sched/core: Drop unlikely behind BUG_ON()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
bf0f6f24 741static inline void
5870db5b 742update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
78becc27 744 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
745}
746
bf0f6f24
IM
747/*
748 * Task is being enqueued - update stats:
749 */
d2417e5a 750static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 751{
bf0f6f24
IM
752 /*
753 * Are we enqueueing a waiting task? (for current tasks
754 * a dequeue/enqueue event is a NOP)
755 */
429d43bc 756 if (se != cfs_rq->curr)
5870db5b 757 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
758}
759
bf0f6f24 760static void
9ef0a961 761update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 762{
41acab88 763 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
765 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
766 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
768#ifdef CONFIG_SCHEDSTATS
769 if (entity_is_task(se)) {
770 trace_sched_stat_wait(task_of(se),
78becc27 771 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
772 }
773#endif
41acab88 774 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
775}
776
777static inline void
19b6a2e3 778update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
bf0f6f24
IM
780 /*
781 * Mark the end of the wait period if dequeueing a
782 * waiting task:
783 */
429d43bc 784 if (se != cfs_rq->curr)
9ef0a961 785 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
786}
787
788/*
789 * We are picking a new current task - update its stats:
790 */
791static inline void
79303e9e 792update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
793{
794 /*
795 * We are starting a new run period:
796 */
78becc27 797 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
798}
799
bf0f6f24
IM
800/**************************************************
801 * Scheduling class queueing methods:
802 */
803
cbee9f88
PZ
804#ifdef CONFIG_NUMA_BALANCING
805/*
598f0ec0
MG
806 * Approximate time to scan a full NUMA task in ms. The task scan period is
807 * calculated based on the tasks virtual memory size and
808 * numa_balancing_scan_size.
cbee9f88 809 */
598f0ec0
MG
810unsigned int sysctl_numa_balancing_scan_period_min = 1000;
811unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
812
813/* Portion of address space to scan in MB */
814unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 815
4b96a29b
PZ
816/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
817unsigned int sysctl_numa_balancing_scan_delay = 1000;
818
598f0ec0
MG
819static unsigned int task_nr_scan_windows(struct task_struct *p)
820{
821 unsigned long rss = 0;
822 unsigned long nr_scan_pages;
823
824 /*
825 * Calculations based on RSS as non-present and empty pages are skipped
826 * by the PTE scanner and NUMA hinting faults should be trapped based
827 * on resident pages
828 */
829 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
830 rss = get_mm_rss(p->mm);
831 if (!rss)
832 rss = nr_scan_pages;
833
834 rss = round_up(rss, nr_scan_pages);
835 return rss / nr_scan_pages;
836}
837
838/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
839#define MAX_SCAN_WINDOW 2560
840
841static unsigned int task_scan_min(struct task_struct *p)
842{
316c1608 843 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
844 unsigned int scan, floor;
845 unsigned int windows = 1;
846
64192658
KT
847 if (scan_size < MAX_SCAN_WINDOW)
848 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
849 floor = 1000 / windows;
850
851 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
852 return max_t(unsigned int, floor, scan);
853}
854
855static unsigned int task_scan_max(struct task_struct *p)
856{
857 unsigned int smin = task_scan_min(p);
858 unsigned int smax;
859
860 /* Watch for min being lower than max due to floor calculations */
861 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
862 return max(smin, smax);
863}
864
0ec8aa00
PZ
865static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running += (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
869}
870
871static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
872{
873 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
874 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
875}
876
8c8a743c
PZ
877struct numa_group {
878 atomic_t refcount;
879
880 spinlock_t lock; /* nr_tasks, tasks */
881 int nr_tasks;
e29cf08b 882 pid_t gid;
8c8a743c
PZ
883
884 struct rcu_head rcu;
20e07dea 885 nodemask_t active_nodes;
989348b5 886 unsigned long total_faults;
7e2703e6
RR
887 /*
888 * Faults_cpu is used to decide whether memory should move
889 * towards the CPU. As a consequence, these stats are weighted
890 * more by CPU use than by memory faults.
891 */
50ec8a40 892 unsigned long *faults_cpu;
989348b5 893 unsigned long faults[0];
8c8a743c
PZ
894};
895
be1e4e76
RR
896/* Shared or private faults. */
897#define NR_NUMA_HINT_FAULT_TYPES 2
898
899/* Memory and CPU locality */
900#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
901
902/* Averaged statistics, and temporary buffers. */
903#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
904
e29cf08b
MG
905pid_t task_numa_group_id(struct task_struct *p)
906{
907 return p->numa_group ? p->numa_group->gid : 0;
908}
909
44dba3d5
IM
910/*
911 * The averaged statistics, shared & private, memory & cpu,
912 * occupy the first half of the array. The second half of the
913 * array is for current counters, which are averaged into the
914 * first set by task_numa_placement.
915 */
916static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 917{
44dba3d5 918 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
919}
920
921static inline unsigned long task_faults(struct task_struct *p, int nid)
922{
44dba3d5 923 if (!p->numa_faults)
ac8e895b
MG
924 return 0;
925
44dba3d5
IM
926 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
927 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
928}
929
83e1d2cd
MG
930static inline unsigned long group_faults(struct task_struct *p, int nid)
931{
932 if (!p->numa_group)
933 return 0;
934
44dba3d5
IM
935 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
936 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
937}
938
20e07dea
RR
939static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
940{
44dba3d5
IM
941 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
942 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
943}
944
6c6b1193
RR
945/* Handle placement on systems where not all nodes are directly connected. */
946static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
947 int maxdist, bool task)
948{
949 unsigned long score = 0;
950 int node;
951
952 /*
953 * All nodes are directly connected, and the same distance
954 * from each other. No need for fancy placement algorithms.
955 */
956 if (sched_numa_topology_type == NUMA_DIRECT)
957 return 0;
958
959 /*
960 * This code is called for each node, introducing N^2 complexity,
961 * which should be ok given the number of nodes rarely exceeds 8.
962 */
963 for_each_online_node(node) {
964 unsigned long faults;
965 int dist = node_distance(nid, node);
966
967 /*
968 * The furthest away nodes in the system are not interesting
969 * for placement; nid was already counted.
970 */
971 if (dist == sched_max_numa_distance || node == nid)
972 continue;
973
974 /*
975 * On systems with a backplane NUMA topology, compare groups
976 * of nodes, and move tasks towards the group with the most
977 * memory accesses. When comparing two nodes at distance
978 * "hoplimit", only nodes closer by than "hoplimit" are part
979 * of each group. Skip other nodes.
980 */
981 if (sched_numa_topology_type == NUMA_BACKPLANE &&
982 dist > maxdist)
983 continue;
984
985 /* Add up the faults from nearby nodes. */
986 if (task)
987 faults = task_faults(p, node);
988 else
989 faults = group_faults(p, node);
990
991 /*
992 * On systems with a glueless mesh NUMA topology, there are
993 * no fixed "groups of nodes". Instead, nodes that are not
994 * directly connected bounce traffic through intermediate
995 * nodes; a numa_group can occupy any set of nodes.
996 * The further away a node is, the less the faults count.
997 * This seems to result in good task placement.
998 */
999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1000 faults *= (sched_max_numa_distance - dist);
1001 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1002 }
1003
1004 score += faults;
1005 }
1006
1007 return score;
1008}
1009
83e1d2cd
MG
1010/*
1011 * These return the fraction of accesses done by a particular task, or
1012 * task group, on a particular numa node. The group weight is given a
1013 * larger multiplier, in order to group tasks together that are almost
1014 * evenly spread out between numa nodes.
1015 */
7bd95320
RR
1016static inline unsigned long task_weight(struct task_struct *p, int nid,
1017 int dist)
83e1d2cd 1018{
7bd95320 1019 unsigned long faults, total_faults;
83e1d2cd 1020
44dba3d5 1021 if (!p->numa_faults)
83e1d2cd
MG
1022 return 0;
1023
1024 total_faults = p->total_numa_faults;
1025
1026 if (!total_faults)
1027 return 0;
1028
7bd95320 1029 faults = task_faults(p, nid);
6c6b1193
RR
1030 faults += score_nearby_nodes(p, nid, dist, true);
1031
7bd95320 1032 return 1000 * faults / total_faults;
83e1d2cd
MG
1033}
1034
7bd95320
RR
1035static inline unsigned long group_weight(struct task_struct *p, int nid,
1036 int dist)
83e1d2cd 1037{
7bd95320
RR
1038 unsigned long faults, total_faults;
1039
1040 if (!p->numa_group)
1041 return 0;
1042
1043 total_faults = p->numa_group->total_faults;
1044
1045 if (!total_faults)
83e1d2cd
MG
1046 return 0;
1047
7bd95320 1048 faults = group_faults(p, nid);
6c6b1193
RR
1049 faults += score_nearby_nodes(p, nid, dist, false);
1050
7bd95320 1051 return 1000 * faults / total_faults;
83e1d2cd
MG
1052}
1053
10f39042
RR
1054bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1055 int src_nid, int dst_cpu)
1056{
1057 struct numa_group *ng = p->numa_group;
1058 int dst_nid = cpu_to_node(dst_cpu);
1059 int last_cpupid, this_cpupid;
1060
1061 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1062
1063 /*
1064 * Multi-stage node selection is used in conjunction with a periodic
1065 * migration fault to build a temporal task<->page relation. By using
1066 * a two-stage filter we remove short/unlikely relations.
1067 *
1068 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1069 * a task's usage of a particular page (n_p) per total usage of this
1070 * page (n_t) (in a given time-span) to a probability.
1071 *
1072 * Our periodic faults will sample this probability and getting the
1073 * same result twice in a row, given these samples are fully
1074 * independent, is then given by P(n)^2, provided our sample period
1075 * is sufficiently short compared to the usage pattern.
1076 *
1077 * This quadric squishes small probabilities, making it less likely we
1078 * act on an unlikely task<->page relation.
1079 */
1080 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1081 if (!cpupid_pid_unset(last_cpupid) &&
1082 cpupid_to_nid(last_cpupid) != dst_nid)
1083 return false;
1084
1085 /* Always allow migrate on private faults */
1086 if (cpupid_match_pid(p, last_cpupid))
1087 return true;
1088
1089 /* A shared fault, but p->numa_group has not been set up yet. */
1090 if (!ng)
1091 return true;
1092
1093 /*
1094 * Do not migrate if the destination is not a node that
1095 * is actively used by this numa group.
1096 */
1097 if (!node_isset(dst_nid, ng->active_nodes))
1098 return false;
1099
1100 /*
1101 * Source is a node that is not actively used by this
1102 * numa group, while the destination is. Migrate.
1103 */
1104 if (!node_isset(src_nid, ng->active_nodes))
1105 return true;
1106
1107 /*
1108 * Both source and destination are nodes in active
1109 * use by this numa group. Maximize memory bandwidth
1110 * by migrating from more heavily used groups, to less
1111 * heavily used ones, spreading the load around.
1112 * Use a 1/4 hysteresis to avoid spurious page movement.
1113 */
1114 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1115}
1116
e6628d5b 1117static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1118static unsigned long source_load(int cpu, int type);
1119static unsigned long target_load(int cpu, int type);
ced549fa 1120static unsigned long capacity_of(int cpu);
58d081b5
MG
1121static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1122
fb13c7ee 1123/* Cached statistics for all CPUs within a node */
58d081b5 1124struct numa_stats {
fb13c7ee 1125 unsigned long nr_running;
58d081b5 1126 unsigned long load;
fb13c7ee
MG
1127
1128 /* Total compute capacity of CPUs on a node */
5ef20ca1 1129 unsigned long compute_capacity;
fb13c7ee
MG
1130
1131 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1132 unsigned long task_capacity;
1b6a7495 1133 int has_free_capacity;
58d081b5 1134};
e6628d5b 1135
fb13c7ee
MG
1136/*
1137 * XXX borrowed from update_sg_lb_stats
1138 */
1139static void update_numa_stats(struct numa_stats *ns, int nid)
1140{
83d7f242
RR
1141 int smt, cpu, cpus = 0;
1142 unsigned long capacity;
fb13c7ee
MG
1143
1144 memset(ns, 0, sizeof(*ns));
1145 for_each_cpu(cpu, cpumask_of_node(nid)) {
1146 struct rq *rq = cpu_rq(cpu);
1147
1148 ns->nr_running += rq->nr_running;
1149 ns->load += weighted_cpuload(cpu);
ced549fa 1150 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1151
1152 cpus++;
fb13c7ee
MG
1153 }
1154
5eca82a9
PZ
1155 /*
1156 * If we raced with hotplug and there are no CPUs left in our mask
1157 * the @ns structure is NULL'ed and task_numa_compare() will
1158 * not find this node attractive.
1159 *
1b6a7495
NP
1160 * We'll either bail at !has_free_capacity, or we'll detect a huge
1161 * imbalance and bail there.
5eca82a9
PZ
1162 */
1163 if (!cpus)
1164 return;
1165
83d7f242
RR
1166 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1167 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1168 capacity = cpus / smt; /* cores */
1169
1170 ns->task_capacity = min_t(unsigned, capacity,
1171 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1172 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1173}
1174
58d081b5
MG
1175struct task_numa_env {
1176 struct task_struct *p;
e6628d5b 1177
58d081b5
MG
1178 int src_cpu, src_nid;
1179 int dst_cpu, dst_nid;
e6628d5b 1180
58d081b5 1181 struct numa_stats src_stats, dst_stats;
e6628d5b 1182
40ea2b42 1183 int imbalance_pct;
7bd95320 1184 int dist;
fb13c7ee
MG
1185
1186 struct task_struct *best_task;
1187 long best_imp;
58d081b5
MG
1188 int best_cpu;
1189};
1190
fb13c7ee
MG
1191static void task_numa_assign(struct task_numa_env *env,
1192 struct task_struct *p, long imp)
1193{
1194 if (env->best_task)
1195 put_task_struct(env->best_task);
1196 if (p)
1197 get_task_struct(p);
1198
1199 env->best_task = p;
1200 env->best_imp = imp;
1201 env->best_cpu = env->dst_cpu;
1202}
1203
28a21745 1204static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1205 struct task_numa_env *env)
1206{
e4991b24
RR
1207 long imb, old_imb;
1208 long orig_src_load, orig_dst_load;
28a21745
RR
1209 long src_capacity, dst_capacity;
1210
1211 /*
1212 * The load is corrected for the CPU capacity available on each node.
1213 *
1214 * src_load dst_load
1215 * ------------ vs ---------
1216 * src_capacity dst_capacity
1217 */
1218 src_capacity = env->src_stats.compute_capacity;
1219 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1220
1221 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1222 if (dst_load < src_load)
1223 swap(dst_load, src_load);
e63da036
RR
1224
1225 /* Is the difference below the threshold? */
e4991b24
RR
1226 imb = dst_load * src_capacity * 100 -
1227 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1228 if (imb <= 0)
1229 return false;
1230
1231 /*
1232 * The imbalance is above the allowed threshold.
e4991b24 1233 * Compare it with the old imbalance.
e63da036 1234 */
28a21745 1235 orig_src_load = env->src_stats.load;
e4991b24 1236 orig_dst_load = env->dst_stats.load;
28a21745 1237
e4991b24
RR
1238 if (orig_dst_load < orig_src_load)
1239 swap(orig_dst_load, orig_src_load);
e63da036 1240
e4991b24
RR
1241 old_imb = orig_dst_load * src_capacity * 100 -
1242 orig_src_load * dst_capacity * env->imbalance_pct;
1243
1244 /* Would this change make things worse? */
1245 return (imb > old_imb);
e63da036
RR
1246}
1247
fb13c7ee
MG
1248/*
1249 * This checks if the overall compute and NUMA accesses of the system would
1250 * be improved if the source tasks was migrated to the target dst_cpu taking
1251 * into account that it might be best if task running on the dst_cpu should
1252 * be exchanged with the source task
1253 */
887c290e
RR
1254static void task_numa_compare(struct task_numa_env *env,
1255 long taskimp, long groupimp)
fb13c7ee
MG
1256{
1257 struct rq *src_rq = cpu_rq(env->src_cpu);
1258 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1259 struct task_struct *cur;
28a21745 1260 long src_load, dst_load;
fb13c7ee 1261 long load;
1c5d3eb3 1262 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1263 long moveimp = imp;
7bd95320 1264 int dist = env->dist;
fb13c7ee
MG
1265
1266 rcu_read_lock();
1effd9f1
KT
1267
1268 raw_spin_lock_irq(&dst_rq->lock);
1269 cur = dst_rq->curr;
1270 /*
1271 * No need to move the exiting task, and this ensures that ->curr
1272 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1273 * is safe under RCU read lock.
1274 * Note that rcu_read_lock() itself can't protect from the final
1275 * put_task_struct() after the last schedule().
1276 */
1277 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1278 cur = NULL;
1effd9f1 1279 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1280
7af68335
PZ
1281 /*
1282 * Because we have preemption enabled we can get migrated around and
1283 * end try selecting ourselves (current == env->p) as a swap candidate.
1284 */
1285 if (cur == env->p)
1286 goto unlock;
1287
fb13c7ee
MG
1288 /*
1289 * "imp" is the fault differential for the source task between the
1290 * source and destination node. Calculate the total differential for
1291 * the source task and potential destination task. The more negative
1292 * the value is, the more rmeote accesses that would be expected to
1293 * be incurred if the tasks were swapped.
1294 */
1295 if (cur) {
1296 /* Skip this swap candidate if cannot move to the source cpu */
1297 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1298 goto unlock;
1299
887c290e
RR
1300 /*
1301 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1302 * in any group then look only at task weights.
887c290e 1303 */
ca28aa53 1304 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1305 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1306 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1307 /*
1308 * Add some hysteresis to prevent swapping the
1309 * tasks within a group over tiny differences.
1310 */
1311 if (cur->numa_group)
1312 imp -= imp/16;
887c290e 1313 } else {
ca28aa53
RR
1314 /*
1315 * Compare the group weights. If a task is all by
1316 * itself (not part of a group), use the task weight
1317 * instead.
1318 */
ca28aa53 1319 if (cur->numa_group)
7bd95320
RR
1320 imp += group_weight(cur, env->src_nid, dist) -
1321 group_weight(cur, env->dst_nid, dist);
ca28aa53 1322 else
7bd95320
RR
1323 imp += task_weight(cur, env->src_nid, dist) -
1324 task_weight(cur, env->dst_nid, dist);
887c290e 1325 }
fb13c7ee
MG
1326 }
1327
0132c3e1 1328 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1329 goto unlock;
1330
1331 if (!cur) {
1332 /* Is there capacity at our destination? */
b932c03c 1333 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1334 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1335 goto unlock;
1336
1337 goto balance;
1338 }
1339
1340 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1341 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1342 dst_rq->nr_running == 1)
fb13c7ee
MG
1343 goto assign;
1344
1345 /*
1346 * In the overloaded case, try and keep the load balanced.
1347 */
1348balance:
e720fff6
PZ
1349 load = task_h_load(env->p);
1350 dst_load = env->dst_stats.load + load;
1351 src_load = env->src_stats.load - load;
fb13c7ee 1352
0132c3e1
RR
1353 if (moveimp > imp && moveimp > env->best_imp) {
1354 /*
1355 * If the improvement from just moving env->p direction is
1356 * better than swapping tasks around, check if a move is
1357 * possible. Store a slightly smaller score than moveimp,
1358 * so an actually idle CPU will win.
1359 */
1360 if (!load_too_imbalanced(src_load, dst_load, env)) {
1361 imp = moveimp - 1;
1362 cur = NULL;
1363 goto assign;
1364 }
1365 }
1366
1367 if (imp <= env->best_imp)
1368 goto unlock;
1369
fb13c7ee 1370 if (cur) {
e720fff6
PZ
1371 load = task_h_load(cur);
1372 dst_load -= load;
1373 src_load += load;
fb13c7ee
MG
1374 }
1375
28a21745 1376 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1377 goto unlock;
1378
ba7e5a27
RR
1379 /*
1380 * One idle CPU per node is evaluated for a task numa move.
1381 * Call select_idle_sibling to maybe find a better one.
1382 */
1383 if (!cur)
1384 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1385
fb13c7ee
MG
1386assign:
1387 task_numa_assign(env, cur, imp);
1388unlock:
1389 rcu_read_unlock();
1390}
1391
887c290e
RR
1392static void task_numa_find_cpu(struct task_numa_env *env,
1393 long taskimp, long groupimp)
2c8a50aa
MG
1394{
1395 int cpu;
1396
1397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1398 /* Skip this CPU if the source task cannot migrate */
1399 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1400 continue;
1401
1402 env->dst_cpu = cpu;
887c290e 1403 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1404 }
1405}
1406
6f9aad0b
RR
1407/* Only move tasks to a NUMA node less busy than the current node. */
1408static bool numa_has_capacity(struct task_numa_env *env)
1409{
1410 struct numa_stats *src = &env->src_stats;
1411 struct numa_stats *dst = &env->dst_stats;
1412
1413 if (src->has_free_capacity && !dst->has_free_capacity)
1414 return false;
1415
1416 /*
1417 * Only consider a task move if the source has a higher load
1418 * than the destination, corrected for CPU capacity on each node.
1419 *
1420 * src->load dst->load
1421 * --------------------- vs ---------------------
1422 * src->compute_capacity dst->compute_capacity
1423 */
44dcb04f
SD
1424 if (src->load * dst->compute_capacity * env->imbalance_pct >
1425
1426 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1427 return true;
1428
1429 return false;
1430}
1431
58d081b5
MG
1432static int task_numa_migrate(struct task_struct *p)
1433{
58d081b5
MG
1434 struct task_numa_env env = {
1435 .p = p,
fb13c7ee 1436
58d081b5 1437 .src_cpu = task_cpu(p),
b32e86b4 1438 .src_nid = task_node(p),
fb13c7ee
MG
1439
1440 .imbalance_pct = 112,
1441
1442 .best_task = NULL,
1443 .best_imp = 0,
1444 .best_cpu = -1
58d081b5
MG
1445 };
1446 struct sched_domain *sd;
887c290e 1447 unsigned long taskweight, groupweight;
7bd95320 1448 int nid, ret, dist;
887c290e 1449 long taskimp, groupimp;
e6628d5b 1450
58d081b5 1451 /*
fb13c7ee
MG
1452 * Pick the lowest SD_NUMA domain, as that would have the smallest
1453 * imbalance and would be the first to start moving tasks about.
1454 *
1455 * And we want to avoid any moving of tasks about, as that would create
1456 * random movement of tasks -- counter the numa conditions we're trying
1457 * to satisfy here.
58d081b5
MG
1458 */
1459 rcu_read_lock();
fb13c7ee 1460 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1461 if (sd)
1462 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1463 rcu_read_unlock();
1464
46a73e8a
RR
1465 /*
1466 * Cpusets can break the scheduler domain tree into smaller
1467 * balance domains, some of which do not cross NUMA boundaries.
1468 * Tasks that are "trapped" in such domains cannot be migrated
1469 * elsewhere, so there is no point in (re)trying.
1470 */
1471 if (unlikely(!sd)) {
de1b301a 1472 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1473 return -EINVAL;
1474 }
1475
2c8a50aa 1476 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1477 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1478 taskweight = task_weight(p, env.src_nid, dist);
1479 groupweight = group_weight(p, env.src_nid, dist);
1480 update_numa_stats(&env.src_stats, env.src_nid);
1481 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1482 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1483 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1484
a43455a1 1485 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1486 if (numa_has_capacity(&env))
1487 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1488
9de05d48
RR
1489 /*
1490 * Look at other nodes in these cases:
1491 * - there is no space available on the preferred_nid
1492 * - the task is part of a numa_group that is interleaved across
1493 * multiple NUMA nodes; in order to better consolidate the group,
1494 * we need to check other locations.
1495 */
1496 if (env.best_cpu == -1 || (p->numa_group &&
1497 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1498 for_each_online_node(nid) {
1499 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1500 continue;
58d081b5 1501
7bd95320 1502 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1503 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1504 dist != env.dist) {
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 }
7bd95320 1508
83e1d2cd 1509 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1510 taskimp = task_weight(p, nid, dist) - taskweight;
1511 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1512 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1513 continue;
1514
7bd95320 1515 env.dist = dist;
2c8a50aa
MG
1516 env.dst_nid = nid;
1517 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1518 if (numa_has_capacity(&env))
1519 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1520 }
1521 }
1522
68d1b02a
RR
1523 /*
1524 * If the task is part of a workload that spans multiple NUMA nodes,
1525 * and is migrating into one of the workload's active nodes, remember
1526 * this node as the task's preferred numa node, so the workload can
1527 * settle down.
1528 * A task that migrated to a second choice node will be better off
1529 * trying for a better one later. Do not set the preferred node here.
1530 */
db015dae
RR
1531 if (p->numa_group) {
1532 if (env.best_cpu == -1)
1533 nid = env.src_nid;
1534 else
1535 nid = env.dst_nid;
1536
1537 if (node_isset(nid, p->numa_group->active_nodes))
1538 sched_setnuma(p, env.dst_nid);
1539 }
1540
1541 /* No better CPU than the current one was found. */
1542 if (env.best_cpu == -1)
1543 return -EAGAIN;
0ec8aa00 1544
04bb2f94
RR
1545 /*
1546 * Reset the scan period if the task is being rescheduled on an
1547 * alternative node to recheck if the tasks is now properly placed.
1548 */
1549 p->numa_scan_period = task_scan_min(p);
1550
fb13c7ee 1551 if (env.best_task == NULL) {
286549dc
MG
1552 ret = migrate_task_to(p, env.best_cpu);
1553 if (ret != 0)
1554 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1555 return ret;
1556 }
1557
1558 ret = migrate_swap(p, env.best_task);
286549dc
MG
1559 if (ret != 0)
1560 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1561 put_task_struct(env.best_task);
1562 return ret;
e6628d5b
MG
1563}
1564
6b9a7460
MG
1565/* Attempt to migrate a task to a CPU on the preferred node. */
1566static void numa_migrate_preferred(struct task_struct *p)
1567{
5085e2a3
RR
1568 unsigned long interval = HZ;
1569
2739d3ee 1570 /* This task has no NUMA fault statistics yet */
44dba3d5 1571 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1572 return;
1573
2739d3ee 1574 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1575 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1576 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1577
1578 /* Success if task is already running on preferred CPU */
de1b301a 1579 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1580 return;
1581
1582 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1583 task_numa_migrate(p);
6b9a7460
MG
1584}
1585
20e07dea
RR
1586/*
1587 * Find the nodes on which the workload is actively running. We do this by
1588 * tracking the nodes from which NUMA hinting faults are triggered. This can
1589 * be different from the set of nodes where the workload's memory is currently
1590 * located.
1591 *
1592 * The bitmask is used to make smarter decisions on when to do NUMA page
1593 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1594 * are added when they cause over 6/16 of the maximum number of faults, but
1595 * only removed when they drop below 3/16.
1596 */
1597static void update_numa_active_node_mask(struct numa_group *numa_group)
1598{
1599 unsigned long faults, max_faults = 0;
1600 int nid;
1601
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (faults > max_faults)
1605 max_faults = faults;
1606 }
1607
1608 for_each_online_node(nid) {
1609 faults = group_faults_cpu(numa_group, nid);
1610 if (!node_isset(nid, numa_group->active_nodes)) {
1611 if (faults > max_faults * 6 / 16)
1612 node_set(nid, numa_group->active_nodes);
1613 } else if (faults < max_faults * 3 / 16)
1614 node_clear(nid, numa_group->active_nodes);
1615 }
1616}
1617
04bb2f94
RR
1618/*
1619 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1620 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1621 * period will be for the next scan window. If local/(local+remote) ratio is
1622 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1623 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1624 */
1625#define NUMA_PERIOD_SLOTS 10
a22b4b01 1626#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1627
1628/*
1629 * Increase the scan period (slow down scanning) if the majority of
1630 * our memory is already on our local node, or if the majority of
1631 * the page accesses are shared with other processes.
1632 * Otherwise, decrease the scan period.
1633 */
1634static void update_task_scan_period(struct task_struct *p,
1635 unsigned long shared, unsigned long private)
1636{
1637 unsigned int period_slot;
1638 int ratio;
1639 int diff;
1640
1641 unsigned long remote = p->numa_faults_locality[0];
1642 unsigned long local = p->numa_faults_locality[1];
1643
1644 /*
1645 * If there were no record hinting faults then either the task is
1646 * completely idle or all activity is areas that are not of interest
074c2381
MG
1647 * to automatic numa balancing. Related to that, if there were failed
1648 * migration then it implies we are migrating too quickly or the local
1649 * node is overloaded. In either case, scan slower
04bb2f94 1650 */
074c2381 1651 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1652 p->numa_scan_period = min(p->numa_scan_period_max,
1653 p->numa_scan_period << 1);
1654
1655 p->mm->numa_next_scan = jiffies +
1656 msecs_to_jiffies(p->numa_scan_period);
1657
1658 return;
1659 }
1660
1661 /*
1662 * Prepare to scale scan period relative to the current period.
1663 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1664 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1665 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1666 */
1667 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1668 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1669 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1670 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1671 if (!slot)
1672 slot = 1;
1673 diff = slot * period_slot;
1674 } else {
1675 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1676
1677 /*
1678 * Scale scan rate increases based on sharing. There is an
1679 * inverse relationship between the degree of sharing and
1680 * the adjustment made to the scanning period. Broadly
1681 * speaking the intent is that there is little point
1682 * scanning faster if shared accesses dominate as it may
1683 * simply bounce migrations uselessly
1684 */
2847c90e 1685 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1686 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1687 }
1688
1689 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1690 task_scan_min(p), task_scan_max(p));
1691 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1692}
1693
7e2703e6
RR
1694/*
1695 * Get the fraction of time the task has been running since the last
1696 * NUMA placement cycle. The scheduler keeps similar statistics, but
1697 * decays those on a 32ms period, which is orders of magnitude off
1698 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1699 * stats only if the task is so new there are no NUMA statistics yet.
1700 */
1701static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1702{
1703 u64 runtime, delta, now;
1704 /* Use the start of this time slice to avoid calculations. */
1705 now = p->se.exec_start;
1706 runtime = p->se.sum_exec_runtime;
1707
1708 if (p->last_task_numa_placement) {
1709 delta = runtime - p->last_sum_exec_runtime;
1710 *period = now - p->last_task_numa_placement;
1711 } else {
9d89c257
YD
1712 delta = p->se.avg.load_sum / p->se.load.weight;
1713 *period = LOAD_AVG_MAX;
7e2703e6
RR
1714 }
1715
1716 p->last_sum_exec_runtime = runtime;
1717 p->last_task_numa_placement = now;
1718
1719 return delta;
1720}
1721
54009416
RR
1722/*
1723 * Determine the preferred nid for a task in a numa_group. This needs to
1724 * be done in a way that produces consistent results with group_weight,
1725 * otherwise workloads might not converge.
1726 */
1727static int preferred_group_nid(struct task_struct *p, int nid)
1728{
1729 nodemask_t nodes;
1730 int dist;
1731
1732 /* Direct connections between all NUMA nodes. */
1733 if (sched_numa_topology_type == NUMA_DIRECT)
1734 return nid;
1735
1736 /*
1737 * On a system with glueless mesh NUMA topology, group_weight
1738 * scores nodes according to the number of NUMA hinting faults on
1739 * both the node itself, and on nearby nodes.
1740 */
1741 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1742 unsigned long score, max_score = 0;
1743 int node, max_node = nid;
1744
1745 dist = sched_max_numa_distance;
1746
1747 for_each_online_node(node) {
1748 score = group_weight(p, node, dist);
1749 if (score > max_score) {
1750 max_score = score;
1751 max_node = node;
1752 }
1753 }
1754 return max_node;
1755 }
1756
1757 /*
1758 * Finding the preferred nid in a system with NUMA backplane
1759 * interconnect topology is more involved. The goal is to locate
1760 * tasks from numa_groups near each other in the system, and
1761 * untangle workloads from different sides of the system. This requires
1762 * searching down the hierarchy of node groups, recursively searching
1763 * inside the highest scoring group of nodes. The nodemask tricks
1764 * keep the complexity of the search down.
1765 */
1766 nodes = node_online_map;
1767 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1768 unsigned long max_faults = 0;
81907478 1769 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1770 int a, b;
1771
1772 /* Are there nodes at this distance from each other? */
1773 if (!find_numa_distance(dist))
1774 continue;
1775
1776 for_each_node_mask(a, nodes) {
1777 unsigned long faults = 0;
1778 nodemask_t this_group;
1779 nodes_clear(this_group);
1780
1781 /* Sum group's NUMA faults; includes a==b case. */
1782 for_each_node_mask(b, nodes) {
1783 if (node_distance(a, b) < dist) {
1784 faults += group_faults(p, b);
1785 node_set(b, this_group);
1786 node_clear(b, nodes);
1787 }
1788 }
1789
1790 /* Remember the top group. */
1791 if (faults > max_faults) {
1792 max_faults = faults;
1793 max_group = this_group;
1794 /*
1795 * subtle: at the smallest distance there is
1796 * just one node left in each "group", the
1797 * winner is the preferred nid.
1798 */
1799 nid = a;
1800 }
1801 }
1802 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1803 if (!max_faults)
1804 break;
54009416
RR
1805 nodes = max_group;
1806 }
1807 return nid;
1808}
1809
cbee9f88
PZ
1810static void task_numa_placement(struct task_struct *p)
1811{
83e1d2cd
MG
1812 int seq, nid, max_nid = -1, max_group_nid = -1;
1813 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1814 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1815 unsigned long total_faults;
1816 u64 runtime, period;
7dbd13ed 1817 spinlock_t *group_lock = NULL;
cbee9f88 1818
7e5a2c17
JL
1819 /*
1820 * The p->mm->numa_scan_seq field gets updated without
1821 * exclusive access. Use READ_ONCE() here to ensure
1822 * that the field is read in a single access:
1823 */
316c1608 1824 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1825 if (p->numa_scan_seq == seq)
1826 return;
1827 p->numa_scan_seq = seq;
598f0ec0 1828 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1829
7e2703e6
RR
1830 total_faults = p->numa_faults_locality[0] +
1831 p->numa_faults_locality[1];
1832 runtime = numa_get_avg_runtime(p, &period);
1833
7dbd13ed
MG
1834 /* If the task is part of a group prevent parallel updates to group stats */
1835 if (p->numa_group) {
1836 group_lock = &p->numa_group->lock;
60e69eed 1837 spin_lock_irq(group_lock);
7dbd13ed
MG
1838 }
1839
688b7585
MG
1840 /* Find the node with the highest number of faults */
1841 for_each_online_node(nid) {
44dba3d5
IM
1842 /* Keep track of the offsets in numa_faults array */
1843 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1844 unsigned long faults = 0, group_faults = 0;
44dba3d5 1845 int priv;
745d6147 1846
be1e4e76 1847 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1848 long diff, f_diff, f_weight;
8c8a743c 1849
44dba3d5
IM
1850 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1851 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1852 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1853 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1854
ac8e895b 1855 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1856 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1857 fault_types[priv] += p->numa_faults[membuf_idx];
1858 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1859
7e2703e6
RR
1860 /*
1861 * Normalize the faults_from, so all tasks in a group
1862 * count according to CPU use, instead of by the raw
1863 * number of faults. Tasks with little runtime have
1864 * little over-all impact on throughput, and thus their
1865 * faults are less important.
1866 */
1867 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1868 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1869 (total_faults + 1);
44dba3d5
IM
1870 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1871 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1872
44dba3d5
IM
1873 p->numa_faults[mem_idx] += diff;
1874 p->numa_faults[cpu_idx] += f_diff;
1875 faults += p->numa_faults[mem_idx];
83e1d2cd 1876 p->total_numa_faults += diff;
8c8a743c 1877 if (p->numa_group) {
44dba3d5
IM
1878 /*
1879 * safe because we can only change our own group
1880 *
1881 * mem_idx represents the offset for a given
1882 * nid and priv in a specific region because it
1883 * is at the beginning of the numa_faults array.
1884 */
1885 p->numa_group->faults[mem_idx] += diff;
1886 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1887 p->numa_group->total_faults += diff;
44dba3d5 1888 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1889 }
ac8e895b
MG
1890 }
1891
688b7585
MG
1892 if (faults > max_faults) {
1893 max_faults = faults;
1894 max_nid = nid;
1895 }
83e1d2cd
MG
1896
1897 if (group_faults > max_group_faults) {
1898 max_group_faults = group_faults;
1899 max_group_nid = nid;
1900 }
1901 }
1902
04bb2f94
RR
1903 update_task_scan_period(p, fault_types[0], fault_types[1]);
1904
7dbd13ed 1905 if (p->numa_group) {
20e07dea 1906 update_numa_active_node_mask(p->numa_group);
60e69eed 1907 spin_unlock_irq(group_lock);
54009416 1908 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1909 }
1910
bb97fc31
RR
1911 if (max_faults) {
1912 /* Set the new preferred node */
1913 if (max_nid != p->numa_preferred_nid)
1914 sched_setnuma(p, max_nid);
1915
1916 if (task_node(p) != p->numa_preferred_nid)
1917 numa_migrate_preferred(p);
3a7053b3 1918 }
cbee9f88
PZ
1919}
1920
8c8a743c
PZ
1921static inline int get_numa_group(struct numa_group *grp)
1922{
1923 return atomic_inc_not_zero(&grp->refcount);
1924}
1925
1926static inline void put_numa_group(struct numa_group *grp)
1927{
1928 if (atomic_dec_and_test(&grp->refcount))
1929 kfree_rcu(grp, rcu);
1930}
1931
3e6a9418
MG
1932static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1933 int *priv)
8c8a743c
PZ
1934{
1935 struct numa_group *grp, *my_grp;
1936 struct task_struct *tsk;
1937 bool join = false;
1938 int cpu = cpupid_to_cpu(cpupid);
1939 int i;
1940
1941 if (unlikely(!p->numa_group)) {
1942 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1943 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1944
1945 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1946 if (!grp)
1947 return;
1948
1949 atomic_set(&grp->refcount, 1);
1950 spin_lock_init(&grp->lock);
e29cf08b 1951 grp->gid = p->pid;
50ec8a40 1952 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1953 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1954 nr_node_ids;
8c8a743c 1955
20e07dea
RR
1956 node_set(task_node(current), grp->active_nodes);
1957
be1e4e76 1958 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1959 grp->faults[i] = p->numa_faults[i];
8c8a743c 1960
989348b5 1961 grp->total_faults = p->total_numa_faults;
83e1d2cd 1962
8c8a743c
PZ
1963 grp->nr_tasks++;
1964 rcu_assign_pointer(p->numa_group, grp);
1965 }
1966
1967 rcu_read_lock();
316c1608 1968 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1969
1970 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1971 goto no_join;
8c8a743c
PZ
1972
1973 grp = rcu_dereference(tsk->numa_group);
1974 if (!grp)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 my_grp = p->numa_group;
1978 if (grp == my_grp)
3354781a 1979 goto no_join;
8c8a743c
PZ
1980
1981 /*
1982 * Only join the other group if its bigger; if we're the bigger group,
1983 * the other task will join us.
1984 */
1985 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1986 goto no_join;
8c8a743c
PZ
1987
1988 /*
1989 * Tie-break on the grp address.
1990 */
1991 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1992 goto no_join;
8c8a743c 1993
dabe1d99
RR
1994 /* Always join threads in the same process. */
1995 if (tsk->mm == current->mm)
1996 join = true;
1997
1998 /* Simple filter to avoid false positives due to PID collisions */
1999 if (flags & TNF_SHARED)
2000 join = true;
8c8a743c 2001
3e6a9418
MG
2002 /* Update priv based on whether false sharing was detected */
2003 *priv = !join;
2004
dabe1d99 2005 if (join && !get_numa_group(grp))
3354781a 2006 goto no_join;
8c8a743c 2007
8c8a743c
PZ
2008 rcu_read_unlock();
2009
2010 if (!join)
2011 return;
2012
60e69eed
MG
2013 BUG_ON(irqs_disabled());
2014 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2015
be1e4e76 2016 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2017 my_grp->faults[i] -= p->numa_faults[i];
2018 grp->faults[i] += p->numa_faults[i];
8c8a743c 2019 }
989348b5
MG
2020 my_grp->total_faults -= p->total_numa_faults;
2021 grp->total_faults += p->total_numa_faults;
8c8a743c 2022
8c8a743c
PZ
2023 my_grp->nr_tasks--;
2024 grp->nr_tasks++;
2025
2026 spin_unlock(&my_grp->lock);
60e69eed 2027 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2028
2029 rcu_assign_pointer(p->numa_group, grp);
2030
2031 put_numa_group(my_grp);
3354781a
PZ
2032 return;
2033
2034no_join:
2035 rcu_read_unlock();
2036 return;
8c8a743c
PZ
2037}
2038
2039void task_numa_free(struct task_struct *p)
2040{
2041 struct numa_group *grp = p->numa_group;
44dba3d5 2042 void *numa_faults = p->numa_faults;
e9dd685c
SR
2043 unsigned long flags;
2044 int i;
8c8a743c
PZ
2045
2046 if (grp) {
e9dd685c 2047 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2049 grp->faults[i] -= p->numa_faults[i];
989348b5 2050 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2051
8c8a743c 2052 grp->nr_tasks--;
e9dd685c 2053 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2054 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2055 put_numa_group(grp);
2056 }
2057
44dba3d5 2058 p->numa_faults = NULL;
82727018 2059 kfree(numa_faults);
8c8a743c
PZ
2060}
2061
cbee9f88
PZ
2062/*
2063 * Got a PROT_NONE fault for a page on @node.
2064 */
58b46da3 2065void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2066{
2067 struct task_struct *p = current;
6688cc05 2068 bool migrated = flags & TNF_MIGRATED;
58b46da3 2069 int cpu_node = task_node(current);
792568ec 2070 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2071 int priv;
cbee9f88 2072
2a595721 2073 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2074 return;
2075
9ff1d9ff
MG
2076 /* for example, ksmd faulting in a user's mm */
2077 if (!p->mm)
2078 return;
2079
f809ca9a 2080 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2081 if (unlikely(!p->numa_faults)) {
2082 int size = sizeof(*p->numa_faults) *
be1e4e76 2083 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2084
44dba3d5
IM
2085 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2086 if (!p->numa_faults)
f809ca9a 2087 return;
745d6147 2088
83e1d2cd 2089 p->total_numa_faults = 0;
04bb2f94 2090 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2091 }
cbee9f88 2092
8c8a743c
PZ
2093 /*
2094 * First accesses are treated as private, otherwise consider accesses
2095 * to be private if the accessing pid has not changed
2096 */
2097 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2098 priv = 1;
2099 } else {
2100 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2101 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2102 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2103 }
2104
792568ec
RR
2105 /*
2106 * If a workload spans multiple NUMA nodes, a shared fault that
2107 * occurs wholly within the set of nodes that the workload is
2108 * actively using should be counted as local. This allows the
2109 * scan rate to slow down when a workload has settled down.
2110 */
2111 if (!priv && !local && p->numa_group &&
2112 node_isset(cpu_node, p->numa_group->active_nodes) &&
2113 node_isset(mem_node, p->numa_group->active_nodes))
2114 local = 1;
2115
cbee9f88 2116 task_numa_placement(p);
f809ca9a 2117
2739d3ee
RR
2118 /*
2119 * Retry task to preferred node migration periodically, in case it
2120 * case it previously failed, or the scheduler moved us.
2121 */
2122 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2123 numa_migrate_preferred(p);
2124
b32e86b4
IM
2125 if (migrated)
2126 p->numa_pages_migrated += pages;
074c2381
MG
2127 if (flags & TNF_MIGRATE_FAIL)
2128 p->numa_faults_locality[2] += pages;
b32e86b4 2129
44dba3d5
IM
2130 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2131 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2132 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2133}
2134
6e5fb223
PZ
2135static void reset_ptenuma_scan(struct task_struct *p)
2136{
7e5a2c17
JL
2137 /*
2138 * We only did a read acquisition of the mmap sem, so
2139 * p->mm->numa_scan_seq is written to without exclusive access
2140 * and the update is not guaranteed to be atomic. That's not
2141 * much of an issue though, since this is just used for
2142 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2143 * expensive, to avoid any form of compiler optimizations:
2144 */
316c1608 2145 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2146 p->mm->numa_scan_offset = 0;
2147}
2148
cbee9f88
PZ
2149/*
2150 * The expensive part of numa migration is done from task_work context.
2151 * Triggered from task_tick_numa().
2152 */
2153void task_numa_work(struct callback_head *work)
2154{
2155 unsigned long migrate, next_scan, now = jiffies;
2156 struct task_struct *p = current;
2157 struct mm_struct *mm = p->mm;
6e5fb223 2158 struct vm_area_struct *vma;
9f40604c 2159 unsigned long start, end;
598f0ec0 2160 unsigned long nr_pte_updates = 0;
4620f8c1 2161 long pages, virtpages;
cbee9f88
PZ
2162
2163 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2164
2165 work->next = work; /* protect against double add */
2166 /*
2167 * Who cares about NUMA placement when they're dying.
2168 *
2169 * NOTE: make sure not to dereference p->mm before this check,
2170 * exit_task_work() happens _after_ exit_mm() so we could be called
2171 * without p->mm even though we still had it when we enqueued this
2172 * work.
2173 */
2174 if (p->flags & PF_EXITING)
2175 return;
2176
930aa174 2177 if (!mm->numa_next_scan) {
7e8d16b6
MG
2178 mm->numa_next_scan = now +
2179 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2180 }
2181
cbee9f88
PZ
2182 /*
2183 * Enforce maximal scan/migration frequency..
2184 */
2185 migrate = mm->numa_next_scan;
2186 if (time_before(now, migrate))
2187 return;
2188
598f0ec0
MG
2189 if (p->numa_scan_period == 0) {
2190 p->numa_scan_period_max = task_scan_max(p);
2191 p->numa_scan_period = task_scan_min(p);
2192 }
cbee9f88 2193
fb003b80 2194 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2195 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2196 return;
2197
19a78d11
PZ
2198 /*
2199 * Delay this task enough that another task of this mm will likely win
2200 * the next time around.
2201 */
2202 p->node_stamp += 2 * TICK_NSEC;
2203
9f40604c
MG
2204 start = mm->numa_scan_offset;
2205 pages = sysctl_numa_balancing_scan_size;
2206 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2207 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2208 if (!pages)
2209 return;
cbee9f88 2210
4620f8c1 2211
6e5fb223 2212 down_read(&mm->mmap_sem);
9f40604c 2213 vma = find_vma(mm, start);
6e5fb223
PZ
2214 if (!vma) {
2215 reset_ptenuma_scan(p);
9f40604c 2216 start = 0;
6e5fb223
PZ
2217 vma = mm->mmap;
2218 }
9f40604c 2219 for (; vma; vma = vma->vm_next) {
6b79c57b 2220 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2221 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2222 continue;
6b79c57b 2223 }
6e5fb223 2224
4591ce4f
MG
2225 /*
2226 * Shared library pages mapped by multiple processes are not
2227 * migrated as it is expected they are cache replicated. Avoid
2228 * hinting faults in read-only file-backed mappings or the vdso
2229 * as migrating the pages will be of marginal benefit.
2230 */
2231 if (!vma->vm_mm ||
2232 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2233 continue;
2234
3c67f474
MG
2235 /*
2236 * Skip inaccessible VMAs to avoid any confusion between
2237 * PROT_NONE and NUMA hinting ptes
2238 */
2239 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2240 continue;
4591ce4f 2241
9f40604c
MG
2242 do {
2243 start = max(start, vma->vm_start);
2244 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2245 end = min(end, vma->vm_end);
4620f8c1 2246 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2247
2248 /*
4620f8c1
RR
2249 * Try to scan sysctl_numa_balancing_size worth of
2250 * hpages that have at least one present PTE that
2251 * is not already pte-numa. If the VMA contains
2252 * areas that are unused or already full of prot_numa
2253 * PTEs, scan up to virtpages, to skip through those
2254 * areas faster.
598f0ec0
MG
2255 */
2256 if (nr_pte_updates)
2257 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2258 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2259
9f40604c 2260 start = end;
4620f8c1 2261 if (pages <= 0 || virtpages <= 0)
9f40604c 2262 goto out;
3cf1962c
RR
2263
2264 cond_resched();
9f40604c 2265 } while (end != vma->vm_end);
cbee9f88 2266 }
6e5fb223 2267
9f40604c 2268out:
6e5fb223 2269 /*
c69307d5
PZ
2270 * It is possible to reach the end of the VMA list but the last few
2271 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2272 * would find the !migratable VMA on the next scan but not reset the
2273 * scanner to the start so check it now.
6e5fb223
PZ
2274 */
2275 if (vma)
9f40604c 2276 mm->numa_scan_offset = start;
6e5fb223
PZ
2277 else
2278 reset_ptenuma_scan(p);
2279 up_read(&mm->mmap_sem);
cbee9f88
PZ
2280}
2281
2282/*
2283 * Drive the periodic memory faults..
2284 */
2285void task_tick_numa(struct rq *rq, struct task_struct *curr)
2286{
2287 struct callback_head *work = &curr->numa_work;
2288 u64 period, now;
2289
2290 /*
2291 * We don't care about NUMA placement if we don't have memory.
2292 */
2293 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2294 return;
2295
2296 /*
2297 * Using runtime rather than walltime has the dual advantage that
2298 * we (mostly) drive the selection from busy threads and that the
2299 * task needs to have done some actual work before we bother with
2300 * NUMA placement.
2301 */
2302 now = curr->se.sum_exec_runtime;
2303 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2304
2305 if (now - curr->node_stamp > period) {
4b96a29b 2306 if (!curr->node_stamp)
598f0ec0 2307 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2308 curr->node_stamp += period;
cbee9f88
PZ
2309
2310 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2311 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2312 task_work_add(curr, work, true);
2313 }
2314 }
2315}
2316#else
2317static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2318{
2319}
0ec8aa00
PZ
2320
2321static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2322{
2323}
2324
2325static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2326{
2327}
cbee9f88
PZ
2328#endif /* CONFIG_NUMA_BALANCING */
2329
30cfdcfc
DA
2330static void
2331account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2332{
2333 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2334 if (!parent_entity(se))
029632fb 2335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2336#ifdef CONFIG_SMP
0ec8aa00
PZ
2337 if (entity_is_task(se)) {
2338 struct rq *rq = rq_of(cfs_rq);
2339
2340 account_numa_enqueue(rq, task_of(se));
2341 list_add(&se->group_node, &rq->cfs_tasks);
2342 }
367456c7 2343#endif
30cfdcfc 2344 cfs_rq->nr_running++;
30cfdcfc
DA
2345}
2346
2347static void
2348account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2349{
2350 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2351 if (!parent_entity(se))
029632fb 2352 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2353 if (entity_is_task(se)) {
2354 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2355 list_del_init(&se->group_node);
0ec8aa00 2356 }
30cfdcfc 2357 cfs_rq->nr_running--;
30cfdcfc
DA
2358}
2359
3ff6dcac
YZ
2360#ifdef CONFIG_FAIR_GROUP_SCHED
2361# ifdef CONFIG_SMP
cf5f0acf
PZ
2362static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2363{
2364 long tg_weight;
2365
2366 /*
9d89c257
YD
2367 * Use this CPU's real-time load instead of the last load contribution
2368 * as the updating of the contribution is delayed, and we will use the
2369 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2370 */
bf5b986e 2371 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2372 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2373 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2374
2375 return tg_weight;
2376}
2377
6d5ab293 2378static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2379{
cf5f0acf 2380 long tg_weight, load, shares;
3ff6dcac 2381
cf5f0acf 2382 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2383 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2384
3ff6dcac 2385 shares = (tg->shares * load);
cf5f0acf
PZ
2386 if (tg_weight)
2387 shares /= tg_weight;
3ff6dcac
YZ
2388
2389 if (shares < MIN_SHARES)
2390 shares = MIN_SHARES;
2391 if (shares > tg->shares)
2392 shares = tg->shares;
2393
2394 return shares;
2395}
3ff6dcac 2396# else /* CONFIG_SMP */
6d5ab293 2397static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2398{
2399 return tg->shares;
2400}
3ff6dcac 2401# endif /* CONFIG_SMP */
2069dd75
PZ
2402static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2403 unsigned long weight)
2404{
19e5eebb
PT
2405 if (se->on_rq) {
2406 /* commit outstanding execution time */
2407 if (cfs_rq->curr == se)
2408 update_curr(cfs_rq);
2069dd75 2409 account_entity_dequeue(cfs_rq, se);
19e5eebb 2410 }
2069dd75
PZ
2411
2412 update_load_set(&se->load, weight);
2413
2414 if (se->on_rq)
2415 account_entity_enqueue(cfs_rq, se);
2416}
2417
82958366
PT
2418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2419
6d5ab293 2420static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2421{
2422 struct task_group *tg;
2423 struct sched_entity *se;
3ff6dcac 2424 long shares;
2069dd75 2425
2069dd75
PZ
2426 tg = cfs_rq->tg;
2427 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2428 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2429 return;
3ff6dcac
YZ
2430#ifndef CONFIG_SMP
2431 if (likely(se->load.weight == tg->shares))
2432 return;
2433#endif
6d5ab293 2434 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2435
2436 reweight_entity(cfs_rq_of(se), se, shares);
2437}
2438#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2439static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2440{
2441}
2442#endif /* CONFIG_FAIR_GROUP_SCHED */
2443
141965c7 2444#ifdef CONFIG_SMP
5b51f2f8
PT
2445/* Precomputed fixed inverse multiplies for multiplication by y^n */
2446static const u32 runnable_avg_yN_inv[] = {
2447 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2448 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2449 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2450 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2451 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2452 0x85aac367, 0x82cd8698,
2453};
2454
2455/*
2456 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2457 * over-estimates when re-combining.
2458 */
2459static const u32 runnable_avg_yN_sum[] = {
2460 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2461 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2462 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2463};
2464
9d85f21c
PT
2465/*
2466 * Approximate:
2467 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2468 */
2469static __always_inline u64 decay_load(u64 val, u64 n)
2470{
5b51f2f8
PT
2471 unsigned int local_n;
2472
2473 if (!n)
2474 return val;
2475 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2476 return 0;
2477
2478 /* after bounds checking we can collapse to 32-bit */
2479 local_n = n;
2480
2481 /*
2482 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2483 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2484 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2485 *
2486 * To achieve constant time decay_load.
2487 */
2488 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2489 val >>= local_n / LOAD_AVG_PERIOD;
2490 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2491 }
2492
9d89c257
YD
2493 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2494 return val;
5b51f2f8
PT
2495}
2496
2497/*
2498 * For updates fully spanning n periods, the contribution to runnable
2499 * average will be: \Sum 1024*y^n
2500 *
2501 * We can compute this reasonably efficiently by combining:
2502 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2503 */
2504static u32 __compute_runnable_contrib(u64 n)
2505{
2506 u32 contrib = 0;
2507
2508 if (likely(n <= LOAD_AVG_PERIOD))
2509 return runnable_avg_yN_sum[n];
2510 else if (unlikely(n >= LOAD_AVG_MAX_N))
2511 return LOAD_AVG_MAX;
2512
2513 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2514 do {
2515 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2516 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2517
2518 n -= LOAD_AVG_PERIOD;
2519 } while (n > LOAD_AVG_PERIOD);
2520
2521 contrib = decay_load(contrib, n);
2522 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2523}
2524
006cdf02
PZ
2525#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2526#error "load tracking assumes 2^10 as unit"
2527#endif
2528
54a21385 2529#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2530
9d85f21c
PT
2531/*
2532 * We can represent the historical contribution to runnable average as the
2533 * coefficients of a geometric series. To do this we sub-divide our runnable
2534 * history into segments of approximately 1ms (1024us); label the segment that
2535 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2536 *
2537 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2538 * p0 p1 p2
2539 * (now) (~1ms ago) (~2ms ago)
2540 *
2541 * Let u_i denote the fraction of p_i that the entity was runnable.
2542 *
2543 * We then designate the fractions u_i as our co-efficients, yielding the
2544 * following representation of historical load:
2545 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2546 *
2547 * We choose y based on the with of a reasonably scheduling period, fixing:
2548 * y^32 = 0.5
2549 *
2550 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2551 * approximately half as much as the contribution to load within the last ms
2552 * (u_0).
2553 *
2554 * When a period "rolls over" and we have new u_0`, multiplying the previous
2555 * sum again by y is sufficient to update:
2556 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2557 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2558 */
9d89c257
YD
2559static __always_inline int
2560__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2561 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2562{
e0f5f3af 2563 u64 delta, scaled_delta, periods;
9d89c257 2564 u32 contrib;
6115c793 2565 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2566 unsigned long scale_freq, scale_cpu;
9d85f21c 2567
9d89c257 2568 delta = now - sa->last_update_time;
9d85f21c
PT
2569 /*
2570 * This should only happen when time goes backwards, which it
2571 * unfortunately does during sched clock init when we swap over to TSC.
2572 */
2573 if ((s64)delta < 0) {
9d89c257 2574 sa->last_update_time = now;
9d85f21c
PT
2575 return 0;
2576 }
2577
2578 /*
2579 * Use 1024ns as the unit of measurement since it's a reasonable
2580 * approximation of 1us and fast to compute.
2581 */
2582 delta >>= 10;
2583 if (!delta)
2584 return 0;
9d89c257 2585 sa->last_update_time = now;
9d85f21c 2586
6f2b0452
DE
2587 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2588 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2589
9d85f21c 2590 /* delta_w is the amount already accumulated against our next period */
9d89c257 2591 delta_w = sa->period_contrib;
9d85f21c 2592 if (delta + delta_w >= 1024) {
9d85f21c
PT
2593 decayed = 1;
2594
9d89c257
YD
2595 /* how much left for next period will start over, we don't know yet */
2596 sa->period_contrib = 0;
2597
9d85f21c
PT
2598 /*
2599 * Now that we know we're crossing a period boundary, figure
2600 * out how much from delta we need to complete the current
2601 * period and accrue it.
2602 */
2603 delta_w = 1024 - delta_w;
54a21385 2604 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2605 if (weight) {
e0f5f3af
DE
2606 sa->load_sum += weight * scaled_delta_w;
2607 if (cfs_rq) {
2608 cfs_rq->runnable_load_sum +=
2609 weight * scaled_delta_w;
2610 }
13962234 2611 }
36ee28e4 2612 if (running)
006cdf02 2613 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2614
2615 delta -= delta_w;
2616
2617 /* Figure out how many additional periods this update spans */
2618 periods = delta / 1024;
2619 delta %= 1024;
2620
9d89c257 2621 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2622 if (cfs_rq) {
2623 cfs_rq->runnable_load_sum =
2624 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2625 }
9d89c257 2626 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2627
2628 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2629 contrib = __compute_runnable_contrib(periods);
54a21385 2630 contrib = cap_scale(contrib, scale_freq);
13962234 2631 if (weight) {
9d89c257 2632 sa->load_sum += weight * contrib;
13962234
YD
2633 if (cfs_rq)
2634 cfs_rq->runnable_load_sum += weight * contrib;
2635 }
36ee28e4 2636 if (running)
006cdf02 2637 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2638 }
2639
2640 /* Remainder of delta accrued against u_0` */
54a21385 2641 scaled_delta = cap_scale(delta, scale_freq);
13962234 2642 if (weight) {
e0f5f3af 2643 sa->load_sum += weight * scaled_delta;
13962234 2644 if (cfs_rq)
e0f5f3af 2645 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2646 }
36ee28e4 2647 if (running)
006cdf02 2648 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2649
9d89c257 2650 sa->period_contrib += delta;
9ee474f5 2651
9d89c257
YD
2652 if (decayed) {
2653 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2654 if (cfs_rq) {
2655 cfs_rq->runnable_load_avg =
2656 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2657 }
006cdf02 2658 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2659 }
aff3e498 2660
9d89c257 2661 return decayed;
9ee474f5
PT
2662}
2663
c566e8e9 2664#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2665/*
9d89c257
YD
2666 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2667 * and effective_load (which is not done because it is too costly).
bb17f655 2668 */
9d89c257 2669static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2670{
9d89c257 2671 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2672
9d89c257
YD
2673 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2674 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2675 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2676 }
8165e145 2677}
f5f9739d 2678
6e83125c 2679#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2680static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2681#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2682
9d89c257 2683static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2684
9d89c257
YD
2685/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2686static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2687{
9d89c257 2688 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2689 int decayed;
2dac754e 2690
9d89c257
YD
2691 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2692 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2693 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2694 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2695 }
2dac754e 2696
9d89c257
YD
2697 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2698 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2699 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2700 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2701 }
36ee28e4 2702
9d89c257 2703 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2704 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2705
9d89c257
YD
2706#ifndef CONFIG_64BIT
2707 smp_wmb();
2708 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2709#endif
36ee28e4 2710
9d89c257 2711 return decayed;
9ee474f5
PT
2712}
2713
9d89c257
YD
2714/* Update task and its cfs_rq load average */
2715static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2716{
2dac754e 2717 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2718 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2719 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2720
f1b17280 2721 /*
9d89c257
YD
2722 * Track task load average for carrying it to new CPU after migrated, and
2723 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2724 */
9d89c257 2725 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2726 se->on_rq * scale_load_down(se->load.weight),
2727 cfs_rq->curr == se, NULL);
f1b17280 2728
9d89c257
YD
2729 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2730 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2731}
2732
a05e8c51
BP
2733static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2734{
a9280514
PZ
2735 if (!sched_feat(ATTACH_AGE_LOAD))
2736 goto skip_aging;
2737
6efdb105
BP
2738 /*
2739 * If we got migrated (either between CPUs or between cgroups) we'll
2740 * have aged the average right before clearing @last_update_time.
2741 */
2742 if (se->avg.last_update_time) {
2743 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2744 &se->avg, 0, 0, NULL);
2745
2746 /*
2747 * XXX: we could have just aged the entire load away if we've been
2748 * absent from the fair class for too long.
2749 */
2750 }
2751
a9280514 2752skip_aging:
a05e8c51
BP
2753 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2754 cfs_rq->avg.load_avg += se->avg.load_avg;
2755 cfs_rq->avg.load_sum += se->avg.load_sum;
2756 cfs_rq->avg.util_avg += se->avg.util_avg;
2757 cfs_rq->avg.util_sum += se->avg.util_sum;
2758}
2759
2760static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2761{
2762 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2763 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2764 cfs_rq->curr == se, NULL);
2765
2766 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2767 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2768 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2769 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2770}
2771
9d89c257
YD
2772/* Add the load generated by se into cfs_rq's load average */
2773static inline void
2774enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2775{
9d89c257
YD
2776 struct sched_avg *sa = &se->avg;
2777 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2778 int migrated, decayed;
9ee474f5 2779
a05e8c51
BP
2780 migrated = !sa->last_update_time;
2781 if (!migrated) {
9d89c257 2782 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2783 se->on_rq * scale_load_down(se->load.weight),
2784 cfs_rq->curr == se, NULL);
aff3e498 2785 }
c566e8e9 2786
9d89c257 2787 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2788
13962234
YD
2789 cfs_rq->runnable_load_avg += sa->load_avg;
2790 cfs_rq->runnable_load_sum += sa->load_sum;
2791
a05e8c51
BP
2792 if (migrated)
2793 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2794
9d89c257
YD
2795 if (decayed || migrated)
2796 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2797}
2798
13962234
YD
2799/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2800static inline void
2801dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2802{
2803 update_load_avg(se, 1);
2804
2805 cfs_rq->runnable_load_avg =
2806 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2807 cfs_rq->runnable_load_sum =
a05e8c51 2808 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2809}
2810
9ee474f5 2811/*
9d89c257
YD
2812 * Task first catches up with cfs_rq, and then subtract
2813 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2814 */
9d89c257 2815void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2816{
9d89c257
YD
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 u64 last_update_time;
2819
2820#ifndef CONFIG_64BIT
2821 u64 last_update_time_copy;
9ee474f5 2822
9d89c257
YD
2823 do {
2824 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2825 smp_rmb();
2826 last_update_time = cfs_rq->avg.last_update_time;
2827 } while (last_update_time != last_update_time_copy);
2828#else
2829 last_update_time = cfs_rq->avg.last_update_time;
2830#endif
2831
13962234 2832 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2833 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2834 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2835}
642dbc39
VG
2836
2837/*
2838 * Update the rq's load with the elapsed running time before entering
2839 * idle. if the last scheduled task is not a CFS task, idle_enter will
2840 * be the only way to update the runnable statistic.
2841 */
2842void idle_enter_fair(struct rq *this_rq)
2843{
642dbc39
VG
2844}
2845
2846/*
2847 * Update the rq's load with the elapsed idle time before a task is
2848 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2849 * be the only way to update the runnable statistic.
2850 */
2851void idle_exit_fair(struct rq *this_rq)
2852{
642dbc39
VG
2853}
2854
7ea241af
YD
2855static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2856{
2857 return cfs_rq->runnable_load_avg;
2858}
2859
2860static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2861{
2862 return cfs_rq->avg.load_avg;
2863}
2864
6e83125c
PZ
2865static int idle_balance(struct rq *this_rq);
2866
38033c37
PZ
2867#else /* CONFIG_SMP */
2868
9d89c257
YD
2869static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2870static inline void
2871enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2872static inline void
2873dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2874static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2875
a05e8c51
BP
2876static inline void
2877attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2878static inline void
2879detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2880
6e83125c
PZ
2881static inline int idle_balance(struct rq *rq)
2882{
2883 return 0;
2884}
2885
38033c37 2886#endif /* CONFIG_SMP */
9d85f21c 2887
2396af69 2888static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2889{
bf0f6f24 2890#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2891 struct task_struct *tsk = NULL;
2892
2893 if (entity_is_task(se))
2894 tsk = task_of(se);
2895
41acab88 2896 if (se->statistics.sleep_start) {
78becc27 2897 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2898
2899 if ((s64)delta < 0)
2900 delta = 0;
2901
41acab88
LDM
2902 if (unlikely(delta > se->statistics.sleep_max))
2903 se->statistics.sleep_max = delta;
bf0f6f24 2904
8c79a045 2905 se->statistics.sleep_start = 0;
41acab88 2906 se->statistics.sum_sleep_runtime += delta;
9745512c 2907
768d0c27 2908 if (tsk) {
e414314c 2909 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2910 trace_sched_stat_sleep(tsk, delta);
2911 }
bf0f6f24 2912 }
41acab88 2913 if (se->statistics.block_start) {
78becc27 2914 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2915
2916 if ((s64)delta < 0)
2917 delta = 0;
2918
41acab88
LDM
2919 if (unlikely(delta > se->statistics.block_max))
2920 se->statistics.block_max = delta;
bf0f6f24 2921
8c79a045 2922 se->statistics.block_start = 0;
41acab88 2923 se->statistics.sum_sleep_runtime += delta;
30084fbd 2924
e414314c 2925 if (tsk) {
8f0dfc34 2926 if (tsk->in_iowait) {
41acab88
LDM
2927 se->statistics.iowait_sum += delta;
2928 se->statistics.iowait_count++;
768d0c27 2929 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2930 }
2931
b781a602
AV
2932 trace_sched_stat_blocked(tsk, delta);
2933
e414314c
PZ
2934 /*
2935 * Blocking time is in units of nanosecs, so shift by
2936 * 20 to get a milliseconds-range estimation of the
2937 * amount of time that the task spent sleeping:
2938 */
2939 if (unlikely(prof_on == SLEEP_PROFILING)) {
2940 profile_hits(SLEEP_PROFILING,
2941 (void *)get_wchan(tsk),
2942 delta >> 20);
2943 }
2944 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2945 }
bf0f6f24
IM
2946 }
2947#endif
2948}
2949
ddc97297
PZ
2950static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2951{
2952#ifdef CONFIG_SCHED_DEBUG
2953 s64 d = se->vruntime - cfs_rq->min_vruntime;
2954
2955 if (d < 0)
2956 d = -d;
2957
2958 if (d > 3*sysctl_sched_latency)
2959 schedstat_inc(cfs_rq, nr_spread_over);
2960#endif
2961}
2962
aeb73b04
PZ
2963static void
2964place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2965{
1af5f730 2966 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2967
2cb8600e
PZ
2968 /*
2969 * The 'current' period is already promised to the current tasks,
2970 * however the extra weight of the new task will slow them down a
2971 * little, place the new task so that it fits in the slot that
2972 * stays open at the end.
2973 */
94dfb5e7 2974 if (initial && sched_feat(START_DEBIT))
f9c0b095 2975 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2976
a2e7a7eb 2977 /* sleeps up to a single latency don't count. */
5ca9880c 2978 if (!initial) {
a2e7a7eb 2979 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2980
a2e7a7eb
MG
2981 /*
2982 * Halve their sleep time's effect, to allow
2983 * for a gentler effect of sleepers:
2984 */
2985 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2986 thresh >>= 1;
51e0304c 2987
a2e7a7eb 2988 vruntime -= thresh;
aeb73b04
PZ
2989 }
2990
b5d9d734 2991 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2992 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2993}
2994
d3d9dc33
PT
2995static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2996
bf0f6f24 2997static void
88ec22d3 2998enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2999{
88ec22d3
PZ
3000 /*
3001 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3002 * through calling update_curr().
88ec22d3 3003 */
371fd7e7 3004 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3005 se->vruntime += cfs_rq->min_vruntime;
3006
bf0f6f24 3007 /*
a2a2d680 3008 * Update run-time statistics of the 'current'.
bf0f6f24 3009 */
b7cc0896 3010 update_curr(cfs_rq);
9d89c257 3011 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3012 account_entity_enqueue(cfs_rq, se);
3013 update_cfs_shares(cfs_rq);
bf0f6f24 3014
88ec22d3 3015 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3016 place_entity(cfs_rq, se, 0);
2396af69 3017 enqueue_sleeper(cfs_rq, se);
e9acbff6 3018 }
bf0f6f24 3019
d2417e5a 3020 update_stats_enqueue(cfs_rq, se);
ddc97297 3021 check_spread(cfs_rq, se);
83b699ed
SV
3022 if (se != cfs_rq->curr)
3023 __enqueue_entity(cfs_rq, se);
2069dd75 3024 se->on_rq = 1;
3d4b47b4 3025
d3d9dc33 3026 if (cfs_rq->nr_running == 1) {
3d4b47b4 3027 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3028 check_enqueue_throttle(cfs_rq);
3029 }
bf0f6f24
IM
3030}
3031
2c13c919 3032static void __clear_buddies_last(struct sched_entity *se)
2002c695 3033{
2c13c919
RR
3034 for_each_sched_entity(se) {
3035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3036 if (cfs_rq->last != se)
2c13c919 3037 break;
f1044799
PZ
3038
3039 cfs_rq->last = NULL;
2c13c919
RR
3040 }
3041}
2002c695 3042
2c13c919
RR
3043static void __clear_buddies_next(struct sched_entity *se)
3044{
3045 for_each_sched_entity(se) {
3046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3047 if (cfs_rq->next != se)
2c13c919 3048 break;
f1044799
PZ
3049
3050 cfs_rq->next = NULL;
2c13c919 3051 }
2002c695
PZ
3052}
3053
ac53db59
RR
3054static void __clear_buddies_skip(struct sched_entity *se)
3055{
3056 for_each_sched_entity(se) {
3057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3058 if (cfs_rq->skip != se)
ac53db59 3059 break;
f1044799
PZ
3060
3061 cfs_rq->skip = NULL;
ac53db59
RR
3062 }
3063}
3064
a571bbea
PZ
3065static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3066{
2c13c919
RR
3067 if (cfs_rq->last == se)
3068 __clear_buddies_last(se);
3069
3070 if (cfs_rq->next == se)
3071 __clear_buddies_next(se);
ac53db59
RR
3072
3073 if (cfs_rq->skip == se)
3074 __clear_buddies_skip(se);
a571bbea
PZ
3075}
3076
6c16a6dc 3077static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3078
bf0f6f24 3079static void
371fd7e7 3080dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3081{
a2a2d680
DA
3082 /*
3083 * Update run-time statistics of the 'current'.
3084 */
3085 update_curr(cfs_rq);
13962234 3086 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3087
19b6a2e3 3088 update_stats_dequeue(cfs_rq, se);
371fd7e7 3089 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3090#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3091 if (entity_is_task(se)) {
3092 struct task_struct *tsk = task_of(se);
3093
3094 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3095 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3096 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3097 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3098 }
db36cc7d 3099#endif
67e9fb2a
PZ
3100 }
3101
2002c695 3102 clear_buddies(cfs_rq, se);
4793241b 3103
83b699ed 3104 if (se != cfs_rq->curr)
30cfdcfc 3105 __dequeue_entity(cfs_rq, se);
17bc14b7 3106 se->on_rq = 0;
30cfdcfc 3107 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3108
3109 /*
3110 * Normalize the entity after updating the min_vruntime because the
3111 * update can refer to the ->curr item and we need to reflect this
3112 * movement in our normalized position.
3113 */
371fd7e7 3114 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3115 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3116
d8b4986d
PT
3117 /* return excess runtime on last dequeue */
3118 return_cfs_rq_runtime(cfs_rq);
3119
1e876231 3120 update_min_vruntime(cfs_rq);
17bc14b7 3121 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3122}
3123
3124/*
3125 * Preempt the current task with a newly woken task if needed:
3126 */
7c92e54f 3127static void
2e09bf55 3128check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3129{
11697830 3130 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3131 struct sched_entity *se;
3132 s64 delta;
11697830 3133
6d0f0ebd 3134 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3135 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3136 if (delta_exec > ideal_runtime) {
8875125e 3137 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3138 /*
3139 * The current task ran long enough, ensure it doesn't get
3140 * re-elected due to buddy favours.
3141 */
3142 clear_buddies(cfs_rq, curr);
f685ceac
MG
3143 return;
3144 }
3145
3146 /*
3147 * Ensure that a task that missed wakeup preemption by a
3148 * narrow margin doesn't have to wait for a full slice.
3149 * This also mitigates buddy induced latencies under load.
3150 */
f685ceac
MG
3151 if (delta_exec < sysctl_sched_min_granularity)
3152 return;
3153
f4cfb33e
WX
3154 se = __pick_first_entity(cfs_rq);
3155 delta = curr->vruntime - se->vruntime;
f685ceac 3156
f4cfb33e
WX
3157 if (delta < 0)
3158 return;
d7d82944 3159
f4cfb33e 3160 if (delta > ideal_runtime)
8875125e 3161 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3162}
3163
83b699ed 3164static void
8494f412 3165set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3166{
83b699ed
SV
3167 /* 'current' is not kept within the tree. */
3168 if (se->on_rq) {
3169 /*
3170 * Any task has to be enqueued before it get to execute on
3171 * a CPU. So account for the time it spent waiting on the
3172 * runqueue.
3173 */
3174 update_stats_wait_end(cfs_rq, se);
3175 __dequeue_entity(cfs_rq, se);
9d89c257 3176 update_load_avg(se, 1);
83b699ed
SV
3177 }
3178
79303e9e 3179 update_stats_curr_start(cfs_rq, se);
429d43bc 3180 cfs_rq->curr = se;
eba1ed4b
IM
3181#ifdef CONFIG_SCHEDSTATS
3182 /*
3183 * Track our maximum slice length, if the CPU's load is at
3184 * least twice that of our own weight (i.e. dont track it
3185 * when there are only lesser-weight tasks around):
3186 */
495eca49 3187 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3188 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3189 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3190 }
3191#endif
4a55b450 3192 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3193}
3194
3f3a4904
PZ
3195static int
3196wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3197
ac53db59
RR
3198/*
3199 * Pick the next process, keeping these things in mind, in this order:
3200 * 1) keep things fair between processes/task groups
3201 * 2) pick the "next" process, since someone really wants that to run
3202 * 3) pick the "last" process, for cache locality
3203 * 4) do not run the "skip" process, if something else is available
3204 */
678d5718
PZ
3205static struct sched_entity *
3206pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3207{
678d5718
PZ
3208 struct sched_entity *left = __pick_first_entity(cfs_rq);
3209 struct sched_entity *se;
3210
3211 /*
3212 * If curr is set we have to see if its left of the leftmost entity
3213 * still in the tree, provided there was anything in the tree at all.
3214 */
3215 if (!left || (curr && entity_before(curr, left)))
3216 left = curr;
3217
3218 se = left; /* ideally we run the leftmost entity */
f4b6755f 3219
ac53db59
RR
3220 /*
3221 * Avoid running the skip buddy, if running something else can
3222 * be done without getting too unfair.
3223 */
3224 if (cfs_rq->skip == se) {
678d5718
PZ
3225 struct sched_entity *second;
3226
3227 if (se == curr) {
3228 second = __pick_first_entity(cfs_rq);
3229 } else {
3230 second = __pick_next_entity(se);
3231 if (!second || (curr && entity_before(curr, second)))
3232 second = curr;
3233 }
3234
ac53db59
RR
3235 if (second && wakeup_preempt_entity(second, left) < 1)
3236 se = second;
3237 }
aa2ac252 3238
f685ceac
MG
3239 /*
3240 * Prefer last buddy, try to return the CPU to a preempted task.
3241 */
3242 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3243 se = cfs_rq->last;
3244
ac53db59
RR
3245 /*
3246 * Someone really wants this to run. If it's not unfair, run it.
3247 */
3248 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3249 se = cfs_rq->next;
3250
f685ceac 3251 clear_buddies(cfs_rq, se);
4793241b
PZ
3252
3253 return se;
aa2ac252
PZ
3254}
3255
678d5718 3256static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3257
ab6cde26 3258static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3259{
3260 /*
3261 * If still on the runqueue then deactivate_task()
3262 * was not called and update_curr() has to be done:
3263 */
3264 if (prev->on_rq)
b7cc0896 3265 update_curr(cfs_rq);
bf0f6f24 3266
d3d9dc33
PT
3267 /* throttle cfs_rqs exceeding runtime */
3268 check_cfs_rq_runtime(cfs_rq);
3269
ddc97297 3270 check_spread(cfs_rq, prev);
30cfdcfc 3271 if (prev->on_rq) {
5870db5b 3272 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3273 /* Put 'current' back into the tree. */
3274 __enqueue_entity(cfs_rq, prev);
9d85f21c 3275 /* in !on_rq case, update occurred at dequeue */
9d89c257 3276 update_load_avg(prev, 0);
30cfdcfc 3277 }
429d43bc 3278 cfs_rq->curr = NULL;
bf0f6f24
IM
3279}
3280
8f4d37ec
PZ
3281static void
3282entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3283{
bf0f6f24 3284 /*
30cfdcfc 3285 * Update run-time statistics of the 'current'.
bf0f6f24 3286 */
30cfdcfc 3287 update_curr(cfs_rq);
bf0f6f24 3288
9d85f21c
PT
3289 /*
3290 * Ensure that runnable average is periodically updated.
3291 */
9d89c257 3292 update_load_avg(curr, 1);
bf0bd948 3293 update_cfs_shares(cfs_rq);
9d85f21c 3294
8f4d37ec
PZ
3295#ifdef CONFIG_SCHED_HRTICK
3296 /*
3297 * queued ticks are scheduled to match the slice, so don't bother
3298 * validating it and just reschedule.
3299 */
983ed7a6 3300 if (queued) {
8875125e 3301 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3302 return;
3303 }
8f4d37ec
PZ
3304 /*
3305 * don't let the period tick interfere with the hrtick preemption
3306 */
3307 if (!sched_feat(DOUBLE_TICK) &&
3308 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3309 return;
3310#endif
3311
2c2efaed 3312 if (cfs_rq->nr_running > 1)
2e09bf55 3313 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3314}
3315
ab84d31e
PT
3316
3317/**************************************************
3318 * CFS bandwidth control machinery
3319 */
3320
3321#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3322
3323#ifdef HAVE_JUMP_LABEL
c5905afb 3324static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3325
3326static inline bool cfs_bandwidth_used(void)
3327{
c5905afb 3328 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3329}
3330
1ee14e6c 3331void cfs_bandwidth_usage_inc(void)
029632fb 3332{
1ee14e6c
BS
3333 static_key_slow_inc(&__cfs_bandwidth_used);
3334}
3335
3336void cfs_bandwidth_usage_dec(void)
3337{
3338 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3339}
3340#else /* HAVE_JUMP_LABEL */
3341static bool cfs_bandwidth_used(void)
3342{
3343 return true;
3344}
3345
1ee14e6c
BS
3346void cfs_bandwidth_usage_inc(void) {}
3347void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3348#endif /* HAVE_JUMP_LABEL */
3349
ab84d31e
PT
3350/*
3351 * default period for cfs group bandwidth.
3352 * default: 0.1s, units: nanoseconds
3353 */
3354static inline u64 default_cfs_period(void)
3355{
3356 return 100000000ULL;
3357}
ec12cb7f
PT
3358
3359static inline u64 sched_cfs_bandwidth_slice(void)
3360{
3361 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3362}
3363
a9cf55b2
PT
3364/*
3365 * Replenish runtime according to assigned quota and update expiration time.
3366 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3367 * additional synchronization around rq->lock.
3368 *
3369 * requires cfs_b->lock
3370 */
029632fb 3371void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3372{
3373 u64 now;
3374
3375 if (cfs_b->quota == RUNTIME_INF)
3376 return;
3377
3378 now = sched_clock_cpu(smp_processor_id());
3379 cfs_b->runtime = cfs_b->quota;
3380 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3381}
3382
029632fb
PZ
3383static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3384{
3385 return &tg->cfs_bandwidth;
3386}
3387
f1b17280
PT
3388/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3389static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3390{
3391 if (unlikely(cfs_rq->throttle_count))
3392 return cfs_rq->throttled_clock_task;
3393
78becc27 3394 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3395}
3396
85dac906
PT
3397/* returns 0 on failure to allocate runtime */
3398static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3399{
3400 struct task_group *tg = cfs_rq->tg;
3401 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3402 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3403
3404 /* note: this is a positive sum as runtime_remaining <= 0 */
3405 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 if (cfs_b->quota == RUNTIME_INF)
3409 amount = min_amount;
58088ad0 3410 else {
77a4d1a1 3411 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3412
3413 if (cfs_b->runtime > 0) {
3414 amount = min(cfs_b->runtime, min_amount);
3415 cfs_b->runtime -= amount;
3416 cfs_b->idle = 0;
3417 }
ec12cb7f 3418 }
a9cf55b2 3419 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3420 raw_spin_unlock(&cfs_b->lock);
3421
3422 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3423 /*
3424 * we may have advanced our local expiration to account for allowed
3425 * spread between our sched_clock and the one on which runtime was
3426 * issued.
3427 */
3428 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3429 cfs_rq->runtime_expires = expires;
85dac906
PT
3430
3431 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3432}
3433
a9cf55b2
PT
3434/*
3435 * Note: This depends on the synchronization provided by sched_clock and the
3436 * fact that rq->clock snapshots this value.
3437 */
3438static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3439{
a9cf55b2 3440 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3441
3442 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3443 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3444 return;
3445
a9cf55b2
PT
3446 if (cfs_rq->runtime_remaining < 0)
3447 return;
3448
3449 /*
3450 * If the local deadline has passed we have to consider the
3451 * possibility that our sched_clock is 'fast' and the global deadline
3452 * has not truly expired.
3453 *
3454 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3455 * whether the global deadline has advanced. It is valid to compare
3456 * cfs_b->runtime_expires without any locks since we only care about
3457 * exact equality, so a partial write will still work.
a9cf55b2
PT
3458 */
3459
51f2176d 3460 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3461 /* extend local deadline, drift is bounded above by 2 ticks */
3462 cfs_rq->runtime_expires += TICK_NSEC;
3463 } else {
3464 /* global deadline is ahead, expiration has passed */
3465 cfs_rq->runtime_remaining = 0;
3466 }
3467}
3468
9dbdb155 3469static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3470{
3471 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3472 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3473 expire_cfs_rq_runtime(cfs_rq);
3474
3475 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3476 return;
3477
85dac906
PT
3478 /*
3479 * if we're unable to extend our runtime we resched so that the active
3480 * hierarchy can be throttled
3481 */
3482 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3483 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3484}
3485
6c16a6dc 3486static __always_inline
9dbdb155 3487void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3488{
56f570e5 3489 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3490 return;
3491
3492 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3493}
3494
85dac906
PT
3495static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3496{
56f570e5 3497 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3498}
3499
64660c86
PT
3500/* check whether cfs_rq, or any parent, is throttled */
3501static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3502{
56f570e5 3503 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3504}
3505
3506/*
3507 * Ensure that neither of the group entities corresponding to src_cpu or
3508 * dest_cpu are members of a throttled hierarchy when performing group
3509 * load-balance operations.
3510 */
3511static inline int throttled_lb_pair(struct task_group *tg,
3512 int src_cpu, int dest_cpu)
3513{
3514 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3515
3516 src_cfs_rq = tg->cfs_rq[src_cpu];
3517 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3518
3519 return throttled_hierarchy(src_cfs_rq) ||
3520 throttled_hierarchy(dest_cfs_rq);
3521}
3522
3523/* updated child weight may affect parent so we have to do this bottom up */
3524static int tg_unthrottle_up(struct task_group *tg, void *data)
3525{
3526 struct rq *rq = data;
3527 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3528
3529 cfs_rq->throttle_count--;
3530#ifdef CONFIG_SMP
3531 if (!cfs_rq->throttle_count) {
f1b17280 3532 /* adjust cfs_rq_clock_task() */
78becc27 3533 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3534 cfs_rq->throttled_clock_task;
64660c86
PT
3535 }
3536#endif
3537
3538 return 0;
3539}
3540
3541static int tg_throttle_down(struct task_group *tg, void *data)
3542{
3543 struct rq *rq = data;
3544 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3545
82958366
PT
3546 /* group is entering throttled state, stop time */
3547 if (!cfs_rq->throttle_count)
78becc27 3548 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3549 cfs_rq->throttle_count++;
3550
3551 return 0;
3552}
3553
d3d9dc33 3554static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3555{
3556 struct rq *rq = rq_of(cfs_rq);
3557 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3558 struct sched_entity *se;
3559 long task_delta, dequeue = 1;
77a4d1a1 3560 bool empty;
85dac906
PT
3561
3562 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3563
f1b17280 3564 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3565 rcu_read_lock();
3566 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3567 rcu_read_unlock();
85dac906
PT
3568
3569 task_delta = cfs_rq->h_nr_running;
3570 for_each_sched_entity(se) {
3571 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3572 /* throttled entity or throttle-on-deactivate */
3573 if (!se->on_rq)
3574 break;
3575
3576 if (dequeue)
3577 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3578 qcfs_rq->h_nr_running -= task_delta;
3579
3580 if (qcfs_rq->load.weight)
3581 dequeue = 0;
3582 }
3583
3584 if (!se)
72465447 3585 sub_nr_running(rq, task_delta);
85dac906
PT
3586
3587 cfs_rq->throttled = 1;
78becc27 3588 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3589 raw_spin_lock(&cfs_b->lock);
d49db342 3590 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3591
c06f04c7
BS
3592 /*
3593 * Add to the _head_ of the list, so that an already-started
3594 * distribute_cfs_runtime will not see us
3595 */
3596 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3597
3598 /*
3599 * If we're the first throttled task, make sure the bandwidth
3600 * timer is running.
3601 */
3602 if (empty)
3603 start_cfs_bandwidth(cfs_b);
3604
85dac906
PT
3605 raw_spin_unlock(&cfs_b->lock);
3606}
3607
029632fb 3608void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3609{
3610 struct rq *rq = rq_of(cfs_rq);
3611 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3612 struct sched_entity *se;
3613 int enqueue = 1;
3614 long task_delta;
3615
22b958d8 3616 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3617
3618 cfs_rq->throttled = 0;
1a55af2e
FW
3619
3620 update_rq_clock(rq);
3621
671fd9da 3622 raw_spin_lock(&cfs_b->lock);
78becc27 3623 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3624 list_del_rcu(&cfs_rq->throttled_list);
3625 raw_spin_unlock(&cfs_b->lock);
3626
64660c86
PT
3627 /* update hierarchical throttle state */
3628 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3629
671fd9da
PT
3630 if (!cfs_rq->load.weight)
3631 return;
3632
3633 task_delta = cfs_rq->h_nr_running;
3634 for_each_sched_entity(se) {
3635 if (se->on_rq)
3636 enqueue = 0;
3637
3638 cfs_rq = cfs_rq_of(se);
3639 if (enqueue)
3640 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3641 cfs_rq->h_nr_running += task_delta;
3642
3643 if (cfs_rq_throttled(cfs_rq))
3644 break;
3645 }
3646
3647 if (!se)
72465447 3648 add_nr_running(rq, task_delta);
671fd9da
PT
3649
3650 /* determine whether we need to wake up potentially idle cpu */
3651 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3652 resched_curr(rq);
671fd9da
PT
3653}
3654
3655static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3656 u64 remaining, u64 expires)
3657{
3658 struct cfs_rq *cfs_rq;
c06f04c7
BS
3659 u64 runtime;
3660 u64 starting_runtime = remaining;
671fd9da
PT
3661
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3664 throttled_list) {
3665 struct rq *rq = rq_of(cfs_rq);
3666
3667 raw_spin_lock(&rq->lock);
3668 if (!cfs_rq_throttled(cfs_rq))
3669 goto next;
3670
3671 runtime = -cfs_rq->runtime_remaining + 1;
3672 if (runtime > remaining)
3673 runtime = remaining;
3674 remaining -= runtime;
3675
3676 cfs_rq->runtime_remaining += runtime;
3677 cfs_rq->runtime_expires = expires;
3678
3679 /* we check whether we're throttled above */
3680 if (cfs_rq->runtime_remaining > 0)
3681 unthrottle_cfs_rq(cfs_rq);
3682
3683next:
3684 raw_spin_unlock(&rq->lock);
3685
3686 if (!remaining)
3687 break;
3688 }
3689 rcu_read_unlock();
3690
c06f04c7 3691 return starting_runtime - remaining;
671fd9da
PT
3692}
3693
58088ad0
PT
3694/*
3695 * Responsible for refilling a task_group's bandwidth and unthrottling its
3696 * cfs_rqs as appropriate. If there has been no activity within the last
3697 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3698 * used to track this state.
3699 */
3700static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3701{
671fd9da 3702 u64 runtime, runtime_expires;
51f2176d 3703 int throttled;
58088ad0 3704
58088ad0
PT
3705 /* no need to continue the timer with no bandwidth constraint */
3706 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3707 goto out_deactivate;
58088ad0 3708
671fd9da 3709 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3710 cfs_b->nr_periods += overrun;
671fd9da 3711
51f2176d
BS
3712 /*
3713 * idle depends on !throttled (for the case of a large deficit), and if
3714 * we're going inactive then everything else can be deferred
3715 */
3716 if (cfs_b->idle && !throttled)
3717 goto out_deactivate;
a9cf55b2
PT
3718
3719 __refill_cfs_bandwidth_runtime(cfs_b);
3720
671fd9da
PT
3721 if (!throttled) {
3722 /* mark as potentially idle for the upcoming period */
3723 cfs_b->idle = 1;
51f2176d 3724 return 0;
671fd9da
PT
3725 }
3726
e8da1b18
NR
3727 /* account preceding periods in which throttling occurred */
3728 cfs_b->nr_throttled += overrun;
3729
671fd9da 3730 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3731
3732 /*
c06f04c7
BS
3733 * This check is repeated as we are holding onto the new bandwidth while
3734 * we unthrottle. This can potentially race with an unthrottled group
3735 * trying to acquire new bandwidth from the global pool. This can result
3736 * in us over-using our runtime if it is all used during this loop, but
3737 * only by limited amounts in that extreme case.
671fd9da 3738 */
c06f04c7
BS
3739 while (throttled && cfs_b->runtime > 0) {
3740 runtime = cfs_b->runtime;
671fd9da
PT
3741 raw_spin_unlock(&cfs_b->lock);
3742 /* we can't nest cfs_b->lock while distributing bandwidth */
3743 runtime = distribute_cfs_runtime(cfs_b, runtime,
3744 runtime_expires);
3745 raw_spin_lock(&cfs_b->lock);
3746
3747 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3748
3749 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3750 }
58088ad0 3751
671fd9da
PT
3752 /*
3753 * While we are ensured activity in the period following an
3754 * unthrottle, this also covers the case in which the new bandwidth is
3755 * insufficient to cover the existing bandwidth deficit. (Forcing the
3756 * timer to remain active while there are any throttled entities.)
3757 */
3758 cfs_b->idle = 0;
58088ad0 3759
51f2176d
BS
3760 return 0;
3761
3762out_deactivate:
51f2176d 3763 return 1;
58088ad0 3764}
d3d9dc33 3765
d8b4986d
PT
3766/* a cfs_rq won't donate quota below this amount */
3767static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3768/* minimum remaining period time to redistribute slack quota */
3769static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3770/* how long we wait to gather additional slack before distributing */
3771static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3772
db06e78c
BS
3773/*
3774 * Are we near the end of the current quota period?
3775 *
3776 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3777 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3778 * migrate_hrtimers, base is never cleared, so we are fine.
3779 */
d8b4986d
PT
3780static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3781{
3782 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3783 u64 remaining;
3784
3785 /* if the call-back is running a quota refresh is already occurring */
3786 if (hrtimer_callback_running(refresh_timer))
3787 return 1;
3788
3789 /* is a quota refresh about to occur? */
3790 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3791 if (remaining < min_expire)
3792 return 1;
3793
3794 return 0;
3795}
3796
3797static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3798{
3799 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3800
3801 /* if there's a quota refresh soon don't bother with slack */
3802 if (runtime_refresh_within(cfs_b, min_left))
3803 return;
3804
4cfafd30
PZ
3805 hrtimer_start(&cfs_b->slack_timer,
3806 ns_to_ktime(cfs_bandwidth_slack_period),
3807 HRTIMER_MODE_REL);
d8b4986d
PT
3808}
3809
3810/* we know any runtime found here is valid as update_curr() precedes return */
3811static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3812{
3813 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3814 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3815
3816 if (slack_runtime <= 0)
3817 return;
3818
3819 raw_spin_lock(&cfs_b->lock);
3820 if (cfs_b->quota != RUNTIME_INF &&
3821 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3822 cfs_b->runtime += slack_runtime;
3823
3824 /* we are under rq->lock, defer unthrottling using a timer */
3825 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3826 !list_empty(&cfs_b->throttled_cfs_rq))
3827 start_cfs_slack_bandwidth(cfs_b);
3828 }
3829 raw_spin_unlock(&cfs_b->lock);
3830
3831 /* even if it's not valid for return we don't want to try again */
3832 cfs_rq->runtime_remaining -= slack_runtime;
3833}
3834
3835static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3836{
56f570e5
PT
3837 if (!cfs_bandwidth_used())
3838 return;
3839
fccfdc6f 3840 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3841 return;
3842
3843 __return_cfs_rq_runtime(cfs_rq);
3844}
3845
3846/*
3847 * This is done with a timer (instead of inline with bandwidth return) since
3848 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3849 */
3850static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3851{
3852 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3853 u64 expires;
3854
3855 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3856 raw_spin_lock(&cfs_b->lock);
3857 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3858 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3859 return;
db06e78c 3860 }
d8b4986d 3861
c06f04c7 3862 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3863 runtime = cfs_b->runtime;
c06f04c7 3864
d8b4986d
PT
3865 expires = cfs_b->runtime_expires;
3866 raw_spin_unlock(&cfs_b->lock);
3867
3868 if (!runtime)
3869 return;
3870
3871 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3872
3873 raw_spin_lock(&cfs_b->lock);
3874 if (expires == cfs_b->runtime_expires)
c06f04c7 3875 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3876 raw_spin_unlock(&cfs_b->lock);
3877}
3878
d3d9dc33
PT
3879/*
3880 * When a group wakes up we want to make sure that its quota is not already
3881 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3882 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3883 */
3884static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3885{
56f570e5
PT
3886 if (!cfs_bandwidth_used())
3887 return;
3888
d3d9dc33
PT
3889 /* an active group must be handled by the update_curr()->put() path */
3890 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3891 return;
3892
3893 /* ensure the group is not already throttled */
3894 if (cfs_rq_throttled(cfs_rq))
3895 return;
3896
3897 /* update runtime allocation */
3898 account_cfs_rq_runtime(cfs_rq, 0);
3899 if (cfs_rq->runtime_remaining <= 0)
3900 throttle_cfs_rq(cfs_rq);
3901}
3902
3903/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3904static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3905{
56f570e5 3906 if (!cfs_bandwidth_used())
678d5718 3907 return false;
56f570e5 3908
d3d9dc33 3909 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3910 return false;
d3d9dc33
PT
3911
3912 /*
3913 * it's possible for a throttled entity to be forced into a running
3914 * state (e.g. set_curr_task), in this case we're finished.
3915 */
3916 if (cfs_rq_throttled(cfs_rq))
678d5718 3917 return true;
d3d9dc33
PT
3918
3919 throttle_cfs_rq(cfs_rq);
678d5718 3920 return true;
d3d9dc33 3921}
029632fb 3922
029632fb
PZ
3923static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3924{
3925 struct cfs_bandwidth *cfs_b =
3926 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3927
029632fb
PZ
3928 do_sched_cfs_slack_timer(cfs_b);
3929
3930 return HRTIMER_NORESTART;
3931}
3932
3933static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3934{
3935 struct cfs_bandwidth *cfs_b =
3936 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3937 int overrun;
3938 int idle = 0;
3939
51f2176d 3940 raw_spin_lock(&cfs_b->lock);
029632fb 3941 for (;;) {
77a4d1a1 3942 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3943 if (!overrun)
3944 break;
3945
3946 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3947 }
4cfafd30
PZ
3948 if (idle)
3949 cfs_b->period_active = 0;
51f2176d 3950 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3951
3952 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3953}
3954
3955void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3956{
3957 raw_spin_lock_init(&cfs_b->lock);
3958 cfs_b->runtime = 0;
3959 cfs_b->quota = RUNTIME_INF;
3960 cfs_b->period = ns_to_ktime(default_cfs_period());
3961
3962 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3963 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3964 cfs_b->period_timer.function = sched_cfs_period_timer;
3965 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3966 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3967}
3968
3969static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3970{
3971 cfs_rq->runtime_enabled = 0;
3972 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3973}
3974
77a4d1a1 3975void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3976{
4cfafd30 3977 lockdep_assert_held(&cfs_b->lock);
029632fb 3978
4cfafd30
PZ
3979 if (!cfs_b->period_active) {
3980 cfs_b->period_active = 1;
3981 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3982 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3983 }
029632fb
PZ
3984}
3985
3986static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3987{
7f1a169b
TH
3988 /* init_cfs_bandwidth() was not called */
3989 if (!cfs_b->throttled_cfs_rq.next)
3990 return;
3991
029632fb
PZ
3992 hrtimer_cancel(&cfs_b->period_timer);
3993 hrtimer_cancel(&cfs_b->slack_timer);
3994}
3995
0e59bdae
KT
3996static void __maybe_unused update_runtime_enabled(struct rq *rq)
3997{
3998 struct cfs_rq *cfs_rq;
3999
4000 for_each_leaf_cfs_rq(rq, cfs_rq) {
4001 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4002
4003 raw_spin_lock(&cfs_b->lock);
4004 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4005 raw_spin_unlock(&cfs_b->lock);
4006 }
4007}
4008
38dc3348 4009static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4010{
4011 struct cfs_rq *cfs_rq;
4012
4013 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4014 if (!cfs_rq->runtime_enabled)
4015 continue;
4016
4017 /*
4018 * clock_task is not advancing so we just need to make sure
4019 * there's some valid quota amount
4020 */
51f2176d 4021 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4022 /*
4023 * Offline rq is schedulable till cpu is completely disabled
4024 * in take_cpu_down(), so we prevent new cfs throttling here.
4025 */
4026 cfs_rq->runtime_enabled = 0;
4027
029632fb
PZ
4028 if (cfs_rq_throttled(cfs_rq))
4029 unthrottle_cfs_rq(cfs_rq);
4030 }
4031}
4032
4033#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4034static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4035{
78becc27 4036 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4037}
4038
9dbdb155 4039static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4040static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4041static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4042static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4043
4044static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4045{
4046 return 0;
4047}
64660c86
PT
4048
4049static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4050{
4051 return 0;
4052}
4053
4054static inline int throttled_lb_pair(struct task_group *tg,
4055 int src_cpu, int dest_cpu)
4056{
4057 return 0;
4058}
029632fb
PZ
4059
4060void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4061
4062#ifdef CONFIG_FAIR_GROUP_SCHED
4063static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4064#endif
4065
029632fb
PZ
4066static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4067{
4068 return NULL;
4069}
4070static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4071static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4072static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4073
4074#endif /* CONFIG_CFS_BANDWIDTH */
4075
bf0f6f24
IM
4076/**************************************************
4077 * CFS operations on tasks:
4078 */
4079
8f4d37ec
PZ
4080#ifdef CONFIG_SCHED_HRTICK
4081static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4082{
8f4d37ec
PZ
4083 struct sched_entity *se = &p->se;
4084 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4085
4086 WARN_ON(task_rq(p) != rq);
4087
b39e66ea 4088 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4089 u64 slice = sched_slice(cfs_rq, se);
4090 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4091 s64 delta = slice - ran;
4092
4093 if (delta < 0) {
4094 if (rq->curr == p)
8875125e 4095 resched_curr(rq);
8f4d37ec
PZ
4096 return;
4097 }
31656519 4098 hrtick_start(rq, delta);
8f4d37ec
PZ
4099 }
4100}
a4c2f00f
PZ
4101
4102/*
4103 * called from enqueue/dequeue and updates the hrtick when the
4104 * current task is from our class and nr_running is low enough
4105 * to matter.
4106 */
4107static void hrtick_update(struct rq *rq)
4108{
4109 struct task_struct *curr = rq->curr;
4110
b39e66ea 4111 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4112 return;
4113
4114 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4115 hrtick_start_fair(rq, curr);
4116}
55e12e5e 4117#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4118static inline void
4119hrtick_start_fair(struct rq *rq, struct task_struct *p)
4120{
4121}
a4c2f00f
PZ
4122
4123static inline void hrtick_update(struct rq *rq)
4124{
4125}
8f4d37ec
PZ
4126#endif
4127
bf0f6f24
IM
4128/*
4129 * The enqueue_task method is called before nr_running is
4130 * increased. Here we update the fair scheduling stats and
4131 * then put the task into the rbtree:
4132 */
ea87bb78 4133static void
371fd7e7 4134enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4135{
4136 struct cfs_rq *cfs_rq;
62fb1851 4137 struct sched_entity *se = &p->se;
bf0f6f24
IM
4138
4139 for_each_sched_entity(se) {
62fb1851 4140 if (se->on_rq)
bf0f6f24
IM
4141 break;
4142 cfs_rq = cfs_rq_of(se);
88ec22d3 4143 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4144
4145 /*
4146 * end evaluation on encountering a throttled cfs_rq
4147 *
4148 * note: in the case of encountering a throttled cfs_rq we will
4149 * post the final h_nr_running increment below.
4150 */
4151 if (cfs_rq_throttled(cfs_rq))
4152 break;
953bfcd1 4153 cfs_rq->h_nr_running++;
85dac906 4154
88ec22d3 4155 flags = ENQUEUE_WAKEUP;
bf0f6f24 4156 }
8f4d37ec 4157
2069dd75 4158 for_each_sched_entity(se) {
0f317143 4159 cfs_rq = cfs_rq_of(se);
953bfcd1 4160 cfs_rq->h_nr_running++;
2069dd75 4161
85dac906
PT
4162 if (cfs_rq_throttled(cfs_rq))
4163 break;
4164
9d89c257 4165 update_load_avg(se, 1);
17bc14b7 4166 update_cfs_shares(cfs_rq);
2069dd75
PZ
4167 }
4168
cd126afe 4169 if (!se)
72465447 4170 add_nr_running(rq, 1);
cd126afe 4171
a4c2f00f 4172 hrtick_update(rq);
bf0f6f24
IM
4173}
4174
2f36825b
VP
4175static void set_next_buddy(struct sched_entity *se);
4176
bf0f6f24
IM
4177/*
4178 * The dequeue_task method is called before nr_running is
4179 * decreased. We remove the task from the rbtree and
4180 * update the fair scheduling stats:
4181 */
371fd7e7 4182static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4183{
4184 struct cfs_rq *cfs_rq;
62fb1851 4185 struct sched_entity *se = &p->se;
2f36825b 4186 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4187
4188 for_each_sched_entity(se) {
4189 cfs_rq = cfs_rq_of(se);
371fd7e7 4190 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4191
4192 /*
4193 * end evaluation on encountering a throttled cfs_rq
4194 *
4195 * note: in the case of encountering a throttled cfs_rq we will
4196 * post the final h_nr_running decrement below.
4197 */
4198 if (cfs_rq_throttled(cfs_rq))
4199 break;
953bfcd1 4200 cfs_rq->h_nr_running--;
2069dd75 4201
bf0f6f24 4202 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4203 if (cfs_rq->load.weight) {
4204 /*
4205 * Bias pick_next to pick a task from this cfs_rq, as
4206 * p is sleeping when it is within its sched_slice.
4207 */
4208 if (task_sleep && parent_entity(se))
4209 set_next_buddy(parent_entity(se));
9598c82d
PT
4210
4211 /* avoid re-evaluating load for this entity */
4212 se = parent_entity(se);
bf0f6f24 4213 break;
2f36825b 4214 }
371fd7e7 4215 flags |= DEQUEUE_SLEEP;
bf0f6f24 4216 }
8f4d37ec 4217
2069dd75 4218 for_each_sched_entity(se) {
0f317143 4219 cfs_rq = cfs_rq_of(se);
953bfcd1 4220 cfs_rq->h_nr_running--;
2069dd75 4221
85dac906
PT
4222 if (cfs_rq_throttled(cfs_rq))
4223 break;
4224
9d89c257 4225 update_load_avg(se, 1);
17bc14b7 4226 update_cfs_shares(cfs_rq);
2069dd75
PZ
4227 }
4228
cd126afe 4229 if (!se)
72465447 4230 sub_nr_running(rq, 1);
cd126afe 4231
a4c2f00f 4232 hrtick_update(rq);
bf0f6f24
IM
4233}
4234
e7693a36 4235#ifdef CONFIG_SMP
3289bdb4
PZ
4236
4237/*
4238 * per rq 'load' arrray crap; XXX kill this.
4239 */
4240
4241/*
4242 * The exact cpuload at various idx values, calculated at every tick would be
4243 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4244 *
4245 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4246 * on nth tick when cpu may be busy, then we have:
4247 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4248 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4249 *
4250 * decay_load_missed() below does efficient calculation of
4251 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4252 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4253 *
4254 * The calculation is approximated on a 128 point scale.
4255 * degrade_zero_ticks is the number of ticks after which load at any
4256 * particular idx is approximated to be zero.
4257 * degrade_factor is a precomputed table, a row for each load idx.
4258 * Each column corresponds to degradation factor for a power of two ticks,
4259 * based on 128 point scale.
4260 * Example:
4261 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4262 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4263 *
4264 * With this power of 2 load factors, we can degrade the load n times
4265 * by looking at 1 bits in n and doing as many mult/shift instead of
4266 * n mult/shifts needed by the exact degradation.
4267 */
4268#define DEGRADE_SHIFT 7
4269static const unsigned char
4270 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4271static const unsigned char
4272 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4273 {0, 0, 0, 0, 0, 0, 0, 0},
4274 {64, 32, 8, 0, 0, 0, 0, 0},
4275 {96, 72, 40, 12, 1, 0, 0},
4276 {112, 98, 75, 43, 15, 1, 0},
4277 {120, 112, 98, 76, 45, 16, 2} };
4278
4279/*
4280 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4281 * would be when CPU is idle and so we just decay the old load without
4282 * adding any new load.
4283 */
4284static unsigned long
4285decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4286{
4287 int j = 0;
4288
4289 if (!missed_updates)
4290 return load;
4291
4292 if (missed_updates >= degrade_zero_ticks[idx])
4293 return 0;
4294
4295 if (idx == 1)
4296 return load >> missed_updates;
4297
4298 while (missed_updates) {
4299 if (missed_updates % 2)
4300 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4301
4302 missed_updates >>= 1;
4303 j++;
4304 }
4305 return load;
4306}
4307
4308/*
4309 * Update rq->cpu_load[] statistics. This function is usually called every
4310 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4311 * every tick. We fix it up based on jiffies.
4312 */
4313static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4314 unsigned long pending_updates)
4315{
4316 int i, scale;
4317
4318 this_rq->nr_load_updates++;
4319
4320 /* Update our load: */
4321 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4322 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4323 unsigned long old_load, new_load;
4324
4325 /* scale is effectively 1 << i now, and >> i divides by scale */
4326
4327 old_load = this_rq->cpu_load[i];
4328 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4329 new_load = this_load;
4330 /*
4331 * Round up the averaging division if load is increasing. This
4332 * prevents us from getting stuck on 9 if the load is 10, for
4333 * example.
4334 */
4335 if (new_load > old_load)
4336 new_load += scale - 1;
4337
4338 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4339 }
4340
4341 sched_avg_update(this_rq);
4342}
4343
7ea241af
YD
4344/* Used instead of source_load when we know the type == 0 */
4345static unsigned long weighted_cpuload(const int cpu)
4346{
4347 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4348}
4349
3289bdb4
PZ
4350#ifdef CONFIG_NO_HZ_COMMON
4351/*
4352 * There is no sane way to deal with nohz on smp when using jiffies because the
4353 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4354 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4355 *
4356 * Therefore we cannot use the delta approach from the regular tick since that
4357 * would seriously skew the load calculation. However we'll make do for those
4358 * updates happening while idle (nohz_idle_balance) or coming out of idle
4359 * (tick_nohz_idle_exit).
4360 *
4361 * This means we might still be one tick off for nohz periods.
4362 */
4363
4364/*
4365 * Called from nohz_idle_balance() to update the load ratings before doing the
4366 * idle balance.
4367 */
4368static void update_idle_cpu_load(struct rq *this_rq)
4369{
316c1608 4370 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4371 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4372 unsigned long pending_updates;
4373
4374 /*
4375 * bail if there's load or we're actually up-to-date.
4376 */
4377 if (load || curr_jiffies == this_rq->last_load_update_tick)
4378 return;
4379
4380 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4381 this_rq->last_load_update_tick = curr_jiffies;
4382
4383 __update_cpu_load(this_rq, load, pending_updates);
4384}
4385
4386/*
4387 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4388 */
4389void update_cpu_load_nohz(void)
4390{
4391 struct rq *this_rq = this_rq();
316c1608 4392 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4393 unsigned long pending_updates;
4394
4395 if (curr_jiffies == this_rq->last_load_update_tick)
4396 return;
4397
4398 raw_spin_lock(&this_rq->lock);
4399 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4400 if (pending_updates) {
4401 this_rq->last_load_update_tick = curr_jiffies;
4402 /*
4403 * We were idle, this means load 0, the current load might be
4404 * !0 due to remote wakeups and the sort.
4405 */
4406 __update_cpu_load(this_rq, 0, pending_updates);
4407 }
4408 raw_spin_unlock(&this_rq->lock);
4409}
4410#endif /* CONFIG_NO_HZ */
4411
4412/*
4413 * Called from scheduler_tick()
4414 */
4415void update_cpu_load_active(struct rq *this_rq)
4416{
7ea241af 4417 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4418 /*
4419 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4420 */
4421 this_rq->last_load_update_tick = jiffies;
4422 __update_cpu_load(this_rq, load, 1);
4423}
4424
029632fb
PZ
4425/*
4426 * Return a low guess at the load of a migration-source cpu weighted
4427 * according to the scheduling class and "nice" value.
4428 *
4429 * We want to under-estimate the load of migration sources, to
4430 * balance conservatively.
4431 */
4432static unsigned long source_load(int cpu, int type)
4433{
4434 struct rq *rq = cpu_rq(cpu);
4435 unsigned long total = weighted_cpuload(cpu);
4436
4437 if (type == 0 || !sched_feat(LB_BIAS))
4438 return total;
4439
4440 return min(rq->cpu_load[type-1], total);
4441}
4442
4443/*
4444 * Return a high guess at the load of a migration-target cpu weighted
4445 * according to the scheduling class and "nice" value.
4446 */
4447static unsigned long target_load(int cpu, int type)
4448{
4449 struct rq *rq = cpu_rq(cpu);
4450 unsigned long total = weighted_cpuload(cpu);
4451
4452 if (type == 0 || !sched_feat(LB_BIAS))
4453 return total;
4454
4455 return max(rq->cpu_load[type-1], total);
4456}
4457
ced549fa 4458static unsigned long capacity_of(int cpu)
029632fb 4459{
ced549fa 4460 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4461}
4462
ca6d75e6
VG
4463static unsigned long capacity_orig_of(int cpu)
4464{
4465 return cpu_rq(cpu)->cpu_capacity_orig;
4466}
4467
029632fb
PZ
4468static unsigned long cpu_avg_load_per_task(int cpu)
4469{
4470 struct rq *rq = cpu_rq(cpu);
316c1608 4471 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4472 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4473
4474 if (nr_running)
b92486cb 4475 return load_avg / nr_running;
029632fb
PZ
4476
4477 return 0;
4478}
4479
62470419
MW
4480static void record_wakee(struct task_struct *p)
4481{
4482 /*
4483 * Rough decay (wiping) for cost saving, don't worry
4484 * about the boundary, really active task won't care
4485 * about the loss.
4486 */
2538d960 4487 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4488 current->wakee_flips >>= 1;
62470419
MW
4489 current->wakee_flip_decay_ts = jiffies;
4490 }
4491
4492 if (current->last_wakee != p) {
4493 current->last_wakee = p;
4494 current->wakee_flips++;
4495 }
4496}
098fb9db 4497
74f8e4b2 4498static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4499{
4500 struct sched_entity *se = &p->se;
4501 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4502 u64 min_vruntime;
4503
4504#ifndef CONFIG_64BIT
4505 u64 min_vruntime_copy;
88ec22d3 4506
3fe1698b
PZ
4507 do {
4508 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4509 smp_rmb();
4510 min_vruntime = cfs_rq->min_vruntime;
4511 } while (min_vruntime != min_vruntime_copy);
4512#else
4513 min_vruntime = cfs_rq->min_vruntime;
4514#endif
88ec22d3 4515
3fe1698b 4516 se->vruntime -= min_vruntime;
62470419 4517 record_wakee(p);
88ec22d3
PZ
4518}
4519
bb3469ac 4520#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4521/*
4522 * effective_load() calculates the load change as seen from the root_task_group
4523 *
4524 * Adding load to a group doesn't make a group heavier, but can cause movement
4525 * of group shares between cpus. Assuming the shares were perfectly aligned one
4526 * can calculate the shift in shares.
cf5f0acf
PZ
4527 *
4528 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4529 * on this @cpu and results in a total addition (subtraction) of @wg to the
4530 * total group weight.
4531 *
4532 * Given a runqueue weight distribution (rw_i) we can compute a shares
4533 * distribution (s_i) using:
4534 *
4535 * s_i = rw_i / \Sum rw_j (1)
4536 *
4537 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4538 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4539 * shares distribution (s_i):
4540 *
4541 * rw_i = { 2, 4, 1, 0 }
4542 * s_i = { 2/7, 4/7, 1/7, 0 }
4543 *
4544 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4545 * task used to run on and the CPU the waker is running on), we need to
4546 * compute the effect of waking a task on either CPU and, in case of a sync
4547 * wakeup, compute the effect of the current task going to sleep.
4548 *
4549 * So for a change of @wl to the local @cpu with an overall group weight change
4550 * of @wl we can compute the new shares distribution (s'_i) using:
4551 *
4552 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4553 *
4554 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4555 * differences in waking a task to CPU 0. The additional task changes the
4556 * weight and shares distributions like:
4557 *
4558 * rw'_i = { 3, 4, 1, 0 }
4559 * s'_i = { 3/8, 4/8, 1/8, 0 }
4560 *
4561 * We can then compute the difference in effective weight by using:
4562 *
4563 * dw_i = S * (s'_i - s_i) (3)
4564 *
4565 * Where 'S' is the group weight as seen by its parent.
4566 *
4567 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4568 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4569 * 4/7) times the weight of the group.
f5bfb7d9 4570 */
2069dd75 4571static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4572{
4be9daaa 4573 struct sched_entity *se = tg->se[cpu];
f1d239f7 4574
9722c2da 4575 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4576 return wl;
4577
4be9daaa 4578 for_each_sched_entity(se) {
cf5f0acf 4579 long w, W;
4be9daaa 4580
977dda7c 4581 tg = se->my_q->tg;
bb3469ac 4582
cf5f0acf
PZ
4583 /*
4584 * W = @wg + \Sum rw_j
4585 */
4586 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4587
cf5f0acf
PZ
4588 /*
4589 * w = rw_i + @wl
4590 */
7ea241af 4591 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4592
cf5f0acf
PZ
4593 /*
4594 * wl = S * s'_i; see (2)
4595 */
4596 if (W > 0 && w < W)
32a8df4e 4597 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4598 else
4599 wl = tg->shares;
940959e9 4600
cf5f0acf
PZ
4601 /*
4602 * Per the above, wl is the new se->load.weight value; since
4603 * those are clipped to [MIN_SHARES, ...) do so now. See
4604 * calc_cfs_shares().
4605 */
977dda7c
PT
4606 if (wl < MIN_SHARES)
4607 wl = MIN_SHARES;
cf5f0acf
PZ
4608
4609 /*
4610 * wl = dw_i = S * (s'_i - s_i); see (3)
4611 */
9d89c257 4612 wl -= se->avg.load_avg;
cf5f0acf
PZ
4613
4614 /*
4615 * Recursively apply this logic to all parent groups to compute
4616 * the final effective load change on the root group. Since
4617 * only the @tg group gets extra weight, all parent groups can
4618 * only redistribute existing shares. @wl is the shift in shares
4619 * resulting from this level per the above.
4620 */
4be9daaa 4621 wg = 0;
4be9daaa 4622 }
bb3469ac 4623
4be9daaa 4624 return wl;
bb3469ac
PZ
4625}
4626#else
4be9daaa 4627
58d081b5 4628static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4629{
83378269 4630 return wl;
bb3469ac 4631}
4be9daaa 4632
bb3469ac
PZ
4633#endif
4634
63b0e9ed
MG
4635/*
4636 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4637 * A waker of many should wake a different task than the one last awakened
4638 * at a frequency roughly N times higher than one of its wakees. In order
4639 * to determine whether we should let the load spread vs consolodating to
4640 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4641 * partner, and a factor of lls_size higher frequency in the other. With
4642 * both conditions met, we can be relatively sure that the relationship is
4643 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4644 * being client/server, worker/dispatcher, interrupt source or whatever is
4645 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4646 */
62470419
MW
4647static int wake_wide(struct task_struct *p)
4648{
63b0e9ed
MG
4649 unsigned int master = current->wakee_flips;
4650 unsigned int slave = p->wakee_flips;
7d9ffa89 4651 int factor = this_cpu_read(sd_llc_size);
62470419 4652
63b0e9ed
MG
4653 if (master < slave)
4654 swap(master, slave);
4655 if (slave < factor || master < slave * factor)
4656 return 0;
4657 return 1;
62470419
MW
4658}
4659
c88d5910 4660static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4661{
e37b6a7b 4662 s64 this_load, load;
bd61c98f 4663 s64 this_eff_load, prev_eff_load;
c88d5910 4664 int idx, this_cpu, prev_cpu;
c88d5910 4665 struct task_group *tg;
83378269 4666 unsigned long weight;
b3137bc8 4667 int balanced;
098fb9db 4668
c88d5910
PZ
4669 idx = sd->wake_idx;
4670 this_cpu = smp_processor_id();
4671 prev_cpu = task_cpu(p);
4672 load = source_load(prev_cpu, idx);
4673 this_load = target_load(this_cpu, idx);
098fb9db 4674
b3137bc8
MG
4675 /*
4676 * If sync wakeup then subtract the (maximum possible)
4677 * effect of the currently running task from the load
4678 * of the current CPU:
4679 */
83378269
PZ
4680 if (sync) {
4681 tg = task_group(current);
9d89c257 4682 weight = current->se.avg.load_avg;
83378269 4683
c88d5910 4684 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4685 load += effective_load(tg, prev_cpu, 0, -weight);
4686 }
b3137bc8 4687
83378269 4688 tg = task_group(p);
9d89c257 4689 weight = p->se.avg.load_avg;
b3137bc8 4690
71a29aa7
PZ
4691 /*
4692 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4693 * due to the sync cause above having dropped this_load to 0, we'll
4694 * always have an imbalance, but there's really nothing you can do
4695 * about that, so that's good too.
71a29aa7
PZ
4696 *
4697 * Otherwise check if either cpus are near enough in load to allow this
4698 * task to be woken on this_cpu.
4699 */
bd61c98f
VG
4700 this_eff_load = 100;
4701 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4702
bd61c98f
VG
4703 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4704 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4705
bd61c98f 4706 if (this_load > 0) {
e51fd5e2
PZ
4707 this_eff_load *= this_load +
4708 effective_load(tg, this_cpu, weight, weight);
4709
e51fd5e2 4710 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4711 }
e51fd5e2 4712
bd61c98f 4713 balanced = this_eff_load <= prev_eff_load;
098fb9db 4714
41acab88 4715 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4716
05bfb65f
VG
4717 if (!balanced)
4718 return 0;
098fb9db 4719
05bfb65f
VG
4720 schedstat_inc(sd, ttwu_move_affine);
4721 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4722
4723 return 1;
098fb9db
IM
4724}
4725
aaee1203
PZ
4726/*
4727 * find_idlest_group finds and returns the least busy CPU group within the
4728 * domain.
4729 */
4730static struct sched_group *
78e7ed53 4731find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4732 int this_cpu, int sd_flag)
e7693a36 4733{
b3bd3de6 4734 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4735 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4736 int load_idx = sd->forkexec_idx;
aaee1203 4737 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4738
c44f2a02
VG
4739 if (sd_flag & SD_BALANCE_WAKE)
4740 load_idx = sd->wake_idx;
4741
aaee1203
PZ
4742 do {
4743 unsigned long load, avg_load;
4744 int local_group;
4745 int i;
e7693a36 4746
aaee1203
PZ
4747 /* Skip over this group if it has no CPUs allowed */
4748 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4749 tsk_cpus_allowed(p)))
aaee1203
PZ
4750 continue;
4751
4752 local_group = cpumask_test_cpu(this_cpu,
4753 sched_group_cpus(group));
4754
4755 /* Tally up the load of all CPUs in the group */
4756 avg_load = 0;
4757
4758 for_each_cpu(i, sched_group_cpus(group)) {
4759 /* Bias balancing toward cpus of our domain */
4760 if (local_group)
4761 load = source_load(i, load_idx);
4762 else
4763 load = target_load(i, load_idx);
4764
4765 avg_load += load;
4766 }
4767
63b2ca30 4768 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4769 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4770
4771 if (local_group) {
4772 this_load = avg_load;
aaee1203
PZ
4773 } else if (avg_load < min_load) {
4774 min_load = avg_load;
4775 idlest = group;
4776 }
4777 } while (group = group->next, group != sd->groups);
4778
4779 if (!idlest || 100*this_load < imbalance*min_load)
4780 return NULL;
4781 return idlest;
4782}
4783
4784/*
4785 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4786 */
4787static int
4788find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4789{
4790 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4791 unsigned int min_exit_latency = UINT_MAX;
4792 u64 latest_idle_timestamp = 0;
4793 int least_loaded_cpu = this_cpu;
4794 int shallowest_idle_cpu = -1;
aaee1203
PZ
4795 int i;
4796
4797 /* Traverse only the allowed CPUs */
fa17b507 4798 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4799 if (idle_cpu(i)) {
4800 struct rq *rq = cpu_rq(i);
4801 struct cpuidle_state *idle = idle_get_state(rq);
4802 if (idle && idle->exit_latency < min_exit_latency) {
4803 /*
4804 * We give priority to a CPU whose idle state
4805 * has the smallest exit latency irrespective
4806 * of any idle timestamp.
4807 */
4808 min_exit_latency = idle->exit_latency;
4809 latest_idle_timestamp = rq->idle_stamp;
4810 shallowest_idle_cpu = i;
4811 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4812 rq->idle_stamp > latest_idle_timestamp) {
4813 /*
4814 * If equal or no active idle state, then
4815 * the most recently idled CPU might have
4816 * a warmer cache.
4817 */
4818 latest_idle_timestamp = rq->idle_stamp;
4819 shallowest_idle_cpu = i;
4820 }
9f96742a 4821 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4822 load = weighted_cpuload(i);
4823 if (load < min_load || (load == min_load && i == this_cpu)) {
4824 min_load = load;
4825 least_loaded_cpu = i;
4826 }
e7693a36
GH
4827 }
4828 }
4829
83a0a96a 4830 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4831}
e7693a36 4832
a50bde51
PZ
4833/*
4834 * Try and locate an idle CPU in the sched_domain.
4835 */
99bd5e2f 4836static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4837{
99bd5e2f 4838 struct sched_domain *sd;
37407ea7 4839 struct sched_group *sg;
e0a79f52 4840 int i = task_cpu(p);
a50bde51 4841
e0a79f52
MG
4842 if (idle_cpu(target))
4843 return target;
99bd5e2f
SS
4844
4845 /*
e0a79f52 4846 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4847 */
e0a79f52
MG
4848 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4849 return i;
a50bde51
PZ
4850
4851 /*
37407ea7 4852 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4853 */
518cd623 4854 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4855 for_each_lower_domain(sd) {
37407ea7
LT
4856 sg = sd->groups;
4857 do {
4858 if (!cpumask_intersects(sched_group_cpus(sg),
4859 tsk_cpus_allowed(p)))
4860 goto next;
4861
4862 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4863 if (i == target || !idle_cpu(i))
37407ea7
LT
4864 goto next;
4865 }
970e1789 4866
37407ea7
LT
4867 target = cpumask_first_and(sched_group_cpus(sg),
4868 tsk_cpus_allowed(p));
4869 goto done;
4870next:
4871 sg = sg->next;
4872 } while (sg != sd->groups);
4873 }
4874done:
a50bde51
PZ
4875 return target;
4876}
231678b7 4877
8bb5b00c 4878/*
9e91d61d 4879 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4880 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4881 * compare the utilization with the capacity of the CPU that is available for
4882 * CFS task (ie cpu_capacity).
231678b7
DE
4883 *
4884 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4885 * recent utilization of currently non-runnable tasks on a CPU. It represents
4886 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4887 * capacity_orig is the cpu_capacity available at the highest frequency
4888 * (arch_scale_freq_capacity()).
4889 * The utilization of a CPU converges towards a sum equal to or less than the
4890 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4891 * the running time on this CPU scaled by capacity_curr.
4892 *
4893 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4894 * higher than capacity_orig because of unfortunate rounding in
4895 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4896 * the average stabilizes with the new running time. We need to check that the
4897 * utilization stays within the range of [0..capacity_orig] and cap it if
4898 * necessary. Without utilization capping, a group could be seen as overloaded
4899 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4900 * available capacity. We allow utilization to overshoot capacity_curr (but not
4901 * capacity_orig) as it useful for predicting the capacity required after task
4902 * migrations (scheduler-driven DVFS).
8bb5b00c 4903 */
9e91d61d 4904static int cpu_util(int cpu)
8bb5b00c 4905{
9e91d61d 4906 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4907 unsigned long capacity = capacity_orig_of(cpu);
4908
231678b7 4909 return (util >= capacity) ? capacity : util;
8bb5b00c 4910}
a50bde51 4911
aaee1203 4912/*
de91b9cb
MR
4913 * select_task_rq_fair: Select target runqueue for the waking task in domains
4914 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4915 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4916 *
de91b9cb
MR
4917 * Balances load by selecting the idlest cpu in the idlest group, or under
4918 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4919 *
de91b9cb 4920 * Returns the target cpu number.
aaee1203
PZ
4921 *
4922 * preempt must be disabled.
4923 */
0017d735 4924static int
ac66f547 4925select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4926{
29cd8bae 4927 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4928 int cpu = smp_processor_id();
63b0e9ed 4929 int new_cpu = prev_cpu;
99bd5e2f 4930 int want_affine = 0;
5158f4e4 4931 int sync = wake_flags & WF_SYNC;
c88d5910 4932
a8edd075 4933 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4934 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4935
dce840a0 4936 rcu_read_lock();
aaee1203 4937 for_each_domain(cpu, tmp) {
e4f42888 4938 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4939 break;
e4f42888 4940
fe3bcfe1 4941 /*
99bd5e2f
SS
4942 * If both cpu and prev_cpu are part of this domain,
4943 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4944 */
99bd5e2f
SS
4945 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4946 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4947 affine_sd = tmp;
29cd8bae 4948 break;
f03542a7 4949 }
29cd8bae 4950
f03542a7 4951 if (tmp->flags & sd_flag)
29cd8bae 4952 sd = tmp;
63b0e9ed
MG
4953 else if (!want_affine)
4954 break;
29cd8bae
PZ
4955 }
4956
63b0e9ed
MG
4957 if (affine_sd) {
4958 sd = NULL; /* Prefer wake_affine over balance flags */
4959 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4960 new_cpu = cpu;
8b911acd 4961 }
e7693a36 4962
63b0e9ed
MG
4963 if (!sd) {
4964 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4965 new_cpu = select_idle_sibling(p, new_cpu);
4966
4967 } else while (sd) {
aaee1203 4968 struct sched_group *group;
c88d5910 4969 int weight;
098fb9db 4970
0763a660 4971 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4972 sd = sd->child;
4973 continue;
4974 }
098fb9db 4975
c44f2a02 4976 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4977 if (!group) {
4978 sd = sd->child;
4979 continue;
4980 }
4ae7d5ce 4981
d7c33c49 4982 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4983 if (new_cpu == -1 || new_cpu == cpu) {
4984 /* Now try balancing at a lower domain level of cpu */
4985 sd = sd->child;
4986 continue;
e7693a36 4987 }
aaee1203
PZ
4988
4989 /* Now try balancing at a lower domain level of new_cpu */
4990 cpu = new_cpu;
669c55e9 4991 weight = sd->span_weight;
aaee1203
PZ
4992 sd = NULL;
4993 for_each_domain(cpu, tmp) {
669c55e9 4994 if (weight <= tmp->span_weight)
aaee1203 4995 break;
0763a660 4996 if (tmp->flags & sd_flag)
aaee1203
PZ
4997 sd = tmp;
4998 }
4999 /* while loop will break here if sd == NULL */
e7693a36 5000 }
dce840a0 5001 rcu_read_unlock();
e7693a36 5002
c88d5910 5003 return new_cpu;
e7693a36 5004}
0a74bef8
PT
5005
5006/*
5007 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5008 * cfs_rq_of(p) references at time of call are still valid and identify the
5009 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5010 * other assumptions, including the state of rq->lock, should be made.
5011 */
9d89c257 5012static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 5013{
aff3e498 5014 /*
9d89c257
YD
5015 * We are supposed to update the task to "current" time, then its up to date
5016 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5017 * what current time is, so simply throw away the out-of-date time. This
5018 * will result in the wakee task is less decayed, but giving the wakee more
5019 * load sounds not bad.
aff3e498 5020 */
9d89c257
YD
5021 remove_entity_load_avg(&p->se);
5022
5023 /* Tell new CPU we are migrated */
5024 p->se.avg.last_update_time = 0;
3944a927
BS
5025
5026 /* We have migrated, no longer consider this task hot */
9d89c257 5027 p->se.exec_start = 0;
0a74bef8 5028}
12695578
YD
5029
5030static void task_dead_fair(struct task_struct *p)
5031{
5032 remove_entity_load_avg(&p->se);
5033}
e7693a36
GH
5034#endif /* CONFIG_SMP */
5035
e52fb7c0
PZ
5036static unsigned long
5037wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5038{
5039 unsigned long gran = sysctl_sched_wakeup_granularity;
5040
5041 /*
e52fb7c0
PZ
5042 * Since its curr running now, convert the gran from real-time
5043 * to virtual-time in his units.
13814d42
MG
5044 *
5045 * By using 'se' instead of 'curr' we penalize light tasks, so
5046 * they get preempted easier. That is, if 'se' < 'curr' then
5047 * the resulting gran will be larger, therefore penalizing the
5048 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5049 * be smaller, again penalizing the lighter task.
5050 *
5051 * This is especially important for buddies when the leftmost
5052 * task is higher priority than the buddy.
0bbd3336 5053 */
f4ad9bd2 5054 return calc_delta_fair(gran, se);
0bbd3336
PZ
5055}
5056
464b7527
PZ
5057/*
5058 * Should 'se' preempt 'curr'.
5059 *
5060 * |s1
5061 * |s2
5062 * |s3
5063 * g
5064 * |<--->|c
5065 *
5066 * w(c, s1) = -1
5067 * w(c, s2) = 0
5068 * w(c, s3) = 1
5069 *
5070 */
5071static int
5072wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5073{
5074 s64 gran, vdiff = curr->vruntime - se->vruntime;
5075
5076 if (vdiff <= 0)
5077 return -1;
5078
e52fb7c0 5079 gran = wakeup_gran(curr, se);
464b7527
PZ
5080 if (vdiff > gran)
5081 return 1;
5082
5083 return 0;
5084}
5085
02479099
PZ
5086static void set_last_buddy(struct sched_entity *se)
5087{
69c80f3e
VP
5088 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5089 return;
5090
5091 for_each_sched_entity(se)
5092 cfs_rq_of(se)->last = se;
02479099
PZ
5093}
5094
5095static void set_next_buddy(struct sched_entity *se)
5096{
69c80f3e
VP
5097 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5098 return;
5099
5100 for_each_sched_entity(se)
5101 cfs_rq_of(se)->next = se;
02479099
PZ
5102}
5103
ac53db59
RR
5104static void set_skip_buddy(struct sched_entity *se)
5105{
69c80f3e
VP
5106 for_each_sched_entity(se)
5107 cfs_rq_of(se)->skip = se;
ac53db59
RR
5108}
5109
bf0f6f24
IM
5110/*
5111 * Preempt the current task with a newly woken task if needed:
5112 */
5a9b86f6 5113static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5114{
5115 struct task_struct *curr = rq->curr;
8651a86c 5116 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5117 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5118 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5119 int next_buddy_marked = 0;
bf0f6f24 5120
4ae7d5ce
IM
5121 if (unlikely(se == pse))
5122 return;
5123
5238cdd3 5124 /*
163122b7 5125 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5126 * unconditionally check_prempt_curr() after an enqueue (which may have
5127 * lead to a throttle). This both saves work and prevents false
5128 * next-buddy nomination below.
5129 */
5130 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5131 return;
5132
2f36825b 5133 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5134 set_next_buddy(pse);
2f36825b
VP
5135 next_buddy_marked = 1;
5136 }
57fdc26d 5137
aec0a514
BR
5138 /*
5139 * We can come here with TIF_NEED_RESCHED already set from new task
5140 * wake up path.
5238cdd3
PT
5141 *
5142 * Note: this also catches the edge-case of curr being in a throttled
5143 * group (e.g. via set_curr_task), since update_curr() (in the
5144 * enqueue of curr) will have resulted in resched being set. This
5145 * prevents us from potentially nominating it as a false LAST_BUDDY
5146 * below.
aec0a514
BR
5147 */
5148 if (test_tsk_need_resched(curr))
5149 return;
5150
a2f5c9ab
DH
5151 /* Idle tasks are by definition preempted by non-idle tasks. */
5152 if (unlikely(curr->policy == SCHED_IDLE) &&
5153 likely(p->policy != SCHED_IDLE))
5154 goto preempt;
5155
91c234b4 5156 /*
a2f5c9ab
DH
5157 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5158 * is driven by the tick):
91c234b4 5159 */
8ed92e51 5160 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5161 return;
bf0f6f24 5162
464b7527 5163 find_matching_se(&se, &pse);
9bbd7374 5164 update_curr(cfs_rq_of(se));
002f128b 5165 BUG_ON(!pse);
2f36825b
VP
5166 if (wakeup_preempt_entity(se, pse) == 1) {
5167 /*
5168 * Bias pick_next to pick the sched entity that is
5169 * triggering this preemption.
5170 */
5171 if (!next_buddy_marked)
5172 set_next_buddy(pse);
3a7e73a2 5173 goto preempt;
2f36825b 5174 }
464b7527 5175
3a7e73a2 5176 return;
a65ac745 5177
3a7e73a2 5178preempt:
8875125e 5179 resched_curr(rq);
3a7e73a2
PZ
5180 /*
5181 * Only set the backward buddy when the current task is still
5182 * on the rq. This can happen when a wakeup gets interleaved
5183 * with schedule on the ->pre_schedule() or idle_balance()
5184 * point, either of which can * drop the rq lock.
5185 *
5186 * Also, during early boot the idle thread is in the fair class,
5187 * for obvious reasons its a bad idea to schedule back to it.
5188 */
5189 if (unlikely(!se->on_rq || curr == rq->idle))
5190 return;
5191
5192 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5193 set_last_buddy(se);
bf0f6f24
IM
5194}
5195
606dba2e
PZ
5196static struct task_struct *
5197pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5198{
5199 struct cfs_rq *cfs_rq = &rq->cfs;
5200 struct sched_entity *se;
678d5718 5201 struct task_struct *p;
37e117c0 5202 int new_tasks;
678d5718 5203
6e83125c 5204again:
678d5718
PZ
5205#ifdef CONFIG_FAIR_GROUP_SCHED
5206 if (!cfs_rq->nr_running)
38033c37 5207 goto idle;
678d5718 5208
3f1d2a31 5209 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5210 goto simple;
5211
5212 /*
5213 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5214 * likely that a next task is from the same cgroup as the current.
5215 *
5216 * Therefore attempt to avoid putting and setting the entire cgroup
5217 * hierarchy, only change the part that actually changes.
5218 */
5219
5220 do {
5221 struct sched_entity *curr = cfs_rq->curr;
5222
5223 /*
5224 * Since we got here without doing put_prev_entity() we also
5225 * have to consider cfs_rq->curr. If it is still a runnable
5226 * entity, update_curr() will update its vruntime, otherwise
5227 * forget we've ever seen it.
5228 */
54d27365
BS
5229 if (curr) {
5230 if (curr->on_rq)
5231 update_curr(cfs_rq);
5232 else
5233 curr = NULL;
678d5718 5234
54d27365
BS
5235 /*
5236 * This call to check_cfs_rq_runtime() will do the
5237 * throttle and dequeue its entity in the parent(s).
5238 * Therefore the 'simple' nr_running test will indeed
5239 * be correct.
5240 */
5241 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5242 goto simple;
5243 }
678d5718
PZ
5244
5245 se = pick_next_entity(cfs_rq, curr);
5246 cfs_rq = group_cfs_rq(se);
5247 } while (cfs_rq);
5248
5249 p = task_of(se);
5250
5251 /*
5252 * Since we haven't yet done put_prev_entity and if the selected task
5253 * is a different task than we started out with, try and touch the
5254 * least amount of cfs_rqs.
5255 */
5256 if (prev != p) {
5257 struct sched_entity *pse = &prev->se;
5258
5259 while (!(cfs_rq = is_same_group(se, pse))) {
5260 int se_depth = se->depth;
5261 int pse_depth = pse->depth;
5262
5263 if (se_depth <= pse_depth) {
5264 put_prev_entity(cfs_rq_of(pse), pse);
5265 pse = parent_entity(pse);
5266 }
5267 if (se_depth >= pse_depth) {
5268 set_next_entity(cfs_rq_of(se), se);
5269 se = parent_entity(se);
5270 }
5271 }
5272
5273 put_prev_entity(cfs_rq, pse);
5274 set_next_entity(cfs_rq, se);
5275 }
5276
5277 if (hrtick_enabled(rq))
5278 hrtick_start_fair(rq, p);
5279
5280 return p;
5281simple:
5282 cfs_rq = &rq->cfs;
5283#endif
bf0f6f24 5284
36ace27e 5285 if (!cfs_rq->nr_running)
38033c37 5286 goto idle;
bf0f6f24 5287
3f1d2a31 5288 put_prev_task(rq, prev);
606dba2e 5289
bf0f6f24 5290 do {
678d5718 5291 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5292 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5293 cfs_rq = group_cfs_rq(se);
5294 } while (cfs_rq);
5295
8f4d37ec 5296 p = task_of(se);
678d5718 5297
b39e66ea
MG
5298 if (hrtick_enabled(rq))
5299 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5300
5301 return p;
38033c37
PZ
5302
5303idle:
cbce1a68
PZ
5304 /*
5305 * This is OK, because current is on_cpu, which avoids it being picked
5306 * for load-balance and preemption/IRQs are still disabled avoiding
5307 * further scheduler activity on it and we're being very careful to
5308 * re-start the picking loop.
5309 */
5310 lockdep_unpin_lock(&rq->lock);
e4aa358b 5311 new_tasks = idle_balance(rq);
cbce1a68 5312 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5313 /*
5314 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5315 * possible for any higher priority task to appear. In that case we
5316 * must re-start the pick_next_entity() loop.
5317 */
e4aa358b 5318 if (new_tasks < 0)
37e117c0
PZ
5319 return RETRY_TASK;
5320
e4aa358b 5321 if (new_tasks > 0)
38033c37 5322 goto again;
38033c37
PZ
5323
5324 return NULL;
bf0f6f24
IM
5325}
5326
5327/*
5328 * Account for a descheduled task:
5329 */
31ee529c 5330static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5331{
5332 struct sched_entity *se = &prev->se;
5333 struct cfs_rq *cfs_rq;
5334
5335 for_each_sched_entity(se) {
5336 cfs_rq = cfs_rq_of(se);
ab6cde26 5337 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5338 }
5339}
5340
ac53db59
RR
5341/*
5342 * sched_yield() is very simple
5343 *
5344 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5345 */
5346static void yield_task_fair(struct rq *rq)
5347{
5348 struct task_struct *curr = rq->curr;
5349 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5350 struct sched_entity *se = &curr->se;
5351
5352 /*
5353 * Are we the only task in the tree?
5354 */
5355 if (unlikely(rq->nr_running == 1))
5356 return;
5357
5358 clear_buddies(cfs_rq, se);
5359
5360 if (curr->policy != SCHED_BATCH) {
5361 update_rq_clock(rq);
5362 /*
5363 * Update run-time statistics of the 'current'.
5364 */
5365 update_curr(cfs_rq);
916671c0
MG
5366 /*
5367 * Tell update_rq_clock() that we've just updated,
5368 * so we don't do microscopic update in schedule()
5369 * and double the fastpath cost.
5370 */
9edfbfed 5371 rq_clock_skip_update(rq, true);
ac53db59
RR
5372 }
5373
5374 set_skip_buddy(se);
5375}
5376
d95f4122
MG
5377static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5378{
5379 struct sched_entity *se = &p->se;
5380
5238cdd3
PT
5381 /* throttled hierarchies are not runnable */
5382 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5383 return false;
5384
5385 /* Tell the scheduler that we'd really like pse to run next. */
5386 set_next_buddy(se);
5387
d95f4122
MG
5388 yield_task_fair(rq);
5389
5390 return true;
5391}
5392
681f3e68 5393#ifdef CONFIG_SMP
bf0f6f24 5394/**************************************************
e9c84cb8
PZ
5395 * Fair scheduling class load-balancing methods.
5396 *
5397 * BASICS
5398 *
5399 * The purpose of load-balancing is to achieve the same basic fairness the
5400 * per-cpu scheduler provides, namely provide a proportional amount of compute
5401 * time to each task. This is expressed in the following equation:
5402 *
5403 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5404 *
5405 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5406 * W_i,0 is defined as:
5407 *
5408 * W_i,0 = \Sum_j w_i,j (2)
5409 *
5410 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5411 * is derived from the nice value as per prio_to_weight[].
5412 *
5413 * The weight average is an exponential decay average of the instantaneous
5414 * weight:
5415 *
5416 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5417 *
ced549fa 5418 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5419 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5420 * can also include other factors [XXX].
5421 *
5422 * To achieve this balance we define a measure of imbalance which follows
5423 * directly from (1):
5424 *
ced549fa 5425 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5426 *
5427 * We them move tasks around to minimize the imbalance. In the continuous
5428 * function space it is obvious this converges, in the discrete case we get
5429 * a few fun cases generally called infeasible weight scenarios.
5430 *
5431 * [XXX expand on:
5432 * - infeasible weights;
5433 * - local vs global optima in the discrete case. ]
5434 *
5435 *
5436 * SCHED DOMAINS
5437 *
5438 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5439 * for all i,j solution, we create a tree of cpus that follows the hardware
5440 * topology where each level pairs two lower groups (or better). This results
5441 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5442 * tree to only the first of the previous level and we decrease the frequency
5443 * of load-balance at each level inv. proportional to the number of cpus in
5444 * the groups.
5445 *
5446 * This yields:
5447 *
5448 * log_2 n 1 n
5449 * \Sum { --- * --- * 2^i } = O(n) (5)
5450 * i = 0 2^i 2^i
5451 * `- size of each group
5452 * | | `- number of cpus doing load-balance
5453 * | `- freq
5454 * `- sum over all levels
5455 *
5456 * Coupled with a limit on how many tasks we can migrate every balance pass,
5457 * this makes (5) the runtime complexity of the balancer.
5458 *
5459 * An important property here is that each CPU is still (indirectly) connected
5460 * to every other cpu in at most O(log n) steps:
5461 *
5462 * The adjacency matrix of the resulting graph is given by:
5463 *
5464 * log_2 n
5465 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5466 * k = 0
5467 *
5468 * And you'll find that:
5469 *
5470 * A^(log_2 n)_i,j != 0 for all i,j (7)
5471 *
5472 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5473 * The task movement gives a factor of O(m), giving a convergence complexity
5474 * of:
5475 *
5476 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5477 *
5478 *
5479 * WORK CONSERVING
5480 *
5481 * In order to avoid CPUs going idle while there's still work to do, new idle
5482 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5483 * tree itself instead of relying on other CPUs to bring it work.
5484 *
5485 * This adds some complexity to both (5) and (8) but it reduces the total idle
5486 * time.
5487 *
5488 * [XXX more?]
5489 *
5490 *
5491 * CGROUPS
5492 *
5493 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5494 *
5495 * s_k,i
5496 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5497 * S_k
5498 *
5499 * Where
5500 *
5501 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5502 *
5503 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5504 *
5505 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5506 * property.
5507 *
5508 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5509 * rewrite all of this once again.]
5510 */
bf0f6f24 5511
ed387b78
HS
5512static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5513
0ec8aa00
PZ
5514enum fbq_type { regular, remote, all };
5515
ddcdf6e7 5516#define LBF_ALL_PINNED 0x01
367456c7 5517#define LBF_NEED_BREAK 0x02
6263322c
PZ
5518#define LBF_DST_PINNED 0x04
5519#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5520
5521struct lb_env {
5522 struct sched_domain *sd;
5523
ddcdf6e7 5524 struct rq *src_rq;
85c1e7da 5525 int src_cpu;
ddcdf6e7
PZ
5526
5527 int dst_cpu;
5528 struct rq *dst_rq;
5529
88b8dac0
SV
5530 struct cpumask *dst_grpmask;
5531 int new_dst_cpu;
ddcdf6e7 5532 enum cpu_idle_type idle;
bd939f45 5533 long imbalance;
b9403130
MW
5534 /* The set of CPUs under consideration for load-balancing */
5535 struct cpumask *cpus;
5536
ddcdf6e7 5537 unsigned int flags;
367456c7
PZ
5538
5539 unsigned int loop;
5540 unsigned int loop_break;
5541 unsigned int loop_max;
0ec8aa00
PZ
5542
5543 enum fbq_type fbq_type;
163122b7 5544 struct list_head tasks;
ddcdf6e7
PZ
5545};
5546
029632fb
PZ
5547/*
5548 * Is this task likely cache-hot:
5549 */
5d5e2b1b 5550static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5551{
5552 s64 delta;
5553
e5673f28
KT
5554 lockdep_assert_held(&env->src_rq->lock);
5555
029632fb
PZ
5556 if (p->sched_class != &fair_sched_class)
5557 return 0;
5558
5559 if (unlikely(p->policy == SCHED_IDLE))
5560 return 0;
5561
5562 /*
5563 * Buddy candidates are cache hot:
5564 */
5d5e2b1b 5565 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5566 (&p->se == cfs_rq_of(&p->se)->next ||
5567 &p->se == cfs_rq_of(&p->se)->last))
5568 return 1;
5569
5570 if (sysctl_sched_migration_cost == -1)
5571 return 1;
5572 if (sysctl_sched_migration_cost == 0)
5573 return 0;
5574
5d5e2b1b 5575 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5576
5577 return delta < (s64)sysctl_sched_migration_cost;
5578}
5579
3a7053b3 5580#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5581/*
2a1ed24c
SD
5582 * Returns 1, if task migration degrades locality
5583 * Returns 0, if task migration improves locality i.e migration preferred.
5584 * Returns -1, if task migration is not affected by locality.
c1ceac62 5585 */
2a1ed24c 5586static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5587{
b1ad065e 5588 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5589 unsigned long src_faults, dst_faults;
3a7053b3
MG
5590 int src_nid, dst_nid;
5591
2a595721 5592 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5593 return -1;
5594
c3b9bc5b 5595 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5596 return -1;
7a0f3083
MG
5597
5598 src_nid = cpu_to_node(env->src_cpu);
5599 dst_nid = cpu_to_node(env->dst_cpu);
5600
83e1d2cd 5601 if (src_nid == dst_nid)
2a1ed24c 5602 return -1;
7a0f3083 5603
2a1ed24c
SD
5604 /* Migrating away from the preferred node is always bad. */
5605 if (src_nid == p->numa_preferred_nid) {
5606 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5607 return 1;
5608 else
5609 return -1;
5610 }
b1ad065e 5611
c1ceac62
RR
5612 /* Encourage migration to the preferred node. */
5613 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5614 return 0;
b1ad065e 5615
c1ceac62
RR
5616 if (numa_group) {
5617 src_faults = group_faults(p, src_nid);
5618 dst_faults = group_faults(p, dst_nid);
5619 } else {
5620 src_faults = task_faults(p, src_nid);
5621 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5622 }
5623
c1ceac62 5624 return dst_faults < src_faults;
7a0f3083
MG
5625}
5626
3a7053b3 5627#else
2a1ed24c 5628static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5629 struct lb_env *env)
5630{
2a1ed24c 5631 return -1;
7a0f3083 5632}
3a7053b3
MG
5633#endif
5634
1e3c88bd
PZ
5635/*
5636 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5637 */
5638static
8e45cb54 5639int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5640{
2a1ed24c 5641 int tsk_cache_hot;
e5673f28
KT
5642
5643 lockdep_assert_held(&env->src_rq->lock);
5644
1e3c88bd
PZ
5645 /*
5646 * We do not migrate tasks that are:
d3198084 5647 * 1) throttled_lb_pair, or
1e3c88bd 5648 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5649 * 3) running (obviously), or
5650 * 4) are cache-hot on their current CPU.
1e3c88bd 5651 */
d3198084
JK
5652 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5653 return 0;
5654
ddcdf6e7 5655 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5656 int cpu;
88b8dac0 5657
41acab88 5658 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5659
6263322c
PZ
5660 env->flags |= LBF_SOME_PINNED;
5661
88b8dac0
SV
5662 /*
5663 * Remember if this task can be migrated to any other cpu in
5664 * our sched_group. We may want to revisit it if we couldn't
5665 * meet load balance goals by pulling other tasks on src_cpu.
5666 *
5667 * Also avoid computing new_dst_cpu if we have already computed
5668 * one in current iteration.
5669 */
6263322c 5670 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5671 return 0;
5672
e02e60c1
JK
5673 /* Prevent to re-select dst_cpu via env's cpus */
5674 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5675 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5676 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5677 env->new_dst_cpu = cpu;
5678 break;
5679 }
88b8dac0 5680 }
e02e60c1 5681
1e3c88bd
PZ
5682 return 0;
5683 }
88b8dac0
SV
5684
5685 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5686 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5687
ddcdf6e7 5688 if (task_running(env->src_rq, p)) {
41acab88 5689 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5690 return 0;
5691 }
5692
5693 /*
5694 * Aggressive migration if:
3a7053b3
MG
5695 * 1) destination numa is preferred
5696 * 2) task is cache cold, or
5697 * 3) too many balance attempts have failed.
1e3c88bd 5698 */
2a1ed24c
SD
5699 tsk_cache_hot = migrate_degrades_locality(p, env);
5700 if (tsk_cache_hot == -1)
5701 tsk_cache_hot = task_hot(p, env);
3a7053b3 5702
2a1ed24c 5703 if (tsk_cache_hot <= 0 ||
7a96c231 5704 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5705 if (tsk_cache_hot == 1) {
3a7053b3
MG
5706 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5707 schedstat_inc(p, se.statistics.nr_forced_migrations);
5708 }
1e3c88bd
PZ
5709 return 1;
5710 }
5711
4e2dcb73
ZH
5712 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5713 return 0;
1e3c88bd
PZ
5714}
5715
897c395f 5716/*
163122b7
KT
5717 * detach_task() -- detach the task for the migration specified in env
5718 */
5719static void detach_task(struct task_struct *p, struct lb_env *env)
5720{
5721 lockdep_assert_held(&env->src_rq->lock);
5722
5723 deactivate_task(env->src_rq, p, 0);
5724 p->on_rq = TASK_ON_RQ_MIGRATING;
5725 set_task_cpu(p, env->dst_cpu);
5726}
5727
897c395f 5728/*
e5673f28 5729 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5730 * part of active balancing operations within "domain".
897c395f 5731 *
e5673f28 5732 * Returns a task if successful and NULL otherwise.
897c395f 5733 */
e5673f28 5734static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5735{
5736 struct task_struct *p, *n;
897c395f 5737
e5673f28
KT
5738 lockdep_assert_held(&env->src_rq->lock);
5739
367456c7 5740 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5741 if (!can_migrate_task(p, env))
5742 continue;
897c395f 5743
163122b7 5744 detach_task(p, env);
e5673f28 5745
367456c7 5746 /*
e5673f28 5747 * Right now, this is only the second place where
163122b7 5748 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5749 * so we can safely collect stats here rather than
163122b7 5750 * inside detach_tasks().
367456c7
PZ
5751 */
5752 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5753 return p;
897c395f 5754 }
e5673f28 5755 return NULL;
897c395f
PZ
5756}
5757
eb95308e
PZ
5758static const unsigned int sched_nr_migrate_break = 32;
5759
5d6523eb 5760/*
163122b7
KT
5761 * detach_tasks() -- tries to detach up to imbalance weighted load from
5762 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5763 *
163122b7 5764 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5765 */
163122b7 5766static int detach_tasks(struct lb_env *env)
1e3c88bd 5767{
5d6523eb
PZ
5768 struct list_head *tasks = &env->src_rq->cfs_tasks;
5769 struct task_struct *p;
367456c7 5770 unsigned long load;
163122b7
KT
5771 int detached = 0;
5772
5773 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5774
bd939f45 5775 if (env->imbalance <= 0)
5d6523eb 5776 return 0;
1e3c88bd 5777
5d6523eb 5778 while (!list_empty(tasks)) {
985d3a4c
YD
5779 /*
5780 * We don't want to steal all, otherwise we may be treated likewise,
5781 * which could at worst lead to a livelock crash.
5782 */
5783 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5784 break;
5785
5d6523eb 5786 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5787
367456c7
PZ
5788 env->loop++;
5789 /* We've more or less seen every task there is, call it quits */
5d6523eb 5790 if (env->loop > env->loop_max)
367456c7 5791 break;
5d6523eb
PZ
5792
5793 /* take a breather every nr_migrate tasks */
367456c7 5794 if (env->loop > env->loop_break) {
eb95308e 5795 env->loop_break += sched_nr_migrate_break;
8e45cb54 5796 env->flags |= LBF_NEED_BREAK;
ee00e66f 5797 break;
a195f004 5798 }
1e3c88bd 5799
d3198084 5800 if (!can_migrate_task(p, env))
367456c7
PZ
5801 goto next;
5802
5803 load = task_h_load(p);
5d6523eb 5804
eb95308e 5805 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5806 goto next;
5807
bd939f45 5808 if ((load / 2) > env->imbalance)
367456c7 5809 goto next;
1e3c88bd 5810
163122b7
KT
5811 detach_task(p, env);
5812 list_add(&p->se.group_node, &env->tasks);
5813
5814 detached++;
bd939f45 5815 env->imbalance -= load;
1e3c88bd
PZ
5816
5817#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5818 /*
5819 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5820 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5821 * the critical section.
5822 */
5d6523eb 5823 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5824 break;
1e3c88bd
PZ
5825#endif
5826
ee00e66f
PZ
5827 /*
5828 * We only want to steal up to the prescribed amount of
5829 * weighted load.
5830 */
bd939f45 5831 if (env->imbalance <= 0)
ee00e66f 5832 break;
367456c7
PZ
5833
5834 continue;
5835next:
5d6523eb 5836 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5837 }
5d6523eb 5838
1e3c88bd 5839 /*
163122b7
KT
5840 * Right now, this is one of only two places we collect this stat
5841 * so we can safely collect detach_one_task() stats here rather
5842 * than inside detach_one_task().
1e3c88bd 5843 */
163122b7 5844 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5845
163122b7
KT
5846 return detached;
5847}
5848
5849/*
5850 * attach_task() -- attach the task detached by detach_task() to its new rq.
5851 */
5852static void attach_task(struct rq *rq, struct task_struct *p)
5853{
5854 lockdep_assert_held(&rq->lock);
5855
5856 BUG_ON(task_rq(p) != rq);
5857 p->on_rq = TASK_ON_RQ_QUEUED;
5858 activate_task(rq, p, 0);
5859 check_preempt_curr(rq, p, 0);
5860}
5861
5862/*
5863 * attach_one_task() -- attaches the task returned from detach_one_task() to
5864 * its new rq.
5865 */
5866static void attach_one_task(struct rq *rq, struct task_struct *p)
5867{
5868 raw_spin_lock(&rq->lock);
5869 attach_task(rq, p);
5870 raw_spin_unlock(&rq->lock);
5871}
5872
5873/*
5874 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5875 * new rq.
5876 */
5877static void attach_tasks(struct lb_env *env)
5878{
5879 struct list_head *tasks = &env->tasks;
5880 struct task_struct *p;
5881
5882 raw_spin_lock(&env->dst_rq->lock);
5883
5884 while (!list_empty(tasks)) {
5885 p = list_first_entry(tasks, struct task_struct, se.group_node);
5886 list_del_init(&p->se.group_node);
1e3c88bd 5887
163122b7
KT
5888 attach_task(env->dst_rq, p);
5889 }
5890
5891 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5892}
5893
230059de 5894#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5895static void update_blocked_averages(int cpu)
9e3081ca 5896{
9e3081ca 5897 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5898 struct cfs_rq *cfs_rq;
5899 unsigned long flags;
9e3081ca 5900
48a16753
PT
5901 raw_spin_lock_irqsave(&rq->lock, flags);
5902 update_rq_clock(rq);
9d89c257 5903
9763b67f
PZ
5904 /*
5905 * Iterates the task_group tree in a bottom up fashion, see
5906 * list_add_leaf_cfs_rq() for details.
5907 */
64660c86 5908 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5909 /* throttled entities do not contribute to load */
5910 if (throttled_hierarchy(cfs_rq))
5911 continue;
48a16753 5912
9d89c257
YD
5913 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5914 update_tg_load_avg(cfs_rq, 0);
5915 }
48a16753 5916 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5917}
5918
9763b67f 5919/*
68520796 5920 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5921 * This needs to be done in a top-down fashion because the load of a child
5922 * group is a fraction of its parents load.
5923 */
68520796 5924static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5925{
68520796
VD
5926 struct rq *rq = rq_of(cfs_rq);
5927 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5928 unsigned long now = jiffies;
68520796 5929 unsigned long load;
a35b6466 5930
68520796 5931 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5932 return;
5933
68520796
VD
5934 cfs_rq->h_load_next = NULL;
5935 for_each_sched_entity(se) {
5936 cfs_rq = cfs_rq_of(se);
5937 cfs_rq->h_load_next = se;
5938 if (cfs_rq->last_h_load_update == now)
5939 break;
5940 }
a35b6466 5941
68520796 5942 if (!se) {
7ea241af 5943 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5944 cfs_rq->last_h_load_update = now;
5945 }
5946
5947 while ((se = cfs_rq->h_load_next) != NULL) {
5948 load = cfs_rq->h_load;
7ea241af
YD
5949 load = div64_ul(load * se->avg.load_avg,
5950 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5951 cfs_rq = group_cfs_rq(se);
5952 cfs_rq->h_load = load;
5953 cfs_rq->last_h_load_update = now;
5954 }
9763b67f
PZ
5955}
5956
367456c7 5957static unsigned long task_h_load(struct task_struct *p)
230059de 5958{
367456c7 5959 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5960
68520796 5961 update_cfs_rq_h_load(cfs_rq);
9d89c257 5962 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5963 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5964}
5965#else
48a16753 5966static inline void update_blocked_averages(int cpu)
9e3081ca 5967{
6c1d47c0
VG
5968 struct rq *rq = cpu_rq(cpu);
5969 struct cfs_rq *cfs_rq = &rq->cfs;
5970 unsigned long flags;
5971
5972 raw_spin_lock_irqsave(&rq->lock, flags);
5973 update_rq_clock(rq);
5974 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5975 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5976}
5977
367456c7 5978static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5979{
9d89c257 5980 return p->se.avg.load_avg;
1e3c88bd 5981}
230059de 5982#endif
1e3c88bd 5983
1e3c88bd 5984/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5985
5986enum group_type {
5987 group_other = 0,
5988 group_imbalanced,
5989 group_overloaded,
5990};
5991
1e3c88bd
PZ
5992/*
5993 * sg_lb_stats - stats of a sched_group required for load_balancing
5994 */
5995struct sg_lb_stats {
5996 unsigned long avg_load; /*Avg load across the CPUs of the group */
5997 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5998 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5999 unsigned long load_per_task;
63b2ca30 6000 unsigned long group_capacity;
9e91d61d 6001 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6002 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6003 unsigned int idle_cpus;
6004 unsigned int group_weight;
caeb178c 6005 enum group_type group_type;
ea67821b 6006 int group_no_capacity;
0ec8aa00
PZ
6007#ifdef CONFIG_NUMA_BALANCING
6008 unsigned int nr_numa_running;
6009 unsigned int nr_preferred_running;
6010#endif
1e3c88bd
PZ
6011};
6012
56cf515b
JK
6013/*
6014 * sd_lb_stats - Structure to store the statistics of a sched_domain
6015 * during load balancing.
6016 */
6017struct sd_lb_stats {
6018 struct sched_group *busiest; /* Busiest group in this sd */
6019 struct sched_group *local; /* Local group in this sd */
6020 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6021 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6022 unsigned long avg_load; /* Average load across all groups in sd */
6023
56cf515b 6024 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6025 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6026};
6027
147c5fc2
PZ
6028static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6029{
6030 /*
6031 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6032 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6033 * We must however clear busiest_stat::avg_load because
6034 * update_sd_pick_busiest() reads this before assignment.
6035 */
6036 *sds = (struct sd_lb_stats){
6037 .busiest = NULL,
6038 .local = NULL,
6039 .total_load = 0UL,
63b2ca30 6040 .total_capacity = 0UL,
147c5fc2
PZ
6041 .busiest_stat = {
6042 .avg_load = 0UL,
caeb178c
RR
6043 .sum_nr_running = 0,
6044 .group_type = group_other,
147c5fc2
PZ
6045 },
6046 };
6047}
6048
1e3c88bd
PZ
6049/**
6050 * get_sd_load_idx - Obtain the load index for a given sched domain.
6051 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6052 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6053 *
6054 * Return: The load index.
1e3c88bd
PZ
6055 */
6056static inline int get_sd_load_idx(struct sched_domain *sd,
6057 enum cpu_idle_type idle)
6058{
6059 int load_idx;
6060
6061 switch (idle) {
6062 case CPU_NOT_IDLE:
6063 load_idx = sd->busy_idx;
6064 break;
6065
6066 case CPU_NEWLY_IDLE:
6067 load_idx = sd->newidle_idx;
6068 break;
6069 default:
6070 load_idx = sd->idle_idx;
6071 break;
6072 }
6073
6074 return load_idx;
6075}
6076
ced549fa 6077static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6078{
6079 struct rq *rq = cpu_rq(cpu);
b5b4860d 6080 u64 total, used, age_stamp, avg;
cadefd3d 6081 s64 delta;
1e3c88bd 6082
b654f7de
PZ
6083 /*
6084 * Since we're reading these variables without serialization make sure
6085 * we read them once before doing sanity checks on them.
6086 */
316c1608
JL
6087 age_stamp = READ_ONCE(rq->age_stamp);
6088 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6089 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6090
cadefd3d
PZ
6091 if (unlikely(delta < 0))
6092 delta = 0;
6093
6094 total = sched_avg_period() + delta;
aa483808 6095
b5b4860d 6096 used = div_u64(avg, total);
1e3c88bd 6097
b5b4860d
VG
6098 if (likely(used < SCHED_CAPACITY_SCALE))
6099 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6100
b5b4860d 6101 return 1;
1e3c88bd
PZ
6102}
6103
ced549fa 6104static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6105{
8cd5601c 6106 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6107 struct sched_group *sdg = sd->groups;
6108
ca6d75e6 6109 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6110
ced549fa 6111 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6112 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6113
ced549fa
NP
6114 if (!capacity)
6115 capacity = 1;
1e3c88bd 6116
ced549fa
NP
6117 cpu_rq(cpu)->cpu_capacity = capacity;
6118 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6119}
6120
63b2ca30 6121void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6122{
6123 struct sched_domain *child = sd->child;
6124 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6125 unsigned long capacity;
4ec4412e
VG
6126 unsigned long interval;
6127
6128 interval = msecs_to_jiffies(sd->balance_interval);
6129 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6130 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6131
6132 if (!child) {
ced549fa 6133 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6134 return;
6135 }
6136
dc7ff76e 6137 capacity = 0;
1e3c88bd 6138
74a5ce20
PZ
6139 if (child->flags & SD_OVERLAP) {
6140 /*
6141 * SD_OVERLAP domains cannot assume that child groups
6142 * span the current group.
6143 */
6144
863bffc8 6145 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6146 struct sched_group_capacity *sgc;
9abf24d4 6147 struct rq *rq = cpu_rq(cpu);
863bffc8 6148
9abf24d4 6149 /*
63b2ca30 6150 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6151 * gets here before we've attached the domains to the
6152 * runqueues.
6153 *
ced549fa
NP
6154 * Use capacity_of(), which is set irrespective of domains
6155 * in update_cpu_capacity().
9abf24d4 6156 *
dc7ff76e 6157 * This avoids capacity from being 0 and
9abf24d4 6158 * causing divide-by-zero issues on boot.
9abf24d4
SD
6159 */
6160 if (unlikely(!rq->sd)) {
ced549fa 6161 capacity += capacity_of(cpu);
9abf24d4
SD
6162 continue;
6163 }
863bffc8 6164
63b2ca30 6165 sgc = rq->sd->groups->sgc;
63b2ca30 6166 capacity += sgc->capacity;
863bffc8 6167 }
74a5ce20
PZ
6168 } else {
6169 /*
6170 * !SD_OVERLAP domains can assume that child groups
6171 * span the current group.
6172 */
6173
6174 group = child->groups;
6175 do {
63b2ca30 6176 capacity += group->sgc->capacity;
74a5ce20
PZ
6177 group = group->next;
6178 } while (group != child->groups);
6179 }
1e3c88bd 6180
63b2ca30 6181 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6182}
6183
9d5efe05 6184/*
ea67821b
VG
6185 * Check whether the capacity of the rq has been noticeably reduced by side
6186 * activity. The imbalance_pct is used for the threshold.
6187 * Return true is the capacity is reduced
9d5efe05
SV
6188 */
6189static inline int
ea67821b 6190check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6191{
ea67821b
VG
6192 return ((rq->cpu_capacity * sd->imbalance_pct) <
6193 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6194}
6195
30ce5dab
PZ
6196/*
6197 * Group imbalance indicates (and tries to solve) the problem where balancing
6198 * groups is inadequate due to tsk_cpus_allowed() constraints.
6199 *
6200 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6201 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6202 * Something like:
6203 *
6204 * { 0 1 2 3 } { 4 5 6 7 }
6205 * * * * *
6206 *
6207 * If we were to balance group-wise we'd place two tasks in the first group and
6208 * two tasks in the second group. Clearly this is undesired as it will overload
6209 * cpu 3 and leave one of the cpus in the second group unused.
6210 *
6211 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6212 * by noticing the lower domain failed to reach balance and had difficulty
6213 * moving tasks due to affinity constraints.
30ce5dab
PZ
6214 *
6215 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6216 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6217 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6218 * to create an effective group imbalance.
6219 *
6220 * This is a somewhat tricky proposition since the next run might not find the
6221 * group imbalance and decide the groups need to be balanced again. A most
6222 * subtle and fragile situation.
6223 */
6224
6263322c 6225static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6226{
63b2ca30 6227 return group->sgc->imbalance;
30ce5dab
PZ
6228}
6229
b37d9316 6230/*
ea67821b
VG
6231 * group_has_capacity returns true if the group has spare capacity that could
6232 * be used by some tasks.
6233 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6234 * smaller than the number of CPUs or if the utilization is lower than the
6235 * available capacity for CFS tasks.
ea67821b
VG
6236 * For the latter, we use a threshold to stabilize the state, to take into
6237 * account the variance of the tasks' load and to return true if the available
6238 * capacity in meaningful for the load balancer.
6239 * As an example, an available capacity of 1% can appear but it doesn't make
6240 * any benefit for the load balance.
b37d9316 6241 */
ea67821b
VG
6242static inline bool
6243group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6244{
ea67821b
VG
6245 if (sgs->sum_nr_running < sgs->group_weight)
6246 return true;
c61037e9 6247
ea67821b 6248 if ((sgs->group_capacity * 100) >
9e91d61d 6249 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6250 return true;
b37d9316 6251
ea67821b
VG
6252 return false;
6253}
6254
6255/*
6256 * group_is_overloaded returns true if the group has more tasks than it can
6257 * handle.
6258 * group_is_overloaded is not equals to !group_has_capacity because a group
6259 * with the exact right number of tasks, has no more spare capacity but is not
6260 * overloaded so both group_has_capacity and group_is_overloaded return
6261 * false.
6262 */
6263static inline bool
6264group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6265{
6266 if (sgs->sum_nr_running <= sgs->group_weight)
6267 return false;
b37d9316 6268
ea67821b 6269 if ((sgs->group_capacity * 100) <
9e91d61d 6270 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6271 return true;
b37d9316 6272
ea67821b 6273 return false;
b37d9316
PZ
6274}
6275
79a89f92
LY
6276static inline enum
6277group_type group_classify(struct sched_group *group,
6278 struct sg_lb_stats *sgs)
caeb178c 6279{
ea67821b 6280 if (sgs->group_no_capacity)
caeb178c
RR
6281 return group_overloaded;
6282
6283 if (sg_imbalanced(group))
6284 return group_imbalanced;
6285
6286 return group_other;
6287}
6288
1e3c88bd
PZ
6289/**
6290 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6291 * @env: The load balancing environment.
1e3c88bd 6292 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6293 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6294 * @local_group: Does group contain this_cpu.
1e3c88bd 6295 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6296 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6297 */
bd939f45
PZ
6298static inline void update_sg_lb_stats(struct lb_env *env,
6299 struct sched_group *group, int load_idx,
4486edd1
TC
6300 int local_group, struct sg_lb_stats *sgs,
6301 bool *overload)
1e3c88bd 6302{
30ce5dab 6303 unsigned long load;
bd939f45 6304 int i;
1e3c88bd 6305
b72ff13c
PZ
6306 memset(sgs, 0, sizeof(*sgs));
6307
b9403130 6308 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6309 struct rq *rq = cpu_rq(i);
6310
1e3c88bd 6311 /* Bias balancing toward cpus of our domain */
6263322c 6312 if (local_group)
04f733b4 6313 load = target_load(i, load_idx);
6263322c 6314 else
1e3c88bd 6315 load = source_load(i, load_idx);
1e3c88bd
PZ
6316
6317 sgs->group_load += load;
9e91d61d 6318 sgs->group_util += cpu_util(i);
65fdac08 6319 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6320
6321 if (rq->nr_running > 1)
6322 *overload = true;
6323
0ec8aa00
PZ
6324#ifdef CONFIG_NUMA_BALANCING
6325 sgs->nr_numa_running += rq->nr_numa_running;
6326 sgs->nr_preferred_running += rq->nr_preferred_running;
6327#endif
1e3c88bd 6328 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6329 if (idle_cpu(i))
6330 sgs->idle_cpus++;
1e3c88bd
PZ
6331 }
6332
63b2ca30
NP
6333 /* Adjust by relative CPU capacity of the group */
6334 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6335 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6336
dd5feea1 6337 if (sgs->sum_nr_running)
38d0f770 6338 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6339
aae6d3dd 6340 sgs->group_weight = group->group_weight;
b37d9316 6341
ea67821b 6342 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6343 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6344}
6345
532cb4c4
MN
6346/**
6347 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6348 * @env: The load balancing environment.
532cb4c4
MN
6349 * @sds: sched_domain statistics
6350 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6351 * @sgs: sched_group statistics
532cb4c4
MN
6352 *
6353 * Determine if @sg is a busier group than the previously selected
6354 * busiest group.
e69f6186
YB
6355 *
6356 * Return: %true if @sg is a busier group than the previously selected
6357 * busiest group. %false otherwise.
532cb4c4 6358 */
bd939f45 6359static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6360 struct sd_lb_stats *sds,
6361 struct sched_group *sg,
bd939f45 6362 struct sg_lb_stats *sgs)
532cb4c4 6363{
caeb178c 6364 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6365
caeb178c 6366 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6367 return true;
6368
caeb178c
RR
6369 if (sgs->group_type < busiest->group_type)
6370 return false;
6371
6372 if (sgs->avg_load <= busiest->avg_load)
6373 return false;
6374
6375 /* This is the busiest node in its class. */
6376 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6377 return true;
6378
6379 /*
6380 * ASYM_PACKING needs to move all the work to the lowest
6381 * numbered CPUs in the group, therefore mark all groups
6382 * higher than ourself as busy.
6383 */
caeb178c 6384 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6385 if (!sds->busiest)
6386 return true;
6387
6388 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6389 return true;
6390 }
6391
6392 return false;
6393}
6394
0ec8aa00
PZ
6395#ifdef CONFIG_NUMA_BALANCING
6396static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6397{
6398 if (sgs->sum_nr_running > sgs->nr_numa_running)
6399 return regular;
6400 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6401 return remote;
6402 return all;
6403}
6404
6405static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6406{
6407 if (rq->nr_running > rq->nr_numa_running)
6408 return regular;
6409 if (rq->nr_running > rq->nr_preferred_running)
6410 return remote;
6411 return all;
6412}
6413#else
6414static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6415{
6416 return all;
6417}
6418
6419static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6420{
6421 return regular;
6422}
6423#endif /* CONFIG_NUMA_BALANCING */
6424
1e3c88bd 6425/**
461819ac 6426 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6427 * @env: The load balancing environment.
1e3c88bd
PZ
6428 * @sds: variable to hold the statistics for this sched_domain.
6429 */
0ec8aa00 6430static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6431{
bd939f45
PZ
6432 struct sched_domain *child = env->sd->child;
6433 struct sched_group *sg = env->sd->groups;
56cf515b 6434 struct sg_lb_stats tmp_sgs;
1e3c88bd 6435 int load_idx, prefer_sibling = 0;
4486edd1 6436 bool overload = false;
1e3c88bd
PZ
6437
6438 if (child && child->flags & SD_PREFER_SIBLING)
6439 prefer_sibling = 1;
6440
bd939f45 6441 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6442
6443 do {
56cf515b 6444 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6445 int local_group;
6446
bd939f45 6447 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6448 if (local_group) {
6449 sds->local = sg;
6450 sgs = &sds->local_stat;
b72ff13c
PZ
6451
6452 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6453 time_after_eq(jiffies, sg->sgc->next_update))
6454 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6455 }
1e3c88bd 6456
4486edd1
TC
6457 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6458 &overload);
1e3c88bd 6459
b72ff13c
PZ
6460 if (local_group)
6461 goto next_group;
6462
1e3c88bd
PZ
6463 /*
6464 * In case the child domain prefers tasks go to siblings
ea67821b 6465 * first, lower the sg capacity so that we'll try
75dd321d
NR
6466 * and move all the excess tasks away. We lower the capacity
6467 * of a group only if the local group has the capacity to fit
ea67821b
VG
6468 * these excess tasks. The extra check prevents the case where
6469 * you always pull from the heaviest group when it is already
6470 * under-utilized (possible with a large weight task outweighs
6471 * the tasks on the system).
1e3c88bd 6472 */
b72ff13c 6473 if (prefer_sibling && sds->local &&
ea67821b
VG
6474 group_has_capacity(env, &sds->local_stat) &&
6475 (sgs->sum_nr_running > 1)) {
6476 sgs->group_no_capacity = 1;
79a89f92 6477 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6478 }
1e3c88bd 6479
b72ff13c 6480 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6481 sds->busiest = sg;
56cf515b 6482 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6483 }
6484
b72ff13c
PZ
6485next_group:
6486 /* Now, start updating sd_lb_stats */
6487 sds->total_load += sgs->group_load;
63b2ca30 6488 sds->total_capacity += sgs->group_capacity;
b72ff13c 6489
532cb4c4 6490 sg = sg->next;
bd939f45 6491 } while (sg != env->sd->groups);
0ec8aa00
PZ
6492
6493 if (env->sd->flags & SD_NUMA)
6494 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6495
6496 if (!env->sd->parent) {
6497 /* update overload indicator if we are at root domain */
6498 if (env->dst_rq->rd->overload != overload)
6499 env->dst_rq->rd->overload = overload;
6500 }
6501
532cb4c4
MN
6502}
6503
532cb4c4
MN
6504/**
6505 * check_asym_packing - Check to see if the group is packed into the
6506 * sched doman.
6507 *
6508 * This is primarily intended to used at the sibling level. Some
6509 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6510 * case of POWER7, it can move to lower SMT modes only when higher
6511 * threads are idle. When in lower SMT modes, the threads will
6512 * perform better since they share less core resources. Hence when we
6513 * have idle threads, we want them to be the higher ones.
6514 *
6515 * This packing function is run on idle threads. It checks to see if
6516 * the busiest CPU in this domain (core in the P7 case) has a higher
6517 * CPU number than the packing function is being run on. Here we are
6518 * assuming lower CPU number will be equivalent to lower a SMT thread
6519 * number.
6520 *
e69f6186 6521 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6522 * this CPU. The amount of the imbalance is returned in *imbalance.
6523 *
cd96891d 6524 * @env: The load balancing environment.
532cb4c4 6525 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6526 */
bd939f45 6527static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6528{
6529 int busiest_cpu;
6530
bd939f45 6531 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6532 return 0;
6533
6534 if (!sds->busiest)
6535 return 0;
6536
6537 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6538 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6539 return 0;
6540
bd939f45 6541 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6542 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6543 SCHED_CAPACITY_SCALE);
bd939f45 6544
532cb4c4 6545 return 1;
1e3c88bd
PZ
6546}
6547
6548/**
6549 * fix_small_imbalance - Calculate the minor imbalance that exists
6550 * amongst the groups of a sched_domain, during
6551 * load balancing.
cd96891d 6552 * @env: The load balancing environment.
1e3c88bd 6553 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6554 */
bd939f45
PZ
6555static inline
6556void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6557{
63b2ca30 6558 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6559 unsigned int imbn = 2;
dd5feea1 6560 unsigned long scaled_busy_load_per_task;
56cf515b 6561 struct sg_lb_stats *local, *busiest;
1e3c88bd 6562
56cf515b
JK
6563 local = &sds->local_stat;
6564 busiest = &sds->busiest_stat;
1e3c88bd 6565
56cf515b
JK
6566 if (!local->sum_nr_running)
6567 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6568 else if (busiest->load_per_task > local->load_per_task)
6569 imbn = 1;
dd5feea1 6570
56cf515b 6571 scaled_busy_load_per_task =
ca8ce3d0 6572 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6573 busiest->group_capacity;
56cf515b 6574
3029ede3
VD
6575 if (busiest->avg_load + scaled_busy_load_per_task >=
6576 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6577 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6578 return;
6579 }
6580
6581 /*
6582 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6583 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6584 * moving them.
6585 */
6586
63b2ca30 6587 capa_now += busiest->group_capacity *
56cf515b 6588 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6589 capa_now += local->group_capacity *
56cf515b 6590 min(local->load_per_task, local->avg_load);
ca8ce3d0 6591 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6592
6593 /* Amount of load we'd subtract */
a2cd4260 6594 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6595 capa_move += busiest->group_capacity *
56cf515b 6596 min(busiest->load_per_task,
a2cd4260 6597 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6598 }
1e3c88bd
PZ
6599
6600 /* Amount of load we'd add */
63b2ca30 6601 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6602 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6603 tmp = (busiest->avg_load * busiest->group_capacity) /
6604 local->group_capacity;
56cf515b 6605 } else {
ca8ce3d0 6606 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6607 local->group_capacity;
56cf515b 6608 }
63b2ca30 6609 capa_move += local->group_capacity *
3ae11c90 6610 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6611 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6612
6613 /* Move if we gain throughput */
63b2ca30 6614 if (capa_move > capa_now)
56cf515b 6615 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6616}
6617
6618/**
6619 * calculate_imbalance - Calculate the amount of imbalance present within the
6620 * groups of a given sched_domain during load balance.
bd939f45 6621 * @env: load balance environment
1e3c88bd 6622 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6623 */
bd939f45 6624static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6625{
dd5feea1 6626 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6627 struct sg_lb_stats *local, *busiest;
6628
6629 local = &sds->local_stat;
56cf515b 6630 busiest = &sds->busiest_stat;
dd5feea1 6631
caeb178c 6632 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6633 /*
6634 * In the group_imb case we cannot rely on group-wide averages
6635 * to ensure cpu-load equilibrium, look at wider averages. XXX
6636 */
56cf515b
JK
6637 busiest->load_per_task =
6638 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6639 }
6640
1e3c88bd
PZ
6641 /*
6642 * In the presence of smp nice balancing, certain scenarios can have
6643 * max load less than avg load(as we skip the groups at or below
ced549fa 6644 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6645 */
b1885550
VD
6646 if (busiest->avg_load <= sds->avg_load ||
6647 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6648 env->imbalance = 0;
6649 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6650 }
6651
9a5d9ba6
PZ
6652 /*
6653 * If there aren't any idle cpus, avoid creating some.
6654 */
6655 if (busiest->group_type == group_overloaded &&
6656 local->group_type == group_overloaded) {
ea67821b
VG
6657 load_above_capacity = busiest->sum_nr_running *
6658 SCHED_LOAD_SCALE;
6659 if (load_above_capacity > busiest->group_capacity)
6660 load_above_capacity -= busiest->group_capacity;
6661 else
6662 load_above_capacity = ~0UL;
dd5feea1
SS
6663 }
6664
6665 /*
6666 * We're trying to get all the cpus to the average_load, so we don't
6667 * want to push ourselves above the average load, nor do we wish to
6668 * reduce the max loaded cpu below the average load. At the same time,
6669 * we also don't want to reduce the group load below the group capacity
6670 * (so that we can implement power-savings policies etc). Thus we look
6671 * for the minimum possible imbalance.
dd5feea1 6672 */
30ce5dab 6673 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6674
6675 /* How much load to actually move to equalise the imbalance */
56cf515b 6676 env->imbalance = min(
63b2ca30
NP
6677 max_pull * busiest->group_capacity,
6678 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6679 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6680
6681 /*
6682 * if *imbalance is less than the average load per runnable task
25985edc 6683 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6684 * a think about bumping its value to force at least one task to be
6685 * moved
6686 */
56cf515b 6687 if (env->imbalance < busiest->load_per_task)
bd939f45 6688 return fix_small_imbalance(env, sds);
1e3c88bd 6689}
fab47622 6690
1e3c88bd
PZ
6691/******* find_busiest_group() helpers end here *********************/
6692
6693/**
6694 * find_busiest_group - Returns the busiest group within the sched_domain
6695 * if there is an imbalance. If there isn't an imbalance, and
6696 * the user has opted for power-savings, it returns a group whose
6697 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6698 * such a group exists.
6699 *
6700 * Also calculates the amount of weighted load which should be moved
6701 * to restore balance.
6702 *
cd96891d 6703 * @env: The load balancing environment.
1e3c88bd 6704 *
e69f6186 6705 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6706 * - If no imbalance and user has opted for power-savings balance,
6707 * return the least loaded group whose CPUs can be
6708 * put to idle by rebalancing its tasks onto our group.
6709 */
56cf515b 6710static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6711{
56cf515b 6712 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6713 struct sd_lb_stats sds;
6714
147c5fc2 6715 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6716
6717 /*
6718 * Compute the various statistics relavent for load balancing at
6719 * this level.
6720 */
23f0d209 6721 update_sd_lb_stats(env, &sds);
56cf515b
JK
6722 local = &sds.local_stat;
6723 busiest = &sds.busiest_stat;
1e3c88bd 6724
ea67821b 6725 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6726 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6727 check_asym_packing(env, &sds))
532cb4c4
MN
6728 return sds.busiest;
6729
cc57aa8f 6730 /* There is no busy sibling group to pull tasks from */
56cf515b 6731 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6732 goto out_balanced;
6733
ca8ce3d0
NP
6734 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6735 / sds.total_capacity;
b0432d8f 6736
866ab43e
PZ
6737 /*
6738 * If the busiest group is imbalanced the below checks don't
30ce5dab 6739 * work because they assume all things are equal, which typically
866ab43e
PZ
6740 * isn't true due to cpus_allowed constraints and the like.
6741 */
caeb178c 6742 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6743 goto force_balance;
6744
cc57aa8f 6745 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6746 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6747 busiest->group_no_capacity)
fab47622
NR
6748 goto force_balance;
6749
cc57aa8f 6750 /*
9c58c79a 6751 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6752 * don't try and pull any tasks.
6753 */
56cf515b 6754 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6755 goto out_balanced;
6756
cc57aa8f
PZ
6757 /*
6758 * Don't pull any tasks if this group is already above the domain
6759 * average load.
6760 */
56cf515b 6761 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6762 goto out_balanced;
6763
bd939f45 6764 if (env->idle == CPU_IDLE) {
aae6d3dd 6765 /*
43f4d666
VG
6766 * This cpu is idle. If the busiest group is not overloaded
6767 * and there is no imbalance between this and busiest group
6768 * wrt idle cpus, it is balanced. The imbalance becomes
6769 * significant if the diff is greater than 1 otherwise we
6770 * might end up to just move the imbalance on another group
aae6d3dd 6771 */
43f4d666
VG
6772 if ((busiest->group_type != group_overloaded) &&
6773 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6774 goto out_balanced;
c186fafe
PZ
6775 } else {
6776 /*
6777 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6778 * imbalance_pct to be conservative.
6779 */
56cf515b
JK
6780 if (100 * busiest->avg_load <=
6781 env->sd->imbalance_pct * local->avg_load)
c186fafe 6782 goto out_balanced;
aae6d3dd 6783 }
1e3c88bd 6784
fab47622 6785force_balance:
1e3c88bd 6786 /* Looks like there is an imbalance. Compute it */
bd939f45 6787 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6788 return sds.busiest;
6789
6790out_balanced:
bd939f45 6791 env->imbalance = 0;
1e3c88bd
PZ
6792 return NULL;
6793}
6794
6795/*
6796 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6797 */
bd939f45 6798static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6799 struct sched_group *group)
1e3c88bd
PZ
6800{
6801 struct rq *busiest = NULL, *rq;
ced549fa 6802 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6803 int i;
6804
6906a408 6805 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6806 unsigned long capacity, wl;
0ec8aa00
PZ
6807 enum fbq_type rt;
6808
6809 rq = cpu_rq(i);
6810 rt = fbq_classify_rq(rq);
1e3c88bd 6811
0ec8aa00
PZ
6812 /*
6813 * We classify groups/runqueues into three groups:
6814 * - regular: there are !numa tasks
6815 * - remote: there are numa tasks that run on the 'wrong' node
6816 * - all: there is no distinction
6817 *
6818 * In order to avoid migrating ideally placed numa tasks,
6819 * ignore those when there's better options.
6820 *
6821 * If we ignore the actual busiest queue to migrate another
6822 * task, the next balance pass can still reduce the busiest
6823 * queue by moving tasks around inside the node.
6824 *
6825 * If we cannot move enough load due to this classification
6826 * the next pass will adjust the group classification and
6827 * allow migration of more tasks.
6828 *
6829 * Both cases only affect the total convergence complexity.
6830 */
6831 if (rt > env->fbq_type)
6832 continue;
6833
ced549fa 6834 capacity = capacity_of(i);
9d5efe05 6835
6e40f5bb 6836 wl = weighted_cpuload(i);
1e3c88bd 6837
6e40f5bb
TG
6838 /*
6839 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6840 * which is not scaled with the cpu capacity.
6e40f5bb 6841 */
ea67821b
VG
6842
6843 if (rq->nr_running == 1 && wl > env->imbalance &&
6844 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6845 continue;
6846
6e40f5bb
TG
6847 /*
6848 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6849 * the weighted_cpuload() scaled with the cpu capacity, so
6850 * that the load can be moved away from the cpu that is
6851 * potentially running at a lower capacity.
95a79b80 6852 *
ced549fa 6853 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6854 * multiplication to rid ourselves of the division works out
ced549fa
NP
6855 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6856 * our previous maximum.
6e40f5bb 6857 */
ced549fa 6858 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6859 busiest_load = wl;
ced549fa 6860 busiest_capacity = capacity;
1e3c88bd
PZ
6861 busiest = rq;
6862 }
6863 }
6864
6865 return busiest;
6866}
6867
6868/*
6869 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6870 * so long as it is large enough.
6871 */
6872#define MAX_PINNED_INTERVAL 512
6873
6874/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6875DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6876
bd939f45 6877static int need_active_balance(struct lb_env *env)
1af3ed3d 6878{
bd939f45
PZ
6879 struct sched_domain *sd = env->sd;
6880
6881 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6882
6883 /*
6884 * ASYM_PACKING needs to force migrate tasks from busy but
6885 * higher numbered CPUs in order to pack all tasks in the
6886 * lowest numbered CPUs.
6887 */
bd939f45 6888 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6889 return 1;
1af3ed3d
PZ
6890 }
6891
1aaf90a4
VG
6892 /*
6893 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6894 * It's worth migrating the task if the src_cpu's capacity is reduced
6895 * because of other sched_class or IRQs if more capacity stays
6896 * available on dst_cpu.
6897 */
6898 if ((env->idle != CPU_NOT_IDLE) &&
6899 (env->src_rq->cfs.h_nr_running == 1)) {
6900 if ((check_cpu_capacity(env->src_rq, sd)) &&
6901 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6902 return 1;
6903 }
6904
1af3ed3d
PZ
6905 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6906}
6907
969c7921
TH
6908static int active_load_balance_cpu_stop(void *data);
6909
23f0d209
JK
6910static int should_we_balance(struct lb_env *env)
6911{
6912 struct sched_group *sg = env->sd->groups;
6913 struct cpumask *sg_cpus, *sg_mask;
6914 int cpu, balance_cpu = -1;
6915
6916 /*
6917 * In the newly idle case, we will allow all the cpu's
6918 * to do the newly idle load balance.
6919 */
6920 if (env->idle == CPU_NEWLY_IDLE)
6921 return 1;
6922
6923 sg_cpus = sched_group_cpus(sg);
6924 sg_mask = sched_group_mask(sg);
6925 /* Try to find first idle cpu */
6926 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6927 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6928 continue;
6929
6930 balance_cpu = cpu;
6931 break;
6932 }
6933
6934 if (balance_cpu == -1)
6935 balance_cpu = group_balance_cpu(sg);
6936
6937 /*
6938 * First idle cpu or the first cpu(busiest) in this sched group
6939 * is eligible for doing load balancing at this and above domains.
6940 */
b0cff9d8 6941 return balance_cpu == env->dst_cpu;
23f0d209
JK
6942}
6943
1e3c88bd
PZ
6944/*
6945 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6946 * tasks if there is an imbalance.
6947 */
6948static int load_balance(int this_cpu, struct rq *this_rq,
6949 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6950 int *continue_balancing)
1e3c88bd 6951{
88b8dac0 6952 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6953 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6954 struct sched_group *group;
1e3c88bd
PZ
6955 struct rq *busiest;
6956 unsigned long flags;
4ba29684 6957 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6958
8e45cb54
PZ
6959 struct lb_env env = {
6960 .sd = sd,
ddcdf6e7
PZ
6961 .dst_cpu = this_cpu,
6962 .dst_rq = this_rq,
88b8dac0 6963 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6964 .idle = idle,
eb95308e 6965 .loop_break = sched_nr_migrate_break,
b9403130 6966 .cpus = cpus,
0ec8aa00 6967 .fbq_type = all,
163122b7 6968 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6969 };
6970
cfc03118
JK
6971 /*
6972 * For NEWLY_IDLE load_balancing, we don't need to consider
6973 * other cpus in our group
6974 */
e02e60c1 6975 if (idle == CPU_NEWLY_IDLE)
cfc03118 6976 env.dst_grpmask = NULL;
cfc03118 6977
1e3c88bd
PZ
6978 cpumask_copy(cpus, cpu_active_mask);
6979
1e3c88bd
PZ
6980 schedstat_inc(sd, lb_count[idle]);
6981
6982redo:
23f0d209
JK
6983 if (!should_we_balance(&env)) {
6984 *continue_balancing = 0;
1e3c88bd 6985 goto out_balanced;
23f0d209 6986 }
1e3c88bd 6987
23f0d209 6988 group = find_busiest_group(&env);
1e3c88bd
PZ
6989 if (!group) {
6990 schedstat_inc(sd, lb_nobusyg[idle]);
6991 goto out_balanced;
6992 }
6993
b9403130 6994 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6995 if (!busiest) {
6996 schedstat_inc(sd, lb_nobusyq[idle]);
6997 goto out_balanced;
6998 }
6999
78feefc5 7000 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7001
bd939f45 7002 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7003
1aaf90a4
VG
7004 env.src_cpu = busiest->cpu;
7005 env.src_rq = busiest;
7006
1e3c88bd
PZ
7007 ld_moved = 0;
7008 if (busiest->nr_running > 1) {
7009 /*
7010 * Attempt to move tasks. If find_busiest_group has found
7011 * an imbalance but busiest->nr_running <= 1, the group is
7012 * still unbalanced. ld_moved simply stays zero, so it is
7013 * correctly treated as an imbalance.
7014 */
8e45cb54 7015 env.flags |= LBF_ALL_PINNED;
c82513e5 7016 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7017
5d6523eb 7018more_balance:
163122b7 7019 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7020
7021 /*
7022 * cur_ld_moved - load moved in current iteration
7023 * ld_moved - cumulative load moved across iterations
7024 */
163122b7 7025 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7026
7027 /*
163122b7
KT
7028 * We've detached some tasks from busiest_rq. Every
7029 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7030 * unlock busiest->lock, and we are able to be sure
7031 * that nobody can manipulate the tasks in parallel.
7032 * See task_rq_lock() family for the details.
1e3c88bd 7033 */
163122b7
KT
7034
7035 raw_spin_unlock(&busiest->lock);
7036
7037 if (cur_ld_moved) {
7038 attach_tasks(&env);
7039 ld_moved += cur_ld_moved;
7040 }
7041
1e3c88bd 7042 local_irq_restore(flags);
88b8dac0 7043
f1cd0858
JK
7044 if (env.flags & LBF_NEED_BREAK) {
7045 env.flags &= ~LBF_NEED_BREAK;
7046 goto more_balance;
7047 }
7048
88b8dac0
SV
7049 /*
7050 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7051 * us and move them to an alternate dst_cpu in our sched_group
7052 * where they can run. The upper limit on how many times we
7053 * iterate on same src_cpu is dependent on number of cpus in our
7054 * sched_group.
7055 *
7056 * This changes load balance semantics a bit on who can move
7057 * load to a given_cpu. In addition to the given_cpu itself
7058 * (or a ilb_cpu acting on its behalf where given_cpu is
7059 * nohz-idle), we now have balance_cpu in a position to move
7060 * load to given_cpu. In rare situations, this may cause
7061 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7062 * _independently_ and at _same_ time to move some load to
7063 * given_cpu) causing exceess load to be moved to given_cpu.
7064 * This however should not happen so much in practice and
7065 * moreover subsequent load balance cycles should correct the
7066 * excess load moved.
7067 */
6263322c 7068 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7069
7aff2e3a
VD
7070 /* Prevent to re-select dst_cpu via env's cpus */
7071 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7072
78feefc5 7073 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7074 env.dst_cpu = env.new_dst_cpu;
6263322c 7075 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7076 env.loop = 0;
7077 env.loop_break = sched_nr_migrate_break;
e02e60c1 7078
88b8dac0
SV
7079 /*
7080 * Go back to "more_balance" rather than "redo" since we
7081 * need to continue with same src_cpu.
7082 */
7083 goto more_balance;
7084 }
1e3c88bd 7085
6263322c
PZ
7086 /*
7087 * We failed to reach balance because of affinity.
7088 */
7089 if (sd_parent) {
63b2ca30 7090 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7091
afdeee05 7092 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7093 *group_imbalance = 1;
6263322c
PZ
7094 }
7095
1e3c88bd 7096 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7097 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7098 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7099 if (!cpumask_empty(cpus)) {
7100 env.loop = 0;
7101 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7102 goto redo;
bbf18b19 7103 }
afdeee05 7104 goto out_all_pinned;
1e3c88bd
PZ
7105 }
7106 }
7107
7108 if (!ld_moved) {
7109 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7110 /*
7111 * Increment the failure counter only on periodic balance.
7112 * We do not want newidle balance, which can be very
7113 * frequent, pollute the failure counter causing
7114 * excessive cache_hot migrations and active balances.
7115 */
7116 if (idle != CPU_NEWLY_IDLE)
7117 sd->nr_balance_failed++;
1e3c88bd 7118
bd939f45 7119 if (need_active_balance(&env)) {
1e3c88bd
PZ
7120 raw_spin_lock_irqsave(&busiest->lock, flags);
7121
969c7921
TH
7122 /* don't kick the active_load_balance_cpu_stop,
7123 * if the curr task on busiest cpu can't be
7124 * moved to this_cpu
1e3c88bd
PZ
7125 */
7126 if (!cpumask_test_cpu(this_cpu,
fa17b507 7127 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7128 raw_spin_unlock_irqrestore(&busiest->lock,
7129 flags);
8e45cb54 7130 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7131 goto out_one_pinned;
7132 }
7133
969c7921
TH
7134 /*
7135 * ->active_balance synchronizes accesses to
7136 * ->active_balance_work. Once set, it's cleared
7137 * only after active load balance is finished.
7138 */
1e3c88bd
PZ
7139 if (!busiest->active_balance) {
7140 busiest->active_balance = 1;
7141 busiest->push_cpu = this_cpu;
7142 active_balance = 1;
7143 }
7144 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7145
bd939f45 7146 if (active_balance) {
969c7921
TH
7147 stop_one_cpu_nowait(cpu_of(busiest),
7148 active_load_balance_cpu_stop, busiest,
7149 &busiest->active_balance_work);
bd939f45 7150 }
1e3c88bd
PZ
7151
7152 /*
7153 * We've kicked active balancing, reset the failure
7154 * counter.
7155 */
7156 sd->nr_balance_failed = sd->cache_nice_tries+1;
7157 }
7158 } else
7159 sd->nr_balance_failed = 0;
7160
7161 if (likely(!active_balance)) {
7162 /* We were unbalanced, so reset the balancing interval */
7163 sd->balance_interval = sd->min_interval;
7164 } else {
7165 /*
7166 * If we've begun active balancing, start to back off. This
7167 * case may not be covered by the all_pinned logic if there
7168 * is only 1 task on the busy runqueue (because we don't call
163122b7 7169 * detach_tasks).
1e3c88bd
PZ
7170 */
7171 if (sd->balance_interval < sd->max_interval)
7172 sd->balance_interval *= 2;
7173 }
7174
1e3c88bd
PZ
7175 goto out;
7176
7177out_balanced:
afdeee05
VG
7178 /*
7179 * We reach balance although we may have faced some affinity
7180 * constraints. Clear the imbalance flag if it was set.
7181 */
7182 if (sd_parent) {
7183 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7184
7185 if (*group_imbalance)
7186 *group_imbalance = 0;
7187 }
7188
7189out_all_pinned:
7190 /*
7191 * We reach balance because all tasks are pinned at this level so
7192 * we can't migrate them. Let the imbalance flag set so parent level
7193 * can try to migrate them.
7194 */
1e3c88bd
PZ
7195 schedstat_inc(sd, lb_balanced[idle]);
7196
7197 sd->nr_balance_failed = 0;
7198
7199out_one_pinned:
7200 /* tune up the balancing interval */
8e45cb54 7201 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7202 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7203 (sd->balance_interval < sd->max_interval))
7204 sd->balance_interval *= 2;
7205
46e49b38 7206 ld_moved = 0;
1e3c88bd 7207out:
1e3c88bd
PZ
7208 return ld_moved;
7209}
7210
52a08ef1
JL
7211static inline unsigned long
7212get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7213{
7214 unsigned long interval = sd->balance_interval;
7215
7216 if (cpu_busy)
7217 interval *= sd->busy_factor;
7218
7219 /* scale ms to jiffies */
7220 interval = msecs_to_jiffies(interval);
7221 interval = clamp(interval, 1UL, max_load_balance_interval);
7222
7223 return interval;
7224}
7225
7226static inline void
7227update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7228{
7229 unsigned long interval, next;
7230
7231 interval = get_sd_balance_interval(sd, cpu_busy);
7232 next = sd->last_balance + interval;
7233
7234 if (time_after(*next_balance, next))
7235 *next_balance = next;
7236}
7237
1e3c88bd
PZ
7238/*
7239 * idle_balance is called by schedule() if this_cpu is about to become
7240 * idle. Attempts to pull tasks from other CPUs.
7241 */
6e83125c 7242static int idle_balance(struct rq *this_rq)
1e3c88bd 7243{
52a08ef1
JL
7244 unsigned long next_balance = jiffies + HZ;
7245 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7246 struct sched_domain *sd;
7247 int pulled_task = 0;
9bd721c5 7248 u64 curr_cost = 0;
1e3c88bd 7249
6e83125c 7250 idle_enter_fair(this_rq);
0e5b5337 7251
6e83125c
PZ
7252 /*
7253 * We must set idle_stamp _before_ calling idle_balance(), such that we
7254 * measure the duration of idle_balance() as idle time.
7255 */
7256 this_rq->idle_stamp = rq_clock(this_rq);
7257
4486edd1
TC
7258 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7259 !this_rq->rd->overload) {
52a08ef1
JL
7260 rcu_read_lock();
7261 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7262 if (sd)
7263 update_next_balance(sd, 0, &next_balance);
7264 rcu_read_unlock();
7265
6e83125c 7266 goto out;
52a08ef1 7267 }
1e3c88bd 7268
f492e12e
PZ
7269 raw_spin_unlock(&this_rq->lock);
7270
48a16753 7271 update_blocked_averages(this_cpu);
dce840a0 7272 rcu_read_lock();
1e3c88bd 7273 for_each_domain(this_cpu, sd) {
23f0d209 7274 int continue_balancing = 1;
9bd721c5 7275 u64 t0, domain_cost;
1e3c88bd
PZ
7276
7277 if (!(sd->flags & SD_LOAD_BALANCE))
7278 continue;
7279
52a08ef1
JL
7280 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7281 update_next_balance(sd, 0, &next_balance);
9bd721c5 7282 break;
52a08ef1 7283 }
9bd721c5 7284
f492e12e 7285 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7286 t0 = sched_clock_cpu(this_cpu);
7287
f492e12e 7288 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7289 sd, CPU_NEWLY_IDLE,
7290 &continue_balancing);
9bd721c5
JL
7291
7292 domain_cost = sched_clock_cpu(this_cpu) - t0;
7293 if (domain_cost > sd->max_newidle_lb_cost)
7294 sd->max_newidle_lb_cost = domain_cost;
7295
7296 curr_cost += domain_cost;
f492e12e 7297 }
1e3c88bd 7298
52a08ef1 7299 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7300
7301 /*
7302 * Stop searching for tasks to pull if there are
7303 * now runnable tasks on this rq.
7304 */
7305 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7306 break;
1e3c88bd 7307 }
dce840a0 7308 rcu_read_unlock();
f492e12e
PZ
7309
7310 raw_spin_lock(&this_rq->lock);
7311
0e5b5337
JL
7312 if (curr_cost > this_rq->max_idle_balance_cost)
7313 this_rq->max_idle_balance_cost = curr_cost;
7314
e5fc6611 7315 /*
0e5b5337
JL
7316 * While browsing the domains, we released the rq lock, a task could
7317 * have been enqueued in the meantime. Since we're not going idle,
7318 * pretend we pulled a task.
e5fc6611 7319 */
0e5b5337 7320 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7321 pulled_task = 1;
e5fc6611 7322
52a08ef1
JL
7323out:
7324 /* Move the next balance forward */
7325 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7326 this_rq->next_balance = next_balance;
9bd721c5 7327
e4aa358b 7328 /* Is there a task of a high priority class? */
46383648 7329 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7330 pulled_task = -1;
7331
7332 if (pulled_task) {
7333 idle_exit_fair(this_rq);
6e83125c 7334 this_rq->idle_stamp = 0;
e4aa358b 7335 }
6e83125c 7336
3c4017c1 7337 return pulled_task;
1e3c88bd
PZ
7338}
7339
7340/*
969c7921
TH
7341 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7342 * running tasks off the busiest CPU onto idle CPUs. It requires at
7343 * least 1 task to be running on each physical CPU where possible, and
7344 * avoids physical / logical imbalances.
1e3c88bd 7345 */
969c7921 7346static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7347{
969c7921
TH
7348 struct rq *busiest_rq = data;
7349 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7350 int target_cpu = busiest_rq->push_cpu;
969c7921 7351 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7352 struct sched_domain *sd;
e5673f28 7353 struct task_struct *p = NULL;
969c7921
TH
7354
7355 raw_spin_lock_irq(&busiest_rq->lock);
7356
7357 /* make sure the requested cpu hasn't gone down in the meantime */
7358 if (unlikely(busiest_cpu != smp_processor_id() ||
7359 !busiest_rq->active_balance))
7360 goto out_unlock;
1e3c88bd
PZ
7361
7362 /* Is there any task to move? */
7363 if (busiest_rq->nr_running <= 1)
969c7921 7364 goto out_unlock;
1e3c88bd
PZ
7365
7366 /*
7367 * This condition is "impossible", if it occurs
7368 * we need to fix it. Originally reported by
7369 * Bjorn Helgaas on a 128-cpu setup.
7370 */
7371 BUG_ON(busiest_rq == target_rq);
7372
1e3c88bd 7373 /* Search for an sd spanning us and the target CPU. */
dce840a0 7374 rcu_read_lock();
1e3c88bd
PZ
7375 for_each_domain(target_cpu, sd) {
7376 if ((sd->flags & SD_LOAD_BALANCE) &&
7377 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7378 break;
7379 }
7380
7381 if (likely(sd)) {
8e45cb54
PZ
7382 struct lb_env env = {
7383 .sd = sd,
ddcdf6e7
PZ
7384 .dst_cpu = target_cpu,
7385 .dst_rq = target_rq,
7386 .src_cpu = busiest_rq->cpu,
7387 .src_rq = busiest_rq,
8e45cb54
PZ
7388 .idle = CPU_IDLE,
7389 };
7390
1e3c88bd
PZ
7391 schedstat_inc(sd, alb_count);
7392
e5673f28
KT
7393 p = detach_one_task(&env);
7394 if (p)
1e3c88bd
PZ
7395 schedstat_inc(sd, alb_pushed);
7396 else
7397 schedstat_inc(sd, alb_failed);
7398 }
dce840a0 7399 rcu_read_unlock();
969c7921
TH
7400out_unlock:
7401 busiest_rq->active_balance = 0;
e5673f28
KT
7402 raw_spin_unlock(&busiest_rq->lock);
7403
7404 if (p)
7405 attach_one_task(target_rq, p);
7406
7407 local_irq_enable();
7408
969c7921 7409 return 0;
1e3c88bd
PZ
7410}
7411
d987fc7f
MG
7412static inline int on_null_domain(struct rq *rq)
7413{
7414 return unlikely(!rcu_dereference_sched(rq->sd));
7415}
7416
3451d024 7417#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7418/*
7419 * idle load balancing details
83cd4fe2
VP
7420 * - When one of the busy CPUs notice that there may be an idle rebalancing
7421 * needed, they will kick the idle load balancer, which then does idle
7422 * load balancing for all the idle CPUs.
7423 */
1e3c88bd 7424static struct {
83cd4fe2 7425 cpumask_var_t idle_cpus_mask;
0b005cf5 7426 atomic_t nr_cpus;
83cd4fe2
VP
7427 unsigned long next_balance; /* in jiffy units */
7428} nohz ____cacheline_aligned;
1e3c88bd 7429
3dd0337d 7430static inline int find_new_ilb(void)
1e3c88bd 7431{
0b005cf5 7432 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7433
786d6dc7
SS
7434 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7435 return ilb;
7436
7437 return nr_cpu_ids;
1e3c88bd 7438}
1e3c88bd 7439
83cd4fe2
VP
7440/*
7441 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7442 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7443 * CPU (if there is one).
7444 */
0aeeeeba 7445static void nohz_balancer_kick(void)
83cd4fe2
VP
7446{
7447 int ilb_cpu;
7448
7449 nohz.next_balance++;
7450
3dd0337d 7451 ilb_cpu = find_new_ilb();
83cd4fe2 7452
0b005cf5
SS
7453 if (ilb_cpu >= nr_cpu_ids)
7454 return;
83cd4fe2 7455
cd490c5b 7456 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7457 return;
7458 /*
7459 * Use smp_send_reschedule() instead of resched_cpu().
7460 * This way we generate a sched IPI on the target cpu which
7461 * is idle. And the softirq performing nohz idle load balance
7462 * will be run before returning from the IPI.
7463 */
7464 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7465 return;
7466}
7467
c1cc017c 7468static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7469{
7470 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7471 /*
7472 * Completely isolated CPUs don't ever set, so we must test.
7473 */
7474 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7475 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7476 atomic_dec(&nohz.nr_cpus);
7477 }
71325960
SS
7478 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7479 }
7480}
7481
69e1e811
SS
7482static inline void set_cpu_sd_state_busy(void)
7483{
7484 struct sched_domain *sd;
37dc6b50 7485 int cpu = smp_processor_id();
69e1e811 7486
69e1e811 7487 rcu_read_lock();
37dc6b50 7488 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7489
7490 if (!sd || !sd->nohz_idle)
7491 goto unlock;
7492 sd->nohz_idle = 0;
7493
63b2ca30 7494 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7495unlock:
69e1e811
SS
7496 rcu_read_unlock();
7497}
7498
7499void set_cpu_sd_state_idle(void)
7500{
7501 struct sched_domain *sd;
37dc6b50 7502 int cpu = smp_processor_id();
69e1e811 7503
69e1e811 7504 rcu_read_lock();
37dc6b50 7505 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7506
7507 if (!sd || sd->nohz_idle)
7508 goto unlock;
7509 sd->nohz_idle = 1;
7510
63b2ca30 7511 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7512unlock:
69e1e811
SS
7513 rcu_read_unlock();
7514}
7515
1e3c88bd 7516/*
c1cc017c 7517 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7518 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7519 */
c1cc017c 7520void nohz_balance_enter_idle(int cpu)
1e3c88bd 7521{
71325960
SS
7522 /*
7523 * If this cpu is going down, then nothing needs to be done.
7524 */
7525 if (!cpu_active(cpu))
7526 return;
7527
c1cc017c
AS
7528 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7529 return;
1e3c88bd 7530
d987fc7f
MG
7531 /*
7532 * If we're a completely isolated CPU, we don't play.
7533 */
7534 if (on_null_domain(cpu_rq(cpu)))
7535 return;
7536
c1cc017c
AS
7537 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7538 atomic_inc(&nohz.nr_cpus);
7539 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7540}
71325960 7541
0db0628d 7542static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7543 unsigned long action, void *hcpu)
7544{
7545 switch (action & ~CPU_TASKS_FROZEN) {
7546 case CPU_DYING:
c1cc017c 7547 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7548 return NOTIFY_OK;
7549 default:
7550 return NOTIFY_DONE;
7551 }
7552}
1e3c88bd
PZ
7553#endif
7554
7555static DEFINE_SPINLOCK(balancing);
7556
49c022e6
PZ
7557/*
7558 * Scale the max load_balance interval with the number of CPUs in the system.
7559 * This trades load-balance latency on larger machines for less cross talk.
7560 */
029632fb 7561void update_max_interval(void)
49c022e6
PZ
7562{
7563 max_load_balance_interval = HZ*num_online_cpus()/10;
7564}
7565
1e3c88bd
PZ
7566/*
7567 * It checks each scheduling domain to see if it is due to be balanced,
7568 * and initiates a balancing operation if so.
7569 *
b9b0853a 7570 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7571 */
f7ed0a89 7572static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7573{
23f0d209 7574 int continue_balancing = 1;
f7ed0a89 7575 int cpu = rq->cpu;
1e3c88bd 7576 unsigned long interval;
04f733b4 7577 struct sched_domain *sd;
1e3c88bd
PZ
7578 /* Earliest time when we have to do rebalance again */
7579 unsigned long next_balance = jiffies + 60*HZ;
7580 int update_next_balance = 0;
f48627e6
JL
7581 int need_serialize, need_decay = 0;
7582 u64 max_cost = 0;
1e3c88bd 7583
48a16753 7584 update_blocked_averages(cpu);
2069dd75 7585
dce840a0 7586 rcu_read_lock();
1e3c88bd 7587 for_each_domain(cpu, sd) {
f48627e6
JL
7588 /*
7589 * Decay the newidle max times here because this is a regular
7590 * visit to all the domains. Decay ~1% per second.
7591 */
7592 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7593 sd->max_newidle_lb_cost =
7594 (sd->max_newidle_lb_cost * 253) / 256;
7595 sd->next_decay_max_lb_cost = jiffies + HZ;
7596 need_decay = 1;
7597 }
7598 max_cost += sd->max_newidle_lb_cost;
7599
1e3c88bd
PZ
7600 if (!(sd->flags & SD_LOAD_BALANCE))
7601 continue;
7602
f48627e6
JL
7603 /*
7604 * Stop the load balance at this level. There is another
7605 * CPU in our sched group which is doing load balancing more
7606 * actively.
7607 */
7608 if (!continue_balancing) {
7609 if (need_decay)
7610 continue;
7611 break;
7612 }
7613
52a08ef1 7614 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7615
7616 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7617 if (need_serialize) {
7618 if (!spin_trylock(&balancing))
7619 goto out;
7620 }
7621
7622 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7623 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7624 /*
6263322c 7625 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7626 * env->dst_cpu, so we can't know our idle
7627 * state even if we migrated tasks. Update it.
1e3c88bd 7628 */
de5eb2dd 7629 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7630 }
7631 sd->last_balance = jiffies;
52a08ef1 7632 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7633 }
7634 if (need_serialize)
7635 spin_unlock(&balancing);
7636out:
7637 if (time_after(next_balance, sd->last_balance + interval)) {
7638 next_balance = sd->last_balance + interval;
7639 update_next_balance = 1;
7640 }
f48627e6
JL
7641 }
7642 if (need_decay) {
1e3c88bd 7643 /*
f48627e6
JL
7644 * Ensure the rq-wide value also decays but keep it at a
7645 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7646 */
f48627e6
JL
7647 rq->max_idle_balance_cost =
7648 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7649 }
dce840a0 7650 rcu_read_unlock();
1e3c88bd
PZ
7651
7652 /*
7653 * next_balance will be updated only when there is a need.
7654 * When the cpu is attached to null domain for ex, it will not be
7655 * updated.
7656 */
c5afb6a8 7657 if (likely(update_next_balance)) {
1e3c88bd 7658 rq->next_balance = next_balance;
c5afb6a8
VG
7659
7660#ifdef CONFIG_NO_HZ_COMMON
7661 /*
7662 * If this CPU has been elected to perform the nohz idle
7663 * balance. Other idle CPUs have already rebalanced with
7664 * nohz_idle_balance() and nohz.next_balance has been
7665 * updated accordingly. This CPU is now running the idle load
7666 * balance for itself and we need to update the
7667 * nohz.next_balance accordingly.
7668 */
7669 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7670 nohz.next_balance = rq->next_balance;
7671#endif
7672 }
1e3c88bd
PZ
7673}
7674
3451d024 7675#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7676/*
3451d024 7677 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7678 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7679 */
208cb16b 7680static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7681{
208cb16b 7682 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7683 struct rq *rq;
7684 int balance_cpu;
c5afb6a8
VG
7685 /* Earliest time when we have to do rebalance again */
7686 unsigned long next_balance = jiffies + 60*HZ;
7687 int update_next_balance = 0;
83cd4fe2 7688
1c792db7
SS
7689 if (idle != CPU_IDLE ||
7690 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7691 goto end;
83cd4fe2
VP
7692
7693 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7694 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7695 continue;
7696
7697 /*
7698 * If this cpu gets work to do, stop the load balancing
7699 * work being done for other cpus. Next load
7700 * balancing owner will pick it up.
7701 */
1c792db7 7702 if (need_resched())
83cd4fe2 7703 break;
83cd4fe2 7704
5ed4f1d9
VG
7705 rq = cpu_rq(balance_cpu);
7706
ed61bbc6
TC
7707 /*
7708 * If time for next balance is due,
7709 * do the balance.
7710 */
7711 if (time_after_eq(jiffies, rq->next_balance)) {
7712 raw_spin_lock_irq(&rq->lock);
7713 update_rq_clock(rq);
7714 update_idle_cpu_load(rq);
7715 raw_spin_unlock_irq(&rq->lock);
7716 rebalance_domains(rq, CPU_IDLE);
7717 }
83cd4fe2 7718
c5afb6a8
VG
7719 if (time_after(next_balance, rq->next_balance)) {
7720 next_balance = rq->next_balance;
7721 update_next_balance = 1;
7722 }
83cd4fe2 7723 }
c5afb6a8
VG
7724
7725 /*
7726 * next_balance will be updated only when there is a need.
7727 * When the CPU is attached to null domain for ex, it will not be
7728 * updated.
7729 */
7730 if (likely(update_next_balance))
7731 nohz.next_balance = next_balance;
1c792db7
SS
7732end:
7733 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7734}
7735
7736/*
0b005cf5 7737 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7738 * of an idle cpu in the system.
0b005cf5 7739 * - This rq has more than one task.
1aaf90a4
VG
7740 * - This rq has at least one CFS task and the capacity of the CPU is
7741 * significantly reduced because of RT tasks or IRQs.
7742 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7743 * multiple busy cpu.
0b005cf5
SS
7744 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7745 * domain span are idle.
83cd4fe2 7746 */
1aaf90a4 7747static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7748{
7749 unsigned long now = jiffies;
0b005cf5 7750 struct sched_domain *sd;
63b2ca30 7751 struct sched_group_capacity *sgc;
4a725627 7752 int nr_busy, cpu = rq->cpu;
1aaf90a4 7753 bool kick = false;
83cd4fe2 7754
4a725627 7755 if (unlikely(rq->idle_balance))
1aaf90a4 7756 return false;
83cd4fe2 7757
1c792db7
SS
7758 /*
7759 * We may be recently in ticked or tickless idle mode. At the first
7760 * busy tick after returning from idle, we will update the busy stats.
7761 */
69e1e811 7762 set_cpu_sd_state_busy();
c1cc017c 7763 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7764
7765 /*
7766 * None are in tickless mode and hence no need for NOHZ idle load
7767 * balancing.
7768 */
7769 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7770 return false;
1c792db7
SS
7771
7772 if (time_before(now, nohz.next_balance))
1aaf90a4 7773 return false;
83cd4fe2 7774
0b005cf5 7775 if (rq->nr_running >= 2)
1aaf90a4 7776 return true;
83cd4fe2 7777
067491b7 7778 rcu_read_lock();
37dc6b50 7779 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7780 if (sd) {
63b2ca30
NP
7781 sgc = sd->groups->sgc;
7782 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7783
1aaf90a4
VG
7784 if (nr_busy > 1) {
7785 kick = true;
7786 goto unlock;
7787 }
7788
83cd4fe2 7789 }
37dc6b50 7790
1aaf90a4
VG
7791 sd = rcu_dereference(rq->sd);
7792 if (sd) {
7793 if ((rq->cfs.h_nr_running >= 1) &&
7794 check_cpu_capacity(rq, sd)) {
7795 kick = true;
7796 goto unlock;
7797 }
7798 }
37dc6b50 7799
1aaf90a4 7800 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7801 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7802 sched_domain_span(sd)) < cpu)) {
7803 kick = true;
7804 goto unlock;
7805 }
067491b7 7806
1aaf90a4 7807unlock:
067491b7 7808 rcu_read_unlock();
1aaf90a4 7809 return kick;
83cd4fe2
VP
7810}
7811#else
208cb16b 7812static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7813#endif
7814
7815/*
7816 * run_rebalance_domains is triggered when needed from the scheduler tick.
7817 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7818 */
1e3c88bd
PZ
7819static void run_rebalance_domains(struct softirq_action *h)
7820{
208cb16b 7821 struct rq *this_rq = this_rq();
6eb57e0d 7822 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7823 CPU_IDLE : CPU_NOT_IDLE;
7824
1e3c88bd 7825 /*
83cd4fe2 7826 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7827 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7828 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7829 * give the idle cpus a chance to load balance. Else we may
7830 * load balance only within the local sched_domain hierarchy
7831 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7832 */
208cb16b 7833 nohz_idle_balance(this_rq, idle);
d4573c3e 7834 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7835}
7836
1e3c88bd
PZ
7837/*
7838 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7839 */
7caff66f 7840void trigger_load_balance(struct rq *rq)
1e3c88bd 7841{
1e3c88bd 7842 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7843 if (unlikely(on_null_domain(rq)))
7844 return;
7845
7846 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7847 raise_softirq(SCHED_SOFTIRQ);
3451d024 7848#ifdef CONFIG_NO_HZ_COMMON
c726099e 7849 if (nohz_kick_needed(rq))
0aeeeeba 7850 nohz_balancer_kick();
83cd4fe2 7851#endif
1e3c88bd
PZ
7852}
7853
0bcdcf28
CE
7854static void rq_online_fair(struct rq *rq)
7855{
7856 update_sysctl();
0e59bdae
KT
7857
7858 update_runtime_enabled(rq);
0bcdcf28
CE
7859}
7860
7861static void rq_offline_fair(struct rq *rq)
7862{
7863 update_sysctl();
a4c96ae3
PB
7864
7865 /* Ensure any throttled groups are reachable by pick_next_task */
7866 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7867}
7868
55e12e5e 7869#endif /* CONFIG_SMP */
e1d1484f 7870
bf0f6f24
IM
7871/*
7872 * scheduler tick hitting a task of our scheduling class:
7873 */
8f4d37ec 7874static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7875{
7876 struct cfs_rq *cfs_rq;
7877 struct sched_entity *se = &curr->se;
7878
7879 for_each_sched_entity(se) {
7880 cfs_rq = cfs_rq_of(se);
8f4d37ec 7881 entity_tick(cfs_rq, se, queued);
bf0f6f24 7882 }
18bf2805 7883
b52da86e 7884 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7885 task_tick_numa(rq, curr);
bf0f6f24
IM
7886}
7887
7888/*
cd29fe6f
PZ
7889 * called on fork with the child task as argument from the parent's context
7890 * - child not yet on the tasklist
7891 * - preemption disabled
bf0f6f24 7892 */
cd29fe6f 7893static void task_fork_fair(struct task_struct *p)
bf0f6f24 7894{
4fc420c9
DN
7895 struct cfs_rq *cfs_rq;
7896 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7897 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7898 struct rq *rq = this_rq();
7899 unsigned long flags;
7900
05fa785c 7901 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7902
861d034e
PZ
7903 update_rq_clock(rq);
7904
4fc420c9
DN
7905 cfs_rq = task_cfs_rq(current);
7906 curr = cfs_rq->curr;
7907
6c9a27f5
DN
7908 /*
7909 * Not only the cpu but also the task_group of the parent might have
7910 * been changed after parent->se.parent,cfs_rq were copied to
7911 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7912 * of child point to valid ones.
7913 */
7914 rcu_read_lock();
7915 __set_task_cpu(p, this_cpu);
7916 rcu_read_unlock();
bf0f6f24 7917
7109c442 7918 update_curr(cfs_rq);
cd29fe6f 7919
b5d9d734
MG
7920 if (curr)
7921 se->vruntime = curr->vruntime;
aeb73b04 7922 place_entity(cfs_rq, se, 1);
4d78e7b6 7923
cd29fe6f 7924 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7925 /*
edcb60a3
IM
7926 * Upon rescheduling, sched_class::put_prev_task() will place
7927 * 'current' within the tree based on its new key value.
7928 */
4d78e7b6 7929 swap(curr->vruntime, se->vruntime);
8875125e 7930 resched_curr(rq);
4d78e7b6 7931 }
bf0f6f24 7932
88ec22d3
PZ
7933 se->vruntime -= cfs_rq->min_vruntime;
7934
05fa785c 7935 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7936}
7937
cb469845
SR
7938/*
7939 * Priority of the task has changed. Check to see if we preempt
7940 * the current task.
7941 */
da7a735e
PZ
7942static void
7943prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7944{
da0c1e65 7945 if (!task_on_rq_queued(p))
da7a735e
PZ
7946 return;
7947
cb469845
SR
7948 /*
7949 * Reschedule if we are currently running on this runqueue and
7950 * our priority decreased, or if we are not currently running on
7951 * this runqueue and our priority is higher than the current's
7952 */
da7a735e 7953 if (rq->curr == p) {
cb469845 7954 if (p->prio > oldprio)
8875125e 7955 resched_curr(rq);
cb469845 7956 } else
15afe09b 7957 check_preempt_curr(rq, p, 0);
cb469845
SR
7958}
7959
daa59407 7960static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7961{
7962 struct sched_entity *se = &p->se;
da7a735e
PZ
7963
7964 /*
daa59407
BP
7965 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7966 * the dequeue_entity(.flags=0) will already have normalized the
7967 * vruntime.
7968 */
7969 if (p->on_rq)
7970 return true;
7971
7972 /*
7973 * When !on_rq, vruntime of the task has usually NOT been normalized.
7974 * But there are some cases where it has already been normalized:
da7a735e 7975 *
daa59407
BP
7976 * - A forked child which is waiting for being woken up by
7977 * wake_up_new_task().
7978 * - A task which has been woken up by try_to_wake_up() and
7979 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7980 */
daa59407
BP
7981 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7982 return true;
7983
7984 return false;
7985}
7986
7987static void detach_task_cfs_rq(struct task_struct *p)
7988{
7989 struct sched_entity *se = &p->se;
7990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7991
7992 if (!vruntime_normalized(p)) {
da7a735e
PZ
7993 /*
7994 * Fix up our vruntime so that the current sleep doesn't
7995 * cause 'unlimited' sleep bonus.
7996 */
7997 place_entity(cfs_rq, se, 0);
7998 se->vruntime -= cfs_rq->min_vruntime;
7999 }
9ee474f5 8000
9d89c257 8001 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8002 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8003}
8004
daa59407 8005static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8006{
f36c019c 8007 struct sched_entity *se = &p->se;
daa59407 8008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8009
8010#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8011 /*
8012 * Since the real-depth could have been changed (only FAIR
8013 * class maintain depth value), reset depth properly.
8014 */
8015 se->depth = se->parent ? se->parent->depth + 1 : 0;
8016#endif
7855a35a 8017
6efdb105 8018 /* Synchronize task with its cfs_rq */
daa59407
BP
8019 attach_entity_load_avg(cfs_rq, se);
8020
8021 if (!vruntime_normalized(p))
8022 se->vruntime += cfs_rq->min_vruntime;
8023}
6efdb105 8024
daa59407
BP
8025static void switched_from_fair(struct rq *rq, struct task_struct *p)
8026{
8027 detach_task_cfs_rq(p);
8028}
8029
8030static void switched_to_fair(struct rq *rq, struct task_struct *p)
8031{
8032 attach_task_cfs_rq(p);
7855a35a 8033
daa59407 8034 if (task_on_rq_queued(p)) {
7855a35a 8035 /*
daa59407
BP
8036 * We were most likely switched from sched_rt, so
8037 * kick off the schedule if running, otherwise just see
8038 * if we can still preempt the current task.
7855a35a 8039 */
daa59407
BP
8040 if (rq->curr == p)
8041 resched_curr(rq);
8042 else
8043 check_preempt_curr(rq, p, 0);
7855a35a 8044 }
cb469845
SR
8045}
8046
83b699ed
SV
8047/* Account for a task changing its policy or group.
8048 *
8049 * This routine is mostly called to set cfs_rq->curr field when a task
8050 * migrates between groups/classes.
8051 */
8052static void set_curr_task_fair(struct rq *rq)
8053{
8054 struct sched_entity *se = &rq->curr->se;
8055
ec12cb7f
PT
8056 for_each_sched_entity(se) {
8057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8058
8059 set_next_entity(cfs_rq, se);
8060 /* ensure bandwidth has been allocated on our new cfs_rq */
8061 account_cfs_rq_runtime(cfs_rq, 0);
8062 }
83b699ed
SV
8063}
8064
029632fb
PZ
8065void init_cfs_rq(struct cfs_rq *cfs_rq)
8066{
8067 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8068 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8069#ifndef CONFIG_64BIT
8070 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8071#endif
141965c7 8072#ifdef CONFIG_SMP
9d89c257
YD
8073 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8074 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8075#endif
029632fb
PZ
8076}
8077
810b3817 8078#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8079static void task_move_group_fair(struct task_struct *p)
810b3817 8080{
daa59407 8081 detach_task_cfs_rq(p);
b2b5ce02 8082 set_task_rq(p, task_cpu(p));
6efdb105
BP
8083
8084#ifdef CONFIG_SMP
8085 /* Tell se's cfs_rq has been changed -- migrated */
8086 p->se.avg.last_update_time = 0;
8087#endif
daa59407 8088 attach_task_cfs_rq(p);
810b3817 8089}
029632fb
PZ
8090
8091void free_fair_sched_group(struct task_group *tg)
8092{
8093 int i;
8094
8095 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8096
8097 for_each_possible_cpu(i) {
8098 if (tg->cfs_rq)
8099 kfree(tg->cfs_rq[i]);
12695578
YD
8100 if (tg->se) {
8101 if (tg->se[i])
8102 remove_entity_load_avg(tg->se[i]);
029632fb 8103 kfree(tg->se[i]);
12695578 8104 }
029632fb
PZ
8105 }
8106
8107 kfree(tg->cfs_rq);
8108 kfree(tg->se);
8109}
8110
8111int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8112{
8113 struct cfs_rq *cfs_rq;
8114 struct sched_entity *se;
8115 int i;
8116
8117 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8118 if (!tg->cfs_rq)
8119 goto err;
8120 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8121 if (!tg->se)
8122 goto err;
8123
8124 tg->shares = NICE_0_LOAD;
8125
8126 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8127
8128 for_each_possible_cpu(i) {
8129 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8130 GFP_KERNEL, cpu_to_node(i));
8131 if (!cfs_rq)
8132 goto err;
8133
8134 se = kzalloc_node(sizeof(struct sched_entity),
8135 GFP_KERNEL, cpu_to_node(i));
8136 if (!se)
8137 goto err_free_rq;
8138
8139 init_cfs_rq(cfs_rq);
8140 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8141 init_entity_runnable_average(se);
029632fb
PZ
8142 }
8143
8144 return 1;
8145
8146err_free_rq:
8147 kfree(cfs_rq);
8148err:
8149 return 0;
8150}
8151
8152void unregister_fair_sched_group(struct task_group *tg, int cpu)
8153{
8154 struct rq *rq = cpu_rq(cpu);
8155 unsigned long flags;
8156
8157 /*
8158 * Only empty task groups can be destroyed; so we can speculatively
8159 * check on_list without danger of it being re-added.
8160 */
8161 if (!tg->cfs_rq[cpu]->on_list)
8162 return;
8163
8164 raw_spin_lock_irqsave(&rq->lock, flags);
8165 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8166 raw_spin_unlock_irqrestore(&rq->lock, flags);
8167}
8168
8169void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8170 struct sched_entity *se, int cpu,
8171 struct sched_entity *parent)
8172{
8173 struct rq *rq = cpu_rq(cpu);
8174
8175 cfs_rq->tg = tg;
8176 cfs_rq->rq = rq;
029632fb
PZ
8177 init_cfs_rq_runtime(cfs_rq);
8178
8179 tg->cfs_rq[cpu] = cfs_rq;
8180 tg->se[cpu] = se;
8181
8182 /* se could be NULL for root_task_group */
8183 if (!se)
8184 return;
8185
fed14d45 8186 if (!parent) {
029632fb 8187 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8188 se->depth = 0;
8189 } else {
029632fb 8190 se->cfs_rq = parent->my_q;
fed14d45
PZ
8191 se->depth = parent->depth + 1;
8192 }
029632fb
PZ
8193
8194 se->my_q = cfs_rq;
0ac9b1c2
PT
8195 /* guarantee group entities always have weight */
8196 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8197 se->parent = parent;
8198}
8199
8200static DEFINE_MUTEX(shares_mutex);
8201
8202int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8203{
8204 int i;
8205 unsigned long flags;
8206
8207 /*
8208 * We can't change the weight of the root cgroup.
8209 */
8210 if (!tg->se[0])
8211 return -EINVAL;
8212
8213 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8214
8215 mutex_lock(&shares_mutex);
8216 if (tg->shares == shares)
8217 goto done;
8218
8219 tg->shares = shares;
8220 for_each_possible_cpu(i) {
8221 struct rq *rq = cpu_rq(i);
8222 struct sched_entity *se;
8223
8224 se = tg->se[i];
8225 /* Propagate contribution to hierarchy */
8226 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8227
8228 /* Possible calls to update_curr() need rq clock */
8229 update_rq_clock(rq);
17bc14b7 8230 for_each_sched_entity(se)
029632fb
PZ
8231 update_cfs_shares(group_cfs_rq(se));
8232 raw_spin_unlock_irqrestore(&rq->lock, flags);
8233 }
8234
8235done:
8236 mutex_unlock(&shares_mutex);
8237 return 0;
8238}
8239#else /* CONFIG_FAIR_GROUP_SCHED */
8240
8241void free_fair_sched_group(struct task_group *tg) { }
8242
8243int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8244{
8245 return 1;
8246}
8247
8248void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8249
8250#endif /* CONFIG_FAIR_GROUP_SCHED */
8251
810b3817 8252
6d686f45 8253static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8254{
8255 struct sched_entity *se = &task->se;
0d721cea
PW
8256 unsigned int rr_interval = 0;
8257
8258 /*
8259 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8260 * idle runqueue:
8261 */
0d721cea 8262 if (rq->cfs.load.weight)
a59f4e07 8263 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8264
8265 return rr_interval;
8266}
8267
bf0f6f24
IM
8268/*
8269 * All the scheduling class methods:
8270 */
029632fb 8271const struct sched_class fair_sched_class = {
5522d5d5 8272 .next = &idle_sched_class,
bf0f6f24
IM
8273 .enqueue_task = enqueue_task_fair,
8274 .dequeue_task = dequeue_task_fair,
8275 .yield_task = yield_task_fair,
d95f4122 8276 .yield_to_task = yield_to_task_fair,
bf0f6f24 8277
2e09bf55 8278 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8279
8280 .pick_next_task = pick_next_task_fair,
8281 .put_prev_task = put_prev_task_fair,
8282
681f3e68 8283#ifdef CONFIG_SMP
4ce72a2c 8284 .select_task_rq = select_task_rq_fair,
0a74bef8 8285 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8286
0bcdcf28
CE
8287 .rq_online = rq_online_fair,
8288 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8289
8290 .task_waking = task_waking_fair,
12695578 8291 .task_dead = task_dead_fair,
c5b28038 8292 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8293#endif
bf0f6f24 8294
83b699ed 8295 .set_curr_task = set_curr_task_fair,
bf0f6f24 8296 .task_tick = task_tick_fair,
cd29fe6f 8297 .task_fork = task_fork_fair,
cb469845
SR
8298
8299 .prio_changed = prio_changed_fair,
da7a735e 8300 .switched_from = switched_from_fair,
cb469845 8301 .switched_to = switched_to_fair,
810b3817 8302
0d721cea
PW
8303 .get_rr_interval = get_rr_interval_fair,
8304
6e998916
SG
8305 .update_curr = update_curr_fair,
8306
810b3817 8307#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8308 .task_move_group = task_move_group_fair,
810b3817 8309#endif
bf0f6f24
IM
8310};
8311
8312#ifdef CONFIG_SCHED_DEBUG
029632fb 8313void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8314{
bf0f6f24
IM
8315 struct cfs_rq *cfs_rq;
8316
5973e5b9 8317 rcu_read_lock();
c3b64f1e 8318 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8319 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8320 rcu_read_unlock();
bf0f6f24 8321}
397f2378
SD
8322
8323#ifdef CONFIG_NUMA_BALANCING
8324void show_numa_stats(struct task_struct *p, struct seq_file *m)
8325{
8326 int node;
8327 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8328
8329 for_each_online_node(node) {
8330 if (p->numa_faults) {
8331 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8332 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8333 }
8334 if (p->numa_group) {
8335 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8336 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8337 }
8338 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8339 }
8340}
8341#endif /* CONFIG_NUMA_BALANCING */
8342#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8343
8344__init void init_sched_fair_class(void)
8345{
8346#ifdef CONFIG_SMP
8347 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8348
3451d024 8349#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8350 nohz.next_balance = jiffies;
029632fb 8351 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8352 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8353#endif
8354#endif /* SMP */
8355
8356}