sched/fair: Gather CPU load functions under a more conventional namespace
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(scale_load_down(SCHED_LOAD_SCALE) - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
9d85f21c
PT
2605/*
2606 * Approximate:
2607 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2608 */
2609static __always_inline u64 decay_load(u64 val, u64 n)
2610{
5b51f2f8
PT
2611 unsigned int local_n;
2612
2613 if (!n)
2614 return val;
2615 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2616 return 0;
2617
2618 /* after bounds checking we can collapse to 32-bit */
2619 local_n = n;
2620
2621 /*
2622 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2623 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2624 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2625 *
2626 * To achieve constant time decay_load.
2627 */
2628 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2629 val >>= local_n / LOAD_AVG_PERIOD;
2630 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2631 }
2632
9d89c257
YD
2633 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2634 return val;
5b51f2f8
PT
2635}
2636
2637/*
2638 * For updates fully spanning n periods, the contribution to runnable
2639 * average will be: \Sum 1024*y^n
2640 *
2641 * We can compute this reasonably efficiently by combining:
2642 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2643 */
2644static u32 __compute_runnable_contrib(u64 n)
2645{
2646 u32 contrib = 0;
2647
2648 if (likely(n <= LOAD_AVG_PERIOD))
2649 return runnable_avg_yN_sum[n];
2650 else if (unlikely(n >= LOAD_AVG_MAX_N))
2651 return LOAD_AVG_MAX;
2652
2653 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2654 do {
2655 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2656 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2657
2658 n -= LOAD_AVG_PERIOD;
2659 } while (n > LOAD_AVG_PERIOD);
2660
2661 contrib = decay_load(contrib, n);
2662 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2663}
2664
006cdf02
PZ
2665#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2666#error "load tracking assumes 2^10 as unit"
2667#endif
2668
54a21385 2669#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2670
9d85f21c
PT
2671/*
2672 * We can represent the historical contribution to runnable average as the
2673 * coefficients of a geometric series. To do this we sub-divide our runnable
2674 * history into segments of approximately 1ms (1024us); label the segment that
2675 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2676 *
2677 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2678 * p0 p1 p2
2679 * (now) (~1ms ago) (~2ms ago)
2680 *
2681 * Let u_i denote the fraction of p_i that the entity was runnable.
2682 *
2683 * We then designate the fractions u_i as our co-efficients, yielding the
2684 * following representation of historical load:
2685 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2686 *
2687 * We choose y based on the with of a reasonably scheduling period, fixing:
2688 * y^32 = 0.5
2689 *
2690 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2691 * approximately half as much as the contribution to load within the last ms
2692 * (u_0).
2693 *
2694 * When a period "rolls over" and we have new u_0`, multiplying the previous
2695 * sum again by y is sufficient to update:
2696 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2697 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2698 */
9d89c257
YD
2699static __always_inline int
2700__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2701 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2702{
e0f5f3af 2703 u64 delta, scaled_delta, periods;
9d89c257 2704 u32 contrib;
6115c793 2705 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2706 unsigned long scale_freq, scale_cpu;
9d85f21c 2707
9d89c257 2708 delta = now - sa->last_update_time;
9d85f21c
PT
2709 /*
2710 * This should only happen when time goes backwards, which it
2711 * unfortunately does during sched clock init when we swap over to TSC.
2712 */
2713 if ((s64)delta < 0) {
9d89c257 2714 sa->last_update_time = now;
9d85f21c
PT
2715 return 0;
2716 }
2717
2718 /*
2719 * Use 1024ns as the unit of measurement since it's a reasonable
2720 * approximation of 1us and fast to compute.
2721 */
2722 delta >>= 10;
2723 if (!delta)
2724 return 0;
9d89c257 2725 sa->last_update_time = now;
9d85f21c 2726
6f2b0452
DE
2727 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2728 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2729
9d85f21c 2730 /* delta_w is the amount already accumulated against our next period */
9d89c257 2731 delta_w = sa->period_contrib;
9d85f21c 2732 if (delta + delta_w >= 1024) {
9d85f21c
PT
2733 decayed = 1;
2734
9d89c257
YD
2735 /* how much left for next period will start over, we don't know yet */
2736 sa->period_contrib = 0;
2737
9d85f21c
PT
2738 /*
2739 * Now that we know we're crossing a period boundary, figure
2740 * out how much from delta we need to complete the current
2741 * period and accrue it.
2742 */
2743 delta_w = 1024 - delta_w;
54a21385 2744 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2745 if (weight) {
e0f5f3af
DE
2746 sa->load_sum += weight * scaled_delta_w;
2747 if (cfs_rq) {
2748 cfs_rq->runnable_load_sum +=
2749 weight * scaled_delta_w;
2750 }
13962234 2751 }
36ee28e4 2752 if (running)
006cdf02 2753 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2754
2755 delta -= delta_w;
2756
2757 /* Figure out how many additional periods this update spans */
2758 periods = delta / 1024;
2759 delta %= 1024;
2760
9d89c257 2761 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_sum =
2764 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2765 }
9d89c257 2766 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2767
2768 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2769 contrib = __compute_runnable_contrib(periods);
54a21385 2770 contrib = cap_scale(contrib, scale_freq);
13962234 2771 if (weight) {
9d89c257 2772 sa->load_sum += weight * contrib;
13962234
YD
2773 if (cfs_rq)
2774 cfs_rq->runnable_load_sum += weight * contrib;
2775 }
36ee28e4 2776 if (running)
006cdf02 2777 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2778 }
2779
2780 /* Remainder of delta accrued against u_0` */
54a21385 2781 scaled_delta = cap_scale(delta, scale_freq);
13962234 2782 if (weight) {
e0f5f3af 2783 sa->load_sum += weight * scaled_delta;
13962234 2784 if (cfs_rq)
e0f5f3af 2785 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2786 }
36ee28e4 2787 if (running)
006cdf02 2788 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2789
9d89c257 2790 sa->period_contrib += delta;
9ee474f5 2791
9d89c257
YD
2792 if (decayed) {
2793 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2794 if (cfs_rq) {
2795 cfs_rq->runnable_load_avg =
2796 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2797 }
006cdf02 2798 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2799 }
aff3e498 2800
9d89c257 2801 return decayed;
9ee474f5
PT
2802}
2803
c566e8e9 2804#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2805/*
9d89c257
YD
2806 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2807 * and effective_load (which is not done because it is too costly).
bb17f655 2808 */
9d89c257 2809static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2810{
9d89c257 2811 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2812
aa0b7ae0
WL
2813 /*
2814 * No need to update load_avg for root_task_group as it is not used.
2815 */
2816 if (cfs_rq->tg == &root_task_group)
2817 return;
2818
9d89c257
YD
2819 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2820 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2821 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2822 }
8165e145 2823}
f5f9739d 2824
ad936d86
BP
2825/*
2826 * Called within set_task_rq() right before setting a task's cpu. The
2827 * caller only guarantees p->pi_lock is held; no other assumptions,
2828 * including the state of rq->lock, should be made.
2829 */
2830void set_task_rq_fair(struct sched_entity *se,
2831 struct cfs_rq *prev, struct cfs_rq *next)
2832{
2833 if (!sched_feat(ATTACH_AGE_LOAD))
2834 return;
2835
2836 /*
2837 * We are supposed to update the task to "current" time, then its up to
2838 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2839 * getting what current time is, so simply throw away the out-of-date
2840 * time. This will result in the wakee task is less decayed, but giving
2841 * the wakee more load sounds not bad.
2842 */
2843 if (se->avg.last_update_time && prev) {
2844 u64 p_last_update_time;
2845 u64 n_last_update_time;
2846
2847#ifndef CONFIG_64BIT
2848 u64 p_last_update_time_copy;
2849 u64 n_last_update_time_copy;
2850
2851 do {
2852 p_last_update_time_copy = prev->load_last_update_time_copy;
2853 n_last_update_time_copy = next->load_last_update_time_copy;
2854
2855 smp_rmb();
2856
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859
2860 } while (p_last_update_time != p_last_update_time_copy ||
2861 n_last_update_time != n_last_update_time_copy);
2862#else
2863 p_last_update_time = prev->avg.last_update_time;
2864 n_last_update_time = next->avg.last_update_time;
2865#endif
2866 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2867 &se->avg, 0, 0, NULL);
2868 se->avg.last_update_time = n_last_update_time;
2869 }
2870}
6e83125c 2871#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2872static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2873#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2874
9d89c257 2875static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2876
a2c6c91f
SM
2877static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2878{
2879 struct rq *rq = rq_of(cfs_rq);
2880 int cpu = cpu_of(rq);
2881
2882 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2883 unsigned long max = rq->cpu_capacity_orig;
2884
2885 /*
2886 * There are a few boundary cases this might miss but it should
2887 * get called often enough that that should (hopefully) not be
2888 * a real problem -- added to that it only calls on the local
2889 * CPU, so if we enqueue remotely we'll miss an update, but
2890 * the next tick/schedule should update.
2891 *
2892 * It will not get called when we go idle, because the idle
2893 * thread is a different class (!fair), nor will the utilization
2894 * number include things like RT tasks.
2895 *
2896 * As is, the util number is not freq-invariant (we'd have to
2897 * implement arch_scale_freq_capacity() for that).
2898 *
2899 * See cpu_util().
2900 */
2901 cpufreq_update_util(rq_clock(rq),
2902 min(cfs_rq->avg.util_avg, max), max);
2903 }
2904}
2905
9d89c257 2906/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2907static inline int
2908update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2909{
9d89c257 2910 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2911 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2912
9d89c257 2913 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2914 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2915 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2916 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2917 removed_load = 1;
8165e145 2918 }
2dac754e 2919
9d89c257
YD
2920 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2921 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2922 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2923 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2924 removed_util = 1;
9d89c257 2925 }
36ee28e4 2926
a2c6c91f 2927 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2928 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2929
9d89c257
YD
2930#ifndef CONFIG_64BIT
2931 smp_wmb();
2932 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2933#endif
36ee28e4 2934
a2c6c91f
SM
2935 if (update_freq && (decayed || removed_util))
2936 cfs_rq_util_change(cfs_rq);
21e96f88 2937
41e0d37f 2938 return decayed || removed_load;
21e96f88
SM
2939}
2940
2941/* Update task and its cfs_rq load average */
2942static inline void update_load_avg(struct sched_entity *se, int update_tg)
2943{
2944 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2945 u64 now = cfs_rq_clock_task(cfs_rq);
2946 struct rq *rq = rq_of(cfs_rq);
2947 int cpu = cpu_of(rq);
2948
2949 /*
2950 * Track task load average for carrying it to new CPU after migrated, and
2951 * track group sched_entity load average for task_h_load calc in migration
2952 */
2953 __update_load_avg(now, cpu, &se->avg,
2954 se->on_rq * scale_load_down(se->load.weight),
2955 cfs_rq->curr == se, NULL);
2956
a2c6c91f 2957 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2958 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2959}
2960
a05e8c51
BP
2961static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2962{
a9280514
PZ
2963 if (!sched_feat(ATTACH_AGE_LOAD))
2964 goto skip_aging;
2965
6efdb105
BP
2966 /*
2967 * If we got migrated (either between CPUs or between cgroups) we'll
2968 * have aged the average right before clearing @last_update_time.
2969 */
2970 if (se->avg.last_update_time) {
2971 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2972 &se->avg, 0, 0, NULL);
2973
2974 /*
2975 * XXX: we could have just aged the entire load away if we've been
2976 * absent from the fair class for too long.
2977 */
2978 }
2979
a9280514 2980skip_aging:
a05e8c51
BP
2981 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2982 cfs_rq->avg.load_avg += se->avg.load_avg;
2983 cfs_rq->avg.load_sum += se->avg.load_sum;
2984 cfs_rq->avg.util_avg += se->avg.util_avg;
2985 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2986
2987 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2988}
2989
2990static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2991{
2992 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2993 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2994 cfs_rq->curr == se, NULL);
2995
2996 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2997 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2998 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2999 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
a2c6c91f
SM
3000
3001 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3002}
3003
9d89c257
YD
3004/* Add the load generated by se into cfs_rq's load average */
3005static inline void
3006enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3007{
9d89c257
YD
3008 struct sched_avg *sa = &se->avg;
3009 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3010 int migrated, decayed;
9ee474f5 3011
a05e8c51
BP
3012 migrated = !sa->last_update_time;
3013 if (!migrated) {
9d89c257 3014 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3015 se->on_rq * scale_load_down(se->load.weight),
3016 cfs_rq->curr == se, NULL);
aff3e498 3017 }
c566e8e9 3018
a2c6c91f 3019 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3020
13962234
YD
3021 cfs_rq->runnable_load_avg += sa->load_avg;
3022 cfs_rq->runnable_load_sum += sa->load_sum;
3023
a05e8c51
BP
3024 if (migrated)
3025 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3026
9d89c257
YD
3027 if (decayed || migrated)
3028 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3029}
3030
13962234
YD
3031/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3032static inline void
3033dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3034{
3035 update_load_avg(se, 1);
3036
3037 cfs_rq->runnable_load_avg =
3038 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3039 cfs_rq->runnable_load_sum =
a05e8c51 3040 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3041}
3042
9d89c257 3043#ifndef CONFIG_64BIT
0905f04e
YD
3044static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3045{
9d89c257 3046 u64 last_update_time_copy;
0905f04e 3047 u64 last_update_time;
9ee474f5 3048
9d89c257
YD
3049 do {
3050 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3051 smp_rmb();
3052 last_update_time = cfs_rq->avg.last_update_time;
3053 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3054
3055 return last_update_time;
3056}
9d89c257 3057#else
0905f04e
YD
3058static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3059{
3060 return cfs_rq->avg.last_update_time;
3061}
9d89c257
YD
3062#endif
3063
0905f04e
YD
3064/*
3065 * Task first catches up with cfs_rq, and then subtract
3066 * itself from the cfs_rq (task must be off the queue now).
3067 */
3068void remove_entity_load_avg(struct sched_entity *se)
3069{
3070 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3071 u64 last_update_time;
3072
3073 /*
3074 * Newly created task or never used group entity should not be removed
3075 * from its (source) cfs_rq
3076 */
3077 if (se->avg.last_update_time == 0)
3078 return;
3079
3080 last_update_time = cfs_rq_last_update_time(cfs_rq);
3081
13962234 3082 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3083 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3084 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3085}
642dbc39 3086
7ea241af
YD
3087static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3088{
3089 return cfs_rq->runnable_load_avg;
3090}
3091
3092static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3093{
3094 return cfs_rq->avg.load_avg;
3095}
3096
6e83125c
PZ
3097static int idle_balance(struct rq *this_rq);
3098
38033c37
PZ
3099#else /* CONFIG_SMP */
3100
9d89c257
YD
3101static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3102static inline void
3103enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3104static inline void
3105dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3106static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3107
a05e8c51
BP
3108static inline void
3109attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3110static inline void
3111detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3112
6e83125c
PZ
3113static inline int idle_balance(struct rq *rq)
3114{
3115 return 0;
3116}
3117
38033c37 3118#endif /* CONFIG_SMP */
9d85f21c 3119
2396af69 3120static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3121{
bf0f6f24 3122#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3123 struct task_struct *tsk = NULL;
3124
3125 if (entity_is_task(se))
3126 tsk = task_of(se);
3127
41acab88 3128 if (se->statistics.sleep_start) {
78becc27 3129 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3130
3131 if ((s64)delta < 0)
3132 delta = 0;
3133
41acab88
LDM
3134 if (unlikely(delta > se->statistics.sleep_max))
3135 se->statistics.sleep_max = delta;
bf0f6f24 3136
8c79a045 3137 se->statistics.sleep_start = 0;
41acab88 3138 se->statistics.sum_sleep_runtime += delta;
9745512c 3139
768d0c27 3140 if (tsk) {
e414314c 3141 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3142 trace_sched_stat_sleep(tsk, delta);
3143 }
bf0f6f24 3144 }
41acab88 3145 if (se->statistics.block_start) {
78becc27 3146 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3147
3148 if ((s64)delta < 0)
3149 delta = 0;
3150
41acab88
LDM
3151 if (unlikely(delta > se->statistics.block_max))
3152 se->statistics.block_max = delta;
bf0f6f24 3153
8c79a045 3154 se->statistics.block_start = 0;
41acab88 3155 se->statistics.sum_sleep_runtime += delta;
30084fbd 3156
e414314c 3157 if (tsk) {
8f0dfc34 3158 if (tsk->in_iowait) {
41acab88
LDM
3159 se->statistics.iowait_sum += delta;
3160 se->statistics.iowait_count++;
768d0c27 3161 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3162 }
3163
b781a602
AV
3164 trace_sched_stat_blocked(tsk, delta);
3165
e414314c
PZ
3166 /*
3167 * Blocking time is in units of nanosecs, so shift by
3168 * 20 to get a milliseconds-range estimation of the
3169 * amount of time that the task spent sleeping:
3170 */
3171 if (unlikely(prof_on == SLEEP_PROFILING)) {
3172 profile_hits(SLEEP_PROFILING,
3173 (void *)get_wchan(tsk),
3174 delta >> 20);
3175 }
3176 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3177 }
bf0f6f24
IM
3178 }
3179#endif
3180}
3181
ddc97297
PZ
3182static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3183{
3184#ifdef CONFIG_SCHED_DEBUG
3185 s64 d = se->vruntime - cfs_rq->min_vruntime;
3186
3187 if (d < 0)
3188 d = -d;
3189
3190 if (d > 3*sysctl_sched_latency)
3191 schedstat_inc(cfs_rq, nr_spread_over);
3192#endif
3193}
3194
aeb73b04
PZ
3195static void
3196place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3197{
1af5f730 3198 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3199
2cb8600e
PZ
3200 /*
3201 * The 'current' period is already promised to the current tasks,
3202 * however the extra weight of the new task will slow them down a
3203 * little, place the new task so that it fits in the slot that
3204 * stays open at the end.
3205 */
94dfb5e7 3206 if (initial && sched_feat(START_DEBIT))
f9c0b095 3207 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3208
a2e7a7eb 3209 /* sleeps up to a single latency don't count. */
5ca9880c 3210 if (!initial) {
a2e7a7eb 3211 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3212
a2e7a7eb
MG
3213 /*
3214 * Halve their sleep time's effect, to allow
3215 * for a gentler effect of sleepers:
3216 */
3217 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3218 thresh >>= 1;
51e0304c 3219
a2e7a7eb 3220 vruntime -= thresh;
aeb73b04
PZ
3221 }
3222
b5d9d734 3223 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3224 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3225}
3226
d3d9dc33
PT
3227static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3228
cb251765
MG
3229static inline void check_schedstat_required(void)
3230{
3231#ifdef CONFIG_SCHEDSTATS
3232 if (schedstat_enabled())
3233 return;
3234
3235 /* Force schedstat enabled if a dependent tracepoint is active */
3236 if (trace_sched_stat_wait_enabled() ||
3237 trace_sched_stat_sleep_enabled() ||
3238 trace_sched_stat_iowait_enabled() ||
3239 trace_sched_stat_blocked_enabled() ||
3240 trace_sched_stat_runtime_enabled()) {
3241 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3242 "stat_blocked and stat_runtime require the "
3243 "kernel parameter schedstats=enabled or "
3244 "kernel.sched_schedstats=1\n");
3245 }
3246#endif
3247}
3248
bf0f6f24 3249static void
88ec22d3 3250enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3251{
3a47d512
PZ
3252 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3253 bool curr = cfs_rq->curr == se;
3254
88ec22d3 3255 /*
3a47d512
PZ
3256 * If we're the current task, we must renormalise before calling
3257 * update_curr().
88ec22d3 3258 */
3a47d512 3259 if (renorm && curr)
88ec22d3
PZ
3260 se->vruntime += cfs_rq->min_vruntime;
3261
3a47d512
PZ
3262 update_curr(cfs_rq);
3263
bf0f6f24 3264 /*
3a47d512
PZ
3265 * Otherwise, renormalise after, such that we're placed at the current
3266 * moment in time, instead of some random moment in the past.
bf0f6f24 3267 */
3a47d512
PZ
3268 if (renorm && !curr)
3269 se->vruntime += cfs_rq->min_vruntime;
3270
9d89c257 3271 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3272 account_entity_enqueue(cfs_rq, se);
3273 update_cfs_shares(cfs_rq);
bf0f6f24 3274
88ec22d3 3275 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3276 place_entity(cfs_rq, se, 0);
cb251765
MG
3277 if (schedstat_enabled())
3278 enqueue_sleeper(cfs_rq, se);
e9acbff6 3279 }
bf0f6f24 3280
cb251765
MG
3281 check_schedstat_required();
3282 if (schedstat_enabled()) {
3283 update_stats_enqueue(cfs_rq, se);
3284 check_spread(cfs_rq, se);
3285 }
3a47d512 3286 if (!curr)
83b699ed 3287 __enqueue_entity(cfs_rq, se);
2069dd75 3288 se->on_rq = 1;
3d4b47b4 3289
d3d9dc33 3290 if (cfs_rq->nr_running == 1) {
3d4b47b4 3291 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3292 check_enqueue_throttle(cfs_rq);
3293 }
bf0f6f24
IM
3294}
3295
2c13c919 3296static void __clear_buddies_last(struct sched_entity *se)
2002c695 3297{
2c13c919
RR
3298 for_each_sched_entity(se) {
3299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3300 if (cfs_rq->last != se)
2c13c919 3301 break;
f1044799
PZ
3302
3303 cfs_rq->last = NULL;
2c13c919
RR
3304 }
3305}
2002c695 3306
2c13c919
RR
3307static void __clear_buddies_next(struct sched_entity *se)
3308{
3309 for_each_sched_entity(se) {
3310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3311 if (cfs_rq->next != se)
2c13c919 3312 break;
f1044799
PZ
3313
3314 cfs_rq->next = NULL;
2c13c919 3315 }
2002c695
PZ
3316}
3317
ac53db59
RR
3318static void __clear_buddies_skip(struct sched_entity *se)
3319{
3320 for_each_sched_entity(se) {
3321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3322 if (cfs_rq->skip != se)
ac53db59 3323 break;
f1044799
PZ
3324
3325 cfs_rq->skip = NULL;
ac53db59
RR
3326 }
3327}
3328
a571bbea
PZ
3329static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3330{
2c13c919
RR
3331 if (cfs_rq->last == se)
3332 __clear_buddies_last(se);
3333
3334 if (cfs_rq->next == se)
3335 __clear_buddies_next(se);
ac53db59
RR
3336
3337 if (cfs_rq->skip == se)
3338 __clear_buddies_skip(se);
a571bbea
PZ
3339}
3340
6c16a6dc 3341static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3342
bf0f6f24 3343static void
371fd7e7 3344dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3345{
a2a2d680
DA
3346 /*
3347 * Update run-time statistics of the 'current'.
3348 */
3349 update_curr(cfs_rq);
13962234 3350 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3351
cb251765
MG
3352 if (schedstat_enabled())
3353 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3354
2002c695 3355 clear_buddies(cfs_rq, se);
4793241b 3356
83b699ed 3357 if (se != cfs_rq->curr)
30cfdcfc 3358 __dequeue_entity(cfs_rq, se);
17bc14b7 3359 se->on_rq = 0;
30cfdcfc 3360 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3361
3362 /*
3363 * Normalize the entity after updating the min_vruntime because the
3364 * update can refer to the ->curr item and we need to reflect this
3365 * movement in our normalized position.
3366 */
371fd7e7 3367 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3368 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3369
d8b4986d
PT
3370 /* return excess runtime on last dequeue */
3371 return_cfs_rq_runtime(cfs_rq);
3372
1e876231 3373 update_min_vruntime(cfs_rq);
17bc14b7 3374 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3375}
3376
3377/*
3378 * Preempt the current task with a newly woken task if needed:
3379 */
7c92e54f 3380static void
2e09bf55 3381check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3382{
11697830 3383 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3384 struct sched_entity *se;
3385 s64 delta;
11697830 3386
6d0f0ebd 3387 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3388 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3389 if (delta_exec > ideal_runtime) {
8875125e 3390 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3391 /*
3392 * The current task ran long enough, ensure it doesn't get
3393 * re-elected due to buddy favours.
3394 */
3395 clear_buddies(cfs_rq, curr);
f685ceac
MG
3396 return;
3397 }
3398
3399 /*
3400 * Ensure that a task that missed wakeup preemption by a
3401 * narrow margin doesn't have to wait for a full slice.
3402 * This also mitigates buddy induced latencies under load.
3403 */
f685ceac
MG
3404 if (delta_exec < sysctl_sched_min_granularity)
3405 return;
3406
f4cfb33e
WX
3407 se = __pick_first_entity(cfs_rq);
3408 delta = curr->vruntime - se->vruntime;
f685ceac 3409
f4cfb33e
WX
3410 if (delta < 0)
3411 return;
d7d82944 3412
f4cfb33e 3413 if (delta > ideal_runtime)
8875125e 3414 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3415}
3416
83b699ed 3417static void
8494f412 3418set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3419{
83b699ed
SV
3420 /* 'current' is not kept within the tree. */
3421 if (se->on_rq) {
3422 /*
3423 * Any task has to be enqueued before it get to execute on
3424 * a CPU. So account for the time it spent waiting on the
3425 * runqueue.
3426 */
cb251765
MG
3427 if (schedstat_enabled())
3428 update_stats_wait_end(cfs_rq, se);
83b699ed 3429 __dequeue_entity(cfs_rq, se);
9d89c257 3430 update_load_avg(se, 1);
83b699ed
SV
3431 }
3432
79303e9e 3433 update_stats_curr_start(cfs_rq, se);
429d43bc 3434 cfs_rq->curr = se;
eba1ed4b
IM
3435#ifdef CONFIG_SCHEDSTATS
3436 /*
3437 * Track our maximum slice length, if the CPU's load is at
3438 * least twice that of our own weight (i.e. dont track it
3439 * when there are only lesser-weight tasks around):
3440 */
cb251765 3441 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3442 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3443 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3444 }
3445#endif
4a55b450 3446 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3447}
3448
3f3a4904
PZ
3449static int
3450wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3451
ac53db59
RR
3452/*
3453 * Pick the next process, keeping these things in mind, in this order:
3454 * 1) keep things fair between processes/task groups
3455 * 2) pick the "next" process, since someone really wants that to run
3456 * 3) pick the "last" process, for cache locality
3457 * 4) do not run the "skip" process, if something else is available
3458 */
678d5718
PZ
3459static struct sched_entity *
3460pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3461{
678d5718
PZ
3462 struct sched_entity *left = __pick_first_entity(cfs_rq);
3463 struct sched_entity *se;
3464
3465 /*
3466 * If curr is set we have to see if its left of the leftmost entity
3467 * still in the tree, provided there was anything in the tree at all.
3468 */
3469 if (!left || (curr && entity_before(curr, left)))
3470 left = curr;
3471
3472 se = left; /* ideally we run the leftmost entity */
f4b6755f 3473
ac53db59
RR
3474 /*
3475 * Avoid running the skip buddy, if running something else can
3476 * be done without getting too unfair.
3477 */
3478 if (cfs_rq->skip == se) {
678d5718
PZ
3479 struct sched_entity *second;
3480
3481 if (se == curr) {
3482 second = __pick_first_entity(cfs_rq);
3483 } else {
3484 second = __pick_next_entity(se);
3485 if (!second || (curr && entity_before(curr, second)))
3486 second = curr;
3487 }
3488
ac53db59
RR
3489 if (second && wakeup_preempt_entity(second, left) < 1)
3490 se = second;
3491 }
aa2ac252 3492
f685ceac
MG
3493 /*
3494 * Prefer last buddy, try to return the CPU to a preempted task.
3495 */
3496 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3497 se = cfs_rq->last;
3498
ac53db59
RR
3499 /*
3500 * Someone really wants this to run. If it's not unfair, run it.
3501 */
3502 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3503 se = cfs_rq->next;
3504
f685ceac 3505 clear_buddies(cfs_rq, se);
4793241b
PZ
3506
3507 return se;
aa2ac252
PZ
3508}
3509
678d5718 3510static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3511
ab6cde26 3512static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3513{
3514 /*
3515 * If still on the runqueue then deactivate_task()
3516 * was not called and update_curr() has to be done:
3517 */
3518 if (prev->on_rq)
b7cc0896 3519 update_curr(cfs_rq);
bf0f6f24 3520
d3d9dc33
PT
3521 /* throttle cfs_rqs exceeding runtime */
3522 check_cfs_rq_runtime(cfs_rq);
3523
cb251765
MG
3524 if (schedstat_enabled()) {
3525 check_spread(cfs_rq, prev);
3526 if (prev->on_rq)
3527 update_stats_wait_start(cfs_rq, prev);
3528 }
3529
30cfdcfc 3530 if (prev->on_rq) {
30cfdcfc
DA
3531 /* Put 'current' back into the tree. */
3532 __enqueue_entity(cfs_rq, prev);
9d85f21c 3533 /* in !on_rq case, update occurred at dequeue */
9d89c257 3534 update_load_avg(prev, 0);
30cfdcfc 3535 }
429d43bc 3536 cfs_rq->curr = NULL;
bf0f6f24
IM
3537}
3538
8f4d37ec
PZ
3539static void
3540entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3541{
bf0f6f24 3542 /*
30cfdcfc 3543 * Update run-time statistics of the 'current'.
bf0f6f24 3544 */
30cfdcfc 3545 update_curr(cfs_rq);
bf0f6f24 3546
9d85f21c
PT
3547 /*
3548 * Ensure that runnable average is periodically updated.
3549 */
9d89c257 3550 update_load_avg(curr, 1);
bf0bd948 3551 update_cfs_shares(cfs_rq);
9d85f21c 3552
8f4d37ec
PZ
3553#ifdef CONFIG_SCHED_HRTICK
3554 /*
3555 * queued ticks are scheduled to match the slice, so don't bother
3556 * validating it and just reschedule.
3557 */
983ed7a6 3558 if (queued) {
8875125e 3559 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3560 return;
3561 }
8f4d37ec
PZ
3562 /*
3563 * don't let the period tick interfere with the hrtick preemption
3564 */
3565 if (!sched_feat(DOUBLE_TICK) &&
3566 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3567 return;
3568#endif
3569
2c2efaed 3570 if (cfs_rq->nr_running > 1)
2e09bf55 3571 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3572}
3573
ab84d31e
PT
3574
3575/**************************************************
3576 * CFS bandwidth control machinery
3577 */
3578
3579#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3580
3581#ifdef HAVE_JUMP_LABEL
c5905afb 3582static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3583
3584static inline bool cfs_bandwidth_used(void)
3585{
c5905afb 3586 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3587}
3588
1ee14e6c 3589void cfs_bandwidth_usage_inc(void)
029632fb 3590{
1ee14e6c
BS
3591 static_key_slow_inc(&__cfs_bandwidth_used);
3592}
3593
3594void cfs_bandwidth_usage_dec(void)
3595{
3596 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3597}
3598#else /* HAVE_JUMP_LABEL */
3599static bool cfs_bandwidth_used(void)
3600{
3601 return true;
3602}
3603
1ee14e6c
BS
3604void cfs_bandwidth_usage_inc(void) {}
3605void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3606#endif /* HAVE_JUMP_LABEL */
3607
ab84d31e
PT
3608/*
3609 * default period for cfs group bandwidth.
3610 * default: 0.1s, units: nanoseconds
3611 */
3612static inline u64 default_cfs_period(void)
3613{
3614 return 100000000ULL;
3615}
ec12cb7f
PT
3616
3617static inline u64 sched_cfs_bandwidth_slice(void)
3618{
3619 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3620}
3621
a9cf55b2
PT
3622/*
3623 * Replenish runtime according to assigned quota and update expiration time.
3624 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3625 * additional synchronization around rq->lock.
3626 *
3627 * requires cfs_b->lock
3628 */
029632fb 3629void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3630{
3631 u64 now;
3632
3633 if (cfs_b->quota == RUNTIME_INF)
3634 return;
3635
3636 now = sched_clock_cpu(smp_processor_id());
3637 cfs_b->runtime = cfs_b->quota;
3638 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3639}
3640
029632fb
PZ
3641static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3642{
3643 return &tg->cfs_bandwidth;
3644}
3645
f1b17280
PT
3646/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3647static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3648{
3649 if (unlikely(cfs_rq->throttle_count))
3650 return cfs_rq->throttled_clock_task;
3651
78becc27 3652 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3653}
3654
85dac906
PT
3655/* returns 0 on failure to allocate runtime */
3656static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3657{
3658 struct task_group *tg = cfs_rq->tg;
3659 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3660 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3661
3662 /* note: this is a positive sum as runtime_remaining <= 0 */
3663 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3664
3665 raw_spin_lock(&cfs_b->lock);
3666 if (cfs_b->quota == RUNTIME_INF)
3667 amount = min_amount;
58088ad0 3668 else {
77a4d1a1 3669 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3670
3671 if (cfs_b->runtime > 0) {
3672 amount = min(cfs_b->runtime, min_amount);
3673 cfs_b->runtime -= amount;
3674 cfs_b->idle = 0;
3675 }
ec12cb7f 3676 }
a9cf55b2 3677 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3678 raw_spin_unlock(&cfs_b->lock);
3679
3680 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3681 /*
3682 * we may have advanced our local expiration to account for allowed
3683 * spread between our sched_clock and the one on which runtime was
3684 * issued.
3685 */
3686 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3687 cfs_rq->runtime_expires = expires;
85dac906
PT
3688
3689 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3690}
3691
a9cf55b2
PT
3692/*
3693 * Note: This depends on the synchronization provided by sched_clock and the
3694 * fact that rq->clock snapshots this value.
3695 */
3696static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3697{
a9cf55b2 3698 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3699
3700 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3701 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3702 return;
3703
a9cf55b2
PT
3704 if (cfs_rq->runtime_remaining < 0)
3705 return;
3706
3707 /*
3708 * If the local deadline has passed we have to consider the
3709 * possibility that our sched_clock is 'fast' and the global deadline
3710 * has not truly expired.
3711 *
3712 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3713 * whether the global deadline has advanced. It is valid to compare
3714 * cfs_b->runtime_expires without any locks since we only care about
3715 * exact equality, so a partial write will still work.
a9cf55b2
PT
3716 */
3717
51f2176d 3718 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3719 /* extend local deadline, drift is bounded above by 2 ticks */
3720 cfs_rq->runtime_expires += TICK_NSEC;
3721 } else {
3722 /* global deadline is ahead, expiration has passed */
3723 cfs_rq->runtime_remaining = 0;
3724 }
3725}
3726
9dbdb155 3727static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3728{
3729 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3730 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3731 expire_cfs_rq_runtime(cfs_rq);
3732
3733 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3734 return;
3735
85dac906
PT
3736 /*
3737 * if we're unable to extend our runtime we resched so that the active
3738 * hierarchy can be throttled
3739 */
3740 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3741 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3742}
3743
6c16a6dc 3744static __always_inline
9dbdb155 3745void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3746{
56f570e5 3747 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3748 return;
3749
3750 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3751}
3752
85dac906
PT
3753static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754{
56f570e5 3755 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3756}
3757
64660c86
PT
3758/* check whether cfs_rq, or any parent, is throttled */
3759static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760{
56f570e5 3761 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3762}
3763
3764/*
3765 * Ensure that neither of the group entities corresponding to src_cpu or
3766 * dest_cpu are members of a throttled hierarchy when performing group
3767 * load-balance operations.
3768 */
3769static inline int throttled_lb_pair(struct task_group *tg,
3770 int src_cpu, int dest_cpu)
3771{
3772 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3773
3774 src_cfs_rq = tg->cfs_rq[src_cpu];
3775 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3776
3777 return throttled_hierarchy(src_cfs_rq) ||
3778 throttled_hierarchy(dest_cfs_rq);
3779}
3780
3781/* updated child weight may affect parent so we have to do this bottom up */
3782static int tg_unthrottle_up(struct task_group *tg, void *data)
3783{
3784 struct rq *rq = data;
3785 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3786
3787 cfs_rq->throttle_count--;
3788#ifdef CONFIG_SMP
3789 if (!cfs_rq->throttle_count) {
f1b17280 3790 /* adjust cfs_rq_clock_task() */
78becc27 3791 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3792 cfs_rq->throttled_clock_task;
64660c86
PT
3793 }
3794#endif
3795
3796 return 0;
3797}
3798
3799static int tg_throttle_down(struct task_group *tg, void *data)
3800{
3801 struct rq *rq = data;
3802 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3803
82958366
PT
3804 /* group is entering throttled state, stop time */
3805 if (!cfs_rq->throttle_count)
78becc27 3806 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3807 cfs_rq->throttle_count++;
3808
3809 return 0;
3810}
3811
d3d9dc33 3812static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3813{
3814 struct rq *rq = rq_of(cfs_rq);
3815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3816 struct sched_entity *se;
3817 long task_delta, dequeue = 1;
77a4d1a1 3818 bool empty;
85dac906
PT
3819
3820 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3821
f1b17280 3822 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3823 rcu_read_lock();
3824 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3825 rcu_read_unlock();
85dac906
PT
3826
3827 task_delta = cfs_rq->h_nr_running;
3828 for_each_sched_entity(se) {
3829 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3830 /* throttled entity or throttle-on-deactivate */
3831 if (!se->on_rq)
3832 break;
3833
3834 if (dequeue)
3835 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3836 qcfs_rq->h_nr_running -= task_delta;
3837
3838 if (qcfs_rq->load.weight)
3839 dequeue = 0;
3840 }
3841
3842 if (!se)
72465447 3843 sub_nr_running(rq, task_delta);
85dac906
PT
3844
3845 cfs_rq->throttled = 1;
78becc27 3846 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3847 raw_spin_lock(&cfs_b->lock);
d49db342 3848 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3849
c06f04c7
BS
3850 /*
3851 * Add to the _head_ of the list, so that an already-started
3852 * distribute_cfs_runtime will not see us
3853 */
3854 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3855
3856 /*
3857 * If we're the first throttled task, make sure the bandwidth
3858 * timer is running.
3859 */
3860 if (empty)
3861 start_cfs_bandwidth(cfs_b);
3862
85dac906
PT
3863 raw_spin_unlock(&cfs_b->lock);
3864}
3865
029632fb 3866void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3867{
3868 struct rq *rq = rq_of(cfs_rq);
3869 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3870 struct sched_entity *se;
3871 int enqueue = 1;
3872 long task_delta;
3873
22b958d8 3874 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3875
3876 cfs_rq->throttled = 0;
1a55af2e
FW
3877
3878 update_rq_clock(rq);
3879
671fd9da 3880 raw_spin_lock(&cfs_b->lock);
78becc27 3881 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3882 list_del_rcu(&cfs_rq->throttled_list);
3883 raw_spin_unlock(&cfs_b->lock);
3884
64660c86
PT
3885 /* update hierarchical throttle state */
3886 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3887
671fd9da
PT
3888 if (!cfs_rq->load.weight)
3889 return;
3890
3891 task_delta = cfs_rq->h_nr_running;
3892 for_each_sched_entity(se) {
3893 if (se->on_rq)
3894 enqueue = 0;
3895
3896 cfs_rq = cfs_rq_of(se);
3897 if (enqueue)
3898 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3899 cfs_rq->h_nr_running += task_delta;
3900
3901 if (cfs_rq_throttled(cfs_rq))
3902 break;
3903 }
3904
3905 if (!se)
72465447 3906 add_nr_running(rq, task_delta);
671fd9da
PT
3907
3908 /* determine whether we need to wake up potentially idle cpu */
3909 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3910 resched_curr(rq);
671fd9da
PT
3911}
3912
3913static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3914 u64 remaining, u64 expires)
3915{
3916 struct cfs_rq *cfs_rq;
c06f04c7
BS
3917 u64 runtime;
3918 u64 starting_runtime = remaining;
671fd9da
PT
3919
3920 rcu_read_lock();
3921 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3922 throttled_list) {
3923 struct rq *rq = rq_of(cfs_rq);
3924
3925 raw_spin_lock(&rq->lock);
3926 if (!cfs_rq_throttled(cfs_rq))
3927 goto next;
3928
3929 runtime = -cfs_rq->runtime_remaining + 1;
3930 if (runtime > remaining)
3931 runtime = remaining;
3932 remaining -= runtime;
3933
3934 cfs_rq->runtime_remaining += runtime;
3935 cfs_rq->runtime_expires = expires;
3936
3937 /* we check whether we're throttled above */
3938 if (cfs_rq->runtime_remaining > 0)
3939 unthrottle_cfs_rq(cfs_rq);
3940
3941next:
3942 raw_spin_unlock(&rq->lock);
3943
3944 if (!remaining)
3945 break;
3946 }
3947 rcu_read_unlock();
3948
c06f04c7 3949 return starting_runtime - remaining;
671fd9da
PT
3950}
3951
58088ad0
PT
3952/*
3953 * Responsible for refilling a task_group's bandwidth and unthrottling its
3954 * cfs_rqs as appropriate. If there has been no activity within the last
3955 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3956 * used to track this state.
3957 */
3958static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3959{
671fd9da 3960 u64 runtime, runtime_expires;
51f2176d 3961 int throttled;
58088ad0 3962
58088ad0
PT
3963 /* no need to continue the timer with no bandwidth constraint */
3964 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3965 goto out_deactivate;
58088ad0 3966
671fd9da 3967 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3968 cfs_b->nr_periods += overrun;
671fd9da 3969
51f2176d
BS
3970 /*
3971 * idle depends on !throttled (for the case of a large deficit), and if
3972 * we're going inactive then everything else can be deferred
3973 */
3974 if (cfs_b->idle && !throttled)
3975 goto out_deactivate;
a9cf55b2
PT
3976
3977 __refill_cfs_bandwidth_runtime(cfs_b);
3978
671fd9da
PT
3979 if (!throttled) {
3980 /* mark as potentially idle for the upcoming period */
3981 cfs_b->idle = 1;
51f2176d 3982 return 0;
671fd9da
PT
3983 }
3984
e8da1b18
NR
3985 /* account preceding periods in which throttling occurred */
3986 cfs_b->nr_throttled += overrun;
3987
671fd9da 3988 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3989
3990 /*
c06f04c7
BS
3991 * This check is repeated as we are holding onto the new bandwidth while
3992 * we unthrottle. This can potentially race with an unthrottled group
3993 * trying to acquire new bandwidth from the global pool. This can result
3994 * in us over-using our runtime if it is all used during this loop, but
3995 * only by limited amounts in that extreme case.
671fd9da 3996 */
c06f04c7
BS
3997 while (throttled && cfs_b->runtime > 0) {
3998 runtime = cfs_b->runtime;
671fd9da
PT
3999 raw_spin_unlock(&cfs_b->lock);
4000 /* we can't nest cfs_b->lock while distributing bandwidth */
4001 runtime = distribute_cfs_runtime(cfs_b, runtime,
4002 runtime_expires);
4003 raw_spin_lock(&cfs_b->lock);
4004
4005 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4006
4007 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4008 }
58088ad0 4009
671fd9da
PT
4010 /*
4011 * While we are ensured activity in the period following an
4012 * unthrottle, this also covers the case in which the new bandwidth is
4013 * insufficient to cover the existing bandwidth deficit. (Forcing the
4014 * timer to remain active while there are any throttled entities.)
4015 */
4016 cfs_b->idle = 0;
58088ad0 4017
51f2176d
BS
4018 return 0;
4019
4020out_deactivate:
51f2176d 4021 return 1;
58088ad0 4022}
d3d9dc33 4023
d8b4986d
PT
4024/* a cfs_rq won't donate quota below this amount */
4025static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4026/* minimum remaining period time to redistribute slack quota */
4027static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4028/* how long we wait to gather additional slack before distributing */
4029static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4030
db06e78c
BS
4031/*
4032 * Are we near the end of the current quota period?
4033 *
4034 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4035 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4036 * migrate_hrtimers, base is never cleared, so we are fine.
4037 */
d8b4986d
PT
4038static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4039{
4040 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4041 u64 remaining;
4042
4043 /* if the call-back is running a quota refresh is already occurring */
4044 if (hrtimer_callback_running(refresh_timer))
4045 return 1;
4046
4047 /* is a quota refresh about to occur? */
4048 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4049 if (remaining < min_expire)
4050 return 1;
4051
4052 return 0;
4053}
4054
4055static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4056{
4057 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4058
4059 /* if there's a quota refresh soon don't bother with slack */
4060 if (runtime_refresh_within(cfs_b, min_left))
4061 return;
4062
4cfafd30
PZ
4063 hrtimer_start(&cfs_b->slack_timer,
4064 ns_to_ktime(cfs_bandwidth_slack_period),
4065 HRTIMER_MODE_REL);
d8b4986d
PT
4066}
4067
4068/* we know any runtime found here is valid as update_curr() precedes return */
4069static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4070{
4071 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4072 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4073
4074 if (slack_runtime <= 0)
4075 return;
4076
4077 raw_spin_lock(&cfs_b->lock);
4078 if (cfs_b->quota != RUNTIME_INF &&
4079 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4080 cfs_b->runtime += slack_runtime;
4081
4082 /* we are under rq->lock, defer unthrottling using a timer */
4083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4084 !list_empty(&cfs_b->throttled_cfs_rq))
4085 start_cfs_slack_bandwidth(cfs_b);
4086 }
4087 raw_spin_unlock(&cfs_b->lock);
4088
4089 /* even if it's not valid for return we don't want to try again */
4090 cfs_rq->runtime_remaining -= slack_runtime;
4091}
4092
4093static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094{
56f570e5
PT
4095 if (!cfs_bandwidth_used())
4096 return;
4097
fccfdc6f 4098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4099 return;
4100
4101 __return_cfs_rq_runtime(cfs_rq);
4102}
4103
4104/*
4105 * This is done with a timer (instead of inline with bandwidth return) since
4106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4107 */
4108static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4109{
4110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4111 u64 expires;
4112
4113 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4114 raw_spin_lock(&cfs_b->lock);
4115 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4116 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4117 return;
db06e78c 4118 }
d8b4986d 4119
c06f04c7 4120 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4121 runtime = cfs_b->runtime;
c06f04c7 4122
d8b4986d
PT
4123 expires = cfs_b->runtime_expires;
4124 raw_spin_unlock(&cfs_b->lock);
4125
4126 if (!runtime)
4127 return;
4128
4129 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4130
4131 raw_spin_lock(&cfs_b->lock);
4132 if (expires == cfs_b->runtime_expires)
c06f04c7 4133 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4134 raw_spin_unlock(&cfs_b->lock);
4135}
4136
d3d9dc33
PT
4137/*
4138 * When a group wakes up we want to make sure that its quota is not already
4139 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4140 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4141 */
4142static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4143{
56f570e5
PT
4144 if (!cfs_bandwidth_used())
4145 return;
4146
d3d9dc33
PT
4147 /* an active group must be handled by the update_curr()->put() path */
4148 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4149 return;
4150
4151 /* ensure the group is not already throttled */
4152 if (cfs_rq_throttled(cfs_rq))
4153 return;
4154
4155 /* update runtime allocation */
4156 account_cfs_rq_runtime(cfs_rq, 0);
4157 if (cfs_rq->runtime_remaining <= 0)
4158 throttle_cfs_rq(cfs_rq);
4159}
4160
4161/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4162static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4163{
56f570e5 4164 if (!cfs_bandwidth_used())
678d5718 4165 return false;
56f570e5 4166
d3d9dc33 4167 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4168 return false;
d3d9dc33
PT
4169
4170 /*
4171 * it's possible for a throttled entity to be forced into a running
4172 * state (e.g. set_curr_task), in this case we're finished.
4173 */
4174 if (cfs_rq_throttled(cfs_rq))
678d5718 4175 return true;
d3d9dc33
PT
4176
4177 throttle_cfs_rq(cfs_rq);
678d5718 4178 return true;
d3d9dc33 4179}
029632fb 4180
029632fb
PZ
4181static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4182{
4183 struct cfs_bandwidth *cfs_b =
4184 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4185
029632fb
PZ
4186 do_sched_cfs_slack_timer(cfs_b);
4187
4188 return HRTIMER_NORESTART;
4189}
4190
4191static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4192{
4193 struct cfs_bandwidth *cfs_b =
4194 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4195 int overrun;
4196 int idle = 0;
4197
51f2176d 4198 raw_spin_lock(&cfs_b->lock);
029632fb 4199 for (;;) {
77a4d1a1 4200 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4201 if (!overrun)
4202 break;
4203
4204 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4205 }
4cfafd30
PZ
4206 if (idle)
4207 cfs_b->period_active = 0;
51f2176d 4208 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4209
4210 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4211}
4212
4213void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4214{
4215 raw_spin_lock_init(&cfs_b->lock);
4216 cfs_b->runtime = 0;
4217 cfs_b->quota = RUNTIME_INF;
4218 cfs_b->period = ns_to_ktime(default_cfs_period());
4219
4220 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4221 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4222 cfs_b->period_timer.function = sched_cfs_period_timer;
4223 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4224 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4225}
4226
4227static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4228{
4229 cfs_rq->runtime_enabled = 0;
4230 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4231}
4232
77a4d1a1 4233void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4234{
4cfafd30 4235 lockdep_assert_held(&cfs_b->lock);
029632fb 4236
4cfafd30
PZ
4237 if (!cfs_b->period_active) {
4238 cfs_b->period_active = 1;
4239 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4240 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4241 }
029632fb
PZ
4242}
4243
4244static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4245{
7f1a169b
TH
4246 /* init_cfs_bandwidth() was not called */
4247 if (!cfs_b->throttled_cfs_rq.next)
4248 return;
4249
029632fb
PZ
4250 hrtimer_cancel(&cfs_b->period_timer);
4251 hrtimer_cancel(&cfs_b->slack_timer);
4252}
4253
0e59bdae
KT
4254static void __maybe_unused update_runtime_enabled(struct rq *rq)
4255{
4256 struct cfs_rq *cfs_rq;
4257
4258 for_each_leaf_cfs_rq(rq, cfs_rq) {
4259 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4260
4261 raw_spin_lock(&cfs_b->lock);
4262 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4263 raw_spin_unlock(&cfs_b->lock);
4264 }
4265}
4266
38dc3348 4267static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4268{
4269 struct cfs_rq *cfs_rq;
4270
4271 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4272 if (!cfs_rq->runtime_enabled)
4273 continue;
4274
4275 /*
4276 * clock_task is not advancing so we just need to make sure
4277 * there's some valid quota amount
4278 */
51f2176d 4279 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4280 /*
4281 * Offline rq is schedulable till cpu is completely disabled
4282 * in take_cpu_down(), so we prevent new cfs throttling here.
4283 */
4284 cfs_rq->runtime_enabled = 0;
4285
029632fb
PZ
4286 if (cfs_rq_throttled(cfs_rq))
4287 unthrottle_cfs_rq(cfs_rq);
4288 }
4289}
4290
4291#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4292static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4293{
78becc27 4294 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4295}
4296
9dbdb155 4297static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4298static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4299static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4300static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4301
4302static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4303{
4304 return 0;
4305}
64660c86
PT
4306
4307static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4308{
4309 return 0;
4310}
4311
4312static inline int throttled_lb_pair(struct task_group *tg,
4313 int src_cpu, int dest_cpu)
4314{
4315 return 0;
4316}
029632fb
PZ
4317
4318void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4319
4320#ifdef CONFIG_FAIR_GROUP_SCHED
4321static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4322#endif
4323
029632fb
PZ
4324static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4325{
4326 return NULL;
4327}
4328static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4329static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4330static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4331
4332#endif /* CONFIG_CFS_BANDWIDTH */
4333
bf0f6f24
IM
4334/**************************************************
4335 * CFS operations on tasks:
4336 */
4337
8f4d37ec
PZ
4338#ifdef CONFIG_SCHED_HRTICK
4339static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4340{
8f4d37ec
PZ
4341 struct sched_entity *se = &p->se;
4342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343
4344 WARN_ON(task_rq(p) != rq);
4345
b39e66ea 4346 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4347 u64 slice = sched_slice(cfs_rq, se);
4348 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4349 s64 delta = slice - ran;
4350
4351 if (delta < 0) {
4352 if (rq->curr == p)
8875125e 4353 resched_curr(rq);
8f4d37ec
PZ
4354 return;
4355 }
31656519 4356 hrtick_start(rq, delta);
8f4d37ec
PZ
4357 }
4358}
a4c2f00f
PZ
4359
4360/*
4361 * called from enqueue/dequeue and updates the hrtick when the
4362 * current task is from our class and nr_running is low enough
4363 * to matter.
4364 */
4365static void hrtick_update(struct rq *rq)
4366{
4367 struct task_struct *curr = rq->curr;
4368
b39e66ea 4369 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4370 return;
4371
4372 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4373 hrtick_start_fair(rq, curr);
4374}
55e12e5e 4375#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4376static inline void
4377hrtick_start_fair(struct rq *rq, struct task_struct *p)
4378{
4379}
a4c2f00f
PZ
4380
4381static inline void hrtick_update(struct rq *rq)
4382{
4383}
8f4d37ec
PZ
4384#endif
4385
bf0f6f24
IM
4386/*
4387 * The enqueue_task method is called before nr_running is
4388 * increased. Here we update the fair scheduling stats and
4389 * then put the task into the rbtree:
4390 */
ea87bb78 4391static void
371fd7e7 4392enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4393{
4394 struct cfs_rq *cfs_rq;
62fb1851 4395 struct sched_entity *se = &p->se;
bf0f6f24
IM
4396
4397 for_each_sched_entity(se) {
62fb1851 4398 if (se->on_rq)
bf0f6f24
IM
4399 break;
4400 cfs_rq = cfs_rq_of(se);
88ec22d3 4401 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4402
4403 /*
4404 * end evaluation on encountering a throttled cfs_rq
4405 *
4406 * note: in the case of encountering a throttled cfs_rq we will
4407 * post the final h_nr_running increment below.
4408 */
4409 if (cfs_rq_throttled(cfs_rq))
4410 break;
953bfcd1 4411 cfs_rq->h_nr_running++;
85dac906 4412
88ec22d3 4413 flags = ENQUEUE_WAKEUP;
bf0f6f24 4414 }
8f4d37ec 4415
2069dd75 4416 for_each_sched_entity(se) {
0f317143 4417 cfs_rq = cfs_rq_of(se);
953bfcd1 4418 cfs_rq->h_nr_running++;
2069dd75 4419
85dac906
PT
4420 if (cfs_rq_throttled(cfs_rq))
4421 break;
4422
9d89c257 4423 update_load_avg(se, 1);
17bc14b7 4424 update_cfs_shares(cfs_rq);
2069dd75
PZ
4425 }
4426
cd126afe 4427 if (!se)
72465447 4428 add_nr_running(rq, 1);
cd126afe 4429
a4c2f00f 4430 hrtick_update(rq);
bf0f6f24
IM
4431}
4432
2f36825b
VP
4433static void set_next_buddy(struct sched_entity *se);
4434
bf0f6f24
IM
4435/*
4436 * The dequeue_task method is called before nr_running is
4437 * decreased. We remove the task from the rbtree and
4438 * update the fair scheduling stats:
4439 */
371fd7e7 4440static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4441{
4442 struct cfs_rq *cfs_rq;
62fb1851 4443 struct sched_entity *se = &p->se;
2f36825b 4444 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4445
4446 for_each_sched_entity(se) {
4447 cfs_rq = cfs_rq_of(se);
371fd7e7 4448 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4449
4450 /*
4451 * end evaluation on encountering a throttled cfs_rq
4452 *
4453 * note: in the case of encountering a throttled cfs_rq we will
4454 * post the final h_nr_running decrement below.
4455 */
4456 if (cfs_rq_throttled(cfs_rq))
4457 break;
953bfcd1 4458 cfs_rq->h_nr_running--;
2069dd75 4459
bf0f6f24 4460 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4461 if (cfs_rq->load.weight) {
4462 /*
4463 * Bias pick_next to pick a task from this cfs_rq, as
4464 * p is sleeping when it is within its sched_slice.
4465 */
4466 if (task_sleep && parent_entity(se))
4467 set_next_buddy(parent_entity(se));
9598c82d
PT
4468
4469 /* avoid re-evaluating load for this entity */
4470 se = parent_entity(se);
bf0f6f24 4471 break;
2f36825b 4472 }
371fd7e7 4473 flags |= DEQUEUE_SLEEP;
bf0f6f24 4474 }
8f4d37ec 4475
2069dd75 4476 for_each_sched_entity(se) {
0f317143 4477 cfs_rq = cfs_rq_of(se);
953bfcd1 4478 cfs_rq->h_nr_running--;
2069dd75 4479
85dac906
PT
4480 if (cfs_rq_throttled(cfs_rq))
4481 break;
4482
9d89c257 4483 update_load_avg(se, 1);
17bc14b7 4484 update_cfs_shares(cfs_rq);
2069dd75
PZ
4485 }
4486
cd126afe 4487 if (!se)
72465447 4488 sub_nr_running(rq, 1);
cd126afe 4489
a4c2f00f 4490 hrtick_update(rq);
bf0f6f24
IM
4491}
4492
e7693a36 4493#ifdef CONFIG_SMP
3289bdb4
PZ
4494
4495/*
4496 * per rq 'load' arrray crap; XXX kill this.
4497 */
4498
4499/*
d937cdc5 4500 * The exact cpuload calculated at every tick would be:
3289bdb4 4501 *
d937cdc5
PZ
4502 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4503 *
4504 * If a cpu misses updates for n ticks (as it was idle) and update gets
4505 * called on the n+1-th tick when cpu may be busy, then we have:
4506 *
4507 * load_n = (1 - 1/2^i)^n * load_0
4508 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4509 *
4510 * decay_load_missed() below does efficient calculation of
3289bdb4 4511 *
d937cdc5
PZ
4512 * load' = (1 - 1/2^i)^n * load
4513 *
4514 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4515 * This allows us to precompute the above in said factors, thereby allowing the
4516 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4517 * fixed_power_int())
3289bdb4 4518 *
d937cdc5 4519 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4520 */
4521#define DEGRADE_SHIFT 7
d937cdc5
PZ
4522
4523static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4524static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4525 { 0, 0, 0, 0, 0, 0, 0, 0 },
4526 { 64, 32, 8, 0, 0, 0, 0, 0 },
4527 { 96, 72, 40, 12, 1, 0, 0, 0 },
4528 { 112, 98, 75, 43, 15, 1, 0, 0 },
4529 { 120, 112, 98, 76, 45, 16, 2, 0 }
4530};
3289bdb4
PZ
4531
4532/*
4533 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4534 * would be when CPU is idle and so we just decay the old load without
4535 * adding any new load.
4536 */
4537static unsigned long
4538decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4539{
4540 int j = 0;
4541
4542 if (!missed_updates)
4543 return load;
4544
4545 if (missed_updates >= degrade_zero_ticks[idx])
4546 return 0;
4547
4548 if (idx == 1)
4549 return load >> missed_updates;
4550
4551 while (missed_updates) {
4552 if (missed_updates % 2)
4553 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4554
4555 missed_updates >>= 1;
4556 j++;
4557 }
4558 return load;
4559}
4560
59543275 4561/**
cee1afce 4562 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4563 * @this_rq: The rq to update statistics for
4564 * @this_load: The current load
4565 * @pending_updates: The number of missed updates
4566 * @active: !0 for NOHZ_FULL
4567 *
3289bdb4 4568 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4569 * scheduler tick (TICK_NSEC).
4570 *
4571 * This function computes a decaying average:
4572 *
4573 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4574 *
4575 * Because of NOHZ it might not get called on every tick which gives need for
4576 * the @pending_updates argument.
4577 *
4578 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4579 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4580 * = A * (A * load[i]_n-2 + B) + B
4581 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4582 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4583 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4584 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4585 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4586 *
4587 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4588 * any change in load would have resulted in the tick being turned back on.
4589 *
4590 * For regular NOHZ, this reduces to:
4591 *
4592 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4593 *
4594 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4595 * term. See the @active paramter.
3289bdb4 4596 */
cee1afce 4597static void __cpu_load_update(struct rq *this_rq, unsigned long this_load,
59543275 4598 unsigned long pending_updates, int active)
3289bdb4 4599{
59543275 4600 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4601 int i, scale;
4602
4603 this_rq->nr_load_updates++;
4604
4605 /* Update our load: */
4606 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4607 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4608 unsigned long old_load, new_load;
4609
4610 /* scale is effectively 1 << i now, and >> i divides by scale */
4611
7400d3bb 4612 old_load = this_rq->cpu_load[i];
3289bdb4 4613 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4614 if (tickless_load) {
4615 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4616 /*
4617 * old_load can never be a negative value because a
4618 * decayed tickless_load cannot be greater than the
4619 * original tickless_load.
4620 */
4621 old_load += tickless_load;
4622 }
3289bdb4
PZ
4623 new_load = this_load;
4624 /*
4625 * Round up the averaging division if load is increasing. This
4626 * prevents us from getting stuck on 9 if the load is 10, for
4627 * example.
4628 */
4629 if (new_load > old_load)
4630 new_load += scale - 1;
4631
4632 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4633 }
4634
4635 sched_avg_update(this_rq);
4636}
4637
7ea241af
YD
4638/* Used instead of source_load when we know the type == 0 */
4639static unsigned long weighted_cpuload(const int cpu)
4640{
4641 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4642}
4643
3289bdb4 4644#ifdef CONFIG_NO_HZ_COMMON
cee1afce 4645static void __cpu_load_update_nohz(struct rq *this_rq,
be68a682
FW
4646 unsigned long curr_jiffies,
4647 unsigned long load,
4648 int active)
4649{
4650 unsigned long pending_updates;
4651
4652 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4653 if (pending_updates) {
4654 this_rq->last_load_update_tick = curr_jiffies;
4655 /*
4656 * In the regular NOHZ case, we were idle, this means load 0.
4657 * In the NOHZ_FULL case, we were non-idle, we should consider
4658 * its weighted load.
4659 */
cee1afce 4660 __cpu_load_update(this_rq, load, pending_updates, active);
be68a682
FW
4661 }
4662}
4663
3289bdb4
PZ
4664/*
4665 * There is no sane way to deal with nohz on smp when using jiffies because the
4666 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4667 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4668 *
4669 * Therefore we cannot use the delta approach from the regular tick since that
4670 * would seriously skew the load calculation. However we'll make do for those
4671 * updates happening while idle (nohz_idle_balance) or coming out of idle
4672 * (tick_nohz_idle_exit).
4673 *
4674 * This means we might still be one tick off for nohz periods.
4675 */
4676
4677/*
4678 * Called from nohz_idle_balance() to update the load ratings before doing the
4679 * idle balance.
4680 */
cee1afce 4681static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4682{
3289bdb4
PZ
4683 /*
4684 * bail if there's load or we're actually up-to-date.
4685 */
be68a682 4686 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4687 return;
4688
cee1afce 4689 __cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4690}
4691
4692/*
4693 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4694 */
cee1afce 4695void cpu_load_update_nohz(int active)
3289bdb4
PZ
4696{
4697 struct rq *this_rq = this_rq();
316c1608 4698 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4699 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4700
4701 if (curr_jiffies == this_rq->last_load_update_tick)
4702 return;
4703
4704 raw_spin_lock(&this_rq->lock);
cee1afce 4705 __cpu_load_update_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4706 raw_spin_unlock(&this_rq->lock);
4707}
4708#endif /* CONFIG_NO_HZ */
4709
4710/*
4711 * Called from scheduler_tick()
4712 */
cee1afce 4713void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4714{
7ea241af 4715 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4716 /*
cee1afce 4717 * See the mess around cpu_load_update_idle() / cpu_load_update_nohz().
3289bdb4
PZ
4718 */
4719 this_rq->last_load_update_tick = jiffies;
cee1afce 4720 __cpu_load_update(this_rq, load, 1, 1);
3289bdb4
PZ
4721}
4722
029632fb
PZ
4723/*
4724 * Return a low guess at the load of a migration-source cpu weighted
4725 * according to the scheduling class and "nice" value.
4726 *
4727 * We want to under-estimate the load of migration sources, to
4728 * balance conservatively.
4729 */
4730static unsigned long source_load(int cpu, int type)
4731{
4732 struct rq *rq = cpu_rq(cpu);
4733 unsigned long total = weighted_cpuload(cpu);
4734
4735 if (type == 0 || !sched_feat(LB_BIAS))
4736 return total;
4737
4738 return min(rq->cpu_load[type-1], total);
4739}
4740
4741/*
4742 * Return a high guess at the load of a migration-target cpu weighted
4743 * according to the scheduling class and "nice" value.
4744 */
4745static unsigned long target_load(int cpu, int type)
4746{
4747 struct rq *rq = cpu_rq(cpu);
4748 unsigned long total = weighted_cpuload(cpu);
4749
4750 if (type == 0 || !sched_feat(LB_BIAS))
4751 return total;
4752
4753 return max(rq->cpu_load[type-1], total);
4754}
4755
ced549fa 4756static unsigned long capacity_of(int cpu)
029632fb 4757{
ced549fa 4758 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4759}
4760
ca6d75e6
VG
4761static unsigned long capacity_orig_of(int cpu)
4762{
4763 return cpu_rq(cpu)->cpu_capacity_orig;
4764}
4765
029632fb
PZ
4766static unsigned long cpu_avg_load_per_task(int cpu)
4767{
4768 struct rq *rq = cpu_rq(cpu);
316c1608 4769 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4770 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4771
4772 if (nr_running)
b92486cb 4773 return load_avg / nr_running;
029632fb
PZ
4774
4775 return 0;
4776}
4777
62470419
MW
4778static void record_wakee(struct task_struct *p)
4779{
4780 /*
4781 * Rough decay (wiping) for cost saving, don't worry
4782 * about the boundary, really active task won't care
4783 * about the loss.
4784 */
2538d960 4785 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4786 current->wakee_flips >>= 1;
62470419
MW
4787 current->wakee_flip_decay_ts = jiffies;
4788 }
4789
4790 if (current->last_wakee != p) {
4791 current->last_wakee = p;
4792 current->wakee_flips++;
4793 }
4794}
098fb9db 4795
74f8e4b2 4796static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4797{
4798 struct sched_entity *se = &p->se;
4799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4800 u64 min_vruntime;
4801
4802#ifndef CONFIG_64BIT
4803 u64 min_vruntime_copy;
88ec22d3 4804
3fe1698b
PZ
4805 do {
4806 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4807 smp_rmb();
4808 min_vruntime = cfs_rq->min_vruntime;
4809 } while (min_vruntime != min_vruntime_copy);
4810#else
4811 min_vruntime = cfs_rq->min_vruntime;
4812#endif
88ec22d3 4813
3fe1698b 4814 se->vruntime -= min_vruntime;
62470419 4815 record_wakee(p);
88ec22d3
PZ
4816}
4817
bb3469ac 4818#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4819/*
4820 * effective_load() calculates the load change as seen from the root_task_group
4821 *
4822 * Adding load to a group doesn't make a group heavier, but can cause movement
4823 * of group shares between cpus. Assuming the shares were perfectly aligned one
4824 * can calculate the shift in shares.
cf5f0acf
PZ
4825 *
4826 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4827 * on this @cpu and results in a total addition (subtraction) of @wg to the
4828 * total group weight.
4829 *
4830 * Given a runqueue weight distribution (rw_i) we can compute a shares
4831 * distribution (s_i) using:
4832 *
4833 * s_i = rw_i / \Sum rw_j (1)
4834 *
4835 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4836 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4837 * shares distribution (s_i):
4838 *
4839 * rw_i = { 2, 4, 1, 0 }
4840 * s_i = { 2/7, 4/7, 1/7, 0 }
4841 *
4842 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4843 * task used to run on and the CPU the waker is running on), we need to
4844 * compute the effect of waking a task on either CPU and, in case of a sync
4845 * wakeup, compute the effect of the current task going to sleep.
4846 *
4847 * So for a change of @wl to the local @cpu with an overall group weight change
4848 * of @wl we can compute the new shares distribution (s'_i) using:
4849 *
4850 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4851 *
4852 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4853 * differences in waking a task to CPU 0. The additional task changes the
4854 * weight and shares distributions like:
4855 *
4856 * rw'_i = { 3, 4, 1, 0 }
4857 * s'_i = { 3/8, 4/8, 1/8, 0 }
4858 *
4859 * We can then compute the difference in effective weight by using:
4860 *
4861 * dw_i = S * (s'_i - s_i) (3)
4862 *
4863 * Where 'S' is the group weight as seen by its parent.
4864 *
4865 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4866 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4867 * 4/7) times the weight of the group.
f5bfb7d9 4868 */
2069dd75 4869static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4870{
4be9daaa 4871 struct sched_entity *se = tg->se[cpu];
f1d239f7 4872
9722c2da 4873 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4874 return wl;
4875
4be9daaa 4876 for_each_sched_entity(se) {
cf5f0acf 4877 long w, W;
4be9daaa 4878
977dda7c 4879 tg = se->my_q->tg;
bb3469ac 4880
cf5f0acf
PZ
4881 /*
4882 * W = @wg + \Sum rw_j
4883 */
4884 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4885
cf5f0acf
PZ
4886 /*
4887 * w = rw_i + @wl
4888 */
7ea241af 4889 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4890
cf5f0acf
PZ
4891 /*
4892 * wl = S * s'_i; see (2)
4893 */
4894 if (W > 0 && w < W)
32a8df4e 4895 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4896 else
4897 wl = tg->shares;
940959e9 4898
cf5f0acf
PZ
4899 /*
4900 * Per the above, wl is the new se->load.weight value; since
4901 * those are clipped to [MIN_SHARES, ...) do so now. See
4902 * calc_cfs_shares().
4903 */
977dda7c
PT
4904 if (wl < MIN_SHARES)
4905 wl = MIN_SHARES;
cf5f0acf
PZ
4906
4907 /*
4908 * wl = dw_i = S * (s'_i - s_i); see (3)
4909 */
9d89c257 4910 wl -= se->avg.load_avg;
cf5f0acf
PZ
4911
4912 /*
4913 * Recursively apply this logic to all parent groups to compute
4914 * the final effective load change on the root group. Since
4915 * only the @tg group gets extra weight, all parent groups can
4916 * only redistribute existing shares. @wl is the shift in shares
4917 * resulting from this level per the above.
4918 */
4be9daaa 4919 wg = 0;
4be9daaa 4920 }
bb3469ac 4921
4be9daaa 4922 return wl;
bb3469ac
PZ
4923}
4924#else
4be9daaa 4925
58d081b5 4926static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4927{
83378269 4928 return wl;
bb3469ac 4929}
4be9daaa 4930
bb3469ac
PZ
4931#endif
4932
63b0e9ed
MG
4933/*
4934 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4935 * A waker of many should wake a different task than the one last awakened
4936 * at a frequency roughly N times higher than one of its wakees. In order
4937 * to determine whether we should let the load spread vs consolodating to
4938 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4939 * partner, and a factor of lls_size higher frequency in the other. With
4940 * both conditions met, we can be relatively sure that the relationship is
4941 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4942 * being client/server, worker/dispatcher, interrupt source or whatever is
4943 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4944 */
62470419
MW
4945static int wake_wide(struct task_struct *p)
4946{
63b0e9ed
MG
4947 unsigned int master = current->wakee_flips;
4948 unsigned int slave = p->wakee_flips;
7d9ffa89 4949 int factor = this_cpu_read(sd_llc_size);
62470419 4950
63b0e9ed
MG
4951 if (master < slave)
4952 swap(master, slave);
4953 if (slave < factor || master < slave * factor)
4954 return 0;
4955 return 1;
62470419
MW
4956}
4957
c88d5910 4958static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4959{
e37b6a7b 4960 s64 this_load, load;
bd61c98f 4961 s64 this_eff_load, prev_eff_load;
c88d5910 4962 int idx, this_cpu, prev_cpu;
c88d5910 4963 struct task_group *tg;
83378269 4964 unsigned long weight;
b3137bc8 4965 int balanced;
098fb9db 4966
c88d5910
PZ
4967 idx = sd->wake_idx;
4968 this_cpu = smp_processor_id();
4969 prev_cpu = task_cpu(p);
4970 load = source_load(prev_cpu, idx);
4971 this_load = target_load(this_cpu, idx);
098fb9db 4972
b3137bc8
MG
4973 /*
4974 * If sync wakeup then subtract the (maximum possible)
4975 * effect of the currently running task from the load
4976 * of the current CPU:
4977 */
83378269
PZ
4978 if (sync) {
4979 tg = task_group(current);
9d89c257 4980 weight = current->se.avg.load_avg;
83378269 4981
c88d5910 4982 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4983 load += effective_load(tg, prev_cpu, 0, -weight);
4984 }
b3137bc8 4985
83378269 4986 tg = task_group(p);
9d89c257 4987 weight = p->se.avg.load_avg;
b3137bc8 4988
71a29aa7
PZ
4989 /*
4990 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4991 * due to the sync cause above having dropped this_load to 0, we'll
4992 * always have an imbalance, but there's really nothing you can do
4993 * about that, so that's good too.
71a29aa7
PZ
4994 *
4995 * Otherwise check if either cpus are near enough in load to allow this
4996 * task to be woken on this_cpu.
4997 */
bd61c98f
VG
4998 this_eff_load = 100;
4999 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5000
bd61c98f
VG
5001 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5002 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5003
bd61c98f 5004 if (this_load > 0) {
e51fd5e2
PZ
5005 this_eff_load *= this_load +
5006 effective_load(tg, this_cpu, weight, weight);
5007
e51fd5e2 5008 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5009 }
e51fd5e2 5010
bd61c98f 5011 balanced = this_eff_load <= prev_eff_load;
098fb9db 5012
41acab88 5013 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5014
05bfb65f
VG
5015 if (!balanced)
5016 return 0;
098fb9db 5017
05bfb65f
VG
5018 schedstat_inc(sd, ttwu_move_affine);
5019 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5020
5021 return 1;
098fb9db
IM
5022}
5023
aaee1203
PZ
5024/*
5025 * find_idlest_group finds and returns the least busy CPU group within the
5026 * domain.
5027 */
5028static struct sched_group *
78e7ed53 5029find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5030 int this_cpu, int sd_flag)
e7693a36 5031{
b3bd3de6 5032 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5033 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5034 int load_idx = sd->forkexec_idx;
aaee1203 5035 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5036
c44f2a02
VG
5037 if (sd_flag & SD_BALANCE_WAKE)
5038 load_idx = sd->wake_idx;
5039
aaee1203
PZ
5040 do {
5041 unsigned long load, avg_load;
5042 int local_group;
5043 int i;
e7693a36 5044
aaee1203
PZ
5045 /* Skip over this group if it has no CPUs allowed */
5046 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5047 tsk_cpus_allowed(p)))
aaee1203
PZ
5048 continue;
5049
5050 local_group = cpumask_test_cpu(this_cpu,
5051 sched_group_cpus(group));
5052
5053 /* Tally up the load of all CPUs in the group */
5054 avg_load = 0;
5055
5056 for_each_cpu(i, sched_group_cpus(group)) {
5057 /* Bias balancing toward cpus of our domain */
5058 if (local_group)
5059 load = source_load(i, load_idx);
5060 else
5061 load = target_load(i, load_idx);
5062
5063 avg_load += load;
5064 }
5065
63b2ca30 5066 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5067 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5068
5069 if (local_group) {
5070 this_load = avg_load;
aaee1203
PZ
5071 } else if (avg_load < min_load) {
5072 min_load = avg_load;
5073 idlest = group;
5074 }
5075 } while (group = group->next, group != sd->groups);
5076
5077 if (!idlest || 100*this_load < imbalance*min_load)
5078 return NULL;
5079 return idlest;
5080}
5081
5082/*
5083 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5084 */
5085static int
5086find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5087{
5088 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5089 unsigned int min_exit_latency = UINT_MAX;
5090 u64 latest_idle_timestamp = 0;
5091 int least_loaded_cpu = this_cpu;
5092 int shallowest_idle_cpu = -1;
aaee1203
PZ
5093 int i;
5094
5095 /* Traverse only the allowed CPUs */
fa17b507 5096 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5097 if (idle_cpu(i)) {
5098 struct rq *rq = cpu_rq(i);
5099 struct cpuidle_state *idle = idle_get_state(rq);
5100 if (idle && idle->exit_latency < min_exit_latency) {
5101 /*
5102 * We give priority to a CPU whose idle state
5103 * has the smallest exit latency irrespective
5104 * of any idle timestamp.
5105 */
5106 min_exit_latency = idle->exit_latency;
5107 latest_idle_timestamp = rq->idle_stamp;
5108 shallowest_idle_cpu = i;
5109 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5110 rq->idle_stamp > latest_idle_timestamp) {
5111 /*
5112 * If equal or no active idle state, then
5113 * the most recently idled CPU might have
5114 * a warmer cache.
5115 */
5116 latest_idle_timestamp = rq->idle_stamp;
5117 shallowest_idle_cpu = i;
5118 }
9f96742a 5119 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5120 load = weighted_cpuload(i);
5121 if (load < min_load || (load == min_load && i == this_cpu)) {
5122 min_load = load;
5123 least_loaded_cpu = i;
5124 }
e7693a36
GH
5125 }
5126 }
5127
83a0a96a 5128 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5129}
e7693a36 5130
a50bde51
PZ
5131/*
5132 * Try and locate an idle CPU in the sched_domain.
5133 */
99bd5e2f 5134static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5135{
99bd5e2f 5136 struct sched_domain *sd;
37407ea7 5137 struct sched_group *sg;
e0a79f52 5138 int i = task_cpu(p);
a50bde51 5139
e0a79f52
MG
5140 if (idle_cpu(target))
5141 return target;
99bd5e2f
SS
5142
5143 /*
e0a79f52 5144 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5145 */
e0a79f52
MG
5146 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5147 return i;
a50bde51
PZ
5148
5149 /*
d4335581
MF
5150 * Otherwise, iterate the domains and find an eligible idle cpu.
5151 *
5152 * A completely idle sched group at higher domains is more
5153 * desirable than an idle group at a lower level, because lower
5154 * domains have smaller groups and usually share hardware
5155 * resources which causes tasks to contend on them, e.g. x86
5156 * hyperthread siblings in the lowest domain (SMT) can contend
5157 * on the shared cpu pipeline.
5158 *
5159 * However, while we prefer idle groups at higher domains
5160 * finding an idle cpu at the lowest domain is still better than
5161 * returning 'target', which we've already established, isn't
5162 * idle.
a50bde51 5163 */
518cd623 5164 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5165 for_each_lower_domain(sd) {
37407ea7
LT
5166 sg = sd->groups;
5167 do {
5168 if (!cpumask_intersects(sched_group_cpus(sg),
5169 tsk_cpus_allowed(p)))
5170 goto next;
5171
d4335581 5172 /* Ensure the entire group is idle */
37407ea7 5173 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5174 if (i == target || !idle_cpu(i))
37407ea7
LT
5175 goto next;
5176 }
970e1789 5177
d4335581
MF
5178 /*
5179 * It doesn't matter which cpu we pick, the
5180 * whole group is idle.
5181 */
37407ea7
LT
5182 target = cpumask_first_and(sched_group_cpus(sg),
5183 tsk_cpus_allowed(p));
5184 goto done;
5185next:
5186 sg = sg->next;
5187 } while (sg != sd->groups);
5188 }
5189done:
a50bde51
PZ
5190 return target;
5191}
231678b7 5192
8bb5b00c 5193/*
9e91d61d 5194 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5195 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5196 * compare the utilization with the capacity of the CPU that is available for
5197 * CFS task (ie cpu_capacity).
231678b7
DE
5198 *
5199 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5200 * recent utilization of currently non-runnable tasks on a CPU. It represents
5201 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5202 * capacity_orig is the cpu_capacity available at the highest frequency
5203 * (arch_scale_freq_capacity()).
5204 * The utilization of a CPU converges towards a sum equal to or less than the
5205 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5206 * the running time on this CPU scaled by capacity_curr.
5207 *
5208 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5209 * higher than capacity_orig because of unfortunate rounding in
5210 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5211 * the average stabilizes with the new running time. We need to check that the
5212 * utilization stays within the range of [0..capacity_orig] and cap it if
5213 * necessary. Without utilization capping, a group could be seen as overloaded
5214 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5215 * available capacity. We allow utilization to overshoot capacity_curr (but not
5216 * capacity_orig) as it useful for predicting the capacity required after task
5217 * migrations (scheduler-driven DVFS).
8bb5b00c 5218 */
9e91d61d 5219static int cpu_util(int cpu)
8bb5b00c 5220{
9e91d61d 5221 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5222 unsigned long capacity = capacity_orig_of(cpu);
5223
231678b7 5224 return (util >= capacity) ? capacity : util;
8bb5b00c 5225}
a50bde51 5226
aaee1203 5227/*
de91b9cb
MR
5228 * select_task_rq_fair: Select target runqueue for the waking task in domains
5229 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5230 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5231 *
de91b9cb
MR
5232 * Balances load by selecting the idlest cpu in the idlest group, or under
5233 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5234 *
de91b9cb 5235 * Returns the target cpu number.
aaee1203
PZ
5236 *
5237 * preempt must be disabled.
5238 */
0017d735 5239static int
ac66f547 5240select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5241{
29cd8bae 5242 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5243 int cpu = smp_processor_id();
63b0e9ed 5244 int new_cpu = prev_cpu;
99bd5e2f 5245 int want_affine = 0;
5158f4e4 5246 int sync = wake_flags & WF_SYNC;
c88d5910 5247
a8edd075 5248 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5249 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5250
dce840a0 5251 rcu_read_lock();
aaee1203 5252 for_each_domain(cpu, tmp) {
e4f42888 5253 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5254 break;
e4f42888 5255
fe3bcfe1 5256 /*
99bd5e2f
SS
5257 * If both cpu and prev_cpu are part of this domain,
5258 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5259 */
99bd5e2f
SS
5260 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5261 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5262 affine_sd = tmp;
29cd8bae 5263 break;
f03542a7 5264 }
29cd8bae 5265
f03542a7 5266 if (tmp->flags & sd_flag)
29cd8bae 5267 sd = tmp;
63b0e9ed
MG
5268 else if (!want_affine)
5269 break;
29cd8bae
PZ
5270 }
5271
63b0e9ed
MG
5272 if (affine_sd) {
5273 sd = NULL; /* Prefer wake_affine over balance flags */
5274 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5275 new_cpu = cpu;
8b911acd 5276 }
e7693a36 5277
63b0e9ed
MG
5278 if (!sd) {
5279 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5280 new_cpu = select_idle_sibling(p, new_cpu);
5281
5282 } else while (sd) {
aaee1203 5283 struct sched_group *group;
c88d5910 5284 int weight;
098fb9db 5285
0763a660 5286 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5287 sd = sd->child;
5288 continue;
5289 }
098fb9db 5290
c44f2a02 5291 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5292 if (!group) {
5293 sd = sd->child;
5294 continue;
5295 }
4ae7d5ce 5296
d7c33c49 5297 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5298 if (new_cpu == -1 || new_cpu == cpu) {
5299 /* Now try balancing at a lower domain level of cpu */
5300 sd = sd->child;
5301 continue;
e7693a36 5302 }
aaee1203
PZ
5303
5304 /* Now try balancing at a lower domain level of new_cpu */
5305 cpu = new_cpu;
669c55e9 5306 weight = sd->span_weight;
aaee1203
PZ
5307 sd = NULL;
5308 for_each_domain(cpu, tmp) {
669c55e9 5309 if (weight <= tmp->span_weight)
aaee1203 5310 break;
0763a660 5311 if (tmp->flags & sd_flag)
aaee1203
PZ
5312 sd = tmp;
5313 }
5314 /* while loop will break here if sd == NULL */
e7693a36 5315 }
dce840a0 5316 rcu_read_unlock();
e7693a36 5317
c88d5910 5318 return new_cpu;
e7693a36 5319}
0a74bef8
PT
5320
5321/*
5322 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5323 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5324 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5325 */
5a4fd036 5326static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5327{
aff3e498 5328 /*
9d89c257
YD
5329 * We are supposed to update the task to "current" time, then its up to date
5330 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5331 * what current time is, so simply throw away the out-of-date time. This
5332 * will result in the wakee task is less decayed, but giving the wakee more
5333 * load sounds not bad.
aff3e498 5334 */
9d89c257
YD
5335 remove_entity_load_avg(&p->se);
5336
5337 /* Tell new CPU we are migrated */
5338 p->se.avg.last_update_time = 0;
3944a927
BS
5339
5340 /* We have migrated, no longer consider this task hot */
9d89c257 5341 p->se.exec_start = 0;
0a74bef8 5342}
12695578
YD
5343
5344static void task_dead_fair(struct task_struct *p)
5345{
5346 remove_entity_load_avg(&p->se);
5347}
e7693a36
GH
5348#endif /* CONFIG_SMP */
5349
e52fb7c0
PZ
5350static unsigned long
5351wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5352{
5353 unsigned long gran = sysctl_sched_wakeup_granularity;
5354
5355 /*
e52fb7c0
PZ
5356 * Since its curr running now, convert the gran from real-time
5357 * to virtual-time in his units.
13814d42
MG
5358 *
5359 * By using 'se' instead of 'curr' we penalize light tasks, so
5360 * they get preempted easier. That is, if 'se' < 'curr' then
5361 * the resulting gran will be larger, therefore penalizing the
5362 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5363 * be smaller, again penalizing the lighter task.
5364 *
5365 * This is especially important for buddies when the leftmost
5366 * task is higher priority than the buddy.
0bbd3336 5367 */
f4ad9bd2 5368 return calc_delta_fair(gran, se);
0bbd3336
PZ
5369}
5370
464b7527
PZ
5371/*
5372 * Should 'se' preempt 'curr'.
5373 *
5374 * |s1
5375 * |s2
5376 * |s3
5377 * g
5378 * |<--->|c
5379 *
5380 * w(c, s1) = -1
5381 * w(c, s2) = 0
5382 * w(c, s3) = 1
5383 *
5384 */
5385static int
5386wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5387{
5388 s64 gran, vdiff = curr->vruntime - se->vruntime;
5389
5390 if (vdiff <= 0)
5391 return -1;
5392
e52fb7c0 5393 gran = wakeup_gran(curr, se);
464b7527
PZ
5394 if (vdiff > gran)
5395 return 1;
5396
5397 return 0;
5398}
5399
02479099
PZ
5400static void set_last_buddy(struct sched_entity *se)
5401{
69c80f3e
VP
5402 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5403 return;
5404
5405 for_each_sched_entity(se)
5406 cfs_rq_of(se)->last = se;
02479099
PZ
5407}
5408
5409static void set_next_buddy(struct sched_entity *se)
5410{
69c80f3e
VP
5411 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5412 return;
5413
5414 for_each_sched_entity(se)
5415 cfs_rq_of(se)->next = se;
02479099
PZ
5416}
5417
ac53db59
RR
5418static void set_skip_buddy(struct sched_entity *se)
5419{
69c80f3e
VP
5420 for_each_sched_entity(se)
5421 cfs_rq_of(se)->skip = se;
ac53db59
RR
5422}
5423
bf0f6f24
IM
5424/*
5425 * Preempt the current task with a newly woken task if needed:
5426 */
5a9b86f6 5427static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5428{
5429 struct task_struct *curr = rq->curr;
8651a86c 5430 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5431 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5432 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5433 int next_buddy_marked = 0;
bf0f6f24 5434
4ae7d5ce
IM
5435 if (unlikely(se == pse))
5436 return;
5437
5238cdd3 5438 /*
163122b7 5439 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5440 * unconditionally check_prempt_curr() after an enqueue (which may have
5441 * lead to a throttle). This both saves work and prevents false
5442 * next-buddy nomination below.
5443 */
5444 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5445 return;
5446
2f36825b 5447 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5448 set_next_buddy(pse);
2f36825b
VP
5449 next_buddy_marked = 1;
5450 }
57fdc26d 5451
aec0a514
BR
5452 /*
5453 * We can come here with TIF_NEED_RESCHED already set from new task
5454 * wake up path.
5238cdd3
PT
5455 *
5456 * Note: this also catches the edge-case of curr being in a throttled
5457 * group (e.g. via set_curr_task), since update_curr() (in the
5458 * enqueue of curr) will have resulted in resched being set. This
5459 * prevents us from potentially nominating it as a false LAST_BUDDY
5460 * below.
aec0a514
BR
5461 */
5462 if (test_tsk_need_resched(curr))
5463 return;
5464
a2f5c9ab
DH
5465 /* Idle tasks are by definition preempted by non-idle tasks. */
5466 if (unlikely(curr->policy == SCHED_IDLE) &&
5467 likely(p->policy != SCHED_IDLE))
5468 goto preempt;
5469
91c234b4 5470 /*
a2f5c9ab
DH
5471 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5472 * is driven by the tick):
91c234b4 5473 */
8ed92e51 5474 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5475 return;
bf0f6f24 5476
464b7527 5477 find_matching_se(&se, &pse);
9bbd7374 5478 update_curr(cfs_rq_of(se));
002f128b 5479 BUG_ON(!pse);
2f36825b
VP
5480 if (wakeup_preempt_entity(se, pse) == 1) {
5481 /*
5482 * Bias pick_next to pick the sched entity that is
5483 * triggering this preemption.
5484 */
5485 if (!next_buddy_marked)
5486 set_next_buddy(pse);
3a7e73a2 5487 goto preempt;
2f36825b 5488 }
464b7527 5489
3a7e73a2 5490 return;
a65ac745 5491
3a7e73a2 5492preempt:
8875125e 5493 resched_curr(rq);
3a7e73a2
PZ
5494 /*
5495 * Only set the backward buddy when the current task is still
5496 * on the rq. This can happen when a wakeup gets interleaved
5497 * with schedule on the ->pre_schedule() or idle_balance()
5498 * point, either of which can * drop the rq lock.
5499 *
5500 * Also, during early boot the idle thread is in the fair class,
5501 * for obvious reasons its a bad idea to schedule back to it.
5502 */
5503 if (unlikely(!se->on_rq || curr == rq->idle))
5504 return;
5505
5506 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5507 set_last_buddy(se);
bf0f6f24
IM
5508}
5509
606dba2e
PZ
5510static struct task_struct *
5511pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5512{
5513 struct cfs_rq *cfs_rq = &rq->cfs;
5514 struct sched_entity *se;
678d5718 5515 struct task_struct *p;
37e117c0 5516 int new_tasks;
678d5718 5517
6e83125c 5518again:
678d5718
PZ
5519#ifdef CONFIG_FAIR_GROUP_SCHED
5520 if (!cfs_rq->nr_running)
38033c37 5521 goto idle;
678d5718 5522
3f1d2a31 5523 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5524 goto simple;
5525
5526 /*
5527 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5528 * likely that a next task is from the same cgroup as the current.
5529 *
5530 * Therefore attempt to avoid putting and setting the entire cgroup
5531 * hierarchy, only change the part that actually changes.
5532 */
5533
5534 do {
5535 struct sched_entity *curr = cfs_rq->curr;
5536
5537 /*
5538 * Since we got here without doing put_prev_entity() we also
5539 * have to consider cfs_rq->curr. If it is still a runnable
5540 * entity, update_curr() will update its vruntime, otherwise
5541 * forget we've ever seen it.
5542 */
54d27365
BS
5543 if (curr) {
5544 if (curr->on_rq)
5545 update_curr(cfs_rq);
5546 else
5547 curr = NULL;
678d5718 5548
54d27365
BS
5549 /*
5550 * This call to check_cfs_rq_runtime() will do the
5551 * throttle and dequeue its entity in the parent(s).
5552 * Therefore the 'simple' nr_running test will indeed
5553 * be correct.
5554 */
5555 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5556 goto simple;
5557 }
678d5718
PZ
5558
5559 se = pick_next_entity(cfs_rq, curr);
5560 cfs_rq = group_cfs_rq(se);
5561 } while (cfs_rq);
5562
5563 p = task_of(se);
5564
5565 /*
5566 * Since we haven't yet done put_prev_entity and if the selected task
5567 * is a different task than we started out with, try and touch the
5568 * least amount of cfs_rqs.
5569 */
5570 if (prev != p) {
5571 struct sched_entity *pse = &prev->se;
5572
5573 while (!(cfs_rq = is_same_group(se, pse))) {
5574 int se_depth = se->depth;
5575 int pse_depth = pse->depth;
5576
5577 if (se_depth <= pse_depth) {
5578 put_prev_entity(cfs_rq_of(pse), pse);
5579 pse = parent_entity(pse);
5580 }
5581 if (se_depth >= pse_depth) {
5582 set_next_entity(cfs_rq_of(se), se);
5583 se = parent_entity(se);
5584 }
5585 }
5586
5587 put_prev_entity(cfs_rq, pse);
5588 set_next_entity(cfs_rq, se);
5589 }
5590
5591 if (hrtick_enabled(rq))
5592 hrtick_start_fair(rq, p);
5593
5594 return p;
5595simple:
5596 cfs_rq = &rq->cfs;
5597#endif
bf0f6f24 5598
36ace27e 5599 if (!cfs_rq->nr_running)
38033c37 5600 goto idle;
bf0f6f24 5601
3f1d2a31 5602 put_prev_task(rq, prev);
606dba2e 5603
bf0f6f24 5604 do {
678d5718 5605 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5606 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5607 cfs_rq = group_cfs_rq(se);
5608 } while (cfs_rq);
5609
8f4d37ec 5610 p = task_of(se);
678d5718 5611
b39e66ea
MG
5612 if (hrtick_enabled(rq))
5613 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5614
5615 return p;
38033c37
PZ
5616
5617idle:
cbce1a68
PZ
5618 /*
5619 * This is OK, because current is on_cpu, which avoids it being picked
5620 * for load-balance and preemption/IRQs are still disabled avoiding
5621 * further scheduler activity on it and we're being very careful to
5622 * re-start the picking loop.
5623 */
5624 lockdep_unpin_lock(&rq->lock);
e4aa358b 5625 new_tasks = idle_balance(rq);
cbce1a68 5626 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5627 /*
5628 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5629 * possible for any higher priority task to appear. In that case we
5630 * must re-start the pick_next_entity() loop.
5631 */
e4aa358b 5632 if (new_tasks < 0)
37e117c0
PZ
5633 return RETRY_TASK;
5634
e4aa358b 5635 if (new_tasks > 0)
38033c37 5636 goto again;
38033c37
PZ
5637
5638 return NULL;
bf0f6f24
IM
5639}
5640
5641/*
5642 * Account for a descheduled task:
5643 */
31ee529c 5644static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5645{
5646 struct sched_entity *se = &prev->se;
5647 struct cfs_rq *cfs_rq;
5648
5649 for_each_sched_entity(se) {
5650 cfs_rq = cfs_rq_of(se);
ab6cde26 5651 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5652 }
5653}
5654
ac53db59
RR
5655/*
5656 * sched_yield() is very simple
5657 *
5658 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5659 */
5660static void yield_task_fair(struct rq *rq)
5661{
5662 struct task_struct *curr = rq->curr;
5663 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5664 struct sched_entity *se = &curr->se;
5665
5666 /*
5667 * Are we the only task in the tree?
5668 */
5669 if (unlikely(rq->nr_running == 1))
5670 return;
5671
5672 clear_buddies(cfs_rq, se);
5673
5674 if (curr->policy != SCHED_BATCH) {
5675 update_rq_clock(rq);
5676 /*
5677 * Update run-time statistics of the 'current'.
5678 */
5679 update_curr(cfs_rq);
916671c0
MG
5680 /*
5681 * Tell update_rq_clock() that we've just updated,
5682 * so we don't do microscopic update in schedule()
5683 * and double the fastpath cost.
5684 */
9edfbfed 5685 rq_clock_skip_update(rq, true);
ac53db59
RR
5686 }
5687
5688 set_skip_buddy(se);
5689}
5690
d95f4122
MG
5691static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5692{
5693 struct sched_entity *se = &p->se;
5694
5238cdd3
PT
5695 /* throttled hierarchies are not runnable */
5696 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5697 return false;
5698
5699 /* Tell the scheduler that we'd really like pse to run next. */
5700 set_next_buddy(se);
5701
d95f4122
MG
5702 yield_task_fair(rq);
5703
5704 return true;
5705}
5706
681f3e68 5707#ifdef CONFIG_SMP
bf0f6f24 5708/**************************************************
e9c84cb8
PZ
5709 * Fair scheduling class load-balancing methods.
5710 *
5711 * BASICS
5712 *
5713 * The purpose of load-balancing is to achieve the same basic fairness the
5714 * per-cpu scheduler provides, namely provide a proportional amount of compute
5715 * time to each task. This is expressed in the following equation:
5716 *
5717 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5718 *
5719 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5720 * W_i,0 is defined as:
5721 *
5722 * W_i,0 = \Sum_j w_i,j (2)
5723 *
5724 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5725 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5726 *
5727 * The weight average is an exponential decay average of the instantaneous
5728 * weight:
5729 *
5730 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5731 *
ced549fa 5732 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5733 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5734 * can also include other factors [XXX].
5735 *
5736 * To achieve this balance we define a measure of imbalance which follows
5737 * directly from (1):
5738 *
ced549fa 5739 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5740 *
5741 * We them move tasks around to minimize the imbalance. In the continuous
5742 * function space it is obvious this converges, in the discrete case we get
5743 * a few fun cases generally called infeasible weight scenarios.
5744 *
5745 * [XXX expand on:
5746 * - infeasible weights;
5747 * - local vs global optima in the discrete case. ]
5748 *
5749 *
5750 * SCHED DOMAINS
5751 *
5752 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5753 * for all i,j solution, we create a tree of cpus that follows the hardware
5754 * topology where each level pairs two lower groups (or better). This results
5755 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5756 * tree to only the first of the previous level and we decrease the frequency
5757 * of load-balance at each level inv. proportional to the number of cpus in
5758 * the groups.
5759 *
5760 * This yields:
5761 *
5762 * log_2 n 1 n
5763 * \Sum { --- * --- * 2^i } = O(n) (5)
5764 * i = 0 2^i 2^i
5765 * `- size of each group
5766 * | | `- number of cpus doing load-balance
5767 * | `- freq
5768 * `- sum over all levels
5769 *
5770 * Coupled with a limit on how many tasks we can migrate every balance pass,
5771 * this makes (5) the runtime complexity of the balancer.
5772 *
5773 * An important property here is that each CPU is still (indirectly) connected
5774 * to every other cpu in at most O(log n) steps:
5775 *
5776 * The adjacency matrix of the resulting graph is given by:
5777 *
5778 * log_2 n
5779 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5780 * k = 0
5781 *
5782 * And you'll find that:
5783 *
5784 * A^(log_2 n)_i,j != 0 for all i,j (7)
5785 *
5786 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5787 * The task movement gives a factor of O(m), giving a convergence complexity
5788 * of:
5789 *
5790 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5791 *
5792 *
5793 * WORK CONSERVING
5794 *
5795 * In order to avoid CPUs going idle while there's still work to do, new idle
5796 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5797 * tree itself instead of relying on other CPUs to bring it work.
5798 *
5799 * This adds some complexity to both (5) and (8) but it reduces the total idle
5800 * time.
5801 *
5802 * [XXX more?]
5803 *
5804 *
5805 * CGROUPS
5806 *
5807 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5808 *
5809 * s_k,i
5810 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5811 * S_k
5812 *
5813 * Where
5814 *
5815 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5816 *
5817 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5818 *
5819 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5820 * property.
5821 *
5822 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5823 * rewrite all of this once again.]
5824 */
bf0f6f24 5825
ed387b78
HS
5826static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5827
0ec8aa00
PZ
5828enum fbq_type { regular, remote, all };
5829
ddcdf6e7 5830#define LBF_ALL_PINNED 0x01
367456c7 5831#define LBF_NEED_BREAK 0x02
6263322c
PZ
5832#define LBF_DST_PINNED 0x04
5833#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5834
5835struct lb_env {
5836 struct sched_domain *sd;
5837
ddcdf6e7 5838 struct rq *src_rq;
85c1e7da 5839 int src_cpu;
ddcdf6e7
PZ
5840
5841 int dst_cpu;
5842 struct rq *dst_rq;
5843
88b8dac0
SV
5844 struct cpumask *dst_grpmask;
5845 int new_dst_cpu;
ddcdf6e7 5846 enum cpu_idle_type idle;
bd939f45 5847 long imbalance;
b9403130
MW
5848 /* The set of CPUs under consideration for load-balancing */
5849 struct cpumask *cpus;
5850
ddcdf6e7 5851 unsigned int flags;
367456c7
PZ
5852
5853 unsigned int loop;
5854 unsigned int loop_break;
5855 unsigned int loop_max;
0ec8aa00
PZ
5856
5857 enum fbq_type fbq_type;
163122b7 5858 struct list_head tasks;
ddcdf6e7
PZ
5859};
5860
029632fb
PZ
5861/*
5862 * Is this task likely cache-hot:
5863 */
5d5e2b1b 5864static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5865{
5866 s64 delta;
5867
e5673f28
KT
5868 lockdep_assert_held(&env->src_rq->lock);
5869
029632fb
PZ
5870 if (p->sched_class != &fair_sched_class)
5871 return 0;
5872
5873 if (unlikely(p->policy == SCHED_IDLE))
5874 return 0;
5875
5876 /*
5877 * Buddy candidates are cache hot:
5878 */
5d5e2b1b 5879 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5880 (&p->se == cfs_rq_of(&p->se)->next ||
5881 &p->se == cfs_rq_of(&p->se)->last))
5882 return 1;
5883
5884 if (sysctl_sched_migration_cost == -1)
5885 return 1;
5886 if (sysctl_sched_migration_cost == 0)
5887 return 0;
5888
5d5e2b1b 5889 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5890
5891 return delta < (s64)sysctl_sched_migration_cost;
5892}
5893
3a7053b3 5894#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5895/*
2a1ed24c
SD
5896 * Returns 1, if task migration degrades locality
5897 * Returns 0, if task migration improves locality i.e migration preferred.
5898 * Returns -1, if task migration is not affected by locality.
c1ceac62 5899 */
2a1ed24c 5900static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5901{
b1ad065e 5902 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5903 unsigned long src_faults, dst_faults;
3a7053b3
MG
5904 int src_nid, dst_nid;
5905
2a595721 5906 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5907 return -1;
5908
c3b9bc5b 5909 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5910 return -1;
7a0f3083
MG
5911
5912 src_nid = cpu_to_node(env->src_cpu);
5913 dst_nid = cpu_to_node(env->dst_cpu);
5914
83e1d2cd 5915 if (src_nid == dst_nid)
2a1ed24c 5916 return -1;
7a0f3083 5917
2a1ed24c
SD
5918 /* Migrating away from the preferred node is always bad. */
5919 if (src_nid == p->numa_preferred_nid) {
5920 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5921 return 1;
5922 else
5923 return -1;
5924 }
b1ad065e 5925
c1ceac62
RR
5926 /* Encourage migration to the preferred node. */
5927 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5928 return 0;
b1ad065e 5929
c1ceac62
RR
5930 if (numa_group) {
5931 src_faults = group_faults(p, src_nid);
5932 dst_faults = group_faults(p, dst_nid);
5933 } else {
5934 src_faults = task_faults(p, src_nid);
5935 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5936 }
5937
c1ceac62 5938 return dst_faults < src_faults;
7a0f3083
MG
5939}
5940
3a7053b3 5941#else
2a1ed24c 5942static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5943 struct lb_env *env)
5944{
2a1ed24c 5945 return -1;
7a0f3083 5946}
3a7053b3
MG
5947#endif
5948
1e3c88bd
PZ
5949/*
5950 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5951 */
5952static
8e45cb54 5953int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5954{
2a1ed24c 5955 int tsk_cache_hot;
e5673f28
KT
5956
5957 lockdep_assert_held(&env->src_rq->lock);
5958
1e3c88bd
PZ
5959 /*
5960 * We do not migrate tasks that are:
d3198084 5961 * 1) throttled_lb_pair, or
1e3c88bd 5962 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5963 * 3) running (obviously), or
5964 * 4) are cache-hot on their current CPU.
1e3c88bd 5965 */
d3198084
JK
5966 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5967 return 0;
5968
ddcdf6e7 5969 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5970 int cpu;
88b8dac0 5971
41acab88 5972 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5973
6263322c
PZ
5974 env->flags |= LBF_SOME_PINNED;
5975
88b8dac0
SV
5976 /*
5977 * Remember if this task can be migrated to any other cpu in
5978 * our sched_group. We may want to revisit it if we couldn't
5979 * meet load balance goals by pulling other tasks on src_cpu.
5980 *
5981 * Also avoid computing new_dst_cpu if we have already computed
5982 * one in current iteration.
5983 */
6263322c 5984 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5985 return 0;
5986
e02e60c1
JK
5987 /* Prevent to re-select dst_cpu via env's cpus */
5988 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5989 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5990 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5991 env->new_dst_cpu = cpu;
5992 break;
5993 }
88b8dac0 5994 }
e02e60c1 5995
1e3c88bd
PZ
5996 return 0;
5997 }
88b8dac0
SV
5998
5999 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6000 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6001
ddcdf6e7 6002 if (task_running(env->src_rq, p)) {
41acab88 6003 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6004 return 0;
6005 }
6006
6007 /*
6008 * Aggressive migration if:
3a7053b3
MG
6009 * 1) destination numa is preferred
6010 * 2) task is cache cold, or
6011 * 3) too many balance attempts have failed.
1e3c88bd 6012 */
2a1ed24c
SD
6013 tsk_cache_hot = migrate_degrades_locality(p, env);
6014 if (tsk_cache_hot == -1)
6015 tsk_cache_hot = task_hot(p, env);
3a7053b3 6016
2a1ed24c 6017 if (tsk_cache_hot <= 0 ||
7a96c231 6018 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6019 if (tsk_cache_hot == 1) {
3a7053b3
MG
6020 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6021 schedstat_inc(p, se.statistics.nr_forced_migrations);
6022 }
1e3c88bd
PZ
6023 return 1;
6024 }
6025
4e2dcb73
ZH
6026 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6027 return 0;
1e3c88bd
PZ
6028}
6029
897c395f 6030/*
163122b7
KT
6031 * detach_task() -- detach the task for the migration specified in env
6032 */
6033static void detach_task(struct task_struct *p, struct lb_env *env)
6034{
6035 lockdep_assert_held(&env->src_rq->lock);
6036
163122b7 6037 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6038 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6039 set_task_cpu(p, env->dst_cpu);
6040}
6041
897c395f 6042/*
e5673f28 6043 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6044 * part of active balancing operations within "domain".
897c395f 6045 *
e5673f28 6046 * Returns a task if successful and NULL otherwise.
897c395f 6047 */
e5673f28 6048static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6049{
6050 struct task_struct *p, *n;
897c395f 6051
e5673f28
KT
6052 lockdep_assert_held(&env->src_rq->lock);
6053
367456c7 6054 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6055 if (!can_migrate_task(p, env))
6056 continue;
897c395f 6057
163122b7 6058 detach_task(p, env);
e5673f28 6059
367456c7 6060 /*
e5673f28 6061 * Right now, this is only the second place where
163122b7 6062 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6063 * so we can safely collect stats here rather than
163122b7 6064 * inside detach_tasks().
367456c7
PZ
6065 */
6066 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6067 return p;
897c395f 6068 }
e5673f28 6069 return NULL;
897c395f
PZ
6070}
6071
eb95308e
PZ
6072static const unsigned int sched_nr_migrate_break = 32;
6073
5d6523eb 6074/*
163122b7
KT
6075 * detach_tasks() -- tries to detach up to imbalance weighted load from
6076 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6077 *
163122b7 6078 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6079 */
163122b7 6080static int detach_tasks(struct lb_env *env)
1e3c88bd 6081{
5d6523eb
PZ
6082 struct list_head *tasks = &env->src_rq->cfs_tasks;
6083 struct task_struct *p;
367456c7 6084 unsigned long load;
163122b7
KT
6085 int detached = 0;
6086
6087 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6088
bd939f45 6089 if (env->imbalance <= 0)
5d6523eb 6090 return 0;
1e3c88bd 6091
5d6523eb 6092 while (!list_empty(tasks)) {
985d3a4c
YD
6093 /*
6094 * We don't want to steal all, otherwise we may be treated likewise,
6095 * which could at worst lead to a livelock crash.
6096 */
6097 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6098 break;
6099
5d6523eb 6100 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6101
367456c7
PZ
6102 env->loop++;
6103 /* We've more or less seen every task there is, call it quits */
5d6523eb 6104 if (env->loop > env->loop_max)
367456c7 6105 break;
5d6523eb
PZ
6106
6107 /* take a breather every nr_migrate tasks */
367456c7 6108 if (env->loop > env->loop_break) {
eb95308e 6109 env->loop_break += sched_nr_migrate_break;
8e45cb54 6110 env->flags |= LBF_NEED_BREAK;
ee00e66f 6111 break;
a195f004 6112 }
1e3c88bd 6113
d3198084 6114 if (!can_migrate_task(p, env))
367456c7
PZ
6115 goto next;
6116
6117 load = task_h_load(p);
5d6523eb 6118
eb95308e 6119 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6120 goto next;
6121
bd939f45 6122 if ((load / 2) > env->imbalance)
367456c7 6123 goto next;
1e3c88bd 6124
163122b7
KT
6125 detach_task(p, env);
6126 list_add(&p->se.group_node, &env->tasks);
6127
6128 detached++;
bd939f45 6129 env->imbalance -= load;
1e3c88bd
PZ
6130
6131#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6132 /*
6133 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6134 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6135 * the critical section.
6136 */
5d6523eb 6137 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6138 break;
1e3c88bd
PZ
6139#endif
6140
ee00e66f
PZ
6141 /*
6142 * We only want to steal up to the prescribed amount of
6143 * weighted load.
6144 */
bd939f45 6145 if (env->imbalance <= 0)
ee00e66f 6146 break;
367456c7
PZ
6147
6148 continue;
6149next:
5d6523eb 6150 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6151 }
5d6523eb 6152
1e3c88bd 6153 /*
163122b7
KT
6154 * Right now, this is one of only two places we collect this stat
6155 * so we can safely collect detach_one_task() stats here rather
6156 * than inside detach_one_task().
1e3c88bd 6157 */
163122b7 6158 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6159
163122b7
KT
6160 return detached;
6161}
6162
6163/*
6164 * attach_task() -- attach the task detached by detach_task() to its new rq.
6165 */
6166static void attach_task(struct rq *rq, struct task_struct *p)
6167{
6168 lockdep_assert_held(&rq->lock);
6169
6170 BUG_ON(task_rq(p) != rq);
163122b7 6171 activate_task(rq, p, 0);
3ea94de1 6172 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6173 check_preempt_curr(rq, p, 0);
6174}
6175
6176/*
6177 * attach_one_task() -- attaches the task returned from detach_one_task() to
6178 * its new rq.
6179 */
6180static void attach_one_task(struct rq *rq, struct task_struct *p)
6181{
6182 raw_spin_lock(&rq->lock);
6183 attach_task(rq, p);
6184 raw_spin_unlock(&rq->lock);
6185}
6186
6187/*
6188 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6189 * new rq.
6190 */
6191static void attach_tasks(struct lb_env *env)
6192{
6193 struct list_head *tasks = &env->tasks;
6194 struct task_struct *p;
6195
6196 raw_spin_lock(&env->dst_rq->lock);
6197
6198 while (!list_empty(tasks)) {
6199 p = list_first_entry(tasks, struct task_struct, se.group_node);
6200 list_del_init(&p->se.group_node);
1e3c88bd 6201
163122b7
KT
6202 attach_task(env->dst_rq, p);
6203 }
6204
6205 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6206}
6207
230059de 6208#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6209static void update_blocked_averages(int cpu)
9e3081ca 6210{
9e3081ca 6211 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6212 struct cfs_rq *cfs_rq;
6213 unsigned long flags;
9e3081ca 6214
48a16753
PT
6215 raw_spin_lock_irqsave(&rq->lock, flags);
6216 update_rq_clock(rq);
9d89c257 6217
9763b67f
PZ
6218 /*
6219 * Iterates the task_group tree in a bottom up fashion, see
6220 * list_add_leaf_cfs_rq() for details.
6221 */
64660c86 6222 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6223 /* throttled entities do not contribute to load */
6224 if (throttled_hierarchy(cfs_rq))
6225 continue;
48a16753 6226
a2c6c91f 6227 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6228 update_tg_load_avg(cfs_rq, 0);
6229 }
48a16753 6230 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6231}
6232
9763b67f 6233/*
68520796 6234 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6235 * This needs to be done in a top-down fashion because the load of a child
6236 * group is a fraction of its parents load.
6237 */
68520796 6238static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6239{
68520796
VD
6240 struct rq *rq = rq_of(cfs_rq);
6241 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6242 unsigned long now = jiffies;
68520796 6243 unsigned long load;
a35b6466 6244
68520796 6245 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6246 return;
6247
68520796
VD
6248 cfs_rq->h_load_next = NULL;
6249 for_each_sched_entity(se) {
6250 cfs_rq = cfs_rq_of(se);
6251 cfs_rq->h_load_next = se;
6252 if (cfs_rq->last_h_load_update == now)
6253 break;
6254 }
a35b6466 6255
68520796 6256 if (!se) {
7ea241af 6257 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6258 cfs_rq->last_h_load_update = now;
6259 }
6260
6261 while ((se = cfs_rq->h_load_next) != NULL) {
6262 load = cfs_rq->h_load;
7ea241af
YD
6263 load = div64_ul(load * se->avg.load_avg,
6264 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6265 cfs_rq = group_cfs_rq(se);
6266 cfs_rq->h_load = load;
6267 cfs_rq->last_h_load_update = now;
6268 }
9763b67f
PZ
6269}
6270
367456c7 6271static unsigned long task_h_load(struct task_struct *p)
230059de 6272{
367456c7 6273 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6274
68520796 6275 update_cfs_rq_h_load(cfs_rq);
9d89c257 6276 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6277 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6278}
6279#else
48a16753 6280static inline void update_blocked_averages(int cpu)
9e3081ca 6281{
6c1d47c0
VG
6282 struct rq *rq = cpu_rq(cpu);
6283 struct cfs_rq *cfs_rq = &rq->cfs;
6284 unsigned long flags;
6285
6286 raw_spin_lock_irqsave(&rq->lock, flags);
6287 update_rq_clock(rq);
a2c6c91f 6288 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6289 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6290}
6291
367456c7 6292static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6293{
9d89c257 6294 return p->se.avg.load_avg;
1e3c88bd 6295}
230059de 6296#endif
1e3c88bd 6297
1e3c88bd 6298/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6299
6300enum group_type {
6301 group_other = 0,
6302 group_imbalanced,
6303 group_overloaded,
6304};
6305
1e3c88bd
PZ
6306/*
6307 * sg_lb_stats - stats of a sched_group required for load_balancing
6308 */
6309struct sg_lb_stats {
6310 unsigned long avg_load; /*Avg load across the CPUs of the group */
6311 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6312 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6313 unsigned long load_per_task;
63b2ca30 6314 unsigned long group_capacity;
9e91d61d 6315 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6316 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6317 unsigned int idle_cpus;
6318 unsigned int group_weight;
caeb178c 6319 enum group_type group_type;
ea67821b 6320 int group_no_capacity;
0ec8aa00
PZ
6321#ifdef CONFIG_NUMA_BALANCING
6322 unsigned int nr_numa_running;
6323 unsigned int nr_preferred_running;
6324#endif
1e3c88bd
PZ
6325};
6326
56cf515b
JK
6327/*
6328 * sd_lb_stats - Structure to store the statistics of a sched_domain
6329 * during load balancing.
6330 */
6331struct sd_lb_stats {
6332 struct sched_group *busiest; /* Busiest group in this sd */
6333 struct sched_group *local; /* Local group in this sd */
6334 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6335 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6336 unsigned long avg_load; /* Average load across all groups in sd */
6337
56cf515b 6338 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6339 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6340};
6341
147c5fc2
PZ
6342static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6343{
6344 /*
6345 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6346 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6347 * We must however clear busiest_stat::avg_load because
6348 * update_sd_pick_busiest() reads this before assignment.
6349 */
6350 *sds = (struct sd_lb_stats){
6351 .busiest = NULL,
6352 .local = NULL,
6353 .total_load = 0UL,
63b2ca30 6354 .total_capacity = 0UL,
147c5fc2
PZ
6355 .busiest_stat = {
6356 .avg_load = 0UL,
caeb178c
RR
6357 .sum_nr_running = 0,
6358 .group_type = group_other,
147c5fc2
PZ
6359 },
6360 };
6361}
6362
1e3c88bd
PZ
6363/**
6364 * get_sd_load_idx - Obtain the load index for a given sched domain.
6365 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6366 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6367 *
6368 * Return: The load index.
1e3c88bd
PZ
6369 */
6370static inline int get_sd_load_idx(struct sched_domain *sd,
6371 enum cpu_idle_type idle)
6372{
6373 int load_idx;
6374
6375 switch (idle) {
6376 case CPU_NOT_IDLE:
6377 load_idx = sd->busy_idx;
6378 break;
6379
6380 case CPU_NEWLY_IDLE:
6381 load_idx = sd->newidle_idx;
6382 break;
6383 default:
6384 load_idx = sd->idle_idx;
6385 break;
6386 }
6387
6388 return load_idx;
6389}
6390
ced549fa 6391static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6392{
6393 struct rq *rq = cpu_rq(cpu);
b5b4860d 6394 u64 total, used, age_stamp, avg;
cadefd3d 6395 s64 delta;
1e3c88bd 6396
b654f7de
PZ
6397 /*
6398 * Since we're reading these variables without serialization make sure
6399 * we read them once before doing sanity checks on them.
6400 */
316c1608
JL
6401 age_stamp = READ_ONCE(rq->age_stamp);
6402 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6403 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6404
cadefd3d
PZ
6405 if (unlikely(delta < 0))
6406 delta = 0;
6407
6408 total = sched_avg_period() + delta;
aa483808 6409
b5b4860d 6410 used = div_u64(avg, total);
1e3c88bd 6411
b5b4860d
VG
6412 if (likely(used < SCHED_CAPACITY_SCALE))
6413 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6414
b5b4860d 6415 return 1;
1e3c88bd
PZ
6416}
6417
ced549fa 6418static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6419{
8cd5601c 6420 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6421 struct sched_group *sdg = sd->groups;
6422
ca6d75e6 6423 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6424
ced549fa 6425 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6426 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6427
ced549fa
NP
6428 if (!capacity)
6429 capacity = 1;
1e3c88bd 6430
ced549fa
NP
6431 cpu_rq(cpu)->cpu_capacity = capacity;
6432 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6433}
6434
63b2ca30 6435void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6436{
6437 struct sched_domain *child = sd->child;
6438 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6439 unsigned long capacity;
4ec4412e
VG
6440 unsigned long interval;
6441
6442 interval = msecs_to_jiffies(sd->balance_interval);
6443 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6444 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6445
6446 if (!child) {
ced549fa 6447 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6448 return;
6449 }
6450
dc7ff76e 6451 capacity = 0;
1e3c88bd 6452
74a5ce20
PZ
6453 if (child->flags & SD_OVERLAP) {
6454 /*
6455 * SD_OVERLAP domains cannot assume that child groups
6456 * span the current group.
6457 */
6458
863bffc8 6459 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6460 struct sched_group_capacity *sgc;
9abf24d4 6461 struct rq *rq = cpu_rq(cpu);
863bffc8 6462
9abf24d4 6463 /*
63b2ca30 6464 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6465 * gets here before we've attached the domains to the
6466 * runqueues.
6467 *
ced549fa
NP
6468 * Use capacity_of(), which is set irrespective of domains
6469 * in update_cpu_capacity().
9abf24d4 6470 *
dc7ff76e 6471 * This avoids capacity from being 0 and
9abf24d4 6472 * causing divide-by-zero issues on boot.
9abf24d4
SD
6473 */
6474 if (unlikely(!rq->sd)) {
ced549fa 6475 capacity += capacity_of(cpu);
9abf24d4
SD
6476 continue;
6477 }
863bffc8 6478
63b2ca30 6479 sgc = rq->sd->groups->sgc;
63b2ca30 6480 capacity += sgc->capacity;
863bffc8 6481 }
74a5ce20
PZ
6482 } else {
6483 /*
6484 * !SD_OVERLAP domains can assume that child groups
6485 * span the current group.
6486 */
6487
6488 group = child->groups;
6489 do {
63b2ca30 6490 capacity += group->sgc->capacity;
74a5ce20
PZ
6491 group = group->next;
6492 } while (group != child->groups);
6493 }
1e3c88bd 6494
63b2ca30 6495 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6496}
6497
9d5efe05 6498/*
ea67821b
VG
6499 * Check whether the capacity of the rq has been noticeably reduced by side
6500 * activity. The imbalance_pct is used for the threshold.
6501 * Return true is the capacity is reduced
9d5efe05
SV
6502 */
6503static inline int
ea67821b 6504check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6505{
ea67821b
VG
6506 return ((rq->cpu_capacity * sd->imbalance_pct) <
6507 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6508}
6509
30ce5dab
PZ
6510/*
6511 * Group imbalance indicates (and tries to solve) the problem where balancing
6512 * groups is inadequate due to tsk_cpus_allowed() constraints.
6513 *
6514 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6515 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6516 * Something like:
6517 *
6518 * { 0 1 2 3 } { 4 5 6 7 }
6519 * * * * *
6520 *
6521 * If we were to balance group-wise we'd place two tasks in the first group and
6522 * two tasks in the second group. Clearly this is undesired as it will overload
6523 * cpu 3 and leave one of the cpus in the second group unused.
6524 *
6525 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6526 * by noticing the lower domain failed to reach balance and had difficulty
6527 * moving tasks due to affinity constraints.
30ce5dab
PZ
6528 *
6529 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6530 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6531 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6532 * to create an effective group imbalance.
6533 *
6534 * This is a somewhat tricky proposition since the next run might not find the
6535 * group imbalance and decide the groups need to be balanced again. A most
6536 * subtle and fragile situation.
6537 */
6538
6263322c 6539static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6540{
63b2ca30 6541 return group->sgc->imbalance;
30ce5dab
PZ
6542}
6543
b37d9316 6544/*
ea67821b
VG
6545 * group_has_capacity returns true if the group has spare capacity that could
6546 * be used by some tasks.
6547 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6548 * smaller than the number of CPUs or if the utilization is lower than the
6549 * available capacity for CFS tasks.
ea67821b
VG
6550 * For the latter, we use a threshold to stabilize the state, to take into
6551 * account the variance of the tasks' load and to return true if the available
6552 * capacity in meaningful for the load balancer.
6553 * As an example, an available capacity of 1% can appear but it doesn't make
6554 * any benefit for the load balance.
b37d9316 6555 */
ea67821b
VG
6556static inline bool
6557group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6558{
ea67821b
VG
6559 if (sgs->sum_nr_running < sgs->group_weight)
6560 return true;
c61037e9 6561
ea67821b 6562 if ((sgs->group_capacity * 100) >
9e91d61d 6563 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6564 return true;
b37d9316 6565
ea67821b
VG
6566 return false;
6567}
6568
6569/*
6570 * group_is_overloaded returns true if the group has more tasks than it can
6571 * handle.
6572 * group_is_overloaded is not equals to !group_has_capacity because a group
6573 * with the exact right number of tasks, has no more spare capacity but is not
6574 * overloaded so both group_has_capacity and group_is_overloaded return
6575 * false.
6576 */
6577static inline bool
6578group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6579{
6580 if (sgs->sum_nr_running <= sgs->group_weight)
6581 return false;
b37d9316 6582
ea67821b 6583 if ((sgs->group_capacity * 100) <
9e91d61d 6584 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6585 return true;
b37d9316 6586
ea67821b 6587 return false;
b37d9316
PZ
6588}
6589
79a89f92
LY
6590static inline enum
6591group_type group_classify(struct sched_group *group,
6592 struct sg_lb_stats *sgs)
caeb178c 6593{
ea67821b 6594 if (sgs->group_no_capacity)
caeb178c
RR
6595 return group_overloaded;
6596
6597 if (sg_imbalanced(group))
6598 return group_imbalanced;
6599
6600 return group_other;
6601}
6602
1e3c88bd
PZ
6603/**
6604 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6605 * @env: The load balancing environment.
1e3c88bd 6606 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6607 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6608 * @local_group: Does group contain this_cpu.
1e3c88bd 6609 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6610 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6611 */
bd939f45
PZ
6612static inline void update_sg_lb_stats(struct lb_env *env,
6613 struct sched_group *group, int load_idx,
4486edd1
TC
6614 int local_group, struct sg_lb_stats *sgs,
6615 bool *overload)
1e3c88bd 6616{
30ce5dab 6617 unsigned long load;
a426f99c 6618 int i, nr_running;
1e3c88bd 6619
b72ff13c
PZ
6620 memset(sgs, 0, sizeof(*sgs));
6621
b9403130 6622 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6623 struct rq *rq = cpu_rq(i);
6624
1e3c88bd 6625 /* Bias balancing toward cpus of our domain */
6263322c 6626 if (local_group)
04f733b4 6627 load = target_load(i, load_idx);
6263322c 6628 else
1e3c88bd 6629 load = source_load(i, load_idx);
1e3c88bd
PZ
6630
6631 sgs->group_load += load;
9e91d61d 6632 sgs->group_util += cpu_util(i);
65fdac08 6633 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6634
a426f99c
WL
6635 nr_running = rq->nr_running;
6636 if (nr_running > 1)
4486edd1
TC
6637 *overload = true;
6638
0ec8aa00
PZ
6639#ifdef CONFIG_NUMA_BALANCING
6640 sgs->nr_numa_running += rq->nr_numa_running;
6641 sgs->nr_preferred_running += rq->nr_preferred_running;
6642#endif
1e3c88bd 6643 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6644 /*
6645 * No need to call idle_cpu() if nr_running is not 0
6646 */
6647 if (!nr_running && idle_cpu(i))
aae6d3dd 6648 sgs->idle_cpus++;
1e3c88bd
PZ
6649 }
6650
63b2ca30
NP
6651 /* Adjust by relative CPU capacity of the group */
6652 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6653 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6654
dd5feea1 6655 if (sgs->sum_nr_running)
38d0f770 6656 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6657
aae6d3dd 6658 sgs->group_weight = group->group_weight;
b37d9316 6659
ea67821b 6660 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6661 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6662}
6663
532cb4c4
MN
6664/**
6665 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6666 * @env: The load balancing environment.
532cb4c4
MN
6667 * @sds: sched_domain statistics
6668 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6669 * @sgs: sched_group statistics
532cb4c4
MN
6670 *
6671 * Determine if @sg is a busier group than the previously selected
6672 * busiest group.
e69f6186
YB
6673 *
6674 * Return: %true if @sg is a busier group than the previously selected
6675 * busiest group. %false otherwise.
532cb4c4 6676 */
bd939f45 6677static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6678 struct sd_lb_stats *sds,
6679 struct sched_group *sg,
bd939f45 6680 struct sg_lb_stats *sgs)
532cb4c4 6681{
caeb178c 6682 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6683
caeb178c 6684 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6685 return true;
6686
caeb178c
RR
6687 if (sgs->group_type < busiest->group_type)
6688 return false;
6689
6690 if (sgs->avg_load <= busiest->avg_load)
6691 return false;
6692
6693 /* This is the busiest node in its class. */
6694 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6695 return true;
6696
1f621e02
SD
6697 /* No ASYM_PACKING if target cpu is already busy */
6698 if (env->idle == CPU_NOT_IDLE)
6699 return true;
532cb4c4
MN
6700 /*
6701 * ASYM_PACKING needs to move all the work to the lowest
6702 * numbered CPUs in the group, therefore mark all groups
6703 * higher than ourself as busy.
6704 */
caeb178c 6705 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6706 if (!sds->busiest)
6707 return true;
6708
1f621e02
SD
6709 /* Prefer to move from highest possible cpu's work */
6710 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6711 return true;
6712 }
6713
6714 return false;
6715}
6716
0ec8aa00
PZ
6717#ifdef CONFIG_NUMA_BALANCING
6718static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6719{
6720 if (sgs->sum_nr_running > sgs->nr_numa_running)
6721 return regular;
6722 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6723 return remote;
6724 return all;
6725}
6726
6727static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6728{
6729 if (rq->nr_running > rq->nr_numa_running)
6730 return regular;
6731 if (rq->nr_running > rq->nr_preferred_running)
6732 return remote;
6733 return all;
6734}
6735#else
6736static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6737{
6738 return all;
6739}
6740
6741static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6742{
6743 return regular;
6744}
6745#endif /* CONFIG_NUMA_BALANCING */
6746
1e3c88bd 6747/**
461819ac 6748 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6749 * @env: The load balancing environment.
1e3c88bd
PZ
6750 * @sds: variable to hold the statistics for this sched_domain.
6751 */
0ec8aa00 6752static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6753{
bd939f45
PZ
6754 struct sched_domain *child = env->sd->child;
6755 struct sched_group *sg = env->sd->groups;
56cf515b 6756 struct sg_lb_stats tmp_sgs;
1e3c88bd 6757 int load_idx, prefer_sibling = 0;
4486edd1 6758 bool overload = false;
1e3c88bd
PZ
6759
6760 if (child && child->flags & SD_PREFER_SIBLING)
6761 prefer_sibling = 1;
6762
bd939f45 6763 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6764
6765 do {
56cf515b 6766 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6767 int local_group;
6768
bd939f45 6769 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6770 if (local_group) {
6771 sds->local = sg;
6772 sgs = &sds->local_stat;
b72ff13c
PZ
6773
6774 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6775 time_after_eq(jiffies, sg->sgc->next_update))
6776 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6777 }
1e3c88bd 6778
4486edd1
TC
6779 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6780 &overload);
1e3c88bd 6781
b72ff13c
PZ
6782 if (local_group)
6783 goto next_group;
6784
1e3c88bd
PZ
6785 /*
6786 * In case the child domain prefers tasks go to siblings
ea67821b 6787 * first, lower the sg capacity so that we'll try
75dd321d
NR
6788 * and move all the excess tasks away. We lower the capacity
6789 * of a group only if the local group has the capacity to fit
ea67821b
VG
6790 * these excess tasks. The extra check prevents the case where
6791 * you always pull from the heaviest group when it is already
6792 * under-utilized (possible with a large weight task outweighs
6793 * the tasks on the system).
1e3c88bd 6794 */
b72ff13c 6795 if (prefer_sibling && sds->local &&
ea67821b
VG
6796 group_has_capacity(env, &sds->local_stat) &&
6797 (sgs->sum_nr_running > 1)) {
6798 sgs->group_no_capacity = 1;
79a89f92 6799 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6800 }
1e3c88bd 6801
b72ff13c 6802 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6803 sds->busiest = sg;
56cf515b 6804 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6805 }
6806
b72ff13c
PZ
6807next_group:
6808 /* Now, start updating sd_lb_stats */
6809 sds->total_load += sgs->group_load;
63b2ca30 6810 sds->total_capacity += sgs->group_capacity;
b72ff13c 6811
532cb4c4 6812 sg = sg->next;
bd939f45 6813 } while (sg != env->sd->groups);
0ec8aa00
PZ
6814
6815 if (env->sd->flags & SD_NUMA)
6816 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6817
6818 if (!env->sd->parent) {
6819 /* update overload indicator if we are at root domain */
6820 if (env->dst_rq->rd->overload != overload)
6821 env->dst_rq->rd->overload = overload;
6822 }
6823
532cb4c4
MN
6824}
6825
532cb4c4
MN
6826/**
6827 * check_asym_packing - Check to see if the group is packed into the
6828 * sched doman.
6829 *
6830 * This is primarily intended to used at the sibling level. Some
6831 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6832 * case of POWER7, it can move to lower SMT modes only when higher
6833 * threads are idle. When in lower SMT modes, the threads will
6834 * perform better since they share less core resources. Hence when we
6835 * have idle threads, we want them to be the higher ones.
6836 *
6837 * This packing function is run on idle threads. It checks to see if
6838 * the busiest CPU in this domain (core in the P7 case) has a higher
6839 * CPU number than the packing function is being run on. Here we are
6840 * assuming lower CPU number will be equivalent to lower a SMT thread
6841 * number.
6842 *
e69f6186 6843 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6844 * this CPU. The amount of the imbalance is returned in *imbalance.
6845 *
cd96891d 6846 * @env: The load balancing environment.
532cb4c4 6847 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6848 */
bd939f45 6849static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6850{
6851 int busiest_cpu;
6852
bd939f45 6853 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6854 return 0;
6855
1f621e02
SD
6856 if (env->idle == CPU_NOT_IDLE)
6857 return 0;
6858
532cb4c4
MN
6859 if (!sds->busiest)
6860 return 0;
6861
6862 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6863 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6864 return 0;
6865
bd939f45 6866 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6867 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6868 SCHED_CAPACITY_SCALE);
bd939f45 6869
532cb4c4 6870 return 1;
1e3c88bd
PZ
6871}
6872
6873/**
6874 * fix_small_imbalance - Calculate the minor imbalance that exists
6875 * amongst the groups of a sched_domain, during
6876 * load balancing.
cd96891d 6877 * @env: The load balancing environment.
1e3c88bd 6878 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6879 */
bd939f45
PZ
6880static inline
6881void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6882{
63b2ca30 6883 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6884 unsigned int imbn = 2;
dd5feea1 6885 unsigned long scaled_busy_load_per_task;
56cf515b 6886 struct sg_lb_stats *local, *busiest;
1e3c88bd 6887
56cf515b
JK
6888 local = &sds->local_stat;
6889 busiest = &sds->busiest_stat;
1e3c88bd 6890
56cf515b
JK
6891 if (!local->sum_nr_running)
6892 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6893 else if (busiest->load_per_task > local->load_per_task)
6894 imbn = 1;
dd5feea1 6895
56cf515b 6896 scaled_busy_load_per_task =
ca8ce3d0 6897 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6898 busiest->group_capacity;
56cf515b 6899
3029ede3
VD
6900 if (busiest->avg_load + scaled_busy_load_per_task >=
6901 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6902 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6903 return;
6904 }
6905
6906 /*
6907 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6908 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6909 * moving them.
6910 */
6911
63b2ca30 6912 capa_now += busiest->group_capacity *
56cf515b 6913 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6914 capa_now += local->group_capacity *
56cf515b 6915 min(local->load_per_task, local->avg_load);
ca8ce3d0 6916 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6917
6918 /* Amount of load we'd subtract */
a2cd4260 6919 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6920 capa_move += busiest->group_capacity *
56cf515b 6921 min(busiest->load_per_task,
a2cd4260 6922 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6923 }
1e3c88bd
PZ
6924
6925 /* Amount of load we'd add */
63b2ca30 6926 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6927 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6928 tmp = (busiest->avg_load * busiest->group_capacity) /
6929 local->group_capacity;
56cf515b 6930 } else {
ca8ce3d0 6931 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6932 local->group_capacity;
56cf515b 6933 }
63b2ca30 6934 capa_move += local->group_capacity *
3ae11c90 6935 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6936 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6937
6938 /* Move if we gain throughput */
63b2ca30 6939 if (capa_move > capa_now)
56cf515b 6940 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6941}
6942
6943/**
6944 * calculate_imbalance - Calculate the amount of imbalance present within the
6945 * groups of a given sched_domain during load balance.
bd939f45 6946 * @env: load balance environment
1e3c88bd 6947 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6948 */
bd939f45 6949static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6950{
dd5feea1 6951 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6952 struct sg_lb_stats *local, *busiest;
6953
6954 local = &sds->local_stat;
56cf515b 6955 busiest = &sds->busiest_stat;
dd5feea1 6956
caeb178c 6957 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6958 /*
6959 * In the group_imb case we cannot rely on group-wide averages
6960 * to ensure cpu-load equilibrium, look at wider averages. XXX
6961 */
56cf515b
JK
6962 busiest->load_per_task =
6963 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6964 }
6965
1e3c88bd
PZ
6966 /*
6967 * In the presence of smp nice balancing, certain scenarios can have
6968 * max load less than avg load(as we skip the groups at or below
ced549fa 6969 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6970 */
b1885550
VD
6971 if (busiest->avg_load <= sds->avg_load ||
6972 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6973 env->imbalance = 0;
6974 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6975 }
6976
9a5d9ba6
PZ
6977 /*
6978 * If there aren't any idle cpus, avoid creating some.
6979 */
6980 if (busiest->group_type == group_overloaded &&
6981 local->group_type == group_overloaded) {
ea67821b
VG
6982 load_above_capacity = busiest->sum_nr_running *
6983 SCHED_LOAD_SCALE;
6984 if (load_above_capacity > busiest->group_capacity)
6985 load_above_capacity -= busiest->group_capacity;
6986 else
6987 load_above_capacity = ~0UL;
dd5feea1
SS
6988 }
6989
6990 /*
6991 * We're trying to get all the cpus to the average_load, so we don't
6992 * want to push ourselves above the average load, nor do we wish to
6993 * reduce the max loaded cpu below the average load. At the same time,
6994 * we also don't want to reduce the group load below the group capacity
6995 * (so that we can implement power-savings policies etc). Thus we look
6996 * for the minimum possible imbalance.
dd5feea1 6997 */
30ce5dab 6998 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6999
7000 /* How much load to actually move to equalise the imbalance */
56cf515b 7001 env->imbalance = min(
63b2ca30
NP
7002 max_pull * busiest->group_capacity,
7003 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7004 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7005
7006 /*
7007 * if *imbalance is less than the average load per runnable task
25985edc 7008 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7009 * a think about bumping its value to force at least one task to be
7010 * moved
7011 */
56cf515b 7012 if (env->imbalance < busiest->load_per_task)
bd939f45 7013 return fix_small_imbalance(env, sds);
1e3c88bd 7014}
fab47622 7015
1e3c88bd
PZ
7016/******* find_busiest_group() helpers end here *********************/
7017
7018/**
7019 * find_busiest_group - Returns the busiest group within the sched_domain
7020 * if there is an imbalance. If there isn't an imbalance, and
7021 * the user has opted for power-savings, it returns a group whose
7022 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7023 * such a group exists.
7024 *
7025 * Also calculates the amount of weighted load which should be moved
7026 * to restore balance.
7027 *
cd96891d 7028 * @env: The load balancing environment.
1e3c88bd 7029 *
e69f6186 7030 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
7031 * - If no imbalance and user has opted for power-savings balance,
7032 * return the least loaded group whose CPUs can be
7033 * put to idle by rebalancing its tasks onto our group.
7034 */
56cf515b 7035static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7036{
56cf515b 7037 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7038 struct sd_lb_stats sds;
7039
147c5fc2 7040 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7041
7042 /*
7043 * Compute the various statistics relavent for load balancing at
7044 * this level.
7045 */
23f0d209 7046 update_sd_lb_stats(env, &sds);
56cf515b
JK
7047 local = &sds.local_stat;
7048 busiest = &sds.busiest_stat;
1e3c88bd 7049
ea67821b 7050 /* ASYM feature bypasses nice load balance check */
1f621e02 7051 if (check_asym_packing(env, &sds))
532cb4c4
MN
7052 return sds.busiest;
7053
cc57aa8f 7054 /* There is no busy sibling group to pull tasks from */
56cf515b 7055 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7056 goto out_balanced;
7057
ca8ce3d0
NP
7058 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7059 / sds.total_capacity;
b0432d8f 7060
866ab43e
PZ
7061 /*
7062 * If the busiest group is imbalanced the below checks don't
30ce5dab 7063 * work because they assume all things are equal, which typically
866ab43e
PZ
7064 * isn't true due to cpus_allowed constraints and the like.
7065 */
caeb178c 7066 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7067 goto force_balance;
7068
cc57aa8f 7069 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7070 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7071 busiest->group_no_capacity)
fab47622
NR
7072 goto force_balance;
7073
cc57aa8f 7074 /*
9c58c79a 7075 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7076 * don't try and pull any tasks.
7077 */
56cf515b 7078 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7079 goto out_balanced;
7080
cc57aa8f
PZ
7081 /*
7082 * Don't pull any tasks if this group is already above the domain
7083 * average load.
7084 */
56cf515b 7085 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7086 goto out_balanced;
7087
bd939f45 7088 if (env->idle == CPU_IDLE) {
aae6d3dd 7089 /*
43f4d666
VG
7090 * This cpu is idle. If the busiest group is not overloaded
7091 * and there is no imbalance between this and busiest group
7092 * wrt idle cpus, it is balanced. The imbalance becomes
7093 * significant if the diff is greater than 1 otherwise we
7094 * might end up to just move the imbalance on another group
aae6d3dd 7095 */
43f4d666
VG
7096 if ((busiest->group_type != group_overloaded) &&
7097 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7098 goto out_balanced;
c186fafe
PZ
7099 } else {
7100 /*
7101 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7102 * imbalance_pct to be conservative.
7103 */
56cf515b
JK
7104 if (100 * busiest->avg_load <=
7105 env->sd->imbalance_pct * local->avg_load)
c186fafe 7106 goto out_balanced;
aae6d3dd 7107 }
1e3c88bd 7108
fab47622 7109force_balance:
1e3c88bd 7110 /* Looks like there is an imbalance. Compute it */
bd939f45 7111 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7112 return sds.busiest;
7113
7114out_balanced:
bd939f45 7115 env->imbalance = 0;
1e3c88bd
PZ
7116 return NULL;
7117}
7118
7119/*
7120 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7121 */
bd939f45 7122static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7123 struct sched_group *group)
1e3c88bd
PZ
7124{
7125 struct rq *busiest = NULL, *rq;
ced549fa 7126 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7127 int i;
7128
6906a408 7129 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7130 unsigned long capacity, wl;
0ec8aa00
PZ
7131 enum fbq_type rt;
7132
7133 rq = cpu_rq(i);
7134 rt = fbq_classify_rq(rq);
1e3c88bd 7135
0ec8aa00
PZ
7136 /*
7137 * We classify groups/runqueues into three groups:
7138 * - regular: there are !numa tasks
7139 * - remote: there are numa tasks that run on the 'wrong' node
7140 * - all: there is no distinction
7141 *
7142 * In order to avoid migrating ideally placed numa tasks,
7143 * ignore those when there's better options.
7144 *
7145 * If we ignore the actual busiest queue to migrate another
7146 * task, the next balance pass can still reduce the busiest
7147 * queue by moving tasks around inside the node.
7148 *
7149 * If we cannot move enough load due to this classification
7150 * the next pass will adjust the group classification and
7151 * allow migration of more tasks.
7152 *
7153 * Both cases only affect the total convergence complexity.
7154 */
7155 if (rt > env->fbq_type)
7156 continue;
7157
ced549fa 7158 capacity = capacity_of(i);
9d5efe05 7159
6e40f5bb 7160 wl = weighted_cpuload(i);
1e3c88bd 7161
6e40f5bb
TG
7162 /*
7163 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7164 * which is not scaled with the cpu capacity.
6e40f5bb 7165 */
ea67821b
VG
7166
7167 if (rq->nr_running == 1 && wl > env->imbalance &&
7168 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7169 continue;
7170
6e40f5bb
TG
7171 /*
7172 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7173 * the weighted_cpuload() scaled with the cpu capacity, so
7174 * that the load can be moved away from the cpu that is
7175 * potentially running at a lower capacity.
95a79b80 7176 *
ced549fa 7177 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7178 * multiplication to rid ourselves of the division works out
ced549fa
NP
7179 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7180 * our previous maximum.
6e40f5bb 7181 */
ced549fa 7182 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7183 busiest_load = wl;
ced549fa 7184 busiest_capacity = capacity;
1e3c88bd
PZ
7185 busiest = rq;
7186 }
7187 }
7188
7189 return busiest;
7190}
7191
7192/*
7193 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7194 * so long as it is large enough.
7195 */
7196#define MAX_PINNED_INTERVAL 512
7197
7198/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7199DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7200
bd939f45 7201static int need_active_balance(struct lb_env *env)
1af3ed3d 7202{
bd939f45
PZ
7203 struct sched_domain *sd = env->sd;
7204
7205 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7206
7207 /*
7208 * ASYM_PACKING needs to force migrate tasks from busy but
7209 * higher numbered CPUs in order to pack all tasks in the
7210 * lowest numbered CPUs.
7211 */
bd939f45 7212 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7213 return 1;
1af3ed3d
PZ
7214 }
7215
1aaf90a4
VG
7216 /*
7217 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7218 * It's worth migrating the task if the src_cpu's capacity is reduced
7219 * because of other sched_class or IRQs if more capacity stays
7220 * available on dst_cpu.
7221 */
7222 if ((env->idle != CPU_NOT_IDLE) &&
7223 (env->src_rq->cfs.h_nr_running == 1)) {
7224 if ((check_cpu_capacity(env->src_rq, sd)) &&
7225 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7226 return 1;
7227 }
7228
1af3ed3d
PZ
7229 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7230}
7231
969c7921
TH
7232static int active_load_balance_cpu_stop(void *data);
7233
23f0d209
JK
7234static int should_we_balance(struct lb_env *env)
7235{
7236 struct sched_group *sg = env->sd->groups;
7237 struct cpumask *sg_cpus, *sg_mask;
7238 int cpu, balance_cpu = -1;
7239
7240 /*
7241 * In the newly idle case, we will allow all the cpu's
7242 * to do the newly idle load balance.
7243 */
7244 if (env->idle == CPU_NEWLY_IDLE)
7245 return 1;
7246
7247 sg_cpus = sched_group_cpus(sg);
7248 sg_mask = sched_group_mask(sg);
7249 /* Try to find first idle cpu */
7250 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7251 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7252 continue;
7253
7254 balance_cpu = cpu;
7255 break;
7256 }
7257
7258 if (balance_cpu == -1)
7259 balance_cpu = group_balance_cpu(sg);
7260
7261 /*
7262 * First idle cpu or the first cpu(busiest) in this sched group
7263 * is eligible for doing load balancing at this and above domains.
7264 */
b0cff9d8 7265 return balance_cpu == env->dst_cpu;
23f0d209
JK
7266}
7267
1e3c88bd
PZ
7268/*
7269 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7270 * tasks if there is an imbalance.
7271 */
7272static int load_balance(int this_cpu, struct rq *this_rq,
7273 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7274 int *continue_balancing)
1e3c88bd 7275{
88b8dac0 7276 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7277 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7278 struct sched_group *group;
1e3c88bd
PZ
7279 struct rq *busiest;
7280 unsigned long flags;
4ba29684 7281 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7282
8e45cb54
PZ
7283 struct lb_env env = {
7284 .sd = sd,
ddcdf6e7
PZ
7285 .dst_cpu = this_cpu,
7286 .dst_rq = this_rq,
88b8dac0 7287 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7288 .idle = idle,
eb95308e 7289 .loop_break = sched_nr_migrate_break,
b9403130 7290 .cpus = cpus,
0ec8aa00 7291 .fbq_type = all,
163122b7 7292 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7293 };
7294
cfc03118
JK
7295 /*
7296 * For NEWLY_IDLE load_balancing, we don't need to consider
7297 * other cpus in our group
7298 */
e02e60c1 7299 if (idle == CPU_NEWLY_IDLE)
cfc03118 7300 env.dst_grpmask = NULL;
cfc03118 7301
1e3c88bd
PZ
7302 cpumask_copy(cpus, cpu_active_mask);
7303
1e3c88bd
PZ
7304 schedstat_inc(sd, lb_count[idle]);
7305
7306redo:
23f0d209
JK
7307 if (!should_we_balance(&env)) {
7308 *continue_balancing = 0;
1e3c88bd 7309 goto out_balanced;
23f0d209 7310 }
1e3c88bd 7311
23f0d209 7312 group = find_busiest_group(&env);
1e3c88bd
PZ
7313 if (!group) {
7314 schedstat_inc(sd, lb_nobusyg[idle]);
7315 goto out_balanced;
7316 }
7317
b9403130 7318 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7319 if (!busiest) {
7320 schedstat_inc(sd, lb_nobusyq[idle]);
7321 goto out_balanced;
7322 }
7323
78feefc5 7324 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7325
bd939f45 7326 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7327
1aaf90a4
VG
7328 env.src_cpu = busiest->cpu;
7329 env.src_rq = busiest;
7330
1e3c88bd
PZ
7331 ld_moved = 0;
7332 if (busiest->nr_running > 1) {
7333 /*
7334 * Attempt to move tasks. If find_busiest_group has found
7335 * an imbalance but busiest->nr_running <= 1, the group is
7336 * still unbalanced. ld_moved simply stays zero, so it is
7337 * correctly treated as an imbalance.
7338 */
8e45cb54 7339 env.flags |= LBF_ALL_PINNED;
c82513e5 7340 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7341
5d6523eb 7342more_balance:
163122b7 7343 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7344
7345 /*
7346 * cur_ld_moved - load moved in current iteration
7347 * ld_moved - cumulative load moved across iterations
7348 */
163122b7 7349 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7350
7351 /*
163122b7
KT
7352 * We've detached some tasks from busiest_rq. Every
7353 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7354 * unlock busiest->lock, and we are able to be sure
7355 * that nobody can manipulate the tasks in parallel.
7356 * See task_rq_lock() family for the details.
1e3c88bd 7357 */
163122b7
KT
7358
7359 raw_spin_unlock(&busiest->lock);
7360
7361 if (cur_ld_moved) {
7362 attach_tasks(&env);
7363 ld_moved += cur_ld_moved;
7364 }
7365
1e3c88bd 7366 local_irq_restore(flags);
88b8dac0 7367
f1cd0858
JK
7368 if (env.flags & LBF_NEED_BREAK) {
7369 env.flags &= ~LBF_NEED_BREAK;
7370 goto more_balance;
7371 }
7372
88b8dac0
SV
7373 /*
7374 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7375 * us and move them to an alternate dst_cpu in our sched_group
7376 * where they can run. The upper limit on how many times we
7377 * iterate on same src_cpu is dependent on number of cpus in our
7378 * sched_group.
7379 *
7380 * This changes load balance semantics a bit on who can move
7381 * load to a given_cpu. In addition to the given_cpu itself
7382 * (or a ilb_cpu acting on its behalf where given_cpu is
7383 * nohz-idle), we now have balance_cpu in a position to move
7384 * load to given_cpu. In rare situations, this may cause
7385 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7386 * _independently_ and at _same_ time to move some load to
7387 * given_cpu) causing exceess load to be moved to given_cpu.
7388 * This however should not happen so much in practice and
7389 * moreover subsequent load balance cycles should correct the
7390 * excess load moved.
7391 */
6263322c 7392 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7393
7aff2e3a
VD
7394 /* Prevent to re-select dst_cpu via env's cpus */
7395 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7396
78feefc5 7397 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7398 env.dst_cpu = env.new_dst_cpu;
6263322c 7399 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7400 env.loop = 0;
7401 env.loop_break = sched_nr_migrate_break;
e02e60c1 7402
88b8dac0
SV
7403 /*
7404 * Go back to "more_balance" rather than "redo" since we
7405 * need to continue with same src_cpu.
7406 */
7407 goto more_balance;
7408 }
1e3c88bd 7409
6263322c
PZ
7410 /*
7411 * We failed to reach balance because of affinity.
7412 */
7413 if (sd_parent) {
63b2ca30 7414 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7415
afdeee05 7416 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7417 *group_imbalance = 1;
6263322c
PZ
7418 }
7419
1e3c88bd 7420 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7421 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7422 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7423 if (!cpumask_empty(cpus)) {
7424 env.loop = 0;
7425 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7426 goto redo;
bbf18b19 7427 }
afdeee05 7428 goto out_all_pinned;
1e3c88bd
PZ
7429 }
7430 }
7431
7432 if (!ld_moved) {
7433 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7434 /*
7435 * Increment the failure counter only on periodic balance.
7436 * We do not want newidle balance, which can be very
7437 * frequent, pollute the failure counter causing
7438 * excessive cache_hot migrations and active balances.
7439 */
7440 if (idle != CPU_NEWLY_IDLE)
7441 sd->nr_balance_failed++;
1e3c88bd 7442
bd939f45 7443 if (need_active_balance(&env)) {
1e3c88bd
PZ
7444 raw_spin_lock_irqsave(&busiest->lock, flags);
7445
969c7921
TH
7446 /* don't kick the active_load_balance_cpu_stop,
7447 * if the curr task on busiest cpu can't be
7448 * moved to this_cpu
1e3c88bd
PZ
7449 */
7450 if (!cpumask_test_cpu(this_cpu,
fa17b507 7451 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7452 raw_spin_unlock_irqrestore(&busiest->lock,
7453 flags);
8e45cb54 7454 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7455 goto out_one_pinned;
7456 }
7457
969c7921
TH
7458 /*
7459 * ->active_balance synchronizes accesses to
7460 * ->active_balance_work. Once set, it's cleared
7461 * only after active load balance is finished.
7462 */
1e3c88bd
PZ
7463 if (!busiest->active_balance) {
7464 busiest->active_balance = 1;
7465 busiest->push_cpu = this_cpu;
7466 active_balance = 1;
7467 }
7468 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7469
bd939f45 7470 if (active_balance) {
969c7921
TH
7471 stop_one_cpu_nowait(cpu_of(busiest),
7472 active_load_balance_cpu_stop, busiest,
7473 &busiest->active_balance_work);
bd939f45 7474 }
1e3c88bd 7475
d02c0711 7476 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7477 sd->nr_balance_failed = sd->cache_nice_tries+1;
7478 }
7479 } else
7480 sd->nr_balance_failed = 0;
7481
7482 if (likely(!active_balance)) {
7483 /* We were unbalanced, so reset the balancing interval */
7484 sd->balance_interval = sd->min_interval;
7485 } else {
7486 /*
7487 * If we've begun active balancing, start to back off. This
7488 * case may not be covered by the all_pinned logic if there
7489 * is only 1 task on the busy runqueue (because we don't call
163122b7 7490 * detach_tasks).
1e3c88bd
PZ
7491 */
7492 if (sd->balance_interval < sd->max_interval)
7493 sd->balance_interval *= 2;
7494 }
7495
1e3c88bd
PZ
7496 goto out;
7497
7498out_balanced:
afdeee05
VG
7499 /*
7500 * We reach balance although we may have faced some affinity
7501 * constraints. Clear the imbalance flag if it was set.
7502 */
7503 if (sd_parent) {
7504 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7505
7506 if (*group_imbalance)
7507 *group_imbalance = 0;
7508 }
7509
7510out_all_pinned:
7511 /*
7512 * We reach balance because all tasks are pinned at this level so
7513 * we can't migrate them. Let the imbalance flag set so parent level
7514 * can try to migrate them.
7515 */
1e3c88bd
PZ
7516 schedstat_inc(sd, lb_balanced[idle]);
7517
7518 sd->nr_balance_failed = 0;
7519
7520out_one_pinned:
7521 /* tune up the balancing interval */
8e45cb54 7522 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7523 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7524 (sd->balance_interval < sd->max_interval))
7525 sd->balance_interval *= 2;
7526
46e49b38 7527 ld_moved = 0;
1e3c88bd 7528out:
1e3c88bd
PZ
7529 return ld_moved;
7530}
7531
52a08ef1
JL
7532static inline unsigned long
7533get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7534{
7535 unsigned long interval = sd->balance_interval;
7536
7537 if (cpu_busy)
7538 interval *= sd->busy_factor;
7539
7540 /* scale ms to jiffies */
7541 interval = msecs_to_jiffies(interval);
7542 interval = clamp(interval, 1UL, max_load_balance_interval);
7543
7544 return interval;
7545}
7546
7547static inline void
7548update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7549{
7550 unsigned long interval, next;
7551
7552 interval = get_sd_balance_interval(sd, cpu_busy);
7553 next = sd->last_balance + interval;
7554
7555 if (time_after(*next_balance, next))
7556 *next_balance = next;
7557}
7558
1e3c88bd
PZ
7559/*
7560 * idle_balance is called by schedule() if this_cpu is about to become
7561 * idle. Attempts to pull tasks from other CPUs.
7562 */
6e83125c 7563static int idle_balance(struct rq *this_rq)
1e3c88bd 7564{
52a08ef1
JL
7565 unsigned long next_balance = jiffies + HZ;
7566 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7567 struct sched_domain *sd;
7568 int pulled_task = 0;
9bd721c5 7569 u64 curr_cost = 0;
1e3c88bd 7570
6e83125c
PZ
7571 /*
7572 * We must set idle_stamp _before_ calling idle_balance(), such that we
7573 * measure the duration of idle_balance() as idle time.
7574 */
7575 this_rq->idle_stamp = rq_clock(this_rq);
7576
4486edd1
TC
7577 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7578 !this_rq->rd->overload) {
52a08ef1
JL
7579 rcu_read_lock();
7580 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7581 if (sd)
7582 update_next_balance(sd, 0, &next_balance);
7583 rcu_read_unlock();
7584
6e83125c 7585 goto out;
52a08ef1 7586 }
1e3c88bd 7587
f492e12e
PZ
7588 raw_spin_unlock(&this_rq->lock);
7589
48a16753 7590 update_blocked_averages(this_cpu);
dce840a0 7591 rcu_read_lock();
1e3c88bd 7592 for_each_domain(this_cpu, sd) {
23f0d209 7593 int continue_balancing = 1;
9bd721c5 7594 u64 t0, domain_cost;
1e3c88bd
PZ
7595
7596 if (!(sd->flags & SD_LOAD_BALANCE))
7597 continue;
7598
52a08ef1
JL
7599 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7600 update_next_balance(sd, 0, &next_balance);
9bd721c5 7601 break;
52a08ef1 7602 }
9bd721c5 7603
f492e12e 7604 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7605 t0 = sched_clock_cpu(this_cpu);
7606
f492e12e 7607 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7608 sd, CPU_NEWLY_IDLE,
7609 &continue_balancing);
9bd721c5
JL
7610
7611 domain_cost = sched_clock_cpu(this_cpu) - t0;
7612 if (domain_cost > sd->max_newidle_lb_cost)
7613 sd->max_newidle_lb_cost = domain_cost;
7614
7615 curr_cost += domain_cost;
f492e12e 7616 }
1e3c88bd 7617
52a08ef1 7618 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7619
7620 /*
7621 * Stop searching for tasks to pull if there are
7622 * now runnable tasks on this rq.
7623 */
7624 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7625 break;
1e3c88bd 7626 }
dce840a0 7627 rcu_read_unlock();
f492e12e
PZ
7628
7629 raw_spin_lock(&this_rq->lock);
7630
0e5b5337
JL
7631 if (curr_cost > this_rq->max_idle_balance_cost)
7632 this_rq->max_idle_balance_cost = curr_cost;
7633
e5fc6611 7634 /*
0e5b5337
JL
7635 * While browsing the domains, we released the rq lock, a task could
7636 * have been enqueued in the meantime. Since we're not going idle,
7637 * pretend we pulled a task.
e5fc6611 7638 */
0e5b5337 7639 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7640 pulled_task = 1;
e5fc6611 7641
52a08ef1
JL
7642out:
7643 /* Move the next balance forward */
7644 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7645 this_rq->next_balance = next_balance;
9bd721c5 7646
e4aa358b 7647 /* Is there a task of a high priority class? */
46383648 7648 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7649 pulled_task = -1;
7650
38c6ade2 7651 if (pulled_task)
6e83125c
PZ
7652 this_rq->idle_stamp = 0;
7653
3c4017c1 7654 return pulled_task;
1e3c88bd
PZ
7655}
7656
7657/*
969c7921
TH
7658 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7659 * running tasks off the busiest CPU onto idle CPUs. It requires at
7660 * least 1 task to be running on each physical CPU where possible, and
7661 * avoids physical / logical imbalances.
1e3c88bd 7662 */
969c7921 7663static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7664{
969c7921
TH
7665 struct rq *busiest_rq = data;
7666 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7667 int target_cpu = busiest_rq->push_cpu;
969c7921 7668 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7669 struct sched_domain *sd;
e5673f28 7670 struct task_struct *p = NULL;
969c7921
TH
7671
7672 raw_spin_lock_irq(&busiest_rq->lock);
7673
7674 /* make sure the requested cpu hasn't gone down in the meantime */
7675 if (unlikely(busiest_cpu != smp_processor_id() ||
7676 !busiest_rq->active_balance))
7677 goto out_unlock;
1e3c88bd
PZ
7678
7679 /* Is there any task to move? */
7680 if (busiest_rq->nr_running <= 1)
969c7921 7681 goto out_unlock;
1e3c88bd
PZ
7682
7683 /*
7684 * This condition is "impossible", if it occurs
7685 * we need to fix it. Originally reported by
7686 * Bjorn Helgaas on a 128-cpu setup.
7687 */
7688 BUG_ON(busiest_rq == target_rq);
7689
1e3c88bd 7690 /* Search for an sd spanning us and the target CPU. */
dce840a0 7691 rcu_read_lock();
1e3c88bd
PZ
7692 for_each_domain(target_cpu, sd) {
7693 if ((sd->flags & SD_LOAD_BALANCE) &&
7694 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7695 break;
7696 }
7697
7698 if (likely(sd)) {
8e45cb54
PZ
7699 struct lb_env env = {
7700 .sd = sd,
ddcdf6e7
PZ
7701 .dst_cpu = target_cpu,
7702 .dst_rq = target_rq,
7703 .src_cpu = busiest_rq->cpu,
7704 .src_rq = busiest_rq,
8e45cb54
PZ
7705 .idle = CPU_IDLE,
7706 };
7707
1e3c88bd
PZ
7708 schedstat_inc(sd, alb_count);
7709
e5673f28 7710 p = detach_one_task(&env);
d02c0711 7711 if (p) {
1e3c88bd 7712 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7713 /* Active balancing done, reset the failure counter. */
7714 sd->nr_balance_failed = 0;
7715 } else {
1e3c88bd 7716 schedstat_inc(sd, alb_failed);
d02c0711 7717 }
1e3c88bd 7718 }
dce840a0 7719 rcu_read_unlock();
969c7921
TH
7720out_unlock:
7721 busiest_rq->active_balance = 0;
e5673f28
KT
7722 raw_spin_unlock(&busiest_rq->lock);
7723
7724 if (p)
7725 attach_one_task(target_rq, p);
7726
7727 local_irq_enable();
7728
969c7921 7729 return 0;
1e3c88bd
PZ
7730}
7731
d987fc7f
MG
7732static inline int on_null_domain(struct rq *rq)
7733{
7734 return unlikely(!rcu_dereference_sched(rq->sd));
7735}
7736
3451d024 7737#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7738/*
7739 * idle load balancing details
83cd4fe2
VP
7740 * - When one of the busy CPUs notice that there may be an idle rebalancing
7741 * needed, they will kick the idle load balancer, which then does idle
7742 * load balancing for all the idle CPUs.
7743 */
1e3c88bd 7744static struct {
83cd4fe2 7745 cpumask_var_t idle_cpus_mask;
0b005cf5 7746 atomic_t nr_cpus;
83cd4fe2
VP
7747 unsigned long next_balance; /* in jiffy units */
7748} nohz ____cacheline_aligned;
1e3c88bd 7749
3dd0337d 7750static inline int find_new_ilb(void)
1e3c88bd 7751{
0b005cf5 7752 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7753
786d6dc7
SS
7754 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7755 return ilb;
7756
7757 return nr_cpu_ids;
1e3c88bd 7758}
1e3c88bd 7759
83cd4fe2
VP
7760/*
7761 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7762 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7763 * CPU (if there is one).
7764 */
0aeeeeba 7765static void nohz_balancer_kick(void)
83cd4fe2
VP
7766{
7767 int ilb_cpu;
7768
7769 nohz.next_balance++;
7770
3dd0337d 7771 ilb_cpu = find_new_ilb();
83cd4fe2 7772
0b005cf5
SS
7773 if (ilb_cpu >= nr_cpu_ids)
7774 return;
83cd4fe2 7775
cd490c5b 7776 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7777 return;
7778 /*
7779 * Use smp_send_reschedule() instead of resched_cpu().
7780 * This way we generate a sched IPI on the target cpu which
7781 * is idle. And the softirq performing nohz idle load balance
7782 * will be run before returning from the IPI.
7783 */
7784 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7785 return;
7786}
7787
c1cc017c 7788static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7789{
7790 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7791 /*
7792 * Completely isolated CPUs don't ever set, so we must test.
7793 */
7794 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7795 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7796 atomic_dec(&nohz.nr_cpus);
7797 }
71325960
SS
7798 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7799 }
7800}
7801
69e1e811
SS
7802static inline void set_cpu_sd_state_busy(void)
7803{
7804 struct sched_domain *sd;
37dc6b50 7805 int cpu = smp_processor_id();
69e1e811 7806
69e1e811 7807 rcu_read_lock();
37dc6b50 7808 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7809
7810 if (!sd || !sd->nohz_idle)
7811 goto unlock;
7812 sd->nohz_idle = 0;
7813
63b2ca30 7814 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7815unlock:
69e1e811
SS
7816 rcu_read_unlock();
7817}
7818
7819void set_cpu_sd_state_idle(void)
7820{
7821 struct sched_domain *sd;
37dc6b50 7822 int cpu = smp_processor_id();
69e1e811 7823
69e1e811 7824 rcu_read_lock();
37dc6b50 7825 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7826
7827 if (!sd || sd->nohz_idle)
7828 goto unlock;
7829 sd->nohz_idle = 1;
7830
63b2ca30 7831 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7832unlock:
69e1e811
SS
7833 rcu_read_unlock();
7834}
7835
1e3c88bd 7836/*
c1cc017c 7837 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7838 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7839 */
c1cc017c 7840void nohz_balance_enter_idle(int cpu)
1e3c88bd 7841{
71325960
SS
7842 /*
7843 * If this cpu is going down, then nothing needs to be done.
7844 */
7845 if (!cpu_active(cpu))
7846 return;
7847
c1cc017c
AS
7848 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7849 return;
1e3c88bd 7850
d987fc7f
MG
7851 /*
7852 * If we're a completely isolated CPU, we don't play.
7853 */
7854 if (on_null_domain(cpu_rq(cpu)))
7855 return;
7856
c1cc017c
AS
7857 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7858 atomic_inc(&nohz.nr_cpus);
7859 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7860}
71325960 7861
0db0628d 7862static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7863 unsigned long action, void *hcpu)
7864{
7865 switch (action & ~CPU_TASKS_FROZEN) {
7866 case CPU_DYING:
c1cc017c 7867 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7868 return NOTIFY_OK;
7869 default:
7870 return NOTIFY_DONE;
7871 }
7872}
1e3c88bd
PZ
7873#endif
7874
7875static DEFINE_SPINLOCK(balancing);
7876
49c022e6
PZ
7877/*
7878 * Scale the max load_balance interval with the number of CPUs in the system.
7879 * This trades load-balance latency on larger machines for less cross talk.
7880 */
029632fb 7881void update_max_interval(void)
49c022e6
PZ
7882{
7883 max_load_balance_interval = HZ*num_online_cpus()/10;
7884}
7885
1e3c88bd
PZ
7886/*
7887 * It checks each scheduling domain to see if it is due to be balanced,
7888 * and initiates a balancing operation if so.
7889 *
b9b0853a 7890 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7891 */
f7ed0a89 7892static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7893{
23f0d209 7894 int continue_balancing = 1;
f7ed0a89 7895 int cpu = rq->cpu;
1e3c88bd 7896 unsigned long interval;
04f733b4 7897 struct sched_domain *sd;
1e3c88bd
PZ
7898 /* Earliest time when we have to do rebalance again */
7899 unsigned long next_balance = jiffies + 60*HZ;
7900 int update_next_balance = 0;
f48627e6
JL
7901 int need_serialize, need_decay = 0;
7902 u64 max_cost = 0;
1e3c88bd 7903
48a16753 7904 update_blocked_averages(cpu);
2069dd75 7905
dce840a0 7906 rcu_read_lock();
1e3c88bd 7907 for_each_domain(cpu, sd) {
f48627e6
JL
7908 /*
7909 * Decay the newidle max times here because this is a regular
7910 * visit to all the domains. Decay ~1% per second.
7911 */
7912 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7913 sd->max_newidle_lb_cost =
7914 (sd->max_newidle_lb_cost * 253) / 256;
7915 sd->next_decay_max_lb_cost = jiffies + HZ;
7916 need_decay = 1;
7917 }
7918 max_cost += sd->max_newidle_lb_cost;
7919
1e3c88bd
PZ
7920 if (!(sd->flags & SD_LOAD_BALANCE))
7921 continue;
7922
f48627e6
JL
7923 /*
7924 * Stop the load balance at this level. There is another
7925 * CPU in our sched group which is doing load balancing more
7926 * actively.
7927 */
7928 if (!continue_balancing) {
7929 if (need_decay)
7930 continue;
7931 break;
7932 }
7933
52a08ef1 7934 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7935
7936 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7937 if (need_serialize) {
7938 if (!spin_trylock(&balancing))
7939 goto out;
7940 }
7941
7942 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7943 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7944 /*
6263322c 7945 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7946 * env->dst_cpu, so we can't know our idle
7947 * state even if we migrated tasks. Update it.
1e3c88bd 7948 */
de5eb2dd 7949 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7950 }
7951 sd->last_balance = jiffies;
52a08ef1 7952 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7953 }
7954 if (need_serialize)
7955 spin_unlock(&balancing);
7956out:
7957 if (time_after(next_balance, sd->last_balance + interval)) {
7958 next_balance = sd->last_balance + interval;
7959 update_next_balance = 1;
7960 }
f48627e6
JL
7961 }
7962 if (need_decay) {
1e3c88bd 7963 /*
f48627e6
JL
7964 * Ensure the rq-wide value also decays but keep it at a
7965 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7966 */
f48627e6
JL
7967 rq->max_idle_balance_cost =
7968 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7969 }
dce840a0 7970 rcu_read_unlock();
1e3c88bd
PZ
7971
7972 /*
7973 * next_balance will be updated only when there is a need.
7974 * When the cpu is attached to null domain for ex, it will not be
7975 * updated.
7976 */
c5afb6a8 7977 if (likely(update_next_balance)) {
1e3c88bd 7978 rq->next_balance = next_balance;
c5afb6a8
VG
7979
7980#ifdef CONFIG_NO_HZ_COMMON
7981 /*
7982 * If this CPU has been elected to perform the nohz idle
7983 * balance. Other idle CPUs have already rebalanced with
7984 * nohz_idle_balance() and nohz.next_balance has been
7985 * updated accordingly. This CPU is now running the idle load
7986 * balance for itself and we need to update the
7987 * nohz.next_balance accordingly.
7988 */
7989 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7990 nohz.next_balance = rq->next_balance;
7991#endif
7992 }
1e3c88bd
PZ
7993}
7994
3451d024 7995#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7996/*
3451d024 7997 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7998 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7999 */
208cb16b 8000static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8001{
208cb16b 8002 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8003 struct rq *rq;
8004 int balance_cpu;
c5afb6a8
VG
8005 /* Earliest time when we have to do rebalance again */
8006 unsigned long next_balance = jiffies + 60*HZ;
8007 int update_next_balance = 0;
83cd4fe2 8008
1c792db7
SS
8009 if (idle != CPU_IDLE ||
8010 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8011 goto end;
83cd4fe2
VP
8012
8013 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8014 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8015 continue;
8016
8017 /*
8018 * If this cpu gets work to do, stop the load balancing
8019 * work being done for other cpus. Next load
8020 * balancing owner will pick it up.
8021 */
1c792db7 8022 if (need_resched())
83cd4fe2 8023 break;
83cd4fe2 8024
5ed4f1d9
VG
8025 rq = cpu_rq(balance_cpu);
8026
ed61bbc6
TC
8027 /*
8028 * If time for next balance is due,
8029 * do the balance.
8030 */
8031 if (time_after_eq(jiffies, rq->next_balance)) {
8032 raw_spin_lock_irq(&rq->lock);
8033 update_rq_clock(rq);
cee1afce 8034 cpu_load_update_idle(rq);
ed61bbc6
TC
8035 raw_spin_unlock_irq(&rq->lock);
8036 rebalance_domains(rq, CPU_IDLE);
8037 }
83cd4fe2 8038
c5afb6a8
VG
8039 if (time_after(next_balance, rq->next_balance)) {
8040 next_balance = rq->next_balance;
8041 update_next_balance = 1;
8042 }
83cd4fe2 8043 }
c5afb6a8
VG
8044
8045 /*
8046 * next_balance will be updated only when there is a need.
8047 * When the CPU is attached to null domain for ex, it will not be
8048 * updated.
8049 */
8050 if (likely(update_next_balance))
8051 nohz.next_balance = next_balance;
1c792db7
SS
8052end:
8053 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8054}
8055
8056/*
0b005cf5 8057 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8058 * of an idle cpu in the system.
0b005cf5 8059 * - This rq has more than one task.
1aaf90a4
VG
8060 * - This rq has at least one CFS task and the capacity of the CPU is
8061 * significantly reduced because of RT tasks or IRQs.
8062 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8063 * multiple busy cpu.
0b005cf5
SS
8064 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8065 * domain span are idle.
83cd4fe2 8066 */
1aaf90a4 8067static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8068{
8069 unsigned long now = jiffies;
0b005cf5 8070 struct sched_domain *sd;
63b2ca30 8071 struct sched_group_capacity *sgc;
4a725627 8072 int nr_busy, cpu = rq->cpu;
1aaf90a4 8073 bool kick = false;
83cd4fe2 8074
4a725627 8075 if (unlikely(rq->idle_balance))
1aaf90a4 8076 return false;
83cd4fe2 8077
1c792db7
SS
8078 /*
8079 * We may be recently in ticked or tickless idle mode. At the first
8080 * busy tick after returning from idle, we will update the busy stats.
8081 */
69e1e811 8082 set_cpu_sd_state_busy();
c1cc017c 8083 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8084
8085 /*
8086 * None are in tickless mode and hence no need for NOHZ idle load
8087 * balancing.
8088 */
8089 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8090 return false;
1c792db7
SS
8091
8092 if (time_before(now, nohz.next_balance))
1aaf90a4 8093 return false;
83cd4fe2 8094
0b005cf5 8095 if (rq->nr_running >= 2)
1aaf90a4 8096 return true;
83cd4fe2 8097
067491b7 8098 rcu_read_lock();
37dc6b50 8099 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8100 if (sd) {
63b2ca30
NP
8101 sgc = sd->groups->sgc;
8102 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8103
1aaf90a4
VG
8104 if (nr_busy > 1) {
8105 kick = true;
8106 goto unlock;
8107 }
8108
83cd4fe2 8109 }
37dc6b50 8110
1aaf90a4
VG
8111 sd = rcu_dereference(rq->sd);
8112 if (sd) {
8113 if ((rq->cfs.h_nr_running >= 1) &&
8114 check_cpu_capacity(rq, sd)) {
8115 kick = true;
8116 goto unlock;
8117 }
8118 }
37dc6b50 8119
1aaf90a4 8120 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8121 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8122 sched_domain_span(sd)) < cpu)) {
8123 kick = true;
8124 goto unlock;
8125 }
067491b7 8126
1aaf90a4 8127unlock:
067491b7 8128 rcu_read_unlock();
1aaf90a4 8129 return kick;
83cd4fe2
VP
8130}
8131#else
208cb16b 8132static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8133#endif
8134
8135/*
8136 * run_rebalance_domains is triggered when needed from the scheduler tick.
8137 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8138 */
1e3c88bd
PZ
8139static void run_rebalance_domains(struct softirq_action *h)
8140{
208cb16b 8141 struct rq *this_rq = this_rq();
6eb57e0d 8142 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8143 CPU_IDLE : CPU_NOT_IDLE;
8144
1e3c88bd 8145 /*
83cd4fe2 8146 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8147 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8148 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8149 * give the idle cpus a chance to load balance. Else we may
8150 * load balance only within the local sched_domain hierarchy
8151 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8152 */
208cb16b 8153 nohz_idle_balance(this_rq, idle);
d4573c3e 8154 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8155}
8156
1e3c88bd
PZ
8157/*
8158 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8159 */
7caff66f 8160void trigger_load_balance(struct rq *rq)
1e3c88bd 8161{
1e3c88bd 8162 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8163 if (unlikely(on_null_domain(rq)))
8164 return;
8165
8166 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8167 raise_softirq(SCHED_SOFTIRQ);
3451d024 8168#ifdef CONFIG_NO_HZ_COMMON
c726099e 8169 if (nohz_kick_needed(rq))
0aeeeeba 8170 nohz_balancer_kick();
83cd4fe2 8171#endif
1e3c88bd
PZ
8172}
8173
0bcdcf28
CE
8174static void rq_online_fair(struct rq *rq)
8175{
8176 update_sysctl();
0e59bdae
KT
8177
8178 update_runtime_enabled(rq);
0bcdcf28
CE
8179}
8180
8181static void rq_offline_fair(struct rq *rq)
8182{
8183 update_sysctl();
a4c96ae3
PB
8184
8185 /* Ensure any throttled groups are reachable by pick_next_task */
8186 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8187}
8188
55e12e5e 8189#endif /* CONFIG_SMP */
e1d1484f 8190
bf0f6f24
IM
8191/*
8192 * scheduler tick hitting a task of our scheduling class:
8193 */
8f4d37ec 8194static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8195{
8196 struct cfs_rq *cfs_rq;
8197 struct sched_entity *se = &curr->se;
8198
8199 for_each_sched_entity(se) {
8200 cfs_rq = cfs_rq_of(se);
8f4d37ec 8201 entity_tick(cfs_rq, se, queued);
bf0f6f24 8202 }
18bf2805 8203
b52da86e 8204 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8205 task_tick_numa(rq, curr);
bf0f6f24
IM
8206}
8207
8208/*
cd29fe6f
PZ
8209 * called on fork with the child task as argument from the parent's context
8210 * - child not yet on the tasklist
8211 * - preemption disabled
bf0f6f24 8212 */
cd29fe6f 8213static void task_fork_fair(struct task_struct *p)
bf0f6f24 8214{
4fc420c9
DN
8215 struct cfs_rq *cfs_rq;
8216 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8217 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8218 struct rq *rq = this_rq();
8219 unsigned long flags;
8220
05fa785c 8221 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8222
861d034e
PZ
8223 update_rq_clock(rq);
8224
4fc420c9
DN
8225 cfs_rq = task_cfs_rq(current);
8226 curr = cfs_rq->curr;
8227
6c9a27f5
DN
8228 /*
8229 * Not only the cpu but also the task_group of the parent might have
8230 * been changed after parent->se.parent,cfs_rq were copied to
8231 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8232 * of child point to valid ones.
8233 */
8234 rcu_read_lock();
8235 __set_task_cpu(p, this_cpu);
8236 rcu_read_unlock();
bf0f6f24 8237
7109c442 8238 update_curr(cfs_rq);
cd29fe6f 8239
b5d9d734
MG
8240 if (curr)
8241 se->vruntime = curr->vruntime;
aeb73b04 8242 place_entity(cfs_rq, se, 1);
4d78e7b6 8243
cd29fe6f 8244 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8245 /*
edcb60a3
IM
8246 * Upon rescheduling, sched_class::put_prev_task() will place
8247 * 'current' within the tree based on its new key value.
8248 */
4d78e7b6 8249 swap(curr->vruntime, se->vruntime);
8875125e 8250 resched_curr(rq);
4d78e7b6 8251 }
bf0f6f24 8252
88ec22d3
PZ
8253 se->vruntime -= cfs_rq->min_vruntime;
8254
05fa785c 8255 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8256}
8257
cb469845
SR
8258/*
8259 * Priority of the task has changed. Check to see if we preempt
8260 * the current task.
8261 */
da7a735e
PZ
8262static void
8263prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8264{
da0c1e65 8265 if (!task_on_rq_queued(p))
da7a735e
PZ
8266 return;
8267
cb469845
SR
8268 /*
8269 * Reschedule if we are currently running on this runqueue and
8270 * our priority decreased, or if we are not currently running on
8271 * this runqueue and our priority is higher than the current's
8272 */
da7a735e 8273 if (rq->curr == p) {
cb469845 8274 if (p->prio > oldprio)
8875125e 8275 resched_curr(rq);
cb469845 8276 } else
15afe09b 8277 check_preempt_curr(rq, p, 0);
cb469845
SR
8278}
8279
daa59407 8280static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8281{
8282 struct sched_entity *se = &p->se;
da7a735e
PZ
8283
8284 /*
daa59407
BP
8285 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8286 * the dequeue_entity(.flags=0) will already have normalized the
8287 * vruntime.
8288 */
8289 if (p->on_rq)
8290 return true;
8291
8292 /*
8293 * When !on_rq, vruntime of the task has usually NOT been normalized.
8294 * But there are some cases where it has already been normalized:
da7a735e 8295 *
daa59407
BP
8296 * - A forked child which is waiting for being woken up by
8297 * wake_up_new_task().
8298 * - A task which has been woken up by try_to_wake_up() and
8299 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8300 */
daa59407
BP
8301 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8302 return true;
8303
8304 return false;
8305}
8306
8307static void detach_task_cfs_rq(struct task_struct *p)
8308{
8309 struct sched_entity *se = &p->se;
8310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8311
8312 if (!vruntime_normalized(p)) {
da7a735e
PZ
8313 /*
8314 * Fix up our vruntime so that the current sleep doesn't
8315 * cause 'unlimited' sleep bonus.
8316 */
8317 place_entity(cfs_rq, se, 0);
8318 se->vruntime -= cfs_rq->min_vruntime;
8319 }
9ee474f5 8320
9d89c257 8321 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8322 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8323}
8324
daa59407 8325static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8326{
f36c019c 8327 struct sched_entity *se = &p->se;
daa59407 8328 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8329
8330#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8331 /*
8332 * Since the real-depth could have been changed (only FAIR
8333 * class maintain depth value), reset depth properly.
8334 */
8335 se->depth = se->parent ? se->parent->depth + 1 : 0;
8336#endif
7855a35a 8337
6efdb105 8338 /* Synchronize task with its cfs_rq */
daa59407
BP
8339 attach_entity_load_avg(cfs_rq, se);
8340
8341 if (!vruntime_normalized(p))
8342 se->vruntime += cfs_rq->min_vruntime;
8343}
6efdb105 8344
daa59407
BP
8345static void switched_from_fair(struct rq *rq, struct task_struct *p)
8346{
8347 detach_task_cfs_rq(p);
8348}
8349
8350static void switched_to_fair(struct rq *rq, struct task_struct *p)
8351{
8352 attach_task_cfs_rq(p);
7855a35a 8353
daa59407 8354 if (task_on_rq_queued(p)) {
7855a35a 8355 /*
daa59407
BP
8356 * We were most likely switched from sched_rt, so
8357 * kick off the schedule if running, otherwise just see
8358 * if we can still preempt the current task.
7855a35a 8359 */
daa59407
BP
8360 if (rq->curr == p)
8361 resched_curr(rq);
8362 else
8363 check_preempt_curr(rq, p, 0);
7855a35a 8364 }
cb469845
SR
8365}
8366
83b699ed
SV
8367/* Account for a task changing its policy or group.
8368 *
8369 * This routine is mostly called to set cfs_rq->curr field when a task
8370 * migrates between groups/classes.
8371 */
8372static void set_curr_task_fair(struct rq *rq)
8373{
8374 struct sched_entity *se = &rq->curr->se;
8375
ec12cb7f
PT
8376 for_each_sched_entity(se) {
8377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8378
8379 set_next_entity(cfs_rq, se);
8380 /* ensure bandwidth has been allocated on our new cfs_rq */
8381 account_cfs_rq_runtime(cfs_rq, 0);
8382 }
83b699ed
SV
8383}
8384
029632fb
PZ
8385void init_cfs_rq(struct cfs_rq *cfs_rq)
8386{
8387 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8388 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8389#ifndef CONFIG_64BIT
8390 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8391#endif
141965c7 8392#ifdef CONFIG_SMP
9d89c257
YD
8393 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8394 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8395#endif
029632fb
PZ
8396}
8397
810b3817 8398#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8399static void task_move_group_fair(struct task_struct *p)
810b3817 8400{
daa59407 8401 detach_task_cfs_rq(p);
b2b5ce02 8402 set_task_rq(p, task_cpu(p));
6efdb105
BP
8403
8404#ifdef CONFIG_SMP
8405 /* Tell se's cfs_rq has been changed -- migrated */
8406 p->se.avg.last_update_time = 0;
8407#endif
daa59407 8408 attach_task_cfs_rq(p);
810b3817 8409}
029632fb
PZ
8410
8411void free_fair_sched_group(struct task_group *tg)
8412{
8413 int i;
8414
8415 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8416
8417 for_each_possible_cpu(i) {
8418 if (tg->cfs_rq)
8419 kfree(tg->cfs_rq[i]);
6fe1f348 8420 if (tg->se)
029632fb
PZ
8421 kfree(tg->se[i]);
8422 }
8423
8424 kfree(tg->cfs_rq);
8425 kfree(tg->se);
8426}
8427
8428int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8429{
8430 struct cfs_rq *cfs_rq;
8431 struct sched_entity *se;
8432 int i;
8433
8434 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8435 if (!tg->cfs_rq)
8436 goto err;
8437 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8438 if (!tg->se)
8439 goto err;
8440
8441 tg->shares = NICE_0_LOAD;
8442
8443 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8444
8445 for_each_possible_cpu(i) {
8446 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8447 GFP_KERNEL, cpu_to_node(i));
8448 if (!cfs_rq)
8449 goto err;
8450
8451 se = kzalloc_node(sizeof(struct sched_entity),
8452 GFP_KERNEL, cpu_to_node(i));
8453 if (!se)
8454 goto err_free_rq;
8455
8456 init_cfs_rq(cfs_rq);
8457 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8458 init_entity_runnable_average(se);
2b8c41da 8459 post_init_entity_util_avg(se);
029632fb
PZ
8460 }
8461
8462 return 1;
8463
8464err_free_rq:
8465 kfree(cfs_rq);
8466err:
8467 return 0;
8468}
8469
6fe1f348 8470void unregister_fair_sched_group(struct task_group *tg)
029632fb 8471{
029632fb 8472 unsigned long flags;
6fe1f348
PZ
8473 struct rq *rq;
8474 int cpu;
029632fb 8475
6fe1f348
PZ
8476 for_each_possible_cpu(cpu) {
8477 if (tg->se[cpu])
8478 remove_entity_load_avg(tg->se[cpu]);
029632fb 8479
6fe1f348
PZ
8480 /*
8481 * Only empty task groups can be destroyed; so we can speculatively
8482 * check on_list without danger of it being re-added.
8483 */
8484 if (!tg->cfs_rq[cpu]->on_list)
8485 continue;
8486
8487 rq = cpu_rq(cpu);
8488
8489 raw_spin_lock_irqsave(&rq->lock, flags);
8490 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8491 raw_spin_unlock_irqrestore(&rq->lock, flags);
8492 }
029632fb
PZ
8493}
8494
8495void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8496 struct sched_entity *se, int cpu,
8497 struct sched_entity *parent)
8498{
8499 struct rq *rq = cpu_rq(cpu);
8500
8501 cfs_rq->tg = tg;
8502 cfs_rq->rq = rq;
029632fb
PZ
8503 init_cfs_rq_runtime(cfs_rq);
8504
8505 tg->cfs_rq[cpu] = cfs_rq;
8506 tg->se[cpu] = se;
8507
8508 /* se could be NULL for root_task_group */
8509 if (!se)
8510 return;
8511
fed14d45 8512 if (!parent) {
029632fb 8513 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8514 se->depth = 0;
8515 } else {
029632fb 8516 se->cfs_rq = parent->my_q;
fed14d45
PZ
8517 se->depth = parent->depth + 1;
8518 }
029632fb
PZ
8519
8520 se->my_q = cfs_rq;
0ac9b1c2
PT
8521 /* guarantee group entities always have weight */
8522 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8523 se->parent = parent;
8524}
8525
8526static DEFINE_MUTEX(shares_mutex);
8527
8528int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8529{
8530 int i;
8531 unsigned long flags;
8532
8533 /*
8534 * We can't change the weight of the root cgroup.
8535 */
8536 if (!tg->se[0])
8537 return -EINVAL;
8538
8539 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8540
8541 mutex_lock(&shares_mutex);
8542 if (tg->shares == shares)
8543 goto done;
8544
8545 tg->shares = shares;
8546 for_each_possible_cpu(i) {
8547 struct rq *rq = cpu_rq(i);
8548 struct sched_entity *se;
8549
8550 se = tg->se[i];
8551 /* Propagate contribution to hierarchy */
8552 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8553
8554 /* Possible calls to update_curr() need rq clock */
8555 update_rq_clock(rq);
17bc14b7 8556 for_each_sched_entity(se)
029632fb
PZ
8557 update_cfs_shares(group_cfs_rq(se));
8558 raw_spin_unlock_irqrestore(&rq->lock, flags);
8559 }
8560
8561done:
8562 mutex_unlock(&shares_mutex);
8563 return 0;
8564}
8565#else /* CONFIG_FAIR_GROUP_SCHED */
8566
8567void free_fair_sched_group(struct task_group *tg) { }
8568
8569int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8570{
8571 return 1;
8572}
8573
6fe1f348 8574void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8575
8576#endif /* CONFIG_FAIR_GROUP_SCHED */
8577
810b3817 8578
6d686f45 8579static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8580{
8581 struct sched_entity *se = &task->se;
0d721cea
PW
8582 unsigned int rr_interval = 0;
8583
8584 /*
8585 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8586 * idle runqueue:
8587 */
0d721cea 8588 if (rq->cfs.load.weight)
a59f4e07 8589 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8590
8591 return rr_interval;
8592}
8593
bf0f6f24
IM
8594/*
8595 * All the scheduling class methods:
8596 */
029632fb 8597const struct sched_class fair_sched_class = {
5522d5d5 8598 .next = &idle_sched_class,
bf0f6f24
IM
8599 .enqueue_task = enqueue_task_fair,
8600 .dequeue_task = dequeue_task_fair,
8601 .yield_task = yield_task_fair,
d95f4122 8602 .yield_to_task = yield_to_task_fair,
bf0f6f24 8603
2e09bf55 8604 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8605
8606 .pick_next_task = pick_next_task_fair,
8607 .put_prev_task = put_prev_task_fair,
8608
681f3e68 8609#ifdef CONFIG_SMP
4ce72a2c 8610 .select_task_rq = select_task_rq_fair,
0a74bef8 8611 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8612
0bcdcf28
CE
8613 .rq_online = rq_online_fair,
8614 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8615
8616 .task_waking = task_waking_fair,
12695578 8617 .task_dead = task_dead_fair,
c5b28038 8618 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8619#endif
bf0f6f24 8620
83b699ed 8621 .set_curr_task = set_curr_task_fair,
bf0f6f24 8622 .task_tick = task_tick_fair,
cd29fe6f 8623 .task_fork = task_fork_fair,
cb469845
SR
8624
8625 .prio_changed = prio_changed_fair,
da7a735e 8626 .switched_from = switched_from_fair,
cb469845 8627 .switched_to = switched_to_fair,
810b3817 8628
0d721cea
PW
8629 .get_rr_interval = get_rr_interval_fair,
8630
6e998916
SG
8631 .update_curr = update_curr_fair,
8632
810b3817 8633#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8634 .task_move_group = task_move_group_fair,
810b3817 8635#endif
bf0f6f24
IM
8636};
8637
8638#ifdef CONFIG_SCHED_DEBUG
029632fb 8639void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8640{
bf0f6f24
IM
8641 struct cfs_rq *cfs_rq;
8642
5973e5b9 8643 rcu_read_lock();
c3b64f1e 8644 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8645 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8646 rcu_read_unlock();
bf0f6f24 8647}
397f2378
SD
8648
8649#ifdef CONFIG_NUMA_BALANCING
8650void show_numa_stats(struct task_struct *p, struct seq_file *m)
8651{
8652 int node;
8653 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8654
8655 for_each_online_node(node) {
8656 if (p->numa_faults) {
8657 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8658 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8659 }
8660 if (p->numa_group) {
8661 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8662 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8663 }
8664 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8665 }
8666}
8667#endif /* CONFIG_NUMA_BALANCING */
8668#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8669
8670__init void init_sched_fair_class(void)
8671{
8672#ifdef CONFIG_SMP
8673 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8674
3451d024 8675#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8676 nohz.next_balance = jiffies;
029632fb 8677 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8678 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8679#endif
8680#endif /* SMP */
8681
8682}