sched/core: Remove unnecessary down/up conversion
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
64192658 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
074c2381
MG
1625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
04bb2f94 1628 */
074c2381 1629 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1632
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1635
1636 return;
1637 }
1638
1639 /*
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 */
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655 /*
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1662 */
2847c90e 1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 }
1666
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
7e2703e6
RR
1672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1685
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1691 *period = p->se.avg.avg_period;
7e2703e6
RR
1692 }
1693
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1696
1697 return delta;
1698}
1699
54009416
RR
1700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707 nodemask_t nodes;
1708 int dist;
1709
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1713
1714 /*
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1718 */
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1722
1723 dist = sched_max_numa_distance;
1724
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1730 }
1731 }
1732 return max_node;
1733 }
1734
1735 /*
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1743 */
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
81907478 1747 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1748 int a, b;
1749
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1753
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1758
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1765 }
1766 }
1767
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1772 /*
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1776 */
1777 nid = a;
1778 }
1779 }
1780 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1781 if (!max_faults)
1782 break;
54009416
RR
1783 nodes = max_group;
1784 }
1785 return nid;
1786}
1787
cbee9f88
PZ
1788static void task_numa_placement(struct task_struct *p)
1789{
83e1d2cd
MG
1790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1792 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1793 unsigned long total_faults;
1794 u64 runtime, period;
7dbd13ed 1795 spinlock_t *group_lock = NULL;
cbee9f88 1796
2832bc19 1797 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1798 if (p->numa_scan_seq == seq)
1799 return;
1800 p->numa_scan_seq = seq;
598f0ec0 1801 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1802
7e2703e6
RR
1803 total_faults = p->numa_faults_locality[0] +
1804 p->numa_faults_locality[1];
1805 runtime = numa_get_avg_runtime(p, &period);
1806
7dbd13ed
MG
1807 /* If the task is part of a group prevent parallel updates to group stats */
1808 if (p->numa_group) {
1809 group_lock = &p->numa_group->lock;
60e69eed 1810 spin_lock_irq(group_lock);
7dbd13ed
MG
1811 }
1812
688b7585
MG
1813 /* Find the node with the highest number of faults */
1814 for_each_online_node(nid) {
44dba3d5
IM
1815 /* Keep track of the offsets in numa_faults array */
1816 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1817 unsigned long faults = 0, group_faults = 0;
44dba3d5 1818 int priv;
745d6147 1819
be1e4e76 1820 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1821 long diff, f_diff, f_weight;
8c8a743c 1822
44dba3d5
IM
1823 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1827
ac8e895b 1828 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1829 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 fault_types[priv] += p->numa_faults[membuf_idx];
1831 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1832
7e2703e6
RR
1833 /*
1834 * Normalize the faults_from, so all tasks in a group
1835 * count according to CPU use, instead of by the raw
1836 * number of faults. Tasks with little runtime have
1837 * little over-all impact on throughput, and thus their
1838 * faults are less important.
1839 */
1840 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1841 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1842 (total_faults + 1);
44dba3d5
IM
1843 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1845
44dba3d5
IM
1846 p->numa_faults[mem_idx] += diff;
1847 p->numa_faults[cpu_idx] += f_diff;
1848 faults += p->numa_faults[mem_idx];
83e1d2cd 1849 p->total_numa_faults += diff;
8c8a743c 1850 if (p->numa_group) {
44dba3d5
IM
1851 /*
1852 * safe because we can only change our own group
1853 *
1854 * mem_idx represents the offset for a given
1855 * nid and priv in a specific region because it
1856 * is at the beginning of the numa_faults array.
1857 */
1858 p->numa_group->faults[mem_idx] += diff;
1859 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1860 p->numa_group->total_faults += diff;
44dba3d5 1861 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1862 }
ac8e895b
MG
1863 }
1864
688b7585
MG
1865 if (faults > max_faults) {
1866 max_faults = faults;
1867 max_nid = nid;
1868 }
83e1d2cd
MG
1869
1870 if (group_faults > max_group_faults) {
1871 max_group_faults = group_faults;
1872 max_group_nid = nid;
1873 }
1874 }
1875
04bb2f94
RR
1876 update_task_scan_period(p, fault_types[0], fault_types[1]);
1877
7dbd13ed 1878 if (p->numa_group) {
20e07dea 1879 update_numa_active_node_mask(p->numa_group);
60e69eed 1880 spin_unlock_irq(group_lock);
54009416 1881 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1882 }
1883
bb97fc31
RR
1884 if (max_faults) {
1885 /* Set the new preferred node */
1886 if (max_nid != p->numa_preferred_nid)
1887 sched_setnuma(p, max_nid);
1888
1889 if (task_node(p) != p->numa_preferred_nid)
1890 numa_migrate_preferred(p);
3a7053b3 1891 }
cbee9f88
PZ
1892}
1893
8c8a743c
PZ
1894static inline int get_numa_group(struct numa_group *grp)
1895{
1896 return atomic_inc_not_zero(&grp->refcount);
1897}
1898
1899static inline void put_numa_group(struct numa_group *grp)
1900{
1901 if (atomic_dec_and_test(&grp->refcount))
1902 kfree_rcu(grp, rcu);
1903}
1904
3e6a9418
MG
1905static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 int *priv)
8c8a743c
PZ
1907{
1908 struct numa_group *grp, *my_grp;
1909 struct task_struct *tsk;
1910 bool join = false;
1911 int cpu = cpupid_to_cpu(cpupid);
1912 int i;
1913
1914 if (unlikely(!p->numa_group)) {
1915 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1916 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1917
1918 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 if (!grp)
1920 return;
1921
1922 atomic_set(&grp->refcount, 1);
1923 spin_lock_init(&grp->lock);
e29cf08b 1924 grp->gid = p->pid;
50ec8a40 1925 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1926 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 nr_node_ids;
8c8a743c 1928
20e07dea
RR
1929 node_set(task_node(current), grp->active_nodes);
1930
be1e4e76 1931 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1932 grp->faults[i] = p->numa_faults[i];
8c8a743c 1933
989348b5 1934 grp->total_faults = p->total_numa_faults;
83e1d2cd 1935
8c8a743c
PZ
1936 grp->nr_tasks++;
1937 rcu_assign_pointer(p->numa_group, grp);
1938 }
1939
1940 rcu_read_lock();
1941 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942
1943 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1944 goto no_join;
8c8a743c
PZ
1945
1946 grp = rcu_dereference(tsk->numa_group);
1947 if (!grp)
3354781a 1948 goto no_join;
8c8a743c
PZ
1949
1950 my_grp = p->numa_group;
1951 if (grp == my_grp)
3354781a 1952 goto no_join;
8c8a743c
PZ
1953
1954 /*
1955 * Only join the other group if its bigger; if we're the bigger group,
1956 * the other task will join us.
1957 */
1958 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1959 goto no_join;
8c8a743c
PZ
1960
1961 /*
1962 * Tie-break on the grp address.
1963 */
1964 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1965 goto no_join;
8c8a743c 1966
dabe1d99
RR
1967 /* Always join threads in the same process. */
1968 if (tsk->mm == current->mm)
1969 join = true;
1970
1971 /* Simple filter to avoid false positives due to PID collisions */
1972 if (flags & TNF_SHARED)
1973 join = true;
8c8a743c 1974
3e6a9418
MG
1975 /* Update priv based on whether false sharing was detected */
1976 *priv = !join;
1977
dabe1d99 1978 if (join && !get_numa_group(grp))
3354781a 1979 goto no_join;
8c8a743c 1980
8c8a743c
PZ
1981 rcu_read_unlock();
1982
1983 if (!join)
1984 return;
1985
60e69eed
MG
1986 BUG_ON(irqs_disabled());
1987 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1988
be1e4e76 1989 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1990 my_grp->faults[i] -= p->numa_faults[i];
1991 grp->faults[i] += p->numa_faults[i];
8c8a743c 1992 }
989348b5
MG
1993 my_grp->total_faults -= p->total_numa_faults;
1994 grp->total_faults += p->total_numa_faults;
8c8a743c 1995
8c8a743c
PZ
1996 my_grp->nr_tasks--;
1997 grp->nr_tasks++;
1998
1999 spin_unlock(&my_grp->lock);
60e69eed 2000 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2001
2002 rcu_assign_pointer(p->numa_group, grp);
2003
2004 put_numa_group(my_grp);
3354781a
PZ
2005 return;
2006
2007no_join:
2008 rcu_read_unlock();
2009 return;
8c8a743c
PZ
2010}
2011
2012void task_numa_free(struct task_struct *p)
2013{
2014 struct numa_group *grp = p->numa_group;
44dba3d5 2015 void *numa_faults = p->numa_faults;
e9dd685c
SR
2016 unsigned long flags;
2017 int i;
8c8a743c
PZ
2018
2019 if (grp) {
e9dd685c 2020 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2021 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2022 grp->faults[i] -= p->numa_faults[i];
989348b5 2023 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2024
8c8a743c 2025 grp->nr_tasks--;
e9dd685c 2026 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2027 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2028 put_numa_group(grp);
2029 }
2030
44dba3d5 2031 p->numa_faults = NULL;
82727018 2032 kfree(numa_faults);
8c8a743c
PZ
2033}
2034
cbee9f88
PZ
2035/*
2036 * Got a PROT_NONE fault for a page on @node.
2037 */
58b46da3 2038void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2039{
2040 struct task_struct *p = current;
6688cc05 2041 bool migrated = flags & TNF_MIGRATED;
58b46da3 2042 int cpu_node = task_node(current);
792568ec 2043 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2044 int priv;
cbee9f88 2045
10e84b97 2046 if (!numabalancing_enabled)
1a687c2e
MG
2047 return;
2048
9ff1d9ff
MG
2049 /* for example, ksmd faulting in a user's mm */
2050 if (!p->mm)
2051 return;
2052
f809ca9a 2053 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2054 if (unlikely(!p->numa_faults)) {
2055 int size = sizeof(*p->numa_faults) *
be1e4e76 2056 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2057
44dba3d5
IM
2058 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 if (!p->numa_faults)
f809ca9a 2060 return;
745d6147 2061
83e1d2cd 2062 p->total_numa_faults = 0;
04bb2f94 2063 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2064 }
cbee9f88 2065
8c8a743c
PZ
2066 /*
2067 * First accesses are treated as private, otherwise consider accesses
2068 * to be private if the accessing pid has not changed
2069 */
2070 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 priv = 1;
2072 } else {
2073 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2074 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2075 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2076 }
2077
792568ec
RR
2078 /*
2079 * If a workload spans multiple NUMA nodes, a shared fault that
2080 * occurs wholly within the set of nodes that the workload is
2081 * actively using should be counted as local. This allows the
2082 * scan rate to slow down when a workload has settled down.
2083 */
2084 if (!priv && !local && p->numa_group &&
2085 node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 node_isset(mem_node, p->numa_group->active_nodes))
2087 local = 1;
2088
cbee9f88 2089 task_numa_placement(p);
f809ca9a 2090
2739d3ee
RR
2091 /*
2092 * Retry task to preferred node migration periodically, in case it
2093 * case it previously failed, or the scheduler moved us.
2094 */
2095 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2096 numa_migrate_preferred(p);
2097
b32e86b4
IM
2098 if (migrated)
2099 p->numa_pages_migrated += pages;
074c2381
MG
2100 if (flags & TNF_MIGRATE_FAIL)
2101 p->numa_faults_locality[2] += pages;
b32e86b4 2102
44dba3d5
IM
2103 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2105 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2106}
2107
6e5fb223
PZ
2108static void reset_ptenuma_scan(struct task_struct *p)
2109{
2110 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 p->mm->numa_scan_offset = 0;
2112}
2113
cbee9f88
PZ
2114/*
2115 * The expensive part of numa migration is done from task_work context.
2116 * Triggered from task_tick_numa().
2117 */
2118void task_numa_work(struct callback_head *work)
2119{
2120 unsigned long migrate, next_scan, now = jiffies;
2121 struct task_struct *p = current;
2122 struct mm_struct *mm = p->mm;
6e5fb223 2123 struct vm_area_struct *vma;
9f40604c 2124 unsigned long start, end;
598f0ec0 2125 unsigned long nr_pte_updates = 0;
9f40604c 2126 long pages;
cbee9f88
PZ
2127
2128 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129
2130 work->next = work; /* protect against double add */
2131 /*
2132 * Who cares about NUMA placement when they're dying.
2133 *
2134 * NOTE: make sure not to dereference p->mm before this check,
2135 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 * without p->mm even though we still had it when we enqueued this
2137 * work.
2138 */
2139 if (p->flags & PF_EXITING)
2140 return;
2141
930aa174 2142 if (!mm->numa_next_scan) {
7e8d16b6
MG
2143 mm->numa_next_scan = now +
2144 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2145 }
2146
cbee9f88
PZ
2147 /*
2148 * Enforce maximal scan/migration frequency..
2149 */
2150 migrate = mm->numa_next_scan;
2151 if (time_before(now, migrate))
2152 return;
2153
598f0ec0
MG
2154 if (p->numa_scan_period == 0) {
2155 p->numa_scan_period_max = task_scan_max(p);
2156 p->numa_scan_period = task_scan_min(p);
2157 }
cbee9f88 2158
fb003b80 2159 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2160 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 return;
2162
19a78d11
PZ
2163 /*
2164 * Delay this task enough that another task of this mm will likely win
2165 * the next time around.
2166 */
2167 p->node_stamp += 2 * TICK_NSEC;
2168
9f40604c
MG
2169 start = mm->numa_scan_offset;
2170 pages = sysctl_numa_balancing_scan_size;
2171 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 if (!pages)
2173 return;
cbee9f88 2174
6e5fb223 2175 down_read(&mm->mmap_sem);
9f40604c 2176 vma = find_vma(mm, start);
6e5fb223
PZ
2177 if (!vma) {
2178 reset_ptenuma_scan(p);
9f40604c 2179 start = 0;
6e5fb223
PZ
2180 vma = mm->mmap;
2181 }
9f40604c 2182 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2183 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 is_vm_hugetlb_page(vma)) {
6e5fb223 2185 continue;
6b79c57b 2186 }
6e5fb223 2187
4591ce4f
MG
2188 /*
2189 * Shared library pages mapped by multiple processes are not
2190 * migrated as it is expected they are cache replicated. Avoid
2191 * hinting faults in read-only file-backed mappings or the vdso
2192 * as migrating the pages will be of marginal benefit.
2193 */
2194 if (!vma->vm_mm ||
2195 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 continue;
2197
3c67f474
MG
2198 /*
2199 * Skip inaccessible VMAs to avoid any confusion between
2200 * PROT_NONE and NUMA hinting ptes
2201 */
2202 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 continue;
4591ce4f 2204
9f40604c
MG
2205 do {
2206 start = max(start, vma->vm_start);
2207 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 end = min(end, vma->vm_end);
598f0ec0
MG
2209 nr_pte_updates += change_prot_numa(vma, start, end);
2210
2211 /*
2212 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 * at least one PTE is updated so that unused virtual
2214 * address space is quickly skipped.
2215 */
2216 if (nr_pte_updates)
2217 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2218
9f40604c
MG
2219 start = end;
2220 if (pages <= 0)
2221 goto out;
3cf1962c
RR
2222
2223 cond_resched();
9f40604c 2224 } while (end != vma->vm_end);
cbee9f88 2225 }
6e5fb223 2226
9f40604c 2227out:
6e5fb223 2228 /*
c69307d5
PZ
2229 * It is possible to reach the end of the VMA list but the last few
2230 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 * would find the !migratable VMA on the next scan but not reset the
2232 * scanner to the start so check it now.
6e5fb223
PZ
2233 */
2234 if (vma)
9f40604c 2235 mm->numa_scan_offset = start;
6e5fb223
PZ
2236 else
2237 reset_ptenuma_scan(p);
2238 up_read(&mm->mmap_sem);
cbee9f88
PZ
2239}
2240
2241/*
2242 * Drive the periodic memory faults..
2243 */
2244void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245{
2246 struct callback_head *work = &curr->numa_work;
2247 u64 period, now;
2248
2249 /*
2250 * We don't care about NUMA placement if we don't have memory.
2251 */
2252 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 return;
2254
2255 /*
2256 * Using runtime rather than walltime has the dual advantage that
2257 * we (mostly) drive the selection from busy threads and that the
2258 * task needs to have done some actual work before we bother with
2259 * NUMA placement.
2260 */
2261 now = curr->se.sum_exec_runtime;
2262 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263
2264 if (now - curr->node_stamp > period) {
4b96a29b 2265 if (!curr->node_stamp)
598f0ec0 2266 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2267 curr->node_stamp += period;
cbee9f88
PZ
2268
2269 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 task_work_add(curr, work, true);
2272 }
2273 }
2274}
2275#else
2276static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277{
2278}
0ec8aa00
PZ
2279
2280static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281{
2282}
2283
2284static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285{
2286}
cbee9f88
PZ
2287#endif /* CONFIG_NUMA_BALANCING */
2288
30cfdcfc
DA
2289static void
2290account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291{
2292 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2293 if (!parent_entity(se))
029632fb 2294 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2295#ifdef CONFIG_SMP
0ec8aa00
PZ
2296 if (entity_is_task(se)) {
2297 struct rq *rq = rq_of(cfs_rq);
2298
2299 account_numa_enqueue(rq, task_of(se));
2300 list_add(&se->group_node, &rq->cfs_tasks);
2301 }
367456c7 2302#endif
30cfdcfc 2303 cfs_rq->nr_running++;
30cfdcfc
DA
2304}
2305
2306static void
2307account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308{
2309 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2310 if (!parent_entity(se))
029632fb 2311 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2312 if (entity_is_task(se)) {
2313 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2314 list_del_init(&se->group_node);
0ec8aa00 2315 }
30cfdcfc 2316 cfs_rq->nr_running--;
30cfdcfc
DA
2317}
2318
3ff6dcac
YZ
2319#ifdef CONFIG_FAIR_GROUP_SCHED
2320# ifdef CONFIG_SMP
cf5f0acf
PZ
2321static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322{
2323 long tg_weight;
2324
2325 /*
2326 * Use this CPU's actual weight instead of the last load_contribution
2327 * to gain a more accurate current total weight. See
2328 * update_cfs_rq_load_contribution().
2329 */
bf5b986e 2330 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2331 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2332 tg_weight += cfs_rq->load.weight;
2333
2334 return tg_weight;
2335}
2336
6d5ab293 2337static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2338{
cf5f0acf 2339 long tg_weight, load, shares;
3ff6dcac 2340
cf5f0acf 2341 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2342 load = cfs_rq->load.weight;
3ff6dcac 2343
3ff6dcac 2344 shares = (tg->shares * load);
cf5f0acf
PZ
2345 if (tg_weight)
2346 shares /= tg_weight;
3ff6dcac
YZ
2347
2348 if (shares < MIN_SHARES)
2349 shares = MIN_SHARES;
2350 if (shares > tg->shares)
2351 shares = tg->shares;
2352
2353 return shares;
2354}
3ff6dcac 2355# else /* CONFIG_SMP */
6d5ab293 2356static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2357{
2358 return tg->shares;
2359}
3ff6dcac 2360# endif /* CONFIG_SMP */
2069dd75
PZ
2361static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 unsigned long weight)
2363{
19e5eebb
PT
2364 if (se->on_rq) {
2365 /* commit outstanding execution time */
2366 if (cfs_rq->curr == se)
2367 update_curr(cfs_rq);
2069dd75 2368 account_entity_dequeue(cfs_rq, se);
19e5eebb 2369 }
2069dd75
PZ
2370
2371 update_load_set(&se->load, weight);
2372
2373 if (se->on_rq)
2374 account_entity_enqueue(cfs_rq, se);
2375}
2376
82958366
PT
2377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378
6d5ab293 2379static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2380{
2381 struct task_group *tg;
2382 struct sched_entity *se;
3ff6dcac 2383 long shares;
2069dd75 2384
2069dd75
PZ
2385 tg = cfs_rq->tg;
2386 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2387 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2388 return;
3ff6dcac
YZ
2389#ifndef CONFIG_SMP
2390 if (likely(se->load.weight == tg->shares))
2391 return;
2392#endif
6d5ab293 2393 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2394
2395 reweight_entity(cfs_rq_of(se), se, shares);
2396}
2397#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2398static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2399{
2400}
2401#endif /* CONFIG_FAIR_GROUP_SCHED */
2402
141965c7 2403#ifdef CONFIG_SMP
5b51f2f8
PT
2404/*
2405 * We choose a half-life close to 1 scheduling period.
2406 * Note: The tables below are dependent on this value.
2407 */
2408#define LOAD_AVG_PERIOD 32
2409#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411
2412/* Precomputed fixed inverse multiplies for multiplication by y^n */
2413static const u32 runnable_avg_yN_inv[] = {
2414 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 0x85aac367, 0x82cd8698,
2420};
2421
2422/*
2423 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2424 * over-estimates when re-combining.
2425 */
2426static const u32 runnable_avg_yN_sum[] = {
2427 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430};
2431
9d85f21c
PT
2432/*
2433 * Approximate:
2434 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2435 */
2436static __always_inline u64 decay_load(u64 val, u64 n)
2437{
5b51f2f8
PT
2438 unsigned int local_n;
2439
2440 if (!n)
2441 return val;
2442 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 return 0;
2444
2445 /* after bounds checking we can collapse to 32-bit */
2446 local_n = n;
2447
2448 /*
2449 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2450 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2452 *
2453 * To achieve constant time decay_load.
2454 */
2455 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 val >>= local_n / LOAD_AVG_PERIOD;
2457 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2458 }
2459
5b51f2f8
PT
2460 val *= runnable_avg_yN_inv[local_n];
2461 /* We don't use SRR here since we always want to round down. */
2462 return val >> 32;
2463}
2464
2465/*
2466 * For updates fully spanning n periods, the contribution to runnable
2467 * average will be: \Sum 1024*y^n
2468 *
2469 * We can compute this reasonably efficiently by combining:
2470 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2471 */
2472static u32 __compute_runnable_contrib(u64 n)
2473{
2474 u32 contrib = 0;
2475
2476 if (likely(n <= LOAD_AVG_PERIOD))
2477 return runnable_avg_yN_sum[n];
2478 else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 return LOAD_AVG_MAX;
2480
2481 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 do {
2483 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485
2486 n -= LOAD_AVG_PERIOD;
2487 } while (n > LOAD_AVG_PERIOD);
2488
2489 contrib = decay_load(contrib, n);
2490 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2491}
2492
2493/*
2494 * We can represent the historical contribution to runnable average as the
2495 * coefficients of a geometric series. To do this we sub-divide our runnable
2496 * history into segments of approximately 1ms (1024us); label the segment that
2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498 *
2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500 * p0 p1 p2
2501 * (now) (~1ms ago) (~2ms ago)
2502 *
2503 * Let u_i denote the fraction of p_i that the entity was runnable.
2504 *
2505 * We then designate the fractions u_i as our co-efficients, yielding the
2506 * following representation of historical load:
2507 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508 *
2509 * We choose y based on the with of a reasonably scheduling period, fixing:
2510 * y^32 = 0.5
2511 *
2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513 * approximately half as much as the contribution to load within the last ms
2514 * (u_0).
2515 *
2516 * When a period "rolls over" and we have new u_0`, multiplying the previous
2517 * sum again by y is sufficient to update:
2518 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520 */
0c1dc6b2 2521static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2522 struct sched_avg *sa,
36ee28e4
VG
2523 int runnable,
2524 int running)
9d85f21c 2525{
5b51f2f8
PT
2526 u64 delta, periods;
2527 u32 runnable_contrib;
9d85f21c 2528 int delta_w, decayed = 0;
0c1dc6b2 2529 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2530
2531 delta = now - sa->last_runnable_update;
2532 /*
2533 * This should only happen when time goes backwards, which it
2534 * unfortunately does during sched clock init when we swap over to TSC.
2535 */
2536 if ((s64)delta < 0) {
2537 sa->last_runnable_update = now;
2538 return 0;
2539 }
2540
2541 /*
2542 * Use 1024ns as the unit of measurement since it's a reasonable
2543 * approximation of 1us and fast to compute.
2544 */
2545 delta >>= 10;
2546 if (!delta)
2547 return 0;
2548 sa->last_runnable_update = now;
2549
2550 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2551 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2552 if (delta + delta_w >= 1024) {
2553 /* period roll-over */
2554 decayed = 1;
2555
2556 /*
2557 * Now that we know we're crossing a period boundary, figure
2558 * out how much from delta we need to complete the current
2559 * period and accrue it.
2560 */
2561 delta_w = 1024 - delta_w;
5b51f2f8
PT
2562 if (runnable)
2563 sa->runnable_avg_sum += delta_w;
36ee28e4 2564 if (running)
0c1dc6b2
MR
2565 sa->running_avg_sum += delta_w * scale_freq
2566 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2567 sa->avg_period += delta_w;
5b51f2f8
PT
2568
2569 delta -= delta_w;
2570
2571 /* Figure out how many additional periods this update spans */
2572 periods = delta / 1024;
2573 delta %= 1024;
2574
2575 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 periods + 1);
36ee28e4
VG
2577 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 periods + 1);
2579 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2580 periods + 1);
2581
2582 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 runnable_contrib = __compute_runnable_contrib(periods);
2584 if (runnable)
2585 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2586 if (running)
0c1dc6b2
MR
2587 sa->running_avg_sum += runnable_contrib * scale_freq
2588 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2589 sa->avg_period += runnable_contrib;
9d85f21c
PT
2590 }
2591
2592 /* Remainder of delta accrued against u_0` */
2593 if (runnable)
2594 sa->runnable_avg_sum += delta;
36ee28e4 2595 if (running)
0c1dc6b2
MR
2596 sa->running_avg_sum += delta * scale_freq
2597 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2598 sa->avg_period += delta;
9d85f21c
PT
2599
2600 return decayed;
2601}
2602
9ee474f5 2603/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2604static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2605{
2606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608
2609 decays -= se->avg.decay_count;
63847600 2610 se->avg.decay_count = 0;
9ee474f5 2611 if (!decays)
aff3e498 2612 return 0;
9ee474f5
PT
2613
2614 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2615 se->avg.utilization_avg_contrib =
2616 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2617
2618 return decays;
9ee474f5
PT
2619}
2620
c566e8e9
PT
2621#ifdef CONFIG_FAIR_GROUP_SCHED
2622static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 int force_update)
2624{
2625 struct task_group *tg = cfs_rq->tg;
bf5b986e 2626 long tg_contrib;
c566e8e9
PT
2627
2628 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 tg_contrib -= cfs_rq->tg_load_contrib;
2630
8236d907
JL
2631 if (!tg_contrib)
2632 return;
2633
bf5b986e
AS
2634 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2636 cfs_rq->tg_load_contrib += tg_contrib;
2637 }
2638}
8165e145 2639
bb17f655
PT
2640/*
2641 * Aggregate cfs_rq runnable averages into an equivalent task_group
2642 * representation for computing load contributions.
2643 */
2644static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 struct cfs_rq *cfs_rq)
2646{
2647 struct task_group *tg = cfs_rq->tg;
2648 long contrib;
2649
2650 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2651 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2652 sa->avg_period + 1);
bb17f655
PT
2653 contrib -= cfs_rq->tg_runnable_contrib;
2654
2655 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 atomic_add(contrib, &tg->runnable_avg);
2657 cfs_rq->tg_runnable_contrib += contrib;
2658 }
2659}
2660
8165e145
PT
2661static inline void __update_group_entity_contrib(struct sched_entity *se)
2662{
2663 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2665 int runnable_avg;
2666
8165e145
PT
2667 u64 contrib;
2668
2669 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2670 se->avg.load_avg_contrib = div_u64(contrib,
2671 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2672
2673 /*
2674 * For group entities we need to compute a correction term in the case
2675 * that they are consuming <1 cpu so that we would contribute the same
2676 * load as a task of equal weight.
2677 *
2678 * Explicitly co-ordinating this measurement would be expensive, but
2679 * fortunately the sum of each cpus contribution forms a usable
2680 * lower-bound on the true value.
2681 *
2682 * Consider the aggregate of 2 contributions. Either they are disjoint
2683 * (and the sum represents true value) or they are disjoint and we are
2684 * understating by the aggregate of their overlap.
2685 *
2686 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 * cpus that overlap for this interval and w_i is the interval width.
2689 *
2690 * On a small machine; the first term is well-bounded which bounds the
2691 * total error since w_i is a subset of the period. Whereas on a
2692 * larger machine, while this first term can be larger, if w_i is the
2693 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 * our upper bound of 1-cpu.
2695 */
2696 runnable_avg = atomic_read(&tg->runnable_avg);
2697 if (runnable_avg < NICE_0_LOAD) {
2698 se->avg.load_avg_contrib *= runnable_avg;
2699 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700 }
8165e145 2701}
f5f9739d
DE
2702
2703static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704{
0c1dc6b2
MR
2705 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 runnable, runnable);
f5f9739d
DE
2707 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708}
6e83125c 2709#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2710static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 int force_update) {}
bb17f655
PT
2712static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 struct cfs_rq *cfs_rq) {}
8165e145 2714static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2715static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2716#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2717
8165e145
PT
2718static inline void __update_task_entity_contrib(struct sched_entity *se)
2719{
2720 u32 contrib;
2721
2722 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2724 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2725 se->avg.load_avg_contrib = scale_load(contrib);
2726}
2727
2dac754e
PT
2728/* Compute the current contribution to load_avg by se, return any delta */
2729static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730{
2731 long old_contrib = se->avg.load_avg_contrib;
2732
8165e145
PT
2733 if (entity_is_task(se)) {
2734 __update_task_entity_contrib(se);
2735 } else {
bb17f655 2736 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2737 __update_group_entity_contrib(se);
2738 }
2dac754e
PT
2739
2740 return se->avg.load_avg_contrib - old_contrib;
2741}
2742
36ee28e4
VG
2743
2744static inline void __update_task_entity_utilization(struct sched_entity *se)
2745{
2746 u32 contrib;
2747
2748 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 contrib /= (se->avg.avg_period + 1);
2751 se->avg.utilization_avg_contrib = scale_load(contrib);
2752}
2753
2754static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755{
2756 long old_contrib = se->avg.utilization_avg_contrib;
2757
2758 if (entity_is_task(se))
2759 __update_task_entity_utilization(se);
21f44866
MR
2760 else
2761 se->avg.utilization_avg_contrib =
2762 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2763
2764 return se->avg.utilization_avg_contrib - old_contrib;
2765}
2766
9ee474f5
PT
2767static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 long load_contrib)
2769{
2770 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 cfs_rq->blocked_load_avg -= load_contrib;
2772 else
2773 cfs_rq->blocked_load_avg = 0;
2774}
2775
f1b17280
PT
2776static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777
9d85f21c 2778/* Update a sched_entity's runnable average */
9ee474f5
PT
2779static inline void update_entity_load_avg(struct sched_entity *se,
2780 int update_cfs_rq)
9d85f21c 2781{
2dac754e 2782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2783 long contrib_delta, utilization_delta;
0c1dc6b2 2784 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2785 u64 now;
2dac754e 2786
f1b17280
PT
2787 /*
2788 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 * case they are the parent of a throttled hierarchy.
2790 */
2791 if (entity_is_task(se))
2792 now = cfs_rq_clock_task(cfs_rq);
2793 else
2794 now = cfs_rq_clock_task(group_cfs_rq(se));
2795
0c1dc6b2 2796 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2797 cfs_rq->curr == se))
2dac754e
PT
2798 return;
2799
2800 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2801 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2802
2803 if (!update_cfs_rq)
2804 return;
2805
36ee28e4 2806 if (se->on_rq) {
2dac754e 2807 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2808 cfs_rq->utilization_load_avg += utilization_delta;
2809 } else {
9ee474f5 2810 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2811 }
9ee474f5
PT
2812}
2813
2814/*
2815 * Decay the load contributed by all blocked children and account this so that
2816 * their contribution may appropriately discounted when they wake up.
2817 */
aff3e498 2818static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2819{
f1b17280 2820 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2821 u64 decays;
2822
2823 decays = now - cfs_rq->last_decay;
aff3e498 2824 if (!decays && !force_update)
9ee474f5
PT
2825 return;
2826
2509940f
AS
2827 if (atomic_long_read(&cfs_rq->removed_load)) {
2828 unsigned long removed_load;
2829 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2830 subtract_blocked_load_contrib(cfs_rq, removed_load);
2831 }
9ee474f5 2832
aff3e498
PT
2833 if (decays) {
2834 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 decays);
2836 atomic64_add(decays, &cfs_rq->decay_counter);
2837 cfs_rq->last_decay = now;
2838 }
c566e8e9
PT
2839
2840 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2841}
18bf2805 2842
2dac754e
PT
2843/* Add the load generated by se into cfs_rq's child load-average */
2844static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2845 struct sched_entity *se,
2846 int wakeup)
2dac754e 2847{
aff3e498
PT
2848 /*
2849 * We track migrations using entity decay_count <= 0, on a wake-up
2850 * migration we use a negative decay count to track the remote decays
2851 * accumulated while sleeping.
a75cdaa9
AS
2852 *
2853 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 * constructed load_avg_contrib.
aff3e498
PT
2856 */
2857 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2858 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2859 if (se->avg.decay_count) {
2860 /*
2861 * In a wake-up migration we have to approximate the
2862 * time sleeping. This is because we can't synchronize
2863 * clock_task between the two cpus, and it is not
2864 * guaranteed to be read-safe. Instead, we can
2865 * approximate this using our carried decays, which are
2866 * explicitly atomically readable.
2867 */
2868 se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 << 20;
2870 update_entity_load_avg(se, 0);
2871 /* Indicate that we're now synchronized and on-rq */
2872 se->avg.decay_count = 0;
2873 }
9ee474f5
PT
2874 wakeup = 0;
2875 } else {
9390675a 2876 __synchronize_entity_decay(se);
9ee474f5
PT
2877 }
2878
aff3e498
PT
2879 /* migrated tasks did not contribute to our blocked load */
2880 if (wakeup) {
9ee474f5 2881 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2882 update_entity_load_avg(se, 0);
2883 }
9ee474f5 2884
2dac754e 2885 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2886 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2887 /* we force update consideration on load-balancer moves */
2888 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2889}
2890
9ee474f5
PT
2891/*
2892 * Remove se's load from this cfs_rq child load-average, if the entity is
2893 * transitioning to a blocked state we track its projected decay using
2894 * blocked_load_avg.
2895 */
2dac754e 2896static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2897 struct sched_entity *se,
2898 int sleep)
2dac754e 2899{
9ee474f5 2900 update_entity_load_avg(se, 1);
aff3e498
PT
2901 /* we force update consideration on load-balancer moves */
2902 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2903
2dac754e 2904 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2905 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2906 if (sleep) {
2907 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2910}
642dbc39
VG
2911
2912/*
2913 * Update the rq's load with the elapsed running time before entering
2914 * idle. if the last scheduled task is not a CFS task, idle_enter will
2915 * be the only way to update the runnable statistic.
2916 */
2917void idle_enter_fair(struct rq *this_rq)
2918{
2919 update_rq_runnable_avg(this_rq, 1);
2920}
2921
2922/*
2923 * Update the rq's load with the elapsed idle time before a task is
2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925 * be the only way to update the runnable statistic.
2926 */
2927void idle_exit_fair(struct rq *this_rq)
2928{
2929 update_rq_runnable_avg(this_rq, 0);
2930}
2931
6e83125c
PZ
2932static int idle_balance(struct rq *this_rq);
2933
38033c37
PZ
2934#else /* CONFIG_SMP */
2935
9ee474f5
PT
2936static inline void update_entity_load_avg(struct sched_entity *se,
2937 int update_cfs_rq) {}
18bf2805 2938static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2939static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2940 struct sched_entity *se,
2941 int wakeup) {}
2dac754e 2942static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2943 struct sched_entity *se,
2944 int sleep) {}
aff3e498
PT
2945static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 int force_update) {}
6e83125c
PZ
2947
2948static inline int idle_balance(struct rq *rq)
2949{
2950 return 0;
2951}
2952
38033c37 2953#endif /* CONFIG_SMP */
9d85f21c 2954
2396af69 2955static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2956{
bf0f6f24 2957#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2958 struct task_struct *tsk = NULL;
2959
2960 if (entity_is_task(se))
2961 tsk = task_of(se);
2962
41acab88 2963 if (se->statistics.sleep_start) {
78becc27 2964 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2965
2966 if ((s64)delta < 0)
2967 delta = 0;
2968
41acab88
LDM
2969 if (unlikely(delta > se->statistics.sleep_max))
2970 se->statistics.sleep_max = delta;
bf0f6f24 2971
8c79a045 2972 se->statistics.sleep_start = 0;
41acab88 2973 se->statistics.sum_sleep_runtime += delta;
9745512c 2974
768d0c27 2975 if (tsk) {
e414314c 2976 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2977 trace_sched_stat_sleep(tsk, delta);
2978 }
bf0f6f24 2979 }
41acab88 2980 if (se->statistics.block_start) {
78becc27 2981 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2982
2983 if ((s64)delta < 0)
2984 delta = 0;
2985
41acab88
LDM
2986 if (unlikely(delta > se->statistics.block_max))
2987 se->statistics.block_max = delta;
bf0f6f24 2988
8c79a045 2989 se->statistics.block_start = 0;
41acab88 2990 se->statistics.sum_sleep_runtime += delta;
30084fbd 2991
e414314c 2992 if (tsk) {
8f0dfc34 2993 if (tsk->in_iowait) {
41acab88
LDM
2994 se->statistics.iowait_sum += delta;
2995 se->statistics.iowait_count++;
768d0c27 2996 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2997 }
2998
b781a602
AV
2999 trace_sched_stat_blocked(tsk, delta);
3000
e414314c
PZ
3001 /*
3002 * Blocking time is in units of nanosecs, so shift by
3003 * 20 to get a milliseconds-range estimation of the
3004 * amount of time that the task spent sleeping:
3005 */
3006 if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 profile_hits(SLEEP_PROFILING,
3008 (void *)get_wchan(tsk),
3009 delta >> 20);
3010 }
3011 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3012 }
bf0f6f24
IM
3013 }
3014#endif
3015}
3016
ddc97297
PZ
3017static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018{
3019#ifdef CONFIG_SCHED_DEBUG
3020 s64 d = se->vruntime - cfs_rq->min_vruntime;
3021
3022 if (d < 0)
3023 d = -d;
3024
3025 if (d > 3*sysctl_sched_latency)
3026 schedstat_inc(cfs_rq, nr_spread_over);
3027#endif
3028}
3029
aeb73b04
PZ
3030static void
3031place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032{
1af5f730 3033 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3034
2cb8600e
PZ
3035 /*
3036 * The 'current' period is already promised to the current tasks,
3037 * however the extra weight of the new task will slow them down a
3038 * little, place the new task so that it fits in the slot that
3039 * stays open at the end.
3040 */
94dfb5e7 3041 if (initial && sched_feat(START_DEBIT))
f9c0b095 3042 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3043
a2e7a7eb 3044 /* sleeps up to a single latency don't count. */
5ca9880c 3045 if (!initial) {
a2e7a7eb 3046 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3047
a2e7a7eb
MG
3048 /*
3049 * Halve their sleep time's effect, to allow
3050 * for a gentler effect of sleepers:
3051 */
3052 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 thresh >>= 1;
51e0304c 3054
a2e7a7eb 3055 vruntime -= thresh;
aeb73b04
PZ
3056 }
3057
b5d9d734 3058 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3059 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3060}
3061
d3d9dc33
PT
3062static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063
bf0f6f24 3064static void
88ec22d3 3065enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3066{
88ec22d3
PZ
3067 /*
3068 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3069 * through calling update_curr().
88ec22d3 3070 */
371fd7e7 3071 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3072 se->vruntime += cfs_rq->min_vruntime;
3073
bf0f6f24 3074 /*
a2a2d680 3075 * Update run-time statistics of the 'current'.
bf0f6f24 3076 */
b7cc0896 3077 update_curr(cfs_rq);
f269ae04 3078 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3079 account_entity_enqueue(cfs_rq, se);
3080 update_cfs_shares(cfs_rq);
bf0f6f24 3081
88ec22d3 3082 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3083 place_entity(cfs_rq, se, 0);
2396af69 3084 enqueue_sleeper(cfs_rq, se);
e9acbff6 3085 }
bf0f6f24 3086
d2417e5a 3087 update_stats_enqueue(cfs_rq, se);
ddc97297 3088 check_spread(cfs_rq, se);
83b699ed
SV
3089 if (se != cfs_rq->curr)
3090 __enqueue_entity(cfs_rq, se);
2069dd75 3091 se->on_rq = 1;
3d4b47b4 3092
d3d9dc33 3093 if (cfs_rq->nr_running == 1) {
3d4b47b4 3094 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3095 check_enqueue_throttle(cfs_rq);
3096 }
bf0f6f24
IM
3097}
3098
2c13c919 3099static void __clear_buddies_last(struct sched_entity *se)
2002c695 3100{
2c13c919
RR
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3103 if (cfs_rq->last != se)
2c13c919 3104 break;
f1044799
PZ
3105
3106 cfs_rq->last = NULL;
2c13c919
RR
3107 }
3108}
2002c695 3109
2c13c919
RR
3110static void __clear_buddies_next(struct sched_entity *se)
3111{
3112 for_each_sched_entity(se) {
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3114 if (cfs_rq->next != se)
2c13c919 3115 break;
f1044799
PZ
3116
3117 cfs_rq->next = NULL;
2c13c919 3118 }
2002c695
PZ
3119}
3120
ac53db59
RR
3121static void __clear_buddies_skip(struct sched_entity *se)
3122{
3123 for_each_sched_entity(se) {
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3125 if (cfs_rq->skip != se)
ac53db59 3126 break;
f1044799
PZ
3127
3128 cfs_rq->skip = NULL;
ac53db59
RR
3129 }
3130}
3131
a571bbea
PZ
3132static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133{
2c13c919
RR
3134 if (cfs_rq->last == se)
3135 __clear_buddies_last(se);
3136
3137 if (cfs_rq->next == se)
3138 __clear_buddies_next(se);
ac53db59
RR
3139
3140 if (cfs_rq->skip == se)
3141 __clear_buddies_skip(se);
a571bbea
PZ
3142}
3143
6c16a6dc 3144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3145
bf0f6f24 3146static void
371fd7e7 3147dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3148{
a2a2d680
DA
3149 /*
3150 * Update run-time statistics of the 'current'.
3151 */
3152 update_curr(cfs_rq);
17bc14b7 3153 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3154
19b6a2e3 3155 update_stats_dequeue(cfs_rq, se);
371fd7e7 3156 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3157#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3158 if (entity_is_task(se)) {
3159 struct task_struct *tsk = task_of(se);
3160
3161 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3162 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3163 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3164 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3165 }
db36cc7d 3166#endif
67e9fb2a
PZ
3167 }
3168
2002c695 3169 clear_buddies(cfs_rq, se);
4793241b 3170
83b699ed 3171 if (se != cfs_rq->curr)
30cfdcfc 3172 __dequeue_entity(cfs_rq, se);
17bc14b7 3173 se->on_rq = 0;
30cfdcfc 3174 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3175
3176 /*
3177 * Normalize the entity after updating the min_vruntime because the
3178 * update can refer to the ->curr item and we need to reflect this
3179 * movement in our normalized position.
3180 */
371fd7e7 3181 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3182 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3183
d8b4986d
PT
3184 /* return excess runtime on last dequeue */
3185 return_cfs_rq_runtime(cfs_rq);
3186
1e876231 3187 update_min_vruntime(cfs_rq);
17bc14b7 3188 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3189}
3190
3191/*
3192 * Preempt the current task with a newly woken task if needed:
3193 */
7c92e54f 3194static void
2e09bf55 3195check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3196{
11697830 3197 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3198 struct sched_entity *se;
3199 s64 delta;
11697830 3200
6d0f0ebd 3201 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3202 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3203 if (delta_exec > ideal_runtime) {
8875125e 3204 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3205 /*
3206 * The current task ran long enough, ensure it doesn't get
3207 * re-elected due to buddy favours.
3208 */
3209 clear_buddies(cfs_rq, curr);
f685ceac
MG
3210 return;
3211 }
3212
3213 /*
3214 * Ensure that a task that missed wakeup preemption by a
3215 * narrow margin doesn't have to wait for a full slice.
3216 * This also mitigates buddy induced latencies under load.
3217 */
f685ceac
MG
3218 if (delta_exec < sysctl_sched_min_granularity)
3219 return;
3220
f4cfb33e
WX
3221 se = __pick_first_entity(cfs_rq);
3222 delta = curr->vruntime - se->vruntime;
f685ceac 3223
f4cfb33e
WX
3224 if (delta < 0)
3225 return;
d7d82944 3226
f4cfb33e 3227 if (delta > ideal_runtime)
8875125e 3228 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3229}
3230
83b699ed 3231static void
8494f412 3232set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3233{
83b699ed
SV
3234 /* 'current' is not kept within the tree. */
3235 if (se->on_rq) {
3236 /*
3237 * Any task has to be enqueued before it get to execute on
3238 * a CPU. So account for the time it spent waiting on the
3239 * runqueue.
3240 */
3241 update_stats_wait_end(cfs_rq, se);
3242 __dequeue_entity(cfs_rq, se);
36ee28e4 3243 update_entity_load_avg(se, 1);
83b699ed
SV
3244 }
3245
79303e9e 3246 update_stats_curr_start(cfs_rq, se);
429d43bc 3247 cfs_rq->curr = se;
eba1ed4b
IM
3248#ifdef CONFIG_SCHEDSTATS
3249 /*
3250 * Track our maximum slice length, if the CPU's load is at
3251 * least twice that of our own weight (i.e. dont track it
3252 * when there are only lesser-weight tasks around):
3253 */
495eca49 3254 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3255 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3256 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257 }
3258#endif
4a55b450 3259 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3260}
3261
3f3a4904
PZ
3262static int
3263wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264
ac53db59
RR
3265/*
3266 * Pick the next process, keeping these things in mind, in this order:
3267 * 1) keep things fair between processes/task groups
3268 * 2) pick the "next" process, since someone really wants that to run
3269 * 3) pick the "last" process, for cache locality
3270 * 4) do not run the "skip" process, if something else is available
3271 */
678d5718
PZ
3272static struct sched_entity *
3273pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3274{
678d5718
PZ
3275 struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 struct sched_entity *se;
3277
3278 /*
3279 * If curr is set we have to see if its left of the leftmost entity
3280 * still in the tree, provided there was anything in the tree at all.
3281 */
3282 if (!left || (curr && entity_before(curr, left)))
3283 left = curr;
3284
3285 se = left; /* ideally we run the leftmost entity */
f4b6755f 3286
ac53db59
RR
3287 /*
3288 * Avoid running the skip buddy, if running something else can
3289 * be done without getting too unfair.
3290 */
3291 if (cfs_rq->skip == se) {
678d5718
PZ
3292 struct sched_entity *second;
3293
3294 if (se == curr) {
3295 second = __pick_first_entity(cfs_rq);
3296 } else {
3297 second = __pick_next_entity(se);
3298 if (!second || (curr && entity_before(curr, second)))
3299 second = curr;
3300 }
3301
ac53db59
RR
3302 if (second && wakeup_preempt_entity(second, left) < 1)
3303 se = second;
3304 }
aa2ac252 3305
f685ceac
MG
3306 /*
3307 * Prefer last buddy, try to return the CPU to a preempted task.
3308 */
3309 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 se = cfs_rq->last;
3311
ac53db59
RR
3312 /*
3313 * Someone really wants this to run. If it's not unfair, run it.
3314 */
3315 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 se = cfs_rq->next;
3317
f685ceac 3318 clear_buddies(cfs_rq, se);
4793241b
PZ
3319
3320 return se;
aa2ac252
PZ
3321}
3322
678d5718 3323static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3324
ab6cde26 3325static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3326{
3327 /*
3328 * If still on the runqueue then deactivate_task()
3329 * was not called and update_curr() has to be done:
3330 */
3331 if (prev->on_rq)
b7cc0896 3332 update_curr(cfs_rq);
bf0f6f24 3333
d3d9dc33
PT
3334 /* throttle cfs_rqs exceeding runtime */
3335 check_cfs_rq_runtime(cfs_rq);
3336
ddc97297 3337 check_spread(cfs_rq, prev);
30cfdcfc 3338 if (prev->on_rq) {
5870db5b 3339 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3340 /* Put 'current' back into the tree. */
3341 __enqueue_entity(cfs_rq, prev);
9d85f21c 3342 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3343 update_entity_load_avg(prev, 1);
30cfdcfc 3344 }
429d43bc 3345 cfs_rq->curr = NULL;
bf0f6f24
IM
3346}
3347
8f4d37ec
PZ
3348static void
3349entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3350{
bf0f6f24 3351 /*
30cfdcfc 3352 * Update run-time statistics of the 'current'.
bf0f6f24 3353 */
30cfdcfc 3354 update_curr(cfs_rq);
bf0f6f24 3355
9d85f21c
PT
3356 /*
3357 * Ensure that runnable average is periodically updated.
3358 */
9ee474f5 3359 update_entity_load_avg(curr, 1);
aff3e498 3360 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3361 update_cfs_shares(cfs_rq);
9d85f21c 3362
8f4d37ec
PZ
3363#ifdef CONFIG_SCHED_HRTICK
3364 /*
3365 * queued ticks are scheduled to match the slice, so don't bother
3366 * validating it and just reschedule.
3367 */
983ed7a6 3368 if (queued) {
8875125e 3369 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3370 return;
3371 }
8f4d37ec
PZ
3372 /*
3373 * don't let the period tick interfere with the hrtick preemption
3374 */
3375 if (!sched_feat(DOUBLE_TICK) &&
3376 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 return;
3378#endif
3379
2c2efaed 3380 if (cfs_rq->nr_running > 1)
2e09bf55 3381 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3382}
3383
ab84d31e
PT
3384
3385/**************************************************
3386 * CFS bandwidth control machinery
3387 */
3388
3389#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3390
3391#ifdef HAVE_JUMP_LABEL
c5905afb 3392static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3393
3394static inline bool cfs_bandwidth_used(void)
3395{
c5905afb 3396 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3397}
3398
1ee14e6c 3399void cfs_bandwidth_usage_inc(void)
029632fb 3400{
1ee14e6c
BS
3401 static_key_slow_inc(&__cfs_bandwidth_used);
3402}
3403
3404void cfs_bandwidth_usage_dec(void)
3405{
3406 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3407}
3408#else /* HAVE_JUMP_LABEL */
3409static bool cfs_bandwidth_used(void)
3410{
3411 return true;
3412}
3413
1ee14e6c
BS
3414void cfs_bandwidth_usage_inc(void) {}
3415void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3416#endif /* HAVE_JUMP_LABEL */
3417
ab84d31e
PT
3418/*
3419 * default period for cfs group bandwidth.
3420 * default: 0.1s, units: nanoseconds
3421 */
3422static inline u64 default_cfs_period(void)
3423{
3424 return 100000000ULL;
3425}
ec12cb7f
PT
3426
3427static inline u64 sched_cfs_bandwidth_slice(void)
3428{
3429 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430}
3431
a9cf55b2
PT
3432/*
3433 * Replenish runtime according to assigned quota and update expiration time.
3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435 * additional synchronization around rq->lock.
3436 *
3437 * requires cfs_b->lock
3438 */
029632fb 3439void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3440{
3441 u64 now;
3442
3443 if (cfs_b->quota == RUNTIME_INF)
3444 return;
3445
3446 now = sched_clock_cpu(smp_processor_id());
3447 cfs_b->runtime = cfs_b->quota;
3448 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449}
3450
029632fb
PZ
3451static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452{
3453 return &tg->cfs_bandwidth;
3454}
3455
f1b17280
PT
3456/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458{
3459 if (unlikely(cfs_rq->throttle_count))
3460 return cfs_rq->throttled_clock_task;
3461
78becc27 3462 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3463}
3464
85dac906
PT
3465/* returns 0 on failure to allocate runtime */
3466static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3467{
3468 struct task_group *tg = cfs_rq->tg;
3469 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3470 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3471
3472 /* note: this is a positive sum as runtime_remaining <= 0 */
3473 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474
3475 raw_spin_lock(&cfs_b->lock);
3476 if (cfs_b->quota == RUNTIME_INF)
3477 amount = min_amount;
58088ad0 3478 else {
a9cf55b2
PT
3479 /*
3480 * If the bandwidth pool has become inactive, then at least one
3481 * period must have elapsed since the last consumption.
3482 * Refresh the global state and ensure bandwidth timer becomes
3483 * active.
3484 */
3485 if (!cfs_b->timer_active) {
3486 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3487 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3488 }
58088ad0
PT
3489
3490 if (cfs_b->runtime > 0) {
3491 amount = min(cfs_b->runtime, min_amount);
3492 cfs_b->runtime -= amount;
3493 cfs_b->idle = 0;
3494 }
ec12cb7f 3495 }
a9cf55b2 3496 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3497 raw_spin_unlock(&cfs_b->lock);
3498
3499 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3500 /*
3501 * we may have advanced our local expiration to account for allowed
3502 * spread between our sched_clock and the one on which runtime was
3503 * issued.
3504 */
3505 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506 cfs_rq->runtime_expires = expires;
85dac906
PT
3507
3508 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3509}
3510
a9cf55b2
PT
3511/*
3512 * Note: This depends on the synchronization provided by sched_clock and the
3513 * fact that rq->clock snapshots this value.
3514 */
3515static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3516{
a9cf55b2 3517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3518
3519 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3520 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3521 return;
3522
a9cf55b2
PT
3523 if (cfs_rq->runtime_remaining < 0)
3524 return;
3525
3526 /*
3527 * If the local deadline has passed we have to consider the
3528 * possibility that our sched_clock is 'fast' and the global deadline
3529 * has not truly expired.
3530 *
3531 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3532 * whether the global deadline has advanced. It is valid to compare
3533 * cfs_b->runtime_expires without any locks since we only care about
3534 * exact equality, so a partial write will still work.
a9cf55b2
PT
3535 */
3536
51f2176d 3537 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3538 /* extend local deadline, drift is bounded above by 2 ticks */
3539 cfs_rq->runtime_expires += TICK_NSEC;
3540 } else {
3541 /* global deadline is ahead, expiration has passed */
3542 cfs_rq->runtime_remaining = 0;
3543 }
3544}
3545
9dbdb155 3546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3547{
3548 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3549 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3550 expire_cfs_rq_runtime(cfs_rq);
3551
3552 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3553 return;
3554
85dac906
PT
3555 /*
3556 * if we're unable to extend our runtime we resched so that the active
3557 * hierarchy can be throttled
3558 */
3559 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3560 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3561}
3562
6c16a6dc 3563static __always_inline
9dbdb155 3564void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3565{
56f570e5 3566 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3567 return;
3568
3569 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3570}
3571
85dac906
PT
3572static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3573{
56f570e5 3574 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3575}
3576
64660c86
PT
3577/* check whether cfs_rq, or any parent, is throttled */
3578static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3579{
56f570e5 3580 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3581}
3582
3583/*
3584 * Ensure that neither of the group entities corresponding to src_cpu or
3585 * dest_cpu are members of a throttled hierarchy when performing group
3586 * load-balance operations.
3587 */
3588static inline int throttled_lb_pair(struct task_group *tg,
3589 int src_cpu, int dest_cpu)
3590{
3591 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3592
3593 src_cfs_rq = tg->cfs_rq[src_cpu];
3594 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3595
3596 return throttled_hierarchy(src_cfs_rq) ||
3597 throttled_hierarchy(dest_cfs_rq);
3598}
3599
3600/* updated child weight may affect parent so we have to do this bottom up */
3601static int tg_unthrottle_up(struct task_group *tg, void *data)
3602{
3603 struct rq *rq = data;
3604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3605
3606 cfs_rq->throttle_count--;
3607#ifdef CONFIG_SMP
3608 if (!cfs_rq->throttle_count) {
f1b17280 3609 /* adjust cfs_rq_clock_task() */
78becc27 3610 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3611 cfs_rq->throttled_clock_task;
64660c86
PT
3612 }
3613#endif
3614
3615 return 0;
3616}
3617
3618static int tg_throttle_down(struct task_group *tg, void *data)
3619{
3620 struct rq *rq = data;
3621 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3622
82958366
PT
3623 /* group is entering throttled state, stop time */
3624 if (!cfs_rq->throttle_count)
78becc27 3625 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3626 cfs_rq->throttle_count++;
3627
3628 return 0;
3629}
3630
d3d9dc33 3631static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3632{
3633 struct rq *rq = rq_of(cfs_rq);
3634 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635 struct sched_entity *se;
3636 long task_delta, dequeue = 1;
3637
3638 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3639
f1b17280 3640 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3641 rcu_read_lock();
3642 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643 rcu_read_unlock();
85dac906
PT
3644
3645 task_delta = cfs_rq->h_nr_running;
3646 for_each_sched_entity(se) {
3647 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648 /* throttled entity or throttle-on-deactivate */
3649 if (!se->on_rq)
3650 break;
3651
3652 if (dequeue)
3653 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654 qcfs_rq->h_nr_running -= task_delta;
3655
3656 if (qcfs_rq->load.weight)
3657 dequeue = 0;
3658 }
3659
3660 if (!se)
72465447 3661 sub_nr_running(rq, task_delta);
85dac906
PT
3662
3663 cfs_rq->throttled = 1;
78becc27 3664 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3665 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3666 /*
3667 * Add to the _head_ of the list, so that an already-started
3668 * distribute_cfs_runtime will not see us
3669 */
3670 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3671 if (!cfs_b->timer_active)
09dc4ab0 3672 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3673 raw_spin_unlock(&cfs_b->lock);
3674}
3675
029632fb 3676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3677{
3678 struct rq *rq = rq_of(cfs_rq);
3679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 struct sched_entity *se;
3681 int enqueue = 1;
3682 long task_delta;
3683
22b958d8 3684 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3685
3686 cfs_rq->throttled = 0;
1a55af2e
FW
3687
3688 update_rq_clock(rq);
3689
671fd9da 3690 raw_spin_lock(&cfs_b->lock);
78becc27 3691 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3692 list_del_rcu(&cfs_rq->throttled_list);
3693 raw_spin_unlock(&cfs_b->lock);
3694
64660c86
PT
3695 /* update hierarchical throttle state */
3696 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697
671fd9da
PT
3698 if (!cfs_rq->load.weight)
3699 return;
3700
3701 task_delta = cfs_rq->h_nr_running;
3702 for_each_sched_entity(se) {
3703 if (se->on_rq)
3704 enqueue = 0;
3705
3706 cfs_rq = cfs_rq_of(se);
3707 if (enqueue)
3708 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 cfs_rq->h_nr_running += task_delta;
3710
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
3713 }
3714
3715 if (!se)
72465447 3716 add_nr_running(rq, task_delta);
671fd9da
PT
3717
3718 /* determine whether we need to wake up potentially idle cpu */
3719 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3720 resched_curr(rq);
671fd9da
PT
3721}
3722
3723static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 u64 remaining, u64 expires)
3725{
3726 struct cfs_rq *cfs_rq;
c06f04c7
BS
3727 u64 runtime;
3728 u64 starting_runtime = remaining;
671fd9da
PT
3729
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 throttled_list) {
3733 struct rq *rq = rq_of(cfs_rq);
3734
3735 raw_spin_lock(&rq->lock);
3736 if (!cfs_rq_throttled(cfs_rq))
3737 goto next;
3738
3739 runtime = -cfs_rq->runtime_remaining + 1;
3740 if (runtime > remaining)
3741 runtime = remaining;
3742 remaining -= runtime;
3743
3744 cfs_rq->runtime_remaining += runtime;
3745 cfs_rq->runtime_expires = expires;
3746
3747 /* we check whether we're throttled above */
3748 if (cfs_rq->runtime_remaining > 0)
3749 unthrottle_cfs_rq(cfs_rq);
3750
3751next:
3752 raw_spin_unlock(&rq->lock);
3753
3754 if (!remaining)
3755 break;
3756 }
3757 rcu_read_unlock();
3758
c06f04c7 3759 return starting_runtime - remaining;
671fd9da
PT
3760}
3761
58088ad0
PT
3762/*
3763 * Responsible for refilling a task_group's bandwidth and unthrottling its
3764 * cfs_rqs as appropriate. If there has been no activity within the last
3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766 * used to track this state.
3767 */
3768static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769{
671fd9da 3770 u64 runtime, runtime_expires;
51f2176d 3771 int throttled;
58088ad0 3772
58088ad0
PT
3773 /* no need to continue the timer with no bandwidth constraint */
3774 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3775 goto out_deactivate;
58088ad0 3776
671fd9da 3777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3778 cfs_b->nr_periods += overrun;
671fd9da 3779
51f2176d
BS
3780 /*
3781 * idle depends on !throttled (for the case of a large deficit), and if
3782 * we're going inactive then everything else can be deferred
3783 */
3784 if (cfs_b->idle && !throttled)
3785 goto out_deactivate;
a9cf55b2 3786
927b54fc
BS
3787 /*
3788 * if we have relooped after returning idle once, we need to update our
3789 * status as actually running, so that other cpus doing
3790 * __start_cfs_bandwidth will stop trying to cancel us.
3791 */
3792 cfs_b->timer_active = 1;
3793
a9cf55b2
PT
3794 __refill_cfs_bandwidth_runtime(cfs_b);
3795
671fd9da
PT
3796 if (!throttled) {
3797 /* mark as potentially idle for the upcoming period */
3798 cfs_b->idle = 1;
51f2176d 3799 return 0;
671fd9da
PT
3800 }
3801
e8da1b18
NR
3802 /* account preceding periods in which throttling occurred */
3803 cfs_b->nr_throttled += overrun;
3804
671fd9da 3805 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3806
3807 /*
c06f04c7
BS
3808 * This check is repeated as we are holding onto the new bandwidth while
3809 * we unthrottle. This can potentially race with an unthrottled group
3810 * trying to acquire new bandwidth from the global pool. This can result
3811 * in us over-using our runtime if it is all used during this loop, but
3812 * only by limited amounts in that extreme case.
671fd9da 3813 */
c06f04c7
BS
3814 while (throttled && cfs_b->runtime > 0) {
3815 runtime = cfs_b->runtime;
671fd9da
PT
3816 raw_spin_unlock(&cfs_b->lock);
3817 /* we can't nest cfs_b->lock while distributing bandwidth */
3818 runtime = distribute_cfs_runtime(cfs_b, runtime,
3819 runtime_expires);
3820 raw_spin_lock(&cfs_b->lock);
3821
3822 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3823
3824 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3825 }
58088ad0 3826
671fd9da
PT
3827 /*
3828 * While we are ensured activity in the period following an
3829 * unthrottle, this also covers the case in which the new bandwidth is
3830 * insufficient to cover the existing bandwidth deficit. (Forcing the
3831 * timer to remain active while there are any throttled entities.)
3832 */
3833 cfs_b->idle = 0;
58088ad0 3834
51f2176d
BS
3835 return 0;
3836
3837out_deactivate:
3838 cfs_b->timer_active = 0;
3839 return 1;
58088ad0 3840}
d3d9dc33 3841
d8b4986d
PT
3842/* a cfs_rq won't donate quota below this amount */
3843static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844/* minimum remaining period time to redistribute slack quota */
3845static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846/* how long we wait to gather additional slack before distributing */
3847static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3848
db06e78c
BS
3849/*
3850 * Are we near the end of the current quota period?
3851 *
3852 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854 * migrate_hrtimers, base is never cleared, so we are fine.
3855 */
d8b4986d
PT
3856static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3857{
3858 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859 u64 remaining;
3860
3861 /* if the call-back is running a quota refresh is already occurring */
3862 if (hrtimer_callback_running(refresh_timer))
3863 return 1;
3864
3865 /* is a quota refresh about to occur? */
3866 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867 if (remaining < min_expire)
3868 return 1;
3869
3870 return 0;
3871}
3872
3873static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3874{
3875 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3876
3877 /* if there's a quota refresh soon don't bother with slack */
3878 if (runtime_refresh_within(cfs_b, min_left))
3879 return;
3880
3881 start_bandwidth_timer(&cfs_b->slack_timer,
3882 ns_to_ktime(cfs_bandwidth_slack_period));
3883}
3884
3885/* we know any runtime found here is valid as update_curr() precedes return */
3886static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3887{
3888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3890
3891 if (slack_runtime <= 0)
3892 return;
3893
3894 raw_spin_lock(&cfs_b->lock);
3895 if (cfs_b->quota != RUNTIME_INF &&
3896 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897 cfs_b->runtime += slack_runtime;
3898
3899 /* we are under rq->lock, defer unthrottling using a timer */
3900 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901 !list_empty(&cfs_b->throttled_cfs_rq))
3902 start_cfs_slack_bandwidth(cfs_b);
3903 }
3904 raw_spin_unlock(&cfs_b->lock);
3905
3906 /* even if it's not valid for return we don't want to try again */
3907 cfs_rq->runtime_remaining -= slack_runtime;
3908}
3909
3910static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911{
56f570e5
PT
3912 if (!cfs_bandwidth_used())
3913 return;
3914
fccfdc6f 3915 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3916 return;
3917
3918 __return_cfs_rq_runtime(cfs_rq);
3919}
3920
3921/*
3922 * This is done with a timer (instead of inline with bandwidth return) since
3923 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3924 */
3925static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3926{
3927 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928 u64 expires;
3929
3930 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3931 raw_spin_lock(&cfs_b->lock);
3932 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3934 return;
db06e78c 3935 }
d8b4986d 3936
c06f04c7 3937 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3938 runtime = cfs_b->runtime;
c06f04c7 3939
d8b4986d
PT
3940 expires = cfs_b->runtime_expires;
3941 raw_spin_unlock(&cfs_b->lock);
3942
3943 if (!runtime)
3944 return;
3945
3946 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3947
3948 raw_spin_lock(&cfs_b->lock);
3949 if (expires == cfs_b->runtime_expires)
c06f04c7 3950 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3951 raw_spin_unlock(&cfs_b->lock);
3952}
3953
d3d9dc33
PT
3954/*
3955 * When a group wakes up we want to make sure that its quota is not already
3956 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3958 */
3959static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3960{
56f570e5
PT
3961 if (!cfs_bandwidth_used())
3962 return;
3963
d3d9dc33
PT
3964 /* an active group must be handled by the update_curr()->put() path */
3965 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966 return;
3967
3968 /* ensure the group is not already throttled */
3969 if (cfs_rq_throttled(cfs_rq))
3970 return;
3971
3972 /* update runtime allocation */
3973 account_cfs_rq_runtime(cfs_rq, 0);
3974 if (cfs_rq->runtime_remaining <= 0)
3975 throttle_cfs_rq(cfs_rq);
3976}
3977
3978/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3979static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3980{
56f570e5 3981 if (!cfs_bandwidth_used())
678d5718 3982 return false;
56f570e5 3983
d3d9dc33 3984 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3985 return false;
d3d9dc33
PT
3986
3987 /*
3988 * it's possible for a throttled entity to be forced into a running
3989 * state (e.g. set_curr_task), in this case we're finished.
3990 */
3991 if (cfs_rq_throttled(cfs_rq))
678d5718 3992 return true;
d3d9dc33
PT
3993
3994 throttle_cfs_rq(cfs_rq);
678d5718 3995 return true;
d3d9dc33 3996}
029632fb 3997
029632fb
PZ
3998static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3999{
4000 struct cfs_bandwidth *cfs_b =
4001 container_of(timer, struct cfs_bandwidth, slack_timer);
4002 do_sched_cfs_slack_timer(cfs_b);
4003
4004 return HRTIMER_NORESTART;
4005}
4006
4007static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008{
4009 struct cfs_bandwidth *cfs_b =
4010 container_of(timer, struct cfs_bandwidth, period_timer);
4011 ktime_t now;
4012 int overrun;
4013 int idle = 0;
4014
51f2176d 4015 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4016 for (;;) {
4017 now = hrtimer_cb_get_time(timer);
4018 overrun = hrtimer_forward(timer, now, cfs_b->period);
4019
4020 if (!overrun)
4021 break;
4022
4023 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4024 }
51f2176d 4025 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4026
4027 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4028}
4029
4030void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4031{
4032 raw_spin_lock_init(&cfs_b->lock);
4033 cfs_b->runtime = 0;
4034 cfs_b->quota = RUNTIME_INF;
4035 cfs_b->period = ns_to_ktime(default_cfs_period());
4036
4037 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039 cfs_b->period_timer.function = sched_cfs_period_timer;
4040 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4042}
4043
4044static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4045{
4046 cfs_rq->runtime_enabled = 0;
4047 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4048}
4049
4050/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4051void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4052{
4053 /*
4054 * The timer may be active because we're trying to set a new bandwidth
4055 * period or because we're racing with the tear-down path
4056 * (timer_active==0 becomes visible before the hrtimer call-back
4057 * terminates). In either case we ensure that it's re-programmed
4058 */
927b54fc
BS
4059 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4062 raw_spin_unlock(&cfs_b->lock);
927b54fc 4063 cpu_relax();
029632fb
PZ
4064 raw_spin_lock(&cfs_b->lock);
4065 /* if someone else restarted the timer then we're done */
09dc4ab0 4066 if (!force && cfs_b->timer_active)
029632fb
PZ
4067 return;
4068 }
4069
4070 cfs_b->timer_active = 1;
4071 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4072}
4073
4074static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4075{
7f1a169b
TH
4076 /* init_cfs_bandwidth() was not called */
4077 if (!cfs_b->throttled_cfs_rq.next)
4078 return;
4079
029632fb
PZ
4080 hrtimer_cancel(&cfs_b->period_timer);
4081 hrtimer_cancel(&cfs_b->slack_timer);
4082}
4083
0e59bdae
KT
4084static void __maybe_unused update_runtime_enabled(struct rq *rq)
4085{
4086 struct cfs_rq *cfs_rq;
4087
4088 for_each_leaf_cfs_rq(rq, cfs_rq) {
4089 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4090
4091 raw_spin_lock(&cfs_b->lock);
4092 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093 raw_spin_unlock(&cfs_b->lock);
4094 }
4095}
4096
38dc3348 4097static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4098{
4099 struct cfs_rq *cfs_rq;
4100
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4102 if (!cfs_rq->runtime_enabled)
4103 continue;
4104
4105 /*
4106 * clock_task is not advancing so we just need to make sure
4107 * there's some valid quota amount
4108 */
51f2176d 4109 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4110 /*
4111 * Offline rq is schedulable till cpu is completely disabled
4112 * in take_cpu_down(), so we prevent new cfs throttling here.
4113 */
4114 cfs_rq->runtime_enabled = 0;
4115
029632fb
PZ
4116 if (cfs_rq_throttled(cfs_rq))
4117 unthrottle_cfs_rq(cfs_rq);
4118 }
4119}
4120
4121#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4122static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4123{
78becc27 4124 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4125}
4126
9dbdb155 4127static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4128static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4129static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4130static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4131
4132static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4133{
4134 return 0;
4135}
64660c86
PT
4136
4137static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4138{
4139 return 0;
4140}
4141
4142static inline int throttled_lb_pair(struct task_group *tg,
4143 int src_cpu, int dest_cpu)
4144{
4145 return 0;
4146}
029632fb
PZ
4147
4148void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4149
4150#ifdef CONFIG_FAIR_GROUP_SCHED
4151static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4152#endif
4153
029632fb
PZ
4154static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4155{
4156 return NULL;
4157}
4158static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4159static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4160static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4161
4162#endif /* CONFIG_CFS_BANDWIDTH */
4163
bf0f6f24
IM
4164/**************************************************
4165 * CFS operations on tasks:
4166 */
4167
8f4d37ec
PZ
4168#ifdef CONFIG_SCHED_HRTICK
4169static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4170{
8f4d37ec
PZ
4171 struct sched_entity *se = &p->se;
4172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4173
4174 WARN_ON(task_rq(p) != rq);
4175
b39e66ea 4176 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4177 u64 slice = sched_slice(cfs_rq, se);
4178 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179 s64 delta = slice - ran;
4180
4181 if (delta < 0) {
4182 if (rq->curr == p)
8875125e 4183 resched_curr(rq);
8f4d37ec
PZ
4184 return;
4185 }
31656519 4186 hrtick_start(rq, delta);
8f4d37ec
PZ
4187 }
4188}
a4c2f00f
PZ
4189
4190/*
4191 * called from enqueue/dequeue and updates the hrtick when the
4192 * current task is from our class and nr_running is low enough
4193 * to matter.
4194 */
4195static void hrtick_update(struct rq *rq)
4196{
4197 struct task_struct *curr = rq->curr;
4198
b39e66ea 4199 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4200 return;
4201
4202 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203 hrtick_start_fair(rq, curr);
4204}
55e12e5e 4205#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4206static inline void
4207hrtick_start_fair(struct rq *rq, struct task_struct *p)
4208{
4209}
a4c2f00f
PZ
4210
4211static inline void hrtick_update(struct rq *rq)
4212{
4213}
8f4d37ec
PZ
4214#endif
4215
bf0f6f24
IM
4216/*
4217 * The enqueue_task method is called before nr_running is
4218 * increased. Here we update the fair scheduling stats and
4219 * then put the task into the rbtree:
4220 */
ea87bb78 4221static void
371fd7e7 4222enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4223{
4224 struct cfs_rq *cfs_rq;
62fb1851 4225 struct sched_entity *se = &p->se;
bf0f6f24
IM
4226
4227 for_each_sched_entity(se) {
62fb1851 4228 if (se->on_rq)
bf0f6f24
IM
4229 break;
4230 cfs_rq = cfs_rq_of(se);
88ec22d3 4231 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4232
4233 /*
4234 * end evaluation on encountering a throttled cfs_rq
4235 *
4236 * note: in the case of encountering a throttled cfs_rq we will
4237 * post the final h_nr_running increment below.
4238 */
4239 if (cfs_rq_throttled(cfs_rq))
4240 break;
953bfcd1 4241 cfs_rq->h_nr_running++;
85dac906 4242
88ec22d3 4243 flags = ENQUEUE_WAKEUP;
bf0f6f24 4244 }
8f4d37ec 4245
2069dd75 4246 for_each_sched_entity(se) {
0f317143 4247 cfs_rq = cfs_rq_of(se);
953bfcd1 4248 cfs_rq->h_nr_running++;
2069dd75 4249
85dac906
PT
4250 if (cfs_rq_throttled(cfs_rq))
4251 break;
4252
17bc14b7 4253 update_cfs_shares(cfs_rq);
9ee474f5 4254 update_entity_load_avg(se, 1);
2069dd75
PZ
4255 }
4256
18bf2805
BS
4257 if (!se) {
4258 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4259 add_nr_running(rq, 1);
18bf2805 4260 }
a4c2f00f 4261 hrtick_update(rq);
bf0f6f24
IM
4262}
4263
2f36825b
VP
4264static void set_next_buddy(struct sched_entity *se);
4265
bf0f6f24
IM
4266/*
4267 * The dequeue_task method is called before nr_running is
4268 * decreased. We remove the task from the rbtree and
4269 * update the fair scheduling stats:
4270 */
371fd7e7 4271static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4272{
4273 struct cfs_rq *cfs_rq;
62fb1851 4274 struct sched_entity *se = &p->se;
2f36825b 4275 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4276
4277 for_each_sched_entity(se) {
4278 cfs_rq = cfs_rq_of(se);
371fd7e7 4279 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4280
4281 /*
4282 * end evaluation on encountering a throttled cfs_rq
4283 *
4284 * note: in the case of encountering a throttled cfs_rq we will
4285 * post the final h_nr_running decrement below.
4286 */
4287 if (cfs_rq_throttled(cfs_rq))
4288 break;
953bfcd1 4289 cfs_rq->h_nr_running--;
2069dd75 4290
bf0f6f24 4291 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4292 if (cfs_rq->load.weight) {
4293 /*
4294 * Bias pick_next to pick a task from this cfs_rq, as
4295 * p is sleeping when it is within its sched_slice.
4296 */
4297 if (task_sleep && parent_entity(se))
4298 set_next_buddy(parent_entity(se));
9598c82d
PT
4299
4300 /* avoid re-evaluating load for this entity */
4301 se = parent_entity(se);
bf0f6f24 4302 break;
2f36825b 4303 }
371fd7e7 4304 flags |= DEQUEUE_SLEEP;
bf0f6f24 4305 }
8f4d37ec 4306
2069dd75 4307 for_each_sched_entity(se) {
0f317143 4308 cfs_rq = cfs_rq_of(se);
953bfcd1 4309 cfs_rq->h_nr_running--;
2069dd75 4310
85dac906
PT
4311 if (cfs_rq_throttled(cfs_rq))
4312 break;
4313
17bc14b7 4314 update_cfs_shares(cfs_rq);
9ee474f5 4315 update_entity_load_avg(se, 1);
2069dd75
PZ
4316 }
4317
18bf2805 4318 if (!se) {
72465447 4319 sub_nr_running(rq, 1);
18bf2805
BS
4320 update_rq_runnable_avg(rq, 1);
4321 }
a4c2f00f 4322 hrtick_update(rq);
bf0f6f24
IM
4323}
4324
e7693a36 4325#ifdef CONFIG_SMP
3289bdb4
PZ
4326
4327/*
4328 * per rq 'load' arrray crap; XXX kill this.
4329 */
4330
4331/*
4332 * The exact cpuload at various idx values, calculated at every tick would be
4333 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4334 *
4335 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4336 * on nth tick when cpu may be busy, then we have:
4337 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4338 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4339 *
4340 * decay_load_missed() below does efficient calculation of
4341 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4342 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4343 *
4344 * The calculation is approximated on a 128 point scale.
4345 * degrade_zero_ticks is the number of ticks after which load at any
4346 * particular idx is approximated to be zero.
4347 * degrade_factor is a precomputed table, a row for each load idx.
4348 * Each column corresponds to degradation factor for a power of two ticks,
4349 * based on 128 point scale.
4350 * Example:
4351 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4352 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4353 *
4354 * With this power of 2 load factors, we can degrade the load n times
4355 * by looking at 1 bits in n and doing as many mult/shift instead of
4356 * n mult/shifts needed by the exact degradation.
4357 */
4358#define DEGRADE_SHIFT 7
4359static const unsigned char
4360 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4361static const unsigned char
4362 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4363 {0, 0, 0, 0, 0, 0, 0, 0},
4364 {64, 32, 8, 0, 0, 0, 0, 0},
4365 {96, 72, 40, 12, 1, 0, 0},
4366 {112, 98, 75, 43, 15, 1, 0},
4367 {120, 112, 98, 76, 45, 16, 2} };
4368
4369/*
4370 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4371 * would be when CPU is idle and so we just decay the old load without
4372 * adding any new load.
4373 */
4374static unsigned long
4375decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4376{
4377 int j = 0;
4378
4379 if (!missed_updates)
4380 return load;
4381
4382 if (missed_updates >= degrade_zero_ticks[idx])
4383 return 0;
4384
4385 if (idx == 1)
4386 return load >> missed_updates;
4387
4388 while (missed_updates) {
4389 if (missed_updates % 2)
4390 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4391
4392 missed_updates >>= 1;
4393 j++;
4394 }
4395 return load;
4396}
4397
4398/*
4399 * Update rq->cpu_load[] statistics. This function is usually called every
4400 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4401 * every tick. We fix it up based on jiffies.
4402 */
4403static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4404 unsigned long pending_updates)
4405{
4406 int i, scale;
4407
4408 this_rq->nr_load_updates++;
4409
4410 /* Update our load: */
4411 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4412 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4413 unsigned long old_load, new_load;
4414
4415 /* scale is effectively 1 << i now, and >> i divides by scale */
4416
4417 old_load = this_rq->cpu_load[i];
4418 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4419 new_load = this_load;
4420 /*
4421 * Round up the averaging division if load is increasing. This
4422 * prevents us from getting stuck on 9 if the load is 10, for
4423 * example.
4424 */
4425 if (new_load > old_load)
4426 new_load += scale - 1;
4427
4428 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4429 }
4430
4431 sched_avg_update(this_rq);
4432}
4433
4434#ifdef CONFIG_NO_HZ_COMMON
4435/*
4436 * There is no sane way to deal with nohz on smp when using jiffies because the
4437 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4438 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4439 *
4440 * Therefore we cannot use the delta approach from the regular tick since that
4441 * would seriously skew the load calculation. However we'll make do for those
4442 * updates happening while idle (nohz_idle_balance) or coming out of idle
4443 * (tick_nohz_idle_exit).
4444 *
4445 * This means we might still be one tick off for nohz periods.
4446 */
4447
4448/*
4449 * Called from nohz_idle_balance() to update the load ratings before doing the
4450 * idle balance.
4451 */
4452static void update_idle_cpu_load(struct rq *this_rq)
4453{
4454 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
4455 unsigned long load = this_rq->cfs.runnable_load_avg;
4456 unsigned long pending_updates;
4457
4458 /*
4459 * bail if there's load or we're actually up-to-date.
4460 */
4461 if (load || curr_jiffies == this_rq->last_load_update_tick)
4462 return;
4463
4464 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4465 this_rq->last_load_update_tick = curr_jiffies;
4466
4467 __update_cpu_load(this_rq, load, pending_updates);
4468}
4469
4470/*
4471 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4472 */
4473void update_cpu_load_nohz(void)
4474{
4475 struct rq *this_rq = this_rq();
4476 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
4477 unsigned long pending_updates;
4478
4479 if (curr_jiffies == this_rq->last_load_update_tick)
4480 return;
4481
4482 raw_spin_lock(&this_rq->lock);
4483 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4484 if (pending_updates) {
4485 this_rq->last_load_update_tick = curr_jiffies;
4486 /*
4487 * We were idle, this means load 0, the current load might be
4488 * !0 due to remote wakeups and the sort.
4489 */
4490 __update_cpu_load(this_rq, 0, pending_updates);
4491 }
4492 raw_spin_unlock(&this_rq->lock);
4493}
4494#endif /* CONFIG_NO_HZ */
4495
4496/*
4497 * Called from scheduler_tick()
4498 */
4499void update_cpu_load_active(struct rq *this_rq)
4500{
4501 unsigned long load = this_rq->cfs.runnable_load_avg;
4502 /*
4503 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4504 */
4505 this_rq->last_load_update_tick = jiffies;
4506 __update_cpu_load(this_rq, load, 1);
4507}
4508
029632fb
PZ
4509/* Used instead of source_load when we know the type == 0 */
4510static unsigned long weighted_cpuload(const int cpu)
4511{
b92486cb 4512 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4513}
4514
4515/*
4516 * Return a low guess at the load of a migration-source cpu weighted
4517 * according to the scheduling class and "nice" value.
4518 *
4519 * We want to under-estimate the load of migration sources, to
4520 * balance conservatively.
4521 */
4522static unsigned long source_load(int cpu, int type)
4523{
4524 struct rq *rq = cpu_rq(cpu);
4525 unsigned long total = weighted_cpuload(cpu);
4526
4527 if (type == 0 || !sched_feat(LB_BIAS))
4528 return total;
4529
4530 return min(rq->cpu_load[type-1], total);
4531}
4532
4533/*
4534 * Return a high guess at the load of a migration-target cpu weighted
4535 * according to the scheduling class and "nice" value.
4536 */
4537static unsigned long target_load(int cpu, int type)
4538{
4539 struct rq *rq = cpu_rq(cpu);
4540 unsigned long total = weighted_cpuload(cpu);
4541
4542 if (type == 0 || !sched_feat(LB_BIAS))
4543 return total;
4544
4545 return max(rq->cpu_load[type-1], total);
4546}
4547
ced549fa 4548static unsigned long capacity_of(int cpu)
029632fb 4549{
ced549fa 4550 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4551}
4552
ca6d75e6
VG
4553static unsigned long capacity_orig_of(int cpu)
4554{
4555 return cpu_rq(cpu)->cpu_capacity_orig;
4556}
4557
029632fb
PZ
4558static unsigned long cpu_avg_load_per_task(int cpu)
4559{
4560 struct rq *rq = cpu_rq(cpu);
65fdac08 4561 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4562 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4563
4564 if (nr_running)
b92486cb 4565 return load_avg / nr_running;
029632fb
PZ
4566
4567 return 0;
4568}
4569
62470419
MW
4570static void record_wakee(struct task_struct *p)
4571{
4572 /*
4573 * Rough decay (wiping) for cost saving, don't worry
4574 * about the boundary, really active task won't care
4575 * about the loss.
4576 */
2538d960 4577 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4578 current->wakee_flips >>= 1;
62470419
MW
4579 current->wakee_flip_decay_ts = jiffies;
4580 }
4581
4582 if (current->last_wakee != p) {
4583 current->last_wakee = p;
4584 current->wakee_flips++;
4585 }
4586}
098fb9db 4587
74f8e4b2 4588static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4589{
4590 struct sched_entity *se = &p->se;
4591 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4592 u64 min_vruntime;
4593
4594#ifndef CONFIG_64BIT
4595 u64 min_vruntime_copy;
88ec22d3 4596
3fe1698b
PZ
4597 do {
4598 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4599 smp_rmb();
4600 min_vruntime = cfs_rq->min_vruntime;
4601 } while (min_vruntime != min_vruntime_copy);
4602#else
4603 min_vruntime = cfs_rq->min_vruntime;
4604#endif
88ec22d3 4605
3fe1698b 4606 se->vruntime -= min_vruntime;
62470419 4607 record_wakee(p);
88ec22d3
PZ
4608}
4609
bb3469ac 4610#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4611/*
4612 * effective_load() calculates the load change as seen from the root_task_group
4613 *
4614 * Adding load to a group doesn't make a group heavier, but can cause movement
4615 * of group shares between cpus. Assuming the shares were perfectly aligned one
4616 * can calculate the shift in shares.
cf5f0acf
PZ
4617 *
4618 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4619 * on this @cpu and results in a total addition (subtraction) of @wg to the
4620 * total group weight.
4621 *
4622 * Given a runqueue weight distribution (rw_i) we can compute a shares
4623 * distribution (s_i) using:
4624 *
4625 * s_i = rw_i / \Sum rw_j (1)
4626 *
4627 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4628 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4629 * shares distribution (s_i):
4630 *
4631 * rw_i = { 2, 4, 1, 0 }
4632 * s_i = { 2/7, 4/7, 1/7, 0 }
4633 *
4634 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4635 * task used to run on and the CPU the waker is running on), we need to
4636 * compute the effect of waking a task on either CPU and, in case of a sync
4637 * wakeup, compute the effect of the current task going to sleep.
4638 *
4639 * So for a change of @wl to the local @cpu with an overall group weight change
4640 * of @wl we can compute the new shares distribution (s'_i) using:
4641 *
4642 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4643 *
4644 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4645 * differences in waking a task to CPU 0. The additional task changes the
4646 * weight and shares distributions like:
4647 *
4648 * rw'_i = { 3, 4, 1, 0 }
4649 * s'_i = { 3/8, 4/8, 1/8, 0 }
4650 *
4651 * We can then compute the difference in effective weight by using:
4652 *
4653 * dw_i = S * (s'_i - s_i) (3)
4654 *
4655 * Where 'S' is the group weight as seen by its parent.
4656 *
4657 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4658 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4659 * 4/7) times the weight of the group.
f5bfb7d9 4660 */
2069dd75 4661static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4662{
4be9daaa 4663 struct sched_entity *se = tg->se[cpu];
f1d239f7 4664
9722c2da 4665 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4666 return wl;
4667
4be9daaa 4668 for_each_sched_entity(se) {
cf5f0acf 4669 long w, W;
4be9daaa 4670
977dda7c 4671 tg = se->my_q->tg;
bb3469ac 4672
cf5f0acf
PZ
4673 /*
4674 * W = @wg + \Sum rw_j
4675 */
4676 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4677
cf5f0acf
PZ
4678 /*
4679 * w = rw_i + @wl
4680 */
4681 w = se->my_q->load.weight + wl;
940959e9 4682
cf5f0acf
PZ
4683 /*
4684 * wl = S * s'_i; see (2)
4685 */
4686 if (W > 0 && w < W)
32a8df4e 4687 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4688 else
4689 wl = tg->shares;
940959e9 4690
cf5f0acf
PZ
4691 /*
4692 * Per the above, wl is the new se->load.weight value; since
4693 * those are clipped to [MIN_SHARES, ...) do so now. See
4694 * calc_cfs_shares().
4695 */
977dda7c
PT
4696 if (wl < MIN_SHARES)
4697 wl = MIN_SHARES;
cf5f0acf
PZ
4698
4699 /*
4700 * wl = dw_i = S * (s'_i - s_i); see (3)
4701 */
977dda7c 4702 wl -= se->load.weight;
cf5f0acf
PZ
4703
4704 /*
4705 * Recursively apply this logic to all parent groups to compute
4706 * the final effective load change on the root group. Since
4707 * only the @tg group gets extra weight, all parent groups can
4708 * only redistribute existing shares. @wl is the shift in shares
4709 * resulting from this level per the above.
4710 */
4be9daaa 4711 wg = 0;
4be9daaa 4712 }
bb3469ac 4713
4be9daaa 4714 return wl;
bb3469ac
PZ
4715}
4716#else
4be9daaa 4717
58d081b5 4718static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4719{
83378269 4720 return wl;
bb3469ac 4721}
4be9daaa 4722
bb3469ac
PZ
4723#endif
4724
62470419
MW
4725static int wake_wide(struct task_struct *p)
4726{
7d9ffa89 4727 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4728
4729 /*
4730 * Yeah, it's the switching-frequency, could means many wakee or
4731 * rapidly switch, use factor here will just help to automatically
4732 * adjust the loose-degree, so bigger node will lead to more pull.
4733 */
4734 if (p->wakee_flips > factor) {
4735 /*
4736 * wakee is somewhat hot, it needs certain amount of cpu
4737 * resource, so if waker is far more hot, prefer to leave
4738 * it alone.
4739 */
4740 if (current->wakee_flips > (factor * p->wakee_flips))
4741 return 1;
4742 }
4743
4744 return 0;
4745}
4746
c88d5910 4747static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4748{
e37b6a7b 4749 s64 this_load, load;
bd61c98f 4750 s64 this_eff_load, prev_eff_load;
c88d5910 4751 int idx, this_cpu, prev_cpu;
c88d5910 4752 struct task_group *tg;
83378269 4753 unsigned long weight;
b3137bc8 4754 int balanced;
098fb9db 4755
62470419
MW
4756 /*
4757 * If we wake multiple tasks be careful to not bounce
4758 * ourselves around too much.
4759 */
4760 if (wake_wide(p))
4761 return 0;
4762
c88d5910
PZ
4763 idx = sd->wake_idx;
4764 this_cpu = smp_processor_id();
4765 prev_cpu = task_cpu(p);
4766 load = source_load(prev_cpu, idx);
4767 this_load = target_load(this_cpu, idx);
098fb9db 4768
b3137bc8
MG
4769 /*
4770 * If sync wakeup then subtract the (maximum possible)
4771 * effect of the currently running task from the load
4772 * of the current CPU:
4773 */
83378269
PZ
4774 if (sync) {
4775 tg = task_group(current);
4776 weight = current->se.load.weight;
4777
c88d5910 4778 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4779 load += effective_load(tg, prev_cpu, 0, -weight);
4780 }
b3137bc8 4781
83378269
PZ
4782 tg = task_group(p);
4783 weight = p->se.load.weight;
b3137bc8 4784
71a29aa7
PZ
4785 /*
4786 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4787 * due to the sync cause above having dropped this_load to 0, we'll
4788 * always have an imbalance, but there's really nothing you can do
4789 * about that, so that's good too.
71a29aa7
PZ
4790 *
4791 * Otherwise check if either cpus are near enough in load to allow this
4792 * task to be woken on this_cpu.
4793 */
bd61c98f
VG
4794 this_eff_load = 100;
4795 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4796
bd61c98f
VG
4797 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4798 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4799
bd61c98f 4800 if (this_load > 0) {
e51fd5e2
PZ
4801 this_eff_load *= this_load +
4802 effective_load(tg, this_cpu, weight, weight);
4803
e51fd5e2 4804 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4805 }
e51fd5e2 4806
bd61c98f 4807 balanced = this_eff_load <= prev_eff_load;
098fb9db 4808
41acab88 4809 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4810
05bfb65f
VG
4811 if (!balanced)
4812 return 0;
098fb9db 4813
05bfb65f
VG
4814 schedstat_inc(sd, ttwu_move_affine);
4815 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4816
4817 return 1;
098fb9db
IM
4818}
4819
aaee1203
PZ
4820/*
4821 * find_idlest_group finds and returns the least busy CPU group within the
4822 * domain.
4823 */
4824static struct sched_group *
78e7ed53 4825find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4826 int this_cpu, int sd_flag)
e7693a36 4827{
b3bd3de6 4828 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4829 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4830 int load_idx = sd->forkexec_idx;
aaee1203 4831 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4832
c44f2a02
VG
4833 if (sd_flag & SD_BALANCE_WAKE)
4834 load_idx = sd->wake_idx;
4835
aaee1203
PZ
4836 do {
4837 unsigned long load, avg_load;
4838 int local_group;
4839 int i;
e7693a36 4840
aaee1203
PZ
4841 /* Skip over this group if it has no CPUs allowed */
4842 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4843 tsk_cpus_allowed(p)))
aaee1203
PZ
4844 continue;
4845
4846 local_group = cpumask_test_cpu(this_cpu,
4847 sched_group_cpus(group));
4848
4849 /* Tally up the load of all CPUs in the group */
4850 avg_load = 0;
4851
4852 for_each_cpu(i, sched_group_cpus(group)) {
4853 /* Bias balancing toward cpus of our domain */
4854 if (local_group)
4855 load = source_load(i, load_idx);
4856 else
4857 load = target_load(i, load_idx);
4858
4859 avg_load += load;
4860 }
4861
63b2ca30 4862 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4863 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4864
4865 if (local_group) {
4866 this_load = avg_load;
aaee1203
PZ
4867 } else if (avg_load < min_load) {
4868 min_load = avg_load;
4869 idlest = group;
4870 }
4871 } while (group = group->next, group != sd->groups);
4872
4873 if (!idlest || 100*this_load < imbalance*min_load)
4874 return NULL;
4875 return idlest;
4876}
4877
4878/*
4879 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4880 */
4881static int
4882find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4883{
4884 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4885 unsigned int min_exit_latency = UINT_MAX;
4886 u64 latest_idle_timestamp = 0;
4887 int least_loaded_cpu = this_cpu;
4888 int shallowest_idle_cpu = -1;
aaee1203
PZ
4889 int i;
4890
4891 /* Traverse only the allowed CPUs */
fa17b507 4892 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4893 if (idle_cpu(i)) {
4894 struct rq *rq = cpu_rq(i);
4895 struct cpuidle_state *idle = idle_get_state(rq);
4896 if (idle && idle->exit_latency < min_exit_latency) {
4897 /*
4898 * We give priority to a CPU whose idle state
4899 * has the smallest exit latency irrespective
4900 * of any idle timestamp.
4901 */
4902 min_exit_latency = idle->exit_latency;
4903 latest_idle_timestamp = rq->idle_stamp;
4904 shallowest_idle_cpu = i;
4905 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4906 rq->idle_stamp > latest_idle_timestamp) {
4907 /*
4908 * If equal or no active idle state, then
4909 * the most recently idled CPU might have
4910 * a warmer cache.
4911 */
4912 latest_idle_timestamp = rq->idle_stamp;
4913 shallowest_idle_cpu = i;
4914 }
9f96742a 4915 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4916 load = weighted_cpuload(i);
4917 if (load < min_load || (load == min_load && i == this_cpu)) {
4918 min_load = load;
4919 least_loaded_cpu = i;
4920 }
e7693a36
GH
4921 }
4922 }
4923
83a0a96a 4924 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4925}
e7693a36 4926
a50bde51
PZ
4927/*
4928 * Try and locate an idle CPU in the sched_domain.
4929 */
99bd5e2f 4930static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4931{
99bd5e2f 4932 struct sched_domain *sd;
37407ea7 4933 struct sched_group *sg;
e0a79f52 4934 int i = task_cpu(p);
a50bde51 4935
e0a79f52
MG
4936 if (idle_cpu(target))
4937 return target;
99bd5e2f
SS
4938
4939 /*
e0a79f52 4940 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4941 */
e0a79f52
MG
4942 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4943 return i;
a50bde51
PZ
4944
4945 /*
37407ea7 4946 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4947 */
518cd623 4948 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4949 for_each_lower_domain(sd) {
37407ea7
LT
4950 sg = sd->groups;
4951 do {
4952 if (!cpumask_intersects(sched_group_cpus(sg),
4953 tsk_cpus_allowed(p)))
4954 goto next;
4955
4956 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4957 if (i == target || !idle_cpu(i))
37407ea7
LT
4958 goto next;
4959 }
970e1789 4960
37407ea7
LT
4961 target = cpumask_first_and(sched_group_cpus(sg),
4962 tsk_cpus_allowed(p));
4963 goto done;
4964next:
4965 sg = sg->next;
4966 } while (sg != sd->groups);
4967 }
4968done:
a50bde51
PZ
4969 return target;
4970}
8bb5b00c
VG
4971/*
4972 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4973 * tasks. The unit of the return value must be the one of capacity so we can
4974 * compare the usage with the capacity of the CPU that is available for CFS
4975 * task (ie cpu_capacity).
4976 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4977 * CPU. It represents the amount of utilization of a CPU in the range
4978 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4979 * capacity of the CPU because it's about the running time on this CPU.
4980 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4981 * because of unfortunate rounding in avg_period and running_load_avg or just
4982 * after migrating tasks until the average stabilizes with the new running
4983 * time. So we need to check that the usage stays into the range
4984 * [0..cpu_capacity_orig] and cap if necessary.
4985 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4986 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4987 */
4988static int get_cpu_usage(int cpu)
4989{
4990 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4991 unsigned long capacity = capacity_orig_of(cpu);
4992
4993 if (usage >= SCHED_LOAD_SCALE)
4994 return capacity;
4995
4996 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4997}
a50bde51 4998
aaee1203 4999/*
de91b9cb
MR
5000 * select_task_rq_fair: Select target runqueue for the waking task in domains
5001 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5002 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5003 *
de91b9cb
MR
5004 * Balances load by selecting the idlest cpu in the idlest group, or under
5005 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5006 *
de91b9cb 5007 * Returns the target cpu number.
aaee1203
PZ
5008 *
5009 * preempt must be disabled.
5010 */
0017d735 5011static int
ac66f547 5012select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5013{
29cd8bae 5014 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5015 int cpu = smp_processor_id();
c88d5910 5016 int new_cpu = cpu;
99bd5e2f 5017 int want_affine = 0;
5158f4e4 5018 int sync = wake_flags & WF_SYNC;
c88d5910 5019
a8edd075
KT
5020 if (sd_flag & SD_BALANCE_WAKE)
5021 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5022
dce840a0 5023 rcu_read_lock();
aaee1203 5024 for_each_domain(cpu, tmp) {
e4f42888
PZ
5025 if (!(tmp->flags & SD_LOAD_BALANCE))
5026 continue;
5027
fe3bcfe1 5028 /*
99bd5e2f
SS
5029 * If both cpu and prev_cpu are part of this domain,
5030 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5031 */
99bd5e2f
SS
5032 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5033 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5034 affine_sd = tmp;
29cd8bae 5035 break;
f03542a7 5036 }
29cd8bae 5037
f03542a7 5038 if (tmp->flags & sd_flag)
29cd8bae
PZ
5039 sd = tmp;
5040 }
5041
8bf21433
RR
5042 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5043 prev_cpu = cpu;
dce840a0 5044
8bf21433 5045 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
5046 new_cpu = select_idle_sibling(p, prev_cpu);
5047 goto unlock;
8b911acd 5048 }
e7693a36 5049
aaee1203
PZ
5050 while (sd) {
5051 struct sched_group *group;
c88d5910 5052 int weight;
098fb9db 5053
0763a660 5054 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5055 sd = sd->child;
5056 continue;
5057 }
098fb9db 5058
c44f2a02 5059 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5060 if (!group) {
5061 sd = sd->child;
5062 continue;
5063 }
4ae7d5ce 5064
d7c33c49 5065 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5066 if (new_cpu == -1 || new_cpu == cpu) {
5067 /* Now try balancing at a lower domain level of cpu */
5068 sd = sd->child;
5069 continue;
e7693a36 5070 }
aaee1203
PZ
5071
5072 /* Now try balancing at a lower domain level of new_cpu */
5073 cpu = new_cpu;
669c55e9 5074 weight = sd->span_weight;
aaee1203
PZ
5075 sd = NULL;
5076 for_each_domain(cpu, tmp) {
669c55e9 5077 if (weight <= tmp->span_weight)
aaee1203 5078 break;
0763a660 5079 if (tmp->flags & sd_flag)
aaee1203
PZ
5080 sd = tmp;
5081 }
5082 /* while loop will break here if sd == NULL */
e7693a36 5083 }
dce840a0
PZ
5084unlock:
5085 rcu_read_unlock();
e7693a36 5086
c88d5910 5087 return new_cpu;
e7693a36 5088}
0a74bef8
PT
5089
5090/*
5091 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5092 * cfs_rq_of(p) references at time of call are still valid and identify the
5093 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5094 * other assumptions, including the state of rq->lock, should be made.
5095 */
5096static void
5097migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5098{
aff3e498
PT
5099 struct sched_entity *se = &p->se;
5100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5101
5102 /*
5103 * Load tracking: accumulate removed load so that it can be processed
5104 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5105 * to blocked load iff they have a positive decay-count. It can never
5106 * be negative here since on-rq tasks have decay-count == 0.
5107 */
5108 if (se->avg.decay_count) {
5109 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5110 atomic_long_add(se->avg.load_avg_contrib,
5111 &cfs_rq->removed_load);
aff3e498 5112 }
3944a927
BS
5113
5114 /* We have migrated, no longer consider this task hot */
5115 se->exec_start = 0;
0a74bef8 5116}
e7693a36
GH
5117#endif /* CONFIG_SMP */
5118
e52fb7c0
PZ
5119static unsigned long
5120wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5121{
5122 unsigned long gran = sysctl_sched_wakeup_granularity;
5123
5124 /*
e52fb7c0
PZ
5125 * Since its curr running now, convert the gran from real-time
5126 * to virtual-time in his units.
13814d42
MG
5127 *
5128 * By using 'se' instead of 'curr' we penalize light tasks, so
5129 * they get preempted easier. That is, if 'se' < 'curr' then
5130 * the resulting gran will be larger, therefore penalizing the
5131 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5132 * be smaller, again penalizing the lighter task.
5133 *
5134 * This is especially important for buddies when the leftmost
5135 * task is higher priority than the buddy.
0bbd3336 5136 */
f4ad9bd2 5137 return calc_delta_fair(gran, se);
0bbd3336
PZ
5138}
5139
464b7527
PZ
5140/*
5141 * Should 'se' preempt 'curr'.
5142 *
5143 * |s1
5144 * |s2
5145 * |s3
5146 * g
5147 * |<--->|c
5148 *
5149 * w(c, s1) = -1
5150 * w(c, s2) = 0
5151 * w(c, s3) = 1
5152 *
5153 */
5154static int
5155wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5156{
5157 s64 gran, vdiff = curr->vruntime - se->vruntime;
5158
5159 if (vdiff <= 0)
5160 return -1;
5161
e52fb7c0 5162 gran = wakeup_gran(curr, se);
464b7527
PZ
5163 if (vdiff > gran)
5164 return 1;
5165
5166 return 0;
5167}
5168
02479099
PZ
5169static void set_last_buddy(struct sched_entity *se)
5170{
69c80f3e
VP
5171 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5172 return;
5173
5174 for_each_sched_entity(se)
5175 cfs_rq_of(se)->last = se;
02479099
PZ
5176}
5177
5178static void set_next_buddy(struct sched_entity *se)
5179{
69c80f3e
VP
5180 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5181 return;
5182
5183 for_each_sched_entity(se)
5184 cfs_rq_of(se)->next = se;
02479099
PZ
5185}
5186
ac53db59
RR
5187static void set_skip_buddy(struct sched_entity *se)
5188{
69c80f3e
VP
5189 for_each_sched_entity(se)
5190 cfs_rq_of(se)->skip = se;
ac53db59
RR
5191}
5192
bf0f6f24
IM
5193/*
5194 * Preempt the current task with a newly woken task if needed:
5195 */
5a9b86f6 5196static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5197{
5198 struct task_struct *curr = rq->curr;
8651a86c 5199 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5200 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5201 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5202 int next_buddy_marked = 0;
bf0f6f24 5203
4ae7d5ce
IM
5204 if (unlikely(se == pse))
5205 return;
5206
5238cdd3 5207 /*
163122b7 5208 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5209 * unconditionally check_prempt_curr() after an enqueue (which may have
5210 * lead to a throttle). This both saves work and prevents false
5211 * next-buddy nomination below.
5212 */
5213 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5214 return;
5215
2f36825b 5216 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5217 set_next_buddy(pse);
2f36825b
VP
5218 next_buddy_marked = 1;
5219 }
57fdc26d 5220
aec0a514
BR
5221 /*
5222 * We can come here with TIF_NEED_RESCHED already set from new task
5223 * wake up path.
5238cdd3
PT
5224 *
5225 * Note: this also catches the edge-case of curr being in a throttled
5226 * group (e.g. via set_curr_task), since update_curr() (in the
5227 * enqueue of curr) will have resulted in resched being set. This
5228 * prevents us from potentially nominating it as a false LAST_BUDDY
5229 * below.
aec0a514
BR
5230 */
5231 if (test_tsk_need_resched(curr))
5232 return;
5233
a2f5c9ab
DH
5234 /* Idle tasks are by definition preempted by non-idle tasks. */
5235 if (unlikely(curr->policy == SCHED_IDLE) &&
5236 likely(p->policy != SCHED_IDLE))
5237 goto preempt;
5238
91c234b4 5239 /*
a2f5c9ab
DH
5240 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5241 * is driven by the tick):
91c234b4 5242 */
8ed92e51 5243 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5244 return;
bf0f6f24 5245
464b7527 5246 find_matching_se(&se, &pse);
9bbd7374 5247 update_curr(cfs_rq_of(se));
002f128b 5248 BUG_ON(!pse);
2f36825b
VP
5249 if (wakeup_preempt_entity(se, pse) == 1) {
5250 /*
5251 * Bias pick_next to pick the sched entity that is
5252 * triggering this preemption.
5253 */
5254 if (!next_buddy_marked)
5255 set_next_buddy(pse);
3a7e73a2 5256 goto preempt;
2f36825b 5257 }
464b7527 5258
3a7e73a2 5259 return;
a65ac745 5260
3a7e73a2 5261preempt:
8875125e 5262 resched_curr(rq);
3a7e73a2
PZ
5263 /*
5264 * Only set the backward buddy when the current task is still
5265 * on the rq. This can happen when a wakeup gets interleaved
5266 * with schedule on the ->pre_schedule() or idle_balance()
5267 * point, either of which can * drop the rq lock.
5268 *
5269 * Also, during early boot the idle thread is in the fair class,
5270 * for obvious reasons its a bad idea to schedule back to it.
5271 */
5272 if (unlikely(!se->on_rq || curr == rq->idle))
5273 return;
5274
5275 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5276 set_last_buddy(se);
bf0f6f24
IM
5277}
5278
606dba2e
PZ
5279static struct task_struct *
5280pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5281{
5282 struct cfs_rq *cfs_rq = &rq->cfs;
5283 struct sched_entity *se;
678d5718 5284 struct task_struct *p;
37e117c0 5285 int new_tasks;
678d5718 5286
6e83125c 5287again:
678d5718
PZ
5288#ifdef CONFIG_FAIR_GROUP_SCHED
5289 if (!cfs_rq->nr_running)
38033c37 5290 goto idle;
678d5718 5291
3f1d2a31 5292 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5293 goto simple;
5294
5295 /*
5296 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5297 * likely that a next task is from the same cgroup as the current.
5298 *
5299 * Therefore attempt to avoid putting and setting the entire cgroup
5300 * hierarchy, only change the part that actually changes.
5301 */
5302
5303 do {
5304 struct sched_entity *curr = cfs_rq->curr;
5305
5306 /*
5307 * Since we got here without doing put_prev_entity() we also
5308 * have to consider cfs_rq->curr. If it is still a runnable
5309 * entity, update_curr() will update its vruntime, otherwise
5310 * forget we've ever seen it.
5311 */
5312 if (curr && curr->on_rq)
5313 update_curr(cfs_rq);
5314 else
5315 curr = NULL;
5316
5317 /*
5318 * This call to check_cfs_rq_runtime() will do the throttle and
5319 * dequeue its entity in the parent(s). Therefore the 'simple'
5320 * nr_running test will indeed be correct.
5321 */
5322 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5323 goto simple;
5324
5325 se = pick_next_entity(cfs_rq, curr);
5326 cfs_rq = group_cfs_rq(se);
5327 } while (cfs_rq);
5328
5329 p = task_of(se);
5330
5331 /*
5332 * Since we haven't yet done put_prev_entity and if the selected task
5333 * is a different task than we started out with, try and touch the
5334 * least amount of cfs_rqs.
5335 */
5336 if (prev != p) {
5337 struct sched_entity *pse = &prev->se;
5338
5339 while (!(cfs_rq = is_same_group(se, pse))) {
5340 int se_depth = se->depth;
5341 int pse_depth = pse->depth;
5342
5343 if (se_depth <= pse_depth) {
5344 put_prev_entity(cfs_rq_of(pse), pse);
5345 pse = parent_entity(pse);
5346 }
5347 if (se_depth >= pse_depth) {
5348 set_next_entity(cfs_rq_of(se), se);
5349 se = parent_entity(se);
5350 }
5351 }
5352
5353 put_prev_entity(cfs_rq, pse);
5354 set_next_entity(cfs_rq, se);
5355 }
5356
5357 if (hrtick_enabled(rq))
5358 hrtick_start_fair(rq, p);
5359
5360 return p;
5361simple:
5362 cfs_rq = &rq->cfs;
5363#endif
bf0f6f24 5364
36ace27e 5365 if (!cfs_rq->nr_running)
38033c37 5366 goto idle;
bf0f6f24 5367
3f1d2a31 5368 put_prev_task(rq, prev);
606dba2e 5369
bf0f6f24 5370 do {
678d5718 5371 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5372 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5373 cfs_rq = group_cfs_rq(se);
5374 } while (cfs_rq);
5375
8f4d37ec 5376 p = task_of(se);
678d5718 5377
b39e66ea
MG
5378 if (hrtick_enabled(rq))
5379 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5380
5381 return p;
38033c37
PZ
5382
5383idle:
e4aa358b 5384 new_tasks = idle_balance(rq);
37e117c0
PZ
5385 /*
5386 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5387 * possible for any higher priority task to appear. In that case we
5388 * must re-start the pick_next_entity() loop.
5389 */
e4aa358b 5390 if (new_tasks < 0)
37e117c0
PZ
5391 return RETRY_TASK;
5392
e4aa358b 5393 if (new_tasks > 0)
38033c37 5394 goto again;
38033c37
PZ
5395
5396 return NULL;
bf0f6f24
IM
5397}
5398
5399/*
5400 * Account for a descheduled task:
5401 */
31ee529c 5402static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5403{
5404 struct sched_entity *se = &prev->se;
5405 struct cfs_rq *cfs_rq;
5406
5407 for_each_sched_entity(se) {
5408 cfs_rq = cfs_rq_of(se);
ab6cde26 5409 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5410 }
5411}
5412
ac53db59
RR
5413/*
5414 * sched_yield() is very simple
5415 *
5416 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5417 */
5418static void yield_task_fair(struct rq *rq)
5419{
5420 struct task_struct *curr = rq->curr;
5421 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5422 struct sched_entity *se = &curr->se;
5423
5424 /*
5425 * Are we the only task in the tree?
5426 */
5427 if (unlikely(rq->nr_running == 1))
5428 return;
5429
5430 clear_buddies(cfs_rq, se);
5431
5432 if (curr->policy != SCHED_BATCH) {
5433 update_rq_clock(rq);
5434 /*
5435 * Update run-time statistics of the 'current'.
5436 */
5437 update_curr(cfs_rq);
916671c0
MG
5438 /*
5439 * Tell update_rq_clock() that we've just updated,
5440 * so we don't do microscopic update in schedule()
5441 * and double the fastpath cost.
5442 */
9edfbfed 5443 rq_clock_skip_update(rq, true);
ac53db59
RR
5444 }
5445
5446 set_skip_buddy(se);
5447}
5448
d95f4122
MG
5449static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5450{
5451 struct sched_entity *se = &p->se;
5452
5238cdd3
PT
5453 /* throttled hierarchies are not runnable */
5454 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5455 return false;
5456
5457 /* Tell the scheduler that we'd really like pse to run next. */
5458 set_next_buddy(se);
5459
d95f4122
MG
5460 yield_task_fair(rq);
5461
5462 return true;
5463}
5464
681f3e68 5465#ifdef CONFIG_SMP
bf0f6f24 5466/**************************************************
e9c84cb8
PZ
5467 * Fair scheduling class load-balancing methods.
5468 *
5469 * BASICS
5470 *
5471 * The purpose of load-balancing is to achieve the same basic fairness the
5472 * per-cpu scheduler provides, namely provide a proportional amount of compute
5473 * time to each task. This is expressed in the following equation:
5474 *
5475 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5476 *
5477 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5478 * W_i,0 is defined as:
5479 *
5480 * W_i,0 = \Sum_j w_i,j (2)
5481 *
5482 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5483 * is derived from the nice value as per prio_to_weight[].
5484 *
5485 * The weight average is an exponential decay average of the instantaneous
5486 * weight:
5487 *
5488 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5489 *
ced549fa 5490 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5491 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5492 * can also include other factors [XXX].
5493 *
5494 * To achieve this balance we define a measure of imbalance which follows
5495 * directly from (1):
5496 *
ced549fa 5497 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5498 *
5499 * We them move tasks around to minimize the imbalance. In the continuous
5500 * function space it is obvious this converges, in the discrete case we get
5501 * a few fun cases generally called infeasible weight scenarios.
5502 *
5503 * [XXX expand on:
5504 * - infeasible weights;
5505 * - local vs global optima in the discrete case. ]
5506 *
5507 *
5508 * SCHED DOMAINS
5509 *
5510 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5511 * for all i,j solution, we create a tree of cpus that follows the hardware
5512 * topology where each level pairs two lower groups (or better). This results
5513 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5514 * tree to only the first of the previous level and we decrease the frequency
5515 * of load-balance at each level inv. proportional to the number of cpus in
5516 * the groups.
5517 *
5518 * This yields:
5519 *
5520 * log_2 n 1 n
5521 * \Sum { --- * --- * 2^i } = O(n) (5)
5522 * i = 0 2^i 2^i
5523 * `- size of each group
5524 * | | `- number of cpus doing load-balance
5525 * | `- freq
5526 * `- sum over all levels
5527 *
5528 * Coupled with a limit on how many tasks we can migrate every balance pass,
5529 * this makes (5) the runtime complexity of the balancer.
5530 *
5531 * An important property here is that each CPU is still (indirectly) connected
5532 * to every other cpu in at most O(log n) steps:
5533 *
5534 * The adjacency matrix of the resulting graph is given by:
5535 *
5536 * log_2 n
5537 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5538 * k = 0
5539 *
5540 * And you'll find that:
5541 *
5542 * A^(log_2 n)_i,j != 0 for all i,j (7)
5543 *
5544 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5545 * The task movement gives a factor of O(m), giving a convergence complexity
5546 * of:
5547 *
5548 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5549 *
5550 *
5551 * WORK CONSERVING
5552 *
5553 * In order to avoid CPUs going idle while there's still work to do, new idle
5554 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5555 * tree itself instead of relying on other CPUs to bring it work.
5556 *
5557 * This adds some complexity to both (5) and (8) but it reduces the total idle
5558 * time.
5559 *
5560 * [XXX more?]
5561 *
5562 *
5563 * CGROUPS
5564 *
5565 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5566 *
5567 * s_k,i
5568 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5569 * S_k
5570 *
5571 * Where
5572 *
5573 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5574 *
5575 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5576 *
5577 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5578 * property.
5579 *
5580 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5581 * rewrite all of this once again.]
5582 */
bf0f6f24 5583
ed387b78
HS
5584static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5585
0ec8aa00
PZ
5586enum fbq_type { regular, remote, all };
5587
ddcdf6e7 5588#define LBF_ALL_PINNED 0x01
367456c7 5589#define LBF_NEED_BREAK 0x02
6263322c
PZ
5590#define LBF_DST_PINNED 0x04
5591#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5592
5593struct lb_env {
5594 struct sched_domain *sd;
5595
ddcdf6e7 5596 struct rq *src_rq;
85c1e7da 5597 int src_cpu;
ddcdf6e7
PZ
5598
5599 int dst_cpu;
5600 struct rq *dst_rq;
5601
88b8dac0
SV
5602 struct cpumask *dst_grpmask;
5603 int new_dst_cpu;
ddcdf6e7 5604 enum cpu_idle_type idle;
bd939f45 5605 long imbalance;
b9403130
MW
5606 /* The set of CPUs under consideration for load-balancing */
5607 struct cpumask *cpus;
5608
ddcdf6e7 5609 unsigned int flags;
367456c7
PZ
5610
5611 unsigned int loop;
5612 unsigned int loop_break;
5613 unsigned int loop_max;
0ec8aa00
PZ
5614
5615 enum fbq_type fbq_type;
163122b7 5616 struct list_head tasks;
ddcdf6e7
PZ
5617};
5618
029632fb
PZ
5619/*
5620 * Is this task likely cache-hot:
5621 */
5d5e2b1b 5622static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5623{
5624 s64 delta;
5625
e5673f28
KT
5626 lockdep_assert_held(&env->src_rq->lock);
5627
029632fb
PZ
5628 if (p->sched_class != &fair_sched_class)
5629 return 0;
5630
5631 if (unlikely(p->policy == SCHED_IDLE))
5632 return 0;
5633
5634 /*
5635 * Buddy candidates are cache hot:
5636 */
5d5e2b1b 5637 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5638 (&p->se == cfs_rq_of(&p->se)->next ||
5639 &p->se == cfs_rq_of(&p->se)->last))
5640 return 1;
5641
5642 if (sysctl_sched_migration_cost == -1)
5643 return 1;
5644 if (sysctl_sched_migration_cost == 0)
5645 return 0;
5646
5d5e2b1b 5647 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5648
5649 return delta < (s64)sysctl_sched_migration_cost;
5650}
5651
3a7053b3
MG
5652#ifdef CONFIG_NUMA_BALANCING
5653/* Returns true if the destination node has incurred more faults */
5654static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5655{
b1ad065e 5656 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5657 int src_nid, dst_nid;
5658
44dba3d5 5659 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5660 !(env->sd->flags & SD_NUMA)) {
5661 return false;
5662 }
5663
5664 src_nid = cpu_to_node(env->src_cpu);
5665 dst_nid = cpu_to_node(env->dst_cpu);
5666
83e1d2cd 5667 if (src_nid == dst_nid)
3a7053b3
MG
5668 return false;
5669
b1ad065e
RR
5670 if (numa_group) {
5671 /* Task is already in the group's interleave set. */
5672 if (node_isset(src_nid, numa_group->active_nodes))
5673 return false;
83e1d2cd 5674
b1ad065e
RR
5675 /* Task is moving into the group's interleave set. */
5676 if (node_isset(dst_nid, numa_group->active_nodes))
5677 return true;
83e1d2cd 5678
b1ad065e
RR
5679 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5680 }
5681
5682 /* Encourage migration to the preferred node. */
5683 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5684 return true;
5685
b1ad065e 5686 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5687}
7a0f3083
MG
5688
5689
5690static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5691{
b1ad065e 5692 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5693 int src_nid, dst_nid;
5694
5695 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5696 return false;
5697
44dba3d5 5698 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5699 return false;
5700
5701 src_nid = cpu_to_node(env->src_cpu);
5702 dst_nid = cpu_to_node(env->dst_cpu);
5703
83e1d2cd 5704 if (src_nid == dst_nid)
7a0f3083
MG
5705 return false;
5706
b1ad065e
RR
5707 if (numa_group) {
5708 /* Task is moving within/into the group's interleave set. */
5709 if (node_isset(dst_nid, numa_group->active_nodes))
5710 return false;
5711
5712 /* Task is moving out of the group's interleave set. */
5713 if (node_isset(src_nid, numa_group->active_nodes))
5714 return true;
5715
5716 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5717 }
5718
83e1d2cd
MG
5719 /* Migrating away from the preferred node is always bad. */
5720 if (src_nid == p->numa_preferred_nid)
5721 return true;
5722
b1ad065e 5723 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5724}
5725
3a7053b3
MG
5726#else
5727static inline bool migrate_improves_locality(struct task_struct *p,
5728 struct lb_env *env)
5729{
5730 return false;
5731}
7a0f3083
MG
5732
5733static inline bool migrate_degrades_locality(struct task_struct *p,
5734 struct lb_env *env)
5735{
5736 return false;
5737}
3a7053b3
MG
5738#endif
5739
1e3c88bd
PZ
5740/*
5741 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5742 */
5743static
8e45cb54 5744int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5745{
5746 int tsk_cache_hot = 0;
e5673f28
KT
5747
5748 lockdep_assert_held(&env->src_rq->lock);
5749
1e3c88bd
PZ
5750 /*
5751 * We do not migrate tasks that are:
d3198084 5752 * 1) throttled_lb_pair, or
1e3c88bd 5753 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5754 * 3) running (obviously), or
5755 * 4) are cache-hot on their current CPU.
1e3c88bd 5756 */
d3198084
JK
5757 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5758 return 0;
5759
ddcdf6e7 5760 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5761 int cpu;
88b8dac0 5762
41acab88 5763 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5764
6263322c
PZ
5765 env->flags |= LBF_SOME_PINNED;
5766
88b8dac0
SV
5767 /*
5768 * Remember if this task can be migrated to any other cpu in
5769 * our sched_group. We may want to revisit it if we couldn't
5770 * meet load balance goals by pulling other tasks on src_cpu.
5771 *
5772 * Also avoid computing new_dst_cpu if we have already computed
5773 * one in current iteration.
5774 */
6263322c 5775 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5776 return 0;
5777
e02e60c1
JK
5778 /* Prevent to re-select dst_cpu via env's cpus */
5779 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5780 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5781 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5782 env->new_dst_cpu = cpu;
5783 break;
5784 }
88b8dac0 5785 }
e02e60c1 5786
1e3c88bd
PZ
5787 return 0;
5788 }
88b8dac0
SV
5789
5790 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5791 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5792
ddcdf6e7 5793 if (task_running(env->src_rq, p)) {
41acab88 5794 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5795 return 0;
5796 }
5797
5798 /*
5799 * Aggressive migration if:
3a7053b3
MG
5800 * 1) destination numa is preferred
5801 * 2) task is cache cold, or
5802 * 3) too many balance attempts have failed.
1e3c88bd 5803 */
5d5e2b1b 5804 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5805 if (!tsk_cache_hot)
5806 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5807
7a96c231
KT
5808 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5809 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5810 if (tsk_cache_hot) {
5811 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5812 schedstat_inc(p, se.statistics.nr_forced_migrations);
5813 }
1e3c88bd
PZ
5814 return 1;
5815 }
5816
4e2dcb73
ZH
5817 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5818 return 0;
1e3c88bd
PZ
5819}
5820
897c395f 5821/*
163122b7
KT
5822 * detach_task() -- detach the task for the migration specified in env
5823 */
5824static void detach_task(struct task_struct *p, struct lb_env *env)
5825{
5826 lockdep_assert_held(&env->src_rq->lock);
5827
5828 deactivate_task(env->src_rq, p, 0);
5829 p->on_rq = TASK_ON_RQ_MIGRATING;
5830 set_task_cpu(p, env->dst_cpu);
5831}
5832
897c395f 5833/*
e5673f28 5834 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5835 * part of active balancing operations within "domain".
897c395f 5836 *
e5673f28 5837 * Returns a task if successful and NULL otherwise.
897c395f 5838 */
e5673f28 5839static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5840{
5841 struct task_struct *p, *n;
897c395f 5842
e5673f28
KT
5843 lockdep_assert_held(&env->src_rq->lock);
5844
367456c7 5845 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5846 if (!can_migrate_task(p, env))
5847 continue;
897c395f 5848
163122b7 5849 detach_task(p, env);
e5673f28 5850
367456c7 5851 /*
e5673f28 5852 * Right now, this is only the second place where
163122b7 5853 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5854 * so we can safely collect stats here rather than
163122b7 5855 * inside detach_tasks().
367456c7
PZ
5856 */
5857 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5858 return p;
897c395f 5859 }
e5673f28 5860 return NULL;
897c395f
PZ
5861}
5862
eb95308e
PZ
5863static const unsigned int sched_nr_migrate_break = 32;
5864
5d6523eb 5865/*
163122b7
KT
5866 * detach_tasks() -- tries to detach up to imbalance weighted load from
5867 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5868 *
163122b7 5869 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5870 */
163122b7 5871static int detach_tasks(struct lb_env *env)
1e3c88bd 5872{
5d6523eb
PZ
5873 struct list_head *tasks = &env->src_rq->cfs_tasks;
5874 struct task_struct *p;
367456c7 5875 unsigned long load;
163122b7
KT
5876 int detached = 0;
5877
5878 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5879
bd939f45 5880 if (env->imbalance <= 0)
5d6523eb 5881 return 0;
1e3c88bd 5882
5d6523eb
PZ
5883 while (!list_empty(tasks)) {
5884 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5885
367456c7
PZ
5886 env->loop++;
5887 /* We've more or less seen every task there is, call it quits */
5d6523eb 5888 if (env->loop > env->loop_max)
367456c7 5889 break;
5d6523eb
PZ
5890
5891 /* take a breather every nr_migrate tasks */
367456c7 5892 if (env->loop > env->loop_break) {
eb95308e 5893 env->loop_break += sched_nr_migrate_break;
8e45cb54 5894 env->flags |= LBF_NEED_BREAK;
ee00e66f 5895 break;
a195f004 5896 }
1e3c88bd 5897
d3198084 5898 if (!can_migrate_task(p, env))
367456c7
PZ
5899 goto next;
5900
5901 load = task_h_load(p);
5d6523eb 5902
eb95308e 5903 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5904 goto next;
5905
bd939f45 5906 if ((load / 2) > env->imbalance)
367456c7 5907 goto next;
1e3c88bd 5908
163122b7
KT
5909 detach_task(p, env);
5910 list_add(&p->se.group_node, &env->tasks);
5911
5912 detached++;
bd939f45 5913 env->imbalance -= load;
1e3c88bd
PZ
5914
5915#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5916 /*
5917 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5918 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5919 * the critical section.
5920 */
5d6523eb 5921 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5922 break;
1e3c88bd
PZ
5923#endif
5924
ee00e66f
PZ
5925 /*
5926 * We only want to steal up to the prescribed amount of
5927 * weighted load.
5928 */
bd939f45 5929 if (env->imbalance <= 0)
ee00e66f 5930 break;
367456c7
PZ
5931
5932 continue;
5933next:
5d6523eb 5934 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5935 }
5d6523eb 5936
1e3c88bd 5937 /*
163122b7
KT
5938 * Right now, this is one of only two places we collect this stat
5939 * so we can safely collect detach_one_task() stats here rather
5940 * than inside detach_one_task().
1e3c88bd 5941 */
163122b7 5942 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5943
163122b7
KT
5944 return detached;
5945}
5946
5947/*
5948 * attach_task() -- attach the task detached by detach_task() to its new rq.
5949 */
5950static void attach_task(struct rq *rq, struct task_struct *p)
5951{
5952 lockdep_assert_held(&rq->lock);
5953
5954 BUG_ON(task_rq(p) != rq);
5955 p->on_rq = TASK_ON_RQ_QUEUED;
5956 activate_task(rq, p, 0);
5957 check_preempt_curr(rq, p, 0);
5958}
5959
5960/*
5961 * attach_one_task() -- attaches the task returned from detach_one_task() to
5962 * its new rq.
5963 */
5964static void attach_one_task(struct rq *rq, struct task_struct *p)
5965{
5966 raw_spin_lock(&rq->lock);
5967 attach_task(rq, p);
5968 raw_spin_unlock(&rq->lock);
5969}
5970
5971/*
5972 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5973 * new rq.
5974 */
5975static void attach_tasks(struct lb_env *env)
5976{
5977 struct list_head *tasks = &env->tasks;
5978 struct task_struct *p;
5979
5980 raw_spin_lock(&env->dst_rq->lock);
5981
5982 while (!list_empty(tasks)) {
5983 p = list_first_entry(tasks, struct task_struct, se.group_node);
5984 list_del_init(&p->se.group_node);
1e3c88bd 5985
163122b7
KT
5986 attach_task(env->dst_rq, p);
5987 }
5988
5989 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5990}
5991
230059de 5992#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5993/*
5994 * update tg->load_weight by folding this cpu's load_avg
5995 */
48a16753 5996static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5997{
48a16753
PT
5998 struct sched_entity *se = tg->se[cpu];
5999 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 6000
48a16753
PT
6001 /* throttled entities do not contribute to load */
6002 if (throttled_hierarchy(cfs_rq))
6003 return;
9e3081ca 6004
aff3e498 6005 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 6006
82958366
PT
6007 if (se) {
6008 update_entity_load_avg(se, 1);
6009 /*
6010 * We pivot on our runnable average having decayed to zero for
6011 * list removal. This generally implies that all our children
6012 * have also been removed (modulo rounding error or bandwidth
6013 * control); however, such cases are rare and we can fix these
6014 * at enqueue.
6015 *
6016 * TODO: fix up out-of-order children on enqueue.
6017 */
6018 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6019 list_del_leaf_cfs_rq(cfs_rq);
6020 } else {
48a16753 6021 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6022 update_rq_runnable_avg(rq, rq->nr_running);
6023 }
9e3081ca
PZ
6024}
6025
48a16753 6026static void update_blocked_averages(int cpu)
9e3081ca 6027{
9e3081ca 6028 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6029 struct cfs_rq *cfs_rq;
6030 unsigned long flags;
9e3081ca 6031
48a16753
PT
6032 raw_spin_lock_irqsave(&rq->lock, flags);
6033 update_rq_clock(rq);
9763b67f
PZ
6034 /*
6035 * Iterates the task_group tree in a bottom up fashion, see
6036 * list_add_leaf_cfs_rq() for details.
6037 */
64660c86 6038 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6039 /*
6040 * Note: We may want to consider periodically releasing
6041 * rq->lock about these updates so that creating many task
6042 * groups does not result in continually extending hold time.
6043 */
6044 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6045 }
48a16753
PT
6046
6047 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6048}
6049
9763b67f 6050/*
68520796 6051 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6052 * This needs to be done in a top-down fashion because the load of a child
6053 * group is a fraction of its parents load.
6054 */
68520796 6055static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6056{
68520796
VD
6057 struct rq *rq = rq_of(cfs_rq);
6058 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6059 unsigned long now = jiffies;
68520796 6060 unsigned long load;
a35b6466 6061
68520796 6062 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6063 return;
6064
68520796
VD
6065 cfs_rq->h_load_next = NULL;
6066 for_each_sched_entity(se) {
6067 cfs_rq = cfs_rq_of(se);
6068 cfs_rq->h_load_next = se;
6069 if (cfs_rq->last_h_load_update == now)
6070 break;
6071 }
a35b6466 6072
68520796 6073 if (!se) {
7e3115ef 6074 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6075 cfs_rq->last_h_load_update = now;
6076 }
6077
6078 while ((se = cfs_rq->h_load_next) != NULL) {
6079 load = cfs_rq->h_load;
6080 load = div64_ul(load * se->avg.load_avg_contrib,
6081 cfs_rq->runnable_load_avg + 1);
6082 cfs_rq = group_cfs_rq(se);
6083 cfs_rq->h_load = load;
6084 cfs_rq->last_h_load_update = now;
6085 }
9763b67f
PZ
6086}
6087
367456c7 6088static unsigned long task_h_load(struct task_struct *p)
230059de 6089{
367456c7 6090 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6091
68520796 6092 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6093 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6094 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6095}
6096#else
48a16753 6097static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6098{
6099}
6100
367456c7 6101static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6102{
a003a25b 6103 return p->se.avg.load_avg_contrib;
1e3c88bd 6104}
230059de 6105#endif
1e3c88bd 6106
1e3c88bd 6107/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6108
6109enum group_type {
6110 group_other = 0,
6111 group_imbalanced,
6112 group_overloaded,
6113};
6114
1e3c88bd
PZ
6115/*
6116 * sg_lb_stats - stats of a sched_group required for load_balancing
6117 */
6118struct sg_lb_stats {
6119 unsigned long avg_load; /*Avg load across the CPUs of the group */
6120 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6121 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6122 unsigned long load_per_task;
63b2ca30 6123 unsigned long group_capacity;
8bb5b00c 6124 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6125 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6126 unsigned int idle_cpus;
6127 unsigned int group_weight;
caeb178c 6128 enum group_type group_type;
ea67821b 6129 int group_no_capacity;
0ec8aa00
PZ
6130#ifdef CONFIG_NUMA_BALANCING
6131 unsigned int nr_numa_running;
6132 unsigned int nr_preferred_running;
6133#endif
1e3c88bd
PZ
6134};
6135
56cf515b
JK
6136/*
6137 * sd_lb_stats - Structure to store the statistics of a sched_domain
6138 * during load balancing.
6139 */
6140struct sd_lb_stats {
6141 struct sched_group *busiest; /* Busiest group in this sd */
6142 struct sched_group *local; /* Local group in this sd */
6143 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6144 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6145 unsigned long avg_load; /* Average load across all groups in sd */
6146
56cf515b 6147 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6148 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6149};
6150
147c5fc2
PZ
6151static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6152{
6153 /*
6154 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6155 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6156 * We must however clear busiest_stat::avg_load because
6157 * update_sd_pick_busiest() reads this before assignment.
6158 */
6159 *sds = (struct sd_lb_stats){
6160 .busiest = NULL,
6161 .local = NULL,
6162 .total_load = 0UL,
63b2ca30 6163 .total_capacity = 0UL,
147c5fc2
PZ
6164 .busiest_stat = {
6165 .avg_load = 0UL,
caeb178c
RR
6166 .sum_nr_running = 0,
6167 .group_type = group_other,
147c5fc2
PZ
6168 },
6169 };
6170}
6171
1e3c88bd
PZ
6172/**
6173 * get_sd_load_idx - Obtain the load index for a given sched domain.
6174 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6175 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6176 *
6177 * Return: The load index.
1e3c88bd
PZ
6178 */
6179static inline int get_sd_load_idx(struct sched_domain *sd,
6180 enum cpu_idle_type idle)
6181{
6182 int load_idx;
6183
6184 switch (idle) {
6185 case CPU_NOT_IDLE:
6186 load_idx = sd->busy_idx;
6187 break;
6188
6189 case CPU_NEWLY_IDLE:
6190 load_idx = sd->newidle_idx;
6191 break;
6192 default:
6193 load_idx = sd->idle_idx;
6194 break;
6195 }
6196
6197 return load_idx;
6198}
6199
26bc3c50 6200static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6201{
26bc3c50
VG
6202 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6203 return sd->smt_gain / sd->span_weight;
1e3c88bd 6204
26bc3c50 6205 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6206}
6207
26bc3c50 6208unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6209{
26bc3c50 6210 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6211}
6212
ced549fa 6213static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6214{
6215 struct rq *rq = cpu_rq(cpu);
b5b4860d 6216 u64 total, used, age_stamp, avg;
cadefd3d 6217 s64 delta;
1e3c88bd 6218
b654f7de
PZ
6219 /*
6220 * Since we're reading these variables without serialization make sure
6221 * we read them once before doing sanity checks on them.
6222 */
6223 age_stamp = ACCESS_ONCE(rq->age_stamp);
6224 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 6225 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6226
cadefd3d
PZ
6227 if (unlikely(delta < 0))
6228 delta = 0;
6229
6230 total = sched_avg_period() + delta;
aa483808 6231
b5b4860d 6232 used = div_u64(avg, total);
1e3c88bd 6233
b5b4860d
VG
6234 if (likely(used < SCHED_CAPACITY_SCALE))
6235 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6236
b5b4860d 6237 return 1;
1e3c88bd
PZ
6238}
6239
ced549fa 6240static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6241{
ca8ce3d0 6242 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6243 struct sched_group *sdg = sd->groups;
6244
26bc3c50
VG
6245 if (sched_feat(ARCH_CAPACITY))
6246 capacity *= arch_scale_cpu_capacity(sd, cpu);
6247 else
6248 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6249
26bc3c50 6250 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6251
ca6d75e6 6252 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6253
ced549fa 6254 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6255 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6256
ced549fa
NP
6257 if (!capacity)
6258 capacity = 1;
1e3c88bd 6259
ced549fa
NP
6260 cpu_rq(cpu)->cpu_capacity = capacity;
6261 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6262}
6263
63b2ca30 6264void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6265{
6266 struct sched_domain *child = sd->child;
6267 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6268 unsigned long capacity;
4ec4412e
VG
6269 unsigned long interval;
6270
6271 interval = msecs_to_jiffies(sd->balance_interval);
6272 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6273 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6274
6275 if (!child) {
ced549fa 6276 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6277 return;
6278 }
6279
dc7ff76e 6280 capacity = 0;
1e3c88bd 6281
74a5ce20
PZ
6282 if (child->flags & SD_OVERLAP) {
6283 /*
6284 * SD_OVERLAP domains cannot assume that child groups
6285 * span the current group.
6286 */
6287
863bffc8 6288 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6289 struct sched_group_capacity *sgc;
9abf24d4 6290 struct rq *rq = cpu_rq(cpu);
863bffc8 6291
9abf24d4 6292 /*
63b2ca30 6293 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6294 * gets here before we've attached the domains to the
6295 * runqueues.
6296 *
ced549fa
NP
6297 * Use capacity_of(), which is set irrespective of domains
6298 * in update_cpu_capacity().
9abf24d4 6299 *
dc7ff76e 6300 * This avoids capacity from being 0 and
9abf24d4 6301 * causing divide-by-zero issues on boot.
9abf24d4
SD
6302 */
6303 if (unlikely(!rq->sd)) {
ced549fa 6304 capacity += capacity_of(cpu);
9abf24d4
SD
6305 continue;
6306 }
863bffc8 6307
63b2ca30 6308 sgc = rq->sd->groups->sgc;
63b2ca30 6309 capacity += sgc->capacity;
863bffc8 6310 }
74a5ce20
PZ
6311 } else {
6312 /*
6313 * !SD_OVERLAP domains can assume that child groups
6314 * span the current group.
6315 */
6316
6317 group = child->groups;
6318 do {
63b2ca30 6319 capacity += group->sgc->capacity;
74a5ce20
PZ
6320 group = group->next;
6321 } while (group != child->groups);
6322 }
1e3c88bd 6323
63b2ca30 6324 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6325}
6326
9d5efe05 6327/*
ea67821b
VG
6328 * Check whether the capacity of the rq has been noticeably reduced by side
6329 * activity. The imbalance_pct is used for the threshold.
6330 * Return true is the capacity is reduced
9d5efe05
SV
6331 */
6332static inline int
ea67821b 6333check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6334{
ea67821b
VG
6335 return ((rq->cpu_capacity * sd->imbalance_pct) <
6336 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6337}
6338
30ce5dab
PZ
6339/*
6340 * Group imbalance indicates (and tries to solve) the problem where balancing
6341 * groups is inadequate due to tsk_cpus_allowed() constraints.
6342 *
6343 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6344 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6345 * Something like:
6346 *
6347 * { 0 1 2 3 } { 4 5 6 7 }
6348 * * * * *
6349 *
6350 * If we were to balance group-wise we'd place two tasks in the first group and
6351 * two tasks in the second group. Clearly this is undesired as it will overload
6352 * cpu 3 and leave one of the cpus in the second group unused.
6353 *
6354 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6355 * by noticing the lower domain failed to reach balance and had difficulty
6356 * moving tasks due to affinity constraints.
30ce5dab
PZ
6357 *
6358 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6359 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6360 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6361 * to create an effective group imbalance.
6362 *
6363 * This is a somewhat tricky proposition since the next run might not find the
6364 * group imbalance and decide the groups need to be balanced again. A most
6365 * subtle and fragile situation.
6366 */
6367
6263322c 6368static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6369{
63b2ca30 6370 return group->sgc->imbalance;
30ce5dab
PZ
6371}
6372
b37d9316 6373/*
ea67821b
VG
6374 * group_has_capacity returns true if the group has spare capacity that could
6375 * be used by some tasks.
6376 * We consider that a group has spare capacity if the * number of task is
6377 * smaller than the number of CPUs or if the usage is lower than the available
6378 * capacity for CFS tasks.
6379 * For the latter, we use a threshold to stabilize the state, to take into
6380 * account the variance of the tasks' load and to return true if the available
6381 * capacity in meaningful for the load balancer.
6382 * As an example, an available capacity of 1% can appear but it doesn't make
6383 * any benefit for the load balance.
b37d9316 6384 */
ea67821b
VG
6385static inline bool
6386group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6387{
ea67821b
VG
6388 if (sgs->sum_nr_running < sgs->group_weight)
6389 return true;
c61037e9 6390
ea67821b
VG
6391 if ((sgs->group_capacity * 100) >
6392 (sgs->group_usage * env->sd->imbalance_pct))
6393 return true;
b37d9316 6394
ea67821b
VG
6395 return false;
6396}
6397
6398/*
6399 * group_is_overloaded returns true if the group has more tasks than it can
6400 * handle.
6401 * group_is_overloaded is not equals to !group_has_capacity because a group
6402 * with the exact right number of tasks, has no more spare capacity but is not
6403 * overloaded so both group_has_capacity and group_is_overloaded return
6404 * false.
6405 */
6406static inline bool
6407group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6408{
6409 if (sgs->sum_nr_running <= sgs->group_weight)
6410 return false;
b37d9316 6411
ea67821b
VG
6412 if ((sgs->group_capacity * 100) <
6413 (sgs->group_usage * env->sd->imbalance_pct))
6414 return true;
b37d9316 6415
ea67821b 6416 return false;
b37d9316
PZ
6417}
6418
ea67821b
VG
6419static enum group_type group_classify(struct lb_env *env,
6420 struct sched_group *group,
6421 struct sg_lb_stats *sgs)
caeb178c 6422{
ea67821b 6423 if (sgs->group_no_capacity)
caeb178c
RR
6424 return group_overloaded;
6425
6426 if (sg_imbalanced(group))
6427 return group_imbalanced;
6428
6429 return group_other;
6430}
6431
1e3c88bd
PZ
6432/**
6433 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6434 * @env: The load balancing environment.
1e3c88bd 6435 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6436 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6437 * @local_group: Does group contain this_cpu.
1e3c88bd 6438 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6439 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6440 */
bd939f45
PZ
6441static inline void update_sg_lb_stats(struct lb_env *env,
6442 struct sched_group *group, int load_idx,
4486edd1
TC
6443 int local_group, struct sg_lb_stats *sgs,
6444 bool *overload)
1e3c88bd 6445{
30ce5dab 6446 unsigned long load;
bd939f45 6447 int i;
1e3c88bd 6448
b72ff13c
PZ
6449 memset(sgs, 0, sizeof(*sgs));
6450
b9403130 6451 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6452 struct rq *rq = cpu_rq(i);
6453
1e3c88bd 6454 /* Bias balancing toward cpus of our domain */
6263322c 6455 if (local_group)
04f733b4 6456 load = target_load(i, load_idx);
6263322c 6457 else
1e3c88bd 6458 load = source_load(i, load_idx);
1e3c88bd
PZ
6459
6460 sgs->group_load += load;
8bb5b00c 6461 sgs->group_usage += get_cpu_usage(i);
65fdac08 6462 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6463
6464 if (rq->nr_running > 1)
6465 *overload = true;
6466
0ec8aa00
PZ
6467#ifdef CONFIG_NUMA_BALANCING
6468 sgs->nr_numa_running += rq->nr_numa_running;
6469 sgs->nr_preferred_running += rq->nr_preferred_running;
6470#endif
1e3c88bd 6471 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6472 if (idle_cpu(i))
6473 sgs->idle_cpus++;
1e3c88bd
PZ
6474 }
6475
63b2ca30
NP
6476 /* Adjust by relative CPU capacity of the group */
6477 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6478 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6479
dd5feea1 6480 if (sgs->sum_nr_running)
38d0f770 6481 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6482
aae6d3dd 6483 sgs->group_weight = group->group_weight;
b37d9316 6484
ea67821b
VG
6485 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6486 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6487}
6488
532cb4c4
MN
6489/**
6490 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6491 * @env: The load balancing environment.
532cb4c4
MN
6492 * @sds: sched_domain statistics
6493 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6494 * @sgs: sched_group statistics
532cb4c4
MN
6495 *
6496 * Determine if @sg is a busier group than the previously selected
6497 * busiest group.
e69f6186
YB
6498 *
6499 * Return: %true if @sg is a busier group than the previously selected
6500 * busiest group. %false otherwise.
532cb4c4 6501 */
bd939f45 6502static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6503 struct sd_lb_stats *sds,
6504 struct sched_group *sg,
bd939f45 6505 struct sg_lb_stats *sgs)
532cb4c4 6506{
caeb178c 6507 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6508
caeb178c 6509 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6510 return true;
6511
caeb178c
RR
6512 if (sgs->group_type < busiest->group_type)
6513 return false;
6514
6515 if (sgs->avg_load <= busiest->avg_load)
6516 return false;
6517
6518 /* This is the busiest node in its class. */
6519 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6520 return true;
6521
6522 /*
6523 * ASYM_PACKING needs to move all the work to the lowest
6524 * numbered CPUs in the group, therefore mark all groups
6525 * higher than ourself as busy.
6526 */
caeb178c 6527 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6528 if (!sds->busiest)
6529 return true;
6530
6531 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6532 return true;
6533 }
6534
6535 return false;
6536}
6537
0ec8aa00
PZ
6538#ifdef CONFIG_NUMA_BALANCING
6539static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6540{
6541 if (sgs->sum_nr_running > sgs->nr_numa_running)
6542 return regular;
6543 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6544 return remote;
6545 return all;
6546}
6547
6548static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6549{
6550 if (rq->nr_running > rq->nr_numa_running)
6551 return regular;
6552 if (rq->nr_running > rq->nr_preferred_running)
6553 return remote;
6554 return all;
6555}
6556#else
6557static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6558{
6559 return all;
6560}
6561
6562static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6563{
6564 return regular;
6565}
6566#endif /* CONFIG_NUMA_BALANCING */
6567
1e3c88bd 6568/**
461819ac 6569 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6570 * @env: The load balancing environment.
1e3c88bd
PZ
6571 * @sds: variable to hold the statistics for this sched_domain.
6572 */
0ec8aa00 6573static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6574{
bd939f45
PZ
6575 struct sched_domain *child = env->sd->child;
6576 struct sched_group *sg = env->sd->groups;
56cf515b 6577 struct sg_lb_stats tmp_sgs;
1e3c88bd 6578 int load_idx, prefer_sibling = 0;
4486edd1 6579 bool overload = false;
1e3c88bd
PZ
6580
6581 if (child && child->flags & SD_PREFER_SIBLING)
6582 prefer_sibling = 1;
6583
bd939f45 6584 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6585
6586 do {
56cf515b 6587 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6588 int local_group;
6589
bd939f45 6590 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6591 if (local_group) {
6592 sds->local = sg;
6593 sgs = &sds->local_stat;
b72ff13c
PZ
6594
6595 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6596 time_after_eq(jiffies, sg->sgc->next_update))
6597 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6598 }
1e3c88bd 6599
4486edd1
TC
6600 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6601 &overload);
1e3c88bd 6602
b72ff13c
PZ
6603 if (local_group)
6604 goto next_group;
6605
1e3c88bd
PZ
6606 /*
6607 * In case the child domain prefers tasks go to siblings
ea67821b 6608 * first, lower the sg capacity so that we'll try
75dd321d
NR
6609 * and move all the excess tasks away. We lower the capacity
6610 * of a group only if the local group has the capacity to fit
ea67821b
VG
6611 * these excess tasks. The extra check prevents the case where
6612 * you always pull from the heaviest group when it is already
6613 * under-utilized (possible with a large weight task outweighs
6614 * the tasks on the system).
1e3c88bd 6615 */
b72ff13c 6616 if (prefer_sibling && sds->local &&
ea67821b
VG
6617 group_has_capacity(env, &sds->local_stat) &&
6618 (sgs->sum_nr_running > 1)) {
6619 sgs->group_no_capacity = 1;
6620 sgs->group_type = group_overloaded;
cb0b9f24 6621 }
1e3c88bd 6622
b72ff13c 6623 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6624 sds->busiest = sg;
56cf515b 6625 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6626 }
6627
b72ff13c
PZ
6628next_group:
6629 /* Now, start updating sd_lb_stats */
6630 sds->total_load += sgs->group_load;
63b2ca30 6631 sds->total_capacity += sgs->group_capacity;
b72ff13c 6632
532cb4c4 6633 sg = sg->next;
bd939f45 6634 } while (sg != env->sd->groups);
0ec8aa00
PZ
6635
6636 if (env->sd->flags & SD_NUMA)
6637 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6638
6639 if (!env->sd->parent) {
6640 /* update overload indicator if we are at root domain */
6641 if (env->dst_rq->rd->overload != overload)
6642 env->dst_rq->rd->overload = overload;
6643 }
6644
532cb4c4
MN
6645}
6646
532cb4c4
MN
6647/**
6648 * check_asym_packing - Check to see if the group is packed into the
6649 * sched doman.
6650 *
6651 * This is primarily intended to used at the sibling level. Some
6652 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6653 * case of POWER7, it can move to lower SMT modes only when higher
6654 * threads are idle. When in lower SMT modes, the threads will
6655 * perform better since they share less core resources. Hence when we
6656 * have idle threads, we want them to be the higher ones.
6657 *
6658 * This packing function is run on idle threads. It checks to see if
6659 * the busiest CPU in this domain (core in the P7 case) has a higher
6660 * CPU number than the packing function is being run on. Here we are
6661 * assuming lower CPU number will be equivalent to lower a SMT thread
6662 * number.
6663 *
e69f6186 6664 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6665 * this CPU. The amount of the imbalance is returned in *imbalance.
6666 *
cd96891d 6667 * @env: The load balancing environment.
532cb4c4 6668 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6669 */
bd939f45 6670static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6671{
6672 int busiest_cpu;
6673
bd939f45 6674 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6675 return 0;
6676
6677 if (!sds->busiest)
6678 return 0;
6679
6680 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6681 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6682 return 0;
6683
bd939f45 6684 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6685 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6686 SCHED_CAPACITY_SCALE);
bd939f45 6687
532cb4c4 6688 return 1;
1e3c88bd
PZ
6689}
6690
6691/**
6692 * fix_small_imbalance - Calculate the minor imbalance that exists
6693 * amongst the groups of a sched_domain, during
6694 * load balancing.
cd96891d 6695 * @env: The load balancing environment.
1e3c88bd 6696 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6697 */
bd939f45
PZ
6698static inline
6699void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6700{
63b2ca30 6701 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6702 unsigned int imbn = 2;
dd5feea1 6703 unsigned long scaled_busy_load_per_task;
56cf515b 6704 struct sg_lb_stats *local, *busiest;
1e3c88bd 6705
56cf515b
JK
6706 local = &sds->local_stat;
6707 busiest = &sds->busiest_stat;
1e3c88bd 6708
56cf515b
JK
6709 if (!local->sum_nr_running)
6710 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6711 else if (busiest->load_per_task > local->load_per_task)
6712 imbn = 1;
dd5feea1 6713
56cf515b 6714 scaled_busy_load_per_task =
ca8ce3d0 6715 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6716 busiest->group_capacity;
56cf515b 6717
3029ede3
VD
6718 if (busiest->avg_load + scaled_busy_load_per_task >=
6719 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6720 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6721 return;
6722 }
6723
6724 /*
6725 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6726 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6727 * moving them.
6728 */
6729
63b2ca30 6730 capa_now += busiest->group_capacity *
56cf515b 6731 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6732 capa_now += local->group_capacity *
56cf515b 6733 min(local->load_per_task, local->avg_load);
ca8ce3d0 6734 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6735
6736 /* Amount of load we'd subtract */
a2cd4260 6737 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6738 capa_move += busiest->group_capacity *
56cf515b 6739 min(busiest->load_per_task,
a2cd4260 6740 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6741 }
1e3c88bd
PZ
6742
6743 /* Amount of load we'd add */
63b2ca30 6744 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6745 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6746 tmp = (busiest->avg_load * busiest->group_capacity) /
6747 local->group_capacity;
56cf515b 6748 } else {
ca8ce3d0 6749 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6750 local->group_capacity;
56cf515b 6751 }
63b2ca30 6752 capa_move += local->group_capacity *
3ae11c90 6753 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6754 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6755
6756 /* Move if we gain throughput */
63b2ca30 6757 if (capa_move > capa_now)
56cf515b 6758 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6759}
6760
6761/**
6762 * calculate_imbalance - Calculate the amount of imbalance present within the
6763 * groups of a given sched_domain during load balance.
bd939f45 6764 * @env: load balance environment
1e3c88bd 6765 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6766 */
bd939f45 6767static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6768{
dd5feea1 6769 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6770 struct sg_lb_stats *local, *busiest;
6771
6772 local = &sds->local_stat;
56cf515b 6773 busiest = &sds->busiest_stat;
dd5feea1 6774
caeb178c 6775 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6776 /*
6777 * In the group_imb case we cannot rely on group-wide averages
6778 * to ensure cpu-load equilibrium, look at wider averages. XXX
6779 */
56cf515b
JK
6780 busiest->load_per_task =
6781 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6782 }
6783
1e3c88bd
PZ
6784 /*
6785 * In the presence of smp nice balancing, certain scenarios can have
6786 * max load less than avg load(as we skip the groups at or below
ced549fa 6787 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6788 */
b1885550
VD
6789 if (busiest->avg_load <= sds->avg_load ||
6790 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6791 env->imbalance = 0;
6792 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6793 }
6794
9a5d9ba6
PZ
6795 /*
6796 * If there aren't any idle cpus, avoid creating some.
6797 */
6798 if (busiest->group_type == group_overloaded &&
6799 local->group_type == group_overloaded) {
ea67821b
VG
6800 load_above_capacity = busiest->sum_nr_running *
6801 SCHED_LOAD_SCALE;
6802 if (load_above_capacity > busiest->group_capacity)
6803 load_above_capacity -= busiest->group_capacity;
6804 else
6805 load_above_capacity = ~0UL;
dd5feea1
SS
6806 }
6807
6808 /*
6809 * We're trying to get all the cpus to the average_load, so we don't
6810 * want to push ourselves above the average load, nor do we wish to
6811 * reduce the max loaded cpu below the average load. At the same time,
6812 * we also don't want to reduce the group load below the group capacity
6813 * (so that we can implement power-savings policies etc). Thus we look
6814 * for the minimum possible imbalance.
dd5feea1 6815 */
30ce5dab 6816 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6817
6818 /* How much load to actually move to equalise the imbalance */
56cf515b 6819 env->imbalance = min(
63b2ca30
NP
6820 max_pull * busiest->group_capacity,
6821 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6822 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6823
6824 /*
6825 * if *imbalance is less than the average load per runnable task
25985edc 6826 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6827 * a think about bumping its value to force at least one task to be
6828 * moved
6829 */
56cf515b 6830 if (env->imbalance < busiest->load_per_task)
bd939f45 6831 return fix_small_imbalance(env, sds);
1e3c88bd 6832}
fab47622 6833
1e3c88bd
PZ
6834/******* find_busiest_group() helpers end here *********************/
6835
6836/**
6837 * find_busiest_group - Returns the busiest group within the sched_domain
6838 * if there is an imbalance. If there isn't an imbalance, and
6839 * the user has opted for power-savings, it returns a group whose
6840 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6841 * such a group exists.
6842 *
6843 * Also calculates the amount of weighted load which should be moved
6844 * to restore balance.
6845 *
cd96891d 6846 * @env: The load balancing environment.
1e3c88bd 6847 *
e69f6186 6848 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6849 * - If no imbalance and user has opted for power-savings balance,
6850 * return the least loaded group whose CPUs can be
6851 * put to idle by rebalancing its tasks onto our group.
6852 */
56cf515b 6853static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6854{
56cf515b 6855 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6856 struct sd_lb_stats sds;
6857
147c5fc2 6858 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6859
6860 /*
6861 * Compute the various statistics relavent for load balancing at
6862 * this level.
6863 */
23f0d209 6864 update_sd_lb_stats(env, &sds);
56cf515b
JK
6865 local = &sds.local_stat;
6866 busiest = &sds.busiest_stat;
1e3c88bd 6867
ea67821b 6868 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6869 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6870 check_asym_packing(env, &sds))
532cb4c4
MN
6871 return sds.busiest;
6872
cc57aa8f 6873 /* There is no busy sibling group to pull tasks from */
56cf515b 6874 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6875 goto out_balanced;
6876
ca8ce3d0
NP
6877 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6878 / sds.total_capacity;
b0432d8f 6879
866ab43e
PZ
6880 /*
6881 * If the busiest group is imbalanced the below checks don't
30ce5dab 6882 * work because they assume all things are equal, which typically
866ab43e
PZ
6883 * isn't true due to cpus_allowed constraints and the like.
6884 */
caeb178c 6885 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6886 goto force_balance;
6887
cc57aa8f 6888 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6889 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6890 busiest->group_no_capacity)
fab47622
NR
6891 goto force_balance;
6892
cc57aa8f 6893 /*
9c58c79a 6894 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6895 * don't try and pull any tasks.
6896 */
56cf515b 6897 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6898 goto out_balanced;
6899
cc57aa8f
PZ
6900 /*
6901 * Don't pull any tasks if this group is already above the domain
6902 * average load.
6903 */
56cf515b 6904 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6905 goto out_balanced;
6906
bd939f45 6907 if (env->idle == CPU_IDLE) {
aae6d3dd 6908 /*
43f4d666
VG
6909 * This cpu is idle. If the busiest group is not overloaded
6910 * and there is no imbalance between this and busiest group
6911 * wrt idle cpus, it is balanced. The imbalance becomes
6912 * significant if the diff is greater than 1 otherwise we
6913 * might end up to just move the imbalance on another group
aae6d3dd 6914 */
43f4d666
VG
6915 if ((busiest->group_type != group_overloaded) &&
6916 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6917 goto out_balanced;
c186fafe
PZ
6918 } else {
6919 /*
6920 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6921 * imbalance_pct to be conservative.
6922 */
56cf515b
JK
6923 if (100 * busiest->avg_load <=
6924 env->sd->imbalance_pct * local->avg_load)
c186fafe 6925 goto out_balanced;
aae6d3dd 6926 }
1e3c88bd 6927
fab47622 6928force_balance:
1e3c88bd 6929 /* Looks like there is an imbalance. Compute it */
bd939f45 6930 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6931 return sds.busiest;
6932
6933out_balanced:
bd939f45 6934 env->imbalance = 0;
1e3c88bd
PZ
6935 return NULL;
6936}
6937
6938/*
6939 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6940 */
bd939f45 6941static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6942 struct sched_group *group)
1e3c88bd
PZ
6943{
6944 struct rq *busiest = NULL, *rq;
ced549fa 6945 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6946 int i;
6947
6906a408 6948 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6949 unsigned long capacity, wl;
0ec8aa00
PZ
6950 enum fbq_type rt;
6951
6952 rq = cpu_rq(i);
6953 rt = fbq_classify_rq(rq);
1e3c88bd 6954
0ec8aa00
PZ
6955 /*
6956 * We classify groups/runqueues into three groups:
6957 * - regular: there are !numa tasks
6958 * - remote: there are numa tasks that run on the 'wrong' node
6959 * - all: there is no distinction
6960 *
6961 * In order to avoid migrating ideally placed numa tasks,
6962 * ignore those when there's better options.
6963 *
6964 * If we ignore the actual busiest queue to migrate another
6965 * task, the next balance pass can still reduce the busiest
6966 * queue by moving tasks around inside the node.
6967 *
6968 * If we cannot move enough load due to this classification
6969 * the next pass will adjust the group classification and
6970 * allow migration of more tasks.
6971 *
6972 * Both cases only affect the total convergence complexity.
6973 */
6974 if (rt > env->fbq_type)
6975 continue;
6976
ced549fa 6977 capacity = capacity_of(i);
9d5efe05 6978
6e40f5bb 6979 wl = weighted_cpuload(i);
1e3c88bd 6980
6e40f5bb
TG
6981 /*
6982 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6983 * which is not scaled with the cpu capacity.
6e40f5bb 6984 */
ea67821b
VG
6985
6986 if (rq->nr_running == 1 && wl > env->imbalance &&
6987 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6988 continue;
6989
6e40f5bb
TG
6990 /*
6991 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6992 * the weighted_cpuload() scaled with the cpu capacity, so
6993 * that the load can be moved away from the cpu that is
6994 * potentially running at a lower capacity.
95a79b80 6995 *
ced549fa 6996 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6997 * multiplication to rid ourselves of the division works out
ced549fa
NP
6998 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6999 * our previous maximum.
6e40f5bb 7000 */
ced549fa 7001 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7002 busiest_load = wl;
ced549fa 7003 busiest_capacity = capacity;
1e3c88bd
PZ
7004 busiest = rq;
7005 }
7006 }
7007
7008 return busiest;
7009}
7010
7011/*
7012 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7013 * so long as it is large enough.
7014 */
7015#define MAX_PINNED_INTERVAL 512
7016
7017/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7018DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7019
bd939f45 7020static int need_active_balance(struct lb_env *env)
1af3ed3d 7021{
bd939f45
PZ
7022 struct sched_domain *sd = env->sd;
7023
7024 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7025
7026 /*
7027 * ASYM_PACKING needs to force migrate tasks from busy but
7028 * higher numbered CPUs in order to pack all tasks in the
7029 * lowest numbered CPUs.
7030 */
bd939f45 7031 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7032 return 1;
1af3ed3d
PZ
7033 }
7034
1aaf90a4
VG
7035 /*
7036 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7037 * It's worth migrating the task if the src_cpu's capacity is reduced
7038 * because of other sched_class or IRQs if more capacity stays
7039 * available on dst_cpu.
7040 */
7041 if ((env->idle != CPU_NOT_IDLE) &&
7042 (env->src_rq->cfs.h_nr_running == 1)) {
7043 if ((check_cpu_capacity(env->src_rq, sd)) &&
7044 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7045 return 1;
7046 }
7047
1af3ed3d
PZ
7048 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7049}
7050
969c7921
TH
7051static int active_load_balance_cpu_stop(void *data);
7052
23f0d209
JK
7053static int should_we_balance(struct lb_env *env)
7054{
7055 struct sched_group *sg = env->sd->groups;
7056 struct cpumask *sg_cpus, *sg_mask;
7057 int cpu, balance_cpu = -1;
7058
7059 /*
7060 * In the newly idle case, we will allow all the cpu's
7061 * to do the newly idle load balance.
7062 */
7063 if (env->idle == CPU_NEWLY_IDLE)
7064 return 1;
7065
7066 sg_cpus = sched_group_cpus(sg);
7067 sg_mask = sched_group_mask(sg);
7068 /* Try to find first idle cpu */
7069 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7070 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7071 continue;
7072
7073 balance_cpu = cpu;
7074 break;
7075 }
7076
7077 if (balance_cpu == -1)
7078 balance_cpu = group_balance_cpu(sg);
7079
7080 /*
7081 * First idle cpu or the first cpu(busiest) in this sched group
7082 * is eligible for doing load balancing at this and above domains.
7083 */
b0cff9d8 7084 return balance_cpu == env->dst_cpu;
23f0d209
JK
7085}
7086
1e3c88bd
PZ
7087/*
7088 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7089 * tasks if there is an imbalance.
7090 */
7091static int load_balance(int this_cpu, struct rq *this_rq,
7092 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7093 int *continue_balancing)
1e3c88bd 7094{
88b8dac0 7095 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7096 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7097 struct sched_group *group;
1e3c88bd
PZ
7098 struct rq *busiest;
7099 unsigned long flags;
4ba29684 7100 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7101
8e45cb54
PZ
7102 struct lb_env env = {
7103 .sd = sd,
ddcdf6e7
PZ
7104 .dst_cpu = this_cpu,
7105 .dst_rq = this_rq,
88b8dac0 7106 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7107 .idle = idle,
eb95308e 7108 .loop_break = sched_nr_migrate_break,
b9403130 7109 .cpus = cpus,
0ec8aa00 7110 .fbq_type = all,
163122b7 7111 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7112 };
7113
cfc03118
JK
7114 /*
7115 * For NEWLY_IDLE load_balancing, we don't need to consider
7116 * other cpus in our group
7117 */
e02e60c1 7118 if (idle == CPU_NEWLY_IDLE)
cfc03118 7119 env.dst_grpmask = NULL;
cfc03118 7120
1e3c88bd
PZ
7121 cpumask_copy(cpus, cpu_active_mask);
7122
1e3c88bd
PZ
7123 schedstat_inc(sd, lb_count[idle]);
7124
7125redo:
23f0d209
JK
7126 if (!should_we_balance(&env)) {
7127 *continue_balancing = 0;
1e3c88bd 7128 goto out_balanced;
23f0d209 7129 }
1e3c88bd 7130
23f0d209 7131 group = find_busiest_group(&env);
1e3c88bd
PZ
7132 if (!group) {
7133 schedstat_inc(sd, lb_nobusyg[idle]);
7134 goto out_balanced;
7135 }
7136
b9403130 7137 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7138 if (!busiest) {
7139 schedstat_inc(sd, lb_nobusyq[idle]);
7140 goto out_balanced;
7141 }
7142
78feefc5 7143 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7144
bd939f45 7145 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7146
1aaf90a4
VG
7147 env.src_cpu = busiest->cpu;
7148 env.src_rq = busiest;
7149
1e3c88bd
PZ
7150 ld_moved = 0;
7151 if (busiest->nr_running > 1) {
7152 /*
7153 * Attempt to move tasks. If find_busiest_group has found
7154 * an imbalance but busiest->nr_running <= 1, the group is
7155 * still unbalanced. ld_moved simply stays zero, so it is
7156 * correctly treated as an imbalance.
7157 */
8e45cb54 7158 env.flags |= LBF_ALL_PINNED;
c82513e5 7159 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7160
5d6523eb 7161more_balance:
163122b7 7162 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7163
7164 /*
7165 * cur_ld_moved - load moved in current iteration
7166 * ld_moved - cumulative load moved across iterations
7167 */
163122b7 7168 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7169
7170 /*
163122b7
KT
7171 * We've detached some tasks from busiest_rq. Every
7172 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7173 * unlock busiest->lock, and we are able to be sure
7174 * that nobody can manipulate the tasks in parallel.
7175 * See task_rq_lock() family for the details.
1e3c88bd 7176 */
163122b7
KT
7177
7178 raw_spin_unlock(&busiest->lock);
7179
7180 if (cur_ld_moved) {
7181 attach_tasks(&env);
7182 ld_moved += cur_ld_moved;
7183 }
7184
1e3c88bd 7185 local_irq_restore(flags);
88b8dac0 7186
f1cd0858
JK
7187 if (env.flags & LBF_NEED_BREAK) {
7188 env.flags &= ~LBF_NEED_BREAK;
7189 goto more_balance;
7190 }
7191
88b8dac0
SV
7192 /*
7193 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7194 * us and move them to an alternate dst_cpu in our sched_group
7195 * where they can run. The upper limit on how many times we
7196 * iterate on same src_cpu is dependent on number of cpus in our
7197 * sched_group.
7198 *
7199 * This changes load balance semantics a bit on who can move
7200 * load to a given_cpu. In addition to the given_cpu itself
7201 * (or a ilb_cpu acting on its behalf where given_cpu is
7202 * nohz-idle), we now have balance_cpu in a position to move
7203 * load to given_cpu. In rare situations, this may cause
7204 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7205 * _independently_ and at _same_ time to move some load to
7206 * given_cpu) causing exceess load to be moved to given_cpu.
7207 * This however should not happen so much in practice and
7208 * moreover subsequent load balance cycles should correct the
7209 * excess load moved.
7210 */
6263322c 7211 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7212
7aff2e3a
VD
7213 /* Prevent to re-select dst_cpu via env's cpus */
7214 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7215
78feefc5 7216 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7217 env.dst_cpu = env.new_dst_cpu;
6263322c 7218 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7219 env.loop = 0;
7220 env.loop_break = sched_nr_migrate_break;
e02e60c1 7221
88b8dac0
SV
7222 /*
7223 * Go back to "more_balance" rather than "redo" since we
7224 * need to continue with same src_cpu.
7225 */
7226 goto more_balance;
7227 }
1e3c88bd 7228
6263322c
PZ
7229 /*
7230 * We failed to reach balance because of affinity.
7231 */
7232 if (sd_parent) {
63b2ca30 7233 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7234
afdeee05 7235 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7236 *group_imbalance = 1;
6263322c
PZ
7237 }
7238
1e3c88bd 7239 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7240 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7241 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7242 if (!cpumask_empty(cpus)) {
7243 env.loop = 0;
7244 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7245 goto redo;
bbf18b19 7246 }
afdeee05 7247 goto out_all_pinned;
1e3c88bd
PZ
7248 }
7249 }
7250
7251 if (!ld_moved) {
7252 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7253 /*
7254 * Increment the failure counter only on periodic balance.
7255 * We do not want newidle balance, which can be very
7256 * frequent, pollute the failure counter causing
7257 * excessive cache_hot migrations and active balances.
7258 */
7259 if (idle != CPU_NEWLY_IDLE)
7260 sd->nr_balance_failed++;
1e3c88bd 7261
bd939f45 7262 if (need_active_balance(&env)) {
1e3c88bd
PZ
7263 raw_spin_lock_irqsave(&busiest->lock, flags);
7264
969c7921
TH
7265 /* don't kick the active_load_balance_cpu_stop,
7266 * if the curr task on busiest cpu can't be
7267 * moved to this_cpu
1e3c88bd
PZ
7268 */
7269 if (!cpumask_test_cpu(this_cpu,
fa17b507 7270 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7271 raw_spin_unlock_irqrestore(&busiest->lock,
7272 flags);
8e45cb54 7273 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7274 goto out_one_pinned;
7275 }
7276
969c7921
TH
7277 /*
7278 * ->active_balance synchronizes accesses to
7279 * ->active_balance_work. Once set, it's cleared
7280 * only after active load balance is finished.
7281 */
1e3c88bd
PZ
7282 if (!busiest->active_balance) {
7283 busiest->active_balance = 1;
7284 busiest->push_cpu = this_cpu;
7285 active_balance = 1;
7286 }
7287 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7288
bd939f45 7289 if (active_balance) {
969c7921
TH
7290 stop_one_cpu_nowait(cpu_of(busiest),
7291 active_load_balance_cpu_stop, busiest,
7292 &busiest->active_balance_work);
bd939f45 7293 }
1e3c88bd
PZ
7294
7295 /*
7296 * We've kicked active balancing, reset the failure
7297 * counter.
7298 */
7299 sd->nr_balance_failed = sd->cache_nice_tries+1;
7300 }
7301 } else
7302 sd->nr_balance_failed = 0;
7303
7304 if (likely(!active_balance)) {
7305 /* We were unbalanced, so reset the balancing interval */
7306 sd->balance_interval = sd->min_interval;
7307 } else {
7308 /*
7309 * If we've begun active balancing, start to back off. This
7310 * case may not be covered by the all_pinned logic if there
7311 * is only 1 task on the busy runqueue (because we don't call
163122b7 7312 * detach_tasks).
1e3c88bd
PZ
7313 */
7314 if (sd->balance_interval < sd->max_interval)
7315 sd->balance_interval *= 2;
7316 }
7317
1e3c88bd
PZ
7318 goto out;
7319
7320out_balanced:
afdeee05
VG
7321 /*
7322 * We reach balance although we may have faced some affinity
7323 * constraints. Clear the imbalance flag if it was set.
7324 */
7325 if (sd_parent) {
7326 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7327
7328 if (*group_imbalance)
7329 *group_imbalance = 0;
7330 }
7331
7332out_all_pinned:
7333 /*
7334 * We reach balance because all tasks are pinned at this level so
7335 * we can't migrate them. Let the imbalance flag set so parent level
7336 * can try to migrate them.
7337 */
1e3c88bd
PZ
7338 schedstat_inc(sd, lb_balanced[idle]);
7339
7340 sd->nr_balance_failed = 0;
7341
7342out_one_pinned:
7343 /* tune up the balancing interval */
8e45cb54 7344 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7345 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7346 (sd->balance_interval < sd->max_interval))
7347 sd->balance_interval *= 2;
7348
46e49b38 7349 ld_moved = 0;
1e3c88bd 7350out:
1e3c88bd
PZ
7351 return ld_moved;
7352}
7353
52a08ef1
JL
7354static inline unsigned long
7355get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7356{
7357 unsigned long interval = sd->balance_interval;
7358
7359 if (cpu_busy)
7360 interval *= sd->busy_factor;
7361
7362 /* scale ms to jiffies */
7363 interval = msecs_to_jiffies(interval);
7364 interval = clamp(interval, 1UL, max_load_balance_interval);
7365
7366 return interval;
7367}
7368
7369static inline void
7370update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7371{
7372 unsigned long interval, next;
7373
7374 interval = get_sd_balance_interval(sd, cpu_busy);
7375 next = sd->last_balance + interval;
7376
7377 if (time_after(*next_balance, next))
7378 *next_balance = next;
7379}
7380
1e3c88bd
PZ
7381/*
7382 * idle_balance is called by schedule() if this_cpu is about to become
7383 * idle. Attempts to pull tasks from other CPUs.
7384 */
6e83125c 7385static int idle_balance(struct rq *this_rq)
1e3c88bd 7386{
52a08ef1
JL
7387 unsigned long next_balance = jiffies + HZ;
7388 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7389 struct sched_domain *sd;
7390 int pulled_task = 0;
9bd721c5 7391 u64 curr_cost = 0;
1e3c88bd 7392
6e83125c 7393 idle_enter_fair(this_rq);
0e5b5337 7394
6e83125c
PZ
7395 /*
7396 * We must set idle_stamp _before_ calling idle_balance(), such that we
7397 * measure the duration of idle_balance() as idle time.
7398 */
7399 this_rq->idle_stamp = rq_clock(this_rq);
7400
4486edd1
TC
7401 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7402 !this_rq->rd->overload) {
52a08ef1
JL
7403 rcu_read_lock();
7404 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7405 if (sd)
7406 update_next_balance(sd, 0, &next_balance);
7407 rcu_read_unlock();
7408
6e83125c 7409 goto out;
52a08ef1 7410 }
1e3c88bd 7411
f492e12e
PZ
7412 /*
7413 * Drop the rq->lock, but keep IRQ/preempt disabled.
7414 */
7415 raw_spin_unlock(&this_rq->lock);
7416
48a16753 7417 update_blocked_averages(this_cpu);
dce840a0 7418 rcu_read_lock();
1e3c88bd 7419 for_each_domain(this_cpu, sd) {
23f0d209 7420 int continue_balancing = 1;
9bd721c5 7421 u64 t0, domain_cost;
1e3c88bd
PZ
7422
7423 if (!(sd->flags & SD_LOAD_BALANCE))
7424 continue;
7425
52a08ef1
JL
7426 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7427 update_next_balance(sd, 0, &next_balance);
9bd721c5 7428 break;
52a08ef1 7429 }
9bd721c5 7430
f492e12e 7431 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7432 t0 = sched_clock_cpu(this_cpu);
7433
f492e12e 7434 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7435 sd, CPU_NEWLY_IDLE,
7436 &continue_balancing);
9bd721c5
JL
7437
7438 domain_cost = sched_clock_cpu(this_cpu) - t0;
7439 if (domain_cost > sd->max_newidle_lb_cost)
7440 sd->max_newidle_lb_cost = domain_cost;
7441
7442 curr_cost += domain_cost;
f492e12e 7443 }
1e3c88bd 7444
52a08ef1 7445 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7446
7447 /*
7448 * Stop searching for tasks to pull if there are
7449 * now runnable tasks on this rq.
7450 */
7451 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7452 break;
1e3c88bd 7453 }
dce840a0 7454 rcu_read_unlock();
f492e12e
PZ
7455
7456 raw_spin_lock(&this_rq->lock);
7457
0e5b5337
JL
7458 if (curr_cost > this_rq->max_idle_balance_cost)
7459 this_rq->max_idle_balance_cost = curr_cost;
7460
e5fc6611 7461 /*
0e5b5337
JL
7462 * While browsing the domains, we released the rq lock, a task could
7463 * have been enqueued in the meantime. Since we're not going idle,
7464 * pretend we pulled a task.
e5fc6611 7465 */
0e5b5337 7466 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7467 pulled_task = 1;
e5fc6611 7468
52a08ef1
JL
7469out:
7470 /* Move the next balance forward */
7471 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7472 this_rq->next_balance = next_balance;
9bd721c5 7473
e4aa358b 7474 /* Is there a task of a high priority class? */
46383648 7475 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7476 pulled_task = -1;
7477
7478 if (pulled_task) {
7479 idle_exit_fair(this_rq);
6e83125c 7480 this_rq->idle_stamp = 0;
e4aa358b 7481 }
6e83125c 7482
3c4017c1 7483 return pulled_task;
1e3c88bd
PZ
7484}
7485
7486/*
969c7921
TH
7487 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7488 * running tasks off the busiest CPU onto idle CPUs. It requires at
7489 * least 1 task to be running on each physical CPU where possible, and
7490 * avoids physical / logical imbalances.
1e3c88bd 7491 */
969c7921 7492static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7493{
969c7921
TH
7494 struct rq *busiest_rq = data;
7495 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7496 int target_cpu = busiest_rq->push_cpu;
969c7921 7497 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7498 struct sched_domain *sd;
e5673f28 7499 struct task_struct *p = NULL;
969c7921
TH
7500
7501 raw_spin_lock_irq(&busiest_rq->lock);
7502
7503 /* make sure the requested cpu hasn't gone down in the meantime */
7504 if (unlikely(busiest_cpu != smp_processor_id() ||
7505 !busiest_rq->active_balance))
7506 goto out_unlock;
1e3c88bd
PZ
7507
7508 /* Is there any task to move? */
7509 if (busiest_rq->nr_running <= 1)
969c7921 7510 goto out_unlock;
1e3c88bd
PZ
7511
7512 /*
7513 * This condition is "impossible", if it occurs
7514 * we need to fix it. Originally reported by
7515 * Bjorn Helgaas on a 128-cpu setup.
7516 */
7517 BUG_ON(busiest_rq == target_rq);
7518
1e3c88bd 7519 /* Search for an sd spanning us and the target CPU. */
dce840a0 7520 rcu_read_lock();
1e3c88bd
PZ
7521 for_each_domain(target_cpu, sd) {
7522 if ((sd->flags & SD_LOAD_BALANCE) &&
7523 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7524 break;
7525 }
7526
7527 if (likely(sd)) {
8e45cb54
PZ
7528 struct lb_env env = {
7529 .sd = sd,
ddcdf6e7
PZ
7530 .dst_cpu = target_cpu,
7531 .dst_rq = target_rq,
7532 .src_cpu = busiest_rq->cpu,
7533 .src_rq = busiest_rq,
8e45cb54
PZ
7534 .idle = CPU_IDLE,
7535 };
7536
1e3c88bd
PZ
7537 schedstat_inc(sd, alb_count);
7538
e5673f28
KT
7539 p = detach_one_task(&env);
7540 if (p)
1e3c88bd
PZ
7541 schedstat_inc(sd, alb_pushed);
7542 else
7543 schedstat_inc(sd, alb_failed);
7544 }
dce840a0 7545 rcu_read_unlock();
969c7921
TH
7546out_unlock:
7547 busiest_rq->active_balance = 0;
e5673f28
KT
7548 raw_spin_unlock(&busiest_rq->lock);
7549
7550 if (p)
7551 attach_one_task(target_rq, p);
7552
7553 local_irq_enable();
7554
969c7921 7555 return 0;
1e3c88bd
PZ
7556}
7557
d987fc7f
MG
7558static inline int on_null_domain(struct rq *rq)
7559{
7560 return unlikely(!rcu_dereference_sched(rq->sd));
7561}
7562
3451d024 7563#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7564/*
7565 * idle load balancing details
83cd4fe2
VP
7566 * - When one of the busy CPUs notice that there may be an idle rebalancing
7567 * needed, they will kick the idle load balancer, which then does idle
7568 * load balancing for all the idle CPUs.
7569 */
1e3c88bd 7570static struct {
83cd4fe2 7571 cpumask_var_t idle_cpus_mask;
0b005cf5 7572 atomic_t nr_cpus;
83cd4fe2
VP
7573 unsigned long next_balance; /* in jiffy units */
7574} nohz ____cacheline_aligned;
1e3c88bd 7575
3dd0337d 7576static inline int find_new_ilb(void)
1e3c88bd 7577{
0b005cf5 7578 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7579
786d6dc7
SS
7580 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7581 return ilb;
7582
7583 return nr_cpu_ids;
1e3c88bd 7584}
1e3c88bd 7585
83cd4fe2
VP
7586/*
7587 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7588 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7589 * CPU (if there is one).
7590 */
0aeeeeba 7591static void nohz_balancer_kick(void)
83cd4fe2
VP
7592{
7593 int ilb_cpu;
7594
7595 nohz.next_balance++;
7596
3dd0337d 7597 ilb_cpu = find_new_ilb();
83cd4fe2 7598
0b005cf5
SS
7599 if (ilb_cpu >= nr_cpu_ids)
7600 return;
83cd4fe2 7601
cd490c5b 7602 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7603 return;
7604 /*
7605 * Use smp_send_reschedule() instead of resched_cpu().
7606 * This way we generate a sched IPI on the target cpu which
7607 * is idle. And the softirq performing nohz idle load balance
7608 * will be run before returning from the IPI.
7609 */
7610 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7611 return;
7612}
7613
c1cc017c 7614static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7615{
7616 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7617 /*
7618 * Completely isolated CPUs don't ever set, so we must test.
7619 */
7620 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7621 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7622 atomic_dec(&nohz.nr_cpus);
7623 }
71325960
SS
7624 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7625 }
7626}
7627
69e1e811
SS
7628static inline void set_cpu_sd_state_busy(void)
7629{
7630 struct sched_domain *sd;
37dc6b50 7631 int cpu = smp_processor_id();
69e1e811 7632
69e1e811 7633 rcu_read_lock();
37dc6b50 7634 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7635
7636 if (!sd || !sd->nohz_idle)
7637 goto unlock;
7638 sd->nohz_idle = 0;
7639
63b2ca30 7640 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7641unlock:
69e1e811
SS
7642 rcu_read_unlock();
7643}
7644
7645void set_cpu_sd_state_idle(void)
7646{
7647 struct sched_domain *sd;
37dc6b50 7648 int cpu = smp_processor_id();
69e1e811 7649
69e1e811 7650 rcu_read_lock();
37dc6b50 7651 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7652
7653 if (!sd || sd->nohz_idle)
7654 goto unlock;
7655 sd->nohz_idle = 1;
7656
63b2ca30 7657 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7658unlock:
69e1e811
SS
7659 rcu_read_unlock();
7660}
7661
1e3c88bd 7662/*
c1cc017c 7663 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7664 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7665 */
c1cc017c 7666void nohz_balance_enter_idle(int cpu)
1e3c88bd 7667{
71325960
SS
7668 /*
7669 * If this cpu is going down, then nothing needs to be done.
7670 */
7671 if (!cpu_active(cpu))
7672 return;
7673
c1cc017c
AS
7674 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7675 return;
1e3c88bd 7676
d987fc7f
MG
7677 /*
7678 * If we're a completely isolated CPU, we don't play.
7679 */
7680 if (on_null_domain(cpu_rq(cpu)))
7681 return;
7682
c1cc017c
AS
7683 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7684 atomic_inc(&nohz.nr_cpus);
7685 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7686}
71325960 7687
0db0628d 7688static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7689 unsigned long action, void *hcpu)
7690{
7691 switch (action & ~CPU_TASKS_FROZEN) {
7692 case CPU_DYING:
c1cc017c 7693 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7694 return NOTIFY_OK;
7695 default:
7696 return NOTIFY_DONE;
7697 }
7698}
1e3c88bd
PZ
7699#endif
7700
7701static DEFINE_SPINLOCK(balancing);
7702
49c022e6
PZ
7703/*
7704 * Scale the max load_balance interval with the number of CPUs in the system.
7705 * This trades load-balance latency on larger machines for less cross talk.
7706 */
029632fb 7707void update_max_interval(void)
49c022e6
PZ
7708{
7709 max_load_balance_interval = HZ*num_online_cpus()/10;
7710}
7711
1e3c88bd
PZ
7712/*
7713 * It checks each scheduling domain to see if it is due to be balanced,
7714 * and initiates a balancing operation if so.
7715 *
b9b0853a 7716 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7717 */
f7ed0a89 7718static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7719{
23f0d209 7720 int continue_balancing = 1;
f7ed0a89 7721 int cpu = rq->cpu;
1e3c88bd 7722 unsigned long interval;
04f733b4 7723 struct sched_domain *sd;
1e3c88bd
PZ
7724 /* Earliest time when we have to do rebalance again */
7725 unsigned long next_balance = jiffies + 60*HZ;
7726 int update_next_balance = 0;
f48627e6
JL
7727 int need_serialize, need_decay = 0;
7728 u64 max_cost = 0;
1e3c88bd 7729
48a16753 7730 update_blocked_averages(cpu);
2069dd75 7731
dce840a0 7732 rcu_read_lock();
1e3c88bd 7733 for_each_domain(cpu, sd) {
f48627e6
JL
7734 /*
7735 * Decay the newidle max times here because this is a regular
7736 * visit to all the domains. Decay ~1% per second.
7737 */
7738 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7739 sd->max_newidle_lb_cost =
7740 (sd->max_newidle_lb_cost * 253) / 256;
7741 sd->next_decay_max_lb_cost = jiffies + HZ;
7742 need_decay = 1;
7743 }
7744 max_cost += sd->max_newidle_lb_cost;
7745
1e3c88bd
PZ
7746 if (!(sd->flags & SD_LOAD_BALANCE))
7747 continue;
7748
f48627e6
JL
7749 /*
7750 * Stop the load balance at this level. There is another
7751 * CPU in our sched group which is doing load balancing more
7752 * actively.
7753 */
7754 if (!continue_balancing) {
7755 if (need_decay)
7756 continue;
7757 break;
7758 }
7759
52a08ef1 7760 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7761
7762 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7763 if (need_serialize) {
7764 if (!spin_trylock(&balancing))
7765 goto out;
7766 }
7767
7768 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7769 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7770 /*
6263322c 7771 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7772 * env->dst_cpu, so we can't know our idle
7773 * state even if we migrated tasks. Update it.
1e3c88bd 7774 */
de5eb2dd 7775 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7776 }
7777 sd->last_balance = jiffies;
52a08ef1 7778 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7779 }
7780 if (need_serialize)
7781 spin_unlock(&balancing);
7782out:
7783 if (time_after(next_balance, sd->last_balance + interval)) {
7784 next_balance = sd->last_balance + interval;
7785 update_next_balance = 1;
7786 }
f48627e6
JL
7787 }
7788 if (need_decay) {
1e3c88bd 7789 /*
f48627e6
JL
7790 * Ensure the rq-wide value also decays but keep it at a
7791 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7792 */
f48627e6
JL
7793 rq->max_idle_balance_cost =
7794 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7795 }
dce840a0 7796 rcu_read_unlock();
1e3c88bd
PZ
7797
7798 /*
7799 * next_balance will be updated only when there is a need.
7800 * When the cpu is attached to null domain for ex, it will not be
7801 * updated.
7802 */
7803 if (likely(update_next_balance))
7804 rq->next_balance = next_balance;
7805}
7806
3451d024 7807#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7808/*
3451d024 7809 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7810 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7811 */
208cb16b 7812static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7813{
208cb16b 7814 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7815 struct rq *rq;
7816 int balance_cpu;
7817
1c792db7
SS
7818 if (idle != CPU_IDLE ||
7819 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7820 goto end;
83cd4fe2
VP
7821
7822 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7823 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7824 continue;
7825
7826 /*
7827 * If this cpu gets work to do, stop the load balancing
7828 * work being done for other cpus. Next load
7829 * balancing owner will pick it up.
7830 */
1c792db7 7831 if (need_resched())
83cd4fe2 7832 break;
83cd4fe2 7833
5ed4f1d9
VG
7834 rq = cpu_rq(balance_cpu);
7835
ed61bbc6
TC
7836 /*
7837 * If time for next balance is due,
7838 * do the balance.
7839 */
7840 if (time_after_eq(jiffies, rq->next_balance)) {
7841 raw_spin_lock_irq(&rq->lock);
7842 update_rq_clock(rq);
7843 update_idle_cpu_load(rq);
7844 raw_spin_unlock_irq(&rq->lock);
7845 rebalance_domains(rq, CPU_IDLE);
7846 }
83cd4fe2 7847
83cd4fe2
VP
7848 if (time_after(this_rq->next_balance, rq->next_balance))
7849 this_rq->next_balance = rq->next_balance;
7850 }
7851 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7852end:
7853 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7854}
7855
7856/*
0b005cf5 7857 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7858 * of an idle cpu in the system.
0b005cf5 7859 * - This rq has more than one task.
1aaf90a4
VG
7860 * - This rq has at least one CFS task and the capacity of the CPU is
7861 * significantly reduced because of RT tasks or IRQs.
7862 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7863 * multiple busy cpu.
0b005cf5
SS
7864 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7865 * domain span are idle.
83cd4fe2 7866 */
1aaf90a4 7867static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7868{
7869 unsigned long now = jiffies;
0b005cf5 7870 struct sched_domain *sd;
63b2ca30 7871 struct sched_group_capacity *sgc;
4a725627 7872 int nr_busy, cpu = rq->cpu;
1aaf90a4 7873 bool kick = false;
83cd4fe2 7874
4a725627 7875 if (unlikely(rq->idle_balance))
1aaf90a4 7876 return false;
83cd4fe2 7877
1c792db7
SS
7878 /*
7879 * We may be recently in ticked or tickless idle mode. At the first
7880 * busy tick after returning from idle, we will update the busy stats.
7881 */
69e1e811 7882 set_cpu_sd_state_busy();
c1cc017c 7883 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7884
7885 /*
7886 * None are in tickless mode and hence no need for NOHZ idle load
7887 * balancing.
7888 */
7889 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7890 return false;
1c792db7
SS
7891
7892 if (time_before(now, nohz.next_balance))
1aaf90a4 7893 return false;
83cd4fe2 7894
0b005cf5 7895 if (rq->nr_running >= 2)
1aaf90a4 7896 return true;
83cd4fe2 7897
067491b7 7898 rcu_read_lock();
37dc6b50 7899 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7900 if (sd) {
63b2ca30
NP
7901 sgc = sd->groups->sgc;
7902 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7903
1aaf90a4
VG
7904 if (nr_busy > 1) {
7905 kick = true;
7906 goto unlock;
7907 }
7908
83cd4fe2 7909 }
37dc6b50 7910
1aaf90a4
VG
7911 sd = rcu_dereference(rq->sd);
7912 if (sd) {
7913 if ((rq->cfs.h_nr_running >= 1) &&
7914 check_cpu_capacity(rq, sd)) {
7915 kick = true;
7916 goto unlock;
7917 }
7918 }
37dc6b50 7919
1aaf90a4 7920 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7921 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7922 sched_domain_span(sd)) < cpu)) {
7923 kick = true;
7924 goto unlock;
7925 }
067491b7 7926
1aaf90a4 7927unlock:
067491b7 7928 rcu_read_unlock();
1aaf90a4 7929 return kick;
83cd4fe2
VP
7930}
7931#else
208cb16b 7932static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7933#endif
7934
7935/*
7936 * run_rebalance_domains is triggered when needed from the scheduler tick.
7937 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7938 */
1e3c88bd
PZ
7939static void run_rebalance_domains(struct softirq_action *h)
7940{
208cb16b 7941 struct rq *this_rq = this_rq();
6eb57e0d 7942 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7943 CPU_IDLE : CPU_NOT_IDLE;
7944
1e3c88bd 7945 /*
83cd4fe2 7946 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7947 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7948 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7949 * give the idle cpus a chance to load balance. Else we may
7950 * load balance only within the local sched_domain hierarchy
7951 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7952 */
208cb16b 7953 nohz_idle_balance(this_rq, idle);
d4573c3e 7954 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7955}
7956
1e3c88bd
PZ
7957/*
7958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7959 */
7caff66f 7960void trigger_load_balance(struct rq *rq)
1e3c88bd 7961{
1e3c88bd 7962 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7963 if (unlikely(on_null_domain(rq)))
7964 return;
7965
7966 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7967 raise_softirq(SCHED_SOFTIRQ);
3451d024 7968#ifdef CONFIG_NO_HZ_COMMON
c726099e 7969 if (nohz_kick_needed(rq))
0aeeeeba 7970 nohz_balancer_kick();
83cd4fe2 7971#endif
1e3c88bd
PZ
7972}
7973
0bcdcf28
CE
7974static void rq_online_fair(struct rq *rq)
7975{
7976 update_sysctl();
0e59bdae
KT
7977
7978 update_runtime_enabled(rq);
0bcdcf28
CE
7979}
7980
7981static void rq_offline_fair(struct rq *rq)
7982{
7983 update_sysctl();
a4c96ae3
PB
7984
7985 /* Ensure any throttled groups are reachable by pick_next_task */
7986 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7987}
7988
55e12e5e 7989#endif /* CONFIG_SMP */
e1d1484f 7990
bf0f6f24
IM
7991/*
7992 * scheduler tick hitting a task of our scheduling class:
7993 */
8f4d37ec 7994static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7995{
7996 struct cfs_rq *cfs_rq;
7997 struct sched_entity *se = &curr->se;
7998
7999 for_each_sched_entity(se) {
8000 cfs_rq = cfs_rq_of(se);
8f4d37ec 8001 entity_tick(cfs_rq, se, queued);
bf0f6f24 8002 }
18bf2805 8003
10e84b97 8004 if (numabalancing_enabled)
cbee9f88 8005 task_tick_numa(rq, curr);
3d59eebc 8006
18bf2805 8007 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
8008}
8009
8010/*
cd29fe6f
PZ
8011 * called on fork with the child task as argument from the parent's context
8012 * - child not yet on the tasklist
8013 * - preemption disabled
bf0f6f24 8014 */
cd29fe6f 8015static void task_fork_fair(struct task_struct *p)
bf0f6f24 8016{
4fc420c9
DN
8017 struct cfs_rq *cfs_rq;
8018 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8019 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8020 struct rq *rq = this_rq();
8021 unsigned long flags;
8022
05fa785c 8023 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8024
861d034e
PZ
8025 update_rq_clock(rq);
8026
4fc420c9
DN
8027 cfs_rq = task_cfs_rq(current);
8028 curr = cfs_rq->curr;
8029
6c9a27f5
DN
8030 /*
8031 * Not only the cpu but also the task_group of the parent might have
8032 * been changed after parent->se.parent,cfs_rq were copied to
8033 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8034 * of child point to valid ones.
8035 */
8036 rcu_read_lock();
8037 __set_task_cpu(p, this_cpu);
8038 rcu_read_unlock();
bf0f6f24 8039
7109c442 8040 update_curr(cfs_rq);
cd29fe6f 8041
b5d9d734
MG
8042 if (curr)
8043 se->vruntime = curr->vruntime;
aeb73b04 8044 place_entity(cfs_rq, se, 1);
4d78e7b6 8045
cd29fe6f 8046 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8047 /*
edcb60a3
IM
8048 * Upon rescheduling, sched_class::put_prev_task() will place
8049 * 'current' within the tree based on its new key value.
8050 */
4d78e7b6 8051 swap(curr->vruntime, se->vruntime);
8875125e 8052 resched_curr(rq);
4d78e7b6 8053 }
bf0f6f24 8054
88ec22d3
PZ
8055 se->vruntime -= cfs_rq->min_vruntime;
8056
05fa785c 8057 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8058}
8059
cb469845
SR
8060/*
8061 * Priority of the task has changed. Check to see if we preempt
8062 * the current task.
8063 */
da7a735e
PZ
8064static void
8065prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8066{
da0c1e65 8067 if (!task_on_rq_queued(p))
da7a735e
PZ
8068 return;
8069
cb469845
SR
8070 /*
8071 * Reschedule if we are currently running on this runqueue and
8072 * our priority decreased, or if we are not currently running on
8073 * this runqueue and our priority is higher than the current's
8074 */
da7a735e 8075 if (rq->curr == p) {
cb469845 8076 if (p->prio > oldprio)
8875125e 8077 resched_curr(rq);
cb469845 8078 } else
15afe09b 8079 check_preempt_curr(rq, p, 0);
cb469845
SR
8080}
8081
da7a735e
PZ
8082static void switched_from_fair(struct rq *rq, struct task_struct *p)
8083{
8084 struct sched_entity *se = &p->se;
8085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8086
8087 /*
791c9e02 8088 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8089 * switched back to the fair class the enqueue_entity(.flags=0) will
8090 * do the right thing.
8091 *
da0c1e65
KT
8092 * If it's queued, then the dequeue_entity(.flags=0) will already
8093 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8094 * the task is sleeping will it still have non-normalized vruntime.
8095 */
da0c1e65 8096 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8097 /*
8098 * Fix up our vruntime so that the current sleep doesn't
8099 * cause 'unlimited' sleep bonus.
8100 */
8101 place_entity(cfs_rq, se, 0);
8102 se->vruntime -= cfs_rq->min_vruntime;
8103 }
9ee474f5 8104
141965c7 8105#ifdef CONFIG_SMP
9ee474f5
PT
8106 /*
8107 * Remove our load from contribution when we leave sched_fair
8108 * and ensure we don't carry in an old decay_count if we
8109 * switch back.
8110 */
87e3c8ae
KT
8111 if (se->avg.decay_count) {
8112 __synchronize_entity_decay(se);
8113 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8114 }
8115#endif
da7a735e
PZ
8116}
8117
cb469845
SR
8118/*
8119 * We switched to the sched_fair class.
8120 */
da7a735e 8121static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8122{
eb7a59b2 8123#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8124 struct sched_entity *se = &p->se;
eb7a59b2
M
8125 /*
8126 * Since the real-depth could have been changed (only FAIR
8127 * class maintain depth value), reset depth properly.
8128 */
8129 se->depth = se->parent ? se->parent->depth + 1 : 0;
8130#endif
da0c1e65 8131 if (!task_on_rq_queued(p))
da7a735e
PZ
8132 return;
8133
cb469845
SR
8134 /*
8135 * We were most likely switched from sched_rt, so
8136 * kick off the schedule if running, otherwise just see
8137 * if we can still preempt the current task.
8138 */
da7a735e 8139 if (rq->curr == p)
8875125e 8140 resched_curr(rq);
cb469845 8141 else
15afe09b 8142 check_preempt_curr(rq, p, 0);
cb469845
SR
8143}
8144
83b699ed
SV
8145/* Account for a task changing its policy or group.
8146 *
8147 * This routine is mostly called to set cfs_rq->curr field when a task
8148 * migrates between groups/classes.
8149 */
8150static void set_curr_task_fair(struct rq *rq)
8151{
8152 struct sched_entity *se = &rq->curr->se;
8153
ec12cb7f
PT
8154 for_each_sched_entity(se) {
8155 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8156
8157 set_next_entity(cfs_rq, se);
8158 /* ensure bandwidth has been allocated on our new cfs_rq */
8159 account_cfs_rq_runtime(cfs_rq, 0);
8160 }
83b699ed
SV
8161}
8162
029632fb
PZ
8163void init_cfs_rq(struct cfs_rq *cfs_rq)
8164{
8165 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8166 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8167#ifndef CONFIG_64BIT
8168 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8169#endif
141965c7 8170#ifdef CONFIG_SMP
9ee474f5 8171 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8172 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8173#endif
029632fb
PZ
8174}
8175
810b3817 8176#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8177static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8178{
fed14d45 8179 struct sched_entity *se = &p->se;
aff3e498 8180 struct cfs_rq *cfs_rq;
fed14d45 8181
b2b5ce02
PZ
8182 /*
8183 * If the task was not on the rq at the time of this cgroup movement
8184 * it must have been asleep, sleeping tasks keep their ->vruntime
8185 * absolute on their old rq until wakeup (needed for the fair sleeper
8186 * bonus in place_entity()).
8187 *
8188 * If it was on the rq, we've just 'preempted' it, which does convert
8189 * ->vruntime to a relative base.
8190 *
8191 * Make sure both cases convert their relative position when migrating
8192 * to another cgroup's rq. This does somewhat interfere with the
8193 * fair sleeper stuff for the first placement, but who cares.
8194 */
7ceff013 8195 /*
da0c1e65 8196 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8197 * But there are some cases where it has already been normalized:
8198 *
8199 * - Moving a forked child which is waiting for being woken up by
8200 * wake_up_new_task().
62af3783
DN
8201 * - Moving a task which has been woken up by try_to_wake_up() and
8202 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8203 *
8204 * To prevent boost or penalty in the new cfs_rq caused by delta
8205 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8206 */
da0c1e65
KT
8207 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8208 queued = 1;
7ceff013 8209
da0c1e65 8210 if (!queued)
fed14d45 8211 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8212 set_task_rq(p, task_cpu(p));
fed14d45 8213 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8214 if (!queued) {
fed14d45
PZ
8215 cfs_rq = cfs_rq_of(se);
8216 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8217#ifdef CONFIG_SMP
8218 /*
8219 * migrate_task_rq_fair() will have removed our previous
8220 * contribution, but we must synchronize for ongoing future
8221 * decay.
8222 */
fed14d45
PZ
8223 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8224 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8225#endif
8226 }
810b3817 8227}
029632fb
PZ
8228
8229void free_fair_sched_group(struct task_group *tg)
8230{
8231 int i;
8232
8233 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8234
8235 for_each_possible_cpu(i) {
8236 if (tg->cfs_rq)
8237 kfree(tg->cfs_rq[i]);
8238 if (tg->se)
8239 kfree(tg->se[i]);
8240 }
8241
8242 kfree(tg->cfs_rq);
8243 kfree(tg->se);
8244}
8245
8246int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8247{
8248 struct cfs_rq *cfs_rq;
8249 struct sched_entity *se;
8250 int i;
8251
8252 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8253 if (!tg->cfs_rq)
8254 goto err;
8255 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8256 if (!tg->se)
8257 goto err;
8258
8259 tg->shares = NICE_0_LOAD;
8260
8261 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8262
8263 for_each_possible_cpu(i) {
8264 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8265 GFP_KERNEL, cpu_to_node(i));
8266 if (!cfs_rq)
8267 goto err;
8268
8269 se = kzalloc_node(sizeof(struct sched_entity),
8270 GFP_KERNEL, cpu_to_node(i));
8271 if (!se)
8272 goto err_free_rq;
8273
8274 init_cfs_rq(cfs_rq);
8275 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8276 }
8277
8278 return 1;
8279
8280err_free_rq:
8281 kfree(cfs_rq);
8282err:
8283 return 0;
8284}
8285
8286void unregister_fair_sched_group(struct task_group *tg, int cpu)
8287{
8288 struct rq *rq = cpu_rq(cpu);
8289 unsigned long flags;
8290
8291 /*
8292 * Only empty task groups can be destroyed; so we can speculatively
8293 * check on_list without danger of it being re-added.
8294 */
8295 if (!tg->cfs_rq[cpu]->on_list)
8296 return;
8297
8298 raw_spin_lock_irqsave(&rq->lock, flags);
8299 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8300 raw_spin_unlock_irqrestore(&rq->lock, flags);
8301}
8302
8303void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8304 struct sched_entity *se, int cpu,
8305 struct sched_entity *parent)
8306{
8307 struct rq *rq = cpu_rq(cpu);
8308
8309 cfs_rq->tg = tg;
8310 cfs_rq->rq = rq;
029632fb
PZ
8311 init_cfs_rq_runtime(cfs_rq);
8312
8313 tg->cfs_rq[cpu] = cfs_rq;
8314 tg->se[cpu] = se;
8315
8316 /* se could be NULL for root_task_group */
8317 if (!se)
8318 return;
8319
fed14d45 8320 if (!parent) {
029632fb 8321 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8322 se->depth = 0;
8323 } else {
029632fb 8324 se->cfs_rq = parent->my_q;
fed14d45
PZ
8325 se->depth = parent->depth + 1;
8326 }
029632fb
PZ
8327
8328 se->my_q = cfs_rq;
0ac9b1c2
PT
8329 /* guarantee group entities always have weight */
8330 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8331 se->parent = parent;
8332}
8333
8334static DEFINE_MUTEX(shares_mutex);
8335
8336int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8337{
8338 int i;
8339 unsigned long flags;
8340
8341 /*
8342 * We can't change the weight of the root cgroup.
8343 */
8344 if (!tg->se[0])
8345 return -EINVAL;
8346
8347 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8348
8349 mutex_lock(&shares_mutex);
8350 if (tg->shares == shares)
8351 goto done;
8352
8353 tg->shares = shares;
8354 for_each_possible_cpu(i) {
8355 struct rq *rq = cpu_rq(i);
8356 struct sched_entity *se;
8357
8358 se = tg->se[i];
8359 /* Propagate contribution to hierarchy */
8360 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8361
8362 /* Possible calls to update_curr() need rq clock */
8363 update_rq_clock(rq);
17bc14b7 8364 for_each_sched_entity(se)
029632fb
PZ
8365 update_cfs_shares(group_cfs_rq(se));
8366 raw_spin_unlock_irqrestore(&rq->lock, flags);
8367 }
8368
8369done:
8370 mutex_unlock(&shares_mutex);
8371 return 0;
8372}
8373#else /* CONFIG_FAIR_GROUP_SCHED */
8374
8375void free_fair_sched_group(struct task_group *tg) { }
8376
8377int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8378{
8379 return 1;
8380}
8381
8382void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8383
8384#endif /* CONFIG_FAIR_GROUP_SCHED */
8385
810b3817 8386
6d686f45 8387static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8388{
8389 struct sched_entity *se = &task->se;
0d721cea
PW
8390 unsigned int rr_interval = 0;
8391
8392 /*
8393 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8394 * idle runqueue:
8395 */
0d721cea 8396 if (rq->cfs.load.weight)
a59f4e07 8397 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8398
8399 return rr_interval;
8400}
8401
bf0f6f24
IM
8402/*
8403 * All the scheduling class methods:
8404 */
029632fb 8405const struct sched_class fair_sched_class = {
5522d5d5 8406 .next = &idle_sched_class,
bf0f6f24
IM
8407 .enqueue_task = enqueue_task_fair,
8408 .dequeue_task = dequeue_task_fair,
8409 .yield_task = yield_task_fair,
d95f4122 8410 .yield_to_task = yield_to_task_fair,
bf0f6f24 8411
2e09bf55 8412 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8413
8414 .pick_next_task = pick_next_task_fair,
8415 .put_prev_task = put_prev_task_fair,
8416
681f3e68 8417#ifdef CONFIG_SMP
4ce72a2c 8418 .select_task_rq = select_task_rq_fair,
0a74bef8 8419 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8420
0bcdcf28
CE
8421 .rq_online = rq_online_fair,
8422 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8423
8424 .task_waking = task_waking_fair,
681f3e68 8425#endif
bf0f6f24 8426
83b699ed 8427 .set_curr_task = set_curr_task_fair,
bf0f6f24 8428 .task_tick = task_tick_fair,
cd29fe6f 8429 .task_fork = task_fork_fair,
cb469845
SR
8430
8431 .prio_changed = prio_changed_fair,
da7a735e 8432 .switched_from = switched_from_fair,
cb469845 8433 .switched_to = switched_to_fair,
810b3817 8434
0d721cea
PW
8435 .get_rr_interval = get_rr_interval_fair,
8436
6e998916
SG
8437 .update_curr = update_curr_fair,
8438
810b3817 8439#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8440 .task_move_group = task_move_group_fair,
810b3817 8441#endif
bf0f6f24
IM
8442};
8443
8444#ifdef CONFIG_SCHED_DEBUG
029632fb 8445void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8446{
bf0f6f24
IM
8447 struct cfs_rq *cfs_rq;
8448
5973e5b9 8449 rcu_read_lock();
c3b64f1e 8450 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8451 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8452 rcu_read_unlock();
bf0f6f24
IM
8453}
8454#endif
029632fb
PZ
8455
8456__init void init_sched_fair_class(void)
8457{
8458#ifdef CONFIG_SMP
8459 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8460
3451d024 8461#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8462 nohz.next_balance = jiffies;
029632fb 8463 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8464 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8465#endif
8466#endif /* SMP */
8467
8468}