sched/fair: Use reweight_entity() for set_user_nice()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7 515 struct sched_entity *curr = cfs_rq->curr;
bfb06889 516 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 517
1af5f730
PZ
518 u64 vruntime = cfs_rq->min_vruntime;
519
b60205c7
PZ
520 if (curr) {
521 if (curr->on_rq)
522 vruntime = curr->vruntime;
523 else
524 curr = NULL;
525 }
1af5f730 526
bfb06889
DB
527 if (leftmost) { /* non-empty tree */
528 struct sched_entity *se;
529 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 549{
bfb06889 550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bfb06889 553 bool leftmost = true;
bf0f6f24
IM
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
bfb06889 569 leftmost = false;
bf0f6f24
IM
570 }
571 }
572
bf0f6f24 573 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
574 rb_insert_color_cached(&se->run_node,
575 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
576}
577
0702e3eb 578static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 579{
bfb06889 580 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
029632fb 583struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 584{
bfb06889 585 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
586
587 if (!left)
588 return NULL;
589
590 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
591}
592
ac53db59
RR
593static struct sched_entity *__pick_next_entity(struct sched_entity *se)
594{
595 struct rb_node *next = rb_next(&se->run_node);
596
597 if (!next)
598 return NULL;
599
600 return rb_entry(next, struct sched_entity, run_node);
601}
602
603#ifdef CONFIG_SCHED_DEBUG
029632fb 604struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 605{
bfb06889 606 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 607
70eee74b
BS
608 if (!last)
609 return NULL;
7eee3e67
IM
610
611 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
612}
613
bf0f6f24
IM
614/**************************************************************
615 * Scheduling class statistics methods:
616 */
617
acb4a848 618int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 619 void __user *buffer, size_t *lenp,
b2be5e96
PZ
620 loff_t *ppos)
621{
8d65af78 622 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 623 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
624
625 if (ret || !write)
626 return ret;
627
628 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
629 sysctl_sched_min_granularity);
630
acb4a848
CE
631#define WRT_SYSCTL(name) \
632 (normalized_sysctl_##name = sysctl_##name / (factor))
633 WRT_SYSCTL(sched_min_granularity);
634 WRT_SYSCTL(sched_latency);
635 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
636#undef WRT_SYSCTL
637
b2be5e96
PZ
638 return 0;
639}
640#endif
647e7cac 641
a7be37ac 642/*
f9c0b095 643 * delta /= w
a7be37ac 644 */
9dbdb155 645static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 646{
f9c0b095 647 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 648 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
649
650 return delta;
651}
652
647e7cac
IM
653/*
654 * The idea is to set a period in which each task runs once.
655 *
532b1858 656 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
657 * this period because otherwise the slices get too small.
658 *
659 * p = (nr <= nl) ? l : l*nr/nl
660 */
4d78e7b6
PZ
661static u64 __sched_period(unsigned long nr_running)
662{
8e2b0bf3
BF
663 if (unlikely(nr_running > sched_nr_latency))
664 return nr_running * sysctl_sched_min_granularity;
665 else
666 return sysctl_sched_latency;
4d78e7b6
PZ
667}
668
647e7cac
IM
669/*
670 * We calculate the wall-time slice from the period by taking a part
671 * proportional to the weight.
672 *
f9c0b095 673 * s = p*P[w/rw]
647e7cac 674 */
6d0f0ebd 675static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 676{
0a582440 677 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 678
0a582440 679 for_each_sched_entity(se) {
6272d68c 680 struct load_weight *load;
3104bf03 681 struct load_weight lw;
6272d68c
LM
682
683 cfs_rq = cfs_rq_of(se);
684 load = &cfs_rq->load;
f9c0b095 685
0a582440 686 if (unlikely(!se->on_rq)) {
3104bf03 687 lw = cfs_rq->load;
0a582440
MG
688
689 update_load_add(&lw, se->load.weight);
690 load = &lw;
691 }
9dbdb155 692 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
693 }
694 return slice;
bf0f6f24
IM
695}
696
647e7cac 697/*
660cc00f 698 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 699 *
f9c0b095 700 * vs = s/w
647e7cac 701 */
f9c0b095 702static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 703{
f9c0b095 704 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
705}
706
a75cdaa9 707#ifdef CONFIG_SMP
283e2ed3
PZ
708
709#include "sched-pelt.h"
710
772bd008 711static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
712static unsigned long task_h_load(struct task_struct *p);
713
540247fb
YD
714/* Give new sched_entity start runnable values to heavy its load in infant time */
715void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 716{
540247fb 717 struct sched_avg *sa = &se->avg;
a75cdaa9 718
9d89c257
YD
719 sa->last_update_time = 0;
720 /*
721 * sched_avg's period_contrib should be strictly less then 1024, so
722 * we give it 1023 to make sure it is almost a period (1024us), and
723 * will definitely be update (after enqueue).
724 */
725 sa->period_contrib = 1023;
b5a9b340
VG
726 /*
727 * Tasks are intialized with full load to be seen as heavy tasks until
728 * they get a chance to stabilize to their real load level.
729 * Group entities are intialized with zero load to reflect the fact that
730 * nothing has been attached to the task group yet.
731 */
732 if (entity_is_task(se))
733 sa->load_avg = scale_load_down(se->load.weight);
c7b50216 734 sa->load_sum = LOAD_AVG_MAX;
2b8c41da
YD
735 /*
736 * At this point, util_avg won't be used in select_task_rq_fair anyway
737 */
738 sa->util_avg = 0;
739 sa->util_sum = 0;
9d89c257 740 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 741}
7ea241af 742
7dc603c9 743static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 744static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 745
2b8c41da
YD
746/*
747 * With new tasks being created, their initial util_avgs are extrapolated
748 * based on the cfs_rq's current util_avg:
749 *
750 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
751 *
752 * However, in many cases, the above util_avg does not give a desired
753 * value. Moreover, the sum of the util_avgs may be divergent, such
754 * as when the series is a harmonic series.
755 *
756 * To solve this problem, we also cap the util_avg of successive tasks to
757 * only 1/2 of the left utilization budget:
758 *
759 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
760 *
761 * where n denotes the nth task.
762 *
763 * For example, a simplest series from the beginning would be like:
764 *
765 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
766 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
767 *
768 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
769 * if util_avg > util_avg_cap.
770 */
771void post_init_entity_util_avg(struct sched_entity *se)
772{
773 struct cfs_rq *cfs_rq = cfs_rq_of(se);
774 struct sched_avg *sa = &se->avg;
172895e6 775 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
776
777 if (cap > 0) {
778 if (cfs_rq->avg.util_avg != 0) {
779 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
780 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
781
782 if (sa->util_avg > cap)
783 sa->util_avg = cap;
784 } else {
785 sa->util_avg = cap;
786 }
787 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
788 }
7dc603c9
PZ
789
790 if (entity_is_task(se)) {
791 struct task_struct *p = task_of(se);
792 if (p->sched_class != &fair_sched_class) {
793 /*
794 * For !fair tasks do:
795 *
3a123bbb 796 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
797 attach_entity_load_avg(cfs_rq, se);
798 switched_from_fair(rq, p);
799 *
800 * such that the next switched_to_fair() has the
801 * expected state.
802 */
df217913 803 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
804 return;
805 }
806 }
807
df217913 808 attach_entity_cfs_rq(se);
2b8c41da
YD
809}
810
7dc603c9 811#else /* !CONFIG_SMP */
540247fb 812void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
813{
814}
2b8c41da
YD
815void post_init_entity_util_avg(struct sched_entity *se)
816{
817}
3d30544f
PZ
818static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
819{
820}
7dc603c9 821#endif /* CONFIG_SMP */
a75cdaa9 822
bf0f6f24 823/*
9dbdb155 824 * Update the current task's runtime statistics.
bf0f6f24 825 */
b7cc0896 826static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 827{
429d43bc 828 struct sched_entity *curr = cfs_rq->curr;
78becc27 829 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 830 u64 delta_exec;
bf0f6f24
IM
831
832 if (unlikely(!curr))
833 return;
834
9dbdb155
PZ
835 delta_exec = now - curr->exec_start;
836 if (unlikely((s64)delta_exec <= 0))
34f28ecd 837 return;
bf0f6f24 838
8ebc91d9 839 curr->exec_start = now;
d842de87 840
9dbdb155
PZ
841 schedstat_set(curr->statistics.exec_max,
842 max(delta_exec, curr->statistics.exec_max));
843
844 curr->sum_exec_runtime += delta_exec;
ae92882e 845 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
846
847 curr->vruntime += calc_delta_fair(delta_exec, curr);
848 update_min_vruntime(cfs_rq);
849
d842de87
SV
850 if (entity_is_task(curr)) {
851 struct task_struct *curtask = task_of(curr);
852
f977bb49 853 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 854 cpuacct_charge(curtask, delta_exec);
f06febc9 855 account_group_exec_runtime(curtask, delta_exec);
d842de87 856 }
ec12cb7f
PT
857
858 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
859}
860
6e998916
SG
861static void update_curr_fair(struct rq *rq)
862{
863 update_curr(cfs_rq_of(&rq->curr->se));
864}
865
bf0f6f24 866static inline void
5870db5b 867update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 868{
4fa8d299
JP
869 u64 wait_start, prev_wait_start;
870
871 if (!schedstat_enabled())
872 return;
873
874 wait_start = rq_clock(rq_of(cfs_rq));
875 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
876
877 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
878 likely(wait_start > prev_wait_start))
879 wait_start -= prev_wait_start;
3ea94de1 880
4fa8d299 881 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
882}
883
4fa8d299 884static inline void
3ea94de1
JP
885update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
886{
887 struct task_struct *p;
cb251765
MG
888 u64 delta;
889
4fa8d299
JP
890 if (!schedstat_enabled())
891 return;
892
893 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se)) {
896 p = task_of(se);
897 if (task_on_rq_migrating(p)) {
898 /*
899 * Preserve migrating task's wait time so wait_start
900 * time stamp can be adjusted to accumulate wait time
901 * prior to migration.
902 */
4fa8d299 903 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
904 return;
905 }
906 trace_sched_stat_wait(p, delta);
907 }
908
4fa8d299
JP
909 schedstat_set(se->statistics.wait_max,
910 max(schedstat_val(se->statistics.wait_max), delta));
911 schedstat_inc(se->statistics.wait_count);
912 schedstat_add(se->statistics.wait_sum, delta);
913 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 914}
3ea94de1 915
4fa8d299 916static inline void
1a3d027c
JP
917update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
918{
919 struct task_struct *tsk = NULL;
4fa8d299
JP
920 u64 sleep_start, block_start;
921
922 if (!schedstat_enabled())
923 return;
924
925 sleep_start = schedstat_val(se->statistics.sleep_start);
926 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
927
928 if (entity_is_task(se))
929 tsk = task_of(se);
930
4fa8d299
JP
931 if (sleep_start) {
932 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
933
934 if ((s64)delta < 0)
935 delta = 0;
936
4fa8d299
JP
937 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
938 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 939
4fa8d299
JP
940 schedstat_set(se->statistics.sleep_start, 0);
941 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
942
943 if (tsk) {
944 account_scheduler_latency(tsk, delta >> 10, 1);
945 trace_sched_stat_sleep(tsk, delta);
946 }
947 }
4fa8d299
JP
948 if (block_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
955 schedstat_set(se->statistics.block_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.block_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 if (tsk->in_iowait) {
4fa8d299
JP
962 schedstat_add(se->statistics.iowait_sum, delta);
963 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
964 trace_sched_stat_iowait(tsk, delta);
965 }
966
967 trace_sched_stat_blocked(tsk, delta);
968
969 /*
970 * Blocking time is in units of nanosecs, so shift by
971 * 20 to get a milliseconds-range estimation of the
972 * amount of time that the task spent sleeping:
973 */
974 if (unlikely(prof_on == SLEEP_PROFILING)) {
975 profile_hits(SLEEP_PROFILING,
976 (void *)get_wchan(tsk),
977 delta >> 20);
978 }
979 account_scheduler_latency(tsk, delta >> 10, 0);
980 }
981 }
3ea94de1 982}
3ea94de1 983
bf0f6f24
IM
984/*
985 * Task is being enqueued - update stats:
986 */
cb251765 987static inline void
1a3d027c 988update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 989{
4fa8d299
JP
990 if (!schedstat_enabled())
991 return;
992
bf0f6f24
IM
993 /*
994 * Are we enqueueing a waiting task? (for current tasks
995 * a dequeue/enqueue event is a NOP)
996 */
429d43bc 997 if (se != cfs_rq->curr)
5870db5b 998 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
999
1000 if (flags & ENQUEUE_WAKEUP)
1001 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1002}
1003
bf0f6f24 1004static inline void
cb251765 1005update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Mark the end of the wait period if dequeueing a
1013 * waiting task:
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
9ef0a961 1016 update_stats_wait_end(cfs_rq, se);
cb251765 1017
4fa8d299
JP
1018 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1019 struct task_struct *tsk = task_of(se);
cb251765 1020
4fa8d299
JP
1021 if (tsk->state & TASK_INTERRUPTIBLE)
1022 schedstat_set(se->statistics.sleep_start,
1023 rq_clock(rq_of(cfs_rq)));
1024 if (tsk->state & TASK_UNINTERRUPTIBLE)
1025 schedstat_set(se->statistics.block_start,
1026 rq_clock(rq_of(cfs_rq)));
cb251765 1027 }
cb251765
MG
1028}
1029
bf0f6f24
IM
1030/*
1031 * We are picking a new current task - update its stats:
1032 */
1033static inline void
79303e9e 1034update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1035{
1036 /*
1037 * We are starting a new run period:
1038 */
78becc27 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1040}
1041
bf0f6f24
IM
1042/**************************************************
1043 * Scheduling class queueing methods:
1044 */
1045
cbee9f88
PZ
1046#ifdef CONFIG_NUMA_BALANCING
1047/*
598f0ec0
MG
1048 * Approximate time to scan a full NUMA task in ms. The task scan period is
1049 * calculated based on the tasks virtual memory size and
1050 * numa_balancing_scan_size.
cbee9f88 1051 */
598f0ec0
MG
1052unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1054
1055/* Portion of address space to scan in MB */
1056unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1057
4b96a29b
PZ
1058/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060
b5dd77c8
RR
1061struct numa_group {
1062 atomic_t refcount;
1063
1064 spinlock_t lock; /* nr_tasks, tasks */
1065 int nr_tasks;
1066 pid_t gid;
1067 int active_nodes;
1068
1069 struct rcu_head rcu;
1070 unsigned long total_faults;
1071 unsigned long max_faults_cpu;
1072 /*
1073 * Faults_cpu is used to decide whether memory should move
1074 * towards the CPU. As a consequence, these stats are weighted
1075 * more by CPU use than by memory faults.
1076 */
1077 unsigned long *faults_cpu;
1078 unsigned long faults[0];
1079};
1080
1081static inline unsigned long group_faults_priv(struct numa_group *ng);
1082static inline unsigned long group_faults_shared(struct numa_group *ng);
1083
598f0ec0
MG
1084static unsigned int task_nr_scan_windows(struct task_struct *p)
1085{
1086 unsigned long rss = 0;
1087 unsigned long nr_scan_pages;
1088
1089 /*
1090 * Calculations based on RSS as non-present and empty pages are skipped
1091 * by the PTE scanner and NUMA hinting faults should be trapped based
1092 * on resident pages
1093 */
1094 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1095 rss = get_mm_rss(p->mm);
1096 if (!rss)
1097 rss = nr_scan_pages;
1098
1099 rss = round_up(rss, nr_scan_pages);
1100 return rss / nr_scan_pages;
1101}
1102
1103/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1104#define MAX_SCAN_WINDOW 2560
1105
1106static unsigned int task_scan_min(struct task_struct *p)
1107{
316c1608 1108 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1109 unsigned int scan, floor;
1110 unsigned int windows = 1;
1111
64192658
KT
1112 if (scan_size < MAX_SCAN_WINDOW)
1113 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1114 floor = 1000 / windows;
1115
1116 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1117 return max_t(unsigned int, floor, scan);
1118}
1119
b5dd77c8
RR
1120static unsigned int task_scan_start(struct task_struct *p)
1121{
1122 unsigned long smin = task_scan_min(p);
1123 unsigned long period = smin;
1124
1125 /* Scale the maximum scan period with the amount of shared memory. */
1126 if (p->numa_group) {
1127 struct numa_group *ng = p->numa_group;
1128 unsigned long shared = group_faults_shared(ng);
1129 unsigned long private = group_faults_priv(ng);
1130
1131 period *= atomic_read(&ng->refcount);
1132 period *= shared + 1;
1133 period /= private + shared + 1;
1134 }
1135
1136 return max(smin, period);
1137}
1138
598f0ec0
MG
1139static unsigned int task_scan_max(struct task_struct *p)
1140{
b5dd77c8
RR
1141 unsigned long smin = task_scan_min(p);
1142 unsigned long smax;
598f0ec0
MG
1143
1144 /* Watch for min being lower than max due to floor calculations */
1145 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1146
1147 /* Scale the maximum scan period with the amount of shared memory. */
1148 if (p->numa_group) {
1149 struct numa_group *ng = p->numa_group;
1150 unsigned long shared = group_faults_shared(ng);
1151 unsigned long private = group_faults_priv(ng);
1152 unsigned long period = smax;
1153
1154 period *= atomic_read(&ng->refcount);
1155 period *= shared + 1;
1156 period /= private + shared + 1;
1157
1158 smax = max(smax, period);
1159 }
1160
598f0ec0
MG
1161 return max(smin, smax);
1162}
1163
0ec8aa00
PZ
1164static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1165{
1166 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1167 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168}
1169
1170static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1171{
1172 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1173 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174}
1175
be1e4e76
RR
1176/* Shared or private faults. */
1177#define NR_NUMA_HINT_FAULT_TYPES 2
1178
1179/* Memory and CPU locality */
1180#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1181
1182/* Averaged statistics, and temporary buffers. */
1183#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1184
e29cf08b
MG
1185pid_t task_numa_group_id(struct task_struct *p)
1186{
1187 return p->numa_group ? p->numa_group->gid : 0;
1188}
1189
44dba3d5
IM
1190/*
1191 * The averaged statistics, shared & private, memory & cpu,
1192 * occupy the first half of the array. The second half of the
1193 * array is for current counters, which are averaged into the
1194 * first set by task_numa_placement.
1195 */
1196static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1197{
44dba3d5 1198 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1199}
1200
1201static inline unsigned long task_faults(struct task_struct *p, int nid)
1202{
44dba3d5 1203 if (!p->numa_faults)
ac8e895b
MG
1204 return 0;
1205
44dba3d5
IM
1206 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1207 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1208}
1209
83e1d2cd
MG
1210static inline unsigned long group_faults(struct task_struct *p, int nid)
1211{
1212 if (!p->numa_group)
1213 return 0;
1214
44dba3d5
IM
1215 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1216 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1217}
1218
20e07dea
RR
1219static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1220{
44dba3d5
IM
1221 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1222 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1223}
1224
b5dd77c8
RR
1225static inline unsigned long group_faults_priv(struct numa_group *ng)
1226{
1227 unsigned long faults = 0;
1228 int node;
1229
1230 for_each_online_node(node) {
1231 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1232 }
1233
1234 return faults;
1235}
1236
1237static inline unsigned long group_faults_shared(struct numa_group *ng)
1238{
1239 unsigned long faults = 0;
1240 int node;
1241
1242 for_each_online_node(node) {
1243 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1244 }
1245
1246 return faults;
1247}
1248
4142c3eb
RR
1249/*
1250 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1251 * considered part of a numa group's pseudo-interleaving set. Migrations
1252 * between these nodes are slowed down, to allow things to settle down.
1253 */
1254#define ACTIVE_NODE_FRACTION 3
1255
1256static bool numa_is_active_node(int nid, struct numa_group *ng)
1257{
1258 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1259}
1260
6c6b1193
RR
1261/* Handle placement on systems where not all nodes are directly connected. */
1262static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1263 int maxdist, bool task)
1264{
1265 unsigned long score = 0;
1266 int node;
1267
1268 /*
1269 * All nodes are directly connected, and the same distance
1270 * from each other. No need for fancy placement algorithms.
1271 */
1272 if (sched_numa_topology_type == NUMA_DIRECT)
1273 return 0;
1274
1275 /*
1276 * This code is called for each node, introducing N^2 complexity,
1277 * which should be ok given the number of nodes rarely exceeds 8.
1278 */
1279 for_each_online_node(node) {
1280 unsigned long faults;
1281 int dist = node_distance(nid, node);
1282
1283 /*
1284 * The furthest away nodes in the system are not interesting
1285 * for placement; nid was already counted.
1286 */
1287 if (dist == sched_max_numa_distance || node == nid)
1288 continue;
1289
1290 /*
1291 * On systems with a backplane NUMA topology, compare groups
1292 * of nodes, and move tasks towards the group with the most
1293 * memory accesses. When comparing two nodes at distance
1294 * "hoplimit", only nodes closer by than "hoplimit" are part
1295 * of each group. Skip other nodes.
1296 */
1297 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1298 dist > maxdist)
1299 continue;
1300
1301 /* Add up the faults from nearby nodes. */
1302 if (task)
1303 faults = task_faults(p, node);
1304 else
1305 faults = group_faults(p, node);
1306
1307 /*
1308 * On systems with a glueless mesh NUMA topology, there are
1309 * no fixed "groups of nodes". Instead, nodes that are not
1310 * directly connected bounce traffic through intermediate
1311 * nodes; a numa_group can occupy any set of nodes.
1312 * The further away a node is, the less the faults count.
1313 * This seems to result in good task placement.
1314 */
1315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1316 faults *= (sched_max_numa_distance - dist);
1317 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1318 }
1319
1320 score += faults;
1321 }
1322
1323 return score;
1324}
1325
83e1d2cd
MG
1326/*
1327 * These return the fraction of accesses done by a particular task, or
1328 * task group, on a particular numa node. The group weight is given a
1329 * larger multiplier, in order to group tasks together that are almost
1330 * evenly spread out between numa nodes.
1331 */
7bd95320
RR
1332static inline unsigned long task_weight(struct task_struct *p, int nid,
1333 int dist)
83e1d2cd 1334{
7bd95320 1335 unsigned long faults, total_faults;
83e1d2cd 1336
44dba3d5 1337 if (!p->numa_faults)
83e1d2cd
MG
1338 return 0;
1339
1340 total_faults = p->total_numa_faults;
1341
1342 if (!total_faults)
1343 return 0;
1344
7bd95320 1345 faults = task_faults(p, nid);
6c6b1193
RR
1346 faults += score_nearby_nodes(p, nid, dist, true);
1347
7bd95320 1348 return 1000 * faults / total_faults;
83e1d2cd
MG
1349}
1350
7bd95320
RR
1351static inline unsigned long group_weight(struct task_struct *p, int nid,
1352 int dist)
83e1d2cd 1353{
7bd95320
RR
1354 unsigned long faults, total_faults;
1355
1356 if (!p->numa_group)
1357 return 0;
1358
1359 total_faults = p->numa_group->total_faults;
1360
1361 if (!total_faults)
83e1d2cd
MG
1362 return 0;
1363
7bd95320 1364 faults = group_faults(p, nid);
6c6b1193
RR
1365 faults += score_nearby_nodes(p, nid, dist, false);
1366
7bd95320 1367 return 1000 * faults / total_faults;
83e1d2cd
MG
1368}
1369
10f39042
RR
1370bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 int src_nid, int dst_cpu)
1372{
1373 struct numa_group *ng = p->numa_group;
1374 int dst_nid = cpu_to_node(dst_cpu);
1375 int last_cpupid, this_cpupid;
1376
1377 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378
1379 /*
1380 * Multi-stage node selection is used in conjunction with a periodic
1381 * migration fault to build a temporal task<->page relation. By using
1382 * a two-stage filter we remove short/unlikely relations.
1383 *
1384 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1385 * a task's usage of a particular page (n_p) per total usage of this
1386 * page (n_t) (in a given time-span) to a probability.
1387 *
1388 * Our periodic faults will sample this probability and getting the
1389 * same result twice in a row, given these samples are fully
1390 * independent, is then given by P(n)^2, provided our sample period
1391 * is sufficiently short compared to the usage pattern.
1392 *
1393 * This quadric squishes small probabilities, making it less likely we
1394 * act on an unlikely task<->page relation.
1395 */
1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 if (!cpupid_pid_unset(last_cpupid) &&
1398 cpupid_to_nid(last_cpupid) != dst_nid)
1399 return false;
1400
1401 /* Always allow migrate on private faults */
1402 if (cpupid_match_pid(p, last_cpupid))
1403 return true;
1404
1405 /* A shared fault, but p->numa_group has not been set up yet. */
1406 if (!ng)
1407 return true;
1408
1409 /*
4142c3eb
RR
1410 * Destination node is much more heavily used than the source
1411 * node? Allow migration.
10f39042 1412 */
4142c3eb
RR
1413 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1414 ACTIVE_NODE_FRACTION)
10f39042
RR
1415 return true;
1416
1417 /*
4142c3eb
RR
1418 * Distribute memory according to CPU & memory use on each node,
1419 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1420 *
1421 * faults_cpu(dst) 3 faults_cpu(src)
1422 * --------------- * - > ---------------
1423 * faults_mem(dst) 4 faults_mem(src)
10f39042 1424 */
4142c3eb
RR
1425 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1426 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1427}
1428
c7132dd6 1429static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
ced549fa 1432static unsigned long capacity_of(int cpu);
58d081b5 1433
fb13c7ee 1434/* Cached statistics for all CPUs within a node */
58d081b5 1435struct numa_stats {
fb13c7ee 1436 unsigned long nr_running;
58d081b5 1437 unsigned long load;
fb13c7ee
MG
1438
1439 /* Total compute capacity of CPUs on a node */
5ef20ca1 1440 unsigned long compute_capacity;
fb13c7ee
MG
1441
1442 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1443 unsigned long task_capacity;
1b6a7495 1444 int has_free_capacity;
58d081b5 1445};
e6628d5b 1446
fb13c7ee
MG
1447/*
1448 * XXX borrowed from update_sg_lb_stats
1449 */
1450static void update_numa_stats(struct numa_stats *ns, int nid)
1451{
83d7f242
RR
1452 int smt, cpu, cpus = 0;
1453 unsigned long capacity;
fb13c7ee
MG
1454
1455 memset(ns, 0, sizeof(*ns));
1456 for_each_cpu(cpu, cpumask_of_node(nid)) {
1457 struct rq *rq = cpu_rq(cpu);
1458
1459 ns->nr_running += rq->nr_running;
c7132dd6 1460 ns->load += weighted_cpuload(rq);
ced549fa 1461 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1462
1463 cpus++;
fb13c7ee
MG
1464 }
1465
5eca82a9
PZ
1466 /*
1467 * If we raced with hotplug and there are no CPUs left in our mask
1468 * the @ns structure is NULL'ed and task_numa_compare() will
1469 * not find this node attractive.
1470 *
1b6a7495
NP
1471 * We'll either bail at !has_free_capacity, or we'll detect a huge
1472 * imbalance and bail there.
5eca82a9
PZ
1473 */
1474 if (!cpus)
1475 return;
1476
83d7f242
RR
1477 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1478 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1479 capacity = cpus / smt; /* cores */
1480
1481 ns->task_capacity = min_t(unsigned, capacity,
1482 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1483 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1484}
1485
58d081b5
MG
1486struct task_numa_env {
1487 struct task_struct *p;
e6628d5b 1488
58d081b5
MG
1489 int src_cpu, src_nid;
1490 int dst_cpu, dst_nid;
e6628d5b 1491
58d081b5 1492 struct numa_stats src_stats, dst_stats;
e6628d5b 1493
40ea2b42 1494 int imbalance_pct;
7bd95320 1495 int dist;
fb13c7ee
MG
1496
1497 struct task_struct *best_task;
1498 long best_imp;
58d081b5
MG
1499 int best_cpu;
1500};
1501
fb13c7ee
MG
1502static void task_numa_assign(struct task_numa_env *env,
1503 struct task_struct *p, long imp)
1504{
1505 if (env->best_task)
1506 put_task_struct(env->best_task);
bac78573
ON
1507 if (p)
1508 get_task_struct(p);
fb13c7ee
MG
1509
1510 env->best_task = p;
1511 env->best_imp = imp;
1512 env->best_cpu = env->dst_cpu;
1513}
1514
28a21745 1515static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1516 struct task_numa_env *env)
1517{
e4991b24
RR
1518 long imb, old_imb;
1519 long orig_src_load, orig_dst_load;
28a21745
RR
1520 long src_capacity, dst_capacity;
1521
1522 /*
1523 * The load is corrected for the CPU capacity available on each node.
1524 *
1525 * src_load dst_load
1526 * ------------ vs ---------
1527 * src_capacity dst_capacity
1528 */
1529 src_capacity = env->src_stats.compute_capacity;
1530 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1531
1532 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1533 if (dst_load < src_load)
1534 swap(dst_load, src_load);
e63da036
RR
1535
1536 /* Is the difference below the threshold? */
e4991b24
RR
1537 imb = dst_load * src_capacity * 100 -
1538 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1539 if (imb <= 0)
1540 return false;
1541
1542 /*
1543 * The imbalance is above the allowed threshold.
e4991b24 1544 * Compare it with the old imbalance.
e63da036 1545 */
28a21745 1546 orig_src_load = env->src_stats.load;
e4991b24 1547 orig_dst_load = env->dst_stats.load;
28a21745 1548
e4991b24
RR
1549 if (orig_dst_load < orig_src_load)
1550 swap(orig_dst_load, orig_src_load);
e63da036 1551
e4991b24
RR
1552 old_imb = orig_dst_load * src_capacity * 100 -
1553 orig_src_load * dst_capacity * env->imbalance_pct;
1554
1555 /* Would this change make things worse? */
1556 return (imb > old_imb);
e63da036
RR
1557}
1558
fb13c7ee
MG
1559/*
1560 * This checks if the overall compute and NUMA accesses of the system would
1561 * be improved if the source tasks was migrated to the target dst_cpu taking
1562 * into account that it might be best if task running on the dst_cpu should
1563 * be exchanged with the source task
1564 */
887c290e
RR
1565static void task_numa_compare(struct task_numa_env *env,
1566 long taskimp, long groupimp)
fb13c7ee
MG
1567{
1568 struct rq *src_rq = cpu_rq(env->src_cpu);
1569 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1570 struct task_struct *cur;
28a21745 1571 long src_load, dst_load;
fb13c7ee 1572 long load;
1c5d3eb3 1573 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1574 long moveimp = imp;
7bd95320 1575 int dist = env->dist;
fb13c7ee
MG
1576
1577 rcu_read_lock();
bac78573
ON
1578 cur = task_rcu_dereference(&dst_rq->curr);
1579 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1580 cur = NULL;
1581
7af68335
PZ
1582 /*
1583 * Because we have preemption enabled we can get migrated around and
1584 * end try selecting ourselves (current == env->p) as a swap candidate.
1585 */
1586 if (cur == env->p)
1587 goto unlock;
1588
fb13c7ee
MG
1589 /*
1590 * "imp" is the fault differential for the source task between the
1591 * source and destination node. Calculate the total differential for
1592 * the source task and potential destination task. The more negative
1593 * the value is, the more rmeote accesses that would be expected to
1594 * be incurred if the tasks were swapped.
1595 */
1596 if (cur) {
1597 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1598 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1599 goto unlock;
1600
887c290e
RR
1601 /*
1602 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1603 * in any group then look only at task weights.
887c290e 1604 */
ca28aa53 1605 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1606 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1607 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1608 /*
1609 * Add some hysteresis to prevent swapping the
1610 * tasks within a group over tiny differences.
1611 */
1612 if (cur->numa_group)
1613 imp -= imp/16;
887c290e 1614 } else {
ca28aa53
RR
1615 /*
1616 * Compare the group weights. If a task is all by
1617 * itself (not part of a group), use the task weight
1618 * instead.
1619 */
ca28aa53 1620 if (cur->numa_group)
7bd95320
RR
1621 imp += group_weight(cur, env->src_nid, dist) -
1622 group_weight(cur, env->dst_nid, dist);
ca28aa53 1623 else
7bd95320
RR
1624 imp += task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
887c290e 1626 }
fb13c7ee
MG
1627 }
1628
0132c3e1 1629 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1630 goto unlock;
1631
1632 if (!cur) {
1633 /* Is there capacity at our destination? */
b932c03c 1634 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1635 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1636 goto unlock;
1637
1638 goto balance;
1639 }
1640
1641 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1642 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1643 dst_rq->nr_running == 1)
fb13c7ee
MG
1644 goto assign;
1645
1646 /*
1647 * In the overloaded case, try and keep the load balanced.
1648 */
1649balance:
e720fff6
PZ
1650 load = task_h_load(env->p);
1651 dst_load = env->dst_stats.load + load;
1652 src_load = env->src_stats.load - load;
fb13c7ee 1653
0132c3e1
RR
1654 if (moveimp > imp && moveimp > env->best_imp) {
1655 /*
1656 * If the improvement from just moving env->p direction is
1657 * better than swapping tasks around, check if a move is
1658 * possible. Store a slightly smaller score than moveimp,
1659 * so an actually idle CPU will win.
1660 */
1661 if (!load_too_imbalanced(src_load, dst_load, env)) {
1662 imp = moveimp - 1;
1663 cur = NULL;
1664 goto assign;
1665 }
1666 }
1667
1668 if (imp <= env->best_imp)
1669 goto unlock;
1670
fb13c7ee 1671 if (cur) {
e720fff6
PZ
1672 load = task_h_load(cur);
1673 dst_load -= load;
1674 src_load += load;
fb13c7ee
MG
1675 }
1676
28a21745 1677 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1678 goto unlock;
1679
ba7e5a27
RR
1680 /*
1681 * One idle CPU per node is evaluated for a task numa move.
1682 * Call select_idle_sibling to maybe find a better one.
1683 */
10e2f1ac
PZ
1684 if (!cur) {
1685 /*
1686 * select_idle_siblings() uses an per-cpu cpumask that
1687 * can be used from IRQ context.
1688 */
1689 local_irq_disable();
772bd008
MR
1690 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1691 env->dst_cpu);
10e2f1ac
PZ
1692 local_irq_enable();
1693 }
ba7e5a27 1694
fb13c7ee
MG
1695assign:
1696 task_numa_assign(env, cur, imp);
1697unlock:
1698 rcu_read_unlock();
1699}
1700
887c290e
RR
1701static void task_numa_find_cpu(struct task_numa_env *env,
1702 long taskimp, long groupimp)
2c8a50aa
MG
1703{
1704 int cpu;
1705
1706 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1707 /* Skip this CPU if the source task cannot migrate */
0c98d344 1708 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1709 continue;
1710
1711 env->dst_cpu = cpu;
887c290e 1712 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1713 }
1714}
1715
6f9aad0b
RR
1716/* Only move tasks to a NUMA node less busy than the current node. */
1717static bool numa_has_capacity(struct task_numa_env *env)
1718{
1719 struct numa_stats *src = &env->src_stats;
1720 struct numa_stats *dst = &env->dst_stats;
1721
1722 if (src->has_free_capacity && !dst->has_free_capacity)
1723 return false;
1724
1725 /*
1726 * Only consider a task move if the source has a higher load
1727 * than the destination, corrected for CPU capacity on each node.
1728 *
1729 * src->load dst->load
1730 * --------------------- vs ---------------------
1731 * src->compute_capacity dst->compute_capacity
1732 */
44dcb04f
SD
1733 if (src->load * dst->compute_capacity * env->imbalance_pct >
1734
1735 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1736 return true;
1737
1738 return false;
1739}
1740
58d081b5
MG
1741static int task_numa_migrate(struct task_struct *p)
1742{
58d081b5
MG
1743 struct task_numa_env env = {
1744 .p = p,
fb13c7ee 1745
58d081b5 1746 .src_cpu = task_cpu(p),
b32e86b4 1747 .src_nid = task_node(p),
fb13c7ee
MG
1748
1749 .imbalance_pct = 112,
1750
1751 .best_task = NULL,
1752 .best_imp = 0,
4142c3eb 1753 .best_cpu = -1,
58d081b5
MG
1754 };
1755 struct sched_domain *sd;
887c290e 1756 unsigned long taskweight, groupweight;
7bd95320 1757 int nid, ret, dist;
887c290e 1758 long taskimp, groupimp;
e6628d5b 1759
58d081b5 1760 /*
fb13c7ee
MG
1761 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 * imbalance and would be the first to start moving tasks about.
1763 *
1764 * And we want to avoid any moving of tasks about, as that would create
1765 * random movement of tasks -- counter the numa conditions we're trying
1766 * to satisfy here.
58d081b5
MG
1767 */
1768 rcu_read_lock();
fb13c7ee 1769 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1770 if (sd)
1771 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1772 rcu_read_unlock();
1773
46a73e8a
RR
1774 /*
1775 * Cpusets can break the scheduler domain tree into smaller
1776 * balance domains, some of which do not cross NUMA boundaries.
1777 * Tasks that are "trapped" in such domains cannot be migrated
1778 * elsewhere, so there is no point in (re)trying.
1779 */
1780 if (unlikely(!sd)) {
de1b301a 1781 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1782 return -EINVAL;
1783 }
1784
2c8a50aa 1785 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1786 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 taskweight = task_weight(p, env.src_nid, dist);
1788 groupweight = group_weight(p, env.src_nid, dist);
1789 update_numa_stats(&env.src_stats, env.src_nid);
1790 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1792 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1793
a43455a1 1794 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1795 if (numa_has_capacity(&env))
1796 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1797
9de05d48
RR
1798 /*
1799 * Look at other nodes in these cases:
1800 * - there is no space available on the preferred_nid
1801 * - the task is part of a numa_group that is interleaved across
1802 * multiple NUMA nodes; in order to better consolidate the group,
1803 * we need to check other locations.
1804 */
4142c3eb 1805 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1806 for_each_online_node(nid) {
1807 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 continue;
58d081b5 1809
7bd95320 1810 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1811 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 dist != env.dist) {
1813 taskweight = task_weight(p, env.src_nid, dist);
1814 groupweight = group_weight(p, env.src_nid, dist);
1815 }
7bd95320 1816
83e1d2cd 1817 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1818 taskimp = task_weight(p, nid, dist) - taskweight;
1819 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1820 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1821 continue;
1822
7bd95320 1823 env.dist = dist;
2c8a50aa
MG
1824 env.dst_nid = nid;
1825 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1826 if (numa_has_capacity(&env))
1827 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1828 }
1829 }
1830
68d1b02a
RR
1831 /*
1832 * If the task is part of a workload that spans multiple NUMA nodes,
1833 * and is migrating into one of the workload's active nodes, remember
1834 * this node as the task's preferred numa node, so the workload can
1835 * settle down.
1836 * A task that migrated to a second choice node will be better off
1837 * trying for a better one later. Do not set the preferred node here.
1838 */
db015dae 1839 if (p->numa_group) {
4142c3eb
RR
1840 struct numa_group *ng = p->numa_group;
1841
db015dae
RR
1842 if (env.best_cpu == -1)
1843 nid = env.src_nid;
1844 else
1845 nid = env.dst_nid;
1846
4142c3eb 1847 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1848 sched_setnuma(p, env.dst_nid);
1849 }
1850
1851 /* No better CPU than the current one was found. */
1852 if (env.best_cpu == -1)
1853 return -EAGAIN;
0ec8aa00 1854
04bb2f94
RR
1855 /*
1856 * Reset the scan period if the task is being rescheduled on an
1857 * alternative node to recheck if the tasks is now properly placed.
1858 */
b5dd77c8 1859 p->numa_scan_period = task_scan_start(p);
04bb2f94 1860
fb13c7ee 1861 if (env.best_task == NULL) {
286549dc
MG
1862 ret = migrate_task_to(p, env.best_cpu);
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1865 return ret;
1866 }
1867
1868 ret = migrate_swap(p, env.best_task);
286549dc
MG
1869 if (ret != 0)
1870 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1871 put_task_struct(env.best_task);
1872 return ret;
e6628d5b
MG
1873}
1874
6b9a7460
MG
1875/* Attempt to migrate a task to a CPU on the preferred node. */
1876static void numa_migrate_preferred(struct task_struct *p)
1877{
5085e2a3
RR
1878 unsigned long interval = HZ;
1879
2739d3ee 1880 /* This task has no NUMA fault statistics yet */
44dba3d5 1881 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1882 return;
1883
2739d3ee 1884 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1885 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1886 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1887
1888 /* Success if task is already running on preferred CPU */
de1b301a 1889 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1890 return;
1891
1892 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1893 task_numa_migrate(p);
6b9a7460
MG
1894}
1895
20e07dea 1896/*
4142c3eb 1897 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1898 * tracking the nodes from which NUMA hinting faults are triggered. This can
1899 * be different from the set of nodes where the workload's memory is currently
1900 * located.
20e07dea 1901 */
4142c3eb 1902static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1903{
1904 unsigned long faults, max_faults = 0;
4142c3eb 1905 int nid, active_nodes = 0;
20e07dea
RR
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
1909 if (faults > max_faults)
1910 max_faults = faults;
1911 }
1912
1913 for_each_online_node(nid) {
1914 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1915 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1916 active_nodes++;
20e07dea 1917 }
4142c3eb
RR
1918
1919 numa_group->max_faults_cpu = max_faults;
1920 numa_group->active_nodes = active_nodes;
20e07dea
RR
1921}
1922
04bb2f94
RR
1923/*
1924 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1925 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1926 * period will be for the next scan window. If local/(local+remote) ratio is
1927 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1928 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1929 */
1930#define NUMA_PERIOD_SLOTS 10
a22b4b01 1931#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1932
1933/*
1934 * Increase the scan period (slow down scanning) if the majority of
1935 * our memory is already on our local node, or if the majority of
1936 * the page accesses are shared with other processes.
1937 * Otherwise, decrease the scan period.
1938 */
1939static void update_task_scan_period(struct task_struct *p,
1940 unsigned long shared, unsigned long private)
1941{
1942 unsigned int period_slot;
37ec97de 1943 int lr_ratio, ps_ratio;
04bb2f94
RR
1944 int diff;
1945
1946 unsigned long remote = p->numa_faults_locality[0];
1947 unsigned long local = p->numa_faults_locality[1];
1948
1949 /*
1950 * If there were no record hinting faults then either the task is
1951 * completely idle or all activity is areas that are not of interest
074c2381
MG
1952 * to automatic numa balancing. Related to that, if there were failed
1953 * migration then it implies we are migrating too quickly or the local
1954 * node is overloaded. In either case, scan slower
04bb2f94 1955 */
074c2381 1956 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1957 p->numa_scan_period = min(p->numa_scan_period_max,
1958 p->numa_scan_period << 1);
1959
1960 p->mm->numa_next_scan = jiffies +
1961 msecs_to_jiffies(p->numa_scan_period);
1962
1963 return;
1964 }
1965
1966 /*
1967 * Prepare to scale scan period relative to the current period.
1968 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1969 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1970 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1971 */
1972 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1973 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1974 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1975
1976 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1977 /*
1978 * Most memory accesses are local. There is no need to
1979 * do fast NUMA scanning, since memory is already local.
1980 */
1981 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1982 if (!slot)
1983 slot = 1;
1984 diff = slot * period_slot;
1985 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1986 /*
1987 * Most memory accesses are shared with other tasks.
1988 * There is no point in continuing fast NUMA scanning,
1989 * since other tasks may just move the memory elsewhere.
1990 */
1991 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1992 if (!slot)
1993 slot = 1;
1994 diff = slot * period_slot;
1995 } else {
04bb2f94 1996 /*
37ec97de
RR
1997 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1998 * yet they are not on the local NUMA node. Speed up
1999 * NUMA scanning to get the memory moved over.
04bb2f94 2000 */
37ec97de
RR
2001 int ratio = max(lr_ratio, ps_ratio);
2002 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2003 }
2004
2005 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2006 task_scan_min(p), task_scan_max(p));
2007 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2008}
2009
7e2703e6
RR
2010/*
2011 * Get the fraction of time the task has been running since the last
2012 * NUMA placement cycle. The scheduler keeps similar statistics, but
2013 * decays those on a 32ms period, which is orders of magnitude off
2014 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2015 * stats only if the task is so new there are no NUMA statistics yet.
2016 */
2017static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2018{
2019 u64 runtime, delta, now;
2020 /* Use the start of this time slice to avoid calculations. */
2021 now = p->se.exec_start;
2022 runtime = p->se.sum_exec_runtime;
2023
2024 if (p->last_task_numa_placement) {
2025 delta = runtime - p->last_sum_exec_runtime;
2026 *period = now - p->last_task_numa_placement;
2027 } else {
c7b50216 2028 delta = p->se.avg.load_sum;
9d89c257 2029 *period = LOAD_AVG_MAX;
7e2703e6
RR
2030 }
2031
2032 p->last_sum_exec_runtime = runtime;
2033 p->last_task_numa_placement = now;
2034
2035 return delta;
2036}
2037
54009416
RR
2038/*
2039 * Determine the preferred nid for a task in a numa_group. This needs to
2040 * be done in a way that produces consistent results with group_weight,
2041 * otherwise workloads might not converge.
2042 */
2043static int preferred_group_nid(struct task_struct *p, int nid)
2044{
2045 nodemask_t nodes;
2046 int dist;
2047
2048 /* Direct connections between all NUMA nodes. */
2049 if (sched_numa_topology_type == NUMA_DIRECT)
2050 return nid;
2051
2052 /*
2053 * On a system with glueless mesh NUMA topology, group_weight
2054 * scores nodes according to the number of NUMA hinting faults on
2055 * both the node itself, and on nearby nodes.
2056 */
2057 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2058 unsigned long score, max_score = 0;
2059 int node, max_node = nid;
2060
2061 dist = sched_max_numa_distance;
2062
2063 for_each_online_node(node) {
2064 score = group_weight(p, node, dist);
2065 if (score > max_score) {
2066 max_score = score;
2067 max_node = node;
2068 }
2069 }
2070 return max_node;
2071 }
2072
2073 /*
2074 * Finding the preferred nid in a system with NUMA backplane
2075 * interconnect topology is more involved. The goal is to locate
2076 * tasks from numa_groups near each other in the system, and
2077 * untangle workloads from different sides of the system. This requires
2078 * searching down the hierarchy of node groups, recursively searching
2079 * inside the highest scoring group of nodes. The nodemask tricks
2080 * keep the complexity of the search down.
2081 */
2082 nodes = node_online_map;
2083 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2084 unsigned long max_faults = 0;
81907478 2085 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2086 int a, b;
2087
2088 /* Are there nodes at this distance from each other? */
2089 if (!find_numa_distance(dist))
2090 continue;
2091
2092 for_each_node_mask(a, nodes) {
2093 unsigned long faults = 0;
2094 nodemask_t this_group;
2095 nodes_clear(this_group);
2096
2097 /* Sum group's NUMA faults; includes a==b case. */
2098 for_each_node_mask(b, nodes) {
2099 if (node_distance(a, b) < dist) {
2100 faults += group_faults(p, b);
2101 node_set(b, this_group);
2102 node_clear(b, nodes);
2103 }
2104 }
2105
2106 /* Remember the top group. */
2107 if (faults > max_faults) {
2108 max_faults = faults;
2109 max_group = this_group;
2110 /*
2111 * subtle: at the smallest distance there is
2112 * just one node left in each "group", the
2113 * winner is the preferred nid.
2114 */
2115 nid = a;
2116 }
2117 }
2118 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2119 if (!max_faults)
2120 break;
54009416
RR
2121 nodes = max_group;
2122 }
2123 return nid;
2124}
2125
cbee9f88
PZ
2126static void task_numa_placement(struct task_struct *p)
2127{
83e1d2cd
MG
2128 int seq, nid, max_nid = -1, max_group_nid = -1;
2129 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2130 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2131 unsigned long total_faults;
2132 u64 runtime, period;
7dbd13ed 2133 spinlock_t *group_lock = NULL;
cbee9f88 2134
7e5a2c17
JL
2135 /*
2136 * The p->mm->numa_scan_seq field gets updated without
2137 * exclusive access. Use READ_ONCE() here to ensure
2138 * that the field is read in a single access:
2139 */
316c1608 2140 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2141 if (p->numa_scan_seq == seq)
2142 return;
2143 p->numa_scan_seq = seq;
598f0ec0 2144 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2145
7e2703e6
RR
2146 total_faults = p->numa_faults_locality[0] +
2147 p->numa_faults_locality[1];
2148 runtime = numa_get_avg_runtime(p, &period);
2149
7dbd13ed
MG
2150 /* If the task is part of a group prevent parallel updates to group stats */
2151 if (p->numa_group) {
2152 group_lock = &p->numa_group->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
8c8a743c 2193 if (p->numa_group) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
2201 p->numa_group->faults[mem_idx] += diff;
2202 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2203 p->numa_group->total_faults += diff;
44dba3d5 2204 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
688b7585
MG
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
83e1d2cd
MG
2212
2213 if (group_faults > max_group_faults) {
2214 max_group_faults = group_faults;
2215 max_group_nid = nid;
2216 }
2217 }
2218
04bb2f94
RR
2219 update_task_scan_period(p, fault_types[0], fault_types[1]);
2220
7dbd13ed 2221 if (p->numa_group) {
4142c3eb 2222 numa_group_count_active_nodes(p->numa_group);
60e69eed 2223 spin_unlock_irq(group_lock);
54009416 2224 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2225 }
2226
bb97fc31
RR
2227 if (max_faults) {
2228 /* Set the new preferred node */
2229 if (max_nid != p->numa_preferred_nid)
2230 sched_setnuma(p, max_nid);
2231
2232 if (task_node(p) != p->numa_preferred_nid)
2233 numa_migrate_preferred(p);
3a7053b3 2234 }
cbee9f88
PZ
2235}
2236
8c8a743c
PZ
2237static inline int get_numa_group(struct numa_group *grp)
2238{
2239 return atomic_inc_not_zero(&grp->refcount);
2240}
2241
2242static inline void put_numa_group(struct numa_group *grp)
2243{
2244 if (atomic_dec_and_test(&grp->refcount))
2245 kfree_rcu(grp, rcu);
2246}
2247
3e6a9418
MG
2248static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 int *priv)
8c8a743c
PZ
2250{
2251 struct numa_group *grp, *my_grp;
2252 struct task_struct *tsk;
2253 bool join = false;
2254 int cpu = cpupid_to_cpu(cpupid);
2255 int i;
2256
2257 if (unlikely(!p->numa_group)) {
2258 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2259 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2260
2261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 if (!grp)
2263 return;
2264
2265 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2266 grp->active_nodes = 1;
2267 grp->max_faults_cpu = 0;
8c8a743c 2268 spin_lock_init(&grp->lock);
e29cf08b 2269 grp->gid = p->pid;
50ec8a40 2270 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2271 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 nr_node_ids;
8c8a743c 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2275 grp->faults[i] = p->numa_faults[i];
8c8a743c 2276
989348b5 2277 grp->total_faults = p->total_numa_faults;
83e1d2cd 2278
8c8a743c
PZ
2279 grp->nr_tasks++;
2280 rcu_assign_pointer(p->numa_group, grp);
2281 }
2282
2283 rcu_read_lock();
316c1608 2284 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2285
2286 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2287 goto no_join;
8c8a743c
PZ
2288
2289 grp = rcu_dereference(tsk->numa_group);
2290 if (!grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 my_grp = p->numa_group;
2294 if (grp == my_grp)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Only join the other group if its bigger; if we're the bigger group,
2299 * the other task will join us.
2300 */
2301 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2302 goto no_join;
8c8a743c
PZ
2303
2304 /*
2305 * Tie-break on the grp address.
2306 */
2307 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2308 goto no_join;
8c8a743c 2309
dabe1d99
RR
2310 /* Always join threads in the same process. */
2311 if (tsk->mm == current->mm)
2312 join = true;
2313
2314 /* Simple filter to avoid false positives due to PID collisions */
2315 if (flags & TNF_SHARED)
2316 join = true;
8c8a743c 2317
3e6a9418
MG
2318 /* Update priv based on whether false sharing was detected */
2319 *priv = !join;
2320
dabe1d99 2321 if (join && !get_numa_group(grp))
3354781a 2322 goto no_join;
8c8a743c 2323
8c8a743c
PZ
2324 rcu_read_unlock();
2325
2326 if (!join)
2327 return;
2328
60e69eed
MG
2329 BUG_ON(irqs_disabled());
2330 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2331
be1e4e76 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2333 my_grp->faults[i] -= p->numa_faults[i];
2334 grp->faults[i] += p->numa_faults[i];
8c8a743c 2335 }
989348b5
MG
2336 my_grp->total_faults -= p->total_numa_faults;
2337 grp->total_faults += p->total_numa_faults;
8c8a743c 2338
8c8a743c
PZ
2339 my_grp->nr_tasks--;
2340 grp->nr_tasks++;
2341
2342 spin_unlock(&my_grp->lock);
60e69eed 2343 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2344
2345 rcu_assign_pointer(p->numa_group, grp);
2346
2347 put_numa_group(my_grp);
3354781a
PZ
2348 return;
2349
2350no_join:
2351 rcu_read_unlock();
2352 return;
8c8a743c
PZ
2353}
2354
2355void task_numa_free(struct task_struct *p)
2356{
2357 struct numa_group *grp = p->numa_group;
44dba3d5 2358 void *numa_faults = p->numa_faults;
e9dd685c
SR
2359 unsigned long flags;
2360 int i;
8c8a743c
PZ
2361
2362 if (grp) {
e9dd685c 2363 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2364 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2365 grp->faults[i] -= p->numa_faults[i];
989348b5 2366 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2367
8c8a743c 2368 grp->nr_tasks--;
e9dd685c 2369 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2370 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2371 put_numa_group(grp);
2372 }
2373
44dba3d5 2374 p->numa_faults = NULL;
82727018 2375 kfree(numa_faults);
8c8a743c
PZ
2376}
2377
cbee9f88
PZ
2378/*
2379 * Got a PROT_NONE fault for a page on @node.
2380 */
58b46da3 2381void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2382{
2383 struct task_struct *p = current;
6688cc05 2384 bool migrated = flags & TNF_MIGRATED;
58b46da3 2385 int cpu_node = task_node(current);
792568ec 2386 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2387 struct numa_group *ng;
ac8e895b 2388 int priv;
cbee9f88 2389
2a595721 2390 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2391 return;
2392
9ff1d9ff
MG
2393 /* for example, ksmd faulting in a user's mm */
2394 if (!p->mm)
2395 return;
2396
f809ca9a 2397 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2398 if (unlikely(!p->numa_faults)) {
2399 int size = sizeof(*p->numa_faults) *
be1e4e76 2400 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2401
44dba3d5
IM
2402 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2403 if (!p->numa_faults)
f809ca9a 2404 return;
745d6147 2405
83e1d2cd 2406 p->total_numa_faults = 0;
04bb2f94 2407 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2408 }
cbee9f88 2409
8c8a743c
PZ
2410 /*
2411 * First accesses are treated as private, otherwise consider accesses
2412 * to be private if the accessing pid has not changed
2413 */
2414 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2415 priv = 1;
2416 } else {
2417 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2418 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2419 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2420 }
2421
792568ec
RR
2422 /*
2423 * If a workload spans multiple NUMA nodes, a shared fault that
2424 * occurs wholly within the set of nodes that the workload is
2425 * actively using should be counted as local. This allows the
2426 * scan rate to slow down when a workload has settled down.
2427 */
4142c3eb
RR
2428 ng = p->numa_group;
2429 if (!priv && !local && ng && ng->active_nodes > 1 &&
2430 numa_is_active_node(cpu_node, ng) &&
2431 numa_is_active_node(mem_node, ng))
792568ec
RR
2432 local = 1;
2433
cbee9f88 2434 task_numa_placement(p);
f809ca9a 2435
2739d3ee
RR
2436 /*
2437 * Retry task to preferred node migration periodically, in case it
2438 * case it previously failed, or the scheduler moved us.
2439 */
2440 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2441 numa_migrate_preferred(p);
2442
b32e86b4
IM
2443 if (migrated)
2444 p->numa_pages_migrated += pages;
074c2381
MG
2445 if (flags & TNF_MIGRATE_FAIL)
2446 p->numa_faults_locality[2] += pages;
b32e86b4 2447
44dba3d5
IM
2448 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2449 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2450 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2451}
2452
6e5fb223
PZ
2453static void reset_ptenuma_scan(struct task_struct *p)
2454{
7e5a2c17
JL
2455 /*
2456 * We only did a read acquisition of the mmap sem, so
2457 * p->mm->numa_scan_seq is written to without exclusive access
2458 * and the update is not guaranteed to be atomic. That's not
2459 * much of an issue though, since this is just used for
2460 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2461 * expensive, to avoid any form of compiler optimizations:
2462 */
316c1608 2463 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2464 p->mm->numa_scan_offset = 0;
2465}
2466
cbee9f88
PZ
2467/*
2468 * The expensive part of numa migration is done from task_work context.
2469 * Triggered from task_tick_numa().
2470 */
2471void task_numa_work(struct callback_head *work)
2472{
2473 unsigned long migrate, next_scan, now = jiffies;
2474 struct task_struct *p = current;
2475 struct mm_struct *mm = p->mm;
51170840 2476 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2477 struct vm_area_struct *vma;
9f40604c 2478 unsigned long start, end;
598f0ec0 2479 unsigned long nr_pte_updates = 0;
4620f8c1 2480 long pages, virtpages;
cbee9f88 2481
9148a3a1 2482 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2483
2484 work->next = work; /* protect against double add */
2485 /*
2486 * Who cares about NUMA placement when they're dying.
2487 *
2488 * NOTE: make sure not to dereference p->mm before this check,
2489 * exit_task_work() happens _after_ exit_mm() so we could be called
2490 * without p->mm even though we still had it when we enqueued this
2491 * work.
2492 */
2493 if (p->flags & PF_EXITING)
2494 return;
2495
930aa174 2496 if (!mm->numa_next_scan) {
7e8d16b6
MG
2497 mm->numa_next_scan = now +
2498 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2499 }
2500
cbee9f88
PZ
2501 /*
2502 * Enforce maximal scan/migration frequency..
2503 */
2504 migrate = mm->numa_next_scan;
2505 if (time_before(now, migrate))
2506 return;
2507
598f0ec0
MG
2508 if (p->numa_scan_period == 0) {
2509 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2510 p->numa_scan_period = task_scan_start(p);
598f0ec0 2511 }
cbee9f88 2512
fb003b80 2513 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2514 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2515 return;
2516
19a78d11
PZ
2517 /*
2518 * Delay this task enough that another task of this mm will likely win
2519 * the next time around.
2520 */
2521 p->node_stamp += 2 * TICK_NSEC;
2522
9f40604c
MG
2523 start = mm->numa_scan_offset;
2524 pages = sysctl_numa_balancing_scan_size;
2525 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2526 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2527 if (!pages)
2528 return;
cbee9f88 2529
4620f8c1 2530
8655d549
VB
2531 if (!down_read_trylock(&mm->mmap_sem))
2532 return;
9f40604c 2533 vma = find_vma(mm, start);
6e5fb223
PZ
2534 if (!vma) {
2535 reset_ptenuma_scan(p);
9f40604c 2536 start = 0;
6e5fb223
PZ
2537 vma = mm->mmap;
2538 }
9f40604c 2539 for (; vma; vma = vma->vm_next) {
6b79c57b 2540 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2541 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2542 continue;
6b79c57b 2543 }
6e5fb223 2544
4591ce4f
MG
2545 /*
2546 * Shared library pages mapped by multiple processes are not
2547 * migrated as it is expected they are cache replicated. Avoid
2548 * hinting faults in read-only file-backed mappings or the vdso
2549 * as migrating the pages will be of marginal benefit.
2550 */
2551 if (!vma->vm_mm ||
2552 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2553 continue;
2554
3c67f474
MG
2555 /*
2556 * Skip inaccessible VMAs to avoid any confusion between
2557 * PROT_NONE and NUMA hinting ptes
2558 */
2559 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2560 continue;
4591ce4f 2561
9f40604c
MG
2562 do {
2563 start = max(start, vma->vm_start);
2564 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2565 end = min(end, vma->vm_end);
4620f8c1 2566 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2567
2568 /*
4620f8c1
RR
2569 * Try to scan sysctl_numa_balancing_size worth of
2570 * hpages that have at least one present PTE that
2571 * is not already pte-numa. If the VMA contains
2572 * areas that are unused or already full of prot_numa
2573 * PTEs, scan up to virtpages, to skip through those
2574 * areas faster.
598f0ec0
MG
2575 */
2576 if (nr_pte_updates)
2577 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2578 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2579
9f40604c 2580 start = end;
4620f8c1 2581 if (pages <= 0 || virtpages <= 0)
9f40604c 2582 goto out;
3cf1962c
RR
2583
2584 cond_resched();
9f40604c 2585 } while (end != vma->vm_end);
cbee9f88 2586 }
6e5fb223 2587
9f40604c 2588out:
6e5fb223 2589 /*
c69307d5
PZ
2590 * It is possible to reach the end of the VMA list but the last few
2591 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2592 * would find the !migratable VMA on the next scan but not reset the
2593 * scanner to the start so check it now.
6e5fb223
PZ
2594 */
2595 if (vma)
9f40604c 2596 mm->numa_scan_offset = start;
6e5fb223
PZ
2597 else
2598 reset_ptenuma_scan(p);
2599 up_read(&mm->mmap_sem);
51170840
RR
2600
2601 /*
2602 * Make sure tasks use at least 32x as much time to run other code
2603 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2604 * Usually update_task_scan_period slows down scanning enough; on an
2605 * overloaded system we need to limit overhead on a per task basis.
2606 */
2607 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2608 u64 diff = p->se.sum_exec_runtime - runtime;
2609 p->node_stamp += 32 * diff;
2610 }
cbee9f88
PZ
2611}
2612
2613/*
2614 * Drive the periodic memory faults..
2615 */
2616void task_tick_numa(struct rq *rq, struct task_struct *curr)
2617{
2618 struct callback_head *work = &curr->numa_work;
2619 u64 period, now;
2620
2621 /*
2622 * We don't care about NUMA placement if we don't have memory.
2623 */
2624 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2625 return;
2626
2627 /*
2628 * Using runtime rather than walltime has the dual advantage that
2629 * we (mostly) drive the selection from busy threads and that the
2630 * task needs to have done some actual work before we bother with
2631 * NUMA placement.
2632 */
2633 now = curr->se.sum_exec_runtime;
2634 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2635
25b3e5a3 2636 if (now > curr->node_stamp + period) {
4b96a29b 2637 if (!curr->node_stamp)
b5dd77c8 2638 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2639 curr->node_stamp += period;
cbee9f88
PZ
2640
2641 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2642 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2643 task_work_add(curr, work, true);
2644 }
2645 }
2646}
3fed382b 2647
cbee9f88
PZ
2648#else
2649static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2650{
2651}
0ec8aa00
PZ
2652
2653static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2654{
2655}
2656
2657static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2658{
2659}
3fed382b 2660
cbee9f88
PZ
2661#endif /* CONFIG_NUMA_BALANCING */
2662
30cfdcfc
DA
2663static void
2664account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665{
2666 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2667 if (!parent_entity(se))
029632fb 2668 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2669#ifdef CONFIG_SMP
0ec8aa00
PZ
2670 if (entity_is_task(se)) {
2671 struct rq *rq = rq_of(cfs_rq);
2672
2673 account_numa_enqueue(rq, task_of(se));
2674 list_add(&se->group_node, &rq->cfs_tasks);
2675 }
367456c7 2676#endif
30cfdcfc 2677 cfs_rq->nr_running++;
30cfdcfc
DA
2678}
2679
2680static void
2681account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2689 list_del_init(&se->group_node);
0ec8aa00 2690 }
bfdb198c 2691#endif
30cfdcfc 2692 cfs_rq->nr_running--;
30cfdcfc
DA
2693}
2694
8d5b9025
PZ
2695/*
2696 * Signed add and clamp on underflow.
2697 *
2698 * Explicitly do a load-store to ensure the intermediate value never hits
2699 * memory. This allows lockless observations without ever seeing the negative
2700 * values.
2701 */
2702#define add_positive(_ptr, _val) do { \
2703 typeof(_ptr) ptr = (_ptr); \
2704 typeof(_val) val = (_val); \
2705 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2706 \
2707 res = var + val; \
2708 \
2709 if (val < 0 && res > var) \
2710 res = 0; \
2711 \
2712 WRITE_ONCE(*ptr, res); \
2713} while (0)
2714
2715/*
2716 * Unsigned subtract and clamp on underflow.
2717 *
2718 * Explicitly do a load-store to ensure the intermediate value never hits
2719 * memory. This allows lockless observations without ever seeing the negative
2720 * values.
2721 */
2722#define sub_positive(_ptr, _val) do { \
2723 typeof(_ptr) ptr = (_ptr); \
2724 typeof(*ptr) val = (_val); \
2725 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2726 res = var - val; \
2727 if (res > var) \
2728 res = 0; \
2729 WRITE_ONCE(*ptr, res); \
2730} while (0)
2731
2732#ifdef CONFIG_SMP
2733/*
2734 * XXX we want to get rid of this helper and use the full load resolution.
2735 */
2736static inline long se_weight(struct sched_entity *se)
2737{
2738 return scale_load_down(se->load.weight);
2739}
2740
2741static inline void
2742enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2743{
2744 cfs_rq->runnable_load_avg += se->avg.load_avg;
2745 cfs_rq->runnable_load_sum += se_weight(se) * se->avg.load_sum;
2746}
2747
2748static inline void
2749dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
2751 sub_positive(&cfs_rq->runnable_load_avg, se->avg.load_avg);
2752 sub_positive(&cfs_rq->runnable_load_sum, se_weight(se) * se->avg.load_sum);
2753}
2754
2755static inline void
2756enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2757{
2758 cfs_rq->avg.load_avg += se->avg.load_avg;
2759 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2760}
2761
2762static inline void
2763dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2764{
2765 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2766 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2767}
2768#else
2769static inline void
2770enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2771static inline void
2772dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2773static inline void
2774enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2775static inline void
2776dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2777#endif
2778
9059393e
VG
2779static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2780 unsigned long weight)
2781{
2782 if (se->on_rq) {
2783 /* commit outstanding execution time */
2784 if (cfs_rq->curr == se)
2785 update_curr(cfs_rq);
2786 account_entity_dequeue(cfs_rq, se);
2787 dequeue_runnable_load_avg(cfs_rq, se);
2788 }
2789 dequeue_load_avg(cfs_rq, se);
2790
2791 update_load_set(&se->load, weight);
2792
2793#ifdef CONFIG_SMP
2794 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum,
2795 LOAD_AVG_MAX - 1024 + se->avg.period_contrib);
2796#endif
2797
2798 enqueue_load_avg(cfs_rq, se);
2799 if (se->on_rq) {
2800 account_entity_enqueue(cfs_rq, se);
2801 enqueue_runnable_load_avg(cfs_rq, se);
2802 }
2803}
2804
2805void reweight_task(struct task_struct *p, int prio)
2806{
2807 struct sched_entity *se = &p->se;
2808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2809 struct load_weight *load = &se->load;
2810 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2811
2812 reweight_entity(cfs_rq, se, weight);
2813 load->inv_weight = sched_prio_to_wmult[prio];
2814}
2815
3ff6dcac
YZ
2816#ifdef CONFIG_FAIR_GROUP_SCHED
2817# ifdef CONFIG_SMP
cef27403
PZ
2818/*
2819 * All this does is approximate the hierarchical proportion which includes that
2820 * global sum we all love to hate.
2821 *
2822 * That is, the weight of a group entity, is the proportional share of the
2823 * group weight based on the group runqueue weights. That is:
2824 *
2825 * tg->weight * grq->load.weight
2826 * ge->load.weight = ----------------------------- (1)
2827 * \Sum grq->load.weight
2828 *
2829 * Now, because computing that sum is prohibitively expensive to compute (been
2830 * there, done that) we approximate it with this average stuff. The average
2831 * moves slower and therefore the approximation is cheaper and more stable.
2832 *
2833 * So instead of the above, we substitute:
2834 *
2835 * grq->load.weight -> grq->avg.load_avg (2)
2836 *
2837 * which yields the following:
2838 *
2839 * tg->weight * grq->avg.load_avg
2840 * ge->load.weight = ------------------------------ (3)
2841 * tg->load_avg
2842 *
2843 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2844 *
2845 * That is shares_avg, and it is right (given the approximation (2)).
2846 *
2847 * The problem with it is that because the average is slow -- it was designed
2848 * to be exactly that of course -- this leads to transients in boundary
2849 * conditions. In specific, the case where the group was idle and we start the
2850 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2851 * yielding bad latency etc..
2852 *
2853 * Now, in that special case (1) reduces to:
2854 *
2855 * tg->weight * grq->load.weight
2856 * ge->load.weight = ----------------------------- = tg>weight (4)
2857 * grp->load.weight
2858 *
2859 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2860 *
2861 * So what we do is modify our approximation (3) to approach (4) in the (near)
2862 * UP case, like:
2863 *
2864 * ge->load.weight =
2865 *
2866 * tg->weight * grq->load.weight
2867 * --------------------------------------------------- (5)
2868 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2869 *
2870 *
2871 * And that is shares_weight and is icky. In the (near) UP case it approaches
2872 * (4) while in the normal case it approaches (3). It consistently
2873 * overestimates the ge->load.weight and therefore:
2874 *
2875 * \Sum ge->load.weight >= tg->weight
2876 *
2877 * hence icky!
2878 */
7c80cfc9 2879static long calc_cfs_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2880{
7c80cfc9
PZ
2881 long tg_weight, tg_shares, load, shares;
2882 struct task_group *tg = cfs_rq->tg;
2883
2884 tg_shares = READ_ONCE(tg->shares);
cf5f0acf
PZ
2885
2886 /*
3d4b60d3
PZ
2887 * Because (5) drops to 0 when the cfs_rq is idle, we need to use (3)
2888 * as a lower bound.
cf5f0acf 2889 */
3d4b60d3 2890 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2891
ea1dc6fc 2892 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2893
ea1dc6fc
PZ
2894 /* Ensure tg_weight >= load */
2895 tg_weight -= cfs_rq->tg_load_avg_contrib;
2896 tg_weight += load;
3ff6dcac 2897
7c80cfc9 2898 shares = (tg_shares * load);
cf5f0acf
PZ
2899 if (tg_weight)
2900 shares /= tg_weight;
3ff6dcac 2901
b8fd8423
DE
2902 /*
2903 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2904 * of a group with small tg->shares value. It is a floor value which is
2905 * assigned as a minimum load.weight to the sched_entity representing
2906 * the group on a CPU.
2907 *
2908 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2909 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2910 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2911 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2912 * instead of 0.
2913 */
7c80cfc9 2914 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2915}
3ff6dcac 2916# endif /* CONFIG_SMP */
ea1dc6fc 2917
82958366
PT
2918static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2919
89ee048f 2920static void update_cfs_shares(struct sched_entity *se)
2069dd75 2921{
89ee048f 2922 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3ff6dcac 2923 long shares;
2069dd75 2924
89ee048f
VG
2925 if (!cfs_rq)
2926 return;
2927
2928 if (throttled_hierarchy(cfs_rq))
2069dd75 2929 return;
89ee048f 2930
3ff6dcac 2931#ifndef CONFIG_SMP
7c80cfc9
PZ
2932 shares = READ_ONCE(cfs_rq->tg->shares);
2933
2934 if (likely(se->load.weight == shares))
3ff6dcac 2935 return;
7c80cfc9
PZ
2936#else
2937 shares = calc_cfs_shares(cfs_rq);
3ff6dcac 2938#endif
2069dd75
PZ
2939
2940 reweight_entity(cfs_rq_of(se), se, shares);
2941}
89ee048f 2942
2069dd75 2943#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2944static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2945{
2946}
2947#endif /* CONFIG_FAIR_GROUP_SCHED */
2948
a030d738
VK
2949static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2950{
43964409
LT
2951 struct rq *rq = rq_of(cfs_rq);
2952
2953 if (&rq->cfs == cfs_rq) {
a030d738
VK
2954 /*
2955 * There are a few boundary cases this might miss but it should
2956 * get called often enough that that should (hopefully) not be
2957 * a real problem -- added to that it only calls on the local
2958 * CPU, so if we enqueue remotely we'll miss an update, but
2959 * the next tick/schedule should update.
2960 *
2961 * It will not get called when we go idle, because the idle
2962 * thread is a different class (!fair), nor will the utilization
2963 * number include things like RT tasks.
2964 *
2965 * As is, the util number is not freq-invariant (we'd have to
2966 * implement arch_scale_freq_capacity() for that).
2967 *
2968 * See cpu_util().
2969 */
43964409 2970 cpufreq_update_util(rq, 0);
a030d738
VK
2971 }
2972}
2973
141965c7 2974#ifdef CONFIG_SMP
9d85f21c
PT
2975/*
2976 * Approximate:
2977 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2978 */
a481db34 2979static u64 decay_load(u64 val, u64 n)
9d85f21c 2980{
5b51f2f8
PT
2981 unsigned int local_n;
2982
05296e75 2983 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2984 return 0;
2985
2986 /* after bounds checking we can collapse to 32-bit */
2987 local_n = n;
2988
2989 /*
2990 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2991 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2992 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2993 *
2994 * To achieve constant time decay_load.
2995 */
2996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2997 val >>= local_n / LOAD_AVG_PERIOD;
2998 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2999 }
3000
9d89c257
YD
3001 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3002 return val;
5b51f2f8
PT
3003}
3004
05296e75 3005static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 3006{
05296e75 3007 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 3008
a481db34 3009 /*
3841cdc3 3010 * c1 = d1 y^p
a481db34 3011 */
05296e75 3012 c1 = decay_load((u64)d1, periods);
a481db34 3013
a481db34 3014 /*
3841cdc3 3015 * p-1
05296e75
PZ
3016 * c2 = 1024 \Sum y^n
3017 * n=1
a481db34 3018 *
05296e75
PZ
3019 * inf inf
3020 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 3021 * n=0 n=p
a481db34 3022 */
05296e75 3023 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
3024
3025 return c1 + c2 + c3;
9d85f21c
PT
3026}
3027
54a21385 3028#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 3029
a481db34
YD
3030/*
3031 * Accumulate the three separate parts of the sum; d1 the remainder
3032 * of the last (incomplete) period, d2 the span of full periods and d3
3033 * the remainder of the (incomplete) current period.
3034 *
3035 * d1 d2 d3
3036 * ^ ^ ^
3037 * | | |
3038 * |<->|<----------------->|<--->|
3039 * ... |---x---|------| ... |------|-----x (now)
3040 *
3841cdc3
PZ
3041 * p-1
3042 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3043 * n=1
a481db34 3044 *
3841cdc3 3045 * = u y^p + (Step 1)
a481db34 3046 *
3841cdc3
PZ
3047 * p-1
3048 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3049 * n=1
a481db34
YD
3050 */
3051static __always_inline u32
3052accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3053 unsigned long weight, int running, struct cfs_rq *cfs_rq)
3054{
3055 unsigned long scale_freq, scale_cpu;
05296e75 3056 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 3057 u64 periods;
a481db34
YD
3058
3059 scale_freq = arch_scale_freq_capacity(NULL, cpu);
3060 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3061
3062 delta += sa->period_contrib;
3063 periods = delta / 1024; /* A period is 1024us (~1ms) */
3064
3065 /*
3066 * Step 1: decay old *_sum if we crossed period boundaries.
3067 */
3068 if (periods) {
3069 sa->load_sum = decay_load(sa->load_sum, periods);
3070 if (cfs_rq) {
3071 cfs_rq->runnable_load_sum =
3072 decay_load(cfs_rq->runnable_load_sum, periods);
3073 }
3074 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 3075
05296e75
PZ
3076 /*
3077 * Step 2
3078 */
3079 delta %= 1024;
3080 contrib = __accumulate_pelt_segments(periods,
3081 1024 - sa->period_contrib, delta);
3082 }
a481db34
YD
3083 sa->period_contrib = delta;
3084
3085 contrib = cap_scale(contrib, scale_freq);
3086 if (weight) {
3087 sa->load_sum += weight * contrib;
3088 if (cfs_rq)
3089 cfs_rq->runnable_load_sum += weight * contrib;
3090 }
3091 if (running)
3092 sa->util_sum += contrib * scale_cpu;
3093
3094 return periods;
3095}
3096
9d85f21c
PT
3097/*
3098 * We can represent the historical contribution to runnable average as the
3099 * coefficients of a geometric series. To do this we sub-divide our runnable
3100 * history into segments of approximately 1ms (1024us); label the segment that
3101 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3102 *
3103 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3104 * p0 p1 p2
3105 * (now) (~1ms ago) (~2ms ago)
3106 *
3107 * Let u_i denote the fraction of p_i that the entity was runnable.
3108 *
3109 * We then designate the fractions u_i as our co-efficients, yielding the
3110 * following representation of historical load:
3111 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3112 *
3113 * We choose y based on the with of a reasonably scheduling period, fixing:
3114 * y^32 = 0.5
3115 *
3116 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3117 * approximately half as much as the contribution to load within the last ms
3118 * (u_0).
3119 *
3120 * When a period "rolls over" and we have new u_0`, multiplying the previous
3121 * sum again by y is sufficient to update:
3122 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3123 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3124 */
9d89c257 3125static __always_inline int
c7b50216
PZ
3126___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3127 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 3128{
a481db34 3129 u64 delta;
9d85f21c 3130
9d89c257 3131 delta = now - sa->last_update_time;
9d85f21c
PT
3132 /*
3133 * This should only happen when time goes backwards, which it
3134 * unfortunately does during sched clock init when we swap over to TSC.
3135 */
3136 if ((s64)delta < 0) {
9d89c257 3137 sa->last_update_time = now;
9d85f21c
PT
3138 return 0;
3139 }
3140
3141 /*
3142 * Use 1024ns as the unit of measurement since it's a reasonable
3143 * approximation of 1us and fast to compute.
3144 */
3145 delta >>= 10;
3146 if (!delta)
3147 return 0;
bb0bd044
PZ
3148
3149 sa->last_update_time += delta << 10;
9d85f21c 3150
f235a54f
VG
3151 /*
3152 * running is a subset of runnable (weight) so running can't be set if
3153 * runnable is clear. But there are some corner cases where the current
3154 * se has been already dequeued but cfs_rq->curr still points to it.
3155 * This means that weight will be 0 but not running for a sched_entity
3156 * but also for a cfs_rq if the latter becomes idle. As an example,
3157 * this happens during idle_balance() which calls
3158 * update_blocked_averages()
3159 */
3160 if (!weight)
3161 running = 0;
3162
a481db34
YD
3163 /*
3164 * Now we know we crossed measurement unit boundaries. The *_avg
3165 * accrues by two steps:
3166 *
3167 * Step 1: accumulate *_sum since last_update_time. If we haven't
3168 * crossed period boundaries, finish.
3169 */
3170 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3171 return 0;
9ee474f5 3172
c7b50216
PZ
3173 return 1;
3174}
3175
3176static __always_inline void
3177___update_load_avg(struct sched_avg *sa, unsigned long weight, struct cfs_rq *cfs_rq)
3178{
3179 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3180
a481db34
YD
3181 /*
3182 * Step 2: update *_avg.
3183 */
c7b50216 3184 sa->load_avg = div_u64(weight * sa->load_sum, divider);
a481db34
YD
3185 if (cfs_rq) {
3186 cfs_rq->runnable_load_avg =
c7b50216 3187 div_u64(cfs_rq->runnable_load_sum, divider);
9d89c257 3188 }
c7b50216
PZ
3189 sa->util_avg = sa->util_sum / divider;
3190}
aff3e498 3191
c7b50216
PZ
3192/*
3193 * sched_entity:
3194 *
3195 * load_sum := runnable_sum
3196 * load_avg = se_weight(se) * runnable_avg
3197 *
3198 * cfq_rs:
3199 *
3200 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3201 * load_avg = \Sum se->avg.load_avg
3202 */
3203
0ccb977f
PZ
3204static int
3205__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3206{
c7b50216
PZ
3207 if (___update_load_sum(now, cpu, &se->avg, 0, 0, NULL)) {
3208 ___update_load_avg(&se->avg, se_weight(se), NULL);
3209 return 1;
3210 }
3211
3212 return 0;
0ccb977f
PZ
3213}
3214
3215static int
3216__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3217{
c7b50216
PZ
3218 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq,
3219 cfs_rq->curr == se, NULL)) {
3220
3221 ___update_load_avg(&se->avg, se_weight(se), NULL);
3222 return 1;
3223 }
3224
3225 return 0;
0ccb977f
PZ
3226}
3227
3228static int
3229__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3230{
c7b50216
PZ
3231 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3232 scale_load_down(cfs_rq->load.weight),
3233 cfs_rq->curr != NULL, cfs_rq)) {
3234 ___update_load_avg(&cfs_rq->avg, 1, cfs_rq);
3235 return 1;
3236 }
3237
3238 return 0;
0ccb977f
PZ
3239}
3240
c566e8e9 3241#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3242/**
3243 * update_tg_load_avg - update the tg's load avg
3244 * @cfs_rq: the cfs_rq whose avg changed
3245 * @force: update regardless of how small the difference
3246 *
3247 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3248 * However, because tg->load_avg is a global value there are performance
3249 * considerations.
3250 *
3251 * In order to avoid having to look at the other cfs_rq's, we use a
3252 * differential update where we store the last value we propagated. This in
3253 * turn allows skipping updates if the differential is 'small'.
3254 *
815abf5a 3255 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3256 */
9d89c257 3257static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3258{
9d89c257 3259 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3260
aa0b7ae0
WL
3261 /*
3262 * No need to update load_avg for root_task_group as it is not used.
3263 */
3264 if (cfs_rq->tg == &root_task_group)
3265 return;
3266
9d89c257
YD
3267 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3268 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3269 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3270 }
8165e145 3271}
f5f9739d 3272
ad936d86
BP
3273/*
3274 * Called within set_task_rq() right before setting a task's cpu. The
3275 * caller only guarantees p->pi_lock is held; no other assumptions,
3276 * including the state of rq->lock, should be made.
3277 */
3278void set_task_rq_fair(struct sched_entity *se,
3279 struct cfs_rq *prev, struct cfs_rq *next)
3280{
0ccb977f
PZ
3281 u64 p_last_update_time;
3282 u64 n_last_update_time;
3283
ad936d86
BP
3284 if (!sched_feat(ATTACH_AGE_LOAD))
3285 return;
3286
3287 /*
3288 * We are supposed to update the task to "current" time, then its up to
3289 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3290 * getting what current time is, so simply throw away the out-of-date
3291 * time. This will result in the wakee task is less decayed, but giving
3292 * the wakee more load sounds not bad.
3293 */
0ccb977f
PZ
3294 if (!(se->avg.last_update_time && prev))
3295 return;
ad936d86
BP
3296
3297#ifndef CONFIG_64BIT
0ccb977f 3298 {
ad936d86
BP
3299 u64 p_last_update_time_copy;
3300 u64 n_last_update_time_copy;
3301
3302 do {
3303 p_last_update_time_copy = prev->load_last_update_time_copy;
3304 n_last_update_time_copy = next->load_last_update_time_copy;
3305
3306 smp_rmb();
3307
3308 p_last_update_time = prev->avg.last_update_time;
3309 n_last_update_time = next->avg.last_update_time;
3310
3311 } while (p_last_update_time != p_last_update_time_copy ||
3312 n_last_update_time != n_last_update_time_copy);
0ccb977f 3313 }
ad936d86 3314#else
0ccb977f
PZ
3315 p_last_update_time = prev->avg.last_update_time;
3316 n_last_update_time = next->avg.last_update_time;
ad936d86 3317#endif
0ccb977f
PZ
3318 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3319 se->avg.last_update_time = n_last_update_time;
ad936d86 3320}
09a43ace
VG
3321
3322/* Take into account change of utilization of a child task group */
3323static inline void
3324update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3325{
3326 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3327 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3328
3329 /* Nothing to update */
3330 if (!delta)
3331 return;
3332
3333 /* Set new sched_entity's utilization */
3334 se->avg.util_avg = gcfs_rq->avg.util_avg;
3335 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3336
3337 /* Update parent cfs_rq utilization */
3338 add_positive(&cfs_rq->avg.util_avg, delta);
3339 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3340}
3341
3342/* Take into account change of load of a child task group */
3343static inline void
3344update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3345{
3346 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3347 long delta, load = gcfs_rq->avg.load_avg;
3348
3349 /*
3350 * If the load of group cfs_rq is null, the load of the
3351 * sched_entity will also be null so we can skip the formula
3352 */
3353 if (load) {
3354 long tg_load;
3355
3356 /* Get tg's load and ensure tg_load > 0 */
3357 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3358
3359 /* Ensure tg_load >= load and updated with current load*/
3360 tg_load -= gcfs_rq->tg_load_avg_contrib;
3361 tg_load += load;
3362
3363 /*
3364 * We need to compute a correction term in the case that the
3365 * task group is consuming more CPU than a task of equal
3366 * weight. A task with a weight equals to tg->shares will have
3367 * a load less or equal to scale_load_down(tg->shares).
3368 * Similarly, the sched_entities that represent the task group
3369 * at parent level, can't have a load higher than
3370 * scale_load_down(tg->shares). And the Sum of sched_entities'
3371 * load must be <= scale_load_down(tg->shares).
3372 */
3373 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3374 /* scale gcfs_rq's load into tg's shares*/
3375 load *= scale_load_down(gcfs_rq->tg->shares);
3376 load /= tg_load;
3377 }
3378 }
3379
3380 delta = load - se->avg.load_avg;
3381
3382 /* Nothing to update */
3383 if (!delta)
3384 return;
3385
3386 /* Set new sched_entity's load */
3387 se->avg.load_avg = load;
c7b50216 3388 se->avg.load_sum = LOAD_AVG_MAX;
09a43ace
VG
3389
3390 /* Update parent cfs_rq load */
3391 add_positive(&cfs_rq->avg.load_avg, delta);
3392 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3393
3394 /*
3395 * If the sched_entity is already enqueued, we also have to update the
3396 * runnable load avg.
3397 */
3398 if (se->on_rq) {
3399 /* Update parent cfs_rq runnable_load_avg */
3400 add_positive(&cfs_rq->runnable_load_avg, delta);
3401 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3402 }
3403}
3404
3405static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3406{
3407 cfs_rq->propagate_avg = 1;
3408}
3409
3410static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3411{
3412 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3413
3414 if (!cfs_rq->propagate_avg)
3415 return 0;
3416
3417 cfs_rq->propagate_avg = 0;
3418 return 1;
3419}
3420
3421/* Update task and its cfs_rq load average */
3422static inline int propagate_entity_load_avg(struct sched_entity *se)
3423{
3424 struct cfs_rq *cfs_rq;
3425
3426 if (entity_is_task(se))
3427 return 0;
3428
3429 if (!test_and_clear_tg_cfs_propagate(se))
3430 return 0;
3431
3432 cfs_rq = cfs_rq_of(se);
3433
3434 set_tg_cfs_propagate(cfs_rq);
3435
3436 update_tg_cfs_util(cfs_rq, se);
3437 update_tg_cfs_load(cfs_rq, se);
3438
3439 return 1;
3440}
3441
bc427898
VG
3442/*
3443 * Check if we need to update the load and the utilization of a blocked
3444 * group_entity:
3445 */
3446static inline bool skip_blocked_update(struct sched_entity *se)
3447{
3448 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3449
3450 /*
3451 * If sched_entity still have not zero load or utilization, we have to
3452 * decay it:
3453 */
3454 if (se->avg.load_avg || se->avg.util_avg)
3455 return false;
3456
3457 /*
3458 * If there is a pending propagation, we have to update the load and
3459 * the utilization of the sched_entity:
3460 */
3461 if (gcfs_rq->propagate_avg)
3462 return false;
3463
3464 /*
3465 * Otherwise, the load and the utilization of the sched_entity is
3466 * already zero and there is no pending propagation, so it will be a
3467 * waste of time to try to decay it:
3468 */
3469 return true;
3470}
3471
6e83125c 3472#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3473
9d89c257 3474static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3475
3476static inline int propagate_entity_load_avg(struct sched_entity *se)
3477{
3478 return 0;
3479}
3480
3481static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3482
6e83125c 3483#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3484
3d30544f
PZ
3485/**
3486 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3487 * @now: current time, as per cfs_rq_clock_task()
3488 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3489 *
3490 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3491 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3492 * post_init_entity_util_avg().
3493 *
3494 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3495 *
7c3edd2c
PZ
3496 * Returns true if the load decayed or we removed load.
3497 *
3498 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3499 * call update_tg_load_avg() when this function returns true.
3d30544f 3500 */
a2c6c91f 3501static inline int
3a123bbb 3502update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3503{
9d89c257 3504 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3505 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3506
9d89c257 3507 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3508 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3509 sub_positive(&sa->load_avg, r);
3510 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3511 removed_load = 1;
4e516076 3512 set_tg_cfs_propagate(cfs_rq);
8165e145 3513 }
2dac754e 3514
9d89c257
YD
3515 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3516 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3517 sub_positive(&sa->util_avg, r);
3518 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3519 removed_util = 1;
4e516076 3520 set_tg_cfs_propagate(cfs_rq);
9d89c257 3521 }
36ee28e4 3522
0ccb977f 3523 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3524
9d89c257
YD
3525#ifndef CONFIG_64BIT
3526 smp_wmb();
3527 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3528#endif
36ee28e4 3529
3a123bbb 3530 if (decayed || removed_util)
a2c6c91f 3531 cfs_rq_util_change(cfs_rq);
21e96f88 3532
41e0d37f 3533 return decayed || removed_load;
21e96f88
SM
3534}
3535
3d30544f
PZ
3536/**
3537 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3538 * @cfs_rq: cfs_rq to attach to
3539 * @se: sched_entity to attach
3540 *
3541 * Must call update_cfs_rq_load_avg() before this, since we rely on
3542 * cfs_rq->avg.last_update_time being current.
3543 */
a05e8c51
BP
3544static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3545{
3546 se->avg.last_update_time = cfs_rq->avg.last_update_time;
8d5b9025 3547 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3548 cfs_rq->avg.util_avg += se->avg.util_avg;
3549 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3550 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3551
3552 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3553}
3554
3d30544f
PZ
3555/**
3556 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3557 * @cfs_rq: cfs_rq to detach from
3558 * @se: sched_entity to detach
3559 *
3560 * Must call update_cfs_rq_load_avg() before this, since we rely on
3561 * cfs_rq->avg.last_update_time being current.
3562 */
a05e8c51
BP
3563static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3564{
8d5b9025 3565 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3566 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3567 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3568 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3569
3570 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3571}
3572
b382a531
PZ
3573/*
3574 * Optional action to be done while updating the load average
3575 */
3576#define UPDATE_TG 0x1
3577#define SKIP_AGE_LOAD 0x2
3578#define DO_ATTACH 0x4
3579
3580/* Update task and its cfs_rq load average */
3581static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3582{
3583 u64 now = cfs_rq_clock_task(cfs_rq);
3584 struct rq *rq = rq_of(cfs_rq);
3585 int cpu = cpu_of(rq);
3586 int decayed;
3587
3588 /*
3589 * Track task load average for carrying it to new CPU after migrated, and
3590 * track group sched_entity load average for task_h_load calc in migration
3591 */
3592 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3593 __update_load_avg_se(now, cpu, cfs_rq, se);
3594
3595 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3596 decayed |= propagate_entity_load_avg(se);
3597
3598 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3599
3600 attach_entity_load_avg(cfs_rq, se);
3601 update_tg_load_avg(cfs_rq, 0);
3602
3603 } else if (decayed && (flags & UPDATE_TG))
3604 update_tg_load_avg(cfs_rq, 0);
3605}
3606
9d89c257 3607#ifndef CONFIG_64BIT
0905f04e
YD
3608static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3609{
9d89c257 3610 u64 last_update_time_copy;
0905f04e 3611 u64 last_update_time;
9ee474f5 3612
9d89c257
YD
3613 do {
3614 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3615 smp_rmb();
3616 last_update_time = cfs_rq->avg.last_update_time;
3617 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3618
3619 return last_update_time;
3620}
9d89c257 3621#else
0905f04e
YD
3622static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3623{
3624 return cfs_rq->avg.last_update_time;
3625}
9d89c257
YD
3626#endif
3627
104cb16d
MR
3628/*
3629 * Synchronize entity load avg of dequeued entity without locking
3630 * the previous rq.
3631 */
3632void sync_entity_load_avg(struct sched_entity *se)
3633{
3634 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3635 u64 last_update_time;
3636
3637 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3638 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3639}
3640
0905f04e
YD
3641/*
3642 * Task first catches up with cfs_rq, and then subtract
3643 * itself from the cfs_rq (task must be off the queue now).
3644 */
3645void remove_entity_load_avg(struct sched_entity *se)
3646{
3647 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3648
3649 /*
7dc603c9
PZ
3650 * tasks cannot exit without having gone through wake_up_new_task() ->
3651 * post_init_entity_util_avg() which will have added things to the
3652 * cfs_rq, so we can remove unconditionally.
3653 *
3654 * Similarly for groups, they will have passed through
3655 * post_init_entity_util_avg() before unregister_sched_fair_group()
3656 * calls this.
0905f04e 3657 */
0905f04e 3658
104cb16d 3659 sync_entity_load_avg(se);
9d89c257
YD
3660 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3661 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3662}
642dbc39 3663
7ea241af
YD
3664static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3665{
3666 return cfs_rq->runnable_load_avg;
3667}
3668
3669static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3670{
3671 return cfs_rq->avg.load_avg;
3672}
3673
46f69fa3 3674static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3675
38033c37
PZ
3676#else /* CONFIG_SMP */
3677
01011473 3678static inline int
3a123bbb 3679update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3680{
3681 return 0;
3682}
3683
d31b1a66
VG
3684#define UPDATE_TG 0x0
3685#define SKIP_AGE_LOAD 0x0
b382a531 3686#define DO_ATTACH 0x0
d31b1a66 3687
88c0616e 3688static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3689{
88c0616e 3690 cfs_rq_util_change(cfs_rq);
536bd00c
RW
3691}
3692
9d89c257 3693static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3694
a05e8c51
BP
3695static inline void
3696attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3697static inline void
3698detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3699
46f69fa3 3700static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3701{
3702 return 0;
3703}
3704
38033c37 3705#endif /* CONFIG_SMP */
9d85f21c 3706
ddc97297
PZ
3707static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3708{
3709#ifdef CONFIG_SCHED_DEBUG
3710 s64 d = se->vruntime - cfs_rq->min_vruntime;
3711
3712 if (d < 0)
3713 d = -d;
3714
3715 if (d > 3*sysctl_sched_latency)
ae92882e 3716 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3717#endif
3718}
3719
aeb73b04
PZ
3720static void
3721place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3722{
1af5f730 3723 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3724
2cb8600e
PZ
3725 /*
3726 * The 'current' period is already promised to the current tasks,
3727 * however the extra weight of the new task will slow them down a
3728 * little, place the new task so that it fits in the slot that
3729 * stays open at the end.
3730 */
94dfb5e7 3731 if (initial && sched_feat(START_DEBIT))
f9c0b095 3732 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3733
a2e7a7eb 3734 /* sleeps up to a single latency don't count. */
5ca9880c 3735 if (!initial) {
a2e7a7eb 3736 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3737
a2e7a7eb
MG
3738 /*
3739 * Halve their sleep time's effect, to allow
3740 * for a gentler effect of sleepers:
3741 */
3742 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3743 thresh >>= 1;
51e0304c 3744
a2e7a7eb 3745 vruntime -= thresh;
aeb73b04
PZ
3746 }
3747
b5d9d734 3748 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3749 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3750}
3751
d3d9dc33
PT
3752static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3753
cb251765
MG
3754static inline void check_schedstat_required(void)
3755{
3756#ifdef CONFIG_SCHEDSTATS
3757 if (schedstat_enabled())
3758 return;
3759
3760 /* Force schedstat enabled if a dependent tracepoint is active */
3761 if (trace_sched_stat_wait_enabled() ||
3762 trace_sched_stat_sleep_enabled() ||
3763 trace_sched_stat_iowait_enabled() ||
3764 trace_sched_stat_blocked_enabled() ||
3765 trace_sched_stat_runtime_enabled()) {
eda8dca5 3766 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3767 "stat_blocked and stat_runtime require the "
f67abed5 3768 "kernel parameter schedstats=enable or "
cb251765
MG
3769 "kernel.sched_schedstats=1\n");
3770 }
3771#endif
3772}
3773
b5179ac7
PZ
3774
3775/*
3776 * MIGRATION
3777 *
3778 * dequeue
3779 * update_curr()
3780 * update_min_vruntime()
3781 * vruntime -= min_vruntime
3782 *
3783 * enqueue
3784 * update_curr()
3785 * update_min_vruntime()
3786 * vruntime += min_vruntime
3787 *
3788 * this way the vruntime transition between RQs is done when both
3789 * min_vruntime are up-to-date.
3790 *
3791 * WAKEUP (remote)
3792 *
59efa0ba 3793 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3794 * vruntime -= min_vruntime
3795 *
3796 * enqueue
3797 * update_curr()
3798 * update_min_vruntime()
3799 * vruntime += min_vruntime
3800 *
3801 * this way we don't have the most up-to-date min_vruntime on the originating
3802 * CPU and an up-to-date min_vruntime on the destination CPU.
3803 */
3804
bf0f6f24 3805static void
88ec22d3 3806enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3807{
2f950354
PZ
3808 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3809 bool curr = cfs_rq->curr == se;
3810
88ec22d3 3811 /*
2f950354
PZ
3812 * If we're the current task, we must renormalise before calling
3813 * update_curr().
88ec22d3 3814 */
2f950354 3815 if (renorm && curr)
88ec22d3
PZ
3816 se->vruntime += cfs_rq->min_vruntime;
3817
2f950354
PZ
3818 update_curr(cfs_rq);
3819
bf0f6f24 3820 /*
2f950354
PZ
3821 * Otherwise, renormalise after, such that we're placed at the current
3822 * moment in time, instead of some random moment in the past. Being
3823 * placed in the past could significantly boost this task to the
3824 * fairness detriment of existing tasks.
bf0f6f24 3825 */
2f950354
PZ
3826 if (renorm && !curr)
3827 se->vruntime += cfs_rq->min_vruntime;
3828
89ee048f
VG
3829 /*
3830 * When enqueuing a sched_entity, we must:
3831 * - Update loads to have both entity and cfs_rq synced with now.
3832 * - Add its load to cfs_rq->runnable_avg
3833 * - For group_entity, update its weight to reflect the new share of
3834 * its group cfs_rq
3835 * - Add its new weight to cfs_rq->load.weight
3836 */
b382a531 3837 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
b5b3e35f 3838 enqueue_runnable_load_avg(cfs_rq, se);
89ee048f 3839 update_cfs_shares(se);
17bc14b7 3840 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3841
1a3d027c 3842 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3843 place_entity(cfs_rq, se, 0);
bf0f6f24 3844
cb251765 3845 check_schedstat_required();
4fa8d299
JP
3846 update_stats_enqueue(cfs_rq, se, flags);
3847 check_spread(cfs_rq, se);
2f950354 3848 if (!curr)
83b699ed 3849 __enqueue_entity(cfs_rq, se);
2069dd75 3850 se->on_rq = 1;
3d4b47b4 3851
d3d9dc33 3852 if (cfs_rq->nr_running == 1) {
3d4b47b4 3853 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3854 check_enqueue_throttle(cfs_rq);
3855 }
bf0f6f24
IM
3856}
3857
2c13c919 3858static void __clear_buddies_last(struct sched_entity *se)
2002c695 3859{
2c13c919
RR
3860 for_each_sched_entity(se) {
3861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3862 if (cfs_rq->last != se)
2c13c919 3863 break;
f1044799
PZ
3864
3865 cfs_rq->last = NULL;
2c13c919
RR
3866 }
3867}
2002c695 3868
2c13c919
RR
3869static void __clear_buddies_next(struct sched_entity *se)
3870{
3871 for_each_sched_entity(se) {
3872 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3873 if (cfs_rq->next != se)
2c13c919 3874 break;
f1044799
PZ
3875
3876 cfs_rq->next = NULL;
2c13c919 3877 }
2002c695
PZ
3878}
3879
ac53db59
RR
3880static void __clear_buddies_skip(struct sched_entity *se)
3881{
3882 for_each_sched_entity(se) {
3883 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3884 if (cfs_rq->skip != se)
ac53db59 3885 break;
f1044799
PZ
3886
3887 cfs_rq->skip = NULL;
ac53db59
RR
3888 }
3889}
3890
a571bbea
PZ
3891static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3892{
2c13c919
RR
3893 if (cfs_rq->last == se)
3894 __clear_buddies_last(se);
3895
3896 if (cfs_rq->next == se)
3897 __clear_buddies_next(se);
ac53db59
RR
3898
3899 if (cfs_rq->skip == se)
3900 __clear_buddies_skip(se);
a571bbea
PZ
3901}
3902
6c16a6dc 3903static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3904
bf0f6f24 3905static void
371fd7e7 3906dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3907{
a2a2d680
DA
3908 /*
3909 * Update run-time statistics of the 'current'.
3910 */
3911 update_curr(cfs_rq);
89ee048f
VG
3912
3913 /*
3914 * When dequeuing a sched_entity, we must:
3915 * - Update loads to have both entity and cfs_rq synced with now.
3916 * - Substract its load from the cfs_rq->runnable_avg.
3917 * - Substract its previous weight from cfs_rq->load.weight.
3918 * - For group entity, update its weight to reflect the new share
3919 * of its group cfs_rq.
3920 */
88c0616e 3921 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3922 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3923
4fa8d299 3924 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3925
2002c695 3926 clear_buddies(cfs_rq, se);
4793241b 3927
83b699ed 3928 if (se != cfs_rq->curr)
30cfdcfc 3929 __dequeue_entity(cfs_rq, se);
17bc14b7 3930 se->on_rq = 0;
30cfdcfc 3931 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3932
3933 /*
b60205c7
PZ
3934 * Normalize after update_curr(); which will also have moved
3935 * min_vruntime if @se is the one holding it back. But before doing
3936 * update_min_vruntime() again, which will discount @se's position and
3937 * can move min_vruntime forward still more.
88ec22d3 3938 */
371fd7e7 3939 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3940 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3941
d8b4986d
PT
3942 /* return excess runtime on last dequeue */
3943 return_cfs_rq_runtime(cfs_rq);
3944
89ee048f 3945 update_cfs_shares(se);
b60205c7
PZ
3946
3947 /*
3948 * Now advance min_vruntime if @se was the entity holding it back,
3949 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3950 * put back on, and if we advance min_vruntime, we'll be placed back
3951 * further than we started -- ie. we'll be penalized.
3952 */
3953 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3954 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3955}
3956
3957/*
3958 * Preempt the current task with a newly woken task if needed:
3959 */
7c92e54f 3960static void
2e09bf55 3961check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3962{
11697830 3963 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3964 struct sched_entity *se;
3965 s64 delta;
11697830 3966
6d0f0ebd 3967 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3968 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3969 if (delta_exec > ideal_runtime) {
8875125e 3970 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3971 /*
3972 * The current task ran long enough, ensure it doesn't get
3973 * re-elected due to buddy favours.
3974 */
3975 clear_buddies(cfs_rq, curr);
f685ceac
MG
3976 return;
3977 }
3978
3979 /*
3980 * Ensure that a task that missed wakeup preemption by a
3981 * narrow margin doesn't have to wait for a full slice.
3982 * This also mitigates buddy induced latencies under load.
3983 */
f685ceac
MG
3984 if (delta_exec < sysctl_sched_min_granularity)
3985 return;
3986
f4cfb33e
WX
3987 se = __pick_first_entity(cfs_rq);
3988 delta = curr->vruntime - se->vruntime;
f685ceac 3989
f4cfb33e
WX
3990 if (delta < 0)
3991 return;
d7d82944 3992
f4cfb33e 3993 if (delta > ideal_runtime)
8875125e 3994 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3995}
3996
83b699ed 3997static void
8494f412 3998set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3999{
83b699ed
SV
4000 /* 'current' is not kept within the tree. */
4001 if (se->on_rq) {
4002 /*
4003 * Any task has to be enqueued before it get to execute on
4004 * a CPU. So account for the time it spent waiting on the
4005 * runqueue.
4006 */
4fa8d299 4007 update_stats_wait_end(cfs_rq, se);
83b699ed 4008 __dequeue_entity(cfs_rq, se);
88c0616e 4009 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4010 }
4011
79303e9e 4012 update_stats_curr_start(cfs_rq, se);
429d43bc 4013 cfs_rq->curr = se;
4fa8d299 4014
eba1ed4b
IM
4015 /*
4016 * Track our maximum slice length, if the CPU's load is at
4017 * least twice that of our own weight (i.e. dont track it
4018 * when there are only lesser-weight tasks around):
4019 */
cb251765 4020 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4021 schedstat_set(se->statistics.slice_max,
4022 max((u64)schedstat_val(se->statistics.slice_max),
4023 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4024 }
4fa8d299 4025
4a55b450 4026 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4027}
4028
3f3a4904
PZ
4029static int
4030wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4031
ac53db59
RR
4032/*
4033 * Pick the next process, keeping these things in mind, in this order:
4034 * 1) keep things fair between processes/task groups
4035 * 2) pick the "next" process, since someone really wants that to run
4036 * 3) pick the "last" process, for cache locality
4037 * 4) do not run the "skip" process, if something else is available
4038 */
678d5718
PZ
4039static struct sched_entity *
4040pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4041{
678d5718
PZ
4042 struct sched_entity *left = __pick_first_entity(cfs_rq);
4043 struct sched_entity *se;
4044
4045 /*
4046 * If curr is set we have to see if its left of the leftmost entity
4047 * still in the tree, provided there was anything in the tree at all.
4048 */
4049 if (!left || (curr && entity_before(curr, left)))
4050 left = curr;
4051
4052 se = left; /* ideally we run the leftmost entity */
f4b6755f 4053
ac53db59
RR
4054 /*
4055 * Avoid running the skip buddy, if running something else can
4056 * be done without getting too unfair.
4057 */
4058 if (cfs_rq->skip == se) {
678d5718
PZ
4059 struct sched_entity *second;
4060
4061 if (se == curr) {
4062 second = __pick_first_entity(cfs_rq);
4063 } else {
4064 second = __pick_next_entity(se);
4065 if (!second || (curr && entity_before(curr, second)))
4066 second = curr;
4067 }
4068
ac53db59
RR
4069 if (second && wakeup_preempt_entity(second, left) < 1)
4070 se = second;
4071 }
aa2ac252 4072
f685ceac
MG
4073 /*
4074 * Prefer last buddy, try to return the CPU to a preempted task.
4075 */
4076 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4077 se = cfs_rq->last;
4078
ac53db59
RR
4079 /*
4080 * Someone really wants this to run. If it's not unfair, run it.
4081 */
4082 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4083 se = cfs_rq->next;
4084
f685ceac 4085 clear_buddies(cfs_rq, se);
4793241b
PZ
4086
4087 return se;
aa2ac252
PZ
4088}
4089
678d5718 4090static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4091
ab6cde26 4092static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4093{
4094 /*
4095 * If still on the runqueue then deactivate_task()
4096 * was not called and update_curr() has to be done:
4097 */
4098 if (prev->on_rq)
b7cc0896 4099 update_curr(cfs_rq);
bf0f6f24 4100
d3d9dc33
PT
4101 /* throttle cfs_rqs exceeding runtime */
4102 check_cfs_rq_runtime(cfs_rq);
4103
4fa8d299 4104 check_spread(cfs_rq, prev);
cb251765 4105
30cfdcfc 4106 if (prev->on_rq) {
4fa8d299 4107 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4108 /* Put 'current' back into the tree. */
4109 __enqueue_entity(cfs_rq, prev);
9d85f21c 4110 /* in !on_rq case, update occurred at dequeue */
88c0616e 4111 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4112 }
429d43bc 4113 cfs_rq->curr = NULL;
bf0f6f24
IM
4114}
4115
8f4d37ec
PZ
4116static void
4117entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4118{
bf0f6f24 4119 /*
30cfdcfc 4120 * Update run-time statistics of the 'current'.
bf0f6f24 4121 */
30cfdcfc 4122 update_curr(cfs_rq);
bf0f6f24 4123
9d85f21c
PT
4124 /*
4125 * Ensure that runnable average is periodically updated.
4126 */
88c0616e 4127 update_load_avg(cfs_rq, curr, UPDATE_TG);
89ee048f 4128 update_cfs_shares(curr);
9d85f21c 4129
8f4d37ec
PZ
4130#ifdef CONFIG_SCHED_HRTICK
4131 /*
4132 * queued ticks are scheduled to match the slice, so don't bother
4133 * validating it and just reschedule.
4134 */
983ed7a6 4135 if (queued) {
8875125e 4136 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4137 return;
4138 }
8f4d37ec
PZ
4139 /*
4140 * don't let the period tick interfere with the hrtick preemption
4141 */
4142 if (!sched_feat(DOUBLE_TICK) &&
4143 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4144 return;
4145#endif
4146
2c2efaed 4147 if (cfs_rq->nr_running > 1)
2e09bf55 4148 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4149}
4150
ab84d31e
PT
4151
4152/**************************************************
4153 * CFS bandwidth control machinery
4154 */
4155
4156#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4157
4158#ifdef HAVE_JUMP_LABEL
c5905afb 4159static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4160
4161static inline bool cfs_bandwidth_used(void)
4162{
c5905afb 4163 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4164}
4165
1ee14e6c 4166void cfs_bandwidth_usage_inc(void)
029632fb 4167{
1ee14e6c
BS
4168 static_key_slow_inc(&__cfs_bandwidth_used);
4169}
4170
4171void cfs_bandwidth_usage_dec(void)
4172{
4173 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4174}
4175#else /* HAVE_JUMP_LABEL */
4176static bool cfs_bandwidth_used(void)
4177{
4178 return true;
4179}
4180
1ee14e6c
BS
4181void cfs_bandwidth_usage_inc(void) {}
4182void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4183#endif /* HAVE_JUMP_LABEL */
4184
ab84d31e
PT
4185/*
4186 * default period for cfs group bandwidth.
4187 * default: 0.1s, units: nanoseconds
4188 */
4189static inline u64 default_cfs_period(void)
4190{
4191 return 100000000ULL;
4192}
ec12cb7f
PT
4193
4194static inline u64 sched_cfs_bandwidth_slice(void)
4195{
4196 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4197}
4198
a9cf55b2
PT
4199/*
4200 * Replenish runtime according to assigned quota and update expiration time.
4201 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4202 * additional synchronization around rq->lock.
4203 *
4204 * requires cfs_b->lock
4205 */
029632fb 4206void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4207{
4208 u64 now;
4209
4210 if (cfs_b->quota == RUNTIME_INF)
4211 return;
4212
4213 now = sched_clock_cpu(smp_processor_id());
4214 cfs_b->runtime = cfs_b->quota;
4215 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4216}
4217
029632fb
PZ
4218static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4219{
4220 return &tg->cfs_bandwidth;
4221}
4222
f1b17280
PT
4223/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4224static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4225{
4226 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4227 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4228
78becc27 4229 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4230}
4231
85dac906
PT
4232/* returns 0 on failure to allocate runtime */
4233static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4234{
4235 struct task_group *tg = cfs_rq->tg;
4236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4237 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4238
4239 /* note: this is a positive sum as runtime_remaining <= 0 */
4240 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4241
4242 raw_spin_lock(&cfs_b->lock);
4243 if (cfs_b->quota == RUNTIME_INF)
4244 amount = min_amount;
58088ad0 4245 else {
77a4d1a1 4246 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4247
4248 if (cfs_b->runtime > 0) {
4249 amount = min(cfs_b->runtime, min_amount);
4250 cfs_b->runtime -= amount;
4251 cfs_b->idle = 0;
4252 }
ec12cb7f 4253 }
a9cf55b2 4254 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4255 raw_spin_unlock(&cfs_b->lock);
4256
4257 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4258 /*
4259 * we may have advanced our local expiration to account for allowed
4260 * spread between our sched_clock and the one on which runtime was
4261 * issued.
4262 */
4263 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4264 cfs_rq->runtime_expires = expires;
85dac906
PT
4265
4266 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4267}
4268
a9cf55b2
PT
4269/*
4270 * Note: This depends on the synchronization provided by sched_clock and the
4271 * fact that rq->clock snapshots this value.
4272 */
4273static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4274{
a9cf55b2 4275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4276
4277 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4278 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4279 return;
4280
a9cf55b2
PT
4281 if (cfs_rq->runtime_remaining < 0)
4282 return;
4283
4284 /*
4285 * If the local deadline has passed we have to consider the
4286 * possibility that our sched_clock is 'fast' and the global deadline
4287 * has not truly expired.
4288 *
4289 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4290 * whether the global deadline has advanced. It is valid to compare
4291 * cfs_b->runtime_expires without any locks since we only care about
4292 * exact equality, so a partial write will still work.
a9cf55b2
PT
4293 */
4294
51f2176d 4295 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4296 /* extend local deadline, drift is bounded above by 2 ticks */
4297 cfs_rq->runtime_expires += TICK_NSEC;
4298 } else {
4299 /* global deadline is ahead, expiration has passed */
4300 cfs_rq->runtime_remaining = 0;
4301 }
4302}
4303
9dbdb155 4304static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4305{
4306 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4307 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4308 expire_cfs_rq_runtime(cfs_rq);
4309
4310 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4311 return;
4312
85dac906
PT
4313 /*
4314 * if we're unable to extend our runtime we resched so that the active
4315 * hierarchy can be throttled
4316 */
4317 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4318 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4319}
4320
6c16a6dc 4321static __always_inline
9dbdb155 4322void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4323{
56f570e5 4324 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4325 return;
4326
4327 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4328}
4329
85dac906
PT
4330static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4331{
56f570e5 4332 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4333}
4334
64660c86
PT
4335/* check whether cfs_rq, or any parent, is throttled */
4336static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4337{
56f570e5 4338 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4339}
4340
4341/*
4342 * Ensure that neither of the group entities corresponding to src_cpu or
4343 * dest_cpu are members of a throttled hierarchy when performing group
4344 * load-balance operations.
4345 */
4346static inline int throttled_lb_pair(struct task_group *tg,
4347 int src_cpu, int dest_cpu)
4348{
4349 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4350
4351 src_cfs_rq = tg->cfs_rq[src_cpu];
4352 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4353
4354 return throttled_hierarchy(src_cfs_rq) ||
4355 throttled_hierarchy(dest_cfs_rq);
4356}
4357
4358/* updated child weight may affect parent so we have to do this bottom up */
4359static int tg_unthrottle_up(struct task_group *tg, void *data)
4360{
4361 struct rq *rq = data;
4362 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4363
4364 cfs_rq->throttle_count--;
64660c86 4365 if (!cfs_rq->throttle_count) {
f1b17280 4366 /* adjust cfs_rq_clock_task() */
78becc27 4367 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4368 cfs_rq->throttled_clock_task;
64660c86 4369 }
64660c86
PT
4370
4371 return 0;
4372}
4373
4374static int tg_throttle_down(struct task_group *tg, void *data)
4375{
4376 struct rq *rq = data;
4377 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4378
82958366
PT
4379 /* group is entering throttled state, stop time */
4380 if (!cfs_rq->throttle_count)
78becc27 4381 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4382 cfs_rq->throttle_count++;
4383
4384 return 0;
4385}
4386
d3d9dc33 4387static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4388{
4389 struct rq *rq = rq_of(cfs_rq);
4390 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4391 struct sched_entity *se;
4392 long task_delta, dequeue = 1;
77a4d1a1 4393 bool empty;
85dac906
PT
4394
4395 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4396
f1b17280 4397 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4398 rcu_read_lock();
4399 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4400 rcu_read_unlock();
85dac906
PT
4401
4402 task_delta = cfs_rq->h_nr_running;
4403 for_each_sched_entity(se) {
4404 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4405 /* throttled entity or throttle-on-deactivate */
4406 if (!se->on_rq)
4407 break;
4408
4409 if (dequeue)
4410 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4411 qcfs_rq->h_nr_running -= task_delta;
4412
4413 if (qcfs_rq->load.weight)
4414 dequeue = 0;
4415 }
4416
4417 if (!se)
72465447 4418 sub_nr_running(rq, task_delta);
85dac906
PT
4419
4420 cfs_rq->throttled = 1;
78becc27 4421 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4422 raw_spin_lock(&cfs_b->lock);
d49db342 4423 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4424
c06f04c7
BS
4425 /*
4426 * Add to the _head_ of the list, so that an already-started
4427 * distribute_cfs_runtime will not see us
4428 */
4429 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4430
4431 /*
4432 * If we're the first throttled task, make sure the bandwidth
4433 * timer is running.
4434 */
4435 if (empty)
4436 start_cfs_bandwidth(cfs_b);
4437
85dac906
PT
4438 raw_spin_unlock(&cfs_b->lock);
4439}
4440
029632fb 4441void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4442{
4443 struct rq *rq = rq_of(cfs_rq);
4444 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4445 struct sched_entity *se;
4446 int enqueue = 1;
4447 long task_delta;
4448
22b958d8 4449 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4450
4451 cfs_rq->throttled = 0;
1a55af2e
FW
4452
4453 update_rq_clock(rq);
4454
671fd9da 4455 raw_spin_lock(&cfs_b->lock);
78becc27 4456 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4457 list_del_rcu(&cfs_rq->throttled_list);
4458 raw_spin_unlock(&cfs_b->lock);
4459
64660c86
PT
4460 /* update hierarchical throttle state */
4461 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4462
671fd9da
PT
4463 if (!cfs_rq->load.weight)
4464 return;
4465
4466 task_delta = cfs_rq->h_nr_running;
4467 for_each_sched_entity(se) {
4468 if (se->on_rq)
4469 enqueue = 0;
4470
4471 cfs_rq = cfs_rq_of(se);
4472 if (enqueue)
4473 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4474 cfs_rq->h_nr_running += task_delta;
4475
4476 if (cfs_rq_throttled(cfs_rq))
4477 break;
4478 }
4479
4480 if (!se)
72465447 4481 add_nr_running(rq, task_delta);
671fd9da
PT
4482
4483 /* determine whether we need to wake up potentially idle cpu */
4484 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4485 resched_curr(rq);
671fd9da
PT
4486}
4487
4488static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4489 u64 remaining, u64 expires)
4490{
4491 struct cfs_rq *cfs_rq;
c06f04c7
BS
4492 u64 runtime;
4493 u64 starting_runtime = remaining;
671fd9da
PT
4494
4495 rcu_read_lock();
4496 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4497 throttled_list) {
4498 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4499 struct rq_flags rf;
671fd9da 4500
8a8c69c3 4501 rq_lock(rq, &rf);
671fd9da
PT
4502 if (!cfs_rq_throttled(cfs_rq))
4503 goto next;
4504
4505 runtime = -cfs_rq->runtime_remaining + 1;
4506 if (runtime > remaining)
4507 runtime = remaining;
4508 remaining -= runtime;
4509
4510 cfs_rq->runtime_remaining += runtime;
4511 cfs_rq->runtime_expires = expires;
4512
4513 /* we check whether we're throttled above */
4514 if (cfs_rq->runtime_remaining > 0)
4515 unthrottle_cfs_rq(cfs_rq);
4516
4517next:
8a8c69c3 4518 rq_unlock(rq, &rf);
671fd9da
PT
4519
4520 if (!remaining)
4521 break;
4522 }
4523 rcu_read_unlock();
4524
c06f04c7 4525 return starting_runtime - remaining;
671fd9da
PT
4526}
4527
58088ad0
PT
4528/*
4529 * Responsible for refilling a task_group's bandwidth and unthrottling its
4530 * cfs_rqs as appropriate. If there has been no activity within the last
4531 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4532 * used to track this state.
4533 */
4534static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4535{
671fd9da 4536 u64 runtime, runtime_expires;
51f2176d 4537 int throttled;
58088ad0 4538
58088ad0
PT
4539 /* no need to continue the timer with no bandwidth constraint */
4540 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4541 goto out_deactivate;
58088ad0 4542
671fd9da 4543 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4544 cfs_b->nr_periods += overrun;
671fd9da 4545
51f2176d
BS
4546 /*
4547 * idle depends on !throttled (for the case of a large deficit), and if
4548 * we're going inactive then everything else can be deferred
4549 */
4550 if (cfs_b->idle && !throttled)
4551 goto out_deactivate;
a9cf55b2
PT
4552
4553 __refill_cfs_bandwidth_runtime(cfs_b);
4554
671fd9da
PT
4555 if (!throttled) {
4556 /* mark as potentially idle for the upcoming period */
4557 cfs_b->idle = 1;
51f2176d 4558 return 0;
671fd9da
PT
4559 }
4560
e8da1b18
NR
4561 /* account preceding periods in which throttling occurred */
4562 cfs_b->nr_throttled += overrun;
4563
671fd9da 4564 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4565
4566 /*
c06f04c7
BS
4567 * This check is repeated as we are holding onto the new bandwidth while
4568 * we unthrottle. This can potentially race with an unthrottled group
4569 * trying to acquire new bandwidth from the global pool. This can result
4570 * in us over-using our runtime if it is all used during this loop, but
4571 * only by limited amounts in that extreme case.
671fd9da 4572 */
c06f04c7
BS
4573 while (throttled && cfs_b->runtime > 0) {
4574 runtime = cfs_b->runtime;
671fd9da
PT
4575 raw_spin_unlock(&cfs_b->lock);
4576 /* we can't nest cfs_b->lock while distributing bandwidth */
4577 runtime = distribute_cfs_runtime(cfs_b, runtime,
4578 runtime_expires);
4579 raw_spin_lock(&cfs_b->lock);
4580
4581 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4582
4583 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4584 }
58088ad0 4585
671fd9da
PT
4586 /*
4587 * While we are ensured activity in the period following an
4588 * unthrottle, this also covers the case in which the new bandwidth is
4589 * insufficient to cover the existing bandwidth deficit. (Forcing the
4590 * timer to remain active while there are any throttled entities.)
4591 */
4592 cfs_b->idle = 0;
58088ad0 4593
51f2176d
BS
4594 return 0;
4595
4596out_deactivate:
51f2176d 4597 return 1;
58088ad0 4598}
d3d9dc33 4599
d8b4986d
PT
4600/* a cfs_rq won't donate quota below this amount */
4601static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4602/* minimum remaining period time to redistribute slack quota */
4603static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4604/* how long we wait to gather additional slack before distributing */
4605static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4606
db06e78c
BS
4607/*
4608 * Are we near the end of the current quota period?
4609 *
4610 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4611 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4612 * migrate_hrtimers, base is never cleared, so we are fine.
4613 */
d8b4986d
PT
4614static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4615{
4616 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4617 u64 remaining;
4618
4619 /* if the call-back is running a quota refresh is already occurring */
4620 if (hrtimer_callback_running(refresh_timer))
4621 return 1;
4622
4623 /* is a quota refresh about to occur? */
4624 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4625 if (remaining < min_expire)
4626 return 1;
4627
4628 return 0;
4629}
4630
4631static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4632{
4633 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4634
4635 /* if there's a quota refresh soon don't bother with slack */
4636 if (runtime_refresh_within(cfs_b, min_left))
4637 return;
4638
4cfafd30
PZ
4639 hrtimer_start(&cfs_b->slack_timer,
4640 ns_to_ktime(cfs_bandwidth_slack_period),
4641 HRTIMER_MODE_REL);
d8b4986d
PT
4642}
4643
4644/* we know any runtime found here is valid as update_curr() precedes return */
4645static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4646{
4647 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4648 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4649
4650 if (slack_runtime <= 0)
4651 return;
4652
4653 raw_spin_lock(&cfs_b->lock);
4654 if (cfs_b->quota != RUNTIME_INF &&
4655 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4656 cfs_b->runtime += slack_runtime;
4657
4658 /* we are under rq->lock, defer unthrottling using a timer */
4659 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4660 !list_empty(&cfs_b->throttled_cfs_rq))
4661 start_cfs_slack_bandwidth(cfs_b);
4662 }
4663 raw_spin_unlock(&cfs_b->lock);
4664
4665 /* even if it's not valid for return we don't want to try again */
4666 cfs_rq->runtime_remaining -= slack_runtime;
4667}
4668
4669static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4670{
56f570e5
PT
4671 if (!cfs_bandwidth_used())
4672 return;
4673
fccfdc6f 4674 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4675 return;
4676
4677 __return_cfs_rq_runtime(cfs_rq);
4678}
4679
4680/*
4681 * This is done with a timer (instead of inline with bandwidth return) since
4682 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4683 */
4684static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4685{
4686 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4687 u64 expires;
4688
4689 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4690 raw_spin_lock(&cfs_b->lock);
4691 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4692 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4693 return;
db06e78c 4694 }
d8b4986d 4695
c06f04c7 4696 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4697 runtime = cfs_b->runtime;
c06f04c7 4698
d8b4986d
PT
4699 expires = cfs_b->runtime_expires;
4700 raw_spin_unlock(&cfs_b->lock);
4701
4702 if (!runtime)
4703 return;
4704
4705 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4706
4707 raw_spin_lock(&cfs_b->lock);
4708 if (expires == cfs_b->runtime_expires)
c06f04c7 4709 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4710 raw_spin_unlock(&cfs_b->lock);
4711}
4712
d3d9dc33
PT
4713/*
4714 * When a group wakes up we want to make sure that its quota is not already
4715 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4716 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4717 */
4718static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4719{
56f570e5
PT
4720 if (!cfs_bandwidth_used())
4721 return;
4722
d3d9dc33
PT
4723 /* an active group must be handled by the update_curr()->put() path */
4724 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4725 return;
4726
4727 /* ensure the group is not already throttled */
4728 if (cfs_rq_throttled(cfs_rq))
4729 return;
4730
4731 /* update runtime allocation */
4732 account_cfs_rq_runtime(cfs_rq, 0);
4733 if (cfs_rq->runtime_remaining <= 0)
4734 throttle_cfs_rq(cfs_rq);
4735}
4736
55e16d30
PZ
4737static void sync_throttle(struct task_group *tg, int cpu)
4738{
4739 struct cfs_rq *pcfs_rq, *cfs_rq;
4740
4741 if (!cfs_bandwidth_used())
4742 return;
4743
4744 if (!tg->parent)
4745 return;
4746
4747 cfs_rq = tg->cfs_rq[cpu];
4748 pcfs_rq = tg->parent->cfs_rq[cpu];
4749
4750 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4751 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4752}
4753
d3d9dc33 4754/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4755static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4756{
56f570e5 4757 if (!cfs_bandwidth_used())
678d5718 4758 return false;
56f570e5 4759
d3d9dc33 4760 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4761 return false;
d3d9dc33
PT
4762
4763 /*
4764 * it's possible for a throttled entity to be forced into a running
4765 * state (e.g. set_curr_task), in this case we're finished.
4766 */
4767 if (cfs_rq_throttled(cfs_rq))
678d5718 4768 return true;
d3d9dc33
PT
4769
4770 throttle_cfs_rq(cfs_rq);
678d5718 4771 return true;
d3d9dc33 4772}
029632fb 4773
029632fb
PZ
4774static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4775{
4776 struct cfs_bandwidth *cfs_b =
4777 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4778
029632fb
PZ
4779 do_sched_cfs_slack_timer(cfs_b);
4780
4781 return HRTIMER_NORESTART;
4782}
4783
4784static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4785{
4786 struct cfs_bandwidth *cfs_b =
4787 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4788 int overrun;
4789 int idle = 0;
4790
51f2176d 4791 raw_spin_lock(&cfs_b->lock);
029632fb 4792 for (;;) {
77a4d1a1 4793 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4794 if (!overrun)
4795 break;
4796
4797 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4798 }
4cfafd30
PZ
4799 if (idle)
4800 cfs_b->period_active = 0;
51f2176d 4801 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4802
4803 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4804}
4805
4806void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4807{
4808 raw_spin_lock_init(&cfs_b->lock);
4809 cfs_b->runtime = 0;
4810 cfs_b->quota = RUNTIME_INF;
4811 cfs_b->period = ns_to_ktime(default_cfs_period());
4812
4813 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4814 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4815 cfs_b->period_timer.function = sched_cfs_period_timer;
4816 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4817 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4818}
4819
4820static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4821{
4822 cfs_rq->runtime_enabled = 0;
4823 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4824}
4825
77a4d1a1 4826void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4827{
4cfafd30 4828 lockdep_assert_held(&cfs_b->lock);
029632fb 4829
4cfafd30
PZ
4830 if (!cfs_b->period_active) {
4831 cfs_b->period_active = 1;
4832 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4833 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4834 }
029632fb
PZ
4835}
4836
4837static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4838{
7f1a169b
TH
4839 /* init_cfs_bandwidth() was not called */
4840 if (!cfs_b->throttled_cfs_rq.next)
4841 return;
4842
029632fb
PZ
4843 hrtimer_cancel(&cfs_b->period_timer);
4844 hrtimer_cancel(&cfs_b->slack_timer);
4845}
4846
502ce005
PZ
4847/*
4848 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4849 *
4850 * The race is harmless, since modifying bandwidth settings of unhooked group
4851 * bits doesn't do much.
4852 */
4853
4854/* cpu online calback */
0e59bdae
KT
4855static void __maybe_unused update_runtime_enabled(struct rq *rq)
4856{
502ce005 4857 struct task_group *tg;
0e59bdae 4858
502ce005
PZ
4859 lockdep_assert_held(&rq->lock);
4860
4861 rcu_read_lock();
4862 list_for_each_entry_rcu(tg, &task_groups, list) {
4863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4864 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4865
4866 raw_spin_lock(&cfs_b->lock);
4867 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4868 raw_spin_unlock(&cfs_b->lock);
4869 }
502ce005 4870 rcu_read_unlock();
0e59bdae
KT
4871}
4872
502ce005 4873/* cpu offline callback */
38dc3348 4874static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4875{
502ce005
PZ
4876 struct task_group *tg;
4877
4878 lockdep_assert_held(&rq->lock);
4879
4880 rcu_read_lock();
4881 list_for_each_entry_rcu(tg, &task_groups, list) {
4882 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4883
029632fb
PZ
4884 if (!cfs_rq->runtime_enabled)
4885 continue;
4886
4887 /*
4888 * clock_task is not advancing so we just need to make sure
4889 * there's some valid quota amount
4890 */
51f2176d 4891 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4892 /*
4893 * Offline rq is schedulable till cpu is completely disabled
4894 * in take_cpu_down(), so we prevent new cfs throttling here.
4895 */
4896 cfs_rq->runtime_enabled = 0;
4897
029632fb
PZ
4898 if (cfs_rq_throttled(cfs_rq))
4899 unthrottle_cfs_rq(cfs_rq);
4900 }
502ce005 4901 rcu_read_unlock();
029632fb
PZ
4902}
4903
4904#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4905static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4906{
78becc27 4907 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4908}
4909
9dbdb155 4910static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4911static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4912static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4913static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4914static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4915
4916static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4917{
4918 return 0;
4919}
64660c86
PT
4920
4921static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4922{
4923 return 0;
4924}
4925
4926static inline int throttled_lb_pair(struct task_group *tg,
4927 int src_cpu, int dest_cpu)
4928{
4929 return 0;
4930}
029632fb
PZ
4931
4932void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4933
4934#ifdef CONFIG_FAIR_GROUP_SCHED
4935static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4936#endif
4937
029632fb
PZ
4938static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4939{
4940 return NULL;
4941}
4942static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4943static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4944static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4945
4946#endif /* CONFIG_CFS_BANDWIDTH */
4947
bf0f6f24
IM
4948/**************************************************
4949 * CFS operations on tasks:
4950 */
4951
8f4d37ec
PZ
4952#ifdef CONFIG_SCHED_HRTICK
4953static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4954{
8f4d37ec
PZ
4955 struct sched_entity *se = &p->se;
4956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4957
9148a3a1 4958 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4959
8bf46a39 4960 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4961 u64 slice = sched_slice(cfs_rq, se);
4962 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4963 s64 delta = slice - ran;
4964
4965 if (delta < 0) {
4966 if (rq->curr == p)
8875125e 4967 resched_curr(rq);
8f4d37ec
PZ
4968 return;
4969 }
31656519 4970 hrtick_start(rq, delta);
8f4d37ec
PZ
4971 }
4972}
a4c2f00f
PZ
4973
4974/*
4975 * called from enqueue/dequeue and updates the hrtick when the
4976 * current task is from our class and nr_running is low enough
4977 * to matter.
4978 */
4979static void hrtick_update(struct rq *rq)
4980{
4981 struct task_struct *curr = rq->curr;
4982
b39e66ea 4983 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4984 return;
4985
4986 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4987 hrtick_start_fair(rq, curr);
4988}
55e12e5e 4989#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4990static inline void
4991hrtick_start_fair(struct rq *rq, struct task_struct *p)
4992{
4993}
a4c2f00f
PZ
4994
4995static inline void hrtick_update(struct rq *rq)
4996{
4997}
8f4d37ec
PZ
4998#endif
4999
bf0f6f24
IM
5000/*
5001 * The enqueue_task method is called before nr_running is
5002 * increased. Here we update the fair scheduling stats and
5003 * then put the task into the rbtree:
5004 */
ea87bb78 5005static void
371fd7e7 5006enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5007{
5008 struct cfs_rq *cfs_rq;
62fb1851 5009 struct sched_entity *se = &p->se;
bf0f6f24 5010
8c34ab19
RW
5011 /*
5012 * If in_iowait is set, the code below may not trigger any cpufreq
5013 * utilization updates, so do it here explicitly with the IOWAIT flag
5014 * passed.
5015 */
5016 if (p->in_iowait)
674e7541 5017 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5018
bf0f6f24 5019 for_each_sched_entity(se) {
62fb1851 5020 if (se->on_rq)
bf0f6f24
IM
5021 break;
5022 cfs_rq = cfs_rq_of(se);
88ec22d3 5023 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5024
5025 /*
5026 * end evaluation on encountering a throttled cfs_rq
5027 *
5028 * note: in the case of encountering a throttled cfs_rq we will
5029 * post the final h_nr_running increment below.
e210bffd 5030 */
85dac906
PT
5031 if (cfs_rq_throttled(cfs_rq))
5032 break;
953bfcd1 5033 cfs_rq->h_nr_running++;
85dac906 5034
88ec22d3 5035 flags = ENQUEUE_WAKEUP;
bf0f6f24 5036 }
8f4d37ec 5037
2069dd75 5038 for_each_sched_entity(se) {
0f317143 5039 cfs_rq = cfs_rq_of(se);
953bfcd1 5040 cfs_rq->h_nr_running++;
2069dd75 5041
85dac906
PT
5042 if (cfs_rq_throttled(cfs_rq))
5043 break;
5044
88c0616e 5045 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5046 update_cfs_shares(se);
2069dd75
PZ
5047 }
5048
cd126afe 5049 if (!se)
72465447 5050 add_nr_running(rq, 1);
cd126afe 5051
a4c2f00f 5052 hrtick_update(rq);
bf0f6f24
IM
5053}
5054
2f36825b
VP
5055static void set_next_buddy(struct sched_entity *se);
5056
bf0f6f24
IM
5057/*
5058 * The dequeue_task method is called before nr_running is
5059 * decreased. We remove the task from the rbtree and
5060 * update the fair scheduling stats:
5061 */
371fd7e7 5062static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5063{
5064 struct cfs_rq *cfs_rq;
62fb1851 5065 struct sched_entity *se = &p->se;
2f36825b 5066 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5067
5068 for_each_sched_entity(se) {
5069 cfs_rq = cfs_rq_of(se);
371fd7e7 5070 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5071
5072 /*
5073 * end evaluation on encountering a throttled cfs_rq
5074 *
5075 * note: in the case of encountering a throttled cfs_rq we will
5076 * post the final h_nr_running decrement below.
5077 */
5078 if (cfs_rq_throttled(cfs_rq))
5079 break;
953bfcd1 5080 cfs_rq->h_nr_running--;
2069dd75 5081
bf0f6f24 5082 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5083 if (cfs_rq->load.weight) {
754bd598
KK
5084 /* Avoid re-evaluating load for this entity: */
5085 se = parent_entity(se);
2f36825b
VP
5086 /*
5087 * Bias pick_next to pick a task from this cfs_rq, as
5088 * p is sleeping when it is within its sched_slice.
5089 */
754bd598
KK
5090 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5091 set_next_buddy(se);
bf0f6f24 5092 break;
2f36825b 5093 }
371fd7e7 5094 flags |= DEQUEUE_SLEEP;
bf0f6f24 5095 }
8f4d37ec 5096
2069dd75 5097 for_each_sched_entity(se) {
0f317143 5098 cfs_rq = cfs_rq_of(se);
953bfcd1 5099 cfs_rq->h_nr_running--;
2069dd75 5100
85dac906
PT
5101 if (cfs_rq_throttled(cfs_rq))
5102 break;
5103
88c0616e 5104 update_load_avg(cfs_rq, se, UPDATE_TG);
89ee048f 5105 update_cfs_shares(se);
2069dd75
PZ
5106 }
5107
cd126afe 5108 if (!se)
72465447 5109 sub_nr_running(rq, 1);
cd126afe 5110
a4c2f00f 5111 hrtick_update(rq);
bf0f6f24
IM
5112}
5113
e7693a36 5114#ifdef CONFIG_SMP
10e2f1ac
PZ
5115
5116/* Working cpumask for: load_balance, load_balance_newidle. */
5117DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5118DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5119
9fd81dd5 5120#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5121/*
5122 * per rq 'load' arrray crap; XXX kill this.
5123 */
5124
5125/*
d937cdc5 5126 * The exact cpuload calculated at every tick would be:
3289bdb4 5127 *
d937cdc5
PZ
5128 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5129 *
5130 * If a cpu misses updates for n ticks (as it was idle) and update gets
5131 * called on the n+1-th tick when cpu may be busy, then we have:
5132 *
5133 * load_n = (1 - 1/2^i)^n * load_0
5134 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5135 *
5136 * decay_load_missed() below does efficient calculation of
3289bdb4 5137 *
d937cdc5
PZ
5138 * load' = (1 - 1/2^i)^n * load
5139 *
5140 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5141 * This allows us to precompute the above in said factors, thereby allowing the
5142 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5143 * fixed_power_int())
3289bdb4 5144 *
d937cdc5 5145 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5146 */
5147#define DEGRADE_SHIFT 7
d937cdc5
PZ
5148
5149static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5150static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5151 { 0, 0, 0, 0, 0, 0, 0, 0 },
5152 { 64, 32, 8, 0, 0, 0, 0, 0 },
5153 { 96, 72, 40, 12, 1, 0, 0, 0 },
5154 { 112, 98, 75, 43, 15, 1, 0, 0 },
5155 { 120, 112, 98, 76, 45, 16, 2, 0 }
5156};
3289bdb4
PZ
5157
5158/*
5159 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5160 * would be when CPU is idle and so we just decay the old load without
5161 * adding any new load.
5162 */
5163static unsigned long
5164decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5165{
5166 int j = 0;
5167
5168 if (!missed_updates)
5169 return load;
5170
5171 if (missed_updates >= degrade_zero_ticks[idx])
5172 return 0;
5173
5174 if (idx == 1)
5175 return load >> missed_updates;
5176
5177 while (missed_updates) {
5178 if (missed_updates % 2)
5179 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5180
5181 missed_updates >>= 1;
5182 j++;
5183 }
5184 return load;
5185}
9fd81dd5 5186#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5187
59543275 5188/**
cee1afce 5189 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5190 * @this_rq: The rq to update statistics for
5191 * @this_load: The current load
5192 * @pending_updates: The number of missed updates
59543275 5193 *
3289bdb4 5194 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5195 * scheduler tick (TICK_NSEC).
5196 *
5197 * This function computes a decaying average:
5198 *
5199 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5200 *
5201 * Because of NOHZ it might not get called on every tick which gives need for
5202 * the @pending_updates argument.
5203 *
5204 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5205 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5206 * = A * (A * load[i]_n-2 + B) + B
5207 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5208 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5209 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5210 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5211 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5212 *
5213 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5214 * any change in load would have resulted in the tick being turned back on.
5215 *
5216 * For regular NOHZ, this reduces to:
5217 *
5218 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5219 *
5220 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5221 * term.
3289bdb4 5222 */
1f41906a
FW
5223static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5224 unsigned long pending_updates)
3289bdb4 5225{
9fd81dd5 5226 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5227 int i, scale;
5228
5229 this_rq->nr_load_updates++;
5230
5231 /* Update our load: */
5232 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5233 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5234 unsigned long old_load, new_load;
5235
5236 /* scale is effectively 1 << i now, and >> i divides by scale */
5237
7400d3bb 5238 old_load = this_rq->cpu_load[i];
9fd81dd5 5239#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5240 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5241 if (tickless_load) {
5242 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5243 /*
5244 * old_load can never be a negative value because a
5245 * decayed tickless_load cannot be greater than the
5246 * original tickless_load.
5247 */
5248 old_load += tickless_load;
5249 }
9fd81dd5 5250#endif
3289bdb4
PZ
5251 new_load = this_load;
5252 /*
5253 * Round up the averaging division if load is increasing. This
5254 * prevents us from getting stuck on 9 if the load is 10, for
5255 * example.
5256 */
5257 if (new_load > old_load)
5258 new_load += scale - 1;
5259
5260 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5261 }
5262
5263 sched_avg_update(this_rq);
5264}
5265
7ea241af 5266/* Used instead of source_load when we know the type == 0 */
c7132dd6 5267static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5268{
c7132dd6 5269 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5270}
5271
3289bdb4 5272#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5273/*
5274 * There is no sane way to deal with nohz on smp when using jiffies because the
5275 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5276 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5277 *
5278 * Therefore we need to avoid the delta approach from the regular tick when
5279 * possible since that would seriously skew the load calculation. This is why we
5280 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5281 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5282 * loop exit, nohz_idle_balance, nohz full exit...)
5283 *
5284 * This means we might still be one tick off for nohz periods.
5285 */
5286
5287static void cpu_load_update_nohz(struct rq *this_rq,
5288 unsigned long curr_jiffies,
5289 unsigned long load)
be68a682
FW
5290{
5291 unsigned long pending_updates;
5292
5293 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5294 if (pending_updates) {
5295 this_rq->last_load_update_tick = curr_jiffies;
5296 /*
5297 * In the regular NOHZ case, we were idle, this means load 0.
5298 * In the NOHZ_FULL case, we were non-idle, we should consider
5299 * its weighted load.
5300 */
1f41906a 5301 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5302 }
5303}
5304
3289bdb4
PZ
5305/*
5306 * Called from nohz_idle_balance() to update the load ratings before doing the
5307 * idle balance.
5308 */
cee1afce 5309static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5310{
3289bdb4
PZ
5311 /*
5312 * bail if there's load or we're actually up-to-date.
5313 */
c7132dd6 5314 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5315 return;
5316
1f41906a 5317 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5318}
5319
5320/*
1f41906a
FW
5321 * Record CPU load on nohz entry so we know the tickless load to account
5322 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5323 * than other cpu_load[idx] but it should be fine as cpu_load readers
5324 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5325 */
1f41906a 5326void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5327{
5328 struct rq *this_rq = this_rq();
1f41906a
FW
5329
5330 /*
5331 * This is all lockless but should be fine. If weighted_cpuload changes
5332 * concurrently we'll exit nohz. And cpu_load write can race with
5333 * cpu_load_update_idle() but both updater would be writing the same.
5334 */
c7132dd6 5335 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5336}
5337
5338/*
5339 * Account the tickless load in the end of a nohz frame.
5340 */
5341void cpu_load_update_nohz_stop(void)
5342{
316c1608 5343 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5344 struct rq *this_rq = this_rq();
5345 unsigned long load;
8a8c69c3 5346 struct rq_flags rf;
3289bdb4
PZ
5347
5348 if (curr_jiffies == this_rq->last_load_update_tick)
5349 return;
5350
c7132dd6 5351 load = weighted_cpuload(this_rq);
8a8c69c3 5352 rq_lock(this_rq, &rf);
b52fad2d 5353 update_rq_clock(this_rq);
1f41906a 5354 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5355 rq_unlock(this_rq, &rf);
3289bdb4 5356}
1f41906a
FW
5357#else /* !CONFIG_NO_HZ_COMMON */
5358static inline void cpu_load_update_nohz(struct rq *this_rq,
5359 unsigned long curr_jiffies,
5360 unsigned long load) { }
5361#endif /* CONFIG_NO_HZ_COMMON */
5362
5363static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5364{
9fd81dd5 5365#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5366 /* See the mess around cpu_load_update_nohz(). */
5367 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5368#endif
1f41906a
FW
5369 cpu_load_update(this_rq, load, 1);
5370}
3289bdb4
PZ
5371
5372/*
5373 * Called from scheduler_tick()
5374 */
cee1afce 5375void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5376{
c7132dd6 5377 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5378
5379 if (tick_nohz_tick_stopped())
5380 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5381 else
5382 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5383}
5384
029632fb
PZ
5385/*
5386 * Return a low guess at the load of a migration-source cpu weighted
5387 * according to the scheduling class and "nice" value.
5388 *
5389 * We want to under-estimate the load of migration sources, to
5390 * balance conservatively.
5391 */
5392static unsigned long source_load(int cpu, int type)
5393{
5394 struct rq *rq = cpu_rq(cpu);
c7132dd6 5395 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5396
5397 if (type == 0 || !sched_feat(LB_BIAS))
5398 return total;
5399
5400 return min(rq->cpu_load[type-1], total);
5401}
5402
5403/*
5404 * Return a high guess at the load of a migration-target cpu weighted
5405 * according to the scheduling class and "nice" value.
5406 */
5407static unsigned long target_load(int cpu, int type)
5408{
5409 struct rq *rq = cpu_rq(cpu);
c7132dd6 5410 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5411
5412 if (type == 0 || !sched_feat(LB_BIAS))
5413 return total;
5414
5415 return max(rq->cpu_load[type-1], total);
5416}
5417
ced549fa 5418static unsigned long capacity_of(int cpu)
029632fb 5419{
ced549fa 5420 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5421}
5422
ca6d75e6
VG
5423static unsigned long capacity_orig_of(int cpu)
5424{
5425 return cpu_rq(cpu)->cpu_capacity_orig;
5426}
5427
029632fb
PZ
5428static unsigned long cpu_avg_load_per_task(int cpu)
5429{
5430 struct rq *rq = cpu_rq(cpu);
316c1608 5431 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5432 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5433
5434 if (nr_running)
b92486cb 5435 return load_avg / nr_running;
029632fb
PZ
5436
5437 return 0;
5438}
5439
c58d25f3
PZ
5440static void record_wakee(struct task_struct *p)
5441{
5442 /*
5443 * Only decay a single time; tasks that have less then 1 wakeup per
5444 * jiffy will not have built up many flips.
5445 */
5446 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5447 current->wakee_flips >>= 1;
5448 current->wakee_flip_decay_ts = jiffies;
5449 }
5450
5451 if (current->last_wakee != p) {
5452 current->last_wakee = p;
5453 current->wakee_flips++;
5454 }
5455}
5456
63b0e9ed
MG
5457/*
5458 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5459 *
63b0e9ed 5460 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5461 * at a frequency roughly N times higher than one of its wakees.
5462 *
5463 * In order to determine whether we should let the load spread vs consolidating
5464 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5465 * partner, and a factor of lls_size higher frequency in the other.
5466 *
5467 * With both conditions met, we can be relatively sure that the relationship is
5468 * non-monogamous, with partner count exceeding socket size.
5469 *
5470 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5471 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5472 * socket size.
63b0e9ed 5473 */
62470419
MW
5474static int wake_wide(struct task_struct *p)
5475{
63b0e9ed
MG
5476 unsigned int master = current->wakee_flips;
5477 unsigned int slave = p->wakee_flips;
7d9ffa89 5478 int factor = this_cpu_read(sd_llc_size);
62470419 5479
63b0e9ed
MG
5480 if (master < slave)
5481 swap(master, slave);
5482 if (slave < factor || master < slave * factor)
5483 return 0;
5484 return 1;
62470419
MW
5485}
5486
90001d67
PZ
5487struct llc_stats {
5488 unsigned long nr_running;
5489 unsigned long load;
5490 unsigned long capacity;
5491 int has_capacity;
5492};
5493
5494static bool get_llc_stats(struct llc_stats *stats, int cpu)
5495{
5496 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5497
5498 if (!sds)
5499 return false;
5500
5501 stats->nr_running = READ_ONCE(sds->nr_running);
5502 stats->load = READ_ONCE(sds->load);
5503 stats->capacity = READ_ONCE(sds->capacity);
5504 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu);
5505
5506 return true;
5507}
5508
5509/*
5510 * Can a task be moved from prev_cpu to this_cpu without causing a load
5511 * imbalance that would trigger the load balancer?
5512 *
5513 * Since we're running on 'stale' values, we might in fact create an imbalance
5514 * but recomputing these values is expensive, as that'd mean iteration 2 cache
5515 * domains worth of CPUs.
5516 */
5517static bool
5518wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5519 int this_cpu, int prev_cpu, int sync)
5520{
5521 struct llc_stats prev_stats, this_stats;
5522 s64 this_eff_load, prev_eff_load;
5523 unsigned long task_load;
5524
5525 if (!get_llc_stats(&prev_stats, prev_cpu) ||
5526 !get_llc_stats(&this_stats, this_cpu))
5527 return false;
5528
5529 /*
5530 * If sync wakeup then subtract the (maximum possible)
5531 * effect of the currently running task from the load
5532 * of the current LLC.
5533 */
5534 if (sync) {
5535 unsigned long current_load = task_h_load(current);
5536
5537 /* in this case load hits 0 and this LLC is considered 'idle' */
5538 if (current_load > this_stats.load)
5539 return true;
5540
5541 this_stats.load -= current_load;
5542 }
5543
5544 /*
5545 * The has_capacity stuff is not SMT aware, but by trying to balance
5546 * the nr_running on both ends we try and fill the domain at equal
5547 * rates, thereby first consuming cores before siblings.
5548 */
5549
5550 /* if the old cache has capacity, stay there */
5551 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5552 return false;
5553
5554 /* if this cache has capacity, come here */
a731ebe6 5555 if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
90001d67
PZ
5556 return true;
5557
5558 /*
5559 * Check to see if we can move the load without causing too much
5560 * imbalance.
5561 */
5562 task_load = task_h_load(p);
5563
5564 this_eff_load = 100;
5565 this_eff_load *= prev_stats.capacity;
5566
5567 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5568 prev_eff_load *= this_stats.capacity;
5569
5570 this_eff_load *= this_stats.load + task_load;
5571 prev_eff_load *= prev_stats.load - task_load;
5572
5573 return this_eff_load <= prev_eff_load;
5574}
5575
772bd008
MR
5576static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5577 int prev_cpu, int sync)
098fb9db 5578{
3fed382b 5579 int this_cpu = smp_processor_id();
90001d67 5580 bool affine;
098fb9db 5581
7d894e6e 5582 /*
90001d67
PZ
5583 * Default to no affine wakeups; wake_affine() should not effect a task
5584 * placement the load-balancer feels inclined to undo. The conservative
5585 * option is therefore to not move tasks when they wake up.
7d894e6e 5586 */
90001d67
PZ
5587 affine = false;
5588
5589 /*
5590 * If the wakeup is across cache domains, try to evaluate if movement
5591 * makes sense, otherwise rely on select_idle_siblings() to do
5592 * placement inside the cache domain.
5593 */
5594 if (!cpus_share_cache(prev_cpu, this_cpu))
5595 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5596
ae92882e 5597 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5598 if (affine) {
5599 schedstat_inc(sd->ttwu_move_affine);
5600 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5601 }
098fb9db 5602
3fed382b 5603 return affine;
098fb9db
IM
5604}
5605
6a0b19c0
MR
5606static inline int task_util(struct task_struct *p);
5607static int cpu_util_wake(int cpu, struct task_struct *p);
5608
5609static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5610{
5611 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5612}
5613
aaee1203
PZ
5614/*
5615 * find_idlest_group finds and returns the least busy CPU group within the
5616 * domain.
5617 */
5618static struct sched_group *
78e7ed53 5619find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5620 int this_cpu, int sd_flag)
e7693a36 5621{
b3bd3de6 5622 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5623 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5624 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5625 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5626 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5627 int load_idx = sd->forkexec_idx;
6b94780e
VG
5628 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5629 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5630 (sd->imbalance_pct-100) / 100;
e7693a36 5631
c44f2a02
VG
5632 if (sd_flag & SD_BALANCE_WAKE)
5633 load_idx = sd->wake_idx;
5634
aaee1203 5635 do {
6b94780e
VG
5636 unsigned long load, avg_load, runnable_load;
5637 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5638 int local_group;
5639 int i;
e7693a36 5640
aaee1203 5641 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5642 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5643 &p->cpus_allowed))
aaee1203
PZ
5644 continue;
5645
5646 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5647 sched_group_span(group));
aaee1203 5648
6a0b19c0
MR
5649 /*
5650 * Tally up the load of all CPUs in the group and find
5651 * the group containing the CPU with most spare capacity.
5652 */
aaee1203 5653 avg_load = 0;
6b94780e 5654 runnable_load = 0;
6a0b19c0 5655 max_spare_cap = 0;
aaee1203 5656
ae4df9d6 5657 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5658 /* Bias balancing toward cpus of our domain */
5659 if (local_group)
5660 load = source_load(i, load_idx);
5661 else
5662 load = target_load(i, load_idx);
5663
6b94780e
VG
5664 runnable_load += load;
5665
5666 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5667
5668 spare_cap = capacity_spare_wake(i, p);
5669
5670 if (spare_cap > max_spare_cap)
5671 max_spare_cap = spare_cap;
aaee1203
PZ
5672 }
5673
63b2ca30 5674 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5675 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5676 group->sgc->capacity;
5677 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5678 group->sgc->capacity;
aaee1203
PZ
5679
5680 if (local_group) {
6b94780e
VG
5681 this_runnable_load = runnable_load;
5682 this_avg_load = avg_load;
6a0b19c0
MR
5683 this_spare = max_spare_cap;
5684 } else {
6b94780e
VG
5685 if (min_runnable_load > (runnable_load + imbalance)) {
5686 /*
5687 * The runnable load is significantly smaller
5688 * so we can pick this new cpu
5689 */
5690 min_runnable_load = runnable_load;
5691 min_avg_load = avg_load;
5692 idlest = group;
5693 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5694 (100*min_avg_load > imbalance_scale*avg_load)) {
5695 /*
5696 * The runnable loads are close so take the
5697 * blocked load into account through avg_load.
5698 */
5699 min_avg_load = avg_load;
6a0b19c0
MR
5700 idlest = group;
5701 }
5702
5703 if (most_spare < max_spare_cap) {
5704 most_spare = max_spare_cap;
5705 most_spare_sg = group;
5706 }
aaee1203
PZ
5707 }
5708 } while (group = group->next, group != sd->groups);
5709
6a0b19c0
MR
5710 /*
5711 * The cross-over point between using spare capacity or least load
5712 * is too conservative for high utilization tasks on partially
5713 * utilized systems if we require spare_capacity > task_util(p),
5714 * so we allow for some task stuffing by using
5715 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5716 *
5717 * Spare capacity can't be used for fork because the utilization has
5718 * not been set yet, we must first select a rq to compute the initial
5719 * utilization.
6a0b19c0 5720 */
f519a3f1
VG
5721 if (sd_flag & SD_BALANCE_FORK)
5722 goto skip_spare;
5723
6a0b19c0 5724 if (this_spare > task_util(p) / 2 &&
6b94780e 5725 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5726 return NULL;
6b94780e
VG
5727
5728 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5729 return most_spare_sg;
5730
f519a3f1 5731skip_spare:
6b94780e
VG
5732 if (!idlest)
5733 return NULL;
5734
5735 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5736 return NULL;
6b94780e
VG
5737
5738 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5739 (100*this_avg_load < imbalance_scale*min_avg_load))
5740 return NULL;
5741
aaee1203
PZ
5742 return idlest;
5743}
5744
5745/*
5746 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5747 */
5748static int
5749find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5750{
5751 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5752 unsigned int min_exit_latency = UINT_MAX;
5753 u64 latest_idle_timestamp = 0;
5754 int least_loaded_cpu = this_cpu;
5755 int shallowest_idle_cpu = -1;
aaee1203
PZ
5756 int i;
5757
eaecf41f
MR
5758 /* Check if we have any choice: */
5759 if (group->group_weight == 1)
ae4df9d6 5760 return cpumask_first(sched_group_span(group));
eaecf41f 5761
aaee1203 5762 /* Traverse only the allowed CPUs */
ae4df9d6 5763 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5764 if (idle_cpu(i)) {
5765 struct rq *rq = cpu_rq(i);
5766 struct cpuidle_state *idle = idle_get_state(rq);
5767 if (idle && idle->exit_latency < min_exit_latency) {
5768 /*
5769 * We give priority to a CPU whose idle state
5770 * has the smallest exit latency irrespective
5771 * of any idle timestamp.
5772 */
5773 min_exit_latency = idle->exit_latency;
5774 latest_idle_timestamp = rq->idle_stamp;
5775 shallowest_idle_cpu = i;
5776 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5777 rq->idle_stamp > latest_idle_timestamp) {
5778 /*
5779 * If equal or no active idle state, then
5780 * the most recently idled CPU might have
5781 * a warmer cache.
5782 */
5783 latest_idle_timestamp = rq->idle_stamp;
5784 shallowest_idle_cpu = i;
5785 }
9f96742a 5786 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5787 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5788 if (load < min_load || (load == min_load && i == this_cpu)) {
5789 min_load = load;
5790 least_loaded_cpu = i;
5791 }
e7693a36
GH
5792 }
5793 }
5794
83a0a96a 5795 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5796}
e7693a36 5797
10e2f1ac
PZ
5798#ifdef CONFIG_SCHED_SMT
5799
5800static inline void set_idle_cores(int cpu, int val)
5801{
5802 struct sched_domain_shared *sds;
5803
5804 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5805 if (sds)
5806 WRITE_ONCE(sds->has_idle_cores, val);
5807}
5808
5809static inline bool test_idle_cores(int cpu, bool def)
5810{
5811 struct sched_domain_shared *sds;
5812
5813 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5814 if (sds)
5815 return READ_ONCE(sds->has_idle_cores);
5816
5817 return def;
5818}
5819
5820/*
5821 * Scans the local SMT mask to see if the entire core is idle, and records this
5822 * information in sd_llc_shared->has_idle_cores.
5823 *
5824 * Since SMT siblings share all cache levels, inspecting this limited remote
5825 * state should be fairly cheap.
5826 */
1b568f0a 5827void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5828{
5829 int core = cpu_of(rq);
5830 int cpu;
5831
5832 rcu_read_lock();
5833 if (test_idle_cores(core, true))
5834 goto unlock;
5835
5836 for_each_cpu(cpu, cpu_smt_mask(core)) {
5837 if (cpu == core)
5838 continue;
5839
5840 if (!idle_cpu(cpu))
5841 goto unlock;
5842 }
5843
5844 set_idle_cores(core, 1);
5845unlock:
5846 rcu_read_unlock();
5847}
5848
5849/*
5850 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5851 * there are no idle cores left in the system; tracked through
5852 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5853 */
5854static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5855{
5856 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5857 int core, cpu;
10e2f1ac 5858
1b568f0a
PZ
5859 if (!static_branch_likely(&sched_smt_present))
5860 return -1;
5861
10e2f1ac
PZ
5862 if (!test_idle_cores(target, false))
5863 return -1;
5864
0c98d344 5865 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5866
c743f0a5 5867 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5868 bool idle = true;
5869
5870 for_each_cpu(cpu, cpu_smt_mask(core)) {
5871 cpumask_clear_cpu(cpu, cpus);
5872 if (!idle_cpu(cpu))
5873 idle = false;
5874 }
5875
5876 if (idle)
5877 return core;
5878 }
5879
5880 /*
5881 * Failed to find an idle core; stop looking for one.
5882 */
5883 set_idle_cores(target, 0);
5884
5885 return -1;
5886}
5887
5888/*
5889 * Scan the local SMT mask for idle CPUs.
5890 */
5891static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5892{
5893 int cpu;
5894
1b568f0a
PZ
5895 if (!static_branch_likely(&sched_smt_present))
5896 return -1;
5897
10e2f1ac 5898 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5899 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5900 continue;
5901 if (idle_cpu(cpu))
5902 return cpu;
5903 }
5904
5905 return -1;
5906}
5907
5908#else /* CONFIG_SCHED_SMT */
5909
5910static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5911{
5912 return -1;
5913}
5914
5915static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5916{
5917 return -1;
5918}
5919
5920#endif /* CONFIG_SCHED_SMT */
5921
5922/*
5923 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5924 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5925 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5926 */
10e2f1ac
PZ
5927static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5928{
9cfb38a7 5929 struct sched_domain *this_sd;
1ad3aaf3 5930 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5931 u64 time, cost;
5932 s64 delta;
1ad3aaf3 5933 int cpu, nr = INT_MAX;
10e2f1ac 5934
9cfb38a7
WL
5935 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5936 if (!this_sd)
5937 return -1;
5938
10e2f1ac
PZ
5939 /*
5940 * Due to large variance we need a large fuzz factor; hackbench in
5941 * particularly is sensitive here.
5942 */
1ad3aaf3
PZ
5943 avg_idle = this_rq()->avg_idle / 512;
5944 avg_cost = this_sd->avg_scan_cost + 1;
5945
5946 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5947 return -1;
5948
1ad3aaf3
PZ
5949 if (sched_feat(SIS_PROP)) {
5950 u64 span_avg = sd->span_weight * avg_idle;
5951 if (span_avg > 4*avg_cost)
5952 nr = div_u64(span_avg, avg_cost);
5953 else
5954 nr = 4;
5955 }
5956
10e2f1ac
PZ
5957 time = local_clock();
5958
c743f0a5 5959 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5960 if (!--nr)
5961 return -1;
0c98d344 5962 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5963 continue;
5964 if (idle_cpu(cpu))
5965 break;
5966 }
5967
5968 time = local_clock() - time;
5969 cost = this_sd->avg_scan_cost;
5970 delta = (s64)(time - cost) / 8;
5971 this_sd->avg_scan_cost += delta;
5972
5973 return cpu;
5974}
5975
5976/*
5977 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5978 */
772bd008 5979static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5980{
99bd5e2f 5981 struct sched_domain *sd;
10e2f1ac 5982 int i;
a50bde51 5983
e0a79f52
MG
5984 if (idle_cpu(target))
5985 return target;
99bd5e2f
SS
5986
5987 /*
10e2f1ac 5988 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5989 */
772bd008
MR
5990 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5991 return prev;
a50bde51 5992
518cd623 5993 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5994 if (!sd)
5995 return target;
772bd008 5996
10e2f1ac
PZ
5997 i = select_idle_core(p, sd, target);
5998 if ((unsigned)i < nr_cpumask_bits)
5999 return i;
37407ea7 6000
10e2f1ac
PZ
6001 i = select_idle_cpu(p, sd, target);
6002 if ((unsigned)i < nr_cpumask_bits)
6003 return i;
6004
6005 i = select_idle_smt(p, sd, target);
6006 if ((unsigned)i < nr_cpumask_bits)
6007 return i;
970e1789 6008
a50bde51
PZ
6009 return target;
6010}
231678b7 6011
8bb5b00c 6012/*
9e91d61d 6013 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 6014 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
6015 * compare the utilization with the capacity of the CPU that is available for
6016 * CFS task (ie cpu_capacity).
231678b7
DE
6017 *
6018 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6019 * recent utilization of currently non-runnable tasks on a CPU. It represents
6020 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6021 * capacity_orig is the cpu_capacity available at the highest frequency
6022 * (arch_scale_freq_capacity()).
6023 * The utilization of a CPU converges towards a sum equal to or less than the
6024 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6025 * the running time on this CPU scaled by capacity_curr.
6026 *
6027 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6028 * higher than capacity_orig because of unfortunate rounding in
6029 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6030 * the average stabilizes with the new running time. We need to check that the
6031 * utilization stays within the range of [0..capacity_orig] and cap it if
6032 * necessary. Without utilization capping, a group could be seen as overloaded
6033 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6034 * available capacity. We allow utilization to overshoot capacity_curr (but not
6035 * capacity_orig) as it useful for predicting the capacity required after task
6036 * migrations (scheduler-driven DVFS).
8bb5b00c 6037 */
9e91d61d 6038static int cpu_util(int cpu)
8bb5b00c 6039{
9e91d61d 6040 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
6041 unsigned long capacity = capacity_orig_of(cpu);
6042
231678b7 6043 return (util >= capacity) ? capacity : util;
8bb5b00c 6044}
a50bde51 6045
3273163c
MR
6046static inline int task_util(struct task_struct *p)
6047{
6048 return p->se.avg.util_avg;
6049}
6050
104cb16d
MR
6051/*
6052 * cpu_util_wake: Compute cpu utilization with any contributions from
6053 * the waking task p removed.
6054 */
6055static int cpu_util_wake(int cpu, struct task_struct *p)
6056{
6057 unsigned long util, capacity;
6058
6059 /* Task has no contribution or is new */
6060 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6061 return cpu_util(cpu);
6062
6063 capacity = capacity_orig_of(cpu);
6064 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6065
6066 return (util >= capacity) ? capacity : util;
6067}
6068
3273163c
MR
6069/*
6070 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6071 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6072 *
6073 * In that case WAKE_AFFINE doesn't make sense and we'll let
6074 * BALANCE_WAKE sort things out.
6075 */
6076static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6077{
6078 long min_cap, max_cap;
6079
6080 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6081 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6082
6083 /* Minimum capacity is close to max, no need to abort wake_affine */
6084 if (max_cap - min_cap < max_cap >> 3)
6085 return 0;
6086
104cb16d
MR
6087 /* Bring task utilization in sync with prev_cpu */
6088 sync_entity_load_avg(&p->se);
6089
3273163c
MR
6090 return min_cap * 1024 < task_util(p) * capacity_margin;
6091}
6092
aaee1203 6093/*
de91b9cb
MR
6094 * select_task_rq_fair: Select target runqueue for the waking task in domains
6095 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6096 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6097 *
de91b9cb
MR
6098 * Balances load by selecting the idlest cpu in the idlest group, or under
6099 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 6100 *
de91b9cb 6101 * Returns the target cpu number.
aaee1203
PZ
6102 *
6103 * preempt must be disabled.
6104 */
0017d735 6105static int
ac66f547 6106select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6107{
29cd8bae 6108 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 6109 int cpu = smp_processor_id();
63b0e9ed 6110 int new_cpu = prev_cpu;
99bd5e2f 6111 int want_affine = 0;
5158f4e4 6112 int sync = wake_flags & WF_SYNC;
c88d5910 6113
c58d25f3
PZ
6114 if (sd_flag & SD_BALANCE_WAKE) {
6115 record_wakee(p);
3273163c 6116 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6117 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6118 }
aaee1203 6119
dce840a0 6120 rcu_read_lock();
aaee1203 6121 for_each_domain(cpu, tmp) {
e4f42888 6122 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6123 break;
e4f42888 6124
fe3bcfe1 6125 /*
99bd5e2f
SS
6126 * If both cpu and prev_cpu are part of this domain,
6127 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6128 */
99bd5e2f
SS
6129 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6130 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6131 affine_sd = tmp;
29cd8bae 6132 break;
f03542a7 6133 }
29cd8bae 6134
f03542a7 6135 if (tmp->flags & sd_flag)
29cd8bae 6136 sd = tmp;
63b0e9ed
MG
6137 else if (!want_affine)
6138 break;
29cd8bae
PZ
6139 }
6140
63b0e9ed
MG
6141 if (affine_sd) {
6142 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6143 if (cpu == prev_cpu)
6144 goto pick_cpu;
6145
6146 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6147 new_cpu = cpu;
8b911acd 6148 }
e7693a36 6149
63b0e9ed 6150 if (!sd) {
7d894e6e 6151 pick_cpu:
63b0e9ed 6152 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6153 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6154
6155 } else while (sd) {
aaee1203 6156 struct sched_group *group;
c88d5910 6157 int weight;
098fb9db 6158
0763a660 6159 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6160 sd = sd->child;
6161 continue;
6162 }
098fb9db 6163
c44f2a02 6164 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6165 if (!group) {
6166 sd = sd->child;
6167 continue;
6168 }
4ae7d5ce 6169
d7c33c49 6170 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6171 if (new_cpu == -1 || new_cpu == cpu) {
6172 /* Now try balancing at a lower domain level of cpu */
6173 sd = sd->child;
6174 continue;
e7693a36 6175 }
aaee1203
PZ
6176
6177 /* Now try balancing at a lower domain level of new_cpu */
6178 cpu = new_cpu;
669c55e9 6179 weight = sd->span_weight;
aaee1203
PZ
6180 sd = NULL;
6181 for_each_domain(cpu, tmp) {
669c55e9 6182 if (weight <= tmp->span_weight)
aaee1203 6183 break;
0763a660 6184 if (tmp->flags & sd_flag)
aaee1203
PZ
6185 sd = tmp;
6186 }
6187 /* while loop will break here if sd == NULL */
e7693a36 6188 }
dce840a0 6189 rcu_read_unlock();
e7693a36 6190
c88d5910 6191 return new_cpu;
e7693a36 6192}
0a74bef8
PT
6193
6194/*
6195 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6196 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6197 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6198 */
5a4fd036 6199static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6200{
59efa0ba
PZ
6201 /*
6202 * As blocked tasks retain absolute vruntime the migration needs to
6203 * deal with this by subtracting the old and adding the new
6204 * min_vruntime -- the latter is done by enqueue_entity() when placing
6205 * the task on the new runqueue.
6206 */
6207 if (p->state == TASK_WAKING) {
6208 struct sched_entity *se = &p->se;
6209 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6210 u64 min_vruntime;
6211
6212#ifndef CONFIG_64BIT
6213 u64 min_vruntime_copy;
6214
6215 do {
6216 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6217 smp_rmb();
6218 min_vruntime = cfs_rq->min_vruntime;
6219 } while (min_vruntime != min_vruntime_copy);
6220#else
6221 min_vruntime = cfs_rq->min_vruntime;
6222#endif
6223
6224 se->vruntime -= min_vruntime;
6225 }
6226
aff3e498 6227 /*
9d89c257
YD
6228 * We are supposed to update the task to "current" time, then its up to date
6229 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6230 * what current time is, so simply throw away the out-of-date time. This
6231 * will result in the wakee task is less decayed, but giving the wakee more
6232 * load sounds not bad.
aff3e498 6233 */
9d89c257
YD
6234 remove_entity_load_avg(&p->se);
6235
6236 /* Tell new CPU we are migrated */
6237 p->se.avg.last_update_time = 0;
3944a927
BS
6238
6239 /* We have migrated, no longer consider this task hot */
9d89c257 6240 p->se.exec_start = 0;
0a74bef8 6241}
12695578
YD
6242
6243static void task_dead_fair(struct task_struct *p)
6244{
6245 remove_entity_load_avg(&p->se);
6246}
e7693a36
GH
6247#endif /* CONFIG_SMP */
6248
e52fb7c0
PZ
6249static unsigned long
6250wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6251{
6252 unsigned long gran = sysctl_sched_wakeup_granularity;
6253
6254 /*
e52fb7c0
PZ
6255 * Since its curr running now, convert the gran from real-time
6256 * to virtual-time in his units.
13814d42
MG
6257 *
6258 * By using 'se' instead of 'curr' we penalize light tasks, so
6259 * they get preempted easier. That is, if 'se' < 'curr' then
6260 * the resulting gran will be larger, therefore penalizing the
6261 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6262 * be smaller, again penalizing the lighter task.
6263 *
6264 * This is especially important for buddies when the leftmost
6265 * task is higher priority than the buddy.
0bbd3336 6266 */
f4ad9bd2 6267 return calc_delta_fair(gran, se);
0bbd3336
PZ
6268}
6269
464b7527
PZ
6270/*
6271 * Should 'se' preempt 'curr'.
6272 *
6273 * |s1
6274 * |s2
6275 * |s3
6276 * g
6277 * |<--->|c
6278 *
6279 * w(c, s1) = -1
6280 * w(c, s2) = 0
6281 * w(c, s3) = 1
6282 *
6283 */
6284static int
6285wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6286{
6287 s64 gran, vdiff = curr->vruntime - se->vruntime;
6288
6289 if (vdiff <= 0)
6290 return -1;
6291
e52fb7c0 6292 gran = wakeup_gran(curr, se);
464b7527
PZ
6293 if (vdiff > gran)
6294 return 1;
6295
6296 return 0;
6297}
6298
02479099
PZ
6299static void set_last_buddy(struct sched_entity *se)
6300{
69c80f3e
VP
6301 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6302 return;
6303
c5ae366e
DA
6304 for_each_sched_entity(se) {
6305 if (SCHED_WARN_ON(!se->on_rq))
6306 return;
69c80f3e 6307 cfs_rq_of(se)->last = se;
c5ae366e 6308 }
02479099
PZ
6309}
6310
6311static void set_next_buddy(struct sched_entity *se)
6312{
69c80f3e
VP
6313 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6314 return;
6315
c5ae366e
DA
6316 for_each_sched_entity(se) {
6317 if (SCHED_WARN_ON(!se->on_rq))
6318 return;
69c80f3e 6319 cfs_rq_of(se)->next = se;
c5ae366e 6320 }
02479099
PZ
6321}
6322
ac53db59
RR
6323static void set_skip_buddy(struct sched_entity *se)
6324{
69c80f3e
VP
6325 for_each_sched_entity(se)
6326 cfs_rq_of(se)->skip = se;
ac53db59
RR
6327}
6328
bf0f6f24
IM
6329/*
6330 * Preempt the current task with a newly woken task if needed:
6331 */
5a9b86f6 6332static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6333{
6334 struct task_struct *curr = rq->curr;
8651a86c 6335 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6336 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6337 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6338 int next_buddy_marked = 0;
bf0f6f24 6339
4ae7d5ce
IM
6340 if (unlikely(se == pse))
6341 return;
6342
5238cdd3 6343 /*
163122b7 6344 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6345 * unconditionally check_prempt_curr() after an enqueue (which may have
6346 * lead to a throttle). This both saves work and prevents false
6347 * next-buddy nomination below.
6348 */
6349 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6350 return;
6351
2f36825b 6352 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6353 set_next_buddy(pse);
2f36825b
VP
6354 next_buddy_marked = 1;
6355 }
57fdc26d 6356
aec0a514
BR
6357 /*
6358 * We can come here with TIF_NEED_RESCHED already set from new task
6359 * wake up path.
5238cdd3
PT
6360 *
6361 * Note: this also catches the edge-case of curr being in a throttled
6362 * group (e.g. via set_curr_task), since update_curr() (in the
6363 * enqueue of curr) will have resulted in resched being set. This
6364 * prevents us from potentially nominating it as a false LAST_BUDDY
6365 * below.
aec0a514
BR
6366 */
6367 if (test_tsk_need_resched(curr))
6368 return;
6369
a2f5c9ab
DH
6370 /* Idle tasks are by definition preempted by non-idle tasks. */
6371 if (unlikely(curr->policy == SCHED_IDLE) &&
6372 likely(p->policy != SCHED_IDLE))
6373 goto preempt;
6374
91c234b4 6375 /*
a2f5c9ab
DH
6376 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6377 * is driven by the tick):
91c234b4 6378 */
8ed92e51 6379 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6380 return;
bf0f6f24 6381
464b7527 6382 find_matching_se(&se, &pse);
9bbd7374 6383 update_curr(cfs_rq_of(se));
002f128b 6384 BUG_ON(!pse);
2f36825b
VP
6385 if (wakeup_preempt_entity(se, pse) == 1) {
6386 /*
6387 * Bias pick_next to pick the sched entity that is
6388 * triggering this preemption.
6389 */
6390 if (!next_buddy_marked)
6391 set_next_buddy(pse);
3a7e73a2 6392 goto preempt;
2f36825b 6393 }
464b7527 6394
3a7e73a2 6395 return;
a65ac745 6396
3a7e73a2 6397preempt:
8875125e 6398 resched_curr(rq);
3a7e73a2
PZ
6399 /*
6400 * Only set the backward buddy when the current task is still
6401 * on the rq. This can happen when a wakeup gets interleaved
6402 * with schedule on the ->pre_schedule() or idle_balance()
6403 * point, either of which can * drop the rq lock.
6404 *
6405 * Also, during early boot the idle thread is in the fair class,
6406 * for obvious reasons its a bad idea to schedule back to it.
6407 */
6408 if (unlikely(!se->on_rq || curr == rq->idle))
6409 return;
6410
6411 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6412 set_last_buddy(se);
bf0f6f24
IM
6413}
6414
606dba2e 6415static struct task_struct *
d8ac8971 6416pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6417{
6418 struct cfs_rq *cfs_rq = &rq->cfs;
6419 struct sched_entity *se;
678d5718 6420 struct task_struct *p;
37e117c0 6421 int new_tasks;
678d5718 6422
6e83125c 6423again:
678d5718 6424 if (!cfs_rq->nr_running)
38033c37 6425 goto idle;
678d5718 6426
9674f5ca 6427#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6428 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6429 goto simple;
6430
6431 /*
6432 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6433 * likely that a next task is from the same cgroup as the current.
6434 *
6435 * Therefore attempt to avoid putting and setting the entire cgroup
6436 * hierarchy, only change the part that actually changes.
6437 */
6438
6439 do {
6440 struct sched_entity *curr = cfs_rq->curr;
6441
6442 /*
6443 * Since we got here without doing put_prev_entity() we also
6444 * have to consider cfs_rq->curr. If it is still a runnable
6445 * entity, update_curr() will update its vruntime, otherwise
6446 * forget we've ever seen it.
6447 */
54d27365
BS
6448 if (curr) {
6449 if (curr->on_rq)
6450 update_curr(cfs_rq);
6451 else
6452 curr = NULL;
678d5718 6453
54d27365
BS
6454 /*
6455 * This call to check_cfs_rq_runtime() will do the
6456 * throttle and dequeue its entity in the parent(s).
9674f5ca 6457 * Therefore the nr_running test will indeed
54d27365
BS
6458 * be correct.
6459 */
9674f5ca
VK
6460 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6461 cfs_rq = &rq->cfs;
6462
6463 if (!cfs_rq->nr_running)
6464 goto idle;
6465
54d27365 6466 goto simple;
9674f5ca 6467 }
54d27365 6468 }
678d5718
PZ
6469
6470 se = pick_next_entity(cfs_rq, curr);
6471 cfs_rq = group_cfs_rq(se);
6472 } while (cfs_rq);
6473
6474 p = task_of(se);
6475
6476 /*
6477 * Since we haven't yet done put_prev_entity and if the selected task
6478 * is a different task than we started out with, try and touch the
6479 * least amount of cfs_rqs.
6480 */
6481 if (prev != p) {
6482 struct sched_entity *pse = &prev->se;
6483
6484 while (!(cfs_rq = is_same_group(se, pse))) {
6485 int se_depth = se->depth;
6486 int pse_depth = pse->depth;
6487
6488 if (se_depth <= pse_depth) {
6489 put_prev_entity(cfs_rq_of(pse), pse);
6490 pse = parent_entity(pse);
6491 }
6492 if (se_depth >= pse_depth) {
6493 set_next_entity(cfs_rq_of(se), se);
6494 se = parent_entity(se);
6495 }
6496 }
6497
6498 put_prev_entity(cfs_rq, pse);
6499 set_next_entity(cfs_rq, se);
6500 }
6501
6502 if (hrtick_enabled(rq))
6503 hrtick_start_fair(rq, p);
6504
6505 return p;
6506simple:
678d5718 6507#endif
bf0f6f24 6508
3f1d2a31 6509 put_prev_task(rq, prev);
606dba2e 6510
bf0f6f24 6511 do {
678d5718 6512 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6513 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6514 cfs_rq = group_cfs_rq(se);
6515 } while (cfs_rq);
6516
8f4d37ec 6517 p = task_of(se);
678d5718 6518
b39e66ea
MG
6519 if (hrtick_enabled(rq))
6520 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6521
6522 return p;
38033c37
PZ
6523
6524idle:
46f69fa3
MF
6525 new_tasks = idle_balance(rq, rf);
6526
37e117c0
PZ
6527 /*
6528 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6529 * possible for any higher priority task to appear. In that case we
6530 * must re-start the pick_next_entity() loop.
6531 */
e4aa358b 6532 if (new_tasks < 0)
37e117c0
PZ
6533 return RETRY_TASK;
6534
e4aa358b 6535 if (new_tasks > 0)
38033c37 6536 goto again;
38033c37
PZ
6537
6538 return NULL;
bf0f6f24
IM
6539}
6540
6541/*
6542 * Account for a descheduled task:
6543 */
31ee529c 6544static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6545{
6546 struct sched_entity *se = &prev->se;
6547 struct cfs_rq *cfs_rq;
6548
6549 for_each_sched_entity(se) {
6550 cfs_rq = cfs_rq_of(se);
ab6cde26 6551 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6552 }
6553}
6554
ac53db59
RR
6555/*
6556 * sched_yield() is very simple
6557 *
6558 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6559 */
6560static void yield_task_fair(struct rq *rq)
6561{
6562 struct task_struct *curr = rq->curr;
6563 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6564 struct sched_entity *se = &curr->se;
6565
6566 /*
6567 * Are we the only task in the tree?
6568 */
6569 if (unlikely(rq->nr_running == 1))
6570 return;
6571
6572 clear_buddies(cfs_rq, se);
6573
6574 if (curr->policy != SCHED_BATCH) {
6575 update_rq_clock(rq);
6576 /*
6577 * Update run-time statistics of the 'current'.
6578 */
6579 update_curr(cfs_rq);
916671c0
MG
6580 /*
6581 * Tell update_rq_clock() that we've just updated,
6582 * so we don't do microscopic update in schedule()
6583 * and double the fastpath cost.
6584 */
9edfbfed 6585 rq_clock_skip_update(rq, true);
ac53db59
RR
6586 }
6587
6588 set_skip_buddy(se);
6589}
6590
d95f4122
MG
6591static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6592{
6593 struct sched_entity *se = &p->se;
6594
5238cdd3
PT
6595 /* throttled hierarchies are not runnable */
6596 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6597 return false;
6598
6599 /* Tell the scheduler that we'd really like pse to run next. */
6600 set_next_buddy(se);
6601
d95f4122
MG
6602 yield_task_fair(rq);
6603
6604 return true;
6605}
6606
681f3e68 6607#ifdef CONFIG_SMP
bf0f6f24 6608/**************************************************
e9c84cb8
PZ
6609 * Fair scheduling class load-balancing methods.
6610 *
6611 * BASICS
6612 *
6613 * The purpose of load-balancing is to achieve the same basic fairness the
6614 * per-cpu scheduler provides, namely provide a proportional amount of compute
6615 * time to each task. This is expressed in the following equation:
6616 *
6617 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6618 *
6619 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6620 * W_i,0 is defined as:
6621 *
6622 * W_i,0 = \Sum_j w_i,j (2)
6623 *
6624 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6625 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6626 *
6627 * The weight average is an exponential decay average of the instantaneous
6628 * weight:
6629 *
6630 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6631 *
ced549fa 6632 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6633 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6634 * can also include other factors [XXX].
6635 *
6636 * To achieve this balance we define a measure of imbalance which follows
6637 * directly from (1):
6638 *
ced549fa 6639 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6640 *
6641 * We them move tasks around to minimize the imbalance. In the continuous
6642 * function space it is obvious this converges, in the discrete case we get
6643 * a few fun cases generally called infeasible weight scenarios.
6644 *
6645 * [XXX expand on:
6646 * - infeasible weights;
6647 * - local vs global optima in the discrete case. ]
6648 *
6649 *
6650 * SCHED DOMAINS
6651 *
6652 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6653 * for all i,j solution, we create a tree of cpus that follows the hardware
6654 * topology where each level pairs two lower groups (or better). This results
6655 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6656 * tree to only the first of the previous level and we decrease the frequency
6657 * of load-balance at each level inv. proportional to the number of cpus in
6658 * the groups.
6659 *
6660 * This yields:
6661 *
6662 * log_2 n 1 n
6663 * \Sum { --- * --- * 2^i } = O(n) (5)
6664 * i = 0 2^i 2^i
6665 * `- size of each group
6666 * | | `- number of cpus doing load-balance
6667 * | `- freq
6668 * `- sum over all levels
6669 *
6670 * Coupled with a limit on how many tasks we can migrate every balance pass,
6671 * this makes (5) the runtime complexity of the balancer.
6672 *
6673 * An important property here is that each CPU is still (indirectly) connected
6674 * to every other cpu in at most O(log n) steps:
6675 *
6676 * The adjacency matrix of the resulting graph is given by:
6677 *
97a7142f 6678 * log_2 n
e9c84cb8
PZ
6679 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6680 * k = 0
6681 *
6682 * And you'll find that:
6683 *
6684 * A^(log_2 n)_i,j != 0 for all i,j (7)
6685 *
6686 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6687 * The task movement gives a factor of O(m), giving a convergence complexity
6688 * of:
6689 *
6690 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6691 *
6692 *
6693 * WORK CONSERVING
6694 *
6695 * In order to avoid CPUs going idle while there's still work to do, new idle
6696 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6697 * tree itself instead of relying on other CPUs to bring it work.
6698 *
6699 * This adds some complexity to both (5) and (8) but it reduces the total idle
6700 * time.
6701 *
6702 * [XXX more?]
6703 *
6704 *
6705 * CGROUPS
6706 *
6707 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6708 *
6709 * s_k,i
6710 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6711 * S_k
6712 *
6713 * Where
6714 *
6715 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6716 *
6717 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6718 *
6719 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6720 * property.
6721 *
6722 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6723 * rewrite all of this once again.]
97a7142f 6724 */
bf0f6f24 6725
ed387b78
HS
6726static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6727
0ec8aa00
PZ
6728enum fbq_type { regular, remote, all };
6729
ddcdf6e7 6730#define LBF_ALL_PINNED 0x01
367456c7 6731#define LBF_NEED_BREAK 0x02
6263322c
PZ
6732#define LBF_DST_PINNED 0x04
6733#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6734
6735struct lb_env {
6736 struct sched_domain *sd;
6737
ddcdf6e7 6738 struct rq *src_rq;
85c1e7da 6739 int src_cpu;
ddcdf6e7
PZ
6740
6741 int dst_cpu;
6742 struct rq *dst_rq;
6743
88b8dac0
SV
6744 struct cpumask *dst_grpmask;
6745 int new_dst_cpu;
ddcdf6e7 6746 enum cpu_idle_type idle;
bd939f45 6747 long imbalance;
b9403130
MW
6748 /* The set of CPUs under consideration for load-balancing */
6749 struct cpumask *cpus;
6750
ddcdf6e7 6751 unsigned int flags;
367456c7
PZ
6752
6753 unsigned int loop;
6754 unsigned int loop_break;
6755 unsigned int loop_max;
0ec8aa00
PZ
6756
6757 enum fbq_type fbq_type;
163122b7 6758 struct list_head tasks;
ddcdf6e7
PZ
6759};
6760
029632fb
PZ
6761/*
6762 * Is this task likely cache-hot:
6763 */
5d5e2b1b 6764static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6765{
6766 s64 delta;
6767
e5673f28
KT
6768 lockdep_assert_held(&env->src_rq->lock);
6769
029632fb
PZ
6770 if (p->sched_class != &fair_sched_class)
6771 return 0;
6772
6773 if (unlikely(p->policy == SCHED_IDLE))
6774 return 0;
6775
6776 /*
6777 * Buddy candidates are cache hot:
6778 */
5d5e2b1b 6779 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6780 (&p->se == cfs_rq_of(&p->se)->next ||
6781 &p->se == cfs_rq_of(&p->se)->last))
6782 return 1;
6783
6784 if (sysctl_sched_migration_cost == -1)
6785 return 1;
6786 if (sysctl_sched_migration_cost == 0)
6787 return 0;
6788
5d5e2b1b 6789 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6790
6791 return delta < (s64)sysctl_sched_migration_cost;
6792}
6793
3a7053b3 6794#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6795/*
2a1ed24c
SD
6796 * Returns 1, if task migration degrades locality
6797 * Returns 0, if task migration improves locality i.e migration preferred.
6798 * Returns -1, if task migration is not affected by locality.
c1ceac62 6799 */
2a1ed24c 6800static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6801{
b1ad065e 6802 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6803 unsigned long src_faults, dst_faults;
3a7053b3
MG
6804 int src_nid, dst_nid;
6805
2a595721 6806 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6807 return -1;
6808
c3b9bc5b 6809 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6810 return -1;
7a0f3083
MG
6811
6812 src_nid = cpu_to_node(env->src_cpu);
6813 dst_nid = cpu_to_node(env->dst_cpu);
6814
83e1d2cd 6815 if (src_nid == dst_nid)
2a1ed24c 6816 return -1;
7a0f3083 6817
2a1ed24c
SD
6818 /* Migrating away from the preferred node is always bad. */
6819 if (src_nid == p->numa_preferred_nid) {
6820 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6821 return 1;
6822 else
6823 return -1;
6824 }
b1ad065e 6825
c1ceac62
RR
6826 /* Encourage migration to the preferred node. */
6827 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6828 return 0;
b1ad065e 6829
739294fb
RR
6830 /* Leaving a core idle is often worse than degrading locality. */
6831 if (env->idle != CPU_NOT_IDLE)
6832 return -1;
6833
c1ceac62
RR
6834 if (numa_group) {
6835 src_faults = group_faults(p, src_nid);
6836 dst_faults = group_faults(p, dst_nid);
6837 } else {
6838 src_faults = task_faults(p, src_nid);
6839 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6840 }
6841
c1ceac62 6842 return dst_faults < src_faults;
7a0f3083
MG
6843}
6844
3a7053b3 6845#else
2a1ed24c 6846static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6847 struct lb_env *env)
6848{
2a1ed24c 6849 return -1;
7a0f3083 6850}
3a7053b3
MG
6851#endif
6852
1e3c88bd
PZ
6853/*
6854 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6855 */
6856static
8e45cb54 6857int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6858{
2a1ed24c 6859 int tsk_cache_hot;
e5673f28
KT
6860
6861 lockdep_assert_held(&env->src_rq->lock);
6862
1e3c88bd
PZ
6863 /*
6864 * We do not migrate tasks that are:
d3198084 6865 * 1) throttled_lb_pair, or
1e3c88bd 6866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6867 * 3) running (obviously), or
6868 * 4) are cache-hot on their current CPU.
1e3c88bd 6869 */
d3198084
JK
6870 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6871 return 0;
6872
0c98d344 6873 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6874 int cpu;
88b8dac0 6875
ae92882e 6876 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6877
6263322c
PZ
6878 env->flags |= LBF_SOME_PINNED;
6879
88b8dac0
SV
6880 /*
6881 * Remember if this task can be migrated to any other cpu in
6882 * our sched_group. We may want to revisit it if we couldn't
6883 * meet load balance goals by pulling other tasks on src_cpu.
6884 *
65a4433a
JH
6885 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6886 * already computed one in current iteration.
88b8dac0 6887 */
65a4433a 6888 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6889 return 0;
6890
e02e60c1
JK
6891 /* Prevent to re-select dst_cpu via env's cpus */
6892 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6893 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6894 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6895 env->new_dst_cpu = cpu;
6896 break;
6897 }
88b8dac0 6898 }
e02e60c1 6899
1e3c88bd
PZ
6900 return 0;
6901 }
88b8dac0
SV
6902
6903 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6904 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6905
ddcdf6e7 6906 if (task_running(env->src_rq, p)) {
ae92882e 6907 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6908 return 0;
6909 }
6910
6911 /*
6912 * Aggressive migration if:
3a7053b3
MG
6913 * 1) destination numa is preferred
6914 * 2) task is cache cold, or
6915 * 3) too many balance attempts have failed.
1e3c88bd 6916 */
2a1ed24c
SD
6917 tsk_cache_hot = migrate_degrades_locality(p, env);
6918 if (tsk_cache_hot == -1)
6919 tsk_cache_hot = task_hot(p, env);
3a7053b3 6920
2a1ed24c 6921 if (tsk_cache_hot <= 0 ||
7a96c231 6922 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6923 if (tsk_cache_hot == 1) {
ae92882e
JP
6924 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6925 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6926 }
1e3c88bd
PZ
6927 return 1;
6928 }
6929
ae92882e 6930 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6931 return 0;
1e3c88bd
PZ
6932}
6933
897c395f 6934/*
163122b7
KT
6935 * detach_task() -- detach the task for the migration specified in env
6936 */
6937static void detach_task(struct task_struct *p, struct lb_env *env)
6938{
6939 lockdep_assert_held(&env->src_rq->lock);
6940
163122b7 6941 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6942 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6943 set_task_cpu(p, env->dst_cpu);
6944}
6945
897c395f 6946/*
e5673f28 6947 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6948 * part of active balancing operations within "domain".
897c395f 6949 *
e5673f28 6950 * Returns a task if successful and NULL otherwise.
897c395f 6951 */
e5673f28 6952static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6953{
6954 struct task_struct *p, *n;
897c395f 6955
e5673f28
KT
6956 lockdep_assert_held(&env->src_rq->lock);
6957
367456c7 6958 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6959 if (!can_migrate_task(p, env))
6960 continue;
897c395f 6961
163122b7 6962 detach_task(p, env);
e5673f28 6963
367456c7 6964 /*
e5673f28 6965 * Right now, this is only the second place where
163122b7 6966 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6967 * so we can safely collect stats here rather than
163122b7 6968 * inside detach_tasks().
367456c7 6969 */
ae92882e 6970 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6971 return p;
897c395f 6972 }
e5673f28 6973 return NULL;
897c395f
PZ
6974}
6975
eb95308e
PZ
6976static const unsigned int sched_nr_migrate_break = 32;
6977
5d6523eb 6978/*
163122b7
KT
6979 * detach_tasks() -- tries to detach up to imbalance weighted load from
6980 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6981 *
163122b7 6982 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6983 */
163122b7 6984static int detach_tasks(struct lb_env *env)
1e3c88bd 6985{
5d6523eb
PZ
6986 struct list_head *tasks = &env->src_rq->cfs_tasks;
6987 struct task_struct *p;
367456c7 6988 unsigned long load;
163122b7
KT
6989 int detached = 0;
6990
6991 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6992
bd939f45 6993 if (env->imbalance <= 0)
5d6523eb 6994 return 0;
1e3c88bd 6995
5d6523eb 6996 while (!list_empty(tasks)) {
985d3a4c
YD
6997 /*
6998 * We don't want to steal all, otherwise we may be treated likewise,
6999 * which could at worst lead to a livelock crash.
7000 */
7001 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7002 break;
7003
5d6523eb 7004 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7005
367456c7
PZ
7006 env->loop++;
7007 /* We've more or less seen every task there is, call it quits */
5d6523eb 7008 if (env->loop > env->loop_max)
367456c7 7009 break;
5d6523eb
PZ
7010
7011 /* take a breather every nr_migrate tasks */
367456c7 7012 if (env->loop > env->loop_break) {
eb95308e 7013 env->loop_break += sched_nr_migrate_break;
8e45cb54 7014 env->flags |= LBF_NEED_BREAK;
ee00e66f 7015 break;
a195f004 7016 }
1e3c88bd 7017
d3198084 7018 if (!can_migrate_task(p, env))
367456c7
PZ
7019 goto next;
7020
7021 load = task_h_load(p);
5d6523eb 7022
eb95308e 7023 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7024 goto next;
7025
bd939f45 7026 if ((load / 2) > env->imbalance)
367456c7 7027 goto next;
1e3c88bd 7028
163122b7
KT
7029 detach_task(p, env);
7030 list_add(&p->se.group_node, &env->tasks);
7031
7032 detached++;
bd939f45 7033 env->imbalance -= load;
1e3c88bd
PZ
7034
7035#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7036 /*
7037 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7038 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7039 * the critical section.
7040 */
5d6523eb 7041 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7042 break;
1e3c88bd
PZ
7043#endif
7044
ee00e66f
PZ
7045 /*
7046 * We only want to steal up to the prescribed amount of
7047 * weighted load.
7048 */
bd939f45 7049 if (env->imbalance <= 0)
ee00e66f 7050 break;
367456c7
PZ
7051
7052 continue;
7053next:
5d6523eb 7054 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 7055 }
5d6523eb 7056
1e3c88bd 7057 /*
163122b7
KT
7058 * Right now, this is one of only two places we collect this stat
7059 * so we can safely collect detach_one_task() stats here rather
7060 * than inside detach_one_task().
1e3c88bd 7061 */
ae92882e 7062 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7063
163122b7
KT
7064 return detached;
7065}
7066
7067/*
7068 * attach_task() -- attach the task detached by detach_task() to its new rq.
7069 */
7070static void attach_task(struct rq *rq, struct task_struct *p)
7071{
7072 lockdep_assert_held(&rq->lock);
7073
7074 BUG_ON(task_rq(p) != rq);
5704ac0a 7075 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7076 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7077 check_preempt_curr(rq, p, 0);
7078}
7079
7080/*
7081 * attach_one_task() -- attaches the task returned from detach_one_task() to
7082 * its new rq.
7083 */
7084static void attach_one_task(struct rq *rq, struct task_struct *p)
7085{
8a8c69c3
PZ
7086 struct rq_flags rf;
7087
7088 rq_lock(rq, &rf);
5704ac0a 7089 update_rq_clock(rq);
163122b7 7090 attach_task(rq, p);
8a8c69c3 7091 rq_unlock(rq, &rf);
163122b7
KT
7092}
7093
7094/*
7095 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7096 * new rq.
7097 */
7098static void attach_tasks(struct lb_env *env)
7099{
7100 struct list_head *tasks = &env->tasks;
7101 struct task_struct *p;
8a8c69c3 7102 struct rq_flags rf;
163122b7 7103
8a8c69c3 7104 rq_lock(env->dst_rq, &rf);
5704ac0a 7105 update_rq_clock(env->dst_rq);
163122b7
KT
7106
7107 while (!list_empty(tasks)) {
7108 p = list_first_entry(tasks, struct task_struct, se.group_node);
7109 list_del_init(&p->se.group_node);
1e3c88bd 7110
163122b7
KT
7111 attach_task(env->dst_rq, p);
7112 }
7113
8a8c69c3 7114 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7115}
7116
230059de 7117#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7118
7119static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7120{
7121 if (cfs_rq->load.weight)
7122 return false;
7123
7124 if (cfs_rq->avg.load_sum)
7125 return false;
7126
7127 if (cfs_rq->avg.util_sum)
7128 return false;
7129
7130 if (cfs_rq->runnable_load_sum)
7131 return false;
7132
7133 return true;
7134}
7135
48a16753 7136static void update_blocked_averages(int cpu)
9e3081ca 7137{
9e3081ca 7138 struct rq *rq = cpu_rq(cpu);
a9e7f654 7139 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7140 struct rq_flags rf;
9e3081ca 7141
8a8c69c3 7142 rq_lock_irqsave(rq, &rf);
48a16753 7143 update_rq_clock(rq);
9d89c257 7144
9763b67f
PZ
7145 /*
7146 * Iterates the task_group tree in a bottom up fashion, see
7147 * list_add_leaf_cfs_rq() for details.
7148 */
a9e7f654 7149 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7150 struct sched_entity *se;
7151
9d89c257
YD
7152 /* throttled entities do not contribute to load */
7153 if (throttled_hierarchy(cfs_rq))
7154 continue;
48a16753 7155
3a123bbb 7156 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7157 update_tg_load_avg(cfs_rq, 0);
4e516076 7158
bc427898
VG
7159 /* Propagate pending load changes to the parent, if any: */
7160 se = cfs_rq->tg->se[cpu];
7161 if (se && !skip_blocked_update(se))
88c0616e 7162 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7163
7164 /*
7165 * There can be a lot of idle CPU cgroups. Don't let fully
7166 * decayed cfs_rqs linger on the list.
7167 */
7168 if (cfs_rq_is_decayed(cfs_rq))
7169 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7170 }
8a8c69c3 7171 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7172}
7173
9763b67f 7174/*
68520796 7175 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7176 * This needs to be done in a top-down fashion because the load of a child
7177 * group is a fraction of its parents load.
7178 */
68520796 7179static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7180{
68520796
VD
7181 struct rq *rq = rq_of(cfs_rq);
7182 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7183 unsigned long now = jiffies;
68520796 7184 unsigned long load;
a35b6466 7185
68520796 7186 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7187 return;
7188
68520796
VD
7189 cfs_rq->h_load_next = NULL;
7190 for_each_sched_entity(se) {
7191 cfs_rq = cfs_rq_of(se);
7192 cfs_rq->h_load_next = se;
7193 if (cfs_rq->last_h_load_update == now)
7194 break;
7195 }
a35b6466 7196
68520796 7197 if (!se) {
7ea241af 7198 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7199 cfs_rq->last_h_load_update = now;
7200 }
7201
7202 while ((se = cfs_rq->h_load_next) != NULL) {
7203 load = cfs_rq->h_load;
7ea241af
YD
7204 load = div64_ul(load * se->avg.load_avg,
7205 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7206 cfs_rq = group_cfs_rq(se);
7207 cfs_rq->h_load = load;
7208 cfs_rq->last_h_load_update = now;
7209 }
9763b67f
PZ
7210}
7211
367456c7 7212static unsigned long task_h_load(struct task_struct *p)
230059de 7213{
367456c7 7214 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7215
68520796 7216 update_cfs_rq_h_load(cfs_rq);
9d89c257 7217 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7218 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7219}
7220#else
48a16753 7221static inline void update_blocked_averages(int cpu)
9e3081ca 7222{
6c1d47c0
VG
7223 struct rq *rq = cpu_rq(cpu);
7224 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7225 struct rq_flags rf;
6c1d47c0 7226
8a8c69c3 7227 rq_lock_irqsave(rq, &rf);
6c1d47c0 7228 update_rq_clock(rq);
3a123bbb 7229 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7230 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7231}
7232
367456c7 7233static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7234{
9d89c257 7235 return p->se.avg.load_avg;
1e3c88bd 7236}
230059de 7237#endif
1e3c88bd 7238
1e3c88bd 7239/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7240
7241enum group_type {
7242 group_other = 0,
7243 group_imbalanced,
7244 group_overloaded,
7245};
7246
1e3c88bd
PZ
7247/*
7248 * sg_lb_stats - stats of a sched_group required for load_balancing
7249 */
7250struct sg_lb_stats {
7251 unsigned long avg_load; /*Avg load across the CPUs of the group */
7252 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7253 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7254 unsigned long load_per_task;
63b2ca30 7255 unsigned long group_capacity;
9e91d61d 7256 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7257 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7258 unsigned int idle_cpus;
7259 unsigned int group_weight;
caeb178c 7260 enum group_type group_type;
ea67821b 7261 int group_no_capacity;
0ec8aa00
PZ
7262#ifdef CONFIG_NUMA_BALANCING
7263 unsigned int nr_numa_running;
7264 unsigned int nr_preferred_running;
7265#endif
1e3c88bd
PZ
7266};
7267
56cf515b
JK
7268/*
7269 * sd_lb_stats - Structure to store the statistics of a sched_domain
7270 * during load balancing.
7271 */
7272struct sd_lb_stats {
7273 struct sched_group *busiest; /* Busiest group in this sd */
7274 struct sched_group *local; /* Local group in this sd */
90001d67 7275 unsigned long total_running;
56cf515b 7276 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7277 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7278 unsigned long avg_load; /* Average load across all groups in sd */
7279
56cf515b 7280 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7281 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7282};
7283
147c5fc2
PZ
7284static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7285{
7286 /*
7287 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7288 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7289 * We must however clear busiest_stat::avg_load because
7290 * update_sd_pick_busiest() reads this before assignment.
7291 */
7292 *sds = (struct sd_lb_stats){
7293 .busiest = NULL,
7294 .local = NULL,
90001d67 7295 .total_running = 0UL,
147c5fc2 7296 .total_load = 0UL,
63b2ca30 7297 .total_capacity = 0UL,
147c5fc2
PZ
7298 .busiest_stat = {
7299 .avg_load = 0UL,
caeb178c
RR
7300 .sum_nr_running = 0,
7301 .group_type = group_other,
147c5fc2
PZ
7302 },
7303 };
7304}
7305
1e3c88bd
PZ
7306/**
7307 * get_sd_load_idx - Obtain the load index for a given sched domain.
7308 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7309 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7310 *
7311 * Return: The load index.
1e3c88bd
PZ
7312 */
7313static inline int get_sd_load_idx(struct sched_domain *sd,
7314 enum cpu_idle_type idle)
7315{
7316 int load_idx;
7317
7318 switch (idle) {
7319 case CPU_NOT_IDLE:
7320 load_idx = sd->busy_idx;
7321 break;
7322
7323 case CPU_NEWLY_IDLE:
7324 load_idx = sd->newidle_idx;
7325 break;
7326 default:
7327 load_idx = sd->idle_idx;
7328 break;
7329 }
7330
7331 return load_idx;
7332}
7333
ced549fa 7334static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7335{
7336 struct rq *rq = cpu_rq(cpu);
b5b4860d 7337 u64 total, used, age_stamp, avg;
cadefd3d 7338 s64 delta;
1e3c88bd 7339
b654f7de
PZ
7340 /*
7341 * Since we're reading these variables without serialization make sure
7342 * we read them once before doing sanity checks on them.
7343 */
316c1608
JL
7344 age_stamp = READ_ONCE(rq->age_stamp);
7345 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7346 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7347
cadefd3d
PZ
7348 if (unlikely(delta < 0))
7349 delta = 0;
7350
7351 total = sched_avg_period() + delta;
aa483808 7352
b5b4860d 7353 used = div_u64(avg, total);
1e3c88bd 7354
b5b4860d
VG
7355 if (likely(used < SCHED_CAPACITY_SCALE))
7356 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7357
b5b4860d 7358 return 1;
1e3c88bd
PZ
7359}
7360
ced549fa 7361static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7362{
8cd5601c 7363 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7364 struct sched_group *sdg = sd->groups;
7365
ca6d75e6 7366 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7367
ced549fa 7368 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7369 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7370
ced549fa
NP
7371 if (!capacity)
7372 capacity = 1;
1e3c88bd 7373
ced549fa
NP
7374 cpu_rq(cpu)->cpu_capacity = capacity;
7375 sdg->sgc->capacity = capacity;
bf475ce0 7376 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7377}
7378
63b2ca30 7379void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7380{
7381 struct sched_domain *child = sd->child;
7382 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7383 unsigned long capacity, min_capacity;
4ec4412e
VG
7384 unsigned long interval;
7385
7386 interval = msecs_to_jiffies(sd->balance_interval);
7387 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7388 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7389
7390 if (!child) {
ced549fa 7391 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7392 return;
7393 }
7394
dc7ff76e 7395 capacity = 0;
bf475ce0 7396 min_capacity = ULONG_MAX;
1e3c88bd 7397
74a5ce20
PZ
7398 if (child->flags & SD_OVERLAP) {
7399 /*
7400 * SD_OVERLAP domains cannot assume that child groups
7401 * span the current group.
7402 */
7403
ae4df9d6 7404 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7405 struct sched_group_capacity *sgc;
9abf24d4 7406 struct rq *rq = cpu_rq(cpu);
863bffc8 7407
9abf24d4 7408 /*
63b2ca30 7409 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7410 * gets here before we've attached the domains to the
7411 * runqueues.
7412 *
ced549fa
NP
7413 * Use capacity_of(), which is set irrespective of domains
7414 * in update_cpu_capacity().
9abf24d4 7415 *
dc7ff76e 7416 * This avoids capacity from being 0 and
9abf24d4 7417 * causing divide-by-zero issues on boot.
9abf24d4
SD
7418 */
7419 if (unlikely(!rq->sd)) {
ced549fa 7420 capacity += capacity_of(cpu);
bf475ce0
MR
7421 } else {
7422 sgc = rq->sd->groups->sgc;
7423 capacity += sgc->capacity;
9abf24d4 7424 }
863bffc8 7425
bf475ce0 7426 min_capacity = min(capacity, min_capacity);
863bffc8 7427 }
74a5ce20
PZ
7428 } else {
7429 /*
7430 * !SD_OVERLAP domains can assume that child groups
7431 * span the current group.
97a7142f 7432 */
74a5ce20
PZ
7433
7434 group = child->groups;
7435 do {
bf475ce0
MR
7436 struct sched_group_capacity *sgc = group->sgc;
7437
7438 capacity += sgc->capacity;
7439 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7440 group = group->next;
7441 } while (group != child->groups);
7442 }
1e3c88bd 7443
63b2ca30 7444 sdg->sgc->capacity = capacity;
bf475ce0 7445 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7446}
7447
9d5efe05 7448/*
ea67821b
VG
7449 * Check whether the capacity of the rq has been noticeably reduced by side
7450 * activity. The imbalance_pct is used for the threshold.
7451 * Return true is the capacity is reduced
9d5efe05
SV
7452 */
7453static inline int
ea67821b 7454check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7455{
ea67821b
VG
7456 return ((rq->cpu_capacity * sd->imbalance_pct) <
7457 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7458}
7459
30ce5dab
PZ
7460/*
7461 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7462 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7463 *
7464 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7465 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7466 * Something like:
7467 *
2b4d5b25
IM
7468 * { 0 1 2 3 } { 4 5 6 7 }
7469 * * * * *
30ce5dab
PZ
7470 *
7471 * If we were to balance group-wise we'd place two tasks in the first group and
7472 * two tasks in the second group. Clearly this is undesired as it will overload
7473 * cpu 3 and leave one of the cpus in the second group unused.
7474 *
7475 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7476 * by noticing the lower domain failed to reach balance and had difficulty
7477 * moving tasks due to affinity constraints.
30ce5dab
PZ
7478 *
7479 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7480 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7481 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7482 * to create an effective group imbalance.
7483 *
7484 * This is a somewhat tricky proposition since the next run might not find the
7485 * group imbalance and decide the groups need to be balanced again. A most
7486 * subtle and fragile situation.
7487 */
7488
6263322c 7489static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7490{
63b2ca30 7491 return group->sgc->imbalance;
30ce5dab
PZ
7492}
7493
b37d9316 7494/*
ea67821b
VG
7495 * group_has_capacity returns true if the group has spare capacity that could
7496 * be used by some tasks.
7497 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7498 * smaller than the number of CPUs or if the utilization is lower than the
7499 * available capacity for CFS tasks.
ea67821b
VG
7500 * For the latter, we use a threshold to stabilize the state, to take into
7501 * account the variance of the tasks' load and to return true if the available
7502 * capacity in meaningful for the load balancer.
7503 * As an example, an available capacity of 1% can appear but it doesn't make
7504 * any benefit for the load balance.
b37d9316 7505 */
ea67821b
VG
7506static inline bool
7507group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7508{
ea67821b
VG
7509 if (sgs->sum_nr_running < sgs->group_weight)
7510 return true;
c61037e9 7511
ea67821b 7512 if ((sgs->group_capacity * 100) >
9e91d61d 7513 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7514 return true;
b37d9316 7515
ea67821b
VG
7516 return false;
7517}
7518
7519/*
7520 * group_is_overloaded returns true if the group has more tasks than it can
7521 * handle.
7522 * group_is_overloaded is not equals to !group_has_capacity because a group
7523 * with the exact right number of tasks, has no more spare capacity but is not
7524 * overloaded so both group_has_capacity and group_is_overloaded return
7525 * false.
7526 */
7527static inline bool
7528group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7529{
7530 if (sgs->sum_nr_running <= sgs->group_weight)
7531 return false;
b37d9316 7532
ea67821b 7533 if ((sgs->group_capacity * 100) <
9e91d61d 7534 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7535 return true;
b37d9316 7536
ea67821b 7537 return false;
b37d9316
PZ
7538}
7539
9e0994c0
MR
7540/*
7541 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7542 * per-CPU capacity than sched_group ref.
7543 */
7544static inline bool
7545group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7546{
7547 return sg->sgc->min_capacity * capacity_margin <
7548 ref->sgc->min_capacity * 1024;
7549}
7550
79a89f92
LY
7551static inline enum
7552group_type group_classify(struct sched_group *group,
7553 struct sg_lb_stats *sgs)
caeb178c 7554{
ea67821b 7555 if (sgs->group_no_capacity)
caeb178c
RR
7556 return group_overloaded;
7557
7558 if (sg_imbalanced(group))
7559 return group_imbalanced;
7560
7561 return group_other;
7562}
7563
1e3c88bd
PZ
7564/**
7565 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7566 * @env: The load balancing environment.
1e3c88bd 7567 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7568 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7569 * @local_group: Does group contain this_cpu.
1e3c88bd 7570 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7571 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7572 */
bd939f45
PZ
7573static inline void update_sg_lb_stats(struct lb_env *env,
7574 struct sched_group *group, int load_idx,
4486edd1
TC
7575 int local_group, struct sg_lb_stats *sgs,
7576 bool *overload)
1e3c88bd 7577{
30ce5dab 7578 unsigned long load;
a426f99c 7579 int i, nr_running;
1e3c88bd 7580
b72ff13c
PZ
7581 memset(sgs, 0, sizeof(*sgs));
7582
ae4df9d6 7583 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7584 struct rq *rq = cpu_rq(i);
7585
1e3c88bd 7586 /* Bias balancing toward cpus of our domain */
6263322c 7587 if (local_group)
04f733b4 7588 load = target_load(i, load_idx);
6263322c 7589 else
1e3c88bd 7590 load = source_load(i, load_idx);
1e3c88bd
PZ
7591
7592 sgs->group_load += load;
9e91d61d 7593 sgs->group_util += cpu_util(i);
65fdac08 7594 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7595
a426f99c
WL
7596 nr_running = rq->nr_running;
7597 if (nr_running > 1)
4486edd1
TC
7598 *overload = true;
7599
0ec8aa00
PZ
7600#ifdef CONFIG_NUMA_BALANCING
7601 sgs->nr_numa_running += rq->nr_numa_running;
7602 sgs->nr_preferred_running += rq->nr_preferred_running;
7603#endif
c7132dd6 7604 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7605 /*
7606 * No need to call idle_cpu() if nr_running is not 0
7607 */
7608 if (!nr_running && idle_cpu(i))
aae6d3dd 7609 sgs->idle_cpus++;
1e3c88bd
PZ
7610 }
7611
63b2ca30
NP
7612 /* Adjust by relative CPU capacity of the group */
7613 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7614 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7615
dd5feea1 7616 if (sgs->sum_nr_running)
38d0f770 7617 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7618
aae6d3dd 7619 sgs->group_weight = group->group_weight;
b37d9316 7620
ea67821b 7621 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7622 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7623}
7624
532cb4c4
MN
7625/**
7626 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7627 * @env: The load balancing environment.
532cb4c4
MN
7628 * @sds: sched_domain statistics
7629 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7630 * @sgs: sched_group statistics
532cb4c4
MN
7631 *
7632 * Determine if @sg is a busier group than the previously selected
7633 * busiest group.
e69f6186
YB
7634 *
7635 * Return: %true if @sg is a busier group than the previously selected
7636 * busiest group. %false otherwise.
532cb4c4 7637 */
bd939f45 7638static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7639 struct sd_lb_stats *sds,
7640 struct sched_group *sg,
bd939f45 7641 struct sg_lb_stats *sgs)
532cb4c4 7642{
caeb178c 7643 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7644
caeb178c 7645 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7646 return true;
7647
caeb178c
RR
7648 if (sgs->group_type < busiest->group_type)
7649 return false;
7650
7651 if (sgs->avg_load <= busiest->avg_load)
7652 return false;
7653
9e0994c0
MR
7654 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7655 goto asym_packing;
7656
7657 /*
7658 * Candidate sg has no more than one task per CPU and
7659 * has higher per-CPU capacity. Migrating tasks to less
7660 * capable CPUs may harm throughput. Maximize throughput,
7661 * power/energy consequences are not considered.
7662 */
7663 if (sgs->sum_nr_running <= sgs->group_weight &&
7664 group_smaller_cpu_capacity(sds->local, sg))
7665 return false;
7666
7667asym_packing:
caeb178c
RR
7668 /* This is the busiest node in its class. */
7669 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7670 return true;
7671
1f621e02
SD
7672 /* No ASYM_PACKING if target cpu is already busy */
7673 if (env->idle == CPU_NOT_IDLE)
7674 return true;
532cb4c4 7675 /*
afe06efd
TC
7676 * ASYM_PACKING needs to move all the work to the highest
7677 * prority CPUs in the group, therefore mark all groups
7678 * of lower priority than ourself as busy.
532cb4c4 7679 */
afe06efd
TC
7680 if (sgs->sum_nr_running &&
7681 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7682 if (!sds->busiest)
7683 return true;
7684
afe06efd
TC
7685 /* Prefer to move from lowest priority cpu's work */
7686 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7687 sg->asym_prefer_cpu))
532cb4c4
MN
7688 return true;
7689 }
7690
7691 return false;
7692}
7693
0ec8aa00
PZ
7694#ifdef CONFIG_NUMA_BALANCING
7695static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7696{
7697 if (sgs->sum_nr_running > sgs->nr_numa_running)
7698 return regular;
7699 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7700 return remote;
7701 return all;
7702}
7703
7704static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7705{
7706 if (rq->nr_running > rq->nr_numa_running)
7707 return regular;
7708 if (rq->nr_running > rq->nr_preferred_running)
7709 return remote;
7710 return all;
7711}
7712#else
7713static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7714{
7715 return all;
7716}
7717
7718static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7719{
7720 return regular;
7721}
7722#endif /* CONFIG_NUMA_BALANCING */
7723
1e3c88bd 7724/**
461819ac 7725 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7726 * @env: The load balancing environment.
1e3c88bd
PZ
7727 * @sds: variable to hold the statistics for this sched_domain.
7728 */
0ec8aa00 7729static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7730{
90001d67 7731 struct sched_domain_shared *shared = env->sd->shared;
bd939f45
PZ
7732 struct sched_domain *child = env->sd->child;
7733 struct sched_group *sg = env->sd->groups;
05b40e05 7734 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7735 struct sg_lb_stats tmp_sgs;
1e3c88bd 7736 int load_idx, prefer_sibling = 0;
4486edd1 7737 bool overload = false;
1e3c88bd
PZ
7738
7739 if (child && child->flags & SD_PREFER_SIBLING)
7740 prefer_sibling = 1;
7741
bd939f45 7742 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7743
7744 do {
56cf515b 7745 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7746 int local_group;
7747
ae4df9d6 7748 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7749 if (local_group) {
7750 sds->local = sg;
05b40e05 7751 sgs = local;
b72ff13c
PZ
7752
7753 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7754 time_after_eq(jiffies, sg->sgc->next_update))
7755 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7756 }
1e3c88bd 7757
4486edd1
TC
7758 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7759 &overload);
1e3c88bd 7760
b72ff13c
PZ
7761 if (local_group)
7762 goto next_group;
7763
1e3c88bd
PZ
7764 /*
7765 * In case the child domain prefers tasks go to siblings
ea67821b 7766 * first, lower the sg capacity so that we'll try
75dd321d
NR
7767 * and move all the excess tasks away. We lower the capacity
7768 * of a group only if the local group has the capacity to fit
ea67821b
VG
7769 * these excess tasks. The extra check prevents the case where
7770 * you always pull from the heaviest group when it is already
7771 * under-utilized (possible with a large weight task outweighs
7772 * the tasks on the system).
1e3c88bd 7773 */
b72ff13c 7774 if (prefer_sibling && sds->local &&
05b40e05
SD
7775 group_has_capacity(env, local) &&
7776 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7777 sgs->group_no_capacity = 1;
79a89f92 7778 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7779 }
1e3c88bd 7780
b72ff13c 7781 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7782 sds->busiest = sg;
56cf515b 7783 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7784 }
7785
b72ff13c
PZ
7786next_group:
7787 /* Now, start updating sd_lb_stats */
90001d67 7788 sds->total_running += sgs->sum_nr_running;
b72ff13c 7789 sds->total_load += sgs->group_load;
63b2ca30 7790 sds->total_capacity += sgs->group_capacity;
b72ff13c 7791
532cb4c4 7792 sg = sg->next;
bd939f45 7793 } while (sg != env->sd->groups);
0ec8aa00
PZ
7794
7795 if (env->sd->flags & SD_NUMA)
7796 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7797
7798 if (!env->sd->parent) {
7799 /* update overload indicator if we are at root domain */
7800 if (env->dst_rq->rd->overload != overload)
7801 env->dst_rq->rd->overload = overload;
7802 }
7803
90001d67
PZ
7804 if (!shared)
7805 return;
7806
7807 /*
7808 * Since these are sums over groups they can contain some CPUs
7809 * multiple times for the NUMA domains.
7810 *
7811 * Currently only wake_affine_llc() and find_busiest_group()
7812 * uses these numbers, only the last is affected by this problem.
7813 *
7814 * XXX fix that.
7815 */
7816 WRITE_ONCE(shared->nr_running, sds->total_running);
7817 WRITE_ONCE(shared->load, sds->total_load);
7818 WRITE_ONCE(shared->capacity, sds->total_capacity);
532cb4c4
MN
7819}
7820
532cb4c4
MN
7821/**
7822 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7823 * sched domain.
532cb4c4
MN
7824 *
7825 * This is primarily intended to used at the sibling level. Some
7826 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7827 * case of POWER7, it can move to lower SMT modes only when higher
7828 * threads are idle. When in lower SMT modes, the threads will
7829 * perform better since they share less core resources. Hence when we
7830 * have idle threads, we want them to be the higher ones.
7831 *
7832 * This packing function is run on idle threads. It checks to see if
7833 * the busiest CPU in this domain (core in the P7 case) has a higher
7834 * CPU number than the packing function is being run on. Here we are
7835 * assuming lower CPU number will be equivalent to lower a SMT thread
7836 * number.
7837 *
e69f6186 7838 * Return: 1 when packing is required and a task should be moved to
46123355 7839 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 7840 *
cd96891d 7841 * @env: The load balancing environment.
532cb4c4 7842 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7843 */
bd939f45 7844static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7845{
7846 int busiest_cpu;
7847
bd939f45 7848 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7849 return 0;
7850
1f621e02
SD
7851 if (env->idle == CPU_NOT_IDLE)
7852 return 0;
7853
532cb4c4
MN
7854 if (!sds->busiest)
7855 return 0;
7856
afe06efd
TC
7857 busiest_cpu = sds->busiest->asym_prefer_cpu;
7858 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7859 return 0;
7860
bd939f45 7861 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7862 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7863 SCHED_CAPACITY_SCALE);
bd939f45 7864
532cb4c4 7865 return 1;
1e3c88bd
PZ
7866}
7867
7868/**
7869 * fix_small_imbalance - Calculate the minor imbalance that exists
7870 * amongst the groups of a sched_domain, during
7871 * load balancing.
cd96891d 7872 * @env: The load balancing environment.
1e3c88bd 7873 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7874 */
bd939f45
PZ
7875static inline
7876void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7877{
63b2ca30 7878 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7879 unsigned int imbn = 2;
dd5feea1 7880 unsigned long scaled_busy_load_per_task;
56cf515b 7881 struct sg_lb_stats *local, *busiest;
1e3c88bd 7882
56cf515b
JK
7883 local = &sds->local_stat;
7884 busiest = &sds->busiest_stat;
1e3c88bd 7885
56cf515b
JK
7886 if (!local->sum_nr_running)
7887 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7888 else if (busiest->load_per_task > local->load_per_task)
7889 imbn = 1;
dd5feea1 7890
56cf515b 7891 scaled_busy_load_per_task =
ca8ce3d0 7892 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7893 busiest->group_capacity;
56cf515b 7894
3029ede3
VD
7895 if (busiest->avg_load + scaled_busy_load_per_task >=
7896 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7897 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7898 return;
7899 }
7900
7901 /*
7902 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7903 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7904 * moving them.
7905 */
7906
63b2ca30 7907 capa_now += busiest->group_capacity *
56cf515b 7908 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7909 capa_now += local->group_capacity *
56cf515b 7910 min(local->load_per_task, local->avg_load);
ca8ce3d0 7911 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7912
7913 /* Amount of load we'd subtract */
a2cd4260 7914 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7915 capa_move += busiest->group_capacity *
56cf515b 7916 min(busiest->load_per_task,
a2cd4260 7917 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7918 }
1e3c88bd
PZ
7919
7920 /* Amount of load we'd add */
63b2ca30 7921 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7922 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7923 tmp = (busiest->avg_load * busiest->group_capacity) /
7924 local->group_capacity;
56cf515b 7925 } else {
ca8ce3d0 7926 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7927 local->group_capacity;
56cf515b 7928 }
63b2ca30 7929 capa_move += local->group_capacity *
3ae11c90 7930 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7931 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7932
7933 /* Move if we gain throughput */
63b2ca30 7934 if (capa_move > capa_now)
56cf515b 7935 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7936}
7937
7938/**
7939 * calculate_imbalance - Calculate the amount of imbalance present within the
7940 * groups of a given sched_domain during load balance.
bd939f45 7941 * @env: load balance environment
1e3c88bd 7942 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7943 */
bd939f45 7944static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7945{
dd5feea1 7946 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7947 struct sg_lb_stats *local, *busiest;
7948
7949 local = &sds->local_stat;
56cf515b 7950 busiest = &sds->busiest_stat;
dd5feea1 7951
caeb178c 7952 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7953 /*
7954 * In the group_imb case we cannot rely on group-wide averages
7955 * to ensure cpu-load equilibrium, look at wider averages. XXX
7956 */
56cf515b
JK
7957 busiest->load_per_task =
7958 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7959 }
7960
1e3c88bd 7961 /*
885e542c
DE
7962 * Avg load of busiest sg can be less and avg load of local sg can
7963 * be greater than avg load across all sgs of sd because avg load
7964 * factors in sg capacity and sgs with smaller group_type are
7965 * skipped when updating the busiest sg:
1e3c88bd 7966 */
b1885550
VD
7967 if (busiest->avg_load <= sds->avg_load ||
7968 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7969 env->imbalance = 0;
7970 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7971 }
7972
9a5d9ba6
PZ
7973 /*
7974 * If there aren't any idle cpus, avoid creating some.
7975 */
7976 if (busiest->group_type == group_overloaded &&
7977 local->group_type == group_overloaded) {
1be0eb2a 7978 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7979 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7980 load_above_capacity -= busiest->group_capacity;
26656215 7981 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7982 load_above_capacity /= busiest->group_capacity;
7983 } else
ea67821b 7984 load_above_capacity = ~0UL;
dd5feea1
SS
7985 }
7986
7987 /*
7988 * We're trying to get all the cpus to the average_load, so we don't
7989 * want to push ourselves above the average load, nor do we wish to
7990 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7991 * we also don't want to reduce the group load below the group
7992 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7993 */
30ce5dab 7994 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7995
7996 /* How much load to actually move to equalise the imbalance */
56cf515b 7997 env->imbalance = min(
63b2ca30
NP
7998 max_pull * busiest->group_capacity,
7999 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8000 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8001
8002 /*
8003 * if *imbalance is less than the average load per runnable task
25985edc 8004 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8005 * a think about bumping its value to force at least one task to be
8006 * moved
8007 */
56cf515b 8008 if (env->imbalance < busiest->load_per_task)
bd939f45 8009 return fix_small_imbalance(env, sds);
1e3c88bd 8010}
fab47622 8011
1e3c88bd
PZ
8012/******* find_busiest_group() helpers end here *********************/
8013
8014/**
8015 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8016 * if there is an imbalance.
1e3c88bd
PZ
8017 *
8018 * Also calculates the amount of weighted load which should be moved
8019 * to restore balance.
8020 *
cd96891d 8021 * @env: The load balancing environment.
1e3c88bd 8022 *
e69f6186 8023 * Return: - The busiest group if imbalance exists.
1e3c88bd 8024 */
56cf515b 8025static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8026{
56cf515b 8027 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8028 struct sd_lb_stats sds;
8029
147c5fc2 8030 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8031
8032 /*
8033 * Compute the various statistics relavent for load balancing at
8034 * this level.
8035 */
23f0d209 8036 update_sd_lb_stats(env, &sds);
56cf515b
JK
8037 local = &sds.local_stat;
8038 busiest = &sds.busiest_stat;
1e3c88bd 8039
ea67821b 8040 /* ASYM feature bypasses nice load balance check */
1f621e02 8041 if (check_asym_packing(env, &sds))
532cb4c4
MN
8042 return sds.busiest;
8043
cc57aa8f 8044 /* There is no busy sibling group to pull tasks from */
56cf515b 8045 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8046 goto out_balanced;
8047
90001d67 8048 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8049 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8050 / sds.total_capacity;
b0432d8f 8051
866ab43e
PZ
8052 /*
8053 * If the busiest group is imbalanced the below checks don't
30ce5dab 8054 * work because they assume all things are equal, which typically
866ab43e
PZ
8055 * isn't true due to cpus_allowed constraints and the like.
8056 */
caeb178c 8057 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8058 goto force_balance;
8059
cc57aa8f 8060 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
8061 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
8062 busiest->group_no_capacity)
fab47622
NR
8063 goto force_balance;
8064
cc57aa8f 8065 /*
9c58c79a 8066 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8067 * don't try and pull any tasks.
8068 */
56cf515b 8069 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8070 goto out_balanced;
8071
cc57aa8f
PZ
8072 /*
8073 * Don't pull any tasks if this group is already above the domain
8074 * average load.
8075 */
56cf515b 8076 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8077 goto out_balanced;
8078
bd939f45 8079 if (env->idle == CPU_IDLE) {
aae6d3dd 8080 /*
43f4d666
VG
8081 * This cpu is idle. If the busiest group is not overloaded
8082 * and there is no imbalance between this and busiest group
8083 * wrt idle cpus, it is balanced. The imbalance becomes
8084 * significant if the diff is greater than 1 otherwise we
8085 * might end up to just move the imbalance on another group
aae6d3dd 8086 */
43f4d666
VG
8087 if ((busiest->group_type != group_overloaded) &&
8088 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8089 goto out_balanced;
c186fafe
PZ
8090 } else {
8091 /*
8092 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8093 * imbalance_pct to be conservative.
8094 */
56cf515b
JK
8095 if (100 * busiest->avg_load <=
8096 env->sd->imbalance_pct * local->avg_load)
c186fafe 8097 goto out_balanced;
aae6d3dd 8098 }
1e3c88bd 8099
fab47622 8100force_balance:
1e3c88bd 8101 /* Looks like there is an imbalance. Compute it */
bd939f45 8102 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8103 return sds.busiest;
8104
8105out_balanced:
bd939f45 8106 env->imbalance = 0;
1e3c88bd
PZ
8107 return NULL;
8108}
8109
8110/*
8111 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8112 */
bd939f45 8113static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8114 struct sched_group *group)
1e3c88bd
PZ
8115{
8116 struct rq *busiest = NULL, *rq;
ced549fa 8117 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8118 int i;
8119
ae4df9d6 8120 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8121 unsigned long capacity, wl;
0ec8aa00
PZ
8122 enum fbq_type rt;
8123
8124 rq = cpu_rq(i);
8125 rt = fbq_classify_rq(rq);
1e3c88bd 8126
0ec8aa00
PZ
8127 /*
8128 * We classify groups/runqueues into three groups:
8129 * - regular: there are !numa tasks
8130 * - remote: there are numa tasks that run on the 'wrong' node
8131 * - all: there is no distinction
8132 *
8133 * In order to avoid migrating ideally placed numa tasks,
8134 * ignore those when there's better options.
8135 *
8136 * If we ignore the actual busiest queue to migrate another
8137 * task, the next balance pass can still reduce the busiest
8138 * queue by moving tasks around inside the node.
8139 *
8140 * If we cannot move enough load due to this classification
8141 * the next pass will adjust the group classification and
8142 * allow migration of more tasks.
8143 *
8144 * Both cases only affect the total convergence complexity.
8145 */
8146 if (rt > env->fbq_type)
8147 continue;
8148
ced549fa 8149 capacity = capacity_of(i);
9d5efe05 8150
c7132dd6 8151 wl = weighted_cpuload(rq);
1e3c88bd 8152
6e40f5bb
TG
8153 /*
8154 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8155 * which is not scaled with the cpu capacity.
6e40f5bb 8156 */
ea67821b
VG
8157
8158 if (rq->nr_running == 1 && wl > env->imbalance &&
8159 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8160 continue;
8161
6e40f5bb
TG
8162 /*
8163 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8164 * the weighted_cpuload() scaled with the cpu capacity, so
8165 * that the load can be moved away from the cpu that is
8166 * potentially running at a lower capacity.
95a79b80 8167 *
ced549fa 8168 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8169 * multiplication to rid ourselves of the division works out
ced549fa
NP
8170 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8171 * our previous maximum.
6e40f5bb 8172 */
ced549fa 8173 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8174 busiest_load = wl;
ced549fa 8175 busiest_capacity = capacity;
1e3c88bd
PZ
8176 busiest = rq;
8177 }
8178 }
8179
8180 return busiest;
8181}
8182
8183/*
8184 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8185 * so long as it is large enough.
8186 */
8187#define MAX_PINNED_INTERVAL 512
8188
bd939f45 8189static int need_active_balance(struct lb_env *env)
1af3ed3d 8190{
bd939f45
PZ
8191 struct sched_domain *sd = env->sd;
8192
8193 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8194
8195 /*
8196 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8197 * lower priority CPUs in order to pack all tasks in the
8198 * highest priority CPUs.
532cb4c4 8199 */
afe06efd
TC
8200 if ((sd->flags & SD_ASYM_PACKING) &&
8201 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8202 return 1;
1af3ed3d
PZ
8203 }
8204
1aaf90a4
VG
8205 /*
8206 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8207 * It's worth migrating the task if the src_cpu's capacity is reduced
8208 * because of other sched_class or IRQs if more capacity stays
8209 * available on dst_cpu.
8210 */
8211 if ((env->idle != CPU_NOT_IDLE) &&
8212 (env->src_rq->cfs.h_nr_running == 1)) {
8213 if ((check_cpu_capacity(env->src_rq, sd)) &&
8214 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8215 return 1;
8216 }
8217
1af3ed3d
PZ
8218 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8219}
8220
969c7921
TH
8221static int active_load_balance_cpu_stop(void *data);
8222
23f0d209
JK
8223static int should_we_balance(struct lb_env *env)
8224{
8225 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8226 int cpu, balance_cpu = -1;
8227
8228 /*
8229 * In the newly idle case, we will allow all the cpu's
8230 * to do the newly idle load balance.
8231 */
8232 if (env->idle == CPU_NEWLY_IDLE)
8233 return 1;
8234
23f0d209 8235 /* Try to find first idle cpu */
e5c14b1f 8236 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8237 if (!idle_cpu(cpu))
23f0d209
JK
8238 continue;
8239
8240 balance_cpu = cpu;
8241 break;
8242 }
8243
8244 if (balance_cpu == -1)
8245 balance_cpu = group_balance_cpu(sg);
8246
8247 /*
8248 * First idle cpu or the first cpu(busiest) in this sched group
8249 * is eligible for doing load balancing at this and above domains.
8250 */
b0cff9d8 8251 return balance_cpu == env->dst_cpu;
23f0d209
JK
8252}
8253
1e3c88bd
PZ
8254/*
8255 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8256 * tasks if there is an imbalance.
8257 */
8258static int load_balance(int this_cpu, struct rq *this_rq,
8259 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8260 int *continue_balancing)
1e3c88bd 8261{
88b8dac0 8262 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8263 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8264 struct sched_group *group;
1e3c88bd 8265 struct rq *busiest;
8a8c69c3 8266 struct rq_flags rf;
4ba29684 8267 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8268
8e45cb54
PZ
8269 struct lb_env env = {
8270 .sd = sd,
ddcdf6e7
PZ
8271 .dst_cpu = this_cpu,
8272 .dst_rq = this_rq,
ae4df9d6 8273 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8274 .idle = idle,
eb95308e 8275 .loop_break = sched_nr_migrate_break,
b9403130 8276 .cpus = cpus,
0ec8aa00 8277 .fbq_type = all,
163122b7 8278 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8279 };
8280
65a4433a 8281 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8282
ae92882e 8283 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8284
8285redo:
23f0d209
JK
8286 if (!should_we_balance(&env)) {
8287 *continue_balancing = 0;
1e3c88bd 8288 goto out_balanced;
23f0d209 8289 }
1e3c88bd 8290
23f0d209 8291 group = find_busiest_group(&env);
1e3c88bd 8292 if (!group) {
ae92882e 8293 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8294 goto out_balanced;
8295 }
8296
b9403130 8297 busiest = find_busiest_queue(&env, group);
1e3c88bd 8298 if (!busiest) {
ae92882e 8299 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8300 goto out_balanced;
8301 }
8302
78feefc5 8303 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8304
ae92882e 8305 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8306
1aaf90a4
VG
8307 env.src_cpu = busiest->cpu;
8308 env.src_rq = busiest;
8309
1e3c88bd
PZ
8310 ld_moved = 0;
8311 if (busiest->nr_running > 1) {
8312 /*
8313 * Attempt to move tasks. If find_busiest_group has found
8314 * an imbalance but busiest->nr_running <= 1, the group is
8315 * still unbalanced. ld_moved simply stays zero, so it is
8316 * correctly treated as an imbalance.
8317 */
8e45cb54 8318 env.flags |= LBF_ALL_PINNED;
c82513e5 8319 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8320
5d6523eb 8321more_balance:
8a8c69c3 8322 rq_lock_irqsave(busiest, &rf);
3bed5e21 8323 update_rq_clock(busiest);
88b8dac0
SV
8324
8325 /*
8326 * cur_ld_moved - load moved in current iteration
8327 * ld_moved - cumulative load moved across iterations
8328 */
163122b7 8329 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8330
8331 /*
163122b7
KT
8332 * We've detached some tasks from busiest_rq. Every
8333 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8334 * unlock busiest->lock, and we are able to be sure
8335 * that nobody can manipulate the tasks in parallel.
8336 * See task_rq_lock() family for the details.
1e3c88bd 8337 */
163122b7 8338
8a8c69c3 8339 rq_unlock(busiest, &rf);
163122b7
KT
8340
8341 if (cur_ld_moved) {
8342 attach_tasks(&env);
8343 ld_moved += cur_ld_moved;
8344 }
8345
8a8c69c3 8346 local_irq_restore(rf.flags);
88b8dac0 8347
f1cd0858
JK
8348 if (env.flags & LBF_NEED_BREAK) {
8349 env.flags &= ~LBF_NEED_BREAK;
8350 goto more_balance;
8351 }
8352
88b8dac0
SV
8353 /*
8354 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8355 * us and move them to an alternate dst_cpu in our sched_group
8356 * where they can run. The upper limit on how many times we
8357 * iterate on same src_cpu is dependent on number of cpus in our
8358 * sched_group.
8359 *
8360 * This changes load balance semantics a bit on who can move
8361 * load to a given_cpu. In addition to the given_cpu itself
8362 * (or a ilb_cpu acting on its behalf where given_cpu is
8363 * nohz-idle), we now have balance_cpu in a position to move
8364 * load to given_cpu. In rare situations, this may cause
8365 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8366 * _independently_ and at _same_ time to move some load to
8367 * given_cpu) causing exceess load to be moved to given_cpu.
8368 * This however should not happen so much in practice and
8369 * moreover subsequent load balance cycles should correct the
8370 * excess load moved.
8371 */
6263322c 8372 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8373
7aff2e3a
VD
8374 /* Prevent to re-select dst_cpu via env's cpus */
8375 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8376
78feefc5 8377 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8378 env.dst_cpu = env.new_dst_cpu;
6263322c 8379 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8380 env.loop = 0;
8381 env.loop_break = sched_nr_migrate_break;
e02e60c1 8382
88b8dac0
SV
8383 /*
8384 * Go back to "more_balance" rather than "redo" since we
8385 * need to continue with same src_cpu.
8386 */
8387 goto more_balance;
8388 }
1e3c88bd 8389
6263322c
PZ
8390 /*
8391 * We failed to reach balance because of affinity.
8392 */
8393 if (sd_parent) {
63b2ca30 8394 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8395
afdeee05 8396 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8397 *group_imbalance = 1;
6263322c
PZ
8398 }
8399
1e3c88bd 8400 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8401 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8402 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8403 /*
8404 * Attempting to continue load balancing at the current
8405 * sched_domain level only makes sense if there are
8406 * active CPUs remaining as possible busiest CPUs to
8407 * pull load from which are not contained within the
8408 * destination group that is receiving any migrated
8409 * load.
8410 */
8411 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8412 env.loop = 0;
8413 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8414 goto redo;
bbf18b19 8415 }
afdeee05 8416 goto out_all_pinned;
1e3c88bd
PZ
8417 }
8418 }
8419
8420 if (!ld_moved) {
ae92882e 8421 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8422 /*
8423 * Increment the failure counter only on periodic balance.
8424 * We do not want newidle balance, which can be very
8425 * frequent, pollute the failure counter causing
8426 * excessive cache_hot migrations and active balances.
8427 */
8428 if (idle != CPU_NEWLY_IDLE)
8429 sd->nr_balance_failed++;
1e3c88bd 8430
bd939f45 8431 if (need_active_balance(&env)) {
8a8c69c3
PZ
8432 unsigned long flags;
8433
1e3c88bd
PZ
8434 raw_spin_lock_irqsave(&busiest->lock, flags);
8435
969c7921
TH
8436 /* don't kick the active_load_balance_cpu_stop,
8437 * if the curr task on busiest cpu can't be
8438 * moved to this_cpu
1e3c88bd 8439 */
0c98d344 8440 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8441 raw_spin_unlock_irqrestore(&busiest->lock,
8442 flags);
8e45cb54 8443 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8444 goto out_one_pinned;
8445 }
8446
969c7921
TH
8447 /*
8448 * ->active_balance synchronizes accesses to
8449 * ->active_balance_work. Once set, it's cleared
8450 * only after active load balance is finished.
8451 */
1e3c88bd
PZ
8452 if (!busiest->active_balance) {
8453 busiest->active_balance = 1;
8454 busiest->push_cpu = this_cpu;
8455 active_balance = 1;
8456 }
8457 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8458
bd939f45 8459 if (active_balance) {
969c7921
TH
8460 stop_one_cpu_nowait(cpu_of(busiest),
8461 active_load_balance_cpu_stop, busiest,
8462 &busiest->active_balance_work);
bd939f45 8463 }
1e3c88bd 8464
d02c0711 8465 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8466 sd->nr_balance_failed = sd->cache_nice_tries+1;
8467 }
8468 } else
8469 sd->nr_balance_failed = 0;
8470
8471 if (likely(!active_balance)) {
8472 /* We were unbalanced, so reset the balancing interval */
8473 sd->balance_interval = sd->min_interval;
8474 } else {
8475 /*
8476 * If we've begun active balancing, start to back off. This
8477 * case may not be covered by the all_pinned logic if there
8478 * is only 1 task on the busy runqueue (because we don't call
163122b7 8479 * detach_tasks).
1e3c88bd
PZ
8480 */
8481 if (sd->balance_interval < sd->max_interval)
8482 sd->balance_interval *= 2;
8483 }
8484
1e3c88bd
PZ
8485 goto out;
8486
8487out_balanced:
afdeee05
VG
8488 /*
8489 * We reach balance although we may have faced some affinity
8490 * constraints. Clear the imbalance flag if it was set.
8491 */
8492 if (sd_parent) {
8493 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8494
8495 if (*group_imbalance)
8496 *group_imbalance = 0;
8497 }
8498
8499out_all_pinned:
8500 /*
8501 * We reach balance because all tasks are pinned at this level so
8502 * we can't migrate them. Let the imbalance flag set so parent level
8503 * can try to migrate them.
8504 */
ae92882e 8505 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8506
8507 sd->nr_balance_failed = 0;
8508
8509out_one_pinned:
8510 /* tune up the balancing interval */
8e45cb54 8511 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8512 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8513 (sd->balance_interval < sd->max_interval))
8514 sd->balance_interval *= 2;
8515
46e49b38 8516 ld_moved = 0;
1e3c88bd 8517out:
1e3c88bd
PZ
8518 return ld_moved;
8519}
8520
52a08ef1
JL
8521static inline unsigned long
8522get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8523{
8524 unsigned long interval = sd->balance_interval;
8525
8526 if (cpu_busy)
8527 interval *= sd->busy_factor;
8528
8529 /* scale ms to jiffies */
8530 interval = msecs_to_jiffies(interval);
8531 interval = clamp(interval, 1UL, max_load_balance_interval);
8532
8533 return interval;
8534}
8535
8536static inline void
31851a98 8537update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8538{
8539 unsigned long interval, next;
8540
31851a98
LY
8541 /* used by idle balance, so cpu_busy = 0 */
8542 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8543 next = sd->last_balance + interval;
8544
8545 if (time_after(*next_balance, next))
8546 *next_balance = next;
8547}
8548
1e3c88bd
PZ
8549/*
8550 * idle_balance is called by schedule() if this_cpu is about to become
8551 * idle. Attempts to pull tasks from other CPUs.
8552 */
46f69fa3 8553static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8554{
52a08ef1
JL
8555 unsigned long next_balance = jiffies + HZ;
8556 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8557 struct sched_domain *sd;
8558 int pulled_task = 0;
9bd721c5 8559 u64 curr_cost = 0;
1e3c88bd 8560
6e83125c
PZ
8561 /*
8562 * We must set idle_stamp _before_ calling idle_balance(), such that we
8563 * measure the duration of idle_balance() as idle time.
8564 */
8565 this_rq->idle_stamp = rq_clock(this_rq);
8566
2800486e
PZ
8567 /*
8568 * Do not pull tasks towards !active CPUs...
8569 */
8570 if (!cpu_active(this_cpu))
8571 return 0;
8572
46f69fa3
MF
8573 /*
8574 * This is OK, because current is on_cpu, which avoids it being picked
8575 * for load-balance and preemption/IRQs are still disabled avoiding
8576 * further scheduler activity on it and we're being very careful to
8577 * re-start the picking loop.
8578 */
8579 rq_unpin_lock(this_rq, rf);
8580
4486edd1
TC
8581 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8582 !this_rq->rd->overload) {
52a08ef1
JL
8583 rcu_read_lock();
8584 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8585 if (sd)
31851a98 8586 update_next_balance(sd, &next_balance);
52a08ef1
JL
8587 rcu_read_unlock();
8588
6e83125c 8589 goto out;
52a08ef1 8590 }
1e3c88bd 8591
f492e12e
PZ
8592 raw_spin_unlock(&this_rq->lock);
8593
48a16753 8594 update_blocked_averages(this_cpu);
dce840a0 8595 rcu_read_lock();
1e3c88bd 8596 for_each_domain(this_cpu, sd) {
23f0d209 8597 int continue_balancing = 1;
9bd721c5 8598 u64 t0, domain_cost;
1e3c88bd
PZ
8599
8600 if (!(sd->flags & SD_LOAD_BALANCE))
8601 continue;
8602
52a08ef1 8603 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8604 update_next_balance(sd, &next_balance);
9bd721c5 8605 break;
52a08ef1 8606 }
9bd721c5 8607
f492e12e 8608 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8609 t0 = sched_clock_cpu(this_cpu);
8610
f492e12e 8611 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8612 sd, CPU_NEWLY_IDLE,
8613 &continue_balancing);
9bd721c5
JL
8614
8615 domain_cost = sched_clock_cpu(this_cpu) - t0;
8616 if (domain_cost > sd->max_newidle_lb_cost)
8617 sd->max_newidle_lb_cost = domain_cost;
8618
8619 curr_cost += domain_cost;
f492e12e 8620 }
1e3c88bd 8621
31851a98 8622 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8623
8624 /*
8625 * Stop searching for tasks to pull if there are
8626 * now runnable tasks on this rq.
8627 */
8628 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8629 break;
1e3c88bd 8630 }
dce840a0 8631 rcu_read_unlock();
f492e12e
PZ
8632
8633 raw_spin_lock(&this_rq->lock);
8634
0e5b5337
JL
8635 if (curr_cost > this_rq->max_idle_balance_cost)
8636 this_rq->max_idle_balance_cost = curr_cost;
8637
e5fc6611 8638 /*
0e5b5337
JL
8639 * While browsing the domains, we released the rq lock, a task could
8640 * have been enqueued in the meantime. Since we're not going idle,
8641 * pretend we pulled a task.
e5fc6611 8642 */
0e5b5337 8643 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8644 pulled_task = 1;
e5fc6611 8645
52a08ef1
JL
8646out:
8647 /* Move the next balance forward */
8648 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8649 this_rq->next_balance = next_balance;
9bd721c5 8650
e4aa358b 8651 /* Is there a task of a high priority class? */
46383648 8652 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8653 pulled_task = -1;
8654
38c6ade2 8655 if (pulled_task)
6e83125c
PZ
8656 this_rq->idle_stamp = 0;
8657
46f69fa3
MF
8658 rq_repin_lock(this_rq, rf);
8659
3c4017c1 8660 return pulled_task;
1e3c88bd
PZ
8661}
8662
8663/*
969c7921
TH
8664 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8665 * running tasks off the busiest CPU onto idle CPUs. It requires at
8666 * least 1 task to be running on each physical CPU where possible, and
8667 * avoids physical / logical imbalances.
1e3c88bd 8668 */
969c7921 8669static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8670{
969c7921
TH
8671 struct rq *busiest_rq = data;
8672 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8673 int target_cpu = busiest_rq->push_cpu;
969c7921 8674 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8675 struct sched_domain *sd;
e5673f28 8676 struct task_struct *p = NULL;
8a8c69c3 8677 struct rq_flags rf;
969c7921 8678
8a8c69c3 8679 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8680 /*
8681 * Between queueing the stop-work and running it is a hole in which
8682 * CPUs can become inactive. We should not move tasks from or to
8683 * inactive CPUs.
8684 */
8685 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8686 goto out_unlock;
969c7921
TH
8687
8688 /* make sure the requested cpu hasn't gone down in the meantime */
8689 if (unlikely(busiest_cpu != smp_processor_id() ||
8690 !busiest_rq->active_balance))
8691 goto out_unlock;
1e3c88bd
PZ
8692
8693 /* Is there any task to move? */
8694 if (busiest_rq->nr_running <= 1)
969c7921 8695 goto out_unlock;
1e3c88bd
PZ
8696
8697 /*
8698 * This condition is "impossible", if it occurs
8699 * we need to fix it. Originally reported by
8700 * Bjorn Helgaas on a 128-cpu setup.
8701 */
8702 BUG_ON(busiest_rq == target_rq);
8703
1e3c88bd 8704 /* Search for an sd spanning us and the target CPU. */
dce840a0 8705 rcu_read_lock();
1e3c88bd
PZ
8706 for_each_domain(target_cpu, sd) {
8707 if ((sd->flags & SD_LOAD_BALANCE) &&
8708 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8709 break;
8710 }
8711
8712 if (likely(sd)) {
8e45cb54
PZ
8713 struct lb_env env = {
8714 .sd = sd,
ddcdf6e7
PZ
8715 .dst_cpu = target_cpu,
8716 .dst_rq = target_rq,
8717 .src_cpu = busiest_rq->cpu,
8718 .src_rq = busiest_rq,
8e45cb54 8719 .idle = CPU_IDLE,
65a4433a
JH
8720 /*
8721 * can_migrate_task() doesn't need to compute new_dst_cpu
8722 * for active balancing. Since we have CPU_IDLE, but no
8723 * @dst_grpmask we need to make that test go away with lying
8724 * about DST_PINNED.
8725 */
8726 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8727 };
8728
ae92882e 8729 schedstat_inc(sd->alb_count);
3bed5e21 8730 update_rq_clock(busiest_rq);
1e3c88bd 8731
e5673f28 8732 p = detach_one_task(&env);
d02c0711 8733 if (p) {
ae92882e 8734 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8735 /* Active balancing done, reset the failure counter. */
8736 sd->nr_balance_failed = 0;
8737 } else {
ae92882e 8738 schedstat_inc(sd->alb_failed);
d02c0711 8739 }
1e3c88bd 8740 }
dce840a0 8741 rcu_read_unlock();
969c7921
TH
8742out_unlock:
8743 busiest_rq->active_balance = 0;
8a8c69c3 8744 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8745
8746 if (p)
8747 attach_one_task(target_rq, p);
8748
8749 local_irq_enable();
8750
969c7921 8751 return 0;
1e3c88bd
PZ
8752}
8753
d987fc7f
MG
8754static inline int on_null_domain(struct rq *rq)
8755{
8756 return unlikely(!rcu_dereference_sched(rq->sd));
8757}
8758
3451d024 8759#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8760/*
8761 * idle load balancing details
83cd4fe2
VP
8762 * - When one of the busy CPUs notice that there may be an idle rebalancing
8763 * needed, they will kick the idle load balancer, which then does idle
8764 * load balancing for all the idle CPUs.
8765 */
1e3c88bd 8766static struct {
83cd4fe2 8767 cpumask_var_t idle_cpus_mask;
0b005cf5 8768 atomic_t nr_cpus;
83cd4fe2
VP
8769 unsigned long next_balance; /* in jiffy units */
8770} nohz ____cacheline_aligned;
1e3c88bd 8771
3dd0337d 8772static inline int find_new_ilb(void)
1e3c88bd 8773{
0b005cf5 8774 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8775
786d6dc7
SS
8776 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8777 return ilb;
8778
8779 return nr_cpu_ids;
1e3c88bd 8780}
1e3c88bd 8781
83cd4fe2
VP
8782/*
8783 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8784 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8785 * CPU (if there is one).
8786 */
0aeeeeba 8787static void nohz_balancer_kick(void)
83cd4fe2
VP
8788{
8789 int ilb_cpu;
8790
8791 nohz.next_balance++;
8792
3dd0337d 8793 ilb_cpu = find_new_ilb();
83cd4fe2 8794
0b005cf5
SS
8795 if (ilb_cpu >= nr_cpu_ids)
8796 return;
83cd4fe2 8797
cd490c5b 8798 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8799 return;
8800 /*
8801 * Use smp_send_reschedule() instead of resched_cpu().
8802 * This way we generate a sched IPI on the target cpu which
8803 * is idle. And the softirq performing nohz idle load balance
8804 * will be run before returning from the IPI.
8805 */
8806 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8807 return;
8808}
8809
20a5c8cc 8810void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8811{
8812 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8813 /*
8814 * Completely isolated CPUs don't ever set, so we must test.
8815 */
8816 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8817 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8818 atomic_dec(&nohz.nr_cpus);
8819 }
71325960
SS
8820 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8821 }
8822}
8823
69e1e811
SS
8824static inline void set_cpu_sd_state_busy(void)
8825{
8826 struct sched_domain *sd;
37dc6b50 8827 int cpu = smp_processor_id();
69e1e811 8828
69e1e811 8829 rcu_read_lock();
0e369d75 8830 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8831
8832 if (!sd || !sd->nohz_idle)
8833 goto unlock;
8834 sd->nohz_idle = 0;
8835
0e369d75 8836 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8837unlock:
69e1e811
SS
8838 rcu_read_unlock();
8839}
8840
8841void set_cpu_sd_state_idle(void)
8842{
8843 struct sched_domain *sd;
37dc6b50 8844 int cpu = smp_processor_id();
69e1e811 8845
69e1e811 8846 rcu_read_lock();
0e369d75 8847 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8848
8849 if (!sd || sd->nohz_idle)
8850 goto unlock;
8851 sd->nohz_idle = 1;
8852
0e369d75 8853 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8854unlock:
69e1e811
SS
8855 rcu_read_unlock();
8856}
8857
1e3c88bd 8858/*
c1cc017c 8859 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8860 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8861 */
c1cc017c 8862void nohz_balance_enter_idle(int cpu)
1e3c88bd 8863{
71325960
SS
8864 /*
8865 * If this cpu is going down, then nothing needs to be done.
8866 */
8867 if (!cpu_active(cpu))
8868 return;
8869
387bc8b5
FW
8870 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8871 if (!is_housekeeping_cpu(cpu))
8872 return;
8873
c1cc017c
AS
8874 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8875 return;
1e3c88bd 8876
d987fc7f
MG
8877 /*
8878 * If we're a completely isolated CPU, we don't play.
8879 */
8880 if (on_null_domain(cpu_rq(cpu)))
8881 return;
8882
c1cc017c
AS
8883 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8884 atomic_inc(&nohz.nr_cpus);
8885 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8886}
8887#endif
8888
8889static DEFINE_SPINLOCK(balancing);
8890
49c022e6
PZ
8891/*
8892 * Scale the max load_balance interval with the number of CPUs in the system.
8893 * This trades load-balance latency on larger machines for less cross talk.
8894 */
029632fb 8895void update_max_interval(void)
49c022e6
PZ
8896{
8897 max_load_balance_interval = HZ*num_online_cpus()/10;
8898}
8899
1e3c88bd
PZ
8900/*
8901 * It checks each scheduling domain to see if it is due to be balanced,
8902 * and initiates a balancing operation if so.
8903 *
b9b0853a 8904 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8905 */
f7ed0a89 8906static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8907{
23f0d209 8908 int continue_balancing = 1;
f7ed0a89 8909 int cpu = rq->cpu;
1e3c88bd 8910 unsigned long interval;
04f733b4 8911 struct sched_domain *sd;
1e3c88bd
PZ
8912 /* Earliest time when we have to do rebalance again */
8913 unsigned long next_balance = jiffies + 60*HZ;
8914 int update_next_balance = 0;
f48627e6
JL
8915 int need_serialize, need_decay = 0;
8916 u64 max_cost = 0;
1e3c88bd 8917
48a16753 8918 update_blocked_averages(cpu);
2069dd75 8919
dce840a0 8920 rcu_read_lock();
1e3c88bd 8921 for_each_domain(cpu, sd) {
f48627e6
JL
8922 /*
8923 * Decay the newidle max times here because this is a regular
8924 * visit to all the domains. Decay ~1% per second.
8925 */
8926 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8927 sd->max_newidle_lb_cost =
8928 (sd->max_newidle_lb_cost * 253) / 256;
8929 sd->next_decay_max_lb_cost = jiffies + HZ;
8930 need_decay = 1;
8931 }
8932 max_cost += sd->max_newidle_lb_cost;
8933
1e3c88bd
PZ
8934 if (!(sd->flags & SD_LOAD_BALANCE))
8935 continue;
8936
f48627e6
JL
8937 /*
8938 * Stop the load balance at this level. There is another
8939 * CPU in our sched group which is doing load balancing more
8940 * actively.
8941 */
8942 if (!continue_balancing) {
8943 if (need_decay)
8944 continue;
8945 break;
8946 }
8947
52a08ef1 8948 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8949
8950 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8951 if (need_serialize) {
8952 if (!spin_trylock(&balancing))
8953 goto out;
8954 }
8955
8956 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8957 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8958 /*
6263322c 8959 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8960 * env->dst_cpu, so we can't know our idle
8961 * state even if we migrated tasks. Update it.
1e3c88bd 8962 */
de5eb2dd 8963 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8964 }
8965 sd->last_balance = jiffies;
52a08ef1 8966 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8967 }
8968 if (need_serialize)
8969 spin_unlock(&balancing);
8970out:
8971 if (time_after(next_balance, sd->last_balance + interval)) {
8972 next_balance = sd->last_balance + interval;
8973 update_next_balance = 1;
8974 }
f48627e6
JL
8975 }
8976 if (need_decay) {
1e3c88bd 8977 /*
f48627e6
JL
8978 * Ensure the rq-wide value also decays but keep it at a
8979 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8980 */
f48627e6
JL
8981 rq->max_idle_balance_cost =
8982 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8983 }
dce840a0 8984 rcu_read_unlock();
1e3c88bd
PZ
8985
8986 /*
8987 * next_balance will be updated only when there is a need.
8988 * When the cpu is attached to null domain for ex, it will not be
8989 * updated.
8990 */
c5afb6a8 8991 if (likely(update_next_balance)) {
1e3c88bd 8992 rq->next_balance = next_balance;
c5afb6a8
VG
8993
8994#ifdef CONFIG_NO_HZ_COMMON
8995 /*
8996 * If this CPU has been elected to perform the nohz idle
8997 * balance. Other idle CPUs have already rebalanced with
8998 * nohz_idle_balance() and nohz.next_balance has been
8999 * updated accordingly. This CPU is now running the idle load
9000 * balance for itself and we need to update the
9001 * nohz.next_balance accordingly.
9002 */
9003 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9004 nohz.next_balance = rq->next_balance;
9005#endif
9006 }
1e3c88bd
PZ
9007}
9008
3451d024 9009#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 9010/*
3451d024 9011 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
9012 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9013 */
208cb16b 9014static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 9015{
208cb16b 9016 int this_cpu = this_rq->cpu;
83cd4fe2
VP
9017 struct rq *rq;
9018 int balance_cpu;
c5afb6a8
VG
9019 /* Earliest time when we have to do rebalance again */
9020 unsigned long next_balance = jiffies + 60*HZ;
9021 int update_next_balance = 0;
83cd4fe2 9022
1c792db7
SS
9023 if (idle != CPU_IDLE ||
9024 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9025 goto end;
83cd4fe2
VP
9026
9027 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9028 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9029 continue;
9030
9031 /*
9032 * If this cpu gets work to do, stop the load balancing
9033 * work being done for other cpus. Next load
9034 * balancing owner will pick it up.
9035 */
1c792db7 9036 if (need_resched())
83cd4fe2 9037 break;
83cd4fe2 9038
5ed4f1d9
VG
9039 rq = cpu_rq(balance_cpu);
9040
ed61bbc6
TC
9041 /*
9042 * If time for next balance is due,
9043 * do the balance.
9044 */
9045 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9046 struct rq_flags rf;
9047
9048 rq_lock_irq(rq, &rf);
ed61bbc6 9049 update_rq_clock(rq);
cee1afce 9050 cpu_load_update_idle(rq);
8a8c69c3
PZ
9051 rq_unlock_irq(rq, &rf);
9052
ed61bbc6
TC
9053 rebalance_domains(rq, CPU_IDLE);
9054 }
83cd4fe2 9055
c5afb6a8
VG
9056 if (time_after(next_balance, rq->next_balance)) {
9057 next_balance = rq->next_balance;
9058 update_next_balance = 1;
9059 }
83cd4fe2 9060 }
c5afb6a8
VG
9061
9062 /*
9063 * next_balance will be updated only when there is a need.
9064 * When the CPU is attached to null domain for ex, it will not be
9065 * updated.
9066 */
9067 if (likely(update_next_balance))
9068 nohz.next_balance = next_balance;
1c792db7
SS
9069end:
9070 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
9071}
9072
9073/*
0b005cf5 9074 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 9075 * of an idle cpu in the system.
0b005cf5 9076 * - This rq has more than one task.
1aaf90a4
VG
9077 * - This rq has at least one CFS task and the capacity of the CPU is
9078 * significantly reduced because of RT tasks or IRQs.
9079 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9080 * multiple busy cpu.
0b005cf5
SS
9081 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9082 * domain span are idle.
83cd4fe2 9083 */
1aaf90a4 9084static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
9085{
9086 unsigned long now = jiffies;
0e369d75 9087 struct sched_domain_shared *sds;
0b005cf5 9088 struct sched_domain *sd;
afe06efd 9089 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 9090 bool kick = false;
83cd4fe2 9091
4a725627 9092 if (unlikely(rq->idle_balance))
1aaf90a4 9093 return false;
83cd4fe2 9094
1c792db7
SS
9095 /*
9096 * We may be recently in ticked or tickless idle mode. At the first
9097 * busy tick after returning from idle, we will update the busy stats.
9098 */
69e1e811 9099 set_cpu_sd_state_busy();
c1cc017c 9100 nohz_balance_exit_idle(cpu);
0b005cf5
SS
9101
9102 /*
9103 * None are in tickless mode and hence no need for NOHZ idle load
9104 * balancing.
9105 */
9106 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 9107 return false;
1c792db7
SS
9108
9109 if (time_before(now, nohz.next_balance))
1aaf90a4 9110 return false;
83cd4fe2 9111
0b005cf5 9112 if (rq->nr_running >= 2)
1aaf90a4 9113 return true;
83cd4fe2 9114
067491b7 9115 rcu_read_lock();
0e369d75
PZ
9116 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9117 if (sds) {
9118 /*
9119 * XXX: write a coherent comment on why we do this.
9120 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9121 */
9122 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
9123 if (nr_busy > 1) {
9124 kick = true;
9125 goto unlock;
9126 }
9127
83cd4fe2 9128 }
37dc6b50 9129
1aaf90a4
VG
9130 sd = rcu_dereference(rq->sd);
9131 if (sd) {
9132 if ((rq->cfs.h_nr_running >= 1) &&
9133 check_cpu_capacity(rq, sd)) {
9134 kick = true;
9135 goto unlock;
9136 }
9137 }
37dc6b50 9138
1aaf90a4 9139 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9140 if (sd) {
9141 for_each_cpu(i, sched_domain_span(sd)) {
9142 if (i == cpu ||
9143 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9144 continue;
067491b7 9145
afe06efd
TC
9146 if (sched_asym_prefer(i, cpu)) {
9147 kick = true;
9148 goto unlock;
9149 }
9150 }
9151 }
1aaf90a4 9152unlock:
067491b7 9153 rcu_read_unlock();
1aaf90a4 9154 return kick;
83cd4fe2
VP
9155}
9156#else
208cb16b 9157static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9158#endif
9159
9160/*
9161 * run_rebalance_domains is triggered when needed from the scheduler tick.
9162 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9163 */
0766f788 9164static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9165{
208cb16b 9166 struct rq *this_rq = this_rq();
6eb57e0d 9167 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9168 CPU_IDLE : CPU_NOT_IDLE;
9169
1e3c88bd 9170 /*
83cd4fe2 9171 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9172 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9173 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9174 * give the idle cpus a chance to load balance. Else we may
9175 * load balance only within the local sched_domain hierarchy
9176 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9177 */
208cb16b 9178 nohz_idle_balance(this_rq, idle);
d4573c3e 9179 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9180}
9181
1e3c88bd
PZ
9182/*
9183 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9184 */
7caff66f 9185void trigger_load_balance(struct rq *rq)
1e3c88bd 9186{
1e3c88bd 9187 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9188 if (unlikely(on_null_domain(rq)))
9189 return;
9190
9191 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9192 raise_softirq(SCHED_SOFTIRQ);
3451d024 9193#ifdef CONFIG_NO_HZ_COMMON
c726099e 9194 if (nohz_kick_needed(rq))
0aeeeeba 9195 nohz_balancer_kick();
83cd4fe2 9196#endif
1e3c88bd
PZ
9197}
9198
0bcdcf28
CE
9199static void rq_online_fair(struct rq *rq)
9200{
9201 update_sysctl();
0e59bdae
KT
9202
9203 update_runtime_enabled(rq);
0bcdcf28
CE
9204}
9205
9206static void rq_offline_fair(struct rq *rq)
9207{
9208 update_sysctl();
a4c96ae3
PB
9209
9210 /* Ensure any throttled groups are reachable by pick_next_task */
9211 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9212}
9213
55e12e5e 9214#endif /* CONFIG_SMP */
e1d1484f 9215
bf0f6f24
IM
9216/*
9217 * scheduler tick hitting a task of our scheduling class:
9218 */
8f4d37ec 9219static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9220{
9221 struct cfs_rq *cfs_rq;
9222 struct sched_entity *se = &curr->se;
9223
9224 for_each_sched_entity(se) {
9225 cfs_rq = cfs_rq_of(se);
8f4d37ec 9226 entity_tick(cfs_rq, se, queued);
bf0f6f24 9227 }
18bf2805 9228
b52da86e 9229 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9230 task_tick_numa(rq, curr);
bf0f6f24
IM
9231}
9232
9233/*
cd29fe6f
PZ
9234 * called on fork with the child task as argument from the parent's context
9235 * - child not yet on the tasklist
9236 * - preemption disabled
bf0f6f24 9237 */
cd29fe6f 9238static void task_fork_fair(struct task_struct *p)
bf0f6f24 9239{
4fc420c9
DN
9240 struct cfs_rq *cfs_rq;
9241 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9242 struct rq *rq = this_rq();
8a8c69c3 9243 struct rq_flags rf;
bf0f6f24 9244
8a8c69c3 9245 rq_lock(rq, &rf);
861d034e
PZ
9246 update_rq_clock(rq);
9247
4fc420c9
DN
9248 cfs_rq = task_cfs_rq(current);
9249 curr = cfs_rq->curr;
e210bffd
PZ
9250 if (curr) {
9251 update_curr(cfs_rq);
b5d9d734 9252 se->vruntime = curr->vruntime;
e210bffd 9253 }
aeb73b04 9254 place_entity(cfs_rq, se, 1);
4d78e7b6 9255
cd29fe6f 9256 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9257 /*
edcb60a3
IM
9258 * Upon rescheduling, sched_class::put_prev_task() will place
9259 * 'current' within the tree based on its new key value.
9260 */
4d78e7b6 9261 swap(curr->vruntime, se->vruntime);
8875125e 9262 resched_curr(rq);
4d78e7b6 9263 }
bf0f6f24 9264
88ec22d3 9265 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9266 rq_unlock(rq, &rf);
bf0f6f24
IM
9267}
9268
cb469845
SR
9269/*
9270 * Priority of the task has changed. Check to see if we preempt
9271 * the current task.
9272 */
da7a735e
PZ
9273static void
9274prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9275{
da0c1e65 9276 if (!task_on_rq_queued(p))
da7a735e
PZ
9277 return;
9278
cb469845
SR
9279 /*
9280 * Reschedule if we are currently running on this runqueue and
9281 * our priority decreased, or if we are not currently running on
9282 * this runqueue and our priority is higher than the current's
9283 */
da7a735e 9284 if (rq->curr == p) {
cb469845 9285 if (p->prio > oldprio)
8875125e 9286 resched_curr(rq);
cb469845 9287 } else
15afe09b 9288 check_preempt_curr(rq, p, 0);
cb469845
SR
9289}
9290
daa59407 9291static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9292{
9293 struct sched_entity *se = &p->se;
da7a735e
PZ
9294
9295 /*
daa59407
BP
9296 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9297 * the dequeue_entity(.flags=0) will already have normalized the
9298 * vruntime.
9299 */
9300 if (p->on_rq)
9301 return true;
9302
9303 /*
9304 * When !on_rq, vruntime of the task has usually NOT been normalized.
9305 * But there are some cases where it has already been normalized:
da7a735e 9306 *
daa59407
BP
9307 * - A forked child which is waiting for being woken up by
9308 * wake_up_new_task().
9309 * - A task which has been woken up by try_to_wake_up() and
9310 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9311 */
daa59407
BP
9312 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9313 return true;
9314
9315 return false;
9316}
9317
09a43ace
VG
9318#ifdef CONFIG_FAIR_GROUP_SCHED
9319/*
9320 * Propagate the changes of the sched_entity across the tg tree to make it
9321 * visible to the root
9322 */
9323static void propagate_entity_cfs_rq(struct sched_entity *se)
9324{
9325 struct cfs_rq *cfs_rq;
9326
9327 /* Start to propagate at parent */
9328 se = se->parent;
9329
9330 for_each_sched_entity(se) {
9331 cfs_rq = cfs_rq_of(se);
9332
9333 if (cfs_rq_throttled(cfs_rq))
9334 break;
9335
88c0616e 9336 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9337 }
9338}
9339#else
9340static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9341#endif
9342
df217913 9343static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9344{
daa59407
BP
9345 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9346
9d89c257 9347 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9348 update_load_avg(cfs_rq, se, 0);
a05e8c51 9349 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9350 update_tg_load_avg(cfs_rq, false);
09a43ace 9351 propagate_entity_cfs_rq(se);
da7a735e
PZ
9352}
9353
df217913 9354static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9355{
daa59407 9356 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9357
9358#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9359 /*
9360 * Since the real-depth could have been changed (only FAIR
9361 * class maintain depth value), reset depth properly.
9362 */
9363 se->depth = se->parent ? se->parent->depth + 1 : 0;
9364#endif
7855a35a 9365
df217913 9366 /* Synchronize entity with its cfs_rq */
88c0616e 9367 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9368 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9369 update_tg_load_avg(cfs_rq, false);
09a43ace 9370 propagate_entity_cfs_rq(se);
df217913
VG
9371}
9372
9373static void detach_task_cfs_rq(struct task_struct *p)
9374{
9375 struct sched_entity *se = &p->se;
9376 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9377
9378 if (!vruntime_normalized(p)) {
9379 /*
9380 * Fix up our vruntime so that the current sleep doesn't
9381 * cause 'unlimited' sleep bonus.
9382 */
9383 place_entity(cfs_rq, se, 0);
9384 se->vruntime -= cfs_rq->min_vruntime;
9385 }
9386
9387 detach_entity_cfs_rq(se);
9388}
9389
9390static void attach_task_cfs_rq(struct task_struct *p)
9391{
9392 struct sched_entity *se = &p->se;
9393 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9394
9395 attach_entity_cfs_rq(se);
daa59407
BP
9396
9397 if (!vruntime_normalized(p))
9398 se->vruntime += cfs_rq->min_vruntime;
9399}
6efdb105 9400
daa59407
BP
9401static void switched_from_fair(struct rq *rq, struct task_struct *p)
9402{
9403 detach_task_cfs_rq(p);
9404}
9405
9406static void switched_to_fair(struct rq *rq, struct task_struct *p)
9407{
9408 attach_task_cfs_rq(p);
7855a35a 9409
daa59407 9410 if (task_on_rq_queued(p)) {
7855a35a 9411 /*
daa59407
BP
9412 * We were most likely switched from sched_rt, so
9413 * kick off the schedule if running, otherwise just see
9414 * if we can still preempt the current task.
7855a35a 9415 */
daa59407
BP
9416 if (rq->curr == p)
9417 resched_curr(rq);
9418 else
9419 check_preempt_curr(rq, p, 0);
7855a35a 9420 }
cb469845
SR
9421}
9422
83b699ed
SV
9423/* Account for a task changing its policy or group.
9424 *
9425 * This routine is mostly called to set cfs_rq->curr field when a task
9426 * migrates between groups/classes.
9427 */
9428static void set_curr_task_fair(struct rq *rq)
9429{
9430 struct sched_entity *se = &rq->curr->se;
9431
ec12cb7f
PT
9432 for_each_sched_entity(se) {
9433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9434
9435 set_next_entity(cfs_rq, se);
9436 /* ensure bandwidth has been allocated on our new cfs_rq */
9437 account_cfs_rq_runtime(cfs_rq, 0);
9438 }
83b699ed
SV
9439}
9440
029632fb
PZ
9441void init_cfs_rq(struct cfs_rq *cfs_rq)
9442{
bfb06889 9443 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9444 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9445#ifndef CONFIG_64BIT
9446 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9447#endif
141965c7 9448#ifdef CONFIG_SMP
09a43ace
VG
9449#ifdef CONFIG_FAIR_GROUP_SCHED
9450 cfs_rq->propagate_avg = 0;
9451#endif
9d89c257
YD
9452 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9453 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9454#endif
029632fb
PZ
9455}
9456
810b3817 9457#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9458static void task_set_group_fair(struct task_struct *p)
9459{
9460 struct sched_entity *se = &p->se;
9461
9462 set_task_rq(p, task_cpu(p));
9463 se->depth = se->parent ? se->parent->depth + 1 : 0;
9464}
9465
bc54da21 9466static void task_move_group_fair(struct task_struct *p)
810b3817 9467{
daa59407 9468 detach_task_cfs_rq(p);
b2b5ce02 9469 set_task_rq(p, task_cpu(p));
6efdb105
BP
9470
9471#ifdef CONFIG_SMP
9472 /* Tell se's cfs_rq has been changed -- migrated */
9473 p->se.avg.last_update_time = 0;
9474#endif
daa59407 9475 attach_task_cfs_rq(p);
810b3817 9476}
029632fb 9477
ea86cb4b
VG
9478static void task_change_group_fair(struct task_struct *p, int type)
9479{
9480 switch (type) {
9481 case TASK_SET_GROUP:
9482 task_set_group_fair(p);
9483 break;
9484
9485 case TASK_MOVE_GROUP:
9486 task_move_group_fair(p);
9487 break;
9488 }
9489}
9490
029632fb
PZ
9491void free_fair_sched_group(struct task_group *tg)
9492{
9493 int i;
9494
9495 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9496
9497 for_each_possible_cpu(i) {
9498 if (tg->cfs_rq)
9499 kfree(tg->cfs_rq[i]);
6fe1f348 9500 if (tg->se)
029632fb
PZ
9501 kfree(tg->se[i]);
9502 }
9503
9504 kfree(tg->cfs_rq);
9505 kfree(tg->se);
9506}
9507
9508int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9509{
029632fb 9510 struct sched_entity *se;
b7fa30c9 9511 struct cfs_rq *cfs_rq;
029632fb
PZ
9512 int i;
9513
9514 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9515 if (!tg->cfs_rq)
9516 goto err;
9517 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9518 if (!tg->se)
9519 goto err;
9520
9521 tg->shares = NICE_0_LOAD;
9522
9523 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9524
9525 for_each_possible_cpu(i) {
9526 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9527 GFP_KERNEL, cpu_to_node(i));
9528 if (!cfs_rq)
9529 goto err;
9530
9531 se = kzalloc_node(sizeof(struct sched_entity),
9532 GFP_KERNEL, cpu_to_node(i));
9533 if (!se)
9534 goto err_free_rq;
9535
9536 init_cfs_rq(cfs_rq);
9537 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9538 init_entity_runnable_average(se);
029632fb
PZ
9539 }
9540
9541 return 1;
9542
9543err_free_rq:
9544 kfree(cfs_rq);
9545err:
9546 return 0;
9547}
9548
8663e24d
PZ
9549void online_fair_sched_group(struct task_group *tg)
9550{
9551 struct sched_entity *se;
9552 struct rq *rq;
9553 int i;
9554
9555 for_each_possible_cpu(i) {
9556 rq = cpu_rq(i);
9557 se = tg->se[i];
9558
9559 raw_spin_lock_irq(&rq->lock);
4126bad6 9560 update_rq_clock(rq);
d0326691 9561 attach_entity_cfs_rq(se);
55e16d30 9562 sync_throttle(tg, i);
8663e24d
PZ
9563 raw_spin_unlock_irq(&rq->lock);
9564 }
9565}
9566
6fe1f348 9567void unregister_fair_sched_group(struct task_group *tg)
029632fb 9568{
029632fb 9569 unsigned long flags;
6fe1f348
PZ
9570 struct rq *rq;
9571 int cpu;
029632fb 9572
6fe1f348
PZ
9573 for_each_possible_cpu(cpu) {
9574 if (tg->se[cpu])
9575 remove_entity_load_avg(tg->se[cpu]);
029632fb 9576
6fe1f348
PZ
9577 /*
9578 * Only empty task groups can be destroyed; so we can speculatively
9579 * check on_list without danger of it being re-added.
9580 */
9581 if (!tg->cfs_rq[cpu]->on_list)
9582 continue;
9583
9584 rq = cpu_rq(cpu);
9585
9586 raw_spin_lock_irqsave(&rq->lock, flags);
9587 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9588 raw_spin_unlock_irqrestore(&rq->lock, flags);
9589 }
029632fb
PZ
9590}
9591
9592void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9593 struct sched_entity *se, int cpu,
9594 struct sched_entity *parent)
9595{
9596 struct rq *rq = cpu_rq(cpu);
9597
9598 cfs_rq->tg = tg;
9599 cfs_rq->rq = rq;
029632fb
PZ
9600 init_cfs_rq_runtime(cfs_rq);
9601
9602 tg->cfs_rq[cpu] = cfs_rq;
9603 tg->se[cpu] = se;
9604
9605 /* se could be NULL for root_task_group */
9606 if (!se)
9607 return;
9608
fed14d45 9609 if (!parent) {
029632fb 9610 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9611 se->depth = 0;
9612 } else {
029632fb 9613 se->cfs_rq = parent->my_q;
fed14d45
PZ
9614 se->depth = parent->depth + 1;
9615 }
029632fb
PZ
9616
9617 se->my_q = cfs_rq;
0ac9b1c2
PT
9618 /* guarantee group entities always have weight */
9619 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9620 se->parent = parent;
9621}
9622
9623static DEFINE_MUTEX(shares_mutex);
9624
9625int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9626{
9627 int i;
029632fb
PZ
9628
9629 /*
9630 * We can't change the weight of the root cgroup.
9631 */
9632 if (!tg->se[0])
9633 return -EINVAL;
9634
9635 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9636
9637 mutex_lock(&shares_mutex);
9638 if (tg->shares == shares)
9639 goto done;
9640
9641 tg->shares = shares;
9642 for_each_possible_cpu(i) {
9643 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9644 struct sched_entity *se = tg->se[i];
9645 struct rq_flags rf;
029632fb 9646
029632fb 9647 /* Propagate contribution to hierarchy */
8a8c69c3 9648 rq_lock_irqsave(rq, &rf);
71b1da46 9649 update_rq_clock(rq);
89ee048f 9650 for_each_sched_entity(se) {
88c0616e 9651 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
89ee048f
VG
9652 update_cfs_shares(se);
9653 }
8a8c69c3 9654 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9655 }
9656
9657done:
9658 mutex_unlock(&shares_mutex);
9659 return 0;
9660}
9661#else /* CONFIG_FAIR_GROUP_SCHED */
9662
9663void free_fair_sched_group(struct task_group *tg) { }
9664
9665int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9666{
9667 return 1;
9668}
9669
8663e24d
PZ
9670void online_fair_sched_group(struct task_group *tg) { }
9671
6fe1f348 9672void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9673
9674#endif /* CONFIG_FAIR_GROUP_SCHED */
9675
810b3817 9676
6d686f45 9677static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9678{
9679 struct sched_entity *se = &task->se;
0d721cea
PW
9680 unsigned int rr_interval = 0;
9681
9682 /*
9683 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9684 * idle runqueue:
9685 */
0d721cea 9686 if (rq->cfs.load.weight)
a59f4e07 9687 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9688
9689 return rr_interval;
9690}
9691
bf0f6f24
IM
9692/*
9693 * All the scheduling class methods:
9694 */
029632fb 9695const struct sched_class fair_sched_class = {
5522d5d5 9696 .next = &idle_sched_class,
bf0f6f24
IM
9697 .enqueue_task = enqueue_task_fair,
9698 .dequeue_task = dequeue_task_fair,
9699 .yield_task = yield_task_fair,
d95f4122 9700 .yield_to_task = yield_to_task_fair,
bf0f6f24 9701
2e09bf55 9702 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9703
9704 .pick_next_task = pick_next_task_fair,
9705 .put_prev_task = put_prev_task_fair,
9706
681f3e68 9707#ifdef CONFIG_SMP
4ce72a2c 9708 .select_task_rq = select_task_rq_fair,
0a74bef8 9709 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9710
0bcdcf28
CE
9711 .rq_online = rq_online_fair,
9712 .rq_offline = rq_offline_fair,
88ec22d3 9713
12695578 9714 .task_dead = task_dead_fair,
c5b28038 9715 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9716#endif
bf0f6f24 9717
83b699ed 9718 .set_curr_task = set_curr_task_fair,
bf0f6f24 9719 .task_tick = task_tick_fair,
cd29fe6f 9720 .task_fork = task_fork_fair,
cb469845
SR
9721
9722 .prio_changed = prio_changed_fair,
da7a735e 9723 .switched_from = switched_from_fair,
cb469845 9724 .switched_to = switched_to_fair,
810b3817 9725
0d721cea
PW
9726 .get_rr_interval = get_rr_interval_fair,
9727
6e998916
SG
9728 .update_curr = update_curr_fair,
9729
810b3817 9730#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9731 .task_change_group = task_change_group_fair,
810b3817 9732#endif
bf0f6f24
IM
9733};
9734
9735#ifdef CONFIG_SCHED_DEBUG
029632fb 9736void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9737{
a9e7f654 9738 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9739
5973e5b9 9740 rcu_read_lock();
a9e7f654 9741 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9742 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9743 rcu_read_unlock();
bf0f6f24 9744}
397f2378
SD
9745
9746#ifdef CONFIG_NUMA_BALANCING
9747void show_numa_stats(struct task_struct *p, struct seq_file *m)
9748{
9749 int node;
9750 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9751
9752 for_each_online_node(node) {
9753 if (p->numa_faults) {
9754 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9755 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9756 }
9757 if (p->numa_group) {
9758 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9759 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9760 }
9761 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9762 }
9763}
9764#endif /* CONFIG_NUMA_BALANCING */
9765#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9766
9767__init void init_sched_fair_class(void)
9768{
9769#ifdef CONFIG_SMP
9770 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9771
3451d024 9772#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9773 nohz.next_balance = jiffies;
029632fb 9774 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9775#endif
9776#endif /* SMP */
9777
9778}