cpufreq/schedutil: Use DL utilization tracking
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25
IM
40unsigned int sysctl_sched_latency = 6000000ULL;
41unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
2b4d5b25
IM
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
2b4d5b25
IM
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
97#endif
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
2b4d5b25
IM
108 * (default: 5 msec, units: microseconds)
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
111#endif
112
3273163c
MR
113/*
114 * The margin used when comparing utilization with CPU capacity:
893c5d22 115 * util * margin < capacity * 1024
2b4d5b25
IM
116 *
117 * (default: ~20%)
3273163c 118 */
2b4d5b25 119unsigned int capacity_margin = 1280;
3273163c 120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 251
62160e3f 252/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254{
62160e3f 255 return cfs_rq->rq;
bf0f6f24
IM
256}
257
8f48894f
PZ
258static inline struct task_struct *task_of(struct sched_entity *se)
259{
9148a3a1 260 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
3d4b47b4
PZ
285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286{
287 if (!cfs_rq->on_list) {
9c2791f9
VG
288 struct rq *rq = rq_of(cfs_rq);
289 int cpu = cpu_of(rq);
67e86250
PT
290 /*
291 * Ensure we either appear before our parent (if already
292 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
293 * enqueued. The fact that we always enqueue bottom-up
294 * reduces this to two cases and a special case for the root
295 * cfs_rq. Furthermore, it also means that we will always reset
296 * tmp_alone_branch either when the branch is connected
297 * to a tree or when we reach the beg of the tree
67e86250
PT
298 */
299 if (cfs_rq->tg->parent &&
9c2791f9
VG
300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 /*
302 * If parent is already on the list, we add the child
303 * just before. Thanks to circular linked property of
304 * the list, this means to put the child at the tail
305 * of the list that starts by parent.
306 */
307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 /*
310 * The branch is now connected to its tree so we can
311 * reset tmp_alone_branch to the beginning of the
312 * list.
313 */
314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 } else if (!cfs_rq->tg->parent) {
316 /*
317 * cfs rq without parent should be put
318 * at the tail of the list.
319 */
67e86250 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
321 &rq->leaf_cfs_rq_list);
322 /*
323 * We have reach the beg of a tree so we can reset
324 * tmp_alone_branch to the beginning of the list.
325 */
326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 } else {
328 /*
329 * The parent has not already been added so we want to
330 * make sure that it will be put after us.
331 * tmp_alone_branch points to the beg of the branch
332 * where we will add parent.
333 */
334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 rq->tmp_alone_branch);
336 /*
337 * update tmp_alone_branch to points to the new beg
338 * of the branch
339 */
340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 341 }
3d4b47b4
PZ
342
343 cfs_rq->on_list = 1;
344 }
345}
346
347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348{
349 if (cfs_rq->on_list) {
350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 cfs_rq->on_list = 0;
352 }
353}
354
b758149c 355/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
356#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
358 leaf_cfs_rq_list)
b758149c
PZ
359
360/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 361static inline struct cfs_rq *
b758149c
PZ
362is_same_group(struct sched_entity *se, struct sched_entity *pse)
363{
364 if (se->cfs_rq == pse->cfs_rq)
fed14d45 365 return se->cfs_rq;
b758149c 366
fed14d45 367 return NULL;
b758149c
PZ
368}
369
370static inline struct sched_entity *parent_entity(struct sched_entity *se)
371{
372 return se->parent;
373}
374
464b7527
PZ
375static void
376find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377{
378 int se_depth, pse_depth;
379
380 /*
381 * preemption test can be made between sibling entities who are in the
382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 * both tasks until we find their ancestors who are siblings of common
384 * parent.
385 */
386
387 /* First walk up until both entities are at same depth */
fed14d45
PZ
388 se_depth = (*se)->depth;
389 pse_depth = (*pse)->depth;
464b7527
PZ
390
391 while (se_depth > pse_depth) {
392 se_depth--;
393 *se = parent_entity(*se);
394 }
395
396 while (pse_depth > se_depth) {
397 pse_depth--;
398 *pse = parent_entity(*pse);
399 }
400
401 while (!is_same_group(*se, *pse)) {
402 *se = parent_entity(*se);
403 *pse = parent_entity(*pse);
404 }
405}
406
8f48894f
PZ
407#else /* !CONFIG_FAIR_GROUP_SCHED */
408
409static inline struct task_struct *task_of(struct sched_entity *se)
410{
411 return container_of(se, struct task_struct, se);
412}
bf0f6f24 413
62160e3f
IM
414static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415{
416 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
417}
418
bf0f6f24 419
b758149c
PZ
420#define for_each_sched_entity(se) \
421 for (; se; se = NULL)
bf0f6f24 422
b758149c 423static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 424{
b758149c 425 return &task_rq(p)->cfs;
bf0f6f24
IM
426}
427
b758149c
PZ
428static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429{
430 struct task_struct *p = task_of(se);
431 struct rq *rq = task_rq(p);
432
433 return &rq->cfs;
434}
435
436/* runqueue "owned" by this group */
437static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438{
439 return NULL;
440}
441
3d4b47b4
PZ
442static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443{
444}
445
446static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447{
448}
449
a9e7f654
TH
450#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 452
b758149c
PZ
453static inline struct sched_entity *parent_entity(struct sched_entity *se)
454{
455 return NULL;
456}
457
464b7527
PZ
458static inline void
459find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460{
461}
462
b758149c
PZ
463#endif /* CONFIG_FAIR_GROUP_SCHED */
464
6c16a6dc 465static __always_inline
9dbdb155 466void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
467
468/**************************************************************
469 * Scheduling class tree data structure manipulation methods:
470 */
471
1bf08230 472static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 473{
1bf08230 474 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 475 if (delta > 0)
1bf08230 476 max_vruntime = vruntime;
02e0431a 477
1bf08230 478 return max_vruntime;
02e0431a
PZ
479}
480
0702e3eb 481static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
482{
483 s64 delta = (s64)(vruntime - min_vruntime);
484 if (delta < 0)
485 min_vruntime = vruntime;
486
487 return min_vruntime;
488}
489
54fdc581
FC
490static inline int entity_before(struct sched_entity *a,
491 struct sched_entity *b)
492{
493 return (s64)(a->vruntime - b->vruntime) < 0;
494}
495
1af5f730
PZ
496static void update_min_vruntime(struct cfs_rq *cfs_rq)
497{
b60205c7 498 struct sched_entity *curr = cfs_rq->curr;
bfb06889 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 500
1af5f730
PZ
501 u64 vruntime = cfs_rq->min_vruntime;
502
b60205c7
PZ
503 if (curr) {
504 if (curr->on_rq)
505 vruntime = curr->vruntime;
506 else
507 curr = NULL;
508 }
1af5f730 509
bfb06889
DB
510 if (leftmost) { /* non-empty tree */
511 struct sched_entity *se;
512 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 513
b60205c7 514 if (!curr)
1af5f730
PZ
515 vruntime = se->vruntime;
516 else
517 vruntime = min_vruntime(vruntime, se->vruntime);
518 }
519
1bf08230 520 /* ensure we never gain time by being placed backwards. */
1af5f730 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
522#ifndef CONFIG_64BIT
523 smp_wmb();
524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525#endif
1af5f730
PZ
526}
527
bf0f6f24
IM
528/*
529 * Enqueue an entity into the rb-tree:
530 */
0702e3eb 531static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 532{
bfb06889 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
534 struct rb_node *parent = NULL;
535 struct sched_entity *entry;
bfb06889 536 bool leftmost = true;
bf0f6f24
IM
537
538 /*
539 * Find the right place in the rbtree:
540 */
541 while (*link) {
542 parent = *link;
543 entry = rb_entry(parent, struct sched_entity, run_node);
544 /*
545 * We dont care about collisions. Nodes with
546 * the same key stay together.
547 */
2bd2d6f2 548 if (entity_before(se, entry)) {
bf0f6f24
IM
549 link = &parent->rb_left;
550 } else {
551 link = &parent->rb_right;
bfb06889 552 leftmost = false;
bf0f6f24
IM
553 }
554 }
555
bf0f6f24 556 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
557 rb_insert_color_cached(&se->run_node,
558 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
559}
560
0702e3eb 561static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 562{
bfb06889 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
564}
565
029632fb 566struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 567{
bfb06889 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
569
570 if (!left)
571 return NULL;
572
573 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
574}
575
ac53db59
RR
576static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577{
578 struct rb_node *next = rb_next(&se->run_node);
579
580 if (!next)
581 return NULL;
582
583 return rb_entry(next, struct sched_entity, run_node);
584}
585
586#ifdef CONFIG_SCHED_DEBUG
029632fb 587struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 588{
bfb06889 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 590
70eee74b
BS
591 if (!last)
592 return NULL;
7eee3e67
IM
593
594 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
595}
596
bf0f6f24
IM
597/**************************************************************
598 * Scheduling class statistics methods:
599 */
600
acb4a848 601int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 602 void __user *buffer, size_t *lenp,
b2be5e96
PZ
603 loff_t *ppos)
604{
8d65af78 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 606 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
607
608 if (ret || !write)
609 return ret;
610
611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 sysctl_sched_min_granularity);
613
acb4a848
CE
614#define WRT_SYSCTL(name) \
615 (normalized_sysctl_##name = sysctl_##name / (factor))
616 WRT_SYSCTL(sched_min_granularity);
617 WRT_SYSCTL(sched_latency);
618 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
619#undef WRT_SYSCTL
620
b2be5e96
PZ
621 return 0;
622}
623#endif
647e7cac 624
a7be37ac 625/*
f9c0b095 626 * delta /= w
a7be37ac 627 */
9dbdb155 628static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 629{
f9c0b095 630 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
632
633 return delta;
634}
635
647e7cac
IM
636/*
637 * The idea is to set a period in which each task runs once.
638 *
532b1858 639 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
640 * this period because otherwise the slices get too small.
641 *
642 * p = (nr <= nl) ? l : l*nr/nl
643 */
4d78e7b6
PZ
644static u64 __sched_period(unsigned long nr_running)
645{
8e2b0bf3
BF
646 if (unlikely(nr_running > sched_nr_latency))
647 return nr_running * sysctl_sched_min_granularity;
648 else
649 return sysctl_sched_latency;
4d78e7b6
PZ
650}
651
647e7cac
IM
652/*
653 * We calculate the wall-time slice from the period by taking a part
654 * proportional to the weight.
655 *
f9c0b095 656 * s = p*P[w/rw]
647e7cac 657 */
6d0f0ebd 658static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 659{
0a582440 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 661
0a582440 662 for_each_sched_entity(se) {
6272d68c 663 struct load_weight *load;
3104bf03 664 struct load_weight lw;
6272d68c
LM
665
666 cfs_rq = cfs_rq_of(se);
667 load = &cfs_rq->load;
f9c0b095 668
0a582440 669 if (unlikely(!se->on_rq)) {
3104bf03 670 lw = cfs_rq->load;
0a582440
MG
671
672 update_load_add(&lw, se->load.weight);
673 load = &lw;
674 }
9dbdb155 675 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
676 }
677 return slice;
bf0f6f24
IM
678}
679
647e7cac 680/*
660cc00f 681 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 682 *
f9c0b095 683 * vs = s/w
647e7cac 684 */
f9c0b095 685static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 686{
f9c0b095 687 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
688}
689
a75cdaa9 690#ifdef CONFIG_SMP
c0796298 691#include "pelt.h"
283e2ed3
PZ
692#include "sched-pelt.h"
693
772bd008 694static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
695static unsigned long task_h_load(struct task_struct *p);
696
540247fb
YD
697/* Give new sched_entity start runnable values to heavy its load in infant time */
698void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 699{
540247fb 700 struct sched_avg *sa = &se->avg;
a75cdaa9 701
f207934f
PZ
702 memset(sa, 0, sizeof(*sa));
703
b5a9b340
VG
704 /*
705 * Tasks are intialized with full load to be seen as heavy tasks until
706 * they get a chance to stabilize to their real load level.
707 * Group entities are intialized with zero load to reflect the fact that
708 * nothing has been attached to the task group yet.
709 */
710 if (entity_is_task(se))
1ea6c46a 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 712
f207934f
PZ
713 se->runnable_weight = se->load.weight;
714
9d89c257 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 716}
7ea241af 717
7dc603c9 718static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 719static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 720
2b8c41da
YD
721/*
722 * With new tasks being created, their initial util_avgs are extrapolated
723 * based on the cfs_rq's current util_avg:
724 *
725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726 *
727 * However, in many cases, the above util_avg does not give a desired
728 * value. Moreover, the sum of the util_avgs may be divergent, such
729 * as when the series is a harmonic series.
730 *
731 * To solve this problem, we also cap the util_avg of successive tasks to
732 * only 1/2 of the left utilization budget:
733 *
8fe5c5a9 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 735 *
8fe5c5a9 736 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 737 *
8fe5c5a9
QP
738 * For example, for a CPU with 1024 of capacity, a simplest series from
739 * the beginning would be like:
2b8c41da
YD
740 *
741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743 *
744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745 * if util_avg > util_avg_cap.
746 */
747void post_init_entity_util_avg(struct sched_entity *se)
748{
749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
753
754 if (cap > 0) {
755 if (cfs_rq->avg.util_avg != 0) {
756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
757 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758
759 if (sa->util_avg > cap)
760 sa->util_avg = cap;
761 } else {
762 sa->util_avg = cap;
763 }
2b8c41da 764 }
7dc603c9
PZ
765
766 if (entity_is_task(se)) {
767 struct task_struct *p = task_of(se);
768 if (p->sched_class != &fair_sched_class) {
769 /*
770 * For !fair tasks do:
771 *
3a123bbb 772 update_cfs_rq_load_avg(now, cfs_rq);
ea14b57e 773 attach_entity_load_avg(cfs_rq, se, 0);
7dc603c9
PZ
774 switched_from_fair(rq, p);
775 *
776 * such that the next switched_to_fair() has the
777 * expected state.
778 */
df217913 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
780 return;
781 }
782 }
783
df217913 784 attach_entity_cfs_rq(se);
2b8c41da
YD
785}
786
7dc603c9 787#else /* !CONFIG_SMP */
540247fb 788void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
789{
790}
2b8c41da
YD
791void post_init_entity_util_avg(struct sched_entity *se)
792{
793}
3d30544f
PZ
794static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795{
796}
7dc603c9 797#endif /* CONFIG_SMP */
a75cdaa9 798
bf0f6f24 799/*
9dbdb155 800 * Update the current task's runtime statistics.
bf0f6f24 801 */
b7cc0896 802static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 803{
429d43bc 804 struct sched_entity *curr = cfs_rq->curr;
78becc27 805 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 806 u64 delta_exec;
bf0f6f24
IM
807
808 if (unlikely(!curr))
809 return;
810
9dbdb155
PZ
811 delta_exec = now - curr->exec_start;
812 if (unlikely((s64)delta_exec <= 0))
34f28ecd 813 return;
bf0f6f24 814
8ebc91d9 815 curr->exec_start = now;
d842de87 816
9dbdb155
PZ
817 schedstat_set(curr->statistics.exec_max,
818 max(delta_exec, curr->statistics.exec_max));
819
820 curr->sum_exec_runtime += delta_exec;
ae92882e 821 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
822
823 curr->vruntime += calc_delta_fair(delta_exec, curr);
824 update_min_vruntime(cfs_rq);
825
d842de87
SV
826 if (entity_is_task(curr)) {
827 struct task_struct *curtask = task_of(curr);
828
f977bb49 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 830 cgroup_account_cputime(curtask, delta_exec);
f06febc9 831 account_group_exec_runtime(curtask, delta_exec);
d842de87 832 }
ec12cb7f
PT
833
834 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
835}
836
6e998916
SG
837static void update_curr_fair(struct rq *rq)
838{
839 update_curr(cfs_rq_of(&rq->curr->se));
840}
841
bf0f6f24 842static inline void
5870db5b 843update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 844{
4fa8d299
JP
845 u64 wait_start, prev_wait_start;
846
847 if (!schedstat_enabled())
848 return;
849
850 wait_start = rq_clock(rq_of(cfs_rq));
851 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
852
853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
854 likely(wait_start > prev_wait_start))
855 wait_start -= prev_wait_start;
3ea94de1 856
2ed41a55 857 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
858}
859
4fa8d299 860static inline void
3ea94de1
JP
861update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862{
863 struct task_struct *p;
cb251765
MG
864 u64 delta;
865
4fa8d299
JP
866 if (!schedstat_enabled())
867 return;
868
869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
870
871 if (entity_is_task(se)) {
872 p = task_of(se);
873 if (task_on_rq_migrating(p)) {
874 /*
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
878 */
2ed41a55 879 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
880 return;
881 }
882 trace_sched_stat_wait(p, delta);
883 }
884
2ed41a55 885 __schedstat_set(se->statistics.wait_max,
4fa8d299 886 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 890}
3ea94de1 891
4fa8d299 892static inline void
1a3d027c
JP
893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *tsk = NULL;
4fa8d299
JP
896 u64 sleep_start, block_start;
897
898 if (!schedstat_enabled())
899 return;
900
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
903
904 if (entity_is_task(se))
905 tsk = task_of(se);
906
4fa8d299
JP
907 if (sleep_start) {
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
909
910 if ((s64)delta < 0)
911 delta = 0;
912
4fa8d299 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 914 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 915
2ed41a55
PZ
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
918
919 if (tsk) {
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
922 }
923 }
4fa8d299
JP
924 if (block_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
926
927 if ((s64)delta < 0)
928 delta = 0;
929
4fa8d299 930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 931 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 932
2ed41a55
PZ
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
935
936 if (tsk) {
937 if (tsk->in_iowait) {
2ed41a55
PZ
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
940 trace_sched_stat_iowait(tsk, delta);
941 }
942
943 trace_sched_stat_blocked(tsk, delta);
944
945 /*
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
949 */
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
953 delta >> 20);
954 }
955 account_scheduler_latency(tsk, delta >> 10, 0);
956 }
957 }
3ea94de1 958}
3ea94de1 959
bf0f6f24
IM
960/*
961 * Task is being enqueued - update stats:
962 */
cb251765 963static inline void
1a3d027c 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 965{
4fa8d299
JP
966 if (!schedstat_enabled())
967 return;
968
bf0f6f24
IM
969 /*
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
972 */
429d43bc 973 if (se != cfs_rq->curr)
5870db5b 974 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
975
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
978}
979
bf0f6f24 980static inline void
cb251765 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 982{
4fa8d299
JP
983
984 if (!schedstat_enabled())
985 return;
986
bf0f6f24
IM
987 /*
988 * Mark the end of the wait period if dequeueing a
989 * waiting task:
990 */
429d43bc 991 if (se != cfs_rq->curr)
9ef0a961 992 update_stats_wait_end(cfs_rq, se);
cb251765 993
4fa8d299
JP
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
cb251765 996
4fa8d299 997 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 998 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
999 rq_clock(rq_of(cfs_rq)));
1000 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1001 __schedstat_set(se->statistics.block_start,
4fa8d299 1002 rq_clock(rq_of(cfs_rq)));
cb251765 1003 }
cb251765
MG
1004}
1005
bf0f6f24
IM
1006/*
1007 * We are picking a new current task - update its stats:
1008 */
1009static inline void
79303e9e 1010update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1011{
1012 /*
1013 * We are starting a new run period:
1014 */
78becc27 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1016}
1017
bf0f6f24
IM
1018/**************************************************
1019 * Scheduling class queueing methods:
1020 */
1021
cbee9f88
PZ
1022#ifdef CONFIG_NUMA_BALANCING
1023/*
598f0ec0
MG
1024 * Approximate time to scan a full NUMA task in ms. The task scan period is
1025 * calculated based on the tasks virtual memory size and
1026 * numa_balancing_scan_size.
cbee9f88 1027 */
598f0ec0
MG
1028unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1030
1031/* Portion of address space to scan in MB */
1032unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1033
4b96a29b
PZ
1034/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036
b5dd77c8
RR
1037struct numa_group {
1038 atomic_t refcount;
1039
1040 spinlock_t lock; /* nr_tasks, tasks */
1041 int nr_tasks;
1042 pid_t gid;
1043 int active_nodes;
1044
1045 struct rcu_head rcu;
1046 unsigned long total_faults;
1047 unsigned long max_faults_cpu;
1048 /*
1049 * Faults_cpu is used to decide whether memory should move
1050 * towards the CPU. As a consequence, these stats are weighted
1051 * more by CPU use than by memory faults.
1052 */
1053 unsigned long *faults_cpu;
1054 unsigned long faults[0];
1055};
1056
1057static inline unsigned long group_faults_priv(struct numa_group *ng);
1058static inline unsigned long group_faults_shared(struct numa_group *ng);
1059
598f0ec0
MG
1060static unsigned int task_nr_scan_windows(struct task_struct *p)
1061{
1062 unsigned long rss = 0;
1063 unsigned long nr_scan_pages;
1064
1065 /*
1066 * Calculations based on RSS as non-present and empty pages are skipped
1067 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 * on resident pages
1069 */
1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 rss = get_mm_rss(p->mm);
1072 if (!rss)
1073 rss = nr_scan_pages;
1074
1075 rss = round_up(rss, nr_scan_pages);
1076 return rss / nr_scan_pages;
1077}
1078
1079/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080#define MAX_SCAN_WINDOW 2560
1081
1082static unsigned int task_scan_min(struct task_struct *p)
1083{
316c1608 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1085 unsigned int scan, floor;
1086 unsigned int windows = 1;
1087
64192658
KT
1088 if (scan_size < MAX_SCAN_WINDOW)
1089 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1090 floor = 1000 / windows;
1091
1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 return max_t(unsigned int, floor, scan);
1094}
1095
b5dd77c8
RR
1096static unsigned int task_scan_start(struct task_struct *p)
1097{
1098 unsigned long smin = task_scan_min(p);
1099 unsigned long period = smin;
1100
1101 /* Scale the maximum scan period with the amount of shared memory. */
1102 if (p->numa_group) {
1103 struct numa_group *ng = p->numa_group;
1104 unsigned long shared = group_faults_shared(ng);
1105 unsigned long private = group_faults_priv(ng);
1106
1107 period *= atomic_read(&ng->refcount);
1108 period *= shared + 1;
1109 period /= private + shared + 1;
1110 }
1111
1112 return max(smin, period);
1113}
1114
598f0ec0
MG
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
b5dd77c8
RR
1117 unsigned long smin = task_scan_min(p);
1118 unsigned long smax;
598f0ec0
MG
1119
1120 /* Watch for min being lower than max due to floor calculations */
1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1122
1123 /* Scale the maximum scan period with the amount of shared memory. */
1124 if (p->numa_group) {
1125 struct numa_group *ng = p->numa_group;
1126 unsigned long shared = group_faults_shared(ng);
1127 unsigned long private = group_faults_priv(ng);
1128 unsigned long period = smax;
1129
1130 period *= atomic_read(&ng->refcount);
1131 period *= shared + 1;
1132 period /= private + shared + 1;
1133
1134 smax = max(smax, period);
1135 }
1136
598f0ec0
MG
1137 return max(smin, smax);
1138}
1139
13784475
MG
1140void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141{
1142 int mm_users = 0;
1143 struct mm_struct *mm = p->mm;
1144
1145 if (mm) {
1146 mm_users = atomic_read(&mm->mm_users);
1147 if (mm_users == 1) {
1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 mm->numa_scan_seq = 0;
1150 }
1151 }
1152 p->node_stamp = 0;
1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1155 p->numa_work.next = &p->numa_work;
1156 p->numa_faults = NULL;
1157 p->numa_group = NULL;
1158 p->last_task_numa_placement = 0;
1159 p->last_sum_exec_runtime = 0;
1160
1161 /* New address space, reset the preferred nid */
1162 if (!(clone_flags & CLONE_VM)) {
1163 p->numa_preferred_nid = -1;
1164 return;
1165 }
1166
1167 /*
1168 * New thread, keep existing numa_preferred_nid which should be copied
1169 * already by arch_dup_task_struct but stagger when scans start.
1170 */
1171 if (mm) {
1172 unsigned int delay;
1173
1174 delay = min_t(unsigned int, task_scan_max(current),
1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 delay += 2 * TICK_NSEC;
1177 p->node_stamp = delay;
1178 }
1179}
1180
0ec8aa00
PZ
1181static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182{
1183 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185}
1186
1187static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188{
1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191}
1192
be1e4e76
RR
1193/* Shared or private faults. */
1194#define NR_NUMA_HINT_FAULT_TYPES 2
1195
1196/* Memory and CPU locality */
1197#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198
1199/* Averaged statistics, and temporary buffers. */
1200#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201
e29cf08b
MG
1202pid_t task_numa_group_id(struct task_struct *p)
1203{
1204 return p->numa_group ? p->numa_group->gid : 0;
1205}
1206
44dba3d5 1207/*
97fb7a0a 1208 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1209 * occupy the first half of the array. The second half of the
1210 * array is for current counters, which are averaged into the
1211 * first set by task_numa_placement.
1212 */
1213static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1214{
44dba3d5 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1216}
1217
1218static inline unsigned long task_faults(struct task_struct *p, int nid)
1219{
44dba3d5 1220 if (!p->numa_faults)
ac8e895b
MG
1221 return 0;
1222
44dba3d5
IM
1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1225}
1226
83e1d2cd
MG
1227static inline unsigned long group_faults(struct task_struct *p, int nid)
1228{
1229 if (!p->numa_group)
1230 return 0;
1231
44dba3d5
IM
1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1234}
1235
20e07dea
RR
1236static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237{
44dba3d5
IM
1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1240}
1241
b5dd77c8
RR
1242static inline unsigned long group_faults_priv(struct numa_group *ng)
1243{
1244 unsigned long faults = 0;
1245 int node;
1246
1247 for_each_online_node(node) {
1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 }
1250
1251 return faults;
1252}
1253
1254static inline unsigned long group_faults_shared(struct numa_group *ng)
1255{
1256 unsigned long faults = 0;
1257 int node;
1258
1259 for_each_online_node(node) {
1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 }
1262
1263 return faults;
1264}
1265
4142c3eb
RR
1266/*
1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268 * considered part of a numa group's pseudo-interleaving set. Migrations
1269 * between these nodes are slowed down, to allow things to settle down.
1270 */
1271#define ACTIVE_NODE_FRACTION 3
1272
1273static bool numa_is_active_node(int nid, struct numa_group *ng)
1274{
1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276}
1277
6c6b1193
RR
1278/* Handle placement on systems where not all nodes are directly connected. */
1279static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 int maxdist, bool task)
1281{
1282 unsigned long score = 0;
1283 int node;
1284
1285 /*
1286 * All nodes are directly connected, and the same distance
1287 * from each other. No need for fancy placement algorithms.
1288 */
1289 if (sched_numa_topology_type == NUMA_DIRECT)
1290 return 0;
1291
1292 /*
1293 * This code is called for each node, introducing N^2 complexity,
1294 * which should be ok given the number of nodes rarely exceeds 8.
1295 */
1296 for_each_online_node(node) {
1297 unsigned long faults;
1298 int dist = node_distance(nid, node);
1299
1300 /*
1301 * The furthest away nodes in the system are not interesting
1302 * for placement; nid was already counted.
1303 */
1304 if (dist == sched_max_numa_distance || node == nid)
1305 continue;
1306
1307 /*
1308 * On systems with a backplane NUMA topology, compare groups
1309 * of nodes, and move tasks towards the group with the most
1310 * memory accesses. When comparing two nodes at distance
1311 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 * of each group. Skip other nodes.
1313 */
1314 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315 dist > maxdist)
1316 continue;
1317
1318 /* Add up the faults from nearby nodes. */
1319 if (task)
1320 faults = task_faults(p, node);
1321 else
1322 faults = group_faults(p, node);
1323
1324 /*
1325 * On systems with a glueless mesh NUMA topology, there are
1326 * no fixed "groups of nodes". Instead, nodes that are not
1327 * directly connected bounce traffic through intermediate
1328 * nodes; a numa_group can occupy any set of nodes.
1329 * The further away a node is, the less the faults count.
1330 * This seems to result in good task placement.
1331 */
1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 faults *= (sched_max_numa_distance - dist);
1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 }
1336
1337 score += faults;
1338 }
1339
1340 return score;
1341}
1342
83e1d2cd
MG
1343/*
1344 * These return the fraction of accesses done by a particular task, or
1345 * task group, on a particular numa node. The group weight is given a
1346 * larger multiplier, in order to group tasks together that are almost
1347 * evenly spread out between numa nodes.
1348 */
7bd95320
RR
1349static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 int dist)
83e1d2cd 1351{
7bd95320 1352 unsigned long faults, total_faults;
83e1d2cd 1353
44dba3d5 1354 if (!p->numa_faults)
83e1d2cd
MG
1355 return 0;
1356
1357 total_faults = p->total_numa_faults;
1358
1359 if (!total_faults)
1360 return 0;
1361
7bd95320 1362 faults = task_faults(p, nid);
6c6b1193
RR
1363 faults += score_nearby_nodes(p, nid, dist, true);
1364
7bd95320 1365 return 1000 * faults / total_faults;
83e1d2cd
MG
1366}
1367
7bd95320
RR
1368static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 int dist)
83e1d2cd 1370{
7bd95320
RR
1371 unsigned long faults, total_faults;
1372
1373 if (!p->numa_group)
1374 return 0;
1375
1376 total_faults = p->numa_group->total_faults;
1377
1378 if (!total_faults)
83e1d2cd
MG
1379 return 0;
1380
7bd95320 1381 faults = group_faults(p, nid);
6c6b1193
RR
1382 faults += score_nearby_nodes(p, nid, dist, false);
1383
7bd95320 1384 return 1000 * faults / total_faults;
83e1d2cd
MG
1385}
1386
10f39042
RR
1387bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 int src_nid, int dst_cpu)
1389{
1390 struct numa_group *ng = p->numa_group;
1391 int dst_nid = cpu_to_node(dst_cpu);
1392 int last_cpupid, this_cpupid;
1393
1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395
1396 /*
1397 * Multi-stage node selection is used in conjunction with a periodic
1398 * migration fault to build a temporal task<->page relation. By using
1399 * a two-stage filter we remove short/unlikely relations.
1400 *
1401 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1402 * a task's usage of a particular page (n_p) per total usage of this
1403 * page (n_t) (in a given time-span) to a probability.
1404 *
1405 * Our periodic faults will sample this probability and getting the
1406 * same result twice in a row, given these samples are fully
1407 * independent, is then given by P(n)^2, provided our sample period
1408 * is sufficiently short compared to the usage pattern.
1409 *
1410 * This quadric squishes small probabilities, making it less likely we
1411 * act on an unlikely task<->page relation.
1412 */
1413 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1414 if (!cpupid_pid_unset(last_cpupid) &&
1415 cpupid_to_nid(last_cpupid) != dst_nid)
1416 return false;
1417
1418 /* Always allow migrate on private faults */
1419 if (cpupid_match_pid(p, last_cpupid))
1420 return true;
1421
1422 /* A shared fault, but p->numa_group has not been set up yet. */
1423 if (!ng)
1424 return true;
1425
1426 /*
4142c3eb
RR
1427 * Destination node is much more heavily used than the source
1428 * node? Allow migration.
10f39042 1429 */
4142c3eb
RR
1430 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1431 ACTIVE_NODE_FRACTION)
10f39042
RR
1432 return true;
1433
1434 /*
4142c3eb
RR
1435 * Distribute memory according to CPU & memory use on each node,
1436 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1437 *
1438 * faults_cpu(dst) 3 faults_cpu(src)
1439 * --------------- * - > ---------------
1440 * faults_mem(dst) 4 faults_mem(src)
10f39042 1441 */
4142c3eb
RR
1442 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1443 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1444}
1445
c7132dd6 1446static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1447static unsigned long source_load(int cpu, int type);
1448static unsigned long target_load(int cpu, int type);
ced549fa 1449static unsigned long capacity_of(int cpu);
58d081b5 1450
fb13c7ee 1451/* Cached statistics for all CPUs within a node */
58d081b5 1452struct numa_stats {
fb13c7ee 1453 unsigned long nr_running;
58d081b5 1454 unsigned long load;
fb13c7ee
MG
1455
1456 /* Total compute capacity of CPUs on a node */
5ef20ca1 1457 unsigned long compute_capacity;
fb13c7ee
MG
1458
1459 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1460 unsigned long task_capacity;
1b6a7495 1461 int has_free_capacity;
58d081b5 1462};
e6628d5b 1463
fb13c7ee
MG
1464/*
1465 * XXX borrowed from update_sg_lb_stats
1466 */
1467static void update_numa_stats(struct numa_stats *ns, int nid)
1468{
83d7f242
RR
1469 int smt, cpu, cpus = 0;
1470 unsigned long capacity;
fb13c7ee
MG
1471
1472 memset(ns, 0, sizeof(*ns));
1473 for_each_cpu(cpu, cpumask_of_node(nid)) {
1474 struct rq *rq = cpu_rq(cpu);
1475
1476 ns->nr_running += rq->nr_running;
c7132dd6 1477 ns->load += weighted_cpuload(rq);
ced549fa 1478 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1479
1480 cpus++;
fb13c7ee
MG
1481 }
1482
5eca82a9
PZ
1483 /*
1484 * If we raced with hotplug and there are no CPUs left in our mask
1485 * the @ns structure is NULL'ed and task_numa_compare() will
1486 * not find this node attractive.
1487 *
1b6a7495
NP
1488 * We'll either bail at !has_free_capacity, or we'll detect a huge
1489 * imbalance and bail there.
5eca82a9
PZ
1490 */
1491 if (!cpus)
1492 return;
1493
83d7f242
RR
1494 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1495 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1496 capacity = cpus / smt; /* cores */
1497
1498 ns->task_capacity = min_t(unsigned, capacity,
1499 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1500 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1501}
1502
58d081b5
MG
1503struct task_numa_env {
1504 struct task_struct *p;
e6628d5b 1505
58d081b5
MG
1506 int src_cpu, src_nid;
1507 int dst_cpu, dst_nid;
e6628d5b 1508
58d081b5 1509 struct numa_stats src_stats, dst_stats;
e6628d5b 1510
40ea2b42 1511 int imbalance_pct;
7bd95320 1512 int dist;
fb13c7ee
MG
1513
1514 struct task_struct *best_task;
1515 long best_imp;
58d081b5
MG
1516 int best_cpu;
1517};
1518
fb13c7ee
MG
1519static void task_numa_assign(struct task_numa_env *env,
1520 struct task_struct *p, long imp)
1521{
1522 if (env->best_task)
1523 put_task_struct(env->best_task);
bac78573
ON
1524 if (p)
1525 get_task_struct(p);
fb13c7ee
MG
1526
1527 env->best_task = p;
1528 env->best_imp = imp;
1529 env->best_cpu = env->dst_cpu;
1530}
1531
28a21745 1532static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1533 struct task_numa_env *env)
1534{
e4991b24
RR
1535 long imb, old_imb;
1536 long orig_src_load, orig_dst_load;
28a21745
RR
1537 long src_capacity, dst_capacity;
1538
1539 /*
1540 * The load is corrected for the CPU capacity available on each node.
1541 *
1542 * src_load dst_load
1543 * ------------ vs ---------
1544 * src_capacity dst_capacity
1545 */
1546 src_capacity = env->src_stats.compute_capacity;
1547 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1548
1549 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1550 if (dst_load < src_load)
1551 swap(dst_load, src_load);
e63da036
RR
1552
1553 /* Is the difference below the threshold? */
e4991b24
RR
1554 imb = dst_load * src_capacity * 100 -
1555 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1556 if (imb <= 0)
1557 return false;
1558
1559 /*
1560 * The imbalance is above the allowed threshold.
e4991b24 1561 * Compare it with the old imbalance.
e63da036 1562 */
28a21745 1563 orig_src_load = env->src_stats.load;
e4991b24 1564 orig_dst_load = env->dst_stats.load;
28a21745 1565
e4991b24
RR
1566 if (orig_dst_load < orig_src_load)
1567 swap(orig_dst_load, orig_src_load);
e63da036 1568
e4991b24
RR
1569 old_imb = orig_dst_load * src_capacity * 100 -
1570 orig_src_load * dst_capacity * env->imbalance_pct;
1571
1572 /* Would this change make things worse? */
1573 return (imb > old_imb);
e63da036
RR
1574}
1575
fb13c7ee
MG
1576/*
1577 * This checks if the overall compute and NUMA accesses of the system would
1578 * be improved if the source tasks was migrated to the target dst_cpu taking
1579 * into account that it might be best if task running on the dst_cpu should
1580 * be exchanged with the source task
1581 */
887c290e
RR
1582static void task_numa_compare(struct task_numa_env *env,
1583 long taskimp, long groupimp)
fb13c7ee
MG
1584{
1585 struct rq *src_rq = cpu_rq(env->src_cpu);
1586 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 struct task_struct *cur;
28a21745 1588 long src_load, dst_load;
fb13c7ee 1589 long load;
1c5d3eb3 1590 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1591 long moveimp = imp;
7bd95320 1592 int dist = env->dist;
fb13c7ee
MG
1593
1594 rcu_read_lock();
bac78573
ON
1595 cur = task_rcu_dereference(&dst_rq->curr);
1596 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1597 cur = NULL;
1598
7af68335
PZ
1599 /*
1600 * Because we have preemption enabled we can get migrated around and
1601 * end try selecting ourselves (current == env->p) as a swap candidate.
1602 */
1603 if (cur == env->p)
1604 goto unlock;
1605
fb13c7ee
MG
1606 /*
1607 * "imp" is the fault differential for the source task between the
1608 * source and destination node. Calculate the total differential for
1609 * the source task and potential destination task. The more negative
1610 * the value is, the more rmeote accesses that would be expected to
1611 * be incurred if the tasks were swapped.
1612 */
1613 if (cur) {
97fb7a0a 1614 /* Skip this swap candidate if cannot move to the source CPU: */
0c98d344 1615 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1616 goto unlock;
1617
887c290e
RR
1618 /*
1619 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1620 * in any group then look only at task weights.
887c290e 1621 */
ca28aa53 1622 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1623 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1624 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1625 /*
1626 * Add some hysteresis to prevent swapping the
1627 * tasks within a group over tiny differences.
1628 */
1629 if (cur->numa_group)
1630 imp -= imp/16;
887c290e 1631 } else {
ca28aa53
RR
1632 /*
1633 * Compare the group weights. If a task is all by
1634 * itself (not part of a group), use the task weight
1635 * instead.
1636 */
ca28aa53 1637 if (cur->numa_group)
7bd95320
RR
1638 imp += group_weight(cur, env->src_nid, dist) -
1639 group_weight(cur, env->dst_nid, dist);
ca28aa53 1640 else
7bd95320
RR
1641 imp += task_weight(cur, env->src_nid, dist) -
1642 task_weight(cur, env->dst_nid, dist);
887c290e 1643 }
fb13c7ee
MG
1644 }
1645
0132c3e1 1646 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1647 goto unlock;
1648
1649 if (!cur) {
1650 /* Is there capacity at our destination? */
b932c03c 1651 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1652 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1653 goto unlock;
1654
1655 goto balance;
1656 }
1657
97fb7a0a 1658 /* Balance doesn't matter much if we're running a task per CPU: */
0132c3e1
RR
1659 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1660 dst_rq->nr_running == 1)
fb13c7ee
MG
1661 goto assign;
1662
1663 /*
1664 * In the overloaded case, try and keep the load balanced.
1665 */
1666balance:
e720fff6
PZ
1667 load = task_h_load(env->p);
1668 dst_load = env->dst_stats.load + load;
1669 src_load = env->src_stats.load - load;
fb13c7ee 1670
0132c3e1
RR
1671 if (moveimp > imp && moveimp > env->best_imp) {
1672 /*
1673 * If the improvement from just moving env->p direction is
1674 * better than swapping tasks around, check if a move is
1675 * possible. Store a slightly smaller score than moveimp,
1676 * so an actually idle CPU will win.
1677 */
1678 if (!load_too_imbalanced(src_load, dst_load, env)) {
1679 imp = moveimp - 1;
1680 cur = NULL;
1681 goto assign;
1682 }
1683 }
1684
1685 if (imp <= env->best_imp)
1686 goto unlock;
1687
fb13c7ee 1688 if (cur) {
e720fff6
PZ
1689 load = task_h_load(cur);
1690 dst_load -= load;
1691 src_load += load;
fb13c7ee
MG
1692 }
1693
28a21745 1694 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1695 goto unlock;
1696
ba7e5a27
RR
1697 /*
1698 * One idle CPU per node is evaluated for a task numa move.
1699 * Call select_idle_sibling to maybe find a better one.
1700 */
10e2f1ac
PZ
1701 if (!cur) {
1702 /*
97fb7a0a 1703 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1704 * can be used from IRQ context.
1705 */
1706 local_irq_disable();
772bd008
MR
1707 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1708 env->dst_cpu);
10e2f1ac
PZ
1709 local_irq_enable();
1710 }
ba7e5a27 1711
fb13c7ee
MG
1712assign:
1713 task_numa_assign(env, cur, imp);
1714unlock:
1715 rcu_read_unlock();
1716}
1717
887c290e
RR
1718static void task_numa_find_cpu(struct task_numa_env *env,
1719 long taskimp, long groupimp)
2c8a50aa
MG
1720{
1721 int cpu;
1722
1723 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1724 /* Skip this CPU if the source task cannot migrate */
0c98d344 1725 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1726 continue;
1727
1728 env->dst_cpu = cpu;
887c290e 1729 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1730 }
1731}
1732
6f9aad0b
RR
1733/* Only move tasks to a NUMA node less busy than the current node. */
1734static bool numa_has_capacity(struct task_numa_env *env)
1735{
1736 struct numa_stats *src = &env->src_stats;
1737 struct numa_stats *dst = &env->dst_stats;
1738
1739 if (src->has_free_capacity && !dst->has_free_capacity)
1740 return false;
1741
1742 /*
1743 * Only consider a task move if the source has a higher load
1744 * than the destination, corrected for CPU capacity on each node.
1745 *
1746 * src->load dst->load
1747 * --------------------- vs ---------------------
1748 * src->compute_capacity dst->compute_capacity
1749 */
44dcb04f
SD
1750 if (src->load * dst->compute_capacity * env->imbalance_pct >
1751
1752 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1753 return true;
1754
1755 return false;
1756}
1757
58d081b5
MG
1758static int task_numa_migrate(struct task_struct *p)
1759{
58d081b5
MG
1760 struct task_numa_env env = {
1761 .p = p,
fb13c7ee 1762
58d081b5 1763 .src_cpu = task_cpu(p),
b32e86b4 1764 .src_nid = task_node(p),
fb13c7ee
MG
1765
1766 .imbalance_pct = 112,
1767
1768 .best_task = NULL,
1769 .best_imp = 0,
4142c3eb 1770 .best_cpu = -1,
58d081b5
MG
1771 };
1772 struct sched_domain *sd;
887c290e 1773 unsigned long taskweight, groupweight;
7bd95320 1774 int nid, ret, dist;
887c290e 1775 long taskimp, groupimp;
e6628d5b 1776
58d081b5 1777 /*
fb13c7ee
MG
1778 * Pick the lowest SD_NUMA domain, as that would have the smallest
1779 * imbalance and would be the first to start moving tasks about.
1780 *
1781 * And we want to avoid any moving of tasks about, as that would create
1782 * random movement of tasks -- counter the numa conditions we're trying
1783 * to satisfy here.
58d081b5
MG
1784 */
1785 rcu_read_lock();
fb13c7ee 1786 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1787 if (sd)
1788 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1789 rcu_read_unlock();
1790
46a73e8a
RR
1791 /*
1792 * Cpusets can break the scheduler domain tree into smaller
1793 * balance domains, some of which do not cross NUMA boundaries.
1794 * Tasks that are "trapped" in such domains cannot be migrated
1795 * elsewhere, so there is no point in (re)trying.
1796 */
1797 if (unlikely(!sd)) {
de1b301a 1798 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1799 return -EINVAL;
1800 }
1801
2c8a50aa 1802 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1803 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1804 taskweight = task_weight(p, env.src_nid, dist);
1805 groupweight = group_weight(p, env.src_nid, dist);
1806 update_numa_stats(&env.src_stats, env.src_nid);
1807 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1808 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1809 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1810
a43455a1 1811 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1812 if (numa_has_capacity(&env))
1813 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1814
9de05d48
RR
1815 /*
1816 * Look at other nodes in these cases:
1817 * - there is no space available on the preferred_nid
1818 * - the task is part of a numa_group that is interleaved across
1819 * multiple NUMA nodes; in order to better consolidate the group,
1820 * we need to check other locations.
1821 */
4142c3eb 1822 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1823 for_each_online_node(nid) {
1824 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1825 continue;
58d081b5 1826
7bd95320 1827 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1828 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1829 dist != env.dist) {
1830 taskweight = task_weight(p, env.src_nid, dist);
1831 groupweight = group_weight(p, env.src_nid, dist);
1832 }
7bd95320 1833
83e1d2cd 1834 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1835 taskimp = task_weight(p, nid, dist) - taskweight;
1836 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1837 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1838 continue;
1839
7bd95320 1840 env.dist = dist;
2c8a50aa
MG
1841 env.dst_nid = nid;
1842 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1843 if (numa_has_capacity(&env))
1844 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1845 }
1846 }
1847
68d1b02a
RR
1848 /*
1849 * If the task is part of a workload that spans multiple NUMA nodes,
1850 * and is migrating into one of the workload's active nodes, remember
1851 * this node as the task's preferred numa node, so the workload can
1852 * settle down.
1853 * A task that migrated to a second choice node will be better off
1854 * trying for a better one later. Do not set the preferred node here.
1855 */
db015dae 1856 if (p->numa_group) {
4142c3eb
RR
1857 struct numa_group *ng = p->numa_group;
1858
db015dae
RR
1859 if (env.best_cpu == -1)
1860 nid = env.src_nid;
1861 else
1862 nid = env.dst_nid;
1863
4142c3eb 1864 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1865 sched_setnuma(p, env.dst_nid);
1866 }
1867
1868 /* No better CPU than the current one was found. */
1869 if (env.best_cpu == -1)
1870 return -EAGAIN;
0ec8aa00 1871
04bb2f94
RR
1872 /*
1873 * Reset the scan period if the task is being rescheduled on an
1874 * alternative node to recheck if the tasks is now properly placed.
1875 */
b5dd77c8 1876 p->numa_scan_period = task_scan_start(p);
04bb2f94 1877
fb13c7ee 1878 if (env.best_task == NULL) {
286549dc
MG
1879 ret = migrate_task_to(p, env.best_cpu);
1880 if (ret != 0)
1881 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1882 return ret;
1883 }
1884
1885 ret = migrate_swap(p, env.best_task);
286549dc
MG
1886 if (ret != 0)
1887 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1888 put_task_struct(env.best_task);
1889 return ret;
e6628d5b
MG
1890}
1891
6b9a7460
MG
1892/* Attempt to migrate a task to a CPU on the preferred node. */
1893static void numa_migrate_preferred(struct task_struct *p)
1894{
5085e2a3
RR
1895 unsigned long interval = HZ;
1896
2739d3ee 1897 /* This task has no NUMA fault statistics yet */
44dba3d5 1898 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1899 return;
1900
2739d3ee 1901 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1902 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1903 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1904
1905 /* Success if task is already running on preferred CPU */
de1b301a 1906 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1907 return;
1908
1909 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1910 task_numa_migrate(p);
6b9a7460
MG
1911}
1912
20e07dea 1913/*
4142c3eb 1914 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1915 * tracking the nodes from which NUMA hinting faults are triggered. This can
1916 * be different from the set of nodes where the workload's memory is currently
1917 * located.
20e07dea 1918 */
4142c3eb 1919static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1920{
1921 unsigned long faults, max_faults = 0;
4142c3eb 1922 int nid, active_nodes = 0;
20e07dea
RR
1923
1924 for_each_online_node(nid) {
1925 faults = group_faults_cpu(numa_group, nid);
1926 if (faults > max_faults)
1927 max_faults = faults;
1928 }
1929
1930 for_each_online_node(nid) {
1931 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1932 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1933 active_nodes++;
20e07dea 1934 }
4142c3eb
RR
1935
1936 numa_group->max_faults_cpu = max_faults;
1937 numa_group->active_nodes = active_nodes;
20e07dea
RR
1938}
1939
04bb2f94
RR
1940/*
1941 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1942 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1943 * period will be for the next scan window. If local/(local+remote) ratio is
1944 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1945 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1946 */
1947#define NUMA_PERIOD_SLOTS 10
a22b4b01 1948#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1949
1950/*
1951 * Increase the scan period (slow down scanning) if the majority of
1952 * our memory is already on our local node, or if the majority of
1953 * the page accesses are shared with other processes.
1954 * Otherwise, decrease the scan period.
1955 */
1956static void update_task_scan_period(struct task_struct *p,
1957 unsigned long shared, unsigned long private)
1958{
1959 unsigned int period_slot;
37ec97de 1960 int lr_ratio, ps_ratio;
04bb2f94
RR
1961 int diff;
1962
1963 unsigned long remote = p->numa_faults_locality[0];
1964 unsigned long local = p->numa_faults_locality[1];
1965
1966 /*
1967 * If there were no record hinting faults then either the task is
1968 * completely idle or all activity is areas that are not of interest
074c2381
MG
1969 * to automatic numa balancing. Related to that, if there were failed
1970 * migration then it implies we are migrating too quickly or the local
1971 * node is overloaded. In either case, scan slower
04bb2f94 1972 */
074c2381 1973 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1974 p->numa_scan_period = min(p->numa_scan_period_max,
1975 p->numa_scan_period << 1);
1976
1977 p->mm->numa_next_scan = jiffies +
1978 msecs_to_jiffies(p->numa_scan_period);
1979
1980 return;
1981 }
1982
1983 /*
1984 * Prepare to scale scan period relative to the current period.
1985 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1986 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1987 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1988 */
1989 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1990 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1991 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1992
1993 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1994 /*
1995 * Most memory accesses are local. There is no need to
1996 * do fast NUMA scanning, since memory is already local.
1997 */
1998 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1999 if (!slot)
2000 slot = 1;
2001 diff = slot * period_slot;
2002 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2003 /*
2004 * Most memory accesses are shared with other tasks.
2005 * There is no point in continuing fast NUMA scanning,
2006 * since other tasks may just move the memory elsewhere.
2007 */
2008 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2009 if (!slot)
2010 slot = 1;
2011 diff = slot * period_slot;
2012 } else {
04bb2f94 2013 /*
37ec97de
RR
2014 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2015 * yet they are not on the local NUMA node. Speed up
2016 * NUMA scanning to get the memory moved over.
04bb2f94 2017 */
37ec97de
RR
2018 int ratio = max(lr_ratio, ps_ratio);
2019 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2020 }
2021
2022 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2023 task_scan_min(p), task_scan_max(p));
2024 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2025}
2026
7e2703e6
RR
2027/*
2028 * Get the fraction of time the task has been running since the last
2029 * NUMA placement cycle. The scheduler keeps similar statistics, but
2030 * decays those on a 32ms period, which is orders of magnitude off
2031 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2032 * stats only if the task is so new there are no NUMA statistics yet.
2033 */
2034static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2035{
2036 u64 runtime, delta, now;
2037 /* Use the start of this time slice to avoid calculations. */
2038 now = p->se.exec_start;
2039 runtime = p->se.sum_exec_runtime;
2040
2041 if (p->last_task_numa_placement) {
2042 delta = runtime - p->last_sum_exec_runtime;
2043 *period = now - p->last_task_numa_placement;
2044 } else {
c7b50216 2045 delta = p->se.avg.load_sum;
9d89c257 2046 *period = LOAD_AVG_MAX;
7e2703e6
RR
2047 }
2048
2049 p->last_sum_exec_runtime = runtime;
2050 p->last_task_numa_placement = now;
2051
2052 return delta;
2053}
2054
54009416
RR
2055/*
2056 * Determine the preferred nid for a task in a numa_group. This needs to
2057 * be done in a way that produces consistent results with group_weight,
2058 * otherwise workloads might not converge.
2059 */
2060static int preferred_group_nid(struct task_struct *p, int nid)
2061{
2062 nodemask_t nodes;
2063 int dist;
2064
2065 /* Direct connections between all NUMA nodes. */
2066 if (sched_numa_topology_type == NUMA_DIRECT)
2067 return nid;
2068
2069 /*
2070 * On a system with glueless mesh NUMA topology, group_weight
2071 * scores nodes according to the number of NUMA hinting faults on
2072 * both the node itself, and on nearby nodes.
2073 */
2074 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2075 unsigned long score, max_score = 0;
2076 int node, max_node = nid;
2077
2078 dist = sched_max_numa_distance;
2079
2080 for_each_online_node(node) {
2081 score = group_weight(p, node, dist);
2082 if (score > max_score) {
2083 max_score = score;
2084 max_node = node;
2085 }
2086 }
2087 return max_node;
2088 }
2089
2090 /*
2091 * Finding the preferred nid in a system with NUMA backplane
2092 * interconnect topology is more involved. The goal is to locate
2093 * tasks from numa_groups near each other in the system, and
2094 * untangle workloads from different sides of the system. This requires
2095 * searching down the hierarchy of node groups, recursively searching
2096 * inside the highest scoring group of nodes. The nodemask tricks
2097 * keep the complexity of the search down.
2098 */
2099 nodes = node_online_map;
2100 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2101 unsigned long max_faults = 0;
81907478 2102 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2103 int a, b;
2104
2105 /* Are there nodes at this distance from each other? */
2106 if (!find_numa_distance(dist))
2107 continue;
2108
2109 for_each_node_mask(a, nodes) {
2110 unsigned long faults = 0;
2111 nodemask_t this_group;
2112 nodes_clear(this_group);
2113
2114 /* Sum group's NUMA faults; includes a==b case. */
2115 for_each_node_mask(b, nodes) {
2116 if (node_distance(a, b) < dist) {
2117 faults += group_faults(p, b);
2118 node_set(b, this_group);
2119 node_clear(b, nodes);
2120 }
2121 }
2122
2123 /* Remember the top group. */
2124 if (faults > max_faults) {
2125 max_faults = faults;
2126 max_group = this_group;
2127 /*
2128 * subtle: at the smallest distance there is
2129 * just one node left in each "group", the
2130 * winner is the preferred nid.
2131 */
2132 nid = a;
2133 }
2134 }
2135 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2136 if (!max_faults)
2137 break;
54009416
RR
2138 nodes = max_group;
2139 }
2140 return nid;
2141}
2142
cbee9f88
PZ
2143static void task_numa_placement(struct task_struct *p)
2144{
83e1d2cd
MG
2145 int seq, nid, max_nid = -1, max_group_nid = -1;
2146 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2147 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2148 unsigned long total_faults;
2149 u64 runtime, period;
7dbd13ed 2150 spinlock_t *group_lock = NULL;
cbee9f88 2151
7e5a2c17
JL
2152 /*
2153 * The p->mm->numa_scan_seq field gets updated without
2154 * exclusive access. Use READ_ONCE() here to ensure
2155 * that the field is read in a single access:
2156 */
316c1608 2157 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2158 if (p->numa_scan_seq == seq)
2159 return;
2160 p->numa_scan_seq = seq;
598f0ec0 2161 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2162
7e2703e6
RR
2163 total_faults = p->numa_faults_locality[0] +
2164 p->numa_faults_locality[1];
2165 runtime = numa_get_avg_runtime(p, &period);
2166
7dbd13ed
MG
2167 /* If the task is part of a group prevent parallel updates to group stats */
2168 if (p->numa_group) {
2169 group_lock = &p->numa_group->lock;
60e69eed 2170 spin_lock_irq(group_lock);
7dbd13ed
MG
2171 }
2172
688b7585
MG
2173 /* Find the node with the highest number of faults */
2174 for_each_online_node(nid) {
44dba3d5
IM
2175 /* Keep track of the offsets in numa_faults array */
2176 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2177 unsigned long faults = 0, group_faults = 0;
44dba3d5 2178 int priv;
745d6147 2179
be1e4e76 2180 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2181 long diff, f_diff, f_weight;
8c8a743c 2182
44dba3d5
IM
2183 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2184 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2185 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2186 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2187
ac8e895b 2188 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2189 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2190 fault_types[priv] += p->numa_faults[membuf_idx];
2191 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2192
7e2703e6
RR
2193 /*
2194 * Normalize the faults_from, so all tasks in a group
2195 * count according to CPU use, instead of by the raw
2196 * number of faults. Tasks with little runtime have
2197 * little over-all impact on throughput, and thus their
2198 * faults are less important.
2199 */
2200 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2201 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2202 (total_faults + 1);
44dba3d5
IM
2203 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2204 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2205
44dba3d5
IM
2206 p->numa_faults[mem_idx] += diff;
2207 p->numa_faults[cpu_idx] += f_diff;
2208 faults += p->numa_faults[mem_idx];
83e1d2cd 2209 p->total_numa_faults += diff;
8c8a743c 2210 if (p->numa_group) {
44dba3d5
IM
2211 /*
2212 * safe because we can only change our own group
2213 *
2214 * mem_idx represents the offset for a given
2215 * nid and priv in a specific region because it
2216 * is at the beginning of the numa_faults array.
2217 */
2218 p->numa_group->faults[mem_idx] += diff;
2219 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2220 p->numa_group->total_faults += diff;
44dba3d5 2221 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2222 }
ac8e895b
MG
2223 }
2224
688b7585
MG
2225 if (faults > max_faults) {
2226 max_faults = faults;
2227 max_nid = nid;
2228 }
83e1d2cd
MG
2229
2230 if (group_faults > max_group_faults) {
2231 max_group_faults = group_faults;
2232 max_group_nid = nid;
2233 }
2234 }
2235
04bb2f94
RR
2236 update_task_scan_period(p, fault_types[0], fault_types[1]);
2237
7dbd13ed 2238 if (p->numa_group) {
4142c3eb 2239 numa_group_count_active_nodes(p->numa_group);
60e69eed 2240 spin_unlock_irq(group_lock);
54009416 2241 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2242 }
2243
bb97fc31
RR
2244 if (max_faults) {
2245 /* Set the new preferred node */
2246 if (max_nid != p->numa_preferred_nid)
2247 sched_setnuma(p, max_nid);
2248
2249 if (task_node(p) != p->numa_preferred_nid)
2250 numa_migrate_preferred(p);
3a7053b3 2251 }
cbee9f88
PZ
2252}
2253
8c8a743c
PZ
2254static inline int get_numa_group(struct numa_group *grp)
2255{
2256 return atomic_inc_not_zero(&grp->refcount);
2257}
2258
2259static inline void put_numa_group(struct numa_group *grp)
2260{
2261 if (atomic_dec_and_test(&grp->refcount))
2262 kfree_rcu(grp, rcu);
2263}
2264
3e6a9418
MG
2265static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2266 int *priv)
8c8a743c
PZ
2267{
2268 struct numa_group *grp, *my_grp;
2269 struct task_struct *tsk;
2270 bool join = false;
2271 int cpu = cpupid_to_cpu(cpupid);
2272 int i;
2273
2274 if (unlikely(!p->numa_group)) {
2275 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2276 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2277
2278 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2279 if (!grp)
2280 return;
2281
2282 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2283 grp->active_nodes = 1;
2284 grp->max_faults_cpu = 0;
8c8a743c 2285 spin_lock_init(&grp->lock);
e29cf08b 2286 grp->gid = p->pid;
50ec8a40 2287 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2288 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2289 nr_node_ids;
8c8a743c 2290
be1e4e76 2291 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2292 grp->faults[i] = p->numa_faults[i];
8c8a743c 2293
989348b5 2294 grp->total_faults = p->total_numa_faults;
83e1d2cd 2295
8c8a743c
PZ
2296 grp->nr_tasks++;
2297 rcu_assign_pointer(p->numa_group, grp);
2298 }
2299
2300 rcu_read_lock();
316c1608 2301 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2302
2303 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2304 goto no_join;
8c8a743c
PZ
2305
2306 grp = rcu_dereference(tsk->numa_group);
2307 if (!grp)
3354781a 2308 goto no_join;
8c8a743c
PZ
2309
2310 my_grp = p->numa_group;
2311 if (grp == my_grp)
3354781a 2312 goto no_join;
8c8a743c
PZ
2313
2314 /*
2315 * Only join the other group if its bigger; if we're the bigger group,
2316 * the other task will join us.
2317 */
2318 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2319 goto no_join;
8c8a743c
PZ
2320
2321 /*
2322 * Tie-break on the grp address.
2323 */
2324 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2325 goto no_join;
8c8a743c 2326
dabe1d99
RR
2327 /* Always join threads in the same process. */
2328 if (tsk->mm == current->mm)
2329 join = true;
2330
2331 /* Simple filter to avoid false positives due to PID collisions */
2332 if (flags & TNF_SHARED)
2333 join = true;
8c8a743c 2334
3e6a9418
MG
2335 /* Update priv based on whether false sharing was detected */
2336 *priv = !join;
2337
dabe1d99 2338 if (join && !get_numa_group(grp))
3354781a 2339 goto no_join;
8c8a743c 2340
8c8a743c
PZ
2341 rcu_read_unlock();
2342
2343 if (!join)
2344 return;
2345
60e69eed
MG
2346 BUG_ON(irqs_disabled());
2347 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2348
be1e4e76 2349 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2350 my_grp->faults[i] -= p->numa_faults[i];
2351 grp->faults[i] += p->numa_faults[i];
8c8a743c 2352 }
989348b5
MG
2353 my_grp->total_faults -= p->total_numa_faults;
2354 grp->total_faults += p->total_numa_faults;
8c8a743c 2355
8c8a743c
PZ
2356 my_grp->nr_tasks--;
2357 grp->nr_tasks++;
2358
2359 spin_unlock(&my_grp->lock);
60e69eed 2360 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2361
2362 rcu_assign_pointer(p->numa_group, grp);
2363
2364 put_numa_group(my_grp);
3354781a
PZ
2365 return;
2366
2367no_join:
2368 rcu_read_unlock();
2369 return;
8c8a743c
PZ
2370}
2371
2372void task_numa_free(struct task_struct *p)
2373{
2374 struct numa_group *grp = p->numa_group;
44dba3d5 2375 void *numa_faults = p->numa_faults;
e9dd685c
SR
2376 unsigned long flags;
2377 int i;
8c8a743c
PZ
2378
2379 if (grp) {
e9dd685c 2380 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2381 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2382 grp->faults[i] -= p->numa_faults[i];
989348b5 2383 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2384
8c8a743c 2385 grp->nr_tasks--;
e9dd685c 2386 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2387 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2388 put_numa_group(grp);
2389 }
2390
44dba3d5 2391 p->numa_faults = NULL;
82727018 2392 kfree(numa_faults);
8c8a743c
PZ
2393}
2394
cbee9f88
PZ
2395/*
2396 * Got a PROT_NONE fault for a page on @node.
2397 */
58b46da3 2398void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2399{
2400 struct task_struct *p = current;
6688cc05 2401 bool migrated = flags & TNF_MIGRATED;
58b46da3 2402 int cpu_node = task_node(current);
792568ec 2403 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2404 struct numa_group *ng;
ac8e895b 2405 int priv;
cbee9f88 2406
2a595721 2407 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2408 return;
2409
9ff1d9ff
MG
2410 /* for example, ksmd faulting in a user's mm */
2411 if (!p->mm)
2412 return;
2413
f809ca9a 2414 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2415 if (unlikely(!p->numa_faults)) {
2416 int size = sizeof(*p->numa_faults) *
be1e4e76 2417 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2418
44dba3d5
IM
2419 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420 if (!p->numa_faults)
f809ca9a 2421 return;
745d6147 2422
83e1d2cd 2423 p->total_numa_faults = 0;
04bb2f94 2424 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2425 }
cbee9f88 2426
8c8a743c
PZ
2427 /*
2428 * First accesses are treated as private, otherwise consider accesses
2429 * to be private if the accessing pid has not changed
2430 */
2431 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432 priv = 1;
2433 } else {
2434 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2435 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2436 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2437 }
2438
792568ec
RR
2439 /*
2440 * If a workload spans multiple NUMA nodes, a shared fault that
2441 * occurs wholly within the set of nodes that the workload is
2442 * actively using should be counted as local. This allows the
2443 * scan rate to slow down when a workload has settled down.
2444 */
4142c3eb
RR
2445 ng = p->numa_group;
2446 if (!priv && !local && ng && ng->active_nodes > 1 &&
2447 numa_is_active_node(cpu_node, ng) &&
2448 numa_is_active_node(mem_node, ng))
792568ec
RR
2449 local = 1;
2450
cbee9f88 2451 task_numa_placement(p);
f809ca9a 2452
2739d3ee
RR
2453 /*
2454 * Retry task to preferred node migration periodically, in case it
2455 * case it previously failed, or the scheduler moved us.
2456 */
2457 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2458 numa_migrate_preferred(p);
2459
b32e86b4
IM
2460 if (migrated)
2461 p->numa_pages_migrated += pages;
074c2381
MG
2462 if (flags & TNF_MIGRATE_FAIL)
2463 p->numa_faults_locality[2] += pages;
b32e86b4 2464
44dba3d5
IM
2465 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2467 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2468}
2469
6e5fb223
PZ
2470static void reset_ptenuma_scan(struct task_struct *p)
2471{
7e5a2c17
JL
2472 /*
2473 * We only did a read acquisition of the mmap sem, so
2474 * p->mm->numa_scan_seq is written to without exclusive access
2475 * and the update is not guaranteed to be atomic. That's not
2476 * much of an issue though, since this is just used for
2477 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 * expensive, to avoid any form of compiler optimizations:
2479 */
316c1608 2480 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2481 p->mm->numa_scan_offset = 0;
2482}
2483
cbee9f88
PZ
2484/*
2485 * The expensive part of numa migration is done from task_work context.
2486 * Triggered from task_tick_numa().
2487 */
2488void task_numa_work(struct callback_head *work)
2489{
2490 unsigned long migrate, next_scan, now = jiffies;
2491 struct task_struct *p = current;
2492 struct mm_struct *mm = p->mm;
51170840 2493 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2494 struct vm_area_struct *vma;
9f40604c 2495 unsigned long start, end;
598f0ec0 2496 unsigned long nr_pte_updates = 0;
4620f8c1 2497 long pages, virtpages;
cbee9f88 2498
9148a3a1 2499 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2500
2501 work->next = work; /* protect against double add */
2502 /*
2503 * Who cares about NUMA placement when they're dying.
2504 *
2505 * NOTE: make sure not to dereference p->mm before this check,
2506 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 * without p->mm even though we still had it when we enqueued this
2508 * work.
2509 */
2510 if (p->flags & PF_EXITING)
2511 return;
2512
930aa174 2513 if (!mm->numa_next_scan) {
7e8d16b6
MG
2514 mm->numa_next_scan = now +
2515 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2516 }
2517
cbee9f88
PZ
2518 /*
2519 * Enforce maximal scan/migration frequency..
2520 */
2521 migrate = mm->numa_next_scan;
2522 if (time_before(now, migrate))
2523 return;
2524
598f0ec0
MG
2525 if (p->numa_scan_period == 0) {
2526 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2527 p->numa_scan_period = task_scan_start(p);
598f0ec0 2528 }
cbee9f88 2529
fb003b80 2530 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2531 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532 return;
2533
19a78d11
PZ
2534 /*
2535 * Delay this task enough that another task of this mm will likely win
2536 * the next time around.
2537 */
2538 p->node_stamp += 2 * TICK_NSEC;
2539
9f40604c
MG
2540 start = mm->numa_scan_offset;
2541 pages = sysctl_numa_balancing_scan_size;
2542 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2543 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2544 if (!pages)
2545 return;
cbee9f88 2546
4620f8c1 2547
8655d549
VB
2548 if (!down_read_trylock(&mm->mmap_sem))
2549 return;
9f40604c 2550 vma = find_vma(mm, start);
6e5fb223
PZ
2551 if (!vma) {
2552 reset_ptenuma_scan(p);
9f40604c 2553 start = 0;
6e5fb223
PZ
2554 vma = mm->mmap;
2555 }
9f40604c 2556 for (; vma; vma = vma->vm_next) {
6b79c57b 2557 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2558 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2559 continue;
6b79c57b 2560 }
6e5fb223 2561
4591ce4f
MG
2562 /*
2563 * Shared library pages mapped by multiple processes are not
2564 * migrated as it is expected they are cache replicated. Avoid
2565 * hinting faults in read-only file-backed mappings or the vdso
2566 * as migrating the pages will be of marginal benefit.
2567 */
2568 if (!vma->vm_mm ||
2569 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570 continue;
2571
3c67f474
MG
2572 /*
2573 * Skip inaccessible VMAs to avoid any confusion between
2574 * PROT_NONE and NUMA hinting ptes
2575 */
2576 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577 continue;
4591ce4f 2578
9f40604c
MG
2579 do {
2580 start = max(start, vma->vm_start);
2581 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582 end = min(end, vma->vm_end);
4620f8c1 2583 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2584
2585 /*
4620f8c1
RR
2586 * Try to scan sysctl_numa_balancing_size worth of
2587 * hpages that have at least one present PTE that
2588 * is not already pte-numa. If the VMA contains
2589 * areas that are unused or already full of prot_numa
2590 * PTEs, scan up to virtpages, to skip through those
2591 * areas faster.
598f0ec0
MG
2592 */
2593 if (nr_pte_updates)
2594 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2595 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2596
9f40604c 2597 start = end;
4620f8c1 2598 if (pages <= 0 || virtpages <= 0)
9f40604c 2599 goto out;
3cf1962c
RR
2600
2601 cond_resched();
9f40604c 2602 } while (end != vma->vm_end);
cbee9f88 2603 }
6e5fb223 2604
9f40604c 2605out:
6e5fb223 2606 /*
c69307d5
PZ
2607 * It is possible to reach the end of the VMA list but the last few
2608 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 * would find the !migratable VMA on the next scan but not reset the
2610 * scanner to the start so check it now.
6e5fb223
PZ
2611 */
2612 if (vma)
9f40604c 2613 mm->numa_scan_offset = start;
6e5fb223
PZ
2614 else
2615 reset_ptenuma_scan(p);
2616 up_read(&mm->mmap_sem);
51170840
RR
2617
2618 /*
2619 * Make sure tasks use at least 32x as much time to run other code
2620 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 * Usually update_task_scan_period slows down scanning enough; on an
2622 * overloaded system we need to limit overhead on a per task basis.
2623 */
2624 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625 u64 diff = p->se.sum_exec_runtime - runtime;
2626 p->node_stamp += 32 * diff;
2627 }
cbee9f88
PZ
2628}
2629
2630/*
2631 * Drive the periodic memory faults..
2632 */
2633void task_tick_numa(struct rq *rq, struct task_struct *curr)
2634{
2635 struct callback_head *work = &curr->numa_work;
2636 u64 period, now;
2637
2638 /*
2639 * We don't care about NUMA placement if we don't have memory.
2640 */
2641 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2642 return;
2643
2644 /*
2645 * Using runtime rather than walltime has the dual advantage that
2646 * we (mostly) drive the selection from busy threads and that the
2647 * task needs to have done some actual work before we bother with
2648 * NUMA placement.
2649 */
2650 now = curr->se.sum_exec_runtime;
2651 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2652
25b3e5a3 2653 if (now > curr->node_stamp + period) {
4b96a29b 2654 if (!curr->node_stamp)
b5dd77c8 2655 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2656 curr->node_stamp += period;
cbee9f88
PZ
2657
2658 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2659 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2660 task_work_add(curr, work, true);
2661 }
2662 }
2663}
3fed382b 2664
cbee9f88
PZ
2665#else
2666static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2667{
2668}
0ec8aa00
PZ
2669
2670static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2671{
2672}
2673
2674static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2675{
2676}
3fed382b 2677
cbee9f88
PZ
2678#endif /* CONFIG_NUMA_BALANCING */
2679
30cfdcfc
DA
2680static void
2681account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 struct rq *rq = rq_of(cfs_rq);
2689
2690 account_numa_enqueue(rq, task_of(se));
2691 list_add(&se->group_node, &rq->cfs_tasks);
2692 }
367456c7 2693#endif
30cfdcfc 2694 cfs_rq->nr_running++;
30cfdcfc
DA
2695}
2696
2697static void
2698account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2699{
2700 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2701 if (!parent_entity(se))
029632fb 2702 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2703#ifdef CONFIG_SMP
0ec8aa00
PZ
2704 if (entity_is_task(se)) {
2705 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2706 list_del_init(&se->group_node);
0ec8aa00 2707 }
bfdb198c 2708#endif
30cfdcfc 2709 cfs_rq->nr_running--;
30cfdcfc
DA
2710}
2711
8d5b9025
PZ
2712/*
2713 * Signed add and clamp on underflow.
2714 *
2715 * Explicitly do a load-store to ensure the intermediate value never hits
2716 * memory. This allows lockless observations without ever seeing the negative
2717 * values.
2718 */
2719#define add_positive(_ptr, _val) do { \
2720 typeof(_ptr) ptr = (_ptr); \
2721 typeof(_val) val = (_val); \
2722 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2723 \
2724 res = var + val; \
2725 \
2726 if (val < 0 && res > var) \
2727 res = 0; \
2728 \
2729 WRITE_ONCE(*ptr, res); \
2730} while (0)
2731
2732/*
2733 * Unsigned subtract and clamp on underflow.
2734 *
2735 * Explicitly do a load-store to ensure the intermediate value never hits
2736 * memory. This allows lockless observations without ever seeing the negative
2737 * values.
2738 */
2739#define sub_positive(_ptr, _val) do { \
2740 typeof(_ptr) ptr = (_ptr); \
2741 typeof(*ptr) val = (_val); \
2742 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2743 res = var - val; \
2744 if (res > var) \
2745 res = 0; \
2746 WRITE_ONCE(*ptr, res); \
2747} while (0)
2748
2749#ifdef CONFIG_SMP
8d5b9025
PZ
2750static inline void
2751enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2752{
1ea6c46a
PZ
2753 cfs_rq->runnable_weight += se->runnable_weight;
2754
2755 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2756 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2757}
2758
2759static inline void
2760dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2761{
1ea6c46a
PZ
2762 cfs_rq->runnable_weight -= se->runnable_weight;
2763
2764 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2765 sub_positive(&cfs_rq->avg.runnable_load_sum,
2766 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2767}
2768
2769static inline void
2770enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2771{
2772 cfs_rq->avg.load_avg += se->avg.load_avg;
2773 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2774}
2775
2776static inline void
2777dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2778{
2779 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2780 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2781}
2782#else
2783static inline void
2784enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2785static inline void
2786dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2787static inline void
2788enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2789static inline void
2790dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2791#endif
2792
9059393e 2793static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2794 unsigned long weight, unsigned long runnable)
9059393e
VG
2795{
2796 if (se->on_rq) {
2797 /* commit outstanding execution time */
2798 if (cfs_rq->curr == se)
2799 update_curr(cfs_rq);
2800 account_entity_dequeue(cfs_rq, se);
2801 dequeue_runnable_load_avg(cfs_rq, se);
2802 }
2803 dequeue_load_avg(cfs_rq, se);
2804
1ea6c46a 2805 se->runnable_weight = runnable;
9059393e
VG
2806 update_load_set(&se->load, weight);
2807
2808#ifdef CONFIG_SMP
1ea6c46a
PZ
2809 do {
2810 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2811
2812 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2813 se->avg.runnable_load_avg =
2814 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2815 } while (0);
9059393e
VG
2816#endif
2817
2818 enqueue_load_avg(cfs_rq, se);
2819 if (se->on_rq) {
2820 account_entity_enqueue(cfs_rq, se);
2821 enqueue_runnable_load_avg(cfs_rq, se);
2822 }
2823}
2824
2825void reweight_task(struct task_struct *p, int prio)
2826{
2827 struct sched_entity *se = &p->se;
2828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2829 struct load_weight *load = &se->load;
2830 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2831
1ea6c46a 2832 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2833 load->inv_weight = sched_prio_to_wmult[prio];
2834}
2835
3ff6dcac 2836#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2837#ifdef CONFIG_SMP
cef27403
PZ
2838/*
2839 * All this does is approximate the hierarchical proportion which includes that
2840 * global sum we all love to hate.
2841 *
2842 * That is, the weight of a group entity, is the proportional share of the
2843 * group weight based on the group runqueue weights. That is:
2844 *
2845 * tg->weight * grq->load.weight
2846 * ge->load.weight = ----------------------------- (1)
2847 * \Sum grq->load.weight
2848 *
2849 * Now, because computing that sum is prohibitively expensive to compute (been
2850 * there, done that) we approximate it with this average stuff. The average
2851 * moves slower and therefore the approximation is cheaper and more stable.
2852 *
2853 * So instead of the above, we substitute:
2854 *
2855 * grq->load.weight -> grq->avg.load_avg (2)
2856 *
2857 * which yields the following:
2858 *
2859 * tg->weight * grq->avg.load_avg
2860 * ge->load.weight = ------------------------------ (3)
2861 * tg->load_avg
2862 *
2863 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2864 *
2865 * That is shares_avg, and it is right (given the approximation (2)).
2866 *
2867 * The problem with it is that because the average is slow -- it was designed
2868 * to be exactly that of course -- this leads to transients in boundary
2869 * conditions. In specific, the case where the group was idle and we start the
2870 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2871 * yielding bad latency etc..
2872 *
2873 * Now, in that special case (1) reduces to:
2874 *
2875 * tg->weight * grq->load.weight
17de4ee0 2876 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2877 * grp->load.weight
2878 *
2879 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2880 *
2881 * So what we do is modify our approximation (3) to approach (4) in the (near)
2882 * UP case, like:
2883 *
2884 * ge->load.weight =
2885 *
2886 * tg->weight * grq->load.weight
2887 * --------------------------------------------------- (5)
2888 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2889 *
17de4ee0
PZ
2890 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2891 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2892 *
2893 *
2894 * tg->weight * grq->load.weight
2895 * ge->load.weight = ----------------------------- (6)
2896 * tg_load_avg'
2897 *
2898 * Where:
2899 *
2900 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2901 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2902 *
2903 * And that is shares_weight and is icky. In the (near) UP case it approaches
2904 * (4) while in the normal case it approaches (3). It consistently
2905 * overestimates the ge->load.weight and therefore:
2906 *
2907 * \Sum ge->load.weight >= tg->weight
2908 *
2909 * hence icky!
2910 */
2c8e4dce 2911static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2912{
7c80cfc9
PZ
2913 long tg_weight, tg_shares, load, shares;
2914 struct task_group *tg = cfs_rq->tg;
2915
2916 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2917
3d4b60d3 2918 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2919
ea1dc6fc 2920 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2921
ea1dc6fc
PZ
2922 /* Ensure tg_weight >= load */
2923 tg_weight -= cfs_rq->tg_load_avg_contrib;
2924 tg_weight += load;
3ff6dcac 2925
7c80cfc9 2926 shares = (tg_shares * load);
cf5f0acf
PZ
2927 if (tg_weight)
2928 shares /= tg_weight;
3ff6dcac 2929
b8fd8423
DE
2930 /*
2931 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2932 * of a group with small tg->shares value. It is a floor value which is
2933 * assigned as a minimum load.weight to the sched_entity representing
2934 * the group on a CPU.
2935 *
2936 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2937 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2938 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2939 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2940 * instead of 0.
2941 */
7c80cfc9 2942 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2943}
2c8e4dce
JB
2944
2945/*
17de4ee0
PZ
2946 * This calculates the effective runnable weight for a group entity based on
2947 * the group entity weight calculated above.
2948 *
2949 * Because of the above approximation (2), our group entity weight is
2950 * an load_avg based ratio (3). This means that it includes blocked load and
2951 * does not represent the runnable weight.
2952 *
2953 * Approximate the group entity's runnable weight per ratio from the group
2954 * runqueue:
2955 *
2956 * grq->avg.runnable_load_avg
2957 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2958 * grq->avg.load_avg
2959 *
2960 * However, analogous to above, since the avg numbers are slow, this leads to
2961 * transients in the from-idle case. Instead we use:
2962 *
2963 * ge->runnable_weight = ge->load.weight *
2964 *
2965 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2966 * ----------------------------------------------------- (8)
2967 * max(grq->avg.load_avg, grq->load.weight)
2968 *
2969 * Where these max() serve both to use the 'instant' values to fix the slow
2970 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2971 */
2972static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2973{
17de4ee0
PZ
2974 long runnable, load_avg;
2975
2976 load_avg = max(cfs_rq->avg.load_avg,
2977 scale_load_down(cfs_rq->load.weight));
2978
2979 runnable = max(cfs_rq->avg.runnable_load_avg,
2980 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2981
2982 runnable *= shares;
2983 if (load_avg)
2984 runnable /= load_avg;
17de4ee0 2985
2c8e4dce
JB
2986 return clamp_t(long, runnable, MIN_SHARES, shares);
2987}
387f77cc 2988#endif /* CONFIG_SMP */
ea1dc6fc 2989
82958366
PT
2990static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2991
1ea6c46a
PZ
2992/*
2993 * Recomputes the group entity based on the current state of its group
2994 * runqueue.
2995 */
2996static void update_cfs_group(struct sched_entity *se)
2069dd75 2997{
1ea6c46a
PZ
2998 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2999 long shares, runnable;
2069dd75 3000
1ea6c46a 3001 if (!gcfs_rq)
89ee048f
VG
3002 return;
3003
1ea6c46a 3004 if (throttled_hierarchy(gcfs_rq))
2069dd75 3005 return;
89ee048f 3006
3ff6dcac 3007#ifndef CONFIG_SMP
1ea6c46a 3008 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3009
3010 if (likely(se->load.weight == shares))
3ff6dcac 3011 return;
7c80cfc9 3012#else
2c8e4dce
JB
3013 shares = calc_group_shares(gcfs_rq);
3014 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3015#endif
2069dd75 3016
1ea6c46a 3017 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3018}
89ee048f 3019
2069dd75 3020#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3021static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3022{
3023}
3024#endif /* CONFIG_FAIR_GROUP_SCHED */
3025
ea14b57e 3026static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3027{
43964409
LT
3028 struct rq *rq = rq_of(cfs_rq);
3029
ea14b57e 3030 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3031 /*
3032 * There are a few boundary cases this might miss but it should
3033 * get called often enough that that should (hopefully) not be
9783be2c 3034 * a real problem.
a030d738
VK
3035 *
3036 * It will not get called when we go idle, because the idle
3037 * thread is a different class (!fair), nor will the utilization
3038 * number include things like RT tasks.
3039 *
3040 * As is, the util number is not freq-invariant (we'd have to
3041 * implement arch_scale_freq_capacity() for that).
3042 *
3043 * See cpu_util().
3044 */
ea14b57e 3045 cpufreq_update_util(rq, flags);
a030d738
VK
3046 }
3047}
3048
141965c7 3049#ifdef CONFIG_SMP
c566e8e9 3050#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3051/**
3052 * update_tg_load_avg - update the tg's load avg
3053 * @cfs_rq: the cfs_rq whose avg changed
3054 * @force: update regardless of how small the difference
3055 *
3056 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3057 * However, because tg->load_avg is a global value there are performance
3058 * considerations.
3059 *
3060 * In order to avoid having to look at the other cfs_rq's, we use a
3061 * differential update where we store the last value we propagated. This in
3062 * turn allows skipping updates if the differential is 'small'.
3063 *
815abf5a 3064 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3065 */
9d89c257 3066static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3067{
9d89c257 3068 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3069
aa0b7ae0
WL
3070 /*
3071 * No need to update load_avg for root_task_group as it is not used.
3072 */
3073 if (cfs_rq->tg == &root_task_group)
3074 return;
3075
9d89c257
YD
3076 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3077 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3078 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3079 }
8165e145 3080}
f5f9739d 3081
ad936d86 3082/*
97fb7a0a 3083 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3084 * caller only guarantees p->pi_lock is held; no other assumptions,
3085 * including the state of rq->lock, should be made.
3086 */
3087void set_task_rq_fair(struct sched_entity *se,
3088 struct cfs_rq *prev, struct cfs_rq *next)
3089{
0ccb977f
PZ
3090 u64 p_last_update_time;
3091 u64 n_last_update_time;
3092
ad936d86
BP
3093 if (!sched_feat(ATTACH_AGE_LOAD))
3094 return;
3095
3096 /*
3097 * We are supposed to update the task to "current" time, then its up to
3098 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3099 * getting what current time is, so simply throw away the out-of-date
3100 * time. This will result in the wakee task is less decayed, but giving
3101 * the wakee more load sounds not bad.
3102 */
0ccb977f
PZ
3103 if (!(se->avg.last_update_time && prev))
3104 return;
ad936d86
BP
3105
3106#ifndef CONFIG_64BIT
0ccb977f 3107 {
ad936d86
BP
3108 u64 p_last_update_time_copy;
3109 u64 n_last_update_time_copy;
3110
3111 do {
3112 p_last_update_time_copy = prev->load_last_update_time_copy;
3113 n_last_update_time_copy = next->load_last_update_time_copy;
3114
3115 smp_rmb();
3116
3117 p_last_update_time = prev->avg.last_update_time;
3118 n_last_update_time = next->avg.last_update_time;
3119
3120 } while (p_last_update_time != p_last_update_time_copy ||
3121 n_last_update_time != n_last_update_time_copy);
0ccb977f 3122 }
ad936d86 3123#else
0ccb977f
PZ
3124 p_last_update_time = prev->avg.last_update_time;
3125 n_last_update_time = next->avg.last_update_time;
ad936d86 3126#endif
0ccb977f
PZ
3127 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3128 se->avg.last_update_time = n_last_update_time;
ad936d86 3129}
09a43ace 3130
0e2d2aaa
PZ
3131
3132/*
3133 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3134 * propagate its contribution. The key to this propagation is the invariant
3135 * that for each group:
3136 *
3137 * ge->avg == grq->avg (1)
3138 *
3139 * _IFF_ we look at the pure running and runnable sums. Because they
3140 * represent the very same entity, just at different points in the hierarchy.
3141 *
a4c3c049
VG
3142 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3143 * sum over (but still wrong, because the group entity and group rq do not have
3144 * their PELT windows aligned).
0e2d2aaa
PZ
3145 *
3146 * However, update_tg_cfs_runnable() is more complex. So we have:
3147 *
3148 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3149 *
3150 * And since, like util, the runnable part should be directly transferable,
3151 * the following would _appear_ to be the straight forward approach:
3152 *
a4c3c049 3153 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3154 *
3155 * And per (1) we have:
3156 *
a4c3c049 3157 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3158 *
3159 * Which gives:
3160 *
3161 * ge->load.weight * grq->avg.load_avg
3162 * ge->avg.load_avg = ----------------------------------- (4)
3163 * grq->load.weight
3164 *
3165 * Except that is wrong!
3166 *
3167 * Because while for entities historical weight is not important and we
3168 * really only care about our future and therefore can consider a pure
3169 * runnable sum, runqueues can NOT do this.
3170 *
3171 * We specifically want runqueues to have a load_avg that includes
3172 * historical weights. Those represent the blocked load, the load we expect
3173 * to (shortly) return to us. This only works by keeping the weights as
3174 * integral part of the sum. We therefore cannot decompose as per (3).
3175 *
a4c3c049
VG
3176 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3177 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3178 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3179 * runnable section of these tasks overlap (or not). If they were to perfectly
3180 * align the rq as a whole would be runnable 2/3 of the time. If however we
3181 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3182 *
a4c3c049 3183 * So we'll have to approximate.. :/
0e2d2aaa 3184 *
a4c3c049 3185 * Given the constraint:
0e2d2aaa 3186 *
a4c3c049 3187 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3188 *
a4c3c049
VG
3189 * We can construct a rule that adds runnable to a rq by assuming minimal
3190 * overlap.
0e2d2aaa 3191 *
a4c3c049 3192 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3193 *
a4c3c049 3194 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3195 *
a4c3c049 3196 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3197 *
0e2d2aaa
PZ
3198 */
3199
09a43ace 3200static inline void
0e2d2aaa 3201update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3202{
09a43ace
VG
3203 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3204
3205 /* Nothing to update */
3206 if (!delta)
3207 return;
3208
a4c3c049
VG
3209 /*
3210 * The relation between sum and avg is:
3211 *
3212 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3213 *
3214 * however, the PELT windows are not aligned between grq and gse.
3215 */
3216
09a43ace
VG
3217 /* Set new sched_entity's utilization */
3218 se->avg.util_avg = gcfs_rq->avg.util_avg;
3219 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3220
3221 /* Update parent cfs_rq utilization */
3222 add_positive(&cfs_rq->avg.util_avg, delta);
3223 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3224}
3225
09a43ace 3226static inline void
0e2d2aaa 3227update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3228{
a4c3c049
VG
3229 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3230 unsigned long runnable_load_avg, load_avg;
3231 u64 runnable_load_sum, load_sum = 0;
3232 s64 delta_sum;
09a43ace 3233
0e2d2aaa
PZ
3234 if (!runnable_sum)
3235 return;
09a43ace 3236
0e2d2aaa 3237 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3238
a4c3c049
VG
3239 if (runnable_sum >= 0) {
3240 /*
3241 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3242 * the CPU is saturated running == runnable.
3243 */
3244 runnable_sum += se->avg.load_sum;
3245 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3246 } else {
3247 /*
3248 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3249 * assuming all tasks are equally runnable.
3250 */
3251 if (scale_load_down(gcfs_rq->load.weight)) {
3252 load_sum = div_s64(gcfs_rq->avg.load_sum,
3253 scale_load_down(gcfs_rq->load.weight));
3254 }
3255
3256 /* But make sure to not inflate se's runnable */
3257 runnable_sum = min(se->avg.load_sum, load_sum);
3258 }
3259
3260 /*
3261 * runnable_sum can't be lower than running_sum
97fb7a0a 3262 * As running sum is scale with CPU capacity wehreas the runnable sum
a4c3c049
VG
3263 * is not we rescale running_sum 1st
3264 */
3265 running_sum = se->avg.util_sum /
3266 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3267 runnable_sum = max(runnable_sum, running_sum);
3268
0e2d2aaa
PZ
3269 load_sum = (s64)se_weight(se) * runnable_sum;
3270 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3271
a4c3c049
VG
3272 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3273 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3274
a4c3c049
VG
3275 se->avg.load_sum = runnable_sum;
3276 se->avg.load_avg = load_avg;
3277 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3278 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3279
1ea6c46a
PZ
3280 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3281 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3282 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3283 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3284
a4c3c049
VG
3285 se->avg.runnable_load_sum = runnable_sum;
3286 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3287
09a43ace 3288 if (se->on_rq) {
a4c3c049
VG
3289 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3290 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3291 }
3292}
3293
0e2d2aaa 3294static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3295{
0e2d2aaa
PZ
3296 cfs_rq->propagate = 1;
3297 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3298}
3299
3300/* Update task and its cfs_rq load average */
3301static inline int propagate_entity_load_avg(struct sched_entity *se)
3302{
0e2d2aaa 3303 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3304
3305 if (entity_is_task(se))
3306 return 0;
3307
0e2d2aaa
PZ
3308 gcfs_rq = group_cfs_rq(se);
3309 if (!gcfs_rq->propagate)
09a43ace
VG
3310 return 0;
3311
0e2d2aaa
PZ
3312 gcfs_rq->propagate = 0;
3313
09a43ace
VG
3314 cfs_rq = cfs_rq_of(se);
3315
0e2d2aaa 3316 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3317
0e2d2aaa
PZ
3318 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3319 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3320
3321 return 1;
3322}
3323
bc427898
VG
3324/*
3325 * Check if we need to update the load and the utilization of a blocked
3326 * group_entity:
3327 */
3328static inline bool skip_blocked_update(struct sched_entity *se)
3329{
3330 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3331
3332 /*
3333 * If sched_entity still have not zero load or utilization, we have to
3334 * decay it:
3335 */
3336 if (se->avg.load_avg || se->avg.util_avg)
3337 return false;
3338
3339 /*
3340 * If there is a pending propagation, we have to update the load and
3341 * the utilization of the sched_entity:
3342 */
0e2d2aaa 3343 if (gcfs_rq->propagate)
bc427898
VG
3344 return false;
3345
3346 /*
3347 * Otherwise, the load and the utilization of the sched_entity is
3348 * already zero and there is no pending propagation, so it will be a
3349 * waste of time to try to decay it:
3350 */
3351 return true;
3352}
3353
6e83125c 3354#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3355
9d89c257 3356static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3357
3358static inline int propagate_entity_load_avg(struct sched_entity *se)
3359{
3360 return 0;
3361}
3362
0e2d2aaa 3363static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3364
6e83125c 3365#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3366
3d30544f
PZ
3367/**
3368 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3369 * @now: current time, as per cfs_rq_clock_task()
3370 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3371 *
3372 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3373 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3374 * post_init_entity_util_avg().
3375 *
3376 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3377 *
7c3edd2c
PZ
3378 * Returns true if the load decayed or we removed load.
3379 *
3380 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3381 * call update_tg_load_avg() when this function returns true.
3d30544f 3382 */
a2c6c91f 3383static inline int
3a123bbb 3384update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3385{
0e2d2aaa 3386 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3387 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3388 int decayed = 0;
2dac754e 3389
2a2f5d4e
PZ
3390 if (cfs_rq->removed.nr) {
3391 unsigned long r;
9a2dd585 3392 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3393
3394 raw_spin_lock(&cfs_rq->removed.lock);
3395 swap(cfs_rq->removed.util_avg, removed_util);
3396 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3397 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3398 cfs_rq->removed.nr = 0;
3399 raw_spin_unlock(&cfs_rq->removed.lock);
3400
2a2f5d4e 3401 r = removed_load;
89741892 3402 sub_positive(&sa->load_avg, r);
9a2dd585 3403 sub_positive(&sa->load_sum, r * divider);
2dac754e 3404
2a2f5d4e 3405 r = removed_util;
89741892 3406 sub_positive(&sa->util_avg, r);
9a2dd585 3407 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3408
0e2d2aaa 3409 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3410
3411 decayed = 1;
9d89c257 3412 }
36ee28e4 3413
2a2f5d4e 3414 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3415
9d89c257
YD
3416#ifndef CONFIG_64BIT
3417 smp_wmb();
3418 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3419#endif
36ee28e4 3420
2a2f5d4e 3421 if (decayed)
ea14b57e 3422 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3423
2a2f5d4e 3424 return decayed;
21e96f88
SM
3425}
3426
3d30544f
PZ
3427/**
3428 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3429 * @cfs_rq: cfs_rq to attach to
3430 * @se: sched_entity to attach
3431 *
3432 * Must call update_cfs_rq_load_avg() before this, since we rely on
3433 * cfs_rq->avg.last_update_time being current.
3434 */
ea14b57e 3435static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3436{
f207934f
PZ
3437 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3438
3439 /*
3440 * When we attach the @se to the @cfs_rq, we must align the decay
3441 * window because without that, really weird and wonderful things can
3442 * happen.
3443 *
3444 * XXX illustrate
3445 */
a05e8c51 3446 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3447 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3448
3449 /*
3450 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3451 * period_contrib. This isn't strictly correct, but since we're
3452 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3453 * _sum a little.
3454 */
3455 se->avg.util_sum = se->avg.util_avg * divider;
3456
3457 se->avg.load_sum = divider;
3458 if (se_weight(se)) {
3459 se->avg.load_sum =
3460 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3461 }
3462
3463 se->avg.runnable_load_sum = se->avg.load_sum;
3464
8d5b9025 3465 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3466 cfs_rq->avg.util_avg += se->avg.util_avg;
3467 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3468
3469 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3470
ea14b57e 3471 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3472}
3473
3d30544f
PZ
3474/**
3475 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3476 * @cfs_rq: cfs_rq to detach from
3477 * @se: sched_entity to detach
3478 *
3479 * Must call update_cfs_rq_load_avg() before this, since we rely on
3480 * cfs_rq->avg.last_update_time being current.
3481 */
a05e8c51
BP
3482static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483{
8d5b9025 3484 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3485 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3486 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3487
3488 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3489
ea14b57e 3490 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3491}
3492
b382a531
PZ
3493/*
3494 * Optional action to be done while updating the load average
3495 */
3496#define UPDATE_TG 0x1
3497#define SKIP_AGE_LOAD 0x2
3498#define DO_ATTACH 0x4
3499
3500/* Update task and its cfs_rq load average */
3501static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3502{
3503 u64 now = cfs_rq_clock_task(cfs_rq);
3504 struct rq *rq = rq_of(cfs_rq);
3505 int cpu = cpu_of(rq);
3506 int decayed;
3507
3508 /*
3509 * Track task load average for carrying it to new CPU after migrated, and
3510 * track group sched_entity load average for task_h_load calc in migration
3511 */
3512 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3513 __update_load_avg_se(now, cpu, cfs_rq, se);
3514
3515 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3516 decayed |= propagate_entity_load_avg(se);
3517
3518 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3519
ea14b57e
PZ
3520 /*
3521 * DO_ATTACH means we're here from enqueue_entity().
3522 * !last_update_time means we've passed through
3523 * migrate_task_rq_fair() indicating we migrated.
3524 *
3525 * IOW we're enqueueing a task on a new CPU.
3526 */
3527 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3528 update_tg_load_avg(cfs_rq, 0);
3529
3530 } else if (decayed && (flags & UPDATE_TG))
3531 update_tg_load_avg(cfs_rq, 0);
3532}
3533
9d89c257 3534#ifndef CONFIG_64BIT
0905f04e
YD
3535static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3536{
9d89c257 3537 u64 last_update_time_copy;
0905f04e 3538 u64 last_update_time;
9ee474f5 3539
9d89c257
YD
3540 do {
3541 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3542 smp_rmb();
3543 last_update_time = cfs_rq->avg.last_update_time;
3544 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3545
3546 return last_update_time;
3547}
9d89c257 3548#else
0905f04e
YD
3549static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3550{
3551 return cfs_rq->avg.last_update_time;
3552}
9d89c257
YD
3553#endif
3554
104cb16d
MR
3555/*
3556 * Synchronize entity load avg of dequeued entity without locking
3557 * the previous rq.
3558 */
3559void sync_entity_load_avg(struct sched_entity *se)
3560{
3561 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3562 u64 last_update_time;
3563
3564 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3565 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3566}
3567
0905f04e
YD
3568/*
3569 * Task first catches up with cfs_rq, and then subtract
3570 * itself from the cfs_rq (task must be off the queue now).
3571 */
3572void remove_entity_load_avg(struct sched_entity *se)
3573{
3574 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3575 unsigned long flags;
0905f04e
YD
3576
3577 /*
7dc603c9
PZ
3578 * tasks cannot exit without having gone through wake_up_new_task() ->
3579 * post_init_entity_util_avg() which will have added things to the
3580 * cfs_rq, so we can remove unconditionally.
3581 *
3582 * Similarly for groups, they will have passed through
3583 * post_init_entity_util_avg() before unregister_sched_fair_group()
3584 * calls this.
0905f04e 3585 */
0905f04e 3586
104cb16d 3587 sync_entity_load_avg(se);
2a2f5d4e
PZ
3588
3589 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3590 ++cfs_rq->removed.nr;
3591 cfs_rq->removed.util_avg += se->avg.util_avg;
3592 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3593 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3594 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3595}
642dbc39 3596
7ea241af
YD
3597static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3598{
1ea6c46a 3599 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3600}
3601
3602static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3603{
3604 return cfs_rq->avg.load_avg;
3605}
3606
46f69fa3 3607static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3608
7f65ea42
PB
3609static inline unsigned long task_util(struct task_struct *p)
3610{
3611 return READ_ONCE(p->se.avg.util_avg);
3612}
3613
3614static inline unsigned long _task_util_est(struct task_struct *p)
3615{
3616 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3617
3618 return max(ue.ewma, ue.enqueued);
3619}
3620
3621static inline unsigned long task_util_est(struct task_struct *p)
3622{
3623 return max(task_util(p), _task_util_est(p));
3624}
3625
3626static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3627 struct task_struct *p)
3628{
3629 unsigned int enqueued;
3630
3631 if (!sched_feat(UTIL_EST))
3632 return;
3633
3634 /* Update root cfs_rq's estimated utilization */
3635 enqueued = cfs_rq->avg.util_est.enqueued;
d519329f 3636 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3637 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3638}
3639
3640/*
3641 * Check if a (signed) value is within a specified (unsigned) margin,
3642 * based on the observation that:
3643 *
3644 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3645 *
3646 * NOTE: this only works when value + maring < INT_MAX.
3647 */
3648static inline bool within_margin(int value, int margin)
3649{
3650 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3651}
3652
3653static void
3654util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3655{
3656 long last_ewma_diff;
3657 struct util_est ue;
3658
3659 if (!sched_feat(UTIL_EST))
3660 return;
3661
3482d98b
VG
3662 /* Update root cfs_rq's estimated utilization */
3663 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3664 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3665 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
7f65ea42
PB
3666 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3667
3668 /*
3669 * Skip update of task's estimated utilization when the task has not
3670 * yet completed an activation, e.g. being migrated.
3671 */
3672 if (!task_sleep)
3673 return;
3674
d519329f
PB
3675 /*
3676 * If the PELT values haven't changed since enqueue time,
3677 * skip the util_est update.
3678 */
3679 ue = p->se.avg.util_est;
3680 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3681 return;
3682
7f65ea42
PB
3683 /*
3684 * Skip update of task's estimated utilization when its EWMA is
3685 * already ~1% close to its last activation value.
3686 */
d519329f 3687 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3688 last_ewma_diff = ue.enqueued - ue.ewma;
3689 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3690 return;
3691
3692 /*
3693 * Update Task's estimated utilization
3694 *
3695 * When *p completes an activation we can consolidate another sample
3696 * of the task size. This is done by storing the current PELT value
3697 * as ue.enqueued and by using this value to update the Exponential
3698 * Weighted Moving Average (EWMA):
3699 *
3700 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3701 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3702 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3703 * = w * ( last_ewma_diff ) + ewma(t-1)
3704 * = w * (last_ewma_diff + ewma(t-1) / w)
3705 *
3706 * Where 'w' is the weight of new samples, which is configured to be
3707 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3708 */
3709 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3710 ue.ewma += last_ewma_diff;
3711 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3712 WRITE_ONCE(p->se.avg.util_est, ue);
3713}
3714
38033c37
PZ
3715#else /* CONFIG_SMP */
3716
d31b1a66
VG
3717#define UPDATE_TG 0x0
3718#define SKIP_AGE_LOAD 0x0
b382a531 3719#define DO_ATTACH 0x0
d31b1a66 3720
88c0616e 3721static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3722{
ea14b57e 3723 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3724}
3725
9d89c257 3726static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3727
a05e8c51 3728static inline void
ea14b57e 3729attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3730static inline void
3731detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3732
46f69fa3 3733static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3734{
3735 return 0;
3736}
3737
7f65ea42
PB
3738static inline void
3739util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3740
3741static inline void
3742util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3743 bool task_sleep) {}
3744
38033c37 3745#endif /* CONFIG_SMP */
9d85f21c 3746
ddc97297
PZ
3747static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3748{
3749#ifdef CONFIG_SCHED_DEBUG
3750 s64 d = se->vruntime - cfs_rq->min_vruntime;
3751
3752 if (d < 0)
3753 d = -d;
3754
3755 if (d > 3*sysctl_sched_latency)
ae92882e 3756 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3757#endif
3758}
3759
aeb73b04
PZ
3760static void
3761place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3762{
1af5f730 3763 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3764
2cb8600e
PZ
3765 /*
3766 * The 'current' period is already promised to the current tasks,
3767 * however the extra weight of the new task will slow them down a
3768 * little, place the new task so that it fits in the slot that
3769 * stays open at the end.
3770 */
94dfb5e7 3771 if (initial && sched_feat(START_DEBIT))
f9c0b095 3772 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3773
a2e7a7eb 3774 /* sleeps up to a single latency don't count. */
5ca9880c 3775 if (!initial) {
a2e7a7eb 3776 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3777
a2e7a7eb
MG
3778 /*
3779 * Halve their sleep time's effect, to allow
3780 * for a gentler effect of sleepers:
3781 */
3782 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3783 thresh >>= 1;
51e0304c 3784
a2e7a7eb 3785 vruntime -= thresh;
aeb73b04
PZ
3786 }
3787
b5d9d734 3788 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3789 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3790}
3791
d3d9dc33
PT
3792static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3793
cb251765
MG
3794static inline void check_schedstat_required(void)
3795{
3796#ifdef CONFIG_SCHEDSTATS
3797 if (schedstat_enabled())
3798 return;
3799
3800 /* Force schedstat enabled if a dependent tracepoint is active */
3801 if (trace_sched_stat_wait_enabled() ||
3802 trace_sched_stat_sleep_enabled() ||
3803 trace_sched_stat_iowait_enabled() ||
3804 trace_sched_stat_blocked_enabled() ||
3805 trace_sched_stat_runtime_enabled()) {
eda8dca5 3806 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3807 "stat_blocked and stat_runtime require the "
f67abed5 3808 "kernel parameter schedstats=enable or "
cb251765
MG
3809 "kernel.sched_schedstats=1\n");
3810 }
3811#endif
3812}
3813
b5179ac7
PZ
3814
3815/*
3816 * MIGRATION
3817 *
3818 * dequeue
3819 * update_curr()
3820 * update_min_vruntime()
3821 * vruntime -= min_vruntime
3822 *
3823 * enqueue
3824 * update_curr()
3825 * update_min_vruntime()
3826 * vruntime += min_vruntime
3827 *
3828 * this way the vruntime transition between RQs is done when both
3829 * min_vruntime are up-to-date.
3830 *
3831 * WAKEUP (remote)
3832 *
59efa0ba 3833 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3834 * vruntime -= min_vruntime
3835 *
3836 * enqueue
3837 * update_curr()
3838 * update_min_vruntime()
3839 * vruntime += min_vruntime
3840 *
3841 * this way we don't have the most up-to-date min_vruntime on the originating
3842 * CPU and an up-to-date min_vruntime on the destination CPU.
3843 */
3844
bf0f6f24 3845static void
88ec22d3 3846enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3847{
2f950354
PZ
3848 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3849 bool curr = cfs_rq->curr == se;
3850
88ec22d3 3851 /*
2f950354
PZ
3852 * If we're the current task, we must renormalise before calling
3853 * update_curr().
88ec22d3 3854 */
2f950354 3855 if (renorm && curr)
88ec22d3
PZ
3856 se->vruntime += cfs_rq->min_vruntime;
3857
2f950354
PZ
3858 update_curr(cfs_rq);
3859
bf0f6f24 3860 /*
2f950354
PZ
3861 * Otherwise, renormalise after, such that we're placed at the current
3862 * moment in time, instead of some random moment in the past. Being
3863 * placed in the past could significantly boost this task to the
3864 * fairness detriment of existing tasks.
bf0f6f24 3865 */
2f950354
PZ
3866 if (renorm && !curr)
3867 se->vruntime += cfs_rq->min_vruntime;
3868
89ee048f
VG
3869 /*
3870 * When enqueuing a sched_entity, we must:
3871 * - Update loads to have both entity and cfs_rq synced with now.
3872 * - Add its load to cfs_rq->runnable_avg
3873 * - For group_entity, update its weight to reflect the new share of
3874 * its group cfs_rq
3875 * - Add its new weight to cfs_rq->load.weight
3876 */
b382a531 3877 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3878 update_cfs_group(se);
b5b3e35f 3879 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3880 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3881
1a3d027c 3882 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3883 place_entity(cfs_rq, se, 0);
bf0f6f24 3884
cb251765 3885 check_schedstat_required();
4fa8d299
JP
3886 update_stats_enqueue(cfs_rq, se, flags);
3887 check_spread(cfs_rq, se);
2f950354 3888 if (!curr)
83b699ed 3889 __enqueue_entity(cfs_rq, se);
2069dd75 3890 se->on_rq = 1;
3d4b47b4 3891
d3d9dc33 3892 if (cfs_rq->nr_running == 1) {
3d4b47b4 3893 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3894 check_enqueue_throttle(cfs_rq);
3895 }
bf0f6f24
IM
3896}
3897
2c13c919 3898static void __clear_buddies_last(struct sched_entity *se)
2002c695 3899{
2c13c919
RR
3900 for_each_sched_entity(se) {
3901 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3902 if (cfs_rq->last != se)
2c13c919 3903 break;
f1044799
PZ
3904
3905 cfs_rq->last = NULL;
2c13c919
RR
3906 }
3907}
2002c695 3908
2c13c919
RR
3909static void __clear_buddies_next(struct sched_entity *se)
3910{
3911 for_each_sched_entity(se) {
3912 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3913 if (cfs_rq->next != se)
2c13c919 3914 break;
f1044799
PZ
3915
3916 cfs_rq->next = NULL;
2c13c919 3917 }
2002c695
PZ
3918}
3919
ac53db59
RR
3920static void __clear_buddies_skip(struct sched_entity *se)
3921{
3922 for_each_sched_entity(se) {
3923 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3924 if (cfs_rq->skip != se)
ac53db59 3925 break;
f1044799
PZ
3926
3927 cfs_rq->skip = NULL;
ac53db59
RR
3928 }
3929}
3930
a571bbea
PZ
3931static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3932{
2c13c919
RR
3933 if (cfs_rq->last == se)
3934 __clear_buddies_last(se);
3935
3936 if (cfs_rq->next == se)
3937 __clear_buddies_next(se);
ac53db59
RR
3938
3939 if (cfs_rq->skip == se)
3940 __clear_buddies_skip(se);
a571bbea
PZ
3941}
3942
6c16a6dc 3943static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3944
bf0f6f24 3945static void
371fd7e7 3946dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3947{
a2a2d680
DA
3948 /*
3949 * Update run-time statistics of the 'current'.
3950 */
3951 update_curr(cfs_rq);
89ee048f
VG
3952
3953 /*
3954 * When dequeuing a sched_entity, we must:
3955 * - Update loads to have both entity and cfs_rq synced with now.
3956 * - Substract its load from the cfs_rq->runnable_avg.
3957 * - Substract its previous weight from cfs_rq->load.weight.
3958 * - For group entity, update its weight to reflect the new share
3959 * of its group cfs_rq.
3960 */
88c0616e 3961 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 3962 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 3963
4fa8d299 3964 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3965
2002c695 3966 clear_buddies(cfs_rq, se);
4793241b 3967
83b699ed 3968 if (se != cfs_rq->curr)
30cfdcfc 3969 __dequeue_entity(cfs_rq, se);
17bc14b7 3970 se->on_rq = 0;
30cfdcfc 3971 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3972
3973 /*
b60205c7
PZ
3974 * Normalize after update_curr(); which will also have moved
3975 * min_vruntime if @se is the one holding it back. But before doing
3976 * update_min_vruntime() again, which will discount @se's position and
3977 * can move min_vruntime forward still more.
88ec22d3 3978 */
371fd7e7 3979 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3980 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3981
d8b4986d
PT
3982 /* return excess runtime on last dequeue */
3983 return_cfs_rq_runtime(cfs_rq);
3984
1ea6c46a 3985 update_cfs_group(se);
b60205c7
PZ
3986
3987 /*
3988 * Now advance min_vruntime if @se was the entity holding it back,
3989 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3990 * put back on, and if we advance min_vruntime, we'll be placed back
3991 * further than we started -- ie. we'll be penalized.
3992 */
3993 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3994 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3995}
3996
3997/*
3998 * Preempt the current task with a newly woken task if needed:
3999 */
7c92e54f 4000static void
2e09bf55 4001check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4002{
11697830 4003 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4004 struct sched_entity *se;
4005 s64 delta;
11697830 4006
6d0f0ebd 4007 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4008 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4009 if (delta_exec > ideal_runtime) {
8875125e 4010 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4011 /*
4012 * The current task ran long enough, ensure it doesn't get
4013 * re-elected due to buddy favours.
4014 */
4015 clear_buddies(cfs_rq, curr);
f685ceac
MG
4016 return;
4017 }
4018
4019 /*
4020 * Ensure that a task that missed wakeup preemption by a
4021 * narrow margin doesn't have to wait for a full slice.
4022 * This also mitigates buddy induced latencies under load.
4023 */
f685ceac
MG
4024 if (delta_exec < sysctl_sched_min_granularity)
4025 return;
4026
f4cfb33e
WX
4027 se = __pick_first_entity(cfs_rq);
4028 delta = curr->vruntime - se->vruntime;
f685ceac 4029
f4cfb33e
WX
4030 if (delta < 0)
4031 return;
d7d82944 4032
f4cfb33e 4033 if (delta > ideal_runtime)
8875125e 4034 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4035}
4036
83b699ed 4037static void
8494f412 4038set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4039{
83b699ed
SV
4040 /* 'current' is not kept within the tree. */
4041 if (se->on_rq) {
4042 /*
4043 * Any task has to be enqueued before it get to execute on
4044 * a CPU. So account for the time it spent waiting on the
4045 * runqueue.
4046 */
4fa8d299 4047 update_stats_wait_end(cfs_rq, se);
83b699ed 4048 __dequeue_entity(cfs_rq, se);
88c0616e 4049 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4050 }
4051
79303e9e 4052 update_stats_curr_start(cfs_rq, se);
429d43bc 4053 cfs_rq->curr = se;
4fa8d299 4054
eba1ed4b
IM
4055 /*
4056 * Track our maximum slice length, if the CPU's load is at
4057 * least twice that of our own weight (i.e. dont track it
4058 * when there are only lesser-weight tasks around):
4059 */
cb251765 4060 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4061 schedstat_set(se->statistics.slice_max,
4062 max((u64)schedstat_val(se->statistics.slice_max),
4063 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4064 }
4fa8d299 4065
4a55b450 4066 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4067}
4068
3f3a4904
PZ
4069static int
4070wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4071
ac53db59
RR
4072/*
4073 * Pick the next process, keeping these things in mind, in this order:
4074 * 1) keep things fair between processes/task groups
4075 * 2) pick the "next" process, since someone really wants that to run
4076 * 3) pick the "last" process, for cache locality
4077 * 4) do not run the "skip" process, if something else is available
4078 */
678d5718
PZ
4079static struct sched_entity *
4080pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4081{
678d5718
PZ
4082 struct sched_entity *left = __pick_first_entity(cfs_rq);
4083 struct sched_entity *se;
4084
4085 /*
4086 * If curr is set we have to see if its left of the leftmost entity
4087 * still in the tree, provided there was anything in the tree at all.
4088 */
4089 if (!left || (curr && entity_before(curr, left)))
4090 left = curr;
4091
4092 se = left; /* ideally we run the leftmost entity */
f4b6755f 4093
ac53db59
RR
4094 /*
4095 * Avoid running the skip buddy, if running something else can
4096 * be done without getting too unfair.
4097 */
4098 if (cfs_rq->skip == se) {
678d5718
PZ
4099 struct sched_entity *second;
4100
4101 if (se == curr) {
4102 second = __pick_first_entity(cfs_rq);
4103 } else {
4104 second = __pick_next_entity(se);
4105 if (!second || (curr && entity_before(curr, second)))
4106 second = curr;
4107 }
4108
ac53db59
RR
4109 if (second && wakeup_preempt_entity(second, left) < 1)
4110 se = second;
4111 }
aa2ac252 4112
f685ceac
MG
4113 /*
4114 * Prefer last buddy, try to return the CPU to a preempted task.
4115 */
4116 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4117 se = cfs_rq->last;
4118
ac53db59
RR
4119 /*
4120 * Someone really wants this to run. If it's not unfair, run it.
4121 */
4122 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4123 se = cfs_rq->next;
4124
f685ceac 4125 clear_buddies(cfs_rq, se);
4793241b
PZ
4126
4127 return se;
aa2ac252
PZ
4128}
4129
678d5718 4130static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4131
ab6cde26 4132static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4133{
4134 /*
4135 * If still on the runqueue then deactivate_task()
4136 * was not called and update_curr() has to be done:
4137 */
4138 if (prev->on_rq)
b7cc0896 4139 update_curr(cfs_rq);
bf0f6f24 4140
d3d9dc33
PT
4141 /* throttle cfs_rqs exceeding runtime */
4142 check_cfs_rq_runtime(cfs_rq);
4143
4fa8d299 4144 check_spread(cfs_rq, prev);
cb251765 4145
30cfdcfc 4146 if (prev->on_rq) {
4fa8d299 4147 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4148 /* Put 'current' back into the tree. */
4149 __enqueue_entity(cfs_rq, prev);
9d85f21c 4150 /* in !on_rq case, update occurred at dequeue */
88c0616e 4151 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4152 }
429d43bc 4153 cfs_rq->curr = NULL;
bf0f6f24
IM
4154}
4155
8f4d37ec
PZ
4156static void
4157entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4158{
bf0f6f24 4159 /*
30cfdcfc 4160 * Update run-time statistics of the 'current'.
bf0f6f24 4161 */
30cfdcfc 4162 update_curr(cfs_rq);
bf0f6f24 4163
9d85f21c
PT
4164 /*
4165 * Ensure that runnable average is periodically updated.
4166 */
88c0616e 4167 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4168 update_cfs_group(curr);
9d85f21c 4169
8f4d37ec
PZ
4170#ifdef CONFIG_SCHED_HRTICK
4171 /*
4172 * queued ticks are scheduled to match the slice, so don't bother
4173 * validating it and just reschedule.
4174 */
983ed7a6 4175 if (queued) {
8875125e 4176 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4177 return;
4178 }
8f4d37ec
PZ
4179 /*
4180 * don't let the period tick interfere with the hrtick preemption
4181 */
4182 if (!sched_feat(DOUBLE_TICK) &&
4183 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4184 return;
4185#endif
4186
2c2efaed 4187 if (cfs_rq->nr_running > 1)
2e09bf55 4188 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4189}
4190
ab84d31e
PT
4191
4192/**************************************************
4193 * CFS bandwidth control machinery
4194 */
4195
4196#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4197
4198#ifdef HAVE_JUMP_LABEL
c5905afb 4199static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4200
4201static inline bool cfs_bandwidth_used(void)
4202{
c5905afb 4203 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4204}
4205
1ee14e6c 4206void cfs_bandwidth_usage_inc(void)
029632fb 4207{
ce48c146 4208 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4209}
4210
4211void cfs_bandwidth_usage_dec(void)
4212{
ce48c146 4213 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb
PZ
4214}
4215#else /* HAVE_JUMP_LABEL */
4216static bool cfs_bandwidth_used(void)
4217{
4218 return true;
4219}
4220
1ee14e6c
BS
4221void cfs_bandwidth_usage_inc(void) {}
4222void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4223#endif /* HAVE_JUMP_LABEL */
4224
ab84d31e
PT
4225/*
4226 * default period for cfs group bandwidth.
4227 * default: 0.1s, units: nanoseconds
4228 */
4229static inline u64 default_cfs_period(void)
4230{
4231 return 100000000ULL;
4232}
ec12cb7f
PT
4233
4234static inline u64 sched_cfs_bandwidth_slice(void)
4235{
4236 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4237}
4238
a9cf55b2
PT
4239/*
4240 * Replenish runtime according to assigned quota and update expiration time.
4241 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4242 * additional synchronization around rq->lock.
4243 *
4244 * requires cfs_b->lock
4245 */
029632fb 4246void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4247{
4248 u64 now;
4249
4250 if (cfs_b->quota == RUNTIME_INF)
4251 return;
4252
4253 now = sched_clock_cpu(smp_processor_id());
4254 cfs_b->runtime = cfs_b->quota;
4255 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4256 cfs_b->expires_seq++;
a9cf55b2
PT
4257}
4258
029632fb
PZ
4259static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4260{
4261 return &tg->cfs_bandwidth;
4262}
4263
f1b17280
PT
4264/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4265static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4266{
4267 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4268 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4269
78becc27 4270 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4271}
4272
85dac906
PT
4273/* returns 0 on failure to allocate runtime */
4274static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4275{
4276 struct task_group *tg = cfs_rq->tg;
4277 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4278 u64 amount = 0, min_amount, expires;
512ac999 4279 int expires_seq;
ec12cb7f
PT
4280
4281 /* note: this is a positive sum as runtime_remaining <= 0 */
4282 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4283
4284 raw_spin_lock(&cfs_b->lock);
4285 if (cfs_b->quota == RUNTIME_INF)
4286 amount = min_amount;
58088ad0 4287 else {
77a4d1a1 4288 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4289
4290 if (cfs_b->runtime > 0) {
4291 amount = min(cfs_b->runtime, min_amount);
4292 cfs_b->runtime -= amount;
4293 cfs_b->idle = 0;
4294 }
ec12cb7f 4295 }
512ac999 4296 expires_seq = cfs_b->expires_seq;
a9cf55b2 4297 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4298 raw_spin_unlock(&cfs_b->lock);
4299
4300 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4301 /*
4302 * we may have advanced our local expiration to account for allowed
4303 * spread between our sched_clock and the one on which runtime was
4304 * issued.
4305 */
512ac999
XP
4306 if (cfs_rq->expires_seq != expires_seq) {
4307 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4308 cfs_rq->runtime_expires = expires;
512ac999 4309 }
85dac906
PT
4310
4311 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4312}
4313
a9cf55b2
PT
4314/*
4315 * Note: This depends on the synchronization provided by sched_clock and the
4316 * fact that rq->clock snapshots this value.
4317 */
4318static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4319{
a9cf55b2 4320 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4321
4322 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4323 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4324 return;
4325
a9cf55b2
PT
4326 if (cfs_rq->runtime_remaining < 0)
4327 return;
4328
4329 /*
4330 * If the local deadline has passed we have to consider the
4331 * possibility that our sched_clock is 'fast' and the global deadline
4332 * has not truly expired.
4333 *
4334 * Fortunately we can check determine whether this the case by checking
512ac999 4335 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4336 */
512ac999 4337 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4338 /* extend local deadline, drift is bounded above by 2 ticks */
4339 cfs_rq->runtime_expires += TICK_NSEC;
4340 } else {
4341 /* global deadline is ahead, expiration has passed */
4342 cfs_rq->runtime_remaining = 0;
4343 }
4344}
4345
9dbdb155 4346static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4347{
4348 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4349 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4350 expire_cfs_rq_runtime(cfs_rq);
4351
4352 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4353 return;
4354
85dac906
PT
4355 /*
4356 * if we're unable to extend our runtime we resched so that the active
4357 * hierarchy can be throttled
4358 */
4359 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4360 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4361}
4362
6c16a6dc 4363static __always_inline
9dbdb155 4364void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4365{
56f570e5 4366 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4367 return;
4368
4369 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4370}
4371
85dac906
PT
4372static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4373{
56f570e5 4374 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4375}
4376
64660c86
PT
4377/* check whether cfs_rq, or any parent, is throttled */
4378static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4379{
56f570e5 4380 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4381}
4382
4383/*
4384 * Ensure that neither of the group entities corresponding to src_cpu or
4385 * dest_cpu are members of a throttled hierarchy when performing group
4386 * load-balance operations.
4387 */
4388static inline int throttled_lb_pair(struct task_group *tg,
4389 int src_cpu, int dest_cpu)
4390{
4391 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4392
4393 src_cfs_rq = tg->cfs_rq[src_cpu];
4394 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4395
4396 return throttled_hierarchy(src_cfs_rq) ||
4397 throttled_hierarchy(dest_cfs_rq);
4398}
4399
64660c86
PT
4400static int tg_unthrottle_up(struct task_group *tg, void *data)
4401{
4402 struct rq *rq = data;
4403 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4404
4405 cfs_rq->throttle_count--;
64660c86 4406 if (!cfs_rq->throttle_count) {
f1b17280 4407 /* adjust cfs_rq_clock_task() */
78becc27 4408 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4409 cfs_rq->throttled_clock_task;
64660c86 4410 }
64660c86
PT
4411
4412 return 0;
4413}
4414
4415static int tg_throttle_down(struct task_group *tg, void *data)
4416{
4417 struct rq *rq = data;
4418 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4419
82958366
PT
4420 /* group is entering throttled state, stop time */
4421 if (!cfs_rq->throttle_count)
78becc27 4422 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4423 cfs_rq->throttle_count++;
4424
4425 return 0;
4426}
4427
d3d9dc33 4428static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4429{
4430 struct rq *rq = rq_of(cfs_rq);
4431 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4432 struct sched_entity *se;
4433 long task_delta, dequeue = 1;
77a4d1a1 4434 bool empty;
85dac906
PT
4435
4436 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4437
f1b17280 4438 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4439 rcu_read_lock();
4440 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4441 rcu_read_unlock();
85dac906
PT
4442
4443 task_delta = cfs_rq->h_nr_running;
4444 for_each_sched_entity(se) {
4445 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4446 /* throttled entity or throttle-on-deactivate */
4447 if (!se->on_rq)
4448 break;
4449
4450 if (dequeue)
4451 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4452 qcfs_rq->h_nr_running -= task_delta;
4453
4454 if (qcfs_rq->load.weight)
4455 dequeue = 0;
4456 }
4457
4458 if (!se)
72465447 4459 sub_nr_running(rq, task_delta);
85dac906
PT
4460
4461 cfs_rq->throttled = 1;
78becc27 4462 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4463 raw_spin_lock(&cfs_b->lock);
d49db342 4464 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4465
c06f04c7
BS
4466 /*
4467 * Add to the _head_ of the list, so that an already-started
4468 * distribute_cfs_runtime will not see us
4469 */
4470 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4471
4472 /*
4473 * If we're the first throttled task, make sure the bandwidth
4474 * timer is running.
4475 */
4476 if (empty)
4477 start_cfs_bandwidth(cfs_b);
4478
85dac906
PT
4479 raw_spin_unlock(&cfs_b->lock);
4480}
4481
029632fb 4482void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4483{
4484 struct rq *rq = rq_of(cfs_rq);
4485 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4486 struct sched_entity *se;
4487 int enqueue = 1;
4488 long task_delta;
4489
22b958d8 4490 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4491
4492 cfs_rq->throttled = 0;
1a55af2e
FW
4493
4494 update_rq_clock(rq);
4495
671fd9da 4496 raw_spin_lock(&cfs_b->lock);
78becc27 4497 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4498 list_del_rcu(&cfs_rq->throttled_list);
4499 raw_spin_unlock(&cfs_b->lock);
4500
64660c86
PT
4501 /* update hierarchical throttle state */
4502 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4503
671fd9da
PT
4504 if (!cfs_rq->load.weight)
4505 return;
4506
4507 task_delta = cfs_rq->h_nr_running;
4508 for_each_sched_entity(se) {
4509 if (se->on_rq)
4510 enqueue = 0;
4511
4512 cfs_rq = cfs_rq_of(se);
4513 if (enqueue)
4514 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4515 cfs_rq->h_nr_running += task_delta;
4516
4517 if (cfs_rq_throttled(cfs_rq))
4518 break;
4519 }
4520
4521 if (!se)
72465447 4522 add_nr_running(rq, task_delta);
671fd9da 4523
97fb7a0a 4524 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4525 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4526 resched_curr(rq);
671fd9da
PT
4527}
4528
4529static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4530 u64 remaining, u64 expires)
4531{
4532 struct cfs_rq *cfs_rq;
c06f04c7
BS
4533 u64 runtime;
4534 u64 starting_runtime = remaining;
671fd9da
PT
4535
4536 rcu_read_lock();
4537 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4538 throttled_list) {
4539 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4540 struct rq_flags rf;
671fd9da 4541
8a8c69c3 4542 rq_lock(rq, &rf);
671fd9da
PT
4543 if (!cfs_rq_throttled(cfs_rq))
4544 goto next;
4545
4546 runtime = -cfs_rq->runtime_remaining + 1;
4547 if (runtime > remaining)
4548 runtime = remaining;
4549 remaining -= runtime;
4550
4551 cfs_rq->runtime_remaining += runtime;
4552 cfs_rq->runtime_expires = expires;
4553
4554 /* we check whether we're throttled above */
4555 if (cfs_rq->runtime_remaining > 0)
4556 unthrottle_cfs_rq(cfs_rq);
4557
4558next:
8a8c69c3 4559 rq_unlock(rq, &rf);
671fd9da
PT
4560
4561 if (!remaining)
4562 break;
4563 }
4564 rcu_read_unlock();
4565
c06f04c7 4566 return starting_runtime - remaining;
671fd9da
PT
4567}
4568
58088ad0
PT
4569/*
4570 * Responsible for refilling a task_group's bandwidth and unthrottling its
4571 * cfs_rqs as appropriate. If there has been no activity within the last
4572 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4573 * used to track this state.
4574 */
4575static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4576{
671fd9da 4577 u64 runtime, runtime_expires;
51f2176d 4578 int throttled;
58088ad0 4579
58088ad0
PT
4580 /* no need to continue the timer with no bandwidth constraint */
4581 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4582 goto out_deactivate;
58088ad0 4583
671fd9da 4584 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4585 cfs_b->nr_periods += overrun;
671fd9da 4586
51f2176d
BS
4587 /*
4588 * idle depends on !throttled (for the case of a large deficit), and if
4589 * we're going inactive then everything else can be deferred
4590 */
4591 if (cfs_b->idle && !throttled)
4592 goto out_deactivate;
a9cf55b2
PT
4593
4594 __refill_cfs_bandwidth_runtime(cfs_b);
4595
671fd9da
PT
4596 if (!throttled) {
4597 /* mark as potentially idle for the upcoming period */
4598 cfs_b->idle = 1;
51f2176d 4599 return 0;
671fd9da
PT
4600 }
4601
e8da1b18
NR
4602 /* account preceding periods in which throttling occurred */
4603 cfs_b->nr_throttled += overrun;
4604
671fd9da 4605 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4606
4607 /*
c06f04c7
BS
4608 * This check is repeated as we are holding onto the new bandwidth while
4609 * we unthrottle. This can potentially race with an unthrottled group
4610 * trying to acquire new bandwidth from the global pool. This can result
4611 * in us over-using our runtime if it is all used during this loop, but
4612 * only by limited amounts in that extreme case.
671fd9da 4613 */
c06f04c7
BS
4614 while (throttled && cfs_b->runtime > 0) {
4615 runtime = cfs_b->runtime;
671fd9da
PT
4616 raw_spin_unlock(&cfs_b->lock);
4617 /* we can't nest cfs_b->lock while distributing bandwidth */
4618 runtime = distribute_cfs_runtime(cfs_b, runtime,
4619 runtime_expires);
4620 raw_spin_lock(&cfs_b->lock);
4621
4622 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4623
4624 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4625 }
58088ad0 4626
671fd9da
PT
4627 /*
4628 * While we are ensured activity in the period following an
4629 * unthrottle, this also covers the case in which the new bandwidth is
4630 * insufficient to cover the existing bandwidth deficit. (Forcing the
4631 * timer to remain active while there are any throttled entities.)
4632 */
4633 cfs_b->idle = 0;
58088ad0 4634
51f2176d
BS
4635 return 0;
4636
4637out_deactivate:
51f2176d 4638 return 1;
58088ad0 4639}
d3d9dc33 4640
d8b4986d
PT
4641/* a cfs_rq won't donate quota below this amount */
4642static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4643/* minimum remaining period time to redistribute slack quota */
4644static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4645/* how long we wait to gather additional slack before distributing */
4646static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4647
db06e78c
BS
4648/*
4649 * Are we near the end of the current quota period?
4650 *
4651 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4652 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4653 * migrate_hrtimers, base is never cleared, so we are fine.
4654 */
d8b4986d
PT
4655static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4656{
4657 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4658 u64 remaining;
4659
4660 /* if the call-back is running a quota refresh is already occurring */
4661 if (hrtimer_callback_running(refresh_timer))
4662 return 1;
4663
4664 /* is a quota refresh about to occur? */
4665 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4666 if (remaining < min_expire)
4667 return 1;
4668
4669 return 0;
4670}
4671
4672static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4673{
4674 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4675
4676 /* if there's a quota refresh soon don't bother with slack */
4677 if (runtime_refresh_within(cfs_b, min_left))
4678 return;
4679
4cfafd30
PZ
4680 hrtimer_start(&cfs_b->slack_timer,
4681 ns_to_ktime(cfs_bandwidth_slack_period),
4682 HRTIMER_MODE_REL);
d8b4986d
PT
4683}
4684
4685/* we know any runtime found here is valid as update_curr() precedes return */
4686static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4687{
4688 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4689 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4690
4691 if (slack_runtime <= 0)
4692 return;
4693
4694 raw_spin_lock(&cfs_b->lock);
4695 if (cfs_b->quota != RUNTIME_INF &&
4696 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4697 cfs_b->runtime += slack_runtime;
4698
4699 /* we are under rq->lock, defer unthrottling using a timer */
4700 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4701 !list_empty(&cfs_b->throttled_cfs_rq))
4702 start_cfs_slack_bandwidth(cfs_b);
4703 }
4704 raw_spin_unlock(&cfs_b->lock);
4705
4706 /* even if it's not valid for return we don't want to try again */
4707 cfs_rq->runtime_remaining -= slack_runtime;
4708}
4709
4710static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4711{
56f570e5
PT
4712 if (!cfs_bandwidth_used())
4713 return;
4714
fccfdc6f 4715 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4716 return;
4717
4718 __return_cfs_rq_runtime(cfs_rq);
4719}
4720
4721/*
4722 * This is done with a timer (instead of inline with bandwidth return) since
4723 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4724 */
4725static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4726{
4727 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4728 u64 expires;
4729
4730 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4731 raw_spin_lock(&cfs_b->lock);
4732 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4733 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4734 return;
db06e78c 4735 }
d8b4986d 4736
c06f04c7 4737 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4738 runtime = cfs_b->runtime;
c06f04c7 4739
d8b4986d
PT
4740 expires = cfs_b->runtime_expires;
4741 raw_spin_unlock(&cfs_b->lock);
4742
4743 if (!runtime)
4744 return;
4745
4746 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4747
4748 raw_spin_lock(&cfs_b->lock);
4749 if (expires == cfs_b->runtime_expires)
c06f04c7 4750 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4751 raw_spin_unlock(&cfs_b->lock);
4752}
4753
d3d9dc33
PT
4754/*
4755 * When a group wakes up we want to make sure that its quota is not already
4756 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4757 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4758 */
4759static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4760{
56f570e5
PT
4761 if (!cfs_bandwidth_used())
4762 return;
4763
d3d9dc33
PT
4764 /* an active group must be handled by the update_curr()->put() path */
4765 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4766 return;
4767
4768 /* ensure the group is not already throttled */
4769 if (cfs_rq_throttled(cfs_rq))
4770 return;
4771
4772 /* update runtime allocation */
4773 account_cfs_rq_runtime(cfs_rq, 0);
4774 if (cfs_rq->runtime_remaining <= 0)
4775 throttle_cfs_rq(cfs_rq);
4776}
4777
55e16d30
PZ
4778static void sync_throttle(struct task_group *tg, int cpu)
4779{
4780 struct cfs_rq *pcfs_rq, *cfs_rq;
4781
4782 if (!cfs_bandwidth_used())
4783 return;
4784
4785 if (!tg->parent)
4786 return;
4787
4788 cfs_rq = tg->cfs_rq[cpu];
4789 pcfs_rq = tg->parent->cfs_rq[cpu];
4790
4791 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4792 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4793}
4794
d3d9dc33 4795/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4796static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4797{
56f570e5 4798 if (!cfs_bandwidth_used())
678d5718 4799 return false;
56f570e5 4800
d3d9dc33 4801 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4802 return false;
d3d9dc33
PT
4803
4804 /*
4805 * it's possible for a throttled entity to be forced into a running
4806 * state (e.g. set_curr_task), in this case we're finished.
4807 */
4808 if (cfs_rq_throttled(cfs_rq))
678d5718 4809 return true;
d3d9dc33
PT
4810
4811 throttle_cfs_rq(cfs_rq);
678d5718 4812 return true;
d3d9dc33 4813}
029632fb 4814
029632fb
PZ
4815static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4816{
4817 struct cfs_bandwidth *cfs_b =
4818 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4819
029632fb
PZ
4820 do_sched_cfs_slack_timer(cfs_b);
4821
4822 return HRTIMER_NORESTART;
4823}
4824
4825static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4826{
4827 struct cfs_bandwidth *cfs_b =
4828 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4829 int overrun;
4830 int idle = 0;
4831
51f2176d 4832 raw_spin_lock(&cfs_b->lock);
029632fb 4833 for (;;) {
77a4d1a1 4834 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4835 if (!overrun)
4836 break;
4837
4838 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4839 }
4cfafd30
PZ
4840 if (idle)
4841 cfs_b->period_active = 0;
51f2176d 4842 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4843
4844 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4845}
4846
4847void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4848{
4849 raw_spin_lock_init(&cfs_b->lock);
4850 cfs_b->runtime = 0;
4851 cfs_b->quota = RUNTIME_INF;
4852 cfs_b->period = ns_to_ktime(default_cfs_period());
4853
4854 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4855 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4856 cfs_b->period_timer.function = sched_cfs_period_timer;
4857 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4858 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4859}
4860
4861static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4862{
4863 cfs_rq->runtime_enabled = 0;
4864 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4865}
4866
77a4d1a1 4867void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4868{
f1d1be8a
XP
4869 u64 overrun;
4870
4cfafd30 4871 lockdep_assert_held(&cfs_b->lock);
029632fb 4872
f1d1be8a
XP
4873 if (cfs_b->period_active)
4874 return;
4875
4876 cfs_b->period_active = 1;
4877 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4878 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4879 cfs_b->expires_seq++;
4880 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4881}
4882
4883static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4884{
7f1a169b
TH
4885 /* init_cfs_bandwidth() was not called */
4886 if (!cfs_b->throttled_cfs_rq.next)
4887 return;
4888
029632fb
PZ
4889 hrtimer_cancel(&cfs_b->period_timer);
4890 hrtimer_cancel(&cfs_b->slack_timer);
4891}
4892
502ce005 4893/*
97fb7a0a 4894 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4895 *
4896 * The race is harmless, since modifying bandwidth settings of unhooked group
4897 * bits doesn't do much.
4898 */
4899
4900/* cpu online calback */
0e59bdae
KT
4901static void __maybe_unused update_runtime_enabled(struct rq *rq)
4902{
502ce005 4903 struct task_group *tg;
0e59bdae 4904
502ce005
PZ
4905 lockdep_assert_held(&rq->lock);
4906
4907 rcu_read_lock();
4908 list_for_each_entry_rcu(tg, &task_groups, list) {
4909 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4910 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4911
4912 raw_spin_lock(&cfs_b->lock);
4913 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4914 raw_spin_unlock(&cfs_b->lock);
4915 }
502ce005 4916 rcu_read_unlock();
0e59bdae
KT
4917}
4918
502ce005 4919/* cpu offline callback */
38dc3348 4920static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4921{
502ce005
PZ
4922 struct task_group *tg;
4923
4924 lockdep_assert_held(&rq->lock);
4925
4926 rcu_read_lock();
4927 list_for_each_entry_rcu(tg, &task_groups, list) {
4928 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4929
029632fb
PZ
4930 if (!cfs_rq->runtime_enabled)
4931 continue;
4932
4933 /*
4934 * clock_task is not advancing so we just need to make sure
4935 * there's some valid quota amount
4936 */
51f2176d 4937 cfs_rq->runtime_remaining = 1;
0e59bdae 4938 /*
97fb7a0a 4939 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
4940 * in take_cpu_down(), so we prevent new cfs throttling here.
4941 */
4942 cfs_rq->runtime_enabled = 0;
4943
029632fb
PZ
4944 if (cfs_rq_throttled(cfs_rq))
4945 unthrottle_cfs_rq(cfs_rq);
4946 }
502ce005 4947 rcu_read_unlock();
029632fb
PZ
4948}
4949
4950#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4951static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4952{
78becc27 4953 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4954}
4955
9dbdb155 4956static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4957static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4958static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4959static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4960static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4961
4962static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4963{
4964 return 0;
4965}
64660c86
PT
4966
4967static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4968{
4969 return 0;
4970}
4971
4972static inline int throttled_lb_pair(struct task_group *tg,
4973 int src_cpu, int dest_cpu)
4974{
4975 return 0;
4976}
029632fb
PZ
4977
4978void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4979
4980#ifdef CONFIG_FAIR_GROUP_SCHED
4981static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4982#endif
4983
029632fb
PZ
4984static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4985{
4986 return NULL;
4987}
4988static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4989static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4990static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4991
4992#endif /* CONFIG_CFS_BANDWIDTH */
4993
bf0f6f24
IM
4994/**************************************************
4995 * CFS operations on tasks:
4996 */
4997
8f4d37ec
PZ
4998#ifdef CONFIG_SCHED_HRTICK
4999static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5000{
8f4d37ec
PZ
5001 struct sched_entity *se = &p->se;
5002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5003
9148a3a1 5004 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5005
8bf46a39 5006 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5007 u64 slice = sched_slice(cfs_rq, se);
5008 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5009 s64 delta = slice - ran;
5010
5011 if (delta < 0) {
5012 if (rq->curr == p)
8875125e 5013 resched_curr(rq);
8f4d37ec
PZ
5014 return;
5015 }
31656519 5016 hrtick_start(rq, delta);
8f4d37ec
PZ
5017 }
5018}
a4c2f00f
PZ
5019
5020/*
5021 * called from enqueue/dequeue and updates the hrtick when the
5022 * current task is from our class and nr_running is low enough
5023 * to matter.
5024 */
5025static void hrtick_update(struct rq *rq)
5026{
5027 struct task_struct *curr = rq->curr;
5028
b39e66ea 5029 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5030 return;
5031
5032 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5033 hrtick_start_fair(rq, curr);
5034}
55e12e5e 5035#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5036static inline void
5037hrtick_start_fair(struct rq *rq, struct task_struct *p)
5038{
5039}
a4c2f00f
PZ
5040
5041static inline void hrtick_update(struct rq *rq)
5042{
5043}
8f4d37ec
PZ
5044#endif
5045
bf0f6f24
IM
5046/*
5047 * The enqueue_task method is called before nr_running is
5048 * increased. Here we update the fair scheduling stats and
5049 * then put the task into the rbtree:
5050 */
ea87bb78 5051static void
371fd7e7 5052enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5053{
5054 struct cfs_rq *cfs_rq;
62fb1851 5055 struct sched_entity *se = &p->se;
bf0f6f24 5056
2539fc82
PB
5057 /*
5058 * The code below (indirectly) updates schedutil which looks at
5059 * the cfs_rq utilization to select a frequency.
5060 * Let's add the task's estimated utilization to the cfs_rq's
5061 * estimated utilization, before we update schedutil.
5062 */
5063 util_est_enqueue(&rq->cfs, p);
5064
8c34ab19
RW
5065 /*
5066 * If in_iowait is set, the code below may not trigger any cpufreq
5067 * utilization updates, so do it here explicitly with the IOWAIT flag
5068 * passed.
5069 */
5070 if (p->in_iowait)
674e7541 5071 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5072
bf0f6f24 5073 for_each_sched_entity(se) {
62fb1851 5074 if (se->on_rq)
bf0f6f24
IM
5075 break;
5076 cfs_rq = cfs_rq_of(se);
88ec22d3 5077 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5078
5079 /*
5080 * end evaluation on encountering a throttled cfs_rq
5081 *
5082 * note: in the case of encountering a throttled cfs_rq we will
5083 * post the final h_nr_running increment below.
e210bffd 5084 */
85dac906
PT
5085 if (cfs_rq_throttled(cfs_rq))
5086 break;
953bfcd1 5087 cfs_rq->h_nr_running++;
85dac906 5088
88ec22d3 5089 flags = ENQUEUE_WAKEUP;
bf0f6f24 5090 }
8f4d37ec 5091
2069dd75 5092 for_each_sched_entity(se) {
0f317143 5093 cfs_rq = cfs_rq_of(se);
953bfcd1 5094 cfs_rq->h_nr_running++;
2069dd75 5095
85dac906
PT
5096 if (cfs_rq_throttled(cfs_rq))
5097 break;
5098
88c0616e 5099 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5100 update_cfs_group(se);
2069dd75
PZ
5101 }
5102
cd126afe 5103 if (!se)
72465447 5104 add_nr_running(rq, 1);
cd126afe 5105
a4c2f00f 5106 hrtick_update(rq);
bf0f6f24
IM
5107}
5108
2f36825b
VP
5109static void set_next_buddy(struct sched_entity *se);
5110
bf0f6f24
IM
5111/*
5112 * The dequeue_task method is called before nr_running is
5113 * decreased. We remove the task from the rbtree and
5114 * update the fair scheduling stats:
5115 */
371fd7e7 5116static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5117{
5118 struct cfs_rq *cfs_rq;
62fb1851 5119 struct sched_entity *se = &p->se;
2f36825b 5120 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5121
5122 for_each_sched_entity(se) {
5123 cfs_rq = cfs_rq_of(se);
371fd7e7 5124 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5125
5126 /*
5127 * end evaluation on encountering a throttled cfs_rq
5128 *
5129 * note: in the case of encountering a throttled cfs_rq we will
5130 * post the final h_nr_running decrement below.
5131 */
5132 if (cfs_rq_throttled(cfs_rq))
5133 break;
953bfcd1 5134 cfs_rq->h_nr_running--;
2069dd75 5135
bf0f6f24 5136 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5137 if (cfs_rq->load.weight) {
754bd598
KK
5138 /* Avoid re-evaluating load for this entity: */
5139 se = parent_entity(se);
2f36825b
VP
5140 /*
5141 * Bias pick_next to pick a task from this cfs_rq, as
5142 * p is sleeping when it is within its sched_slice.
5143 */
754bd598
KK
5144 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5145 set_next_buddy(se);
bf0f6f24 5146 break;
2f36825b 5147 }
371fd7e7 5148 flags |= DEQUEUE_SLEEP;
bf0f6f24 5149 }
8f4d37ec 5150
2069dd75 5151 for_each_sched_entity(se) {
0f317143 5152 cfs_rq = cfs_rq_of(se);
953bfcd1 5153 cfs_rq->h_nr_running--;
2069dd75 5154
85dac906
PT
5155 if (cfs_rq_throttled(cfs_rq))
5156 break;
5157
88c0616e 5158 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5159 update_cfs_group(se);
2069dd75
PZ
5160 }
5161
cd126afe 5162 if (!se)
72465447 5163 sub_nr_running(rq, 1);
cd126afe 5164
7f65ea42 5165 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5166 hrtick_update(rq);
bf0f6f24
IM
5167}
5168
e7693a36 5169#ifdef CONFIG_SMP
10e2f1ac
PZ
5170
5171/* Working cpumask for: load_balance, load_balance_newidle. */
5172DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5173DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5174
9fd81dd5 5175#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5176/*
5177 * per rq 'load' arrray crap; XXX kill this.
5178 */
5179
5180/*
d937cdc5 5181 * The exact cpuload calculated at every tick would be:
3289bdb4 5182 *
d937cdc5
PZ
5183 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5184 *
97fb7a0a
IM
5185 * If a CPU misses updates for n ticks (as it was idle) and update gets
5186 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5187 *
5188 * load_n = (1 - 1/2^i)^n * load_0
5189 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5190 *
5191 * decay_load_missed() below does efficient calculation of
3289bdb4 5192 *
d937cdc5
PZ
5193 * load' = (1 - 1/2^i)^n * load
5194 *
5195 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5196 * This allows us to precompute the above in said factors, thereby allowing the
5197 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5198 * fixed_power_int())
3289bdb4 5199 *
d937cdc5 5200 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5201 */
5202#define DEGRADE_SHIFT 7
d937cdc5
PZ
5203
5204static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5205static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5206 { 0, 0, 0, 0, 0, 0, 0, 0 },
5207 { 64, 32, 8, 0, 0, 0, 0, 0 },
5208 { 96, 72, 40, 12, 1, 0, 0, 0 },
5209 { 112, 98, 75, 43, 15, 1, 0, 0 },
5210 { 120, 112, 98, 76, 45, 16, 2, 0 }
5211};
3289bdb4
PZ
5212
5213/*
5214 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5215 * would be when CPU is idle and so we just decay the old load without
5216 * adding any new load.
5217 */
5218static unsigned long
5219decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5220{
5221 int j = 0;
5222
5223 if (!missed_updates)
5224 return load;
5225
5226 if (missed_updates >= degrade_zero_ticks[idx])
5227 return 0;
5228
5229 if (idx == 1)
5230 return load >> missed_updates;
5231
5232 while (missed_updates) {
5233 if (missed_updates % 2)
5234 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5235
5236 missed_updates >>= 1;
5237 j++;
5238 }
5239 return load;
5240}
e022e0d3
PZ
5241
5242static struct {
5243 cpumask_var_t idle_cpus_mask;
5244 atomic_t nr_cpus;
f643ea22 5245 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5246 unsigned long next_balance; /* in jiffy units */
f643ea22 5247 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5248} nohz ____cacheline_aligned;
5249
9fd81dd5 5250#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5251
59543275 5252/**
cee1afce 5253 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5254 * @this_rq: The rq to update statistics for
5255 * @this_load: The current load
5256 * @pending_updates: The number of missed updates
59543275 5257 *
3289bdb4 5258 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5259 * scheduler tick (TICK_NSEC).
5260 *
5261 * This function computes a decaying average:
5262 *
5263 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5264 *
5265 * Because of NOHZ it might not get called on every tick which gives need for
5266 * the @pending_updates argument.
5267 *
5268 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5269 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5270 * = A * (A * load[i]_n-2 + B) + B
5271 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5272 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5273 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5274 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5275 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5276 *
5277 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5278 * any change in load would have resulted in the tick being turned back on.
5279 *
5280 * For regular NOHZ, this reduces to:
5281 *
5282 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5283 *
5284 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5285 * term.
3289bdb4 5286 */
1f41906a
FW
5287static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5288 unsigned long pending_updates)
3289bdb4 5289{
9fd81dd5 5290 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5291 int i, scale;
5292
5293 this_rq->nr_load_updates++;
5294
5295 /* Update our load: */
5296 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5297 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5298 unsigned long old_load, new_load;
5299
5300 /* scale is effectively 1 << i now, and >> i divides by scale */
5301
7400d3bb 5302 old_load = this_rq->cpu_load[i];
9fd81dd5 5303#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5304 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5305 if (tickless_load) {
5306 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5307 /*
5308 * old_load can never be a negative value because a
5309 * decayed tickless_load cannot be greater than the
5310 * original tickless_load.
5311 */
5312 old_load += tickless_load;
5313 }
9fd81dd5 5314#endif
3289bdb4
PZ
5315 new_load = this_load;
5316 /*
5317 * Round up the averaging division if load is increasing. This
5318 * prevents us from getting stuck on 9 if the load is 10, for
5319 * example.
5320 */
5321 if (new_load > old_load)
5322 new_load += scale - 1;
5323
5324 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5325 }
5326
5327 sched_avg_update(this_rq);
5328}
5329
7ea241af 5330/* Used instead of source_load when we know the type == 0 */
c7132dd6 5331static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5332{
c7132dd6 5333 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5334}
5335
3289bdb4 5336#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5337/*
5338 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5339 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5340 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5341 *
5342 * Therefore we need to avoid the delta approach from the regular tick when
5343 * possible since that would seriously skew the load calculation. This is why we
5344 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5345 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5346 * loop exit, nohz_idle_balance, nohz full exit...)
5347 *
5348 * This means we might still be one tick off for nohz periods.
5349 */
5350
5351static void cpu_load_update_nohz(struct rq *this_rq,
5352 unsigned long curr_jiffies,
5353 unsigned long load)
be68a682
FW
5354{
5355 unsigned long pending_updates;
5356
5357 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5358 if (pending_updates) {
5359 this_rq->last_load_update_tick = curr_jiffies;
5360 /*
5361 * In the regular NOHZ case, we were idle, this means load 0.
5362 * In the NOHZ_FULL case, we were non-idle, we should consider
5363 * its weighted load.
5364 */
1f41906a 5365 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5366 }
5367}
5368
3289bdb4
PZ
5369/*
5370 * Called from nohz_idle_balance() to update the load ratings before doing the
5371 * idle balance.
5372 */
cee1afce 5373static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5374{
3289bdb4
PZ
5375 /*
5376 * bail if there's load or we're actually up-to-date.
5377 */
c7132dd6 5378 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5379 return;
5380
1f41906a 5381 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5382}
5383
5384/*
1f41906a
FW
5385 * Record CPU load on nohz entry so we know the tickless load to account
5386 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5387 * than other cpu_load[idx] but it should be fine as cpu_load readers
5388 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5389 */
1f41906a 5390void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5391{
5392 struct rq *this_rq = this_rq();
1f41906a
FW
5393
5394 /*
5395 * This is all lockless but should be fine. If weighted_cpuload changes
5396 * concurrently we'll exit nohz. And cpu_load write can race with
5397 * cpu_load_update_idle() but both updater would be writing the same.
5398 */
c7132dd6 5399 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5400}
5401
5402/*
5403 * Account the tickless load in the end of a nohz frame.
5404 */
5405void cpu_load_update_nohz_stop(void)
5406{
316c1608 5407 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5408 struct rq *this_rq = this_rq();
5409 unsigned long load;
8a8c69c3 5410 struct rq_flags rf;
3289bdb4
PZ
5411
5412 if (curr_jiffies == this_rq->last_load_update_tick)
5413 return;
5414
c7132dd6 5415 load = weighted_cpuload(this_rq);
8a8c69c3 5416 rq_lock(this_rq, &rf);
b52fad2d 5417 update_rq_clock(this_rq);
1f41906a 5418 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5419 rq_unlock(this_rq, &rf);
3289bdb4 5420}
1f41906a
FW
5421#else /* !CONFIG_NO_HZ_COMMON */
5422static inline void cpu_load_update_nohz(struct rq *this_rq,
5423 unsigned long curr_jiffies,
5424 unsigned long load) { }
5425#endif /* CONFIG_NO_HZ_COMMON */
5426
5427static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5428{
9fd81dd5 5429#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5430 /* See the mess around cpu_load_update_nohz(). */
5431 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5432#endif
1f41906a
FW
5433 cpu_load_update(this_rq, load, 1);
5434}
3289bdb4
PZ
5435
5436/*
5437 * Called from scheduler_tick()
5438 */
cee1afce 5439void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5440{
c7132dd6 5441 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5442
5443 if (tick_nohz_tick_stopped())
5444 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5445 else
5446 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5447}
5448
029632fb 5449/*
97fb7a0a 5450 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5451 * according to the scheduling class and "nice" value.
5452 *
5453 * We want to under-estimate the load of migration sources, to
5454 * balance conservatively.
5455 */
5456static unsigned long source_load(int cpu, int type)
5457{
5458 struct rq *rq = cpu_rq(cpu);
c7132dd6 5459 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5460
5461 if (type == 0 || !sched_feat(LB_BIAS))
5462 return total;
5463
5464 return min(rq->cpu_load[type-1], total);
5465}
5466
5467/*
97fb7a0a 5468 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5469 * according to the scheduling class and "nice" value.
5470 */
5471static unsigned long target_load(int cpu, int type)
5472{
5473 struct rq *rq = cpu_rq(cpu);
c7132dd6 5474 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5475
5476 if (type == 0 || !sched_feat(LB_BIAS))
5477 return total;
5478
5479 return max(rq->cpu_load[type-1], total);
5480}
5481
ced549fa 5482static unsigned long capacity_of(int cpu)
029632fb 5483{
ced549fa 5484 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5485}
5486
ca6d75e6
VG
5487static unsigned long capacity_orig_of(int cpu)
5488{
5489 return cpu_rq(cpu)->cpu_capacity_orig;
5490}
5491
029632fb
PZ
5492static unsigned long cpu_avg_load_per_task(int cpu)
5493{
5494 struct rq *rq = cpu_rq(cpu);
316c1608 5495 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5496 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5497
5498 if (nr_running)
b92486cb 5499 return load_avg / nr_running;
029632fb
PZ
5500
5501 return 0;
5502}
5503
c58d25f3
PZ
5504static void record_wakee(struct task_struct *p)
5505{
5506 /*
5507 * Only decay a single time; tasks that have less then 1 wakeup per
5508 * jiffy will not have built up many flips.
5509 */
5510 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5511 current->wakee_flips >>= 1;
5512 current->wakee_flip_decay_ts = jiffies;
5513 }
5514
5515 if (current->last_wakee != p) {
5516 current->last_wakee = p;
5517 current->wakee_flips++;
5518 }
5519}
5520
63b0e9ed
MG
5521/*
5522 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5523 *
63b0e9ed 5524 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5525 * at a frequency roughly N times higher than one of its wakees.
5526 *
5527 * In order to determine whether we should let the load spread vs consolidating
5528 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5529 * partner, and a factor of lls_size higher frequency in the other.
5530 *
5531 * With both conditions met, we can be relatively sure that the relationship is
5532 * non-monogamous, with partner count exceeding socket size.
5533 *
5534 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5535 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5536 * socket size.
63b0e9ed 5537 */
62470419
MW
5538static int wake_wide(struct task_struct *p)
5539{
63b0e9ed
MG
5540 unsigned int master = current->wakee_flips;
5541 unsigned int slave = p->wakee_flips;
7d9ffa89 5542 int factor = this_cpu_read(sd_llc_size);
62470419 5543
63b0e9ed
MG
5544 if (master < slave)
5545 swap(master, slave);
5546 if (slave < factor || master < slave * factor)
5547 return 0;
5548 return 1;
62470419
MW
5549}
5550
90001d67 5551/*
d153b153
PZ
5552 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5553 * soonest. For the purpose of speed we only consider the waking and previous
5554 * CPU.
90001d67 5555 *
7332dec0
MG
5556 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5557 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5558 *
5559 * wake_affine_weight() - considers the weight to reflect the average
5560 * scheduling latency of the CPUs. This seems to work
5561 * for the overloaded case.
90001d67 5562 */
3b76c4a3 5563static int
89a55f56 5564wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5565{
7332dec0
MG
5566 /*
5567 * If this_cpu is idle, it implies the wakeup is from interrupt
5568 * context. Only allow the move if cache is shared. Otherwise an
5569 * interrupt intensive workload could force all tasks onto one
5570 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5571 *
5572 * If the prev_cpu is idle and cache affine then avoid a migration.
5573 * There is no guarantee that the cache hot data from an interrupt
5574 * is more important than cache hot data on the prev_cpu and from
5575 * a cpufreq perspective, it's better to have higher utilisation
5576 * on one CPU.
7332dec0 5577 */
943d355d
RJ
5578 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5579 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5580
d153b153 5581 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5582 return this_cpu;
90001d67 5583
3b76c4a3 5584 return nr_cpumask_bits;
90001d67
PZ
5585}
5586
3b76c4a3 5587static int
f2cdd9cc
PZ
5588wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5589 int this_cpu, int prev_cpu, int sync)
90001d67 5590{
90001d67
PZ
5591 s64 this_eff_load, prev_eff_load;
5592 unsigned long task_load;
5593
f2cdd9cc 5594 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5595
90001d67
PZ
5596 if (sync) {
5597 unsigned long current_load = task_h_load(current);
5598
f2cdd9cc 5599 if (current_load > this_eff_load)
3b76c4a3 5600 return this_cpu;
90001d67 5601
f2cdd9cc 5602 this_eff_load -= current_load;
90001d67
PZ
5603 }
5604
90001d67
PZ
5605 task_load = task_h_load(p);
5606
f2cdd9cc
PZ
5607 this_eff_load += task_load;
5608 if (sched_feat(WA_BIAS))
5609 this_eff_load *= 100;
5610 this_eff_load *= capacity_of(prev_cpu);
90001d67 5611
eeb60398 5612 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5613 prev_eff_load -= task_load;
5614 if (sched_feat(WA_BIAS))
5615 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5616 prev_eff_load *= capacity_of(this_cpu);
90001d67 5617
082f764a
MG
5618 /*
5619 * If sync, adjust the weight of prev_eff_load such that if
5620 * prev_eff == this_eff that select_idle_sibling() will consider
5621 * stacking the wakee on top of the waker if no other CPU is
5622 * idle.
5623 */
5624 if (sync)
5625 prev_eff_load += 1;
5626
5627 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5628}
5629
772bd008 5630static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5631 int this_cpu, int prev_cpu, int sync)
098fb9db 5632{
3b76c4a3 5633 int target = nr_cpumask_bits;
098fb9db 5634
89a55f56 5635 if (sched_feat(WA_IDLE))
3b76c4a3 5636 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5637
3b76c4a3
MG
5638 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5639 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5640
ae92882e 5641 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5642 if (target == nr_cpumask_bits)
5643 return prev_cpu;
098fb9db 5644
3b76c4a3
MG
5645 schedstat_inc(sd->ttwu_move_affine);
5646 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5647 return target;
098fb9db
IM
5648}
5649
f01415fd 5650static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
6a0b19c0
MR
5651
5652static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5653{
f453ae22 5654 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
6a0b19c0
MR
5655}
5656
aaee1203
PZ
5657/*
5658 * find_idlest_group finds and returns the least busy CPU group within the
5659 * domain.
6fee85cc
BJ
5660 *
5661 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5662 */
5663static struct sched_group *
78e7ed53 5664find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5665 int this_cpu, int sd_flag)
e7693a36 5666{
b3bd3de6 5667 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5668 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5669 unsigned long min_runnable_load = ULONG_MAX;
5670 unsigned long this_runnable_load = ULONG_MAX;
5671 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5672 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5673 int load_idx = sd->forkexec_idx;
6b94780e
VG
5674 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5675 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5676 (sd->imbalance_pct-100) / 100;
e7693a36 5677
c44f2a02
VG
5678 if (sd_flag & SD_BALANCE_WAKE)
5679 load_idx = sd->wake_idx;
5680
aaee1203 5681 do {
6b94780e
VG
5682 unsigned long load, avg_load, runnable_load;
5683 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5684 int local_group;
5685 int i;
e7693a36 5686
aaee1203 5687 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5688 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5689 &p->cpus_allowed))
aaee1203
PZ
5690 continue;
5691
5692 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5693 sched_group_span(group));
aaee1203 5694
6a0b19c0
MR
5695 /*
5696 * Tally up the load of all CPUs in the group and find
5697 * the group containing the CPU with most spare capacity.
5698 */
aaee1203 5699 avg_load = 0;
6b94780e 5700 runnable_load = 0;
6a0b19c0 5701 max_spare_cap = 0;
aaee1203 5702
ae4df9d6 5703 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5704 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5705 if (local_group)
5706 load = source_load(i, load_idx);
5707 else
5708 load = target_load(i, load_idx);
5709
6b94780e
VG
5710 runnable_load += load;
5711
5712 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5713
5714 spare_cap = capacity_spare_wake(i, p);
5715
5716 if (spare_cap > max_spare_cap)
5717 max_spare_cap = spare_cap;
aaee1203
PZ
5718 }
5719
63b2ca30 5720 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5721 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5722 group->sgc->capacity;
5723 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5724 group->sgc->capacity;
aaee1203
PZ
5725
5726 if (local_group) {
6b94780e
VG
5727 this_runnable_load = runnable_load;
5728 this_avg_load = avg_load;
6a0b19c0
MR
5729 this_spare = max_spare_cap;
5730 } else {
6b94780e
VG
5731 if (min_runnable_load > (runnable_load + imbalance)) {
5732 /*
5733 * The runnable load is significantly smaller
97fb7a0a 5734 * so we can pick this new CPU:
6b94780e
VG
5735 */
5736 min_runnable_load = runnable_load;
5737 min_avg_load = avg_load;
5738 idlest = group;
5739 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5740 (100*min_avg_load > imbalance_scale*avg_load)) {
5741 /*
5742 * The runnable loads are close so take the
97fb7a0a 5743 * blocked load into account through avg_load:
6b94780e
VG
5744 */
5745 min_avg_load = avg_load;
6a0b19c0
MR
5746 idlest = group;
5747 }
5748
5749 if (most_spare < max_spare_cap) {
5750 most_spare = max_spare_cap;
5751 most_spare_sg = group;
5752 }
aaee1203
PZ
5753 }
5754 } while (group = group->next, group != sd->groups);
5755
6a0b19c0
MR
5756 /*
5757 * The cross-over point between using spare capacity or least load
5758 * is too conservative for high utilization tasks on partially
5759 * utilized systems if we require spare_capacity > task_util(p),
5760 * so we allow for some task stuffing by using
5761 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5762 *
5763 * Spare capacity can't be used for fork because the utilization has
5764 * not been set yet, we must first select a rq to compute the initial
5765 * utilization.
6a0b19c0 5766 */
f519a3f1
VG
5767 if (sd_flag & SD_BALANCE_FORK)
5768 goto skip_spare;
5769
6a0b19c0 5770 if (this_spare > task_util(p) / 2 &&
6b94780e 5771 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5772 return NULL;
6b94780e
VG
5773
5774 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5775 return most_spare_sg;
5776
f519a3f1 5777skip_spare:
6b94780e
VG
5778 if (!idlest)
5779 return NULL;
5780
2c833627
MG
5781 /*
5782 * When comparing groups across NUMA domains, it's possible for the
5783 * local domain to be very lightly loaded relative to the remote
5784 * domains but "imbalance" skews the comparison making remote CPUs
5785 * look much more favourable. When considering cross-domain, add
5786 * imbalance to the runnable load on the remote node and consider
5787 * staying local.
5788 */
5789 if ((sd->flags & SD_NUMA) &&
5790 min_runnable_load + imbalance >= this_runnable_load)
5791 return NULL;
5792
6b94780e 5793 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5794 return NULL;
6b94780e
VG
5795
5796 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5797 (100*this_avg_load < imbalance_scale*min_avg_load))
5798 return NULL;
5799
aaee1203
PZ
5800 return idlest;
5801}
5802
5803/*
97fb7a0a 5804 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5805 */
5806static int
18bd1b4b 5807find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5808{
5809 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5810 unsigned int min_exit_latency = UINT_MAX;
5811 u64 latest_idle_timestamp = 0;
5812 int least_loaded_cpu = this_cpu;
5813 int shallowest_idle_cpu = -1;
aaee1203
PZ
5814 int i;
5815
eaecf41f
MR
5816 /* Check if we have any choice: */
5817 if (group->group_weight == 1)
ae4df9d6 5818 return cpumask_first(sched_group_span(group));
eaecf41f 5819
aaee1203 5820 /* Traverse only the allowed CPUs */
ae4df9d6 5821 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5822 if (available_idle_cpu(i)) {
83a0a96a
NP
5823 struct rq *rq = cpu_rq(i);
5824 struct cpuidle_state *idle = idle_get_state(rq);
5825 if (idle && idle->exit_latency < min_exit_latency) {
5826 /*
5827 * We give priority to a CPU whose idle state
5828 * has the smallest exit latency irrespective
5829 * of any idle timestamp.
5830 */
5831 min_exit_latency = idle->exit_latency;
5832 latest_idle_timestamp = rq->idle_stamp;
5833 shallowest_idle_cpu = i;
5834 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5835 rq->idle_stamp > latest_idle_timestamp) {
5836 /*
5837 * If equal or no active idle state, then
5838 * the most recently idled CPU might have
5839 * a warmer cache.
5840 */
5841 latest_idle_timestamp = rq->idle_stamp;
5842 shallowest_idle_cpu = i;
5843 }
9f96742a 5844 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5845 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5846 if (load < min_load) {
83a0a96a
NP
5847 min_load = load;
5848 least_loaded_cpu = i;
5849 }
e7693a36
GH
5850 }
5851 }
5852
83a0a96a 5853 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5854}
e7693a36 5855
18bd1b4b
BJ
5856static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5857 int cpu, int prev_cpu, int sd_flag)
5858{
93f50f90 5859 int new_cpu = cpu;
18bd1b4b 5860
6fee85cc
BJ
5861 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5862 return prev_cpu;
5863
c976a862
VK
5864 /*
5865 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5866 * last_update_time.
5867 */
5868 if (!(sd_flag & SD_BALANCE_FORK))
5869 sync_entity_load_avg(&p->se);
5870
18bd1b4b
BJ
5871 while (sd) {
5872 struct sched_group *group;
5873 struct sched_domain *tmp;
5874 int weight;
5875
5876 if (!(sd->flags & sd_flag)) {
5877 sd = sd->child;
5878 continue;
5879 }
5880
5881 group = find_idlest_group(sd, p, cpu, sd_flag);
5882 if (!group) {
5883 sd = sd->child;
5884 continue;
5885 }
5886
5887 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5888 if (new_cpu == cpu) {
97fb7a0a 5889 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5890 sd = sd->child;
5891 continue;
5892 }
5893
97fb7a0a 5894 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5895 cpu = new_cpu;
5896 weight = sd->span_weight;
5897 sd = NULL;
5898 for_each_domain(cpu, tmp) {
5899 if (weight <= tmp->span_weight)
5900 break;
5901 if (tmp->flags & sd_flag)
5902 sd = tmp;
5903 }
18bd1b4b
BJ
5904 }
5905
5906 return new_cpu;
5907}
5908
10e2f1ac
PZ
5909#ifdef CONFIG_SCHED_SMT
5910
5911static inline void set_idle_cores(int cpu, int val)
5912{
5913 struct sched_domain_shared *sds;
5914
5915 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5916 if (sds)
5917 WRITE_ONCE(sds->has_idle_cores, val);
5918}
5919
5920static inline bool test_idle_cores(int cpu, bool def)
5921{
5922 struct sched_domain_shared *sds;
5923
5924 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5925 if (sds)
5926 return READ_ONCE(sds->has_idle_cores);
5927
5928 return def;
5929}
5930
5931/*
5932 * Scans the local SMT mask to see if the entire core is idle, and records this
5933 * information in sd_llc_shared->has_idle_cores.
5934 *
5935 * Since SMT siblings share all cache levels, inspecting this limited remote
5936 * state should be fairly cheap.
5937 */
1b568f0a 5938void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5939{
5940 int core = cpu_of(rq);
5941 int cpu;
5942
5943 rcu_read_lock();
5944 if (test_idle_cores(core, true))
5945 goto unlock;
5946
5947 for_each_cpu(cpu, cpu_smt_mask(core)) {
5948 if (cpu == core)
5949 continue;
5950
943d355d 5951 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5952 goto unlock;
5953 }
5954
5955 set_idle_cores(core, 1);
5956unlock:
5957 rcu_read_unlock();
5958}
5959
5960/*
5961 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5962 * there are no idle cores left in the system; tracked through
5963 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5964 */
5965static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5966{
5967 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5968 int core, cpu;
10e2f1ac 5969
1b568f0a
PZ
5970 if (!static_branch_likely(&sched_smt_present))
5971 return -1;
5972
10e2f1ac
PZ
5973 if (!test_idle_cores(target, false))
5974 return -1;
5975
0c98d344 5976 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5977
c743f0a5 5978 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5979 bool idle = true;
5980
5981 for_each_cpu(cpu, cpu_smt_mask(core)) {
5982 cpumask_clear_cpu(cpu, cpus);
943d355d 5983 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5984 idle = false;
5985 }
5986
5987 if (idle)
5988 return core;
5989 }
5990
5991 /*
5992 * Failed to find an idle core; stop looking for one.
5993 */
5994 set_idle_cores(target, 0);
5995
5996 return -1;
5997}
5998
5999/*
6000 * Scan the local SMT mask for idle CPUs.
6001 */
6002static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6003{
6004 int cpu;
6005
1b568f0a
PZ
6006 if (!static_branch_likely(&sched_smt_present))
6007 return -1;
6008
10e2f1ac 6009 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6010 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6011 continue;
943d355d 6012 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6013 return cpu;
6014 }
6015
6016 return -1;
6017}
6018
6019#else /* CONFIG_SCHED_SMT */
6020
6021static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6022{
6023 return -1;
6024}
6025
6026static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6027{
6028 return -1;
6029}
6030
6031#endif /* CONFIG_SCHED_SMT */
6032
6033/*
6034 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6035 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6036 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6037 */
10e2f1ac
PZ
6038static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6039{
9cfb38a7 6040 struct sched_domain *this_sd;
1ad3aaf3 6041 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6042 u64 time, cost;
6043 s64 delta;
1ad3aaf3 6044 int cpu, nr = INT_MAX;
10e2f1ac 6045
9cfb38a7
WL
6046 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6047 if (!this_sd)
6048 return -1;
6049
10e2f1ac
PZ
6050 /*
6051 * Due to large variance we need a large fuzz factor; hackbench in
6052 * particularly is sensitive here.
6053 */
1ad3aaf3
PZ
6054 avg_idle = this_rq()->avg_idle / 512;
6055 avg_cost = this_sd->avg_scan_cost + 1;
6056
6057 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6058 return -1;
6059
1ad3aaf3
PZ
6060 if (sched_feat(SIS_PROP)) {
6061 u64 span_avg = sd->span_weight * avg_idle;
6062 if (span_avg > 4*avg_cost)
6063 nr = div_u64(span_avg, avg_cost);
6064 else
6065 nr = 4;
6066 }
6067
10e2f1ac
PZ
6068 time = local_clock();
6069
c743f0a5 6070 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6071 if (!--nr)
6072 return -1;
0c98d344 6073 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6074 continue;
943d355d 6075 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6076 break;
6077 }
6078
6079 time = local_clock() - time;
6080 cost = this_sd->avg_scan_cost;
6081 delta = (s64)(time - cost) / 8;
6082 this_sd->avg_scan_cost += delta;
6083
6084 return cpu;
6085}
6086
6087/*
6088 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6089 */
772bd008 6090static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6091{
99bd5e2f 6092 struct sched_domain *sd;
32e839dd 6093 int i, recent_used_cpu;
a50bde51 6094
943d355d 6095 if (available_idle_cpu(target))
e0a79f52 6096 return target;
99bd5e2f
SS
6097
6098 /*
97fb7a0a 6099 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6100 */
943d355d 6101 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6102 return prev;
a50bde51 6103
97fb7a0a 6104 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6105 recent_used_cpu = p->recent_used_cpu;
6106 if (recent_used_cpu != prev &&
6107 recent_used_cpu != target &&
6108 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6109 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6110 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6111 /*
6112 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6113 * candidate for the next wake:
32e839dd
MG
6114 */
6115 p->recent_used_cpu = prev;
6116 return recent_used_cpu;
6117 }
6118
518cd623 6119 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6120 if (!sd)
6121 return target;
772bd008 6122
10e2f1ac
PZ
6123 i = select_idle_core(p, sd, target);
6124 if ((unsigned)i < nr_cpumask_bits)
6125 return i;
37407ea7 6126
10e2f1ac
PZ
6127 i = select_idle_cpu(p, sd, target);
6128 if ((unsigned)i < nr_cpumask_bits)
6129 return i;
6130
6131 i = select_idle_smt(p, sd, target);
6132 if ((unsigned)i < nr_cpumask_bits)
6133 return i;
970e1789 6134
a50bde51
PZ
6135 return target;
6136}
231678b7 6137
f9be3e59
PB
6138/**
6139 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6140 * @cpu: the CPU to get the utilization of
6141 *
6142 * The unit of the return value must be the one of capacity so we can compare
6143 * the utilization with the capacity of the CPU that is available for CFS task
6144 * (ie cpu_capacity).
231678b7
DE
6145 *
6146 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6147 * recent utilization of currently non-runnable tasks on a CPU. It represents
6148 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6149 * capacity_orig is the cpu_capacity available at the highest frequency
6150 * (arch_scale_freq_capacity()).
6151 * The utilization of a CPU converges towards a sum equal to or less than the
6152 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6153 * the running time on this CPU scaled by capacity_curr.
6154 *
f9be3e59
PB
6155 * The estimated utilization of a CPU is defined to be the maximum between its
6156 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6157 * currently RUNNABLE on that CPU.
6158 * This allows to properly represent the expected utilization of a CPU which
6159 * has just got a big task running since a long sleep period. At the same time
6160 * however it preserves the benefits of the "blocked utilization" in
6161 * describing the potential for other tasks waking up on the same CPU.
6162 *
231678b7
DE
6163 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6164 * higher than capacity_orig because of unfortunate rounding in
6165 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6166 * the average stabilizes with the new running time. We need to check that the
6167 * utilization stays within the range of [0..capacity_orig] and cap it if
6168 * necessary. Without utilization capping, a group could be seen as overloaded
6169 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6170 * available capacity. We allow utilization to overshoot capacity_curr (but not
6171 * capacity_orig) as it useful for predicting the capacity required after task
6172 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6173 *
6174 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6175 */
f9be3e59 6176static inline unsigned long cpu_util(int cpu)
8bb5b00c 6177{
f9be3e59
PB
6178 struct cfs_rq *cfs_rq;
6179 unsigned int util;
6180
6181 cfs_rq = &cpu_rq(cpu)->cfs;
6182 util = READ_ONCE(cfs_rq->avg.util_avg);
6183
6184 if (sched_feat(UTIL_EST))
6185 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6186
f9be3e59 6187 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6188}
a50bde51 6189
104cb16d 6190/*
97fb7a0a 6191 * cpu_util_wake: Compute CPU utilization with any contributions from
104cb16d
MR
6192 * the waking task p removed.
6193 */
f01415fd 6194static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
104cb16d 6195{
f9be3e59
PB
6196 struct cfs_rq *cfs_rq;
6197 unsigned int util;
104cb16d
MR
6198
6199 /* Task has no contribution or is new */
f9be3e59 6200 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6201 return cpu_util(cpu);
6202
f9be3e59
PB
6203 cfs_rq = &cpu_rq(cpu)->cfs;
6204 util = READ_ONCE(cfs_rq->avg.util_avg);
6205
6206 /* Discount task's blocked util from CPU's util */
6207 util -= min_t(unsigned int, util, task_util(p));
104cb16d 6208
f9be3e59
PB
6209 /*
6210 * Covered cases:
6211 *
6212 * a) if *p is the only task sleeping on this CPU, then:
6213 * cpu_util (== task_util) > util_est (== 0)
6214 * and thus we return:
6215 * cpu_util_wake = (cpu_util - task_util) = 0
6216 *
6217 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6218 * IDLE, then:
6219 * cpu_util >= task_util
6220 * cpu_util > util_est (== 0)
6221 * and thus we discount *p's blocked utilization to return:
6222 * cpu_util_wake = (cpu_util - task_util) >= 0
6223 *
6224 * c) if other tasks are RUNNABLE on that CPU and
6225 * util_est > cpu_util
6226 * then we use util_est since it returns a more restrictive
6227 * estimation of the spare capacity on that CPU, by just
6228 * considering the expected utilization of tasks already
6229 * runnable on that CPU.
6230 *
6231 * Cases a) and b) are covered by the above code, while case c) is
6232 * covered by the following code when estimated utilization is
6233 * enabled.
6234 */
6235 if (sched_feat(UTIL_EST))
6236 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6237
6238 /*
6239 * Utilization (estimated) can exceed the CPU capacity, thus let's
6240 * clamp to the maximum CPU capacity to ensure consistency with
6241 * the cpu_util call.
6242 */
6243 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6244}
6245
3273163c
MR
6246/*
6247 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6248 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6249 *
6250 * In that case WAKE_AFFINE doesn't make sense and we'll let
6251 * BALANCE_WAKE sort things out.
6252 */
6253static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6254{
6255 long min_cap, max_cap;
6256
6257 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6258 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6259
6260 /* Minimum capacity is close to max, no need to abort wake_affine */
6261 if (max_cap - min_cap < max_cap >> 3)
6262 return 0;
6263
104cb16d
MR
6264 /* Bring task utilization in sync with prev_cpu */
6265 sync_entity_load_avg(&p->se);
6266
3273163c
MR
6267 return min_cap * 1024 < task_util(p) * capacity_margin;
6268}
6269
aaee1203 6270/*
de91b9cb
MR
6271 * select_task_rq_fair: Select target runqueue for the waking task in domains
6272 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6273 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6274 *
97fb7a0a
IM
6275 * Balances load by selecting the idlest CPU in the idlest group, or under
6276 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6277 *
97fb7a0a 6278 * Returns the target CPU number.
aaee1203
PZ
6279 *
6280 * preempt must be disabled.
6281 */
0017d735 6282static int
ac66f547 6283select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6284{
f1d88b44 6285 struct sched_domain *tmp, *sd = NULL;
c88d5910 6286 int cpu = smp_processor_id();
63b0e9ed 6287 int new_cpu = prev_cpu;
99bd5e2f 6288 int want_affine = 0;
24d0c1d6 6289 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6290
c58d25f3
PZ
6291 if (sd_flag & SD_BALANCE_WAKE) {
6292 record_wakee(p);
3273163c 6293 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6294 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6295 }
aaee1203 6296
dce840a0 6297 rcu_read_lock();
aaee1203 6298 for_each_domain(cpu, tmp) {
e4f42888 6299 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6300 break;
e4f42888 6301
fe3bcfe1 6302 /*
97fb7a0a 6303 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6304 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6305 */
99bd5e2f
SS
6306 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6307 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6308 if (cpu != prev_cpu)
6309 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6310
6311 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6312 break;
f03542a7 6313 }
29cd8bae 6314
f03542a7 6315 if (tmp->flags & sd_flag)
29cd8bae 6316 sd = tmp;
63b0e9ed
MG
6317 else if (!want_affine)
6318 break;
29cd8bae
PZ
6319 }
6320
f1d88b44
VK
6321 if (unlikely(sd)) {
6322 /* Slow path */
18bd1b4b 6323 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6324 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6325 /* Fast path */
6326
6327 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6328
6329 if (want_affine)
6330 current->recent_used_cpu = cpu;
e7693a36 6331 }
dce840a0 6332 rcu_read_unlock();
e7693a36 6333
c88d5910 6334 return new_cpu;
e7693a36 6335}
0a74bef8 6336
144d8487
PZ
6337static void detach_entity_cfs_rq(struct sched_entity *se);
6338
0a74bef8 6339/*
97fb7a0a 6340 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6341 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6342 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6343 */
5a4fd036 6344static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6345{
59efa0ba
PZ
6346 /*
6347 * As blocked tasks retain absolute vruntime the migration needs to
6348 * deal with this by subtracting the old and adding the new
6349 * min_vruntime -- the latter is done by enqueue_entity() when placing
6350 * the task on the new runqueue.
6351 */
6352 if (p->state == TASK_WAKING) {
6353 struct sched_entity *se = &p->se;
6354 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6355 u64 min_vruntime;
6356
6357#ifndef CONFIG_64BIT
6358 u64 min_vruntime_copy;
6359
6360 do {
6361 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6362 smp_rmb();
6363 min_vruntime = cfs_rq->min_vruntime;
6364 } while (min_vruntime != min_vruntime_copy);
6365#else
6366 min_vruntime = cfs_rq->min_vruntime;
6367#endif
6368
6369 se->vruntime -= min_vruntime;
6370 }
6371
144d8487
PZ
6372 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6373 /*
6374 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6375 * rq->lock and can modify state directly.
6376 */
6377 lockdep_assert_held(&task_rq(p)->lock);
6378 detach_entity_cfs_rq(&p->se);
6379
6380 } else {
6381 /*
6382 * We are supposed to update the task to "current" time, then
6383 * its up to date and ready to go to new CPU/cfs_rq. But we
6384 * have difficulty in getting what current time is, so simply
6385 * throw away the out-of-date time. This will result in the
6386 * wakee task is less decayed, but giving the wakee more load
6387 * sounds not bad.
6388 */
6389 remove_entity_load_avg(&p->se);
6390 }
9d89c257
YD
6391
6392 /* Tell new CPU we are migrated */
6393 p->se.avg.last_update_time = 0;
3944a927
BS
6394
6395 /* We have migrated, no longer consider this task hot */
9d89c257 6396 p->se.exec_start = 0;
0a74bef8 6397}
12695578
YD
6398
6399static void task_dead_fair(struct task_struct *p)
6400{
6401 remove_entity_load_avg(&p->se);
6402}
e7693a36
GH
6403#endif /* CONFIG_SMP */
6404
a555e9d8 6405static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6406{
6407 unsigned long gran = sysctl_sched_wakeup_granularity;
6408
6409 /*
e52fb7c0
PZ
6410 * Since its curr running now, convert the gran from real-time
6411 * to virtual-time in his units.
13814d42
MG
6412 *
6413 * By using 'se' instead of 'curr' we penalize light tasks, so
6414 * they get preempted easier. That is, if 'se' < 'curr' then
6415 * the resulting gran will be larger, therefore penalizing the
6416 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6417 * be smaller, again penalizing the lighter task.
6418 *
6419 * This is especially important for buddies when the leftmost
6420 * task is higher priority than the buddy.
0bbd3336 6421 */
f4ad9bd2 6422 return calc_delta_fair(gran, se);
0bbd3336
PZ
6423}
6424
464b7527
PZ
6425/*
6426 * Should 'se' preempt 'curr'.
6427 *
6428 * |s1
6429 * |s2
6430 * |s3
6431 * g
6432 * |<--->|c
6433 *
6434 * w(c, s1) = -1
6435 * w(c, s2) = 0
6436 * w(c, s3) = 1
6437 *
6438 */
6439static int
6440wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6441{
6442 s64 gran, vdiff = curr->vruntime - se->vruntime;
6443
6444 if (vdiff <= 0)
6445 return -1;
6446
a555e9d8 6447 gran = wakeup_gran(se);
464b7527
PZ
6448 if (vdiff > gran)
6449 return 1;
6450
6451 return 0;
6452}
6453
02479099
PZ
6454static void set_last_buddy(struct sched_entity *se)
6455{
69c80f3e
VP
6456 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6457 return;
6458
c5ae366e
DA
6459 for_each_sched_entity(se) {
6460 if (SCHED_WARN_ON(!se->on_rq))
6461 return;
69c80f3e 6462 cfs_rq_of(se)->last = se;
c5ae366e 6463 }
02479099
PZ
6464}
6465
6466static void set_next_buddy(struct sched_entity *se)
6467{
69c80f3e
VP
6468 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6469 return;
6470
c5ae366e
DA
6471 for_each_sched_entity(se) {
6472 if (SCHED_WARN_ON(!se->on_rq))
6473 return;
69c80f3e 6474 cfs_rq_of(se)->next = se;
c5ae366e 6475 }
02479099
PZ
6476}
6477
ac53db59
RR
6478static void set_skip_buddy(struct sched_entity *se)
6479{
69c80f3e
VP
6480 for_each_sched_entity(se)
6481 cfs_rq_of(se)->skip = se;
ac53db59
RR
6482}
6483
bf0f6f24
IM
6484/*
6485 * Preempt the current task with a newly woken task if needed:
6486 */
5a9b86f6 6487static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6488{
6489 struct task_struct *curr = rq->curr;
8651a86c 6490 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6491 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6492 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6493 int next_buddy_marked = 0;
bf0f6f24 6494
4ae7d5ce
IM
6495 if (unlikely(se == pse))
6496 return;
6497
5238cdd3 6498 /*
163122b7 6499 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6500 * unconditionally check_prempt_curr() after an enqueue (which may have
6501 * lead to a throttle). This both saves work and prevents false
6502 * next-buddy nomination below.
6503 */
6504 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6505 return;
6506
2f36825b 6507 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6508 set_next_buddy(pse);
2f36825b
VP
6509 next_buddy_marked = 1;
6510 }
57fdc26d 6511
aec0a514
BR
6512 /*
6513 * We can come here with TIF_NEED_RESCHED already set from new task
6514 * wake up path.
5238cdd3
PT
6515 *
6516 * Note: this also catches the edge-case of curr being in a throttled
6517 * group (e.g. via set_curr_task), since update_curr() (in the
6518 * enqueue of curr) will have resulted in resched being set. This
6519 * prevents us from potentially nominating it as a false LAST_BUDDY
6520 * below.
aec0a514
BR
6521 */
6522 if (test_tsk_need_resched(curr))
6523 return;
6524
a2f5c9ab
DH
6525 /* Idle tasks are by definition preempted by non-idle tasks. */
6526 if (unlikely(curr->policy == SCHED_IDLE) &&
6527 likely(p->policy != SCHED_IDLE))
6528 goto preempt;
6529
91c234b4 6530 /*
a2f5c9ab
DH
6531 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6532 * is driven by the tick):
91c234b4 6533 */
8ed92e51 6534 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6535 return;
bf0f6f24 6536
464b7527 6537 find_matching_se(&se, &pse);
9bbd7374 6538 update_curr(cfs_rq_of(se));
002f128b 6539 BUG_ON(!pse);
2f36825b
VP
6540 if (wakeup_preempt_entity(se, pse) == 1) {
6541 /*
6542 * Bias pick_next to pick the sched entity that is
6543 * triggering this preemption.
6544 */
6545 if (!next_buddy_marked)
6546 set_next_buddy(pse);
3a7e73a2 6547 goto preempt;
2f36825b 6548 }
464b7527 6549
3a7e73a2 6550 return;
a65ac745 6551
3a7e73a2 6552preempt:
8875125e 6553 resched_curr(rq);
3a7e73a2
PZ
6554 /*
6555 * Only set the backward buddy when the current task is still
6556 * on the rq. This can happen when a wakeup gets interleaved
6557 * with schedule on the ->pre_schedule() or idle_balance()
6558 * point, either of which can * drop the rq lock.
6559 *
6560 * Also, during early boot the idle thread is in the fair class,
6561 * for obvious reasons its a bad idea to schedule back to it.
6562 */
6563 if (unlikely(!se->on_rq || curr == rq->idle))
6564 return;
6565
6566 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6567 set_last_buddy(se);
bf0f6f24
IM
6568}
6569
606dba2e 6570static struct task_struct *
d8ac8971 6571pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6572{
6573 struct cfs_rq *cfs_rq = &rq->cfs;
6574 struct sched_entity *se;
678d5718 6575 struct task_struct *p;
37e117c0 6576 int new_tasks;
678d5718 6577
6e83125c 6578again:
678d5718 6579 if (!cfs_rq->nr_running)
38033c37 6580 goto idle;
678d5718 6581
9674f5ca 6582#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6583 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6584 goto simple;
6585
6586 /*
6587 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6588 * likely that a next task is from the same cgroup as the current.
6589 *
6590 * Therefore attempt to avoid putting and setting the entire cgroup
6591 * hierarchy, only change the part that actually changes.
6592 */
6593
6594 do {
6595 struct sched_entity *curr = cfs_rq->curr;
6596
6597 /*
6598 * Since we got here without doing put_prev_entity() we also
6599 * have to consider cfs_rq->curr. If it is still a runnable
6600 * entity, update_curr() will update its vruntime, otherwise
6601 * forget we've ever seen it.
6602 */
54d27365
BS
6603 if (curr) {
6604 if (curr->on_rq)
6605 update_curr(cfs_rq);
6606 else
6607 curr = NULL;
678d5718 6608
54d27365
BS
6609 /*
6610 * This call to check_cfs_rq_runtime() will do the
6611 * throttle and dequeue its entity in the parent(s).
9674f5ca 6612 * Therefore the nr_running test will indeed
54d27365
BS
6613 * be correct.
6614 */
9674f5ca
VK
6615 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6616 cfs_rq = &rq->cfs;
6617
6618 if (!cfs_rq->nr_running)
6619 goto idle;
6620
54d27365 6621 goto simple;
9674f5ca 6622 }
54d27365 6623 }
678d5718
PZ
6624
6625 se = pick_next_entity(cfs_rq, curr);
6626 cfs_rq = group_cfs_rq(se);
6627 } while (cfs_rq);
6628
6629 p = task_of(se);
6630
6631 /*
6632 * Since we haven't yet done put_prev_entity and if the selected task
6633 * is a different task than we started out with, try and touch the
6634 * least amount of cfs_rqs.
6635 */
6636 if (prev != p) {
6637 struct sched_entity *pse = &prev->se;
6638
6639 while (!(cfs_rq = is_same_group(se, pse))) {
6640 int se_depth = se->depth;
6641 int pse_depth = pse->depth;
6642
6643 if (se_depth <= pse_depth) {
6644 put_prev_entity(cfs_rq_of(pse), pse);
6645 pse = parent_entity(pse);
6646 }
6647 if (se_depth >= pse_depth) {
6648 set_next_entity(cfs_rq_of(se), se);
6649 se = parent_entity(se);
6650 }
6651 }
6652
6653 put_prev_entity(cfs_rq, pse);
6654 set_next_entity(cfs_rq, se);
6655 }
6656
93824900 6657 goto done;
678d5718 6658simple:
678d5718 6659#endif
bf0f6f24 6660
3f1d2a31 6661 put_prev_task(rq, prev);
606dba2e 6662
bf0f6f24 6663 do {
678d5718 6664 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6665 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6666 cfs_rq = group_cfs_rq(se);
6667 } while (cfs_rq);
6668
8f4d37ec 6669 p = task_of(se);
678d5718 6670
13a453c2 6671done: __maybe_unused;
93824900
UR
6672#ifdef CONFIG_SMP
6673 /*
6674 * Move the next running task to the front of
6675 * the list, so our cfs_tasks list becomes MRU
6676 * one.
6677 */
6678 list_move(&p->se.group_node, &rq->cfs_tasks);
6679#endif
6680
b39e66ea
MG
6681 if (hrtick_enabled(rq))
6682 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6683
6684 return p;
38033c37
PZ
6685
6686idle:
46f69fa3
MF
6687 new_tasks = idle_balance(rq, rf);
6688
37e117c0
PZ
6689 /*
6690 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6691 * possible for any higher priority task to appear. In that case we
6692 * must re-start the pick_next_entity() loop.
6693 */
e4aa358b 6694 if (new_tasks < 0)
37e117c0
PZ
6695 return RETRY_TASK;
6696
e4aa358b 6697 if (new_tasks > 0)
38033c37 6698 goto again;
38033c37
PZ
6699
6700 return NULL;
bf0f6f24
IM
6701}
6702
6703/*
6704 * Account for a descheduled task:
6705 */
31ee529c 6706static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6707{
6708 struct sched_entity *se = &prev->se;
6709 struct cfs_rq *cfs_rq;
6710
6711 for_each_sched_entity(se) {
6712 cfs_rq = cfs_rq_of(se);
ab6cde26 6713 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6714 }
6715}
6716
ac53db59
RR
6717/*
6718 * sched_yield() is very simple
6719 *
6720 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6721 */
6722static void yield_task_fair(struct rq *rq)
6723{
6724 struct task_struct *curr = rq->curr;
6725 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6726 struct sched_entity *se = &curr->se;
6727
6728 /*
6729 * Are we the only task in the tree?
6730 */
6731 if (unlikely(rq->nr_running == 1))
6732 return;
6733
6734 clear_buddies(cfs_rq, se);
6735
6736 if (curr->policy != SCHED_BATCH) {
6737 update_rq_clock(rq);
6738 /*
6739 * Update run-time statistics of the 'current'.
6740 */
6741 update_curr(cfs_rq);
916671c0
MG
6742 /*
6743 * Tell update_rq_clock() that we've just updated,
6744 * so we don't do microscopic update in schedule()
6745 * and double the fastpath cost.
6746 */
adcc8da8 6747 rq_clock_skip_update(rq);
ac53db59
RR
6748 }
6749
6750 set_skip_buddy(se);
6751}
6752
d95f4122
MG
6753static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6754{
6755 struct sched_entity *se = &p->se;
6756
5238cdd3
PT
6757 /* throttled hierarchies are not runnable */
6758 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6759 return false;
6760
6761 /* Tell the scheduler that we'd really like pse to run next. */
6762 set_next_buddy(se);
6763
d95f4122
MG
6764 yield_task_fair(rq);
6765
6766 return true;
6767}
6768
681f3e68 6769#ifdef CONFIG_SMP
bf0f6f24 6770/**************************************************
e9c84cb8
PZ
6771 * Fair scheduling class load-balancing methods.
6772 *
6773 * BASICS
6774 *
6775 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6776 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6777 * time to each task. This is expressed in the following equation:
6778 *
6779 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6780 *
97fb7a0a 6781 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6782 * W_i,0 is defined as:
6783 *
6784 * W_i,0 = \Sum_j w_i,j (2)
6785 *
97fb7a0a 6786 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6787 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6788 *
6789 * The weight average is an exponential decay average of the instantaneous
6790 * weight:
6791 *
6792 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6793 *
97fb7a0a 6794 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6795 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6796 * can also include other factors [XXX].
6797 *
6798 * To achieve this balance we define a measure of imbalance which follows
6799 * directly from (1):
6800 *
ced549fa 6801 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6802 *
6803 * We them move tasks around to minimize the imbalance. In the continuous
6804 * function space it is obvious this converges, in the discrete case we get
6805 * a few fun cases generally called infeasible weight scenarios.
6806 *
6807 * [XXX expand on:
6808 * - infeasible weights;
6809 * - local vs global optima in the discrete case. ]
6810 *
6811 *
6812 * SCHED DOMAINS
6813 *
6814 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6815 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6816 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6817 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6818 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 6819 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
6820 * the groups.
6821 *
6822 * This yields:
6823 *
6824 * log_2 n 1 n
6825 * \Sum { --- * --- * 2^i } = O(n) (5)
6826 * i = 0 2^i 2^i
6827 * `- size of each group
97fb7a0a 6828 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
6829 * | `- freq
6830 * `- sum over all levels
6831 *
6832 * Coupled with a limit on how many tasks we can migrate every balance pass,
6833 * this makes (5) the runtime complexity of the balancer.
6834 *
6835 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 6836 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
6837 *
6838 * The adjacency matrix of the resulting graph is given by:
6839 *
97a7142f 6840 * log_2 n
e9c84cb8
PZ
6841 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6842 * k = 0
6843 *
6844 * And you'll find that:
6845 *
6846 * A^(log_2 n)_i,j != 0 for all i,j (7)
6847 *
97fb7a0a 6848 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
6849 * The task movement gives a factor of O(m), giving a convergence complexity
6850 * of:
6851 *
6852 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6853 *
6854 *
6855 * WORK CONSERVING
6856 *
6857 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 6858 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
6859 * tree itself instead of relying on other CPUs to bring it work.
6860 *
6861 * This adds some complexity to both (5) and (8) but it reduces the total idle
6862 * time.
6863 *
6864 * [XXX more?]
6865 *
6866 *
6867 * CGROUPS
6868 *
6869 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6870 *
6871 * s_k,i
6872 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6873 * S_k
6874 *
6875 * Where
6876 *
6877 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6878 *
97fb7a0a 6879 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
6880 *
6881 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6882 * property.
6883 *
6884 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6885 * rewrite all of this once again.]
97a7142f 6886 */
bf0f6f24 6887
ed387b78
HS
6888static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6889
0ec8aa00
PZ
6890enum fbq_type { regular, remote, all };
6891
ddcdf6e7 6892#define LBF_ALL_PINNED 0x01
367456c7 6893#define LBF_NEED_BREAK 0x02
6263322c
PZ
6894#define LBF_DST_PINNED 0x04
6895#define LBF_SOME_PINNED 0x08
e022e0d3 6896#define LBF_NOHZ_STATS 0x10
f643ea22 6897#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
6898
6899struct lb_env {
6900 struct sched_domain *sd;
6901
ddcdf6e7 6902 struct rq *src_rq;
85c1e7da 6903 int src_cpu;
ddcdf6e7
PZ
6904
6905 int dst_cpu;
6906 struct rq *dst_rq;
6907
88b8dac0
SV
6908 struct cpumask *dst_grpmask;
6909 int new_dst_cpu;
ddcdf6e7 6910 enum cpu_idle_type idle;
bd939f45 6911 long imbalance;
b9403130
MW
6912 /* The set of CPUs under consideration for load-balancing */
6913 struct cpumask *cpus;
6914
ddcdf6e7 6915 unsigned int flags;
367456c7
PZ
6916
6917 unsigned int loop;
6918 unsigned int loop_break;
6919 unsigned int loop_max;
0ec8aa00
PZ
6920
6921 enum fbq_type fbq_type;
163122b7 6922 struct list_head tasks;
ddcdf6e7
PZ
6923};
6924
029632fb
PZ
6925/*
6926 * Is this task likely cache-hot:
6927 */
5d5e2b1b 6928static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6929{
6930 s64 delta;
6931
e5673f28
KT
6932 lockdep_assert_held(&env->src_rq->lock);
6933
029632fb
PZ
6934 if (p->sched_class != &fair_sched_class)
6935 return 0;
6936
6937 if (unlikely(p->policy == SCHED_IDLE))
6938 return 0;
6939
6940 /*
6941 * Buddy candidates are cache hot:
6942 */
5d5e2b1b 6943 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6944 (&p->se == cfs_rq_of(&p->se)->next ||
6945 &p->se == cfs_rq_of(&p->se)->last))
6946 return 1;
6947
6948 if (sysctl_sched_migration_cost == -1)
6949 return 1;
6950 if (sysctl_sched_migration_cost == 0)
6951 return 0;
6952
5d5e2b1b 6953 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6954
6955 return delta < (s64)sysctl_sched_migration_cost;
6956}
6957
3a7053b3 6958#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6959/*
2a1ed24c
SD
6960 * Returns 1, if task migration degrades locality
6961 * Returns 0, if task migration improves locality i.e migration preferred.
6962 * Returns -1, if task migration is not affected by locality.
c1ceac62 6963 */
2a1ed24c 6964static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6965{
b1ad065e 6966 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6967 unsigned long src_faults, dst_faults;
3a7053b3
MG
6968 int src_nid, dst_nid;
6969
2a595721 6970 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6971 return -1;
6972
c3b9bc5b 6973 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6974 return -1;
7a0f3083
MG
6975
6976 src_nid = cpu_to_node(env->src_cpu);
6977 dst_nid = cpu_to_node(env->dst_cpu);
6978
83e1d2cd 6979 if (src_nid == dst_nid)
2a1ed24c 6980 return -1;
7a0f3083 6981
2a1ed24c
SD
6982 /* Migrating away from the preferred node is always bad. */
6983 if (src_nid == p->numa_preferred_nid) {
6984 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6985 return 1;
6986 else
6987 return -1;
6988 }
b1ad065e 6989
c1ceac62
RR
6990 /* Encourage migration to the preferred node. */
6991 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6992 return 0;
b1ad065e 6993
739294fb
RR
6994 /* Leaving a core idle is often worse than degrading locality. */
6995 if (env->idle != CPU_NOT_IDLE)
6996 return -1;
6997
c1ceac62
RR
6998 if (numa_group) {
6999 src_faults = group_faults(p, src_nid);
7000 dst_faults = group_faults(p, dst_nid);
7001 } else {
7002 src_faults = task_faults(p, src_nid);
7003 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
7004 }
7005
c1ceac62 7006 return dst_faults < src_faults;
7a0f3083
MG
7007}
7008
3a7053b3 7009#else
2a1ed24c 7010static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7011 struct lb_env *env)
7012{
2a1ed24c 7013 return -1;
7a0f3083 7014}
3a7053b3
MG
7015#endif
7016
1e3c88bd
PZ
7017/*
7018 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7019 */
7020static
8e45cb54 7021int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7022{
2a1ed24c 7023 int tsk_cache_hot;
e5673f28
KT
7024
7025 lockdep_assert_held(&env->src_rq->lock);
7026
1e3c88bd
PZ
7027 /*
7028 * We do not migrate tasks that are:
d3198084 7029 * 1) throttled_lb_pair, or
1e3c88bd 7030 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7031 * 3) running (obviously), or
7032 * 4) are cache-hot on their current CPU.
1e3c88bd 7033 */
d3198084
JK
7034 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7035 return 0;
7036
0c98d344 7037 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7038 int cpu;
88b8dac0 7039
ae92882e 7040 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7041
6263322c
PZ
7042 env->flags |= LBF_SOME_PINNED;
7043
88b8dac0 7044 /*
97fb7a0a 7045 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7046 * our sched_group. We may want to revisit it if we couldn't
7047 * meet load balance goals by pulling other tasks on src_cpu.
7048 *
65a4433a
JH
7049 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7050 * already computed one in current iteration.
88b8dac0 7051 */
65a4433a 7052 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7053 return 0;
7054
97fb7a0a 7055 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7056 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7057 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7058 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7059 env->new_dst_cpu = cpu;
7060 break;
7061 }
88b8dac0 7062 }
e02e60c1 7063
1e3c88bd
PZ
7064 return 0;
7065 }
88b8dac0
SV
7066
7067 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7068 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7069
ddcdf6e7 7070 if (task_running(env->src_rq, p)) {
ae92882e 7071 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7072 return 0;
7073 }
7074
7075 /*
7076 * Aggressive migration if:
3a7053b3
MG
7077 * 1) destination numa is preferred
7078 * 2) task is cache cold, or
7079 * 3) too many balance attempts have failed.
1e3c88bd 7080 */
2a1ed24c
SD
7081 tsk_cache_hot = migrate_degrades_locality(p, env);
7082 if (tsk_cache_hot == -1)
7083 tsk_cache_hot = task_hot(p, env);
3a7053b3 7084
2a1ed24c 7085 if (tsk_cache_hot <= 0 ||
7a96c231 7086 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7087 if (tsk_cache_hot == 1) {
ae92882e
JP
7088 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7089 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7090 }
1e3c88bd
PZ
7091 return 1;
7092 }
7093
ae92882e 7094 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7095 return 0;
1e3c88bd
PZ
7096}
7097
897c395f 7098/*
163122b7
KT
7099 * detach_task() -- detach the task for the migration specified in env
7100 */
7101static void detach_task(struct task_struct *p, struct lb_env *env)
7102{
7103 lockdep_assert_held(&env->src_rq->lock);
7104
163122b7 7105 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7106 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7107 set_task_cpu(p, env->dst_cpu);
7108}
7109
897c395f 7110/*
e5673f28 7111 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7112 * part of active balancing operations within "domain".
897c395f 7113 *
e5673f28 7114 * Returns a task if successful and NULL otherwise.
897c395f 7115 */
e5673f28 7116static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7117{
93824900 7118 struct task_struct *p;
897c395f 7119
e5673f28
KT
7120 lockdep_assert_held(&env->src_rq->lock);
7121
93824900
UR
7122 list_for_each_entry_reverse(p,
7123 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7124 if (!can_migrate_task(p, env))
7125 continue;
897c395f 7126
163122b7 7127 detach_task(p, env);
e5673f28 7128
367456c7 7129 /*
e5673f28 7130 * Right now, this is only the second place where
163122b7 7131 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7132 * so we can safely collect stats here rather than
163122b7 7133 * inside detach_tasks().
367456c7 7134 */
ae92882e 7135 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7136 return p;
897c395f 7137 }
e5673f28 7138 return NULL;
897c395f
PZ
7139}
7140
eb95308e
PZ
7141static const unsigned int sched_nr_migrate_break = 32;
7142
5d6523eb 7143/*
163122b7
KT
7144 * detach_tasks() -- tries to detach up to imbalance weighted load from
7145 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7146 *
163122b7 7147 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7148 */
163122b7 7149static int detach_tasks(struct lb_env *env)
1e3c88bd 7150{
5d6523eb
PZ
7151 struct list_head *tasks = &env->src_rq->cfs_tasks;
7152 struct task_struct *p;
367456c7 7153 unsigned long load;
163122b7
KT
7154 int detached = 0;
7155
7156 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7157
bd939f45 7158 if (env->imbalance <= 0)
5d6523eb 7159 return 0;
1e3c88bd 7160
5d6523eb 7161 while (!list_empty(tasks)) {
985d3a4c
YD
7162 /*
7163 * We don't want to steal all, otherwise we may be treated likewise,
7164 * which could at worst lead to a livelock crash.
7165 */
7166 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7167 break;
7168
93824900 7169 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7170
367456c7
PZ
7171 env->loop++;
7172 /* We've more or less seen every task there is, call it quits */
5d6523eb 7173 if (env->loop > env->loop_max)
367456c7 7174 break;
5d6523eb
PZ
7175
7176 /* take a breather every nr_migrate tasks */
367456c7 7177 if (env->loop > env->loop_break) {
eb95308e 7178 env->loop_break += sched_nr_migrate_break;
8e45cb54 7179 env->flags |= LBF_NEED_BREAK;
ee00e66f 7180 break;
a195f004 7181 }
1e3c88bd 7182
d3198084 7183 if (!can_migrate_task(p, env))
367456c7
PZ
7184 goto next;
7185
7186 load = task_h_load(p);
5d6523eb 7187
eb95308e 7188 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7189 goto next;
7190
bd939f45 7191 if ((load / 2) > env->imbalance)
367456c7 7192 goto next;
1e3c88bd 7193
163122b7
KT
7194 detach_task(p, env);
7195 list_add(&p->se.group_node, &env->tasks);
7196
7197 detached++;
bd939f45 7198 env->imbalance -= load;
1e3c88bd
PZ
7199
7200#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7201 /*
7202 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7203 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7204 * the critical section.
7205 */
5d6523eb 7206 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7207 break;
1e3c88bd
PZ
7208#endif
7209
ee00e66f
PZ
7210 /*
7211 * We only want to steal up to the prescribed amount of
7212 * weighted load.
7213 */
bd939f45 7214 if (env->imbalance <= 0)
ee00e66f 7215 break;
367456c7
PZ
7216
7217 continue;
7218next:
93824900 7219 list_move(&p->se.group_node, tasks);
1e3c88bd 7220 }
5d6523eb 7221
1e3c88bd 7222 /*
163122b7
KT
7223 * Right now, this is one of only two places we collect this stat
7224 * so we can safely collect detach_one_task() stats here rather
7225 * than inside detach_one_task().
1e3c88bd 7226 */
ae92882e 7227 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7228
163122b7
KT
7229 return detached;
7230}
7231
7232/*
7233 * attach_task() -- attach the task detached by detach_task() to its new rq.
7234 */
7235static void attach_task(struct rq *rq, struct task_struct *p)
7236{
7237 lockdep_assert_held(&rq->lock);
7238
7239 BUG_ON(task_rq(p) != rq);
5704ac0a 7240 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7241 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7242 check_preempt_curr(rq, p, 0);
7243}
7244
7245/*
7246 * attach_one_task() -- attaches the task returned from detach_one_task() to
7247 * its new rq.
7248 */
7249static void attach_one_task(struct rq *rq, struct task_struct *p)
7250{
8a8c69c3
PZ
7251 struct rq_flags rf;
7252
7253 rq_lock(rq, &rf);
5704ac0a 7254 update_rq_clock(rq);
163122b7 7255 attach_task(rq, p);
8a8c69c3 7256 rq_unlock(rq, &rf);
163122b7
KT
7257}
7258
7259/*
7260 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7261 * new rq.
7262 */
7263static void attach_tasks(struct lb_env *env)
7264{
7265 struct list_head *tasks = &env->tasks;
7266 struct task_struct *p;
8a8c69c3 7267 struct rq_flags rf;
163122b7 7268
8a8c69c3 7269 rq_lock(env->dst_rq, &rf);
5704ac0a 7270 update_rq_clock(env->dst_rq);
163122b7
KT
7271
7272 while (!list_empty(tasks)) {
7273 p = list_first_entry(tasks, struct task_struct, se.group_node);
7274 list_del_init(&p->se.group_node);
1e3c88bd 7275
163122b7
KT
7276 attach_task(env->dst_rq, p);
7277 }
7278
8a8c69c3 7279 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7280}
7281
1936c53c
VG
7282static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7283{
7284 if (cfs_rq->avg.load_avg)
7285 return true;
7286
7287 if (cfs_rq->avg.util_avg)
7288 return true;
7289
7290 return false;
7291}
7292
3727e0e1 7293static inline bool others_rqs_have_blocked(struct rq *rq)
371bf427
VG
7294{
7295 if (READ_ONCE(rq->avg_rt.util_avg))
7296 return true;
7297
3727e0e1
VG
7298 if (READ_ONCE(rq->avg_dl.util_avg))
7299 return true;
7300
371bf427
VG
7301 return false;
7302}
7303
1936c53c
VG
7304#ifdef CONFIG_FAIR_GROUP_SCHED
7305
a9e7f654
TH
7306static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7307{
7308 if (cfs_rq->load.weight)
7309 return false;
7310
7311 if (cfs_rq->avg.load_sum)
7312 return false;
7313
7314 if (cfs_rq->avg.util_sum)
7315 return false;
7316
1ea6c46a 7317 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7318 return false;
7319
7320 return true;
7321}
7322
48a16753 7323static void update_blocked_averages(int cpu)
9e3081ca 7324{
9e3081ca 7325 struct rq *rq = cpu_rq(cpu);
a9e7f654 7326 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7327 struct rq_flags rf;
f643ea22 7328 bool done = true;
9e3081ca 7329
8a8c69c3 7330 rq_lock_irqsave(rq, &rf);
48a16753 7331 update_rq_clock(rq);
9d89c257 7332
9763b67f
PZ
7333 /*
7334 * Iterates the task_group tree in a bottom up fashion, see
7335 * list_add_leaf_cfs_rq() for details.
7336 */
a9e7f654 7337 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7338 struct sched_entity *se;
7339
9d89c257
YD
7340 /* throttled entities do not contribute to load */
7341 if (throttled_hierarchy(cfs_rq))
7342 continue;
48a16753 7343
3a123bbb 7344 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7345 update_tg_load_avg(cfs_rq, 0);
4e516076 7346
bc427898
VG
7347 /* Propagate pending load changes to the parent, if any: */
7348 se = cfs_rq->tg->se[cpu];
7349 if (se && !skip_blocked_update(se))
88c0616e 7350 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7351
7352 /*
7353 * There can be a lot of idle CPU cgroups. Don't let fully
7354 * decayed cfs_rqs linger on the list.
7355 */
7356 if (cfs_rq_is_decayed(cfs_rq))
7357 list_del_leaf_cfs_rq(cfs_rq);
1936c53c
VG
7358
7359 /* Don't need periodic decay once load/util_avg are null */
7360 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7361 done = false;
9d89c257 7362 }
371bf427 7363 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
3727e0e1 7364 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
371bf427 7365 /* Don't need periodic decay once load/util_avg are null */
3727e0e1 7366 if (others_rqs_have_blocked(rq))
371bf427 7367 done = false;
e022e0d3
PZ
7368
7369#ifdef CONFIG_NO_HZ_COMMON
7370 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7371 if (done)
7372 rq->has_blocked_load = 0;
e022e0d3 7373#endif
8a8c69c3 7374 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7375}
7376
9763b67f 7377/*
68520796 7378 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7379 * This needs to be done in a top-down fashion because the load of a child
7380 * group is a fraction of its parents load.
7381 */
68520796 7382static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7383{
68520796
VD
7384 struct rq *rq = rq_of(cfs_rq);
7385 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7386 unsigned long now = jiffies;
68520796 7387 unsigned long load;
a35b6466 7388
68520796 7389 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7390 return;
7391
68520796
VD
7392 cfs_rq->h_load_next = NULL;
7393 for_each_sched_entity(se) {
7394 cfs_rq = cfs_rq_of(se);
7395 cfs_rq->h_load_next = se;
7396 if (cfs_rq->last_h_load_update == now)
7397 break;
7398 }
a35b6466 7399
68520796 7400 if (!se) {
7ea241af 7401 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7402 cfs_rq->last_h_load_update = now;
7403 }
7404
7405 while ((se = cfs_rq->h_load_next) != NULL) {
7406 load = cfs_rq->h_load;
7ea241af
YD
7407 load = div64_ul(load * se->avg.load_avg,
7408 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7409 cfs_rq = group_cfs_rq(se);
7410 cfs_rq->h_load = load;
7411 cfs_rq->last_h_load_update = now;
7412 }
9763b67f
PZ
7413}
7414
367456c7 7415static unsigned long task_h_load(struct task_struct *p)
230059de 7416{
367456c7 7417 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7418
68520796 7419 update_cfs_rq_h_load(cfs_rq);
9d89c257 7420 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7421 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7422}
7423#else
48a16753 7424static inline void update_blocked_averages(int cpu)
9e3081ca 7425{
6c1d47c0
VG
7426 struct rq *rq = cpu_rq(cpu);
7427 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7428 struct rq_flags rf;
6c1d47c0 7429
8a8c69c3 7430 rq_lock_irqsave(rq, &rf);
6c1d47c0 7431 update_rq_clock(rq);
3a123bbb 7432 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
371bf427 7433 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
3727e0e1 7434 update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
e022e0d3
PZ
7435#ifdef CONFIG_NO_HZ_COMMON
7436 rq->last_blocked_load_update_tick = jiffies;
3727e0e1 7437 if (!cfs_rq_has_blocked(cfs_rq) && !others_rqs_have_blocked(rq))
f643ea22 7438 rq->has_blocked_load = 0;
e022e0d3 7439#endif
8a8c69c3 7440 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7441}
7442
367456c7 7443static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7444{
9d89c257 7445 return p->se.avg.load_avg;
1e3c88bd 7446}
230059de 7447#endif
1e3c88bd 7448
1e3c88bd 7449/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7450
7451enum group_type {
7452 group_other = 0,
7453 group_imbalanced,
7454 group_overloaded,
7455};
7456
1e3c88bd
PZ
7457/*
7458 * sg_lb_stats - stats of a sched_group required for load_balancing
7459 */
7460struct sg_lb_stats {
7461 unsigned long avg_load; /*Avg load across the CPUs of the group */
7462 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7463 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7464 unsigned long load_per_task;
63b2ca30 7465 unsigned long group_capacity;
9e91d61d 7466 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7467 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7468 unsigned int idle_cpus;
7469 unsigned int group_weight;
caeb178c 7470 enum group_type group_type;
ea67821b 7471 int group_no_capacity;
0ec8aa00
PZ
7472#ifdef CONFIG_NUMA_BALANCING
7473 unsigned int nr_numa_running;
7474 unsigned int nr_preferred_running;
7475#endif
1e3c88bd
PZ
7476};
7477
56cf515b
JK
7478/*
7479 * sd_lb_stats - Structure to store the statistics of a sched_domain
7480 * during load balancing.
7481 */
7482struct sd_lb_stats {
7483 struct sched_group *busiest; /* Busiest group in this sd */
7484 struct sched_group *local; /* Local group in this sd */
90001d67 7485 unsigned long total_running;
56cf515b 7486 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7487 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7488 unsigned long avg_load; /* Average load across all groups in sd */
7489
56cf515b 7490 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7491 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7492};
7493
147c5fc2
PZ
7494static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7495{
7496 /*
7497 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7498 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7499 * We must however clear busiest_stat::avg_load because
7500 * update_sd_pick_busiest() reads this before assignment.
7501 */
7502 *sds = (struct sd_lb_stats){
7503 .busiest = NULL,
7504 .local = NULL,
90001d67 7505 .total_running = 0UL,
147c5fc2 7506 .total_load = 0UL,
63b2ca30 7507 .total_capacity = 0UL,
147c5fc2
PZ
7508 .busiest_stat = {
7509 .avg_load = 0UL,
caeb178c
RR
7510 .sum_nr_running = 0,
7511 .group_type = group_other,
147c5fc2
PZ
7512 },
7513 };
7514}
7515
1e3c88bd
PZ
7516/**
7517 * get_sd_load_idx - Obtain the load index for a given sched domain.
7518 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7519 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7520 *
7521 * Return: The load index.
1e3c88bd
PZ
7522 */
7523static inline int get_sd_load_idx(struct sched_domain *sd,
7524 enum cpu_idle_type idle)
7525{
7526 int load_idx;
7527
7528 switch (idle) {
7529 case CPU_NOT_IDLE:
7530 load_idx = sd->busy_idx;
7531 break;
7532
7533 case CPU_NEWLY_IDLE:
7534 load_idx = sd->newidle_idx;
7535 break;
7536 default:
7537 load_idx = sd->idle_idx;
7538 break;
7539 }
7540
7541 return load_idx;
7542}
7543
ced549fa 7544static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7545{
7546 struct rq *rq = cpu_rq(cpu);
b5b4860d 7547 u64 total, used, age_stamp, avg;
cadefd3d 7548 s64 delta;
1e3c88bd 7549
b654f7de
PZ
7550 /*
7551 * Since we're reading these variables without serialization make sure
7552 * we read them once before doing sanity checks on them.
7553 */
316c1608
JL
7554 age_stamp = READ_ONCE(rq->age_stamp);
7555 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7556 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7557
cadefd3d
PZ
7558 if (unlikely(delta < 0))
7559 delta = 0;
7560
7561 total = sched_avg_period() + delta;
aa483808 7562
b5b4860d 7563 used = div_u64(avg, total);
1e3c88bd 7564
b5b4860d
VG
7565 if (likely(used < SCHED_CAPACITY_SCALE))
7566 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7567
b5b4860d 7568 return 1;
1e3c88bd
PZ
7569}
7570
ced549fa 7571static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7572{
8cd5601c 7573 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7574 struct sched_group *sdg = sd->groups;
7575
ca6d75e6 7576 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7577
ced549fa 7578 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7579 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7580
ced549fa
NP
7581 if (!capacity)
7582 capacity = 1;
1e3c88bd 7583
ced549fa
NP
7584 cpu_rq(cpu)->cpu_capacity = capacity;
7585 sdg->sgc->capacity = capacity;
bf475ce0 7586 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7587}
7588
63b2ca30 7589void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7590{
7591 struct sched_domain *child = sd->child;
7592 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7593 unsigned long capacity, min_capacity;
4ec4412e
VG
7594 unsigned long interval;
7595
7596 interval = msecs_to_jiffies(sd->balance_interval);
7597 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7598 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7599
7600 if (!child) {
ced549fa 7601 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7602 return;
7603 }
7604
dc7ff76e 7605 capacity = 0;
bf475ce0 7606 min_capacity = ULONG_MAX;
1e3c88bd 7607
74a5ce20
PZ
7608 if (child->flags & SD_OVERLAP) {
7609 /*
7610 * SD_OVERLAP domains cannot assume that child groups
7611 * span the current group.
7612 */
7613
ae4df9d6 7614 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7615 struct sched_group_capacity *sgc;
9abf24d4 7616 struct rq *rq = cpu_rq(cpu);
863bffc8 7617
9abf24d4 7618 /*
63b2ca30 7619 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7620 * gets here before we've attached the domains to the
7621 * runqueues.
7622 *
ced549fa
NP
7623 * Use capacity_of(), which is set irrespective of domains
7624 * in update_cpu_capacity().
9abf24d4 7625 *
dc7ff76e 7626 * This avoids capacity from being 0 and
9abf24d4 7627 * causing divide-by-zero issues on boot.
9abf24d4
SD
7628 */
7629 if (unlikely(!rq->sd)) {
ced549fa 7630 capacity += capacity_of(cpu);
bf475ce0
MR
7631 } else {
7632 sgc = rq->sd->groups->sgc;
7633 capacity += sgc->capacity;
9abf24d4 7634 }
863bffc8 7635
bf475ce0 7636 min_capacity = min(capacity, min_capacity);
863bffc8 7637 }
74a5ce20
PZ
7638 } else {
7639 /*
7640 * !SD_OVERLAP domains can assume that child groups
7641 * span the current group.
97a7142f 7642 */
74a5ce20
PZ
7643
7644 group = child->groups;
7645 do {
bf475ce0
MR
7646 struct sched_group_capacity *sgc = group->sgc;
7647
7648 capacity += sgc->capacity;
7649 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7650 group = group->next;
7651 } while (group != child->groups);
7652 }
1e3c88bd 7653
63b2ca30 7654 sdg->sgc->capacity = capacity;
bf475ce0 7655 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7656}
7657
9d5efe05 7658/*
ea67821b
VG
7659 * Check whether the capacity of the rq has been noticeably reduced by side
7660 * activity. The imbalance_pct is used for the threshold.
7661 * Return true is the capacity is reduced
9d5efe05
SV
7662 */
7663static inline int
ea67821b 7664check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7665{
ea67821b
VG
7666 return ((rq->cpu_capacity * sd->imbalance_pct) <
7667 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7668}
7669
30ce5dab
PZ
7670/*
7671 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7672 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 7673 *
97fb7a0a
IM
7674 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7675 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7676 * Something like:
7677 *
2b4d5b25
IM
7678 * { 0 1 2 3 } { 4 5 6 7 }
7679 * * * * *
30ce5dab
PZ
7680 *
7681 * If we were to balance group-wise we'd place two tasks in the first group and
7682 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7683 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7684 *
7685 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7686 * by noticing the lower domain failed to reach balance and had difficulty
7687 * moving tasks due to affinity constraints.
30ce5dab
PZ
7688 *
7689 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7690 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7691 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7692 * to create an effective group imbalance.
7693 *
7694 * This is a somewhat tricky proposition since the next run might not find the
7695 * group imbalance and decide the groups need to be balanced again. A most
7696 * subtle and fragile situation.
7697 */
7698
6263322c 7699static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7700{
63b2ca30 7701 return group->sgc->imbalance;
30ce5dab
PZ
7702}
7703
b37d9316 7704/*
ea67821b
VG
7705 * group_has_capacity returns true if the group has spare capacity that could
7706 * be used by some tasks.
7707 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7708 * smaller than the number of CPUs or if the utilization is lower than the
7709 * available capacity for CFS tasks.
ea67821b
VG
7710 * For the latter, we use a threshold to stabilize the state, to take into
7711 * account the variance of the tasks' load and to return true if the available
7712 * capacity in meaningful for the load balancer.
7713 * As an example, an available capacity of 1% can appear but it doesn't make
7714 * any benefit for the load balance.
b37d9316 7715 */
ea67821b
VG
7716static inline bool
7717group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7718{
ea67821b
VG
7719 if (sgs->sum_nr_running < sgs->group_weight)
7720 return true;
c61037e9 7721
ea67821b 7722 if ((sgs->group_capacity * 100) >
9e91d61d 7723 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7724 return true;
b37d9316 7725
ea67821b
VG
7726 return false;
7727}
7728
7729/*
7730 * group_is_overloaded returns true if the group has more tasks than it can
7731 * handle.
7732 * group_is_overloaded is not equals to !group_has_capacity because a group
7733 * with the exact right number of tasks, has no more spare capacity but is not
7734 * overloaded so both group_has_capacity and group_is_overloaded return
7735 * false.
7736 */
7737static inline bool
7738group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7739{
7740 if (sgs->sum_nr_running <= sgs->group_weight)
7741 return false;
b37d9316 7742
ea67821b 7743 if ((sgs->group_capacity * 100) <
9e91d61d 7744 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7745 return true;
b37d9316 7746
ea67821b 7747 return false;
b37d9316
PZ
7748}
7749
9e0994c0
MR
7750/*
7751 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7752 * per-CPU capacity than sched_group ref.
7753 */
7754static inline bool
7755group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7756{
7757 return sg->sgc->min_capacity * capacity_margin <
7758 ref->sgc->min_capacity * 1024;
7759}
7760
79a89f92
LY
7761static inline enum
7762group_type group_classify(struct sched_group *group,
7763 struct sg_lb_stats *sgs)
caeb178c 7764{
ea67821b 7765 if (sgs->group_no_capacity)
caeb178c
RR
7766 return group_overloaded;
7767
7768 if (sg_imbalanced(group))
7769 return group_imbalanced;
7770
7771 return group_other;
7772}
7773
63928384 7774static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7775{
7776#ifdef CONFIG_NO_HZ_COMMON
7777 unsigned int cpu = rq->cpu;
7778
f643ea22
VG
7779 if (!rq->has_blocked_load)
7780 return false;
7781
e022e0d3 7782 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7783 return false;
e022e0d3 7784
63928384 7785 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7786 return true;
e022e0d3
PZ
7787
7788 update_blocked_averages(cpu);
f643ea22
VG
7789
7790 return rq->has_blocked_load;
7791#else
7792 return false;
e022e0d3
PZ
7793#endif
7794}
7795
1e3c88bd
PZ
7796/**
7797 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7798 * @env: The load balancing environment.
1e3c88bd 7799 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7800 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7801 * @local_group: Does group contain this_cpu.
1e3c88bd 7802 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7803 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7804 */
bd939f45
PZ
7805static inline void update_sg_lb_stats(struct lb_env *env,
7806 struct sched_group *group, int load_idx,
4486edd1
TC
7807 int local_group, struct sg_lb_stats *sgs,
7808 bool *overload)
1e3c88bd 7809{
30ce5dab 7810 unsigned long load;
a426f99c 7811 int i, nr_running;
1e3c88bd 7812
b72ff13c
PZ
7813 memset(sgs, 0, sizeof(*sgs));
7814
ae4df9d6 7815 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7816 struct rq *rq = cpu_rq(i);
7817
63928384 7818 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 7819 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 7820
97fb7a0a 7821 /* Bias balancing toward CPUs of our domain: */
6263322c 7822 if (local_group)
04f733b4 7823 load = target_load(i, load_idx);
6263322c 7824 else
1e3c88bd 7825 load = source_load(i, load_idx);
1e3c88bd
PZ
7826
7827 sgs->group_load += load;
9e91d61d 7828 sgs->group_util += cpu_util(i);
65fdac08 7829 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7830
a426f99c
WL
7831 nr_running = rq->nr_running;
7832 if (nr_running > 1)
4486edd1
TC
7833 *overload = true;
7834
0ec8aa00
PZ
7835#ifdef CONFIG_NUMA_BALANCING
7836 sgs->nr_numa_running += rq->nr_numa_running;
7837 sgs->nr_preferred_running += rq->nr_preferred_running;
7838#endif
c7132dd6 7839 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7840 /*
7841 * No need to call idle_cpu() if nr_running is not 0
7842 */
7843 if (!nr_running && idle_cpu(i))
aae6d3dd 7844 sgs->idle_cpus++;
1e3c88bd
PZ
7845 }
7846
63b2ca30
NP
7847 /* Adjust by relative CPU capacity of the group */
7848 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7849 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7850
dd5feea1 7851 if (sgs->sum_nr_running)
38d0f770 7852 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7853
aae6d3dd 7854 sgs->group_weight = group->group_weight;
b37d9316 7855
ea67821b 7856 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7857 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7858}
7859
532cb4c4
MN
7860/**
7861 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7862 * @env: The load balancing environment.
532cb4c4
MN
7863 * @sds: sched_domain statistics
7864 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7865 * @sgs: sched_group statistics
532cb4c4
MN
7866 *
7867 * Determine if @sg is a busier group than the previously selected
7868 * busiest group.
e69f6186
YB
7869 *
7870 * Return: %true if @sg is a busier group than the previously selected
7871 * busiest group. %false otherwise.
532cb4c4 7872 */
bd939f45 7873static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7874 struct sd_lb_stats *sds,
7875 struct sched_group *sg,
bd939f45 7876 struct sg_lb_stats *sgs)
532cb4c4 7877{
caeb178c 7878 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7879
caeb178c 7880 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7881 return true;
7882
caeb178c
RR
7883 if (sgs->group_type < busiest->group_type)
7884 return false;
7885
7886 if (sgs->avg_load <= busiest->avg_load)
7887 return false;
7888
9e0994c0
MR
7889 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7890 goto asym_packing;
7891
7892 /*
7893 * Candidate sg has no more than one task per CPU and
7894 * has higher per-CPU capacity. Migrating tasks to less
7895 * capable CPUs may harm throughput. Maximize throughput,
7896 * power/energy consequences are not considered.
7897 */
7898 if (sgs->sum_nr_running <= sgs->group_weight &&
7899 group_smaller_cpu_capacity(sds->local, sg))
7900 return false;
7901
7902asym_packing:
caeb178c
RR
7903 /* This is the busiest node in its class. */
7904 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7905 return true;
7906
97fb7a0a 7907 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
7908 if (env->idle == CPU_NOT_IDLE)
7909 return true;
532cb4c4 7910 /*
afe06efd
TC
7911 * ASYM_PACKING needs to move all the work to the highest
7912 * prority CPUs in the group, therefore mark all groups
7913 * of lower priority than ourself as busy.
532cb4c4 7914 */
afe06efd
TC
7915 if (sgs->sum_nr_running &&
7916 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7917 if (!sds->busiest)
7918 return true;
7919
97fb7a0a 7920 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
7921 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7922 sg->asym_prefer_cpu))
532cb4c4
MN
7923 return true;
7924 }
7925
7926 return false;
7927}
7928
0ec8aa00
PZ
7929#ifdef CONFIG_NUMA_BALANCING
7930static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7931{
7932 if (sgs->sum_nr_running > sgs->nr_numa_running)
7933 return regular;
7934 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7935 return remote;
7936 return all;
7937}
7938
7939static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7940{
7941 if (rq->nr_running > rq->nr_numa_running)
7942 return regular;
7943 if (rq->nr_running > rq->nr_preferred_running)
7944 return remote;
7945 return all;
7946}
7947#else
7948static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7949{
7950 return all;
7951}
7952
7953static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7954{
7955 return regular;
7956}
7957#endif /* CONFIG_NUMA_BALANCING */
7958
1e3c88bd 7959/**
461819ac 7960 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7961 * @env: The load balancing environment.
1e3c88bd
PZ
7962 * @sds: variable to hold the statistics for this sched_domain.
7963 */
0ec8aa00 7964static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7965{
bd939f45
PZ
7966 struct sched_domain *child = env->sd->child;
7967 struct sched_group *sg = env->sd->groups;
05b40e05 7968 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7969 struct sg_lb_stats tmp_sgs;
1e3c88bd 7970 int load_idx, prefer_sibling = 0;
4486edd1 7971 bool overload = false;
1e3c88bd
PZ
7972
7973 if (child && child->flags & SD_PREFER_SIBLING)
7974 prefer_sibling = 1;
7975
e022e0d3 7976#ifdef CONFIG_NO_HZ_COMMON
f643ea22 7977 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 7978 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
7979#endif
7980
bd939f45 7981 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7982
7983 do {
56cf515b 7984 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7985 int local_group;
7986
ae4df9d6 7987 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7988 if (local_group) {
7989 sds->local = sg;
05b40e05 7990 sgs = local;
b72ff13c
PZ
7991
7992 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7993 time_after_eq(jiffies, sg->sgc->next_update))
7994 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7995 }
1e3c88bd 7996
4486edd1
TC
7997 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7998 &overload);
1e3c88bd 7999
b72ff13c
PZ
8000 if (local_group)
8001 goto next_group;
8002
1e3c88bd
PZ
8003 /*
8004 * In case the child domain prefers tasks go to siblings
ea67821b 8005 * first, lower the sg capacity so that we'll try
75dd321d
NR
8006 * and move all the excess tasks away. We lower the capacity
8007 * of a group only if the local group has the capacity to fit
ea67821b
VG
8008 * these excess tasks. The extra check prevents the case where
8009 * you always pull from the heaviest group when it is already
8010 * under-utilized (possible with a large weight task outweighs
8011 * the tasks on the system).
1e3c88bd 8012 */
b72ff13c 8013 if (prefer_sibling && sds->local &&
05b40e05
SD
8014 group_has_capacity(env, local) &&
8015 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8016 sgs->group_no_capacity = 1;
79a89f92 8017 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8018 }
1e3c88bd 8019
b72ff13c 8020 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8021 sds->busiest = sg;
56cf515b 8022 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8023 }
8024
b72ff13c
PZ
8025next_group:
8026 /* Now, start updating sd_lb_stats */
90001d67 8027 sds->total_running += sgs->sum_nr_running;
b72ff13c 8028 sds->total_load += sgs->group_load;
63b2ca30 8029 sds->total_capacity += sgs->group_capacity;
b72ff13c 8030
532cb4c4 8031 sg = sg->next;
bd939f45 8032 } while (sg != env->sd->groups);
0ec8aa00 8033
f643ea22
VG
8034#ifdef CONFIG_NO_HZ_COMMON
8035 if ((env->flags & LBF_NOHZ_AGAIN) &&
8036 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8037
8038 WRITE_ONCE(nohz.next_blocked,
8039 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8040 }
8041#endif
8042
0ec8aa00
PZ
8043 if (env->sd->flags & SD_NUMA)
8044 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8045
8046 if (!env->sd->parent) {
8047 /* update overload indicator if we are at root domain */
8048 if (env->dst_rq->rd->overload != overload)
8049 env->dst_rq->rd->overload = overload;
8050 }
532cb4c4
MN
8051}
8052
532cb4c4
MN
8053/**
8054 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8055 * sched domain.
532cb4c4
MN
8056 *
8057 * This is primarily intended to used at the sibling level. Some
8058 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8059 * case of POWER7, it can move to lower SMT modes only when higher
8060 * threads are idle. When in lower SMT modes, the threads will
8061 * perform better since they share less core resources. Hence when we
8062 * have idle threads, we want them to be the higher ones.
8063 *
8064 * This packing function is run on idle threads. It checks to see if
8065 * the busiest CPU in this domain (core in the P7 case) has a higher
8066 * CPU number than the packing function is being run on. Here we are
8067 * assuming lower CPU number will be equivalent to lower a SMT thread
8068 * number.
8069 *
e69f6186 8070 * Return: 1 when packing is required and a task should be moved to
46123355 8071 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8072 *
cd96891d 8073 * @env: The load balancing environment.
532cb4c4 8074 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8075 */
bd939f45 8076static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8077{
8078 int busiest_cpu;
8079
bd939f45 8080 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8081 return 0;
8082
1f621e02
SD
8083 if (env->idle == CPU_NOT_IDLE)
8084 return 0;
8085
532cb4c4
MN
8086 if (!sds->busiest)
8087 return 0;
8088
afe06efd
TC
8089 busiest_cpu = sds->busiest->asym_prefer_cpu;
8090 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8091 return 0;
8092
bd939f45 8093 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 8094 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 8095 SCHED_CAPACITY_SCALE);
bd939f45 8096
532cb4c4 8097 return 1;
1e3c88bd
PZ
8098}
8099
8100/**
8101 * fix_small_imbalance - Calculate the minor imbalance that exists
8102 * amongst the groups of a sched_domain, during
8103 * load balancing.
cd96891d 8104 * @env: The load balancing environment.
1e3c88bd 8105 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8106 */
bd939f45
PZ
8107static inline
8108void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8109{
63b2ca30 8110 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8111 unsigned int imbn = 2;
dd5feea1 8112 unsigned long scaled_busy_load_per_task;
56cf515b 8113 struct sg_lb_stats *local, *busiest;
1e3c88bd 8114
56cf515b
JK
8115 local = &sds->local_stat;
8116 busiest = &sds->busiest_stat;
1e3c88bd 8117
56cf515b
JK
8118 if (!local->sum_nr_running)
8119 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8120 else if (busiest->load_per_task > local->load_per_task)
8121 imbn = 1;
dd5feea1 8122
56cf515b 8123 scaled_busy_load_per_task =
ca8ce3d0 8124 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8125 busiest->group_capacity;
56cf515b 8126
3029ede3
VD
8127 if (busiest->avg_load + scaled_busy_load_per_task >=
8128 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8129 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8130 return;
8131 }
8132
8133 /*
8134 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8135 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8136 * moving them.
8137 */
8138
63b2ca30 8139 capa_now += busiest->group_capacity *
56cf515b 8140 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8141 capa_now += local->group_capacity *
56cf515b 8142 min(local->load_per_task, local->avg_load);
ca8ce3d0 8143 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8144
8145 /* Amount of load we'd subtract */
a2cd4260 8146 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8147 capa_move += busiest->group_capacity *
56cf515b 8148 min(busiest->load_per_task,
a2cd4260 8149 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8150 }
1e3c88bd
PZ
8151
8152 /* Amount of load we'd add */
63b2ca30 8153 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8154 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8155 tmp = (busiest->avg_load * busiest->group_capacity) /
8156 local->group_capacity;
56cf515b 8157 } else {
ca8ce3d0 8158 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8159 local->group_capacity;
56cf515b 8160 }
63b2ca30 8161 capa_move += local->group_capacity *
3ae11c90 8162 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8163 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8164
8165 /* Move if we gain throughput */
63b2ca30 8166 if (capa_move > capa_now)
56cf515b 8167 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8168}
8169
8170/**
8171 * calculate_imbalance - Calculate the amount of imbalance present within the
8172 * groups of a given sched_domain during load balance.
bd939f45 8173 * @env: load balance environment
1e3c88bd 8174 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8175 */
bd939f45 8176static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8177{
dd5feea1 8178 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8179 struct sg_lb_stats *local, *busiest;
8180
8181 local = &sds->local_stat;
56cf515b 8182 busiest = &sds->busiest_stat;
dd5feea1 8183
caeb178c 8184 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8185 /*
8186 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8187 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8188 */
56cf515b
JK
8189 busiest->load_per_task =
8190 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8191 }
8192
1e3c88bd 8193 /*
885e542c
DE
8194 * Avg load of busiest sg can be less and avg load of local sg can
8195 * be greater than avg load across all sgs of sd because avg load
8196 * factors in sg capacity and sgs with smaller group_type are
8197 * skipped when updating the busiest sg:
1e3c88bd 8198 */
b1885550
VD
8199 if (busiest->avg_load <= sds->avg_load ||
8200 local->avg_load >= sds->avg_load) {
bd939f45
PZ
8201 env->imbalance = 0;
8202 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8203 }
8204
9a5d9ba6 8205 /*
97fb7a0a 8206 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8207 */
8208 if (busiest->group_type == group_overloaded &&
8209 local->group_type == group_overloaded) {
1be0eb2a 8210 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8211 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8212 load_above_capacity -= busiest->group_capacity;
26656215 8213 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8214 load_above_capacity /= busiest->group_capacity;
8215 } else
ea67821b 8216 load_above_capacity = ~0UL;
dd5feea1
SS
8217 }
8218
8219 /*
97fb7a0a 8220 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8221 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8222 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8223 * we also don't want to reduce the group load below the group
8224 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8225 */
30ce5dab 8226 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8227
8228 /* How much load to actually move to equalise the imbalance */
56cf515b 8229 env->imbalance = min(
63b2ca30
NP
8230 max_pull * busiest->group_capacity,
8231 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8232 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8233
8234 /*
8235 * if *imbalance is less than the average load per runnable task
25985edc 8236 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8237 * a think about bumping its value to force at least one task to be
8238 * moved
8239 */
56cf515b 8240 if (env->imbalance < busiest->load_per_task)
bd939f45 8241 return fix_small_imbalance(env, sds);
1e3c88bd 8242}
fab47622 8243
1e3c88bd
PZ
8244/******* find_busiest_group() helpers end here *********************/
8245
8246/**
8247 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8248 * if there is an imbalance.
1e3c88bd
PZ
8249 *
8250 * Also calculates the amount of weighted load which should be moved
8251 * to restore balance.
8252 *
cd96891d 8253 * @env: The load balancing environment.
1e3c88bd 8254 *
e69f6186 8255 * Return: - The busiest group if imbalance exists.
1e3c88bd 8256 */
56cf515b 8257static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8258{
56cf515b 8259 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8260 struct sd_lb_stats sds;
8261
147c5fc2 8262 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8263
8264 /*
8265 * Compute the various statistics relavent for load balancing at
8266 * this level.
8267 */
23f0d209 8268 update_sd_lb_stats(env, &sds);
56cf515b
JK
8269 local = &sds.local_stat;
8270 busiest = &sds.busiest_stat;
1e3c88bd 8271
ea67821b 8272 /* ASYM feature bypasses nice load balance check */
1f621e02 8273 if (check_asym_packing(env, &sds))
532cb4c4
MN
8274 return sds.busiest;
8275
cc57aa8f 8276 /* There is no busy sibling group to pull tasks from */
56cf515b 8277 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8278 goto out_balanced;
8279
90001d67 8280 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8281 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8282 / sds.total_capacity;
b0432d8f 8283
866ab43e
PZ
8284 /*
8285 * If the busiest group is imbalanced the below checks don't
30ce5dab 8286 * work because they assume all things are equal, which typically
866ab43e
PZ
8287 * isn't true due to cpus_allowed constraints and the like.
8288 */
caeb178c 8289 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8290 goto force_balance;
8291
583ffd99
BJ
8292 /*
8293 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8294 * capacities from resulting in underutilization due to avg_load.
8295 */
8296 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8297 busiest->group_no_capacity)
fab47622
NR
8298 goto force_balance;
8299
cc57aa8f 8300 /*
9c58c79a 8301 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8302 * don't try and pull any tasks.
8303 */
56cf515b 8304 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8305 goto out_balanced;
8306
cc57aa8f
PZ
8307 /*
8308 * Don't pull any tasks if this group is already above the domain
8309 * average load.
8310 */
56cf515b 8311 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8312 goto out_balanced;
8313
bd939f45 8314 if (env->idle == CPU_IDLE) {
aae6d3dd 8315 /*
97fb7a0a 8316 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8317 * and there is no imbalance between this and busiest group
97fb7a0a 8318 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8319 * significant if the diff is greater than 1 otherwise we
8320 * might end up to just move the imbalance on another group
aae6d3dd 8321 */
43f4d666
VG
8322 if ((busiest->group_type != group_overloaded) &&
8323 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8324 goto out_balanced;
c186fafe
PZ
8325 } else {
8326 /*
8327 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8328 * imbalance_pct to be conservative.
8329 */
56cf515b
JK
8330 if (100 * busiest->avg_load <=
8331 env->sd->imbalance_pct * local->avg_load)
c186fafe 8332 goto out_balanced;
aae6d3dd 8333 }
1e3c88bd 8334
fab47622 8335force_balance:
1e3c88bd 8336 /* Looks like there is an imbalance. Compute it */
bd939f45 8337 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8338 return sds.busiest;
8339
8340out_balanced:
bd939f45 8341 env->imbalance = 0;
1e3c88bd
PZ
8342 return NULL;
8343}
8344
8345/*
97fb7a0a 8346 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8347 */
bd939f45 8348static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8349 struct sched_group *group)
1e3c88bd
PZ
8350{
8351 struct rq *busiest = NULL, *rq;
ced549fa 8352 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8353 int i;
8354
ae4df9d6 8355 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8356 unsigned long capacity, wl;
0ec8aa00
PZ
8357 enum fbq_type rt;
8358
8359 rq = cpu_rq(i);
8360 rt = fbq_classify_rq(rq);
1e3c88bd 8361
0ec8aa00
PZ
8362 /*
8363 * We classify groups/runqueues into three groups:
8364 * - regular: there are !numa tasks
8365 * - remote: there are numa tasks that run on the 'wrong' node
8366 * - all: there is no distinction
8367 *
8368 * In order to avoid migrating ideally placed numa tasks,
8369 * ignore those when there's better options.
8370 *
8371 * If we ignore the actual busiest queue to migrate another
8372 * task, the next balance pass can still reduce the busiest
8373 * queue by moving tasks around inside the node.
8374 *
8375 * If we cannot move enough load due to this classification
8376 * the next pass will adjust the group classification and
8377 * allow migration of more tasks.
8378 *
8379 * Both cases only affect the total convergence complexity.
8380 */
8381 if (rt > env->fbq_type)
8382 continue;
8383
ced549fa 8384 capacity = capacity_of(i);
9d5efe05 8385
c7132dd6 8386 wl = weighted_cpuload(rq);
1e3c88bd 8387
6e40f5bb
TG
8388 /*
8389 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8390 * which is not scaled with the CPU capacity.
6e40f5bb 8391 */
ea67821b
VG
8392
8393 if (rq->nr_running == 1 && wl > env->imbalance &&
8394 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8395 continue;
8396
6e40f5bb 8397 /*
97fb7a0a
IM
8398 * For the load comparisons with the other CPU's, consider
8399 * the weighted_cpuload() scaled with the CPU capacity, so
8400 * that the load can be moved away from the CPU that is
ced549fa 8401 * potentially running at a lower capacity.
95a79b80 8402 *
ced549fa 8403 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8404 * multiplication to rid ourselves of the division works out
ced549fa
NP
8405 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8406 * our previous maximum.
6e40f5bb 8407 */
ced549fa 8408 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8409 busiest_load = wl;
ced549fa 8410 busiest_capacity = capacity;
1e3c88bd
PZ
8411 busiest = rq;
8412 }
8413 }
8414
8415 return busiest;
8416}
8417
8418/*
8419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8420 * so long as it is large enough.
8421 */
8422#define MAX_PINNED_INTERVAL 512
8423
bd939f45 8424static int need_active_balance(struct lb_env *env)
1af3ed3d 8425{
bd939f45
PZ
8426 struct sched_domain *sd = env->sd;
8427
8428 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8429
8430 /*
8431 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8432 * lower priority CPUs in order to pack all tasks in the
8433 * highest priority CPUs.
532cb4c4 8434 */
afe06efd
TC
8435 if ((sd->flags & SD_ASYM_PACKING) &&
8436 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8437 return 1;
1af3ed3d
PZ
8438 }
8439
1aaf90a4
VG
8440 /*
8441 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8442 * It's worth migrating the task if the src_cpu's capacity is reduced
8443 * because of other sched_class or IRQs if more capacity stays
8444 * available on dst_cpu.
8445 */
8446 if ((env->idle != CPU_NOT_IDLE) &&
8447 (env->src_rq->cfs.h_nr_running == 1)) {
8448 if ((check_cpu_capacity(env->src_rq, sd)) &&
8449 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8450 return 1;
8451 }
8452
1af3ed3d
PZ
8453 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8454}
8455
969c7921
TH
8456static int active_load_balance_cpu_stop(void *data);
8457
23f0d209
JK
8458static int should_we_balance(struct lb_env *env)
8459{
8460 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8461 int cpu, balance_cpu = -1;
8462
024c9d2f
PZ
8463 /*
8464 * Ensure the balancing environment is consistent; can happen
8465 * when the softirq triggers 'during' hotplug.
8466 */
8467 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8468 return 0;
8469
23f0d209 8470 /*
97fb7a0a 8471 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8472 * to do the newly idle load balance.
8473 */
8474 if (env->idle == CPU_NEWLY_IDLE)
8475 return 1;
8476
97fb7a0a 8477 /* Try to find first idle CPU */
e5c14b1f 8478 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8479 if (!idle_cpu(cpu))
23f0d209
JK
8480 continue;
8481
8482 balance_cpu = cpu;
8483 break;
8484 }
8485
8486 if (balance_cpu == -1)
8487 balance_cpu = group_balance_cpu(sg);
8488
8489 /*
97fb7a0a 8490 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8491 * is eligible for doing load balancing at this and above domains.
8492 */
b0cff9d8 8493 return balance_cpu == env->dst_cpu;
23f0d209
JK
8494}
8495
1e3c88bd
PZ
8496/*
8497 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8498 * tasks if there is an imbalance.
8499 */
8500static int load_balance(int this_cpu, struct rq *this_rq,
8501 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8502 int *continue_balancing)
1e3c88bd 8503{
88b8dac0 8504 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8505 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8506 struct sched_group *group;
1e3c88bd 8507 struct rq *busiest;
8a8c69c3 8508 struct rq_flags rf;
4ba29684 8509 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8510
8e45cb54
PZ
8511 struct lb_env env = {
8512 .sd = sd,
ddcdf6e7
PZ
8513 .dst_cpu = this_cpu,
8514 .dst_rq = this_rq,
ae4df9d6 8515 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8516 .idle = idle,
eb95308e 8517 .loop_break = sched_nr_migrate_break,
b9403130 8518 .cpus = cpus,
0ec8aa00 8519 .fbq_type = all,
163122b7 8520 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8521 };
8522
65a4433a 8523 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8524
ae92882e 8525 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8526
8527redo:
23f0d209
JK
8528 if (!should_we_balance(&env)) {
8529 *continue_balancing = 0;
1e3c88bd 8530 goto out_balanced;
23f0d209 8531 }
1e3c88bd 8532
23f0d209 8533 group = find_busiest_group(&env);
1e3c88bd 8534 if (!group) {
ae92882e 8535 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8536 goto out_balanced;
8537 }
8538
b9403130 8539 busiest = find_busiest_queue(&env, group);
1e3c88bd 8540 if (!busiest) {
ae92882e 8541 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8542 goto out_balanced;
8543 }
8544
78feefc5 8545 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8546
ae92882e 8547 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8548
1aaf90a4
VG
8549 env.src_cpu = busiest->cpu;
8550 env.src_rq = busiest;
8551
1e3c88bd
PZ
8552 ld_moved = 0;
8553 if (busiest->nr_running > 1) {
8554 /*
8555 * Attempt to move tasks. If find_busiest_group has found
8556 * an imbalance but busiest->nr_running <= 1, the group is
8557 * still unbalanced. ld_moved simply stays zero, so it is
8558 * correctly treated as an imbalance.
8559 */
8e45cb54 8560 env.flags |= LBF_ALL_PINNED;
c82513e5 8561 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8562
5d6523eb 8563more_balance:
8a8c69c3 8564 rq_lock_irqsave(busiest, &rf);
3bed5e21 8565 update_rq_clock(busiest);
88b8dac0
SV
8566
8567 /*
8568 * cur_ld_moved - load moved in current iteration
8569 * ld_moved - cumulative load moved across iterations
8570 */
163122b7 8571 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8572
8573 /*
163122b7
KT
8574 * We've detached some tasks from busiest_rq. Every
8575 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8576 * unlock busiest->lock, and we are able to be sure
8577 * that nobody can manipulate the tasks in parallel.
8578 * See task_rq_lock() family for the details.
1e3c88bd 8579 */
163122b7 8580
8a8c69c3 8581 rq_unlock(busiest, &rf);
163122b7
KT
8582
8583 if (cur_ld_moved) {
8584 attach_tasks(&env);
8585 ld_moved += cur_ld_moved;
8586 }
8587
8a8c69c3 8588 local_irq_restore(rf.flags);
88b8dac0 8589
f1cd0858
JK
8590 if (env.flags & LBF_NEED_BREAK) {
8591 env.flags &= ~LBF_NEED_BREAK;
8592 goto more_balance;
8593 }
8594
88b8dac0
SV
8595 /*
8596 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8597 * us and move them to an alternate dst_cpu in our sched_group
8598 * where they can run. The upper limit on how many times we
97fb7a0a 8599 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8600 * sched_group.
8601 *
8602 * This changes load balance semantics a bit on who can move
8603 * load to a given_cpu. In addition to the given_cpu itself
8604 * (or a ilb_cpu acting on its behalf where given_cpu is
8605 * nohz-idle), we now have balance_cpu in a position to move
8606 * load to given_cpu. In rare situations, this may cause
8607 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8608 * _independently_ and at _same_ time to move some load to
8609 * given_cpu) causing exceess load to be moved to given_cpu.
8610 * This however should not happen so much in practice and
8611 * moreover subsequent load balance cycles should correct the
8612 * excess load moved.
8613 */
6263322c 8614 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8615
97fb7a0a 8616 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
8617 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8618
78feefc5 8619 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8620 env.dst_cpu = env.new_dst_cpu;
6263322c 8621 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8622 env.loop = 0;
8623 env.loop_break = sched_nr_migrate_break;
e02e60c1 8624
88b8dac0
SV
8625 /*
8626 * Go back to "more_balance" rather than "redo" since we
8627 * need to continue with same src_cpu.
8628 */
8629 goto more_balance;
8630 }
1e3c88bd 8631
6263322c
PZ
8632 /*
8633 * We failed to reach balance because of affinity.
8634 */
8635 if (sd_parent) {
63b2ca30 8636 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8637
afdeee05 8638 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8639 *group_imbalance = 1;
6263322c
PZ
8640 }
8641
1e3c88bd 8642 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8643 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8644 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8645 /*
8646 * Attempting to continue load balancing at the current
8647 * sched_domain level only makes sense if there are
8648 * active CPUs remaining as possible busiest CPUs to
8649 * pull load from which are not contained within the
8650 * destination group that is receiving any migrated
8651 * load.
8652 */
8653 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8654 env.loop = 0;
8655 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8656 goto redo;
bbf18b19 8657 }
afdeee05 8658 goto out_all_pinned;
1e3c88bd
PZ
8659 }
8660 }
8661
8662 if (!ld_moved) {
ae92882e 8663 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8664 /*
8665 * Increment the failure counter only on periodic balance.
8666 * We do not want newidle balance, which can be very
8667 * frequent, pollute the failure counter causing
8668 * excessive cache_hot migrations and active balances.
8669 */
8670 if (idle != CPU_NEWLY_IDLE)
8671 sd->nr_balance_failed++;
1e3c88bd 8672
bd939f45 8673 if (need_active_balance(&env)) {
8a8c69c3
PZ
8674 unsigned long flags;
8675
1e3c88bd
PZ
8676 raw_spin_lock_irqsave(&busiest->lock, flags);
8677
97fb7a0a
IM
8678 /*
8679 * Don't kick the active_load_balance_cpu_stop,
8680 * if the curr task on busiest CPU can't be
8681 * moved to this_cpu:
1e3c88bd 8682 */
0c98d344 8683 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8684 raw_spin_unlock_irqrestore(&busiest->lock,
8685 flags);
8e45cb54 8686 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8687 goto out_one_pinned;
8688 }
8689
969c7921
TH
8690 /*
8691 * ->active_balance synchronizes accesses to
8692 * ->active_balance_work. Once set, it's cleared
8693 * only after active load balance is finished.
8694 */
1e3c88bd
PZ
8695 if (!busiest->active_balance) {
8696 busiest->active_balance = 1;
8697 busiest->push_cpu = this_cpu;
8698 active_balance = 1;
8699 }
8700 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8701
bd939f45 8702 if (active_balance) {
969c7921
TH
8703 stop_one_cpu_nowait(cpu_of(busiest),
8704 active_load_balance_cpu_stop, busiest,
8705 &busiest->active_balance_work);
bd939f45 8706 }
1e3c88bd 8707
d02c0711 8708 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8709 sd->nr_balance_failed = sd->cache_nice_tries+1;
8710 }
8711 } else
8712 sd->nr_balance_failed = 0;
8713
8714 if (likely(!active_balance)) {
8715 /* We were unbalanced, so reset the balancing interval */
8716 sd->balance_interval = sd->min_interval;
8717 } else {
8718 /*
8719 * If we've begun active balancing, start to back off. This
8720 * case may not be covered by the all_pinned logic if there
8721 * is only 1 task on the busy runqueue (because we don't call
163122b7 8722 * detach_tasks).
1e3c88bd
PZ
8723 */
8724 if (sd->balance_interval < sd->max_interval)
8725 sd->balance_interval *= 2;
8726 }
8727
1e3c88bd
PZ
8728 goto out;
8729
8730out_balanced:
afdeee05
VG
8731 /*
8732 * We reach balance although we may have faced some affinity
8733 * constraints. Clear the imbalance flag if it was set.
8734 */
8735 if (sd_parent) {
8736 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8737
8738 if (*group_imbalance)
8739 *group_imbalance = 0;
8740 }
8741
8742out_all_pinned:
8743 /*
8744 * We reach balance because all tasks are pinned at this level so
8745 * we can't migrate them. Let the imbalance flag set so parent level
8746 * can try to migrate them.
8747 */
ae92882e 8748 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8749
8750 sd->nr_balance_failed = 0;
8751
8752out_one_pinned:
8753 /* tune up the balancing interval */
8e45cb54 8754 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8755 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8756 (sd->balance_interval < sd->max_interval))
8757 sd->balance_interval *= 2;
8758
46e49b38 8759 ld_moved = 0;
1e3c88bd 8760out:
1e3c88bd
PZ
8761 return ld_moved;
8762}
8763
52a08ef1
JL
8764static inline unsigned long
8765get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8766{
8767 unsigned long interval = sd->balance_interval;
8768
8769 if (cpu_busy)
8770 interval *= sd->busy_factor;
8771
8772 /* scale ms to jiffies */
8773 interval = msecs_to_jiffies(interval);
8774 interval = clamp(interval, 1UL, max_load_balance_interval);
8775
8776 return interval;
8777}
8778
8779static inline void
31851a98 8780update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8781{
8782 unsigned long interval, next;
8783
31851a98
LY
8784 /* used by idle balance, so cpu_busy = 0 */
8785 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8786 next = sd->last_balance + interval;
8787
8788 if (time_after(*next_balance, next))
8789 *next_balance = next;
8790}
8791
1e3c88bd 8792/*
97fb7a0a 8793 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
8794 * running tasks off the busiest CPU onto idle CPUs. It requires at
8795 * least 1 task to be running on each physical CPU where possible, and
8796 * avoids physical / logical imbalances.
1e3c88bd 8797 */
969c7921 8798static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8799{
969c7921
TH
8800 struct rq *busiest_rq = data;
8801 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8802 int target_cpu = busiest_rq->push_cpu;
969c7921 8803 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8804 struct sched_domain *sd;
e5673f28 8805 struct task_struct *p = NULL;
8a8c69c3 8806 struct rq_flags rf;
969c7921 8807
8a8c69c3 8808 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8809 /*
8810 * Between queueing the stop-work and running it is a hole in which
8811 * CPUs can become inactive. We should not move tasks from or to
8812 * inactive CPUs.
8813 */
8814 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8815 goto out_unlock;
969c7921 8816
97fb7a0a 8817 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
8818 if (unlikely(busiest_cpu != smp_processor_id() ||
8819 !busiest_rq->active_balance))
8820 goto out_unlock;
1e3c88bd
PZ
8821
8822 /* Is there any task to move? */
8823 if (busiest_rq->nr_running <= 1)
969c7921 8824 goto out_unlock;
1e3c88bd
PZ
8825
8826 /*
8827 * This condition is "impossible", if it occurs
8828 * we need to fix it. Originally reported by
97fb7a0a 8829 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
8830 */
8831 BUG_ON(busiest_rq == target_rq);
8832
1e3c88bd 8833 /* Search for an sd spanning us and the target CPU. */
dce840a0 8834 rcu_read_lock();
1e3c88bd
PZ
8835 for_each_domain(target_cpu, sd) {
8836 if ((sd->flags & SD_LOAD_BALANCE) &&
8837 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8838 break;
8839 }
8840
8841 if (likely(sd)) {
8e45cb54
PZ
8842 struct lb_env env = {
8843 .sd = sd,
ddcdf6e7
PZ
8844 .dst_cpu = target_cpu,
8845 .dst_rq = target_rq,
8846 .src_cpu = busiest_rq->cpu,
8847 .src_rq = busiest_rq,
8e45cb54 8848 .idle = CPU_IDLE,
65a4433a
JH
8849 /*
8850 * can_migrate_task() doesn't need to compute new_dst_cpu
8851 * for active balancing. Since we have CPU_IDLE, but no
8852 * @dst_grpmask we need to make that test go away with lying
8853 * about DST_PINNED.
8854 */
8855 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8856 };
8857
ae92882e 8858 schedstat_inc(sd->alb_count);
3bed5e21 8859 update_rq_clock(busiest_rq);
1e3c88bd 8860
e5673f28 8861 p = detach_one_task(&env);
d02c0711 8862 if (p) {
ae92882e 8863 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8864 /* Active balancing done, reset the failure counter. */
8865 sd->nr_balance_failed = 0;
8866 } else {
ae92882e 8867 schedstat_inc(sd->alb_failed);
d02c0711 8868 }
1e3c88bd 8869 }
dce840a0 8870 rcu_read_unlock();
969c7921
TH
8871out_unlock:
8872 busiest_rq->active_balance = 0;
8a8c69c3 8873 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8874
8875 if (p)
8876 attach_one_task(target_rq, p);
8877
8878 local_irq_enable();
8879
969c7921 8880 return 0;
1e3c88bd
PZ
8881}
8882
af3fe03c
PZ
8883static DEFINE_SPINLOCK(balancing);
8884
8885/*
8886 * Scale the max load_balance interval with the number of CPUs in the system.
8887 * This trades load-balance latency on larger machines for less cross talk.
8888 */
8889void update_max_interval(void)
8890{
8891 max_load_balance_interval = HZ*num_online_cpus()/10;
8892}
8893
8894/*
8895 * It checks each scheduling domain to see if it is due to be balanced,
8896 * and initiates a balancing operation if so.
8897 *
8898 * Balancing parameters are set up in init_sched_domains.
8899 */
8900static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8901{
8902 int continue_balancing = 1;
8903 int cpu = rq->cpu;
8904 unsigned long interval;
8905 struct sched_domain *sd;
8906 /* Earliest time when we have to do rebalance again */
8907 unsigned long next_balance = jiffies + 60*HZ;
8908 int update_next_balance = 0;
8909 int need_serialize, need_decay = 0;
8910 u64 max_cost = 0;
8911
8912 rcu_read_lock();
8913 for_each_domain(cpu, sd) {
8914 /*
8915 * Decay the newidle max times here because this is a regular
8916 * visit to all the domains. Decay ~1% per second.
8917 */
8918 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8919 sd->max_newidle_lb_cost =
8920 (sd->max_newidle_lb_cost * 253) / 256;
8921 sd->next_decay_max_lb_cost = jiffies + HZ;
8922 need_decay = 1;
8923 }
8924 max_cost += sd->max_newidle_lb_cost;
8925
8926 if (!(sd->flags & SD_LOAD_BALANCE))
8927 continue;
8928
8929 /*
8930 * Stop the load balance at this level. There is another
8931 * CPU in our sched group which is doing load balancing more
8932 * actively.
8933 */
8934 if (!continue_balancing) {
8935 if (need_decay)
8936 continue;
8937 break;
8938 }
8939
8940 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8941
8942 need_serialize = sd->flags & SD_SERIALIZE;
8943 if (need_serialize) {
8944 if (!spin_trylock(&balancing))
8945 goto out;
8946 }
8947
8948 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8949 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8950 /*
8951 * The LBF_DST_PINNED logic could have changed
8952 * env->dst_cpu, so we can't know our idle
8953 * state even if we migrated tasks. Update it.
8954 */
8955 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8956 }
8957 sd->last_balance = jiffies;
8958 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8959 }
8960 if (need_serialize)
8961 spin_unlock(&balancing);
8962out:
8963 if (time_after(next_balance, sd->last_balance + interval)) {
8964 next_balance = sd->last_balance + interval;
8965 update_next_balance = 1;
8966 }
8967 }
8968 if (need_decay) {
8969 /*
8970 * Ensure the rq-wide value also decays but keep it at a
8971 * reasonable floor to avoid funnies with rq->avg_idle.
8972 */
8973 rq->max_idle_balance_cost =
8974 max((u64)sysctl_sched_migration_cost, max_cost);
8975 }
8976 rcu_read_unlock();
8977
8978 /*
8979 * next_balance will be updated only when there is a need.
8980 * When the cpu is attached to null domain for ex, it will not be
8981 * updated.
8982 */
8983 if (likely(update_next_balance)) {
8984 rq->next_balance = next_balance;
8985
8986#ifdef CONFIG_NO_HZ_COMMON
8987 /*
8988 * If this CPU has been elected to perform the nohz idle
8989 * balance. Other idle CPUs have already rebalanced with
8990 * nohz_idle_balance() and nohz.next_balance has been
8991 * updated accordingly. This CPU is now running the idle load
8992 * balance for itself and we need to update the
8993 * nohz.next_balance accordingly.
8994 */
8995 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8996 nohz.next_balance = rq->next_balance;
8997#endif
8998 }
8999}
9000
d987fc7f
MG
9001static inline int on_null_domain(struct rq *rq)
9002{
9003 return unlikely(!rcu_dereference_sched(rq->sd));
9004}
9005
3451d024 9006#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9007/*
9008 * idle load balancing details
83cd4fe2
VP
9009 * - When one of the busy CPUs notice that there may be an idle rebalancing
9010 * needed, they will kick the idle load balancer, which then does idle
9011 * load balancing for all the idle CPUs.
9012 */
1e3c88bd 9013
3dd0337d 9014static inline int find_new_ilb(void)
1e3c88bd 9015{
0b005cf5 9016 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9017
786d6dc7
SS
9018 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9019 return ilb;
9020
9021 return nr_cpu_ids;
1e3c88bd 9022}
1e3c88bd 9023
83cd4fe2
VP
9024/*
9025 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9026 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9027 * CPU (if there is one).
9028 */
a4064fb6 9029static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9030{
9031 int ilb_cpu;
9032
9033 nohz.next_balance++;
9034
3dd0337d 9035 ilb_cpu = find_new_ilb();
83cd4fe2 9036
0b005cf5
SS
9037 if (ilb_cpu >= nr_cpu_ids)
9038 return;
83cd4fe2 9039
a4064fb6 9040 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9041 if (flags & NOHZ_KICK_MASK)
1c792db7 9042 return;
4550487a 9043
1c792db7
SS
9044 /*
9045 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9046 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9047 * is idle. And the softirq performing nohz idle load balance
9048 * will be run before returning from the IPI.
9049 */
9050 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9051}
9052
9053/*
9054 * Current heuristic for kicking the idle load balancer in the presence
9055 * of an idle cpu in the system.
9056 * - This rq has more than one task.
9057 * - This rq has at least one CFS task and the capacity of the CPU is
9058 * significantly reduced because of RT tasks or IRQs.
9059 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9060 * multiple busy cpu.
9061 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9062 * domain span are idle.
9063 */
9064static void nohz_balancer_kick(struct rq *rq)
9065{
9066 unsigned long now = jiffies;
9067 struct sched_domain_shared *sds;
9068 struct sched_domain *sd;
9069 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9070 unsigned int flags = 0;
4550487a
PZ
9071
9072 if (unlikely(rq->idle_balance))
9073 return;
9074
9075 /*
9076 * We may be recently in ticked or tickless idle mode. At the first
9077 * busy tick after returning from idle, we will update the busy stats.
9078 */
00357f5e 9079 nohz_balance_exit_idle(rq);
4550487a
PZ
9080
9081 /*
9082 * None are in tickless mode and hence no need for NOHZ idle load
9083 * balancing.
9084 */
9085 if (likely(!atomic_read(&nohz.nr_cpus)))
9086 return;
9087
f643ea22
VG
9088 if (READ_ONCE(nohz.has_blocked) &&
9089 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9090 flags = NOHZ_STATS_KICK;
9091
4550487a 9092 if (time_before(now, nohz.next_balance))
a4064fb6 9093 goto out;
4550487a
PZ
9094
9095 if (rq->nr_running >= 2) {
a4064fb6 9096 flags = NOHZ_KICK_MASK;
4550487a
PZ
9097 goto out;
9098 }
9099
9100 rcu_read_lock();
9101 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9102 if (sds) {
9103 /*
9104 * XXX: write a coherent comment on why we do this.
9105 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9106 */
9107 nr_busy = atomic_read(&sds->nr_busy_cpus);
9108 if (nr_busy > 1) {
a4064fb6 9109 flags = NOHZ_KICK_MASK;
4550487a
PZ
9110 goto unlock;
9111 }
9112
9113 }
9114
9115 sd = rcu_dereference(rq->sd);
9116 if (sd) {
9117 if ((rq->cfs.h_nr_running >= 1) &&
9118 check_cpu_capacity(rq, sd)) {
a4064fb6 9119 flags = NOHZ_KICK_MASK;
4550487a
PZ
9120 goto unlock;
9121 }
9122 }
9123
9124 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9125 if (sd) {
9126 for_each_cpu(i, sched_domain_span(sd)) {
9127 if (i == cpu ||
9128 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9129 continue;
9130
9131 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9132 flags = NOHZ_KICK_MASK;
4550487a
PZ
9133 goto unlock;
9134 }
9135 }
9136 }
9137unlock:
9138 rcu_read_unlock();
9139out:
a4064fb6
PZ
9140 if (flags)
9141 kick_ilb(flags);
83cd4fe2
VP
9142}
9143
00357f5e 9144static void set_cpu_sd_state_busy(int cpu)
71325960 9145{
00357f5e 9146 struct sched_domain *sd;
a22e47a4 9147
00357f5e
PZ
9148 rcu_read_lock();
9149 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9150
00357f5e
PZ
9151 if (!sd || !sd->nohz_idle)
9152 goto unlock;
9153 sd->nohz_idle = 0;
9154
9155 atomic_inc(&sd->shared->nr_busy_cpus);
9156unlock:
9157 rcu_read_unlock();
71325960
SS
9158}
9159
00357f5e
PZ
9160void nohz_balance_exit_idle(struct rq *rq)
9161{
9162 SCHED_WARN_ON(rq != this_rq());
9163
9164 if (likely(!rq->nohz_tick_stopped))
9165 return;
9166
9167 rq->nohz_tick_stopped = 0;
9168 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9169 atomic_dec(&nohz.nr_cpus);
9170
9171 set_cpu_sd_state_busy(rq->cpu);
9172}
9173
9174static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9175{
9176 struct sched_domain *sd;
69e1e811 9177
69e1e811 9178 rcu_read_lock();
0e369d75 9179 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9180
9181 if (!sd || sd->nohz_idle)
9182 goto unlock;
9183 sd->nohz_idle = 1;
9184
0e369d75 9185 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9186unlock:
69e1e811
SS
9187 rcu_read_unlock();
9188}
9189
1e3c88bd 9190/*
97fb7a0a 9191 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9192 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9193 */
c1cc017c 9194void nohz_balance_enter_idle(int cpu)
1e3c88bd 9195{
00357f5e
PZ
9196 struct rq *rq = cpu_rq(cpu);
9197
9198 SCHED_WARN_ON(cpu != smp_processor_id());
9199
97fb7a0a 9200 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9201 if (!cpu_active(cpu))
9202 return;
9203
387bc8b5 9204 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9205 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9206 return;
9207
f643ea22
VG
9208 /*
9209 * Can be set safely without rq->lock held
9210 * If a clear happens, it will have evaluated last additions because
9211 * rq->lock is held during the check and the clear
9212 */
9213 rq->has_blocked_load = 1;
9214
9215 /*
9216 * The tick is still stopped but load could have been added in the
9217 * meantime. We set the nohz.has_blocked flag to trig a check of the
9218 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9219 * of nohz.has_blocked can only happen after checking the new load
9220 */
00357f5e 9221 if (rq->nohz_tick_stopped)
f643ea22 9222 goto out;
1e3c88bd 9223
97fb7a0a 9224 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9225 if (on_null_domain(rq))
d987fc7f
MG
9226 return;
9227
00357f5e
PZ
9228 rq->nohz_tick_stopped = 1;
9229
c1cc017c
AS
9230 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9231 atomic_inc(&nohz.nr_cpus);
00357f5e 9232
f643ea22
VG
9233 /*
9234 * Ensures that if nohz_idle_balance() fails to observe our
9235 * @idle_cpus_mask store, it must observe the @has_blocked
9236 * store.
9237 */
9238 smp_mb__after_atomic();
9239
00357f5e 9240 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9241
9242out:
9243 /*
9244 * Each time a cpu enter idle, we assume that it has blocked load and
9245 * enable the periodic update of the load of idle cpus
9246 */
9247 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9248}
1e3c88bd 9249
1e3c88bd 9250/*
31e77c93
VG
9251 * Internal function that runs load balance for all idle cpus. The load balance
9252 * can be a simple update of blocked load or a complete load balance with
9253 * tasks movement depending of flags.
9254 * The function returns false if the loop has stopped before running
9255 * through all idle CPUs.
1e3c88bd 9256 */
31e77c93
VG
9257static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9258 enum cpu_idle_type idle)
83cd4fe2 9259{
c5afb6a8 9260 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9261 unsigned long now = jiffies;
9262 unsigned long next_balance = now + 60*HZ;
f643ea22 9263 bool has_blocked_load = false;
c5afb6a8 9264 int update_next_balance = 0;
b7031a02 9265 int this_cpu = this_rq->cpu;
b7031a02 9266 int balance_cpu;
31e77c93 9267 int ret = false;
b7031a02 9268 struct rq *rq;
83cd4fe2 9269
b7031a02 9270 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9271
f643ea22
VG
9272 /*
9273 * We assume there will be no idle load after this update and clear
9274 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9275 * set the has_blocked flag and trig another update of idle load.
9276 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9277 * setting the flag, we are sure to not clear the state and not
9278 * check the load of an idle cpu.
9279 */
9280 WRITE_ONCE(nohz.has_blocked, 0);
9281
9282 /*
9283 * Ensures that if we miss the CPU, we must see the has_blocked
9284 * store from nohz_balance_enter_idle().
9285 */
9286 smp_mb();
9287
83cd4fe2 9288 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9289 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9290 continue;
9291
9292 /*
97fb7a0a
IM
9293 * If this CPU gets work to do, stop the load balancing
9294 * work being done for other CPUs. Next load
83cd4fe2
VP
9295 * balancing owner will pick it up.
9296 */
f643ea22
VG
9297 if (need_resched()) {
9298 has_blocked_load = true;
9299 goto abort;
9300 }
83cd4fe2 9301
5ed4f1d9
VG
9302 rq = cpu_rq(balance_cpu);
9303
63928384 9304 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9305
ed61bbc6
TC
9306 /*
9307 * If time for next balance is due,
9308 * do the balance.
9309 */
9310 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9311 struct rq_flags rf;
9312
31e77c93 9313 rq_lock_irqsave(rq, &rf);
ed61bbc6 9314 update_rq_clock(rq);
cee1afce 9315 cpu_load_update_idle(rq);
31e77c93 9316 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9317
b7031a02
PZ
9318 if (flags & NOHZ_BALANCE_KICK)
9319 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9320 }
83cd4fe2 9321
c5afb6a8
VG
9322 if (time_after(next_balance, rq->next_balance)) {
9323 next_balance = rq->next_balance;
9324 update_next_balance = 1;
9325 }
83cd4fe2 9326 }
c5afb6a8 9327
31e77c93
VG
9328 /* Newly idle CPU doesn't need an update */
9329 if (idle != CPU_NEWLY_IDLE) {
9330 update_blocked_averages(this_cpu);
9331 has_blocked_load |= this_rq->has_blocked_load;
9332 }
9333
b7031a02
PZ
9334 if (flags & NOHZ_BALANCE_KICK)
9335 rebalance_domains(this_rq, CPU_IDLE);
9336
f643ea22
VG
9337 WRITE_ONCE(nohz.next_blocked,
9338 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9339
31e77c93
VG
9340 /* The full idle balance loop has been done */
9341 ret = true;
9342
f643ea22
VG
9343abort:
9344 /* There is still blocked load, enable periodic update */
9345 if (has_blocked_load)
9346 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9347
c5afb6a8
VG
9348 /*
9349 * next_balance will be updated only when there is a need.
9350 * When the CPU is attached to null domain for ex, it will not be
9351 * updated.
9352 */
9353 if (likely(update_next_balance))
9354 nohz.next_balance = next_balance;
b7031a02 9355
31e77c93
VG
9356 return ret;
9357}
9358
9359/*
9360 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9361 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9362 */
9363static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9364{
9365 int this_cpu = this_rq->cpu;
9366 unsigned int flags;
9367
9368 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9369 return false;
9370
9371 if (idle != CPU_IDLE) {
9372 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9373 return false;
9374 }
9375
9376 /*
9377 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9378 */
9379 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9380 if (!(flags & NOHZ_KICK_MASK))
9381 return false;
9382
9383 _nohz_idle_balance(this_rq, flags, idle);
9384
b7031a02 9385 return true;
83cd4fe2 9386}
31e77c93
VG
9387
9388static void nohz_newidle_balance(struct rq *this_rq)
9389{
9390 int this_cpu = this_rq->cpu;
9391
9392 /*
9393 * This CPU doesn't want to be disturbed by scheduler
9394 * housekeeping
9395 */
9396 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9397 return;
9398
9399 /* Will wake up very soon. No time for doing anything else*/
9400 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9401 return;
9402
9403 /* Don't need to update blocked load of idle CPUs*/
9404 if (!READ_ONCE(nohz.has_blocked) ||
9405 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9406 return;
9407
9408 raw_spin_unlock(&this_rq->lock);
9409 /*
9410 * This CPU is going to be idle and blocked load of idle CPUs
9411 * need to be updated. Run the ilb locally as it is a good
9412 * candidate for ilb instead of waking up another idle CPU.
9413 * Kick an normal ilb if we failed to do the update.
9414 */
9415 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9416 kick_ilb(NOHZ_STATS_KICK);
9417 raw_spin_lock(&this_rq->lock);
9418}
9419
dd707247
PZ
9420#else /* !CONFIG_NO_HZ_COMMON */
9421static inline void nohz_balancer_kick(struct rq *rq) { }
9422
31e77c93 9423static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9424{
9425 return false;
9426}
31e77c93
VG
9427
9428static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9429#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9430
47ea5412
PZ
9431/*
9432 * idle_balance is called by schedule() if this_cpu is about to become
9433 * idle. Attempts to pull tasks from other CPUs.
9434 */
9435static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9436{
9437 unsigned long next_balance = jiffies + HZ;
9438 int this_cpu = this_rq->cpu;
9439 struct sched_domain *sd;
9440 int pulled_task = 0;
9441 u64 curr_cost = 0;
9442
9443 /*
9444 * We must set idle_stamp _before_ calling idle_balance(), such that we
9445 * measure the duration of idle_balance() as idle time.
9446 */
9447 this_rq->idle_stamp = rq_clock(this_rq);
9448
9449 /*
9450 * Do not pull tasks towards !active CPUs...
9451 */
9452 if (!cpu_active(this_cpu))
9453 return 0;
9454
9455 /*
9456 * This is OK, because current is on_cpu, which avoids it being picked
9457 * for load-balance and preemption/IRQs are still disabled avoiding
9458 * further scheduler activity on it and we're being very careful to
9459 * re-start the picking loop.
9460 */
9461 rq_unpin_lock(this_rq, rf);
9462
9463 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9464 !this_rq->rd->overload) {
31e77c93 9465
47ea5412
PZ
9466 rcu_read_lock();
9467 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9468 if (sd)
9469 update_next_balance(sd, &next_balance);
9470 rcu_read_unlock();
9471
31e77c93
VG
9472 nohz_newidle_balance(this_rq);
9473
47ea5412
PZ
9474 goto out;
9475 }
9476
9477 raw_spin_unlock(&this_rq->lock);
9478
9479 update_blocked_averages(this_cpu);
9480 rcu_read_lock();
9481 for_each_domain(this_cpu, sd) {
9482 int continue_balancing = 1;
9483 u64 t0, domain_cost;
9484
9485 if (!(sd->flags & SD_LOAD_BALANCE))
9486 continue;
9487
9488 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9489 update_next_balance(sd, &next_balance);
9490 break;
9491 }
9492
9493 if (sd->flags & SD_BALANCE_NEWIDLE) {
9494 t0 = sched_clock_cpu(this_cpu);
9495
9496 pulled_task = load_balance(this_cpu, this_rq,
9497 sd, CPU_NEWLY_IDLE,
9498 &continue_balancing);
9499
9500 domain_cost = sched_clock_cpu(this_cpu) - t0;
9501 if (domain_cost > sd->max_newidle_lb_cost)
9502 sd->max_newidle_lb_cost = domain_cost;
9503
9504 curr_cost += domain_cost;
9505 }
9506
9507 update_next_balance(sd, &next_balance);
9508
9509 /*
9510 * Stop searching for tasks to pull if there are
9511 * now runnable tasks on this rq.
9512 */
9513 if (pulled_task || this_rq->nr_running > 0)
9514 break;
9515 }
9516 rcu_read_unlock();
9517
9518 raw_spin_lock(&this_rq->lock);
9519
9520 if (curr_cost > this_rq->max_idle_balance_cost)
9521 this_rq->max_idle_balance_cost = curr_cost;
9522
457be908 9523out:
47ea5412
PZ
9524 /*
9525 * While browsing the domains, we released the rq lock, a task could
9526 * have been enqueued in the meantime. Since we're not going idle,
9527 * pretend we pulled a task.
9528 */
9529 if (this_rq->cfs.h_nr_running && !pulled_task)
9530 pulled_task = 1;
9531
47ea5412
PZ
9532 /* Move the next balance forward */
9533 if (time_after(this_rq->next_balance, next_balance))
9534 this_rq->next_balance = next_balance;
9535
9536 /* Is there a task of a high priority class? */
9537 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9538 pulled_task = -1;
9539
9540 if (pulled_task)
9541 this_rq->idle_stamp = 0;
9542
9543 rq_repin_lock(this_rq, rf);
9544
9545 return pulled_task;
9546}
9547
83cd4fe2
VP
9548/*
9549 * run_rebalance_domains is triggered when needed from the scheduler tick.
9550 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9551 */
0766f788 9552static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9553{
208cb16b 9554 struct rq *this_rq = this_rq();
6eb57e0d 9555 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9556 CPU_IDLE : CPU_NOT_IDLE;
9557
1e3c88bd 9558 /*
97fb7a0a
IM
9559 * If this CPU has a pending nohz_balance_kick, then do the
9560 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9561 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9562 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9563 * load balance only within the local sched_domain hierarchy
9564 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9565 */
b7031a02
PZ
9566 if (nohz_idle_balance(this_rq, idle))
9567 return;
9568
9569 /* normal load balance */
9570 update_blocked_averages(this_rq->cpu);
d4573c3e 9571 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9572}
9573
1e3c88bd
PZ
9574/*
9575 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9576 */
7caff66f 9577void trigger_load_balance(struct rq *rq)
1e3c88bd 9578{
1e3c88bd 9579 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9580 if (unlikely(on_null_domain(rq)))
9581 return;
9582
9583 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9584 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9585
9586 nohz_balancer_kick(rq);
1e3c88bd
PZ
9587}
9588
0bcdcf28
CE
9589static void rq_online_fair(struct rq *rq)
9590{
9591 update_sysctl();
0e59bdae
KT
9592
9593 update_runtime_enabled(rq);
0bcdcf28
CE
9594}
9595
9596static void rq_offline_fair(struct rq *rq)
9597{
9598 update_sysctl();
a4c96ae3
PB
9599
9600 /* Ensure any throttled groups are reachable by pick_next_task */
9601 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9602}
9603
55e12e5e 9604#endif /* CONFIG_SMP */
e1d1484f 9605
bf0f6f24 9606/*
d84b3131
FW
9607 * scheduler tick hitting a task of our scheduling class.
9608 *
9609 * NOTE: This function can be called remotely by the tick offload that
9610 * goes along full dynticks. Therefore no local assumption can be made
9611 * and everything must be accessed through the @rq and @curr passed in
9612 * parameters.
bf0f6f24 9613 */
8f4d37ec 9614static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9615{
9616 struct cfs_rq *cfs_rq;
9617 struct sched_entity *se = &curr->se;
9618
9619 for_each_sched_entity(se) {
9620 cfs_rq = cfs_rq_of(se);
8f4d37ec 9621 entity_tick(cfs_rq, se, queued);
bf0f6f24 9622 }
18bf2805 9623
b52da86e 9624 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9625 task_tick_numa(rq, curr);
bf0f6f24
IM
9626}
9627
9628/*
cd29fe6f
PZ
9629 * called on fork with the child task as argument from the parent's context
9630 * - child not yet on the tasklist
9631 * - preemption disabled
bf0f6f24 9632 */
cd29fe6f 9633static void task_fork_fair(struct task_struct *p)
bf0f6f24 9634{
4fc420c9
DN
9635 struct cfs_rq *cfs_rq;
9636 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9637 struct rq *rq = this_rq();
8a8c69c3 9638 struct rq_flags rf;
bf0f6f24 9639
8a8c69c3 9640 rq_lock(rq, &rf);
861d034e
PZ
9641 update_rq_clock(rq);
9642
4fc420c9
DN
9643 cfs_rq = task_cfs_rq(current);
9644 curr = cfs_rq->curr;
e210bffd
PZ
9645 if (curr) {
9646 update_curr(cfs_rq);
b5d9d734 9647 se->vruntime = curr->vruntime;
e210bffd 9648 }
aeb73b04 9649 place_entity(cfs_rq, se, 1);
4d78e7b6 9650
cd29fe6f 9651 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9652 /*
edcb60a3
IM
9653 * Upon rescheduling, sched_class::put_prev_task() will place
9654 * 'current' within the tree based on its new key value.
9655 */
4d78e7b6 9656 swap(curr->vruntime, se->vruntime);
8875125e 9657 resched_curr(rq);
4d78e7b6 9658 }
bf0f6f24 9659
88ec22d3 9660 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9661 rq_unlock(rq, &rf);
bf0f6f24
IM
9662}
9663
cb469845
SR
9664/*
9665 * Priority of the task has changed. Check to see if we preempt
9666 * the current task.
9667 */
da7a735e
PZ
9668static void
9669prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9670{
da0c1e65 9671 if (!task_on_rq_queued(p))
da7a735e
PZ
9672 return;
9673
cb469845
SR
9674 /*
9675 * Reschedule if we are currently running on this runqueue and
9676 * our priority decreased, or if we are not currently running on
9677 * this runqueue and our priority is higher than the current's
9678 */
da7a735e 9679 if (rq->curr == p) {
cb469845 9680 if (p->prio > oldprio)
8875125e 9681 resched_curr(rq);
cb469845 9682 } else
15afe09b 9683 check_preempt_curr(rq, p, 0);
cb469845
SR
9684}
9685
daa59407 9686static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9687{
9688 struct sched_entity *se = &p->se;
da7a735e
PZ
9689
9690 /*
daa59407
BP
9691 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9692 * the dequeue_entity(.flags=0) will already have normalized the
9693 * vruntime.
9694 */
9695 if (p->on_rq)
9696 return true;
9697
9698 /*
9699 * When !on_rq, vruntime of the task has usually NOT been normalized.
9700 * But there are some cases where it has already been normalized:
da7a735e 9701 *
daa59407
BP
9702 * - A forked child which is waiting for being woken up by
9703 * wake_up_new_task().
9704 * - A task which has been woken up by try_to_wake_up() and
9705 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9706 */
daa59407
BP
9707 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9708 return true;
9709
9710 return false;
9711}
9712
09a43ace
VG
9713#ifdef CONFIG_FAIR_GROUP_SCHED
9714/*
9715 * Propagate the changes of the sched_entity across the tg tree to make it
9716 * visible to the root
9717 */
9718static void propagate_entity_cfs_rq(struct sched_entity *se)
9719{
9720 struct cfs_rq *cfs_rq;
9721
9722 /* Start to propagate at parent */
9723 se = se->parent;
9724
9725 for_each_sched_entity(se) {
9726 cfs_rq = cfs_rq_of(se);
9727
9728 if (cfs_rq_throttled(cfs_rq))
9729 break;
9730
88c0616e 9731 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9732 }
9733}
9734#else
9735static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9736#endif
9737
df217913 9738static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9739{
daa59407
BP
9740 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9741
9d89c257 9742 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9743 update_load_avg(cfs_rq, se, 0);
a05e8c51 9744 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9745 update_tg_load_avg(cfs_rq, false);
09a43ace 9746 propagate_entity_cfs_rq(se);
da7a735e
PZ
9747}
9748
df217913 9749static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9750{
daa59407 9751 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9752
9753#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9754 /*
9755 * Since the real-depth could have been changed (only FAIR
9756 * class maintain depth value), reset depth properly.
9757 */
9758 se->depth = se->parent ? se->parent->depth + 1 : 0;
9759#endif
7855a35a 9760
df217913 9761 /* Synchronize entity with its cfs_rq */
88c0616e 9762 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 9763 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 9764 update_tg_load_avg(cfs_rq, false);
09a43ace 9765 propagate_entity_cfs_rq(se);
df217913
VG
9766}
9767
9768static void detach_task_cfs_rq(struct task_struct *p)
9769{
9770 struct sched_entity *se = &p->se;
9771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9772
9773 if (!vruntime_normalized(p)) {
9774 /*
9775 * Fix up our vruntime so that the current sleep doesn't
9776 * cause 'unlimited' sleep bonus.
9777 */
9778 place_entity(cfs_rq, se, 0);
9779 se->vruntime -= cfs_rq->min_vruntime;
9780 }
9781
9782 detach_entity_cfs_rq(se);
9783}
9784
9785static void attach_task_cfs_rq(struct task_struct *p)
9786{
9787 struct sched_entity *se = &p->se;
9788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9789
9790 attach_entity_cfs_rq(se);
daa59407
BP
9791
9792 if (!vruntime_normalized(p))
9793 se->vruntime += cfs_rq->min_vruntime;
9794}
6efdb105 9795
daa59407
BP
9796static void switched_from_fair(struct rq *rq, struct task_struct *p)
9797{
9798 detach_task_cfs_rq(p);
9799}
9800
9801static void switched_to_fair(struct rq *rq, struct task_struct *p)
9802{
9803 attach_task_cfs_rq(p);
7855a35a 9804
daa59407 9805 if (task_on_rq_queued(p)) {
7855a35a 9806 /*
daa59407
BP
9807 * We were most likely switched from sched_rt, so
9808 * kick off the schedule if running, otherwise just see
9809 * if we can still preempt the current task.
7855a35a 9810 */
daa59407
BP
9811 if (rq->curr == p)
9812 resched_curr(rq);
9813 else
9814 check_preempt_curr(rq, p, 0);
7855a35a 9815 }
cb469845
SR
9816}
9817
83b699ed
SV
9818/* Account for a task changing its policy or group.
9819 *
9820 * This routine is mostly called to set cfs_rq->curr field when a task
9821 * migrates between groups/classes.
9822 */
9823static void set_curr_task_fair(struct rq *rq)
9824{
9825 struct sched_entity *se = &rq->curr->se;
9826
ec12cb7f
PT
9827 for_each_sched_entity(se) {
9828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9829
9830 set_next_entity(cfs_rq, se);
9831 /* ensure bandwidth has been allocated on our new cfs_rq */
9832 account_cfs_rq_runtime(cfs_rq, 0);
9833 }
83b699ed
SV
9834}
9835
029632fb
PZ
9836void init_cfs_rq(struct cfs_rq *cfs_rq)
9837{
bfb06889 9838 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9839 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9840#ifndef CONFIG_64BIT
9841 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9842#endif
141965c7 9843#ifdef CONFIG_SMP
2a2f5d4e 9844 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9845#endif
029632fb
PZ
9846}
9847
810b3817 9848#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9849static void task_set_group_fair(struct task_struct *p)
9850{
9851 struct sched_entity *se = &p->se;
9852
9853 set_task_rq(p, task_cpu(p));
9854 se->depth = se->parent ? se->parent->depth + 1 : 0;
9855}
9856
bc54da21 9857static void task_move_group_fair(struct task_struct *p)
810b3817 9858{
daa59407 9859 detach_task_cfs_rq(p);
b2b5ce02 9860 set_task_rq(p, task_cpu(p));
6efdb105
BP
9861
9862#ifdef CONFIG_SMP
9863 /* Tell se's cfs_rq has been changed -- migrated */
9864 p->se.avg.last_update_time = 0;
9865#endif
daa59407 9866 attach_task_cfs_rq(p);
810b3817 9867}
029632fb 9868
ea86cb4b
VG
9869static void task_change_group_fair(struct task_struct *p, int type)
9870{
9871 switch (type) {
9872 case TASK_SET_GROUP:
9873 task_set_group_fair(p);
9874 break;
9875
9876 case TASK_MOVE_GROUP:
9877 task_move_group_fair(p);
9878 break;
9879 }
9880}
9881
029632fb
PZ
9882void free_fair_sched_group(struct task_group *tg)
9883{
9884 int i;
9885
9886 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9887
9888 for_each_possible_cpu(i) {
9889 if (tg->cfs_rq)
9890 kfree(tg->cfs_rq[i]);
6fe1f348 9891 if (tg->se)
029632fb
PZ
9892 kfree(tg->se[i]);
9893 }
9894
9895 kfree(tg->cfs_rq);
9896 kfree(tg->se);
9897}
9898
9899int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9900{
029632fb 9901 struct sched_entity *se;
b7fa30c9 9902 struct cfs_rq *cfs_rq;
029632fb
PZ
9903 int i;
9904
6396bb22 9905 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
9906 if (!tg->cfs_rq)
9907 goto err;
6396bb22 9908 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
9909 if (!tg->se)
9910 goto err;
9911
9912 tg->shares = NICE_0_LOAD;
9913
9914 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9915
9916 for_each_possible_cpu(i) {
9917 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9918 GFP_KERNEL, cpu_to_node(i));
9919 if (!cfs_rq)
9920 goto err;
9921
9922 se = kzalloc_node(sizeof(struct sched_entity),
9923 GFP_KERNEL, cpu_to_node(i));
9924 if (!se)
9925 goto err_free_rq;
9926
9927 init_cfs_rq(cfs_rq);
9928 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9929 init_entity_runnable_average(se);
029632fb
PZ
9930 }
9931
9932 return 1;
9933
9934err_free_rq:
9935 kfree(cfs_rq);
9936err:
9937 return 0;
9938}
9939
8663e24d
PZ
9940void online_fair_sched_group(struct task_group *tg)
9941{
9942 struct sched_entity *se;
9943 struct rq *rq;
9944 int i;
9945
9946 for_each_possible_cpu(i) {
9947 rq = cpu_rq(i);
9948 se = tg->se[i];
9949
9950 raw_spin_lock_irq(&rq->lock);
4126bad6 9951 update_rq_clock(rq);
d0326691 9952 attach_entity_cfs_rq(se);
55e16d30 9953 sync_throttle(tg, i);
8663e24d
PZ
9954 raw_spin_unlock_irq(&rq->lock);
9955 }
9956}
9957
6fe1f348 9958void unregister_fair_sched_group(struct task_group *tg)
029632fb 9959{
029632fb 9960 unsigned long flags;
6fe1f348
PZ
9961 struct rq *rq;
9962 int cpu;
029632fb 9963
6fe1f348
PZ
9964 for_each_possible_cpu(cpu) {
9965 if (tg->se[cpu])
9966 remove_entity_load_avg(tg->se[cpu]);
029632fb 9967
6fe1f348
PZ
9968 /*
9969 * Only empty task groups can be destroyed; so we can speculatively
9970 * check on_list without danger of it being re-added.
9971 */
9972 if (!tg->cfs_rq[cpu]->on_list)
9973 continue;
9974
9975 rq = cpu_rq(cpu);
9976
9977 raw_spin_lock_irqsave(&rq->lock, flags);
9978 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9979 raw_spin_unlock_irqrestore(&rq->lock, flags);
9980 }
029632fb
PZ
9981}
9982
9983void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9984 struct sched_entity *se, int cpu,
9985 struct sched_entity *parent)
9986{
9987 struct rq *rq = cpu_rq(cpu);
9988
9989 cfs_rq->tg = tg;
9990 cfs_rq->rq = rq;
029632fb
PZ
9991 init_cfs_rq_runtime(cfs_rq);
9992
9993 tg->cfs_rq[cpu] = cfs_rq;
9994 tg->se[cpu] = se;
9995
9996 /* se could be NULL for root_task_group */
9997 if (!se)
9998 return;
9999
fed14d45 10000 if (!parent) {
029632fb 10001 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10002 se->depth = 0;
10003 } else {
029632fb 10004 se->cfs_rq = parent->my_q;
fed14d45
PZ
10005 se->depth = parent->depth + 1;
10006 }
029632fb
PZ
10007
10008 se->my_q = cfs_rq;
0ac9b1c2
PT
10009 /* guarantee group entities always have weight */
10010 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10011 se->parent = parent;
10012}
10013
10014static DEFINE_MUTEX(shares_mutex);
10015
10016int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10017{
10018 int i;
029632fb
PZ
10019
10020 /*
10021 * We can't change the weight of the root cgroup.
10022 */
10023 if (!tg->se[0])
10024 return -EINVAL;
10025
10026 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10027
10028 mutex_lock(&shares_mutex);
10029 if (tg->shares == shares)
10030 goto done;
10031
10032 tg->shares = shares;
10033 for_each_possible_cpu(i) {
10034 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10035 struct sched_entity *se = tg->se[i];
10036 struct rq_flags rf;
029632fb 10037
029632fb 10038 /* Propagate contribution to hierarchy */
8a8c69c3 10039 rq_lock_irqsave(rq, &rf);
71b1da46 10040 update_rq_clock(rq);
89ee048f 10041 for_each_sched_entity(se) {
88c0616e 10042 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10043 update_cfs_group(se);
89ee048f 10044 }
8a8c69c3 10045 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10046 }
10047
10048done:
10049 mutex_unlock(&shares_mutex);
10050 return 0;
10051}
10052#else /* CONFIG_FAIR_GROUP_SCHED */
10053
10054void free_fair_sched_group(struct task_group *tg) { }
10055
10056int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10057{
10058 return 1;
10059}
10060
8663e24d
PZ
10061void online_fair_sched_group(struct task_group *tg) { }
10062
6fe1f348 10063void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10064
10065#endif /* CONFIG_FAIR_GROUP_SCHED */
10066
810b3817 10067
6d686f45 10068static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10069{
10070 struct sched_entity *se = &task->se;
0d721cea
PW
10071 unsigned int rr_interval = 0;
10072
10073 /*
10074 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10075 * idle runqueue:
10076 */
0d721cea 10077 if (rq->cfs.load.weight)
a59f4e07 10078 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10079
10080 return rr_interval;
10081}
10082
bf0f6f24
IM
10083/*
10084 * All the scheduling class methods:
10085 */
029632fb 10086const struct sched_class fair_sched_class = {
5522d5d5 10087 .next = &idle_sched_class,
bf0f6f24
IM
10088 .enqueue_task = enqueue_task_fair,
10089 .dequeue_task = dequeue_task_fair,
10090 .yield_task = yield_task_fair,
d95f4122 10091 .yield_to_task = yield_to_task_fair,
bf0f6f24 10092
2e09bf55 10093 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10094
10095 .pick_next_task = pick_next_task_fair,
10096 .put_prev_task = put_prev_task_fair,
10097
681f3e68 10098#ifdef CONFIG_SMP
4ce72a2c 10099 .select_task_rq = select_task_rq_fair,
0a74bef8 10100 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10101
0bcdcf28
CE
10102 .rq_online = rq_online_fair,
10103 .rq_offline = rq_offline_fair,
88ec22d3 10104
12695578 10105 .task_dead = task_dead_fair,
c5b28038 10106 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10107#endif
bf0f6f24 10108
83b699ed 10109 .set_curr_task = set_curr_task_fair,
bf0f6f24 10110 .task_tick = task_tick_fair,
cd29fe6f 10111 .task_fork = task_fork_fair,
cb469845
SR
10112
10113 .prio_changed = prio_changed_fair,
da7a735e 10114 .switched_from = switched_from_fair,
cb469845 10115 .switched_to = switched_to_fair,
810b3817 10116
0d721cea
PW
10117 .get_rr_interval = get_rr_interval_fair,
10118
6e998916
SG
10119 .update_curr = update_curr_fair,
10120
810b3817 10121#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10122 .task_change_group = task_change_group_fair,
810b3817 10123#endif
bf0f6f24
IM
10124};
10125
10126#ifdef CONFIG_SCHED_DEBUG
029632fb 10127void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10128{
a9e7f654 10129 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10130
5973e5b9 10131 rcu_read_lock();
a9e7f654 10132 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10133 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10134 rcu_read_unlock();
bf0f6f24 10135}
397f2378
SD
10136
10137#ifdef CONFIG_NUMA_BALANCING
10138void show_numa_stats(struct task_struct *p, struct seq_file *m)
10139{
10140 int node;
10141 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10142
10143 for_each_online_node(node) {
10144 if (p->numa_faults) {
10145 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10146 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10147 }
10148 if (p->numa_group) {
10149 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10150 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10151 }
10152 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10153 }
10154}
10155#endif /* CONFIG_NUMA_BALANCING */
10156#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10157
10158__init void init_sched_fair_class(void)
10159{
10160#ifdef CONFIG_SMP
10161 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10162
3451d024 10163#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10164 nohz.next_balance = jiffies;
f643ea22 10165 nohz.next_blocked = jiffies;
029632fb 10166 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10167#endif
10168#endif /* SMP */
10169
10170}