sched/numa: Use unsigned longs for numa group fault stats
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
1262 /* Success if task is already running on preferred CPU */
1263 p->numa_migrate_retry = 0;
1e3646ff 1264 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1265 return;
1266
1267 /* This task has no NUMA fault statistics yet */
1268 if (unlikely(p->numa_preferred_nid == -1))
1269 return;
1270
1271 /* Otherwise, try migrate to a CPU on the preferred node */
1272 if (task_numa_migrate(p) != 0)
1273 p->numa_migrate_retry = jiffies + HZ*5;
1274}
1275
04bb2f94
RR
1276/*
1277 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1278 * increments. The more local the fault statistics are, the higher the scan
1279 * period will be for the next scan window. If local/remote ratio is below
1280 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1281 * scan period will decrease
1282 */
1283#define NUMA_PERIOD_SLOTS 10
1284#define NUMA_PERIOD_THRESHOLD 3
1285
1286/*
1287 * Increase the scan period (slow down scanning) if the majority of
1288 * our memory is already on our local node, or if the majority of
1289 * the page accesses are shared with other processes.
1290 * Otherwise, decrease the scan period.
1291 */
1292static void update_task_scan_period(struct task_struct *p,
1293 unsigned long shared, unsigned long private)
1294{
1295 unsigned int period_slot;
1296 int ratio;
1297 int diff;
1298
1299 unsigned long remote = p->numa_faults_locality[0];
1300 unsigned long local = p->numa_faults_locality[1];
1301
1302 /*
1303 * If there were no record hinting faults then either the task is
1304 * completely idle or all activity is areas that are not of interest
1305 * to automatic numa balancing. Scan slower
1306 */
1307 if (local + shared == 0) {
1308 p->numa_scan_period = min(p->numa_scan_period_max,
1309 p->numa_scan_period << 1);
1310
1311 p->mm->numa_next_scan = jiffies +
1312 msecs_to_jiffies(p->numa_scan_period);
1313
1314 return;
1315 }
1316
1317 /*
1318 * Prepare to scale scan period relative to the current period.
1319 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1320 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1321 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1322 */
1323 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1324 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1325 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1326 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1327 if (!slot)
1328 slot = 1;
1329 diff = slot * period_slot;
1330 } else {
1331 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1332
1333 /*
1334 * Scale scan rate increases based on sharing. There is an
1335 * inverse relationship between the degree of sharing and
1336 * the adjustment made to the scanning period. Broadly
1337 * speaking the intent is that there is little point
1338 * scanning faster if shared accesses dominate as it may
1339 * simply bounce migrations uselessly
1340 */
1341 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1342 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1343 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1344 }
1345
1346 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1347 task_scan_min(p), task_scan_max(p));
1348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1349}
1350
cbee9f88
PZ
1351static void task_numa_placement(struct task_struct *p)
1352{
83e1d2cd
MG
1353 int seq, nid, max_nid = -1, max_group_nid = -1;
1354 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1355 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1356 spinlock_t *group_lock = NULL;
cbee9f88 1357
2832bc19 1358 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1359 if (p->numa_scan_seq == seq)
1360 return;
1361 p->numa_scan_seq = seq;
598f0ec0 1362 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1363
7dbd13ed
MG
1364 /* If the task is part of a group prevent parallel updates to group stats */
1365 if (p->numa_group) {
1366 group_lock = &p->numa_group->lock;
1367 spin_lock(group_lock);
1368 }
1369
688b7585
MG
1370 /* Find the node with the highest number of faults */
1371 for_each_online_node(nid) {
83e1d2cd 1372 unsigned long faults = 0, group_faults = 0;
ac8e895b 1373 int priv, i;
745d6147 1374
ac8e895b 1375 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1376 long diff;
1377
ac8e895b 1378 i = task_faults_idx(nid, priv);
8c8a743c 1379 diff = -p->numa_faults[i];
745d6147 1380
ac8e895b
MG
1381 /* Decay existing window, copy faults since last scan */
1382 p->numa_faults[i] >>= 1;
1383 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1384 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1385 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1386
1387 faults += p->numa_faults[i];
8c8a743c 1388 diff += p->numa_faults[i];
83e1d2cd 1389 p->total_numa_faults += diff;
8c8a743c
PZ
1390 if (p->numa_group) {
1391 /* safe because we can only change our own group */
989348b5
MG
1392 p->numa_group->faults[i] += diff;
1393 p->numa_group->total_faults += diff;
1394 group_faults += p->numa_group->faults[i];
8c8a743c 1395 }
ac8e895b
MG
1396 }
1397
688b7585
MG
1398 if (faults > max_faults) {
1399 max_faults = faults;
1400 max_nid = nid;
1401 }
83e1d2cd
MG
1402
1403 if (group_faults > max_group_faults) {
1404 max_group_faults = group_faults;
1405 max_group_nid = nid;
1406 }
1407 }
1408
04bb2f94
RR
1409 update_task_scan_period(p, fault_types[0], fault_types[1]);
1410
7dbd13ed
MG
1411 if (p->numa_group) {
1412 /*
1413 * If the preferred task and group nids are different,
1414 * iterate over the nodes again to find the best place.
1415 */
1416 if (max_nid != max_group_nid) {
1417 unsigned long weight, max_weight = 0;
1418
1419 for_each_online_node(nid) {
1420 weight = task_weight(p, nid) + group_weight(p, nid);
1421 if (weight > max_weight) {
1422 max_weight = weight;
1423 max_nid = nid;
1424 }
83e1d2cd
MG
1425 }
1426 }
7dbd13ed
MG
1427
1428 spin_unlock(group_lock);
688b7585
MG
1429 }
1430
6b9a7460 1431 /* Preferred node as the node with the most faults */
3a7053b3 1432 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1433 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1434 sched_setnuma(p, max_nid);
6b9a7460 1435 numa_migrate_preferred(p);
3a7053b3 1436 }
cbee9f88
PZ
1437}
1438
8c8a743c
PZ
1439static inline int get_numa_group(struct numa_group *grp)
1440{
1441 return atomic_inc_not_zero(&grp->refcount);
1442}
1443
1444static inline void put_numa_group(struct numa_group *grp)
1445{
1446 if (atomic_dec_and_test(&grp->refcount))
1447 kfree_rcu(grp, rcu);
1448}
1449
1450static void double_lock(spinlock_t *l1, spinlock_t *l2)
1451{
1452 if (l1 > l2)
1453 swap(l1, l2);
1454
1455 spin_lock(l1);
1456 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1457}
1458
3e6a9418
MG
1459static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1460 int *priv)
8c8a743c
PZ
1461{
1462 struct numa_group *grp, *my_grp;
1463 struct task_struct *tsk;
1464 bool join = false;
1465 int cpu = cpupid_to_cpu(cpupid);
1466 int i;
1467
1468 if (unlikely(!p->numa_group)) {
1469 unsigned int size = sizeof(struct numa_group) +
989348b5 1470 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1471
1472 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1473 if (!grp)
1474 return;
1475
1476 atomic_set(&grp->refcount, 1);
1477 spin_lock_init(&grp->lock);
1478 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1479 grp->gid = p->pid;
8c8a743c
PZ
1480
1481 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1482 grp->faults[i] = p->numa_faults[i];
8c8a743c 1483
989348b5 1484 grp->total_faults = p->total_numa_faults;
83e1d2cd 1485
8c8a743c
PZ
1486 list_add(&p->numa_entry, &grp->task_list);
1487 grp->nr_tasks++;
1488 rcu_assign_pointer(p->numa_group, grp);
1489 }
1490
1491 rcu_read_lock();
1492 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1493
1494 if (!cpupid_match_pid(tsk, cpupid))
1495 goto unlock;
1496
1497 grp = rcu_dereference(tsk->numa_group);
1498 if (!grp)
1499 goto unlock;
1500
1501 my_grp = p->numa_group;
1502 if (grp == my_grp)
1503 goto unlock;
1504
1505 /*
1506 * Only join the other group if its bigger; if we're the bigger group,
1507 * the other task will join us.
1508 */
1509 if (my_grp->nr_tasks > grp->nr_tasks)
1510 goto unlock;
1511
1512 /*
1513 * Tie-break on the grp address.
1514 */
1515 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1516 goto unlock;
1517
dabe1d99
RR
1518 /* Always join threads in the same process. */
1519 if (tsk->mm == current->mm)
1520 join = true;
1521
1522 /* Simple filter to avoid false positives due to PID collisions */
1523 if (flags & TNF_SHARED)
1524 join = true;
8c8a743c 1525
3e6a9418
MG
1526 /* Update priv based on whether false sharing was detected */
1527 *priv = !join;
1528
dabe1d99
RR
1529 if (join && !get_numa_group(grp))
1530 join = false;
8c8a743c
PZ
1531
1532unlock:
1533 rcu_read_unlock();
1534
1535 if (!join)
1536 return;
1537
989348b5
MG
1538 double_lock(&my_grp->lock, &grp->lock);
1539
8c8a743c 1540 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1541 my_grp->faults[i] -= p->numa_faults[i];
1542 grp->faults[i] += p->numa_faults[i];
8c8a743c 1543 }
989348b5
MG
1544 my_grp->total_faults -= p->total_numa_faults;
1545 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1546
1547 list_move(&p->numa_entry, &grp->task_list);
1548 my_grp->nr_tasks--;
1549 grp->nr_tasks++;
1550
1551 spin_unlock(&my_grp->lock);
1552 spin_unlock(&grp->lock);
1553
1554 rcu_assign_pointer(p->numa_group, grp);
1555
1556 put_numa_group(my_grp);
1557}
1558
1559void task_numa_free(struct task_struct *p)
1560{
1561 struct numa_group *grp = p->numa_group;
1562 int i;
82727018 1563 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1564
1565 if (grp) {
989348b5 1566 spin_lock(&grp->lock);
8c8a743c 1567 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1568 grp->faults[i] -= p->numa_faults[i];
1569 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1570
8c8a743c
PZ
1571 list_del(&p->numa_entry);
1572 grp->nr_tasks--;
1573 spin_unlock(&grp->lock);
1574 rcu_assign_pointer(p->numa_group, NULL);
1575 put_numa_group(grp);
1576 }
1577
82727018
RR
1578 p->numa_faults = NULL;
1579 p->numa_faults_buffer = NULL;
1580 kfree(numa_faults);
8c8a743c
PZ
1581}
1582
cbee9f88
PZ
1583/*
1584 * Got a PROT_NONE fault for a page on @node.
1585 */
6688cc05 1586void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1587{
1588 struct task_struct *p = current;
6688cc05 1589 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1590 int priv;
cbee9f88 1591
10e84b97 1592 if (!numabalancing_enabled)
1a687c2e
MG
1593 return;
1594
9ff1d9ff
MG
1595 /* for example, ksmd faulting in a user's mm */
1596 if (!p->mm)
1597 return;
1598
82727018
RR
1599 /* Do not worry about placement if exiting */
1600 if (p->state == TASK_DEAD)
1601 return;
1602
f809ca9a
MG
1603 /* Allocate buffer to track faults on a per-node basis */
1604 if (unlikely(!p->numa_faults)) {
ac8e895b 1605 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1606
745d6147
MG
1607 /* numa_faults and numa_faults_buffer share the allocation */
1608 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1609 if (!p->numa_faults)
1610 return;
745d6147
MG
1611
1612 BUG_ON(p->numa_faults_buffer);
ac8e895b 1613 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1614 p->total_numa_faults = 0;
04bb2f94 1615 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1616 }
cbee9f88 1617
8c8a743c
PZ
1618 /*
1619 * First accesses are treated as private, otherwise consider accesses
1620 * to be private if the accessing pid has not changed
1621 */
1622 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1623 priv = 1;
1624 } else {
1625 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1626 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1627 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1628 }
1629
cbee9f88 1630 task_numa_placement(p);
f809ca9a 1631
6b9a7460
MG
1632 /* Retry task to preferred node migration if it previously failed */
1633 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1634 numa_migrate_preferred(p);
1635
b32e86b4
IM
1636 if (migrated)
1637 p->numa_pages_migrated += pages;
1638
ac8e895b 1639 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1640 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1641}
1642
6e5fb223
PZ
1643static void reset_ptenuma_scan(struct task_struct *p)
1644{
1645 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1646 p->mm->numa_scan_offset = 0;
1647}
1648
cbee9f88
PZ
1649/*
1650 * The expensive part of numa migration is done from task_work context.
1651 * Triggered from task_tick_numa().
1652 */
1653void task_numa_work(struct callback_head *work)
1654{
1655 unsigned long migrate, next_scan, now = jiffies;
1656 struct task_struct *p = current;
1657 struct mm_struct *mm = p->mm;
6e5fb223 1658 struct vm_area_struct *vma;
9f40604c 1659 unsigned long start, end;
598f0ec0 1660 unsigned long nr_pte_updates = 0;
9f40604c 1661 long pages;
cbee9f88
PZ
1662
1663 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1664
1665 work->next = work; /* protect against double add */
1666 /*
1667 * Who cares about NUMA placement when they're dying.
1668 *
1669 * NOTE: make sure not to dereference p->mm before this check,
1670 * exit_task_work() happens _after_ exit_mm() so we could be called
1671 * without p->mm even though we still had it when we enqueued this
1672 * work.
1673 */
1674 if (p->flags & PF_EXITING)
1675 return;
1676
930aa174 1677 if (!mm->numa_next_scan) {
7e8d16b6
MG
1678 mm->numa_next_scan = now +
1679 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1680 }
1681
cbee9f88
PZ
1682 /*
1683 * Enforce maximal scan/migration frequency..
1684 */
1685 migrate = mm->numa_next_scan;
1686 if (time_before(now, migrate))
1687 return;
1688
598f0ec0
MG
1689 if (p->numa_scan_period == 0) {
1690 p->numa_scan_period_max = task_scan_max(p);
1691 p->numa_scan_period = task_scan_min(p);
1692 }
cbee9f88 1693
fb003b80 1694 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1695 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1696 return;
1697
19a78d11
PZ
1698 /*
1699 * Delay this task enough that another task of this mm will likely win
1700 * the next time around.
1701 */
1702 p->node_stamp += 2 * TICK_NSEC;
1703
9f40604c
MG
1704 start = mm->numa_scan_offset;
1705 pages = sysctl_numa_balancing_scan_size;
1706 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1707 if (!pages)
1708 return;
cbee9f88 1709
6e5fb223 1710 down_read(&mm->mmap_sem);
9f40604c 1711 vma = find_vma(mm, start);
6e5fb223
PZ
1712 if (!vma) {
1713 reset_ptenuma_scan(p);
9f40604c 1714 start = 0;
6e5fb223
PZ
1715 vma = mm->mmap;
1716 }
9f40604c 1717 for (; vma; vma = vma->vm_next) {
fc314724 1718 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1719 continue;
1720
4591ce4f
MG
1721 /*
1722 * Shared library pages mapped by multiple processes are not
1723 * migrated as it is expected they are cache replicated. Avoid
1724 * hinting faults in read-only file-backed mappings or the vdso
1725 * as migrating the pages will be of marginal benefit.
1726 */
1727 if (!vma->vm_mm ||
1728 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1729 continue;
1730
9f40604c
MG
1731 do {
1732 start = max(start, vma->vm_start);
1733 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1734 end = min(end, vma->vm_end);
598f0ec0
MG
1735 nr_pte_updates += change_prot_numa(vma, start, end);
1736
1737 /*
1738 * Scan sysctl_numa_balancing_scan_size but ensure that
1739 * at least one PTE is updated so that unused virtual
1740 * address space is quickly skipped.
1741 */
1742 if (nr_pte_updates)
1743 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1744
9f40604c
MG
1745 start = end;
1746 if (pages <= 0)
1747 goto out;
1748 } while (end != vma->vm_end);
cbee9f88 1749 }
6e5fb223 1750
9f40604c 1751out:
6e5fb223 1752 /*
c69307d5
PZ
1753 * It is possible to reach the end of the VMA list but the last few
1754 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1755 * would find the !migratable VMA on the next scan but not reset the
1756 * scanner to the start so check it now.
6e5fb223
PZ
1757 */
1758 if (vma)
9f40604c 1759 mm->numa_scan_offset = start;
6e5fb223
PZ
1760 else
1761 reset_ptenuma_scan(p);
1762 up_read(&mm->mmap_sem);
cbee9f88
PZ
1763}
1764
1765/*
1766 * Drive the periodic memory faults..
1767 */
1768void task_tick_numa(struct rq *rq, struct task_struct *curr)
1769{
1770 struct callback_head *work = &curr->numa_work;
1771 u64 period, now;
1772
1773 /*
1774 * We don't care about NUMA placement if we don't have memory.
1775 */
1776 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1777 return;
1778
1779 /*
1780 * Using runtime rather than walltime has the dual advantage that
1781 * we (mostly) drive the selection from busy threads and that the
1782 * task needs to have done some actual work before we bother with
1783 * NUMA placement.
1784 */
1785 now = curr->se.sum_exec_runtime;
1786 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1787
1788 if (now - curr->node_stamp > period) {
4b96a29b 1789 if (!curr->node_stamp)
598f0ec0 1790 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1791 curr->node_stamp += period;
cbee9f88
PZ
1792
1793 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1794 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1795 task_work_add(curr, work, true);
1796 }
1797 }
1798}
1799#else
1800static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1801{
1802}
0ec8aa00
PZ
1803
1804static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1805{
1806}
1807
1808static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1809{
1810}
cbee9f88
PZ
1811#endif /* CONFIG_NUMA_BALANCING */
1812
30cfdcfc
DA
1813static void
1814account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1815{
1816 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1817 if (!parent_entity(se))
029632fb 1818 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1819#ifdef CONFIG_SMP
0ec8aa00
PZ
1820 if (entity_is_task(se)) {
1821 struct rq *rq = rq_of(cfs_rq);
1822
1823 account_numa_enqueue(rq, task_of(se));
1824 list_add(&se->group_node, &rq->cfs_tasks);
1825 }
367456c7 1826#endif
30cfdcfc 1827 cfs_rq->nr_running++;
30cfdcfc
DA
1828}
1829
1830static void
1831account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1834 if (!parent_entity(se))
029632fb 1835 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1836 if (entity_is_task(se)) {
1837 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1838 list_del_init(&se->group_node);
0ec8aa00 1839 }
30cfdcfc 1840 cfs_rq->nr_running--;
30cfdcfc
DA
1841}
1842
3ff6dcac
YZ
1843#ifdef CONFIG_FAIR_GROUP_SCHED
1844# ifdef CONFIG_SMP
cf5f0acf
PZ
1845static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1846{
1847 long tg_weight;
1848
1849 /*
1850 * Use this CPU's actual weight instead of the last load_contribution
1851 * to gain a more accurate current total weight. See
1852 * update_cfs_rq_load_contribution().
1853 */
bf5b986e 1854 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1855 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1856 tg_weight += cfs_rq->load.weight;
1857
1858 return tg_weight;
1859}
1860
6d5ab293 1861static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1862{
cf5f0acf 1863 long tg_weight, load, shares;
3ff6dcac 1864
cf5f0acf 1865 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1866 load = cfs_rq->load.weight;
3ff6dcac 1867
3ff6dcac 1868 shares = (tg->shares * load);
cf5f0acf
PZ
1869 if (tg_weight)
1870 shares /= tg_weight;
3ff6dcac
YZ
1871
1872 if (shares < MIN_SHARES)
1873 shares = MIN_SHARES;
1874 if (shares > tg->shares)
1875 shares = tg->shares;
1876
1877 return shares;
1878}
3ff6dcac 1879# else /* CONFIG_SMP */
6d5ab293 1880static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1881{
1882 return tg->shares;
1883}
3ff6dcac 1884# endif /* CONFIG_SMP */
2069dd75
PZ
1885static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1886 unsigned long weight)
1887{
19e5eebb
PT
1888 if (se->on_rq) {
1889 /* commit outstanding execution time */
1890 if (cfs_rq->curr == se)
1891 update_curr(cfs_rq);
2069dd75 1892 account_entity_dequeue(cfs_rq, se);
19e5eebb 1893 }
2069dd75
PZ
1894
1895 update_load_set(&se->load, weight);
1896
1897 if (se->on_rq)
1898 account_entity_enqueue(cfs_rq, se);
1899}
1900
82958366
PT
1901static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1902
6d5ab293 1903static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1904{
1905 struct task_group *tg;
1906 struct sched_entity *se;
3ff6dcac 1907 long shares;
2069dd75 1908
2069dd75
PZ
1909 tg = cfs_rq->tg;
1910 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1911 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1912 return;
3ff6dcac
YZ
1913#ifndef CONFIG_SMP
1914 if (likely(se->load.weight == tg->shares))
1915 return;
1916#endif
6d5ab293 1917 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1918
1919 reweight_entity(cfs_rq_of(se), se, shares);
1920}
1921#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1922static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1923{
1924}
1925#endif /* CONFIG_FAIR_GROUP_SCHED */
1926
141965c7 1927#ifdef CONFIG_SMP
5b51f2f8
PT
1928/*
1929 * We choose a half-life close to 1 scheduling period.
1930 * Note: The tables below are dependent on this value.
1931 */
1932#define LOAD_AVG_PERIOD 32
1933#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1934#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1935
1936/* Precomputed fixed inverse multiplies for multiplication by y^n */
1937static const u32 runnable_avg_yN_inv[] = {
1938 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1939 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1940 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1941 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1942 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1943 0x85aac367, 0x82cd8698,
1944};
1945
1946/*
1947 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1948 * over-estimates when re-combining.
1949 */
1950static const u32 runnable_avg_yN_sum[] = {
1951 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1952 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1953 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1954};
1955
9d85f21c
PT
1956/*
1957 * Approximate:
1958 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1959 */
1960static __always_inline u64 decay_load(u64 val, u64 n)
1961{
5b51f2f8
PT
1962 unsigned int local_n;
1963
1964 if (!n)
1965 return val;
1966 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1967 return 0;
1968
1969 /* after bounds checking we can collapse to 32-bit */
1970 local_n = n;
1971
1972 /*
1973 * As y^PERIOD = 1/2, we can combine
1974 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1975 * With a look-up table which covers k^n (n<PERIOD)
1976 *
1977 * To achieve constant time decay_load.
1978 */
1979 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1980 val >>= local_n / LOAD_AVG_PERIOD;
1981 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1982 }
1983
5b51f2f8
PT
1984 val *= runnable_avg_yN_inv[local_n];
1985 /* We don't use SRR here since we always want to round down. */
1986 return val >> 32;
1987}
1988
1989/*
1990 * For updates fully spanning n periods, the contribution to runnable
1991 * average will be: \Sum 1024*y^n
1992 *
1993 * We can compute this reasonably efficiently by combining:
1994 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1995 */
1996static u32 __compute_runnable_contrib(u64 n)
1997{
1998 u32 contrib = 0;
1999
2000 if (likely(n <= LOAD_AVG_PERIOD))
2001 return runnable_avg_yN_sum[n];
2002 else if (unlikely(n >= LOAD_AVG_MAX_N))
2003 return LOAD_AVG_MAX;
2004
2005 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2006 do {
2007 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2008 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2009
2010 n -= LOAD_AVG_PERIOD;
2011 } while (n > LOAD_AVG_PERIOD);
2012
2013 contrib = decay_load(contrib, n);
2014 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2015}
2016
2017/*
2018 * We can represent the historical contribution to runnable average as the
2019 * coefficients of a geometric series. To do this we sub-divide our runnable
2020 * history into segments of approximately 1ms (1024us); label the segment that
2021 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2022 *
2023 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2024 * p0 p1 p2
2025 * (now) (~1ms ago) (~2ms ago)
2026 *
2027 * Let u_i denote the fraction of p_i that the entity was runnable.
2028 *
2029 * We then designate the fractions u_i as our co-efficients, yielding the
2030 * following representation of historical load:
2031 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2032 *
2033 * We choose y based on the with of a reasonably scheduling period, fixing:
2034 * y^32 = 0.5
2035 *
2036 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2037 * approximately half as much as the contribution to load within the last ms
2038 * (u_0).
2039 *
2040 * When a period "rolls over" and we have new u_0`, multiplying the previous
2041 * sum again by y is sufficient to update:
2042 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2043 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2044 */
2045static __always_inline int __update_entity_runnable_avg(u64 now,
2046 struct sched_avg *sa,
2047 int runnable)
2048{
5b51f2f8
PT
2049 u64 delta, periods;
2050 u32 runnable_contrib;
9d85f21c
PT
2051 int delta_w, decayed = 0;
2052
2053 delta = now - sa->last_runnable_update;
2054 /*
2055 * This should only happen when time goes backwards, which it
2056 * unfortunately does during sched clock init when we swap over to TSC.
2057 */
2058 if ((s64)delta < 0) {
2059 sa->last_runnable_update = now;
2060 return 0;
2061 }
2062
2063 /*
2064 * Use 1024ns as the unit of measurement since it's a reasonable
2065 * approximation of 1us and fast to compute.
2066 */
2067 delta >>= 10;
2068 if (!delta)
2069 return 0;
2070 sa->last_runnable_update = now;
2071
2072 /* delta_w is the amount already accumulated against our next period */
2073 delta_w = sa->runnable_avg_period % 1024;
2074 if (delta + delta_w >= 1024) {
2075 /* period roll-over */
2076 decayed = 1;
2077
2078 /*
2079 * Now that we know we're crossing a period boundary, figure
2080 * out how much from delta we need to complete the current
2081 * period and accrue it.
2082 */
2083 delta_w = 1024 - delta_w;
5b51f2f8
PT
2084 if (runnable)
2085 sa->runnable_avg_sum += delta_w;
2086 sa->runnable_avg_period += delta_w;
2087
2088 delta -= delta_w;
2089
2090 /* Figure out how many additional periods this update spans */
2091 periods = delta / 1024;
2092 delta %= 1024;
2093
2094 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2095 periods + 1);
2096 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2097 periods + 1);
2098
2099 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2100 runnable_contrib = __compute_runnable_contrib(periods);
2101 if (runnable)
2102 sa->runnable_avg_sum += runnable_contrib;
2103 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2104 }
2105
2106 /* Remainder of delta accrued against u_0` */
2107 if (runnable)
2108 sa->runnable_avg_sum += delta;
2109 sa->runnable_avg_period += delta;
2110
2111 return decayed;
2112}
2113
9ee474f5 2114/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2115static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2116{
2117 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2118 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2119
2120 decays -= se->avg.decay_count;
2121 if (!decays)
aff3e498 2122 return 0;
9ee474f5
PT
2123
2124 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2125 se->avg.decay_count = 0;
aff3e498
PT
2126
2127 return decays;
9ee474f5
PT
2128}
2129
c566e8e9
PT
2130#ifdef CONFIG_FAIR_GROUP_SCHED
2131static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2132 int force_update)
2133{
2134 struct task_group *tg = cfs_rq->tg;
bf5b986e 2135 long tg_contrib;
c566e8e9
PT
2136
2137 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2138 tg_contrib -= cfs_rq->tg_load_contrib;
2139
bf5b986e
AS
2140 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2141 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2142 cfs_rq->tg_load_contrib += tg_contrib;
2143 }
2144}
8165e145 2145
bb17f655
PT
2146/*
2147 * Aggregate cfs_rq runnable averages into an equivalent task_group
2148 * representation for computing load contributions.
2149 */
2150static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2151 struct cfs_rq *cfs_rq)
2152{
2153 struct task_group *tg = cfs_rq->tg;
2154 long contrib;
2155
2156 /* The fraction of a cpu used by this cfs_rq */
2157 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2158 sa->runnable_avg_period + 1);
2159 contrib -= cfs_rq->tg_runnable_contrib;
2160
2161 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2162 atomic_add(contrib, &tg->runnable_avg);
2163 cfs_rq->tg_runnable_contrib += contrib;
2164 }
2165}
2166
8165e145
PT
2167static inline void __update_group_entity_contrib(struct sched_entity *se)
2168{
2169 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2170 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2171 int runnable_avg;
2172
8165e145
PT
2173 u64 contrib;
2174
2175 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2176 se->avg.load_avg_contrib = div_u64(contrib,
2177 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2178
2179 /*
2180 * For group entities we need to compute a correction term in the case
2181 * that they are consuming <1 cpu so that we would contribute the same
2182 * load as a task of equal weight.
2183 *
2184 * Explicitly co-ordinating this measurement would be expensive, but
2185 * fortunately the sum of each cpus contribution forms a usable
2186 * lower-bound on the true value.
2187 *
2188 * Consider the aggregate of 2 contributions. Either they are disjoint
2189 * (and the sum represents true value) or they are disjoint and we are
2190 * understating by the aggregate of their overlap.
2191 *
2192 * Extending this to N cpus, for a given overlap, the maximum amount we
2193 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2194 * cpus that overlap for this interval and w_i is the interval width.
2195 *
2196 * On a small machine; the first term is well-bounded which bounds the
2197 * total error since w_i is a subset of the period. Whereas on a
2198 * larger machine, while this first term can be larger, if w_i is the
2199 * of consequential size guaranteed to see n_i*w_i quickly converge to
2200 * our upper bound of 1-cpu.
2201 */
2202 runnable_avg = atomic_read(&tg->runnable_avg);
2203 if (runnable_avg < NICE_0_LOAD) {
2204 se->avg.load_avg_contrib *= runnable_avg;
2205 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2206 }
8165e145 2207}
c566e8e9
PT
2208#else
2209static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2210 int force_update) {}
bb17f655
PT
2211static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2212 struct cfs_rq *cfs_rq) {}
8165e145 2213static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2214#endif
2215
8165e145
PT
2216static inline void __update_task_entity_contrib(struct sched_entity *se)
2217{
2218 u32 contrib;
2219
2220 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2221 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2222 contrib /= (se->avg.runnable_avg_period + 1);
2223 se->avg.load_avg_contrib = scale_load(contrib);
2224}
2225
2dac754e
PT
2226/* Compute the current contribution to load_avg by se, return any delta */
2227static long __update_entity_load_avg_contrib(struct sched_entity *se)
2228{
2229 long old_contrib = se->avg.load_avg_contrib;
2230
8165e145
PT
2231 if (entity_is_task(se)) {
2232 __update_task_entity_contrib(se);
2233 } else {
bb17f655 2234 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2235 __update_group_entity_contrib(se);
2236 }
2dac754e
PT
2237
2238 return se->avg.load_avg_contrib - old_contrib;
2239}
2240
9ee474f5
PT
2241static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2242 long load_contrib)
2243{
2244 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2245 cfs_rq->blocked_load_avg -= load_contrib;
2246 else
2247 cfs_rq->blocked_load_avg = 0;
2248}
2249
f1b17280
PT
2250static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2251
9d85f21c 2252/* Update a sched_entity's runnable average */
9ee474f5
PT
2253static inline void update_entity_load_avg(struct sched_entity *se,
2254 int update_cfs_rq)
9d85f21c 2255{
2dac754e
PT
2256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2257 long contrib_delta;
f1b17280 2258 u64 now;
2dac754e 2259
f1b17280
PT
2260 /*
2261 * For a group entity we need to use their owned cfs_rq_clock_task() in
2262 * case they are the parent of a throttled hierarchy.
2263 */
2264 if (entity_is_task(se))
2265 now = cfs_rq_clock_task(cfs_rq);
2266 else
2267 now = cfs_rq_clock_task(group_cfs_rq(se));
2268
2269 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2270 return;
2271
2272 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2273
2274 if (!update_cfs_rq)
2275 return;
2276
2dac754e
PT
2277 if (se->on_rq)
2278 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2279 else
2280 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2281}
2282
2283/*
2284 * Decay the load contributed by all blocked children and account this so that
2285 * their contribution may appropriately discounted when they wake up.
2286 */
aff3e498 2287static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2288{
f1b17280 2289 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2290 u64 decays;
2291
2292 decays = now - cfs_rq->last_decay;
aff3e498 2293 if (!decays && !force_update)
9ee474f5
PT
2294 return;
2295
2509940f
AS
2296 if (atomic_long_read(&cfs_rq->removed_load)) {
2297 unsigned long removed_load;
2298 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2299 subtract_blocked_load_contrib(cfs_rq, removed_load);
2300 }
9ee474f5 2301
aff3e498
PT
2302 if (decays) {
2303 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2304 decays);
2305 atomic64_add(decays, &cfs_rq->decay_counter);
2306 cfs_rq->last_decay = now;
2307 }
c566e8e9
PT
2308
2309 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2310}
18bf2805
BS
2311
2312static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2313{
78becc27 2314 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2315 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2316}
2dac754e
PT
2317
2318/* Add the load generated by se into cfs_rq's child load-average */
2319static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2320 struct sched_entity *se,
2321 int wakeup)
2dac754e 2322{
aff3e498
PT
2323 /*
2324 * We track migrations using entity decay_count <= 0, on a wake-up
2325 * migration we use a negative decay count to track the remote decays
2326 * accumulated while sleeping.
a75cdaa9
AS
2327 *
2328 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2329 * are seen by enqueue_entity_load_avg() as a migration with an already
2330 * constructed load_avg_contrib.
aff3e498
PT
2331 */
2332 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2333 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2334 if (se->avg.decay_count) {
2335 /*
2336 * In a wake-up migration we have to approximate the
2337 * time sleeping. This is because we can't synchronize
2338 * clock_task between the two cpus, and it is not
2339 * guaranteed to be read-safe. Instead, we can
2340 * approximate this using our carried decays, which are
2341 * explicitly atomically readable.
2342 */
2343 se->avg.last_runnable_update -= (-se->avg.decay_count)
2344 << 20;
2345 update_entity_load_avg(se, 0);
2346 /* Indicate that we're now synchronized and on-rq */
2347 se->avg.decay_count = 0;
2348 }
9ee474f5
PT
2349 wakeup = 0;
2350 } else {
282cf499
AS
2351 /*
2352 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2353 * would have made count negative); we must be careful to avoid
2354 * double-accounting blocked time after synchronizing decays.
2355 */
2356 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2357 << 20;
9ee474f5
PT
2358 }
2359
aff3e498
PT
2360 /* migrated tasks did not contribute to our blocked load */
2361 if (wakeup) {
9ee474f5 2362 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2363 update_entity_load_avg(se, 0);
2364 }
9ee474f5 2365
2dac754e 2366 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2367 /* we force update consideration on load-balancer moves */
2368 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2369}
2370
9ee474f5
PT
2371/*
2372 * Remove se's load from this cfs_rq child load-average, if the entity is
2373 * transitioning to a blocked state we track its projected decay using
2374 * blocked_load_avg.
2375 */
2dac754e 2376static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2377 struct sched_entity *se,
2378 int sleep)
2dac754e 2379{
9ee474f5 2380 update_entity_load_avg(se, 1);
aff3e498
PT
2381 /* we force update consideration on load-balancer moves */
2382 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2383
2dac754e 2384 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2385 if (sleep) {
2386 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2387 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2388 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2389}
642dbc39
VG
2390
2391/*
2392 * Update the rq's load with the elapsed running time before entering
2393 * idle. if the last scheduled task is not a CFS task, idle_enter will
2394 * be the only way to update the runnable statistic.
2395 */
2396void idle_enter_fair(struct rq *this_rq)
2397{
2398 update_rq_runnable_avg(this_rq, 1);
2399}
2400
2401/*
2402 * Update the rq's load with the elapsed idle time before a task is
2403 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2404 * be the only way to update the runnable statistic.
2405 */
2406void idle_exit_fair(struct rq *this_rq)
2407{
2408 update_rq_runnable_avg(this_rq, 0);
2409}
2410
9d85f21c 2411#else
9ee474f5
PT
2412static inline void update_entity_load_avg(struct sched_entity *se,
2413 int update_cfs_rq) {}
18bf2805 2414static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2415static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2416 struct sched_entity *se,
2417 int wakeup) {}
2dac754e 2418static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2419 struct sched_entity *se,
2420 int sleep) {}
aff3e498
PT
2421static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2422 int force_update) {}
9d85f21c
PT
2423#endif
2424
2396af69 2425static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2426{
bf0f6f24 2427#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2428 struct task_struct *tsk = NULL;
2429
2430 if (entity_is_task(se))
2431 tsk = task_of(se);
2432
41acab88 2433 if (se->statistics.sleep_start) {
78becc27 2434 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2435
2436 if ((s64)delta < 0)
2437 delta = 0;
2438
41acab88
LDM
2439 if (unlikely(delta > se->statistics.sleep_max))
2440 se->statistics.sleep_max = delta;
bf0f6f24 2441
8c79a045 2442 se->statistics.sleep_start = 0;
41acab88 2443 se->statistics.sum_sleep_runtime += delta;
9745512c 2444
768d0c27 2445 if (tsk) {
e414314c 2446 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2447 trace_sched_stat_sleep(tsk, delta);
2448 }
bf0f6f24 2449 }
41acab88 2450 if (se->statistics.block_start) {
78becc27 2451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2452
2453 if ((s64)delta < 0)
2454 delta = 0;
2455
41acab88
LDM
2456 if (unlikely(delta > se->statistics.block_max))
2457 se->statistics.block_max = delta;
bf0f6f24 2458
8c79a045 2459 se->statistics.block_start = 0;
41acab88 2460 se->statistics.sum_sleep_runtime += delta;
30084fbd 2461
e414314c 2462 if (tsk) {
8f0dfc34 2463 if (tsk->in_iowait) {
41acab88
LDM
2464 se->statistics.iowait_sum += delta;
2465 se->statistics.iowait_count++;
768d0c27 2466 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2467 }
2468
b781a602
AV
2469 trace_sched_stat_blocked(tsk, delta);
2470
e414314c
PZ
2471 /*
2472 * Blocking time is in units of nanosecs, so shift by
2473 * 20 to get a milliseconds-range estimation of the
2474 * amount of time that the task spent sleeping:
2475 */
2476 if (unlikely(prof_on == SLEEP_PROFILING)) {
2477 profile_hits(SLEEP_PROFILING,
2478 (void *)get_wchan(tsk),
2479 delta >> 20);
2480 }
2481 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2482 }
bf0f6f24
IM
2483 }
2484#endif
2485}
2486
ddc97297
PZ
2487static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2488{
2489#ifdef CONFIG_SCHED_DEBUG
2490 s64 d = se->vruntime - cfs_rq->min_vruntime;
2491
2492 if (d < 0)
2493 d = -d;
2494
2495 if (d > 3*sysctl_sched_latency)
2496 schedstat_inc(cfs_rq, nr_spread_over);
2497#endif
2498}
2499
aeb73b04
PZ
2500static void
2501place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2502{
1af5f730 2503 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2504
2cb8600e
PZ
2505 /*
2506 * The 'current' period is already promised to the current tasks,
2507 * however the extra weight of the new task will slow them down a
2508 * little, place the new task so that it fits in the slot that
2509 * stays open at the end.
2510 */
94dfb5e7 2511 if (initial && sched_feat(START_DEBIT))
f9c0b095 2512 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2513
a2e7a7eb 2514 /* sleeps up to a single latency don't count. */
5ca9880c 2515 if (!initial) {
a2e7a7eb 2516 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2517
a2e7a7eb
MG
2518 /*
2519 * Halve their sleep time's effect, to allow
2520 * for a gentler effect of sleepers:
2521 */
2522 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2523 thresh >>= 1;
51e0304c 2524
a2e7a7eb 2525 vruntime -= thresh;
aeb73b04
PZ
2526 }
2527
b5d9d734 2528 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2529 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2530}
2531
d3d9dc33
PT
2532static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2533
bf0f6f24 2534static void
88ec22d3 2535enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2536{
88ec22d3
PZ
2537 /*
2538 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2539 * through calling update_curr().
88ec22d3 2540 */
371fd7e7 2541 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2542 se->vruntime += cfs_rq->min_vruntime;
2543
bf0f6f24 2544 /*
a2a2d680 2545 * Update run-time statistics of the 'current'.
bf0f6f24 2546 */
b7cc0896 2547 update_curr(cfs_rq);
f269ae04 2548 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2549 account_entity_enqueue(cfs_rq, se);
2550 update_cfs_shares(cfs_rq);
bf0f6f24 2551
88ec22d3 2552 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2553 place_entity(cfs_rq, se, 0);
2396af69 2554 enqueue_sleeper(cfs_rq, se);
e9acbff6 2555 }
bf0f6f24 2556
d2417e5a 2557 update_stats_enqueue(cfs_rq, se);
ddc97297 2558 check_spread(cfs_rq, se);
83b699ed
SV
2559 if (se != cfs_rq->curr)
2560 __enqueue_entity(cfs_rq, se);
2069dd75 2561 se->on_rq = 1;
3d4b47b4 2562
d3d9dc33 2563 if (cfs_rq->nr_running == 1) {
3d4b47b4 2564 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2565 check_enqueue_throttle(cfs_rq);
2566 }
bf0f6f24
IM
2567}
2568
2c13c919 2569static void __clear_buddies_last(struct sched_entity *se)
2002c695 2570{
2c13c919
RR
2571 for_each_sched_entity(se) {
2572 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2573 if (cfs_rq->last == se)
2574 cfs_rq->last = NULL;
2575 else
2576 break;
2577 }
2578}
2002c695 2579
2c13c919
RR
2580static void __clear_buddies_next(struct sched_entity *se)
2581{
2582 for_each_sched_entity(se) {
2583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2584 if (cfs_rq->next == se)
2585 cfs_rq->next = NULL;
2586 else
2587 break;
2588 }
2002c695
PZ
2589}
2590
ac53db59
RR
2591static void __clear_buddies_skip(struct sched_entity *se)
2592{
2593 for_each_sched_entity(se) {
2594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2595 if (cfs_rq->skip == se)
2596 cfs_rq->skip = NULL;
2597 else
2598 break;
2599 }
2600}
2601
a571bbea
PZ
2602static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
2c13c919
RR
2604 if (cfs_rq->last == se)
2605 __clear_buddies_last(se);
2606
2607 if (cfs_rq->next == se)
2608 __clear_buddies_next(se);
ac53db59
RR
2609
2610 if (cfs_rq->skip == se)
2611 __clear_buddies_skip(se);
a571bbea
PZ
2612}
2613
6c16a6dc 2614static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2615
bf0f6f24 2616static void
371fd7e7 2617dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2618{
a2a2d680
DA
2619 /*
2620 * Update run-time statistics of the 'current'.
2621 */
2622 update_curr(cfs_rq);
17bc14b7 2623 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2624
19b6a2e3 2625 update_stats_dequeue(cfs_rq, se);
371fd7e7 2626 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2627#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2628 if (entity_is_task(se)) {
2629 struct task_struct *tsk = task_of(se);
2630
2631 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2632 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2633 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2634 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2635 }
db36cc7d 2636#endif
67e9fb2a
PZ
2637 }
2638
2002c695 2639 clear_buddies(cfs_rq, se);
4793241b 2640
83b699ed 2641 if (se != cfs_rq->curr)
30cfdcfc 2642 __dequeue_entity(cfs_rq, se);
17bc14b7 2643 se->on_rq = 0;
30cfdcfc 2644 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2645
2646 /*
2647 * Normalize the entity after updating the min_vruntime because the
2648 * update can refer to the ->curr item and we need to reflect this
2649 * movement in our normalized position.
2650 */
371fd7e7 2651 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2652 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2653
d8b4986d
PT
2654 /* return excess runtime on last dequeue */
2655 return_cfs_rq_runtime(cfs_rq);
2656
1e876231 2657 update_min_vruntime(cfs_rq);
17bc14b7 2658 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2659}
2660
2661/*
2662 * Preempt the current task with a newly woken task if needed:
2663 */
7c92e54f 2664static void
2e09bf55 2665check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2666{
11697830 2667 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2668 struct sched_entity *se;
2669 s64 delta;
11697830 2670
6d0f0ebd 2671 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2672 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2673 if (delta_exec > ideal_runtime) {
bf0f6f24 2674 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2675 /*
2676 * The current task ran long enough, ensure it doesn't get
2677 * re-elected due to buddy favours.
2678 */
2679 clear_buddies(cfs_rq, curr);
f685ceac
MG
2680 return;
2681 }
2682
2683 /*
2684 * Ensure that a task that missed wakeup preemption by a
2685 * narrow margin doesn't have to wait for a full slice.
2686 * This also mitigates buddy induced latencies under load.
2687 */
f685ceac
MG
2688 if (delta_exec < sysctl_sched_min_granularity)
2689 return;
2690
f4cfb33e
WX
2691 se = __pick_first_entity(cfs_rq);
2692 delta = curr->vruntime - se->vruntime;
f685ceac 2693
f4cfb33e
WX
2694 if (delta < 0)
2695 return;
d7d82944 2696
f4cfb33e
WX
2697 if (delta > ideal_runtime)
2698 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2699}
2700
83b699ed 2701static void
8494f412 2702set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2703{
83b699ed
SV
2704 /* 'current' is not kept within the tree. */
2705 if (se->on_rq) {
2706 /*
2707 * Any task has to be enqueued before it get to execute on
2708 * a CPU. So account for the time it spent waiting on the
2709 * runqueue.
2710 */
2711 update_stats_wait_end(cfs_rq, se);
2712 __dequeue_entity(cfs_rq, se);
2713 }
2714
79303e9e 2715 update_stats_curr_start(cfs_rq, se);
429d43bc 2716 cfs_rq->curr = se;
eba1ed4b
IM
2717#ifdef CONFIG_SCHEDSTATS
2718 /*
2719 * Track our maximum slice length, if the CPU's load is at
2720 * least twice that of our own weight (i.e. dont track it
2721 * when there are only lesser-weight tasks around):
2722 */
495eca49 2723 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2724 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2725 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2726 }
2727#endif
4a55b450 2728 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2729}
2730
3f3a4904
PZ
2731static int
2732wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2733
ac53db59
RR
2734/*
2735 * Pick the next process, keeping these things in mind, in this order:
2736 * 1) keep things fair between processes/task groups
2737 * 2) pick the "next" process, since someone really wants that to run
2738 * 3) pick the "last" process, for cache locality
2739 * 4) do not run the "skip" process, if something else is available
2740 */
f4b6755f 2741static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2742{
ac53db59 2743 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2744 struct sched_entity *left = se;
f4b6755f 2745
ac53db59
RR
2746 /*
2747 * Avoid running the skip buddy, if running something else can
2748 * be done without getting too unfair.
2749 */
2750 if (cfs_rq->skip == se) {
2751 struct sched_entity *second = __pick_next_entity(se);
2752 if (second && wakeup_preempt_entity(second, left) < 1)
2753 se = second;
2754 }
aa2ac252 2755
f685ceac
MG
2756 /*
2757 * Prefer last buddy, try to return the CPU to a preempted task.
2758 */
2759 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2760 se = cfs_rq->last;
2761
ac53db59
RR
2762 /*
2763 * Someone really wants this to run. If it's not unfair, run it.
2764 */
2765 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2766 se = cfs_rq->next;
2767
f685ceac 2768 clear_buddies(cfs_rq, se);
4793241b
PZ
2769
2770 return se;
aa2ac252
PZ
2771}
2772
d3d9dc33
PT
2773static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2774
ab6cde26 2775static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2776{
2777 /*
2778 * If still on the runqueue then deactivate_task()
2779 * was not called and update_curr() has to be done:
2780 */
2781 if (prev->on_rq)
b7cc0896 2782 update_curr(cfs_rq);
bf0f6f24 2783
d3d9dc33
PT
2784 /* throttle cfs_rqs exceeding runtime */
2785 check_cfs_rq_runtime(cfs_rq);
2786
ddc97297 2787 check_spread(cfs_rq, prev);
30cfdcfc 2788 if (prev->on_rq) {
5870db5b 2789 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2790 /* Put 'current' back into the tree. */
2791 __enqueue_entity(cfs_rq, prev);
9d85f21c 2792 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2793 update_entity_load_avg(prev, 1);
30cfdcfc 2794 }
429d43bc 2795 cfs_rq->curr = NULL;
bf0f6f24
IM
2796}
2797
8f4d37ec
PZ
2798static void
2799entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2800{
bf0f6f24 2801 /*
30cfdcfc 2802 * Update run-time statistics of the 'current'.
bf0f6f24 2803 */
30cfdcfc 2804 update_curr(cfs_rq);
bf0f6f24 2805
9d85f21c
PT
2806 /*
2807 * Ensure that runnable average is periodically updated.
2808 */
9ee474f5 2809 update_entity_load_avg(curr, 1);
aff3e498 2810 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2811 update_cfs_shares(cfs_rq);
9d85f21c 2812
8f4d37ec
PZ
2813#ifdef CONFIG_SCHED_HRTICK
2814 /*
2815 * queued ticks are scheduled to match the slice, so don't bother
2816 * validating it and just reschedule.
2817 */
983ed7a6
HH
2818 if (queued) {
2819 resched_task(rq_of(cfs_rq)->curr);
2820 return;
2821 }
8f4d37ec
PZ
2822 /*
2823 * don't let the period tick interfere with the hrtick preemption
2824 */
2825 if (!sched_feat(DOUBLE_TICK) &&
2826 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2827 return;
2828#endif
2829
2c2efaed 2830 if (cfs_rq->nr_running > 1)
2e09bf55 2831 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2832}
2833
ab84d31e
PT
2834
2835/**************************************************
2836 * CFS bandwidth control machinery
2837 */
2838
2839#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2840
2841#ifdef HAVE_JUMP_LABEL
c5905afb 2842static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2843
2844static inline bool cfs_bandwidth_used(void)
2845{
c5905afb 2846 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2847}
2848
2849void account_cfs_bandwidth_used(int enabled, int was_enabled)
2850{
2851 /* only need to count groups transitioning between enabled/!enabled */
2852 if (enabled && !was_enabled)
c5905afb 2853 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2854 else if (!enabled && was_enabled)
c5905afb 2855 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2856}
2857#else /* HAVE_JUMP_LABEL */
2858static bool cfs_bandwidth_used(void)
2859{
2860 return true;
2861}
2862
2863void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2864#endif /* HAVE_JUMP_LABEL */
2865
ab84d31e
PT
2866/*
2867 * default period for cfs group bandwidth.
2868 * default: 0.1s, units: nanoseconds
2869 */
2870static inline u64 default_cfs_period(void)
2871{
2872 return 100000000ULL;
2873}
ec12cb7f
PT
2874
2875static inline u64 sched_cfs_bandwidth_slice(void)
2876{
2877 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2878}
2879
a9cf55b2
PT
2880/*
2881 * Replenish runtime according to assigned quota and update expiration time.
2882 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2883 * additional synchronization around rq->lock.
2884 *
2885 * requires cfs_b->lock
2886 */
029632fb 2887void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2888{
2889 u64 now;
2890
2891 if (cfs_b->quota == RUNTIME_INF)
2892 return;
2893
2894 now = sched_clock_cpu(smp_processor_id());
2895 cfs_b->runtime = cfs_b->quota;
2896 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2897}
2898
029632fb
PZ
2899static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2900{
2901 return &tg->cfs_bandwidth;
2902}
2903
f1b17280
PT
2904/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2905static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2906{
2907 if (unlikely(cfs_rq->throttle_count))
2908 return cfs_rq->throttled_clock_task;
2909
78becc27 2910 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2911}
2912
85dac906
PT
2913/* returns 0 on failure to allocate runtime */
2914static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2915{
2916 struct task_group *tg = cfs_rq->tg;
2917 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2918 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2919
2920 /* note: this is a positive sum as runtime_remaining <= 0 */
2921 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2922
2923 raw_spin_lock(&cfs_b->lock);
2924 if (cfs_b->quota == RUNTIME_INF)
2925 amount = min_amount;
58088ad0 2926 else {
a9cf55b2
PT
2927 /*
2928 * If the bandwidth pool has become inactive, then at least one
2929 * period must have elapsed since the last consumption.
2930 * Refresh the global state and ensure bandwidth timer becomes
2931 * active.
2932 */
2933 if (!cfs_b->timer_active) {
2934 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2935 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2936 }
58088ad0
PT
2937
2938 if (cfs_b->runtime > 0) {
2939 amount = min(cfs_b->runtime, min_amount);
2940 cfs_b->runtime -= amount;
2941 cfs_b->idle = 0;
2942 }
ec12cb7f 2943 }
a9cf55b2 2944 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2945 raw_spin_unlock(&cfs_b->lock);
2946
2947 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2948 /*
2949 * we may have advanced our local expiration to account for allowed
2950 * spread between our sched_clock and the one on which runtime was
2951 * issued.
2952 */
2953 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2954 cfs_rq->runtime_expires = expires;
85dac906
PT
2955
2956 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2957}
2958
a9cf55b2
PT
2959/*
2960 * Note: This depends on the synchronization provided by sched_clock and the
2961 * fact that rq->clock snapshots this value.
2962 */
2963static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2964{
a9cf55b2 2965 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2966
2967 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2968 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2969 return;
2970
a9cf55b2
PT
2971 if (cfs_rq->runtime_remaining < 0)
2972 return;
2973
2974 /*
2975 * If the local deadline has passed we have to consider the
2976 * possibility that our sched_clock is 'fast' and the global deadline
2977 * has not truly expired.
2978 *
2979 * Fortunately we can check determine whether this the case by checking
2980 * whether the global deadline has advanced.
2981 */
2982
2983 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2984 /* extend local deadline, drift is bounded above by 2 ticks */
2985 cfs_rq->runtime_expires += TICK_NSEC;
2986 } else {
2987 /* global deadline is ahead, expiration has passed */
2988 cfs_rq->runtime_remaining = 0;
2989 }
2990}
2991
2992static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2993 unsigned long delta_exec)
2994{
2995 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2996 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2997 expire_cfs_rq_runtime(cfs_rq);
2998
2999 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3000 return;
3001
85dac906
PT
3002 /*
3003 * if we're unable to extend our runtime we resched so that the active
3004 * hierarchy can be throttled
3005 */
3006 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3007 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3008}
3009
6c16a6dc
PZ
3010static __always_inline
3011void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3012{
56f570e5 3013 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3014 return;
3015
3016 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3017}
3018
85dac906
PT
3019static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3020{
56f570e5 3021 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3022}
3023
64660c86
PT
3024/* check whether cfs_rq, or any parent, is throttled */
3025static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3026{
56f570e5 3027 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3028}
3029
3030/*
3031 * Ensure that neither of the group entities corresponding to src_cpu or
3032 * dest_cpu are members of a throttled hierarchy when performing group
3033 * load-balance operations.
3034 */
3035static inline int throttled_lb_pair(struct task_group *tg,
3036 int src_cpu, int dest_cpu)
3037{
3038 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3039
3040 src_cfs_rq = tg->cfs_rq[src_cpu];
3041 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3042
3043 return throttled_hierarchy(src_cfs_rq) ||
3044 throttled_hierarchy(dest_cfs_rq);
3045}
3046
3047/* updated child weight may affect parent so we have to do this bottom up */
3048static int tg_unthrottle_up(struct task_group *tg, void *data)
3049{
3050 struct rq *rq = data;
3051 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3052
3053 cfs_rq->throttle_count--;
3054#ifdef CONFIG_SMP
3055 if (!cfs_rq->throttle_count) {
f1b17280 3056 /* adjust cfs_rq_clock_task() */
78becc27 3057 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3058 cfs_rq->throttled_clock_task;
64660c86
PT
3059 }
3060#endif
3061
3062 return 0;
3063}
3064
3065static int tg_throttle_down(struct task_group *tg, void *data)
3066{
3067 struct rq *rq = data;
3068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3069
82958366
PT
3070 /* group is entering throttled state, stop time */
3071 if (!cfs_rq->throttle_count)
78becc27 3072 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3073 cfs_rq->throttle_count++;
3074
3075 return 0;
3076}
3077
d3d9dc33 3078static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3079{
3080 struct rq *rq = rq_of(cfs_rq);
3081 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3082 struct sched_entity *se;
3083 long task_delta, dequeue = 1;
3084
3085 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3086
f1b17280 3087 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3088 rcu_read_lock();
3089 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3090 rcu_read_unlock();
85dac906
PT
3091
3092 task_delta = cfs_rq->h_nr_running;
3093 for_each_sched_entity(se) {
3094 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3095 /* throttled entity or throttle-on-deactivate */
3096 if (!se->on_rq)
3097 break;
3098
3099 if (dequeue)
3100 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3101 qcfs_rq->h_nr_running -= task_delta;
3102
3103 if (qcfs_rq->load.weight)
3104 dequeue = 0;
3105 }
3106
3107 if (!se)
3108 rq->nr_running -= task_delta;
3109
3110 cfs_rq->throttled = 1;
78becc27 3111 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3112 raw_spin_lock(&cfs_b->lock);
3113 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3114 raw_spin_unlock(&cfs_b->lock);
3115}
3116
029632fb 3117void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3118{
3119 struct rq *rq = rq_of(cfs_rq);
3120 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3121 struct sched_entity *se;
3122 int enqueue = 1;
3123 long task_delta;
3124
22b958d8 3125 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3126
3127 cfs_rq->throttled = 0;
1a55af2e
FW
3128
3129 update_rq_clock(rq);
3130
671fd9da 3131 raw_spin_lock(&cfs_b->lock);
78becc27 3132 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3133 list_del_rcu(&cfs_rq->throttled_list);
3134 raw_spin_unlock(&cfs_b->lock);
3135
64660c86
PT
3136 /* update hierarchical throttle state */
3137 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3138
671fd9da
PT
3139 if (!cfs_rq->load.weight)
3140 return;
3141
3142 task_delta = cfs_rq->h_nr_running;
3143 for_each_sched_entity(se) {
3144 if (se->on_rq)
3145 enqueue = 0;
3146
3147 cfs_rq = cfs_rq_of(se);
3148 if (enqueue)
3149 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3150 cfs_rq->h_nr_running += task_delta;
3151
3152 if (cfs_rq_throttled(cfs_rq))
3153 break;
3154 }
3155
3156 if (!se)
3157 rq->nr_running += task_delta;
3158
3159 /* determine whether we need to wake up potentially idle cpu */
3160 if (rq->curr == rq->idle && rq->cfs.nr_running)
3161 resched_task(rq->curr);
3162}
3163
3164static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3165 u64 remaining, u64 expires)
3166{
3167 struct cfs_rq *cfs_rq;
3168 u64 runtime = remaining;
3169
3170 rcu_read_lock();
3171 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3172 throttled_list) {
3173 struct rq *rq = rq_of(cfs_rq);
3174
3175 raw_spin_lock(&rq->lock);
3176 if (!cfs_rq_throttled(cfs_rq))
3177 goto next;
3178
3179 runtime = -cfs_rq->runtime_remaining + 1;
3180 if (runtime > remaining)
3181 runtime = remaining;
3182 remaining -= runtime;
3183
3184 cfs_rq->runtime_remaining += runtime;
3185 cfs_rq->runtime_expires = expires;
3186
3187 /* we check whether we're throttled above */
3188 if (cfs_rq->runtime_remaining > 0)
3189 unthrottle_cfs_rq(cfs_rq);
3190
3191next:
3192 raw_spin_unlock(&rq->lock);
3193
3194 if (!remaining)
3195 break;
3196 }
3197 rcu_read_unlock();
3198
3199 return remaining;
3200}
3201
58088ad0
PT
3202/*
3203 * Responsible for refilling a task_group's bandwidth and unthrottling its
3204 * cfs_rqs as appropriate. If there has been no activity within the last
3205 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3206 * used to track this state.
3207 */
3208static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3209{
671fd9da
PT
3210 u64 runtime, runtime_expires;
3211 int idle = 1, throttled;
58088ad0
PT
3212
3213 raw_spin_lock(&cfs_b->lock);
3214 /* no need to continue the timer with no bandwidth constraint */
3215 if (cfs_b->quota == RUNTIME_INF)
3216 goto out_unlock;
3217
671fd9da
PT
3218 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3219 /* idle depends on !throttled (for the case of a large deficit) */
3220 idle = cfs_b->idle && !throttled;
e8da1b18 3221 cfs_b->nr_periods += overrun;
671fd9da 3222
a9cf55b2
PT
3223 /* if we're going inactive then everything else can be deferred */
3224 if (idle)
3225 goto out_unlock;
3226
3227 __refill_cfs_bandwidth_runtime(cfs_b);
3228
671fd9da
PT
3229 if (!throttled) {
3230 /* mark as potentially idle for the upcoming period */
3231 cfs_b->idle = 1;
3232 goto out_unlock;
3233 }
3234
e8da1b18
NR
3235 /* account preceding periods in which throttling occurred */
3236 cfs_b->nr_throttled += overrun;
3237
671fd9da
PT
3238 /*
3239 * There are throttled entities so we must first use the new bandwidth
3240 * to unthrottle them before making it generally available. This
3241 * ensures that all existing debts will be paid before a new cfs_rq is
3242 * allowed to run.
3243 */
3244 runtime = cfs_b->runtime;
3245 runtime_expires = cfs_b->runtime_expires;
3246 cfs_b->runtime = 0;
3247
3248 /*
3249 * This check is repeated as we are holding onto the new bandwidth
3250 * while we unthrottle. This can potentially race with an unthrottled
3251 * group trying to acquire new bandwidth from the global pool.
3252 */
3253 while (throttled && runtime > 0) {
3254 raw_spin_unlock(&cfs_b->lock);
3255 /* we can't nest cfs_b->lock while distributing bandwidth */
3256 runtime = distribute_cfs_runtime(cfs_b, runtime,
3257 runtime_expires);
3258 raw_spin_lock(&cfs_b->lock);
3259
3260 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3261 }
58088ad0 3262
671fd9da
PT
3263 /* return (any) remaining runtime */
3264 cfs_b->runtime = runtime;
3265 /*
3266 * While we are ensured activity in the period following an
3267 * unthrottle, this also covers the case in which the new bandwidth is
3268 * insufficient to cover the existing bandwidth deficit. (Forcing the
3269 * timer to remain active while there are any throttled entities.)
3270 */
3271 cfs_b->idle = 0;
58088ad0
PT
3272out_unlock:
3273 if (idle)
3274 cfs_b->timer_active = 0;
3275 raw_spin_unlock(&cfs_b->lock);
3276
3277 return idle;
3278}
d3d9dc33 3279
d8b4986d
PT
3280/* a cfs_rq won't donate quota below this amount */
3281static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3282/* minimum remaining period time to redistribute slack quota */
3283static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3284/* how long we wait to gather additional slack before distributing */
3285static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3286
3287/* are we near the end of the current quota period? */
3288static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3289{
3290 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3291 u64 remaining;
3292
3293 /* if the call-back is running a quota refresh is already occurring */
3294 if (hrtimer_callback_running(refresh_timer))
3295 return 1;
3296
3297 /* is a quota refresh about to occur? */
3298 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3299 if (remaining < min_expire)
3300 return 1;
3301
3302 return 0;
3303}
3304
3305static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3306{
3307 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3308
3309 /* if there's a quota refresh soon don't bother with slack */
3310 if (runtime_refresh_within(cfs_b, min_left))
3311 return;
3312
3313 start_bandwidth_timer(&cfs_b->slack_timer,
3314 ns_to_ktime(cfs_bandwidth_slack_period));
3315}
3316
3317/* we know any runtime found here is valid as update_curr() precedes return */
3318static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3319{
3320 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3321 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3322
3323 if (slack_runtime <= 0)
3324 return;
3325
3326 raw_spin_lock(&cfs_b->lock);
3327 if (cfs_b->quota != RUNTIME_INF &&
3328 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3329 cfs_b->runtime += slack_runtime;
3330
3331 /* we are under rq->lock, defer unthrottling using a timer */
3332 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3333 !list_empty(&cfs_b->throttled_cfs_rq))
3334 start_cfs_slack_bandwidth(cfs_b);
3335 }
3336 raw_spin_unlock(&cfs_b->lock);
3337
3338 /* even if it's not valid for return we don't want to try again */
3339 cfs_rq->runtime_remaining -= slack_runtime;
3340}
3341
3342static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3343{
56f570e5
PT
3344 if (!cfs_bandwidth_used())
3345 return;
3346
fccfdc6f 3347 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3348 return;
3349
3350 __return_cfs_rq_runtime(cfs_rq);
3351}
3352
3353/*
3354 * This is done with a timer (instead of inline with bandwidth return) since
3355 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3356 */
3357static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3358{
3359 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3360 u64 expires;
3361
3362 /* confirm we're still not at a refresh boundary */
3363 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3364 return;
3365
3366 raw_spin_lock(&cfs_b->lock);
3367 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3368 runtime = cfs_b->runtime;
3369 cfs_b->runtime = 0;
3370 }
3371 expires = cfs_b->runtime_expires;
3372 raw_spin_unlock(&cfs_b->lock);
3373
3374 if (!runtime)
3375 return;
3376
3377 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3378
3379 raw_spin_lock(&cfs_b->lock);
3380 if (expires == cfs_b->runtime_expires)
3381 cfs_b->runtime = runtime;
3382 raw_spin_unlock(&cfs_b->lock);
3383}
3384
d3d9dc33
PT
3385/*
3386 * When a group wakes up we want to make sure that its quota is not already
3387 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3388 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3389 */
3390static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3391{
56f570e5
PT
3392 if (!cfs_bandwidth_used())
3393 return;
3394
d3d9dc33
PT
3395 /* an active group must be handled by the update_curr()->put() path */
3396 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3397 return;
3398
3399 /* ensure the group is not already throttled */
3400 if (cfs_rq_throttled(cfs_rq))
3401 return;
3402
3403 /* update runtime allocation */
3404 account_cfs_rq_runtime(cfs_rq, 0);
3405 if (cfs_rq->runtime_remaining <= 0)
3406 throttle_cfs_rq(cfs_rq);
3407}
3408
3409/* conditionally throttle active cfs_rq's from put_prev_entity() */
3410static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3411{
56f570e5
PT
3412 if (!cfs_bandwidth_used())
3413 return;
3414
d3d9dc33
PT
3415 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3416 return;
3417
3418 /*
3419 * it's possible for a throttled entity to be forced into a running
3420 * state (e.g. set_curr_task), in this case we're finished.
3421 */
3422 if (cfs_rq_throttled(cfs_rq))
3423 return;
3424
3425 throttle_cfs_rq(cfs_rq);
3426}
029632fb 3427
029632fb
PZ
3428static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3429{
3430 struct cfs_bandwidth *cfs_b =
3431 container_of(timer, struct cfs_bandwidth, slack_timer);
3432 do_sched_cfs_slack_timer(cfs_b);
3433
3434 return HRTIMER_NORESTART;
3435}
3436
3437static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3438{
3439 struct cfs_bandwidth *cfs_b =
3440 container_of(timer, struct cfs_bandwidth, period_timer);
3441 ktime_t now;
3442 int overrun;
3443 int idle = 0;
3444
3445 for (;;) {
3446 now = hrtimer_cb_get_time(timer);
3447 overrun = hrtimer_forward(timer, now, cfs_b->period);
3448
3449 if (!overrun)
3450 break;
3451
3452 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3453 }
3454
3455 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3456}
3457
3458void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3459{
3460 raw_spin_lock_init(&cfs_b->lock);
3461 cfs_b->runtime = 0;
3462 cfs_b->quota = RUNTIME_INF;
3463 cfs_b->period = ns_to_ktime(default_cfs_period());
3464
3465 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3466 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3467 cfs_b->period_timer.function = sched_cfs_period_timer;
3468 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3469 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3470}
3471
3472static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3473{
3474 cfs_rq->runtime_enabled = 0;
3475 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3476}
3477
3478/* requires cfs_b->lock, may release to reprogram timer */
3479void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3480{
3481 /*
3482 * The timer may be active because we're trying to set a new bandwidth
3483 * period or because we're racing with the tear-down path
3484 * (timer_active==0 becomes visible before the hrtimer call-back
3485 * terminates). In either case we ensure that it's re-programmed
3486 */
3487 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3488 raw_spin_unlock(&cfs_b->lock);
3489 /* ensure cfs_b->lock is available while we wait */
3490 hrtimer_cancel(&cfs_b->period_timer);
3491
3492 raw_spin_lock(&cfs_b->lock);
3493 /* if someone else restarted the timer then we're done */
3494 if (cfs_b->timer_active)
3495 return;
3496 }
3497
3498 cfs_b->timer_active = 1;
3499 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3500}
3501
3502static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3503{
3504 hrtimer_cancel(&cfs_b->period_timer);
3505 hrtimer_cancel(&cfs_b->slack_timer);
3506}
3507
38dc3348 3508static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3509{
3510 struct cfs_rq *cfs_rq;
3511
3512 for_each_leaf_cfs_rq(rq, cfs_rq) {
3513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3514
3515 if (!cfs_rq->runtime_enabled)
3516 continue;
3517
3518 /*
3519 * clock_task is not advancing so we just need to make sure
3520 * there's some valid quota amount
3521 */
3522 cfs_rq->runtime_remaining = cfs_b->quota;
3523 if (cfs_rq_throttled(cfs_rq))
3524 unthrottle_cfs_rq(cfs_rq);
3525 }
3526}
3527
3528#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3529static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3530{
78becc27 3531 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3532}
3533
3534static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3535 unsigned long delta_exec) {}
d3d9dc33
PT
3536static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3537static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3538static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3539
3540static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3541{
3542 return 0;
3543}
64660c86
PT
3544
3545static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3546{
3547 return 0;
3548}
3549
3550static inline int throttled_lb_pair(struct task_group *tg,
3551 int src_cpu, int dest_cpu)
3552{
3553 return 0;
3554}
029632fb
PZ
3555
3556void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3557
3558#ifdef CONFIG_FAIR_GROUP_SCHED
3559static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3560#endif
3561
029632fb
PZ
3562static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3563{
3564 return NULL;
3565}
3566static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3567static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3568
3569#endif /* CONFIG_CFS_BANDWIDTH */
3570
bf0f6f24
IM
3571/**************************************************
3572 * CFS operations on tasks:
3573 */
3574
8f4d37ec
PZ
3575#ifdef CONFIG_SCHED_HRTICK
3576static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3577{
8f4d37ec
PZ
3578 struct sched_entity *se = &p->se;
3579 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3580
3581 WARN_ON(task_rq(p) != rq);
3582
b39e66ea 3583 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3584 u64 slice = sched_slice(cfs_rq, se);
3585 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3586 s64 delta = slice - ran;
3587
3588 if (delta < 0) {
3589 if (rq->curr == p)
3590 resched_task(p);
3591 return;
3592 }
3593
3594 /*
3595 * Don't schedule slices shorter than 10000ns, that just
3596 * doesn't make sense. Rely on vruntime for fairness.
3597 */
31656519 3598 if (rq->curr != p)
157124c1 3599 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3600
31656519 3601 hrtick_start(rq, delta);
8f4d37ec
PZ
3602 }
3603}
a4c2f00f
PZ
3604
3605/*
3606 * called from enqueue/dequeue and updates the hrtick when the
3607 * current task is from our class and nr_running is low enough
3608 * to matter.
3609 */
3610static void hrtick_update(struct rq *rq)
3611{
3612 struct task_struct *curr = rq->curr;
3613
b39e66ea 3614 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3615 return;
3616
3617 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3618 hrtick_start_fair(rq, curr);
3619}
55e12e5e 3620#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3621static inline void
3622hrtick_start_fair(struct rq *rq, struct task_struct *p)
3623{
3624}
a4c2f00f
PZ
3625
3626static inline void hrtick_update(struct rq *rq)
3627{
3628}
8f4d37ec
PZ
3629#endif
3630
bf0f6f24
IM
3631/*
3632 * The enqueue_task method is called before nr_running is
3633 * increased. Here we update the fair scheduling stats and
3634 * then put the task into the rbtree:
3635 */
ea87bb78 3636static void
371fd7e7 3637enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3638{
3639 struct cfs_rq *cfs_rq;
62fb1851 3640 struct sched_entity *se = &p->se;
bf0f6f24
IM
3641
3642 for_each_sched_entity(se) {
62fb1851 3643 if (se->on_rq)
bf0f6f24
IM
3644 break;
3645 cfs_rq = cfs_rq_of(se);
88ec22d3 3646 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3647
3648 /*
3649 * end evaluation on encountering a throttled cfs_rq
3650 *
3651 * note: in the case of encountering a throttled cfs_rq we will
3652 * post the final h_nr_running increment below.
3653 */
3654 if (cfs_rq_throttled(cfs_rq))
3655 break;
953bfcd1 3656 cfs_rq->h_nr_running++;
85dac906 3657
88ec22d3 3658 flags = ENQUEUE_WAKEUP;
bf0f6f24 3659 }
8f4d37ec 3660
2069dd75 3661 for_each_sched_entity(se) {
0f317143 3662 cfs_rq = cfs_rq_of(se);
953bfcd1 3663 cfs_rq->h_nr_running++;
2069dd75 3664
85dac906
PT
3665 if (cfs_rq_throttled(cfs_rq))
3666 break;
3667
17bc14b7 3668 update_cfs_shares(cfs_rq);
9ee474f5 3669 update_entity_load_avg(se, 1);
2069dd75
PZ
3670 }
3671
18bf2805
BS
3672 if (!se) {
3673 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3674 inc_nr_running(rq);
18bf2805 3675 }
a4c2f00f 3676 hrtick_update(rq);
bf0f6f24
IM
3677}
3678
2f36825b
VP
3679static void set_next_buddy(struct sched_entity *se);
3680
bf0f6f24
IM
3681/*
3682 * The dequeue_task method is called before nr_running is
3683 * decreased. We remove the task from the rbtree and
3684 * update the fair scheduling stats:
3685 */
371fd7e7 3686static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3687{
3688 struct cfs_rq *cfs_rq;
62fb1851 3689 struct sched_entity *se = &p->se;
2f36825b 3690 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3691
3692 for_each_sched_entity(se) {
3693 cfs_rq = cfs_rq_of(se);
371fd7e7 3694 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3695
3696 /*
3697 * end evaluation on encountering a throttled cfs_rq
3698 *
3699 * note: in the case of encountering a throttled cfs_rq we will
3700 * post the final h_nr_running decrement below.
3701 */
3702 if (cfs_rq_throttled(cfs_rq))
3703 break;
953bfcd1 3704 cfs_rq->h_nr_running--;
2069dd75 3705
bf0f6f24 3706 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3707 if (cfs_rq->load.weight) {
3708 /*
3709 * Bias pick_next to pick a task from this cfs_rq, as
3710 * p is sleeping when it is within its sched_slice.
3711 */
3712 if (task_sleep && parent_entity(se))
3713 set_next_buddy(parent_entity(se));
9598c82d
PT
3714
3715 /* avoid re-evaluating load for this entity */
3716 se = parent_entity(se);
bf0f6f24 3717 break;
2f36825b 3718 }
371fd7e7 3719 flags |= DEQUEUE_SLEEP;
bf0f6f24 3720 }
8f4d37ec 3721
2069dd75 3722 for_each_sched_entity(se) {
0f317143 3723 cfs_rq = cfs_rq_of(se);
953bfcd1 3724 cfs_rq->h_nr_running--;
2069dd75 3725
85dac906
PT
3726 if (cfs_rq_throttled(cfs_rq))
3727 break;
3728
17bc14b7 3729 update_cfs_shares(cfs_rq);
9ee474f5 3730 update_entity_load_avg(se, 1);
2069dd75
PZ
3731 }
3732
18bf2805 3733 if (!se) {
85dac906 3734 dec_nr_running(rq);
18bf2805
BS
3735 update_rq_runnable_avg(rq, 1);
3736 }
a4c2f00f 3737 hrtick_update(rq);
bf0f6f24
IM
3738}
3739
e7693a36 3740#ifdef CONFIG_SMP
029632fb
PZ
3741/* Used instead of source_load when we know the type == 0 */
3742static unsigned long weighted_cpuload(const int cpu)
3743{
b92486cb 3744 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3745}
3746
3747/*
3748 * Return a low guess at the load of a migration-source cpu weighted
3749 * according to the scheduling class and "nice" value.
3750 *
3751 * We want to under-estimate the load of migration sources, to
3752 * balance conservatively.
3753 */
3754static unsigned long source_load(int cpu, int type)
3755{
3756 struct rq *rq = cpu_rq(cpu);
3757 unsigned long total = weighted_cpuload(cpu);
3758
3759 if (type == 0 || !sched_feat(LB_BIAS))
3760 return total;
3761
3762 return min(rq->cpu_load[type-1], total);
3763}
3764
3765/*
3766 * Return a high guess at the load of a migration-target cpu weighted
3767 * according to the scheduling class and "nice" value.
3768 */
3769static unsigned long target_load(int cpu, int type)
3770{
3771 struct rq *rq = cpu_rq(cpu);
3772 unsigned long total = weighted_cpuload(cpu);
3773
3774 if (type == 0 || !sched_feat(LB_BIAS))
3775 return total;
3776
3777 return max(rq->cpu_load[type-1], total);
3778}
3779
3780static unsigned long power_of(int cpu)
3781{
3782 return cpu_rq(cpu)->cpu_power;
3783}
3784
3785static unsigned long cpu_avg_load_per_task(int cpu)
3786{
3787 struct rq *rq = cpu_rq(cpu);
3788 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3789 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3790
3791 if (nr_running)
b92486cb 3792 return load_avg / nr_running;
029632fb
PZ
3793
3794 return 0;
3795}
3796
62470419
MW
3797static void record_wakee(struct task_struct *p)
3798{
3799 /*
3800 * Rough decay (wiping) for cost saving, don't worry
3801 * about the boundary, really active task won't care
3802 * about the loss.
3803 */
3804 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3805 current->wakee_flips = 0;
3806 current->wakee_flip_decay_ts = jiffies;
3807 }
3808
3809 if (current->last_wakee != p) {
3810 current->last_wakee = p;
3811 current->wakee_flips++;
3812 }
3813}
098fb9db 3814
74f8e4b2 3815static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3816{
3817 struct sched_entity *se = &p->se;
3818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3819 u64 min_vruntime;
3820
3821#ifndef CONFIG_64BIT
3822 u64 min_vruntime_copy;
88ec22d3 3823
3fe1698b
PZ
3824 do {
3825 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3826 smp_rmb();
3827 min_vruntime = cfs_rq->min_vruntime;
3828 } while (min_vruntime != min_vruntime_copy);
3829#else
3830 min_vruntime = cfs_rq->min_vruntime;
3831#endif
88ec22d3 3832
3fe1698b 3833 se->vruntime -= min_vruntime;
62470419 3834 record_wakee(p);
88ec22d3
PZ
3835}
3836
bb3469ac 3837#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3838/*
3839 * effective_load() calculates the load change as seen from the root_task_group
3840 *
3841 * Adding load to a group doesn't make a group heavier, but can cause movement
3842 * of group shares between cpus. Assuming the shares were perfectly aligned one
3843 * can calculate the shift in shares.
cf5f0acf
PZ
3844 *
3845 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3846 * on this @cpu and results in a total addition (subtraction) of @wg to the
3847 * total group weight.
3848 *
3849 * Given a runqueue weight distribution (rw_i) we can compute a shares
3850 * distribution (s_i) using:
3851 *
3852 * s_i = rw_i / \Sum rw_j (1)
3853 *
3854 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3855 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3856 * shares distribution (s_i):
3857 *
3858 * rw_i = { 2, 4, 1, 0 }
3859 * s_i = { 2/7, 4/7, 1/7, 0 }
3860 *
3861 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3862 * task used to run on and the CPU the waker is running on), we need to
3863 * compute the effect of waking a task on either CPU and, in case of a sync
3864 * wakeup, compute the effect of the current task going to sleep.
3865 *
3866 * So for a change of @wl to the local @cpu with an overall group weight change
3867 * of @wl we can compute the new shares distribution (s'_i) using:
3868 *
3869 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3870 *
3871 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3872 * differences in waking a task to CPU 0. The additional task changes the
3873 * weight and shares distributions like:
3874 *
3875 * rw'_i = { 3, 4, 1, 0 }
3876 * s'_i = { 3/8, 4/8, 1/8, 0 }
3877 *
3878 * We can then compute the difference in effective weight by using:
3879 *
3880 * dw_i = S * (s'_i - s_i) (3)
3881 *
3882 * Where 'S' is the group weight as seen by its parent.
3883 *
3884 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3885 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3886 * 4/7) times the weight of the group.
f5bfb7d9 3887 */
2069dd75 3888static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3889{
4be9daaa 3890 struct sched_entity *se = tg->se[cpu];
f1d239f7 3891
58d081b5 3892 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3893 return wl;
3894
4be9daaa 3895 for_each_sched_entity(se) {
cf5f0acf 3896 long w, W;
4be9daaa 3897
977dda7c 3898 tg = se->my_q->tg;
bb3469ac 3899
cf5f0acf
PZ
3900 /*
3901 * W = @wg + \Sum rw_j
3902 */
3903 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3904
cf5f0acf
PZ
3905 /*
3906 * w = rw_i + @wl
3907 */
3908 w = se->my_q->load.weight + wl;
940959e9 3909
cf5f0acf
PZ
3910 /*
3911 * wl = S * s'_i; see (2)
3912 */
3913 if (W > 0 && w < W)
3914 wl = (w * tg->shares) / W;
977dda7c
PT
3915 else
3916 wl = tg->shares;
940959e9 3917
cf5f0acf
PZ
3918 /*
3919 * Per the above, wl is the new se->load.weight value; since
3920 * those are clipped to [MIN_SHARES, ...) do so now. See
3921 * calc_cfs_shares().
3922 */
977dda7c
PT
3923 if (wl < MIN_SHARES)
3924 wl = MIN_SHARES;
cf5f0acf
PZ
3925
3926 /*
3927 * wl = dw_i = S * (s'_i - s_i); see (3)
3928 */
977dda7c 3929 wl -= se->load.weight;
cf5f0acf
PZ
3930
3931 /*
3932 * Recursively apply this logic to all parent groups to compute
3933 * the final effective load change on the root group. Since
3934 * only the @tg group gets extra weight, all parent groups can
3935 * only redistribute existing shares. @wl is the shift in shares
3936 * resulting from this level per the above.
3937 */
4be9daaa 3938 wg = 0;
4be9daaa 3939 }
bb3469ac 3940
4be9daaa 3941 return wl;
bb3469ac
PZ
3942}
3943#else
4be9daaa 3944
58d081b5 3945static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3946{
83378269 3947 return wl;
bb3469ac 3948}
4be9daaa 3949
bb3469ac
PZ
3950#endif
3951
62470419
MW
3952static int wake_wide(struct task_struct *p)
3953{
7d9ffa89 3954 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3955
3956 /*
3957 * Yeah, it's the switching-frequency, could means many wakee or
3958 * rapidly switch, use factor here will just help to automatically
3959 * adjust the loose-degree, so bigger node will lead to more pull.
3960 */
3961 if (p->wakee_flips > factor) {
3962 /*
3963 * wakee is somewhat hot, it needs certain amount of cpu
3964 * resource, so if waker is far more hot, prefer to leave
3965 * it alone.
3966 */
3967 if (current->wakee_flips > (factor * p->wakee_flips))
3968 return 1;
3969 }
3970
3971 return 0;
3972}
3973
c88d5910 3974static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3975{
e37b6a7b 3976 s64 this_load, load;
c88d5910 3977 int idx, this_cpu, prev_cpu;
098fb9db 3978 unsigned long tl_per_task;
c88d5910 3979 struct task_group *tg;
83378269 3980 unsigned long weight;
b3137bc8 3981 int balanced;
098fb9db 3982
62470419
MW
3983 /*
3984 * If we wake multiple tasks be careful to not bounce
3985 * ourselves around too much.
3986 */
3987 if (wake_wide(p))
3988 return 0;
3989
c88d5910
PZ
3990 idx = sd->wake_idx;
3991 this_cpu = smp_processor_id();
3992 prev_cpu = task_cpu(p);
3993 load = source_load(prev_cpu, idx);
3994 this_load = target_load(this_cpu, idx);
098fb9db 3995
b3137bc8
MG
3996 /*
3997 * If sync wakeup then subtract the (maximum possible)
3998 * effect of the currently running task from the load
3999 * of the current CPU:
4000 */
83378269
PZ
4001 if (sync) {
4002 tg = task_group(current);
4003 weight = current->se.load.weight;
4004
c88d5910 4005 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4006 load += effective_load(tg, prev_cpu, 0, -weight);
4007 }
b3137bc8 4008
83378269
PZ
4009 tg = task_group(p);
4010 weight = p->se.load.weight;
b3137bc8 4011
71a29aa7
PZ
4012 /*
4013 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4014 * due to the sync cause above having dropped this_load to 0, we'll
4015 * always have an imbalance, but there's really nothing you can do
4016 * about that, so that's good too.
71a29aa7
PZ
4017 *
4018 * Otherwise check if either cpus are near enough in load to allow this
4019 * task to be woken on this_cpu.
4020 */
e37b6a7b
PT
4021 if (this_load > 0) {
4022 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4023
4024 this_eff_load = 100;
4025 this_eff_load *= power_of(prev_cpu);
4026 this_eff_load *= this_load +
4027 effective_load(tg, this_cpu, weight, weight);
4028
4029 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4030 prev_eff_load *= power_of(this_cpu);
4031 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4032
4033 balanced = this_eff_load <= prev_eff_load;
4034 } else
4035 balanced = true;
b3137bc8 4036
098fb9db 4037 /*
4ae7d5ce
IM
4038 * If the currently running task will sleep within
4039 * a reasonable amount of time then attract this newly
4040 * woken task:
098fb9db 4041 */
2fb7635c
PZ
4042 if (sync && balanced)
4043 return 1;
098fb9db 4044
41acab88 4045 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4046 tl_per_task = cpu_avg_load_per_task(this_cpu);
4047
c88d5910
PZ
4048 if (balanced ||
4049 (this_load <= load &&
4050 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4051 /*
4052 * This domain has SD_WAKE_AFFINE and
4053 * p is cache cold in this domain, and
4054 * there is no bad imbalance.
4055 */
c88d5910 4056 schedstat_inc(sd, ttwu_move_affine);
41acab88 4057 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4058
4059 return 1;
4060 }
4061 return 0;
4062}
4063
aaee1203
PZ
4064/*
4065 * find_idlest_group finds and returns the least busy CPU group within the
4066 * domain.
4067 */
4068static struct sched_group *
78e7ed53 4069find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4070 int this_cpu, int load_idx)
e7693a36 4071{
b3bd3de6 4072 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4073 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4075
aaee1203
PZ
4076 do {
4077 unsigned long load, avg_load;
4078 int local_group;
4079 int i;
e7693a36 4080
aaee1203
PZ
4081 /* Skip over this group if it has no CPUs allowed */
4082 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4083 tsk_cpus_allowed(p)))
aaee1203
PZ
4084 continue;
4085
4086 local_group = cpumask_test_cpu(this_cpu,
4087 sched_group_cpus(group));
4088
4089 /* Tally up the load of all CPUs in the group */
4090 avg_load = 0;
4091
4092 for_each_cpu(i, sched_group_cpus(group)) {
4093 /* Bias balancing toward cpus of our domain */
4094 if (local_group)
4095 load = source_load(i, load_idx);
4096 else
4097 load = target_load(i, load_idx);
4098
4099 avg_load += load;
4100 }
4101
4102 /* Adjust by relative CPU power of the group */
9c3f75cb 4103 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4104
4105 if (local_group) {
4106 this_load = avg_load;
aaee1203
PZ
4107 } else if (avg_load < min_load) {
4108 min_load = avg_load;
4109 idlest = group;
4110 }
4111 } while (group = group->next, group != sd->groups);
4112
4113 if (!idlest || 100*this_load < imbalance*min_load)
4114 return NULL;
4115 return idlest;
4116}
4117
4118/*
4119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4120 */
4121static int
4122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4123{
4124 unsigned long load, min_load = ULONG_MAX;
4125 int idlest = -1;
4126 int i;
4127
4128 /* Traverse only the allowed CPUs */
fa17b507 4129 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4130 load = weighted_cpuload(i);
4131
4132 if (load < min_load || (load == min_load && i == this_cpu)) {
4133 min_load = load;
4134 idlest = i;
e7693a36
GH
4135 }
4136 }
4137
aaee1203
PZ
4138 return idlest;
4139}
e7693a36 4140
a50bde51
PZ
4141/*
4142 * Try and locate an idle CPU in the sched_domain.
4143 */
99bd5e2f 4144static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4145{
99bd5e2f 4146 struct sched_domain *sd;
37407ea7 4147 struct sched_group *sg;
e0a79f52 4148 int i = task_cpu(p);
a50bde51 4149
e0a79f52
MG
4150 if (idle_cpu(target))
4151 return target;
99bd5e2f
SS
4152
4153 /*
e0a79f52 4154 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4155 */
e0a79f52
MG
4156 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4157 return i;
a50bde51
PZ
4158
4159 /*
37407ea7 4160 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4161 */
518cd623 4162 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4163 for_each_lower_domain(sd) {
37407ea7
LT
4164 sg = sd->groups;
4165 do {
4166 if (!cpumask_intersects(sched_group_cpus(sg),
4167 tsk_cpus_allowed(p)))
4168 goto next;
4169
4170 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4171 if (i == target || !idle_cpu(i))
37407ea7
LT
4172 goto next;
4173 }
970e1789 4174
37407ea7
LT
4175 target = cpumask_first_and(sched_group_cpus(sg),
4176 tsk_cpus_allowed(p));
4177 goto done;
4178next:
4179 sg = sg->next;
4180 } while (sg != sd->groups);
4181 }
4182done:
a50bde51
PZ
4183 return target;
4184}
4185
aaee1203
PZ
4186/*
4187 * sched_balance_self: balance the current task (running on cpu) in domains
4188 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4189 * SD_BALANCE_EXEC.
4190 *
4191 * Balance, ie. select the least loaded group.
4192 *
4193 * Returns the target CPU number, or the same CPU if no balancing is needed.
4194 *
4195 * preempt must be disabled.
4196 */
0017d735 4197static int
ac66f547 4198select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4199{
29cd8bae 4200 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4201 int cpu = smp_processor_id();
c88d5910 4202 int new_cpu = cpu;
99bd5e2f 4203 int want_affine = 0;
5158f4e4 4204 int sync = wake_flags & WF_SYNC;
c88d5910 4205
29baa747 4206 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4207 return prev_cpu;
4208
0763a660 4209 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4210 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4211 want_affine = 1;
4212 new_cpu = prev_cpu;
4213 }
aaee1203 4214
dce840a0 4215 rcu_read_lock();
aaee1203 4216 for_each_domain(cpu, tmp) {
e4f42888
PZ
4217 if (!(tmp->flags & SD_LOAD_BALANCE))
4218 continue;
4219
fe3bcfe1 4220 /*
99bd5e2f
SS
4221 * If both cpu and prev_cpu are part of this domain,
4222 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4223 */
99bd5e2f
SS
4224 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4225 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4226 affine_sd = tmp;
29cd8bae 4227 break;
f03542a7 4228 }
29cd8bae 4229
f03542a7 4230 if (tmp->flags & sd_flag)
29cd8bae
PZ
4231 sd = tmp;
4232 }
4233
8b911acd 4234 if (affine_sd) {
f03542a7 4235 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4236 prev_cpu = cpu;
4237
4238 new_cpu = select_idle_sibling(p, prev_cpu);
4239 goto unlock;
8b911acd 4240 }
e7693a36 4241
aaee1203 4242 while (sd) {
5158f4e4 4243 int load_idx = sd->forkexec_idx;
aaee1203 4244 struct sched_group *group;
c88d5910 4245 int weight;
098fb9db 4246
0763a660 4247 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4248 sd = sd->child;
4249 continue;
4250 }
098fb9db 4251
5158f4e4
PZ
4252 if (sd_flag & SD_BALANCE_WAKE)
4253 load_idx = sd->wake_idx;
098fb9db 4254
5158f4e4 4255 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4256 if (!group) {
4257 sd = sd->child;
4258 continue;
4259 }
4ae7d5ce 4260
d7c33c49 4261 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4262 if (new_cpu == -1 || new_cpu == cpu) {
4263 /* Now try balancing at a lower domain level of cpu */
4264 sd = sd->child;
4265 continue;
e7693a36 4266 }
aaee1203
PZ
4267
4268 /* Now try balancing at a lower domain level of new_cpu */
4269 cpu = new_cpu;
669c55e9 4270 weight = sd->span_weight;
aaee1203
PZ
4271 sd = NULL;
4272 for_each_domain(cpu, tmp) {
669c55e9 4273 if (weight <= tmp->span_weight)
aaee1203 4274 break;
0763a660 4275 if (tmp->flags & sd_flag)
aaee1203
PZ
4276 sd = tmp;
4277 }
4278 /* while loop will break here if sd == NULL */
e7693a36 4279 }
dce840a0
PZ
4280unlock:
4281 rcu_read_unlock();
e7693a36 4282
c88d5910 4283 return new_cpu;
e7693a36 4284}
0a74bef8
PT
4285
4286/*
4287 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4288 * cfs_rq_of(p) references at time of call are still valid and identify the
4289 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4290 * other assumptions, including the state of rq->lock, should be made.
4291 */
4292static void
4293migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4294{
aff3e498
PT
4295 struct sched_entity *se = &p->se;
4296 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4297
4298 /*
4299 * Load tracking: accumulate removed load so that it can be processed
4300 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4301 * to blocked load iff they have a positive decay-count. It can never
4302 * be negative here since on-rq tasks have decay-count == 0.
4303 */
4304 if (se->avg.decay_count) {
4305 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4306 atomic_long_add(se->avg.load_avg_contrib,
4307 &cfs_rq->removed_load);
aff3e498 4308 }
0a74bef8 4309}
e7693a36
GH
4310#endif /* CONFIG_SMP */
4311
e52fb7c0
PZ
4312static unsigned long
4313wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4314{
4315 unsigned long gran = sysctl_sched_wakeup_granularity;
4316
4317 /*
e52fb7c0
PZ
4318 * Since its curr running now, convert the gran from real-time
4319 * to virtual-time in his units.
13814d42
MG
4320 *
4321 * By using 'se' instead of 'curr' we penalize light tasks, so
4322 * they get preempted easier. That is, if 'se' < 'curr' then
4323 * the resulting gran will be larger, therefore penalizing the
4324 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4325 * be smaller, again penalizing the lighter task.
4326 *
4327 * This is especially important for buddies when the leftmost
4328 * task is higher priority than the buddy.
0bbd3336 4329 */
f4ad9bd2 4330 return calc_delta_fair(gran, se);
0bbd3336
PZ
4331}
4332
464b7527
PZ
4333/*
4334 * Should 'se' preempt 'curr'.
4335 *
4336 * |s1
4337 * |s2
4338 * |s3
4339 * g
4340 * |<--->|c
4341 *
4342 * w(c, s1) = -1
4343 * w(c, s2) = 0
4344 * w(c, s3) = 1
4345 *
4346 */
4347static int
4348wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4349{
4350 s64 gran, vdiff = curr->vruntime - se->vruntime;
4351
4352 if (vdiff <= 0)
4353 return -1;
4354
e52fb7c0 4355 gran = wakeup_gran(curr, se);
464b7527
PZ
4356 if (vdiff > gran)
4357 return 1;
4358
4359 return 0;
4360}
4361
02479099
PZ
4362static void set_last_buddy(struct sched_entity *se)
4363{
69c80f3e
VP
4364 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4365 return;
4366
4367 for_each_sched_entity(se)
4368 cfs_rq_of(se)->last = se;
02479099
PZ
4369}
4370
4371static void set_next_buddy(struct sched_entity *se)
4372{
69c80f3e
VP
4373 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4374 return;
4375
4376 for_each_sched_entity(se)
4377 cfs_rq_of(se)->next = se;
02479099
PZ
4378}
4379
ac53db59
RR
4380static void set_skip_buddy(struct sched_entity *se)
4381{
69c80f3e
VP
4382 for_each_sched_entity(se)
4383 cfs_rq_of(se)->skip = se;
ac53db59
RR
4384}
4385
bf0f6f24
IM
4386/*
4387 * Preempt the current task with a newly woken task if needed:
4388 */
5a9b86f6 4389static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4390{
4391 struct task_struct *curr = rq->curr;
8651a86c 4392 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4393 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4394 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4395 int next_buddy_marked = 0;
bf0f6f24 4396
4ae7d5ce
IM
4397 if (unlikely(se == pse))
4398 return;
4399
5238cdd3 4400 /*
ddcdf6e7 4401 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4402 * unconditionally check_prempt_curr() after an enqueue (which may have
4403 * lead to a throttle). This both saves work and prevents false
4404 * next-buddy nomination below.
4405 */
4406 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4407 return;
4408
2f36825b 4409 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4410 set_next_buddy(pse);
2f36825b
VP
4411 next_buddy_marked = 1;
4412 }
57fdc26d 4413
aec0a514
BR
4414 /*
4415 * We can come here with TIF_NEED_RESCHED already set from new task
4416 * wake up path.
5238cdd3
PT
4417 *
4418 * Note: this also catches the edge-case of curr being in a throttled
4419 * group (e.g. via set_curr_task), since update_curr() (in the
4420 * enqueue of curr) will have resulted in resched being set. This
4421 * prevents us from potentially nominating it as a false LAST_BUDDY
4422 * below.
aec0a514
BR
4423 */
4424 if (test_tsk_need_resched(curr))
4425 return;
4426
a2f5c9ab
DH
4427 /* Idle tasks are by definition preempted by non-idle tasks. */
4428 if (unlikely(curr->policy == SCHED_IDLE) &&
4429 likely(p->policy != SCHED_IDLE))
4430 goto preempt;
4431
91c234b4 4432 /*
a2f5c9ab
DH
4433 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4434 * is driven by the tick):
91c234b4 4435 */
8ed92e51 4436 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4437 return;
bf0f6f24 4438
464b7527 4439 find_matching_se(&se, &pse);
9bbd7374 4440 update_curr(cfs_rq_of(se));
002f128b 4441 BUG_ON(!pse);
2f36825b
VP
4442 if (wakeup_preempt_entity(se, pse) == 1) {
4443 /*
4444 * Bias pick_next to pick the sched entity that is
4445 * triggering this preemption.
4446 */
4447 if (!next_buddy_marked)
4448 set_next_buddy(pse);
3a7e73a2 4449 goto preempt;
2f36825b 4450 }
464b7527 4451
3a7e73a2 4452 return;
a65ac745 4453
3a7e73a2
PZ
4454preempt:
4455 resched_task(curr);
4456 /*
4457 * Only set the backward buddy when the current task is still
4458 * on the rq. This can happen when a wakeup gets interleaved
4459 * with schedule on the ->pre_schedule() or idle_balance()
4460 * point, either of which can * drop the rq lock.
4461 *
4462 * Also, during early boot the idle thread is in the fair class,
4463 * for obvious reasons its a bad idea to schedule back to it.
4464 */
4465 if (unlikely(!se->on_rq || curr == rq->idle))
4466 return;
4467
4468 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4469 set_last_buddy(se);
bf0f6f24
IM
4470}
4471
fb8d4724 4472static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4473{
8f4d37ec 4474 struct task_struct *p;
bf0f6f24
IM
4475 struct cfs_rq *cfs_rq = &rq->cfs;
4476 struct sched_entity *se;
4477
36ace27e 4478 if (!cfs_rq->nr_running)
bf0f6f24
IM
4479 return NULL;
4480
4481 do {
9948f4b2 4482 se = pick_next_entity(cfs_rq);
f4b6755f 4483 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4484 cfs_rq = group_cfs_rq(se);
4485 } while (cfs_rq);
4486
8f4d37ec 4487 p = task_of(se);
b39e66ea
MG
4488 if (hrtick_enabled(rq))
4489 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4490
4491 return p;
bf0f6f24
IM
4492}
4493
4494/*
4495 * Account for a descheduled task:
4496 */
31ee529c 4497static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4498{
4499 struct sched_entity *se = &prev->se;
4500 struct cfs_rq *cfs_rq;
4501
4502 for_each_sched_entity(se) {
4503 cfs_rq = cfs_rq_of(se);
ab6cde26 4504 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4505 }
4506}
4507
ac53db59
RR
4508/*
4509 * sched_yield() is very simple
4510 *
4511 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4512 */
4513static void yield_task_fair(struct rq *rq)
4514{
4515 struct task_struct *curr = rq->curr;
4516 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4517 struct sched_entity *se = &curr->se;
4518
4519 /*
4520 * Are we the only task in the tree?
4521 */
4522 if (unlikely(rq->nr_running == 1))
4523 return;
4524
4525 clear_buddies(cfs_rq, se);
4526
4527 if (curr->policy != SCHED_BATCH) {
4528 update_rq_clock(rq);
4529 /*
4530 * Update run-time statistics of the 'current'.
4531 */
4532 update_curr(cfs_rq);
916671c0
MG
4533 /*
4534 * Tell update_rq_clock() that we've just updated,
4535 * so we don't do microscopic update in schedule()
4536 * and double the fastpath cost.
4537 */
4538 rq->skip_clock_update = 1;
ac53db59
RR
4539 }
4540
4541 set_skip_buddy(se);
4542}
4543
d95f4122
MG
4544static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4545{
4546 struct sched_entity *se = &p->se;
4547
5238cdd3
PT
4548 /* throttled hierarchies are not runnable */
4549 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4550 return false;
4551
4552 /* Tell the scheduler that we'd really like pse to run next. */
4553 set_next_buddy(se);
4554
d95f4122
MG
4555 yield_task_fair(rq);
4556
4557 return true;
4558}
4559
681f3e68 4560#ifdef CONFIG_SMP
bf0f6f24 4561/**************************************************
e9c84cb8
PZ
4562 * Fair scheduling class load-balancing methods.
4563 *
4564 * BASICS
4565 *
4566 * The purpose of load-balancing is to achieve the same basic fairness the
4567 * per-cpu scheduler provides, namely provide a proportional amount of compute
4568 * time to each task. This is expressed in the following equation:
4569 *
4570 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4571 *
4572 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4573 * W_i,0 is defined as:
4574 *
4575 * W_i,0 = \Sum_j w_i,j (2)
4576 *
4577 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4578 * is derived from the nice value as per prio_to_weight[].
4579 *
4580 * The weight average is an exponential decay average of the instantaneous
4581 * weight:
4582 *
4583 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4584 *
4585 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4586 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4587 * can also include other factors [XXX].
4588 *
4589 * To achieve this balance we define a measure of imbalance which follows
4590 * directly from (1):
4591 *
4592 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4593 *
4594 * We them move tasks around to minimize the imbalance. In the continuous
4595 * function space it is obvious this converges, in the discrete case we get
4596 * a few fun cases generally called infeasible weight scenarios.
4597 *
4598 * [XXX expand on:
4599 * - infeasible weights;
4600 * - local vs global optima in the discrete case. ]
4601 *
4602 *
4603 * SCHED DOMAINS
4604 *
4605 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4606 * for all i,j solution, we create a tree of cpus that follows the hardware
4607 * topology where each level pairs two lower groups (or better). This results
4608 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4609 * tree to only the first of the previous level and we decrease the frequency
4610 * of load-balance at each level inv. proportional to the number of cpus in
4611 * the groups.
4612 *
4613 * This yields:
4614 *
4615 * log_2 n 1 n
4616 * \Sum { --- * --- * 2^i } = O(n) (5)
4617 * i = 0 2^i 2^i
4618 * `- size of each group
4619 * | | `- number of cpus doing load-balance
4620 * | `- freq
4621 * `- sum over all levels
4622 *
4623 * Coupled with a limit on how many tasks we can migrate every balance pass,
4624 * this makes (5) the runtime complexity of the balancer.
4625 *
4626 * An important property here is that each CPU is still (indirectly) connected
4627 * to every other cpu in at most O(log n) steps:
4628 *
4629 * The adjacency matrix of the resulting graph is given by:
4630 *
4631 * log_2 n
4632 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4633 * k = 0
4634 *
4635 * And you'll find that:
4636 *
4637 * A^(log_2 n)_i,j != 0 for all i,j (7)
4638 *
4639 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4640 * The task movement gives a factor of O(m), giving a convergence complexity
4641 * of:
4642 *
4643 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4644 *
4645 *
4646 * WORK CONSERVING
4647 *
4648 * In order to avoid CPUs going idle while there's still work to do, new idle
4649 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4650 * tree itself instead of relying on other CPUs to bring it work.
4651 *
4652 * This adds some complexity to both (5) and (8) but it reduces the total idle
4653 * time.
4654 *
4655 * [XXX more?]
4656 *
4657 *
4658 * CGROUPS
4659 *
4660 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4661 *
4662 * s_k,i
4663 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4664 * S_k
4665 *
4666 * Where
4667 *
4668 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4669 *
4670 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4671 *
4672 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4673 * property.
4674 *
4675 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4676 * rewrite all of this once again.]
4677 */
bf0f6f24 4678
ed387b78
HS
4679static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4680
0ec8aa00
PZ
4681enum fbq_type { regular, remote, all };
4682
ddcdf6e7 4683#define LBF_ALL_PINNED 0x01
367456c7 4684#define LBF_NEED_BREAK 0x02
6263322c
PZ
4685#define LBF_DST_PINNED 0x04
4686#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4687
4688struct lb_env {
4689 struct sched_domain *sd;
4690
ddcdf6e7 4691 struct rq *src_rq;
85c1e7da 4692 int src_cpu;
ddcdf6e7
PZ
4693
4694 int dst_cpu;
4695 struct rq *dst_rq;
4696
88b8dac0
SV
4697 struct cpumask *dst_grpmask;
4698 int new_dst_cpu;
ddcdf6e7 4699 enum cpu_idle_type idle;
bd939f45 4700 long imbalance;
b9403130
MW
4701 /* The set of CPUs under consideration for load-balancing */
4702 struct cpumask *cpus;
4703
ddcdf6e7 4704 unsigned int flags;
367456c7
PZ
4705
4706 unsigned int loop;
4707 unsigned int loop_break;
4708 unsigned int loop_max;
0ec8aa00
PZ
4709
4710 enum fbq_type fbq_type;
ddcdf6e7
PZ
4711};
4712
1e3c88bd 4713/*
ddcdf6e7 4714 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4715 * Both runqueues must be locked.
4716 */
ddcdf6e7 4717static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4718{
ddcdf6e7
PZ
4719 deactivate_task(env->src_rq, p, 0);
4720 set_task_cpu(p, env->dst_cpu);
4721 activate_task(env->dst_rq, p, 0);
4722 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4723}
4724
029632fb
PZ
4725/*
4726 * Is this task likely cache-hot:
4727 */
4728static int
4729task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4730{
4731 s64 delta;
4732
4733 if (p->sched_class != &fair_sched_class)
4734 return 0;
4735
4736 if (unlikely(p->policy == SCHED_IDLE))
4737 return 0;
4738
4739 /*
4740 * Buddy candidates are cache hot:
4741 */
4742 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4743 (&p->se == cfs_rq_of(&p->se)->next ||
4744 &p->se == cfs_rq_of(&p->se)->last))
4745 return 1;
4746
4747 if (sysctl_sched_migration_cost == -1)
4748 return 1;
4749 if (sysctl_sched_migration_cost == 0)
4750 return 0;
4751
4752 delta = now - p->se.exec_start;
4753
4754 return delta < (s64)sysctl_sched_migration_cost;
4755}
4756
3a7053b3
MG
4757#ifdef CONFIG_NUMA_BALANCING
4758/* Returns true if the destination node has incurred more faults */
4759static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4760{
4761 int src_nid, dst_nid;
4762
4763 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4764 !(env->sd->flags & SD_NUMA)) {
4765 return false;
4766 }
4767
4768 src_nid = cpu_to_node(env->src_cpu);
4769 dst_nid = cpu_to_node(env->dst_cpu);
4770
83e1d2cd 4771 if (src_nid == dst_nid)
3a7053b3
MG
4772 return false;
4773
83e1d2cd
MG
4774 /* Always encourage migration to the preferred node. */
4775 if (dst_nid == p->numa_preferred_nid)
4776 return true;
4777
887c290e
RR
4778 /* If both task and group weight improve, this move is a winner. */
4779 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4780 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4781 return true;
4782
4783 return false;
4784}
7a0f3083
MG
4785
4786
4787static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4788{
4789 int src_nid, dst_nid;
4790
4791 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4792 return false;
4793
4794 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4795 return false;
4796
4797 src_nid = cpu_to_node(env->src_cpu);
4798 dst_nid = cpu_to_node(env->dst_cpu);
4799
83e1d2cd 4800 if (src_nid == dst_nid)
7a0f3083
MG
4801 return false;
4802
83e1d2cd
MG
4803 /* Migrating away from the preferred node is always bad. */
4804 if (src_nid == p->numa_preferred_nid)
4805 return true;
4806
887c290e
RR
4807 /* If either task or group weight get worse, don't do it. */
4808 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4809 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4810 return true;
4811
4812 return false;
4813}
4814
3a7053b3
MG
4815#else
4816static inline bool migrate_improves_locality(struct task_struct *p,
4817 struct lb_env *env)
4818{
4819 return false;
4820}
7a0f3083
MG
4821
4822static inline bool migrate_degrades_locality(struct task_struct *p,
4823 struct lb_env *env)
4824{
4825 return false;
4826}
3a7053b3
MG
4827#endif
4828
1e3c88bd
PZ
4829/*
4830 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4831 */
4832static
8e45cb54 4833int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4834{
4835 int tsk_cache_hot = 0;
4836 /*
4837 * We do not migrate tasks that are:
d3198084 4838 * 1) throttled_lb_pair, or
1e3c88bd 4839 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4840 * 3) running (obviously), or
4841 * 4) are cache-hot on their current CPU.
1e3c88bd 4842 */
d3198084
JK
4843 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4844 return 0;
4845
ddcdf6e7 4846 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4847 int cpu;
88b8dac0 4848
41acab88 4849 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4850
6263322c
PZ
4851 env->flags |= LBF_SOME_PINNED;
4852
88b8dac0
SV
4853 /*
4854 * Remember if this task can be migrated to any other cpu in
4855 * our sched_group. We may want to revisit it if we couldn't
4856 * meet load balance goals by pulling other tasks on src_cpu.
4857 *
4858 * Also avoid computing new_dst_cpu if we have already computed
4859 * one in current iteration.
4860 */
6263322c 4861 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4862 return 0;
4863
e02e60c1
JK
4864 /* Prevent to re-select dst_cpu via env's cpus */
4865 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4866 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4867 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4868 env->new_dst_cpu = cpu;
4869 break;
4870 }
88b8dac0 4871 }
e02e60c1 4872
1e3c88bd
PZ
4873 return 0;
4874 }
88b8dac0
SV
4875
4876 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4877 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4878
ddcdf6e7 4879 if (task_running(env->src_rq, p)) {
41acab88 4880 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4881 return 0;
4882 }
4883
4884 /*
4885 * Aggressive migration if:
3a7053b3
MG
4886 * 1) destination numa is preferred
4887 * 2) task is cache cold, or
4888 * 3) too many balance attempts have failed.
1e3c88bd 4889 */
78becc27 4890 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4891 if (!tsk_cache_hot)
4892 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4893
4894 if (migrate_improves_locality(p, env)) {
4895#ifdef CONFIG_SCHEDSTATS
4896 if (tsk_cache_hot) {
4897 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4898 schedstat_inc(p, se.statistics.nr_forced_migrations);
4899 }
4900#endif
4901 return 1;
4902 }
4903
1e3c88bd 4904 if (!tsk_cache_hot ||
8e45cb54 4905 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4906
1e3c88bd 4907 if (tsk_cache_hot) {
8e45cb54 4908 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4909 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4910 }
4e2dcb73 4911
1e3c88bd
PZ
4912 return 1;
4913 }
4914
4e2dcb73
ZH
4915 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4916 return 0;
1e3c88bd
PZ
4917}
4918
897c395f
PZ
4919/*
4920 * move_one_task tries to move exactly one task from busiest to this_rq, as
4921 * part of active balancing operations within "domain".
4922 * Returns 1 if successful and 0 otherwise.
4923 *
4924 * Called with both runqueues locked.
4925 */
8e45cb54 4926static int move_one_task(struct lb_env *env)
897c395f
PZ
4927{
4928 struct task_struct *p, *n;
897c395f 4929
367456c7 4930 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4931 if (!can_migrate_task(p, env))
4932 continue;
897c395f 4933
367456c7
PZ
4934 move_task(p, env);
4935 /*
4936 * Right now, this is only the second place move_task()
4937 * is called, so we can safely collect move_task()
4938 * stats here rather than inside move_task().
4939 */
4940 schedstat_inc(env->sd, lb_gained[env->idle]);
4941 return 1;
897c395f 4942 }
897c395f
PZ
4943 return 0;
4944}
4945
eb95308e
PZ
4946static const unsigned int sched_nr_migrate_break = 32;
4947
5d6523eb 4948/*
bd939f45 4949 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4950 * this_rq, as part of a balancing operation within domain "sd".
4951 * Returns 1 if successful and 0 otherwise.
4952 *
4953 * Called with both runqueues locked.
4954 */
4955static int move_tasks(struct lb_env *env)
1e3c88bd 4956{
5d6523eb
PZ
4957 struct list_head *tasks = &env->src_rq->cfs_tasks;
4958 struct task_struct *p;
367456c7
PZ
4959 unsigned long load;
4960 int pulled = 0;
1e3c88bd 4961
bd939f45 4962 if (env->imbalance <= 0)
5d6523eb 4963 return 0;
1e3c88bd 4964
5d6523eb
PZ
4965 while (!list_empty(tasks)) {
4966 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4967
367456c7
PZ
4968 env->loop++;
4969 /* We've more or less seen every task there is, call it quits */
5d6523eb 4970 if (env->loop > env->loop_max)
367456c7 4971 break;
5d6523eb
PZ
4972
4973 /* take a breather every nr_migrate tasks */
367456c7 4974 if (env->loop > env->loop_break) {
eb95308e 4975 env->loop_break += sched_nr_migrate_break;
8e45cb54 4976 env->flags |= LBF_NEED_BREAK;
ee00e66f 4977 break;
a195f004 4978 }
1e3c88bd 4979
d3198084 4980 if (!can_migrate_task(p, env))
367456c7
PZ
4981 goto next;
4982
4983 load = task_h_load(p);
5d6523eb 4984
eb95308e 4985 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4986 goto next;
4987
bd939f45 4988 if ((load / 2) > env->imbalance)
367456c7 4989 goto next;
1e3c88bd 4990
ddcdf6e7 4991 move_task(p, env);
ee00e66f 4992 pulled++;
bd939f45 4993 env->imbalance -= load;
1e3c88bd
PZ
4994
4995#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4996 /*
4997 * NEWIDLE balancing is a source of latency, so preemptible
4998 * kernels will stop after the first task is pulled to minimize
4999 * the critical section.
5000 */
5d6523eb 5001 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5002 break;
1e3c88bd
PZ
5003#endif
5004
ee00e66f
PZ
5005 /*
5006 * We only want to steal up to the prescribed amount of
5007 * weighted load.
5008 */
bd939f45 5009 if (env->imbalance <= 0)
ee00e66f 5010 break;
367456c7
PZ
5011
5012 continue;
5013next:
5d6523eb 5014 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5015 }
5d6523eb 5016
1e3c88bd 5017 /*
ddcdf6e7
PZ
5018 * Right now, this is one of only two places move_task() is called,
5019 * so we can safely collect move_task() stats here rather than
5020 * inside move_task().
1e3c88bd 5021 */
8e45cb54 5022 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5023
5d6523eb 5024 return pulled;
1e3c88bd
PZ
5025}
5026
230059de 5027#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5028/*
5029 * update tg->load_weight by folding this cpu's load_avg
5030 */
48a16753 5031static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5032{
48a16753
PT
5033 struct sched_entity *se = tg->se[cpu];
5034 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5035
48a16753
PT
5036 /* throttled entities do not contribute to load */
5037 if (throttled_hierarchy(cfs_rq))
5038 return;
9e3081ca 5039
aff3e498 5040 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5041
82958366
PT
5042 if (se) {
5043 update_entity_load_avg(se, 1);
5044 /*
5045 * We pivot on our runnable average having decayed to zero for
5046 * list removal. This generally implies that all our children
5047 * have also been removed (modulo rounding error or bandwidth
5048 * control); however, such cases are rare and we can fix these
5049 * at enqueue.
5050 *
5051 * TODO: fix up out-of-order children on enqueue.
5052 */
5053 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5054 list_del_leaf_cfs_rq(cfs_rq);
5055 } else {
48a16753 5056 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5057 update_rq_runnable_avg(rq, rq->nr_running);
5058 }
9e3081ca
PZ
5059}
5060
48a16753 5061static void update_blocked_averages(int cpu)
9e3081ca 5062{
9e3081ca 5063 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5064 struct cfs_rq *cfs_rq;
5065 unsigned long flags;
9e3081ca 5066
48a16753
PT
5067 raw_spin_lock_irqsave(&rq->lock, flags);
5068 update_rq_clock(rq);
9763b67f
PZ
5069 /*
5070 * Iterates the task_group tree in a bottom up fashion, see
5071 * list_add_leaf_cfs_rq() for details.
5072 */
64660c86 5073 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5074 /*
5075 * Note: We may want to consider periodically releasing
5076 * rq->lock about these updates so that creating many task
5077 * groups does not result in continually extending hold time.
5078 */
5079 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5080 }
48a16753
PT
5081
5082 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5083}
5084
9763b67f 5085/*
68520796 5086 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5087 * This needs to be done in a top-down fashion because the load of a child
5088 * group is a fraction of its parents load.
5089 */
68520796 5090static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5091{
68520796
VD
5092 struct rq *rq = rq_of(cfs_rq);
5093 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5094 unsigned long now = jiffies;
68520796 5095 unsigned long load;
a35b6466 5096
68520796 5097 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5098 return;
5099
68520796
VD
5100 cfs_rq->h_load_next = NULL;
5101 for_each_sched_entity(se) {
5102 cfs_rq = cfs_rq_of(se);
5103 cfs_rq->h_load_next = se;
5104 if (cfs_rq->last_h_load_update == now)
5105 break;
5106 }
a35b6466 5107
68520796 5108 if (!se) {
7e3115ef 5109 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5110 cfs_rq->last_h_load_update = now;
5111 }
5112
5113 while ((se = cfs_rq->h_load_next) != NULL) {
5114 load = cfs_rq->h_load;
5115 load = div64_ul(load * se->avg.load_avg_contrib,
5116 cfs_rq->runnable_load_avg + 1);
5117 cfs_rq = group_cfs_rq(se);
5118 cfs_rq->h_load = load;
5119 cfs_rq->last_h_load_update = now;
5120 }
9763b67f
PZ
5121}
5122
367456c7 5123static unsigned long task_h_load(struct task_struct *p)
230059de 5124{
367456c7 5125 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5126
68520796 5127 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5128 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5129 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5130}
5131#else
48a16753 5132static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5133{
5134}
5135
367456c7 5136static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5137{
a003a25b 5138 return p->se.avg.load_avg_contrib;
1e3c88bd 5139}
230059de 5140#endif
1e3c88bd 5141
1e3c88bd 5142/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5143/*
5144 * sg_lb_stats - stats of a sched_group required for load_balancing
5145 */
5146struct sg_lb_stats {
5147 unsigned long avg_load; /*Avg load across the CPUs of the group */
5148 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5149 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5150 unsigned long load_per_task;
3ae11c90 5151 unsigned long group_power;
147c5fc2
PZ
5152 unsigned int sum_nr_running; /* Nr tasks running in the group */
5153 unsigned int group_capacity;
5154 unsigned int idle_cpus;
5155 unsigned int group_weight;
1e3c88bd 5156 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5157 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5158#ifdef CONFIG_NUMA_BALANCING
5159 unsigned int nr_numa_running;
5160 unsigned int nr_preferred_running;
5161#endif
1e3c88bd
PZ
5162};
5163
56cf515b
JK
5164/*
5165 * sd_lb_stats - Structure to store the statistics of a sched_domain
5166 * during load balancing.
5167 */
5168struct sd_lb_stats {
5169 struct sched_group *busiest; /* Busiest group in this sd */
5170 struct sched_group *local; /* Local group in this sd */
5171 unsigned long total_load; /* Total load of all groups in sd */
5172 unsigned long total_pwr; /* Total power of all groups in sd */
5173 unsigned long avg_load; /* Average load across all groups in sd */
5174
56cf515b 5175 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5176 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5177};
5178
147c5fc2
PZ
5179static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5180{
5181 /*
5182 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5183 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5184 * We must however clear busiest_stat::avg_load because
5185 * update_sd_pick_busiest() reads this before assignment.
5186 */
5187 *sds = (struct sd_lb_stats){
5188 .busiest = NULL,
5189 .local = NULL,
5190 .total_load = 0UL,
5191 .total_pwr = 0UL,
5192 .busiest_stat = {
5193 .avg_load = 0UL,
5194 },
5195 };
5196}
5197
1e3c88bd
PZ
5198/**
5199 * get_sd_load_idx - Obtain the load index for a given sched domain.
5200 * @sd: The sched_domain whose load_idx is to be obtained.
5201 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5202 *
5203 * Return: The load index.
1e3c88bd
PZ
5204 */
5205static inline int get_sd_load_idx(struct sched_domain *sd,
5206 enum cpu_idle_type idle)
5207{
5208 int load_idx;
5209
5210 switch (idle) {
5211 case CPU_NOT_IDLE:
5212 load_idx = sd->busy_idx;
5213 break;
5214
5215 case CPU_NEWLY_IDLE:
5216 load_idx = sd->newidle_idx;
5217 break;
5218 default:
5219 load_idx = sd->idle_idx;
5220 break;
5221 }
5222
5223 return load_idx;
5224}
5225
15f803c9 5226static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5227{
1399fa78 5228 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5229}
5230
5231unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5232{
5233 return default_scale_freq_power(sd, cpu);
5234}
5235
15f803c9 5236static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5237{
669c55e9 5238 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5239 unsigned long smt_gain = sd->smt_gain;
5240
5241 smt_gain /= weight;
5242
5243 return smt_gain;
5244}
5245
5246unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5247{
5248 return default_scale_smt_power(sd, cpu);
5249}
5250
15f803c9 5251static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5252{
5253 struct rq *rq = cpu_rq(cpu);
b654f7de 5254 u64 total, available, age_stamp, avg;
1e3c88bd 5255
b654f7de
PZ
5256 /*
5257 * Since we're reading these variables without serialization make sure
5258 * we read them once before doing sanity checks on them.
5259 */
5260 age_stamp = ACCESS_ONCE(rq->age_stamp);
5261 avg = ACCESS_ONCE(rq->rt_avg);
5262
78becc27 5263 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5264
b654f7de 5265 if (unlikely(total < avg)) {
aa483808
VP
5266 /* Ensures that power won't end up being negative */
5267 available = 0;
5268 } else {
b654f7de 5269 available = total - avg;
aa483808 5270 }
1e3c88bd 5271
1399fa78
NR
5272 if (unlikely((s64)total < SCHED_POWER_SCALE))
5273 total = SCHED_POWER_SCALE;
1e3c88bd 5274
1399fa78 5275 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5276
5277 return div_u64(available, total);
5278}
5279
5280static void update_cpu_power(struct sched_domain *sd, int cpu)
5281{
669c55e9 5282 unsigned long weight = sd->span_weight;
1399fa78 5283 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5284 struct sched_group *sdg = sd->groups;
5285
1e3c88bd
PZ
5286 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5287 if (sched_feat(ARCH_POWER))
5288 power *= arch_scale_smt_power(sd, cpu);
5289 else
5290 power *= default_scale_smt_power(sd, cpu);
5291
1399fa78 5292 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5293 }
5294
9c3f75cb 5295 sdg->sgp->power_orig = power;
9d5efe05
SV
5296
5297 if (sched_feat(ARCH_POWER))
5298 power *= arch_scale_freq_power(sd, cpu);
5299 else
5300 power *= default_scale_freq_power(sd, cpu);
5301
1399fa78 5302 power >>= SCHED_POWER_SHIFT;
9d5efe05 5303
1e3c88bd 5304 power *= scale_rt_power(cpu);
1399fa78 5305 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5306
5307 if (!power)
5308 power = 1;
5309
e51fd5e2 5310 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5311 sdg->sgp->power = power;
1e3c88bd
PZ
5312}
5313
029632fb 5314void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5315{
5316 struct sched_domain *child = sd->child;
5317 struct sched_group *group, *sdg = sd->groups;
863bffc8 5318 unsigned long power, power_orig;
4ec4412e
VG
5319 unsigned long interval;
5320
5321 interval = msecs_to_jiffies(sd->balance_interval);
5322 interval = clamp(interval, 1UL, max_load_balance_interval);
5323 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5324
5325 if (!child) {
5326 update_cpu_power(sd, cpu);
5327 return;
5328 }
5329
863bffc8 5330 power_orig = power = 0;
1e3c88bd 5331
74a5ce20
PZ
5332 if (child->flags & SD_OVERLAP) {
5333 /*
5334 * SD_OVERLAP domains cannot assume that child groups
5335 * span the current group.
5336 */
5337
863bffc8
PZ
5338 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5339 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5340
5341 power_orig += sg->sgp->power_orig;
5342 power += sg->sgp->power;
5343 }
74a5ce20
PZ
5344 } else {
5345 /*
5346 * !SD_OVERLAP domains can assume that child groups
5347 * span the current group.
5348 */
5349
5350 group = child->groups;
5351 do {
863bffc8 5352 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5353 power += group->sgp->power;
5354 group = group->next;
5355 } while (group != child->groups);
5356 }
1e3c88bd 5357
863bffc8
PZ
5358 sdg->sgp->power_orig = power_orig;
5359 sdg->sgp->power = power;
1e3c88bd
PZ
5360}
5361
9d5efe05
SV
5362/*
5363 * Try and fix up capacity for tiny siblings, this is needed when
5364 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5365 * which on its own isn't powerful enough.
5366 *
5367 * See update_sd_pick_busiest() and check_asym_packing().
5368 */
5369static inline int
5370fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5371{
5372 /*
1399fa78 5373 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5374 */
a6c75f2f 5375 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5376 return 0;
5377
5378 /*
5379 * If ~90% of the cpu_power is still there, we're good.
5380 */
9c3f75cb 5381 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5382 return 1;
5383
5384 return 0;
5385}
5386
30ce5dab
PZ
5387/*
5388 * Group imbalance indicates (and tries to solve) the problem where balancing
5389 * groups is inadequate due to tsk_cpus_allowed() constraints.
5390 *
5391 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5392 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5393 * Something like:
5394 *
5395 * { 0 1 2 3 } { 4 5 6 7 }
5396 * * * * *
5397 *
5398 * If we were to balance group-wise we'd place two tasks in the first group and
5399 * two tasks in the second group. Clearly this is undesired as it will overload
5400 * cpu 3 and leave one of the cpus in the second group unused.
5401 *
5402 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5403 * by noticing the lower domain failed to reach balance and had difficulty
5404 * moving tasks due to affinity constraints.
30ce5dab
PZ
5405 *
5406 * When this is so detected; this group becomes a candidate for busiest; see
5407 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5408 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5409 * to create an effective group imbalance.
5410 *
5411 * This is a somewhat tricky proposition since the next run might not find the
5412 * group imbalance and decide the groups need to be balanced again. A most
5413 * subtle and fragile situation.
5414 */
5415
6263322c 5416static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5417{
6263322c 5418 return group->sgp->imbalance;
30ce5dab
PZ
5419}
5420
b37d9316
PZ
5421/*
5422 * Compute the group capacity.
5423 *
c61037e9
PZ
5424 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5425 * first dividing out the smt factor and computing the actual number of cores
5426 * and limit power unit capacity with that.
b37d9316
PZ
5427 */
5428static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5429{
c61037e9
PZ
5430 unsigned int capacity, smt, cpus;
5431 unsigned int power, power_orig;
5432
5433 power = group->sgp->power;
5434 power_orig = group->sgp->power_orig;
5435 cpus = group->group_weight;
b37d9316 5436
c61037e9
PZ
5437 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5438 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5439 capacity = cpus / smt; /* cores */
b37d9316 5440
c61037e9 5441 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5442 if (!capacity)
5443 capacity = fix_small_capacity(env->sd, group);
5444
5445 return capacity;
5446}
5447
1e3c88bd
PZ
5448/**
5449 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5450 * @env: The load balancing environment.
1e3c88bd 5451 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5452 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5453 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5454 * @sgs: variable to hold the statistics for this group.
5455 */
bd939f45
PZ
5456static inline void update_sg_lb_stats(struct lb_env *env,
5457 struct sched_group *group, int load_idx,
23f0d209 5458 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5459{
30ce5dab
PZ
5460 unsigned long nr_running;
5461 unsigned long load;
bd939f45 5462 int i;
1e3c88bd 5463
b72ff13c
PZ
5464 memset(sgs, 0, sizeof(*sgs));
5465
b9403130 5466 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5467 struct rq *rq = cpu_rq(i);
5468
e44bc5c5
PZ
5469 nr_running = rq->nr_running;
5470
1e3c88bd 5471 /* Bias balancing toward cpus of our domain */
6263322c 5472 if (local_group)
04f733b4 5473 load = target_load(i, load_idx);
6263322c 5474 else
1e3c88bd 5475 load = source_load(i, load_idx);
1e3c88bd
PZ
5476
5477 sgs->group_load += load;
e44bc5c5 5478 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5479#ifdef CONFIG_NUMA_BALANCING
5480 sgs->nr_numa_running += rq->nr_numa_running;
5481 sgs->nr_preferred_running += rq->nr_preferred_running;
5482#endif
1e3c88bd 5483 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5484 if (idle_cpu(i))
5485 sgs->idle_cpus++;
1e3c88bd
PZ
5486 }
5487
1e3c88bd 5488 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5489 sgs->group_power = group->sgp->power;
5490 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5491
dd5feea1 5492 if (sgs->sum_nr_running)
38d0f770 5493 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5494
aae6d3dd 5495 sgs->group_weight = group->group_weight;
fab47622 5496
b37d9316
PZ
5497 sgs->group_imb = sg_imbalanced(group);
5498 sgs->group_capacity = sg_capacity(env, group);
5499
fab47622
NR
5500 if (sgs->group_capacity > sgs->sum_nr_running)
5501 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5502}
5503
532cb4c4
MN
5504/**
5505 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5506 * @env: The load balancing environment.
532cb4c4
MN
5507 * @sds: sched_domain statistics
5508 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5509 * @sgs: sched_group statistics
532cb4c4
MN
5510 *
5511 * Determine if @sg is a busier group than the previously selected
5512 * busiest group.
e69f6186
YB
5513 *
5514 * Return: %true if @sg is a busier group than the previously selected
5515 * busiest group. %false otherwise.
532cb4c4 5516 */
bd939f45 5517static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5518 struct sd_lb_stats *sds,
5519 struct sched_group *sg,
bd939f45 5520 struct sg_lb_stats *sgs)
532cb4c4 5521{
56cf515b 5522 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5523 return false;
5524
5525 if (sgs->sum_nr_running > sgs->group_capacity)
5526 return true;
5527
5528 if (sgs->group_imb)
5529 return true;
5530
5531 /*
5532 * ASYM_PACKING needs to move all the work to the lowest
5533 * numbered CPUs in the group, therefore mark all groups
5534 * higher than ourself as busy.
5535 */
bd939f45
PZ
5536 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5537 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5538 if (!sds->busiest)
5539 return true;
5540
5541 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5542 return true;
5543 }
5544
5545 return false;
5546}
5547
0ec8aa00
PZ
5548#ifdef CONFIG_NUMA_BALANCING
5549static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5550{
5551 if (sgs->sum_nr_running > sgs->nr_numa_running)
5552 return regular;
5553 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5554 return remote;
5555 return all;
5556}
5557
5558static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5559{
5560 if (rq->nr_running > rq->nr_numa_running)
5561 return regular;
5562 if (rq->nr_running > rq->nr_preferred_running)
5563 return remote;
5564 return all;
5565}
5566#else
5567static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5568{
5569 return all;
5570}
5571
5572static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5573{
5574 return regular;
5575}
5576#endif /* CONFIG_NUMA_BALANCING */
5577
1e3c88bd 5578/**
461819ac 5579 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5580 * @env: The load balancing environment.
1e3c88bd
PZ
5581 * @balance: Should we balance.
5582 * @sds: variable to hold the statistics for this sched_domain.
5583 */
0ec8aa00 5584static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5585{
bd939f45
PZ
5586 struct sched_domain *child = env->sd->child;
5587 struct sched_group *sg = env->sd->groups;
56cf515b 5588 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5589 int load_idx, prefer_sibling = 0;
5590
5591 if (child && child->flags & SD_PREFER_SIBLING)
5592 prefer_sibling = 1;
5593
bd939f45 5594 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5595
5596 do {
56cf515b 5597 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5598 int local_group;
5599
bd939f45 5600 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5601 if (local_group) {
5602 sds->local = sg;
5603 sgs = &sds->local_stat;
b72ff13c
PZ
5604
5605 if (env->idle != CPU_NEWLY_IDLE ||
5606 time_after_eq(jiffies, sg->sgp->next_update))
5607 update_group_power(env->sd, env->dst_cpu);
56cf515b 5608 }
1e3c88bd 5609
56cf515b 5610 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5611
b72ff13c
PZ
5612 if (local_group)
5613 goto next_group;
5614
1e3c88bd
PZ
5615 /*
5616 * In case the child domain prefers tasks go to siblings
532cb4c4 5617 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5618 * and move all the excess tasks away. We lower the capacity
5619 * of a group only if the local group has the capacity to fit
5620 * these excess tasks, i.e. nr_running < group_capacity. The
5621 * extra check prevents the case where you always pull from the
5622 * heaviest group when it is already under-utilized (possible
5623 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5624 */
b72ff13c
PZ
5625 if (prefer_sibling && sds->local &&
5626 sds->local_stat.group_has_capacity)
147c5fc2 5627 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5628
b72ff13c 5629 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5630 sds->busiest = sg;
56cf515b 5631 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5632 }
5633
b72ff13c
PZ
5634next_group:
5635 /* Now, start updating sd_lb_stats */
5636 sds->total_load += sgs->group_load;
5637 sds->total_pwr += sgs->group_power;
5638
532cb4c4 5639 sg = sg->next;
bd939f45 5640 } while (sg != env->sd->groups);
0ec8aa00
PZ
5641
5642 if (env->sd->flags & SD_NUMA)
5643 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5644}
5645
532cb4c4
MN
5646/**
5647 * check_asym_packing - Check to see if the group is packed into the
5648 * sched doman.
5649 *
5650 * This is primarily intended to used at the sibling level. Some
5651 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5652 * case of POWER7, it can move to lower SMT modes only when higher
5653 * threads are idle. When in lower SMT modes, the threads will
5654 * perform better since they share less core resources. Hence when we
5655 * have idle threads, we want them to be the higher ones.
5656 *
5657 * This packing function is run on idle threads. It checks to see if
5658 * the busiest CPU in this domain (core in the P7 case) has a higher
5659 * CPU number than the packing function is being run on. Here we are
5660 * assuming lower CPU number will be equivalent to lower a SMT thread
5661 * number.
5662 *
e69f6186 5663 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5664 * this CPU. The amount of the imbalance is returned in *imbalance.
5665 *
cd96891d 5666 * @env: The load balancing environment.
532cb4c4 5667 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5668 */
bd939f45 5669static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5670{
5671 int busiest_cpu;
5672
bd939f45 5673 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5674 return 0;
5675
5676 if (!sds->busiest)
5677 return 0;
5678
5679 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5680 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5681 return 0;
5682
bd939f45 5683 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5684 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5685 SCHED_POWER_SCALE);
bd939f45 5686
532cb4c4 5687 return 1;
1e3c88bd
PZ
5688}
5689
5690/**
5691 * fix_small_imbalance - Calculate the minor imbalance that exists
5692 * amongst the groups of a sched_domain, during
5693 * load balancing.
cd96891d 5694 * @env: The load balancing environment.
1e3c88bd 5695 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5696 */
bd939f45
PZ
5697static inline
5698void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5699{
5700 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5701 unsigned int imbn = 2;
dd5feea1 5702 unsigned long scaled_busy_load_per_task;
56cf515b 5703 struct sg_lb_stats *local, *busiest;
1e3c88bd 5704
56cf515b
JK
5705 local = &sds->local_stat;
5706 busiest = &sds->busiest_stat;
1e3c88bd 5707
56cf515b
JK
5708 if (!local->sum_nr_running)
5709 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5710 else if (busiest->load_per_task > local->load_per_task)
5711 imbn = 1;
dd5feea1 5712
56cf515b
JK
5713 scaled_busy_load_per_task =
5714 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5715 busiest->group_power;
56cf515b 5716
3029ede3
VD
5717 if (busiest->avg_load + scaled_busy_load_per_task >=
5718 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5719 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5720 return;
5721 }
5722
5723 /*
5724 * OK, we don't have enough imbalance to justify moving tasks,
5725 * however we may be able to increase total CPU power used by
5726 * moving them.
5727 */
5728
3ae11c90 5729 pwr_now += busiest->group_power *
56cf515b 5730 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5731 pwr_now += local->group_power *
56cf515b 5732 min(local->load_per_task, local->avg_load);
1399fa78 5733 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5734
5735 /* Amount of load we'd subtract */
56cf515b 5736 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5737 busiest->group_power;
56cf515b 5738 if (busiest->avg_load > tmp) {
3ae11c90 5739 pwr_move += busiest->group_power *
56cf515b
JK
5740 min(busiest->load_per_task,
5741 busiest->avg_load - tmp);
5742 }
1e3c88bd
PZ
5743
5744 /* Amount of load we'd add */
3ae11c90 5745 if (busiest->avg_load * busiest->group_power <
56cf515b 5746 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5747 tmp = (busiest->avg_load * busiest->group_power) /
5748 local->group_power;
56cf515b
JK
5749 } else {
5750 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5751 local->group_power;
56cf515b 5752 }
3ae11c90
PZ
5753 pwr_move += local->group_power *
5754 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5755 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5756
5757 /* Move if we gain throughput */
5758 if (pwr_move > pwr_now)
56cf515b 5759 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5760}
5761
5762/**
5763 * calculate_imbalance - Calculate the amount of imbalance present within the
5764 * groups of a given sched_domain during load balance.
bd939f45 5765 * @env: load balance environment
1e3c88bd 5766 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5767 */
bd939f45 5768static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5769{
dd5feea1 5770 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5771 struct sg_lb_stats *local, *busiest;
5772
5773 local = &sds->local_stat;
56cf515b 5774 busiest = &sds->busiest_stat;
dd5feea1 5775
56cf515b 5776 if (busiest->group_imb) {
30ce5dab
PZ
5777 /*
5778 * In the group_imb case we cannot rely on group-wide averages
5779 * to ensure cpu-load equilibrium, look at wider averages. XXX
5780 */
56cf515b
JK
5781 busiest->load_per_task =
5782 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5783 }
5784
1e3c88bd
PZ
5785 /*
5786 * In the presence of smp nice balancing, certain scenarios can have
5787 * max load less than avg load(as we skip the groups at or below
5788 * its cpu_power, while calculating max_load..)
5789 */
b1885550
VD
5790 if (busiest->avg_load <= sds->avg_load ||
5791 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5792 env->imbalance = 0;
5793 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5794 }
5795
56cf515b 5796 if (!busiest->group_imb) {
dd5feea1
SS
5797 /*
5798 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5799 * Except of course for the group_imb case, since then we might
5800 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5801 */
56cf515b
JK
5802 load_above_capacity =
5803 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5804
1399fa78 5805 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5806 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5807 }
5808
5809 /*
5810 * We're trying to get all the cpus to the average_load, so we don't
5811 * want to push ourselves above the average load, nor do we wish to
5812 * reduce the max loaded cpu below the average load. At the same time,
5813 * we also don't want to reduce the group load below the group capacity
5814 * (so that we can implement power-savings policies etc). Thus we look
5815 * for the minimum possible imbalance.
dd5feea1 5816 */
30ce5dab 5817 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5818
5819 /* How much load to actually move to equalise the imbalance */
56cf515b 5820 env->imbalance = min(
3ae11c90
PZ
5821 max_pull * busiest->group_power,
5822 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5823 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5824
5825 /*
5826 * if *imbalance is less than the average load per runnable task
25985edc 5827 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5828 * a think about bumping its value to force at least one task to be
5829 * moved
5830 */
56cf515b 5831 if (env->imbalance < busiest->load_per_task)
bd939f45 5832 return fix_small_imbalance(env, sds);
1e3c88bd 5833}
fab47622 5834
1e3c88bd
PZ
5835/******* find_busiest_group() helpers end here *********************/
5836
5837/**
5838 * find_busiest_group - Returns the busiest group within the sched_domain
5839 * if there is an imbalance. If there isn't an imbalance, and
5840 * the user has opted for power-savings, it returns a group whose
5841 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5842 * such a group exists.
5843 *
5844 * Also calculates the amount of weighted load which should be moved
5845 * to restore balance.
5846 *
cd96891d 5847 * @env: The load balancing environment.
1e3c88bd 5848 *
e69f6186 5849 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5850 * - If no imbalance and user has opted for power-savings balance,
5851 * return the least loaded group whose CPUs can be
5852 * put to idle by rebalancing its tasks onto our group.
5853 */
56cf515b 5854static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5855{
56cf515b 5856 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5857 struct sd_lb_stats sds;
5858
147c5fc2 5859 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5860
5861 /*
5862 * Compute the various statistics relavent for load balancing at
5863 * this level.
5864 */
23f0d209 5865 update_sd_lb_stats(env, &sds);
56cf515b
JK
5866 local = &sds.local_stat;
5867 busiest = &sds.busiest_stat;
1e3c88bd 5868
bd939f45
PZ
5869 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5870 check_asym_packing(env, &sds))
532cb4c4
MN
5871 return sds.busiest;
5872
cc57aa8f 5873 /* There is no busy sibling group to pull tasks from */
56cf515b 5874 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5875 goto out_balanced;
5876
1399fa78 5877 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5878
866ab43e
PZ
5879 /*
5880 * If the busiest group is imbalanced the below checks don't
30ce5dab 5881 * work because they assume all things are equal, which typically
866ab43e
PZ
5882 * isn't true due to cpus_allowed constraints and the like.
5883 */
56cf515b 5884 if (busiest->group_imb)
866ab43e
PZ
5885 goto force_balance;
5886
cc57aa8f 5887 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5888 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5889 !busiest->group_has_capacity)
fab47622
NR
5890 goto force_balance;
5891
cc57aa8f
PZ
5892 /*
5893 * If the local group is more busy than the selected busiest group
5894 * don't try and pull any tasks.
5895 */
56cf515b 5896 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5897 goto out_balanced;
5898
cc57aa8f
PZ
5899 /*
5900 * Don't pull any tasks if this group is already above the domain
5901 * average load.
5902 */
56cf515b 5903 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5904 goto out_balanced;
5905
bd939f45 5906 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5907 /*
5908 * This cpu is idle. If the busiest group load doesn't
5909 * have more tasks than the number of available cpu's and
5910 * there is no imbalance between this and busiest group
5911 * wrt to idle cpu's, it is balanced.
5912 */
56cf515b
JK
5913 if ((local->idle_cpus < busiest->idle_cpus) &&
5914 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5915 goto out_balanced;
c186fafe
PZ
5916 } else {
5917 /*
5918 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5919 * imbalance_pct to be conservative.
5920 */
56cf515b
JK
5921 if (100 * busiest->avg_load <=
5922 env->sd->imbalance_pct * local->avg_load)
c186fafe 5923 goto out_balanced;
aae6d3dd 5924 }
1e3c88bd 5925
fab47622 5926force_balance:
1e3c88bd 5927 /* Looks like there is an imbalance. Compute it */
bd939f45 5928 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5929 return sds.busiest;
5930
5931out_balanced:
bd939f45 5932 env->imbalance = 0;
1e3c88bd
PZ
5933 return NULL;
5934}
5935
5936/*
5937 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5938 */
bd939f45 5939static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5940 struct sched_group *group)
1e3c88bd
PZ
5941{
5942 struct rq *busiest = NULL, *rq;
95a79b80 5943 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5944 int i;
5945
6906a408 5946 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5947 unsigned long power, capacity, wl;
5948 enum fbq_type rt;
5949
5950 rq = cpu_rq(i);
5951 rt = fbq_classify_rq(rq);
1e3c88bd 5952
0ec8aa00
PZ
5953 /*
5954 * We classify groups/runqueues into three groups:
5955 * - regular: there are !numa tasks
5956 * - remote: there are numa tasks that run on the 'wrong' node
5957 * - all: there is no distinction
5958 *
5959 * In order to avoid migrating ideally placed numa tasks,
5960 * ignore those when there's better options.
5961 *
5962 * If we ignore the actual busiest queue to migrate another
5963 * task, the next balance pass can still reduce the busiest
5964 * queue by moving tasks around inside the node.
5965 *
5966 * If we cannot move enough load due to this classification
5967 * the next pass will adjust the group classification and
5968 * allow migration of more tasks.
5969 *
5970 * Both cases only affect the total convergence complexity.
5971 */
5972 if (rt > env->fbq_type)
5973 continue;
5974
5975 power = power_of(i);
5976 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5977 if (!capacity)
bd939f45 5978 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5979
6e40f5bb 5980 wl = weighted_cpuload(i);
1e3c88bd 5981
6e40f5bb
TG
5982 /*
5983 * When comparing with imbalance, use weighted_cpuload()
5984 * which is not scaled with the cpu power.
5985 */
bd939f45 5986 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5987 continue;
5988
6e40f5bb
TG
5989 /*
5990 * For the load comparisons with the other cpu's, consider
5991 * the weighted_cpuload() scaled with the cpu power, so that
5992 * the load can be moved away from the cpu that is potentially
5993 * running at a lower capacity.
95a79b80
JK
5994 *
5995 * Thus we're looking for max(wl_i / power_i), crosswise
5996 * multiplication to rid ourselves of the division works out
5997 * to: wl_i * power_j > wl_j * power_i; where j is our
5998 * previous maximum.
6e40f5bb 5999 */
95a79b80
JK
6000 if (wl * busiest_power > busiest_load * power) {
6001 busiest_load = wl;
6002 busiest_power = power;
1e3c88bd
PZ
6003 busiest = rq;
6004 }
6005 }
6006
6007 return busiest;
6008}
6009
6010/*
6011 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6012 * so long as it is large enough.
6013 */
6014#define MAX_PINNED_INTERVAL 512
6015
6016/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6017DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6018
bd939f45 6019static int need_active_balance(struct lb_env *env)
1af3ed3d 6020{
bd939f45
PZ
6021 struct sched_domain *sd = env->sd;
6022
6023 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6024
6025 /*
6026 * ASYM_PACKING needs to force migrate tasks from busy but
6027 * higher numbered CPUs in order to pack all tasks in the
6028 * lowest numbered CPUs.
6029 */
bd939f45 6030 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6031 return 1;
1af3ed3d
PZ
6032 }
6033
6034 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6035}
6036
969c7921
TH
6037static int active_load_balance_cpu_stop(void *data);
6038
23f0d209
JK
6039static int should_we_balance(struct lb_env *env)
6040{
6041 struct sched_group *sg = env->sd->groups;
6042 struct cpumask *sg_cpus, *sg_mask;
6043 int cpu, balance_cpu = -1;
6044
6045 /*
6046 * In the newly idle case, we will allow all the cpu's
6047 * to do the newly idle load balance.
6048 */
6049 if (env->idle == CPU_NEWLY_IDLE)
6050 return 1;
6051
6052 sg_cpus = sched_group_cpus(sg);
6053 sg_mask = sched_group_mask(sg);
6054 /* Try to find first idle cpu */
6055 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6056 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6057 continue;
6058
6059 balance_cpu = cpu;
6060 break;
6061 }
6062
6063 if (balance_cpu == -1)
6064 balance_cpu = group_balance_cpu(sg);
6065
6066 /*
6067 * First idle cpu or the first cpu(busiest) in this sched group
6068 * is eligible for doing load balancing at this and above domains.
6069 */
b0cff9d8 6070 return balance_cpu == env->dst_cpu;
23f0d209
JK
6071}
6072
1e3c88bd
PZ
6073/*
6074 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6075 * tasks if there is an imbalance.
6076 */
6077static int load_balance(int this_cpu, struct rq *this_rq,
6078 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6079 int *continue_balancing)
1e3c88bd 6080{
88b8dac0 6081 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6082 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6083 struct sched_group *group;
1e3c88bd
PZ
6084 struct rq *busiest;
6085 unsigned long flags;
e6252c3e 6086 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6087
8e45cb54
PZ
6088 struct lb_env env = {
6089 .sd = sd,
ddcdf6e7
PZ
6090 .dst_cpu = this_cpu,
6091 .dst_rq = this_rq,
88b8dac0 6092 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6093 .idle = idle,
eb95308e 6094 .loop_break = sched_nr_migrate_break,
b9403130 6095 .cpus = cpus,
0ec8aa00 6096 .fbq_type = all,
8e45cb54
PZ
6097 };
6098
cfc03118
JK
6099 /*
6100 * For NEWLY_IDLE load_balancing, we don't need to consider
6101 * other cpus in our group
6102 */
e02e60c1 6103 if (idle == CPU_NEWLY_IDLE)
cfc03118 6104 env.dst_grpmask = NULL;
cfc03118 6105
1e3c88bd
PZ
6106 cpumask_copy(cpus, cpu_active_mask);
6107
1e3c88bd
PZ
6108 schedstat_inc(sd, lb_count[idle]);
6109
6110redo:
23f0d209
JK
6111 if (!should_we_balance(&env)) {
6112 *continue_balancing = 0;
1e3c88bd 6113 goto out_balanced;
23f0d209 6114 }
1e3c88bd 6115
23f0d209 6116 group = find_busiest_group(&env);
1e3c88bd
PZ
6117 if (!group) {
6118 schedstat_inc(sd, lb_nobusyg[idle]);
6119 goto out_balanced;
6120 }
6121
b9403130 6122 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6123 if (!busiest) {
6124 schedstat_inc(sd, lb_nobusyq[idle]);
6125 goto out_balanced;
6126 }
6127
78feefc5 6128 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6129
bd939f45 6130 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6131
6132 ld_moved = 0;
6133 if (busiest->nr_running > 1) {
6134 /*
6135 * Attempt to move tasks. If find_busiest_group has found
6136 * an imbalance but busiest->nr_running <= 1, the group is
6137 * still unbalanced. ld_moved simply stays zero, so it is
6138 * correctly treated as an imbalance.
6139 */
8e45cb54 6140 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6141 env.src_cpu = busiest->cpu;
6142 env.src_rq = busiest;
6143 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6144
5d6523eb 6145more_balance:
1e3c88bd 6146 local_irq_save(flags);
78feefc5 6147 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6148
6149 /*
6150 * cur_ld_moved - load moved in current iteration
6151 * ld_moved - cumulative load moved across iterations
6152 */
6153 cur_ld_moved = move_tasks(&env);
6154 ld_moved += cur_ld_moved;
78feefc5 6155 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6156 local_irq_restore(flags);
6157
6158 /*
6159 * some other cpu did the load balance for us.
6160 */
88b8dac0
SV
6161 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6162 resched_cpu(env.dst_cpu);
6163
f1cd0858
JK
6164 if (env.flags & LBF_NEED_BREAK) {
6165 env.flags &= ~LBF_NEED_BREAK;
6166 goto more_balance;
6167 }
6168
88b8dac0
SV
6169 /*
6170 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6171 * us and move them to an alternate dst_cpu in our sched_group
6172 * where they can run. The upper limit on how many times we
6173 * iterate on same src_cpu is dependent on number of cpus in our
6174 * sched_group.
6175 *
6176 * This changes load balance semantics a bit on who can move
6177 * load to a given_cpu. In addition to the given_cpu itself
6178 * (or a ilb_cpu acting on its behalf where given_cpu is
6179 * nohz-idle), we now have balance_cpu in a position to move
6180 * load to given_cpu. In rare situations, this may cause
6181 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6182 * _independently_ and at _same_ time to move some load to
6183 * given_cpu) causing exceess load to be moved to given_cpu.
6184 * This however should not happen so much in practice and
6185 * moreover subsequent load balance cycles should correct the
6186 * excess load moved.
6187 */
6263322c 6188 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6189
7aff2e3a
VD
6190 /* Prevent to re-select dst_cpu via env's cpus */
6191 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6192
78feefc5 6193 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6194 env.dst_cpu = env.new_dst_cpu;
6263322c 6195 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6196 env.loop = 0;
6197 env.loop_break = sched_nr_migrate_break;
e02e60c1 6198
88b8dac0
SV
6199 /*
6200 * Go back to "more_balance" rather than "redo" since we
6201 * need to continue with same src_cpu.
6202 */
6203 goto more_balance;
6204 }
1e3c88bd 6205
6263322c
PZ
6206 /*
6207 * We failed to reach balance because of affinity.
6208 */
6209 if (sd_parent) {
6210 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6211
6212 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6213 *group_imbalance = 1;
6214 } else if (*group_imbalance)
6215 *group_imbalance = 0;
6216 }
6217
1e3c88bd 6218 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6219 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6220 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6221 if (!cpumask_empty(cpus)) {
6222 env.loop = 0;
6223 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6224 goto redo;
bbf18b19 6225 }
1e3c88bd
PZ
6226 goto out_balanced;
6227 }
6228 }
6229
6230 if (!ld_moved) {
6231 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6232 /*
6233 * Increment the failure counter only on periodic balance.
6234 * We do not want newidle balance, which can be very
6235 * frequent, pollute the failure counter causing
6236 * excessive cache_hot migrations and active balances.
6237 */
6238 if (idle != CPU_NEWLY_IDLE)
6239 sd->nr_balance_failed++;
1e3c88bd 6240
bd939f45 6241 if (need_active_balance(&env)) {
1e3c88bd
PZ
6242 raw_spin_lock_irqsave(&busiest->lock, flags);
6243
969c7921
TH
6244 /* don't kick the active_load_balance_cpu_stop,
6245 * if the curr task on busiest cpu can't be
6246 * moved to this_cpu
1e3c88bd
PZ
6247 */
6248 if (!cpumask_test_cpu(this_cpu,
fa17b507 6249 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6250 raw_spin_unlock_irqrestore(&busiest->lock,
6251 flags);
8e45cb54 6252 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6253 goto out_one_pinned;
6254 }
6255
969c7921
TH
6256 /*
6257 * ->active_balance synchronizes accesses to
6258 * ->active_balance_work. Once set, it's cleared
6259 * only after active load balance is finished.
6260 */
1e3c88bd
PZ
6261 if (!busiest->active_balance) {
6262 busiest->active_balance = 1;
6263 busiest->push_cpu = this_cpu;
6264 active_balance = 1;
6265 }
6266 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6267
bd939f45 6268 if (active_balance) {
969c7921
TH
6269 stop_one_cpu_nowait(cpu_of(busiest),
6270 active_load_balance_cpu_stop, busiest,
6271 &busiest->active_balance_work);
bd939f45 6272 }
1e3c88bd
PZ
6273
6274 /*
6275 * We've kicked active balancing, reset the failure
6276 * counter.
6277 */
6278 sd->nr_balance_failed = sd->cache_nice_tries+1;
6279 }
6280 } else
6281 sd->nr_balance_failed = 0;
6282
6283 if (likely(!active_balance)) {
6284 /* We were unbalanced, so reset the balancing interval */
6285 sd->balance_interval = sd->min_interval;
6286 } else {
6287 /*
6288 * If we've begun active balancing, start to back off. This
6289 * case may not be covered by the all_pinned logic if there
6290 * is only 1 task on the busy runqueue (because we don't call
6291 * move_tasks).
6292 */
6293 if (sd->balance_interval < sd->max_interval)
6294 sd->balance_interval *= 2;
6295 }
6296
1e3c88bd
PZ
6297 goto out;
6298
6299out_balanced:
6300 schedstat_inc(sd, lb_balanced[idle]);
6301
6302 sd->nr_balance_failed = 0;
6303
6304out_one_pinned:
6305 /* tune up the balancing interval */
8e45cb54 6306 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6307 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6308 (sd->balance_interval < sd->max_interval))
6309 sd->balance_interval *= 2;
6310
46e49b38 6311 ld_moved = 0;
1e3c88bd 6312out:
1e3c88bd
PZ
6313 return ld_moved;
6314}
6315
1e3c88bd
PZ
6316/*
6317 * idle_balance is called by schedule() if this_cpu is about to become
6318 * idle. Attempts to pull tasks from other CPUs.
6319 */
029632fb 6320void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6321{
6322 struct sched_domain *sd;
6323 int pulled_task = 0;
6324 unsigned long next_balance = jiffies + HZ;
9bd721c5 6325 u64 curr_cost = 0;
1e3c88bd 6326
78becc27 6327 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6328
6329 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6330 return;
6331
f492e12e
PZ
6332 /*
6333 * Drop the rq->lock, but keep IRQ/preempt disabled.
6334 */
6335 raw_spin_unlock(&this_rq->lock);
6336
48a16753 6337 update_blocked_averages(this_cpu);
dce840a0 6338 rcu_read_lock();
1e3c88bd
PZ
6339 for_each_domain(this_cpu, sd) {
6340 unsigned long interval;
23f0d209 6341 int continue_balancing = 1;
9bd721c5 6342 u64 t0, domain_cost;
1e3c88bd
PZ
6343
6344 if (!(sd->flags & SD_LOAD_BALANCE))
6345 continue;
6346
9bd721c5
JL
6347 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6348 break;
6349
f492e12e 6350 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6351 t0 = sched_clock_cpu(this_cpu);
6352
1e3c88bd 6353 /* If we've pulled tasks over stop searching: */
f492e12e 6354 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6355 sd, CPU_NEWLY_IDLE,
6356 &continue_balancing);
9bd721c5
JL
6357
6358 domain_cost = sched_clock_cpu(this_cpu) - t0;
6359 if (domain_cost > sd->max_newidle_lb_cost)
6360 sd->max_newidle_lb_cost = domain_cost;
6361
6362 curr_cost += domain_cost;
f492e12e 6363 }
1e3c88bd
PZ
6364
6365 interval = msecs_to_jiffies(sd->balance_interval);
6366 if (time_after(next_balance, sd->last_balance + interval))
6367 next_balance = sd->last_balance + interval;
d5ad140b
NR
6368 if (pulled_task) {
6369 this_rq->idle_stamp = 0;
1e3c88bd 6370 break;
d5ad140b 6371 }
1e3c88bd 6372 }
dce840a0 6373 rcu_read_unlock();
f492e12e
PZ
6374
6375 raw_spin_lock(&this_rq->lock);
6376
1e3c88bd
PZ
6377 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6378 /*
6379 * We are going idle. next_balance may be set based on
6380 * a busy processor. So reset next_balance.
6381 */
6382 this_rq->next_balance = next_balance;
6383 }
9bd721c5
JL
6384
6385 if (curr_cost > this_rq->max_idle_balance_cost)
6386 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6387}
6388
6389/*
969c7921
TH
6390 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6391 * running tasks off the busiest CPU onto idle CPUs. It requires at
6392 * least 1 task to be running on each physical CPU where possible, and
6393 * avoids physical / logical imbalances.
1e3c88bd 6394 */
969c7921 6395static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6396{
969c7921
TH
6397 struct rq *busiest_rq = data;
6398 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6399 int target_cpu = busiest_rq->push_cpu;
969c7921 6400 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6401 struct sched_domain *sd;
969c7921
TH
6402
6403 raw_spin_lock_irq(&busiest_rq->lock);
6404
6405 /* make sure the requested cpu hasn't gone down in the meantime */
6406 if (unlikely(busiest_cpu != smp_processor_id() ||
6407 !busiest_rq->active_balance))
6408 goto out_unlock;
1e3c88bd
PZ
6409
6410 /* Is there any task to move? */
6411 if (busiest_rq->nr_running <= 1)
969c7921 6412 goto out_unlock;
1e3c88bd
PZ
6413
6414 /*
6415 * This condition is "impossible", if it occurs
6416 * we need to fix it. Originally reported by
6417 * Bjorn Helgaas on a 128-cpu setup.
6418 */
6419 BUG_ON(busiest_rq == target_rq);
6420
6421 /* move a task from busiest_rq to target_rq */
6422 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6423
6424 /* Search for an sd spanning us and the target CPU. */
dce840a0 6425 rcu_read_lock();
1e3c88bd
PZ
6426 for_each_domain(target_cpu, sd) {
6427 if ((sd->flags & SD_LOAD_BALANCE) &&
6428 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6429 break;
6430 }
6431
6432 if (likely(sd)) {
8e45cb54
PZ
6433 struct lb_env env = {
6434 .sd = sd,
ddcdf6e7
PZ
6435 .dst_cpu = target_cpu,
6436 .dst_rq = target_rq,
6437 .src_cpu = busiest_rq->cpu,
6438 .src_rq = busiest_rq,
8e45cb54
PZ
6439 .idle = CPU_IDLE,
6440 };
6441
1e3c88bd
PZ
6442 schedstat_inc(sd, alb_count);
6443
8e45cb54 6444 if (move_one_task(&env))
1e3c88bd
PZ
6445 schedstat_inc(sd, alb_pushed);
6446 else
6447 schedstat_inc(sd, alb_failed);
6448 }
dce840a0 6449 rcu_read_unlock();
1e3c88bd 6450 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6451out_unlock:
6452 busiest_rq->active_balance = 0;
6453 raw_spin_unlock_irq(&busiest_rq->lock);
6454 return 0;
1e3c88bd
PZ
6455}
6456
3451d024 6457#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6458/*
6459 * idle load balancing details
83cd4fe2
VP
6460 * - When one of the busy CPUs notice that there may be an idle rebalancing
6461 * needed, they will kick the idle load balancer, which then does idle
6462 * load balancing for all the idle CPUs.
6463 */
1e3c88bd 6464static struct {
83cd4fe2 6465 cpumask_var_t idle_cpus_mask;
0b005cf5 6466 atomic_t nr_cpus;
83cd4fe2
VP
6467 unsigned long next_balance; /* in jiffy units */
6468} nohz ____cacheline_aligned;
1e3c88bd 6469
8e7fbcbc 6470static inline int find_new_ilb(int call_cpu)
1e3c88bd 6471{
0b005cf5 6472 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6473
786d6dc7
SS
6474 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6475 return ilb;
6476
6477 return nr_cpu_ids;
1e3c88bd 6478}
1e3c88bd 6479
83cd4fe2
VP
6480/*
6481 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6482 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6483 * CPU (if there is one).
6484 */
6485static void nohz_balancer_kick(int cpu)
6486{
6487 int ilb_cpu;
6488
6489 nohz.next_balance++;
6490
0b005cf5 6491 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6492
0b005cf5
SS
6493 if (ilb_cpu >= nr_cpu_ids)
6494 return;
83cd4fe2 6495
cd490c5b 6496 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6497 return;
6498 /*
6499 * Use smp_send_reschedule() instead of resched_cpu().
6500 * This way we generate a sched IPI on the target cpu which
6501 * is idle. And the softirq performing nohz idle load balance
6502 * will be run before returning from the IPI.
6503 */
6504 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6505 return;
6506}
6507
c1cc017c 6508static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6509{
6510 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6511 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6512 atomic_dec(&nohz.nr_cpus);
6513 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6514 }
6515}
6516
69e1e811
SS
6517static inline void set_cpu_sd_state_busy(void)
6518{
6519 struct sched_domain *sd;
69e1e811 6520
69e1e811 6521 rcu_read_lock();
424c93fe 6522 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6523
6524 if (!sd || !sd->nohz_idle)
6525 goto unlock;
6526 sd->nohz_idle = 0;
6527
6528 for (; sd; sd = sd->parent)
69e1e811 6529 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6530unlock:
69e1e811
SS
6531 rcu_read_unlock();
6532}
6533
6534void set_cpu_sd_state_idle(void)
6535{
6536 struct sched_domain *sd;
69e1e811 6537
69e1e811 6538 rcu_read_lock();
424c93fe 6539 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6540
6541 if (!sd || sd->nohz_idle)
6542 goto unlock;
6543 sd->nohz_idle = 1;
6544
6545 for (; sd; sd = sd->parent)
69e1e811 6546 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6547unlock:
69e1e811
SS
6548 rcu_read_unlock();
6549}
6550
1e3c88bd 6551/*
c1cc017c 6552 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6553 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6554 */
c1cc017c 6555void nohz_balance_enter_idle(int cpu)
1e3c88bd 6556{
71325960
SS
6557 /*
6558 * If this cpu is going down, then nothing needs to be done.
6559 */
6560 if (!cpu_active(cpu))
6561 return;
6562
c1cc017c
AS
6563 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6564 return;
1e3c88bd 6565
c1cc017c
AS
6566 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6567 atomic_inc(&nohz.nr_cpus);
6568 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6569}
71325960 6570
0db0628d 6571static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6572 unsigned long action, void *hcpu)
6573{
6574 switch (action & ~CPU_TASKS_FROZEN) {
6575 case CPU_DYING:
c1cc017c 6576 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6577 return NOTIFY_OK;
6578 default:
6579 return NOTIFY_DONE;
6580 }
6581}
1e3c88bd
PZ
6582#endif
6583
6584static DEFINE_SPINLOCK(balancing);
6585
49c022e6
PZ
6586/*
6587 * Scale the max load_balance interval with the number of CPUs in the system.
6588 * This trades load-balance latency on larger machines for less cross talk.
6589 */
029632fb 6590void update_max_interval(void)
49c022e6
PZ
6591{
6592 max_load_balance_interval = HZ*num_online_cpus()/10;
6593}
6594
1e3c88bd
PZ
6595/*
6596 * It checks each scheduling domain to see if it is due to be balanced,
6597 * and initiates a balancing operation if so.
6598 *
b9b0853a 6599 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6600 */
6601static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6602{
23f0d209 6603 int continue_balancing = 1;
1e3c88bd
PZ
6604 struct rq *rq = cpu_rq(cpu);
6605 unsigned long interval;
04f733b4 6606 struct sched_domain *sd;
1e3c88bd
PZ
6607 /* Earliest time when we have to do rebalance again */
6608 unsigned long next_balance = jiffies + 60*HZ;
6609 int update_next_balance = 0;
f48627e6
JL
6610 int need_serialize, need_decay = 0;
6611 u64 max_cost = 0;
1e3c88bd 6612
48a16753 6613 update_blocked_averages(cpu);
2069dd75 6614
dce840a0 6615 rcu_read_lock();
1e3c88bd 6616 for_each_domain(cpu, sd) {
f48627e6
JL
6617 /*
6618 * Decay the newidle max times here because this is a regular
6619 * visit to all the domains. Decay ~1% per second.
6620 */
6621 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6622 sd->max_newidle_lb_cost =
6623 (sd->max_newidle_lb_cost * 253) / 256;
6624 sd->next_decay_max_lb_cost = jiffies + HZ;
6625 need_decay = 1;
6626 }
6627 max_cost += sd->max_newidle_lb_cost;
6628
1e3c88bd
PZ
6629 if (!(sd->flags & SD_LOAD_BALANCE))
6630 continue;
6631
f48627e6
JL
6632 /*
6633 * Stop the load balance at this level. There is another
6634 * CPU in our sched group which is doing load balancing more
6635 * actively.
6636 */
6637 if (!continue_balancing) {
6638 if (need_decay)
6639 continue;
6640 break;
6641 }
6642
1e3c88bd
PZ
6643 interval = sd->balance_interval;
6644 if (idle != CPU_IDLE)
6645 interval *= sd->busy_factor;
6646
6647 /* scale ms to jiffies */
6648 interval = msecs_to_jiffies(interval);
49c022e6 6649 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6650
6651 need_serialize = sd->flags & SD_SERIALIZE;
6652
6653 if (need_serialize) {
6654 if (!spin_trylock(&balancing))
6655 goto out;
6656 }
6657
6658 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6659 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6660 /*
6263322c 6661 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6662 * env->dst_cpu, so we can't know our idle
6663 * state even if we migrated tasks. Update it.
1e3c88bd 6664 */
de5eb2dd 6665 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6666 }
6667 sd->last_balance = jiffies;
6668 }
6669 if (need_serialize)
6670 spin_unlock(&balancing);
6671out:
6672 if (time_after(next_balance, sd->last_balance + interval)) {
6673 next_balance = sd->last_balance + interval;
6674 update_next_balance = 1;
6675 }
f48627e6
JL
6676 }
6677 if (need_decay) {
1e3c88bd 6678 /*
f48627e6
JL
6679 * Ensure the rq-wide value also decays but keep it at a
6680 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6681 */
f48627e6
JL
6682 rq->max_idle_balance_cost =
6683 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6684 }
dce840a0 6685 rcu_read_unlock();
1e3c88bd
PZ
6686
6687 /*
6688 * next_balance will be updated only when there is a need.
6689 * When the cpu is attached to null domain for ex, it will not be
6690 * updated.
6691 */
6692 if (likely(update_next_balance))
6693 rq->next_balance = next_balance;
6694}
6695
3451d024 6696#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6697/*
3451d024 6698 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6699 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6700 */
83cd4fe2
VP
6701static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6702{
6703 struct rq *this_rq = cpu_rq(this_cpu);
6704 struct rq *rq;
6705 int balance_cpu;
6706
1c792db7
SS
6707 if (idle != CPU_IDLE ||
6708 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6709 goto end;
83cd4fe2
VP
6710
6711 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6712 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6713 continue;
6714
6715 /*
6716 * If this cpu gets work to do, stop the load balancing
6717 * work being done for other cpus. Next load
6718 * balancing owner will pick it up.
6719 */
1c792db7 6720 if (need_resched())
83cd4fe2 6721 break;
83cd4fe2 6722
5ed4f1d9
VG
6723 rq = cpu_rq(balance_cpu);
6724
6725 raw_spin_lock_irq(&rq->lock);
6726 update_rq_clock(rq);
6727 update_idle_cpu_load(rq);
6728 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6729
6730 rebalance_domains(balance_cpu, CPU_IDLE);
6731
83cd4fe2
VP
6732 if (time_after(this_rq->next_balance, rq->next_balance))
6733 this_rq->next_balance = rq->next_balance;
6734 }
6735 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6736end:
6737 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6738}
6739
6740/*
0b005cf5
SS
6741 * Current heuristic for kicking the idle load balancer in the presence
6742 * of an idle cpu is the system.
6743 * - This rq has more than one task.
6744 * - At any scheduler domain level, this cpu's scheduler group has multiple
6745 * busy cpu's exceeding the group's power.
6746 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6747 * domain span are idle.
83cd4fe2
VP
6748 */
6749static inline int nohz_kick_needed(struct rq *rq, int cpu)
6750{
6751 unsigned long now = jiffies;
0b005cf5 6752 struct sched_domain *sd;
83cd4fe2 6753
1c792db7 6754 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6755 return 0;
6756
1c792db7
SS
6757 /*
6758 * We may be recently in ticked or tickless idle mode. At the first
6759 * busy tick after returning from idle, we will update the busy stats.
6760 */
69e1e811 6761 set_cpu_sd_state_busy();
c1cc017c 6762 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6763
6764 /*
6765 * None are in tickless mode and hence no need for NOHZ idle load
6766 * balancing.
6767 */
6768 if (likely(!atomic_read(&nohz.nr_cpus)))
6769 return 0;
1c792db7
SS
6770
6771 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6772 return 0;
6773
0b005cf5
SS
6774 if (rq->nr_running >= 2)
6775 goto need_kick;
83cd4fe2 6776
067491b7 6777 rcu_read_lock();
0b005cf5
SS
6778 for_each_domain(cpu, sd) {
6779 struct sched_group *sg = sd->groups;
6780 struct sched_group_power *sgp = sg->sgp;
6781 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6782
0b005cf5 6783 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6784 goto need_kick_unlock;
0b005cf5
SS
6785
6786 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6787 && (cpumask_first_and(nohz.idle_cpus_mask,
6788 sched_domain_span(sd)) < cpu))
067491b7 6789 goto need_kick_unlock;
0b005cf5
SS
6790
6791 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6792 break;
83cd4fe2 6793 }
067491b7 6794 rcu_read_unlock();
83cd4fe2 6795 return 0;
067491b7
PZ
6796
6797need_kick_unlock:
6798 rcu_read_unlock();
0b005cf5
SS
6799need_kick:
6800 return 1;
83cd4fe2
VP
6801}
6802#else
6803static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6804#endif
6805
6806/*
6807 * run_rebalance_domains is triggered when needed from the scheduler tick.
6808 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6809 */
1e3c88bd
PZ
6810static void run_rebalance_domains(struct softirq_action *h)
6811{
6812 int this_cpu = smp_processor_id();
6813 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6814 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6815 CPU_IDLE : CPU_NOT_IDLE;
6816
6817 rebalance_domains(this_cpu, idle);
6818
1e3c88bd 6819 /*
83cd4fe2 6820 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6821 * balancing on behalf of the other idle cpus whose ticks are
6822 * stopped.
6823 */
83cd4fe2 6824 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6825}
6826
6827static inline int on_null_domain(int cpu)
6828{
90a6501f 6829 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6830}
6831
6832/*
6833 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6834 */
029632fb 6835void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6836{
1e3c88bd
PZ
6837 /* Don't need to rebalance while attached to NULL domain */
6838 if (time_after_eq(jiffies, rq->next_balance) &&
6839 likely(!on_null_domain(cpu)))
6840 raise_softirq(SCHED_SOFTIRQ);
3451d024 6841#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6842 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6843 nohz_balancer_kick(cpu);
6844#endif
1e3c88bd
PZ
6845}
6846
0bcdcf28
CE
6847static void rq_online_fair(struct rq *rq)
6848{
6849 update_sysctl();
6850}
6851
6852static void rq_offline_fair(struct rq *rq)
6853{
6854 update_sysctl();
a4c96ae3
PB
6855
6856 /* Ensure any throttled groups are reachable by pick_next_task */
6857 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6858}
6859
55e12e5e 6860#endif /* CONFIG_SMP */
e1d1484f 6861
bf0f6f24
IM
6862/*
6863 * scheduler tick hitting a task of our scheduling class:
6864 */
8f4d37ec 6865static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6866{
6867 struct cfs_rq *cfs_rq;
6868 struct sched_entity *se = &curr->se;
6869
6870 for_each_sched_entity(se) {
6871 cfs_rq = cfs_rq_of(se);
8f4d37ec 6872 entity_tick(cfs_rq, se, queued);
bf0f6f24 6873 }
18bf2805 6874
10e84b97 6875 if (numabalancing_enabled)
cbee9f88 6876 task_tick_numa(rq, curr);
3d59eebc 6877
18bf2805 6878 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6879}
6880
6881/*
cd29fe6f
PZ
6882 * called on fork with the child task as argument from the parent's context
6883 * - child not yet on the tasklist
6884 * - preemption disabled
bf0f6f24 6885 */
cd29fe6f 6886static void task_fork_fair(struct task_struct *p)
bf0f6f24 6887{
4fc420c9
DN
6888 struct cfs_rq *cfs_rq;
6889 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6890 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6891 struct rq *rq = this_rq();
6892 unsigned long flags;
6893
05fa785c 6894 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6895
861d034e
PZ
6896 update_rq_clock(rq);
6897
4fc420c9
DN
6898 cfs_rq = task_cfs_rq(current);
6899 curr = cfs_rq->curr;
6900
6c9a27f5
DN
6901 /*
6902 * Not only the cpu but also the task_group of the parent might have
6903 * been changed after parent->se.parent,cfs_rq were copied to
6904 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6905 * of child point to valid ones.
6906 */
6907 rcu_read_lock();
6908 __set_task_cpu(p, this_cpu);
6909 rcu_read_unlock();
bf0f6f24 6910
7109c442 6911 update_curr(cfs_rq);
cd29fe6f 6912
b5d9d734
MG
6913 if (curr)
6914 se->vruntime = curr->vruntime;
aeb73b04 6915 place_entity(cfs_rq, se, 1);
4d78e7b6 6916
cd29fe6f 6917 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6918 /*
edcb60a3
IM
6919 * Upon rescheduling, sched_class::put_prev_task() will place
6920 * 'current' within the tree based on its new key value.
6921 */
4d78e7b6 6922 swap(curr->vruntime, se->vruntime);
aec0a514 6923 resched_task(rq->curr);
4d78e7b6 6924 }
bf0f6f24 6925
88ec22d3
PZ
6926 se->vruntime -= cfs_rq->min_vruntime;
6927
05fa785c 6928 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6929}
6930
cb469845
SR
6931/*
6932 * Priority of the task has changed. Check to see if we preempt
6933 * the current task.
6934 */
da7a735e
PZ
6935static void
6936prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6937{
da7a735e
PZ
6938 if (!p->se.on_rq)
6939 return;
6940
cb469845
SR
6941 /*
6942 * Reschedule if we are currently running on this runqueue and
6943 * our priority decreased, or if we are not currently running on
6944 * this runqueue and our priority is higher than the current's
6945 */
da7a735e 6946 if (rq->curr == p) {
cb469845
SR
6947 if (p->prio > oldprio)
6948 resched_task(rq->curr);
6949 } else
15afe09b 6950 check_preempt_curr(rq, p, 0);
cb469845
SR
6951}
6952
da7a735e
PZ
6953static void switched_from_fair(struct rq *rq, struct task_struct *p)
6954{
6955 struct sched_entity *se = &p->se;
6956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6957
6958 /*
6959 * Ensure the task's vruntime is normalized, so that when its
6960 * switched back to the fair class the enqueue_entity(.flags=0) will
6961 * do the right thing.
6962 *
6963 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6964 * have normalized the vruntime, if it was !on_rq, then only when
6965 * the task is sleeping will it still have non-normalized vruntime.
6966 */
6967 if (!se->on_rq && p->state != TASK_RUNNING) {
6968 /*
6969 * Fix up our vruntime so that the current sleep doesn't
6970 * cause 'unlimited' sleep bonus.
6971 */
6972 place_entity(cfs_rq, se, 0);
6973 se->vruntime -= cfs_rq->min_vruntime;
6974 }
9ee474f5 6975
141965c7 6976#ifdef CONFIG_SMP
9ee474f5
PT
6977 /*
6978 * Remove our load from contribution when we leave sched_fair
6979 * and ensure we don't carry in an old decay_count if we
6980 * switch back.
6981 */
87e3c8ae
KT
6982 if (se->avg.decay_count) {
6983 __synchronize_entity_decay(se);
6984 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6985 }
6986#endif
da7a735e
PZ
6987}
6988
cb469845
SR
6989/*
6990 * We switched to the sched_fair class.
6991 */
da7a735e 6992static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6993{
da7a735e
PZ
6994 if (!p->se.on_rq)
6995 return;
6996
cb469845
SR
6997 /*
6998 * We were most likely switched from sched_rt, so
6999 * kick off the schedule if running, otherwise just see
7000 * if we can still preempt the current task.
7001 */
da7a735e 7002 if (rq->curr == p)
cb469845
SR
7003 resched_task(rq->curr);
7004 else
15afe09b 7005 check_preempt_curr(rq, p, 0);
cb469845
SR
7006}
7007
83b699ed
SV
7008/* Account for a task changing its policy or group.
7009 *
7010 * This routine is mostly called to set cfs_rq->curr field when a task
7011 * migrates between groups/classes.
7012 */
7013static void set_curr_task_fair(struct rq *rq)
7014{
7015 struct sched_entity *se = &rq->curr->se;
7016
ec12cb7f
PT
7017 for_each_sched_entity(se) {
7018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7019
7020 set_next_entity(cfs_rq, se);
7021 /* ensure bandwidth has been allocated on our new cfs_rq */
7022 account_cfs_rq_runtime(cfs_rq, 0);
7023 }
83b699ed
SV
7024}
7025
029632fb
PZ
7026void init_cfs_rq(struct cfs_rq *cfs_rq)
7027{
7028 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7029 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7030#ifndef CONFIG_64BIT
7031 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7032#endif
141965c7 7033#ifdef CONFIG_SMP
9ee474f5 7034 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7035 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7036#endif
029632fb
PZ
7037}
7038
810b3817 7039#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7040static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7041{
aff3e498 7042 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7043 /*
7044 * If the task was not on the rq at the time of this cgroup movement
7045 * it must have been asleep, sleeping tasks keep their ->vruntime
7046 * absolute on their old rq until wakeup (needed for the fair sleeper
7047 * bonus in place_entity()).
7048 *
7049 * If it was on the rq, we've just 'preempted' it, which does convert
7050 * ->vruntime to a relative base.
7051 *
7052 * Make sure both cases convert their relative position when migrating
7053 * to another cgroup's rq. This does somewhat interfere with the
7054 * fair sleeper stuff for the first placement, but who cares.
7055 */
7ceff013
DN
7056 /*
7057 * When !on_rq, vruntime of the task has usually NOT been normalized.
7058 * But there are some cases where it has already been normalized:
7059 *
7060 * - Moving a forked child which is waiting for being woken up by
7061 * wake_up_new_task().
62af3783
DN
7062 * - Moving a task which has been woken up by try_to_wake_up() and
7063 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7064 *
7065 * To prevent boost or penalty in the new cfs_rq caused by delta
7066 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7067 */
62af3783 7068 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7069 on_rq = 1;
7070
b2b5ce02
PZ
7071 if (!on_rq)
7072 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7073 set_task_rq(p, task_cpu(p));
aff3e498
PT
7074 if (!on_rq) {
7075 cfs_rq = cfs_rq_of(&p->se);
7076 p->se.vruntime += cfs_rq->min_vruntime;
7077#ifdef CONFIG_SMP
7078 /*
7079 * migrate_task_rq_fair() will have removed our previous
7080 * contribution, but we must synchronize for ongoing future
7081 * decay.
7082 */
7083 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7084 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7085#endif
7086 }
810b3817 7087}
029632fb
PZ
7088
7089void free_fair_sched_group(struct task_group *tg)
7090{
7091 int i;
7092
7093 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7094
7095 for_each_possible_cpu(i) {
7096 if (tg->cfs_rq)
7097 kfree(tg->cfs_rq[i]);
7098 if (tg->se)
7099 kfree(tg->se[i]);
7100 }
7101
7102 kfree(tg->cfs_rq);
7103 kfree(tg->se);
7104}
7105
7106int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7107{
7108 struct cfs_rq *cfs_rq;
7109 struct sched_entity *se;
7110 int i;
7111
7112 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7113 if (!tg->cfs_rq)
7114 goto err;
7115 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7116 if (!tg->se)
7117 goto err;
7118
7119 tg->shares = NICE_0_LOAD;
7120
7121 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7122
7123 for_each_possible_cpu(i) {
7124 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7125 GFP_KERNEL, cpu_to_node(i));
7126 if (!cfs_rq)
7127 goto err;
7128
7129 se = kzalloc_node(sizeof(struct sched_entity),
7130 GFP_KERNEL, cpu_to_node(i));
7131 if (!se)
7132 goto err_free_rq;
7133
7134 init_cfs_rq(cfs_rq);
7135 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7136 }
7137
7138 return 1;
7139
7140err_free_rq:
7141 kfree(cfs_rq);
7142err:
7143 return 0;
7144}
7145
7146void unregister_fair_sched_group(struct task_group *tg, int cpu)
7147{
7148 struct rq *rq = cpu_rq(cpu);
7149 unsigned long flags;
7150
7151 /*
7152 * Only empty task groups can be destroyed; so we can speculatively
7153 * check on_list without danger of it being re-added.
7154 */
7155 if (!tg->cfs_rq[cpu]->on_list)
7156 return;
7157
7158 raw_spin_lock_irqsave(&rq->lock, flags);
7159 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7160 raw_spin_unlock_irqrestore(&rq->lock, flags);
7161}
7162
7163void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7164 struct sched_entity *se, int cpu,
7165 struct sched_entity *parent)
7166{
7167 struct rq *rq = cpu_rq(cpu);
7168
7169 cfs_rq->tg = tg;
7170 cfs_rq->rq = rq;
029632fb
PZ
7171 init_cfs_rq_runtime(cfs_rq);
7172
7173 tg->cfs_rq[cpu] = cfs_rq;
7174 tg->se[cpu] = se;
7175
7176 /* se could be NULL for root_task_group */
7177 if (!se)
7178 return;
7179
7180 if (!parent)
7181 se->cfs_rq = &rq->cfs;
7182 else
7183 se->cfs_rq = parent->my_q;
7184
7185 se->my_q = cfs_rq;
7186 update_load_set(&se->load, 0);
7187 se->parent = parent;
7188}
7189
7190static DEFINE_MUTEX(shares_mutex);
7191
7192int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7193{
7194 int i;
7195 unsigned long flags;
7196
7197 /*
7198 * We can't change the weight of the root cgroup.
7199 */
7200 if (!tg->se[0])
7201 return -EINVAL;
7202
7203 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7204
7205 mutex_lock(&shares_mutex);
7206 if (tg->shares == shares)
7207 goto done;
7208
7209 tg->shares = shares;
7210 for_each_possible_cpu(i) {
7211 struct rq *rq = cpu_rq(i);
7212 struct sched_entity *se;
7213
7214 se = tg->se[i];
7215 /* Propagate contribution to hierarchy */
7216 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7217
7218 /* Possible calls to update_curr() need rq clock */
7219 update_rq_clock(rq);
17bc14b7 7220 for_each_sched_entity(se)
029632fb
PZ
7221 update_cfs_shares(group_cfs_rq(se));
7222 raw_spin_unlock_irqrestore(&rq->lock, flags);
7223 }
7224
7225done:
7226 mutex_unlock(&shares_mutex);
7227 return 0;
7228}
7229#else /* CONFIG_FAIR_GROUP_SCHED */
7230
7231void free_fair_sched_group(struct task_group *tg) { }
7232
7233int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7234{
7235 return 1;
7236}
7237
7238void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7239
7240#endif /* CONFIG_FAIR_GROUP_SCHED */
7241
810b3817 7242
6d686f45 7243static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7244{
7245 struct sched_entity *se = &task->se;
0d721cea
PW
7246 unsigned int rr_interval = 0;
7247
7248 /*
7249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7250 * idle runqueue:
7251 */
0d721cea 7252 if (rq->cfs.load.weight)
a59f4e07 7253 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7254
7255 return rr_interval;
7256}
7257
bf0f6f24
IM
7258/*
7259 * All the scheduling class methods:
7260 */
029632fb 7261const struct sched_class fair_sched_class = {
5522d5d5 7262 .next = &idle_sched_class,
bf0f6f24
IM
7263 .enqueue_task = enqueue_task_fair,
7264 .dequeue_task = dequeue_task_fair,
7265 .yield_task = yield_task_fair,
d95f4122 7266 .yield_to_task = yield_to_task_fair,
bf0f6f24 7267
2e09bf55 7268 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7269
7270 .pick_next_task = pick_next_task_fair,
7271 .put_prev_task = put_prev_task_fair,
7272
681f3e68 7273#ifdef CONFIG_SMP
4ce72a2c 7274 .select_task_rq = select_task_rq_fair,
0a74bef8 7275 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7276
0bcdcf28
CE
7277 .rq_online = rq_online_fair,
7278 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7279
7280 .task_waking = task_waking_fair,
681f3e68 7281#endif
bf0f6f24 7282
83b699ed 7283 .set_curr_task = set_curr_task_fair,
bf0f6f24 7284 .task_tick = task_tick_fair,
cd29fe6f 7285 .task_fork = task_fork_fair,
cb469845
SR
7286
7287 .prio_changed = prio_changed_fair,
da7a735e 7288 .switched_from = switched_from_fair,
cb469845 7289 .switched_to = switched_to_fair,
810b3817 7290
0d721cea
PW
7291 .get_rr_interval = get_rr_interval_fair,
7292
810b3817 7293#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7294 .task_move_group = task_move_group_fair,
810b3817 7295#endif
bf0f6f24
IM
7296};
7297
7298#ifdef CONFIG_SCHED_DEBUG
029632fb 7299void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7300{
bf0f6f24
IM
7301 struct cfs_rq *cfs_rq;
7302
5973e5b9 7303 rcu_read_lock();
c3b64f1e 7304 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7305 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7306 rcu_read_unlock();
bf0f6f24
IM
7307}
7308#endif
029632fb
PZ
7309
7310__init void init_sched_fair_class(void)
7311{
7312#ifdef CONFIG_SMP
7313 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7314
3451d024 7315#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7316 nohz.next_balance = jiffies;
029632fb 7317 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7318 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7319#endif
7320#endif /* SMP */
7321
7322}