5330 .src_cpu = busiest_rq->cpu,
5331 .src_rq = busiest_rq,
8e45cb54
PZ
5332 .idle = CPU_IDLE,
5333 };
5334
1e3c88bd
PZ
5335 schedstat_inc(sd, alb_count);
5336
8e45cb54 5337 if (move_one_task(&env))
1e3c88bd
PZ
5338 schedstat_inc(sd, alb_pushed);
5339 else
5340 schedstat_inc(sd, alb_failed);
5341 }
dce840a0 5342 rcu_read_unlock();
1e3c88bd 5343 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5344out_unlock:
5345 busiest_rq->active_balance = 0;
5346 raw_spin_unlock_irq(&busiest_rq->lock);
5347 return 0;
1e3c88bd
PZ
5348}
5349
5350#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5351/*
5352 * idle load balancing details
83cd4fe2
VP
5353 * - When one of the busy CPUs notice that there may be an idle rebalancing
5354 * needed, they will kick the idle load balancer, which then does idle
5355 * load balancing for all the idle CPUs.
5356 */
1e3c88bd 5357static struct {
83cd4fe2 5358 cpumask_var_t idle_cpus_mask;
0b005cf5 5359 atomic_t nr_cpus;
83cd4fe2
VP
5360 unsigned long next_balance; /* in jiffy units */
5361} nohz ____cacheline_aligned;
1e3c88bd 5362
8e7fbcbc 5363static inline int find_new_ilb(int call_cpu)
1e3c88bd 5364{
0b005cf5 5365 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5366
786d6dc7
SS
5367 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5368 return ilb;
5369
5370 return nr_cpu_ids;
1e3c88bd 5371}
1e3c88bd 5372
83cd4fe2
VP
5373/*
5374 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5375 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5376 * CPU (if there is one).
5377 */
5378static void nohz_balancer_kick(int cpu)
5379{
5380 int ilb_cpu;
5381
5382 nohz.next_balance++;
5383
0b005cf5 5384 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5385
0b005cf5
SS
5386 if (ilb_cpu >= nr_cpu_ids)
5387 return;
83cd4fe2 5388
cd490c5b 5389 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5390 return;
5391 /*
5392 * Use smp_send_reschedule() instead of resched_cpu().
5393 * This way we generate a sched IPI on the target cpu which
5394 * is idle. And the softirq performing nohz idle load balance
5395 * will be run before returning from the IPI.
5396 */
5397 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5398 return;
5399}
5400
c1cc017c 5401static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5402{
5403 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5404 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5405 atomic_dec(&nohz.nr_cpus);
5406 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5407 }
5408}
5409
69e1e811
SS
5410static inline void set_cpu_sd_state_busy(void)
5411{
5412 struct sched_domain *sd;
5413 int cpu = smp_processor_id();
5414
5415 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5416 return;
5417 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5418
5419 rcu_read_lock();
5420 for_each_domain(cpu, sd)
5421 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5422 rcu_read_unlock();
5423}
5424
5425void set_cpu_sd_state_idle(void)
5426{
5427 struct sched_domain *sd;
5428 int cpu = smp_processor_id();
5429
5430 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5431 return;
5432 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5433
5434 rcu_read_lock();
5435 for_each_domain(cpu, sd)
5436 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5437 rcu_read_unlock();
5438}
5439
1e3c88bd 5440/*
c1cc017c 5441 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5442 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5443 */
c1cc017c 5444void nohz_balance_enter_idle(int cpu)
1e3c88bd 5445{
71325960
SS
5446 /*
5447 * If this cpu is going down, then nothing needs to be done.
5448 */
5449 if (!cpu_active(cpu))
5450 return;
5451
c1cc017c
AS
5452 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5453 return;
1e3c88bd 5454
c1cc017c
AS
5455 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5456 atomic_inc(&nohz.nr_cpus);
5457 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5458}
71325960
SS
5459
5460static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5461 unsigned long action, void *hcpu)
5462{
5463 switch (action & ~CPU_TASKS_FROZEN) {
5464 case CPU_DYING:
c1cc017c 5465 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5466 return NOTIFY_OK;
5467 default:
5468 return NOTIFY_DONE;
5469 }
5470}
1e3c88bd
PZ
5471#endif
5472
5473static DEFINE_SPINLOCK(balancing);
5474
49c022e6
PZ
5475/*
5476 * Scale the max load_balance interval with the number of CPUs in the system.
5477 * This trades load-balance latency on larger machines for less cross talk.
5478 */
029632fb 5479void update_max_interval(void)
49c022e6
PZ
5480{
5481 max_load_balance_interval = HZ*num_online_cpus()/10;
5482}
5483
1e3c88bd
PZ
5484/*
5485 * It checks each scheduling domain to see if it is due to be balanced,
5486 * and initiates a balancing operation if so.
5487 *
b9b0853a 5488 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5489 */
5490static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5491{
5492 int balance = 1;
5493 struct rq *rq = cpu_rq(cpu);
5494 unsigned long interval;
04f733b4 5495 struct sched_domain *sd;
1e3c88bd
PZ
5496 /* Earliest time when we have to do rebalance again */
5497 unsigned long next_balance = jiffies + 60*HZ;
5498 int update_next_balance = 0;
5499 int need_serialize;
5500
48a16753 5501 update_blocked_averages(cpu);
2069dd75 5502
dce840a0 5503 rcu_read_lock();
1e3c88bd
PZ
5504 for_each_domain(cpu, sd) {
5505 if (!(sd->flags & SD_LOAD_BALANCE))
5506 continue;
5507
5508 interval = sd->balance_interval;
5509 if (idle != CPU_IDLE)
5510 interval *= sd->busy_factor;
5511
5512 /* scale ms to jiffies */
5513 interval = msecs_to_jiffies(interval);
49c022e6 5514 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5515
5516 need_serialize = sd->flags & SD_SERIALIZE;
5517
5518 if (need_serialize) {
5519 if (!spin_trylock(&balancing))
5520 goto out;
5521 }
5522
5523 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5524 if (load_balance(cpu, rq, sd, idle, &balance)) {
5525 /*
de5eb2dd
JK
5526 * The LBF_SOME_PINNED logic could have changed
5527 * env->dst_cpu, so we can't know our idle
5528 * state even if we migrated tasks. Update it.
1e3c88bd 5529 */
de5eb2dd 5530 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5531 }
5532 sd->last_balance = jiffies;
5533 }
5534 if (need_serialize)
5535 spin_unlock(&balancing);
5536out:
5537 if (time_after(next_balance, sd->last_balance + interval)) {
5538 next_balance = sd->last_balance + interval;
5539 update_next_balance = 1;
5540 }
5541
5542 /*
5543 * Stop the load balance at this level. There is another
5544 * CPU in our sched group which is doing load balancing more
5545 * actively.
5546 */
5547 if (!balance)
5548 break;
5549 }
dce840a0 5550 rcu_read_unlock();
1e3c88bd
PZ
5551
5552 /*
5553 * next_balance will be updated only when there is a need.
5554 * When the cpu is attached to null domain for ex, it will not be
5555 * updated.
5556 */
5557 if (likely(update_next_balance))
5558 rq->next_balance = next_balance;
5559}
5560
83cd4fe2 5561#ifdef CONFIG_NO_HZ
1e3c88bd 5562/*
83cd4fe2 5563 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5564 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5565 */
83cd4fe2
VP
5566static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5567{
5568 struct rq *this_rq = cpu_rq(this_cpu);
5569 struct rq *rq;
5570 int balance_cpu;
5571
1c792db7
SS
5572 if (idle != CPU_IDLE ||
5573 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5574 goto end;
83cd4fe2
VP
5575
5576 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5577 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5578 continue;
5579
5580 /*
5581 * If this cpu gets work to do, stop the load balancing
5582 * work being done for other cpus. Next load
5583 * balancing owner will pick it up.
5584 */
1c792db7 5585 if (need_resched())
83cd4fe2 5586 break;
83cd4fe2 5587
5ed4f1d9
VG
5588 rq = cpu_rq(balance_cpu);
5589
5590 raw_spin_lock_irq(&rq->lock);
5591 update_rq_clock(rq);
5592 update_idle_cpu_load(rq);
5593 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5594
5595 rebalance_domains(balance_cpu, CPU_IDLE);
5596
83cd4fe2
VP
5597 if (time_after(this_rq->next_balance, rq->next_balance))
5598 this_rq->next_balance = rq->next_balance;
5599 }
5600 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5601end:
5602 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5603}
5604
5605/*
0b005cf5
SS
5606 * Current heuristic for kicking the idle load balancer in the presence
5607 * of an idle cpu is the system.
5608 * - This rq has more than one task.
5609 * - At any scheduler domain level, this cpu's scheduler group has multiple
5610 * busy cpu's exceeding the group's power.
5611 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5612 * domain span are idle.
83cd4fe2
VP
5613 */
5614static inline int nohz_kick_needed(struct rq *rq, int cpu)
5615{
5616 unsigned long now = jiffies;
0b005cf5 5617 struct sched_domain *sd;
83cd4fe2 5618
1c792db7 5619 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5620 return 0;
5621
1c792db7
SS
5622 /*
5623 * We may be recently in ticked or tickless idle mode. At the first
5624 * busy tick after returning from idle, we will update the busy stats.
5625 */
69e1e811 5626 set_cpu_sd_state_busy();
c1cc017c 5627 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5628
5629 /*
5630 * None are in tickless mode and hence no need for NOHZ idle load
5631 * balancing.
5632 */
5633 if (likely(!atomic_read(&nohz.nr_cpus)))
5634 return 0;
1c792db7
SS
5635
5636 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5637 return 0;
5638
0b005cf5
SS
5639 if (rq->nr_running >= 2)
5640 goto need_kick;
83cd4fe2 5641
067491b7 5642 rcu_read_lock();
0b005cf5
SS
5643 for_each_domain(cpu, sd) {
5644 struct sched_group *sg = sd->groups;
5645 struct sched_group_power *sgp = sg->sgp;
5646 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5647
0b005cf5 5648 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5649 goto need_kick_unlock;
0b005cf5
SS
5650
5651 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5652 && (cpumask_first_and(nohz.idle_cpus_mask,
5653 sched_domain_span(sd)) < cpu))
067491b7 5654 goto need_kick_unlock;
0b005cf5
SS
5655
5656 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5657 break;
83cd4fe2 5658 }
067491b7 5659 rcu_read_unlock();
83cd4fe2 5660 return 0;
067491b7
PZ
5661
5662need_kick_unlock:
5663 rcu_read_unlock();
0b005cf5
SS
5664need_kick:
5665 return 1;
83cd4fe2
VP
5666}
5667#else
5668static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5669#endif
5670
5671/*
5672 * run_rebalance_domains is triggered when needed from the scheduler tick.
5673 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5674 */
1e3c88bd
PZ
5675static void run_rebalance_domains(struct softirq_action *h)
5676{
5677 int this_cpu = smp_processor_id();
5678 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5679 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5680 CPU_IDLE : CPU_NOT_IDLE;
5681
5682 rebalance_domains(this_cpu, idle);
5683
1e3c88bd 5684 /*
83cd4fe2 5685 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5686 * balancing on behalf of the other idle cpus whose ticks are
5687 * stopped.
5688 */
83cd4fe2 5689 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5690}
5691
5692static inline int on_null_domain(int cpu)
5693{
90a6501f 5694 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5695}
5696
5697/*
5698 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5699 */
029632fb 5700void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5701{
1e3c88bd
PZ
5702 /* Don't need to rebalance while attached to NULL domain */
5703 if (time_after_eq(jiffies, rq->next_balance) &&
5704 likely(!on_null_domain(cpu)))
5705 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5706#ifdef CONFIG_NO_HZ
1c792db7 5707 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5708 nohz_balancer_kick(cpu);
5709#endif
1e3c88bd
PZ
5710}
5711
0bcdcf28
CE
5712static void rq_online_fair(struct rq *rq)
5713{
5714 update_sysctl();
5715}
5716
5717static void rq_offline_fair(struct rq *rq)
5718{
5719 update_sysctl();
a4c96ae3
PB
5720
5721 /* Ensure any throttled groups are reachable by pick_next_task */
5722 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5723}
5724
55e12e5e 5725#endif /* CONFIG_SMP */
e1d1484f 5726
bf0f6f24
IM
5727/*
5728 * scheduler tick hitting a task of our scheduling class:
5729 */
8f4d37ec 5730static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5731{
5732 struct cfs_rq *cfs_rq;
5733 struct sched_entity *se = &curr->se;
5734
5735 for_each_sched_entity(se) {
5736 cfs_rq = cfs_rq_of(se);
8f4d37ec 5737 entity_tick(cfs_rq, se, queued);
bf0f6f24 5738 }
18bf2805 5739
cbee9f88
PZ
5740 if (sched_feat_numa(NUMA))
5741 task_tick_numa(rq, curr);
3d59eebc 5742
18bf2805 5743 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5744}
5745
5746/*
cd29fe6f
PZ
5747 * called on fork with the child task as argument from the parent's context
5748 * - child not yet on the tasklist
5749 * - preemption disabled
bf0f6f24 5750 */
cd29fe6f 5751static void task_fork_fair(struct task_struct *p)
bf0f6f24 5752{
4fc420c9
DN
5753 struct cfs_rq *cfs_rq;
5754 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5755 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5756 struct rq *rq = this_rq();
5757 unsigned long flags;
5758
05fa785c 5759 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5760
861d034e
PZ
5761 update_rq_clock(rq);
5762
4fc420c9
DN
5763 cfs_rq = task_cfs_rq(current);
5764 curr = cfs_rq->curr;
5765
b0a0f667
PM
5766 if (unlikely(task_cpu(p) != this_cpu)) {
5767 rcu_read_lock();
cd29fe6f 5768 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5769 rcu_read_unlock();
5770 }
bf0f6f24 5771
7109c442 5772 update_curr(cfs_rq);
cd29fe6f 5773
b5d9d734
MG
5774 if (curr)
5775 se->vruntime = curr->vruntime;
aeb73b04 5776 place_entity(cfs_rq, se, 1);
4d78e7b6 5777
cd29fe6f 5778 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5779 /*
edcb60a3
IM
5780 * Upon rescheduling, sched_class::put_prev_task() will place
5781 * 'current' within the tree based on its new key value.
5782 */
4d78e7b6 5783 swap(curr->vruntime, se->vruntime);
aec0a514 5784 resched_task(rq->curr);
4d78e7b6 5785 }
bf0f6f24 5786
88ec22d3
PZ
5787 se->vruntime -= cfs_rq->min_vruntime;
5788
05fa785c 5789 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5790}
5791
cb469845
SR
5792/*
5793 * Priority of the task has changed. Check to see if we preempt
5794 * the current task.
5795 */
da7a735e
PZ
5796static void
5797prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5798{
da7a735e
PZ
5799 if (!p->se.on_rq)
5800 return;
5801
cb469845
SR
5802 /*
5803 * Reschedule if we are currently running on this runqueue and
5804 * our priority decreased, or if we are not currently running on
5805 * this runqueue and our priority is higher than the current's
5806 */
da7a735e 5807 if (rq->curr == p) {
cb469845
SR
5808 if (p->prio > oldprio)
5809 resched_task(rq->curr);
5810 } else
15afe09b 5811 check_preempt_curr(rq, p, 0);
cb469845
SR
5812}
5813
da7a735e
PZ
5814static void switched_from_fair(struct rq *rq, struct task_struct *p)
5815{
5816 struct sched_entity *se = &p->se;
5817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5818
5819 /*
5820 * Ensure the task's vruntime is normalized, so that when its
5821 * switched back to the fair class the enqueue_entity(.flags=0) will
5822 * do the right thing.
5823 *
5824 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5825 * have normalized the vruntime, if it was !on_rq, then only when
5826 * the task is sleeping will it still have non-normalized vruntime.
5827 */
5828 if (!se->on_rq && p->state != TASK_RUNNING) {
5829 /*
5830 * Fix up our vruntime so that the current sleep doesn't
5831 * cause 'unlimited' sleep bonus.
5832 */
5833 place_entity(cfs_rq, se, 0);
5834 se->vruntime -= cfs_rq->min_vruntime;
5835 }
9ee474f5
PT
5836
5837#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5838 /*
5839 * Remove our load from contribution when we leave sched_fair
5840 * and ensure we don't carry in an old decay_count if we
5841 * switch back.
5842 */
5843 if (p->se.avg.decay_count) {
5844 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5845 __synchronize_entity_decay(&p->se);
5846 subtract_blocked_load_contrib(cfs_rq,
5847 p->se.avg.load_avg_contrib);
5848 }
5849#endif
da7a735e
PZ
5850}
5851
cb469845
SR
5852/*
5853 * We switched to the sched_fair class.
5854 */
da7a735e 5855static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5856{
da7a735e
PZ
5857 if (!p->se.on_rq)
5858 return;
5859
cb469845
SR
5860 /*
5861 * We were most likely switched from sched_rt, so
5862 * kick off the schedule if running, otherwise just see
5863 * if we can still preempt the current task.
5864 */
da7a735e 5865 if (rq->curr == p)
cb469845
SR
5866 resched_task(rq->curr);
5867 else
15afe09b 5868 check_preempt_curr(rq, p, 0);
cb469845
SR
5869}
5870
83b699ed
SV
5871/* Account for a task changing its policy or group.
5872 *
5873 * This routine is mostly called to set cfs_rq->curr field when a task
5874 * migrates between groups/classes.
5875 */
5876static void set_curr_task_fair(struct rq *rq)
5877{
5878 struct sched_entity *se = &rq->curr->se;
5879
ec12cb7f
PT
5880 for_each_sched_entity(se) {
5881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5882
5883 set_next_entity(cfs_rq, se);
5884 /* ensure bandwidth has been allocated on our new cfs_rq */
5885 account_cfs_rq_runtime(cfs_rq, 0);
5886 }
83b699ed
SV
5887}
5888
029632fb
PZ
5889void init_cfs_rq(struct cfs_rq *cfs_rq)
5890{
5891 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5892 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5893#ifndef CONFIG_64BIT
5894 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5895#endif
9ee474f5
PT
5896#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5897 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5898 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5899#endif
029632fb
PZ
5900}
5901
810b3817 5902#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5903static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5904{
aff3e498 5905 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5906 /*
5907 * If the task was not on the rq at the time of this cgroup movement
5908 * it must have been asleep, sleeping tasks keep their ->vruntime
5909 * absolute on their old rq until wakeup (needed for the fair sleeper
5910 * bonus in place_entity()).
5911 *
5912 * If it was on the rq, we've just 'preempted' it, which does convert
5913 * ->vruntime to a relative base.
5914 *
5915 * Make sure both cases convert their relative position when migrating
5916 * to another cgroup's rq. This does somewhat interfere with the
5917 * fair sleeper stuff for the first placement, but who cares.
5918 */
7ceff013
DN
5919 /*
5920 * When !on_rq, vruntime of the task has usually NOT been normalized.
5921 * But there are some cases where it has already been normalized:
5922 *
5923 * - Moving a forked child which is waiting for being woken up by
5924 * wake_up_new_task().
62af3783
DN
5925 * - Moving a task which has been woken up by try_to_wake_up() and
5926 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5927 *
5928 * To prevent boost or penalty in the new cfs_rq caused by delta
5929 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5930 */
62af3783 5931 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5932 on_rq = 1;
5933
b2b5ce02
PZ
5934 if (!on_rq)
5935 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5936 set_task_rq(p, task_cpu(p));
aff3e498
PT
5937 if (!on_rq) {
5938 cfs_rq = cfs_rq_of(&p->se);
5939 p->se.vruntime += cfs_rq->min_vruntime;
5940#ifdef CONFIG_SMP
5941 /*
5942 * migrate_task_rq_fair() will have removed our previous
5943 * contribution, but we must synchronize for ongoing future
5944 * decay.
5945 */
5946 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5947 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5948#endif
5949 }
810b3817 5950}
029632fb
PZ
5951
5952void free_fair_sched_group(struct task_group *tg)
5953{
5954 int i;
5955
5956 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5957
5958 for_each_possible_cpu(i) {
5959 if (tg->cfs_rq)
5960 kfree(tg->cfs_rq[i]);
5961 if (tg->se)
5962 kfree(tg->se[i]);
5963 }
5964
5965 kfree(tg->cfs_rq);
5966 kfree(tg->se);
5967}
5968
5969int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5970{
5971 struct cfs_rq *cfs_rq;
5972 struct sched_entity *se;
5973 int i;
5974
5975 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5976 if (!tg->cfs_rq)
5977 goto err;
5978 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5979 if (!tg->se)
5980 goto err;
5981
5982 tg->shares = NICE_0_LOAD;
5983
5984 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5985
5986 for_each_possible_cpu(i) {
5987 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5988 GFP_KERNEL, cpu_to_node(i));
5989 if (!cfs_rq)
5990 goto err;
5991
5992 se = kzalloc_node(sizeof(struct sched_entity),
5993 GFP_KERNEL, cpu_to_node(i));
5994 if (!se)
5995 goto err_free_rq;
5996
5997 init_cfs_rq(cfs_rq);
5998 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5999 }
6000
6001 return 1;
6002
6003err_free_rq:
6004 kfree(cfs_rq);
6005err:
6006 return 0;
6007}
6008
6009void unregister_fair_sched_group(struct task_group *tg, int cpu)
6010{
6011 struct rq *rq = cpu_rq(cpu);
6012 unsigned long flags;
6013
6014 /*
6015 * Only empty task groups can be destroyed; so we can speculatively
6016 * check on_list without danger of it being re-added.
6017 */
6018 if (!tg->cfs_rq[cpu]->on_list)
6019 return;
6020
6021 raw_spin_lock_irqsave(&rq->lock, flags);
6022 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6023 raw_spin_unlock_irqrestore(&rq->lock, flags);
6024}
6025
6026void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6027 struct sched_entity *se, int cpu,
6028 struct sched_entity *parent)
6029{
6030 struct rq *rq = cpu_rq(cpu);
6031
6032 cfs_rq->tg = tg;
6033 cfs_rq->rq = rq;
029632fb
PZ
6034 init_cfs_rq_runtime(cfs_rq);
6035
6036 tg->cfs_rq[cpu] = cfs_rq;
6037 tg->se[cpu] = se;
6038
6039 /* se could be NULL for root_task_group */
6040 if (!se)
6041 return;
6042
6043 if (!parent)
6044 se->cfs_rq = &rq->cfs;
6045 else
6046 se->cfs_rq = parent->my_q;
6047
6048 se->my_q = cfs_rq;
6049 update_load_set(&se->load, 0);
6050 se->parent = parent;
6051}
6052
6053static DEFINE_MUTEX(shares_mutex);
6054
6055int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6056{
6057 int i;
6058 unsigned long flags;
6059
6060 /*
6061 * We can't change the weight of the root cgroup.
6062 */
6063 if (!tg->se[0])
6064 return -EINVAL;
6065
6066 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6067
6068 mutex_lock(&shares_mutex);
6069 if (tg->shares == shares)
6070 goto done;
6071
6072 tg->shares = shares;
6073 for_each_possible_cpu(i) {
6074 struct rq *rq = cpu_rq(i);
6075 struct sched_entity *se;
6076
6077 se = tg->se[i];
6078 /* Propagate contribution to hierarchy */
6079 raw_spin_lock_irqsave(&rq->lock, flags);
17bc14b7 6080 for_each_sched_entity(se)
029632fb
PZ
6081 update_cfs_shares(group_cfs_rq(se));
6082 raw_spin_unlock_irqrestore(&rq->lock, flags);
6083 }
6084
6085done:
6086 mutex_unlock(&shares_mutex);
6087 return 0;
6088}
6089#else /* CONFIG_FAIR_GROUP_SCHED */
6090
6091void free_fair_sched_group(struct task_group *tg) { }
6092
6093int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6094{
6095 return 1;
6096}
6097
6098void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6099
6100#endif /* CONFIG_FAIR_GROUP_SCHED */
6101
810b3817 6102
6d686f45 6103static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6104{
6105 struct sched_entity *se = &task->se;
0d721cea
PW
6106 unsigned int rr_interval = 0;
6107
6108 /*
6109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6110 * idle runqueue:
6111 */
0d721cea 6112 if (rq->cfs.load.weight)
a59f4e07 6113 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6114
6115 return rr_interval;
6116}
6117
bf0f6f24
IM
6118/*
6119 * All the scheduling class methods:
6120 */
029632fb 6121const struct sched_class fair_sched_class = {
5522d5d5 6122 .next = &idle_sched_class,
bf0f6f24
IM
6123 .enqueue_task = enqueue_task_fair,
6124 .dequeue_task = dequeue_task_fair,
6125 .yield_task = yield_task_fair,
d95f4122 6126 .yield_to_task = yield_to_task_fair,
bf0f6f24 6127
2e09bf55 6128 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6129
6130 .pick_next_task = pick_next_task_fair,
6131 .put_prev_task = put_prev_task_fair,
6132
681f3e68 6133#ifdef CONFIG_SMP
4ce72a2c 6134 .select_task_rq = select_task_rq_fair,
f4e26b12 6135#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6136 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6137#endif
0bcdcf28
CE
6138 .rq_online = rq_online_fair,
6139 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6140
6141 .task_waking = task_waking_fair,
681f3e68 6142#endif
bf0f6f24 6143
83b699ed 6144 .set_curr_task = set_curr_task_fair,
bf0f6f24 6145 .task_tick = task_tick_fair,
cd29fe6f 6146 .task_fork = task_fork_fair,
cb469845
SR
6147
6148 .prio_changed = prio_changed_fair,
da7a735e 6149 .switched_from = switched_from_fair,
cb469845 6150 .switched_to = switched_to_fair,
810b3817 6151
0d721cea
PW
6152 .get_rr_interval = get_rr_interval_fair,
6153
810b3817 6154#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6155 .task_move_group = task_move_group_fair,
810b3817 6156#endif
bf0f6f24
IM
6157};
6158
6159#ifdef CONFIG_SCHED_DEBUG
029632fb 6160void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6161{
bf0f6f24
IM
6162 struct cfs_rq *cfs_rq;
6163
5973e5b9 6164 rcu_read_lock();
c3b64f1e 6165 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6166 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6167 rcu_read_unlock();
bf0f6f24
IM
6168}
6169#endif
029632fb
PZ
6170
6171__init void init_sched_fair_class(void)
6172{
6173#ifdef CONFIG_SMP
6174 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6175
6176#ifdef CONFIG_NO_HZ
554cecaf 6177 nohz.next_balance = jiffies;
029632fb 6178 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6179 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6180#endif
6181#endif /* SMP */
6182
6183}