sched/core: Reset RQCF_ACT_SKIP before unpinning rq->lock
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
48 *
49 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 50 */
2b4d5b25
IM
51unsigned int sysctl_sched_latency = 6000000ULL;
52unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 53
1983a922
CE
54/*
55 * The initial- and re-scaling of tunables is configurable
1983a922
CE
56 *
57 * Options are:
2b4d5b25
IM
58 *
59 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
60 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
61 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
62 *
63 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 64 */
2b4d5b25 65enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 66
2bd8e6d4 67/*
b2be5e96 68 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 69 *
864616ee 70 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 71 */
2b4d5b25
IM
72unsigned int sysctl_sched_min_granularity = 750000ULL;
73unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
74
75/*
2b4d5b25 76 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 77 */
0bf377bb 78static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
79
80/*
2bba22c5 81 * After fork, child runs first. If set to 0 (default) then
b2be5e96 82 * parent will (try to) run first.
21805085 83 */
2bba22c5 84unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 85
bf0f6f24
IM
86/*
87 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
88 *
89 * This option delays the preemption effects of decoupled workloads
90 * and reduces their over-scheduling. Synchronous workloads will still
91 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
92 *
93 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 94 */
2b4d5b25
IM
95unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
96unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 97
2b4d5b25 98const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
102 * For asym packing, by default the lower numbered cpu has higher priority.
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
108#endif
109
ec12cb7f
PT
110#ifdef CONFIG_CFS_BANDWIDTH
111/*
112 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
113 * each time a cfs_rq requests quota.
114 *
115 * Note: in the case that the slice exceeds the runtime remaining (either due
116 * to consumption or the quota being specified to be smaller than the slice)
117 * we will always only issue the remaining available time.
118 *
2b4d5b25
IM
119 * (default: 5 msec, units: microseconds)
120 */
121unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
122#endif
123
3273163c
MR
124/*
125 * The margin used when comparing utilization with CPU capacity:
893c5d22 126 * util * margin < capacity * 1024
2b4d5b25
IM
127 *
128 * (default: ~20%)
3273163c 129 */
2b4d5b25 130unsigned int capacity_margin = 1280;
3273163c 131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
192void sched_init_granularity(void)
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155
PZ
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
029632fb 233
9dbdb155 234 __update_inv_weight(lw);
029632fb 235
9dbdb155
PZ
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb
PZ
241 }
242
9dbdb155
PZ
243 /* hint to use a 32x32->64 mul */
244 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 245
9dbdb155
PZ
246 while (fact >> 32) {
247 fact >>= 1;
248 shift--;
249 }
029632fb 250
9dbdb155 251 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
252}
253
254
255const struct sched_class fair_sched_class;
a4c2f00f 256
bf0f6f24
IM
257/**************************************************************
258 * CFS operations on generic schedulable entities:
259 */
260
62160e3f 261#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 262
62160e3f 263/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
264static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
265{
62160e3f 266 return cfs_rq->rq;
bf0f6f24
IM
267}
268
62160e3f
IM
269/* An entity is a task if it doesn't "own" a runqueue */
270#define entity_is_task(se) (!se->my_q)
bf0f6f24 271
8f48894f
PZ
272static inline struct task_struct *task_of(struct sched_entity *se)
273{
9148a3a1 274 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
275 return container_of(se, struct task_struct, se);
276}
277
b758149c
PZ
278/* Walk up scheduling entities hierarchy */
279#define for_each_sched_entity(se) \
280 for (; se; se = se->parent)
281
282static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
283{
284 return p->se.cfs_rq;
285}
286
287/* runqueue on which this entity is (to be) queued */
288static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
289{
290 return se->cfs_rq;
291}
292
293/* runqueue "owned" by this group */
294static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
295{
296 return grp->my_q;
297}
298
3d4b47b4
PZ
299static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
300{
301 if (!cfs_rq->on_list) {
9c2791f9
VG
302 struct rq *rq = rq_of(cfs_rq);
303 int cpu = cpu_of(rq);
67e86250
PT
304 /*
305 * Ensure we either appear before our parent (if already
306 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
307 * enqueued. The fact that we always enqueue bottom-up
308 * reduces this to two cases and a special case for the root
309 * cfs_rq. Furthermore, it also means that we will always reset
310 * tmp_alone_branch either when the branch is connected
311 * to a tree or when we reach the beg of the tree
67e86250
PT
312 */
313 if (cfs_rq->tg->parent &&
9c2791f9
VG
314 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
315 /*
316 * If parent is already on the list, we add the child
317 * just before. Thanks to circular linked property of
318 * the list, this means to put the child at the tail
319 * of the list that starts by parent.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
323 /*
324 * The branch is now connected to its tree so we can
325 * reset tmp_alone_branch to the beginning of the
326 * list.
327 */
328 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 } else if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
67e86250 334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the beg of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
341 } else {
342 /*
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the beg of the branch
346 * where we will add parent.
347 */
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
349 rq->tmp_alone_branch);
350 /*
351 * update tmp_alone_branch to points to the new beg
352 * of the branch
353 */
354 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 355 }
3d4b47b4
PZ
356
357 cfs_rq->on_list = 1;
358 }
359}
360
361static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
362{
363 if (cfs_rq->on_list) {
364 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
365 cfs_rq->on_list = 0;
366 }
367}
368
b758149c
PZ
369/* Iterate thr' all leaf cfs_rq's on a runqueue */
370#define for_each_leaf_cfs_rq(rq, cfs_rq) \
371 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
372
373/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 374static inline struct cfs_rq *
b758149c
PZ
375is_same_group(struct sched_entity *se, struct sched_entity *pse)
376{
377 if (se->cfs_rq == pse->cfs_rq)
fed14d45 378 return se->cfs_rq;
b758149c 379
fed14d45 380 return NULL;
b758149c
PZ
381}
382
383static inline struct sched_entity *parent_entity(struct sched_entity *se)
384{
385 return se->parent;
386}
387
464b7527
PZ
388static void
389find_matching_se(struct sched_entity **se, struct sched_entity **pse)
390{
391 int se_depth, pse_depth;
392
393 /*
394 * preemption test can be made between sibling entities who are in the
395 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
396 * both tasks until we find their ancestors who are siblings of common
397 * parent.
398 */
399
400 /* First walk up until both entities are at same depth */
fed14d45
PZ
401 se_depth = (*se)->depth;
402 pse_depth = (*pse)->depth;
464b7527
PZ
403
404 while (se_depth > pse_depth) {
405 se_depth--;
406 *se = parent_entity(*se);
407 }
408
409 while (pse_depth > se_depth) {
410 pse_depth--;
411 *pse = parent_entity(*pse);
412 }
413
414 while (!is_same_group(*se, *pse)) {
415 *se = parent_entity(*se);
416 *pse = parent_entity(*pse);
417 }
418}
419
8f48894f
PZ
420#else /* !CONFIG_FAIR_GROUP_SCHED */
421
422static inline struct task_struct *task_of(struct sched_entity *se)
423{
424 return container_of(se, struct task_struct, se);
425}
bf0f6f24 426
62160e3f
IM
427static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
428{
429 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
430}
431
432#define entity_is_task(se) 1
433
b758149c
PZ
434#define for_each_sched_entity(se) \
435 for (; se; se = NULL)
bf0f6f24 436
b758149c 437static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 438{
b758149c 439 return &task_rq(p)->cfs;
bf0f6f24
IM
440}
441
b758149c
PZ
442static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
443{
444 struct task_struct *p = task_of(se);
445 struct rq *rq = task_rq(p);
446
447 return &rq->cfs;
448}
449
450/* runqueue "owned" by this group */
451static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
452{
453 return NULL;
454}
455
3d4b47b4
PZ
456static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
457{
458}
459
460static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
461{
462}
463
b758149c
PZ
464#define for_each_leaf_cfs_rq(rq, cfs_rq) \
465 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
466
b758149c
PZ
467static inline struct sched_entity *parent_entity(struct sched_entity *se)
468{
469 return NULL;
470}
471
464b7527
PZ
472static inline void
473find_matching_se(struct sched_entity **se, struct sched_entity **pse)
474{
475}
476
b758149c
PZ
477#endif /* CONFIG_FAIR_GROUP_SCHED */
478
6c16a6dc 479static __always_inline
9dbdb155 480void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
481
482/**************************************************************
483 * Scheduling class tree data structure manipulation methods:
484 */
485
1bf08230 486static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 487{
1bf08230 488 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 489 if (delta > 0)
1bf08230 490 max_vruntime = vruntime;
02e0431a 491
1bf08230 492 return max_vruntime;
02e0431a
PZ
493}
494
0702e3eb 495static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
496{
497 s64 delta = (s64)(vruntime - min_vruntime);
498 if (delta < 0)
499 min_vruntime = vruntime;
500
501 return min_vruntime;
502}
503
54fdc581
FC
504static inline int entity_before(struct sched_entity *a,
505 struct sched_entity *b)
506{
507 return (s64)(a->vruntime - b->vruntime) < 0;
508}
509
1af5f730
PZ
510static void update_min_vruntime(struct cfs_rq *cfs_rq)
511{
b60205c7
PZ
512 struct sched_entity *curr = cfs_rq->curr;
513
1af5f730
PZ
514 u64 vruntime = cfs_rq->min_vruntime;
515
b60205c7
PZ
516 if (curr) {
517 if (curr->on_rq)
518 vruntime = curr->vruntime;
519 else
520 curr = NULL;
521 }
1af5f730
PZ
522
523 if (cfs_rq->rb_leftmost) {
524 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
525 struct sched_entity,
526 run_node);
527
b60205c7 528 if (!curr)
1af5f730
PZ
529 vruntime = se->vruntime;
530 else
531 vruntime = min_vruntime(vruntime, se->vruntime);
532 }
533
1bf08230 534 /* ensure we never gain time by being placed backwards. */
1af5f730 535 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
536#ifndef CONFIG_64BIT
537 smp_wmb();
538 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
539#endif
1af5f730
PZ
540}
541
bf0f6f24
IM
542/*
543 * Enqueue an entity into the rb-tree:
544 */
0702e3eb 545static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
546{
547 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
548 struct rb_node *parent = NULL;
549 struct sched_entity *entry;
bf0f6f24
IM
550 int leftmost = 1;
551
552 /*
553 * Find the right place in the rbtree:
554 */
555 while (*link) {
556 parent = *link;
557 entry = rb_entry(parent, struct sched_entity, run_node);
558 /*
559 * We dont care about collisions. Nodes with
560 * the same key stay together.
561 */
2bd2d6f2 562 if (entity_before(se, entry)) {
bf0f6f24
IM
563 link = &parent->rb_left;
564 } else {
565 link = &parent->rb_right;
566 leftmost = 0;
567 }
568 }
569
570 /*
571 * Maintain a cache of leftmost tree entries (it is frequently
572 * used):
573 */
1af5f730 574 if (leftmost)
57cb499d 575 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
576
577 rb_link_node(&se->run_node, parent, link);
578 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
579}
580
0702e3eb 581static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 582{
3fe69747
PZ
583 if (cfs_rq->rb_leftmost == &se->run_node) {
584 struct rb_node *next_node;
3fe69747
PZ
585
586 next_node = rb_next(&se->run_node);
587 cfs_rq->rb_leftmost = next_node;
3fe69747 588 }
e9acbff6 589
bf0f6f24 590 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
591}
592
029632fb 593struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 594{
f4b6755f
PZ
595 struct rb_node *left = cfs_rq->rb_leftmost;
596
597 if (!left)
598 return NULL;
599
600 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
601}
602
ac53db59
RR
603static struct sched_entity *__pick_next_entity(struct sched_entity *se)
604{
605 struct rb_node *next = rb_next(&se->run_node);
606
607 if (!next)
608 return NULL;
609
610 return rb_entry(next, struct sched_entity, run_node);
611}
612
613#ifdef CONFIG_SCHED_DEBUG
029632fb 614struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 615{
7eee3e67 616 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 617
70eee74b
BS
618 if (!last)
619 return NULL;
7eee3e67
IM
620
621 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
622}
623
bf0f6f24
IM
624/**************************************************************
625 * Scheduling class statistics methods:
626 */
627
acb4a848 628int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 629 void __user *buffer, size_t *lenp,
b2be5e96
PZ
630 loff_t *ppos)
631{
8d65af78 632 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 633 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
634
635 if (ret || !write)
636 return ret;
637
638 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
639 sysctl_sched_min_granularity);
640
acb4a848
CE
641#define WRT_SYSCTL(name) \
642 (normalized_sysctl_##name = sysctl_##name / (factor))
643 WRT_SYSCTL(sched_min_granularity);
644 WRT_SYSCTL(sched_latency);
645 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
646#undef WRT_SYSCTL
647
b2be5e96
PZ
648 return 0;
649}
650#endif
647e7cac 651
a7be37ac 652/*
f9c0b095 653 * delta /= w
a7be37ac 654 */
9dbdb155 655static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 656{
f9c0b095 657 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 658 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
659
660 return delta;
661}
662
647e7cac
IM
663/*
664 * The idea is to set a period in which each task runs once.
665 *
532b1858 666 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
667 * this period because otherwise the slices get too small.
668 *
669 * p = (nr <= nl) ? l : l*nr/nl
670 */
4d78e7b6
PZ
671static u64 __sched_period(unsigned long nr_running)
672{
8e2b0bf3
BF
673 if (unlikely(nr_running > sched_nr_latency))
674 return nr_running * sysctl_sched_min_granularity;
675 else
676 return sysctl_sched_latency;
4d78e7b6
PZ
677}
678
647e7cac
IM
679/*
680 * We calculate the wall-time slice from the period by taking a part
681 * proportional to the weight.
682 *
f9c0b095 683 * s = p*P[w/rw]
647e7cac 684 */
6d0f0ebd 685static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 686{
0a582440 687 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 688
0a582440 689 for_each_sched_entity(se) {
6272d68c 690 struct load_weight *load;
3104bf03 691 struct load_weight lw;
6272d68c
LM
692
693 cfs_rq = cfs_rq_of(se);
694 load = &cfs_rq->load;
f9c0b095 695
0a582440 696 if (unlikely(!se->on_rq)) {
3104bf03 697 lw = cfs_rq->load;
0a582440
MG
698
699 update_load_add(&lw, se->load.weight);
700 load = &lw;
701 }
9dbdb155 702 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
703 }
704 return slice;
bf0f6f24
IM
705}
706
647e7cac 707/*
660cc00f 708 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 709 *
f9c0b095 710 * vs = s/w
647e7cac 711 */
f9c0b095 712static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 713{
f9c0b095 714 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
715}
716
a75cdaa9 717#ifdef CONFIG_SMP
772bd008 718static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
719static unsigned long task_h_load(struct task_struct *p);
720
9d89c257
YD
721/*
722 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
723 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
724 * dependent on this value.
9d89c257
YD
725 */
726#define LOAD_AVG_PERIOD 32
727#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 728#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 729
540247fb
YD
730/* Give new sched_entity start runnable values to heavy its load in infant time */
731void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 732{
540247fb 733 struct sched_avg *sa = &se->avg;
a75cdaa9 734
9d89c257
YD
735 sa->last_update_time = 0;
736 /*
737 * sched_avg's period_contrib should be strictly less then 1024, so
738 * we give it 1023 to make sure it is almost a period (1024us), and
739 * will definitely be update (after enqueue).
740 */
741 sa->period_contrib = 1023;
b5a9b340
VG
742 /*
743 * Tasks are intialized with full load to be seen as heavy tasks until
744 * they get a chance to stabilize to their real load level.
745 * Group entities are intialized with zero load to reflect the fact that
746 * nothing has been attached to the task group yet.
747 */
748 if (entity_is_task(se))
749 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 750 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
751 /*
752 * At this point, util_avg won't be used in select_task_rq_fair anyway
753 */
754 sa->util_avg = 0;
755 sa->util_sum = 0;
9d89c257 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 757}
7ea241af 758
7dc603c9 759static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 760static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 761
2b8c41da
YD
762/*
763 * With new tasks being created, their initial util_avgs are extrapolated
764 * based on the cfs_rq's current util_avg:
765 *
766 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767 *
768 * However, in many cases, the above util_avg does not give a desired
769 * value. Moreover, the sum of the util_avgs may be divergent, such
770 * as when the series is a harmonic series.
771 *
772 * To solve this problem, we also cap the util_avg of successive tasks to
773 * only 1/2 of the left utilization budget:
774 *
775 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
776 *
777 * where n denotes the nth task.
778 *
779 * For example, a simplest series from the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787void post_init_entity_util_avg(struct sched_entity *se)
788{
789 struct cfs_rq *cfs_rq = cfs_rq_of(se);
790 struct sched_avg *sa = &se->avg;
172895e6 791 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
792
793 if (cap > 0) {
794 if (cfs_rq->avg.util_avg != 0) {
795 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
796 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
797
798 if (sa->util_avg > cap)
799 sa->util_avg = cap;
800 } else {
801 sa->util_avg = cap;
802 }
803 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
804 }
7dc603c9
PZ
805
806 if (entity_is_task(se)) {
807 struct task_struct *p = task_of(se);
808 if (p->sched_class != &fair_sched_class) {
809 /*
810 * For !fair tasks do:
811 *
812 update_cfs_rq_load_avg(now, cfs_rq, false);
813 attach_entity_load_avg(cfs_rq, se);
814 switched_from_fair(rq, p);
815 *
816 * such that the next switched_to_fair() has the
817 * expected state.
818 */
df217913 819 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
820 return;
821 }
822 }
823
df217913 824 attach_entity_cfs_rq(se);
2b8c41da
YD
825}
826
7dc603c9 827#else /* !CONFIG_SMP */
540247fb 828void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
829{
830}
2b8c41da
YD
831void post_init_entity_util_avg(struct sched_entity *se)
832{
833}
3d30544f
PZ
834static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835{
836}
7dc603c9 837#endif /* CONFIG_SMP */
a75cdaa9 838
bf0f6f24 839/*
9dbdb155 840 * Update the current task's runtime statistics.
bf0f6f24 841 */
b7cc0896 842static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 843{
429d43bc 844 struct sched_entity *curr = cfs_rq->curr;
78becc27 845 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 846 u64 delta_exec;
bf0f6f24
IM
847
848 if (unlikely(!curr))
849 return;
850
9dbdb155
PZ
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
34f28ecd 853 return;
bf0f6f24 854
8ebc91d9 855 curr->exec_start = now;
d842de87 856
9dbdb155
PZ
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
ae92882e 861 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
d842de87
SV
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
f977bb49 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 870 cpuacct_charge(curtask, delta_exec);
f06febc9 871 account_group_exec_runtime(curtask, delta_exec);
d842de87 872 }
ec12cb7f
PT
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
875}
876
6e998916
SG
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
bf0f6f24 882static inline void
5870db5b 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 884{
4fa8d299
JP
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
3ea94de1 896
4fa8d299 897 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
898}
899
4fa8d299 900static inline void
3ea94de1
JP
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
cb251765
MG
904 u64 delta;
905
4fa8d299
JP
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
4fa8d299 919 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
4fa8d299
JP
925 schedstat_set(se->statistics.wait_max,
926 max(schedstat_val(se->statistics.wait_max), delta));
927 schedstat_inc(se->statistics.wait_count);
928 schedstat_add(se->statistics.wait_sum, delta);
929 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 930}
3ea94de1 931
4fa8d299 932static inline void
1a3d027c
JP
933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934{
935 struct task_struct *tsk = NULL;
4fa8d299
JP
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
4fa8d299
JP
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
949
950 if ((s64)delta < 0)
951 delta = 0;
952
4fa8d299
JP
953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 955
4fa8d299
JP
956 schedstat_set(se->statistics.sleep_start, 0);
957 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
4fa8d299
JP
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
966
967 if ((s64)delta < 0)
968 delta = 0;
969
4fa8d299
JP
970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 schedstat_set(se->statistics.block_max, delta);
1a3d027c 972
4fa8d299
JP
973 schedstat_set(se->statistics.block_start, 0);
974 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
975
976 if (tsk) {
977 if (tsk->in_iowait) {
4fa8d299
JP
978 schedstat_add(se->statistics.iowait_sum, delta);
979 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
3ea94de1 998}
3ea94de1 999
bf0f6f24
IM
1000/*
1001 * Task is being enqueued - update stats:
1002 */
cb251765 1003static inline void
1a3d027c 1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1005{
4fa8d299
JP
1006 if (!schedstat_enabled())
1007 return;
1008
bf0f6f24
IM
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
429d43bc 1013 if (se != cfs_rq->curr)
5870db5b 1014 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1018}
1019
bf0f6f24 1020static inline void
cb251765 1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1022{
4fa8d299
JP
1023
1024 if (!schedstat_enabled())
1025 return;
1026
bf0f6f24
IM
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
429d43bc 1031 if (se != cfs_rq->curr)
9ef0a961 1032 update_stats_wait_end(cfs_rq, se);
cb251765 1033
4fa8d299
JP
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
cb251765 1036
4fa8d299
JP
1037 if (tsk->state & TASK_INTERRUPTIBLE)
1038 schedstat_set(se->statistics.sleep_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 schedstat_set(se->statistics.block_start,
1042 rq_clock(rq_of(cfs_rq)));
cb251765 1043 }
cb251765
MG
1044}
1045
bf0f6f24
IM
1046/*
1047 * We are picking a new current task - update its stats:
1048 */
1049static inline void
79303e9e 1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1051{
1052 /*
1053 * We are starting a new run period:
1054 */
78becc27 1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1056}
1057
bf0f6f24
IM
1058/**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
cbee9f88
PZ
1062#ifdef CONFIG_NUMA_BALANCING
1063/*
598f0ec0
MG
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
cbee9f88 1067 */
598f0ec0
MG
1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1070
1071/* Portion of address space to scan in MB */
1072unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1073
4b96a29b
PZ
1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
598f0ec0
MG
1077static unsigned int task_nr_scan_windows(struct task_struct *p)
1078{
1079 unsigned long rss = 0;
1080 unsigned long nr_scan_pages;
1081
1082 /*
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 * on resident pages
1086 */
1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 rss = get_mm_rss(p->mm);
1089 if (!rss)
1090 rss = nr_scan_pages;
1091
1092 rss = round_up(rss, nr_scan_pages);
1093 return rss / nr_scan_pages;
1094}
1095
1096/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097#define MAX_SCAN_WINDOW 2560
1098
1099static unsigned int task_scan_min(struct task_struct *p)
1100{
316c1608 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1102 unsigned int scan, floor;
1103 unsigned int windows = 1;
1104
64192658
KT
1105 if (scan_size < MAX_SCAN_WINDOW)
1106 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1107 floor = 1000 / windows;
1108
1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 return max_t(unsigned int, floor, scan);
1111}
1112
1113static unsigned int task_scan_max(struct task_struct *p)
1114{
1115 unsigned int smin = task_scan_min(p);
1116 unsigned int smax;
1117
1118 /* Watch for min being lower than max due to floor calculations */
1119 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1120 return max(smin, smax);
1121}
1122
0ec8aa00
PZ
1123static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1124{
1125 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1126 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1127}
1128
1129static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1130{
1131 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1132 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1133}
1134
8c8a743c
PZ
1135struct numa_group {
1136 atomic_t refcount;
1137
1138 spinlock_t lock; /* nr_tasks, tasks */
1139 int nr_tasks;
e29cf08b 1140 pid_t gid;
4142c3eb 1141 int active_nodes;
8c8a743c
PZ
1142
1143 struct rcu_head rcu;
989348b5 1144 unsigned long total_faults;
4142c3eb 1145 unsigned long max_faults_cpu;
7e2703e6
RR
1146 /*
1147 * Faults_cpu is used to decide whether memory should move
1148 * towards the CPU. As a consequence, these stats are weighted
1149 * more by CPU use than by memory faults.
1150 */
50ec8a40 1151 unsigned long *faults_cpu;
989348b5 1152 unsigned long faults[0];
8c8a743c
PZ
1153};
1154
be1e4e76
RR
1155/* Shared or private faults. */
1156#define NR_NUMA_HINT_FAULT_TYPES 2
1157
1158/* Memory and CPU locality */
1159#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1160
1161/* Averaged statistics, and temporary buffers. */
1162#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1163
e29cf08b
MG
1164pid_t task_numa_group_id(struct task_struct *p)
1165{
1166 return p->numa_group ? p->numa_group->gid : 0;
1167}
1168
44dba3d5
IM
1169/*
1170 * The averaged statistics, shared & private, memory & cpu,
1171 * occupy the first half of the array. The second half of the
1172 * array is for current counters, which are averaged into the
1173 * first set by task_numa_placement.
1174 */
1175static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1176{
44dba3d5 1177 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1178}
1179
1180static inline unsigned long task_faults(struct task_struct *p, int nid)
1181{
44dba3d5 1182 if (!p->numa_faults)
ac8e895b
MG
1183 return 0;
1184
44dba3d5
IM
1185 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1186 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1187}
1188
83e1d2cd
MG
1189static inline unsigned long group_faults(struct task_struct *p, int nid)
1190{
1191 if (!p->numa_group)
1192 return 0;
1193
44dba3d5
IM
1194 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1195 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1196}
1197
20e07dea
RR
1198static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1199{
44dba3d5
IM
1200 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1201 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1202}
1203
4142c3eb
RR
1204/*
1205 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1206 * considered part of a numa group's pseudo-interleaving set. Migrations
1207 * between these nodes are slowed down, to allow things to settle down.
1208 */
1209#define ACTIVE_NODE_FRACTION 3
1210
1211static bool numa_is_active_node(int nid, struct numa_group *ng)
1212{
1213 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1214}
1215
6c6b1193
RR
1216/* Handle placement on systems where not all nodes are directly connected. */
1217static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1218 int maxdist, bool task)
1219{
1220 unsigned long score = 0;
1221 int node;
1222
1223 /*
1224 * All nodes are directly connected, and the same distance
1225 * from each other. No need for fancy placement algorithms.
1226 */
1227 if (sched_numa_topology_type == NUMA_DIRECT)
1228 return 0;
1229
1230 /*
1231 * This code is called for each node, introducing N^2 complexity,
1232 * which should be ok given the number of nodes rarely exceeds 8.
1233 */
1234 for_each_online_node(node) {
1235 unsigned long faults;
1236 int dist = node_distance(nid, node);
1237
1238 /*
1239 * The furthest away nodes in the system are not interesting
1240 * for placement; nid was already counted.
1241 */
1242 if (dist == sched_max_numa_distance || node == nid)
1243 continue;
1244
1245 /*
1246 * On systems with a backplane NUMA topology, compare groups
1247 * of nodes, and move tasks towards the group with the most
1248 * memory accesses. When comparing two nodes at distance
1249 * "hoplimit", only nodes closer by than "hoplimit" are part
1250 * of each group. Skip other nodes.
1251 */
1252 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1253 dist > maxdist)
1254 continue;
1255
1256 /* Add up the faults from nearby nodes. */
1257 if (task)
1258 faults = task_faults(p, node);
1259 else
1260 faults = group_faults(p, node);
1261
1262 /*
1263 * On systems with a glueless mesh NUMA topology, there are
1264 * no fixed "groups of nodes". Instead, nodes that are not
1265 * directly connected bounce traffic through intermediate
1266 * nodes; a numa_group can occupy any set of nodes.
1267 * The further away a node is, the less the faults count.
1268 * This seems to result in good task placement.
1269 */
1270 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1271 faults *= (sched_max_numa_distance - dist);
1272 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1273 }
1274
1275 score += faults;
1276 }
1277
1278 return score;
1279}
1280
83e1d2cd
MG
1281/*
1282 * These return the fraction of accesses done by a particular task, or
1283 * task group, on a particular numa node. The group weight is given a
1284 * larger multiplier, in order to group tasks together that are almost
1285 * evenly spread out between numa nodes.
1286 */
7bd95320
RR
1287static inline unsigned long task_weight(struct task_struct *p, int nid,
1288 int dist)
83e1d2cd 1289{
7bd95320 1290 unsigned long faults, total_faults;
83e1d2cd 1291
44dba3d5 1292 if (!p->numa_faults)
83e1d2cd
MG
1293 return 0;
1294
1295 total_faults = p->total_numa_faults;
1296
1297 if (!total_faults)
1298 return 0;
1299
7bd95320 1300 faults = task_faults(p, nid);
6c6b1193
RR
1301 faults += score_nearby_nodes(p, nid, dist, true);
1302
7bd95320 1303 return 1000 * faults / total_faults;
83e1d2cd
MG
1304}
1305
7bd95320
RR
1306static inline unsigned long group_weight(struct task_struct *p, int nid,
1307 int dist)
83e1d2cd 1308{
7bd95320
RR
1309 unsigned long faults, total_faults;
1310
1311 if (!p->numa_group)
1312 return 0;
1313
1314 total_faults = p->numa_group->total_faults;
1315
1316 if (!total_faults)
83e1d2cd
MG
1317 return 0;
1318
7bd95320 1319 faults = group_faults(p, nid);
6c6b1193
RR
1320 faults += score_nearby_nodes(p, nid, dist, false);
1321
7bd95320 1322 return 1000 * faults / total_faults;
83e1d2cd
MG
1323}
1324
10f39042
RR
1325bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1326 int src_nid, int dst_cpu)
1327{
1328 struct numa_group *ng = p->numa_group;
1329 int dst_nid = cpu_to_node(dst_cpu);
1330 int last_cpupid, this_cpupid;
1331
1332 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1333
1334 /*
1335 * Multi-stage node selection is used in conjunction with a periodic
1336 * migration fault to build a temporal task<->page relation. By using
1337 * a two-stage filter we remove short/unlikely relations.
1338 *
1339 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1340 * a task's usage of a particular page (n_p) per total usage of this
1341 * page (n_t) (in a given time-span) to a probability.
1342 *
1343 * Our periodic faults will sample this probability and getting the
1344 * same result twice in a row, given these samples are fully
1345 * independent, is then given by P(n)^2, provided our sample period
1346 * is sufficiently short compared to the usage pattern.
1347 *
1348 * This quadric squishes small probabilities, making it less likely we
1349 * act on an unlikely task<->page relation.
1350 */
1351 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1352 if (!cpupid_pid_unset(last_cpupid) &&
1353 cpupid_to_nid(last_cpupid) != dst_nid)
1354 return false;
1355
1356 /* Always allow migrate on private faults */
1357 if (cpupid_match_pid(p, last_cpupid))
1358 return true;
1359
1360 /* A shared fault, but p->numa_group has not been set up yet. */
1361 if (!ng)
1362 return true;
1363
1364 /*
4142c3eb
RR
1365 * Destination node is much more heavily used than the source
1366 * node? Allow migration.
10f39042 1367 */
4142c3eb
RR
1368 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1369 ACTIVE_NODE_FRACTION)
10f39042
RR
1370 return true;
1371
1372 /*
4142c3eb
RR
1373 * Distribute memory according to CPU & memory use on each node,
1374 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1375 *
1376 * faults_cpu(dst) 3 faults_cpu(src)
1377 * --------------- * - > ---------------
1378 * faults_mem(dst) 4 faults_mem(src)
10f39042 1379 */
4142c3eb
RR
1380 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1381 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1382}
1383
e6628d5b 1384static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1385static unsigned long source_load(int cpu, int type);
1386static unsigned long target_load(int cpu, int type);
ced549fa 1387static unsigned long capacity_of(int cpu);
58d081b5
MG
1388static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1389
fb13c7ee 1390/* Cached statistics for all CPUs within a node */
58d081b5 1391struct numa_stats {
fb13c7ee 1392 unsigned long nr_running;
58d081b5 1393 unsigned long load;
fb13c7ee
MG
1394
1395 /* Total compute capacity of CPUs on a node */
5ef20ca1 1396 unsigned long compute_capacity;
fb13c7ee
MG
1397
1398 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1399 unsigned long task_capacity;
1b6a7495 1400 int has_free_capacity;
58d081b5 1401};
e6628d5b 1402
fb13c7ee
MG
1403/*
1404 * XXX borrowed from update_sg_lb_stats
1405 */
1406static void update_numa_stats(struct numa_stats *ns, int nid)
1407{
83d7f242
RR
1408 int smt, cpu, cpus = 0;
1409 unsigned long capacity;
fb13c7ee
MG
1410
1411 memset(ns, 0, sizeof(*ns));
1412 for_each_cpu(cpu, cpumask_of_node(nid)) {
1413 struct rq *rq = cpu_rq(cpu);
1414
1415 ns->nr_running += rq->nr_running;
1416 ns->load += weighted_cpuload(cpu);
ced549fa 1417 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1418
1419 cpus++;
fb13c7ee
MG
1420 }
1421
5eca82a9
PZ
1422 /*
1423 * If we raced with hotplug and there are no CPUs left in our mask
1424 * the @ns structure is NULL'ed and task_numa_compare() will
1425 * not find this node attractive.
1426 *
1b6a7495
NP
1427 * We'll either bail at !has_free_capacity, or we'll detect a huge
1428 * imbalance and bail there.
5eca82a9
PZ
1429 */
1430 if (!cpus)
1431 return;
1432
83d7f242
RR
1433 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1434 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1435 capacity = cpus / smt; /* cores */
1436
1437 ns->task_capacity = min_t(unsigned, capacity,
1438 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1439 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1440}
1441
58d081b5
MG
1442struct task_numa_env {
1443 struct task_struct *p;
e6628d5b 1444
58d081b5
MG
1445 int src_cpu, src_nid;
1446 int dst_cpu, dst_nid;
e6628d5b 1447
58d081b5 1448 struct numa_stats src_stats, dst_stats;
e6628d5b 1449
40ea2b42 1450 int imbalance_pct;
7bd95320 1451 int dist;
fb13c7ee
MG
1452
1453 struct task_struct *best_task;
1454 long best_imp;
58d081b5
MG
1455 int best_cpu;
1456};
1457
fb13c7ee
MG
1458static void task_numa_assign(struct task_numa_env *env,
1459 struct task_struct *p, long imp)
1460{
1461 if (env->best_task)
1462 put_task_struct(env->best_task);
bac78573
ON
1463 if (p)
1464 get_task_struct(p);
fb13c7ee
MG
1465
1466 env->best_task = p;
1467 env->best_imp = imp;
1468 env->best_cpu = env->dst_cpu;
1469}
1470
28a21745 1471static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1472 struct task_numa_env *env)
1473{
e4991b24
RR
1474 long imb, old_imb;
1475 long orig_src_load, orig_dst_load;
28a21745
RR
1476 long src_capacity, dst_capacity;
1477
1478 /*
1479 * The load is corrected for the CPU capacity available on each node.
1480 *
1481 * src_load dst_load
1482 * ------------ vs ---------
1483 * src_capacity dst_capacity
1484 */
1485 src_capacity = env->src_stats.compute_capacity;
1486 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1487
1488 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1489 if (dst_load < src_load)
1490 swap(dst_load, src_load);
e63da036
RR
1491
1492 /* Is the difference below the threshold? */
e4991b24
RR
1493 imb = dst_load * src_capacity * 100 -
1494 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1495 if (imb <= 0)
1496 return false;
1497
1498 /*
1499 * The imbalance is above the allowed threshold.
e4991b24 1500 * Compare it with the old imbalance.
e63da036 1501 */
28a21745 1502 orig_src_load = env->src_stats.load;
e4991b24 1503 orig_dst_load = env->dst_stats.load;
28a21745 1504
e4991b24
RR
1505 if (orig_dst_load < orig_src_load)
1506 swap(orig_dst_load, orig_src_load);
e63da036 1507
e4991b24
RR
1508 old_imb = orig_dst_load * src_capacity * 100 -
1509 orig_src_load * dst_capacity * env->imbalance_pct;
1510
1511 /* Would this change make things worse? */
1512 return (imb > old_imb);
e63da036
RR
1513}
1514
fb13c7ee
MG
1515/*
1516 * This checks if the overall compute and NUMA accesses of the system would
1517 * be improved if the source tasks was migrated to the target dst_cpu taking
1518 * into account that it might be best if task running on the dst_cpu should
1519 * be exchanged with the source task
1520 */
887c290e
RR
1521static void task_numa_compare(struct task_numa_env *env,
1522 long taskimp, long groupimp)
fb13c7ee
MG
1523{
1524 struct rq *src_rq = cpu_rq(env->src_cpu);
1525 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1526 struct task_struct *cur;
28a21745 1527 long src_load, dst_load;
fb13c7ee 1528 long load;
1c5d3eb3 1529 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1530 long moveimp = imp;
7bd95320 1531 int dist = env->dist;
fb13c7ee
MG
1532
1533 rcu_read_lock();
bac78573
ON
1534 cur = task_rcu_dereference(&dst_rq->curr);
1535 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1536 cur = NULL;
1537
7af68335
PZ
1538 /*
1539 * Because we have preemption enabled we can get migrated around and
1540 * end try selecting ourselves (current == env->p) as a swap candidate.
1541 */
1542 if (cur == env->p)
1543 goto unlock;
1544
fb13c7ee
MG
1545 /*
1546 * "imp" is the fault differential for the source task between the
1547 * source and destination node. Calculate the total differential for
1548 * the source task and potential destination task. The more negative
1549 * the value is, the more rmeote accesses that would be expected to
1550 * be incurred if the tasks were swapped.
1551 */
1552 if (cur) {
1553 /* Skip this swap candidate if cannot move to the source cpu */
1554 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1555 goto unlock;
1556
887c290e
RR
1557 /*
1558 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1559 * in any group then look only at task weights.
887c290e 1560 */
ca28aa53 1561 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1562 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1563 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1564 /*
1565 * Add some hysteresis to prevent swapping the
1566 * tasks within a group over tiny differences.
1567 */
1568 if (cur->numa_group)
1569 imp -= imp/16;
887c290e 1570 } else {
ca28aa53
RR
1571 /*
1572 * Compare the group weights. If a task is all by
1573 * itself (not part of a group), use the task weight
1574 * instead.
1575 */
ca28aa53 1576 if (cur->numa_group)
7bd95320
RR
1577 imp += group_weight(cur, env->src_nid, dist) -
1578 group_weight(cur, env->dst_nid, dist);
ca28aa53 1579 else
7bd95320
RR
1580 imp += task_weight(cur, env->src_nid, dist) -
1581 task_weight(cur, env->dst_nid, dist);
887c290e 1582 }
fb13c7ee
MG
1583 }
1584
0132c3e1 1585 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1586 goto unlock;
1587
1588 if (!cur) {
1589 /* Is there capacity at our destination? */
b932c03c 1590 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1591 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1592 goto unlock;
1593
1594 goto balance;
1595 }
1596
1597 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1598 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1599 dst_rq->nr_running == 1)
fb13c7ee
MG
1600 goto assign;
1601
1602 /*
1603 * In the overloaded case, try and keep the load balanced.
1604 */
1605balance:
e720fff6
PZ
1606 load = task_h_load(env->p);
1607 dst_load = env->dst_stats.load + load;
1608 src_load = env->src_stats.load - load;
fb13c7ee 1609
0132c3e1
RR
1610 if (moveimp > imp && moveimp > env->best_imp) {
1611 /*
1612 * If the improvement from just moving env->p direction is
1613 * better than swapping tasks around, check if a move is
1614 * possible. Store a slightly smaller score than moveimp,
1615 * so an actually idle CPU will win.
1616 */
1617 if (!load_too_imbalanced(src_load, dst_load, env)) {
1618 imp = moveimp - 1;
1619 cur = NULL;
1620 goto assign;
1621 }
1622 }
1623
1624 if (imp <= env->best_imp)
1625 goto unlock;
1626
fb13c7ee 1627 if (cur) {
e720fff6
PZ
1628 load = task_h_load(cur);
1629 dst_load -= load;
1630 src_load += load;
fb13c7ee
MG
1631 }
1632
28a21745 1633 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1634 goto unlock;
1635
ba7e5a27
RR
1636 /*
1637 * One idle CPU per node is evaluated for a task numa move.
1638 * Call select_idle_sibling to maybe find a better one.
1639 */
10e2f1ac
PZ
1640 if (!cur) {
1641 /*
1642 * select_idle_siblings() uses an per-cpu cpumask that
1643 * can be used from IRQ context.
1644 */
1645 local_irq_disable();
772bd008
MR
1646 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1647 env->dst_cpu);
10e2f1ac
PZ
1648 local_irq_enable();
1649 }
ba7e5a27 1650
fb13c7ee
MG
1651assign:
1652 task_numa_assign(env, cur, imp);
1653unlock:
1654 rcu_read_unlock();
1655}
1656
887c290e
RR
1657static void task_numa_find_cpu(struct task_numa_env *env,
1658 long taskimp, long groupimp)
2c8a50aa
MG
1659{
1660 int cpu;
1661
1662 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1663 /* Skip this CPU if the source task cannot migrate */
1664 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1665 continue;
1666
1667 env->dst_cpu = cpu;
887c290e 1668 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1669 }
1670}
1671
6f9aad0b
RR
1672/* Only move tasks to a NUMA node less busy than the current node. */
1673static bool numa_has_capacity(struct task_numa_env *env)
1674{
1675 struct numa_stats *src = &env->src_stats;
1676 struct numa_stats *dst = &env->dst_stats;
1677
1678 if (src->has_free_capacity && !dst->has_free_capacity)
1679 return false;
1680
1681 /*
1682 * Only consider a task move if the source has a higher load
1683 * than the destination, corrected for CPU capacity on each node.
1684 *
1685 * src->load dst->load
1686 * --------------------- vs ---------------------
1687 * src->compute_capacity dst->compute_capacity
1688 */
44dcb04f
SD
1689 if (src->load * dst->compute_capacity * env->imbalance_pct >
1690
1691 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1692 return true;
1693
1694 return false;
1695}
1696
58d081b5
MG
1697static int task_numa_migrate(struct task_struct *p)
1698{
58d081b5
MG
1699 struct task_numa_env env = {
1700 .p = p,
fb13c7ee 1701
58d081b5 1702 .src_cpu = task_cpu(p),
b32e86b4 1703 .src_nid = task_node(p),
fb13c7ee
MG
1704
1705 .imbalance_pct = 112,
1706
1707 .best_task = NULL,
1708 .best_imp = 0,
4142c3eb 1709 .best_cpu = -1,
58d081b5
MG
1710 };
1711 struct sched_domain *sd;
887c290e 1712 unsigned long taskweight, groupweight;
7bd95320 1713 int nid, ret, dist;
887c290e 1714 long taskimp, groupimp;
e6628d5b 1715
58d081b5 1716 /*
fb13c7ee
MG
1717 * Pick the lowest SD_NUMA domain, as that would have the smallest
1718 * imbalance and would be the first to start moving tasks about.
1719 *
1720 * And we want to avoid any moving of tasks about, as that would create
1721 * random movement of tasks -- counter the numa conditions we're trying
1722 * to satisfy here.
58d081b5
MG
1723 */
1724 rcu_read_lock();
fb13c7ee 1725 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1726 if (sd)
1727 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1728 rcu_read_unlock();
1729
46a73e8a
RR
1730 /*
1731 * Cpusets can break the scheduler domain tree into smaller
1732 * balance domains, some of which do not cross NUMA boundaries.
1733 * Tasks that are "trapped" in such domains cannot be migrated
1734 * elsewhere, so there is no point in (re)trying.
1735 */
1736 if (unlikely(!sd)) {
de1b301a 1737 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1738 return -EINVAL;
1739 }
1740
2c8a50aa 1741 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1742 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1743 taskweight = task_weight(p, env.src_nid, dist);
1744 groupweight = group_weight(p, env.src_nid, dist);
1745 update_numa_stats(&env.src_stats, env.src_nid);
1746 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1747 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1748 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1749
a43455a1 1750 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1751 if (numa_has_capacity(&env))
1752 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1753
9de05d48
RR
1754 /*
1755 * Look at other nodes in these cases:
1756 * - there is no space available on the preferred_nid
1757 * - the task is part of a numa_group that is interleaved across
1758 * multiple NUMA nodes; in order to better consolidate the group,
1759 * we need to check other locations.
1760 */
4142c3eb 1761 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1762 for_each_online_node(nid) {
1763 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 continue;
58d081b5 1765
7bd95320 1766 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1767 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 dist != env.dist) {
1769 taskweight = task_weight(p, env.src_nid, dist);
1770 groupweight = group_weight(p, env.src_nid, dist);
1771 }
7bd95320 1772
83e1d2cd 1773 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1774 taskimp = task_weight(p, nid, dist) - taskweight;
1775 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1776 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1777 continue;
1778
7bd95320 1779 env.dist = dist;
2c8a50aa
MG
1780 env.dst_nid = nid;
1781 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1782 if (numa_has_capacity(&env))
1783 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1784 }
1785 }
1786
68d1b02a
RR
1787 /*
1788 * If the task is part of a workload that spans multiple NUMA nodes,
1789 * and is migrating into one of the workload's active nodes, remember
1790 * this node as the task's preferred numa node, so the workload can
1791 * settle down.
1792 * A task that migrated to a second choice node will be better off
1793 * trying for a better one later. Do not set the preferred node here.
1794 */
db015dae 1795 if (p->numa_group) {
4142c3eb
RR
1796 struct numa_group *ng = p->numa_group;
1797
db015dae
RR
1798 if (env.best_cpu == -1)
1799 nid = env.src_nid;
1800 else
1801 nid = env.dst_nid;
1802
4142c3eb 1803 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1804 sched_setnuma(p, env.dst_nid);
1805 }
1806
1807 /* No better CPU than the current one was found. */
1808 if (env.best_cpu == -1)
1809 return -EAGAIN;
0ec8aa00 1810
04bb2f94
RR
1811 /*
1812 * Reset the scan period if the task is being rescheduled on an
1813 * alternative node to recheck if the tasks is now properly placed.
1814 */
1815 p->numa_scan_period = task_scan_min(p);
1816
fb13c7ee 1817 if (env.best_task == NULL) {
286549dc
MG
1818 ret = migrate_task_to(p, env.best_cpu);
1819 if (ret != 0)
1820 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1821 return ret;
1822 }
1823
1824 ret = migrate_swap(p, env.best_task);
286549dc
MG
1825 if (ret != 0)
1826 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1827 put_task_struct(env.best_task);
1828 return ret;
e6628d5b
MG
1829}
1830
6b9a7460
MG
1831/* Attempt to migrate a task to a CPU on the preferred node. */
1832static void numa_migrate_preferred(struct task_struct *p)
1833{
5085e2a3
RR
1834 unsigned long interval = HZ;
1835
2739d3ee 1836 /* This task has no NUMA fault statistics yet */
44dba3d5 1837 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1838 return;
1839
2739d3ee 1840 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1841 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1842 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1843
1844 /* Success if task is already running on preferred CPU */
de1b301a 1845 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1846 return;
1847
1848 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1849 task_numa_migrate(p);
6b9a7460
MG
1850}
1851
20e07dea 1852/*
4142c3eb 1853 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1854 * tracking the nodes from which NUMA hinting faults are triggered. This can
1855 * be different from the set of nodes where the workload's memory is currently
1856 * located.
20e07dea 1857 */
4142c3eb 1858static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1859{
1860 unsigned long faults, max_faults = 0;
4142c3eb 1861 int nid, active_nodes = 0;
20e07dea
RR
1862
1863 for_each_online_node(nid) {
1864 faults = group_faults_cpu(numa_group, nid);
1865 if (faults > max_faults)
1866 max_faults = faults;
1867 }
1868
1869 for_each_online_node(nid) {
1870 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1871 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1872 active_nodes++;
20e07dea 1873 }
4142c3eb
RR
1874
1875 numa_group->max_faults_cpu = max_faults;
1876 numa_group->active_nodes = active_nodes;
20e07dea
RR
1877}
1878
04bb2f94
RR
1879/*
1880 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1881 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1882 * period will be for the next scan window. If local/(local+remote) ratio is
1883 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1884 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1885 */
1886#define NUMA_PERIOD_SLOTS 10
a22b4b01 1887#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1888
1889/*
1890 * Increase the scan period (slow down scanning) if the majority of
1891 * our memory is already on our local node, or if the majority of
1892 * the page accesses are shared with other processes.
1893 * Otherwise, decrease the scan period.
1894 */
1895static void update_task_scan_period(struct task_struct *p,
1896 unsigned long shared, unsigned long private)
1897{
1898 unsigned int period_slot;
1899 int ratio;
1900 int diff;
1901
1902 unsigned long remote = p->numa_faults_locality[0];
1903 unsigned long local = p->numa_faults_locality[1];
1904
1905 /*
1906 * If there were no record hinting faults then either the task is
1907 * completely idle or all activity is areas that are not of interest
074c2381
MG
1908 * to automatic numa balancing. Related to that, if there were failed
1909 * migration then it implies we are migrating too quickly or the local
1910 * node is overloaded. In either case, scan slower
04bb2f94 1911 */
074c2381 1912 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1913 p->numa_scan_period = min(p->numa_scan_period_max,
1914 p->numa_scan_period << 1);
1915
1916 p->mm->numa_next_scan = jiffies +
1917 msecs_to_jiffies(p->numa_scan_period);
1918
1919 return;
1920 }
1921
1922 /*
1923 * Prepare to scale scan period relative to the current period.
1924 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1925 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1926 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1927 */
1928 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1929 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1930 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1931 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1932 if (!slot)
1933 slot = 1;
1934 diff = slot * period_slot;
1935 } else {
1936 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1937
1938 /*
1939 * Scale scan rate increases based on sharing. There is an
1940 * inverse relationship between the degree of sharing and
1941 * the adjustment made to the scanning period. Broadly
1942 * speaking the intent is that there is little point
1943 * scanning faster if shared accesses dominate as it may
1944 * simply bounce migrations uselessly
1945 */
2847c90e 1946 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1947 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1948 }
1949
1950 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1951 task_scan_min(p), task_scan_max(p));
1952 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1953}
1954
7e2703e6
RR
1955/*
1956 * Get the fraction of time the task has been running since the last
1957 * NUMA placement cycle. The scheduler keeps similar statistics, but
1958 * decays those on a 32ms period, which is orders of magnitude off
1959 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1960 * stats only if the task is so new there are no NUMA statistics yet.
1961 */
1962static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1963{
1964 u64 runtime, delta, now;
1965 /* Use the start of this time slice to avoid calculations. */
1966 now = p->se.exec_start;
1967 runtime = p->se.sum_exec_runtime;
1968
1969 if (p->last_task_numa_placement) {
1970 delta = runtime - p->last_sum_exec_runtime;
1971 *period = now - p->last_task_numa_placement;
1972 } else {
9d89c257
YD
1973 delta = p->se.avg.load_sum / p->se.load.weight;
1974 *period = LOAD_AVG_MAX;
7e2703e6
RR
1975 }
1976
1977 p->last_sum_exec_runtime = runtime;
1978 p->last_task_numa_placement = now;
1979
1980 return delta;
1981}
1982
54009416
RR
1983/*
1984 * Determine the preferred nid for a task in a numa_group. This needs to
1985 * be done in a way that produces consistent results with group_weight,
1986 * otherwise workloads might not converge.
1987 */
1988static int preferred_group_nid(struct task_struct *p, int nid)
1989{
1990 nodemask_t nodes;
1991 int dist;
1992
1993 /* Direct connections between all NUMA nodes. */
1994 if (sched_numa_topology_type == NUMA_DIRECT)
1995 return nid;
1996
1997 /*
1998 * On a system with glueless mesh NUMA topology, group_weight
1999 * scores nodes according to the number of NUMA hinting faults on
2000 * both the node itself, and on nearby nodes.
2001 */
2002 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2003 unsigned long score, max_score = 0;
2004 int node, max_node = nid;
2005
2006 dist = sched_max_numa_distance;
2007
2008 for_each_online_node(node) {
2009 score = group_weight(p, node, dist);
2010 if (score > max_score) {
2011 max_score = score;
2012 max_node = node;
2013 }
2014 }
2015 return max_node;
2016 }
2017
2018 /*
2019 * Finding the preferred nid in a system with NUMA backplane
2020 * interconnect topology is more involved. The goal is to locate
2021 * tasks from numa_groups near each other in the system, and
2022 * untangle workloads from different sides of the system. This requires
2023 * searching down the hierarchy of node groups, recursively searching
2024 * inside the highest scoring group of nodes. The nodemask tricks
2025 * keep the complexity of the search down.
2026 */
2027 nodes = node_online_map;
2028 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2029 unsigned long max_faults = 0;
81907478 2030 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2031 int a, b;
2032
2033 /* Are there nodes at this distance from each other? */
2034 if (!find_numa_distance(dist))
2035 continue;
2036
2037 for_each_node_mask(a, nodes) {
2038 unsigned long faults = 0;
2039 nodemask_t this_group;
2040 nodes_clear(this_group);
2041
2042 /* Sum group's NUMA faults; includes a==b case. */
2043 for_each_node_mask(b, nodes) {
2044 if (node_distance(a, b) < dist) {
2045 faults += group_faults(p, b);
2046 node_set(b, this_group);
2047 node_clear(b, nodes);
2048 }
2049 }
2050
2051 /* Remember the top group. */
2052 if (faults > max_faults) {
2053 max_faults = faults;
2054 max_group = this_group;
2055 /*
2056 * subtle: at the smallest distance there is
2057 * just one node left in each "group", the
2058 * winner is the preferred nid.
2059 */
2060 nid = a;
2061 }
2062 }
2063 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2064 if (!max_faults)
2065 break;
54009416
RR
2066 nodes = max_group;
2067 }
2068 return nid;
2069}
2070
cbee9f88
PZ
2071static void task_numa_placement(struct task_struct *p)
2072{
83e1d2cd
MG
2073 int seq, nid, max_nid = -1, max_group_nid = -1;
2074 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2075 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2076 unsigned long total_faults;
2077 u64 runtime, period;
7dbd13ed 2078 spinlock_t *group_lock = NULL;
cbee9f88 2079
7e5a2c17
JL
2080 /*
2081 * The p->mm->numa_scan_seq field gets updated without
2082 * exclusive access. Use READ_ONCE() here to ensure
2083 * that the field is read in a single access:
2084 */
316c1608 2085 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2086 if (p->numa_scan_seq == seq)
2087 return;
2088 p->numa_scan_seq = seq;
598f0ec0 2089 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2090
7e2703e6
RR
2091 total_faults = p->numa_faults_locality[0] +
2092 p->numa_faults_locality[1];
2093 runtime = numa_get_avg_runtime(p, &period);
2094
7dbd13ed
MG
2095 /* If the task is part of a group prevent parallel updates to group stats */
2096 if (p->numa_group) {
2097 group_lock = &p->numa_group->lock;
60e69eed 2098 spin_lock_irq(group_lock);
7dbd13ed
MG
2099 }
2100
688b7585
MG
2101 /* Find the node with the highest number of faults */
2102 for_each_online_node(nid) {
44dba3d5
IM
2103 /* Keep track of the offsets in numa_faults array */
2104 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2105 unsigned long faults = 0, group_faults = 0;
44dba3d5 2106 int priv;
745d6147 2107
be1e4e76 2108 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2109 long diff, f_diff, f_weight;
8c8a743c 2110
44dba3d5
IM
2111 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2112 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2113 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2114 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2115
ac8e895b 2116 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2117 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2118 fault_types[priv] += p->numa_faults[membuf_idx];
2119 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2120
7e2703e6
RR
2121 /*
2122 * Normalize the faults_from, so all tasks in a group
2123 * count according to CPU use, instead of by the raw
2124 * number of faults. Tasks with little runtime have
2125 * little over-all impact on throughput, and thus their
2126 * faults are less important.
2127 */
2128 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2129 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2130 (total_faults + 1);
44dba3d5
IM
2131 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2132 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2133
44dba3d5
IM
2134 p->numa_faults[mem_idx] += diff;
2135 p->numa_faults[cpu_idx] += f_diff;
2136 faults += p->numa_faults[mem_idx];
83e1d2cd 2137 p->total_numa_faults += diff;
8c8a743c 2138 if (p->numa_group) {
44dba3d5
IM
2139 /*
2140 * safe because we can only change our own group
2141 *
2142 * mem_idx represents the offset for a given
2143 * nid and priv in a specific region because it
2144 * is at the beginning of the numa_faults array.
2145 */
2146 p->numa_group->faults[mem_idx] += diff;
2147 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2148 p->numa_group->total_faults += diff;
44dba3d5 2149 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2150 }
ac8e895b
MG
2151 }
2152
688b7585
MG
2153 if (faults > max_faults) {
2154 max_faults = faults;
2155 max_nid = nid;
2156 }
83e1d2cd
MG
2157
2158 if (group_faults > max_group_faults) {
2159 max_group_faults = group_faults;
2160 max_group_nid = nid;
2161 }
2162 }
2163
04bb2f94
RR
2164 update_task_scan_period(p, fault_types[0], fault_types[1]);
2165
7dbd13ed 2166 if (p->numa_group) {
4142c3eb 2167 numa_group_count_active_nodes(p->numa_group);
60e69eed 2168 spin_unlock_irq(group_lock);
54009416 2169 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2170 }
2171
bb97fc31
RR
2172 if (max_faults) {
2173 /* Set the new preferred node */
2174 if (max_nid != p->numa_preferred_nid)
2175 sched_setnuma(p, max_nid);
2176
2177 if (task_node(p) != p->numa_preferred_nid)
2178 numa_migrate_preferred(p);
3a7053b3 2179 }
cbee9f88
PZ
2180}
2181
8c8a743c
PZ
2182static inline int get_numa_group(struct numa_group *grp)
2183{
2184 return atomic_inc_not_zero(&grp->refcount);
2185}
2186
2187static inline void put_numa_group(struct numa_group *grp)
2188{
2189 if (atomic_dec_and_test(&grp->refcount))
2190 kfree_rcu(grp, rcu);
2191}
2192
3e6a9418
MG
2193static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2194 int *priv)
8c8a743c
PZ
2195{
2196 struct numa_group *grp, *my_grp;
2197 struct task_struct *tsk;
2198 bool join = false;
2199 int cpu = cpupid_to_cpu(cpupid);
2200 int i;
2201
2202 if (unlikely(!p->numa_group)) {
2203 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2204 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2205
2206 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2207 if (!grp)
2208 return;
2209
2210 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2211 grp->active_nodes = 1;
2212 grp->max_faults_cpu = 0;
8c8a743c 2213 spin_lock_init(&grp->lock);
e29cf08b 2214 grp->gid = p->pid;
50ec8a40 2215 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2216 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2217 nr_node_ids;
8c8a743c 2218
be1e4e76 2219 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2220 grp->faults[i] = p->numa_faults[i];
8c8a743c 2221
989348b5 2222 grp->total_faults = p->total_numa_faults;
83e1d2cd 2223
8c8a743c
PZ
2224 grp->nr_tasks++;
2225 rcu_assign_pointer(p->numa_group, grp);
2226 }
2227
2228 rcu_read_lock();
316c1608 2229 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2230
2231 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2232 goto no_join;
8c8a743c
PZ
2233
2234 grp = rcu_dereference(tsk->numa_group);
2235 if (!grp)
3354781a 2236 goto no_join;
8c8a743c
PZ
2237
2238 my_grp = p->numa_group;
2239 if (grp == my_grp)
3354781a 2240 goto no_join;
8c8a743c
PZ
2241
2242 /*
2243 * Only join the other group if its bigger; if we're the bigger group,
2244 * the other task will join us.
2245 */
2246 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2247 goto no_join;
8c8a743c
PZ
2248
2249 /*
2250 * Tie-break on the grp address.
2251 */
2252 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2253 goto no_join;
8c8a743c 2254
dabe1d99
RR
2255 /* Always join threads in the same process. */
2256 if (tsk->mm == current->mm)
2257 join = true;
2258
2259 /* Simple filter to avoid false positives due to PID collisions */
2260 if (flags & TNF_SHARED)
2261 join = true;
8c8a743c 2262
3e6a9418
MG
2263 /* Update priv based on whether false sharing was detected */
2264 *priv = !join;
2265
dabe1d99 2266 if (join && !get_numa_group(grp))
3354781a 2267 goto no_join;
8c8a743c 2268
8c8a743c
PZ
2269 rcu_read_unlock();
2270
2271 if (!join)
2272 return;
2273
60e69eed
MG
2274 BUG_ON(irqs_disabled());
2275 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2276
be1e4e76 2277 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2278 my_grp->faults[i] -= p->numa_faults[i];
2279 grp->faults[i] += p->numa_faults[i];
8c8a743c 2280 }
989348b5
MG
2281 my_grp->total_faults -= p->total_numa_faults;
2282 grp->total_faults += p->total_numa_faults;
8c8a743c 2283
8c8a743c
PZ
2284 my_grp->nr_tasks--;
2285 grp->nr_tasks++;
2286
2287 spin_unlock(&my_grp->lock);
60e69eed 2288 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2289
2290 rcu_assign_pointer(p->numa_group, grp);
2291
2292 put_numa_group(my_grp);
3354781a
PZ
2293 return;
2294
2295no_join:
2296 rcu_read_unlock();
2297 return;
8c8a743c
PZ
2298}
2299
2300void task_numa_free(struct task_struct *p)
2301{
2302 struct numa_group *grp = p->numa_group;
44dba3d5 2303 void *numa_faults = p->numa_faults;
e9dd685c
SR
2304 unsigned long flags;
2305 int i;
8c8a743c
PZ
2306
2307 if (grp) {
e9dd685c 2308 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2309 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2310 grp->faults[i] -= p->numa_faults[i];
989348b5 2311 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2312
8c8a743c 2313 grp->nr_tasks--;
e9dd685c 2314 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2315 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2316 put_numa_group(grp);
2317 }
2318
44dba3d5 2319 p->numa_faults = NULL;
82727018 2320 kfree(numa_faults);
8c8a743c
PZ
2321}
2322
cbee9f88
PZ
2323/*
2324 * Got a PROT_NONE fault for a page on @node.
2325 */
58b46da3 2326void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2327{
2328 struct task_struct *p = current;
6688cc05 2329 bool migrated = flags & TNF_MIGRATED;
58b46da3 2330 int cpu_node = task_node(current);
792568ec 2331 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2332 struct numa_group *ng;
ac8e895b 2333 int priv;
cbee9f88 2334
2a595721 2335 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2336 return;
2337
9ff1d9ff
MG
2338 /* for example, ksmd faulting in a user's mm */
2339 if (!p->mm)
2340 return;
2341
f809ca9a 2342 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2343 if (unlikely(!p->numa_faults)) {
2344 int size = sizeof(*p->numa_faults) *
be1e4e76 2345 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2346
44dba3d5
IM
2347 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2348 if (!p->numa_faults)
f809ca9a 2349 return;
745d6147 2350
83e1d2cd 2351 p->total_numa_faults = 0;
04bb2f94 2352 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2353 }
cbee9f88 2354
8c8a743c
PZ
2355 /*
2356 * First accesses are treated as private, otherwise consider accesses
2357 * to be private if the accessing pid has not changed
2358 */
2359 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2360 priv = 1;
2361 } else {
2362 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2363 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2364 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2365 }
2366
792568ec
RR
2367 /*
2368 * If a workload spans multiple NUMA nodes, a shared fault that
2369 * occurs wholly within the set of nodes that the workload is
2370 * actively using should be counted as local. This allows the
2371 * scan rate to slow down when a workload has settled down.
2372 */
4142c3eb
RR
2373 ng = p->numa_group;
2374 if (!priv && !local && ng && ng->active_nodes > 1 &&
2375 numa_is_active_node(cpu_node, ng) &&
2376 numa_is_active_node(mem_node, ng))
792568ec
RR
2377 local = 1;
2378
cbee9f88 2379 task_numa_placement(p);
f809ca9a 2380
2739d3ee
RR
2381 /*
2382 * Retry task to preferred node migration periodically, in case it
2383 * case it previously failed, or the scheduler moved us.
2384 */
2385 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2386 numa_migrate_preferred(p);
2387
b32e86b4
IM
2388 if (migrated)
2389 p->numa_pages_migrated += pages;
074c2381
MG
2390 if (flags & TNF_MIGRATE_FAIL)
2391 p->numa_faults_locality[2] += pages;
b32e86b4 2392
44dba3d5
IM
2393 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2394 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2395 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2396}
2397
6e5fb223
PZ
2398static void reset_ptenuma_scan(struct task_struct *p)
2399{
7e5a2c17
JL
2400 /*
2401 * We only did a read acquisition of the mmap sem, so
2402 * p->mm->numa_scan_seq is written to without exclusive access
2403 * and the update is not guaranteed to be atomic. That's not
2404 * much of an issue though, since this is just used for
2405 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2406 * expensive, to avoid any form of compiler optimizations:
2407 */
316c1608 2408 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2409 p->mm->numa_scan_offset = 0;
2410}
2411
cbee9f88
PZ
2412/*
2413 * The expensive part of numa migration is done from task_work context.
2414 * Triggered from task_tick_numa().
2415 */
2416void task_numa_work(struct callback_head *work)
2417{
2418 unsigned long migrate, next_scan, now = jiffies;
2419 struct task_struct *p = current;
2420 struct mm_struct *mm = p->mm;
51170840 2421 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2422 struct vm_area_struct *vma;
9f40604c 2423 unsigned long start, end;
598f0ec0 2424 unsigned long nr_pte_updates = 0;
4620f8c1 2425 long pages, virtpages;
cbee9f88 2426
9148a3a1 2427 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2428
2429 work->next = work; /* protect against double add */
2430 /*
2431 * Who cares about NUMA placement when they're dying.
2432 *
2433 * NOTE: make sure not to dereference p->mm before this check,
2434 * exit_task_work() happens _after_ exit_mm() so we could be called
2435 * without p->mm even though we still had it when we enqueued this
2436 * work.
2437 */
2438 if (p->flags & PF_EXITING)
2439 return;
2440
930aa174 2441 if (!mm->numa_next_scan) {
7e8d16b6
MG
2442 mm->numa_next_scan = now +
2443 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2444 }
2445
cbee9f88
PZ
2446 /*
2447 * Enforce maximal scan/migration frequency..
2448 */
2449 migrate = mm->numa_next_scan;
2450 if (time_before(now, migrate))
2451 return;
2452
598f0ec0
MG
2453 if (p->numa_scan_period == 0) {
2454 p->numa_scan_period_max = task_scan_max(p);
2455 p->numa_scan_period = task_scan_min(p);
2456 }
cbee9f88 2457
fb003b80 2458 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2459 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2460 return;
2461
19a78d11
PZ
2462 /*
2463 * Delay this task enough that another task of this mm will likely win
2464 * the next time around.
2465 */
2466 p->node_stamp += 2 * TICK_NSEC;
2467
9f40604c
MG
2468 start = mm->numa_scan_offset;
2469 pages = sysctl_numa_balancing_scan_size;
2470 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2471 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2472 if (!pages)
2473 return;
cbee9f88 2474
4620f8c1 2475
6e5fb223 2476 down_read(&mm->mmap_sem);
9f40604c 2477 vma = find_vma(mm, start);
6e5fb223
PZ
2478 if (!vma) {
2479 reset_ptenuma_scan(p);
9f40604c 2480 start = 0;
6e5fb223
PZ
2481 vma = mm->mmap;
2482 }
9f40604c 2483 for (; vma; vma = vma->vm_next) {
6b79c57b 2484 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2485 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2486 continue;
6b79c57b 2487 }
6e5fb223 2488
4591ce4f
MG
2489 /*
2490 * Shared library pages mapped by multiple processes are not
2491 * migrated as it is expected they are cache replicated. Avoid
2492 * hinting faults in read-only file-backed mappings or the vdso
2493 * as migrating the pages will be of marginal benefit.
2494 */
2495 if (!vma->vm_mm ||
2496 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2497 continue;
2498
3c67f474
MG
2499 /*
2500 * Skip inaccessible VMAs to avoid any confusion between
2501 * PROT_NONE and NUMA hinting ptes
2502 */
2503 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2504 continue;
4591ce4f 2505
9f40604c
MG
2506 do {
2507 start = max(start, vma->vm_start);
2508 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2509 end = min(end, vma->vm_end);
4620f8c1 2510 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2511
2512 /*
4620f8c1
RR
2513 * Try to scan sysctl_numa_balancing_size worth of
2514 * hpages that have at least one present PTE that
2515 * is not already pte-numa. If the VMA contains
2516 * areas that are unused or already full of prot_numa
2517 * PTEs, scan up to virtpages, to skip through those
2518 * areas faster.
598f0ec0
MG
2519 */
2520 if (nr_pte_updates)
2521 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2522 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2523
9f40604c 2524 start = end;
4620f8c1 2525 if (pages <= 0 || virtpages <= 0)
9f40604c 2526 goto out;
3cf1962c
RR
2527
2528 cond_resched();
9f40604c 2529 } while (end != vma->vm_end);
cbee9f88 2530 }
6e5fb223 2531
9f40604c 2532out:
6e5fb223 2533 /*
c69307d5
PZ
2534 * It is possible to reach the end of the VMA list but the last few
2535 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2536 * would find the !migratable VMA on the next scan but not reset the
2537 * scanner to the start so check it now.
6e5fb223
PZ
2538 */
2539 if (vma)
9f40604c 2540 mm->numa_scan_offset = start;
6e5fb223
PZ
2541 else
2542 reset_ptenuma_scan(p);
2543 up_read(&mm->mmap_sem);
51170840
RR
2544
2545 /*
2546 * Make sure tasks use at least 32x as much time to run other code
2547 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2548 * Usually update_task_scan_period slows down scanning enough; on an
2549 * overloaded system we need to limit overhead on a per task basis.
2550 */
2551 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2552 u64 diff = p->se.sum_exec_runtime - runtime;
2553 p->node_stamp += 32 * diff;
2554 }
cbee9f88
PZ
2555}
2556
2557/*
2558 * Drive the periodic memory faults..
2559 */
2560void task_tick_numa(struct rq *rq, struct task_struct *curr)
2561{
2562 struct callback_head *work = &curr->numa_work;
2563 u64 period, now;
2564
2565 /*
2566 * We don't care about NUMA placement if we don't have memory.
2567 */
2568 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2569 return;
2570
2571 /*
2572 * Using runtime rather than walltime has the dual advantage that
2573 * we (mostly) drive the selection from busy threads and that the
2574 * task needs to have done some actual work before we bother with
2575 * NUMA placement.
2576 */
2577 now = curr->se.sum_exec_runtime;
2578 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2579
25b3e5a3 2580 if (now > curr->node_stamp + period) {
4b96a29b 2581 if (!curr->node_stamp)
598f0ec0 2582 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2583 curr->node_stamp += period;
cbee9f88
PZ
2584
2585 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2586 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2587 task_work_add(curr, work, true);
2588 }
2589 }
2590}
2591#else
2592static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2593{
2594}
0ec8aa00
PZ
2595
2596static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2597{
2598}
2599
2600static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2601{
2602}
cbee9f88
PZ
2603#endif /* CONFIG_NUMA_BALANCING */
2604
30cfdcfc
DA
2605static void
2606account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2607{
2608 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2609 if (!parent_entity(se))
029632fb 2610 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2611#ifdef CONFIG_SMP
0ec8aa00
PZ
2612 if (entity_is_task(se)) {
2613 struct rq *rq = rq_of(cfs_rq);
2614
2615 account_numa_enqueue(rq, task_of(se));
2616 list_add(&se->group_node, &rq->cfs_tasks);
2617 }
367456c7 2618#endif
30cfdcfc 2619 cfs_rq->nr_running++;
30cfdcfc
DA
2620}
2621
2622static void
2623account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2624{
2625 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2626 if (!parent_entity(se))
029632fb 2627 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2628#ifdef CONFIG_SMP
0ec8aa00
PZ
2629 if (entity_is_task(se)) {
2630 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2631 list_del_init(&se->group_node);
0ec8aa00 2632 }
bfdb198c 2633#endif
30cfdcfc 2634 cfs_rq->nr_running--;
30cfdcfc
DA
2635}
2636
3ff6dcac
YZ
2637#ifdef CONFIG_FAIR_GROUP_SCHED
2638# ifdef CONFIG_SMP
ea1dc6fc 2639static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2640{
ea1dc6fc 2641 long tg_weight, load, shares;
cf5f0acf
PZ
2642
2643 /*
ea1dc6fc
PZ
2644 * This really should be: cfs_rq->avg.load_avg, but instead we use
2645 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2646 * the shares for small weight interactive tasks.
cf5f0acf 2647 */
ea1dc6fc 2648 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2649
ea1dc6fc 2650 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2651
ea1dc6fc
PZ
2652 /* Ensure tg_weight >= load */
2653 tg_weight -= cfs_rq->tg_load_avg_contrib;
2654 tg_weight += load;
3ff6dcac 2655
3ff6dcac 2656 shares = (tg->shares * load);
cf5f0acf
PZ
2657 if (tg_weight)
2658 shares /= tg_weight;
3ff6dcac
YZ
2659
2660 if (shares < MIN_SHARES)
2661 shares = MIN_SHARES;
2662 if (shares > tg->shares)
2663 shares = tg->shares;
2664
2665 return shares;
2666}
3ff6dcac 2667# else /* CONFIG_SMP */
6d5ab293 2668static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2669{
2670 return tg->shares;
2671}
3ff6dcac 2672# endif /* CONFIG_SMP */
ea1dc6fc 2673
2069dd75
PZ
2674static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2675 unsigned long weight)
2676{
19e5eebb
PT
2677 if (se->on_rq) {
2678 /* commit outstanding execution time */
2679 if (cfs_rq->curr == se)
2680 update_curr(cfs_rq);
2069dd75 2681 account_entity_dequeue(cfs_rq, se);
19e5eebb 2682 }
2069dd75
PZ
2683
2684 update_load_set(&se->load, weight);
2685
2686 if (se->on_rq)
2687 account_entity_enqueue(cfs_rq, se);
2688}
2689
82958366
PT
2690static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2691
6d5ab293 2692static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2693{
2694 struct task_group *tg;
2695 struct sched_entity *se;
3ff6dcac 2696 long shares;
2069dd75 2697
2069dd75
PZ
2698 tg = cfs_rq->tg;
2699 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2700 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2701 return;
3ff6dcac
YZ
2702#ifndef CONFIG_SMP
2703 if (likely(se->load.weight == tg->shares))
2704 return;
2705#endif
6d5ab293 2706 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2707
2708 reweight_entity(cfs_rq_of(se), se, shares);
2709}
2710#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2711static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2712{
2713}
2714#endif /* CONFIG_FAIR_GROUP_SCHED */
2715
141965c7 2716#ifdef CONFIG_SMP
5b51f2f8
PT
2717/* Precomputed fixed inverse multiplies for multiplication by y^n */
2718static const u32 runnable_avg_yN_inv[] = {
2719 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2720 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2721 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2722 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2723 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2724 0x85aac367, 0x82cd8698,
2725};
2726
2727/*
2728 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2729 * over-estimates when re-combining.
2730 */
2731static const u32 runnable_avg_yN_sum[] = {
2732 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2733 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2734 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2735};
2736
7b20b916
YD
2737/*
2738 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2739 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2740 * were generated:
2741 */
2742static const u32 __accumulated_sum_N32[] = {
2743 0, 23371, 35056, 40899, 43820, 45281,
2744 46011, 46376, 46559, 46650, 46696, 46719,
2745};
2746
9d85f21c
PT
2747/*
2748 * Approximate:
2749 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2750 */
2751static __always_inline u64 decay_load(u64 val, u64 n)
2752{
5b51f2f8
PT
2753 unsigned int local_n;
2754
2755 if (!n)
2756 return val;
2757 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2758 return 0;
2759
2760 /* after bounds checking we can collapse to 32-bit */
2761 local_n = n;
2762
2763 /*
2764 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2765 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2766 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2767 *
2768 * To achieve constant time decay_load.
2769 */
2770 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2771 val >>= local_n / LOAD_AVG_PERIOD;
2772 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2773 }
2774
9d89c257
YD
2775 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2776 return val;
5b51f2f8
PT
2777}
2778
2779/*
2780 * For updates fully spanning n periods, the contribution to runnable
2781 * average will be: \Sum 1024*y^n
2782 *
2783 * We can compute this reasonably efficiently by combining:
2784 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2785 */
2786static u32 __compute_runnable_contrib(u64 n)
2787{
2788 u32 contrib = 0;
2789
2790 if (likely(n <= LOAD_AVG_PERIOD))
2791 return runnable_avg_yN_sum[n];
2792 else if (unlikely(n >= LOAD_AVG_MAX_N))
2793 return LOAD_AVG_MAX;
2794
7b20b916
YD
2795 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2796 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2797 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2798 contrib = decay_load(contrib, n);
2799 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2800}
2801
54a21385 2802#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2803
9d85f21c
PT
2804/*
2805 * We can represent the historical contribution to runnable average as the
2806 * coefficients of a geometric series. To do this we sub-divide our runnable
2807 * history into segments of approximately 1ms (1024us); label the segment that
2808 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2809 *
2810 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2811 * p0 p1 p2
2812 * (now) (~1ms ago) (~2ms ago)
2813 *
2814 * Let u_i denote the fraction of p_i that the entity was runnable.
2815 *
2816 * We then designate the fractions u_i as our co-efficients, yielding the
2817 * following representation of historical load:
2818 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2819 *
2820 * We choose y based on the with of a reasonably scheduling period, fixing:
2821 * y^32 = 0.5
2822 *
2823 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2824 * approximately half as much as the contribution to load within the last ms
2825 * (u_0).
2826 *
2827 * When a period "rolls over" and we have new u_0`, multiplying the previous
2828 * sum again by y is sufficient to update:
2829 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2830 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2831 */
9d89c257
YD
2832static __always_inline int
2833__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2834 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2835{
e0f5f3af 2836 u64 delta, scaled_delta, periods;
9d89c257 2837 u32 contrib;
6115c793 2838 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2839 unsigned long scale_freq, scale_cpu;
9d85f21c 2840
9d89c257 2841 delta = now - sa->last_update_time;
9d85f21c
PT
2842 /*
2843 * This should only happen when time goes backwards, which it
2844 * unfortunately does during sched clock init when we swap over to TSC.
2845 */
2846 if ((s64)delta < 0) {
9d89c257 2847 sa->last_update_time = now;
9d85f21c
PT
2848 return 0;
2849 }
2850
2851 /*
2852 * Use 1024ns as the unit of measurement since it's a reasonable
2853 * approximation of 1us and fast to compute.
2854 */
2855 delta >>= 10;
2856 if (!delta)
2857 return 0;
9d89c257 2858 sa->last_update_time = now;
9d85f21c 2859
6f2b0452
DE
2860 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2861 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2862
9d85f21c 2863 /* delta_w is the amount already accumulated against our next period */
9d89c257 2864 delta_w = sa->period_contrib;
9d85f21c 2865 if (delta + delta_w >= 1024) {
9d85f21c
PT
2866 decayed = 1;
2867
9d89c257
YD
2868 /* how much left for next period will start over, we don't know yet */
2869 sa->period_contrib = 0;
2870
9d85f21c
PT
2871 /*
2872 * Now that we know we're crossing a period boundary, figure
2873 * out how much from delta we need to complete the current
2874 * period and accrue it.
2875 */
2876 delta_w = 1024 - delta_w;
54a21385 2877 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2878 if (weight) {
e0f5f3af
DE
2879 sa->load_sum += weight * scaled_delta_w;
2880 if (cfs_rq) {
2881 cfs_rq->runnable_load_sum +=
2882 weight * scaled_delta_w;
2883 }
13962234 2884 }
36ee28e4 2885 if (running)
006cdf02 2886 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2887
2888 delta -= delta_w;
2889
2890 /* Figure out how many additional periods this update spans */
2891 periods = delta / 1024;
2892 delta %= 1024;
2893
9d89c257 2894 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2895 if (cfs_rq) {
2896 cfs_rq->runnable_load_sum =
2897 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2898 }
9d89c257 2899 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2900
2901 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2902 contrib = __compute_runnable_contrib(periods);
54a21385 2903 contrib = cap_scale(contrib, scale_freq);
13962234 2904 if (weight) {
9d89c257 2905 sa->load_sum += weight * contrib;
13962234
YD
2906 if (cfs_rq)
2907 cfs_rq->runnable_load_sum += weight * contrib;
2908 }
36ee28e4 2909 if (running)
006cdf02 2910 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2911 }
2912
2913 /* Remainder of delta accrued against u_0` */
54a21385 2914 scaled_delta = cap_scale(delta, scale_freq);
13962234 2915 if (weight) {
e0f5f3af 2916 sa->load_sum += weight * scaled_delta;
13962234 2917 if (cfs_rq)
e0f5f3af 2918 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2919 }
36ee28e4 2920 if (running)
006cdf02 2921 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2922
9d89c257 2923 sa->period_contrib += delta;
9ee474f5 2924
9d89c257
YD
2925 if (decayed) {
2926 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2927 if (cfs_rq) {
2928 cfs_rq->runnable_load_avg =
2929 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2930 }
006cdf02 2931 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2932 }
aff3e498 2933
9d89c257 2934 return decayed;
9ee474f5
PT
2935}
2936
09a43ace
VG
2937/*
2938 * Signed add and clamp on underflow.
2939 *
2940 * Explicitly do a load-store to ensure the intermediate value never hits
2941 * memory. This allows lockless observations without ever seeing the negative
2942 * values.
2943 */
2944#define add_positive(_ptr, _val) do { \
2945 typeof(_ptr) ptr = (_ptr); \
2946 typeof(_val) val = (_val); \
2947 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2948 \
2949 res = var + val; \
2950 \
2951 if (val < 0 && res > var) \
2952 res = 0; \
2953 \
2954 WRITE_ONCE(*ptr, res); \
2955} while (0)
2956
c566e8e9 2957#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2958/**
2959 * update_tg_load_avg - update the tg's load avg
2960 * @cfs_rq: the cfs_rq whose avg changed
2961 * @force: update regardless of how small the difference
2962 *
2963 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2964 * However, because tg->load_avg is a global value there are performance
2965 * considerations.
2966 *
2967 * In order to avoid having to look at the other cfs_rq's, we use a
2968 * differential update where we store the last value we propagated. This in
2969 * turn allows skipping updates if the differential is 'small'.
2970 *
2971 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2972 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2973 */
9d89c257 2974static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2975{
9d89c257 2976 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2977
aa0b7ae0
WL
2978 /*
2979 * No need to update load_avg for root_task_group as it is not used.
2980 */
2981 if (cfs_rq->tg == &root_task_group)
2982 return;
2983
9d89c257
YD
2984 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2985 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2986 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2987 }
8165e145 2988}
f5f9739d 2989
ad936d86
BP
2990/*
2991 * Called within set_task_rq() right before setting a task's cpu. The
2992 * caller only guarantees p->pi_lock is held; no other assumptions,
2993 * including the state of rq->lock, should be made.
2994 */
2995void set_task_rq_fair(struct sched_entity *se,
2996 struct cfs_rq *prev, struct cfs_rq *next)
2997{
2998 if (!sched_feat(ATTACH_AGE_LOAD))
2999 return;
3000
3001 /*
3002 * We are supposed to update the task to "current" time, then its up to
3003 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3004 * getting what current time is, so simply throw away the out-of-date
3005 * time. This will result in the wakee task is less decayed, but giving
3006 * the wakee more load sounds not bad.
3007 */
3008 if (se->avg.last_update_time && prev) {
3009 u64 p_last_update_time;
3010 u64 n_last_update_time;
3011
3012#ifndef CONFIG_64BIT
3013 u64 p_last_update_time_copy;
3014 u64 n_last_update_time_copy;
3015
3016 do {
3017 p_last_update_time_copy = prev->load_last_update_time_copy;
3018 n_last_update_time_copy = next->load_last_update_time_copy;
3019
3020 smp_rmb();
3021
3022 p_last_update_time = prev->avg.last_update_time;
3023 n_last_update_time = next->avg.last_update_time;
3024
3025 } while (p_last_update_time != p_last_update_time_copy ||
3026 n_last_update_time != n_last_update_time_copy);
3027#else
3028 p_last_update_time = prev->avg.last_update_time;
3029 n_last_update_time = next->avg.last_update_time;
3030#endif
3031 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3032 &se->avg, 0, 0, NULL);
3033 se->avg.last_update_time = n_last_update_time;
3034 }
3035}
09a43ace
VG
3036
3037/* Take into account change of utilization of a child task group */
3038static inline void
3039update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3040{
3041 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3042 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3043
3044 /* Nothing to update */
3045 if (!delta)
3046 return;
3047
3048 /* Set new sched_entity's utilization */
3049 se->avg.util_avg = gcfs_rq->avg.util_avg;
3050 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3051
3052 /* Update parent cfs_rq utilization */
3053 add_positive(&cfs_rq->avg.util_avg, delta);
3054 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3055}
3056
3057/* Take into account change of load of a child task group */
3058static inline void
3059update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3060{
3061 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3062 long delta, load = gcfs_rq->avg.load_avg;
3063
3064 /*
3065 * If the load of group cfs_rq is null, the load of the
3066 * sched_entity will also be null so we can skip the formula
3067 */
3068 if (load) {
3069 long tg_load;
3070
3071 /* Get tg's load and ensure tg_load > 0 */
3072 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3073
3074 /* Ensure tg_load >= load and updated with current load*/
3075 tg_load -= gcfs_rq->tg_load_avg_contrib;
3076 tg_load += load;
3077
3078 /*
3079 * We need to compute a correction term in the case that the
3080 * task group is consuming more CPU than a task of equal
3081 * weight. A task with a weight equals to tg->shares will have
3082 * a load less or equal to scale_load_down(tg->shares).
3083 * Similarly, the sched_entities that represent the task group
3084 * at parent level, can't have a load higher than
3085 * scale_load_down(tg->shares). And the Sum of sched_entities'
3086 * load must be <= scale_load_down(tg->shares).
3087 */
3088 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3089 /* scale gcfs_rq's load into tg's shares*/
3090 load *= scale_load_down(gcfs_rq->tg->shares);
3091 load /= tg_load;
3092 }
3093 }
3094
3095 delta = load - se->avg.load_avg;
3096
3097 /* Nothing to update */
3098 if (!delta)
3099 return;
3100
3101 /* Set new sched_entity's load */
3102 se->avg.load_avg = load;
3103 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3104
3105 /* Update parent cfs_rq load */
3106 add_positive(&cfs_rq->avg.load_avg, delta);
3107 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3108
3109 /*
3110 * If the sched_entity is already enqueued, we also have to update the
3111 * runnable load avg.
3112 */
3113 if (se->on_rq) {
3114 /* Update parent cfs_rq runnable_load_avg */
3115 add_positive(&cfs_rq->runnable_load_avg, delta);
3116 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3117 }
3118}
3119
3120static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3121{
3122 cfs_rq->propagate_avg = 1;
3123}
3124
3125static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3126{
3127 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3128
3129 if (!cfs_rq->propagate_avg)
3130 return 0;
3131
3132 cfs_rq->propagate_avg = 0;
3133 return 1;
3134}
3135
3136/* Update task and its cfs_rq load average */
3137static inline int propagate_entity_load_avg(struct sched_entity *se)
3138{
3139 struct cfs_rq *cfs_rq;
3140
3141 if (entity_is_task(se))
3142 return 0;
3143
3144 if (!test_and_clear_tg_cfs_propagate(se))
3145 return 0;
3146
3147 cfs_rq = cfs_rq_of(se);
3148
3149 set_tg_cfs_propagate(cfs_rq);
3150
3151 update_tg_cfs_util(cfs_rq, se);
3152 update_tg_cfs_load(cfs_rq, se);
3153
3154 return 1;
3155}
3156
6e83125c 3157#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3158
9d89c257 3159static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3160
3161static inline int propagate_entity_load_avg(struct sched_entity *se)
3162{
3163 return 0;
3164}
3165
3166static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3167
6e83125c 3168#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3169
a2c6c91f
SM
3170static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3171{
58919e83 3172 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3173 /*
3174 * There are a few boundary cases this might miss but it should
3175 * get called often enough that that should (hopefully) not be
3176 * a real problem -- added to that it only calls on the local
3177 * CPU, so if we enqueue remotely we'll miss an update, but
3178 * the next tick/schedule should update.
3179 *
3180 * It will not get called when we go idle, because the idle
3181 * thread is a different class (!fair), nor will the utilization
3182 * number include things like RT tasks.
3183 *
3184 * As is, the util number is not freq-invariant (we'd have to
3185 * implement arch_scale_freq_capacity() for that).
3186 *
3187 * See cpu_util().
3188 */
12bde33d 3189 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3190 }
3191}
3192
89741892
PZ
3193/*
3194 * Unsigned subtract and clamp on underflow.
3195 *
3196 * Explicitly do a load-store to ensure the intermediate value never hits
3197 * memory. This allows lockless observations without ever seeing the negative
3198 * values.
3199 */
3200#define sub_positive(_ptr, _val) do { \
3201 typeof(_ptr) ptr = (_ptr); \
3202 typeof(*ptr) val = (_val); \
3203 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3204 res = var - val; \
3205 if (res > var) \
3206 res = 0; \
3207 WRITE_ONCE(*ptr, res); \
3208} while (0)
3209
3d30544f
PZ
3210/**
3211 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3212 * @now: current time, as per cfs_rq_clock_task()
3213 * @cfs_rq: cfs_rq to update
3214 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3215 *
3216 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3217 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3218 * post_init_entity_util_avg().
3219 *
3220 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3221 *
7c3edd2c
PZ
3222 * Returns true if the load decayed or we removed load.
3223 *
3224 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3225 * call update_tg_load_avg() when this function returns true.
3d30544f 3226 */
a2c6c91f
SM
3227static inline int
3228update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3229{
9d89c257 3230 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3231 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3232
9d89c257 3233 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3234 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3235 sub_positive(&sa->load_avg, r);
3236 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3237 removed_load = 1;
4e516076 3238 set_tg_cfs_propagate(cfs_rq);
8165e145 3239 }
2dac754e 3240
9d89c257
YD
3241 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3242 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3243 sub_positive(&sa->util_avg, r);
3244 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3245 removed_util = 1;
4e516076 3246 set_tg_cfs_propagate(cfs_rq);
9d89c257 3247 }
36ee28e4 3248
a2c6c91f 3249 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3250 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3251
9d89c257
YD
3252#ifndef CONFIG_64BIT
3253 smp_wmb();
3254 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3255#endif
36ee28e4 3256
a2c6c91f
SM
3257 if (update_freq && (decayed || removed_util))
3258 cfs_rq_util_change(cfs_rq);
21e96f88 3259
41e0d37f 3260 return decayed || removed_load;
21e96f88
SM
3261}
3262
d31b1a66
VG
3263/*
3264 * Optional action to be done while updating the load average
3265 */
3266#define UPDATE_TG 0x1
3267#define SKIP_AGE_LOAD 0x2
3268
21e96f88 3269/* Update task and its cfs_rq load average */
d31b1a66 3270static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3271{
3272 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3273 u64 now = cfs_rq_clock_task(cfs_rq);
3274 struct rq *rq = rq_of(cfs_rq);
3275 int cpu = cpu_of(rq);
09a43ace 3276 int decayed;
21e96f88
SM
3277
3278 /*
3279 * Track task load average for carrying it to new CPU after migrated, and
3280 * track group sched_entity load average for task_h_load calc in migration
3281 */
d31b1a66
VG
3282 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3283 __update_load_avg(now, cpu, &se->avg,
21e96f88
SM
3284 se->on_rq * scale_load_down(se->load.weight),
3285 cfs_rq->curr == se, NULL);
d31b1a66 3286 }
21e96f88 3287
09a43ace
VG
3288 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3289 decayed |= propagate_entity_load_avg(se);
3290
3291 if (decayed && (flags & UPDATE_TG))
21e96f88 3292 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3293}
3294
3d30544f
PZ
3295/**
3296 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3297 * @cfs_rq: cfs_rq to attach to
3298 * @se: sched_entity to attach
3299 *
3300 * Must call update_cfs_rq_load_avg() before this, since we rely on
3301 * cfs_rq->avg.last_update_time being current.
3302 */
a05e8c51
BP
3303static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3304{
3305 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3306 cfs_rq->avg.load_avg += se->avg.load_avg;
3307 cfs_rq->avg.load_sum += se->avg.load_sum;
3308 cfs_rq->avg.util_avg += se->avg.util_avg;
3309 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3310 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3311
3312 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3313}
3314
3d30544f
PZ
3315/**
3316 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3317 * @cfs_rq: cfs_rq to detach from
3318 * @se: sched_entity to detach
3319 *
3320 * Must call update_cfs_rq_load_avg() before this, since we rely on
3321 * cfs_rq->avg.last_update_time being current.
3322 */
a05e8c51
BP
3323static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3324{
a05e8c51 3325
89741892
PZ
3326 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3327 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3328 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3329 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3330 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3331
3332 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3333}
3334
9d89c257
YD
3335/* Add the load generated by se into cfs_rq's load average */
3336static inline void
3337enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3338{
9d89c257 3339 struct sched_avg *sa = &se->avg;
18bf2805 3340
13962234
YD
3341 cfs_rq->runnable_load_avg += sa->load_avg;
3342 cfs_rq->runnable_load_sum += sa->load_sum;
3343
d31b1a66 3344 if (!sa->last_update_time) {
a05e8c51 3345 attach_entity_load_avg(cfs_rq, se);
9d89c257 3346 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3347 }
2dac754e
PT
3348}
3349
13962234
YD
3350/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3351static inline void
3352dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3353{
13962234
YD
3354 cfs_rq->runnable_load_avg =
3355 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3356 cfs_rq->runnable_load_sum =
a05e8c51 3357 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3358}
3359
9d89c257 3360#ifndef CONFIG_64BIT
0905f04e
YD
3361static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3362{
9d89c257 3363 u64 last_update_time_copy;
0905f04e 3364 u64 last_update_time;
9ee474f5 3365
9d89c257
YD
3366 do {
3367 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3368 smp_rmb();
3369 last_update_time = cfs_rq->avg.last_update_time;
3370 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3371
3372 return last_update_time;
3373}
9d89c257 3374#else
0905f04e
YD
3375static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3376{
3377 return cfs_rq->avg.last_update_time;
3378}
9d89c257
YD
3379#endif
3380
104cb16d
MR
3381/*
3382 * Synchronize entity load avg of dequeued entity without locking
3383 * the previous rq.
3384 */
3385void sync_entity_load_avg(struct sched_entity *se)
3386{
3387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3388 u64 last_update_time;
3389
3390 last_update_time = cfs_rq_last_update_time(cfs_rq);
3391 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3392}
3393
0905f04e
YD
3394/*
3395 * Task first catches up with cfs_rq, and then subtract
3396 * itself from the cfs_rq (task must be off the queue now).
3397 */
3398void remove_entity_load_avg(struct sched_entity *se)
3399{
3400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3401
3402 /*
7dc603c9
PZ
3403 * tasks cannot exit without having gone through wake_up_new_task() ->
3404 * post_init_entity_util_avg() which will have added things to the
3405 * cfs_rq, so we can remove unconditionally.
3406 *
3407 * Similarly for groups, they will have passed through
3408 * post_init_entity_util_avg() before unregister_sched_fair_group()
3409 * calls this.
0905f04e 3410 */
0905f04e 3411
104cb16d 3412 sync_entity_load_avg(se);
9d89c257
YD
3413 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3414 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3415}
642dbc39 3416
7ea241af
YD
3417static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3418{
3419 return cfs_rq->runnable_load_avg;
3420}
3421
3422static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3423{
3424 return cfs_rq->avg.load_avg;
3425}
3426
6e83125c
PZ
3427static int idle_balance(struct rq *this_rq);
3428
38033c37
PZ
3429#else /* CONFIG_SMP */
3430
01011473
PZ
3431static inline int
3432update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3433{
3434 return 0;
3435}
3436
d31b1a66
VG
3437#define UPDATE_TG 0x0
3438#define SKIP_AGE_LOAD 0x0
3439
3440static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3441{
12bde33d 3442 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3443}
3444
9d89c257
YD
3445static inline void
3446enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3447static inline void
3448dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3449static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3450
a05e8c51
BP
3451static inline void
3452attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3453static inline void
3454detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3455
6e83125c
PZ
3456static inline int idle_balance(struct rq *rq)
3457{
3458 return 0;
3459}
3460
38033c37 3461#endif /* CONFIG_SMP */
9d85f21c 3462
ddc97297
PZ
3463static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3464{
3465#ifdef CONFIG_SCHED_DEBUG
3466 s64 d = se->vruntime - cfs_rq->min_vruntime;
3467
3468 if (d < 0)
3469 d = -d;
3470
3471 if (d > 3*sysctl_sched_latency)
ae92882e 3472 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3473#endif
3474}
3475
aeb73b04
PZ
3476static void
3477place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3478{
1af5f730 3479 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3480
2cb8600e
PZ
3481 /*
3482 * The 'current' period is already promised to the current tasks,
3483 * however the extra weight of the new task will slow them down a
3484 * little, place the new task so that it fits in the slot that
3485 * stays open at the end.
3486 */
94dfb5e7 3487 if (initial && sched_feat(START_DEBIT))
f9c0b095 3488 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3489
a2e7a7eb 3490 /* sleeps up to a single latency don't count. */
5ca9880c 3491 if (!initial) {
a2e7a7eb 3492 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3493
a2e7a7eb
MG
3494 /*
3495 * Halve their sleep time's effect, to allow
3496 * for a gentler effect of sleepers:
3497 */
3498 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3499 thresh >>= 1;
51e0304c 3500
a2e7a7eb 3501 vruntime -= thresh;
aeb73b04
PZ
3502 }
3503
b5d9d734 3504 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3505 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3506}
3507
d3d9dc33
PT
3508static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3509
cb251765
MG
3510static inline void check_schedstat_required(void)
3511{
3512#ifdef CONFIG_SCHEDSTATS
3513 if (schedstat_enabled())
3514 return;
3515
3516 /* Force schedstat enabled if a dependent tracepoint is active */
3517 if (trace_sched_stat_wait_enabled() ||
3518 trace_sched_stat_sleep_enabled() ||
3519 trace_sched_stat_iowait_enabled() ||
3520 trace_sched_stat_blocked_enabled() ||
3521 trace_sched_stat_runtime_enabled()) {
eda8dca5 3522 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3523 "stat_blocked and stat_runtime require the "
3524 "kernel parameter schedstats=enabled or "
3525 "kernel.sched_schedstats=1\n");
3526 }
3527#endif
3528}
3529
b5179ac7
PZ
3530
3531/*
3532 * MIGRATION
3533 *
3534 * dequeue
3535 * update_curr()
3536 * update_min_vruntime()
3537 * vruntime -= min_vruntime
3538 *
3539 * enqueue
3540 * update_curr()
3541 * update_min_vruntime()
3542 * vruntime += min_vruntime
3543 *
3544 * this way the vruntime transition between RQs is done when both
3545 * min_vruntime are up-to-date.
3546 *
3547 * WAKEUP (remote)
3548 *
59efa0ba 3549 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3550 * vruntime -= min_vruntime
3551 *
3552 * enqueue
3553 * update_curr()
3554 * update_min_vruntime()
3555 * vruntime += min_vruntime
3556 *
3557 * this way we don't have the most up-to-date min_vruntime on the originating
3558 * CPU and an up-to-date min_vruntime on the destination CPU.
3559 */
3560
bf0f6f24 3561static void
88ec22d3 3562enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3563{
2f950354
PZ
3564 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3565 bool curr = cfs_rq->curr == se;
3566
88ec22d3 3567 /*
2f950354
PZ
3568 * If we're the current task, we must renormalise before calling
3569 * update_curr().
88ec22d3 3570 */
2f950354 3571 if (renorm && curr)
88ec22d3
PZ
3572 se->vruntime += cfs_rq->min_vruntime;
3573
2f950354
PZ
3574 update_curr(cfs_rq);
3575
bf0f6f24 3576 /*
2f950354
PZ
3577 * Otherwise, renormalise after, such that we're placed at the current
3578 * moment in time, instead of some random moment in the past. Being
3579 * placed in the past could significantly boost this task to the
3580 * fairness detriment of existing tasks.
bf0f6f24 3581 */
2f950354
PZ
3582 if (renorm && !curr)
3583 se->vruntime += cfs_rq->min_vruntime;
3584
d31b1a66 3585 update_load_avg(se, UPDATE_TG);
9d89c257 3586 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3587 account_entity_enqueue(cfs_rq, se);
3588 update_cfs_shares(cfs_rq);
bf0f6f24 3589
1a3d027c 3590 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3591 place_entity(cfs_rq, se, 0);
bf0f6f24 3592
cb251765 3593 check_schedstat_required();
4fa8d299
JP
3594 update_stats_enqueue(cfs_rq, se, flags);
3595 check_spread(cfs_rq, se);
2f950354 3596 if (!curr)
83b699ed 3597 __enqueue_entity(cfs_rq, se);
2069dd75 3598 se->on_rq = 1;
3d4b47b4 3599
d3d9dc33 3600 if (cfs_rq->nr_running == 1) {
3d4b47b4 3601 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3602 check_enqueue_throttle(cfs_rq);
3603 }
bf0f6f24
IM
3604}
3605
2c13c919 3606static void __clear_buddies_last(struct sched_entity *se)
2002c695 3607{
2c13c919
RR
3608 for_each_sched_entity(se) {
3609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3610 if (cfs_rq->last != se)
2c13c919 3611 break;
f1044799
PZ
3612
3613 cfs_rq->last = NULL;
2c13c919
RR
3614 }
3615}
2002c695 3616
2c13c919
RR
3617static void __clear_buddies_next(struct sched_entity *se)
3618{
3619 for_each_sched_entity(se) {
3620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3621 if (cfs_rq->next != se)
2c13c919 3622 break;
f1044799
PZ
3623
3624 cfs_rq->next = NULL;
2c13c919 3625 }
2002c695
PZ
3626}
3627
ac53db59
RR
3628static void __clear_buddies_skip(struct sched_entity *se)
3629{
3630 for_each_sched_entity(se) {
3631 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3632 if (cfs_rq->skip != se)
ac53db59 3633 break;
f1044799
PZ
3634
3635 cfs_rq->skip = NULL;
ac53db59
RR
3636 }
3637}
3638
a571bbea
PZ
3639static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3640{
2c13c919
RR
3641 if (cfs_rq->last == se)
3642 __clear_buddies_last(se);
3643
3644 if (cfs_rq->next == se)
3645 __clear_buddies_next(se);
ac53db59
RR
3646
3647 if (cfs_rq->skip == se)
3648 __clear_buddies_skip(se);
a571bbea
PZ
3649}
3650
6c16a6dc 3651static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3652
bf0f6f24 3653static void
371fd7e7 3654dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3655{
a2a2d680
DA
3656 /*
3657 * Update run-time statistics of the 'current'.
3658 */
3659 update_curr(cfs_rq);
d31b1a66 3660 update_load_avg(se, UPDATE_TG);
13962234 3661 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3662
4fa8d299 3663 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3664
2002c695 3665 clear_buddies(cfs_rq, se);
4793241b 3666
83b699ed 3667 if (se != cfs_rq->curr)
30cfdcfc 3668 __dequeue_entity(cfs_rq, se);
17bc14b7 3669 se->on_rq = 0;
30cfdcfc 3670 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3671
3672 /*
b60205c7
PZ
3673 * Normalize after update_curr(); which will also have moved
3674 * min_vruntime if @se is the one holding it back. But before doing
3675 * update_min_vruntime() again, which will discount @se's position and
3676 * can move min_vruntime forward still more.
88ec22d3 3677 */
371fd7e7 3678 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3679 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3680
d8b4986d
PT
3681 /* return excess runtime on last dequeue */
3682 return_cfs_rq_runtime(cfs_rq);
3683
17bc14b7 3684 update_cfs_shares(cfs_rq);
b60205c7
PZ
3685
3686 /*
3687 * Now advance min_vruntime if @se was the entity holding it back,
3688 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3689 * put back on, and if we advance min_vruntime, we'll be placed back
3690 * further than we started -- ie. we'll be penalized.
3691 */
3692 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3693 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3694}
3695
3696/*
3697 * Preempt the current task with a newly woken task if needed:
3698 */
7c92e54f 3699static void
2e09bf55 3700check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3701{
11697830 3702 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3703 struct sched_entity *se;
3704 s64 delta;
11697830 3705
6d0f0ebd 3706 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3707 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3708 if (delta_exec > ideal_runtime) {
8875125e 3709 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3710 /*
3711 * The current task ran long enough, ensure it doesn't get
3712 * re-elected due to buddy favours.
3713 */
3714 clear_buddies(cfs_rq, curr);
f685ceac
MG
3715 return;
3716 }
3717
3718 /*
3719 * Ensure that a task that missed wakeup preemption by a
3720 * narrow margin doesn't have to wait for a full slice.
3721 * This also mitigates buddy induced latencies under load.
3722 */
f685ceac
MG
3723 if (delta_exec < sysctl_sched_min_granularity)
3724 return;
3725
f4cfb33e
WX
3726 se = __pick_first_entity(cfs_rq);
3727 delta = curr->vruntime - se->vruntime;
f685ceac 3728
f4cfb33e
WX
3729 if (delta < 0)
3730 return;
d7d82944 3731
f4cfb33e 3732 if (delta > ideal_runtime)
8875125e 3733 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3734}
3735
83b699ed 3736static void
8494f412 3737set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3738{
83b699ed
SV
3739 /* 'current' is not kept within the tree. */
3740 if (se->on_rq) {
3741 /*
3742 * Any task has to be enqueued before it get to execute on
3743 * a CPU. So account for the time it spent waiting on the
3744 * runqueue.
3745 */
4fa8d299 3746 update_stats_wait_end(cfs_rq, se);
83b699ed 3747 __dequeue_entity(cfs_rq, se);
d31b1a66 3748 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3749 }
3750
79303e9e 3751 update_stats_curr_start(cfs_rq, se);
429d43bc 3752 cfs_rq->curr = se;
4fa8d299 3753
eba1ed4b
IM
3754 /*
3755 * Track our maximum slice length, if the CPU's load is at
3756 * least twice that of our own weight (i.e. dont track it
3757 * when there are only lesser-weight tasks around):
3758 */
cb251765 3759 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3760 schedstat_set(se->statistics.slice_max,
3761 max((u64)schedstat_val(se->statistics.slice_max),
3762 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3763 }
4fa8d299 3764
4a55b450 3765 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3766}
3767
3f3a4904
PZ
3768static int
3769wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3770
ac53db59
RR
3771/*
3772 * Pick the next process, keeping these things in mind, in this order:
3773 * 1) keep things fair between processes/task groups
3774 * 2) pick the "next" process, since someone really wants that to run
3775 * 3) pick the "last" process, for cache locality
3776 * 4) do not run the "skip" process, if something else is available
3777 */
678d5718
PZ
3778static struct sched_entity *
3779pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3780{
678d5718
PZ
3781 struct sched_entity *left = __pick_first_entity(cfs_rq);
3782 struct sched_entity *se;
3783
3784 /*
3785 * If curr is set we have to see if its left of the leftmost entity
3786 * still in the tree, provided there was anything in the tree at all.
3787 */
3788 if (!left || (curr && entity_before(curr, left)))
3789 left = curr;
3790
3791 se = left; /* ideally we run the leftmost entity */
f4b6755f 3792
ac53db59
RR
3793 /*
3794 * Avoid running the skip buddy, if running something else can
3795 * be done without getting too unfair.
3796 */
3797 if (cfs_rq->skip == se) {
678d5718
PZ
3798 struct sched_entity *second;
3799
3800 if (se == curr) {
3801 second = __pick_first_entity(cfs_rq);
3802 } else {
3803 second = __pick_next_entity(se);
3804 if (!second || (curr && entity_before(curr, second)))
3805 second = curr;
3806 }
3807
ac53db59
RR
3808 if (second && wakeup_preempt_entity(second, left) < 1)
3809 se = second;
3810 }
aa2ac252 3811
f685ceac
MG
3812 /*
3813 * Prefer last buddy, try to return the CPU to a preempted task.
3814 */
3815 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3816 se = cfs_rq->last;
3817
ac53db59
RR
3818 /*
3819 * Someone really wants this to run. If it's not unfair, run it.
3820 */
3821 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3822 se = cfs_rq->next;
3823
f685ceac 3824 clear_buddies(cfs_rq, se);
4793241b
PZ
3825
3826 return se;
aa2ac252
PZ
3827}
3828
678d5718 3829static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3830
ab6cde26 3831static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3832{
3833 /*
3834 * If still on the runqueue then deactivate_task()
3835 * was not called and update_curr() has to be done:
3836 */
3837 if (prev->on_rq)
b7cc0896 3838 update_curr(cfs_rq);
bf0f6f24 3839
d3d9dc33
PT
3840 /* throttle cfs_rqs exceeding runtime */
3841 check_cfs_rq_runtime(cfs_rq);
3842
4fa8d299 3843 check_spread(cfs_rq, prev);
cb251765 3844
30cfdcfc 3845 if (prev->on_rq) {
4fa8d299 3846 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3847 /* Put 'current' back into the tree. */
3848 __enqueue_entity(cfs_rq, prev);
9d85f21c 3849 /* in !on_rq case, update occurred at dequeue */
9d89c257 3850 update_load_avg(prev, 0);
30cfdcfc 3851 }
429d43bc 3852 cfs_rq->curr = NULL;
bf0f6f24
IM
3853}
3854
8f4d37ec
PZ
3855static void
3856entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3857{
bf0f6f24 3858 /*
30cfdcfc 3859 * Update run-time statistics of the 'current'.
bf0f6f24 3860 */
30cfdcfc 3861 update_curr(cfs_rq);
bf0f6f24 3862
9d85f21c
PT
3863 /*
3864 * Ensure that runnable average is periodically updated.
3865 */
d31b1a66 3866 update_load_avg(curr, UPDATE_TG);
bf0bd948 3867 update_cfs_shares(cfs_rq);
9d85f21c 3868
8f4d37ec
PZ
3869#ifdef CONFIG_SCHED_HRTICK
3870 /*
3871 * queued ticks are scheduled to match the slice, so don't bother
3872 * validating it and just reschedule.
3873 */
983ed7a6 3874 if (queued) {
8875125e 3875 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3876 return;
3877 }
8f4d37ec
PZ
3878 /*
3879 * don't let the period tick interfere with the hrtick preemption
3880 */
3881 if (!sched_feat(DOUBLE_TICK) &&
3882 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3883 return;
3884#endif
3885
2c2efaed 3886 if (cfs_rq->nr_running > 1)
2e09bf55 3887 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3888}
3889
ab84d31e
PT
3890
3891/**************************************************
3892 * CFS bandwidth control machinery
3893 */
3894
3895#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3896
3897#ifdef HAVE_JUMP_LABEL
c5905afb 3898static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3899
3900static inline bool cfs_bandwidth_used(void)
3901{
c5905afb 3902 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3903}
3904
1ee14e6c 3905void cfs_bandwidth_usage_inc(void)
029632fb 3906{
1ee14e6c
BS
3907 static_key_slow_inc(&__cfs_bandwidth_used);
3908}
3909
3910void cfs_bandwidth_usage_dec(void)
3911{
3912 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3913}
3914#else /* HAVE_JUMP_LABEL */
3915static bool cfs_bandwidth_used(void)
3916{
3917 return true;
3918}
3919
1ee14e6c
BS
3920void cfs_bandwidth_usage_inc(void) {}
3921void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3922#endif /* HAVE_JUMP_LABEL */
3923
ab84d31e
PT
3924/*
3925 * default period for cfs group bandwidth.
3926 * default: 0.1s, units: nanoseconds
3927 */
3928static inline u64 default_cfs_period(void)
3929{
3930 return 100000000ULL;
3931}
ec12cb7f
PT
3932
3933static inline u64 sched_cfs_bandwidth_slice(void)
3934{
3935 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3936}
3937
a9cf55b2
PT
3938/*
3939 * Replenish runtime according to assigned quota and update expiration time.
3940 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3941 * additional synchronization around rq->lock.
3942 *
3943 * requires cfs_b->lock
3944 */
029632fb 3945void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3946{
3947 u64 now;
3948
3949 if (cfs_b->quota == RUNTIME_INF)
3950 return;
3951
3952 now = sched_clock_cpu(smp_processor_id());
3953 cfs_b->runtime = cfs_b->quota;
3954 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3955}
3956
029632fb
PZ
3957static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3958{
3959 return &tg->cfs_bandwidth;
3960}
3961
f1b17280
PT
3962/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3963static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3964{
3965 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3966 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3967
78becc27 3968 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3969}
3970
85dac906
PT
3971/* returns 0 on failure to allocate runtime */
3972static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3973{
3974 struct task_group *tg = cfs_rq->tg;
3975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3976 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3977
3978 /* note: this is a positive sum as runtime_remaining <= 0 */
3979 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3980
3981 raw_spin_lock(&cfs_b->lock);
3982 if (cfs_b->quota == RUNTIME_INF)
3983 amount = min_amount;
58088ad0 3984 else {
77a4d1a1 3985 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3986
3987 if (cfs_b->runtime > 0) {
3988 amount = min(cfs_b->runtime, min_amount);
3989 cfs_b->runtime -= amount;
3990 cfs_b->idle = 0;
3991 }
ec12cb7f 3992 }
a9cf55b2 3993 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3994 raw_spin_unlock(&cfs_b->lock);
3995
3996 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3997 /*
3998 * we may have advanced our local expiration to account for allowed
3999 * spread between our sched_clock and the one on which runtime was
4000 * issued.
4001 */
4002 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4003 cfs_rq->runtime_expires = expires;
85dac906
PT
4004
4005 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4006}
4007
a9cf55b2
PT
4008/*
4009 * Note: This depends on the synchronization provided by sched_clock and the
4010 * fact that rq->clock snapshots this value.
4011 */
4012static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4013{
a9cf55b2 4014 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4015
4016 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4017 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4018 return;
4019
a9cf55b2
PT
4020 if (cfs_rq->runtime_remaining < 0)
4021 return;
4022
4023 /*
4024 * If the local deadline has passed we have to consider the
4025 * possibility that our sched_clock is 'fast' and the global deadline
4026 * has not truly expired.
4027 *
4028 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4029 * whether the global deadline has advanced. It is valid to compare
4030 * cfs_b->runtime_expires without any locks since we only care about
4031 * exact equality, so a partial write will still work.
a9cf55b2
PT
4032 */
4033
51f2176d 4034 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4035 /* extend local deadline, drift is bounded above by 2 ticks */
4036 cfs_rq->runtime_expires += TICK_NSEC;
4037 } else {
4038 /* global deadline is ahead, expiration has passed */
4039 cfs_rq->runtime_remaining = 0;
4040 }
4041}
4042
9dbdb155 4043static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4044{
4045 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4046 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4047 expire_cfs_rq_runtime(cfs_rq);
4048
4049 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4050 return;
4051
85dac906
PT
4052 /*
4053 * if we're unable to extend our runtime we resched so that the active
4054 * hierarchy can be throttled
4055 */
4056 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4057 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4058}
4059
6c16a6dc 4060static __always_inline
9dbdb155 4061void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4062{
56f570e5 4063 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4064 return;
4065
4066 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4067}
4068
85dac906
PT
4069static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4070{
56f570e5 4071 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4072}
4073
64660c86
PT
4074/* check whether cfs_rq, or any parent, is throttled */
4075static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4076{
56f570e5 4077 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4078}
4079
4080/*
4081 * Ensure that neither of the group entities corresponding to src_cpu or
4082 * dest_cpu are members of a throttled hierarchy when performing group
4083 * load-balance operations.
4084 */
4085static inline int throttled_lb_pair(struct task_group *tg,
4086 int src_cpu, int dest_cpu)
4087{
4088 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4089
4090 src_cfs_rq = tg->cfs_rq[src_cpu];
4091 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4092
4093 return throttled_hierarchy(src_cfs_rq) ||
4094 throttled_hierarchy(dest_cfs_rq);
4095}
4096
4097/* updated child weight may affect parent so we have to do this bottom up */
4098static int tg_unthrottle_up(struct task_group *tg, void *data)
4099{
4100 struct rq *rq = data;
4101 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4102
4103 cfs_rq->throttle_count--;
64660c86 4104 if (!cfs_rq->throttle_count) {
f1b17280 4105 /* adjust cfs_rq_clock_task() */
78becc27 4106 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4107 cfs_rq->throttled_clock_task;
64660c86 4108 }
64660c86
PT
4109
4110 return 0;
4111}
4112
4113static int tg_throttle_down(struct task_group *tg, void *data)
4114{
4115 struct rq *rq = data;
4116 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4117
82958366
PT
4118 /* group is entering throttled state, stop time */
4119 if (!cfs_rq->throttle_count)
78becc27 4120 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4121 cfs_rq->throttle_count++;
4122
4123 return 0;
4124}
4125
d3d9dc33 4126static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4127{
4128 struct rq *rq = rq_of(cfs_rq);
4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130 struct sched_entity *se;
4131 long task_delta, dequeue = 1;
77a4d1a1 4132 bool empty;
85dac906
PT
4133
4134 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4135
f1b17280 4136 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4137 rcu_read_lock();
4138 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4139 rcu_read_unlock();
85dac906
PT
4140
4141 task_delta = cfs_rq->h_nr_running;
4142 for_each_sched_entity(se) {
4143 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4144 /* throttled entity or throttle-on-deactivate */
4145 if (!se->on_rq)
4146 break;
4147
4148 if (dequeue)
4149 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4150 qcfs_rq->h_nr_running -= task_delta;
4151
4152 if (qcfs_rq->load.weight)
4153 dequeue = 0;
4154 }
4155
4156 if (!se)
72465447 4157 sub_nr_running(rq, task_delta);
85dac906
PT
4158
4159 cfs_rq->throttled = 1;
78becc27 4160 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4161 raw_spin_lock(&cfs_b->lock);
d49db342 4162 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4163
c06f04c7
BS
4164 /*
4165 * Add to the _head_ of the list, so that an already-started
4166 * distribute_cfs_runtime will not see us
4167 */
4168 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4169
4170 /*
4171 * If we're the first throttled task, make sure the bandwidth
4172 * timer is running.
4173 */
4174 if (empty)
4175 start_cfs_bandwidth(cfs_b);
4176
85dac906
PT
4177 raw_spin_unlock(&cfs_b->lock);
4178}
4179
029632fb 4180void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4181{
4182 struct rq *rq = rq_of(cfs_rq);
4183 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4184 struct sched_entity *se;
4185 int enqueue = 1;
4186 long task_delta;
4187
22b958d8 4188 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4189
4190 cfs_rq->throttled = 0;
1a55af2e
FW
4191
4192 update_rq_clock(rq);
4193
671fd9da 4194 raw_spin_lock(&cfs_b->lock);
78becc27 4195 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4196 list_del_rcu(&cfs_rq->throttled_list);
4197 raw_spin_unlock(&cfs_b->lock);
4198
64660c86
PT
4199 /* update hierarchical throttle state */
4200 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4201
671fd9da
PT
4202 if (!cfs_rq->load.weight)
4203 return;
4204
4205 task_delta = cfs_rq->h_nr_running;
4206 for_each_sched_entity(se) {
4207 if (se->on_rq)
4208 enqueue = 0;
4209
4210 cfs_rq = cfs_rq_of(se);
4211 if (enqueue)
4212 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4213 cfs_rq->h_nr_running += task_delta;
4214
4215 if (cfs_rq_throttled(cfs_rq))
4216 break;
4217 }
4218
4219 if (!se)
72465447 4220 add_nr_running(rq, task_delta);
671fd9da
PT
4221
4222 /* determine whether we need to wake up potentially idle cpu */
4223 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4224 resched_curr(rq);
671fd9da
PT
4225}
4226
4227static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4228 u64 remaining, u64 expires)
4229{
4230 struct cfs_rq *cfs_rq;
c06f04c7
BS
4231 u64 runtime;
4232 u64 starting_runtime = remaining;
671fd9da
PT
4233
4234 rcu_read_lock();
4235 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4236 throttled_list) {
4237 struct rq *rq = rq_of(cfs_rq);
4238
4239 raw_spin_lock(&rq->lock);
4240 if (!cfs_rq_throttled(cfs_rq))
4241 goto next;
4242
4243 runtime = -cfs_rq->runtime_remaining + 1;
4244 if (runtime > remaining)
4245 runtime = remaining;
4246 remaining -= runtime;
4247
4248 cfs_rq->runtime_remaining += runtime;
4249 cfs_rq->runtime_expires = expires;
4250
4251 /* we check whether we're throttled above */
4252 if (cfs_rq->runtime_remaining > 0)
4253 unthrottle_cfs_rq(cfs_rq);
4254
4255next:
4256 raw_spin_unlock(&rq->lock);
4257
4258 if (!remaining)
4259 break;
4260 }
4261 rcu_read_unlock();
4262
c06f04c7 4263 return starting_runtime - remaining;
671fd9da
PT
4264}
4265
58088ad0
PT
4266/*
4267 * Responsible for refilling a task_group's bandwidth and unthrottling its
4268 * cfs_rqs as appropriate. If there has been no activity within the last
4269 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4270 * used to track this state.
4271 */
4272static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4273{
671fd9da 4274 u64 runtime, runtime_expires;
51f2176d 4275 int throttled;
58088ad0 4276
58088ad0
PT
4277 /* no need to continue the timer with no bandwidth constraint */
4278 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4279 goto out_deactivate;
58088ad0 4280
671fd9da 4281 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4282 cfs_b->nr_periods += overrun;
671fd9da 4283
51f2176d
BS
4284 /*
4285 * idle depends on !throttled (for the case of a large deficit), and if
4286 * we're going inactive then everything else can be deferred
4287 */
4288 if (cfs_b->idle && !throttled)
4289 goto out_deactivate;
a9cf55b2
PT
4290
4291 __refill_cfs_bandwidth_runtime(cfs_b);
4292
671fd9da
PT
4293 if (!throttled) {
4294 /* mark as potentially idle for the upcoming period */
4295 cfs_b->idle = 1;
51f2176d 4296 return 0;
671fd9da
PT
4297 }
4298
e8da1b18
NR
4299 /* account preceding periods in which throttling occurred */
4300 cfs_b->nr_throttled += overrun;
4301
671fd9da 4302 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4303
4304 /*
c06f04c7
BS
4305 * This check is repeated as we are holding onto the new bandwidth while
4306 * we unthrottle. This can potentially race with an unthrottled group
4307 * trying to acquire new bandwidth from the global pool. This can result
4308 * in us over-using our runtime if it is all used during this loop, but
4309 * only by limited amounts in that extreme case.
671fd9da 4310 */
c06f04c7
BS
4311 while (throttled && cfs_b->runtime > 0) {
4312 runtime = cfs_b->runtime;
671fd9da
PT
4313 raw_spin_unlock(&cfs_b->lock);
4314 /* we can't nest cfs_b->lock while distributing bandwidth */
4315 runtime = distribute_cfs_runtime(cfs_b, runtime,
4316 runtime_expires);
4317 raw_spin_lock(&cfs_b->lock);
4318
4319 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4320
4321 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4322 }
58088ad0 4323
671fd9da
PT
4324 /*
4325 * While we are ensured activity in the period following an
4326 * unthrottle, this also covers the case in which the new bandwidth is
4327 * insufficient to cover the existing bandwidth deficit. (Forcing the
4328 * timer to remain active while there are any throttled entities.)
4329 */
4330 cfs_b->idle = 0;
58088ad0 4331
51f2176d
BS
4332 return 0;
4333
4334out_deactivate:
51f2176d 4335 return 1;
58088ad0 4336}
d3d9dc33 4337
d8b4986d
PT
4338/* a cfs_rq won't donate quota below this amount */
4339static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4340/* minimum remaining period time to redistribute slack quota */
4341static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4342/* how long we wait to gather additional slack before distributing */
4343static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4344
db06e78c
BS
4345/*
4346 * Are we near the end of the current quota period?
4347 *
4348 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4349 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4350 * migrate_hrtimers, base is never cleared, so we are fine.
4351 */
d8b4986d
PT
4352static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4353{
4354 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4355 u64 remaining;
4356
4357 /* if the call-back is running a quota refresh is already occurring */
4358 if (hrtimer_callback_running(refresh_timer))
4359 return 1;
4360
4361 /* is a quota refresh about to occur? */
4362 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4363 if (remaining < min_expire)
4364 return 1;
4365
4366 return 0;
4367}
4368
4369static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4370{
4371 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4372
4373 /* if there's a quota refresh soon don't bother with slack */
4374 if (runtime_refresh_within(cfs_b, min_left))
4375 return;
4376
4cfafd30
PZ
4377 hrtimer_start(&cfs_b->slack_timer,
4378 ns_to_ktime(cfs_bandwidth_slack_period),
4379 HRTIMER_MODE_REL);
d8b4986d
PT
4380}
4381
4382/* we know any runtime found here is valid as update_curr() precedes return */
4383static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4384{
4385 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4386 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4387
4388 if (slack_runtime <= 0)
4389 return;
4390
4391 raw_spin_lock(&cfs_b->lock);
4392 if (cfs_b->quota != RUNTIME_INF &&
4393 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4394 cfs_b->runtime += slack_runtime;
4395
4396 /* we are under rq->lock, defer unthrottling using a timer */
4397 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4398 !list_empty(&cfs_b->throttled_cfs_rq))
4399 start_cfs_slack_bandwidth(cfs_b);
4400 }
4401 raw_spin_unlock(&cfs_b->lock);
4402
4403 /* even if it's not valid for return we don't want to try again */
4404 cfs_rq->runtime_remaining -= slack_runtime;
4405}
4406
4407static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4408{
56f570e5
PT
4409 if (!cfs_bandwidth_used())
4410 return;
4411
fccfdc6f 4412 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4413 return;
4414
4415 __return_cfs_rq_runtime(cfs_rq);
4416}
4417
4418/*
4419 * This is done with a timer (instead of inline with bandwidth return) since
4420 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4421 */
4422static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4423{
4424 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4425 u64 expires;
4426
4427 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4428 raw_spin_lock(&cfs_b->lock);
4429 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4430 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4431 return;
db06e78c 4432 }
d8b4986d 4433
c06f04c7 4434 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4435 runtime = cfs_b->runtime;
c06f04c7 4436
d8b4986d
PT
4437 expires = cfs_b->runtime_expires;
4438 raw_spin_unlock(&cfs_b->lock);
4439
4440 if (!runtime)
4441 return;
4442
4443 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4444
4445 raw_spin_lock(&cfs_b->lock);
4446 if (expires == cfs_b->runtime_expires)
c06f04c7 4447 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4448 raw_spin_unlock(&cfs_b->lock);
4449}
4450
d3d9dc33
PT
4451/*
4452 * When a group wakes up we want to make sure that its quota is not already
4453 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4454 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4455 */
4456static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4457{
56f570e5
PT
4458 if (!cfs_bandwidth_used())
4459 return;
4460
d3d9dc33
PT
4461 /* an active group must be handled by the update_curr()->put() path */
4462 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4463 return;
4464
4465 /* ensure the group is not already throttled */
4466 if (cfs_rq_throttled(cfs_rq))
4467 return;
4468
4469 /* update runtime allocation */
4470 account_cfs_rq_runtime(cfs_rq, 0);
4471 if (cfs_rq->runtime_remaining <= 0)
4472 throttle_cfs_rq(cfs_rq);
4473}
4474
55e16d30
PZ
4475static void sync_throttle(struct task_group *tg, int cpu)
4476{
4477 struct cfs_rq *pcfs_rq, *cfs_rq;
4478
4479 if (!cfs_bandwidth_used())
4480 return;
4481
4482 if (!tg->parent)
4483 return;
4484
4485 cfs_rq = tg->cfs_rq[cpu];
4486 pcfs_rq = tg->parent->cfs_rq[cpu];
4487
4488 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4489 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4490}
4491
d3d9dc33 4492/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4493static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4494{
56f570e5 4495 if (!cfs_bandwidth_used())
678d5718 4496 return false;
56f570e5 4497
d3d9dc33 4498 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4499 return false;
d3d9dc33
PT
4500
4501 /*
4502 * it's possible for a throttled entity to be forced into a running
4503 * state (e.g. set_curr_task), in this case we're finished.
4504 */
4505 if (cfs_rq_throttled(cfs_rq))
678d5718 4506 return true;
d3d9dc33
PT
4507
4508 throttle_cfs_rq(cfs_rq);
678d5718 4509 return true;
d3d9dc33 4510}
029632fb 4511
029632fb
PZ
4512static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4513{
4514 struct cfs_bandwidth *cfs_b =
4515 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4516
029632fb
PZ
4517 do_sched_cfs_slack_timer(cfs_b);
4518
4519 return HRTIMER_NORESTART;
4520}
4521
4522static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4523{
4524 struct cfs_bandwidth *cfs_b =
4525 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4526 int overrun;
4527 int idle = 0;
4528
51f2176d 4529 raw_spin_lock(&cfs_b->lock);
029632fb 4530 for (;;) {
77a4d1a1 4531 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4532 if (!overrun)
4533 break;
4534
4535 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4536 }
4cfafd30
PZ
4537 if (idle)
4538 cfs_b->period_active = 0;
51f2176d 4539 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4540
4541 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4542}
4543
4544void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4545{
4546 raw_spin_lock_init(&cfs_b->lock);
4547 cfs_b->runtime = 0;
4548 cfs_b->quota = RUNTIME_INF;
4549 cfs_b->period = ns_to_ktime(default_cfs_period());
4550
4551 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4552 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4553 cfs_b->period_timer.function = sched_cfs_period_timer;
4554 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4555 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4556}
4557
4558static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4559{
4560 cfs_rq->runtime_enabled = 0;
4561 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4562}
4563
77a4d1a1 4564void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4565{
4cfafd30 4566 lockdep_assert_held(&cfs_b->lock);
029632fb 4567
4cfafd30
PZ
4568 if (!cfs_b->period_active) {
4569 cfs_b->period_active = 1;
4570 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4571 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4572 }
029632fb
PZ
4573}
4574
4575static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4576{
7f1a169b
TH
4577 /* init_cfs_bandwidth() was not called */
4578 if (!cfs_b->throttled_cfs_rq.next)
4579 return;
4580
029632fb
PZ
4581 hrtimer_cancel(&cfs_b->period_timer);
4582 hrtimer_cancel(&cfs_b->slack_timer);
4583}
4584
0e59bdae
KT
4585static void __maybe_unused update_runtime_enabled(struct rq *rq)
4586{
4587 struct cfs_rq *cfs_rq;
4588
4589 for_each_leaf_cfs_rq(rq, cfs_rq) {
4590 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4591
4592 raw_spin_lock(&cfs_b->lock);
4593 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4594 raw_spin_unlock(&cfs_b->lock);
4595 }
4596}
4597
38dc3348 4598static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4599{
4600 struct cfs_rq *cfs_rq;
4601
4602 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4603 if (!cfs_rq->runtime_enabled)
4604 continue;
4605
4606 /*
4607 * clock_task is not advancing so we just need to make sure
4608 * there's some valid quota amount
4609 */
51f2176d 4610 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4611 /*
4612 * Offline rq is schedulable till cpu is completely disabled
4613 * in take_cpu_down(), so we prevent new cfs throttling here.
4614 */
4615 cfs_rq->runtime_enabled = 0;
4616
029632fb
PZ
4617 if (cfs_rq_throttled(cfs_rq))
4618 unthrottle_cfs_rq(cfs_rq);
4619 }
4620}
4621
4622#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4623static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4624{
78becc27 4625 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4626}
4627
9dbdb155 4628static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4629static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4630static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4631static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4632static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4633
4634static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4635{
4636 return 0;
4637}
64660c86
PT
4638
4639static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4640{
4641 return 0;
4642}
4643
4644static inline int throttled_lb_pair(struct task_group *tg,
4645 int src_cpu, int dest_cpu)
4646{
4647 return 0;
4648}
029632fb
PZ
4649
4650void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4651
4652#ifdef CONFIG_FAIR_GROUP_SCHED
4653static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4654#endif
4655
029632fb
PZ
4656static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4657{
4658 return NULL;
4659}
4660static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4661static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4662static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4663
4664#endif /* CONFIG_CFS_BANDWIDTH */
4665
bf0f6f24
IM
4666/**************************************************
4667 * CFS operations on tasks:
4668 */
4669
8f4d37ec
PZ
4670#ifdef CONFIG_SCHED_HRTICK
4671static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4672{
8f4d37ec
PZ
4673 struct sched_entity *se = &p->se;
4674 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4675
9148a3a1 4676 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4677
8bf46a39 4678 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4679 u64 slice = sched_slice(cfs_rq, se);
4680 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4681 s64 delta = slice - ran;
4682
4683 if (delta < 0) {
4684 if (rq->curr == p)
8875125e 4685 resched_curr(rq);
8f4d37ec
PZ
4686 return;
4687 }
31656519 4688 hrtick_start(rq, delta);
8f4d37ec
PZ
4689 }
4690}
a4c2f00f
PZ
4691
4692/*
4693 * called from enqueue/dequeue and updates the hrtick when the
4694 * current task is from our class and nr_running is low enough
4695 * to matter.
4696 */
4697static void hrtick_update(struct rq *rq)
4698{
4699 struct task_struct *curr = rq->curr;
4700
b39e66ea 4701 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4702 return;
4703
4704 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4705 hrtick_start_fair(rq, curr);
4706}
55e12e5e 4707#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4708static inline void
4709hrtick_start_fair(struct rq *rq, struct task_struct *p)
4710{
4711}
a4c2f00f
PZ
4712
4713static inline void hrtick_update(struct rq *rq)
4714{
4715}
8f4d37ec
PZ
4716#endif
4717
bf0f6f24
IM
4718/*
4719 * The enqueue_task method is called before nr_running is
4720 * increased. Here we update the fair scheduling stats and
4721 * then put the task into the rbtree:
4722 */
ea87bb78 4723static void
371fd7e7 4724enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4725{
4726 struct cfs_rq *cfs_rq;
62fb1851 4727 struct sched_entity *se = &p->se;
bf0f6f24 4728
8c34ab19
RW
4729 /*
4730 * If in_iowait is set, the code below may not trigger any cpufreq
4731 * utilization updates, so do it here explicitly with the IOWAIT flag
4732 * passed.
4733 */
4734 if (p->in_iowait)
4735 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4736
bf0f6f24 4737 for_each_sched_entity(se) {
62fb1851 4738 if (se->on_rq)
bf0f6f24
IM
4739 break;
4740 cfs_rq = cfs_rq_of(se);
88ec22d3 4741 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4742
4743 /*
4744 * end evaluation on encountering a throttled cfs_rq
4745 *
4746 * note: in the case of encountering a throttled cfs_rq we will
4747 * post the final h_nr_running increment below.
e210bffd 4748 */
85dac906
PT
4749 if (cfs_rq_throttled(cfs_rq))
4750 break;
953bfcd1 4751 cfs_rq->h_nr_running++;
85dac906 4752
88ec22d3 4753 flags = ENQUEUE_WAKEUP;
bf0f6f24 4754 }
8f4d37ec 4755
2069dd75 4756 for_each_sched_entity(se) {
0f317143 4757 cfs_rq = cfs_rq_of(se);
953bfcd1 4758 cfs_rq->h_nr_running++;
2069dd75 4759
85dac906
PT
4760 if (cfs_rq_throttled(cfs_rq))
4761 break;
4762
d31b1a66 4763 update_load_avg(se, UPDATE_TG);
17bc14b7 4764 update_cfs_shares(cfs_rq);
2069dd75
PZ
4765 }
4766
cd126afe 4767 if (!se)
72465447 4768 add_nr_running(rq, 1);
cd126afe 4769
a4c2f00f 4770 hrtick_update(rq);
bf0f6f24
IM
4771}
4772
2f36825b
VP
4773static void set_next_buddy(struct sched_entity *se);
4774
bf0f6f24
IM
4775/*
4776 * The dequeue_task method is called before nr_running is
4777 * decreased. We remove the task from the rbtree and
4778 * update the fair scheduling stats:
4779 */
371fd7e7 4780static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4781{
4782 struct cfs_rq *cfs_rq;
62fb1851 4783 struct sched_entity *se = &p->se;
2f36825b 4784 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4785
4786 for_each_sched_entity(se) {
4787 cfs_rq = cfs_rq_of(se);
371fd7e7 4788 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4789
4790 /*
4791 * end evaluation on encountering a throttled cfs_rq
4792 *
4793 * note: in the case of encountering a throttled cfs_rq we will
4794 * post the final h_nr_running decrement below.
4795 */
4796 if (cfs_rq_throttled(cfs_rq))
4797 break;
953bfcd1 4798 cfs_rq->h_nr_running--;
2069dd75 4799
bf0f6f24 4800 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4801 if (cfs_rq->load.weight) {
754bd598
KK
4802 /* Avoid re-evaluating load for this entity: */
4803 se = parent_entity(se);
2f36825b
VP
4804 /*
4805 * Bias pick_next to pick a task from this cfs_rq, as
4806 * p is sleeping when it is within its sched_slice.
4807 */
754bd598
KK
4808 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4809 set_next_buddy(se);
bf0f6f24 4810 break;
2f36825b 4811 }
371fd7e7 4812 flags |= DEQUEUE_SLEEP;
bf0f6f24 4813 }
8f4d37ec 4814
2069dd75 4815 for_each_sched_entity(se) {
0f317143 4816 cfs_rq = cfs_rq_of(se);
953bfcd1 4817 cfs_rq->h_nr_running--;
2069dd75 4818
85dac906
PT
4819 if (cfs_rq_throttled(cfs_rq))
4820 break;
4821
d31b1a66 4822 update_load_avg(se, UPDATE_TG);
17bc14b7 4823 update_cfs_shares(cfs_rq);
2069dd75
PZ
4824 }
4825
cd126afe 4826 if (!se)
72465447 4827 sub_nr_running(rq, 1);
cd126afe 4828
a4c2f00f 4829 hrtick_update(rq);
bf0f6f24
IM
4830}
4831
e7693a36 4832#ifdef CONFIG_SMP
10e2f1ac
PZ
4833
4834/* Working cpumask for: load_balance, load_balance_newidle. */
4835DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4836DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4837
9fd81dd5 4838#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4839/*
4840 * per rq 'load' arrray crap; XXX kill this.
4841 */
4842
4843/*
d937cdc5 4844 * The exact cpuload calculated at every tick would be:
3289bdb4 4845 *
d937cdc5
PZ
4846 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4847 *
4848 * If a cpu misses updates for n ticks (as it was idle) and update gets
4849 * called on the n+1-th tick when cpu may be busy, then we have:
4850 *
4851 * load_n = (1 - 1/2^i)^n * load_0
4852 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4853 *
4854 * decay_load_missed() below does efficient calculation of
3289bdb4 4855 *
d937cdc5
PZ
4856 * load' = (1 - 1/2^i)^n * load
4857 *
4858 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4859 * This allows us to precompute the above in said factors, thereby allowing the
4860 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4861 * fixed_power_int())
3289bdb4 4862 *
d937cdc5 4863 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4864 */
4865#define DEGRADE_SHIFT 7
d937cdc5
PZ
4866
4867static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4868static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4869 { 0, 0, 0, 0, 0, 0, 0, 0 },
4870 { 64, 32, 8, 0, 0, 0, 0, 0 },
4871 { 96, 72, 40, 12, 1, 0, 0, 0 },
4872 { 112, 98, 75, 43, 15, 1, 0, 0 },
4873 { 120, 112, 98, 76, 45, 16, 2, 0 }
4874};
3289bdb4
PZ
4875
4876/*
4877 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4878 * would be when CPU is idle and so we just decay the old load without
4879 * adding any new load.
4880 */
4881static unsigned long
4882decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4883{
4884 int j = 0;
4885
4886 if (!missed_updates)
4887 return load;
4888
4889 if (missed_updates >= degrade_zero_ticks[idx])
4890 return 0;
4891
4892 if (idx == 1)
4893 return load >> missed_updates;
4894
4895 while (missed_updates) {
4896 if (missed_updates % 2)
4897 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4898
4899 missed_updates >>= 1;
4900 j++;
4901 }
4902 return load;
4903}
9fd81dd5 4904#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4905
59543275 4906/**
cee1afce 4907 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4908 * @this_rq: The rq to update statistics for
4909 * @this_load: The current load
4910 * @pending_updates: The number of missed updates
59543275 4911 *
3289bdb4 4912 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4913 * scheduler tick (TICK_NSEC).
4914 *
4915 * This function computes a decaying average:
4916 *
4917 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4918 *
4919 * Because of NOHZ it might not get called on every tick which gives need for
4920 * the @pending_updates argument.
4921 *
4922 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4923 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4924 * = A * (A * load[i]_n-2 + B) + B
4925 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4926 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4927 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4928 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4929 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4930 *
4931 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4932 * any change in load would have resulted in the tick being turned back on.
4933 *
4934 * For regular NOHZ, this reduces to:
4935 *
4936 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4937 *
4938 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4939 * term.
3289bdb4 4940 */
1f41906a
FW
4941static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4942 unsigned long pending_updates)
3289bdb4 4943{
9fd81dd5 4944 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4945 int i, scale;
4946
4947 this_rq->nr_load_updates++;
4948
4949 /* Update our load: */
4950 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4951 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4952 unsigned long old_load, new_load;
4953
4954 /* scale is effectively 1 << i now, and >> i divides by scale */
4955
7400d3bb 4956 old_load = this_rq->cpu_load[i];
9fd81dd5 4957#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4958 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4959 if (tickless_load) {
4960 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4961 /*
4962 * old_load can never be a negative value because a
4963 * decayed tickless_load cannot be greater than the
4964 * original tickless_load.
4965 */
4966 old_load += tickless_load;
4967 }
9fd81dd5 4968#endif
3289bdb4
PZ
4969 new_load = this_load;
4970 /*
4971 * Round up the averaging division if load is increasing. This
4972 * prevents us from getting stuck on 9 if the load is 10, for
4973 * example.
4974 */
4975 if (new_load > old_load)
4976 new_load += scale - 1;
4977
4978 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4979 }
4980
4981 sched_avg_update(this_rq);
4982}
4983
7ea241af
YD
4984/* Used instead of source_load when we know the type == 0 */
4985static unsigned long weighted_cpuload(const int cpu)
4986{
4987 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4988}
4989
3289bdb4 4990#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4991/*
4992 * There is no sane way to deal with nohz on smp when using jiffies because the
4993 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4994 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4995 *
4996 * Therefore we need to avoid the delta approach from the regular tick when
4997 * possible since that would seriously skew the load calculation. This is why we
4998 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4999 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5000 * loop exit, nohz_idle_balance, nohz full exit...)
5001 *
5002 * This means we might still be one tick off for nohz periods.
5003 */
5004
5005static void cpu_load_update_nohz(struct rq *this_rq,
5006 unsigned long curr_jiffies,
5007 unsigned long load)
be68a682
FW
5008{
5009 unsigned long pending_updates;
5010
5011 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5012 if (pending_updates) {
5013 this_rq->last_load_update_tick = curr_jiffies;
5014 /*
5015 * In the regular NOHZ case, we were idle, this means load 0.
5016 * In the NOHZ_FULL case, we were non-idle, we should consider
5017 * its weighted load.
5018 */
1f41906a 5019 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5020 }
5021}
5022
3289bdb4
PZ
5023/*
5024 * Called from nohz_idle_balance() to update the load ratings before doing the
5025 * idle balance.
5026 */
cee1afce 5027static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5028{
3289bdb4
PZ
5029 /*
5030 * bail if there's load or we're actually up-to-date.
5031 */
be68a682 5032 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5033 return;
5034
1f41906a 5035 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5036}
5037
5038/*
1f41906a
FW
5039 * Record CPU load on nohz entry so we know the tickless load to account
5040 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5041 * than other cpu_load[idx] but it should be fine as cpu_load readers
5042 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5043 */
1f41906a 5044void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5045{
5046 struct rq *this_rq = this_rq();
1f41906a
FW
5047
5048 /*
5049 * This is all lockless but should be fine. If weighted_cpuload changes
5050 * concurrently we'll exit nohz. And cpu_load write can race with
5051 * cpu_load_update_idle() but both updater would be writing the same.
5052 */
5053 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5054}
5055
5056/*
5057 * Account the tickless load in the end of a nohz frame.
5058 */
5059void cpu_load_update_nohz_stop(void)
5060{
316c1608 5061 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5062 struct rq *this_rq = this_rq();
5063 unsigned long load;
3289bdb4
PZ
5064
5065 if (curr_jiffies == this_rq->last_load_update_tick)
5066 return;
5067
1f41906a 5068 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 5069 raw_spin_lock(&this_rq->lock);
b52fad2d 5070 update_rq_clock(this_rq);
1f41906a 5071 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
5072 raw_spin_unlock(&this_rq->lock);
5073}
1f41906a
FW
5074#else /* !CONFIG_NO_HZ_COMMON */
5075static inline void cpu_load_update_nohz(struct rq *this_rq,
5076 unsigned long curr_jiffies,
5077 unsigned long load) { }
5078#endif /* CONFIG_NO_HZ_COMMON */
5079
5080static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5081{
9fd81dd5 5082#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5083 /* See the mess around cpu_load_update_nohz(). */
5084 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5085#endif
1f41906a
FW
5086 cpu_load_update(this_rq, load, 1);
5087}
3289bdb4
PZ
5088
5089/*
5090 * Called from scheduler_tick()
5091 */
cee1afce 5092void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5093{
7ea241af 5094 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5095
5096 if (tick_nohz_tick_stopped())
5097 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5098 else
5099 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5100}
5101
029632fb
PZ
5102/*
5103 * Return a low guess at the load of a migration-source cpu weighted
5104 * according to the scheduling class and "nice" value.
5105 *
5106 * We want to under-estimate the load of migration sources, to
5107 * balance conservatively.
5108 */
5109static unsigned long source_load(int cpu, int type)
5110{
5111 struct rq *rq = cpu_rq(cpu);
5112 unsigned long total = weighted_cpuload(cpu);
5113
5114 if (type == 0 || !sched_feat(LB_BIAS))
5115 return total;
5116
5117 return min(rq->cpu_load[type-1], total);
5118}
5119
5120/*
5121 * Return a high guess at the load of a migration-target cpu weighted
5122 * according to the scheduling class and "nice" value.
5123 */
5124static unsigned long target_load(int cpu, int type)
5125{
5126 struct rq *rq = cpu_rq(cpu);
5127 unsigned long total = weighted_cpuload(cpu);
5128
5129 if (type == 0 || !sched_feat(LB_BIAS))
5130 return total;
5131
5132 return max(rq->cpu_load[type-1], total);
5133}
5134
ced549fa 5135static unsigned long capacity_of(int cpu)
029632fb 5136{
ced549fa 5137 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5138}
5139
ca6d75e6
VG
5140static unsigned long capacity_orig_of(int cpu)
5141{
5142 return cpu_rq(cpu)->cpu_capacity_orig;
5143}
5144
029632fb
PZ
5145static unsigned long cpu_avg_load_per_task(int cpu)
5146{
5147 struct rq *rq = cpu_rq(cpu);
316c1608 5148 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5149 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5150
5151 if (nr_running)
b92486cb 5152 return load_avg / nr_running;
029632fb
PZ
5153
5154 return 0;
5155}
5156
bb3469ac 5157#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5158/*
5159 * effective_load() calculates the load change as seen from the root_task_group
5160 *
5161 * Adding load to a group doesn't make a group heavier, but can cause movement
5162 * of group shares between cpus. Assuming the shares were perfectly aligned one
5163 * can calculate the shift in shares.
cf5f0acf
PZ
5164 *
5165 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5166 * on this @cpu and results in a total addition (subtraction) of @wg to the
5167 * total group weight.
5168 *
5169 * Given a runqueue weight distribution (rw_i) we can compute a shares
5170 * distribution (s_i) using:
5171 *
5172 * s_i = rw_i / \Sum rw_j (1)
5173 *
5174 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5175 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5176 * shares distribution (s_i):
5177 *
5178 * rw_i = { 2, 4, 1, 0 }
5179 * s_i = { 2/7, 4/7, 1/7, 0 }
5180 *
5181 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5182 * task used to run on and the CPU the waker is running on), we need to
5183 * compute the effect of waking a task on either CPU and, in case of a sync
5184 * wakeup, compute the effect of the current task going to sleep.
5185 *
5186 * So for a change of @wl to the local @cpu with an overall group weight change
5187 * of @wl we can compute the new shares distribution (s'_i) using:
5188 *
5189 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5190 *
5191 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5192 * differences in waking a task to CPU 0. The additional task changes the
5193 * weight and shares distributions like:
5194 *
5195 * rw'_i = { 3, 4, 1, 0 }
5196 * s'_i = { 3/8, 4/8, 1/8, 0 }
5197 *
5198 * We can then compute the difference in effective weight by using:
5199 *
5200 * dw_i = S * (s'_i - s_i) (3)
5201 *
5202 * Where 'S' is the group weight as seen by its parent.
5203 *
5204 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5205 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5206 * 4/7) times the weight of the group.
f5bfb7d9 5207 */
2069dd75 5208static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5209{
4be9daaa 5210 struct sched_entity *se = tg->se[cpu];
f1d239f7 5211
9722c2da 5212 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5213 return wl;
5214
4be9daaa 5215 for_each_sched_entity(se) {
7dd49125
PZ
5216 struct cfs_rq *cfs_rq = se->my_q;
5217 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5218
7dd49125 5219 tg = cfs_rq->tg;
bb3469ac 5220
cf5f0acf
PZ
5221 /*
5222 * W = @wg + \Sum rw_j
5223 */
7dd49125
PZ
5224 W = wg + atomic_long_read(&tg->load_avg);
5225
5226 /* Ensure \Sum rw_j >= rw_i */
5227 W -= cfs_rq->tg_load_avg_contrib;
5228 W += w;
4be9daaa 5229
cf5f0acf
PZ
5230 /*
5231 * w = rw_i + @wl
5232 */
7dd49125 5233 w += wl;
940959e9 5234
cf5f0acf
PZ
5235 /*
5236 * wl = S * s'_i; see (2)
5237 */
5238 if (W > 0 && w < W)
ab522e33 5239 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5240 else
ab522e33 5241 wl = scale_load_down(tg->shares);
940959e9 5242
cf5f0acf
PZ
5243 /*
5244 * Per the above, wl is the new se->load.weight value; since
5245 * those are clipped to [MIN_SHARES, ...) do so now. See
5246 * calc_cfs_shares().
5247 */
977dda7c
PT
5248 if (wl < MIN_SHARES)
5249 wl = MIN_SHARES;
cf5f0acf
PZ
5250
5251 /*
5252 * wl = dw_i = S * (s'_i - s_i); see (3)
5253 */
9d89c257 5254 wl -= se->avg.load_avg;
cf5f0acf
PZ
5255
5256 /*
5257 * Recursively apply this logic to all parent groups to compute
5258 * the final effective load change on the root group. Since
5259 * only the @tg group gets extra weight, all parent groups can
5260 * only redistribute existing shares. @wl is the shift in shares
5261 * resulting from this level per the above.
5262 */
4be9daaa 5263 wg = 0;
4be9daaa 5264 }
bb3469ac 5265
4be9daaa 5266 return wl;
bb3469ac
PZ
5267}
5268#else
4be9daaa 5269
58d081b5 5270static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5271{
83378269 5272 return wl;
bb3469ac 5273}
4be9daaa 5274
bb3469ac
PZ
5275#endif
5276
c58d25f3
PZ
5277static void record_wakee(struct task_struct *p)
5278{
5279 /*
5280 * Only decay a single time; tasks that have less then 1 wakeup per
5281 * jiffy will not have built up many flips.
5282 */
5283 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5284 current->wakee_flips >>= 1;
5285 current->wakee_flip_decay_ts = jiffies;
5286 }
5287
5288 if (current->last_wakee != p) {
5289 current->last_wakee = p;
5290 current->wakee_flips++;
5291 }
5292}
5293
63b0e9ed
MG
5294/*
5295 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5296 *
63b0e9ed 5297 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5298 * at a frequency roughly N times higher than one of its wakees.
5299 *
5300 * In order to determine whether we should let the load spread vs consolidating
5301 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5302 * partner, and a factor of lls_size higher frequency in the other.
5303 *
5304 * With both conditions met, we can be relatively sure that the relationship is
5305 * non-monogamous, with partner count exceeding socket size.
5306 *
5307 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5308 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5309 * socket size.
63b0e9ed 5310 */
62470419
MW
5311static int wake_wide(struct task_struct *p)
5312{
63b0e9ed
MG
5313 unsigned int master = current->wakee_flips;
5314 unsigned int slave = p->wakee_flips;
7d9ffa89 5315 int factor = this_cpu_read(sd_llc_size);
62470419 5316
63b0e9ed
MG
5317 if (master < slave)
5318 swap(master, slave);
5319 if (slave < factor || master < slave * factor)
5320 return 0;
5321 return 1;
62470419
MW
5322}
5323
772bd008
MR
5324static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5325 int prev_cpu, int sync)
098fb9db 5326{
e37b6a7b 5327 s64 this_load, load;
bd61c98f 5328 s64 this_eff_load, prev_eff_load;
772bd008 5329 int idx, this_cpu;
c88d5910 5330 struct task_group *tg;
83378269 5331 unsigned long weight;
b3137bc8 5332 int balanced;
098fb9db 5333
c88d5910
PZ
5334 idx = sd->wake_idx;
5335 this_cpu = smp_processor_id();
c88d5910
PZ
5336 load = source_load(prev_cpu, idx);
5337 this_load = target_load(this_cpu, idx);
098fb9db 5338
b3137bc8
MG
5339 /*
5340 * If sync wakeup then subtract the (maximum possible)
5341 * effect of the currently running task from the load
5342 * of the current CPU:
5343 */
83378269
PZ
5344 if (sync) {
5345 tg = task_group(current);
9d89c257 5346 weight = current->se.avg.load_avg;
83378269 5347
c88d5910 5348 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5349 load += effective_load(tg, prev_cpu, 0, -weight);
5350 }
b3137bc8 5351
83378269 5352 tg = task_group(p);
9d89c257 5353 weight = p->se.avg.load_avg;
b3137bc8 5354
71a29aa7
PZ
5355 /*
5356 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5357 * due to the sync cause above having dropped this_load to 0, we'll
5358 * always have an imbalance, but there's really nothing you can do
5359 * about that, so that's good too.
71a29aa7
PZ
5360 *
5361 * Otherwise check if either cpus are near enough in load to allow this
5362 * task to be woken on this_cpu.
5363 */
bd61c98f
VG
5364 this_eff_load = 100;
5365 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5366
bd61c98f
VG
5367 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5368 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5369
bd61c98f 5370 if (this_load > 0) {
e51fd5e2
PZ
5371 this_eff_load *= this_load +
5372 effective_load(tg, this_cpu, weight, weight);
5373
e51fd5e2 5374 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5375 }
e51fd5e2 5376
bd61c98f 5377 balanced = this_eff_load <= prev_eff_load;
098fb9db 5378
ae92882e 5379 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5380
05bfb65f
VG
5381 if (!balanced)
5382 return 0;
098fb9db 5383
ae92882e
JP
5384 schedstat_inc(sd->ttwu_move_affine);
5385 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5386
5387 return 1;
098fb9db
IM
5388}
5389
6a0b19c0
MR
5390static inline int task_util(struct task_struct *p);
5391static int cpu_util_wake(int cpu, struct task_struct *p);
5392
5393static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5394{
5395 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5396}
5397
aaee1203
PZ
5398/*
5399 * find_idlest_group finds and returns the least busy CPU group within the
5400 * domain.
5401 */
5402static struct sched_group *
78e7ed53 5403find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5404 int this_cpu, int sd_flag)
e7693a36 5405{
b3bd3de6 5406 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5407 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5408 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5409 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5410 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5411 int load_idx = sd->forkexec_idx;
6b94780e
VG
5412 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5413 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5414 (sd->imbalance_pct-100) / 100;
e7693a36 5415
c44f2a02
VG
5416 if (sd_flag & SD_BALANCE_WAKE)
5417 load_idx = sd->wake_idx;
5418
aaee1203 5419 do {
6b94780e
VG
5420 unsigned long load, avg_load, runnable_load;
5421 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5422 int local_group;
5423 int i;
e7693a36 5424
aaee1203
PZ
5425 /* Skip over this group if it has no CPUs allowed */
5426 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5427 tsk_cpus_allowed(p)))
aaee1203
PZ
5428 continue;
5429
5430 local_group = cpumask_test_cpu(this_cpu,
5431 sched_group_cpus(group));
5432
6a0b19c0
MR
5433 /*
5434 * Tally up the load of all CPUs in the group and find
5435 * the group containing the CPU with most spare capacity.
5436 */
aaee1203 5437 avg_load = 0;
6b94780e 5438 runnable_load = 0;
6a0b19c0 5439 max_spare_cap = 0;
aaee1203
PZ
5440
5441 for_each_cpu(i, sched_group_cpus(group)) {
5442 /* Bias balancing toward cpus of our domain */
5443 if (local_group)
5444 load = source_load(i, load_idx);
5445 else
5446 load = target_load(i, load_idx);
5447
6b94780e
VG
5448 runnable_load += load;
5449
5450 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5451
5452 spare_cap = capacity_spare_wake(i, p);
5453
5454 if (spare_cap > max_spare_cap)
5455 max_spare_cap = spare_cap;
aaee1203
PZ
5456 }
5457
63b2ca30 5458 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5459 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5460 group->sgc->capacity;
5461 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5462 group->sgc->capacity;
aaee1203
PZ
5463
5464 if (local_group) {
6b94780e
VG
5465 this_runnable_load = runnable_load;
5466 this_avg_load = avg_load;
6a0b19c0
MR
5467 this_spare = max_spare_cap;
5468 } else {
6b94780e
VG
5469 if (min_runnable_load > (runnable_load + imbalance)) {
5470 /*
5471 * The runnable load is significantly smaller
5472 * so we can pick this new cpu
5473 */
5474 min_runnable_load = runnable_load;
5475 min_avg_load = avg_load;
5476 idlest = group;
5477 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5478 (100*min_avg_load > imbalance_scale*avg_load)) {
5479 /*
5480 * The runnable loads are close so take the
5481 * blocked load into account through avg_load.
5482 */
5483 min_avg_load = avg_load;
6a0b19c0
MR
5484 idlest = group;
5485 }
5486
5487 if (most_spare < max_spare_cap) {
5488 most_spare = max_spare_cap;
5489 most_spare_sg = group;
5490 }
aaee1203
PZ
5491 }
5492 } while (group = group->next, group != sd->groups);
5493
6a0b19c0
MR
5494 /*
5495 * The cross-over point between using spare capacity or least load
5496 * is too conservative for high utilization tasks on partially
5497 * utilized systems if we require spare_capacity > task_util(p),
5498 * so we allow for some task stuffing by using
5499 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5500 *
5501 * Spare capacity can't be used for fork because the utilization has
5502 * not been set yet, we must first select a rq to compute the initial
5503 * utilization.
6a0b19c0 5504 */
f519a3f1
VG
5505 if (sd_flag & SD_BALANCE_FORK)
5506 goto skip_spare;
5507
6a0b19c0 5508 if (this_spare > task_util(p) / 2 &&
6b94780e 5509 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5510 return NULL;
6b94780e
VG
5511
5512 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5513 return most_spare_sg;
5514
f519a3f1 5515skip_spare:
6b94780e
VG
5516 if (!idlest)
5517 return NULL;
5518
5519 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5520 return NULL;
6b94780e
VG
5521
5522 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5523 (100*this_avg_load < imbalance_scale*min_avg_load))
5524 return NULL;
5525
aaee1203
PZ
5526 return idlest;
5527}
5528
5529/*
5530 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5531 */
5532static int
5533find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5534{
5535 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5536 unsigned int min_exit_latency = UINT_MAX;
5537 u64 latest_idle_timestamp = 0;
5538 int least_loaded_cpu = this_cpu;
5539 int shallowest_idle_cpu = -1;
aaee1203
PZ
5540 int i;
5541
eaecf41f
MR
5542 /* Check if we have any choice: */
5543 if (group->group_weight == 1)
5544 return cpumask_first(sched_group_cpus(group));
5545
aaee1203 5546 /* Traverse only the allowed CPUs */
fa17b507 5547 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5548 if (idle_cpu(i)) {
5549 struct rq *rq = cpu_rq(i);
5550 struct cpuidle_state *idle = idle_get_state(rq);
5551 if (idle && idle->exit_latency < min_exit_latency) {
5552 /*
5553 * We give priority to a CPU whose idle state
5554 * has the smallest exit latency irrespective
5555 * of any idle timestamp.
5556 */
5557 min_exit_latency = idle->exit_latency;
5558 latest_idle_timestamp = rq->idle_stamp;
5559 shallowest_idle_cpu = i;
5560 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5561 rq->idle_stamp > latest_idle_timestamp) {
5562 /*
5563 * If equal or no active idle state, then
5564 * the most recently idled CPU might have
5565 * a warmer cache.
5566 */
5567 latest_idle_timestamp = rq->idle_stamp;
5568 shallowest_idle_cpu = i;
5569 }
9f96742a 5570 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5571 load = weighted_cpuload(i);
5572 if (load < min_load || (load == min_load && i == this_cpu)) {
5573 min_load = load;
5574 least_loaded_cpu = i;
5575 }
e7693a36
GH
5576 }
5577 }
5578
83a0a96a 5579 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5580}
e7693a36 5581
a50bde51 5582/*
10e2f1ac
PZ
5583 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5584 * (@start), and wraps around.
5585 *
5586 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5587 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5588 * through the LLC domain.
5589 *
5590 * Especially tbench is found sensitive to this.
5591 */
5592
5593static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5594{
5595 int next;
5596
5597again:
5598 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5599
5600 if (*wrapped) {
5601 if (next >= start)
5602 return nr_cpumask_bits;
5603 } else {
5604 if (next >= nr_cpumask_bits) {
5605 *wrapped = 1;
5606 n = -1;
5607 goto again;
5608 }
5609 }
5610
5611 return next;
5612}
5613
5614#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5615 for ((wrap) = 0, (cpu) = (start)-1; \
5616 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5617 (cpu) < nr_cpumask_bits; )
5618
5619#ifdef CONFIG_SCHED_SMT
5620
5621static inline void set_idle_cores(int cpu, int val)
5622{
5623 struct sched_domain_shared *sds;
5624
5625 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5626 if (sds)
5627 WRITE_ONCE(sds->has_idle_cores, val);
5628}
5629
5630static inline bool test_idle_cores(int cpu, bool def)
5631{
5632 struct sched_domain_shared *sds;
5633
5634 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5635 if (sds)
5636 return READ_ONCE(sds->has_idle_cores);
5637
5638 return def;
5639}
5640
5641/*
5642 * Scans the local SMT mask to see if the entire core is idle, and records this
5643 * information in sd_llc_shared->has_idle_cores.
5644 *
5645 * Since SMT siblings share all cache levels, inspecting this limited remote
5646 * state should be fairly cheap.
5647 */
1b568f0a 5648void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5649{
5650 int core = cpu_of(rq);
5651 int cpu;
5652
5653 rcu_read_lock();
5654 if (test_idle_cores(core, true))
5655 goto unlock;
5656
5657 for_each_cpu(cpu, cpu_smt_mask(core)) {
5658 if (cpu == core)
5659 continue;
5660
5661 if (!idle_cpu(cpu))
5662 goto unlock;
5663 }
5664
5665 set_idle_cores(core, 1);
5666unlock:
5667 rcu_read_unlock();
5668}
5669
5670/*
5671 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5672 * there are no idle cores left in the system; tracked through
5673 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5674 */
5675static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5676{
5677 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5678 int core, cpu, wrap;
5679
1b568f0a
PZ
5680 if (!static_branch_likely(&sched_smt_present))
5681 return -1;
5682
10e2f1ac
PZ
5683 if (!test_idle_cores(target, false))
5684 return -1;
5685
5686 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
5687
5688 for_each_cpu_wrap(core, cpus, target, wrap) {
5689 bool idle = true;
5690
5691 for_each_cpu(cpu, cpu_smt_mask(core)) {
5692 cpumask_clear_cpu(cpu, cpus);
5693 if (!idle_cpu(cpu))
5694 idle = false;
5695 }
5696
5697 if (idle)
5698 return core;
5699 }
5700
5701 /*
5702 * Failed to find an idle core; stop looking for one.
5703 */
5704 set_idle_cores(target, 0);
5705
5706 return -1;
5707}
5708
5709/*
5710 * Scan the local SMT mask for idle CPUs.
5711 */
5712static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5713{
5714 int cpu;
5715
1b568f0a
PZ
5716 if (!static_branch_likely(&sched_smt_present))
5717 return -1;
5718
10e2f1ac
PZ
5719 for_each_cpu(cpu, cpu_smt_mask(target)) {
5720 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5721 continue;
5722 if (idle_cpu(cpu))
5723 return cpu;
5724 }
5725
5726 return -1;
5727}
5728
5729#else /* CONFIG_SCHED_SMT */
5730
5731static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5732{
5733 return -1;
5734}
5735
5736static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5737{
5738 return -1;
5739}
5740
5741#endif /* CONFIG_SCHED_SMT */
5742
5743/*
5744 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5745 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5746 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5747 */
10e2f1ac
PZ
5748static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5749{
9cfb38a7
WL
5750 struct sched_domain *this_sd;
5751 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5752 u64 time, cost;
5753 s64 delta;
5754 int cpu, wrap;
5755
9cfb38a7
WL
5756 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5757 if (!this_sd)
5758 return -1;
5759
5760 avg_cost = this_sd->avg_scan_cost;
5761
10e2f1ac
PZ
5762 /*
5763 * Due to large variance we need a large fuzz factor; hackbench in
5764 * particularly is sensitive here.
5765 */
5766 if ((avg_idle / 512) < avg_cost)
5767 return -1;
5768
5769 time = local_clock();
5770
5771 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5772 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
5773 continue;
5774 if (idle_cpu(cpu))
5775 break;
5776 }
5777
5778 time = local_clock() - time;
5779 cost = this_sd->avg_scan_cost;
5780 delta = (s64)(time - cost) / 8;
5781 this_sd->avg_scan_cost += delta;
5782
5783 return cpu;
5784}
5785
5786/*
5787 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5788 */
772bd008 5789static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5790{
99bd5e2f 5791 struct sched_domain *sd;
10e2f1ac 5792 int i;
a50bde51 5793
e0a79f52
MG
5794 if (idle_cpu(target))
5795 return target;
99bd5e2f
SS
5796
5797 /*
10e2f1ac 5798 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5799 */
772bd008
MR
5800 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5801 return prev;
a50bde51 5802
518cd623 5803 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5804 if (!sd)
5805 return target;
772bd008 5806
10e2f1ac
PZ
5807 i = select_idle_core(p, sd, target);
5808 if ((unsigned)i < nr_cpumask_bits)
5809 return i;
37407ea7 5810
10e2f1ac
PZ
5811 i = select_idle_cpu(p, sd, target);
5812 if ((unsigned)i < nr_cpumask_bits)
5813 return i;
5814
5815 i = select_idle_smt(p, sd, target);
5816 if ((unsigned)i < nr_cpumask_bits)
5817 return i;
970e1789 5818
a50bde51
PZ
5819 return target;
5820}
231678b7 5821
8bb5b00c 5822/*
9e91d61d 5823 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5824 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5825 * compare the utilization with the capacity of the CPU that is available for
5826 * CFS task (ie cpu_capacity).
231678b7
DE
5827 *
5828 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5829 * recent utilization of currently non-runnable tasks on a CPU. It represents
5830 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5831 * capacity_orig is the cpu_capacity available at the highest frequency
5832 * (arch_scale_freq_capacity()).
5833 * The utilization of a CPU converges towards a sum equal to or less than the
5834 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5835 * the running time on this CPU scaled by capacity_curr.
5836 *
5837 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5838 * higher than capacity_orig because of unfortunate rounding in
5839 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5840 * the average stabilizes with the new running time. We need to check that the
5841 * utilization stays within the range of [0..capacity_orig] and cap it if
5842 * necessary. Without utilization capping, a group could be seen as overloaded
5843 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5844 * available capacity. We allow utilization to overshoot capacity_curr (but not
5845 * capacity_orig) as it useful for predicting the capacity required after task
5846 * migrations (scheduler-driven DVFS).
8bb5b00c 5847 */
9e91d61d 5848static int cpu_util(int cpu)
8bb5b00c 5849{
9e91d61d 5850 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5851 unsigned long capacity = capacity_orig_of(cpu);
5852
231678b7 5853 return (util >= capacity) ? capacity : util;
8bb5b00c 5854}
a50bde51 5855
3273163c
MR
5856static inline int task_util(struct task_struct *p)
5857{
5858 return p->se.avg.util_avg;
5859}
5860
104cb16d
MR
5861/*
5862 * cpu_util_wake: Compute cpu utilization with any contributions from
5863 * the waking task p removed.
5864 */
5865static int cpu_util_wake(int cpu, struct task_struct *p)
5866{
5867 unsigned long util, capacity;
5868
5869 /* Task has no contribution or is new */
5870 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5871 return cpu_util(cpu);
5872
5873 capacity = capacity_orig_of(cpu);
5874 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5875
5876 return (util >= capacity) ? capacity : util;
5877}
5878
3273163c
MR
5879/*
5880 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5881 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5882 *
5883 * In that case WAKE_AFFINE doesn't make sense and we'll let
5884 * BALANCE_WAKE sort things out.
5885 */
5886static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5887{
5888 long min_cap, max_cap;
5889
5890 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5891 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5892
5893 /* Minimum capacity is close to max, no need to abort wake_affine */
5894 if (max_cap - min_cap < max_cap >> 3)
5895 return 0;
5896
104cb16d
MR
5897 /* Bring task utilization in sync with prev_cpu */
5898 sync_entity_load_avg(&p->se);
5899
3273163c
MR
5900 return min_cap * 1024 < task_util(p) * capacity_margin;
5901}
5902
aaee1203 5903/*
de91b9cb
MR
5904 * select_task_rq_fair: Select target runqueue for the waking task in domains
5905 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5906 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5907 *
de91b9cb
MR
5908 * Balances load by selecting the idlest cpu in the idlest group, or under
5909 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5910 *
de91b9cb 5911 * Returns the target cpu number.
aaee1203
PZ
5912 *
5913 * preempt must be disabled.
5914 */
0017d735 5915static int
ac66f547 5916select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5917{
29cd8bae 5918 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5919 int cpu = smp_processor_id();
63b0e9ed 5920 int new_cpu = prev_cpu;
99bd5e2f 5921 int want_affine = 0;
5158f4e4 5922 int sync = wake_flags & WF_SYNC;
c88d5910 5923
c58d25f3
PZ
5924 if (sd_flag & SD_BALANCE_WAKE) {
5925 record_wakee(p);
3273163c
MR
5926 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5927 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5928 }
aaee1203 5929
dce840a0 5930 rcu_read_lock();
aaee1203 5931 for_each_domain(cpu, tmp) {
e4f42888 5932 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5933 break;
e4f42888 5934
fe3bcfe1 5935 /*
99bd5e2f
SS
5936 * If both cpu and prev_cpu are part of this domain,
5937 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5938 */
99bd5e2f
SS
5939 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5940 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5941 affine_sd = tmp;
29cd8bae 5942 break;
f03542a7 5943 }
29cd8bae 5944
f03542a7 5945 if (tmp->flags & sd_flag)
29cd8bae 5946 sd = tmp;
63b0e9ed
MG
5947 else if (!want_affine)
5948 break;
29cd8bae
PZ
5949 }
5950
63b0e9ed
MG
5951 if (affine_sd) {
5952 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5953 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5954 new_cpu = cpu;
8b911acd 5955 }
e7693a36 5956
63b0e9ed
MG
5957 if (!sd) {
5958 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5959 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5960
5961 } else while (sd) {
aaee1203 5962 struct sched_group *group;
c88d5910 5963 int weight;
098fb9db 5964
0763a660 5965 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5966 sd = sd->child;
5967 continue;
5968 }
098fb9db 5969
c44f2a02 5970 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5971 if (!group) {
5972 sd = sd->child;
5973 continue;
5974 }
4ae7d5ce 5975
d7c33c49 5976 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5977 if (new_cpu == -1 || new_cpu == cpu) {
5978 /* Now try balancing at a lower domain level of cpu */
5979 sd = sd->child;
5980 continue;
e7693a36 5981 }
aaee1203
PZ
5982
5983 /* Now try balancing at a lower domain level of new_cpu */
5984 cpu = new_cpu;
669c55e9 5985 weight = sd->span_weight;
aaee1203
PZ
5986 sd = NULL;
5987 for_each_domain(cpu, tmp) {
669c55e9 5988 if (weight <= tmp->span_weight)
aaee1203 5989 break;
0763a660 5990 if (tmp->flags & sd_flag)
aaee1203
PZ
5991 sd = tmp;
5992 }
5993 /* while loop will break here if sd == NULL */
e7693a36 5994 }
dce840a0 5995 rcu_read_unlock();
e7693a36 5996
c88d5910 5997 return new_cpu;
e7693a36 5998}
0a74bef8
PT
5999
6000/*
6001 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6002 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6003 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6004 */
5a4fd036 6005static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6006{
59efa0ba
PZ
6007 /*
6008 * As blocked tasks retain absolute vruntime the migration needs to
6009 * deal with this by subtracting the old and adding the new
6010 * min_vruntime -- the latter is done by enqueue_entity() when placing
6011 * the task on the new runqueue.
6012 */
6013 if (p->state == TASK_WAKING) {
6014 struct sched_entity *se = &p->se;
6015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6016 u64 min_vruntime;
6017
6018#ifndef CONFIG_64BIT
6019 u64 min_vruntime_copy;
6020
6021 do {
6022 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6023 smp_rmb();
6024 min_vruntime = cfs_rq->min_vruntime;
6025 } while (min_vruntime != min_vruntime_copy);
6026#else
6027 min_vruntime = cfs_rq->min_vruntime;
6028#endif
6029
6030 se->vruntime -= min_vruntime;
6031 }
6032
aff3e498 6033 /*
9d89c257
YD
6034 * We are supposed to update the task to "current" time, then its up to date
6035 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6036 * what current time is, so simply throw away the out-of-date time. This
6037 * will result in the wakee task is less decayed, but giving the wakee more
6038 * load sounds not bad.
aff3e498 6039 */
9d89c257
YD
6040 remove_entity_load_avg(&p->se);
6041
6042 /* Tell new CPU we are migrated */
6043 p->se.avg.last_update_time = 0;
3944a927
BS
6044
6045 /* We have migrated, no longer consider this task hot */
9d89c257 6046 p->se.exec_start = 0;
0a74bef8 6047}
12695578
YD
6048
6049static void task_dead_fair(struct task_struct *p)
6050{
6051 remove_entity_load_avg(&p->se);
6052}
e7693a36
GH
6053#endif /* CONFIG_SMP */
6054
e52fb7c0
PZ
6055static unsigned long
6056wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6057{
6058 unsigned long gran = sysctl_sched_wakeup_granularity;
6059
6060 /*
e52fb7c0
PZ
6061 * Since its curr running now, convert the gran from real-time
6062 * to virtual-time in his units.
13814d42
MG
6063 *
6064 * By using 'se' instead of 'curr' we penalize light tasks, so
6065 * they get preempted easier. That is, if 'se' < 'curr' then
6066 * the resulting gran will be larger, therefore penalizing the
6067 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6068 * be smaller, again penalizing the lighter task.
6069 *
6070 * This is especially important for buddies when the leftmost
6071 * task is higher priority than the buddy.
0bbd3336 6072 */
f4ad9bd2 6073 return calc_delta_fair(gran, se);
0bbd3336
PZ
6074}
6075
464b7527
PZ
6076/*
6077 * Should 'se' preempt 'curr'.
6078 *
6079 * |s1
6080 * |s2
6081 * |s3
6082 * g
6083 * |<--->|c
6084 *
6085 * w(c, s1) = -1
6086 * w(c, s2) = 0
6087 * w(c, s3) = 1
6088 *
6089 */
6090static int
6091wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6092{
6093 s64 gran, vdiff = curr->vruntime - se->vruntime;
6094
6095 if (vdiff <= 0)
6096 return -1;
6097
e52fb7c0 6098 gran = wakeup_gran(curr, se);
464b7527
PZ
6099 if (vdiff > gran)
6100 return 1;
6101
6102 return 0;
6103}
6104
02479099
PZ
6105static void set_last_buddy(struct sched_entity *se)
6106{
69c80f3e
VP
6107 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6108 return;
6109
6110 for_each_sched_entity(se)
6111 cfs_rq_of(se)->last = se;
02479099
PZ
6112}
6113
6114static void set_next_buddy(struct sched_entity *se)
6115{
69c80f3e
VP
6116 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6117 return;
6118
6119 for_each_sched_entity(se)
6120 cfs_rq_of(se)->next = se;
02479099
PZ
6121}
6122
ac53db59
RR
6123static void set_skip_buddy(struct sched_entity *se)
6124{
69c80f3e
VP
6125 for_each_sched_entity(se)
6126 cfs_rq_of(se)->skip = se;
ac53db59
RR
6127}
6128
bf0f6f24
IM
6129/*
6130 * Preempt the current task with a newly woken task if needed:
6131 */
5a9b86f6 6132static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6133{
6134 struct task_struct *curr = rq->curr;
8651a86c 6135 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6136 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6137 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6138 int next_buddy_marked = 0;
bf0f6f24 6139
4ae7d5ce
IM
6140 if (unlikely(se == pse))
6141 return;
6142
5238cdd3 6143 /*
163122b7 6144 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6145 * unconditionally check_prempt_curr() after an enqueue (which may have
6146 * lead to a throttle). This both saves work and prevents false
6147 * next-buddy nomination below.
6148 */
6149 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6150 return;
6151
2f36825b 6152 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6153 set_next_buddy(pse);
2f36825b
VP
6154 next_buddy_marked = 1;
6155 }
57fdc26d 6156
aec0a514
BR
6157 /*
6158 * We can come here with TIF_NEED_RESCHED already set from new task
6159 * wake up path.
5238cdd3
PT
6160 *
6161 * Note: this also catches the edge-case of curr being in a throttled
6162 * group (e.g. via set_curr_task), since update_curr() (in the
6163 * enqueue of curr) will have resulted in resched being set. This
6164 * prevents us from potentially nominating it as a false LAST_BUDDY
6165 * below.
aec0a514
BR
6166 */
6167 if (test_tsk_need_resched(curr))
6168 return;
6169
a2f5c9ab
DH
6170 /* Idle tasks are by definition preempted by non-idle tasks. */
6171 if (unlikely(curr->policy == SCHED_IDLE) &&
6172 likely(p->policy != SCHED_IDLE))
6173 goto preempt;
6174
91c234b4 6175 /*
a2f5c9ab
DH
6176 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6177 * is driven by the tick):
91c234b4 6178 */
8ed92e51 6179 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6180 return;
bf0f6f24 6181
464b7527 6182 find_matching_se(&se, &pse);
9bbd7374 6183 update_curr(cfs_rq_of(se));
002f128b 6184 BUG_ON(!pse);
2f36825b
VP
6185 if (wakeup_preempt_entity(se, pse) == 1) {
6186 /*
6187 * Bias pick_next to pick the sched entity that is
6188 * triggering this preemption.
6189 */
6190 if (!next_buddy_marked)
6191 set_next_buddy(pse);
3a7e73a2 6192 goto preempt;
2f36825b 6193 }
464b7527 6194
3a7e73a2 6195 return;
a65ac745 6196
3a7e73a2 6197preempt:
8875125e 6198 resched_curr(rq);
3a7e73a2
PZ
6199 /*
6200 * Only set the backward buddy when the current task is still
6201 * on the rq. This can happen when a wakeup gets interleaved
6202 * with schedule on the ->pre_schedule() or idle_balance()
6203 * point, either of which can * drop the rq lock.
6204 *
6205 * Also, during early boot the idle thread is in the fair class,
6206 * for obvious reasons its a bad idea to schedule back to it.
6207 */
6208 if (unlikely(!se->on_rq || curr == rq->idle))
6209 return;
6210
6211 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6212 set_last_buddy(se);
bf0f6f24
IM
6213}
6214
606dba2e 6215static struct task_struct *
d8ac8971 6216pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6217{
6218 struct cfs_rq *cfs_rq = &rq->cfs;
6219 struct sched_entity *se;
678d5718 6220 struct task_struct *p;
37e117c0 6221 int new_tasks;
678d5718 6222
6e83125c 6223again:
678d5718
PZ
6224#ifdef CONFIG_FAIR_GROUP_SCHED
6225 if (!cfs_rq->nr_running)
38033c37 6226 goto idle;
678d5718 6227
3f1d2a31 6228 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6229 goto simple;
6230
6231 /*
6232 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6233 * likely that a next task is from the same cgroup as the current.
6234 *
6235 * Therefore attempt to avoid putting and setting the entire cgroup
6236 * hierarchy, only change the part that actually changes.
6237 */
6238
6239 do {
6240 struct sched_entity *curr = cfs_rq->curr;
6241
6242 /*
6243 * Since we got here without doing put_prev_entity() we also
6244 * have to consider cfs_rq->curr. If it is still a runnable
6245 * entity, update_curr() will update its vruntime, otherwise
6246 * forget we've ever seen it.
6247 */
54d27365
BS
6248 if (curr) {
6249 if (curr->on_rq)
6250 update_curr(cfs_rq);
6251 else
6252 curr = NULL;
678d5718 6253
54d27365
BS
6254 /*
6255 * This call to check_cfs_rq_runtime() will do the
6256 * throttle and dequeue its entity in the parent(s).
6257 * Therefore the 'simple' nr_running test will indeed
6258 * be correct.
6259 */
6260 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6261 goto simple;
6262 }
678d5718
PZ
6263
6264 se = pick_next_entity(cfs_rq, curr);
6265 cfs_rq = group_cfs_rq(se);
6266 } while (cfs_rq);
6267
6268 p = task_of(se);
6269
6270 /*
6271 * Since we haven't yet done put_prev_entity and if the selected task
6272 * is a different task than we started out with, try and touch the
6273 * least amount of cfs_rqs.
6274 */
6275 if (prev != p) {
6276 struct sched_entity *pse = &prev->se;
6277
6278 while (!(cfs_rq = is_same_group(se, pse))) {
6279 int se_depth = se->depth;
6280 int pse_depth = pse->depth;
6281
6282 if (se_depth <= pse_depth) {
6283 put_prev_entity(cfs_rq_of(pse), pse);
6284 pse = parent_entity(pse);
6285 }
6286 if (se_depth >= pse_depth) {
6287 set_next_entity(cfs_rq_of(se), se);
6288 se = parent_entity(se);
6289 }
6290 }
6291
6292 put_prev_entity(cfs_rq, pse);
6293 set_next_entity(cfs_rq, se);
6294 }
6295
6296 if (hrtick_enabled(rq))
6297 hrtick_start_fair(rq, p);
6298
6299 return p;
6300simple:
6301 cfs_rq = &rq->cfs;
6302#endif
bf0f6f24 6303
36ace27e 6304 if (!cfs_rq->nr_running)
38033c37 6305 goto idle;
bf0f6f24 6306
3f1d2a31 6307 put_prev_task(rq, prev);
606dba2e 6308
bf0f6f24 6309 do {
678d5718 6310 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6311 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6312 cfs_rq = group_cfs_rq(se);
6313 } while (cfs_rq);
6314
8f4d37ec 6315 p = task_of(se);
678d5718 6316
b39e66ea
MG
6317 if (hrtick_enabled(rq))
6318 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6319
6320 return p;
38033c37
PZ
6321
6322idle:
cbce1a68
PZ
6323 /*
6324 * This is OK, because current is on_cpu, which avoids it being picked
6325 * for load-balance and preemption/IRQs are still disabled avoiding
6326 * further scheduler activity on it and we're being very careful to
6327 * re-start the picking loop.
6328 */
d8ac8971 6329 rq_unpin_lock(rq, rf);
e4aa358b 6330 new_tasks = idle_balance(rq);
d8ac8971 6331 rq_repin_lock(rq, rf);
37e117c0
PZ
6332 /*
6333 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6334 * possible for any higher priority task to appear. In that case we
6335 * must re-start the pick_next_entity() loop.
6336 */
e4aa358b 6337 if (new_tasks < 0)
37e117c0
PZ
6338 return RETRY_TASK;
6339
e4aa358b 6340 if (new_tasks > 0)
38033c37 6341 goto again;
38033c37
PZ
6342
6343 return NULL;
bf0f6f24
IM
6344}
6345
6346/*
6347 * Account for a descheduled task:
6348 */
31ee529c 6349static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6350{
6351 struct sched_entity *se = &prev->se;
6352 struct cfs_rq *cfs_rq;
6353
6354 for_each_sched_entity(se) {
6355 cfs_rq = cfs_rq_of(se);
ab6cde26 6356 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6357 }
6358}
6359
ac53db59
RR
6360/*
6361 * sched_yield() is very simple
6362 *
6363 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6364 */
6365static void yield_task_fair(struct rq *rq)
6366{
6367 struct task_struct *curr = rq->curr;
6368 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6369 struct sched_entity *se = &curr->se;
6370
6371 /*
6372 * Are we the only task in the tree?
6373 */
6374 if (unlikely(rq->nr_running == 1))
6375 return;
6376
6377 clear_buddies(cfs_rq, se);
6378
6379 if (curr->policy != SCHED_BATCH) {
6380 update_rq_clock(rq);
6381 /*
6382 * Update run-time statistics of the 'current'.
6383 */
6384 update_curr(cfs_rq);
916671c0
MG
6385 /*
6386 * Tell update_rq_clock() that we've just updated,
6387 * so we don't do microscopic update in schedule()
6388 * and double the fastpath cost.
6389 */
9edfbfed 6390 rq_clock_skip_update(rq, true);
ac53db59
RR
6391 }
6392
6393 set_skip_buddy(se);
6394}
6395
d95f4122
MG
6396static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6397{
6398 struct sched_entity *se = &p->se;
6399
5238cdd3
PT
6400 /* throttled hierarchies are not runnable */
6401 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6402 return false;
6403
6404 /* Tell the scheduler that we'd really like pse to run next. */
6405 set_next_buddy(se);
6406
d95f4122
MG
6407 yield_task_fair(rq);
6408
6409 return true;
6410}
6411
681f3e68 6412#ifdef CONFIG_SMP
bf0f6f24 6413/**************************************************
e9c84cb8
PZ
6414 * Fair scheduling class load-balancing methods.
6415 *
6416 * BASICS
6417 *
6418 * The purpose of load-balancing is to achieve the same basic fairness the
6419 * per-cpu scheduler provides, namely provide a proportional amount of compute
6420 * time to each task. This is expressed in the following equation:
6421 *
6422 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6423 *
6424 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6425 * W_i,0 is defined as:
6426 *
6427 * W_i,0 = \Sum_j w_i,j (2)
6428 *
6429 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6430 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6431 *
6432 * The weight average is an exponential decay average of the instantaneous
6433 * weight:
6434 *
6435 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6436 *
ced549fa 6437 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6438 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6439 * can also include other factors [XXX].
6440 *
6441 * To achieve this balance we define a measure of imbalance which follows
6442 * directly from (1):
6443 *
ced549fa 6444 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6445 *
6446 * We them move tasks around to minimize the imbalance. In the continuous
6447 * function space it is obvious this converges, in the discrete case we get
6448 * a few fun cases generally called infeasible weight scenarios.
6449 *
6450 * [XXX expand on:
6451 * - infeasible weights;
6452 * - local vs global optima in the discrete case. ]
6453 *
6454 *
6455 * SCHED DOMAINS
6456 *
6457 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6458 * for all i,j solution, we create a tree of cpus that follows the hardware
6459 * topology where each level pairs two lower groups (or better). This results
6460 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6461 * tree to only the first of the previous level and we decrease the frequency
6462 * of load-balance at each level inv. proportional to the number of cpus in
6463 * the groups.
6464 *
6465 * This yields:
6466 *
6467 * log_2 n 1 n
6468 * \Sum { --- * --- * 2^i } = O(n) (5)
6469 * i = 0 2^i 2^i
6470 * `- size of each group
6471 * | | `- number of cpus doing load-balance
6472 * | `- freq
6473 * `- sum over all levels
6474 *
6475 * Coupled with a limit on how many tasks we can migrate every balance pass,
6476 * this makes (5) the runtime complexity of the balancer.
6477 *
6478 * An important property here is that each CPU is still (indirectly) connected
6479 * to every other cpu in at most O(log n) steps:
6480 *
6481 * The adjacency matrix of the resulting graph is given by:
6482 *
97a7142f 6483 * log_2 n
e9c84cb8
PZ
6484 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6485 * k = 0
6486 *
6487 * And you'll find that:
6488 *
6489 * A^(log_2 n)_i,j != 0 for all i,j (7)
6490 *
6491 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6492 * The task movement gives a factor of O(m), giving a convergence complexity
6493 * of:
6494 *
6495 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6496 *
6497 *
6498 * WORK CONSERVING
6499 *
6500 * In order to avoid CPUs going idle while there's still work to do, new idle
6501 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6502 * tree itself instead of relying on other CPUs to bring it work.
6503 *
6504 * This adds some complexity to both (5) and (8) but it reduces the total idle
6505 * time.
6506 *
6507 * [XXX more?]
6508 *
6509 *
6510 * CGROUPS
6511 *
6512 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6513 *
6514 * s_k,i
6515 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6516 * S_k
6517 *
6518 * Where
6519 *
6520 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6521 *
6522 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6523 *
6524 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6525 * property.
6526 *
6527 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6528 * rewrite all of this once again.]
97a7142f 6529 */
bf0f6f24 6530
ed387b78
HS
6531static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6532
0ec8aa00
PZ
6533enum fbq_type { regular, remote, all };
6534
ddcdf6e7 6535#define LBF_ALL_PINNED 0x01
367456c7 6536#define LBF_NEED_BREAK 0x02
6263322c
PZ
6537#define LBF_DST_PINNED 0x04
6538#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6539
6540struct lb_env {
6541 struct sched_domain *sd;
6542
ddcdf6e7 6543 struct rq *src_rq;
85c1e7da 6544 int src_cpu;
ddcdf6e7
PZ
6545
6546 int dst_cpu;
6547 struct rq *dst_rq;
6548
88b8dac0
SV
6549 struct cpumask *dst_grpmask;
6550 int new_dst_cpu;
ddcdf6e7 6551 enum cpu_idle_type idle;
bd939f45 6552 long imbalance;
b9403130
MW
6553 /* The set of CPUs under consideration for load-balancing */
6554 struct cpumask *cpus;
6555
ddcdf6e7 6556 unsigned int flags;
367456c7
PZ
6557
6558 unsigned int loop;
6559 unsigned int loop_break;
6560 unsigned int loop_max;
0ec8aa00
PZ
6561
6562 enum fbq_type fbq_type;
163122b7 6563 struct list_head tasks;
ddcdf6e7
PZ
6564};
6565
029632fb
PZ
6566/*
6567 * Is this task likely cache-hot:
6568 */
5d5e2b1b 6569static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6570{
6571 s64 delta;
6572
e5673f28
KT
6573 lockdep_assert_held(&env->src_rq->lock);
6574
029632fb
PZ
6575 if (p->sched_class != &fair_sched_class)
6576 return 0;
6577
6578 if (unlikely(p->policy == SCHED_IDLE))
6579 return 0;
6580
6581 /*
6582 * Buddy candidates are cache hot:
6583 */
5d5e2b1b 6584 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6585 (&p->se == cfs_rq_of(&p->se)->next ||
6586 &p->se == cfs_rq_of(&p->se)->last))
6587 return 1;
6588
6589 if (sysctl_sched_migration_cost == -1)
6590 return 1;
6591 if (sysctl_sched_migration_cost == 0)
6592 return 0;
6593
5d5e2b1b 6594 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6595
6596 return delta < (s64)sysctl_sched_migration_cost;
6597}
6598
3a7053b3 6599#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6600/*
2a1ed24c
SD
6601 * Returns 1, if task migration degrades locality
6602 * Returns 0, if task migration improves locality i.e migration preferred.
6603 * Returns -1, if task migration is not affected by locality.
c1ceac62 6604 */
2a1ed24c 6605static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6606{
b1ad065e 6607 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6608 unsigned long src_faults, dst_faults;
3a7053b3
MG
6609 int src_nid, dst_nid;
6610
2a595721 6611 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6612 return -1;
6613
c3b9bc5b 6614 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6615 return -1;
7a0f3083
MG
6616
6617 src_nid = cpu_to_node(env->src_cpu);
6618 dst_nid = cpu_to_node(env->dst_cpu);
6619
83e1d2cd 6620 if (src_nid == dst_nid)
2a1ed24c 6621 return -1;
7a0f3083 6622
2a1ed24c
SD
6623 /* Migrating away from the preferred node is always bad. */
6624 if (src_nid == p->numa_preferred_nid) {
6625 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6626 return 1;
6627 else
6628 return -1;
6629 }
b1ad065e 6630
c1ceac62
RR
6631 /* Encourage migration to the preferred node. */
6632 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6633 return 0;
b1ad065e 6634
c1ceac62
RR
6635 if (numa_group) {
6636 src_faults = group_faults(p, src_nid);
6637 dst_faults = group_faults(p, dst_nid);
6638 } else {
6639 src_faults = task_faults(p, src_nid);
6640 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6641 }
6642
c1ceac62 6643 return dst_faults < src_faults;
7a0f3083
MG
6644}
6645
3a7053b3 6646#else
2a1ed24c 6647static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6648 struct lb_env *env)
6649{
2a1ed24c 6650 return -1;
7a0f3083 6651}
3a7053b3
MG
6652#endif
6653
1e3c88bd
PZ
6654/*
6655 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6656 */
6657static
8e45cb54 6658int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6659{
2a1ed24c 6660 int tsk_cache_hot;
e5673f28
KT
6661
6662 lockdep_assert_held(&env->src_rq->lock);
6663
1e3c88bd
PZ
6664 /*
6665 * We do not migrate tasks that are:
d3198084 6666 * 1) throttled_lb_pair, or
1e3c88bd 6667 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6668 * 3) running (obviously), or
6669 * 4) are cache-hot on their current CPU.
1e3c88bd 6670 */
d3198084
JK
6671 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6672 return 0;
6673
ddcdf6e7 6674 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6675 int cpu;
88b8dac0 6676
ae92882e 6677 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6678
6263322c
PZ
6679 env->flags |= LBF_SOME_PINNED;
6680
88b8dac0
SV
6681 /*
6682 * Remember if this task can be migrated to any other cpu in
6683 * our sched_group. We may want to revisit it if we couldn't
6684 * meet load balance goals by pulling other tasks on src_cpu.
6685 *
6686 * Also avoid computing new_dst_cpu if we have already computed
6687 * one in current iteration.
6688 */
6263322c 6689 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6690 return 0;
6691
e02e60c1
JK
6692 /* Prevent to re-select dst_cpu via env's cpus */
6693 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6694 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6695 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6696 env->new_dst_cpu = cpu;
6697 break;
6698 }
88b8dac0 6699 }
e02e60c1 6700
1e3c88bd
PZ
6701 return 0;
6702 }
88b8dac0
SV
6703
6704 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6705 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6706
ddcdf6e7 6707 if (task_running(env->src_rq, p)) {
ae92882e 6708 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6709 return 0;
6710 }
6711
6712 /*
6713 * Aggressive migration if:
3a7053b3
MG
6714 * 1) destination numa is preferred
6715 * 2) task is cache cold, or
6716 * 3) too many balance attempts have failed.
1e3c88bd 6717 */
2a1ed24c
SD
6718 tsk_cache_hot = migrate_degrades_locality(p, env);
6719 if (tsk_cache_hot == -1)
6720 tsk_cache_hot = task_hot(p, env);
3a7053b3 6721
2a1ed24c 6722 if (tsk_cache_hot <= 0 ||
7a96c231 6723 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6724 if (tsk_cache_hot == 1) {
ae92882e
JP
6725 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6726 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6727 }
1e3c88bd
PZ
6728 return 1;
6729 }
6730
ae92882e 6731 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6732 return 0;
1e3c88bd
PZ
6733}
6734
897c395f 6735/*
163122b7
KT
6736 * detach_task() -- detach the task for the migration specified in env
6737 */
6738static void detach_task(struct task_struct *p, struct lb_env *env)
6739{
6740 lockdep_assert_held(&env->src_rq->lock);
6741
163122b7 6742 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6743 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6744 set_task_cpu(p, env->dst_cpu);
6745}
6746
897c395f 6747/*
e5673f28 6748 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6749 * part of active balancing operations within "domain".
897c395f 6750 *
e5673f28 6751 * Returns a task if successful and NULL otherwise.
897c395f 6752 */
e5673f28 6753static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6754{
6755 struct task_struct *p, *n;
897c395f 6756
e5673f28
KT
6757 lockdep_assert_held(&env->src_rq->lock);
6758
367456c7 6759 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6760 if (!can_migrate_task(p, env))
6761 continue;
897c395f 6762
163122b7 6763 detach_task(p, env);
e5673f28 6764
367456c7 6765 /*
e5673f28 6766 * Right now, this is only the second place where
163122b7 6767 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6768 * so we can safely collect stats here rather than
163122b7 6769 * inside detach_tasks().
367456c7 6770 */
ae92882e 6771 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6772 return p;
897c395f 6773 }
e5673f28 6774 return NULL;
897c395f
PZ
6775}
6776
eb95308e
PZ
6777static const unsigned int sched_nr_migrate_break = 32;
6778
5d6523eb 6779/*
163122b7
KT
6780 * detach_tasks() -- tries to detach up to imbalance weighted load from
6781 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6782 *
163122b7 6783 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6784 */
163122b7 6785static int detach_tasks(struct lb_env *env)
1e3c88bd 6786{
5d6523eb
PZ
6787 struct list_head *tasks = &env->src_rq->cfs_tasks;
6788 struct task_struct *p;
367456c7 6789 unsigned long load;
163122b7
KT
6790 int detached = 0;
6791
6792 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6793
bd939f45 6794 if (env->imbalance <= 0)
5d6523eb 6795 return 0;
1e3c88bd 6796
5d6523eb 6797 while (!list_empty(tasks)) {
985d3a4c
YD
6798 /*
6799 * We don't want to steal all, otherwise we may be treated likewise,
6800 * which could at worst lead to a livelock crash.
6801 */
6802 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6803 break;
6804
5d6523eb 6805 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6806
367456c7
PZ
6807 env->loop++;
6808 /* We've more or less seen every task there is, call it quits */
5d6523eb 6809 if (env->loop > env->loop_max)
367456c7 6810 break;
5d6523eb
PZ
6811
6812 /* take a breather every nr_migrate tasks */
367456c7 6813 if (env->loop > env->loop_break) {
eb95308e 6814 env->loop_break += sched_nr_migrate_break;
8e45cb54 6815 env->flags |= LBF_NEED_BREAK;
ee00e66f 6816 break;
a195f004 6817 }
1e3c88bd 6818
d3198084 6819 if (!can_migrate_task(p, env))
367456c7
PZ
6820 goto next;
6821
6822 load = task_h_load(p);
5d6523eb 6823
eb95308e 6824 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6825 goto next;
6826
bd939f45 6827 if ((load / 2) > env->imbalance)
367456c7 6828 goto next;
1e3c88bd 6829
163122b7
KT
6830 detach_task(p, env);
6831 list_add(&p->se.group_node, &env->tasks);
6832
6833 detached++;
bd939f45 6834 env->imbalance -= load;
1e3c88bd
PZ
6835
6836#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6837 /*
6838 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6839 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6840 * the critical section.
6841 */
5d6523eb 6842 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6843 break;
1e3c88bd
PZ
6844#endif
6845
ee00e66f
PZ
6846 /*
6847 * We only want to steal up to the prescribed amount of
6848 * weighted load.
6849 */
bd939f45 6850 if (env->imbalance <= 0)
ee00e66f 6851 break;
367456c7
PZ
6852
6853 continue;
6854next:
5d6523eb 6855 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6856 }
5d6523eb 6857
1e3c88bd 6858 /*
163122b7
KT
6859 * Right now, this is one of only two places we collect this stat
6860 * so we can safely collect detach_one_task() stats here rather
6861 * than inside detach_one_task().
1e3c88bd 6862 */
ae92882e 6863 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6864
163122b7
KT
6865 return detached;
6866}
6867
6868/*
6869 * attach_task() -- attach the task detached by detach_task() to its new rq.
6870 */
6871static void attach_task(struct rq *rq, struct task_struct *p)
6872{
6873 lockdep_assert_held(&rq->lock);
6874
6875 BUG_ON(task_rq(p) != rq);
163122b7 6876 activate_task(rq, p, 0);
3ea94de1 6877 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6878 check_preempt_curr(rq, p, 0);
6879}
6880
6881/*
6882 * attach_one_task() -- attaches the task returned from detach_one_task() to
6883 * its new rq.
6884 */
6885static void attach_one_task(struct rq *rq, struct task_struct *p)
6886{
6887 raw_spin_lock(&rq->lock);
6888 attach_task(rq, p);
6889 raw_spin_unlock(&rq->lock);
6890}
6891
6892/*
6893 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6894 * new rq.
6895 */
6896static void attach_tasks(struct lb_env *env)
6897{
6898 struct list_head *tasks = &env->tasks;
6899 struct task_struct *p;
6900
6901 raw_spin_lock(&env->dst_rq->lock);
6902
6903 while (!list_empty(tasks)) {
6904 p = list_first_entry(tasks, struct task_struct, se.group_node);
6905 list_del_init(&p->se.group_node);
1e3c88bd 6906
163122b7
KT
6907 attach_task(env->dst_rq, p);
6908 }
6909
6910 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6911}
6912
230059de 6913#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6914static void update_blocked_averages(int cpu)
9e3081ca 6915{
9e3081ca 6916 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6917 struct cfs_rq *cfs_rq;
6918 unsigned long flags;
9e3081ca 6919
48a16753
PT
6920 raw_spin_lock_irqsave(&rq->lock, flags);
6921 update_rq_clock(rq);
9d89c257 6922
9763b67f
PZ
6923 /*
6924 * Iterates the task_group tree in a bottom up fashion, see
6925 * list_add_leaf_cfs_rq() for details.
6926 */
64660c86 6927 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6928 /* throttled entities do not contribute to load */
6929 if (throttled_hierarchy(cfs_rq))
6930 continue;
48a16753 6931
a2c6c91f 6932 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6933 update_tg_load_avg(cfs_rq, 0);
4e516076
VG
6934
6935 /* Propagate pending load changes to the parent */
6936 if (cfs_rq->tg->se[cpu])
6937 update_load_avg(cfs_rq->tg->se[cpu], 0);
9d89c257 6938 }
48a16753 6939 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6940}
6941
9763b67f 6942/*
68520796 6943 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6944 * This needs to be done in a top-down fashion because the load of a child
6945 * group is a fraction of its parents load.
6946 */
68520796 6947static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6948{
68520796
VD
6949 struct rq *rq = rq_of(cfs_rq);
6950 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6951 unsigned long now = jiffies;
68520796 6952 unsigned long load;
a35b6466 6953
68520796 6954 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6955 return;
6956
68520796
VD
6957 cfs_rq->h_load_next = NULL;
6958 for_each_sched_entity(se) {
6959 cfs_rq = cfs_rq_of(se);
6960 cfs_rq->h_load_next = se;
6961 if (cfs_rq->last_h_load_update == now)
6962 break;
6963 }
a35b6466 6964
68520796 6965 if (!se) {
7ea241af 6966 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6967 cfs_rq->last_h_load_update = now;
6968 }
6969
6970 while ((se = cfs_rq->h_load_next) != NULL) {
6971 load = cfs_rq->h_load;
7ea241af
YD
6972 load = div64_ul(load * se->avg.load_avg,
6973 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6974 cfs_rq = group_cfs_rq(se);
6975 cfs_rq->h_load = load;
6976 cfs_rq->last_h_load_update = now;
6977 }
9763b67f
PZ
6978}
6979
367456c7 6980static unsigned long task_h_load(struct task_struct *p)
230059de 6981{
367456c7 6982 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6983
68520796 6984 update_cfs_rq_h_load(cfs_rq);
9d89c257 6985 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6986 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6987}
6988#else
48a16753 6989static inline void update_blocked_averages(int cpu)
9e3081ca 6990{
6c1d47c0
VG
6991 struct rq *rq = cpu_rq(cpu);
6992 struct cfs_rq *cfs_rq = &rq->cfs;
6993 unsigned long flags;
6994
6995 raw_spin_lock_irqsave(&rq->lock, flags);
6996 update_rq_clock(rq);
a2c6c91f 6997 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6998 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6999}
7000
367456c7 7001static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7002{
9d89c257 7003 return p->se.avg.load_avg;
1e3c88bd 7004}
230059de 7005#endif
1e3c88bd 7006
1e3c88bd 7007/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7008
7009enum group_type {
7010 group_other = 0,
7011 group_imbalanced,
7012 group_overloaded,
7013};
7014
1e3c88bd
PZ
7015/*
7016 * sg_lb_stats - stats of a sched_group required for load_balancing
7017 */
7018struct sg_lb_stats {
7019 unsigned long avg_load; /*Avg load across the CPUs of the group */
7020 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7021 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7022 unsigned long load_per_task;
63b2ca30 7023 unsigned long group_capacity;
9e91d61d 7024 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7025 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7026 unsigned int idle_cpus;
7027 unsigned int group_weight;
caeb178c 7028 enum group_type group_type;
ea67821b 7029 int group_no_capacity;
0ec8aa00
PZ
7030#ifdef CONFIG_NUMA_BALANCING
7031 unsigned int nr_numa_running;
7032 unsigned int nr_preferred_running;
7033#endif
1e3c88bd
PZ
7034};
7035
56cf515b
JK
7036/*
7037 * sd_lb_stats - Structure to store the statistics of a sched_domain
7038 * during load balancing.
7039 */
7040struct sd_lb_stats {
7041 struct sched_group *busiest; /* Busiest group in this sd */
7042 struct sched_group *local; /* Local group in this sd */
7043 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7044 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7045 unsigned long avg_load; /* Average load across all groups in sd */
7046
56cf515b 7047 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7048 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7049};
7050
147c5fc2
PZ
7051static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7052{
7053 /*
7054 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7055 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7056 * We must however clear busiest_stat::avg_load because
7057 * update_sd_pick_busiest() reads this before assignment.
7058 */
7059 *sds = (struct sd_lb_stats){
7060 .busiest = NULL,
7061 .local = NULL,
7062 .total_load = 0UL,
63b2ca30 7063 .total_capacity = 0UL,
147c5fc2
PZ
7064 .busiest_stat = {
7065 .avg_load = 0UL,
caeb178c
RR
7066 .sum_nr_running = 0,
7067 .group_type = group_other,
147c5fc2
PZ
7068 },
7069 };
7070}
7071
1e3c88bd
PZ
7072/**
7073 * get_sd_load_idx - Obtain the load index for a given sched domain.
7074 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7075 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7076 *
7077 * Return: The load index.
1e3c88bd
PZ
7078 */
7079static inline int get_sd_load_idx(struct sched_domain *sd,
7080 enum cpu_idle_type idle)
7081{
7082 int load_idx;
7083
7084 switch (idle) {
7085 case CPU_NOT_IDLE:
7086 load_idx = sd->busy_idx;
7087 break;
7088
7089 case CPU_NEWLY_IDLE:
7090 load_idx = sd->newidle_idx;
7091 break;
7092 default:
7093 load_idx = sd->idle_idx;
7094 break;
7095 }
7096
7097 return load_idx;
7098}
7099
ced549fa 7100static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7101{
7102 struct rq *rq = cpu_rq(cpu);
b5b4860d 7103 u64 total, used, age_stamp, avg;
cadefd3d 7104 s64 delta;
1e3c88bd 7105
b654f7de
PZ
7106 /*
7107 * Since we're reading these variables without serialization make sure
7108 * we read them once before doing sanity checks on them.
7109 */
316c1608
JL
7110 age_stamp = READ_ONCE(rq->age_stamp);
7111 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7112 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7113
cadefd3d
PZ
7114 if (unlikely(delta < 0))
7115 delta = 0;
7116
7117 total = sched_avg_period() + delta;
aa483808 7118
b5b4860d 7119 used = div_u64(avg, total);
1e3c88bd 7120
b5b4860d
VG
7121 if (likely(used < SCHED_CAPACITY_SCALE))
7122 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7123
b5b4860d 7124 return 1;
1e3c88bd
PZ
7125}
7126
ced549fa 7127static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7128{
8cd5601c 7129 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7130 struct sched_group *sdg = sd->groups;
7131
ca6d75e6 7132 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7133
ced549fa 7134 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7135 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7136
ced549fa
NP
7137 if (!capacity)
7138 capacity = 1;
1e3c88bd 7139
ced549fa
NP
7140 cpu_rq(cpu)->cpu_capacity = capacity;
7141 sdg->sgc->capacity = capacity;
bf475ce0 7142 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7143}
7144
63b2ca30 7145void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7146{
7147 struct sched_domain *child = sd->child;
7148 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7149 unsigned long capacity, min_capacity;
4ec4412e
VG
7150 unsigned long interval;
7151
7152 interval = msecs_to_jiffies(sd->balance_interval);
7153 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7154 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7155
7156 if (!child) {
ced549fa 7157 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7158 return;
7159 }
7160
dc7ff76e 7161 capacity = 0;
bf475ce0 7162 min_capacity = ULONG_MAX;
1e3c88bd 7163
74a5ce20
PZ
7164 if (child->flags & SD_OVERLAP) {
7165 /*
7166 * SD_OVERLAP domains cannot assume that child groups
7167 * span the current group.
7168 */
7169
863bffc8 7170 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7171 struct sched_group_capacity *sgc;
9abf24d4 7172 struct rq *rq = cpu_rq(cpu);
863bffc8 7173
9abf24d4 7174 /*
63b2ca30 7175 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7176 * gets here before we've attached the domains to the
7177 * runqueues.
7178 *
ced549fa
NP
7179 * Use capacity_of(), which is set irrespective of domains
7180 * in update_cpu_capacity().
9abf24d4 7181 *
dc7ff76e 7182 * This avoids capacity from being 0 and
9abf24d4 7183 * causing divide-by-zero issues on boot.
9abf24d4
SD
7184 */
7185 if (unlikely(!rq->sd)) {
ced549fa 7186 capacity += capacity_of(cpu);
bf475ce0
MR
7187 } else {
7188 sgc = rq->sd->groups->sgc;
7189 capacity += sgc->capacity;
9abf24d4 7190 }
863bffc8 7191
bf475ce0 7192 min_capacity = min(capacity, min_capacity);
863bffc8 7193 }
74a5ce20
PZ
7194 } else {
7195 /*
7196 * !SD_OVERLAP domains can assume that child groups
7197 * span the current group.
97a7142f 7198 */
74a5ce20
PZ
7199
7200 group = child->groups;
7201 do {
bf475ce0
MR
7202 struct sched_group_capacity *sgc = group->sgc;
7203
7204 capacity += sgc->capacity;
7205 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7206 group = group->next;
7207 } while (group != child->groups);
7208 }
1e3c88bd 7209
63b2ca30 7210 sdg->sgc->capacity = capacity;
bf475ce0 7211 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7212}
7213
9d5efe05 7214/*
ea67821b
VG
7215 * Check whether the capacity of the rq has been noticeably reduced by side
7216 * activity. The imbalance_pct is used for the threshold.
7217 * Return true is the capacity is reduced
9d5efe05
SV
7218 */
7219static inline int
ea67821b 7220check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7221{
ea67821b
VG
7222 return ((rq->cpu_capacity * sd->imbalance_pct) <
7223 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7224}
7225
30ce5dab
PZ
7226/*
7227 * Group imbalance indicates (and tries to solve) the problem where balancing
7228 * groups is inadequate due to tsk_cpus_allowed() constraints.
7229 *
7230 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7231 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7232 * Something like:
7233 *
2b4d5b25
IM
7234 * { 0 1 2 3 } { 4 5 6 7 }
7235 * * * * *
30ce5dab
PZ
7236 *
7237 * If we were to balance group-wise we'd place two tasks in the first group and
7238 * two tasks in the second group. Clearly this is undesired as it will overload
7239 * cpu 3 and leave one of the cpus in the second group unused.
7240 *
7241 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7242 * by noticing the lower domain failed to reach balance and had difficulty
7243 * moving tasks due to affinity constraints.
30ce5dab
PZ
7244 *
7245 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7246 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7247 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7248 * to create an effective group imbalance.
7249 *
7250 * This is a somewhat tricky proposition since the next run might not find the
7251 * group imbalance and decide the groups need to be balanced again. A most
7252 * subtle and fragile situation.
7253 */
7254
6263322c 7255static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7256{
63b2ca30 7257 return group->sgc->imbalance;
30ce5dab
PZ
7258}
7259
b37d9316 7260/*
ea67821b
VG
7261 * group_has_capacity returns true if the group has spare capacity that could
7262 * be used by some tasks.
7263 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7264 * smaller than the number of CPUs or if the utilization is lower than the
7265 * available capacity for CFS tasks.
ea67821b
VG
7266 * For the latter, we use a threshold to stabilize the state, to take into
7267 * account the variance of the tasks' load and to return true if the available
7268 * capacity in meaningful for the load balancer.
7269 * As an example, an available capacity of 1% can appear but it doesn't make
7270 * any benefit for the load balance.
b37d9316 7271 */
ea67821b
VG
7272static inline bool
7273group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7274{
ea67821b
VG
7275 if (sgs->sum_nr_running < sgs->group_weight)
7276 return true;
c61037e9 7277
ea67821b 7278 if ((sgs->group_capacity * 100) >
9e91d61d 7279 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7280 return true;
b37d9316 7281
ea67821b
VG
7282 return false;
7283}
7284
7285/*
7286 * group_is_overloaded returns true if the group has more tasks than it can
7287 * handle.
7288 * group_is_overloaded is not equals to !group_has_capacity because a group
7289 * with the exact right number of tasks, has no more spare capacity but is not
7290 * overloaded so both group_has_capacity and group_is_overloaded return
7291 * false.
7292 */
7293static inline bool
7294group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7295{
7296 if (sgs->sum_nr_running <= sgs->group_weight)
7297 return false;
b37d9316 7298
ea67821b 7299 if ((sgs->group_capacity * 100) <
9e91d61d 7300 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7301 return true;
b37d9316 7302
ea67821b 7303 return false;
b37d9316
PZ
7304}
7305
9e0994c0
MR
7306/*
7307 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7308 * per-CPU capacity than sched_group ref.
7309 */
7310static inline bool
7311group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7312{
7313 return sg->sgc->min_capacity * capacity_margin <
7314 ref->sgc->min_capacity * 1024;
7315}
7316
79a89f92
LY
7317static inline enum
7318group_type group_classify(struct sched_group *group,
7319 struct sg_lb_stats *sgs)
caeb178c 7320{
ea67821b 7321 if (sgs->group_no_capacity)
caeb178c
RR
7322 return group_overloaded;
7323
7324 if (sg_imbalanced(group))
7325 return group_imbalanced;
7326
7327 return group_other;
7328}
7329
1e3c88bd
PZ
7330/**
7331 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7332 * @env: The load balancing environment.
1e3c88bd 7333 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7334 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7335 * @local_group: Does group contain this_cpu.
1e3c88bd 7336 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7337 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7338 */
bd939f45
PZ
7339static inline void update_sg_lb_stats(struct lb_env *env,
7340 struct sched_group *group, int load_idx,
4486edd1
TC
7341 int local_group, struct sg_lb_stats *sgs,
7342 bool *overload)
1e3c88bd 7343{
30ce5dab 7344 unsigned long load;
a426f99c 7345 int i, nr_running;
1e3c88bd 7346
b72ff13c
PZ
7347 memset(sgs, 0, sizeof(*sgs));
7348
b9403130 7349 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7350 struct rq *rq = cpu_rq(i);
7351
1e3c88bd 7352 /* Bias balancing toward cpus of our domain */
6263322c 7353 if (local_group)
04f733b4 7354 load = target_load(i, load_idx);
6263322c 7355 else
1e3c88bd 7356 load = source_load(i, load_idx);
1e3c88bd
PZ
7357
7358 sgs->group_load += load;
9e91d61d 7359 sgs->group_util += cpu_util(i);
65fdac08 7360 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7361
a426f99c
WL
7362 nr_running = rq->nr_running;
7363 if (nr_running > 1)
4486edd1
TC
7364 *overload = true;
7365
0ec8aa00
PZ
7366#ifdef CONFIG_NUMA_BALANCING
7367 sgs->nr_numa_running += rq->nr_numa_running;
7368 sgs->nr_preferred_running += rq->nr_preferred_running;
7369#endif
1e3c88bd 7370 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7371 /*
7372 * No need to call idle_cpu() if nr_running is not 0
7373 */
7374 if (!nr_running && idle_cpu(i))
aae6d3dd 7375 sgs->idle_cpus++;
1e3c88bd
PZ
7376 }
7377
63b2ca30
NP
7378 /* Adjust by relative CPU capacity of the group */
7379 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7380 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7381
dd5feea1 7382 if (sgs->sum_nr_running)
38d0f770 7383 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7384
aae6d3dd 7385 sgs->group_weight = group->group_weight;
b37d9316 7386
ea67821b 7387 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7388 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7389}
7390
532cb4c4
MN
7391/**
7392 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7393 * @env: The load balancing environment.
532cb4c4
MN
7394 * @sds: sched_domain statistics
7395 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7396 * @sgs: sched_group statistics
532cb4c4
MN
7397 *
7398 * Determine if @sg is a busier group than the previously selected
7399 * busiest group.
e69f6186
YB
7400 *
7401 * Return: %true if @sg is a busier group than the previously selected
7402 * busiest group. %false otherwise.
532cb4c4 7403 */
bd939f45 7404static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7405 struct sd_lb_stats *sds,
7406 struct sched_group *sg,
bd939f45 7407 struct sg_lb_stats *sgs)
532cb4c4 7408{
caeb178c 7409 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7410
caeb178c 7411 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7412 return true;
7413
caeb178c
RR
7414 if (sgs->group_type < busiest->group_type)
7415 return false;
7416
7417 if (sgs->avg_load <= busiest->avg_load)
7418 return false;
7419
9e0994c0
MR
7420 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7421 goto asym_packing;
7422
7423 /*
7424 * Candidate sg has no more than one task per CPU and
7425 * has higher per-CPU capacity. Migrating tasks to less
7426 * capable CPUs may harm throughput. Maximize throughput,
7427 * power/energy consequences are not considered.
7428 */
7429 if (sgs->sum_nr_running <= sgs->group_weight &&
7430 group_smaller_cpu_capacity(sds->local, sg))
7431 return false;
7432
7433asym_packing:
caeb178c
RR
7434 /* This is the busiest node in its class. */
7435 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7436 return true;
7437
1f621e02
SD
7438 /* No ASYM_PACKING if target cpu is already busy */
7439 if (env->idle == CPU_NOT_IDLE)
7440 return true;
532cb4c4 7441 /*
afe06efd
TC
7442 * ASYM_PACKING needs to move all the work to the highest
7443 * prority CPUs in the group, therefore mark all groups
7444 * of lower priority than ourself as busy.
532cb4c4 7445 */
afe06efd
TC
7446 if (sgs->sum_nr_running &&
7447 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7448 if (!sds->busiest)
7449 return true;
7450
afe06efd
TC
7451 /* Prefer to move from lowest priority cpu's work */
7452 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7453 sg->asym_prefer_cpu))
532cb4c4
MN
7454 return true;
7455 }
7456
7457 return false;
7458}
7459
0ec8aa00
PZ
7460#ifdef CONFIG_NUMA_BALANCING
7461static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7462{
7463 if (sgs->sum_nr_running > sgs->nr_numa_running)
7464 return regular;
7465 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7466 return remote;
7467 return all;
7468}
7469
7470static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7471{
7472 if (rq->nr_running > rq->nr_numa_running)
7473 return regular;
7474 if (rq->nr_running > rq->nr_preferred_running)
7475 return remote;
7476 return all;
7477}
7478#else
7479static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7480{
7481 return all;
7482}
7483
7484static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7485{
7486 return regular;
7487}
7488#endif /* CONFIG_NUMA_BALANCING */
7489
1e3c88bd 7490/**
461819ac 7491 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7492 * @env: The load balancing environment.
1e3c88bd
PZ
7493 * @sds: variable to hold the statistics for this sched_domain.
7494 */
0ec8aa00 7495static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7496{
bd939f45
PZ
7497 struct sched_domain *child = env->sd->child;
7498 struct sched_group *sg = env->sd->groups;
56cf515b 7499 struct sg_lb_stats tmp_sgs;
1e3c88bd 7500 int load_idx, prefer_sibling = 0;
4486edd1 7501 bool overload = false;
1e3c88bd
PZ
7502
7503 if (child && child->flags & SD_PREFER_SIBLING)
7504 prefer_sibling = 1;
7505
bd939f45 7506 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7507
7508 do {
56cf515b 7509 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7510 int local_group;
7511
bd939f45 7512 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7513 if (local_group) {
7514 sds->local = sg;
7515 sgs = &sds->local_stat;
b72ff13c
PZ
7516
7517 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7518 time_after_eq(jiffies, sg->sgc->next_update))
7519 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7520 }
1e3c88bd 7521
4486edd1
TC
7522 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7523 &overload);
1e3c88bd 7524
b72ff13c
PZ
7525 if (local_group)
7526 goto next_group;
7527
1e3c88bd
PZ
7528 /*
7529 * In case the child domain prefers tasks go to siblings
ea67821b 7530 * first, lower the sg capacity so that we'll try
75dd321d
NR
7531 * and move all the excess tasks away. We lower the capacity
7532 * of a group only if the local group has the capacity to fit
ea67821b
VG
7533 * these excess tasks. The extra check prevents the case where
7534 * you always pull from the heaviest group when it is already
7535 * under-utilized (possible with a large weight task outweighs
7536 * the tasks on the system).
1e3c88bd 7537 */
b72ff13c 7538 if (prefer_sibling && sds->local &&
ea67821b
VG
7539 group_has_capacity(env, &sds->local_stat) &&
7540 (sgs->sum_nr_running > 1)) {
7541 sgs->group_no_capacity = 1;
79a89f92 7542 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7543 }
1e3c88bd 7544
b72ff13c 7545 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7546 sds->busiest = sg;
56cf515b 7547 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7548 }
7549
b72ff13c
PZ
7550next_group:
7551 /* Now, start updating sd_lb_stats */
7552 sds->total_load += sgs->group_load;
63b2ca30 7553 sds->total_capacity += sgs->group_capacity;
b72ff13c 7554
532cb4c4 7555 sg = sg->next;
bd939f45 7556 } while (sg != env->sd->groups);
0ec8aa00
PZ
7557
7558 if (env->sd->flags & SD_NUMA)
7559 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7560
7561 if (!env->sd->parent) {
7562 /* update overload indicator if we are at root domain */
7563 if (env->dst_rq->rd->overload != overload)
7564 env->dst_rq->rd->overload = overload;
7565 }
7566
532cb4c4
MN
7567}
7568
532cb4c4
MN
7569/**
7570 * check_asym_packing - Check to see if the group is packed into the
7571 * sched doman.
7572 *
7573 * This is primarily intended to used at the sibling level. Some
7574 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7575 * case of POWER7, it can move to lower SMT modes only when higher
7576 * threads are idle. When in lower SMT modes, the threads will
7577 * perform better since they share less core resources. Hence when we
7578 * have idle threads, we want them to be the higher ones.
7579 *
7580 * This packing function is run on idle threads. It checks to see if
7581 * the busiest CPU in this domain (core in the P7 case) has a higher
7582 * CPU number than the packing function is being run on. Here we are
7583 * assuming lower CPU number will be equivalent to lower a SMT thread
7584 * number.
7585 *
e69f6186 7586 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7587 * this CPU. The amount of the imbalance is returned in *imbalance.
7588 *
cd96891d 7589 * @env: The load balancing environment.
532cb4c4 7590 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7591 */
bd939f45 7592static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7593{
7594 int busiest_cpu;
7595
bd939f45 7596 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7597 return 0;
7598
1f621e02
SD
7599 if (env->idle == CPU_NOT_IDLE)
7600 return 0;
7601
532cb4c4
MN
7602 if (!sds->busiest)
7603 return 0;
7604
afe06efd
TC
7605 busiest_cpu = sds->busiest->asym_prefer_cpu;
7606 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7607 return 0;
7608
bd939f45 7609 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7610 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7611 SCHED_CAPACITY_SCALE);
bd939f45 7612
532cb4c4 7613 return 1;
1e3c88bd
PZ
7614}
7615
7616/**
7617 * fix_small_imbalance - Calculate the minor imbalance that exists
7618 * amongst the groups of a sched_domain, during
7619 * load balancing.
cd96891d 7620 * @env: The load balancing environment.
1e3c88bd 7621 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7622 */
bd939f45
PZ
7623static inline
7624void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7625{
63b2ca30 7626 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7627 unsigned int imbn = 2;
dd5feea1 7628 unsigned long scaled_busy_load_per_task;
56cf515b 7629 struct sg_lb_stats *local, *busiest;
1e3c88bd 7630
56cf515b
JK
7631 local = &sds->local_stat;
7632 busiest = &sds->busiest_stat;
1e3c88bd 7633
56cf515b
JK
7634 if (!local->sum_nr_running)
7635 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7636 else if (busiest->load_per_task > local->load_per_task)
7637 imbn = 1;
dd5feea1 7638
56cf515b 7639 scaled_busy_load_per_task =
ca8ce3d0 7640 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7641 busiest->group_capacity;
56cf515b 7642
3029ede3
VD
7643 if (busiest->avg_load + scaled_busy_load_per_task >=
7644 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7645 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7646 return;
7647 }
7648
7649 /*
7650 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7651 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7652 * moving them.
7653 */
7654
63b2ca30 7655 capa_now += busiest->group_capacity *
56cf515b 7656 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7657 capa_now += local->group_capacity *
56cf515b 7658 min(local->load_per_task, local->avg_load);
ca8ce3d0 7659 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7660
7661 /* Amount of load we'd subtract */
a2cd4260 7662 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7663 capa_move += busiest->group_capacity *
56cf515b 7664 min(busiest->load_per_task,
a2cd4260 7665 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7666 }
1e3c88bd
PZ
7667
7668 /* Amount of load we'd add */
63b2ca30 7669 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7670 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7671 tmp = (busiest->avg_load * busiest->group_capacity) /
7672 local->group_capacity;
56cf515b 7673 } else {
ca8ce3d0 7674 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7675 local->group_capacity;
56cf515b 7676 }
63b2ca30 7677 capa_move += local->group_capacity *
3ae11c90 7678 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7679 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7680
7681 /* Move if we gain throughput */
63b2ca30 7682 if (capa_move > capa_now)
56cf515b 7683 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7684}
7685
7686/**
7687 * calculate_imbalance - Calculate the amount of imbalance present within the
7688 * groups of a given sched_domain during load balance.
bd939f45 7689 * @env: load balance environment
1e3c88bd 7690 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7691 */
bd939f45 7692static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7693{
dd5feea1 7694 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7695 struct sg_lb_stats *local, *busiest;
7696
7697 local = &sds->local_stat;
56cf515b 7698 busiest = &sds->busiest_stat;
dd5feea1 7699
caeb178c 7700 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7701 /*
7702 * In the group_imb case we cannot rely on group-wide averages
7703 * to ensure cpu-load equilibrium, look at wider averages. XXX
7704 */
56cf515b
JK
7705 busiest->load_per_task =
7706 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7707 }
7708
1e3c88bd 7709 /*
885e542c
DE
7710 * Avg load of busiest sg can be less and avg load of local sg can
7711 * be greater than avg load across all sgs of sd because avg load
7712 * factors in sg capacity and sgs with smaller group_type are
7713 * skipped when updating the busiest sg:
1e3c88bd 7714 */
b1885550
VD
7715 if (busiest->avg_load <= sds->avg_load ||
7716 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7717 env->imbalance = 0;
7718 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7719 }
7720
9a5d9ba6
PZ
7721 /*
7722 * If there aren't any idle cpus, avoid creating some.
7723 */
7724 if (busiest->group_type == group_overloaded &&
7725 local->group_type == group_overloaded) {
1be0eb2a 7726 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7727 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7728 load_above_capacity -= busiest->group_capacity;
26656215 7729 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7730 load_above_capacity /= busiest->group_capacity;
7731 } else
ea67821b 7732 load_above_capacity = ~0UL;
dd5feea1
SS
7733 }
7734
7735 /*
7736 * We're trying to get all the cpus to the average_load, so we don't
7737 * want to push ourselves above the average load, nor do we wish to
7738 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7739 * we also don't want to reduce the group load below the group
7740 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7741 */
30ce5dab 7742 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7743
7744 /* How much load to actually move to equalise the imbalance */
56cf515b 7745 env->imbalance = min(
63b2ca30
NP
7746 max_pull * busiest->group_capacity,
7747 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7748 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7749
7750 /*
7751 * if *imbalance is less than the average load per runnable task
25985edc 7752 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7753 * a think about bumping its value to force at least one task to be
7754 * moved
7755 */
56cf515b 7756 if (env->imbalance < busiest->load_per_task)
bd939f45 7757 return fix_small_imbalance(env, sds);
1e3c88bd 7758}
fab47622 7759
1e3c88bd
PZ
7760/******* find_busiest_group() helpers end here *********************/
7761
7762/**
7763 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7764 * if there is an imbalance.
1e3c88bd
PZ
7765 *
7766 * Also calculates the amount of weighted load which should be moved
7767 * to restore balance.
7768 *
cd96891d 7769 * @env: The load balancing environment.
1e3c88bd 7770 *
e69f6186 7771 * Return: - The busiest group if imbalance exists.
1e3c88bd 7772 */
56cf515b 7773static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7774{
56cf515b 7775 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7776 struct sd_lb_stats sds;
7777
147c5fc2 7778 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7779
7780 /*
7781 * Compute the various statistics relavent for load balancing at
7782 * this level.
7783 */
23f0d209 7784 update_sd_lb_stats(env, &sds);
56cf515b
JK
7785 local = &sds.local_stat;
7786 busiest = &sds.busiest_stat;
1e3c88bd 7787
ea67821b 7788 /* ASYM feature bypasses nice load balance check */
1f621e02 7789 if (check_asym_packing(env, &sds))
532cb4c4
MN
7790 return sds.busiest;
7791
cc57aa8f 7792 /* There is no busy sibling group to pull tasks from */
56cf515b 7793 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7794 goto out_balanced;
7795
ca8ce3d0
NP
7796 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7797 / sds.total_capacity;
b0432d8f 7798
866ab43e
PZ
7799 /*
7800 * If the busiest group is imbalanced the below checks don't
30ce5dab 7801 * work because they assume all things are equal, which typically
866ab43e
PZ
7802 * isn't true due to cpus_allowed constraints and the like.
7803 */
caeb178c 7804 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7805 goto force_balance;
7806
cc57aa8f 7807 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7808 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7809 busiest->group_no_capacity)
fab47622
NR
7810 goto force_balance;
7811
cc57aa8f 7812 /*
9c58c79a 7813 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7814 * don't try and pull any tasks.
7815 */
56cf515b 7816 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7817 goto out_balanced;
7818
cc57aa8f
PZ
7819 /*
7820 * Don't pull any tasks if this group is already above the domain
7821 * average load.
7822 */
56cf515b 7823 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7824 goto out_balanced;
7825
bd939f45 7826 if (env->idle == CPU_IDLE) {
aae6d3dd 7827 /*
43f4d666
VG
7828 * This cpu is idle. If the busiest group is not overloaded
7829 * and there is no imbalance between this and busiest group
7830 * wrt idle cpus, it is balanced. The imbalance becomes
7831 * significant if the diff is greater than 1 otherwise we
7832 * might end up to just move the imbalance on another group
aae6d3dd 7833 */
43f4d666
VG
7834 if ((busiest->group_type != group_overloaded) &&
7835 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7836 goto out_balanced;
c186fafe
PZ
7837 } else {
7838 /*
7839 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7840 * imbalance_pct to be conservative.
7841 */
56cf515b
JK
7842 if (100 * busiest->avg_load <=
7843 env->sd->imbalance_pct * local->avg_load)
c186fafe 7844 goto out_balanced;
aae6d3dd 7845 }
1e3c88bd 7846
fab47622 7847force_balance:
1e3c88bd 7848 /* Looks like there is an imbalance. Compute it */
bd939f45 7849 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7850 return sds.busiest;
7851
7852out_balanced:
bd939f45 7853 env->imbalance = 0;
1e3c88bd
PZ
7854 return NULL;
7855}
7856
7857/*
7858 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7859 */
bd939f45 7860static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7861 struct sched_group *group)
1e3c88bd
PZ
7862{
7863 struct rq *busiest = NULL, *rq;
ced549fa 7864 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7865 int i;
7866
6906a408 7867 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7868 unsigned long capacity, wl;
0ec8aa00
PZ
7869 enum fbq_type rt;
7870
7871 rq = cpu_rq(i);
7872 rt = fbq_classify_rq(rq);
1e3c88bd 7873
0ec8aa00
PZ
7874 /*
7875 * We classify groups/runqueues into three groups:
7876 * - regular: there are !numa tasks
7877 * - remote: there are numa tasks that run on the 'wrong' node
7878 * - all: there is no distinction
7879 *
7880 * In order to avoid migrating ideally placed numa tasks,
7881 * ignore those when there's better options.
7882 *
7883 * If we ignore the actual busiest queue to migrate another
7884 * task, the next balance pass can still reduce the busiest
7885 * queue by moving tasks around inside the node.
7886 *
7887 * If we cannot move enough load due to this classification
7888 * the next pass will adjust the group classification and
7889 * allow migration of more tasks.
7890 *
7891 * Both cases only affect the total convergence complexity.
7892 */
7893 if (rt > env->fbq_type)
7894 continue;
7895
ced549fa 7896 capacity = capacity_of(i);
9d5efe05 7897
6e40f5bb 7898 wl = weighted_cpuload(i);
1e3c88bd 7899
6e40f5bb
TG
7900 /*
7901 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7902 * which is not scaled with the cpu capacity.
6e40f5bb 7903 */
ea67821b
VG
7904
7905 if (rq->nr_running == 1 && wl > env->imbalance &&
7906 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7907 continue;
7908
6e40f5bb
TG
7909 /*
7910 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7911 * the weighted_cpuload() scaled with the cpu capacity, so
7912 * that the load can be moved away from the cpu that is
7913 * potentially running at a lower capacity.
95a79b80 7914 *
ced549fa 7915 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7916 * multiplication to rid ourselves of the division works out
ced549fa
NP
7917 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7918 * our previous maximum.
6e40f5bb 7919 */
ced549fa 7920 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7921 busiest_load = wl;
ced549fa 7922 busiest_capacity = capacity;
1e3c88bd
PZ
7923 busiest = rq;
7924 }
7925 }
7926
7927 return busiest;
7928}
7929
7930/*
7931 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7932 * so long as it is large enough.
7933 */
7934#define MAX_PINNED_INTERVAL 512
7935
bd939f45 7936static int need_active_balance(struct lb_env *env)
1af3ed3d 7937{
bd939f45
PZ
7938 struct sched_domain *sd = env->sd;
7939
7940 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7941
7942 /*
7943 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7944 * lower priority CPUs in order to pack all tasks in the
7945 * highest priority CPUs.
532cb4c4 7946 */
afe06efd
TC
7947 if ((sd->flags & SD_ASYM_PACKING) &&
7948 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7949 return 1;
1af3ed3d
PZ
7950 }
7951
1aaf90a4
VG
7952 /*
7953 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7954 * It's worth migrating the task if the src_cpu's capacity is reduced
7955 * because of other sched_class or IRQs if more capacity stays
7956 * available on dst_cpu.
7957 */
7958 if ((env->idle != CPU_NOT_IDLE) &&
7959 (env->src_rq->cfs.h_nr_running == 1)) {
7960 if ((check_cpu_capacity(env->src_rq, sd)) &&
7961 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7962 return 1;
7963 }
7964
1af3ed3d
PZ
7965 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7966}
7967
969c7921
TH
7968static int active_load_balance_cpu_stop(void *data);
7969
23f0d209
JK
7970static int should_we_balance(struct lb_env *env)
7971{
7972 struct sched_group *sg = env->sd->groups;
7973 struct cpumask *sg_cpus, *sg_mask;
7974 int cpu, balance_cpu = -1;
7975
7976 /*
7977 * In the newly idle case, we will allow all the cpu's
7978 * to do the newly idle load balance.
7979 */
7980 if (env->idle == CPU_NEWLY_IDLE)
7981 return 1;
7982
7983 sg_cpus = sched_group_cpus(sg);
7984 sg_mask = sched_group_mask(sg);
7985 /* Try to find first idle cpu */
7986 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7987 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7988 continue;
7989
7990 balance_cpu = cpu;
7991 break;
7992 }
7993
7994 if (balance_cpu == -1)
7995 balance_cpu = group_balance_cpu(sg);
7996
7997 /*
7998 * First idle cpu or the first cpu(busiest) in this sched group
7999 * is eligible for doing load balancing at this and above domains.
8000 */
b0cff9d8 8001 return balance_cpu == env->dst_cpu;
23f0d209
JK
8002}
8003
1e3c88bd
PZ
8004/*
8005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8006 * tasks if there is an imbalance.
8007 */
8008static int load_balance(int this_cpu, struct rq *this_rq,
8009 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8010 int *continue_balancing)
1e3c88bd 8011{
88b8dac0 8012 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8013 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8014 struct sched_group *group;
1e3c88bd
PZ
8015 struct rq *busiest;
8016 unsigned long flags;
4ba29684 8017 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8018
8e45cb54
PZ
8019 struct lb_env env = {
8020 .sd = sd,
ddcdf6e7
PZ
8021 .dst_cpu = this_cpu,
8022 .dst_rq = this_rq,
88b8dac0 8023 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8024 .idle = idle,
eb95308e 8025 .loop_break = sched_nr_migrate_break,
b9403130 8026 .cpus = cpus,
0ec8aa00 8027 .fbq_type = all,
163122b7 8028 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8029 };
8030
cfc03118
JK
8031 /*
8032 * For NEWLY_IDLE load_balancing, we don't need to consider
8033 * other cpus in our group
8034 */
e02e60c1 8035 if (idle == CPU_NEWLY_IDLE)
cfc03118 8036 env.dst_grpmask = NULL;
cfc03118 8037
1e3c88bd
PZ
8038 cpumask_copy(cpus, cpu_active_mask);
8039
ae92882e 8040 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8041
8042redo:
23f0d209
JK
8043 if (!should_we_balance(&env)) {
8044 *continue_balancing = 0;
1e3c88bd 8045 goto out_balanced;
23f0d209 8046 }
1e3c88bd 8047
23f0d209 8048 group = find_busiest_group(&env);
1e3c88bd 8049 if (!group) {
ae92882e 8050 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8051 goto out_balanced;
8052 }
8053
b9403130 8054 busiest = find_busiest_queue(&env, group);
1e3c88bd 8055 if (!busiest) {
ae92882e 8056 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8057 goto out_balanced;
8058 }
8059
78feefc5 8060 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8061
ae92882e 8062 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8063
1aaf90a4
VG
8064 env.src_cpu = busiest->cpu;
8065 env.src_rq = busiest;
8066
1e3c88bd
PZ
8067 ld_moved = 0;
8068 if (busiest->nr_running > 1) {
8069 /*
8070 * Attempt to move tasks. If find_busiest_group has found
8071 * an imbalance but busiest->nr_running <= 1, the group is
8072 * still unbalanced. ld_moved simply stays zero, so it is
8073 * correctly treated as an imbalance.
8074 */
8e45cb54 8075 env.flags |= LBF_ALL_PINNED;
c82513e5 8076 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8077
5d6523eb 8078more_balance:
163122b7 8079 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
8080
8081 /*
8082 * cur_ld_moved - load moved in current iteration
8083 * ld_moved - cumulative load moved across iterations
8084 */
163122b7 8085 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8086
8087 /*
163122b7
KT
8088 * We've detached some tasks from busiest_rq. Every
8089 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8090 * unlock busiest->lock, and we are able to be sure
8091 * that nobody can manipulate the tasks in parallel.
8092 * See task_rq_lock() family for the details.
1e3c88bd 8093 */
163122b7
KT
8094
8095 raw_spin_unlock(&busiest->lock);
8096
8097 if (cur_ld_moved) {
8098 attach_tasks(&env);
8099 ld_moved += cur_ld_moved;
8100 }
8101
1e3c88bd 8102 local_irq_restore(flags);
88b8dac0 8103
f1cd0858
JK
8104 if (env.flags & LBF_NEED_BREAK) {
8105 env.flags &= ~LBF_NEED_BREAK;
8106 goto more_balance;
8107 }
8108
88b8dac0
SV
8109 /*
8110 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8111 * us and move them to an alternate dst_cpu in our sched_group
8112 * where they can run. The upper limit on how many times we
8113 * iterate on same src_cpu is dependent on number of cpus in our
8114 * sched_group.
8115 *
8116 * This changes load balance semantics a bit on who can move
8117 * load to a given_cpu. In addition to the given_cpu itself
8118 * (or a ilb_cpu acting on its behalf where given_cpu is
8119 * nohz-idle), we now have balance_cpu in a position to move
8120 * load to given_cpu. In rare situations, this may cause
8121 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8122 * _independently_ and at _same_ time to move some load to
8123 * given_cpu) causing exceess load to be moved to given_cpu.
8124 * This however should not happen so much in practice and
8125 * moreover subsequent load balance cycles should correct the
8126 * excess load moved.
8127 */
6263322c 8128 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8129
7aff2e3a
VD
8130 /* Prevent to re-select dst_cpu via env's cpus */
8131 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8132
78feefc5 8133 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8134 env.dst_cpu = env.new_dst_cpu;
6263322c 8135 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8136 env.loop = 0;
8137 env.loop_break = sched_nr_migrate_break;
e02e60c1 8138
88b8dac0
SV
8139 /*
8140 * Go back to "more_balance" rather than "redo" since we
8141 * need to continue with same src_cpu.
8142 */
8143 goto more_balance;
8144 }
1e3c88bd 8145
6263322c
PZ
8146 /*
8147 * We failed to reach balance because of affinity.
8148 */
8149 if (sd_parent) {
63b2ca30 8150 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8151
afdeee05 8152 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8153 *group_imbalance = 1;
6263322c
PZ
8154 }
8155
1e3c88bd 8156 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8157 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8158 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8159 if (!cpumask_empty(cpus)) {
8160 env.loop = 0;
8161 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8162 goto redo;
bbf18b19 8163 }
afdeee05 8164 goto out_all_pinned;
1e3c88bd
PZ
8165 }
8166 }
8167
8168 if (!ld_moved) {
ae92882e 8169 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8170 /*
8171 * Increment the failure counter only on periodic balance.
8172 * We do not want newidle balance, which can be very
8173 * frequent, pollute the failure counter causing
8174 * excessive cache_hot migrations and active balances.
8175 */
8176 if (idle != CPU_NEWLY_IDLE)
8177 sd->nr_balance_failed++;
1e3c88bd 8178
bd939f45 8179 if (need_active_balance(&env)) {
1e3c88bd
PZ
8180 raw_spin_lock_irqsave(&busiest->lock, flags);
8181
969c7921
TH
8182 /* don't kick the active_load_balance_cpu_stop,
8183 * if the curr task on busiest cpu can't be
8184 * moved to this_cpu
1e3c88bd
PZ
8185 */
8186 if (!cpumask_test_cpu(this_cpu,
fa17b507 8187 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
8188 raw_spin_unlock_irqrestore(&busiest->lock,
8189 flags);
8e45cb54 8190 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8191 goto out_one_pinned;
8192 }
8193
969c7921
TH
8194 /*
8195 * ->active_balance synchronizes accesses to
8196 * ->active_balance_work. Once set, it's cleared
8197 * only after active load balance is finished.
8198 */
1e3c88bd
PZ
8199 if (!busiest->active_balance) {
8200 busiest->active_balance = 1;
8201 busiest->push_cpu = this_cpu;
8202 active_balance = 1;
8203 }
8204 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8205
bd939f45 8206 if (active_balance) {
969c7921
TH
8207 stop_one_cpu_nowait(cpu_of(busiest),
8208 active_load_balance_cpu_stop, busiest,
8209 &busiest->active_balance_work);
bd939f45 8210 }
1e3c88bd 8211
d02c0711 8212 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8213 sd->nr_balance_failed = sd->cache_nice_tries+1;
8214 }
8215 } else
8216 sd->nr_balance_failed = 0;
8217
8218 if (likely(!active_balance)) {
8219 /* We were unbalanced, so reset the balancing interval */
8220 sd->balance_interval = sd->min_interval;
8221 } else {
8222 /*
8223 * If we've begun active balancing, start to back off. This
8224 * case may not be covered by the all_pinned logic if there
8225 * is only 1 task on the busy runqueue (because we don't call
163122b7 8226 * detach_tasks).
1e3c88bd
PZ
8227 */
8228 if (sd->balance_interval < sd->max_interval)
8229 sd->balance_interval *= 2;
8230 }
8231
1e3c88bd
PZ
8232 goto out;
8233
8234out_balanced:
afdeee05
VG
8235 /*
8236 * We reach balance although we may have faced some affinity
8237 * constraints. Clear the imbalance flag if it was set.
8238 */
8239 if (sd_parent) {
8240 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8241
8242 if (*group_imbalance)
8243 *group_imbalance = 0;
8244 }
8245
8246out_all_pinned:
8247 /*
8248 * We reach balance because all tasks are pinned at this level so
8249 * we can't migrate them. Let the imbalance flag set so parent level
8250 * can try to migrate them.
8251 */
ae92882e 8252 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8253
8254 sd->nr_balance_failed = 0;
8255
8256out_one_pinned:
8257 /* tune up the balancing interval */
8e45cb54 8258 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8259 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8260 (sd->balance_interval < sd->max_interval))
8261 sd->balance_interval *= 2;
8262
46e49b38 8263 ld_moved = 0;
1e3c88bd 8264out:
1e3c88bd
PZ
8265 return ld_moved;
8266}
8267
52a08ef1
JL
8268static inline unsigned long
8269get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8270{
8271 unsigned long interval = sd->balance_interval;
8272
8273 if (cpu_busy)
8274 interval *= sd->busy_factor;
8275
8276 /* scale ms to jiffies */
8277 interval = msecs_to_jiffies(interval);
8278 interval = clamp(interval, 1UL, max_load_balance_interval);
8279
8280 return interval;
8281}
8282
8283static inline void
31851a98 8284update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8285{
8286 unsigned long interval, next;
8287
31851a98
LY
8288 /* used by idle balance, so cpu_busy = 0 */
8289 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8290 next = sd->last_balance + interval;
8291
8292 if (time_after(*next_balance, next))
8293 *next_balance = next;
8294}
8295
1e3c88bd
PZ
8296/*
8297 * idle_balance is called by schedule() if this_cpu is about to become
8298 * idle. Attempts to pull tasks from other CPUs.
8299 */
6e83125c 8300static int idle_balance(struct rq *this_rq)
1e3c88bd 8301{
52a08ef1
JL
8302 unsigned long next_balance = jiffies + HZ;
8303 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8304 struct sched_domain *sd;
8305 int pulled_task = 0;
9bd721c5 8306 u64 curr_cost = 0;
1e3c88bd 8307
6e83125c
PZ
8308 /*
8309 * We must set idle_stamp _before_ calling idle_balance(), such that we
8310 * measure the duration of idle_balance() as idle time.
8311 */
8312 this_rq->idle_stamp = rq_clock(this_rq);
8313
4486edd1
TC
8314 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8315 !this_rq->rd->overload) {
52a08ef1
JL
8316 rcu_read_lock();
8317 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8318 if (sd)
31851a98 8319 update_next_balance(sd, &next_balance);
52a08ef1
JL
8320 rcu_read_unlock();
8321
6e83125c 8322 goto out;
52a08ef1 8323 }
1e3c88bd 8324
f492e12e
PZ
8325 raw_spin_unlock(&this_rq->lock);
8326
48a16753 8327 update_blocked_averages(this_cpu);
dce840a0 8328 rcu_read_lock();
1e3c88bd 8329 for_each_domain(this_cpu, sd) {
23f0d209 8330 int continue_balancing = 1;
9bd721c5 8331 u64 t0, domain_cost;
1e3c88bd
PZ
8332
8333 if (!(sd->flags & SD_LOAD_BALANCE))
8334 continue;
8335
52a08ef1 8336 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8337 update_next_balance(sd, &next_balance);
9bd721c5 8338 break;
52a08ef1 8339 }
9bd721c5 8340
f492e12e 8341 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8342 t0 = sched_clock_cpu(this_cpu);
8343
f492e12e 8344 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8345 sd, CPU_NEWLY_IDLE,
8346 &continue_balancing);
9bd721c5
JL
8347
8348 domain_cost = sched_clock_cpu(this_cpu) - t0;
8349 if (domain_cost > sd->max_newidle_lb_cost)
8350 sd->max_newidle_lb_cost = domain_cost;
8351
8352 curr_cost += domain_cost;
f492e12e 8353 }
1e3c88bd 8354
31851a98 8355 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8356
8357 /*
8358 * Stop searching for tasks to pull if there are
8359 * now runnable tasks on this rq.
8360 */
8361 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8362 break;
1e3c88bd 8363 }
dce840a0 8364 rcu_read_unlock();
f492e12e
PZ
8365
8366 raw_spin_lock(&this_rq->lock);
8367
0e5b5337
JL
8368 if (curr_cost > this_rq->max_idle_balance_cost)
8369 this_rq->max_idle_balance_cost = curr_cost;
8370
e5fc6611 8371 /*
0e5b5337
JL
8372 * While browsing the domains, we released the rq lock, a task could
8373 * have been enqueued in the meantime. Since we're not going idle,
8374 * pretend we pulled a task.
e5fc6611 8375 */
0e5b5337 8376 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8377 pulled_task = 1;
e5fc6611 8378
52a08ef1
JL
8379out:
8380 /* Move the next balance forward */
8381 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8382 this_rq->next_balance = next_balance;
9bd721c5 8383
e4aa358b 8384 /* Is there a task of a high priority class? */
46383648 8385 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8386 pulled_task = -1;
8387
38c6ade2 8388 if (pulled_task)
6e83125c
PZ
8389 this_rq->idle_stamp = 0;
8390
3c4017c1 8391 return pulled_task;
1e3c88bd
PZ
8392}
8393
8394/*
969c7921
TH
8395 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8396 * running tasks off the busiest CPU onto idle CPUs. It requires at
8397 * least 1 task to be running on each physical CPU where possible, and
8398 * avoids physical / logical imbalances.
1e3c88bd 8399 */
969c7921 8400static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8401{
969c7921
TH
8402 struct rq *busiest_rq = data;
8403 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8404 int target_cpu = busiest_rq->push_cpu;
969c7921 8405 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8406 struct sched_domain *sd;
e5673f28 8407 struct task_struct *p = NULL;
969c7921
TH
8408
8409 raw_spin_lock_irq(&busiest_rq->lock);
8410
8411 /* make sure the requested cpu hasn't gone down in the meantime */
8412 if (unlikely(busiest_cpu != smp_processor_id() ||
8413 !busiest_rq->active_balance))
8414 goto out_unlock;
1e3c88bd
PZ
8415
8416 /* Is there any task to move? */
8417 if (busiest_rq->nr_running <= 1)
969c7921 8418 goto out_unlock;
1e3c88bd
PZ
8419
8420 /*
8421 * This condition is "impossible", if it occurs
8422 * we need to fix it. Originally reported by
8423 * Bjorn Helgaas on a 128-cpu setup.
8424 */
8425 BUG_ON(busiest_rq == target_rq);
8426
1e3c88bd 8427 /* Search for an sd spanning us and the target CPU. */
dce840a0 8428 rcu_read_lock();
1e3c88bd
PZ
8429 for_each_domain(target_cpu, sd) {
8430 if ((sd->flags & SD_LOAD_BALANCE) &&
8431 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8432 break;
8433 }
8434
8435 if (likely(sd)) {
8e45cb54
PZ
8436 struct lb_env env = {
8437 .sd = sd,
ddcdf6e7
PZ
8438 .dst_cpu = target_cpu,
8439 .dst_rq = target_rq,
8440 .src_cpu = busiest_rq->cpu,
8441 .src_rq = busiest_rq,
8e45cb54
PZ
8442 .idle = CPU_IDLE,
8443 };
8444
ae92882e 8445 schedstat_inc(sd->alb_count);
1e3c88bd 8446
e5673f28 8447 p = detach_one_task(&env);
d02c0711 8448 if (p) {
ae92882e 8449 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8450 /* Active balancing done, reset the failure counter. */
8451 sd->nr_balance_failed = 0;
8452 } else {
ae92882e 8453 schedstat_inc(sd->alb_failed);
d02c0711 8454 }
1e3c88bd 8455 }
dce840a0 8456 rcu_read_unlock();
969c7921
TH
8457out_unlock:
8458 busiest_rq->active_balance = 0;
e5673f28
KT
8459 raw_spin_unlock(&busiest_rq->lock);
8460
8461 if (p)
8462 attach_one_task(target_rq, p);
8463
8464 local_irq_enable();
8465
969c7921 8466 return 0;
1e3c88bd
PZ
8467}
8468
d987fc7f
MG
8469static inline int on_null_domain(struct rq *rq)
8470{
8471 return unlikely(!rcu_dereference_sched(rq->sd));
8472}
8473
3451d024 8474#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8475/*
8476 * idle load balancing details
83cd4fe2
VP
8477 * - When one of the busy CPUs notice that there may be an idle rebalancing
8478 * needed, they will kick the idle load balancer, which then does idle
8479 * load balancing for all the idle CPUs.
8480 */
1e3c88bd 8481static struct {
83cd4fe2 8482 cpumask_var_t idle_cpus_mask;
0b005cf5 8483 atomic_t nr_cpus;
83cd4fe2
VP
8484 unsigned long next_balance; /* in jiffy units */
8485} nohz ____cacheline_aligned;
1e3c88bd 8486
3dd0337d 8487static inline int find_new_ilb(void)
1e3c88bd 8488{
0b005cf5 8489 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8490
786d6dc7
SS
8491 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8492 return ilb;
8493
8494 return nr_cpu_ids;
1e3c88bd 8495}
1e3c88bd 8496
83cd4fe2
VP
8497/*
8498 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8499 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8500 * CPU (if there is one).
8501 */
0aeeeeba 8502static void nohz_balancer_kick(void)
83cd4fe2
VP
8503{
8504 int ilb_cpu;
8505
8506 nohz.next_balance++;
8507
3dd0337d 8508 ilb_cpu = find_new_ilb();
83cd4fe2 8509
0b005cf5
SS
8510 if (ilb_cpu >= nr_cpu_ids)
8511 return;
83cd4fe2 8512
cd490c5b 8513 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8514 return;
8515 /*
8516 * Use smp_send_reschedule() instead of resched_cpu().
8517 * This way we generate a sched IPI on the target cpu which
8518 * is idle. And the softirq performing nohz idle load balance
8519 * will be run before returning from the IPI.
8520 */
8521 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8522 return;
8523}
8524
20a5c8cc 8525void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8526{
8527 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8528 /*
8529 * Completely isolated CPUs don't ever set, so we must test.
8530 */
8531 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8532 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8533 atomic_dec(&nohz.nr_cpus);
8534 }
71325960
SS
8535 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8536 }
8537}
8538
69e1e811
SS
8539static inline void set_cpu_sd_state_busy(void)
8540{
8541 struct sched_domain *sd;
37dc6b50 8542 int cpu = smp_processor_id();
69e1e811 8543
69e1e811 8544 rcu_read_lock();
0e369d75 8545 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8546
8547 if (!sd || !sd->nohz_idle)
8548 goto unlock;
8549 sd->nohz_idle = 0;
8550
0e369d75 8551 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8552unlock:
69e1e811
SS
8553 rcu_read_unlock();
8554}
8555
8556void set_cpu_sd_state_idle(void)
8557{
8558 struct sched_domain *sd;
37dc6b50 8559 int cpu = smp_processor_id();
69e1e811 8560
69e1e811 8561 rcu_read_lock();
0e369d75 8562 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8563
8564 if (!sd || sd->nohz_idle)
8565 goto unlock;
8566 sd->nohz_idle = 1;
8567
0e369d75 8568 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8569unlock:
69e1e811
SS
8570 rcu_read_unlock();
8571}
8572
1e3c88bd 8573/*
c1cc017c 8574 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8575 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8576 */
c1cc017c 8577void nohz_balance_enter_idle(int cpu)
1e3c88bd 8578{
71325960
SS
8579 /*
8580 * If this cpu is going down, then nothing needs to be done.
8581 */
8582 if (!cpu_active(cpu))
8583 return;
8584
c1cc017c
AS
8585 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8586 return;
1e3c88bd 8587
d987fc7f
MG
8588 /*
8589 * If we're a completely isolated CPU, we don't play.
8590 */
8591 if (on_null_domain(cpu_rq(cpu)))
8592 return;
8593
c1cc017c
AS
8594 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8595 atomic_inc(&nohz.nr_cpus);
8596 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8597}
8598#endif
8599
8600static DEFINE_SPINLOCK(balancing);
8601
49c022e6
PZ
8602/*
8603 * Scale the max load_balance interval with the number of CPUs in the system.
8604 * This trades load-balance latency on larger machines for less cross talk.
8605 */
029632fb 8606void update_max_interval(void)
49c022e6
PZ
8607{
8608 max_load_balance_interval = HZ*num_online_cpus()/10;
8609}
8610
1e3c88bd
PZ
8611/*
8612 * It checks each scheduling domain to see if it is due to be balanced,
8613 * and initiates a balancing operation if so.
8614 *
b9b0853a 8615 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8616 */
f7ed0a89 8617static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8618{
23f0d209 8619 int continue_balancing = 1;
f7ed0a89 8620 int cpu = rq->cpu;
1e3c88bd 8621 unsigned long interval;
04f733b4 8622 struct sched_domain *sd;
1e3c88bd
PZ
8623 /* Earliest time when we have to do rebalance again */
8624 unsigned long next_balance = jiffies + 60*HZ;
8625 int update_next_balance = 0;
f48627e6
JL
8626 int need_serialize, need_decay = 0;
8627 u64 max_cost = 0;
1e3c88bd 8628
48a16753 8629 update_blocked_averages(cpu);
2069dd75 8630
dce840a0 8631 rcu_read_lock();
1e3c88bd 8632 for_each_domain(cpu, sd) {
f48627e6
JL
8633 /*
8634 * Decay the newidle max times here because this is a regular
8635 * visit to all the domains. Decay ~1% per second.
8636 */
8637 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8638 sd->max_newidle_lb_cost =
8639 (sd->max_newidle_lb_cost * 253) / 256;
8640 sd->next_decay_max_lb_cost = jiffies + HZ;
8641 need_decay = 1;
8642 }
8643 max_cost += sd->max_newidle_lb_cost;
8644
1e3c88bd
PZ
8645 if (!(sd->flags & SD_LOAD_BALANCE))
8646 continue;
8647
f48627e6
JL
8648 /*
8649 * Stop the load balance at this level. There is another
8650 * CPU in our sched group which is doing load balancing more
8651 * actively.
8652 */
8653 if (!continue_balancing) {
8654 if (need_decay)
8655 continue;
8656 break;
8657 }
8658
52a08ef1 8659 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8660
8661 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8662 if (need_serialize) {
8663 if (!spin_trylock(&balancing))
8664 goto out;
8665 }
8666
8667 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8668 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8669 /*
6263322c 8670 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8671 * env->dst_cpu, so we can't know our idle
8672 * state even if we migrated tasks. Update it.
1e3c88bd 8673 */
de5eb2dd 8674 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8675 }
8676 sd->last_balance = jiffies;
52a08ef1 8677 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8678 }
8679 if (need_serialize)
8680 spin_unlock(&balancing);
8681out:
8682 if (time_after(next_balance, sd->last_balance + interval)) {
8683 next_balance = sd->last_balance + interval;
8684 update_next_balance = 1;
8685 }
f48627e6
JL
8686 }
8687 if (need_decay) {
1e3c88bd 8688 /*
f48627e6
JL
8689 * Ensure the rq-wide value also decays but keep it at a
8690 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8691 */
f48627e6
JL
8692 rq->max_idle_balance_cost =
8693 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8694 }
dce840a0 8695 rcu_read_unlock();
1e3c88bd
PZ
8696
8697 /*
8698 * next_balance will be updated only when there is a need.
8699 * When the cpu is attached to null domain for ex, it will not be
8700 * updated.
8701 */
c5afb6a8 8702 if (likely(update_next_balance)) {
1e3c88bd 8703 rq->next_balance = next_balance;
c5afb6a8
VG
8704
8705#ifdef CONFIG_NO_HZ_COMMON
8706 /*
8707 * If this CPU has been elected to perform the nohz idle
8708 * balance. Other idle CPUs have already rebalanced with
8709 * nohz_idle_balance() and nohz.next_balance has been
8710 * updated accordingly. This CPU is now running the idle load
8711 * balance for itself and we need to update the
8712 * nohz.next_balance accordingly.
8713 */
8714 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8715 nohz.next_balance = rq->next_balance;
8716#endif
8717 }
1e3c88bd
PZ
8718}
8719
3451d024 8720#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8721/*
3451d024 8722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8724 */
208cb16b 8725static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8726{
208cb16b 8727 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8728 struct rq *rq;
8729 int balance_cpu;
c5afb6a8
VG
8730 /* Earliest time when we have to do rebalance again */
8731 unsigned long next_balance = jiffies + 60*HZ;
8732 int update_next_balance = 0;
83cd4fe2 8733
1c792db7
SS
8734 if (idle != CPU_IDLE ||
8735 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8736 goto end;
83cd4fe2
VP
8737
8738 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8739 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8740 continue;
8741
8742 /*
8743 * If this cpu gets work to do, stop the load balancing
8744 * work being done for other cpus. Next load
8745 * balancing owner will pick it up.
8746 */
1c792db7 8747 if (need_resched())
83cd4fe2 8748 break;
83cd4fe2 8749
5ed4f1d9
VG
8750 rq = cpu_rq(balance_cpu);
8751
ed61bbc6
TC
8752 /*
8753 * If time for next balance is due,
8754 * do the balance.
8755 */
8756 if (time_after_eq(jiffies, rq->next_balance)) {
8757 raw_spin_lock_irq(&rq->lock);
8758 update_rq_clock(rq);
cee1afce 8759 cpu_load_update_idle(rq);
ed61bbc6
TC
8760 raw_spin_unlock_irq(&rq->lock);
8761 rebalance_domains(rq, CPU_IDLE);
8762 }
83cd4fe2 8763
c5afb6a8
VG
8764 if (time_after(next_balance, rq->next_balance)) {
8765 next_balance = rq->next_balance;
8766 update_next_balance = 1;
8767 }
83cd4fe2 8768 }
c5afb6a8
VG
8769
8770 /*
8771 * next_balance will be updated only when there is a need.
8772 * When the CPU is attached to null domain for ex, it will not be
8773 * updated.
8774 */
8775 if (likely(update_next_balance))
8776 nohz.next_balance = next_balance;
1c792db7
SS
8777end:
8778 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8779}
8780
8781/*
0b005cf5 8782 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8783 * of an idle cpu in the system.
0b005cf5 8784 * - This rq has more than one task.
1aaf90a4
VG
8785 * - This rq has at least one CFS task and the capacity of the CPU is
8786 * significantly reduced because of RT tasks or IRQs.
8787 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8788 * multiple busy cpu.
0b005cf5
SS
8789 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8790 * domain span are idle.
83cd4fe2 8791 */
1aaf90a4 8792static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8793{
8794 unsigned long now = jiffies;
0e369d75 8795 struct sched_domain_shared *sds;
0b005cf5 8796 struct sched_domain *sd;
afe06efd 8797 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8798 bool kick = false;
83cd4fe2 8799
4a725627 8800 if (unlikely(rq->idle_balance))
1aaf90a4 8801 return false;
83cd4fe2 8802
1c792db7
SS
8803 /*
8804 * We may be recently in ticked or tickless idle mode. At the first
8805 * busy tick after returning from idle, we will update the busy stats.
8806 */
69e1e811 8807 set_cpu_sd_state_busy();
c1cc017c 8808 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8809
8810 /*
8811 * None are in tickless mode and hence no need for NOHZ idle load
8812 * balancing.
8813 */
8814 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8815 return false;
1c792db7
SS
8816
8817 if (time_before(now, nohz.next_balance))
1aaf90a4 8818 return false;
83cd4fe2 8819
0b005cf5 8820 if (rq->nr_running >= 2)
1aaf90a4 8821 return true;
83cd4fe2 8822
067491b7 8823 rcu_read_lock();
0e369d75
PZ
8824 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8825 if (sds) {
8826 /*
8827 * XXX: write a coherent comment on why we do this.
8828 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8829 */
8830 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8831 if (nr_busy > 1) {
8832 kick = true;
8833 goto unlock;
8834 }
8835
83cd4fe2 8836 }
37dc6b50 8837
1aaf90a4
VG
8838 sd = rcu_dereference(rq->sd);
8839 if (sd) {
8840 if ((rq->cfs.h_nr_running >= 1) &&
8841 check_cpu_capacity(rq, sd)) {
8842 kick = true;
8843 goto unlock;
8844 }
8845 }
37dc6b50 8846
1aaf90a4 8847 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8848 if (sd) {
8849 for_each_cpu(i, sched_domain_span(sd)) {
8850 if (i == cpu ||
8851 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8852 continue;
067491b7 8853
afe06efd
TC
8854 if (sched_asym_prefer(i, cpu)) {
8855 kick = true;
8856 goto unlock;
8857 }
8858 }
8859 }
1aaf90a4 8860unlock:
067491b7 8861 rcu_read_unlock();
1aaf90a4 8862 return kick;
83cd4fe2
VP
8863}
8864#else
208cb16b 8865static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8866#endif
8867
8868/*
8869 * run_rebalance_domains is triggered when needed from the scheduler tick.
8870 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8871 */
0766f788 8872static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8873{
208cb16b 8874 struct rq *this_rq = this_rq();
6eb57e0d 8875 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8876 CPU_IDLE : CPU_NOT_IDLE;
8877
1e3c88bd 8878 /*
83cd4fe2 8879 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8880 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8881 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8882 * give the idle cpus a chance to load balance. Else we may
8883 * load balance only within the local sched_domain hierarchy
8884 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8885 */
208cb16b 8886 nohz_idle_balance(this_rq, idle);
d4573c3e 8887 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8888}
8889
1e3c88bd
PZ
8890/*
8891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8892 */
7caff66f 8893void trigger_load_balance(struct rq *rq)
1e3c88bd 8894{
1e3c88bd 8895 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8896 if (unlikely(on_null_domain(rq)))
8897 return;
8898
8899 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8900 raise_softirq(SCHED_SOFTIRQ);
3451d024 8901#ifdef CONFIG_NO_HZ_COMMON
c726099e 8902 if (nohz_kick_needed(rq))
0aeeeeba 8903 nohz_balancer_kick();
83cd4fe2 8904#endif
1e3c88bd
PZ
8905}
8906
0bcdcf28
CE
8907static void rq_online_fair(struct rq *rq)
8908{
8909 update_sysctl();
0e59bdae
KT
8910
8911 update_runtime_enabled(rq);
0bcdcf28
CE
8912}
8913
8914static void rq_offline_fair(struct rq *rq)
8915{
8916 update_sysctl();
a4c96ae3
PB
8917
8918 /* Ensure any throttled groups are reachable by pick_next_task */
8919 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8920}
8921
55e12e5e 8922#endif /* CONFIG_SMP */
e1d1484f 8923
bf0f6f24
IM
8924/*
8925 * scheduler tick hitting a task of our scheduling class:
8926 */
8f4d37ec 8927static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8928{
8929 struct cfs_rq *cfs_rq;
8930 struct sched_entity *se = &curr->se;
8931
8932 for_each_sched_entity(se) {
8933 cfs_rq = cfs_rq_of(se);
8f4d37ec 8934 entity_tick(cfs_rq, se, queued);
bf0f6f24 8935 }
18bf2805 8936
b52da86e 8937 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8938 task_tick_numa(rq, curr);
bf0f6f24
IM
8939}
8940
8941/*
cd29fe6f
PZ
8942 * called on fork with the child task as argument from the parent's context
8943 * - child not yet on the tasklist
8944 * - preemption disabled
bf0f6f24 8945 */
cd29fe6f 8946static void task_fork_fair(struct task_struct *p)
bf0f6f24 8947{
4fc420c9
DN
8948 struct cfs_rq *cfs_rq;
8949 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8950 struct rq *rq = this_rq();
bf0f6f24 8951
e210bffd 8952 raw_spin_lock(&rq->lock);
861d034e
PZ
8953 update_rq_clock(rq);
8954
4fc420c9
DN
8955 cfs_rq = task_cfs_rq(current);
8956 curr = cfs_rq->curr;
e210bffd
PZ
8957 if (curr) {
8958 update_curr(cfs_rq);
b5d9d734 8959 se->vruntime = curr->vruntime;
e210bffd 8960 }
aeb73b04 8961 place_entity(cfs_rq, se, 1);
4d78e7b6 8962
cd29fe6f 8963 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8964 /*
edcb60a3
IM
8965 * Upon rescheduling, sched_class::put_prev_task() will place
8966 * 'current' within the tree based on its new key value.
8967 */
4d78e7b6 8968 swap(curr->vruntime, se->vruntime);
8875125e 8969 resched_curr(rq);
4d78e7b6 8970 }
bf0f6f24 8971
88ec22d3 8972 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8973 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8974}
8975
cb469845
SR
8976/*
8977 * Priority of the task has changed. Check to see if we preempt
8978 * the current task.
8979 */
da7a735e
PZ
8980static void
8981prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8982{
da0c1e65 8983 if (!task_on_rq_queued(p))
da7a735e
PZ
8984 return;
8985
cb469845
SR
8986 /*
8987 * Reschedule if we are currently running on this runqueue and
8988 * our priority decreased, or if we are not currently running on
8989 * this runqueue and our priority is higher than the current's
8990 */
da7a735e 8991 if (rq->curr == p) {
cb469845 8992 if (p->prio > oldprio)
8875125e 8993 resched_curr(rq);
cb469845 8994 } else
15afe09b 8995 check_preempt_curr(rq, p, 0);
cb469845
SR
8996}
8997
daa59407 8998static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8999{
9000 struct sched_entity *se = &p->se;
da7a735e
PZ
9001
9002 /*
daa59407
BP
9003 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9004 * the dequeue_entity(.flags=0) will already have normalized the
9005 * vruntime.
9006 */
9007 if (p->on_rq)
9008 return true;
9009
9010 /*
9011 * When !on_rq, vruntime of the task has usually NOT been normalized.
9012 * But there are some cases where it has already been normalized:
da7a735e 9013 *
daa59407
BP
9014 * - A forked child which is waiting for being woken up by
9015 * wake_up_new_task().
9016 * - A task which has been woken up by try_to_wake_up() and
9017 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9018 */
daa59407
BP
9019 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9020 return true;
9021
9022 return false;
9023}
9024
09a43ace
VG
9025#ifdef CONFIG_FAIR_GROUP_SCHED
9026/*
9027 * Propagate the changes of the sched_entity across the tg tree to make it
9028 * visible to the root
9029 */
9030static void propagate_entity_cfs_rq(struct sched_entity *se)
9031{
9032 struct cfs_rq *cfs_rq;
9033
9034 /* Start to propagate at parent */
9035 se = se->parent;
9036
9037 for_each_sched_entity(se) {
9038 cfs_rq = cfs_rq_of(se);
9039
9040 if (cfs_rq_throttled(cfs_rq))
9041 break;
9042
9043 update_load_avg(se, UPDATE_TG);
9044 }
9045}
9046#else
9047static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9048#endif
9049
df217913 9050static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9051{
daa59407
BP
9052 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9053
9d89c257 9054 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9055 update_load_avg(se, 0);
a05e8c51 9056 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9057 update_tg_load_avg(cfs_rq, false);
09a43ace 9058 propagate_entity_cfs_rq(se);
da7a735e
PZ
9059}
9060
df217913 9061static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9062{
daa59407 9063 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9064
9065#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9066 /*
9067 * Since the real-depth could have been changed (only FAIR
9068 * class maintain depth value), reset depth properly.
9069 */
9070 se->depth = se->parent ? se->parent->depth + 1 : 0;
9071#endif
7855a35a 9072
df217913 9073 /* Synchronize entity with its cfs_rq */
d31b1a66 9074 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9075 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9076 update_tg_load_avg(cfs_rq, false);
09a43ace 9077 propagate_entity_cfs_rq(se);
df217913
VG
9078}
9079
9080static void detach_task_cfs_rq(struct task_struct *p)
9081{
9082 struct sched_entity *se = &p->se;
9083 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9084
9085 if (!vruntime_normalized(p)) {
9086 /*
9087 * Fix up our vruntime so that the current sleep doesn't
9088 * cause 'unlimited' sleep bonus.
9089 */
9090 place_entity(cfs_rq, se, 0);
9091 se->vruntime -= cfs_rq->min_vruntime;
9092 }
9093
9094 detach_entity_cfs_rq(se);
9095}
9096
9097static void attach_task_cfs_rq(struct task_struct *p)
9098{
9099 struct sched_entity *se = &p->se;
9100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9101
9102 attach_entity_cfs_rq(se);
daa59407
BP
9103
9104 if (!vruntime_normalized(p))
9105 se->vruntime += cfs_rq->min_vruntime;
9106}
6efdb105 9107
daa59407
BP
9108static void switched_from_fair(struct rq *rq, struct task_struct *p)
9109{
9110 detach_task_cfs_rq(p);
9111}
9112
9113static void switched_to_fair(struct rq *rq, struct task_struct *p)
9114{
9115 attach_task_cfs_rq(p);
7855a35a 9116
daa59407 9117 if (task_on_rq_queued(p)) {
7855a35a 9118 /*
daa59407
BP
9119 * We were most likely switched from sched_rt, so
9120 * kick off the schedule if running, otherwise just see
9121 * if we can still preempt the current task.
7855a35a 9122 */
daa59407
BP
9123 if (rq->curr == p)
9124 resched_curr(rq);
9125 else
9126 check_preempt_curr(rq, p, 0);
7855a35a 9127 }
cb469845
SR
9128}
9129
83b699ed
SV
9130/* Account for a task changing its policy or group.
9131 *
9132 * This routine is mostly called to set cfs_rq->curr field when a task
9133 * migrates between groups/classes.
9134 */
9135static void set_curr_task_fair(struct rq *rq)
9136{
9137 struct sched_entity *se = &rq->curr->se;
9138
ec12cb7f
PT
9139 for_each_sched_entity(se) {
9140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9142 set_next_entity(cfs_rq, se);
9143 /* ensure bandwidth has been allocated on our new cfs_rq */
9144 account_cfs_rq_runtime(cfs_rq, 0);
9145 }
83b699ed
SV
9146}
9147
029632fb
PZ
9148void init_cfs_rq(struct cfs_rq *cfs_rq)
9149{
9150 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9151 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9152#ifndef CONFIG_64BIT
9153 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9154#endif
141965c7 9155#ifdef CONFIG_SMP
09a43ace
VG
9156#ifdef CONFIG_FAIR_GROUP_SCHED
9157 cfs_rq->propagate_avg = 0;
9158#endif
9d89c257
YD
9159 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9160 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9161#endif
029632fb
PZ
9162}
9163
810b3817 9164#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9165static void task_set_group_fair(struct task_struct *p)
9166{
9167 struct sched_entity *se = &p->se;
9168
9169 set_task_rq(p, task_cpu(p));
9170 se->depth = se->parent ? se->parent->depth + 1 : 0;
9171}
9172
bc54da21 9173static void task_move_group_fair(struct task_struct *p)
810b3817 9174{
daa59407 9175 detach_task_cfs_rq(p);
b2b5ce02 9176 set_task_rq(p, task_cpu(p));
6efdb105
BP
9177
9178#ifdef CONFIG_SMP
9179 /* Tell se's cfs_rq has been changed -- migrated */
9180 p->se.avg.last_update_time = 0;
9181#endif
daa59407 9182 attach_task_cfs_rq(p);
810b3817 9183}
029632fb 9184
ea86cb4b
VG
9185static void task_change_group_fair(struct task_struct *p, int type)
9186{
9187 switch (type) {
9188 case TASK_SET_GROUP:
9189 task_set_group_fair(p);
9190 break;
9191
9192 case TASK_MOVE_GROUP:
9193 task_move_group_fair(p);
9194 break;
9195 }
9196}
9197
029632fb
PZ
9198void free_fair_sched_group(struct task_group *tg)
9199{
9200 int i;
9201
9202 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9203
9204 for_each_possible_cpu(i) {
9205 if (tg->cfs_rq)
9206 kfree(tg->cfs_rq[i]);
6fe1f348 9207 if (tg->se)
029632fb
PZ
9208 kfree(tg->se[i]);
9209 }
9210
9211 kfree(tg->cfs_rq);
9212 kfree(tg->se);
9213}
9214
9215int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9216{
029632fb 9217 struct sched_entity *se;
b7fa30c9 9218 struct cfs_rq *cfs_rq;
029632fb
PZ
9219 int i;
9220
9221 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9222 if (!tg->cfs_rq)
9223 goto err;
9224 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9225 if (!tg->se)
9226 goto err;
9227
9228 tg->shares = NICE_0_LOAD;
9229
9230 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9231
9232 for_each_possible_cpu(i) {
9233 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9234 GFP_KERNEL, cpu_to_node(i));
9235 if (!cfs_rq)
9236 goto err;
9237
9238 se = kzalloc_node(sizeof(struct sched_entity),
9239 GFP_KERNEL, cpu_to_node(i));
9240 if (!se)
9241 goto err_free_rq;
9242
9243 init_cfs_rq(cfs_rq);
9244 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9245 init_entity_runnable_average(se);
029632fb
PZ
9246 }
9247
9248 return 1;
9249
9250err_free_rq:
9251 kfree(cfs_rq);
9252err:
9253 return 0;
9254}
9255
8663e24d
PZ
9256void online_fair_sched_group(struct task_group *tg)
9257{
9258 struct sched_entity *se;
9259 struct rq *rq;
9260 int i;
9261
9262 for_each_possible_cpu(i) {
9263 rq = cpu_rq(i);
9264 se = tg->se[i];
9265
9266 raw_spin_lock_irq(&rq->lock);
d0326691 9267 attach_entity_cfs_rq(se);
55e16d30 9268 sync_throttle(tg, i);
8663e24d
PZ
9269 raw_spin_unlock_irq(&rq->lock);
9270 }
9271}
9272
6fe1f348 9273void unregister_fair_sched_group(struct task_group *tg)
029632fb 9274{
029632fb 9275 unsigned long flags;
6fe1f348
PZ
9276 struct rq *rq;
9277 int cpu;
029632fb 9278
6fe1f348
PZ
9279 for_each_possible_cpu(cpu) {
9280 if (tg->se[cpu])
9281 remove_entity_load_avg(tg->se[cpu]);
029632fb 9282
6fe1f348
PZ
9283 /*
9284 * Only empty task groups can be destroyed; so we can speculatively
9285 * check on_list without danger of it being re-added.
9286 */
9287 if (!tg->cfs_rq[cpu]->on_list)
9288 continue;
9289
9290 rq = cpu_rq(cpu);
9291
9292 raw_spin_lock_irqsave(&rq->lock, flags);
9293 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9294 raw_spin_unlock_irqrestore(&rq->lock, flags);
9295 }
029632fb
PZ
9296}
9297
9298void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9299 struct sched_entity *se, int cpu,
9300 struct sched_entity *parent)
9301{
9302 struct rq *rq = cpu_rq(cpu);
9303
9304 cfs_rq->tg = tg;
9305 cfs_rq->rq = rq;
029632fb
PZ
9306 init_cfs_rq_runtime(cfs_rq);
9307
9308 tg->cfs_rq[cpu] = cfs_rq;
9309 tg->se[cpu] = se;
9310
9311 /* se could be NULL for root_task_group */
9312 if (!se)
9313 return;
9314
fed14d45 9315 if (!parent) {
029632fb 9316 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9317 se->depth = 0;
9318 } else {
029632fb 9319 se->cfs_rq = parent->my_q;
fed14d45
PZ
9320 se->depth = parent->depth + 1;
9321 }
029632fb
PZ
9322
9323 se->my_q = cfs_rq;
0ac9b1c2
PT
9324 /* guarantee group entities always have weight */
9325 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9326 se->parent = parent;
9327}
9328
9329static DEFINE_MUTEX(shares_mutex);
9330
9331int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9332{
9333 int i;
9334 unsigned long flags;
9335
9336 /*
9337 * We can't change the weight of the root cgroup.
9338 */
9339 if (!tg->se[0])
9340 return -EINVAL;
9341
9342 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9343
9344 mutex_lock(&shares_mutex);
9345 if (tg->shares == shares)
9346 goto done;
9347
9348 tg->shares = shares;
9349 for_each_possible_cpu(i) {
9350 struct rq *rq = cpu_rq(i);
9351 struct sched_entity *se;
9352
9353 se = tg->se[i];
9354 /* Propagate contribution to hierarchy */
9355 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
9356
9357 /* Possible calls to update_curr() need rq clock */
9358 update_rq_clock(rq);
17bc14b7 9359 for_each_sched_entity(se)
029632fb
PZ
9360 update_cfs_shares(group_cfs_rq(se));
9361 raw_spin_unlock_irqrestore(&rq->lock, flags);
9362 }
9363
9364done:
9365 mutex_unlock(&shares_mutex);
9366 return 0;
9367}
9368#else /* CONFIG_FAIR_GROUP_SCHED */
9369
9370void free_fair_sched_group(struct task_group *tg) { }
9371
9372int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9373{
9374 return 1;
9375}
9376
8663e24d
PZ
9377void online_fair_sched_group(struct task_group *tg) { }
9378
6fe1f348 9379void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9380
9381#endif /* CONFIG_FAIR_GROUP_SCHED */
9382
810b3817 9383
6d686f45 9384static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9385{
9386 struct sched_entity *se = &task->se;
0d721cea
PW
9387 unsigned int rr_interval = 0;
9388
9389 /*
9390 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9391 * idle runqueue:
9392 */
0d721cea 9393 if (rq->cfs.load.weight)
a59f4e07 9394 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9395
9396 return rr_interval;
9397}
9398
bf0f6f24
IM
9399/*
9400 * All the scheduling class methods:
9401 */
029632fb 9402const struct sched_class fair_sched_class = {
5522d5d5 9403 .next = &idle_sched_class,
bf0f6f24
IM
9404 .enqueue_task = enqueue_task_fair,
9405 .dequeue_task = dequeue_task_fair,
9406 .yield_task = yield_task_fair,
d95f4122 9407 .yield_to_task = yield_to_task_fair,
bf0f6f24 9408
2e09bf55 9409 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9410
9411 .pick_next_task = pick_next_task_fair,
9412 .put_prev_task = put_prev_task_fair,
9413
681f3e68 9414#ifdef CONFIG_SMP
4ce72a2c 9415 .select_task_rq = select_task_rq_fair,
0a74bef8 9416 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9417
0bcdcf28
CE
9418 .rq_online = rq_online_fair,
9419 .rq_offline = rq_offline_fair,
88ec22d3 9420
12695578 9421 .task_dead = task_dead_fair,
c5b28038 9422 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9423#endif
bf0f6f24 9424
83b699ed 9425 .set_curr_task = set_curr_task_fair,
bf0f6f24 9426 .task_tick = task_tick_fair,
cd29fe6f 9427 .task_fork = task_fork_fair,
cb469845
SR
9428
9429 .prio_changed = prio_changed_fair,
da7a735e 9430 .switched_from = switched_from_fair,
cb469845 9431 .switched_to = switched_to_fair,
810b3817 9432
0d721cea
PW
9433 .get_rr_interval = get_rr_interval_fair,
9434
6e998916
SG
9435 .update_curr = update_curr_fair,
9436
810b3817 9437#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9438 .task_change_group = task_change_group_fair,
810b3817 9439#endif
bf0f6f24
IM
9440};
9441
9442#ifdef CONFIG_SCHED_DEBUG
029632fb 9443void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9444{
bf0f6f24
IM
9445 struct cfs_rq *cfs_rq;
9446
5973e5b9 9447 rcu_read_lock();
c3b64f1e 9448 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9449 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9450 rcu_read_unlock();
bf0f6f24 9451}
397f2378
SD
9452
9453#ifdef CONFIG_NUMA_BALANCING
9454void show_numa_stats(struct task_struct *p, struct seq_file *m)
9455{
9456 int node;
9457 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9458
9459 for_each_online_node(node) {
9460 if (p->numa_faults) {
9461 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9462 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9463 }
9464 if (p->numa_group) {
9465 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9466 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9467 }
9468 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9469 }
9470}
9471#endif /* CONFIG_NUMA_BALANCING */
9472#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9473
9474__init void init_sched_fair_class(void)
9475{
9476#ifdef CONFIG_SMP
9477 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9478
3451d024 9479#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9480 nohz.next_balance = jiffies;
029632fb 9481 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9482#endif
9483#endif /* SMP */
9484
9485}