sched: Fix update_group_power() prototype placement to fix build warning when !CONFIG_SMP
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
aff3e498
PT
265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
9ee474f5 267
3d4b47b4
PZ
268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
67e86250
PT
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 284 }
3d4b47b4
PZ
285
286 cfs_rq->on_list = 1;
9ee474f5 287 /* We should have no load, but we need to update last_decay. */
aff3e498 288 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
b758149c
PZ
300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
464b7527
PZ
319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
8f48894f
PZ
362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
bf0f6f24 368
62160e3f
IM
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
372}
373
374#define entity_is_task(se) 1
375
b758149c
PZ
376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
bf0f6f24 378
b758149c 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 380{
b758149c 381 return &task_rq(p)->cfs;
bf0f6f24
IM
382}
383
b758149c
PZ
384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
3d4b47b4
PZ
398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
b758149c
PZ
406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
464b7527
PZ
420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
b758149c
PZ
425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
6c16a6dc
PZ
427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
0702e3eb 434static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 435{
368059a9
PZ
436 s64 delta = (s64)(vruntime - min_vruntime);
437 if (delta > 0)
02e0431a
PZ
438 min_vruntime = vruntime;
439
440 return min_vruntime;
441}
442
0702e3eb 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
54fdc581
FC
452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
1af5f730
PZ
458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
e17036da 470 if (!cfs_rq->curr)
1af5f730
PZ
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 574 int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac
PZ
595 */
596static inline unsigned long
597calc_delta_fair(unsigned long delta, struct sched_entity *se)
598{
f9c0b095
PZ
599 if (unlikely(se->load.weight != NICE_0_LOAD))
600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
601
602 return delta;
603}
604
647e7cac
IM
605/*
606 * The idea is to set a period in which each task runs once.
607 *
532b1858 608 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
609 * this period because otherwise the slices get too small.
610 *
611 * p = (nr <= nl) ? l : l*nr/nl
612 */
4d78e7b6
PZ
613static u64 __sched_period(unsigned long nr_running)
614{
615 u64 period = sysctl_sched_latency;
b2be5e96 616 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
617
618 if (unlikely(nr_running > nr_latency)) {
4bf0b771 619 period = sysctl_sched_min_granularity;
4d78e7b6 620 period *= nr_running;
4d78e7b6
PZ
621 }
622
623 return period;
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
649 slice = calc_delta_mine(slice, se->load.weight, load);
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
ac884dec 655 * We calculate the vruntime slice of a to be inserted task
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
bf0f6f24
IM
664/*
665 * Update the current task's runtime statistics. Skip current tasks that
666 * are not in our scheduling class.
667 */
668static inline void
8ebc91d9
IM
669__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 unsigned long delta_exec)
bf0f6f24 671{
bbdba7c0 672 unsigned long delta_exec_weighted;
bf0f6f24 673
41acab88
LDM
674 schedstat_set(curr->statistics.exec_max,
675 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
676
677 curr->sum_exec_runtime += delta_exec;
7a62eabc 678 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 679 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 680
e9acbff6 681 curr->vruntime += delta_exec_weighted;
1af5f730 682 update_min_vruntime(cfs_rq);
bf0f6f24
IM
683}
684
b7cc0896 685static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 686{
429d43bc 687 struct sched_entity *curr = cfs_rq->curr;
305e6835 688 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
689 unsigned long delta_exec;
690
691 if (unlikely(!curr))
692 return;
693
694 /*
695 * Get the amount of time the current task was running
696 * since the last time we changed load (this cannot
697 * overflow on 32 bits):
698 */
8ebc91d9 699 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
700 if (!delta_exec)
701 return;
bf0f6f24 702
8ebc91d9
IM
703 __update_curr(cfs_rq, curr, delta_exec);
704 curr->exec_start = now;
d842de87
SV
705
706 if (entity_is_task(curr)) {
707 struct task_struct *curtask = task_of(curr);
708
f977bb49 709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 710 cpuacct_charge(curtask, delta_exec);
f06febc9 711 account_group_exec_runtime(curtask, delta_exec);
d842de87 712 }
ec12cb7f
PT
713
714 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
715}
716
717static inline void
5870db5b 718update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 719{
41acab88 720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
721}
722
bf0f6f24
IM
723/*
724 * Task is being enqueued - update stats:
725 */
d2417e5a 726static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 727{
bf0f6f24
IM
728 /*
729 * Are we enqueueing a waiting task? (for current tasks
730 * a dequeue/enqueue event is a NOP)
731 */
429d43bc 732 if (se != cfs_rq->curr)
5870db5b 733 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
734}
735
bf0f6f24 736static void
9ef0a961 737update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
41acab88
LDM
739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
744#ifdef CONFIG_SCHEDSTATS
745 if (entity_is_task(se)) {
746 trace_sched_stat_wait(task_of(se),
41acab88 747 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
748 }
749#endif
41acab88 750 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
751}
752
753static inline void
19b6a2e3 754update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
bf0f6f24
IM
756 /*
757 * Mark the end of the wait period if dequeueing a
758 * waiting task:
759 */
429d43bc 760 if (se != cfs_rq->curr)
9ef0a961 761 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
762}
763
764/*
765 * We are picking a new current task - update its stats:
766 */
767static inline void
79303e9e 768update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
769{
770 /*
771 * We are starting a new run period:
772 */
305e6835 773 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
774}
775
bf0f6f24
IM
776/**************************************************
777 * Scheduling class queueing methods:
778 */
779
cbee9f88
PZ
780#ifdef CONFIG_NUMA_BALANCING
781/*
6e5fb223 782 * numa task sample period in ms
cbee9f88 783 */
6e5fb223 784unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
785unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
787
788/* Portion of address space to scan in MB */
789unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 790
4b96a29b
PZ
791/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792unsigned int sysctl_numa_balancing_scan_delay = 1000;
793
cbee9f88
PZ
794static void task_numa_placement(struct task_struct *p)
795{
2832bc19 796 int seq;
cbee9f88 797
2832bc19
HD
798 if (!p->mm) /* for example, ksmd faulting in a user's mm */
799 return;
800 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
801 if (p->numa_scan_seq == seq)
802 return;
803 p->numa_scan_seq = seq;
804
805 /* FIXME: Scheduling placement policy hints go here */
806}
807
808/*
809 * Got a PROT_NONE fault for a page on @node.
810 */
b8593bfd 811void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
812{
813 struct task_struct *p = current;
814
1a687c2e
MG
815 if (!sched_feat_numa(NUMA))
816 return;
817
cbee9f88
PZ
818 /* FIXME: Allocate task-specific structure for placement policy here */
819
fb003b80 820 /*
b8593bfd
MG
821 * If pages are properly placed (did not migrate) then scan slower.
822 * This is reset periodically in case of phase changes
fb003b80 823 */
b8593bfd
MG
824 if (!migrated)
825 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
826 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 827
cbee9f88
PZ
828 task_numa_placement(p);
829}
830
6e5fb223
PZ
831static void reset_ptenuma_scan(struct task_struct *p)
832{
833 ACCESS_ONCE(p->mm->numa_scan_seq)++;
834 p->mm->numa_scan_offset = 0;
835}
836
cbee9f88
PZ
837/*
838 * The expensive part of numa migration is done from task_work context.
839 * Triggered from task_tick_numa().
840 */
841void task_numa_work(struct callback_head *work)
842{
843 unsigned long migrate, next_scan, now = jiffies;
844 struct task_struct *p = current;
845 struct mm_struct *mm = p->mm;
6e5fb223 846 struct vm_area_struct *vma;
9f40604c
MG
847 unsigned long start, end;
848 long pages;
cbee9f88
PZ
849
850 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
851
852 work->next = work; /* protect against double add */
853 /*
854 * Who cares about NUMA placement when they're dying.
855 *
856 * NOTE: make sure not to dereference p->mm before this check,
857 * exit_task_work() happens _after_ exit_mm() so we could be called
858 * without p->mm even though we still had it when we enqueued this
859 * work.
860 */
861 if (p->flags & PF_EXITING)
862 return;
863
5bca2303
MG
864 /*
865 * We do not care about task placement until a task runs on a node
866 * other than the first one used by the address space. This is
867 * largely because migrations are driven by what CPU the task
868 * is running on. If it's never scheduled on another node, it'll
869 * not migrate so why bother trapping the fault.
870 */
871 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
872 mm->first_nid = numa_node_id();
873 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
874 /* Are we running on a new node yet? */
875 if (numa_node_id() == mm->first_nid &&
876 !sched_feat_numa(NUMA_FORCE))
877 return;
878
879 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
880 }
881
b8593bfd
MG
882 /*
883 * Reset the scan period if enough time has gone by. Objective is that
884 * scanning will be reduced if pages are properly placed. As tasks
885 * can enter different phases this needs to be re-examined. Lacking
886 * proper tracking of reference behaviour, this blunt hammer is used.
887 */
888 migrate = mm->numa_next_reset;
889 if (time_after(now, migrate)) {
890 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
891 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
892 xchg(&mm->numa_next_reset, next_scan);
893 }
894
cbee9f88
PZ
895 /*
896 * Enforce maximal scan/migration frequency..
897 */
898 migrate = mm->numa_next_scan;
899 if (time_before(now, migrate))
900 return;
901
902 if (p->numa_scan_period == 0)
903 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
904
fb003b80 905 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
906 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
907 return;
908
e14808b4
MG
909 /*
910 * Do not set pte_numa if the current running node is rate-limited.
911 * This loses statistics on the fault but if we are unwilling to
912 * migrate to this node, it is less likely we can do useful work
913 */
914 if (migrate_ratelimited(numa_node_id()))
915 return;
916
9f40604c
MG
917 start = mm->numa_scan_offset;
918 pages = sysctl_numa_balancing_scan_size;
919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
920 if (!pages)
921 return;
cbee9f88 922
6e5fb223 923 down_read(&mm->mmap_sem);
9f40604c 924 vma = find_vma(mm, start);
6e5fb223
PZ
925 if (!vma) {
926 reset_ptenuma_scan(p);
9f40604c 927 start = 0;
6e5fb223
PZ
928 vma = mm->mmap;
929 }
9f40604c 930 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
931 if (!vma_migratable(vma))
932 continue;
933
934 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 935 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
936 continue;
937
9f40604c
MG
938 do {
939 start = max(start, vma->vm_start);
940 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
941 end = min(end, vma->vm_end);
942 pages -= change_prot_numa(vma, start, end);
6e5fb223 943
9f40604c
MG
944 start = end;
945 if (pages <= 0)
946 goto out;
947 } while (end != vma->vm_end);
cbee9f88 948 }
6e5fb223 949
9f40604c 950out:
6e5fb223
PZ
951 /*
952 * It is possible to reach the end of the VMA list but the last few VMAs are
953 * not guaranteed to the vma_migratable. If they are not, we would find the
954 * !migratable VMA on the next scan but not reset the scanner to the start
955 * so check it now.
956 */
957 if (vma)
9f40604c 958 mm->numa_scan_offset = start;
6e5fb223
PZ
959 else
960 reset_ptenuma_scan(p);
961 up_read(&mm->mmap_sem);
cbee9f88
PZ
962}
963
964/*
965 * Drive the periodic memory faults..
966 */
967void task_tick_numa(struct rq *rq, struct task_struct *curr)
968{
969 struct callback_head *work = &curr->numa_work;
970 u64 period, now;
971
972 /*
973 * We don't care about NUMA placement if we don't have memory.
974 */
975 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
976 return;
977
978 /*
979 * Using runtime rather than walltime has the dual advantage that
980 * we (mostly) drive the selection from busy threads and that the
981 * task needs to have done some actual work before we bother with
982 * NUMA placement.
983 */
984 now = curr->se.sum_exec_runtime;
985 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
986
987 if (now - curr->node_stamp > period) {
4b96a29b
PZ
988 if (!curr->node_stamp)
989 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
990 curr->node_stamp = now;
991
992 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
993 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
994 task_work_add(curr, work, true);
995 }
996 }
997}
998#else
999static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1000{
1001}
1002#endif /* CONFIG_NUMA_BALANCING */
1003
30cfdcfc
DA
1004static void
1005account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006{
1007 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1008 if (!parent_entity(se))
029632fb 1009 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1010#ifdef CONFIG_SMP
1011 if (entity_is_task(se))
eb95308e 1012 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1013#endif
30cfdcfc 1014 cfs_rq->nr_running++;
30cfdcfc
DA
1015}
1016
1017static void
1018account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1019{
1020 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1021 if (!parent_entity(se))
029632fb 1022 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1023 if (entity_is_task(se))
b87f1724 1024 list_del_init(&se->group_node);
30cfdcfc 1025 cfs_rq->nr_running--;
30cfdcfc
DA
1026}
1027
3ff6dcac
YZ
1028#ifdef CONFIG_FAIR_GROUP_SCHED
1029# ifdef CONFIG_SMP
cf5f0acf
PZ
1030static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1031{
1032 long tg_weight;
1033
1034 /*
1035 * Use this CPU's actual weight instead of the last load_contribution
1036 * to gain a more accurate current total weight. See
1037 * update_cfs_rq_load_contribution().
1038 */
82958366
PT
1039 tg_weight = atomic64_read(&tg->load_avg);
1040 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1041 tg_weight += cfs_rq->load.weight;
1042
1043 return tg_weight;
1044}
1045
6d5ab293 1046static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1047{
cf5f0acf 1048 long tg_weight, load, shares;
3ff6dcac 1049
cf5f0acf 1050 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1051 load = cfs_rq->load.weight;
3ff6dcac 1052
3ff6dcac 1053 shares = (tg->shares * load);
cf5f0acf
PZ
1054 if (tg_weight)
1055 shares /= tg_weight;
3ff6dcac
YZ
1056
1057 if (shares < MIN_SHARES)
1058 shares = MIN_SHARES;
1059 if (shares > tg->shares)
1060 shares = tg->shares;
1061
1062 return shares;
1063}
3ff6dcac 1064# else /* CONFIG_SMP */
6d5ab293 1065static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1066{
1067 return tg->shares;
1068}
3ff6dcac 1069# endif /* CONFIG_SMP */
2069dd75
PZ
1070static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1071 unsigned long weight)
1072{
19e5eebb
PT
1073 if (se->on_rq) {
1074 /* commit outstanding execution time */
1075 if (cfs_rq->curr == se)
1076 update_curr(cfs_rq);
2069dd75 1077 account_entity_dequeue(cfs_rq, se);
19e5eebb 1078 }
2069dd75
PZ
1079
1080 update_load_set(&se->load, weight);
1081
1082 if (se->on_rq)
1083 account_entity_enqueue(cfs_rq, se);
1084}
1085
82958366
PT
1086static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1087
6d5ab293 1088static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1089{
1090 struct task_group *tg;
1091 struct sched_entity *se;
3ff6dcac 1092 long shares;
2069dd75 1093
2069dd75
PZ
1094 tg = cfs_rq->tg;
1095 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1096 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1097 return;
3ff6dcac
YZ
1098#ifndef CONFIG_SMP
1099 if (likely(se->load.weight == tg->shares))
1100 return;
1101#endif
6d5ab293 1102 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1103
1104 reweight_entity(cfs_rq_of(se), se, shares);
1105}
1106#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1107static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109}
1110#endif /* CONFIG_FAIR_GROUP_SCHED */
1111
f4e26b12
PT
1112/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1113#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1114/*
1115 * We choose a half-life close to 1 scheduling period.
1116 * Note: The tables below are dependent on this value.
1117 */
1118#define LOAD_AVG_PERIOD 32
1119#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1120#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1121
1122/* Precomputed fixed inverse multiplies for multiplication by y^n */
1123static const u32 runnable_avg_yN_inv[] = {
1124 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1125 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1126 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1127 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1128 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1129 0x85aac367, 0x82cd8698,
1130};
1131
1132/*
1133 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1134 * over-estimates when re-combining.
1135 */
1136static const u32 runnable_avg_yN_sum[] = {
1137 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1138 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1139 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1140};
1141
9d85f21c
PT
1142/*
1143 * Approximate:
1144 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1145 */
1146static __always_inline u64 decay_load(u64 val, u64 n)
1147{
5b51f2f8
PT
1148 unsigned int local_n;
1149
1150 if (!n)
1151 return val;
1152 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1153 return 0;
1154
1155 /* after bounds checking we can collapse to 32-bit */
1156 local_n = n;
1157
1158 /*
1159 * As y^PERIOD = 1/2, we can combine
1160 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1161 * With a look-up table which covers k^n (n<PERIOD)
1162 *
1163 * To achieve constant time decay_load.
1164 */
1165 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1166 val >>= local_n / LOAD_AVG_PERIOD;
1167 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1168 }
1169
5b51f2f8
PT
1170 val *= runnable_avg_yN_inv[local_n];
1171 /* We don't use SRR here since we always want to round down. */
1172 return val >> 32;
1173}
1174
1175/*
1176 * For updates fully spanning n periods, the contribution to runnable
1177 * average will be: \Sum 1024*y^n
1178 *
1179 * We can compute this reasonably efficiently by combining:
1180 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1181 */
1182static u32 __compute_runnable_contrib(u64 n)
1183{
1184 u32 contrib = 0;
1185
1186 if (likely(n <= LOAD_AVG_PERIOD))
1187 return runnable_avg_yN_sum[n];
1188 else if (unlikely(n >= LOAD_AVG_MAX_N))
1189 return LOAD_AVG_MAX;
1190
1191 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1192 do {
1193 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1194 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1195
1196 n -= LOAD_AVG_PERIOD;
1197 } while (n > LOAD_AVG_PERIOD);
1198
1199 contrib = decay_load(contrib, n);
1200 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1201}
1202
1203/*
1204 * We can represent the historical contribution to runnable average as the
1205 * coefficients of a geometric series. To do this we sub-divide our runnable
1206 * history into segments of approximately 1ms (1024us); label the segment that
1207 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1208 *
1209 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1210 * p0 p1 p2
1211 * (now) (~1ms ago) (~2ms ago)
1212 *
1213 * Let u_i denote the fraction of p_i that the entity was runnable.
1214 *
1215 * We then designate the fractions u_i as our co-efficients, yielding the
1216 * following representation of historical load:
1217 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1218 *
1219 * We choose y based on the with of a reasonably scheduling period, fixing:
1220 * y^32 = 0.5
1221 *
1222 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1223 * approximately half as much as the contribution to load within the last ms
1224 * (u_0).
1225 *
1226 * When a period "rolls over" and we have new u_0`, multiplying the previous
1227 * sum again by y is sufficient to update:
1228 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1229 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1230 */
1231static __always_inline int __update_entity_runnable_avg(u64 now,
1232 struct sched_avg *sa,
1233 int runnable)
1234{
5b51f2f8
PT
1235 u64 delta, periods;
1236 u32 runnable_contrib;
9d85f21c
PT
1237 int delta_w, decayed = 0;
1238
1239 delta = now - sa->last_runnable_update;
1240 /*
1241 * This should only happen when time goes backwards, which it
1242 * unfortunately does during sched clock init when we swap over to TSC.
1243 */
1244 if ((s64)delta < 0) {
1245 sa->last_runnable_update = now;
1246 return 0;
1247 }
1248
1249 /*
1250 * Use 1024ns as the unit of measurement since it's a reasonable
1251 * approximation of 1us and fast to compute.
1252 */
1253 delta >>= 10;
1254 if (!delta)
1255 return 0;
1256 sa->last_runnable_update = now;
1257
1258 /* delta_w is the amount already accumulated against our next period */
1259 delta_w = sa->runnable_avg_period % 1024;
1260 if (delta + delta_w >= 1024) {
1261 /* period roll-over */
1262 decayed = 1;
1263
1264 /*
1265 * Now that we know we're crossing a period boundary, figure
1266 * out how much from delta we need to complete the current
1267 * period and accrue it.
1268 */
1269 delta_w = 1024 - delta_w;
5b51f2f8
PT
1270 if (runnable)
1271 sa->runnable_avg_sum += delta_w;
1272 sa->runnable_avg_period += delta_w;
1273
1274 delta -= delta_w;
1275
1276 /* Figure out how many additional periods this update spans */
1277 periods = delta / 1024;
1278 delta %= 1024;
1279
1280 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1281 periods + 1);
1282 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1283 periods + 1);
1284
1285 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1286 runnable_contrib = __compute_runnable_contrib(periods);
1287 if (runnable)
1288 sa->runnable_avg_sum += runnable_contrib;
1289 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1290 }
1291
1292 /* Remainder of delta accrued against u_0` */
1293 if (runnable)
1294 sa->runnable_avg_sum += delta;
1295 sa->runnable_avg_period += delta;
1296
1297 return decayed;
1298}
1299
9ee474f5 1300/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1301static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1302{
1303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1304 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1305
1306 decays -= se->avg.decay_count;
1307 if (!decays)
aff3e498 1308 return 0;
9ee474f5
PT
1309
1310 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1311 se->avg.decay_count = 0;
aff3e498
PT
1312
1313 return decays;
9ee474f5
PT
1314}
1315
c566e8e9
PT
1316#ifdef CONFIG_FAIR_GROUP_SCHED
1317static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1318 int force_update)
1319{
1320 struct task_group *tg = cfs_rq->tg;
1321 s64 tg_contrib;
1322
1323 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1324 tg_contrib -= cfs_rq->tg_load_contrib;
1325
1326 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1327 atomic64_add(tg_contrib, &tg->load_avg);
1328 cfs_rq->tg_load_contrib += tg_contrib;
1329 }
1330}
8165e145 1331
bb17f655
PT
1332/*
1333 * Aggregate cfs_rq runnable averages into an equivalent task_group
1334 * representation for computing load contributions.
1335 */
1336static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1337 struct cfs_rq *cfs_rq)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 long contrib;
1341
1342 /* The fraction of a cpu used by this cfs_rq */
1343 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1344 sa->runnable_avg_period + 1);
1345 contrib -= cfs_rq->tg_runnable_contrib;
1346
1347 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1348 atomic_add(contrib, &tg->runnable_avg);
1349 cfs_rq->tg_runnable_contrib += contrib;
1350 }
1351}
1352
8165e145
PT
1353static inline void __update_group_entity_contrib(struct sched_entity *se)
1354{
1355 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1356 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1357 int runnable_avg;
1358
8165e145
PT
1359 u64 contrib;
1360
1361 contrib = cfs_rq->tg_load_contrib * tg->shares;
1362 se->avg.load_avg_contrib = div64_u64(contrib,
1363 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1364
1365 /*
1366 * For group entities we need to compute a correction term in the case
1367 * that they are consuming <1 cpu so that we would contribute the same
1368 * load as a task of equal weight.
1369 *
1370 * Explicitly co-ordinating this measurement would be expensive, but
1371 * fortunately the sum of each cpus contribution forms a usable
1372 * lower-bound on the true value.
1373 *
1374 * Consider the aggregate of 2 contributions. Either they are disjoint
1375 * (and the sum represents true value) or they are disjoint and we are
1376 * understating by the aggregate of their overlap.
1377 *
1378 * Extending this to N cpus, for a given overlap, the maximum amount we
1379 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1380 * cpus that overlap for this interval and w_i is the interval width.
1381 *
1382 * On a small machine; the first term is well-bounded which bounds the
1383 * total error since w_i is a subset of the period. Whereas on a
1384 * larger machine, while this first term can be larger, if w_i is the
1385 * of consequential size guaranteed to see n_i*w_i quickly converge to
1386 * our upper bound of 1-cpu.
1387 */
1388 runnable_avg = atomic_read(&tg->runnable_avg);
1389 if (runnable_avg < NICE_0_LOAD) {
1390 se->avg.load_avg_contrib *= runnable_avg;
1391 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1392 }
8165e145 1393}
c566e8e9
PT
1394#else
1395static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1396 int force_update) {}
bb17f655
PT
1397static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1398 struct cfs_rq *cfs_rq) {}
8165e145 1399static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1400#endif
1401
8165e145
PT
1402static inline void __update_task_entity_contrib(struct sched_entity *se)
1403{
1404 u32 contrib;
1405
1406 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1407 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1408 contrib /= (se->avg.runnable_avg_period + 1);
1409 se->avg.load_avg_contrib = scale_load(contrib);
1410}
1411
2dac754e
PT
1412/* Compute the current contribution to load_avg by se, return any delta */
1413static long __update_entity_load_avg_contrib(struct sched_entity *se)
1414{
1415 long old_contrib = se->avg.load_avg_contrib;
1416
8165e145
PT
1417 if (entity_is_task(se)) {
1418 __update_task_entity_contrib(se);
1419 } else {
bb17f655 1420 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1421 __update_group_entity_contrib(se);
1422 }
2dac754e
PT
1423
1424 return se->avg.load_avg_contrib - old_contrib;
1425}
1426
9ee474f5
PT
1427static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1428 long load_contrib)
1429{
1430 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1431 cfs_rq->blocked_load_avg -= load_contrib;
1432 else
1433 cfs_rq->blocked_load_avg = 0;
1434}
1435
f1b17280
PT
1436static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1437
9d85f21c 1438/* Update a sched_entity's runnable average */
9ee474f5
PT
1439static inline void update_entity_load_avg(struct sched_entity *se,
1440 int update_cfs_rq)
9d85f21c 1441{
2dac754e
PT
1442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1443 long contrib_delta;
f1b17280 1444 u64 now;
2dac754e 1445
f1b17280
PT
1446 /*
1447 * For a group entity we need to use their owned cfs_rq_clock_task() in
1448 * case they are the parent of a throttled hierarchy.
1449 */
1450 if (entity_is_task(se))
1451 now = cfs_rq_clock_task(cfs_rq);
1452 else
1453 now = cfs_rq_clock_task(group_cfs_rq(se));
1454
1455 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1456 return;
1457
1458 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1459
1460 if (!update_cfs_rq)
1461 return;
1462
2dac754e
PT
1463 if (se->on_rq)
1464 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1465 else
1466 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1467}
1468
1469/*
1470 * Decay the load contributed by all blocked children and account this so that
1471 * their contribution may appropriately discounted when they wake up.
1472 */
aff3e498 1473static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1474{
f1b17280 1475 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1476 u64 decays;
1477
1478 decays = now - cfs_rq->last_decay;
aff3e498 1479 if (!decays && !force_update)
9ee474f5
PT
1480 return;
1481
aff3e498
PT
1482 if (atomic64_read(&cfs_rq->removed_load)) {
1483 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1484 subtract_blocked_load_contrib(cfs_rq, removed_load);
1485 }
9ee474f5 1486
aff3e498
PT
1487 if (decays) {
1488 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1489 decays);
1490 atomic64_add(decays, &cfs_rq->decay_counter);
1491 cfs_rq->last_decay = now;
1492 }
c566e8e9
PT
1493
1494 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1495}
18bf2805
BS
1496
1497static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1498{
1499 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1500 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1501}
2dac754e
PT
1502
1503/* Add the load generated by se into cfs_rq's child load-average */
1504static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1505 struct sched_entity *se,
1506 int wakeup)
2dac754e 1507{
aff3e498
PT
1508 /*
1509 * We track migrations using entity decay_count <= 0, on a wake-up
1510 * migration we use a negative decay count to track the remote decays
1511 * accumulated while sleeping.
1512 */
1513 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1514 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1515 if (se->avg.decay_count) {
1516 /*
1517 * In a wake-up migration we have to approximate the
1518 * time sleeping. This is because we can't synchronize
1519 * clock_task between the two cpus, and it is not
1520 * guaranteed to be read-safe. Instead, we can
1521 * approximate this using our carried decays, which are
1522 * explicitly atomically readable.
1523 */
1524 se->avg.last_runnable_update -= (-se->avg.decay_count)
1525 << 20;
1526 update_entity_load_avg(se, 0);
1527 /* Indicate that we're now synchronized and on-rq */
1528 se->avg.decay_count = 0;
1529 }
9ee474f5
PT
1530 wakeup = 0;
1531 } else {
1532 __synchronize_entity_decay(se);
1533 }
1534
aff3e498
PT
1535 /* migrated tasks did not contribute to our blocked load */
1536 if (wakeup) {
9ee474f5 1537 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1538 update_entity_load_avg(se, 0);
1539 }
9ee474f5 1540
2dac754e 1541 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1542 /* we force update consideration on load-balancer moves */
1543 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1544}
1545
9ee474f5
PT
1546/*
1547 * Remove se's load from this cfs_rq child load-average, if the entity is
1548 * transitioning to a blocked state we track its projected decay using
1549 * blocked_load_avg.
1550 */
2dac754e 1551static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1552 struct sched_entity *se,
1553 int sleep)
2dac754e 1554{
9ee474f5 1555 update_entity_load_avg(se, 1);
aff3e498
PT
1556 /* we force update consideration on load-balancer moves */
1557 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1558
2dac754e 1559 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1560 if (sleep) {
1561 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1562 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1563 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1564}
9d85f21c 1565#else
9ee474f5
PT
1566static inline void update_entity_load_avg(struct sched_entity *se,
1567 int update_cfs_rq) {}
18bf2805 1568static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1569static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1570 struct sched_entity *se,
1571 int wakeup) {}
2dac754e 1572static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1573 struct sched_entity *se,
1574 int sleep) {}
aff3e498
PT
1575static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1576 int force_update) {}
9d85f21c
PT
1577#endif
1578
2396af69 1579static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1580{
bf0f6f24 1581#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1582 struct task_struct *tsk = NULL;
1583
1584 if (entity_is_task(se))
1585 tsk = task_of(se);
1586
41acab88
LDM
1587 if (se->statistics.sleep_start) {
1588 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1589
1590 if ((s64)delta < 0)
1591 delta = 0;
1592
41acab88
LDM
1593 if (unlikely(delta > se->statistics.sleep_max))
1594 se->statistics.sleep_max = delta;
bf0f6f24 1595
8c79a045 1596 se->statistics.sleep_start = 0;
41acab88 1597 se->statistics.sum_sleep_runtime += delta;
9745512c 1598
768d0c27 1599 if (tsk) {
e414314c 1600 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1601 trace_sched_stat_sleep(tsk, delta);
1602 }
bf0f6f24 1603 }
41acab88
LDM
1604 if (se->statistics.block_start) {
1605 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1606
1607 if ((s64)delta < 0)
1608 delta = 0;
1609
41acab88
LDM
1610 if (unlikely(delta > se->statistics.block_max))
1611 se->statistics.block_max = delta;
bf0f6f24 1612
8c79a045 1613 se->statistics.block_start = 0;
41acab88 1614 se->statistics.sum_sleep_runtime += delta;
30084fbd 1615
e414314c 1616 if (tsk) {
8f0dfc34 1617 if (tsk->in_iowait) {
41acab88
LDM
1618 se->statistics.iowait_sum += delta;
1619 se->statistics.iowait_count++;
768d0c27 1620 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1621 }
1622
b781a602
AV
1623 trace_sched_stat_blocked(tsk, delta);
1624
e414314c
PZ
1625 /*
1626 * Blocking time is in units of nanosecs, so shift by
1627 * 20 to get a milliseconds-range estimation of the
1628 * amount of time that the task spent sleeping:
1629 */
1630 if (unlikely(prof_on == SLEEP_PROFILING)) {
1631 profile_hits(SLEEP_PROFILING,
1632 (void *)get_wchan(tsk),
1633 delta >> 20);
1634 }
1635 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1636 }
bf0f6f24
IM
1637 }
1638#endif
1639}
1640
ddc97297
PZ
1641static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1642{
1643#ifdef CONFIG_SCHED_DEBUG
1644 s64 d = se->vruntime - cfs_rq->min_vruntime;
1645
1646 if (d < 0)
1647 d = -d;
1648
1649 if (d > 3*sysctl_sched_latency)
1650 schedstat_inc(cfs_rq, nr_spread_over);
1651#endif
1652}
1653
aeb73b04
PZ
1654static void
1655place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1656{
1af5f730 1657 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1658
2cb8600e
PZ
1659 /*
1660 * The 'current' period is already promised to the current tasks,
1661 * however the extra weight of the new task will slow them down a
1662 * little, place the new task so that it fits in the slot that
1663 * stays open at the end.
1664 */
94dfb5e7 1665 if (initial && sched_feat(START_DEBIT))
f9c0b095 1666 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1667
a2e7a7eb 1668 /* sleeps up to a single latency don't count. */
5ca9880c 1669 if (!initial) {
a2e7a7eb 1670 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1671
a2e7a7eb
MG
1672 /*
1673 * Halve their sleep time's effect, to allow
1674 * for a gentler effect of sleepers:
1675 */
1676 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1677 thresh >>= 1;
51e0304c 1678
a2e7a7eb 1679 vruntime -= thresh;
aeb73b04
PZ
1680 }
1681
b5d9d734 1682 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1683 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1684}
1685
d3d9dc33
PT
1686static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1687
bf0f6f24 1688static void
88ec22d3 1689enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1690{
88ec22d3
PZ
1691 /*
1692 * Update the normalized vruntime before updating min_vruntime
1693 * through callig update_curr().
1694 */
371fd7e7 1695 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1696 se->vruntime += cfs_rq->min_vruntime;
1697
bf0f6f24 1698 /*
a2a2d680 1699 * Update run-time statistics of the 'current'.
bf0f6f24 1700 */
b7cc0896 1701 update_curr(cfs_rq);
f269ae04 1702 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1703 account_entity_enqueue(cfs_rq, se);
1704 update_cfs_shares(cfs_rq);
bf0f6f24 1705
88ec22d3 1706 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1707 place_entity(cfs_rq, se, 0);
2396af69 1708 enqueue_sleeper(cfs_rq, se);
e9acbff6 1709 }
bf0f6f24 1710
d2417e5a 1711 update_stats_enqueue(cfs_rq, se);
ddc97297 1712 check_spread(cfs_rq, se);
83b699ed
SV
1713 if (se != cfs_rq->curr)
1714 __enqueue_entity(cfs_rq, se);
2069dd75 1715 se->on_rq = 1;
3d4b47b4 1716
d3d9dc33 1717 if (cfs_rq->nr_running == 1) {
3d4b47b4 1718 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1719 check_enqueue_throttle(cfs_rq);
1720 }
bf0f6f24
IM
1721}
1722
2c13c919 1723static void __clear_buddies_last(struct sched_entity *se)
2002c695 1724{
2c13c919
RR
1725 for_each_sched_entity(se) {
1726 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1727 if (cfs_rq->last == se)
1728 cfs_rq->last = NULL;
1729 else
1730 break;
1731 }
1732}
2002c695 1733
2c13c919
RR
1734static void __clear_buddies_next(struct sched_entity *se)
1735{
1736 for_each_sched_entity(se) {
1737 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1738 if (cfs_rq->next == se)
1739 cfs_rq->next = NULL;
1740 else
1741 break;
1742 }
2002c695
PZ
1743}
1744
ac53db59
RR
1745static void __clear_buddies_skip(struct sched_entity *se)
1746{
1747 for_each_sched_entity(se) {
1748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749 if (cfs_rq->skip == se)
1750 cfs_rq->skip = NULL;
1751 else
1752 break;
1753 }
1754}
1755
a571bbea
PZ
1756static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1757{
2c13c919
RR
1758 if (cfs_rq->last == se)
1759 __clear_buddies_last(se);
1760
1761 if (cfs_rq->next == se)
1762 __clear_buddies_next(se);
ac53db59
RR
1763
1764 if (cfs_rq->skip == se)
1765 __clear_buddies_skip(se);
a571bbea
PZ
1766}
1767
6c16a6dc 1768static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1769
bf0f6f24 1770static void
371fd7e7 1771dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1772{
a2a2d680
DA
1773 /*
1774 * Update run-time statistics of the 'current'.
1775 */
1776 update_curr(cfs_rq);
17bc14b7 1777 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1778
19b6a2e3 1779 update_stats_dequeue(cfs_rq, se);
371fd7e7 1780 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1781#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1782 if (entity_is_task(se)) {
1783 struct task_struct *tsk = task_of(se);
1784
1785 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1786 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1787 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1788 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1789 }
db36cc7d 1790#endif
67e9fb2a
PZ
1791 }
1792
2002c695 1793 clear_buddies(cfs_rq, se);
4793241b 1794
83b699ed 1795 if (se != cfs_rq->curr)
30cfdcfc 1796 __dequeue_entity(cfs_rq, se);
17bc14b7 1797 se->on_rq = 0;
30cfdcfc 1798 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1799
1800 /*
1801 * Normalize the entity after updating the min_vruntime because the
1802 * update can refer to the ->curr item and we need to reflect this
1803 * movement in our normalized position.
1804 */
371fd7e7 1805 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1806 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1807
d8b4986d
PT
1808 /* return excess runtime on last dequeue */
1809 return_cfs_rq_runtime(cfs_rq);
1810
1e876231 1811 update_min_vruntime(cfs_rq);
17bc14b7 1812 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1813}
1814
1815/*
1816 * Preempt the current task with a newly woken task if needed:
1817 */
7c92e54f 1818static void
2e09bf55 1819check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1820{
11697830 1821 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1822 struct sched_entity *se;
1823 s64 delta;
11697830 1824
6d0f0ebd 1825 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1826 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1827 if (delta_exec > ideal_runtime) {
bf0f6f24 1828 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1829 /*
1830 * The current task ran long enough, ensure it doesn't get
1831 * re-elected due to buddy favours.
1832 */
1833 clear_buddies(cfs_rq, curr);
f685ceac
MG
1834 return;
1835 }
1836
1837 /*
1838 * Ensure that a task that missed wakeup preemption by a
1839 * narrow margin doesn't have to wait for a full slice.
1840 * This also mitigates buddy induced latencies under load.
1841 */
f685ceac
MG
1842 if (delta_exec < sysctl_sched_min_granularity)
1843 return;
1844
f4cfb33e
WX
1845 se = __pick_first_entity(cfs_rq);
1846 delta = curr->vruntime - se->vruntime;
f685ceac 1847
f4cfb33e
WX
1848 if (delta < 0)
1849 return;
d7d82944 1850
f4cfb33e
WX
1851 if (delta > ideal_runtime)
1852 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1853}
1854
83b699ed 1855static void
8494f412 1856set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1857{
83b699ed
SV
1858 /* 'current' is not kept within the tree. */
1859 if (se->on_rq) {
1860 /*
1861 * Any task has to be enqueued before it get to execute on
1862 * a CPU. So account for the time it spent waiting on the
1863 * runqueue.
1864 */
1865 update_stats_wait_end(cfs_rq, se);
1866 __dequeue_entity(cfs_rq, se);
1867 }
1868
79303e9e 1869 update_stats_curr_start(cfs_rq, se);
429d43bc 1870 cfs_rq->curr = se;
eba1ed4b
IM
1871#ifdef CONFIG_SCHEDSTATS
1872 /*
1873 * Track our maximum slice length, if the CPU's load is at
1874 * least twice that of our own weight (i.e. dont track it
1875 * when there are only lesser-weight tasks around):
1876 */
495eca49 1877 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1878 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1879 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1880 }
1881#endif
4a55b450 1882 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1883}
1884
3f3a4904
PZ
1885static int
1886wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1887
ac53db59
RR
1888/*
1889 * Pick the next process, keeping these things in mind, in this order:
1890 * 1) keep things fair between processes/task groups
1891 * 2) pick the "next" process, since someone really wants that to run
1892 * 3) pick the "last" process, for cache locality
1893 * 4) do not run the "skip" process, if something else is available
1894 */
f4b6755f 1895static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1896{
ac53db59 1897 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1898 struct sched_entity *left = se;
f4b6755f 1899
ac53db59
RR
1900 /*
1901 * Avoid running the skip buddy, if running something else can
1902 * be done without getting too unfair.
1903 */
1904 if (cfs_rq->skip == se) {
1905 struct sched_entity *second = __pick_next_entity(se);
1906 if (second && wakeup_preempt_entity(second, left) < 1)
1907 se = second;
1908 }
aa2ac252 1909
f685ceac
MG
1910 /*
1911 * Prefer last buddy, try to return the CPU to a preempted task.
1912 */
1913 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1914 se = cfs_rq->last;
1915
ac53db59
RR
1916 /*
1917 * Someone really wants this to run. If it's not unfair, run it.
1918 */
1919 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1920 se = cfs_rq->next;
1921
f685ceac 1922 clear_buddies(cfs_rq, se);
4793241b
PZ
1923
1924 return se;
aa2ac252
PZ
1925}
1926
d3d9dc33
PT
1927static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1928
ab6cde26 1929static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1930{
1931 /*
1932 * If still on the runqueue then deactivate_task()
1933 * was not called and update_curr() has to be done:
1934 */
1935 if (prev->on_rq)
b7cc0896 1936 update_curr(cfs_rq);
bf0f6f24 1937
d3d9dc33
PT
1938 /* throttle cfs_rqs exceeding runtime */
1939 check_cfs_rq_runtime(cfs_rq);
1940
ddc97297 1941 check_spread(cfs_rq, prev);
30cfdcfc 1942 if (prev->on_rq) {
5870db5b 1943 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1944 /* Put 'current' back into the tree. */
1945 __enqueue_entity(cfs_rq, prev);
9d85f21c 1946 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1947 update_entity_load_avg(prev, 1);
30cfdcfc 1948 }
429d43bc 1949 cfs_rq->curr = NULL;
bf0f6f24
IM
1950}
1951
8f4d37ec
PZ
1952static void
1953entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1954{
bf0f6f24 1955 /*
30cfdcfc 1956 * Update run-time statistics of the 'current'.
bf0f6f24 1957 */
30cfdcfc 1958 update_curr(cfs_rq);
bf0f6f24 1959
9d85f21c
PT
1960 /*
1961 * Ensure that runnable average is periodically updated.
1962 */
9ee474f5 1963 update_entity_load_avg(curr, 1);
aff3e498 1964 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1965
8f4d37ec
PZ
1966#ifdef CONFIG_SCHED_HRTICK
1967 /*
1968 * queued ticks are scheduled to match the slice, so don't bother
1969 * validating it and just reschedule.
1970 */
983ed7a6
HH
1971 if (queued) {
1972 resched_task(rq_of(cfs_rq)->curr);
1973 return;
1974 }
8f4d37ec
PZ
1975 /*
1976 * don't let the period tick interfere with the hrtick preemption
1977 */
1978 if (!sched_feat(DOUBLE_TICK) &&
1979 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1980 return;
1981#endif
1982
2c2efaed 1983 if (cfs_rq->nr_running > 1)
2e09bf55 1984 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1985}
1986
ab84d31e
PT
1987
1988/**************************************************
1989 * CFS bandwidth control machinery
1990 */
1991
1992#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1993
1994#ifdef HAVE_JUMP_LABEL
c5905afb 1995static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1996
1997static inline bool cfs_bandwidth_used(void)
1998{
c5905afb 1999 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2000}
2001
2002void account_cfs_bandwidth_used(int enabled, int was_enabled)
2003{
2004 /* only need to count groups transitioning between enabled/!enabled */
2005 if (enabled && !was_enabled)
c5905afb 2006 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2007 else if (!enabled && was_enabled)
c5905afb 2008 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2009}
2010#else /* HAVE_JUMP_LABEL */
2011static bool cfs_bandwidth_used(void)
2012{
2013 return true;
2014}
2015
2016void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2017#endif /* HAVE_JUMP_LABEL */
2018
ab84d31e
PT
2019/*
2020 * default period for cfs group bandwidth.
2021 * default: 0.1s, units: nanoseconds
2022 */
2023static inline u64 default_cfs_period(void)
2024{
2025 return 100000000ULL;
2026}
ec12cb7f
PT
2027
2028static inline u64 sched_cfs_bandwidth_slice(void)
2029{
2030 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2031}
2032
a9cf55b2
PT
2033/*
2034 * Replenish runtime according to assigned quota and update expiration time.
2035 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2036 * additional synchronization around rq->lock.
2037 *
2038 * requires cfs_b->lock
2039 */
029632fb 2040void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2041{
2042 u64 now;
2043
2044 if (cfs_b->quota == RUNTIME_INF)
2045 return;
2046
2047 now = sched_clock_cpu(smp_processor_id());
2048 cfs_b->runtime = cfs_b->quota;
2049 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2050}
2051
029632fb
PZ
2052static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2053{
2054 return &tg->cfs_bandwidth;
2055}
2056
f1b17280
PT
2057/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2058static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2059{
2060 if (unlikely(cfs_rq->throttle_count))
2061 return cfs_rq->throttled_clock_task;
2062
2063 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2064}
2065
85dac906
PT
2066/* returns 0 on failure to allocate runtime */
2067static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2068{
2069 struct task_group *tg = cfs_rq->tg;
2070 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2071 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2072
2073 /* note: this is a positive sum as runtime_remaining <= 0 */
2074 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2075
2076 raw_spin_lock(&cfs_b->lock);
2077 if (cfs_b->quota == RUNTIME_INF)
2078 amount = min_amount;
58088ad0 2079 else {
a9cf55b2
PT
2080 /*
2081 * If the bandwidth pool has become inactive, then at least one
2082 * period must have elapsed since the last consumption.
2083 * Refresh the global state and ensure bandwidth timer becomes
2084 * active.
2085 */
2086 if (!cfs_b->timer_active) {
2087 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2088 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2089 }
58088ad0
PT
2090
2091 if (cfs_b->runtime > 0) {
2092 amount = min(cfs_b->runtime, min_amount);
2093 cfs_b->runtime -= amount;
2094 cfs_b->idle = 0;
2095 }
ec12cb7f 2096 }
a9cf55b2 2097 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2098 raw_spin_unlock(&cfs_b->lock);
2099
2100 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2101 /*
2102 * we may have advanced our local expiration to account for allowed
2103 * spread between our sched_clock and the one on which runtime was
2104 * issued.
2105 */
2106 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2107 cfs_rq->runtime_expires = expires;
85dac906
PT
2108
2109 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2110}
2111
a9cf55b2
PT
2112/*
2113 * Note: This depends on the synchronization provided by sched_clock and the
2114 * fact that rq->clock snapshots this value.
2115 */
2116static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2117{
a9cf55b2
PT
2118 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2119 struct rq *rq = rq_of(cfs_rq);
2120
2121 /* if the deadline is ahead of our clock, nothing to do */
2122 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2123 return;
2124
a9cf55b2
PT
2125 if (cfs_rq->runtime_remaining < 0)
2126 return;
2127
2128 /*
2129 * If the local deadline has passed we have to consider the
2130 * possibility that our sched_clock is 'fast' and the global deadline
2131 * has not truly expired.
2132 *
2133 * Fortunately we can check determine whether this the case by checking
2134 * whether the global deadline has advanced.
2135 */
2136
2137 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2138 /* extend local deadline, drift is bounded above by 2 ticks */
2139 cfs_rq->runtime_expires += TICK_NSEC;
2140 } else {
2141 /* global deadline is ahead, expiration has passed */
2142 cfs_rq->runtime_remaining = 0;
2143 }
2144}
2145
2146static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2147 unsigned long delta_exec)
2148{
2149 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2150 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2151 expire_cfs_rq_runtime(cfs_rq);
2152
2153 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2154 return;
2155
85dac906
PT
2156 /*
2157 * if we're unable to extend our runtime we resched so that the active
2158 * hierarchy can be throttled
2159 */
2160 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2161 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2162}
2163
6c16a6dc
PZ
2164static __always_inline
2165void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2166{
56f570e5 2167 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2168 return;
2169
2170 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2171}
2172
85dac906
PT
2173static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2174{
56f570e5 2175 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2176}
2177
64660c86
PT
2178/* check whether cfs_rq, or any parent, is throttled */
2179static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2180{
56f570e5 2181 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2182}
2183
2184/*
2185 * Ensure that neither of the group entities corresponding to src_cpu or
2186 * dest_cpu are members of a throttled hierarchy when performing group
2187 * load-balance operations.
2188 */
2189static inline int throttled_lb_pair(struct task_group *tg,
2190 int src_cpu, int dest_cpu)
2191{
2192 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2193
2194 src_cfs_rq = tg->cfs_rq[src_cpu];
2195 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2196
2197 return throttled_hierarchy(src_cfs_rq) ||
2198 throttled_hierarchy(dest_cfs_rq);
2199}
2200
2201/* updated child weight may affect parent so we have to do this bottom up */
2202static int tg_unthrottle_up(struct task_group *tg, void *data)
2203{
2204 struct rq *rq = data;
2205 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2206
2207 cfs_rq->throttle_count--;
2208#ifdef CONFIG_SMP
2209 if (!cfs_rq->throttle_count) {
f1b17280
PT
2210 /* adjust cfs_rq_clock_task() */
2211 cfs_rq->throttled_clock_task_time += rq->clock_task -
2212 cfs_rq->throttled_clock_task;
64660c86
PT
2213 }
2214#endif
2215
2216 return 0;
2217}
2218
2219static int tg_throttle_down(struct task_group *tg, void *data)
2220{
2221 struct rq *rq = data;
2222 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2223
82958366
PT
2224 /* group is entering throttled state, stop time */
2225 if (!cfs_rq->throttle_count)
f1b17280 2226 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2227 cfs_rq->throttle_count++;
2228
2229 return 0;
2230}
2231
d3d9dc33 2232static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2233{
2234 struct rq *rq = rq_of(cfs_rq);
2235 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2236 struct sched_entity *se;
2237 long task_delta, dequeue = 1;
2238
2239 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2240
f1b17280 2241 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2242 rcu_read_lock();
2243 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2244 rcu_read_unlock();
85dac906
PT
2245
2246 task_delta = cfs_rq->h_nr_running;
2247 for_each_sched_entity(se) {
2248 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2249 /* throttled entity or throttle-on-deactivate */
2250 if (!se->on_rq)
2251 break;
2252
2253 if (dequeue)
2254 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2255 qcfs_rq->h_nr_running -= task_delta;
2256
2257 if (qcfs_rq->load.weight)
2258 dequeue = 0;
2259 }
2260
2261 if (!se)
2262 rq->nr_running -= task_delta;
2263
2264 cfs_rq->throttled = 1;
f1b17280 2265 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2266 raw_spin_lock(&cfs_b->lock);
2267 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2268 raw_spin_unlock(&cfs_b->lock);
2269}
2270
029632fb 2271void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2272{
2273 struct rq *rq = rq_of(cfs_rq);
2274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2275 struct sched_entity *se;
2276 int enqueue = 1;
2277 long task_delta;
2278
2279 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2280
2281 cfs_rq->throttled = 0;
2282 raw_spin_lock(&cfs_b->lock);
f1b17280 2283 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2284 list_del_rcu(&cfs_rq->throttled_list);
2285 raw_spin_unlock(&cfs_b->lock);
2286
64660c86
PT
2287 update_rq_clock(rq);
2288 /* update hierarchical throttle state */
2289 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2290
671fd9da
PT
2291 if (!cfs_rq->load.weight)
2292 return;
2293
2294 task_delta = cfs_rq->h_nr_running;
2295 for_each_sched_entity(se) {
2296 if (se->on_rq)
2297 enqueue = 0;
2298
2299 cfs_rq = cfs_rq_of(se);
2300 if (enqueue)
2301 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2302 cfs_rq->h_nr_running += task_delta;
2303
2304 if (cfs_rq_throttled(cfs_rq))
2305 break;
2306 }
2307
2308 if (!se)
2309 rq->nr_running += task_delta;
2310
2311 /* determine whether we need to wake up potentially idle cpu */
2312 if (rq->curr == rq->idle && rq->cfs.nr_running)
2313 resched_task(rq->curr);
2314}
2315
2316static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2317 u64 remaining, u64 expires)
2318{
2319 struct cfs_rq *cfs_rq;
2320 u64 runtime = remaining;
2321
2322 rcu_read_lock();
2323 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2324 throttled_list) {
2325 struct rq *rq = rq_of(cfs_rq);
2326
2327 raw_spin_lock(&rq->lock);
2328 if (!cfs_rq_throttled(cfs_rq))
2329 goto next;
2330
2331 runtime = -cfs_rq->runtime_remaining + 1;
2332 if (runtime > remaining)
2333 runtime = remaining;
2334 remaining -= runtime;
2335
2336 cfs_rq->runtime_remaining += runtime;
2337 cfs_rq->runtime_expires = expires;
2338
2339 /* we check whether we're throttled above */
2340 if (cfs_rq->runtime_remaining > 0)
2341 unthrottle_cfs_rq(cfs_rq);
2342
2343next:
2344 raw_spin_unlock(&rq->lock);
2345
2346 if (!remaining)
2347 break;
2348 }
2349 rcu_read_unlock();
2350
2351 return remaining;
2352}
2353
58088ad0
PT
2354/*
2355 * Responsible for refilling a task_group's bandwidth and unthrottling its
2356 * cfs_rqs as appropriate. If there has been no activity within the last
2357 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2358 * used to track this state.
2359 */
2360static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2361{
671fd9da
PT
2362 u64 runtime, runtime_expires;
2363 int idle = 1, throttled;
58088ad0
PT
2364
2365 raw_spin_lock(&cfs_b->lock);
2366 /* no need to continue the timer with no bandwidth constraint */
2367 if (cfs_b->quota == RUNTIME_INF)
2368 goto out_unlock;
2369
671fd9da
PT
2370 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2371 /* idle depends on !throttled (for the case of a large deficit) */
2372 idle = cfs_b->idle && !throttled;
e8da1b18 2373 cfs_b->nr_periods += overrun;
671fd9da 2374
a9cf55b2
PT
2375 /* if we're going inactive then everything else can be deferred */
2376 if (idle)
2377 goto out_unlock;
2378
2379 __refill_cfs_bandwidth_runtime(cfs_b);
2380
671fd9da
PT
2381 if (!throttled) {
2382 /* mark as potentially idle for the upcoming period */
2383 cfs_b->idle = 1;
2384 goto out_unlock;
2385 }
2386
e8da1b18
NR
2387 /* account preceding periods in which throttling occurred */
2388 cfs_b->nr_throttled += overrun;
2389
671fd9da
PT
2390 /*
2391 * There are throttled entities so we must first use the new bandwidth
2392 * to unthrottle them before making it generally available. This
2393 * ensures that all existing debts will be paid before a new cfs_rq is
2394 * allowed to run.
2395 */
2396 runtime = cfs_b->runtime;
2397 runtime_expires = cfs_b->runtime_expires;
2398 cfs_b->runtime = 0;
2399
2400 /*
2401 * This check is repeated as we are holding onto the new bandwidth
2402 * while we unthrottle. This can potentially race with an unthrottled
2403 * group trying to acquire new bandwidth from the global pool.
2404 */
2405 while (throttled && runtime > 0) {
2406 raw_spin_unlock(&cfs_b->lock);
2407 /* we can't nest cfs_b->lock while distributing bandwidth */
2408 runtime = distribute_cfs_runtime(cfs_b, runtime,
2409 runtime_expires);
2410 raw_spin_lock(&cfs_b->lock);
2411
2412 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2413 }
58088ad0 2414
671fd9da
PT
2415 /* return (any) remaining runtime */
2416 cfs_b->runtime = runtime;
2417 /*
2418 * While we are ensured activity in the period following an
2419 * unthrottle, this also covers the case in which the new bandwidth is
2420 * insufficient to cover the existing bandwidth deficit. (Forcing the
2421 * timer to remain active while there are any throttled entities.)
2422 */
2423 cfs_b->idle = 0;
58088ad0
PT
2424out_unlock:
2425 if (idle)
2426 cfs_b->timer_active = 0;
2427 raw_spin_unlock(&cfs_b->lock);
2428
2429 return idle;
2430}
d3d9dc33 2431
d8b4986d
PT
2432/* a cfs_rq won't donate quota below this amount */
2433static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2434/* minimum remaining period time to redistribute slack quota */
2435static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2436/* how long we wait to gather additional slack before distributing */
2437static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2438
2439/* are we near the end of the current quota period? */
2440static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2441{
2442 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2443 u64 remaining;
2444
2445 /* if the call-back is running a quota refresh is already occurring */
2446 if (hrtimer_callback_running(refresh_timer))
2447 return 1;
2448
2449 /* is a quota refresh about to occur? */
2450 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2451 if (remaining < min_expire)
2452 return 1;
2453
2454 return 0;
2455}
2456
2457static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2458{
2459 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2460
2461 /* if there's a quota refresh soon don't bother with slack */
2462 if (runtime_refresh_within(cfs_b, min_left))
2463 return;
2464
2465 start_bandwidth_timer(&cfs_b->slack_timer,
2466 ns_to_ktime(cfs_bandwidth_slack_period));
2467}
2468
2469/* we know any runtime found here is valid as update_curr() precedes return */
2470static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2471{
2472 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2473 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2474
2475 if (slack_runtime <= 0)
2476 return;
2477
2478 raw_spin_lock(&cfs_b->lock);
2479 if (cfs_b->quota != RUNTIME_INF &&
2480 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2481 cfs_b->runtime += slack_runtime;
2482
2483 /* we are under rq->lock, defer unthrottling using a timer */
2484 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2485 !list_empty(&cfs_b->throttled_cfs_rq))
2486 start_cfs_slack_bandwidth(cfs_b);
2487 }
2488 raw_spin_unlock(&cfs_b->lock);
2489
2490 /* even if it's not valid for return we don't want to try again */
2491 cfs_rq->runtime_remaining -= slack_runtime;
2492}
2493
2494static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2495{
56f570e5
PT
2496 if (!cfs_bandwidth_used())
2497 return;
2498
fccfdc6f 2499 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2500 return;
2501
2502 __return_cfs_rq_runtime(cfs_rq);
2503}
2504
2505/*
2506 * This is done with a timer (instead of inline with bandwidth return) since
2507 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2508 */
2509static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2510{
2511 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2512 u64 expires;
2513
2514 /* confirm we're still not at a refresh boundary */
2515 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2516 return;
2517
2518 raw_spin_lock(&cfs_b->lock);
2519 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2520 runtime = cfs_b->runtime;
2521 cfs_b->runtime = 0;
2522 }
2523 expires = cfs_b->runtime_expires;
2524 raw_spin_unlock(&cfs_b->lock);
2525
2526 if (!runtime)
2527 return;
2528
2529 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2530
2531 raw_spin_lock(&cfs_b->lock);
2532 if (expires == cfs_b->runtime_expires)
2533 cfs_b->runtime = runtime;
2534 raw_spin_unlock(&cfs_b->lock);
2535}
2536
d3d9dc33
PT
2537/*
2538 * When a group wakes up we want to make sure that its quota is not already
2539 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2540 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2541 */
2542static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2543{
56f570e5
PT
2544 if (!cfs_bandwidth_used())
2545 return;
2546
d3d9dc33
PT
2547 /* an active group must be handled by the update_curr()->put() path */
2548 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2549 return;
2550
2551 /* ensure the group is not already throttled */
2552 if (cfs_rq_throttled(cfs_rq))
2553 return;
2554
2555 /* update runtime allocation */
2556 account_cfs_rq_runtime(cfs_rq, 0);
2557 if (cfs_rq->runtime_remaining <= 0)
2558 throttle_cfs_rq(cfs_rq);
2559}
2560
2561/* conditionally throttle active cfs_rq's from put_prev_entity() */
2562static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2563{
56f570e5
PT
2564 if (!cfs_bandwidth_used())
2565 return;
2566
d3d9dc33
PT
2567 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2568 return;
2569
2570 /*
2571 * it's possible for a throttled entity to be forced into a running
2572 * state (e.g. set_curr_task), in this case we're finished.
2573 */
2574 if (cfs_rq_throttled(cfs_rq))
2575 return;
2576
2577 throttle_cfs_rq(cfs_rq);
2578}
029632fb
PZ
2579
2580static inline u64 default_cfs_period(void);
2581static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2582static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2583
2584static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2585{
2586 struct cfs_bandwidth *cfs_b =
2587 container_of(timer, struct cfs_bandwidth, slack_timer);
2588 do_sched_cfs_slack_timer(cfs_b);
2589
2590 return HRTIMER_NORESTART;
2591}
2592
2593static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2594{
2595 struct cfs_bandwidth *cfs_b =
2596 container_of(timer, struct cfs_bandwidth, period_timer);
2597 ktime_t now;
2598 int overrun;
2599 int idle = 0;
2600
2601 for (;;) {
2602 now = hrtimer_cb_get_time(timer);
2603 overrun = hrtimer_forward(timer, now, cfs_b->period);
2604
2605 if (!overrun)
2606 break;
2607
2608 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2609 }
2610
2611 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2612}
2613
2614void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2615{
2616 raw_spin_lock_init(&cfs_b->lock);
2617 cfs_b->runtime = 0;
2618 cfs_b->quota = RUNTIME_INF;
2619 cfs_b->period = ns_to_ktime(default_cfs_period());
2620
2621 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2622 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2623 cfs_b->period_timer.function = sched_cfs_period_timer;
2624 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2625 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2626}
2627
2628static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2629{
2630 cfs_rq->runtime_enabled = 0;
2631 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2632}
2633
2634/* requires cfs_b->lock, may release to reprogram timer */
2635void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2636{
2637 /*
2638 * The timer may be active because we're trying to set a new bandwidth
2639 * period or because we're racing with the tear-down path
2640 * (timer_active==0 becomes visible before the hrtimer call-back
2641 * terminates). In either case we ensure that it's re-programmed
2642 */
2643 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2644 raw_spin_unlock(&cfs_b->lock);
2645 /* ensure cfs_b->lock is available while we wait */
2646 hrtimer_cancel(&cfs_b->period_timer);
2647
2648 raw_spin_lock(&cfs_b->lock);
2649 /* if someone else restarted the timer then we're done */
2650 if (cfs_b->timer_active)
2651 return;
2652 }
2653
2654 cfs_b->timer_active = 1;
2655 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2656}
2657
2658static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2659{
2660 hrtimer_cancel(&cfs_b->period_timer);
2661 hrtimer_cancel(&cfs_b->slack_timer);
2662}
2663
38dc3348 2664static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2665{
2666 struct cfs_rq *cfs_rq;
2667
2668 for_each_leaf_cfs_rq(rq, cfs_rq) {
2669 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2670
2671 if (!cfs_rq->runtime_enabled)
2672 continue;
2673
2674 /*
2675 * clock_task is not advancing so we just need to make sure
2676 * there's some valid quota amount
2677 */
2678 cfs_rq->runtime_remaining = cfs_b->quota;
2679 if (cfs_rq_throttled(cfs_rq))
2680 unthrottle_cfs_rq(cfs_rq);
2681 }
2682}
2683
2684#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2685static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2686{
2687 return rq_of(cfs_rq)->clock_task;
2688}
2689
2690static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2691 unsigned long delta_exec) {}
d3d9dc33
PT
2692static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2693static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2694static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2695
2696static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2697{
2698 return 0;
2699}
64660c86
PT
2700
2701static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2702{
2703 return 0;
2704}
2705
2706static inline int throttled_lb_pair(struct task_group *tg,
2707 int src_cpu, int dest_cpu)
2708{
2709 return 0;
2710}
029632fb
PZ
2711
2712void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2713
2714#ifdef CONFIG_FAIR_GROUP_SCHED
2715static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2716#endif
2717
029632fb
PZ
2718static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2719{
2720 return NULL;
2721}
2722static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2723static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2724
2725#endif /* CONFIG_CFS_BANDWIDTH */
2726
bf0f6f24
IM
2727/**************************************************
2728 * CFS operations on tasks:
2729 */
2730
8f4d37ec
PZ
2731#ifdef CONFIG_SCHED_HRTICK
2732static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2733{
8f4d37ec
PZ
2734 struct sched_entity *se = &p->se;
2735 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2736
2737 WARN_ON(task_rq(p) != rq);
2738
b39e66ea 2739 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2740 u64 slice = sched_slice(cfs_rq, se);
2741 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2742 s64 delta = slice - ran;
2743
2744 if (delta < 0) {
2745 if (rq->curr == p)
2746 resched_task(p);
2747 return;
2748 }
2749
2750 /*
2751 * Don't schedule slices shorter than 10000ns, that just
2752 * doesn't make sense. Rely on vruntime for fairness.
2753 */
31656519 2754 if (rq->curr != p)
157124c1 2755 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2756
31656519 2757 hrtick_start(rq, delta);
8f4d37ec
PZ
2758 }
2759}
a4c2f00f
PZ
2760
2761/*
2762 * called from enqueue/dequeue and updates the hrtick when the
2763 * current task is from our class and nr_running is low enough
2764 * to matter.
2765 */
2766static void hrtick_update(struct rq *rq)
2767{
2768 struct task_struct *curr = rq->curr;
2769
b39e66ea 2770 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2771 return;
2772
2773 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2774 hrtick_start_fair(rq, curr);
2775}
55e12e5e 2776#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2777static inline void
2778hrtick_start_fair(struct rq *rq, struct task_struct *p)
2779{
2780}
a4c2f00f
PZ
2781
2782static inline void hrtick_update(struct rq *rq)
2783{
2784}
8f4d37ec
PZ
2785#endif
2786
bf0f6f24
IM
2787/*
2788 * The enqueue_task method is called before nr_running is
2789 * increased. Here we update the fair scheduling stats and
2790 * then put the task into the rbtree:
2791 */
ea87bb78 2792static void
371fd7e7 2793enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2794{
2795 struct cfs_rq *cfs_rq;
62fb1851 2796 struct sched_entity *se = &p->se;
bf0f6f24
IM
2797
2798 for_each_sched_entity(se) {
62fb1851 2799 if (se->on_rq)
bf0f6f24
IM
2800 break;
2801 cfs_rq = cfs_rq_of(se);
88ec22d3 2802 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2803
2804 /*
2805 * end evaluation on encountering a throttled cfs_rq
2806 *
2807 * note: in the case of encountering a throttled cfs_rq we will
2808 * post the final h_nr_running increment below.
2809 */
2810 if (cfs_rq_throttled(cfs_rq))
2811 break;
953bfcd1 2812 cfs_rq->h_nr_running++;
85dac906 2813
88ec22d3 2814 flags = ENQUEUE_WAKEUP;
bf0f6f24 2815 }
8f4d37ec 2816
2069dd75 2817 for_each_sched_entity(se) {
0f317143 2818 cfs_rq = cfs_rq_of(se);
953bfcd1 2819 cfs_rq->h_nr_running++;
2069dd75 2820
85dac906
PT
2821 if (cfs_rq_throttled(cfs_rq))
2822 break;
2823
17bc14b7 2824 update_cfs_shares(cfs_rq);
9ee474f5 2825 update_entity_load_avg(se, 1);
2069dd75
PZ
2826 }
2827
18bf2805
BS
2828 if (!se) {
2829 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2830 inc_nr_running(rq);
18bf2805 2831 }
a4c2f00f 2832 hrtick_update(rq);
bf0f6f24
IM
2833}
2834
2f36825b
VP
2835static void set_next_buddy(struct sched_entity *se);
2836
bf0f6f24
IM
2837/*
2838 * The dequeue_task method is called before nr_running is
2839 * decreased. We remove the task from the rbtree and
2840 * update the fair scheduling stats:
2841 */
371fd7e7 2842static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2843{
2844 struct cfs_rq *cfs_rq;
62fb1851 2845 struct sched_entity *se = &p->se;
2f36825b 2846 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2847
2848 for_each_sched_entity(se) {
2849 cfs_rq = cfs_rq_of(se);
371fd7e7 2850 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2851
2852 /*
2853 * end evaluation on encountering a throttled cfs_rq
2854 *
2855 * note: in the case of encountering a throttled cfs_rq we will
2856 * post the final h_nr_running decrement below.
2857 */
2858 if (cfs_rq_throttled(cfs_rq))
2859 break;
953bfcd1 2860 cfs_rq->h_nr_running--;
2069dd75 2861
bf0f6f24 2862 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2863 if (cfs_rq->load.weight) {
2864 /*
2865 * Bias pick_next to pick a task from this cfs_rq, as
2866 * p is sleeping when it is within its sched_slice.
2867 */
2868 if (task_sleep && parent_entity(se))
2869 set_next_buddy(parent_entity(se));
9598c82d
PT
2870
2871 /* avoid re-evaluating load for this entity */
2872 se = parent_entity(se);
bf0f6f24 2873 break;
2f36825b 2874 }
371fd7e7 2875 flags |= DEQUEUE_SLEEP;
bf0f6f24 2876 }
8f4d37ec 2877
2069dd75 2878 for_each_sched_entity(se) {
0f317143 2879 cfs_rq = cfs_rq_of(se);
953bfcd1 2880 cfs_rq->h_nr_running--;
2069dd75 2881
85dac906
PT
2882 if (cfs_rq_throttled(cfs_rq))
2883 break;
2884
17bc14b7 2885 update_cfs_shares(cfs_rq);
9ee474f5 2886 update_entity_load_avg(se, 1);
2069dd75
PZ
2887 }
2888
18bf2805 2889 if (!se) {
85dac906 2890 dec_nr_running(rq);
18bf2805
BS
2891 update_rq_runnable_avg(rq, 1);
2892 }
a4c2f00f 2893 hrtick_update(rq);
bf0f6f24
IM
2894}
2895
e7693a36 2896#ifdef CONFIG_SMP
029632fb
PZ
2897/* Used instead of source_load when we know the type == 0 */
2898static unsigned long weighted_cpuload(const int cpu)
2899{
2900 return cpu_rq(cpu)->load.weight;
2901}
2902
2903/*
2904 * Return a low guess at the load of a migration-source cpu weighted
2905 * according to the scheduling class and "nice" value.
2906 *
2907 * We want to under-estimate the load of migration sources, to
2908 * balance conservatively.
2909 */
2910static unsigned long source_load(int cpu, int type)
2911{
2912 struct rq *rq = cpu_rq(cpu);
2913 unsigned long total = weighted_cpuload(cpu);
2914
2915 if (type == 0 || !sched_feat(LB_BIAS))
2916 return total;
2917
2918 return min(rq->cpu_load[type-1], total);
2919}
2920
2921/*
2922 * Return a high guess at the load of a migration-target cpu weighted
2923 * according to the scheduling class and "nice" value.
2924 */
2925static unsigned long target_load(int cpu, int type)
2926{
2927 struct rq *rq = cpu_rq(cpu);
2928 unsigned long total = weighted_cpuload(cpu);
2929
2930 if (type == 0 || !sched_feat(LB_BIAS))
2931 return total;
2932
2933 return max(rq->cpu_load[type-1], total);
2934}
2935
2936static unsigned long power_of(int cpu)
2937{
2938 return cpu_rq(cpu)->cpu_power;
2939}
2940
2941static unsigned long cpu_avg_load_per_task(int cpu)
2942{
2943 struct rq *rq = cpu_rq(cpu);
2944 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2945
2946 if (nr_running)
2947 return rq->load.weight / nr_running;
2948
2949 return 0;
2950}
2951
098fb9db 2952
74f8e4b2 2953static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2954{
2955 struct sched_entity *se = &p->se;
2956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2957 u64 min_vruntime;
2958
2959#ifndef CONFIG_64BIT
2960 u64 min_vruntime_copy;
88ec22d3 2961
3fe1698b
PZ
2962 do {
2963 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2964 smp_rmb();
2965 min_vruntime = cfs_rq->min_vruntime;
2966 } while (min_vruntime != min_vruntime_copy);
2967#else
2968 min_vruntime = cfs_rq->min_vruntime;
2969#endif
88ec22d3 2970
3fe1698b 2971 se->vruntime -= min_vruntime;
88ec22d3
PZ
2972}
2973
bb3469ac 2974#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2975/*
2976 * effective_load() calculates the load change as seen from the root_task_group
2977 *
2978 * Adding load to a group doesn't make a group heavier, but can cause movement
2979 * of group shares between cpus. Assuming the shares were perfectly aligned one
2980 * can calculate the shift in shares.
cf5f0acf
PZ
2981 *
2982 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2983 * on this @cpu and results in a total addition (subtraction) of @wg to the
2984 * total group weight.
2985 *
2986 * Given a runqueue weight distribution (rw_i) we can compute a shares
2987 * distribution (s_i) using:
2988 *
2989 * s_i = rw_i / \Sum rw_j (1)
2990 *
2991 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2992 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2993 * shares distribution (s_i):
2994 *
2995 * rw_i = { 2, 4, 1, 0 }
2996 * s_i = { 2/7, 4/7, 1/7, 0 }
2997 *
2998 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2999 * task used to run on and the CPU the waker is running on), we need to
3000 * compute the effect of waking a task on either CPU and, in case of a sync
3001 * wakeup, compute the effect of the current task going to sleep.
3002 *
3003 * So for a change of @wl to the local @cpu with an overall group weight change
3004 * of @wl we can compute the new shares distribution (s'_i) using:
3005 *
3006 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3007 *
3008 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3009 * differences in waking a task to CPU 0. The additional task changes the
3010 * weight and shares distributions like:
3011 *
3012 * rw'_i = { 3, 4, 1, 0 }
3013 * s'_i = { 3/8, 4/8, 1/8, 0 }
3014 *
3015 * We can then compute the difference in effective weight by using:
3016 *
3017 * dw_i = S * (s'_i - s_i) (3)
3018 *
3019 * Where 'S' is the group weight as seen by its parent.
3020 *
3021 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3022 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3023 * 4/7) times the weight of the group.
f5bfb7d9 3024 */
2069dd75 3025static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3026{
4be9daaa 3027 struct sched_entity *se = tg->se[cpu];
f1d239f7 3028
cf5f0acf 3029 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3030 return wl;
3031
4be9daaa 3032 for_each_sched_entity(se) {
cf5f0acf 3033 long w, W;
4be9daaa 3034
977dda7c 3035 tg = se->my_q->tg;
bb3469ac 3036
cf5f0acf
PZ
3037 /*
3038 * W = @wg + \Sum rw_j
3039 */
3040 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3041
cf5f0acf
PZ
3042 /*
3043 * w = rw_i + @wl
3044 */
3045 w = se->my_q->load.weight + wl;
940959e9 3046
cf5f0acf
PZ
3047 /*
3048 * wl = S * s'_i; see (2)
3049 */
3050 if (W > 0 && w < W)
3051 wl = (w * tg->shares) / W;
977dda7c
PT
3052 else
3053 wl = tg->shares;
940959e9 3054
cf5f0acf
PZ
3055 /*
3056 * Per the above, wl is the new se->load.weight value; since
3057 * those are clipped to [MIN_SHARES, ...) do so now. See
3058 * calc_cfs_shares().
3059 */
977dda7c
PT
3060 if (wl < MIN_SHARES)
3061 wl = MIN_SHARES;
cf5f0acf
PZ
3062
3063 /*
3064 * wl = dw_i = S * (s'_i - s_i); see (3)
3065 */
977dda7c 3066 wl -= se->load.weight;
cf5f0acf
PZ
3067
3068 /*
3069 * Recursively apply this logic to all parent groups to compute
3070 * the final effective load change on the root group. Since
3071 * only the @tg group gets extra weight, all parent groups can
3072 * only redistribute existing shares. @wl is the shift in shares
3073 * resulting from this level per the above.
3074 */
4be9daaa 3075 wg = 0;
4be9daaa 3076 }
bb3469ac 3077
4be9daaa 3078 return wl;
bb3469ac
PZ
3079}
3080#else
4be9daaa 3081
83378269
PZ
3082static inline unsigned long effective_load(struct task_group *tg, int cpu,
3083 unsigned long wl, unsigned long wg)
4be9daaa 3084{
83378269 3085 return wl;
bb3469ac 3086}
4be9daaa 3087
bb3469ac
PZ
3088#endif
3089
c88d5910 3090static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3091{
e37b6a7b 3092 s64 this_load, load;
c88d5910 3093 int idx, this_cpu, prev_cpu;
098fb9db 3094 unsigned long tl_per_task;
c88d5910 3095 struct task_group *tg;
83378269 3096 unsigned long weight;
b3137bc8 3097 int balanced;
098fb9db 3098
c88d5910
PZ
3099 idx = sd->wake_idx;
3100 this_cpu = smp_processor_id();
3101 prev_cpu = task_cpu(p);
3102 load = source_load(prev_cpu, idx);
3103 this_load = target_load(this_cpu, idx);
098fb9db 3104
b3137bc8
MG
3105 /*
3106 * If sync wakeup then subtract the (maximum possible)
3107 * effect of the currently running task from the load
3108 * of the current CPU:
3109 */
83378269
PZ
3110 if (sync) {
3111 tg = task_group(current);
3112 weight = current->se.load.weight;
3113
c88d5910 3114 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3115 load += effective_load(tg, prev_cpu, 0, -weight);
3116 }
b3137bc8 3117
83378269
PZ
3118 tg = task_group(p);
3119 weight = p->se.load.weight;
b3137bc8 3120
71a29aa7
PZ
3121 /*
3122 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3123 * due to the sync cause above having dropped this_load to 0, we'll
3124 * always have an imbalance, but there's really nothing you can do
3125 * about that, so that's good too.
71a29aa7
PZ
3126 *
3127 * Otherwise check if either cpus are near enough in load to allow this
3128 * task to be woken on this_cpu.
3129 */
e37b6a7b
PT
3130 if (this_load > 0) {
3131 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3132
3133 this_eff_load = 100;
3134 this_eff_load *= power_of(prev_cpu);
3135 this_eff_load *= this_load +
3136 effective_load(tg, this_cpu, weight, weight);
3137
3138 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3139 prev_eff_load *= power_of(this_cpu);
3140 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3141
3142 balanced = this_eff_load <= prev_eff_load;
3143 } else
3144 balanced = true;
b3137bc8 3145
098fb9db 3146 /*
4ae7d5ce
IM
3147 * If the currently running task will sleep within
3148 * a reasonable amount of time then attract this newly
3149 * woken task:
098fb9db 3150 */
2fb7635c
PZ
3151 if (sync && balanced)
3152 return 1;
098fb9db 3153
41acab88 3154 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3155 tl_per_task = cpu_avg_load_per_task(this_cpu);
3156
c88d5910
PZ
3157 if (balanced ||
3158 (this_load <= load &&
3159 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3160 /*
3161 * This domain has SD_WAKE_AFFINE and
3162 * p is cache cold in this domain, and
3163 * there is no bad imbalance.
3164 */
c88d5910 3165 schedstat_inc(sd, ttwu_move_affine);
41acab88 3166 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3167
3168 return 1;
3169 }
3170 return 0;
3171}
3172
aaee1203
PZ
3173/*
3174 * find_idlest_group finds and returns the least busy CPU group within the
3175 * domain.
3176 */
3177static struct sched_group *
78e7ed53 3178find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3179 int this_cpu, int load_idx)
e7693a36 3180{
b3bd3de6 3181 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3182 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3183 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3184
aaee1203
PZ
3185 do {
3186 unsigned long load, avg_load;
3187 int local_group;
3188 int i;
e7693a36 3189
aaee1203
PZ
3190 /* Skip over this group if it has no CPUs allowed */
3191 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3192 tsk_cpus_allowed(p)))
aaee1203
PZ
3193 continue;
3194
3195 local_group = cpumask_test_cpu(this_cpu,
3196 sched_group_cpus(group));
3197
3198 /* Tally up the load of all CPUs in the group */
3199 avg_load = 0;
3200
3201 for_each_cpu(i, sched_group_cpus(group)) {
3202 /* Bias balancing toward cpus of our domain */
3203 if (local_group)
3204 load = source_load(i, load_idx);
3205 else
3206 load = target_load(i, load_idx);
3207
3208 avg_load += load;
3209 }
3210
3211 /* Adjust by relative CPU power of the group */
9c3f75cb 3212 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3213
3214 if (local_group) {
3215 this_load = avg_load;
aaee1203
PZ
3216 } else if (avg_load < min_load) {
3217 min_load = avg_load;
3218 idlest = group;
3219 }
3220 } while (group = group->next, group != sd->groups);
3221
3222 if (!idlest || 100*this_load < imbalance*min_load)
3223 return NULL;
3224 return idlest;
3225}
3226
3227/*
3228 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3229 */
3230static int
3231find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3232{
3233 unsigned long load, min_load = ULONG_MAX;
3234 int idlest = -1;
3235 int i;
3236
3237 /* Traverse only the allowed CPUs */
fa17b507 3238 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3239 load = weighted_cpuload(i);
3240
3241 if (load < min_load || (load == min_load && i == this_cpu)) {
3242 min_load = load;
3243 idlest = i;
e7693a36
GH
3244 }
3245 }
3246
aaee1203
PZ
3247 return idlest;
3248}
e7693a36 3249
a50bde51
PZ
3250/*
3251 * Try and locate an idle CPU in the sched_domain.
3252 */
99bd5e2f 3253static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3254{
99bd5e2f 3255 struct sched_domain *sd;
37407ea7 3256 struct sched_group *sg;
e0a79f52 3257 int i = task_cpu(p);
a50bde51 3258
e0a79f52
MG
3259 if (idle_cpu(target))
3260 return target;
99bd5e2f
SS
3261
3262 /*
e0a79f52 3263 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3264 */
e0a79f52
MG
3265 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3266 return i;
a50bde51
PZ
3267
3268 /*
37407ea7 3269 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3270 */
518cd623 3271 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3272 for_each_lower_domain(sd) {
37407ea7
LT
3273 sg = sd->groups;
3274 do {
3275 if (!cpumask_intersects(sched_group_cpus(sg),
3276 tsk_cpus_allowed(p)))
3277 goto next;
3278
3279 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3280 if (i == target || !idle_cpu(i))
37407ea7
LT
3281 goto next;
3282 }
970e1789 3283
37407ea7
LT
3284 target = cpumask_first_and(sched_group_cpus(sg),
3285 tsk_cpus_allowed(p));
3286 goto done;
3287next:
3288 sg = sg->next;
3289 } while (sg != sd->groups);
3290 }
3291done:
a50bde51
PZ
3292 return target;
3293}
3294
aaee1203
PZ
3295/*
3296 * sched_balance_self: balance the current task (running on cpu) in domains
3297 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3298 * SD_BALANCE_EXEC.
3299 *
3300 * Balance, ie. select the least loaded group.
3301 *
3302 * Returns the target CPU number, or the same CPU if no balancing is needed.
3303 *
3304 * preempt must be disabled.
3305 */
0017d735 3306static int
7608dec2 3307select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3308{
29cd8bae 3309 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3310 int cpu = smp_processor_id();
3311 int prev_cpu = task_cpu(p);
3312 int new_cpu = cpu;
99bd5e2f 3313 int want_affine = 0;
5158f4e4 3314 int sync = wake_flags & WF_SYNC;
c88d5910 3315
29baa747 3316 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3317 return prev_cpu;
3318
0763a660 3319 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3320 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3321 want_affine = 1;
3322 new_cpu = prev_cpu;
3323 }
aaee1203 3324
dce840a0 3325 rcu_read_lock();
aaee1203 3326 for_each_domain(cpu, tmp) {
e4f42888
PZ
3327 if (!(tmp->flags & SD_LOAD_BALANCE))
3328 continue;
3329
fe3bcfe1 3330 /*
99bd5e2f
SS
3331 * If both cpu and prev_cpu are part of this domain,
3332 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3333 */
99bd5e2f
SS
3334 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3335 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3336 affine_sd = tmp;
29cd8bae 3337 break;
f03542a7 3338 }
29cd8bae 3339
f03542a7 3340 if (tmp->flags & sd_flag)
29cd8bae
PZ
3341 sd = tmp;
3342 }
3343
8b911acd 3344 if (affine_sd) {
f03542a7 3345 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3346 prev_cpu = cpu;
3347
3348 new_cpu = select_idle_sibling(p, prev_cpu);
3349 goto unlock;
8b911acd 3350 }
e7693a36 3351
aaee1203 3352 while (sd) {
5158f4e4 3353 int load_idx = sd->forkexec_idx;
aaee1203 3354 struct sched_group *group;
c88d5910 3355 int weight;
098fb9db 3356
0763a660 3357 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3358 sd = sd->child;
3359 continue;
3360 }
098fb9db 3361
5158f4e4
PZ
3362 if (sd_flag & SD_BALANCE_WAKE)
3363 load_idx = sd->wake_idx;
098fb9db 3364
5158f4e4 3365 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3366 if (!group) {
3367 sd = sd->child;
3368 continue;
3369 }
4ae7d5ce 3370
d7c33c49 3371 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3372 if (new_cpu == -1 || new_cpu == cpu) {
3373 /* Now try balancing at a lower domain level of cpu */
3374 sd = sd->child;
3375 continue;
e7693a36 3376 }
aaee1203
PZ
3377
3378 /* Now try balancing at a lower domain level of new_cpu */
3379 cpu = new_cpu;
669c55e9 3380 weight = sd->span_weight;
aaee1203
PZ
3381 sd = NULL;
3382 for_each_domain(cpu, tmp) {
669c55e9 3383 if (weight <= tmp->span_weight)
aaee1203 3384 break;
0763a660 3385 if (tmp->flags & sd_flag)
aaee1203
PZ
3386 sd = tmp;
3387 }
3388 /* while loop will break here if sd == NULL */
e7693a36 3389 }
dce840a0
PZ
3390unlock:
3391 rcu_read_unlock();
e7693a36 3392
c88d5910 3393 return new_cpu;
e7693a36 3394}
0a74bef8 3395
f4e26b12
PT
3396/*
3397 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3398 * removed when useful for applications beyond shares distribution (e.g.
3399 * load-balance).
3400 */
3401#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3402/*
3403 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3404 * cfs_rq_of(p) references at time of call are still valid and identify the
3405 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3406 * other assumptions, including the state of rq->lock, should be made.
3407 */
3408static void
3409migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3410{
aff3e498
PT
3411 struct sched_entity *se = &p->se;
3412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3413
3414 /*
3415 * Load tracking: accumulate removed load so that it can be processed
3416 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3417 * to blocked load iff they have a positive decay-count. It can never
3418 * be negative here since on-rq tasks have decay-count == 0.
3419 */
3420 if (se->avg.decay_count) {
3421 se->avg.decay_count = -__synchronize_entity_decay(se);
3422 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3423 }
0a74bef8 3424}
f4e26b12 3425#endif
e7693a36
GH
3426#endif /* CONFIG_SMP */
3427
e52fb7c0
PZ
3428static unsigned long
3429wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3430{
3431 unsigned long gran = sysctl_sched_wakeup_granularity;
3432
3433 /*
e52fb7c0
PZ
3434 * Since its curr running now, convert the gran from real-time
3435 * to virtual-time in his units.
13814d42
MG
3436 *
3437 * By using 'se' instead of 'curr' we penalize light tasks, so
3438 * they get preempted easier. That is, if 'se' < 'curr' then
3439 * the resulting gran will be larger, therefore penalizing the
3440 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3441 * be smaller, again penalizing the lighter task.
3442 *
3443 * This is especially important for buddies when the leftmost
3444 * task is higher priority than the buddy.
0bbd3336 3445 */
f4ad9bd2 3446 return calc_delta_fair(gran, se);
0bbd3336
PZ
3447}
3448
464b7527
PZ
3449/*
3450 * Should 'se' preempt 'curr'.
3451 *
3452 * |s1
3453 * |s2
3454 * |s3
3455 * g
3456 * |<--->|c
3457 *
3458 * w(c, s1) = -1
3459 * w(c, s2) = 0
3460 * w(c, s3) = 1
3461 *
3462 */
3463static int
3464wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3465{
3466 s64 gran, vdiff = curr->vruntime - se->vruntime;
3467
3468 if (vdiff <= 0)
3469 return -1;
3470
e52fb7c0 3471 gran = wakeup_gran(curr, se);
464b7527
PZ
3472 if (vdiff > gran)
3473 return 1;
3474
3475 return 0;
3476}
3477
02479099
PZ
3478static void set_last_buddy(struct sched_entity *se)
3479{
69c80f3e
VP
3480 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3481 return;
3482
3483 for_each_sched_entity(se)
3484 cfs_rq_of(se)->last = se;
02479099
PZ
3485}
3486
3487static void set_next_buddy(struct sched_entity *se)
3488{
69c80f3e
VP
3489 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3490 return;
3491
3492 for_each_sched_entity(se)
3493 cfs_rq_of(se)->next = se;
02479099
PZ
3494}
3495
ac53db59
RR
3496static void set_skip_buddy(struct sched_entity *se)
3497{
69c80f3e
VP
3498 for_each_sched_entity(se)
3499 cfs_rq_of(se)->skip = se;
ac53db59
RR
3500}
3501
bf0f6f24
IM
3502/*
3503 * Preempt the current task with a newly woken task if needed:
3504 */
5a9b86f6 3505static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3506{
3507 struct task_struct *curr = rq->curr;
8651a86c 3508 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3509 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3510 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3511 int next_buddy_marked = 0;
bf0f6f24 3512
4ae7d5ce
IM
3513 if (unlikely(se == pse))
3514 return;
3515
5238cdd3 3516 /*
ddcdf6e7 3517 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3518 * unconditionally check_prempt_curr() after an enqueue (which may have
3519 * lead to a throttle). This both saves work and prevents false
3520 * next-buddy nomination below.
3521 */
3522 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3523 return;
3524
2f36825b 3525 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3526 set_next_buddy(pse);
2f36825b
VP
3527 next_buddy_marked = 1;
3528 }
57fdc26d 3529
aec0a514
BR
3530 /*
3531 * We can come here with TIF_NEED_RESCHED already set from new task
3532 * wake up path.
5238cdd3
PT
3533 *
3534 * Note: this also catches the edge-case of curr being in a throttled
3535 * group (e.g. via set_curr_task), since update_curr() (in the
3536 * enqueue of curr) will have resulted in resched being set. This
3537 * prevents us from potentially nominating it as a false LAST_BUDDY
3538 * below.
aec0a514
BR
3539 */
3540 if (test_tsk_need_resched(curr))
3541 return;
3542
a2f5c9ab
DH
3543 /* Idle tasks are by definition preempted by non-idle tasks. */
3544 if (unlikely(curr->policy == SCHED_IDLE) &&
3545 likely(p->policy != SCHED_IDLE))
3546 goto preempt;
3547
91c234b4 3548 /*
a2f5c9ab
DH
3549 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3550 * is driven by the tick):
91c234b4 3551 */
8ed92e51 3552 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3553 return;
bf0f6f24 3554
464b7527 3555 find_matching_se(&se, &pse);
9bbd7374 3556 update_curr(cfs_rq_of(se));
002f128b 3557 BUG_ON(!pse);
2f36825b
VP
3558 if (wakeup_preempt_entity(se, pse) == 1) {
3559 /*
3560 * Bias pick_next to pick the sched entity that is
3561 * triggering this preemption.
3562 */
3563 if (!next_buddy_marked)
3564 set_next_buddy(pse);
3a7e73a2 3565 goto preempt;
2f36825b 3566 }
464b7527 3567
3a7e73a2 3568 return;
a65ac745 3569
3a7e73a2
PZ
3570preempt:
3571 resched_task(curr);
3572 /*
3573 * Only set the backward buddy when the current task is still
3574 * on the rq. This can happen when a wakeup gets interleaved
3575 * with schedule on the ->pre_schedule() or idle_balance()
3576 * point, either of which can * drop the rq lock.
3577 *
3578 * Also, during early boot the idle thread is in the fair class,
3579 * for obvious reasons its a bad idea to schedule back to it.
3580 */
3581 if (unlikely(!se->on_rq || curr == rq->idle))
3582 return;
3583
3584 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3585 set_last_buddy(se);
bf0f6f24
IM
3586}
3587
fb8d4724 3588static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3589{
8f4d37ec 3590 struct task_struct *p;
bf0f6f24
IM
3591 struct cfs_rq *cfs_rq = &rq->cfs;
3592 struct sched_entity *se;
3593
36ace27e 3594 if (!cfs_rq->nr_running)
bf0f6f24
IM
3595 return NULL;
3596
3597 do {
9948f4b2 3598 se = pick_next_entity(cfs_rq);
f4b6755f 3599 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3600 cfs_rq = group_cfs_rq(se);
3601 } while (cfs_rq);
3602
8f4d37ec 3603 p = task_of(se);
b39e66ea
MG
3604 if (hrtick_enabled(rq))
3605 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3606
3607 return p;
bf0f6f24
IM
3608}
3609
3610/*
3611 * Account for a descheduled task:
3612 */
31ee529c 3613static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3614{
3615 struct sched_entity *se = &prev->se;
3616 struct cfs_rq *cfs_rq;
3617
3618 for_each_sched_entity(se) {
3619 cfs_rq = cfs_rq_of(se);
ab6cde26 3620 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3621 }
3622}
3623
ac53db59
RR
3624/*
3625 * sched_yield() is very simple
3626 *
3627 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3628 */
3629static void yield_task_fair(struct rq *rq)
3630{
3631 struct task_struct *curr = rq->curr;
3632 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3633 struct sched_entity *se = &curr->se;
3634
3635 /*
3636 * Are we the only task in the tree?
3637 */
3638 if (unlikely(rq->nr_running == 1))
3639 return;
3640
3641 clear_buddies(cfs_rq, se);
3642
3643 if (curr->policy != SCHED_BATCH) {
3644 update_rq_clock(rq);
3645 /*
3646 * Update run-time statistics of the 'current'.
3647 */
3648 update_curr(cfs_rq);
916671c0
MG
3649 /*
3650 * Tell update_rq_clock() that we've just updated,
3651 * so we don't do microscopic update in schedule()
3652 * and double the fastpath cost.
3653 */
3654 rq->skip_clock_update = 1;
ac53db59
RR
3655 }
3656
3657 set_skip_buddy(se);
3658}
3659
d95f4122
MG
3660static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3661{
3662 struct sched_entity *se = &p->se;
3663
5238cdd3
PT
3664 /* throttled hierarchies are not runnable */
3665 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3666 return false;
3667
3668 /* Tell the scheduler that we'd really like pse to run next. */
3669 set_next_buddy(se);
3670
d95f4122
MG
3671 yield_task_fair(rq);
3672
3673 return true;
3674}
3675
681f3e68 3676#ifdef CONFIG_SMP
bf0f6f24 3677/**************************************************
e9c84cb8
PZ
3678 * Fair scheduling class load-balancing methods.
3679 *
3680 * BASICS
3681 *
3682 * The purpose of load-balancing is to achieve the same basic fairness the
3683 * per-cpu scheduler provides, namely provide a proportional amount of compute
3684 * time to each task. This is expressed in the following equation:
3685 *
3686 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3687 *
3688 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3689 * W_i,0 is defined as:
3690 *
3691 * W_i,0 = \Sum_j w_i,j (2)
3692 *
3693 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3694 * is derived from the nice value as per prio_to_weight[].
3695 *
3696 * The weight average is an exponential decay average of the instantaneous
3697 * weight:
3698 *
3699 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3700 *
3701 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3702 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3703 * can also include other factors [XXX].
3704 *
3705 * To achieve this balance we define a measure of imbalance which follows
3706 * directly from (1):
3707 *
3708 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3709 *
3710 * We them move tasks around to minimize the imbalance. In the continuous
3711 * function space it is obvious this converges, in the discrete case we get
3712 * a few fun cases generally called infeasible weight scenarios.
3713 *
3714 * [XXX expand on:
3715 * - infeasible weights;
3716 * - local vs global optima in the discrete case. ]
3717 *
3718 *
3719 * SCHED DOMAINS
3720 *
3721 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3722 * for all i,j solution, we create a tree of cpus that follows the hardware
3723 * topology where each level pairs two lower groups (or better). This results
3724 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3725 * tree to only the first of the previous level and we decrease the frequency
3726 * of load-balance at each level inv. proportional to the number of cpus in
3727 * the groups.
3728 *
3729 * This yields:
3730 *
3731 * log_2 n 1 n
3732 * \Sum { --- * --- * 2^i } = O(n) (5)
3733 * i = 0 2^i 2^i
3734 * `- size of each group
3735 * | | `- number of cpus doing load-balance
3736 * | `- freq
3737 * `- sum over all levels
3738 *
3739 * Coupled with a limit on how many tasks we can migrate every balance pass,
3740 * this makes (5) the runtime complexity of the balancer.
3741 *
3742 * An important property here is that each CPU is still (indirectly) connected
3743 * to every other cpu in at most O(log n) steps:
3744 *
3745 * The adjacency matrix of the resulting graph is given by:
3746 *
3747 * log_2 n
3748 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3749 * k = 0
3750 *
3751 * And you'll find that:
3752 *
3753 * A^(log_2 n)_i,j != 0 for all i,j (7)
3754 *
3755 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3756 * The task movement gives a factor of O(m), giving a convergence complexity
3757 * of:
3758 *
3759 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3760 *
3761 *
3762 * WORK CONSERVING
3763 *
3764 * In order to avoid CPUs going idle while there's still work to do, new idle
3765 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3766 * tree itself instead of relying on other CPUs to bring it work.
3767 *
3768 * This adds some complexity to both (5) and (8) but it reduces the total idle
3769 * time.
3770 *
3771 * [XXX more?]
3772 *
3773 *
3774 * CGROUPS
3775 *
3776 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3777 *
3778 * s_k,i
3779 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3780 * S_k
3781 *
3782 * Where
3783 *
3784 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3785 *
3786 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3787 *
3788 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3789 * property.
3790 *
3791 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3792 * rewrite all of this once again.]
3793 */
bf0f6f24 3794
ed387b78
HS
3795static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3796
ddcdf6e7 3797#define LBF_ALL_PINNED 0x01
367456c7 3798#define LBF_NEED_BREAK 0x02
88b8dac0 3799#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3800
3801struct lb_env {
3802 struct sched_domain *sd;
3803
ddcdf6e7 3804 struct rq *src_rq;
85c1e7da 3805 int src_cpu;
ddcdf6e7
PZ
3806
3807 int dst_cpu;
3808 struct rq *dst_rq;
3809
88b8dac0
SV
3810 struct cpumask *dst_grpmask;
3811 int new_dst_cpu;
ddcdf6e7 3812 enum cpu_idle_type idle;
bd939f45 3813 long imbalance;
b9403130
MW
3814 /* The set of CPUs under consideration for load-balancing */
3815 struct cpumask *cpus;
3816
ddcdf6e7 3817 unsigned int flags;
367456c7
PZ
3818
3819 unsigned int loop;
3820 unsigned int loop_break;
3821 unsigned int loop_max;
ddcdf6e7
PZ
3822};
3823
1e3c88bd 3824/*
ddcdf6e7 3825 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3826 * Both runqueues must be locked.
3827 */
ddcdf6e7 3828static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3829{
ddcdf6e7
PZ
3830 deactivate_task(env->src_rq, p, 0);
3831 set_task_cpu(p, env->dst_cpu);
3832 activate_task(env->dst_rq, p, 0);
3833 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3834}
3835
029632fb
PZ
3836/*
3837 * Is this task likely cache-hot:
3838 */
3839static int
3840task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3841{
3842 s64 delta;
3843
3844 if (p->sched_class != &fair_sched_class)
3845 return 0;
3846
3847 if (unlikely(p->policy == SCHED_IDLE))
3848 return 0;
3849
3850 /*
3851 * Buddy candidates are cache hot:
3852 */
3853 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3854 (&p->se == cfs_rq_of(&p->se)->next ||
3855 &p->se == cfs_rq_of(&p->se)->last))
3856 return 1;
3857
3858 if (sysctl_sched_migration_cost == -1)
3859 return 1;
3860 if (sysctl_sched_migration_cost == 0)
3861 return 0;
3862
3863 delta = now - p->se.exec_start;
3864
3865 return delta < (s64)sysctl_sched_migration_cost;
3866}
3867
1e3c88bd
PZ
3868/*
3869 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3870 */
3871static
8e45cb54 3872int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3873{
3874 int tsk_cache_hot = 0;
3875 /*
3876 * We do not migrate tasks that are:
3877 * 1) running (obviously), or
3878 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3879 * 3) are cache-hot on their current CPU.
3880 */
ddcdf6e7 3881 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3882 int new_dst_cpu;
3883
41acab88 3884 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3885
3886 /*
3887 * Remember if this task can be migrated to any other cpu in
3888 * our sched_group. We may want to revisit it if we couldn't
3889 * meet load balance goals by pulling other tasks on src_cpu.
3890 *
3891 * Also avoid computing new_dst_cpu if we have already computed
3892 * one in current iteration.
3893 */
3894 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3895 return 0;
3896
3897 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3898 tsk_cpus_allowed(p));
3899 if (new_dst_cpu < nr_cpu_ids) {
3900 env->flags |= LBF_SOME_PINNED;
3901 env->new_dst_cpu = new_dst_cpu;
3902 }
1e3c88bd
PZ
3903 return 0;
3904 }
88b8dac0
SV
3905
3906 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3907 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3908
ddcdf6e7 3909 if (task_running(env->src_rq, p)) {
41acab88 3910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3911 return 0;
3912 }
3913
3914 /*
3915 * Aggressive migration if:
3916 * 1) task is cache cold, or
3917 * 2) too many balance attempts have failed.
3918 */
3919
ddcdf6e7 3920 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3921 if (!tsk_cache_hot ||
8e45cb54 3922 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3923#ifdef CONFIG_SCHEDSTATS
3924 if (tsk_cache_hot) {
8e45cb54 3925 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3926 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3927 }
3928#endif
3929 return 1;
3930 }
3931
3932 if (tsk_cache_hot) {
41acab88 3933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3934 return 0;
3935 }
3936 return 1;
3937}
3938
897c395f
PZ
3939/*
3940 * move_one_task tries to move exactly one task from busiest to this_rq, as
3941 * part of active balancing operations within "domain".
3942 * Returns 1 if successful and 0 otherwise.
3943 *
3944 * Called with both runqueues locked.
3945 */
8e45cb54 3946static int move_one_task(struct lb_env *env)
897c395f
PZ
3947{
3948 struct task_struct *p, *n;
897c395f 3949
367456c7
PZ
3950 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3951 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3952 continue;
897c395f 3953
367456c7
PZ
3954 if (!can_migrate_task(p, env))
3955 continue;
897c395f 3956
367456c7
PZ
3957 move_task(p, env);
3958 /*
3959 * Right now, this is only the second place move_task()
3960 * is called, so we can safely collect move_task()
3961 * stats here rather than inside move_task().
3962 */
3963 schedstat_inc(env->sd, lb_gained[env->idle]);
3964 return 1;
897c395f 3965 }
897c395f
PZ
3966 return 0;
3967}
3968
367456c7
PZ
3969static unsigned long task_h_load(struct task_struct *p);
3970
eb95308e
PZ
3971static const unsigned int sched_nr_migrate_break = 32;
3972
5d6523eb 3973/*
bd939f45 3974 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3975 * this_rq, as part of a balancing operation within domain "sd".
3976 * Returns 1 if successful and 0 otherwise.
3977 *
3978 * Called with both runqueues locked.
3979 */
3980static int move_tasks(struct lb_env *env)
1e3c88bd 3981{
5d6523eb
PZ
3982 struct list_head *tasks = &env->src_rq->cfs_tasks;
3983 struct task_struct *p;
367456c7
PZ
3984 unsigned long load;
3985 int pulled = 0;
1e3c88bd 3986
bd939f45 3987 if (env->imbalance <= 0)
5d6523eb 3988 return 0;
1e3c88bd 3989
5d6523eb
PZ
3990 while (!list_empty(tasks)) {
3991 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3992
367456c7
PZ
3993 env->loop++;
3994 /* We've more or less seen every task there is, call it quits */
5d6523eb 3995 if (env->loop > env->loop_max)
367456c7 3996 break;
5d6523eb
PZ
3997
3998 /* take a breather every nr_migrate tasks */
367456c7 3999 if (env->loop > env->loop_break) {
eb95308e 4000 env->loop_break += sched_nr_migrate_break;
8e45cb54 4001 env->flags |= LBF_NEED_BREAK;
ee00e66f 4002 break;
a195f004 4003 }
1e3c88bd 4004
5d6523eb 4005 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
4006 goto next;
4007
4008 load = task_h_load(p);
5d6523eb 4009
eb95308e 4010 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4011 goto next;
4012
bd939f45 4013 if ((load / 2) > env->imbalance)
367456c7 4014 goto next;
1e3c88bd 4015
367456c7
PZ
4016 if (!can_migrate_task(p, env))
4017 goto next;
1e3c88bd 4018
ddcdf6e7 4019 move_task(p, env);
ee00e66f 4020 pulled++;
bd939f45 4021 env->imbalance -= load;
1e3c88bd
PZ
4022
4023#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4024 /*
4025 * NEWIDLE balancing is a source of latency, so preemptible
4026 * kernels will stop after the first task is pulled to minimize
4027 * the critical section.
4028 */
5d6523eb 4029 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4030 break;
1e3c88bd
PZ
4031#endif
4032
ee00e66f
PZ
4033 /*
4034 * We only want to steal up to the prescribed amount of
4035 * weighted load.
4036 */
bd939f45 4037 if (env->imbalance <= 0)
ee00e66f 4038 break;
367456c7
PZ
4039
4040 continue;
4041next:
5d6523eb 4042 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4043 }
5d6523eb 4044
1e3c88bd 4045 /*
ddcdf6e7
PZ
4046 * Right now, this is one of only two places move_task() is called,
4047 * so we can safely collect move_task() stats here rather than
4048 * inside move_task().
1e3c88bd 4049 */
8e45cb54 4050 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4051
5d6523eb 4052 return pulled;
1e3c88bd
PZ
4053}
4054
230059de 4055#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4056/*
4057 * update tg->load_weight by folding this cpu's load_avg
4058 */
48a16753 4059static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4060{
48a16753
PT
4061 struct sched_entity *se = tg->se[cpu];
4062 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4063
48a16753
PT
4064 /* throttled entities do not contribute to load */
4065 if (throttled_hierarchy(cfs_rq))
4066 return;
9e3081ca 4067
aff3e498 4068 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4069
82958366
PT
4070 if (se) {
4071 update_entity_load_avg(se, 1);
4072 /*
4073 * We pivot on our runnable average having decayed to zero for
4074 * list removal. This generally implies that all our children
4075 * have also been removed (modulo rounding error or bandwidth
4076 * control); however, such cases are rare and we can fix these
4077 * at enqueue.
4078 *
4079 * TODO: fix up out-of-order children on enqueue.
4080 */
4081 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4082 list_del_leaf_cfs_rq(cfs_rq);
4083 } else {
48a16753 4084 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4085 update_rq_runnable_avg(rq, rq->nr_running);
4086 }
9e3081ca
PZ
4087}
4088
48a16753 4089static void update_blocked_averages(int cpu)
9e3081ca 4090{
9e3081ca 4091 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4092 struct cfs_rq *cfs_rq;
4093 unsigned long flags;
9e3081ca 4094
48a16753
PT
4095 raw_spin_lock_irqsave(&rq->lock, flags);
4096 update_rq_clock(rq);
9763b67f
PZ
4097 /*
4098 * Iterates the task_group tree in a bottom up fashion, see
4099 * list_add_leaf_cfs_rq() for details.
4100 */
64660c86 4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4102 /*
4103 * Note: We may want to consider periodically releasing
4104 * rq->lock about these updates so that creating many task
4105 * groups does not result in continually extending hold time.
4106 */
4107 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4108 }
48a16753
PT
4109
4110 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4111}
4112
9763b67f
PZ
4113/*
4114 * Compute the cpu's hierarchical load factor for each task group.
4115 * This needs to be done in a top-down fashion because the load of a child
4116 * group is a fraction of its parents load.
4117 */
4118static int tg_load_down(struct task_group *tg, void *data)
4119{
4120 unsigned long load;
4121 long cpu = (long)data;
4122
4123 if (!tg->parent) {
4124 load = cpu_rq(cpu)->load.weight;
4125 } else {
4126 load = tg->parent->cfs_rq[cpu]->h_load;
4127 load *= tg->se[cpu]->load.weight;
4128 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4129 }
4130
4131 tg->cfs_rq[cpu]->h_load = load;
4132
4133 return 0;
4134}
4135
4136static void update_h_load(long cpu)
4137{
a35b6466
PZ
4138 struct rq *rq = cpu_rq(cpu);
4139 unsigned long now = jiffies;
4140
4141 if (rq->h_load_throttle == now)
4142 return;
4143
4144 rq->h_load_throttle = now;
4145
367456c7 4146 rcu_read_lock();
9763b67f 4147 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4148 rcu_read_unlock();
9763b67f
PZ
4149}
4150
367456c7 4151static unsigned long task_h_load(struct task_struct *p)
230059de 4152{
367456c7
PZ
4153 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4154 unsigned long load;
230059de 4155
367456c7
PZ
4156 load = p->se.load.weight;
4157 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4158
367456c7 4159 return load;
230059de
PZ
4160}
4161#else
48a16753 4162static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4163{
4164}
4165
367456c7 4166static inline void update_h_load(long cpu)
230059de 4167{
230059de 4168}
230059de 4169
367456c7 4170static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4171{
367456c7 4172 return p->se.load.weight;
1e3c88bd 4173}
230059de 4174#endif
1e3c88bd 4175
1e3c88bd
PZ
4176/********** Helpers for find_busiest_group ************************/
4177/*
4178 * sd_lb_stats - Structure to store the statistics of a sched_domain
4179 * during load balancing.
4180 */
4181struct sd_lb_stats {
4182 struct sched_group *busiest; /* Busiest group in this sd */
4183 struct sched_group *this; /* Local group in this sd */
4184 unsigned long total_load; /* Total load of all groups in sd */
4185 unsigned long total_pwr; /* Total power of all groups in sd */
4186 unsigned long avg_load; /* Average load across all groups in sd */
4187
4188 /** Statistics of this group */
4189 unsigned long this_load;
4190 unsigned long this_load_per_task;
4191 unsigned long this_nr_running;
fab47622 4192 unsigned long this_has_capacity;
aae6d3dd 4193 unsigned int this_idle_cpus;
1e3c88bd
PZ
4194
4195 /* Statistics of the busiest group */
aae6d3dd 4196 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4197 unsigned long max_load;
4198 unsigned long busiest_load_per_task;
4199 unsigned long busiest_nr_running;
dd5feea1 4200 unsigned long busiest_group_capacity;
fab47622 4201 unsigned long busiest_has_capacity;
aae6d3dd 4202 unsigned int busiest_group_weight;
1e3c88bd
PZ
4203
4204 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4205};
4206
4207/*
4208 * sg_lb_stats - stats of a sched_group required for load_balancing
4209 */
4210struct sg_lb_stats {
4211 unsigned long avg_load; /*Avg load across the CPUs of the group */
4212 unsigned long group_load; /* Total load over the CPUs of the group */
4213 unsigned long sum_nr_running; /* Nr tasks running in the group */
4214 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4215 unsigned long group_capacity;
aae6d3dd
SS
4216 unsigned long idle_cpus;
4217 unsigned long group_weight;
1e3c88bd 4218 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4219 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4220};
4221
1e3c88bd
PZ
4222/**
4223 * get_sd_load_idx - Obtain the load index for a given sched domain.
4224 * @sd: The sched_domain whose load_idx is to be obtained.
4225 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4226 */
4227static inline int get_sd_load_idx(struct sched_domain *sd,
4228 enum cpu_idle_type idle)
4229{
4230 int load_idx;
4231
4232 switch (idle) {
4233 case CPU_NOT_IDLE:
4234 load_idx = sd->busy_idx;
4235 break;
4236
4237 case CPU_NEWLY_IDLE:
4238 load_idx = sd->newidle_idx;
4239 break;
4240 default:
4241 load_idx = sd->idle_idx;
4242 break;
4243 }
4244
4245 return load_idx;
4246}
4247
15f803c9 4248static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4249{
1399fa78 4250 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4251}
4252
4253unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4254{
4255 return default_scale_freq_power(sd, cpu);
4256}
4257
15f803c9 4258static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4259{
669c55e9 4260 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4261 unsigned long smt_gain = sd->smt_gain;
4262
4263 smt_gain /= weight;
4264
4265 return smt_gain;
4266}
4267
4268unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4269{
4270 return default_scale_smt_power(sd, cpu);
4271}
4272
15f803c9 4273static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4274{
4275 struct rq *rq = cpu_rq(cpu);
b654f7de 4276 u64 total, available, age_stamp, avg;
1e3c88bd 4277
b654f7de
PZ
4278 /*
4279 * Since we're reading these variables without serialization make sure
4280 * we read them once before doing sanity checks on them.
4281 */
4282 age_stamp = ACCESS_ONCE(rq->age_stamp);
4283 avg = ACCESS_ONCE(rq->rt_avg);
4284
4285 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4286
b654f7de 4287 if (unlikely(total < avg)) {
aa483808
VP
4288 /* Ensures that power won't end up being negative */
4289 available = 0;
4290 } else {
b654f7de 4291 available = total - avg;
aa483808 4292 }
1e3c88bd 4293
1399fa78
NR
4294 if (unlikely((s64)total < SCHED_POWER_SCALE))
4295 total = SCHED_POWER_SCALE;
1e3c88bd 4296
1399fa78 4297 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4298
4299 return div_u64(available, total);
4300}
4301
4302static void update_cpu_power(struct sched_domain *sd, int cpu)
4303{
669c55e9 4304 unsigned long weight = sd->span_weight;
1399fa78 4305 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4306 struct sched_group *sdg = sd->groups;
4307
1e3c88bd
PZ
4308 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4309 if (sched_feat(ARCH_POWER))
4310 power *= arch_scale_smt_power(sd, cpu);
4311 else
4312 power *= default_scale_smt_power(sd, cpu);
4313
1399fa78 4314 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4315 }
4316
9c3f75cb 4317 sdg->sgp->power_orig = power;
9d5efe05
SV
4318
4319 if (sched_feat(ARCH_POWER))
4320 power *= arch_scale_freq_power(sd, cpu);
4321 else
4322 power *= default_scale_freq_power(sd, cpu);
4323
1399fa78 4324 power >>= SCHED_POWER_SHIFT;
9d5efe05 4325
1e3c88bd 4326 power *= scale_rt_power(cpu);
1399fa78 4327 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4328
4329 if (!power)
4330 power = 1;
4331
e51fd5e2 4332 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4333 sdg->sgp->power = power;
1e3c88bd
PZ
4334}
4335
029632fb 4336void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4337{
4338 struct sched_domain *child = sd->child;
4339 struct sched_group *group, *sdg = sd->groups;
4340 unsigned long power;
4ec4412e
VG
4341 unsigned long interval;
4342
4343 interval = msecs_to_jiffies(sd->balance_interval);
4344 interval = clamp(interval, 1UL, max_load_balance_interval);
4345 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4346
4347 if (!child) {
4348 update_cpu_power(sd, cpu);
4349 return;
4350 }
4351
4352 power = 0;
4353
74a5ce20
PZ
4354 if (child->flags & SD_OVERLAP) {
4355 /*
4356 * SD_OVERLAP domains cannot assume that child groups
4357 * span the current group.
4358 */
4359
4360 for_each_cpu(cpu, sched_group_cpus(sdg))
4361 power += power_of(cpu);
4362 } else {
4363 /*
4364 * !SD_OVERLAP domains can assume that child groups
4365 * span the current group.
4366 */
4367
4368 group = child->groups;
4369 do {
4370 power += group->sgp->power;
4371 group = group->next;
4372 } while (group != child->groups);
4373 }
1e3c88bd 4374
c3decf0d 4375 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4376}
4377
9d5efe05
SV
4378/*
4379 * Try and fix up capacity for tiny siblings, this is needed when
4380 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4381 * which on its own isn't powerful enough.
4382 *
4383 * See update_sd_pick_busiest() and check_asym_packing().
4384 */
4385static inline int
4386fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4387{
4388 /*
1399fa78 4389 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4390 */
a6c75f2f 4391 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4392 return 0;
4393
4394 /*
4395 * If ~90% of the cpu_power is still there, we're good.
4396 */
9c3f75cb 4397 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4398 return 1;
4399
4400 return 0;
4401}
4402
1e3c88bd
PZ
4403/**
4404 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4405 * @env: The load balancing environment.
1e3c88bd 4406 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4407 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4408 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4409 * @balance: Should we balance.
4410 * @sgs: variable to hold the statistics for this group.
4411 */
bd939f45
PZ
4412static inline void update_sg_lb_stats(struct lb_env *env,
4413 struct sched_group *group, int load_idx,
b9403130 4414 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4415{
e44bc5c5
PZ
4416 unsigned long nr_running, max_nr_running, min_nr_running;
4417 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4418 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4419 unsigned long avg_load_per_task = 0;
bd939f45 4420 int i;
1e3c88bd 4421
871e35bc 4422 if (local_group)
c1174876 4423 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4424
4425 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4426 max_cpu_load = 0;
4427 min_cpu_load = ~0UL;
2582f0eb 4428 max_nr_running = 0;
e44bc5c5 4429 min_nr_running = ~0UL;
1e3c88bd 4430
b9403130 4431 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4432 struct rq *rq = cpu_rq(i);
4433
e44bc5c5
PZ
4434 nr_running = rq->nr_running;
4435
1e3c88bd
PZ
4436 /* Bias balancing toward cpus of our domain */
4437 if (local_group) {
c1174876
PZ
4438 if (idle_cpu(i) && !first_idle_cpu &&
4439 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4440 first_idle_cpu = 1;
1e3c88bd
PZ
4441 balance_cpu = i;
4442 }
04f733b4
PZ
4443
4444 load = target_load(i, load_idx);
1e3c88bd
PZ
4445 } else {
4446 load = source_load(i, load_idx);
e44bc5c5 4447 if (load > max_cpu_load)
1e3c88bd
PZ
4448 max_cpu_load = load;
4449 if (min_cpu_load > load)
4450 min_cpu_load = load;
e44bc5c5
PZ
4451
4452 if (nr_running > max_nr_running)
4453 max_nr_running = nr_running;
4454 if (min_nr_running > nr_running)
4455 min_nr_running = nr_running;
1e3c88bd
PZ
4456 }
4457
4458 sgs->group_load += load;
e44bc5c5 4459 sgs->sum_nr_running += nr_running;
1e3c88bd 4460 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4461 if (idle_cpu(i))
4462 sgs->idle_cpus++;
1e3c88bd
PZ
4463 }
4464
4465 /*
4466 * First idle cpu or the first cpu(busiest) in this sched group
4467 * is eligible for doing load balancing at this and above
4468 * domains. In the newly idle case, we will allow all the cpu's
4469 * to do the newly idle load balance.
4470 */
4ec4412e 4471 if (local_group) {
bd939f45 4472 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4473 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4474 *balance = 0;
4475 return;
4476 }
bd939f45 4477 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4478 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4479 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4480 }
4481
4482 /* Adjust by relative CPU power of the group */
9c3f75cb 4483 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4484
1e3c88bd
PZ
4485 /*
4486 * Consider the group unbalanced when the imbalance is larger
866ab43e 4487 * than the average weight of a task.
1e3c88bd
PZ
4488 *
4489 * APZ: with cgroup the avg task weight can vary wildly and
4490 * might not be a suitable number - should we keep a
4491 * normalized nr_running number somewhere that negates
4492 * the hierarchy?
4493 */
dd5feea1
SS
4494 if (sgs->sum_nr_running)
4495 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4496
e44bc5c5
PZ
4497 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4498 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4499 sgs->group_imb = 1;
4500
9c3f75cb 4501 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4502 SCHED_POWER_SCALE);
9d5efe05 4503 if (!sgs->group_capacity)
bd939f45 4504 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4505 sgs->group_weight = group->group_weight;
fab47622
NR
4506
4507 if (sgs->group_capacity > sgs->sum_nr_running)
4508 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4509}
4510
532cb4c4
MN
4511/**
4512 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4513 * @env: The load balancing environment.
532cb4c4
MN
4514 * @sds: sched_domain statistics
4515 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4516 * @sgs: sched_group statistics
532cb4c4
MN
4517 *
4518 * Determine if @sg is a busier group than the previously selected
4519 * busiest group.
4520 */
bd939f45 4521static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4522 struct sd_lb_stats *sds,
4523 struct sched_group *sg,
bd939f45 4524 struct sg_lb_stats *sgs)
532cb4c4
MN
4525{
4526 if (sgs->avg_load <= sds->max_load)
4527 return false;
4528
4529 if (sgs->sum_nr_running > sgs->group_capacity)
4530 return true;
4531
4532 if (sgs->group_imb)
4533 return true;
4534
4535 /*
4536 * ASYM_PACKING needs to move all the work to the lowest
4537 * numbered CPUs in the group, therefore mark all groups
4538 * higher than ourself as busy.
4539 */
bd939f45
PZ
4540 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4541 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4542 if (!sds->busiest)
4543 return true;
4544
4545 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4546 return true;
4547 }
4548
4549 return false;
4550}
4551
1e3c88bd 4552/**
461819ac 4553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4554 * @env: The load balancing environment.
1e3c88bd
PZ
4555 * @balance: Should we balance.
4556 * @sds: variable to hold the statistics for this sched_domain.
4557 */
bd939f45 4558static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4559 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4560{
bd939f45
PZ
4561 struct sched_domain *child = env->sd->child;
4562 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4563 struct sg_lb_stats sgs;
4564 int load_idx, prefer_sibling = 0;
4565
4566 if (child && child->flags & SD_PREFER_SIBLING)
4567 prefer_sibling = 1;
4568
bd939f45 4569 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4570
4571 do {
4572 int local_group;
4573
bd939f45 4574 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4575 memset(&sgs, 0, sizeof(sgs));
b9403130 4576 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4577
8f190fb3 4578 if (local_group && !(*balance))
1e3c88bd
PZ
4579 return;
4580
4581 sds->total_load += sgs.group_load;
9c3f75cb 4582 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4583
4584 /*
4585 * In case the child domain prefers tasks go to siblings
532cb4c4 4586 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4587 * and move all the excess tasks away. We lower the capacity
4588 * of a group only if the local group has the capacity to fit
4589 * these excess tasks, i.e. nr_running < group_capacity. The
4590 * extra check prevents the case where you always pull from the
4591 * heaviest group when it is already under-utilized (possible
4592 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4593 */
75dd321d 4594 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4595 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4596
4597 if (local_group) {
4598 sds->this_load = sgs.avg_load;
532cb4c4 4599 sds->this = sg;
1e3c88bd
PZ
4600 sds->this_nr_running = sgs.sum_nr_running;
4601 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4602 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4603 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4604 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4605 sds->max_load = sgs.avg_load;
532cb4c4 4606 sds->busiest = sg;
1e3c88bd 4607 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4608 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4609 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4610 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4611 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4612 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4613 sds->group_imb = sgs.group_imb;
4614 }
4615
532cb4c4 4616 sg = sg->next;
bd939f45 4617 } while (sg != env->sd->groups);
532cb4c4
MN
4618}
4619
532cb4c4
MN
4620/**
4621 * check_asym_packing - Check to see if the group is packed into the
4622 * sched doman.
4623 *
4624 * This is primarily intended to used at the sibling level. Some
4625 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4626 * case of POWER7, it can move to lower SMT modes only when higher
4627 * threads are idle. When in lower SMT modes, the threads will
4628 * perform better since they share less core resources. Hence when we
4629 * have idle threads, we want them to be the higher ones.
4630 *
4631 * This packing function is run on idle threads. It checks to see if
4632 * the busiest CPU in this domain (core in the P7 case) has a higher
4633 * CPU number than the packing function is being run on. Here we are
4634 * assuming lower CPU number will be equivalent to lower a SMT thread
4635 * number.
4636 *
b6b12294
MN
4637 * Returns 1 when packing is required and a task should be moved to
4638 * this CPU. The amount of the imbalance is returned in *imbalance.
4639 *
cd96891d 4640 * @env: The load balancing environment.
532cb4c4 4641 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4642 */
bd939f45 4643static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4644{
4645 int busiest_cpu;
4646
bd939f45 4647 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4648 return 0;
4649
4650 if (!sds->busiest)
4651 return 0;
4652
4653 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4654 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4655 return 0;
4656
bd939f45
PZ
4657 env->imbalance = DIV_ROUND_CLOSEST(
4658 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4659
532cb4c4 4660 return 1;
1e3c88bd
PZ
4661}
4662
4663/**
4664 * fix_small_imbalance - Calculate the minor imbalance that exists
4665 * amongst the groups of a sched_domain, during
4666 * load balancing.
cd96891d 4667 * @env: The load balancing environment.
1e3c88bd 4668 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4669 */
bd939f45
PZ
4670static inline
4671void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4672{
4673 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4674 unsigned int imbn = 2;
dd5feea1 4675 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4676
4677 if (sds->this_nr_running) {
4678 sds->this_load_per_task /= sds->this_nr_running;
4679 if (sds->busiest_load_per_task >
4680 sds->this_load_per_task)
4681 imbn = 1;
bd939f45 4682 } else {
1e3c88bd 4683 sds->this_load_per_task =
bd939f45
PZ
4684 cpu_avg_load_per_task(env->dst_cpu);
4685 }
1e3c88bd 4686
dd5feea1 4687 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4688 * SCHED_POWER_SCALE;
9c3f75cb 4689 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4690
4691 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4692 (scaled_busy_load_per_task * imbn)) {
bd939f45 4693 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4694 return;
4695 }
4696
4697 /*
4698 * OK, we don't have enough imbalance to justify moving tasks,
4699 * however we may be able to increase total CPU power used by
4700 * moving them.
4701 */
4702
9c3f75cb 4703 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4704 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4705 pwr_now += sds->this->sgp->power *
1e3c88bd 4706 min(sds->this_load_per_task, sds->this_load);
1399fa78 4707 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4708
4709 /* Amount of load we'd subtract */
1399fa78 4710 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4711 sds->busiest->sgp->power;
1e3c88bd 4712 if (sds->max_load > tmp)
9c3f75cb 4713 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4714 min(sds->busiest_load_per_task, sds->max_load - tmp);
4715
4716 /* Amount of load we'd add */
9c3f75cb 4717 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4718 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4719 tmp = (sds->max_load * sds->busiest->sgp->power) /
4720 sds->this->sgp->power;
1e3c88bd 4721 else
1399fa78 4722 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4723 sds->this->sgp->power;
4724 pwr_move += sds->this->sgp->power *
1e3c88bd 4725 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4726 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4727
4728 /* Move if we gain throughput */
4729 if (pwr_move > pwr_now)
bd939f45 4730 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4731}
4732
4733/**
4734 * calculate_imbalance - Calculate the amount of imbalance present within the
4735 * groups of a given sched_domain during load balance.
bd939f45 4736 * @env: load balance environment
1e3c88bd 4737 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4738 */
bd939f45 4739static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4740{
dd5feea1
SS
4741 unsigned long max_pull, load_above_capacity = ~0UL;
4742
4743 sds->busiest_load_per_task /= sds->busiest_nr_running;
4744 if (sds->group_imb) {
4745 sds->busiest_load_per_task =
4746 min(sds->busiest_load_per_task, sds->avg_load);
4747 }
4748
1e3c88bd
PZ
4749 /*
4750 * In the presence of smp nice balancing, certain scenarios can have
4751 * max load less than avg load(as we skip the groups at or below
4752 * its cpu_power, while calculating max_load..)
4753 */
4754 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4755 env->imbalance = 0;
4756 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4757 }
4758
dd5feea1
SS
4759 if (!sds->group_imb) {
4760 /*
4761 * Don't want to pull so many tasks that a group would go idle.
4762 */
4763 load_above_capacity = (sds->busiest_nr_running -
4764 sds->busiest_group_capacity);
4765
1399fa78 4766 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4767
9c3f75cb 4768 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4769 }
4770
4771 /*
4772 * We're trying to get all the cpus to the average_load, so we don't
4773 * want to push ourselves above the average load, nor do we wish to
4774 * reduce the max loaded cpu below the average load. At the same time,
4775 * we also don't want to reduce the group load below the group capacity
4776 * (so that we can implement power-savings policies etc). Thus we look
4777 * for the minimum possible imbalance.
4778 * Be careful of negative numbers as they'll appear as very large values
4779 * with unsigned longs.
4780 */
4781 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4782
4783 /* How much load to actually move to equalise the imbalance */
bd939f45 4784 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4785 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4786 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4787
4788 /*
4789 * if *imbalance is less than the average load per runnable task
25985edc 4790 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4791 * a think about bumping its value to force at least one task to be
4792 * moved
4793 */
bd939f45
PZ
4794 if (env->imbalance < sds->busiest_load_per_task)
4795 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4796
4797}
fab47622 4798
1e3c88bd
PZ
4799/******* find_busiest_group() helpers end here *********************/
4800
4801/**
4802 * find_busiest_group - Returns the busiest group within the sched_domain
4803 * if there is an imbalance. If there isn't an imbalance, and
4804 * the user has opted for power-savings, it returns a group whose
4805 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4806 * such a group exists.
4807 *
4808 * Also calculates the amount of weighted load which should be moved
4809 * to restore balance.
4810 *
cd96891d 4811 * @env: The load balancing environment.
1e3c88bd
PZ
4812 * @balance: Pointer to a variable indicating if this_cpu
4813 * is the appropriate cpu to perform load balancing at this_level.
4814 *
4815 * Returns: - the busiest group if imbalance exists.
4816 * - If no imbalance and user has opted for power-savings balance,
4817 * return the least loaded group whose CPUs can be
4818 * put to idle by rebalancing its tasks onto our group.
4819 */
4820static struct sched_group *
b9403130 4821find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4822{
4823 struct sd_lb_stats sds;
4824
4825 memset(&sds, 0, sizeof(sds));
4826
4827 /*
4828 * Compute the various statistics relavent for load balancing at
4829 * this level.
4830 */
b9403130 4831 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4832
cc57aa8f
PZ
4833 /*
4834 * this_cpu is not the appropriate cpu to perform load balancing at
4835 * this level.
1e3c88bd 4836 */
8f190fb3 4837 if (!(*balance))
1e3c88bd
PZ
4838 goto ret;
4839
bd939f45
PZ
4840 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4841 check_asym_packing(env, &sds))
532cb4c4
MN
4842 return sds.busiest;
4843
cc57aa8f 4844 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4845 if (!sds.busiest || sds.busiest_nr_running == 0)
4846 goto out_balanced;
4847
1399fa78 4848 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4849
866ab43e
PZ
4850 /*
4851 * If the busiest group is imbalanced the below checks don't
4852 * work because they assumes all things are equal, which typically
4853 * isn't true due to cpus_allowed constraints and the like.
4854 */
4855 if (sds.group_imb)
4856 goto force_balance;
4857
cc57aa8f 4858 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4859 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4860 !sds.busiest_has_capacity)
4861 goto force_balance;
4862
cc57aa8f
PZ
4863 /*
4864 * If the local group is more busy than the selected busiest group
4865 * don't try and pull any tasks.
4866 */
1e3c88bd
PZ
4867 if (sds.this_load >= sds.max_load)
4868 goto out_balanced;
4869
cc57aa8f
PZ
4870 /*
4871 * Don't pull any tasks if this group is already above the domain
4872 * average load.
4873 */
1e3c88bd
PZ
4874 if (sds.this_load >= sds.avg_load)
4875 goto out_balanced;
4876
bd939f45 4877 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4878 /*
4879 * This cpu is idle. If the busiest group load doesn't
4880 * have more tasks than the number of available cpu's and
4881 * there is no imbalance between this and busiest group
4882 * wrt to idle cpu's, it is balanced.
4883 */
c186fafe 4884 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4885 sds.busiest_nr_running <= sds.busiest_group_weight)
4886 goto out_balanced;
c186fafe
PZ
4887 } else {
4888 /*
4889 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4890 * imbalance_pct to be conservative.
4891 */
bd939f45 4892 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4893 goto out_balanced;
aae6d3dd 4894 }
1e3c88bd 4895
fab47622 4896force_balance:
1e3c88bd 4897 /* Looks like there is an imbalance. Compute it */
bd939f45 4898 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4899 return sds.busiest;
4900
4901out_balanced:
1e3c88bd 4902ret:
bd939f45 4903 env->imbalance = 0;
1e3c88bd
PZ
4904 return NULL;
4905}
4906
4907/*
4908 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4909 */
bd939f45 4910static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4911 struct sched_group *group)
1e3c88bd
PZ
4912{
4913 struct rq *busiest = NULL, *rq;
4914 unsigned long max_load = 0;
4915 int i;
4916
4917 for_each_cpu(i, sched_group_cpus(group)) {
4918 unsigned long power = power_of(i);
1399fa78
NR
4919 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4920 SCHED_POWER_SCALE);
1e3c88bd
PZ
4921 unsigned long wl;
4922
9d5efe05 4923 if (!capacity)
bd939f45 4924 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4925
b9403130 4926 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4927 continue;
4928
4929 rq = cpu_rq(i);
6e40f5bb 4930 wl = weighted_cpuload(i);
1e3c88bd 4931
6e40f5bb
TG
4932 /*
4933 * When comparing with imbalance, use weighted_cpuload()
4934 * which is not scaled with the cpu power.
4935 */
bd939f45 4936 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4937 continue;
4938
6e40f5bb
TG
4939 /*
4940 * For the load comparisons with the other cpu's, consider
4941 * the weighted_cpuload() scaled with the cpu power, so that
4942 * the load can be moved away from the cpu that is potentially
4943 * running at a lower capacity.
4944 */
1399fa78 4945 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4946
1e3c88bd
PZ
4947 if (wl > max_load) {
4948 max_load = wl;
4949 busiest = rq;
4950 }
4951 }
4952
4953 return busiest;
4954}
4955
4956/*
4957 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4958 * so long as it is large enough.
4959 */
4960#define MAX_PINNED_INTERVAL 512
4961
4962/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4963DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4964
bd939f45 4965static int need_active_balance(struct lb_env *env)
1af3ed3d 4966{
bd939f45
PZ
4967 struct sched_domain *sd = env->sd;
4968
4969 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4970
4971 /*
4972 * ASYM_PACKING needs to force migrate tasks from busy but
4973 * higher numbered CPUs in order to pack all tasks in the
4974 * lowest numbered CPUs.
4975 */
bd939f45 4976 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4977 return 1;
1af3ed3d
PZ
4978 }
4979
4980 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4981}
4982
969c7921
TH
4983static int active_load_balance_cpu_stop(void *data);
4984
1e3c88bd
PZ
4985/*
4986 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4987 * tasks if there is an imbalance.
4988 */
4989static int load_balance(int this_cpu, struct rq *this_rq,
4990 struct sched_domain *sd, enum cpu_idle_type idle,
4991 int *balance)
4992{
88b8dac0
SV
4993 int ld_moved, cur_ld_moved, active_balance = 0;
4994 int lb_iterations, max_lb_iterations;
1e3c88bd 4995 struct sched_group *group;
1e3c88bd
PZ
4996 struct rq *busiest;
4997 unsigned long flags;
4998 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4999
8e45cb54
PZ
5000 struct lb_env env = {
5001 .sd = sd,
ddcdf6e7
PZ
5002 .dst_cpu = this_cpu,
5003 .dst_rq = this_rq,
88b8dac0 5004 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5005 .idle = idle,
eb95308e 5006 .loop_break = sched_nr_migrate_break,
b9403130 5007 .cpus = cpus,
8e45cb54
PZ
5008 };
5009
1e3c88bd 5010 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 5011 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 5012
1e3c88bd
PZ
5013 schedstat_inc(sd, lb_count[idle]);
5014
5015redo:
b9403130 5016 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5017
5018 if (*balance == 0)
5019 goto out_balanced;
5020
5021 if (!group) {
5022 schedstat_inc(sd, lb_nobusyg[idle]);
5023 goto out_balanced;
5024 }
5025
b9403130 5026 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5027 if (!busiest) {
5028 schedstat_inc(sd, lb_nobusyq[idle]);
5029 goto out_balanced;
5030 }
5031
78feefc5 5032 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5033
bd939f45 5034 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5035
5036 ld_moved = 0;
88b8dac0 5037 lb_iterations = 1;
1e3c88bd
PZ
5038 if (busiest->nr_running > 1) {
5039 /*
5040 * Attempt to move tasks. If find_busiest_group has found
5041 * an imbalance but busiest->nr_running <= 1, the group is
5042 * still unbalanced. ld_moved simply stays zero, so it is
5043 * correctly treated as an imbalance.
5044 */
8e45cb54 5045 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5046 env.src_cpu = busiest->cpu;
5047 env.src_rq = busiest;
5048 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5049
a35b6466 5050 update_h_load(env.src_cpu);
5d6523eb 5051more_balance:
1e3c88bd 5052 local_irq_save(flags);
78feefc5 5053 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5054
5055 /*
5056 * cur_ld_moved - load moved in current iteration
5057 * ld_moved - cumulative load moved across iterations
5058 */
5059 cur_ld_moved = move_tasks(&env);
5060 ld_moved += cur_ld_moved;
78feefc5 5061 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5062 local_irq_restore(flags);
5063
5d6523eb
PZ
5064 if (env.flags & LBF_NEED_BREAK) {
5065 env.flags &= ~LBF_NEED_BREAK;
5066 goto more_balance;
5067 }
5068
1e3c88bd
PZ
5069 /*
5070 * some other cpu did the load balance for us.
5071 */
88b8dac0
SV
5072 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5073 resched_cpu(env.dst_cpu);
5074
5075 /*
5076 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5077 * us and move them to an alternate dst_cpu in our sched_group
5078 * where they can run. The upper limit on how many times we
5079 * iterate on same src_cpu is dependent on number of cpus in our
5080 * sched_group.
5081 *
5082 * This changes load balance semantics a bit on who can move
5083 * load to a given_cpu. In addition to the given_cpu itself
5084 * (or a ilb_cpu acting on its behalf where given_cpu is
5085 * nohz-idle), we now have balance_cpu in a position to move
5086 * load to given_cpu. In rare situations, this may cause
5087 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5088 * _independently_ and at _same_ time to move some load to
5089 * given_cpu) causing exceess load to be moved to given_cpu.
5090 * This however should not happen so much in practice and
5091 * moreover subsequent load balance cycles should correct the
5092 * excess load moved.
5093 */
5094 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5095 lb_iterations++ < max_lb_iterations) {
5096
78feefc5 5097 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5098 env.dst_cpu = env.new_dst_cpu;
5099 env.flags &= ~LBF_SOME_PINNED;
5100 env.loop = 0;
5101 env.loop_break = sched_nr_migrate_break;
5102 /*
5103 * Go back to "more_balance" rather than "redo" since we
5104 * need to continue with same src_cpu.
5105 */
5106 goto more_balance;
5107 }
1e3c88bd
PZ
5108
5109 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5110 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5111 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5112 if (!cpumask_empty(cpus)) {
5113 env.loop = 0;
5114 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5115 goto redo;
bbf18b19 5116 }
1e3c88bd
PZ
5117 goto out_balanced;
5118 }
5119 }
5120
5121 if (!ld_moved) {
5122 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5123 /*
5124 * Increment the failure counter only on periodic balance.
5125 * We do not want newidle balance, which can be very
5126 * frequent, pollute the failure counter causing
5127 * excessive cache_hot migrations and active balances.
5128 */
5129 if (idle != CPU_NEWLY_IDLE)
5130 sd->nr_balance_failed++;
1e3c88bd 5131
bd939f45 5132 if (need_active_balance(&env)) {
1e3c88bd
PZ
5133 raw_spin_lock_irqsave(&busiest->lock, flags);
5134
969c7921
TH
5135 /* don't kick the active_load_balance_cpu_stop,
5136 * if the curr task on busiest cpu can't be
5137 * moved to this_cpu
1e3c88bd
PZ
5138 */
5139 if (!cpumask_test_cpu(this_cpu,
fa17b507 5140 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5141 raw_spin_unlock_irqrestore(&busiest->lock,
5142 flags);
8e45cb54 5143 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5144 goto out_one_pinned;
5145 }
5146
969c7921
TH
5147 /*
5148 * ->active_balance synchronizes accesses to
5149 * ->active_balance_work. Once set, it's cleared
5150 * only after active load balance is finished.
5151 */
1e3c88bd
PZ
5152 if (!busiest->active_balance) {
5153 busiest->active_balance = 1;
5154 busiest->push_cpu = this_cpu;
5155 active_balance = 1;
5156 }
5157 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5158
bd939f45 5159 if (active_balance) {
969c7921
TH
5160 stop_one_cpu_nowait(cpu_of(busiest),
5161 active_load_balance_cpu_stop, busiest,
5162 &busiest->active_balance_work);
bd939f45 5163 }
1e3c88bd
PZ
5164
5165 /*
5166 * We've kicked active balancing, reset the failure
5167 * counter.
5168 */
5169 sd->nr_balance_failed = sd->cache_nice_tries+1;
5170 }
5171 } else
5172 sd->nr_balance_failed = 0;
5173
5174 if (likely(!active_balance)) {
5175 /* We were unbalanced, so reset the balancing interval */
5176 sd->balance_interval = sd->min_interval;
5177 } else {
5178 /*
5179 * If we've begun active balancing, start to back off. This
5180 * case may not be covered by the all_pinned logic if there
5181 * is only 1 task on the busy runqueue (because we don't call
5182 * move_tasks).
5183 */
5184 if (sd->balance_interval < sd->max_interval)
5185 sd->balance_interval *= 2;
5186 }
5187
1e3c88bd
PZ
5188 goto out;
5189
5190out_balanced:
5191 schedstat_inc(sd, lb_balanced[idle]);
5192
5193 sd->nr_balance_failed = 0;
5194
5195out_one_pinned:
5196 /* tune up the balancing interval */
8e45cb54 5197 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5198 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5199 (sd->balance_interval < sd->max_interval))
5200 sd->balance_interval *= 2;
5201
46e49b38 5202 ld_moved = 0;
1e3c88bd 5203out:
1e3c88bd
PZ
5204 return ld_moved;
5205}
5206
1e3c88bd
PZ
5207/*
5208 * idle_balance is called by schedule() if this_cpu is about to become
5209 * idle. Attempts to pull tasks from other CPUs.
5210 */
029632fb 5211void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5212{
5213 struct sched_domain *sd;
5214 int pulled_task = 0;
5215 unsigned long next_balance = jiffies + HZ;
5216
5217 this_rq->idle_stamp = this_rq->clock;
5218
5219 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5220 return;
5221
18bf2805
BS
5222 update_rq_runnable_avg(this_rq, 1);
5223
f492e12e
PZ
5224 /*
5225 * Drop the rq->lock, but keep IRQ/preempt disabled.
5226 */
5227 raw_spin_unlock(&this_rq->lock);
5228
48a16753 5229 update_blocked_averages(this_cpu);
dce840a0 5230 rcu_read_lock();
1e3c88bd
PZ
5231 for_each_domain(this_cpu, sd) {
5232 unsigned long interval;
f492e12e 5233 int balance = 1;
1e3c88bd
PZ
5234
5235 if (!(sd->flags & SD_LOAD_BALANCE))
5236 continue;
5237
f492e12e 5238 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5239 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5240 pulled_task = load_balance(this_cpu, this_rq,
5241 sd, CPU_NEWLY_IDLE, &balance);
5242 }
1e3c88bd
PZ
5243
5244 interval = msecs_to_jiffies(sd->balance_interval);
5245 if (time_after(next_balance, sd->last_balance + interval))
5246 next_balance = sd->last_balance + interval;
d5ad140b
NR
5247 if (pulled_task) {
5248 this_rq->idle_stamp = 0;
1e3c88bd 5249 break;
d5ad140b 5250 }
1e3c88bd 5251 }
dce840a0 5252 rcu_read_unlock();
f492e12e
PZ
5253
5254 raw_spin_lock(&this_rq->lock);
5255
1e3c88bd
PZ
5256 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5257 /*
5258 * We are going idle. next_balance may be set based on
5259 * a busy processor. So reset next_balance.
5260 */
5261 this_rq->next_balance = next_balance;
5262 }
5263}
5264
5265/*
969c7921
TH
5266 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5267 * running tasks off the busiest CPU onto idle CPUs. It requires at
5268 * least 1 task to be running on each physical CPU where possible, and
5269 * avoids physical / logical imbalances.
1e3c88bd 5270 */
969c7921 5271static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5272{
969c7921
TH
5273 struct rq *busiest_rq = data;
5274 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5275 int target_cpu = busiest_rq->push_cpu;
969c7921 5276 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5277 struct sched_domain *sd;
969c7921
TH
5278
5279 raw_spin_lock_irq(&busiest_rq->lock);
5280
5281 /* make sure the requested cpu hasn't gone down in the meantime */
5282 if (unlikely(busiest_cpu != smp_processor_id() ||
5283 !busiest_rq->active_balance))
5284 goto out_unlock;
1e3c88bd
PZ
5285
5286 /* Is there any task to move? */
5287 if (busiest_rq->nr_running <= 1)
969c7921 5288 goto out_unlock;
1e3c88bd
PZ
5289
5290 /*
5291 * This condition is "impossible", if it occurs
5292 * we need to fix it. Originally reported by
5293 * Bjorn Helgaas on a 128-cpu setup.
5294 */
5295 BUG_ON(busiest_rq == target_rq);
5296
5297 /* move a task from busiest_rq to target_rq */
5298 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5299
5300 /* Search for an sd spanning us and the target CPU. */
dce840a0 5301 rcu_read_lock();
1e3c88bd
PZ
5302 for_each_domain(target_cpu, sd) {
5303 if ((sd->flags & SD_LOAD_BALANCE) &&
5304 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5305 break;
5306 }
5307
5308 if (likely(sd)) {
8e45cb54
PZ
5309 struct lb_env env = {
5310 .sd = sd,
ddcdf6e7
PZ
5311 .dst_cpu = target_cpu,
5312 .dst_rq = target_rq,
5313 .src_cpu = busiest_rq->cpu,
5314 .src_rq = busiest_rq,
8e45cb54
PZ
5315 .idle = CPU_IDLE,
5316 };
5317
1e3c88bd
PZ
5318 schedstat_inc(sd, alb_count);
5319
8e45cb54 5320 if (move_one_task(&env))
1e3c88bd
PZ
5321 schedstat_inc(sd, alb_pushed);
5322 else
5323 schedstat_inc(sd, alb_failed);
5324 }
dce840a0 5325 rcu_read_unlock();
1e3c88bd 5326 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5327out_unlock:
5328 busiest_rq->active_balance = 0;
5329 raw_spin_unlock_irq(&busiest_rq->lock);
5330 return 0;
1e3c88bd
PZ
5331}
5332
5333#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5334/*
5335 * idle load balancing details
83cd4fe2
VP
5336 * - When one of the busy CPUs notice that there may be an idle rebalancing
5337 * needed, they will kick the idle load balancer, which then does idle
5338 * load balancing for all the idle CPUs.
5339 */
1e3c88bd 5340static struct {
83cd4fe2 5341 cpumask_var_t idle_cpus_mask;
0b005cf5 5342 atomic_t nr_cpus;
83cd4fe2
VP
5343 unsigned long next_balance; /* in jiffy units */
5344} nohz ____cacheline_aligned;
1e3c88bd 5345
8e7fbcbc 5346static inline int find_new_ilb(int call_cpu)
1e3c88bd 5347{
0b005cf5 5348 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5349
786d6dc7
SS
5350 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5351 return ilb;
5352
5353 return nr_cpu_ids;
1e3c88bd 5354}
1e3c88bd 5355
83cd4fe2
VP
5356/*
5357 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5358 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5359 * CPU (if there is one).
5360 */
5361static void nohz_balancer_kick(int cpu)
5362{
5363 int ilb_cpu;
5364
5365 nohz.next_balance++;
5366
0b005cf5 5367 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5368
0b005cf5
SS
5369 if (ilb_cpu >= nr_cpu_ids)
5370 return;
83cd4fe2 5371
cd490c5b 5372 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5373 return;
5374 /*
5375 * Use smp_send_reschedule() instead of resched_cpu().
5376 * This way we generate a sched IPI on the target cpu which
5377 * is idle. And the softirq performing nohz idle load balance
5378 * will be run before returning from the IPI.
5379 */
5380 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5381 return;
5382}
5383
c1cc017c 5384static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5385{
5386 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5387 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5388 atomic_dec(&nohz.nr_cpus);
5389 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5390 }
5391}
5392
69e1e811
SS
5393static inline void set_cpu_sd_state_busy(void)
5394{
5395 struct sched_domain *sd;
5396 int cpu = smp_processor_id();
5397
5398 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5399 return;
5400 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5401
5402 rcu_read_lock();
5403 for_each_domain(cpu, sd)
5404 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5405 rcu_read_unlock();
5406}
5407
5408void set_cpu_sd_state_idle(void)
5409{
5410 struct sched_domain *sd;
5411 int cpu = smp_processor_id();
5412
5413 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5414 return;
5415 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5416
5417 rcu_read_lock();
5418 for_each_domain(cpu, sd)
5419 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5420 rcu_read_unlock();
5421}
5422
1e3c88bd 5423/*
c1cc017c 5424 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5425 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5426 */
c1cc017c 5427void nohz_balance_enter_idle(int cpu)
1e3c88bd 5428{
71325960
SS
5429 /*
5430 * If this cpu is going down, then nothing needs to be done.
5431 */
5432 if (!cpu_active(cpu))
5433 return;
5434
c1cc017c
AS
5435 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5436 return;
1e3c88bd 5437
c1cc017c
AS
5438 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5439 atomic_inc(&nohz.nr_cpus);
5440 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5441}
71325960
SS
5442
5443static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5444 unsigned long action, void *hcpu)
5445{
5446 switch (action & ~CPU_TASKS_FROZEN) {
5447 case CPU_DYING:
c1cc017c 5448 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5449 return NOTIFY_OK;
5450 default:
5451 return NOTIFY_DONE;
5452 }
5453}
1e3c88bd
PZ
5454#endif
5455
5456static DEFINE_SPINLOCK(balancing);
5457
49c022e6
PZ
5458/*
5459 * Scale the max load_balance interval with the number of CPUs in the system.
5460 * This trades load-balance latency on larger machines for less cross talk.
5461 */
029632fb 5462void update_max_interval(void)
49c022e6
PZ
5463{
5464 max_load_balance_interval = HZ*num_online_cpus()/10;
5465}
5466
1e3c88bd
PZ
5467/*
5468 * It checks each scheduling domain to see if it is due to be balanced,
5469 * and initiates a balancing operation if so.
5470 *
5471 * Balancing parameters are set up in arch_init_sched_domains.
5472 */
5473static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5474{
5475 int balance = 1;
5476 struct rq *rq = cpu_rq(cpu);
5477 unsigned long interval;
04f733b4 5478 struct sched_domain *sd;
1e3c88bd
PZ
5479 /* Earliest time when we have to do rebalance again */
5480 unsigned long next_balance = jiffies + 60*HZ;
5481 int update_next_balance = 0;
5482 int need_serialize;
5483
48a16753 5484 update_blocked_averages(cpu);
2069dd75 5485
dce840a0 5486 rcu_read_lock();
1e3c88bd
PZ
5487 for_each_domain(cpu, sd) {
5488 if (!(sd->flags & SD_LOAD_BALANCE))
5489 continue;
5490
5491 interval = sd->balance_interval;
5492 if (idle != CPU_IDLE)
5493 interval *= sd->busy_factor;
5494
5495 /* scale ms to jiffies */
5496 interval = msecs_to_jiffies(interval);
49c022e6 5497 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5498
5499 need_serialize = sd->flags & SD_SERIALIZE;
5500
5501 if (need_serialize) {
5502 if (!spin_trylock(&balancing))
5503 goto out;
5504 }
5505
5506 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5507 if (load_balance(cpu, rq, sd, idle, &balance)) {
5508 /*
5509 * We've pulled tasks over so either we're no
c186fafe 5510 * longer idle.
1e3c88bd
PZ
5511 */
5512 idle = CPU_NOT_IDLE;
5513 }
5514 sd->last_balance = jiffies;
5515 }
5516 if (need_serialize)
5517 spin_unlock(&balancing);
5518out:
5519 if (time_after(next_balance, sd->last_balance + interval)) {
5520 next_balance = sd->last_balance + interval;
5521 update_next_balance = 1;
5522 }
5523
5524 /*
5525 * Stop the load balance at this level. There is another
5526 * CPU in our sched group which is doing load balancing more
5527 * actively.
5528 */
5529 if (!balance)
5530 break;
5531 }
dce840a0 5532 rcu_read_unlock();
1e3c88bd
PZ
5533
5534 /*
5535 * next_balance will be updated only when there is a need.
5536 * When the cpu is attached to null domain for ex, it will not be
5537 * updated.
5538 */
5539 if (likely(update_next_balance))
5540 rq->next_balance = next_balance;
5541}
5542
83cd4fe2 5543#ifdef CONFIG_NO_HZ
1e3c88bd 5544/*
83cd4fe2 5545 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5546 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5547 */
83cd4fe2
VP
5548static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5549{
5550 struct rq *this_rq = cpu_rq(this_cpu);
5551 struct rq *rq;
5552 int balance_cpu;
5553
1c792db7
SS
5554 if (idle != CPU_IDLE ||
5555 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5556 goto end;
83cd4fe2
VP
5557
5558 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5559 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5560 continue;
5561
5562 /*
5563 * If this cpu gets work to do, stop the load balancing
5564 * work being done for other cpus. Next load
5565 * balancing owner will pick it up.
5566 */
1c792db7 5567 if (need_resched())
83cd4fe2 5568 break;
83cd4fe2 5569
5ed4f1d9
VG
5570 rq = cpu_rq(balance_cpu);
5571
5572 raw_spin_lock_irq(&rq->lock);
5573 update_rq_clock(rq);
5574 update_idle_cpu_load(rq);
5575 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5576
5577 rebalance_domains(balance_cpu, CPU_IDLE);
5578
83cd4fe2
VP
5579 if (time_after(this_rq->next_balance, rq->next_balance))
5580 this_rq->next_balance = rq->next_balance;
5581 }
5582 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5583end:
5584 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5585}
5586
5587/*
0b005cf5
SS
5588 * Current heuristic for kicking the idle load balancer in the presence
5589 * of an idle cpu is the system.
5590 * - This rq has more than one task.
5591 * - At any scheduler domain level, this cpu's scheduler group has multiple
5592 * busy cpu's exceeding the group's power.
5593 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5594 * domain span are idle.
83cd4fe2
VP
5595 */
5596static inline int nohz_kick_needed(struct rq *rq, int cpu)
5597{
5598 unsigned long now = jiffies;
0b005cf5 5599 struct sched_domain *sd;
83cd4fe2 5600
1c792db7 5601 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5602 return 0;
5603
1c792db7
SS
5604 /*
5605 * We may be recently in ticked or tickless idle mode. At the first
5606 * busy tick after returning from idle, we will update the busy stats.
5607 */
69e1e811 5608 set_cpu_sd_state_busy();
c1cc017c 5609 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5610
5611 /*
5612 * None are in tickless mode and hence no need for NOHZ idle load
5613 * balancing.
5614 */
5615 if (likely(!atomic_read(&nohz.nr_cpus)))
5616 return 0;
1c792db7
SS
5617
5618 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5619 return 0;
5620
0b005cf5
SS
5621 if (rq->nr_running >= 2)
5622 goto need_kick;
83cd4fe2 5623
067491b7 5624 rcu_read_lock();
0b005cf5
SS
5625 for_each_domain(cpu, sd) {
5626 struct sched_group *sg = sd->groups;
5627 struct sched_group_power *sgp = sg->sgp;
5628 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5629
0b005cf5 5630 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5631 goto need_kick_unlock;
0b005cf5
SS
5632
5633 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5634 && (cpumask_first_and(nohz.idle_cpus_mask,
5635 sched_domain_span(sd)) < cpu))
067491b7 5636 goto need_kick_unlock;
0b005cf5
SS
5637
5638 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5639 break;
83cd4fe2 5640 }
067491b7 5641 rcu_read_unlock();
83cd4fe2 5642 return 0;
067491b7
PZ
5643
5644need_kick_unlock:
5645 rcu_read_unlock();
0b005cf5
SS
5646need_kick:
5647 return 1;
83cd4fe2
VP
5648}
5649#else
5650static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5651#endif
5652
5653/*
5654 * run_rebalance_domains is triggered when needed from the scheduler tick.
5655 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5656 */
1e3c88bd
PZ
5657static void run_rebalance_domains(struct softirq_action *h)
5658{
5659 int this_cpu = smp_processor_id();
5660 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5661 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5662 CPU_IDLE : CPU_NOT_IDLE;
5663
5664 rebalance_domains(this_cpu, idle);
5665
1e3c88bd 5666 /*
83cd4fe2 5667 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5668 * balancing on behalf of the other idle cpus whose ticks are
5669 * stopped.
5670 */
83cd4fe2 5671 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5672}
5673
5674static inline int on_null_domain(int cpu)
5675{
90a6501f 5676 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5677}
5678
5679/*
5680 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5681 */
029632fb 5682void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5683{
1e3c88bd
PZ
5684 /* Don't need to rebalance while attached to NULL domain */
5685 if (time_after_eq(jiffies, rq->next_balance) &&
5686 likely(!on_null_domain(cpu)))
5687 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5688#ifdef CONFIG_NO_HZ
1c792db7 5689 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5690 nohz_balancer_kick(cpu);
5691#endif
1e3c88bd
PZ
5692}
5693
0bcdcf28
CE
5694static void rq_online_fair(struct rq *rq)
5695{
5696 update_sysctl();
5697}
5698
5699static void rq_offline_fair(struct rq *rq)
5700{
5701 update_sysctl();
a4c96ae3
PB
5702
5703 /* Ensure any throttled groups are reachable by pick_next_task */
5704 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5705}
5706
55e12e5e 5707#endif /* CONFIG_SMP */
e1d1484f 5708
bf0f6f24
IM
5709/*
5710 * scheduler tick hitting a task of our scheduling class:
5711 */
8f4d37ec 5712static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5713{
5714 struct cfs_rq *cfs_rq;
5715 struct sched_entity *se = &curr->se;
5716
5717 for_each_sched_entity(se) {
5718 cfs_rq = cfs_rq_of(se);
8f4d37ec 5719 entity_tick(cfs_rq, se, queued);
bf0f6f24 5720 }
18bf2805 5721
cbee9f88
PZ
5722 if (sched_feat_numa(NUMA))
5723 task_tick_numa(rq, curr);
3d59eebc 5724
18bf2805 5725 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5726}
5727
5728/*
cd29fe6f
PZ
5729 * called on fork with the child task as argument from the parent's context
5730 * - child not yet on the tasklist
5731 * - preemption disabled
bf0f6f24 5732 */
cd29fe6f 5733static void task_fork_fair(struct task_struct *p)
bf0f6f24 5734{
4fc420c9
DN
5735 struct cfs_rq *cfs_rq;
5736 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5737 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5738 struct rq *rq = this_rq();
5739 unsigned long flags;
5740
05fa785c 5741 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5742
861d034e
PZ
5743 update_rq_clock(rq);
5744
4fc420c9
DN
5745 cfs_rq = task_cfs_rq(current);
5746 curr = cfs_rq->curr;
5747
b0a0f667
PM
5748 if (unlikely(task_cpu(p) != this_cpu)) {
5749 rcu_read_lock();
cd29fe6f 5750 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5751 rcu_read_unlock();
5752 }
bf0f6f24 5753
7109c442 5754 update_curr(cfs_rq);
cd29fe6f 5755
b5d9d734
MG
5756 if (curr)
5757 se->vruntime = curr->vruntime;
aeb73b04 5758 place_entity(cfs_rq, se, 1);
4d78e7b6 5759
cd29fe6f 5760 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5761 /*
edcb60a3
IM
5762 * Upon rescheduling, sched_class::put_prev_task() will place
5763 * 'current' within the tree based on its new key value.
5764 */
4d78e7b6 5765 swap(curr->vruntime, se->vruntime);
aec0a514 5766 resched_task(rq->curr);
4d78e7b6 5767 }
bf0f6f24 5768
88ec22d3
PZ
5769 se->vruntime -= cfs_rq->min_vruntime;
5770
05fa785c 5771 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5772}
5773
cb469845
SR
5774/*
5775 * Priority of the task has changed. Check to see if we preempt
5776 * the current task.
5777 */
da7a735e
PZ
5778static void
5779prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5780{
da7a735e
PZ
5781 if (!p->se.on_rq)
5782 return;
5783
cb469845
SR
5784 /*
5785 * Reschedule if we are currently running on this runqueue and
5786 * our priority decreased, or if we are not currently running on
5787 * this runqueue and our priority is higher than the current's
5788 */
da7a735e 5789 if (rq->curr == p) {
cb469845
SR
5790 if (p->prio > oldprio)
5791 resched_task(rq->curr);
5792 } else
15afe09b 5793 check_preempt_curr(rq, p, 0);
cb469845
SR
5794}
5795
da7a735e
PZ
5796static void switched_from_fair(struct rq *rq, struct task_struct *p)
5797{
5798 struct sched_entity *se = &p->se;
5799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5800
5801 /*
5802 * Ensure the task's vruntime is normalized, so that when its
5803 * switched back to the fair class the enqueue_entity(.flags=0) will
5804 * do the right thing.
5805 *
5806 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5807 * have normalized the vruntime, if it was !on_rq, then only when
5808 * the task is sleeping will it still have non-normalized vruntime.
5809 */
5810 if (!se->on_rq && p->state != TASK_RUNNING) {
5811 /*
5812 * Fix up our vruntime so that the current sleep doesn't
5813 * cause 'unlimited' sleep bonus.
5814 */
5815 place_entity(cfs_rq, se, 0);
5816 se->vruntime -= cfs_rq->min_vruntime;
5817 }
9ee474f5
PT
5818
5819#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5820 /*
5821 * Remove our load from contribution when we leave sched_fair
5822 * and ensure we don't carry in an old decay_count if we
5823 * switch back.
5824 */
5825 if (p->se.avg.decay_count) {
5826 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5827 __synchronize_entity_decay(&p->se);
5828 subtract_blocked_load_contrib(cfs_rq,
5829 p->se.avg.load_avg_contrib);
5830 }
5831#endif
da7a735e
PZ
5832}
5833
cb469845
SR
5834/*
5835 * We switched to the sched_fair class.
5836 */
da7a735e 5837static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5838{
da7a735e
PZ
5839 if (!p->se.on_rq)
5840 return;
5841
cb469845
SR
5842 /*
5843 * We were most likely switched from sched_rt, so
5844 * kick off the schedule if running, otherwise just see
5845 * if we can still preempt the current task.
5846 */
da7a735e 5847 if (rq->curr == p)
cb469845
SR
5848 resched_task(rq->curr);
5849 else
15afe09b 5850 check_preempt_curr(rq, p, 0);
cb469845
SR
5851}
5852
83b699ed
SV
5853/* Account for a task changing its policy or group.
5854 *
5855 * This routine is mostly called to set cfs_rq->curr field when a task
5856 * migrates between groups/classes.
5857 */
5858static void set_curr_task_fair(struct rq *rq)
5859{
5860 struct sched_entity *se = &rq->curr->se;
5861
ec12cb7f
PT
5862 for_each_sched_entity(se) {
5863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5864
5865 set_next_entity(cfs_rq, se);
5866 /* ensure bandwidth has been allocated on our new cfs_rq */
5867 account_cfs_rq_runtime(cfs_rq, 0);
5868 }
83b699ed
SV
5869}
5870
029632fb
PZ
5871void init_cfs_rq(struct cfs_rq *cfs_rq)
5872{
5873 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5874 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5875#ifndef CONFIG_64BIT
5876 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5877#endif
9ee474f5
PT
5878#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5879 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5880 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5881#endif
029632fb
PZ
5882}
5883
810b3817 5884#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5885static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5886{
aff3e498 5887 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5888 /*
5889 * If the task was not on the rq at the time of this cgroup movement
5890 * it must have been asleep, sleeping tasks keep their ->vruntime
5891 * absolute on their old rq until wakeup (needed for the fair sleeper
5892 * bonus in place_entity()).
5893 *
5894 * If it was on the rq, we've just 'preempted' it, which does convert
5895 * ->vruntime to a relative base.
5896 *
5897 * Make sure both cases convert their relative position when migrating
5898 * to another cgroup's rq. This does somewhat interfere with the
5899 * fair sleeper stuff for the first placement, but who cares.
5900 */
7ceff013
DN
5901 /*
5902 * When !on_rq, vruntime of the task has usually NOT been normalized.
5903 * But there are some cases where it has already been normalized:
5904 *
5905 * - Moving a forked child which is waiting for being woken up by
5906 * wake_up_new_task().
62af3783
DN
5907 * - Moving a task which has been woken up by try_to_wake_up() and
5908 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5909 *
5910 * To prevent boost or penalty in the new cfs_rq caused by delta
5911 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5912 */
62af3783 5913 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5914 on_rq = 1;
5915
b2b5ce02
PZ
5916 if (!on_rq)
5917 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5918 set_task_rq(p, task_cpu(p));
aff3e498
PT
5919 if (!on_rq) {
5920 cfs_rq = cfs_rq_of(&p->se);
5921 p->se.vruntime += cfs_rq->min_vruntime;
5922#ifdef CONFIG_SMP
5923 /*
5924 * migrate_task_rq_fair() will have removed our previous
5925 * contribution, but we must synchronize for ongoing future
5926 * decay.
5927 */
5928 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5929 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5930#endif
5931 }
810b3817 5932}
029632fb
PZ
5933
5934void free_fair_sched_group(struct task_group *tg)
5935{
5936 int i;
5937
5938 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5939
5940 for_each_possible_cpu(i) {
5941 if (tg->cfs_rq)
5942 kfree(tg->cfs_rq[i]);
5943 if (tg->se)
5944 kfree(tg->se[i]);
5945 }
5946
5947 kfree(tg->cfs_rq);
5948 kfree(tg->se);
5949}
5950
5951int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5952{
5953 struct cfs_rq *cfs_rq;
5954 struct sched_entity *se;
5955 int i;
5956
5957 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5958 if (!tg->cfs_rq)
5959 goto err;
5960 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5961 if (!tg->se)
5962 goto err;
5963
5964 tg->shares = NICE_0_LOAD;
5965
5966 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5967
5968 for_each_possible_cpu(i) {
5969 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5970 GFP_KERNEL, cpu_to_node(i));
5971 if (!cfs_rq)
5972 goto err;
5973
5974 se = kzalloc_node(sizeof(struct sched_entity),
5975 GFP_KERNEL, cpu_to_node(i));
5976 if (!se)
5977 goto err_free_rq;
5978
5979 init_cfs_rq(cfs_rq);
5980 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5981 }
5982
5983 return 1;
5984
5985err_free_rq:
5986 kfree(cfs_rq);
5987err:
5988 return 0;
5989}
5990
5991void unregister_fair_sched_group(struct task_group *tg, int cpu)
5992{
5993 struct rq *rq = cpu_rq(cpu);
5994 unsigned long flags;
5995
5996 /*
5997 * Only empty task groups can be destroyed; so we can speculatively
5998 * check on_list without danger of it being re-added.
5999 */
6000 if (!tg->cfs_rq[cpu]->on_list)
6001 return;
6002
6003 raw_spin_lock_irqsave(&rq->lock, flags);
6004 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6005 raw_spin_unlock_irqrestore(&rq->lock, flags);
6006}
6007
6008void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6009 struct sched_entity *se, int cpu,
6010 struct sched_entity *parent)
6011{
6012 struct rq *rq = cpu_rq(cpu);
6013
6014 cfs_rq->tg = tg;
6015 cfs_rq->rq = rq;
029632fb
PZ
6016 init_cfs_rq_runtime(cfs_rq);
6017
6018 tg->cfs_rq[cpu] = cfs_rq;
6019 tg->se[cpu] = se;
6020
6021 /* se could be NULL for root_task_group */
6022 if (!se)
6023 return;
6024
6025 if (!parent)
6026 se->cfs_rq = &rq->cfs;
6027 else
6028 se->cfs_rq = parent->my_q;
6029
6030 se->my_q = cfs_rq;
6031 update_load_set(&se->load, 0);
6032 se->parent = parent;
6033}
6034
6035static DEFINE_MUTEX(shares_mutex);
6036
6037int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6038{
6039 int i;
6040 unsigned long flags;
6041
6042 /*
6043 * We can't change the weight of the root cgroup.
6044 */
6045 if (!tg->se[0])
6046 return -EINVAL;
6047
6048 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6049
6050 mutex_lock(&shares_mutex);
6051 if (tg->shares == shares)
6052 goto done;
6053
6054 tg->shares = shares;
6055 for_each_possible_cpu(i) {
6056 struct rq *rq = cpu_rq(i);
6057 struct sched_entity *se;
6058
6059 se = tg->se[i];
6060 /* Propagate contribution to hierarchy */
6061 raw_spin_lock_irqsave(&rq->lock, flags);
17bc14b7 6062 for_each_sched_entity(se)
029632fb
PZ
6063 update_cfs_shares(group_cfs_rq(se));
6064 raw_spin_unlock_irqrestore(&rq->lock, flags);
6065 }
6066
6067done:
6068 mutex_unlock(&shares_mutex);
6069 return 0;
6070}
6071#else /* CONFIG_FAIR_GROUP_SCHED */
6072
6073void free_fair_sched_group(struct task_group *tg) { }
6074
6075int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6076{
6077 return 1;
6078}
6079
6080void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6081
6082#endif /* CONFIG_FAIR_GROUP_SCHED */
6083
810b3817 6084
6d686f45 6085static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6086{
6087 struct sched_entity *se = &task->se;
0d721cea
PW
6088 unsigned int rr_interval = 0;
6089
6090 /*
6091 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6092 * idle runqueue:
6093 */
0d721cea 6094 if (rq->cfs.load.weight)
a59f4e07 6095 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6096
6097 return rr_interval;
6098}
6099
bf0f6f24
IM
6100/*
6101 * All the scheduling class methods:
6102 */
029632fb 6103const struct sched_class fair_sched_class = {
5522d5d5 6104 .next = &idle_sched_class,
bf0f6f24
IM
6105 .enqueue_task = enqueue_task_fair,
6106 .dequeue_task = dequeue_task_fair,
6107 .yield_task = yield_task_fair,
d95f4122 6108 .yield_to_task = yield_to_task_fair,
bf0f6f24 6109
2e09bf55 6110 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6111
6112 .pick_next_task = pick_next_task_fair,
6113 .put_prev_task = put_prev_task_fair,
6114
681f3e68 6115#ifdef CONFIG_SMP
4ce72a2c 6116 .select_task_rq = select_task_rq_fair,
f4e26b12 6117#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6118 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6119#endif
0bcdcf28
CE
6120 .rq_online = rq_online_fair,
6121 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6122
6123 .task_waking = task_waking_fair,
681f3e68 6124#endif
bf0f6f24 6125
83b699ed 6126 .set_curr_task = set_curr_task_fair,
bf0f6f24 6127 .task_tick = task_tick_fair,
cd29fe6f 6128 .task_fork = task_fork_fair,
cb469845
SR
6129
6130 .prio_changed = prio_changed_fair,
da7a735e 6131 .switched_from = switched_from_fair,
cb469845 6132 .switched_to = switched_to_fair,
810b3817 6133
0d721cea
PW
6134 .get_rr_interval = get_rr_interval_fair,
6135
810b3817 6136#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6137 .task_move_group = task_move_group_fair,
810b3817 6138#endif
bf0f6f24
IM
6139};
6140
6141#ifdef CONFIG_SCHED_DEBUG
029632fb 6142void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6143{
bf0f6f24
IM
6144 struct cfs_rq *cfs_rq;
6145
5973e5b9 6146 rcu_read_lock();
c3b64f1e 6147 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6148 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6149 rcu_read_unlock();
bf0f6f24
IM
6150}
6151#endif
029632fb
PZ
6152
6153__init void init_sched_fair_class(void)
6154{
6155#ifdef CONFIG_SMP
6156 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6157
6158#ifdef CONFIG_NO_HZ
554cecaf 6159 nohz.next_balance = jiffies;
029632fb 6160 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6161 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6162#endif
6163#endif /* SMP */
6164
6165}