sched: Replace update_shares weight distribution with per-entity computation
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
aff3e498
PT
262static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
263 int force_update);
9ee474f5 264
3d4b47b4
PZ
265static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266{
267 if (!cfs_rq->on_list) {
67e86250
PT
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 281 }
3d4b47b4
PZ
282
283 cfs_rq->on_list = 1;
9ee474f5 284 /* We should have no load, but we need to update last_decay. */
aff3e498 285 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
286 }
287}
288
289static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (cfs_rq->on_list) {
292 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
293 cfs_rq->on_list = 0;
294 }
295}
296
b758149c
PZ
297/* Iterate thr' all leaf cfs_rq's on a runqueue */
298#define for_each_leaf_cfs_rq(rq, cfs_rq) \
299 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
300
301/* Do the two (enqueued) entities belong to the same group ? */
302static inline int
303is_same_group(struct sched_entity *se, struct sched_entity *pse)
304{
305 if (se->cfs_rq == pse->cfs_rq)
306 return 1;
307
308 return 0;
309}
310
311static inline struct sched_entity *parent_entity(struct sched_entity *se)
312{
313 return se->parent;
314}
315
464b7527
PZ
316/* return depth at which a sched entity is present in the hierarchy */
317static inline int depth_se(struct sched_entity *se)
318{
319 int depth = 0;
320
321 for_each_sched_entity(se)
322 depth++;
323
324 return depth;
325}
326
327static void
328find_matching_se(struct sched_entity **se, struct sched_entity **pse)
329{
330 int se_depth, pse_depth;
331
332 /*
333 * preemption test can be made between sibling entities who are in the
334 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
335 * both tasks until we find their ancestors who are siblings of common
336 * parent.
337 */
338
339 /* First walk up until both entities are at same depth */
340 se_depth = depth_se(*se);
341 pse_depth = depth_se(*pse);
342
343 while (se_depth > pse_depth) {
344 se_depth--;
345 *se = parent_entity(*se);
346 }
347
348 while (pse_depth > se_depth) {
349 pse_depth--;
350 *pse = parent_entity(*pse);
351 }
352
353 while (!is_same_group(*se, *pse)) {
354 *se = parent_entity(*se);
355 *pse = parent_entity(*pse);
356 }
357}
358
8f48894f
PZ
359#else /* !CONFIG_FAIR_GROUP_SCHED */
360
361static inline struct task_struct *task_of(struct sched_entity *se)
362{
363 return container_of(se, struct task_struct, se);
364}
bf0f6f24 365
62160e3f
IM
366static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
367{
368 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
369}
370
371#define entity_is_task(se) 1
372
b758149c
PZ
373#define for_each_sched_entity(se) \
374 for (; se; se = NULL)
bf0f6f24 375
b758149c 376static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 377{
b758149c 378 return &task_rq(p)->cfs;
bf0f6f24
IM
379}
380
b758149c
PZ
381static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
382{
383 struct task_struct *p = task_of(se);
384 struct rq *rq = task_rq(p);
385
386 return &rq->cfs;
387}
388
389/* runqueue "owned" by this group */
390static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
391{
392 return NULL;
393}
394
3d4b47b4
PZ
395static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
396{
397}
398
399static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400{
401}
402
b758149c
PZ
403#define for_each_leaf_cfs_rq(rq, cfs_rq) \
404 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
405
406static inline int
407is_same_group(struct sched_entity *se, struct sched_entity *pse)
408{
409 return 1;
410}
411
412static inline struct sched_entity *parent_entity(struct sched_entity *se)
413{
414 return NULL;
415}
416
464b7527
PZ
417static inline void
418find_matching_se(struct sched_entity **se, struct sched_entity **pse)
419{
420}
421
b758149c
PZ
422#endif /* CONFIG_FAIR_GROUP_SCHED */
423
6c16a6dc
PZ
424static __always_inline
425void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
426
427/**************************************************************
428 * Scheduling class tree data structure manipulation methods:
429 */
430
0702e3eb 431static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 432{
368059a9
PZ
433 s64 delta = (s64)(vruntime - min_vruntime);
434 if (delta > 0)
02e0431a
PZ
435 min_vruntime = vruntime;
436
437 return min_vruntime;
438}
439
0702e3eb 440static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
441{
442 s64 delta = (s64)(vruntime - min_vruntime);
443 if (delta < 0)
444 min_vruntime = vruntime;
445
446 return min_vruntime;
447}
448
54fdc581
FC
449static inline int entity_before(struct sched_entity *a,
450 struct sched_entity *b)
451{
452 return (s64)(a->vruntime - b->vruntime) < 0;
453}
454
1af5f730
PZ
455static void update_min_vruntime(struct cfs_rq *cfs_rq)
456{
457 u64 vruntime = cfs_rq->min_vruntime;
458
459 if (cfs_rq->curr)
460 vruntime = cfs_rq->curr->vruntime;
461
462 if (cfs_rq->rb_leftmost) {
463 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
464 struct sched_entity,
465 run_node);
466
e17036da 467 if (!cfs_rq->curr)
1af5f730
PZ
468 vruntime = se->vruntime;
469 else
470 vruntime = min_vruntime(vruntime, se->vruntime);
471 }
472
473 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
474#ifndef CONFIG_64BIT
475 smp_wmb();
476 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
477#endif
1af5f730
PZ
478}
479
bf0f6f24
IM
480/*
481 * Enqueue an entity into the rb-tree:
482 */
0702e3eb 483static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
484{
485 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
486 struct rb_node *parent = NULL;
487 struct sched_entity *entry;
bf0f6f24
IM
488 int leftmost = 1;
489
490 /*
491 * Find the right place in the rbtree:
492 */
493 while (*link) {
494 parent = *link;
495 entry = rb_entry(parent, struct sched_entity, run_node);
496 /*
497 * We dont care about collisions. Nodes with
498 * the same key stay together.
499 */
2bd2d6f2 500 if (entity_before(se, entry)) {
bf0f6f24
IM
501 link = &parent->rb_left;
502 } else {
503 link = &parent->rb_right;
504 leftmost = 0;
505 }
506 }
507
508 /*
509 * Maintain a cache of leftmost tree entries (it is frequently
510 * used):
511 */
1af5f730 512 if (leftmost)
57cb499d 513 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
514
515 rb_link_node(&se->run_node, parent, link);
516 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
517}
518
0702e3eb 519static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 520{
3fe69747
PZ
521 if (cfs_rq->rb_leftmost == &se->run_node) {
522 struct rb_node *next_node;
3fe69747
PZ
523
524 next_node = rb_next(&se->run_node);
525 cfs_rq->rb_leftmost = next_node;
3fe69747 526 }
e9acbff6 527
bf0f6f24 528 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
529}
530
029632fb 531struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 532{
f4b6755f
PZ
533 struct rb_node *left = cfs_rq->rb_leftmost;
534
535 if (!left)
536 return NULL;
537
538 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
539}
540
ac53db59
RR
541static struct sched_entity *__pick_next_entity(struct sched_entity *se)
542{
543 struct rb_node *next = rb_next(&se->run_node);
544
545 if (!next)
546 return NULL;
547
548 return rb_entry(next, struct sched_entity, run_node);
549}
550
551#ifdef CONFIG_SCHED_DEBUG
029632fb 552struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 553{
7eee3e67 554 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 555
70eee74b
BS
556 if (!last)
557 return NULL;
7eee3e67
IM
558
559 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
560}
561
bf0f6f24
IM
562/**************************************************************
563 * Scheduling class statistics methods:
564 */
565
acb4a848 566int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 567 void __user *buffer, size_t *lenp,
b2be5e96
PZ
568 loff_t *ppos)
569{
8d65af78 570 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 571 int factor = get_update_sysctl_factor();
b2be5e96
PZ
572
573 if (ret || !write)
574 return ret;
575
576 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
577 sysctl_sched_min_granularity);
578
acb4a848
CE
579#define WRT_SYSCTL(name) \
580 (normalized_sysctl_##name = sysctl_##name / (factor))
581 WRT_SYSCTL(sched_min_granularity);
582 WRT_SYSCTL(sched_latency);
583 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
584#undef WRT_SYSCTL
585
b2be5e96
PZ
586 return 0;
587}
588#endif
647e7cac 589
a7be37ac 590/*
f9c0b095 591 * delta /= w
a7be37ac
PZ
592 */
593static inline unsigned long
594calc_delta_fair(unsigned long delta, struct sched_entity *se)
595{
f9c0b095
PZ
596 if (unlikely(se->load.weight != NICE_0_LOAD))
597 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
598
599 return delta;
600}
601
647e7cac
IM
602/*
603 * The idea is to set a period in which each task runs once.
604 *
532b1858 605 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
606 * this period because otherwise the slices get too small.
607 *
608 * p = (nr <= nl) ? l : l*nr/nl
609 */
4d78e7b6
PZ
610static u64 __sched_period(unsigned long nr_running)
611{
612 u64 period = sysctl_sched_latency;
b2be5e96 613 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
614
615 if (unlikely(nr_running > nr_latency)) {
4bf0b771 616 period = sysctl_sched_min_granularity;
4d78e7b6 617 period *= nr_running;
4d78e7b6
PZ
618 }
619
620 return period;
621}
622
647e7cac
IM
623/*
624 * We calculate the wall-time slice from the period by taking a part
625 * proportional to the weight.
626 *
f9c0b095 627 * s = p*P[w/rw]
647e7cac 628 */
6d0f0ebd 629static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 630{
0a582440 631 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 632
0a582440 633 for_each_sched_entity(se) {
6272d68c 634 struct load_weight *load;
3104bf03 635 struct load_weight lw;
6272d68c
LM
636
637 cfs_rq = cfs_rq_of(se);
638 load = &cfs_rq->load;
f9c0b095 639
0a582440 640 if (unlikely(!se->on_rq)) {
3104bf03 641 lw = cfs_rq->load;
0a582440
MG
642
643 update_load_add(&lw, se->load.weight);
644 load = &lw;
645 }
646 slice = calc_delta_mine(slice, se->load.weight, load);
647 }
648 return slice;
bf0f6f24
IM
649}
650
647e7cac 651/*
ac884dec 652 * We calculate the vruntime slice of a to be inserted task
647e7cac 653 *
f9c0b095 654 * vs = s/w
647e7cac 655 */
f9c0b095 656static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 657{
f9c0b095 658 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
659}
660
bf0f6f24
IM
661/*
662 * Update the current task's runtime statistics. Skip current tasks that
663 * are not in our scheduling class.
664 */
665static inline void
8ebc91d9
IM
666__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
667 unsigned long delta_exec)
bf0f6f24 668{
bbdba7c0 669 unsigned long delta_exec_weighted;
bf0f6f24 670
41acab88
LDM
671 schedstat_set(curr->statistics.exec_max,
672 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
673
674 curr->sum_exec_runtime += delta_exec;
7a62eabc 675 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 676 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 677
e9acbff6 678 curr->vruntime += delta_exec_weighted;
1af5f730 679 update_min_vruntime(cfs_rq);
bf0f6f24
IM
680}
681
b7cc0896 682static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 683{
429d43bc 684 struct sched_entity *curr = cfs_rq->curr;
305e6835 685 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
686 unsigned long delta_exec;
687
688 if (unlikely(!curr))
689 return;
690
691 /*
692 * Get the amount of time the current task was running
693 * since the last time we changed load (this cannot
694 * overflow on 32 bits):
695 */
8ebc91d9 696 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
697 if (!delta_exec)
698 return;
bf0f6f24 699
8ebc91d9
IM
700 __update_curr(cfs_rq, curr, delta_exec);
701 curr->exec_start = now;
d842de87
SV
702
703 if (entity_is_task(curr)) {
704 struct task_struct *curtask = task_of(curr);
705
f977bb49 706 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 707 cpuacct_charge(curtask, delta_exec);
f06febc9 708 account_group_exec_runtime(curtask, delta_exec);
d842de87 709 }
ec12cb7f
PT
710
711 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
712}
713
714static inline void
5870db5b 715update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 716{
41acab88 717 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
718}
719
bf0f6f24
IM
720/*
721 * Task is being enqueued - update stats:
722 */
d2417e5a 723static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 724{
bf0f6f24
IM
725 /*
726 * Are we enqueueing a waiting task? (for current tasks
727 * a dequeue/enqueue event is a NOP)
728 */
429d43bc 729 if (se != cfs_rq->curr)
5870db5b 730 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
731}
732
bf0f6f24 733static void
9ef0a961 734update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
41acab88
LDM
736 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
737 rq_of(cfs_rq)->clock - se->statistics.wait_start));
738 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
739 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
740 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
741#ifdef CONFIG_SCHEDSTATS
742 if (entity_is_task(se)) {
743 trace_sched_stat_wait(task_of(se),
41acab88 744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745 }
746#endif
41acab88 747 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
748}
749
750static inline void
19b6a2e3 751update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 752{
bf0f6f24
IM
753 /*
754 * Mark the end of the wait period if dequeueing a
755 * waiting task:
756 */
429d43bc 757 if (se != cfs_rq->curr)
9ef0a961 758 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
759}
760
761/*
762 * We are picking a new current task - update its stats:
763 */
764static inline void
79303e9e 765update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
766{
767 /*
768 * We are starting a new run period:
769 */
305e6835 770 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
771}
772
bf0f6f24
IM
773/**************************************************
774 * Scheduling class queueing methods:
775 */
776
30cfdcfc
DA
777static void
778account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779{
780 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 781 if (!parent_entity(se))
029632fb 782 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
783#ifdef CONFIG_SMP
784 if (entity_is_task(se))
eb95308e 785 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 786#endif
30cfdcfc 787 cfs_rq->nr_running++;
30cfdcfc
DA
788}
789
790static void
791account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
792{
793 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 794 if (!parent_entity(se))
029632fb 795 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 796 if (entity_is_task(se))
b87f1724 797 list_del_init(&se->group_node);
30cfdcfc 798 cfs_rq->nr_running--;
30cfdcfc
DA
799}
800
3ff6dcac
YZ
801#ifdef CONFIG_FAIR_GROUP_SCHED
802# ifdef CONFIG_SMP
cf5f0acf
PZ
803static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
804{
805 long tg_weight;
806
807 /*
808 * Use this CPU's actual weight instead of the last load_contribution
809 * to gain a more accurate current total weight. See
810 * update_cfs_rq_load_contribution().
811 */
82958366
PT
812 tg_weight = atomic64_read(&tg->load_avg);
813 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
814 tg_weight += cfs_rq->load.weight;
815
816 return tg_weight;
817}
818
6d5ab293 819static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 820{
cf5f0acf 821 long tg_weight, load, shares;
3ff6dcac 822
cf5f0acf 823 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 824 load = cfs_rq->load.weight;
3ff6dcac 825
3ff6dcac 826 shares = (tg->shares * load);
cf5f0acf
PZ
827 if (tg_weight)
828 shares /= tg_weight;
3ff6dcac
YZ
829
830 if (shares < MIN_SHARES)
831 shares = MIN_SHARES;
832 if (shares > tg->shares)
833 shares = tg->shares;
834
835 return shares;
836}
3ff6dcac 837# else /* CONFIG_SMP */
6d5ab293 838static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
839{
840 return tg->shares;
841}
3ff6dcac 842# endif /* CONFIG_SMP */
2069dd75
PZ
843static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
844 unsigned long weight)
845{
19e5eebb
PT
846 if (se->on_rq) {
847 /* commit outstanding execution time */
848 if (cfs_rq->curr == se)
849 update_curr(cfs_rq);
2069dd75 850 account_entity_dequeue(cfs_rq, se);
19e5eebb 851 }
2069dd75
PZ
852
853 update_load_set(&se->load, weight);
854
855 if (se->on_rq)
856 account_entity_enqueue(cfs_rq, se);
857}
858
82958366
PT
859static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
860
6d5ab293 861static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
862{
863 struct task_group *tg;
864 struct sched_entity *se;
3ff6dcac 865 long shares;
2069dd75 866
2069dd75
PZ
867 tg = cfs_rq->tg;
868 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 869 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 870 return;
3ff6dcac
YZ
871#ifndef CONFIG_SMP
872 if (likely(se->load.weight == tg->shares))
873 return;
874#endif
6d5ab293 875 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
876
877 reweight_entity(cfs_rq_of(se), se, shares);
878}
879#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 880static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
881{
882}
883#endif /* CONFIG_FAIR_GROUP_SCHED */
884
9d85f21c
PT
885#ifdef CONFIG_SMP
886/*
887 * Approximate:
888 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
889 */
890static __always_inline u64 decay_load(u64 val, u64 n)
891{
892 for (; n && val; n--) {
893 val *= 4008;
894 val >>= 12;
895 }
896
897 return val;
898}
899
900/*
901 * We can represent the historical contribution to runnable average as the
902 * coefficients of a geometric series. To do this we sub-divide our runnable
903 * history into segments of approximately 1ms (1024us); label the segment that
904 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
905 *
906 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
907 * p0 p1 p2
908 * (now) (~1ms ago) (~2ms ago)
909 *
910 * Let u_i denote the fraction of p_i that the entity was runnable.
911 *
912 * We then designate the fractions u_i as our co-efficients, yielding the
913 * following representation of historical load:
914 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
915 *
916 * We choose y based on the with of a reasonably scheduling period, fixing:
917 * y^32 = 0.5
918 *
919 * This means that the contribution to load ~32ms ago (u_32) will be weighted
920 * approximately half as much as the contribution to load within the last ms
921 * (u_0).
922 *
923 * When a period "rolls over" and we have new u_0`, multiplying the previous
924 * sum again by y is sufficient to update:
925 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
926 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
927 */
928static __always_inline int __update_entity_runnable_avg(u64 now,
929 struct sched_avg *sa,
930 int runnable)
931{
932 u64 delta;
933 int delta_w, decayed = 0;
934
935 delta = now - sa->last_runnable_update;
936 /*
937 * This should only happen when time goes backwards, which it
938 * unfortunately does during sched clock init when we swap over to TSC.
939 */
940 if ((s64)delta < 0) {
941 sa->last_runnable_update = now;
942 return 0;
943 }
944
945 /*
946 * Use 1024ns as the unit of measurement since it's a reasonable
947 * approximation of 1us and fast to compute.
948 */
949 delta >>= 10;
950 if (!delta)
951 return 0;
952 sa->last_runnable_update = now;
953
954 /* delta_w is the amount already accumulated against our next period */
955 delta_w = sa->runnable_avg_period % 1024;
956 if (delta + delta_w >= 1024) {
957 /* period roll-over */
958 decayed = 1;
959
960 /*
961 * Now that we know we're crossing a period boundary, figure
962 * out how much from delta we need to complete the current
963 * period and accrue it.
964 */
965 delta_w = 1024 - delta_w;
966 BUG_ON(delta_w > delta);
967 do {
968 if (runnable)
969 sa->runnable_avg_sum += delta_w;
970 sa->runnable_avg_period += delta_w;
971
972 /*
973 * Remainder of delta initiates a new period, roll over
974 * the previous.
975 */
976 sa->runnable_avg_sum =
977 decay_load(sa->runnable_avg_sum, 1);
978 sa->runnable_avg_period =
979 decay_load(sa->runnable_avg_period, 1);
980
981 delta -= delta_w;
982 /* New period is empty */
983 delta_w = 1024;
984 } while (delta >= 1024);
985 }
986
987 /* Remainder of delta accrued against u_0` */
988 if (runnable)
989 sa->runnable_avg_sum += delta;
990 sa->runnable_avg_period += delta;
991
992 return decayed;
993}
994
9ee474f5 995/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 996static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
997{
998 struct cfs_rq *cfs_rq = cfs_rq_of(se);
999 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1000
1001 decays -= se->avg.decay_count;
1002 if (!decays)
aff3e498 1003 return 0;
9ee474f5
PT
1004
1005 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1006 se->avg.decay_count = 0;
aff3e498
PT
1007
1008 return decays;
9ee474f5
PT
1009}
1010
c566e8e9
PT
1011#ifdef CONFIG_FAIR_GROUP_SCHED
1012static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1013 int force_update)
1014{
1015 struct task_group *tg = cfs_rq->tg;
1016 s64 tg_contrib;
1017
1018 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1019 tg_contrib -= cfs_rq->tg_load_contrib;
1020
1021 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1022 atomic64_add(tg_contrib, &tg->load_avg);
1023 cfs_rq->tg_load_contrib += tg_contrib;
1024 }
1025}
8165e145 1026
bb17f655
PT
1027/*
1028 * Aggregate cfs_rq runnable averages into an equivalent task_group
1029 * representation for computing load contributions.
1030 */
1031static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1032 struct cfs_rq *cfs_rq)
1033{
1034 struct task_group *tg = cfs_rq->tg;
1035 long contrib;
1036
1037 /* The fraction of a cpu used by this cfs_rq */
1038 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1039 sa->runnable_avg_period + 1);
1040 contrib -= cfs_rq->tg_runnable_contrib;
1041
1042 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1043 atomic_add(contrib, &tg->runnable_avg);
1044 cfs_rq->tg_runnable_contrib += contrib;
1045 }
1046}
1047
8165e145
PT
1048static inline void __update_group_entity_contrib(struct sched_entity *se)
1049{
1050 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1051 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1052 int runnable_avg;
1053
8165e145
PT
1054 u64 contrib;
1055
1056 contrib = cfs_rq->tg_load_contrib * tg->shares;
1057 se->avg.load_avg_contrib = div64_u64(contrib,
1058 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1059
1060 /*
1061 * For group entities we need to compute a correction term in the case
1062 * that they are consuming <1 cpu so that we would contribute the same
1063 * load as a task of equal weight.
1064 *
1065 * Explicitly co-ordinating this measurement would be expensive, but
1066 * fortunately the sum of each cpus contribution forms a usable
1067 * lower-bound on the true value.
1068 *
1069 * Consider the aggregate of 2 contributions. Either they are disjoint
1070 * (and the sum represents true value) or they are disjoint and we are
1071 * understating by the aggregate of their overlap.
1072 *
1073 * Extending this to N cpus, for a given overlap, the maximum amount we
1074 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1075 * cpus that overlap for this interval and w_i is the interval width.
1076 *
1077 * On a small machine; the first term is well-bounded which bounds the
1078 * total error since w_i is a subset of the period. Whereas on a
1079 * larger machine, while this first term can be larger, if w_i is the
1080 * of consequential size guaranteed to see n_i*w_i quickly converge to
1081 * our upper bound of 1-cpu.
1082 */
1083 runnable_avg = atomic_read(&tg->runnable_avg);
1084 if (runnable_avg < NICE_0_LOAD) {
1085 se->avg.load_avg_contrib *= runnable_avg;
1086 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1087 }
8165e145 1088}
c566e8e9
PT
1089#else
1090static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1091 int force_update) {}
bb17f655
PT
1092static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1093 struct cfs_rq *cfs_rq) {}
8165e145 1094static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1095#endif
1096
8165e145
PT
1097static inline void __update_task_entity_contrib(struct sched_entity *se)
1098{
1099 u32 contrib;
1100
1101 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1102 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1103 contrib /= (se->avg.runnable_avg_period + 1);
1104 se->avg.load_avg_contrib = scale_load(contrib);
1105}
1106
2dac754e
PT
1107/* Compute the current contribution to load_avg by se, return any delta */
1108static long __update_entity_load_avg_contrib(struct sched_entity *se)
1109{
1110 long old_contrib = se->avg.load_avg_contrib;
1111
8165e145
PT
1112 if (entity_is_task(se)) {
1113 __update_task_entity_contrib(se);
1114 } else {
bb17f655 1115 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1116 __update_group_entity_contrib(se);
1117 }
2dac754e
PT
1118
1119 return se->avg.load_avg_contrib - old_contrib;
1120}
1121
9ee474f5
PT
1122static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1123 long load_contrib)
1124{
1125 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1126 cfs_rq->blocked_load_avg -= load_contrib;
1127 else
1128 cfs_rq->blocked_load_avg = 0;
1129}
1130
f1b17280
PT
1131static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1132
9d85f21c 1133/* Update a sched_entity's runnable average */
9ee474f5
PT
1134static inline void update_entity_load_avg(struct sched_entity *se,
1135 int update_cfs_rq)
9d85f21c 1136{
2dac754e
PT
1137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1138 long contrib_delta;
f1b17280 1139 u64 now;
2dac754e 1140
f1b17280
PT
1141 /*
1142 * For a group entity we need to use their owned cfs_rq_clock_task() in
1143 * case they are the parent of a throttled hierarchy.
1144 */
1145 if (entity_is_task(se))
1146 now = cfs_rq_clock_task(cfs_rq);
1147 else
1148 now = cfs_rq_clock_task(group_cfs_rq(se));
1149
1150 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1151 return;
1152
1153 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1154
1155 if (!update_cfs_rq)
1156 return;
1157
2dac754e
PT
1158 if (se->on_rq)
1159 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1160 else
1161 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1162}
1163
1164/*
1165 * Decay the load contributed by all blocked children and account this so that
1166 * their contribution may appropriately discounted when they wake up.
1167 */
aff3e498 1168static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1169{
f1b17280 1170 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1171 u64 decays;
1172
1173 decays = now - cfs_rq->last_decay;
aff3e498 1174 if (!decays && !force_update)
9ee474f5
PT
1175 return;
1176
aff3e498
PT
1177 if (atomic64_read(&cfs_rq->removed_load)) {
1178 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1179 subtract_blocked_load_contrib(cfs_rq, removed_load);
1180 }
9ee474f5 1181
aff3e498
PT
1182 if (decays) {
1183 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1184 decays);
1185 atomic64_add(decays, &cfs_rq->decay_counter);
1186 cfs_rq->last_decay = now;
1187 }
c566e8e9
PT
1188
1189 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1190}
18bf2805
BS
1191
1192static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1193{
1194 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1195 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1196}
2dac754e
PT
1197
1198/* Add the load generated by se into cfs_rq's child load-average */
1199static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1200 struct sched_entity *se,
1201 int wakeup)
2dac754e 1202{
aff3e498
PT
1203 /*
1204 * We track migrations using entity decay_count <= 0, on a wake-up
1205 * migration we use a negative decay count to track the remote decays
1206 * accumulated while sleeping.
1207 */
1208 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1209 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1210 if (se->avg.decay_count) {
1211 /*
1212 * In a wake-up migration we have to approximate the
1213 * time sleeping. This is because we can't synchronize
1214 * clock_task between the two cpus, and it is not
1215 * guaranteed to be read-safe. Instead, we can
1216 * approximate this using our carried decays, which are
1217 * explicitly atomically readable.
1218 */
1219 se->avg.last_runnable_update -= (-se->avg.decay_count)
1220 << 20;
1221 update_entity_load_avg(se, 0);
1222 /* Indicate that we're now synchronized and on-rq */
1223 se->avg.decay_count = 0;
1224 }
9ee474f5
PT
1225 wakeup = 0;
1226 } else {
1227 __synchronize_entity_decay(se);
1228 }
1229
aff3e498
PT
1230 /* migrated tasks did not contribute to our blocked load */
1231 if (wakeup) {
9ee474f5 1232 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1233 update_entity_load_avg(se, 0);
1234 }
9ee474f5 1235
2dac754e 1236 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1237 /* we force update consideration on load-balancer moves */
1238 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1239}
1240
9ee474f5
PT
1241/*
1242 * Remove se's load from this cfs_rq child load-average, if the entity is
1243 * transitioning to a blocked state we track its projected decay using
1244 * blocked_load_avg.
1245 */
2dac754e 1246static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1247 struct sched_entity *se,
1248 int sleep)
2dac754e 1249{
9ee474f5 1250 update_entity_load_avg(se, 1);
aff3e498
PT
1251 /* we force update consideration on load-balancer moves */
1252 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1253
2dac754e 1254 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1255 if (sleep) {
1256 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1257 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1258 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1259}
9d85f21c 1260#else
9ee474f5
PT
1261static inline void update_entity_load_avg(struct sched_entity *se,
1262 int update_cfs_rq) {}
18bf2805 1263static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1264static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1265 struct sched_entity *se,
1266 int wakeup) {}
2dac754e 1267static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1268 struct sched_entity *se,
1269 int sleep) {}
aff3e498
PT
1270static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1271 int force_update) {}
9d85f21c
PT
1272#endif
1273
2396af69 1274static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1275{
bf0f6f24 1276#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1277 struct task_struct *tsk = NULL;
1278
1279 if (entity_is_task(se))
1280 tsk = task_of(se);
1281
41acab88
LDM
1282 if (se->statistics.sleep_start) {
1283 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1284
1285 if ((s64)delta < 0)
1286 delta = 0;
1287
41acab88
LDM
1288 if (unlikely(delta > se->statistics.sleep_max))
1289 se->statistics.sleep_max = delta;
bf0f6f24 1290
8c79a045 1291 se->statistics.sleep_start = 0;
41acab88 1292 se->statistics.sum_sleep_runtime += delta;
9745512c 1293
768d0c27 1294 if (tsk) {
e414314c 1295 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1296 trace_sched_stat_sleep(tsk, delta);
1297 }
bf0f6f24 1298 }
41acab88
LDM
1299 if (se->statistics.block_start) {
1300 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1301
1302 if ((s64)delta < 0)
1303 delta = 0;
1304
41acab88
LDM
1305 if (unlikely(delta > se->statistics.block_max))
1306 se->statistics.block_max = delta;
bf0f6f24 1307
8c79a045 1308 se->statistics.block_start = 0;
41acab88 1309 se->statistics.sum_sleep_runtime += delta;
30084fbd 1310
e414314c 1311 if (tsk) {
8f0dfc34 1312 if (tsk->in_iowait) {
41acab88
LDM
1313 se->statistics.iowait_sum += delta;
1314 se->statistics.iowait_count++;
768d0c27 1315 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1316 }
1317
b781a602
AV
1318 trace_sched_stat_blocked(tsk, delta);
1319
e414314c
PZ
1320 /*
1321 * Blocking time is in units of nanosecs, so shift by
1322 * 20 to get a milliseconds-range estimation of the
1323 * amount of time that the task spent sleeping:
1324 */
1325 if (unlikely(prof_on == SLEEP_PROFILING)) {
1326 profile_hits(SLEEP_PROFILING,
1327 (void *)get_wchan(tsk),
1328 delta >> 20);
1329 }
1330 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1331 }
bf0f6f24
IM
1332 }
1333#endif
1334}
1335
ddc97297
PZ
1336static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1337{
1338#ifdef CONFIG_SCHED_DEBUG
1339 s64 d = se->vruntime - cfs_rq->min_vruntime;
1340
1341 if (d < 0)
1342 d = -d;
1343
1344 if (d > 3*sysctl_sched_latency)
1345 schedstat_inc(cfs_rq, nr_spread_over);
1346#endif
1347}
1348
aeb73b04
PZ
1349static void
1350place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1351{
1af5f730 1352 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1353
2cb8600e
PZ
1354 /*
1355 * The 'current' period is already promised to the current tasks,
1356 * however the extra weight of the new task will slow them down a
1357 * little, place the new task so that it fits in the slot that
1358 * stays open at the end.
1359 */
94dfb5e7 1360 if (initial && sched_feat(START_DEBIT))
f9c0b095 1361 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1362
a2e7a7eb 1363 /* sleeps up to a single latency don't count. */
5ca9880c 1364 if (!initial) {
a2e7a7eb 1365 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1366
a2e7a7eb
MG
1367 /*
1368 * Halve their sleep time's effect, to allow
1369 * for a gentler effect of sleepers:
1370 */
1371 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1372 thresh >>= 1;
51e0304c 1373
a2e7a7eb 1374 vruntime -= thresh;
aeb73b04
PZ
1375 }
1376
b5d9d734
MG
1377 /* ensure we never gain time by being placed backwards. */
1378 vruntime = max_vruntime(se->vruntime, vruntime);
1379
67e9fb2a 1380 se->vruntime = vruntime;
aeb73b04
PZ
1381}
1382
d3d9dc33
PT
1383static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1384
bf0f6f24 1385static void
88ec22d3 1386enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1387{
88ec22d3
PZ
1388 /*
1389 * Update the normalized vruntime before updating min_vruntime
1390 * through callig update_curr().
1391 */
371fd7e7 1392 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1393 se->vruntime += cfs_rq->min_vruntime;
1394
bf0f6f24 1395 /*
a2a2d680 1396 * Update run-time statistics of the 'current'.
bf0f6f24 1397 */
b7cc0896 1398 update_curr(cfs_rq);
9ee474f5 1399 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
a992241d 1400 account_entity_enqueue(cfs_rq, se);
6d5ab293 1401 update_cfs_shares(cfs_rq);
bf0f6f24 1402
88ec22d3 1403 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1404 place_entity(cfs_rq, se, 0);
2396af69 1405 enqueue_sleeper(cfs_rq, se);
e9acbff6 1406 }
bf0f6f24 1407
d2417e5a 1408 update_stats_enqueue(cfs_rq, se);
ddc97297 1409 check_spread(cfs_rq, se);
83b699ed
SV
1410 if (se != cfs_rq->curr)
1411 __enqueue_entity(cfs_rq, se);
2069dd75 1412 se->on_rq = 1;
3d4b47b4 1413
d3d9dc33 1414 if (cfs_rq->nr_running == 1) {
3d4b47b4 1415 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1416 check_enqueue_throttle(cfs_rq);
1417 }
bf0f6f24
IM
1418}
1419
2c13c919 1420static void __clear_buddies_last(struct sched_entity *se)
2002c695 1421{
2c13c919
RR
1422 for_each_sched_entity(se) {
1423 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1424 if (cfs_rq->last == se)
1425 cfs_rq->last = NULL;
1426 else
1427 break;
1428 }
1429}
2002c695 1430
2c13c919
RR
1431static void __clear_buddies_next(struct sched_entity *se)
1432{
1433 for_each_sched_entity(se) {
1434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1435 if (cfs_rq->next == se)
1436 cfs_rq->next = NULL;
1437 else
1438 break;
1439 }
2002c695
PZ
1440}
1441
ac53db59
RR
1442static void __clear_buddies_skip(struct sched_entity *se)
1443{
1444 for_each_sched_entity(se) {
1445 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1446 if (cfs_rq->skip == se)
1447 cfs_rq->skip = NULL;
1448 else
1449 break;
1450 }
1451}
1452
a571bbea
PZ
1453static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1454{
2c13c919
RR
1455 if (cfs_rq->last == se)
1456 __clear_buddies_last(se);
1457
1458 if (cfs_rq->next == se)
1459 __clear_buddies_next(se);
ac53db59
RR
1460
1461 if (cfs_rq->skip == se)
1462 __clear_buddies_skip(se);
a571bbea
PZ
1463}
1464
6c16a6dc 1465static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1466
bf0f6f24 1467static void
371fd7e7 1468dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1469{
a2a2d680
DA
1470 /*
1471 * Update run-time statistics of the 'current'.
1472 */
1473 update_curr(cfs_rq);
9ee474f5 1474 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1475
19b6a2e3 1476 update_stats_dequeue(cfs_rq, se);
371fd7e7 1477 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1478#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1479 if (entity_is_task(se)) {
1480 struct task_struct *tsk = task_of(se);
1481
1482 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1483 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1484 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1485 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1486 }
db36cc7d 1487#endif
67e9fb2a
PZ
1488 }
1489
2002c695 1490 clear_buddies(cfs_rq, se);
4793241b 1491
83b699ed 1492 if (se != cfs_rq->curr)
30cfdcfc 1493 __dequeue_entity(cfs_rq, se);
2069dd75 1494 se->on_rq = 0;
30cfdcfc 1495 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1496
1497 /*
1498 * Normalize the entity after updating the min_vruntime because the
1499 * update can refer to the ->curr item and we need to reflect this
1500 * movement in our normalized position.
1501 */
371fd7e7 1502 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1503 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1504
d8b4986d
PT
1505 /* return excess runtime on last dequeue */
1506 return_cfs_rq_runtime(cfs_rq);
1507
1e876231
PZ
1508 update_min_vruntime(cfs_rq);
1509 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1510}
1511
1512/*
1513 * Preempt the current task with a newly woken task if needed:
1514 */
7c92e54f 1515static void
2e09bf55 1516check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1517{
11697830 1518 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1519 struct sched_entity *se;
1520 s64 delta;
11697830 1521
6d0f0ebd 1522 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1523 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1524 if (delta_exec > ideal_runtime) {
bf0f6f24 1525 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1526 /*
1527 * The current task ran long enough, ensure it doesn't get
1528 * re-elected due to buddy favours.
1529 */
1530 clear_buddies(cfs_rq, curr);
f685ceac
MG
1531 return;
1532 }
1533
1534 /*
1535 * Ensure that a task that missed wakeup preemption by a
1536 * narrow margin doesn't have to wait for a full slice.
1537 * This also mitigates buddy induced latencies under load.
1538 */
f685ceac
MG
1539 if (delta_exec < sysctl_sched_min_granularity)
1540 return;
1541
f4cfb33e
WX
1542 se = __pick_first_entity(cfs_rq);
1543 delta = curr->vruntime - se->vruntime;
f685ceac 1544
f4cfb33e
WX
1545 if (delta < 0)
1546 return;
d7d82944 1547
f4cfb33e
WX
1548 if (delta > ideal_runtime)
1549 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1550}
1551
83b699ed 1552static void
8494f412 1553set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1554{
83b699ed
SV
1555 /* 'current' is not kept within the tree. */
1556 if (se->on_rq) {
1557 /*
1558 * Any task has to be enqueued before it get to execute on
1559 * a CPU. So account for the time it spent waiting on the
1560 * runqueue.
1561 */
1562 update_stats_wait_end(cfs_rq, se);
1563 __dequeue_entity(cfs_rq, se);
1564 }
1565
79303e9e 1566 update_stats_curr_start(cfs_rq, se);
429d43bc 1567 cfs_rq->curr = se;
eba1ed4b
IM
1568#ifdef CONFIG_SCHEDSTATS
1569 /*
1570 * Track our maximum slice length, if the CPU's load is at
1571 * least twice that of our own weight (i.e. dont track it
1572 * when there are only lesser-weight tasks around):
1573 */
495eca49 1574 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1575 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1576 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1577 }
1578#endif
4a55b450 1579 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1580}
1581
3f3a4904
PZ
1582static int
1583wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1584
ac53db59
RR
1585/*
1586 * Pick the next process, keeping these things in mind, in this order:
1587 * 1) keep things fair between processes/task groups
1588 * 2) pick the "next" process, since someone really wants that to run
1589 * 3) pick the "last" process, for cache locality
1590 * 4) do not run the "skip" process, if something else is available
1591 */
f4b6755f 1592static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1593{
ac53db59 1594 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1595 struct sched_entity *left = se;
f4b6755f 1596
ac53db59
RR
1597 /*
1598 * Avoid running the skip buddy, if running something else can
1599 * be done without getting too unfair.
1600 */
1601 if (cfs_rq->skip == se) {
1602 struct sched_entity *second = __pick_next_entity(se);
1603 if (second && wakeup_preempt_entity(second, left) < 1)
1604 se = second;
1605 }
aa2ac252 1606
f685ceac
MG
1607 /*
1608 * Prefer last buddy, try to return the CPU to a preempted task.
1609 */
1610 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1611 se = cfs_rq->last;
1612
ac53db59
RR
1613 /*
1614 * Someone really wants this to run. If it's not unfair, run it.
1615 */
1616 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1617 se = cfs_rq->next;
1618
f685ceac 1619 clear_buddies(cfs_rq, se);
4793241b
PZ
1620
1621 return se;
aa2ac252
PZ
1622}
1623
d3d9dc33
PT
1624static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1625
ab6cde26 1626static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1627{
1628 /*
1629 * If still on the runqueue then deactivate_task()
1630 * was not called and update_curr() has to be done:
1631 */
1632 if (prev->on_rq)
b7cc0896 1633 update_curr(cfs_rq);
bf0f6f24 1634
d3d9dc33
PT
1635 /* throttle cfs_rqs exceeding runtime */
1636 check_cfs_rq_runtime(cfs_rq);
1637
ddc97297 1638 check_spread(cfs_rq, prev);
30cfdcfc 1639 if (prev->on_rq) {
5870db5b 1640 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1641 /* Put 'current' back into the tree. */
1642 __enqueue_entity(cfs_rq, prev);
9d85f21c 1643 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1644 update_entity_load_avg(prev, 1);
30cfdcfc 1645 }
429d43bc 1646 cfs_rq->curr = NULL;
bf0f6f24
IM
1647}
1648
8f4d37ec
PZ
1649static void
1650entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1651{
bf0f6f24 1652 /*
30cfdcfc 1653 * Update run-time statistics of the 'current'.
bf0f6f24 1654 */
30cfdcfc 1655 update_curr(cfs_rq);
bf0f6f24 1656
9d85f21c
PT
1657 /*
1658 * Ensure that runnable average is periodically updated.
1659 */
9ee474f5 1660 update_entity_load_avg(curr, 1);
aff3e498 1661 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1662
8f4d37ec
PZ
1663#ifdef CONFIG_SCHED_HRTICK
1664 /*
1665 * queued ticks are scheduled to match the slice, so don't bother
1666 * validating it and just reschedule.
1667 */
983ed7a6
HH
1668 if (queued) {
1669 resched_task(rq_of(cfs_rq)->curr);
1670 return;
1671 }
8f4d37ec
PZ
1672 /*
1673 * don't let the period tick interfere with the hrtick preemption
1674 */
1675 if (!sched_feat(DOUBLE_TICK) &&
1676 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1677 return;
1678#endif
1679
2c2efaed 1680 if (cfs_rq->nr_running > 1)
2e09bf55 1681 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1682}
1683
ab84d31e
PT
1684
1685/**************************************************
1686 * CFS bandwidth control machinery
1687 */
1688
1689#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1690
1691#ifdef HAVE_JUMP_LABEL
c5905afb 1692static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1693
1694static inline bool cfs_bandwidth_used(void)
1695{
c5905afb 1696 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1697}
1698
1699void account_cfs_bandwidth_used(int enabled, int was_enabled)
1700{
1701 /* only need to count groups transitioning between enabled/!enabled */
1702 if (enabled && !was_enabled)
c5905afb 1703 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1704 else if (!enabled && was_enabled)
c5905afb 1705 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1706}
1707#else /* HAVE_JUMP_LABEL */
1708static bool cfs_bandwidth_used(void)
1709{
1710 return true;
1711}
1712
1713void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1714#endif /* HAVE_JUMP_LABEL */
1715
ab84d31e
PT
1716/*
1717 * default period for cfs group bandwidth.
1718 * default: 0.1s, units: nanoseconds
1719 */
1720static inline u64 default_cfs_period(void)
1721{
1722 return 100000000ULL;
1723}
ec12cb7f
PT
1724
1725static inline u64 sched_cfs_bandwidth_slice(void)
1726{
1727 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1728}
1729
a9cf55b2
PT
1730/*
1731 * Replenish runtime according to assigned quota and update expiration time.
1732 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1733 * additional synchronization around rq->lock.
1734 *
1735 * requires cfs_b->lock
1736 */
029632fb 1737void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1738{
1739 u64 now;
1740
1741 if (cfs_b->quota == RUNTIME_INF)
1742 return;
1743
1744 now = sched_clock_cpu(smp_processor_id());
1745 cfs_b->runtime = cfs_b->quota;
1746 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1747}
1748
029632fb
PZ
1749static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1750{
1751 return &tg->cfs_bandwidth;
1752}
1753
f1b17280
PT
1754/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
1755static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
1756{
1757 if (unlikely(cfs_rq->throttle_count))
1758 return cfs_rq->throttled_clock_task;
1759
1760 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
1761}
1762
85dac906
PT
1763/* returns 0 on failure to allocate runtime */
1764static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1765{
1766 struct task_group *tg = cfs_rq->tg;
1767 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1768 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1769
1770 /* note: this is a positive sum as runtime_remaining <= 0 */
1771 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1772
1773 raw_spin_lock(&cfs_b->lock);
1774 if (cfs_b->quota == RUNTIME_INF)
1775 amount = min_amount;
58088ad0 1776 else {
a9cf55b2
PT
1777 /*
1778 * If the bandwidth pool has become inactive, then at least one
1779 * period must have elapsed since the last consumption.
1780 * Refresh the global state and ensure bandwidth timer becomes
1781 * active.
1782 */
1783 if (!cfs_b->timer_active) {
1784 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1785 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1786 }
58088ad0
PT
1787
1788 if (cfs_b->runtime > 0) {
1789 amount = min(cfs_b->runtime, min_amount);
1790 cfs_b->runtime -= amount;
1791 cfs_b->idle = 0;
1792 }
ec12cb7f 1793 }
a9cf55b2 1794 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1795 raw_spin_unlock(&cfs_b->lock);
1796
1797 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1798 /*
1799 * we may have advanced our local expiration to account for allowed
1800 * spread between our sched_clock and the one on which runtime was
1801 * issued.
1802 */
1803 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1804 cfs_rq->runtime_expires = expires;
85dac906
PT
1805
1806 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1807}
1808
a9cf55b2
PT
1809/*
1810 * Note: This depends on the synchronization provided by sched_clock and the
1811 * fact that rq->clock snapshots this value.
1812 */
1813static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1814{
a9cf55b2
PT
1815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1816 struct rq *rq = rq_of(cfs_rq);
1817
1818 /* if the deadline is ahead of our clock, nothing to do */
1819 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1820 return;
1821
a9cf55b2
PT
1822 if (cfs_rq->runtime_remaining < 0)
1823 return;
1824
1825 /*
1826 * If the local deadline has passed we have to consider the
1827 * possibility that our sched_clock is 'fast' and the global deadline
1828 * has not truly expired.
1829 *
1830 * Fortunately we can check determine whether this the case by checking
1831 * whether the global deadline has advanced.
1832 */
1833
1834 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1835 /* extend local deadline, drift is bounded above by 2 ticks */
1836 cfs_rq->runtime_expires += TICK_NSEC;
1837 } else {
1838 /* global deadline is ahead, expiration has passed */
1839 cfs_rq->runtime_remaining = 0;
1840 }
1841}
1842
1843static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1844 unsigned long delta_exec)
1845{
1846 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1847 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1848 expire_cfs_rq_runtime(cfs_rq);
1849
1850 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1851 return;
1852
85dac906
PT
1853 /*
1854 * if we're unable to extend our runtime we resched so that the active
1855 * hierarchy can be throttled
1856 */
1857 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1858 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1859}
1860
6c16a6dc
PZ
1861static __always_inline
1862void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1863{
56f570e5 1864 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1865 return;
1866
1867 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1868}
1869
85dac906
PT
1870static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1871{
56f570e5 1872 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1873}
1874
64660c86
PT
1875/* check whether cfs_rq, or any parent, is throttled */
1876static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1877{
56f570e5 1878 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1879}
1880
1881/*
1882 * Ensure that neither of the group entities corresponding to src_cpu or
1883 * dest_cpu are members of a throttled hierarchy when performing group
1884 * load-balance operations.
1885 */
1886static inline int throttled_lb_pair(struct task_group *tg,
1887 int src_cpu, int dest_cpu)
1888{
1889 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1890
1891 src_cfs_rq = tg->cfs_rq[src_cpu];
1892 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1893
1894 return throttled_hierarchy(src_cfs_rq) ||
1895 throttled_hierarchy(dest_cfs_rq);
1896}
1897
1898/* updated child weight may affect parent so we have to do this bottom up */
1899static int tg_unthrottle_up(struct task_group *tg, void *data)
1900{
1901 struct rq *rq = data;
1902 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1903
1904 cfs_rq->throttle_count--;
1905#ifdef CONFIG_SMP
1906 if (!cfs_rq->throttle_count) {
f1b17280
PT
1907 /* adjust cfs_rq_clock_task() */
1908 cfs_rq->throttled_clock_task_time += rq->clock_task -
1909 cfs_rq->throttled_clock_task;
64660c86
PT
1910 }
1911#endif
1912
1913 return 0;
1914}
1915
1916static int tg_throttle_down(struct task_group *tg, void *data)
1917{
1918 struct rq *rq = data;
1919 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1920
82958366
PT
1921 /* group is entering throttled state, stop time */
1922 if (!cfs_rq->throttle_count)
f1b17280 1923 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
1924 cfs_rq->throttle_count++;
1925
1926 return 0;
1927}
1928
d3d9dc33 1929static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1930{
1931 struct rq *rq = rq_of(cfs_rq);
1932 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1933 struct sched_entity *se;
1934 long task_delta, dequeue = 1;
1935
1936 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1937
f1b17280 1938 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
1939 rcu_read_lock();
1940 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1941 rcu_read_unlock();
85dac906
PT
1942
1943 task_delta = cfs_rq->h_nr_running;
1944 for_each_sched_entity(se) {
1945 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1946 /* throttled entity or throttle-on-deactivate */
1947 if (!se->on_rq)
1948 break;
1949
1950 if (dequeue)
1951 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1952 qcfs_rq->h_nr_running -= task_delta;
1953
1954 if (qcfs_rq->load.weight)
1955 dequeue = 0;
1956 }
1957
1958 if (!se)
1959 rq->nr_running -= task_delta;
1960
1961 cfs_rq->throttled = 1;
f1b17280 1962 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
1963 raw_spin_lock(&cfs_b->lock);
1964 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1965 raw_spin_unlock(&cfs_b->lock);
1966}
1967
029632fb 1968void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1969{
1970 struct rq *rq = rq_of(cfs_rq);
1971 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1972 struct sched_entity *se;
1973 int enqueue = 1;
1974 long task_delta;
1975
1976 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1977
1978 cfs_rq->throttled = 0;
1979 raw_spin_lock(&cfs_b->lock);
f1b17280 1980 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
1981 list_del_rcu(&cfs_rq->throttled_list);
1982 raw_spin_unlock(&cfs_b->lock);
1983
64660c86
PT
1984 update_rq_clock(rq);
1985 /* update hierarchical throttle state */
1986 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1987
671fd9da
PT
1988 if (!cfs_rq->load.weight)
1989 return;
1990
1991 task_delta = cfs_rq->h_nr_running;
1992 for_each_sched_entity(se) {
1993 if (se->on_rq)
1994 enqueue = 0;
1995
1996 cfs_rq = cfs_rq_of(se);
1997 if (enqueue)
1998 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1999 cfs_rq->h_nr_running += task_delta;
2000
2001 if (cfs_rq_throttled(cfs_rq))
2002 break;
2003 }
2004
2005 if (!se)
2006 rq->nr_running += task_delta;
2007
2008 /* determine whether we need to wake up potentially idle cpu */
2009 if (rq->curr == rq->idle && rq->cfs.nr_running)
2010 resched_task(rq->curr);
2011}
2012
2013static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2014 u64 remaining, u64 expires)
2015{
2016 struct cfs_rq *cfs_rq;
2017 u64 runtime = remaining;
2018
2019 rcu_read_lock();
2020 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2021 throttled_list) {
2022 struct rq *rq = rq_of(cfs_rq);
2023
2024 raw_spin_lock(&rq->lock);
2025 if (!cfs_rq_throttled(cfs_rq))
2026 goto next;
2027
2028 runtime = -cfs_rq->runtime_remaining + 1;
2029 if (runtime > remaining)
2030 runtime = remaining;
2031 remaining -= runtime;
2032
2033 cfs_rq->runtime_remaining += runtime;
2034 cfs_rq->runtime_expires = expires;
2035
2036 /* we check whether we're throttled above */
2037 if (cfs_rq->runtime_remaining > 0)
2038 unthrottle_cfs_rq(cfs_rq);
2039
2040next:
2041 raw_spin_unlock(&rq->lock);
2042
2043 if (!remaining)
2044 break;
2045 }
2046 rcu_read_unlock();
2047
2048 return remaining;
2049}
2050
58088ad0
PT
2051/*
2052 * Responsible for refilling a task_group's bandwidth and unthrottling its
2053 * cfs_rqs as appropriate. If there has been no activity within the last
2054 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2055 * used to track this state.
2056 */
2057static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2058{
671fd9da
PT
2059 u64 runtime, runtime_expires;
2060 int idle = 1, throttled;
58088ad0
PT
2061
2062 raw_spin_lock(&cfs_b->lock);
2063 /* no need to continue the timer with no bandwidth constraint */
2064 if (cfs_b->quota == RUNTIME_INF)
2065 goto out_unlock;
2066
671fd9da
PT
2067 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2068 /* idle depends on !throttled (for the case of a large deficit) */
2069 idle = cfs_b->idle && !throttled;
e8da1b18 2070 cfs_b->nr_periods += overrun;
671fd9da 2071
a9cf55b2
PT
2072 /* if we're going inactive then everything else can be deferred */
2073 if (idle)
2074 goto out_unlock;
2075
2076 __refill_cfs_bandwidth_runtime(cfs_b);
2077
671fd9da
PT
2078 if (!throttled) {
2079 /* mark as potentially idle for the upcoming period */
2080 cfs_b->idle = 1;
2081 goto out_unlock;
2082 }
2083
e8da1b18
NR
2084 /* account preceding periods in which throttling occurred */
2085 cfs_b->nr_throttled += overrun;
2086
671fd9da
PT
2087 /*
2088 * There are throttled entities so we must first use the new bandwidth
2089 * to unthrottle them before making it generally available. This
2090 * ensures that all existing debts will be paid before a new cfs_rq is
2091 * allowed to run.
2092 */
2093 runtime = cfs_b->runtime;
2094 runtime_expires = cfs_b->runtime_expires;
2095 cfs_b->runtime = 0;
2096
2097 /*
2098 * This check is repeated as we are holding onto the new bandwidth
2099 * while we unthrottle. This can potentially race with an unthrottled
2100 * group trying to acquire new bandwidth from the global pool.
2101 */
2102 while (throttled && runtime > 0) {
2103 raw_spin_unlock(&cfs_b->lock);
2104 /* we can't nest cfs_b->lock while distributing bandwidth */
2105 runtime = distribute_cfs_runtime(cfs_b, runtime,
2106 runtime_expires);
2107 raw_spin_lock(&cfs_b->lock);
2108
2109 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2110 }
58088ad0 2111
671fd9da
PT
2112 /* return (any) remaining runtime */
2113 cfs_b->runtime = runtime;
2114 /*
2115 * While we are ensured activity in the period following an
2116 * unthrottle, this also covers the case in which the new bandwidth is
2117 * insufficient to cover the existing bandwidth deficit. (Forcing the
2118 * timer to remain active while there are any throttled entities.)
2119 */
2120 cfs_b->idle = 0;
58088ad0
PT
2121out_unlock:
2122 if (idle)
2123 cfs_b->timer_active = 0;
2124 raw_spin_unlock(&cfs_b->lock);
2125
2126 return idle;
2127}
d3d9dc33 2128
d8b4986d
PT
2129/* a cfs_rq won't donate quota below this amount */
2130static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2131/* minimum remaining period time to redistribute slack quota */
2132static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2133/* how long we wait to gather additional slack before distributing */
2134static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2135
2136/* are we near the end of the current quota period? */
2137static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2138{
2139 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2140 u64 remaining;
2141
2142 /* if the call-back is running a quota refresh is already occurring */
2143 if (hrtimer_callback_running(refresh_timer))
2144 return 1;
2145
2146 /* is a quota refresh about to occur? */
2147 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2148 if (remaining < min_expire)
2149 return 1;
2150
2151 return 0;
2152}
2153
2154static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2155{
2156 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2157
2158 /* if there's a quota refresh soon don't bother with slack */
2159 if (runtime_refresh_within(cfs_b, min_left))
2160 return;
2161
2162 start_bandwidth_timer(&cfs_b->slack_timer,
2163 ns_to_ktime(cfs_bandwidth_slack_period));
2164}
2165
2166/* we know any runtime found here is valid as update_curr() precedes return */
2167static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2168{
2169 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2170 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2171
2172 if (slack_runtime <= 0)
2173 return;
2174
2175 raw_spin_lock(&cfs_b->lock);
2176 if (cfs_b->quota != RUNTIME_INF &&
2177 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2178 cfs_b->runtime += slack_runtime;
2179
2180 /* we are under rq->lock, defer unthrottling using a timer */
2181 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2182 !list_empty(&cfs_b->throttled_cfs_rq))
2183 start_cfs_slack_bandwidth(cfs_b);
2184 }
2185 raw_spin_unlock(&cfs_b->lock);
2186
2187 /* even if it's not valid for return we don't want to try again */
2188 cfs_rq->runtime_remaining -= slack_runtime;
2189}
2190
2191static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2192{
56f570e5
PT
2193 if (!cfs_bandwidth_used())
2194 return;
2195
fccfdc6f 2196 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2197 return;
2198
2199 __return_cfs_rq_runtime(cfs_rq);
2200}
2201
2202/*
2203 * This is done with a timer (instead of inline with bandwidth return) since
2204 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2205 */
2206static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2207{
2208 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2209 u64 expires;
2210
2211 /* confirm we're still not at a refresh boundary */
2212 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2213 return;
2214
2215 raw_spin_lock(&cfs_b->lock);
2216 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2217 runtime = cfs_b->runtime;
2218 cfs_b->runtime = 0;
2219 }
2220 expires = cfs_b->runtime_expires;
2221 raw_spin_unlock(&cfs_b->lock);
2222
2223 if (!runtime)
2224 return;
2225
2226 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2227
2228 raw_spin_lock(&cfs_b->lock);
2229 if (expires == cfs_b->runtime_expires)
2230 cfs_b->runtime = runtime;
2231 raw_spin_unlock(&cfs_b->lock);
2232}
2233
d3d9dc33
PT
2234/*
2235 * When a group wakes up we want to make sure that its quota is not already
2236 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2237 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2238 */
2239static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2240{
56f570e5
PT
2241 if (!cfs_bandwidth_used())
2242 return;
2243
d3d9dc33
PT
2244 /* an active group must be handled by the update_curr()->put() path */
2245 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2246 return;
2247
2248 /* ensure the group is not already throttled */
2249 if (cfs_rq_throttled(cfs_rq))
2250 return;
2251
2252 /* update runtime allocation */
2253 account_cfs_rq_runtime(cfs_rq, 0);
2254 if (cfs_rq->runtime_remaining <= 0)
2255 throttle_cfs_rq(cfs_rq);
2256}
2257
2258/* conditionally throttle active cfs_rq's from put_prev_entity() */
2259static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2260{
56f570e5
PT
2261 if (!cfs_bandwidth_used())
2262 return;
2263
d3d9dc33
PT
2264 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2265 return;
2266
2267 /*
2268 * it's possible for a throttled entity to be forced into a running
2269 * state (e.g. set_curr_task), in this case we're finished.
2270 */
2271 if (cfs_rq_throttled(cfs_rq))
2272 return;
2273
2274 throttle_cfs_rq(cfs_rq);
2275}
029632fb
PZ
2276
2277static inline u64 default_cfs_period(void);
2278static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2279static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2280
2281static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2282{
2283 struct cfs_bandwidth *cfs_b =
2284 container_of(timer, struct cfs_bandwidth, slack_timer);
2285 do_sched_cfs_slack_timer(cfs_b);
2286
2287 return HRTIMER_NORESTART;
2288}
2289
2290static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2291{
2292 struct cfs_bandwidth *cfs_b =
2293 container_of(timer, struct cfs_bandwidth, period_timer);
2294 ktime_t now;
2295 int overrun;
2296 int idle = 0;
2297
2298 for (;;) {
2299 now = hrtimer_cb_get_time(timer);
2300 overrun = hrtimer_forward(timer, now, cfs_b->period);
2301
2302 if (!overrun)
2303 break;
2304
2305 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2306 }
2307
2308 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2309}
2310
2311void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2312{
2313 raw_spin_lock_init(&cfs_b->lock);
2314 cfs_b->runtime = 0;
2315 cfs_b->quota = RUNTIME_INF;
2316 cfs_b->period = ns_to_ktime(default_cfs_period());
2317
2318 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2319 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2320 cfs_b->period_timer.function = sched_cfs_period_timer;
2321 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2322 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2323}
2324
2325static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2326{
2327 cfs_rq->runtime_enabled = 0;
2328 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2329}
2330
2331/* requires cfs_b->lock, may release to reprogram timer */
2332void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2333{
2334 /*
2335 * The timer may be active because we're trying to set a new bandwidth
2336 * period or because we're racing with the tear-down path
2337 * (timer_active==0 becomes visible before the hrtimer call-back
2338 * terminates). In either case we ensure that it's re-programmed
2339 */
2340 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2341 raw_spin_unlock(&cfs_b->lock);
2342 /* ensure cfs_b->lock is available while we wait */
2343 hrtimer_cancel(&cfs_b->period_timer);
2344
2345 raw_spin_lock(&cfs_b->lock);
2346 /* if someone else restarted the timer then we're done */
2347 if (cfs_b->timer_active)
2348 return;
2349 }
2350
2351 cfs_b->timer_active = 1;
2352 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2353}
2354
2355static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2356{
2357 hrtimer_cancel(&cfs_b->period_timer);
2358 hrtimer_cancel(&cfs_b->slack_timer);
2359}
2360
a4c96ae3 2361static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2362{
2363 struct cfs_rq *cfs_rq;
2364
2365 for_each_leaf_cfs_rq(rq, cfs_rq) {
2366 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2367
2368 if (!cfs_rq->runtime_enabled)
2369 continue;
2370
2371 /*
2372 * clock_task is not advancing so we just need to make sure
2373 * there's some valid quota amount
2374 */
2375 cfs_rq->runtime_remaining = cfs_b->quota;
2376 if (cfs_rq_throttled(cfs_rq))
2377 unthrottle_cfs_rq(cfs_rq);
2378 }
2379}
2380
2381#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2382static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2383{
2384 return rq_of(cfs_rq)->clock_task;
2385}
2386
2387static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2388 unsigned long delta_exec) {}
d3d9dc33
PT
2389static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2390static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2391static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2392
2393static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2394{
2395 return 0;
2396}
64660c86
PT
2397
2398static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2399{
2400 return 0;
2401}
2402
2403static inline int throttled_lb_pair(struct task_group *tg,
2404 int src_cpu, int dest_cpu)
2405{
2406 return 0;
2407}
029632fb
PZ
2408
2409void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2410
2411#ifdef CONFIG_FAIR_GROUP_SCHED
2412static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2413#endif
2414
029632fb
PZ
2415static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2416{
2417 return NULL;
2418}
2419static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2420static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2421
2422#endif /* CONFIG_CFS_BANDWIDTH */
2423
bf0f6f24
IM
2424/**************************************************
2425 * CFS operations on tasks:
2426 */
2427
8f4d37ec
PZ
2428#ifdef CONFIG_SCHED_HRTICK
2429static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2430{
8f4d37ec
PZ
2431 struct sched_entity *se = &p->se;
2432 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2433
2434 WARN_ON(task_rq(p) != rq);
2435
b39e66ea 2436 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2437 u64 slice = sched_slice(cfs_rq, se);
2438 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2439 s64 delta = slice - ran;
2440
2441 if (delta < 0) {
2442 if (rq->curr == p)
2443 resched_task(p);
2444 return;
2445 }
2446
2447 /*
2448 * Don't schedule slices shorter than 10000ns, that just
2449 * doesn't make sense. Rely on vruntime for fairness.
2450 */
31656519 2451 if (rq->curr != p)
157124c1 2452 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2453
31656519 2454 hrtick_start(rq, delta);
8f4d37ec
PZ
2455 }
2456}
a4c2f00f
PZ
2457
2458/*
2459 * called from enqueue/dequeue and updates the hrtick when the
2460 * current task is from our class and nr_running is low enough
2461 * to matter.
2462 */
2463static void hrtick_update(struct rq *rq)
2464{
2465 struct task_struct *curr = rq->curr;
2466
b39e66ea 2467 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2468 return;
2469
2470 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2471 hrtick_start_fair(rq, curr);
2472}
55e12e5e 2473#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2474static inline void
2475hrtick_start_fair(struct rq *rq, struct task_struct *p)
2476{
2477}
a4c2f00f
PZ
2478
2479static inline void hrtick_update(struct rq *rq)
2480{
2481}
8f4d37ec
PZ
2482#endif
2483
bf0f6f24
IM
2484/*
2485 * The enqueue_task method is called before nr_running is
2486 * increased. Here we update the fair scheduling stats and
2487 * then put the task into the rbtree:
2488 */
ea87bb78 2489static void
371fd7e7 2490enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2491{
2492 struct cfs_rq *cfs_rq;
62fb1851 2493 struct sched_entity *se = &p->se;
bf0f6f24
IM
2494
2495 for_each_sched_entity(se) {
62fb1851 2496 if (se->on_rq)
bf0f6f24
IM
2497 break;
2498 cfs_rq = cfs_rq_of(se);
88ec22d3 2499 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2500
2501 /*
2502 * end evaluation on encountering a throttled cfs_rq
2503 *
2504 * note: in the case of encountering a throttled cfs_rq we will
2505 * post the final h_nr_running increment below.
2506 */
2507 if (cfs_rq_throttled(cfs_rq))
2508 break;
953bfcd1 2509 cfs_rq->h_nr_running++;
85dac906 2510
88ec22d3 2511 flags = ENQUEUE_WAKEUP;
bf0f6f24 2512 }
8f4d37ec 2513
2069dd75 2514 for_each_sched_entity(se) {
0f317143 2515 cfs_rq = cfs_rq_of(se);
953bfcd1 2516 cfs_rq->h_nr_running++;
2069dd75 2517
85dac906
PT
2518 if (cfs_rq_throttled(cfs_rq))
2519 break;
2520
6d5ab293 2521 update_cfs_shares(cfs_rq);
9ee474f5 2522 update_entity_load_avg(se, 1);
2069dd75
PZ
2523 }
2524
18bf2805
BS
2525 if (!se) {
2526 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2527 inc_nr_running(rq);
18bf2805 2528 }
a4c2f00f 2529 hrtick_update(rq);
bf0f6f24
IM
2530}
2531
2f36825b
VP
2532static void set_next_buddy(struct sched_entity *se);
2533
bf0f6f24
IM
2534/*
2535 * The dequeue_task method is called before nr_running is
2536 * decreased. We remove the task from the rbtree and
2537 * update the fair scheduling stats:
2538 */
371fd7e7 2539static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2540{
2541 struct cfs_rq *cfs_rq;
62fb1851 2542 struct sched_entity *se = &p->se;
2f36825b 2543 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2544
2545 for_each_sched_entity(se) {
2546 cfs_rq = cfs_rq_of(se);
371fd7e7 2547 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2548
2549 /*
2550 * end evaluation on encountering a throttled cfs_rq
2551 *
2552 * note: in the case of encountering a throttled cfs_rq we will
2553 * post the final h_nr_running decrement below.
2554 */
2555 if (cfs_rq_throttled(cfs_rq))
2556 break;
953bfcd1 2557 cfs_rq->h_nr_running--;
2069dd75 2558
bf0f6f24 2559 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2560 if (cfs_rq->load.weight) {
2561 /*
2562 * Bias pick_next to pick a task from this cfs_rq, as
2563 * p is sleeping when it is within its sched_slice.
2564 */
2565 if (task_sleep && parent_entity(se))
2566 set_next_buddy(parent_entity(se));
9598c82d
PT
2567
2568 /* avoid re-evaluating load for this entity */
2569 se = parent_entity(se);
bf0f6f24 2570 break;
2f36825b 2571 }
371fd7e7 2572 flags |= DEQUEUE_SLEEP;
bf0f6f24 2573 }
8f4d37ec 2574
2069dd75 2575 for_each_sched_entity(se) {
0f317143 2576 cfs_rq = cfs_rq_of(se);
953bfcd1 2577 cfs_rq->h_nr_running--;
2069dd75 2578
85dac906
PT
2579 if (cfs_rq_throttled(cfs_rq))
2580 break;
2581
6d5ab293 2582 update_cfs_shares(cfs_rq);
9ee474f5 2583 update_entity_load_avg(se, 1);
2069dd75
PZ
2584 }
2585
18bf2805 2586 if (!se) {
85dac906 2587 dec_nr_running(rq);
18bf2805
BS
2588 update_rq_runnable_avg(rq, 1);
2589 }
a4c2f00f 2590 hrtick_update(rq);
bf0f6f24
IM
2591}
2592
e7693a36 2593#ifdef CONFIG_SMP
029632fb
PZ
2594/* Used instead of source_load when we know the type == 0 */
2595static unsigned long weighted_cpuload(const int cpu)
2596{
2597 return cpu_rq(cpu)->load.weight;
2598}
2599
2600/*
2601 * Return a low guess at the load of a migration-source cpu weighted
2602 * according to the scheduling class and "nice" value.
2603 *
2604 * We want to under-estimate the load of migration sources, to
2605 * balance conservatively.
2606 */
2607static unsigned long source_load(int cpu, int type)
2608{
2609 struct rq *rq = cpu_rq(cpu);
2610 unsigned long total = weighted_cpuload(cpu);
2611
2612 if (type == 0 || !sched_feat(LB_BIAS))
2613 return total;
2614
2615 return min(rq->cpu_load[type-1], total);
2616}
2617
2618/*
2619 * Return a high guess at the load of a migration-target cpu weighted
2620 * according to the scheduling class and "nice" value.
2621 */
2622static unsigned long target_load(int cpu, int type)
2623{
2624 struct rq *rq = cpu_rq(cpu);
2625 unsigned long total = weighted_cpuload(cpu);
2626
2627 if (type == 0 || !sched_feat(LB_BIAS))
2628 return total;
2629
2630 return max(rq->cpu_load[type-1], total);
2631}
2632
2633static unsigned long power_of(int cpu)
2634{
2635 return cpu_rq(cpu)->cpu_power;
2636}
2637
2638static unsigned long cpu_avg_load_per_task(int cpu)
2639{
2640 struct rq *rq = cpu_rq(cpu);
2641 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2642
2643 if (nr_running)
2644 return rq->load.weight / nr_running;
2645
2646 return 0;
2647}
2648
098fb9db 2649
74f8e4b2 2650static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2651{
2652 struct sched_entity *se = &p->se;
2653 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2654 u64 min_vruntime;
2655
2656#ifndef CONFIG_64BIT
2657 u64 min_vruntime_copy;
88ec22d3 2658
3fe1698b
PZ
2659 do {
2660 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2661 smp_rmb();
2662 min_vruntime = cfs_rq->min_vruntime;
2663 } while (min_vruntime != min_vruntime_copy);
2664#else
2665 min_vruntime = cfs_rq->min_vruntime;
2666#endif
88ec22d3 2667
3fe1698b 2668 se->vruntime -= min_vruntime;
88ec22d3
PZ
2669}
2670
bb3469ac 2671#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2672/*
2673 * effective_load() calculates the load change as seen from the root_task_group
2674 *
2675 * Adding load to a group doesn't make a group heavier, but can cause movement
2676 * of group shares between cpus. Assuming the shares were perfectly aligned one
2677 * can calculate the shift in shares.
cf5f0acf
PZ
2678 *
2679 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2680 * on this @cpu and results in a total addition (subtraction) of @wg to the
2681 * total group weight.
2682 *
2683 * Given a runqueue weight distribution (rw_i) we can compute a shares
2684 * distribution (s_i) using:
2685 *
2686 * s_i = rw_i / \Sum rw_j (1)
2687 *
2688 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2689 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2690 * shares distribution (s_i):
2691 *
2692 * rw_i = { 2, 4, 1, 0 }
2693 * s_i = { 2/7, 4/7, 1/7, 0 }
2694 *
2695 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2696 * task used to run on and the CPU the waker is running on), we need to
2697 * compute the effect of waking a task on either CPU and, in case of a sync
2698 * wakeup, compute the effect of the current task going to sleep.
2699 *
2700 * So for a change of @wl to the local @cpu with an overall group weight change
2701 * of @wl we can compute the new shares distribution (s'_i) using:
2702 *
2703 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2704 *
2705 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2706 * differences in waking a task to CPU 0. The additional task changes the
2707 * weight and shares distributions like:
2708 *
2709 * rw'_i = { 3, 4, 1, 0 }
2710 * s'_i = { 3/8, 4/8, 1/8, 0 }
2711 *
2712 * We can then compute the difference in effective weight by using:
2713 *
2714 * dw_i = S * (s'_i - s_i) (3)
2715 *
2716 * Where 'S' is the group weight as seen by its parent.
2717 *
2718 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2719 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2720 * 4/7) times the weight of the group.
f5bfb7d9 2721 */
2069dd75 2722static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2723{
4be9daaa 2724 struct sched_entity *se = tg->se[cpu];
f1d239f7 2725
cf5f0acf 2726 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2727 return wl;
2728
4be9daaa 2729 for_each_sched_entity(se) {
cf5f0acf 2730 long w, W;
4be9daaa 2731
977dda7c 2732 tg = se->my_q->tg;
bb3469ac 2733
cf5f0acf
PZ
2734 /*
2735 * W = @wg + \Sum rw_j
2736 */
2737 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2738
cf5f0acf
PZ
2739 /*
2740 * w = rw_i + @wl
2741 */
2742 w = se->my_q->load.weight + wl;
940959e9 2743
cf5f0acf
PZ
2744 /*
2745 * wl = S * s'_i; see (2)
2746 */
2747 if (W > 0 && w < W)
2748 wl = (w * tg->shares) / W;
977dda7c
PT
2749 else
2750 wl = tg->shares;
940959e9 2751
cf5f0acf
PZ
2752 /*
2753 * Per the above, wl is the new se->load.weight value; since
2754 * those are clipped to [MIN_SHARES, ...) do so now. See
2755 * calc_cfs_shares().
2756 */
977dda7c
PT
2757 if (wl < MIN_SHARES)
2758 wl = MIN_SHARES;
cf5f0acf
PZ
2759
2760 /*
2761 * wl = dw_i = S * (s'_i - s_i); see (3)
2762 */
977dda7c 2763 wl -= se->load.weight;
cf5f0acf
PZ
2764
2765 /*
2766 * Recursively apply this logic to all parent groups to compute
2767 * the final effective load change on the root group. Since
2768 * only the @tg group gets extra weight, all parent groups can
2769 * only redistribute existing shares. @wl is the shift in shares
2770 * resulting from this level per the above.
2771 */
4be9daaa 2772 wg = 0;
4be9daaa 2773 }
bb3469ac 2774
4be9daaa 2775 return wl;
bb3469ac
PZ
2776}
2777#else
4be9daaa 2778
83378269
PZ
2779static inline unsigned long effective_load(struct task_group *tg, int cpu,
2780 unsigned long wl, unsigned long wg)
4be9daaa 2781{
83378269 2782 return wl;
bb3469ac 2783}
4be9daaa 2784
bb3469ac
PZ
2785#endif
2786
c88d5910 2787static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2788{
e37b6a7b 2789 s64 this_load, load;
c88d5910 2790 int idx, this_cpu, prev_cpu;
098fb9db 2791 unsigned long tl_per_task;
c88d5910 2792 struct task_group *tg;
83378269 2793 unsigned long weight;
b3137bc8 2794 int balanced;
098fb9db 2795
c88d5910
PZ
2796 idx = sd->wake_idx;
2797 this_cpu = smp_processor_id();
2798 prev_cpu = task_cpu(p);
2799 load = source_load(prev_cpu, idx);
2800 this_load = target_load(this_cpu, idx);
098fb9db 2801
b3137bc8
MG
2802 /*
2803 * If sync wakeup then subtract the (maximum possible)
2804 * effect of the currently running task from the load
2805 * of the current CPU:
2806 */
83378269
PZ
2807 if (sync) {
2808 tg = task_group(current);
2809 weight = current->se.load.weight;
2810
c88d5910 2811 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2812 load += effective_load(tg, prev_cpu, 0, -weight);
2813 }
b3137bc8 2814
83378269
PZ
2815 tg = task_group(p);
2816 weight = p->se.load.weight;
b3137bc8 2817
71a29aa7
PZ
2818 /*
2819 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2820 * due to the sync cause above having dropped this_load to 0, we'll
2821 * always have an imbalance, but there's really nothing you can do
2822 * about that, so that's good too.
71a29aa7
PZ
2823 *
2824 * Otherwise check if either cpus are near enough in load to allow this
2825 * task to be woken on this_cpu.
2826 */
e37b6a7b
PT
2827 if (this_load > 0) {
2828 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2829
2830 this_eff_load = 100;
2831 this_eff_load *= power_of(prev_cpu);
2832 this_eff_load *= this_load +
2833 effective_load(tg, this_cpu, weight, weight);
2834
2835 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2836 prev_eff_load *= power_of(this_cpu);
2837 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2838
2839 balanced = this_eff_load <= prev_eff_load;
2840 } else
2841 balanced = true;
b3137bc8 2842
098fb9db 2843 /*
4ae7d5ce
IM
2844 * If the currently running task will sleep within
2845 * a reasonable amount of time then attract this newly
2846 * woken task:
098fb9db 2847 */
2fb7635c
PZ
2848 if (sync && balanced)
2849 return 1;
098fb9db 2850
41acab88 2851 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2852 tl_per_task = cpu_avg_load_per_task(this_cpu);
2853
c88d5910
PZ
2854 if (balanced ||
2855 (this_load <= load &&
2856 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2857 /*
2858 * This domain has SD_WAKE_AFFINE and
2859 * p is cache cold in this domain, and
2860 * there is no bad imbalance.
2861 */
c88d5910 2862 schedstat_inc(sd, ttwu_move_affine);
41acab88 2863 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2864
2865 return 1;
2866 }
2867 return 0;
2868}
2869
aaee1203
PZ
2870/*
2871 * find_idlest_group finds and returns the least busy CPU group within the
2872 * domain.
2873 */
2874static struct sched_group *
78e7ed53 2875find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2876 int this_cpu, int load_idx)
e7693a36 2877{
b3bd3de6 2878 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2879 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2880 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2881
aaee1203
PZ
2882 do {
2883 unsigned long load, avg_load;
2884 int local_group;
2885 int i;
e7693a36 2886
aaee1203
PZ
2887 /* Skip over this group if it has no CPUs allowed */
2888 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2889 tsk_cpus_allowed(p)))
aaee1203
PZ
2890 continue;
2891
2892 local_group = cpumask_test_cpu(this_cpu,
2893 sched_group_cpus(group));
2894
2895 /* Tally up the load of all CPUs in the group */
2896 avg_load = 0;
2897
2898 for_each_cpu(i, sched_group_cpus(group)) {
2899 /* Bias balancing toward cpus of our domain */
2900 if (local_group)
2901 load = source_load(i, load_idx);
2902 else
2903 load = target_load(i, load_idx);
2904
2905 avg_load += load;
2906 }
2907
2908 /* Adjust by relative CPU power of the group */
9c3f75cb 2909 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2910
2911 if (local_group) {
2912 this_load = avg_load;
aaee1203
PZ
2913 } else if (avg_load < min_load) {
2914 min_load = avg_load;
2915 idlest = group;
2916 }
2917 } while (group = group->next, group != sd->groups);
2918
2919 if (!idlest || 100*this_load < imbalance*min_load)
2920 return NULL;
2921 return idlest;
2922}
2923
2924/*
2925 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2926 */
2927static int
2928find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2929{
2930 unsigned long load, min_load = ULONG_MAX;
2931 int idlest = -1;
2932 int i;
2933
2934 /* Traverse only the allowed CPUs */
fa17b507 2935 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2936 load = weighted_cpuload(i);
2937
2938 if (load < min_load || (load == min_load && i == this_cpu)) {
2939 min_load = load;
2940 idlest = i;
e7693a36
GH
2941 }
2942 }
2943
aaee1203
PZ
2944 return idlest;
2945}
e7693a36 2946
a50bde51
PZ
2947/*
2948 * Try and locate an idle CPU in the sched_domain.
2949 */
99bd5e2f 2950static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2951{
2952 int cpu = smp_processor_id();
2953 int prev_cpu = task_cpu(p);
99bd5e2f 2954 struct sched_domain *sd;
37407ea7
LT
2955 struct sched_group *sg;
2956 int i;
a50bde51
PZ
2957
2958 /*
99bd5e2f
SS
2959 * If the task is going to be woken-up on this cpu and if it is
2960 * already idle, then it is the right target.
a50bde51 2961 */
99bd5e2f
SS
2962 if (target == cpu && idle_cpu(cpu))
2963 return cpu;
2964
2965 /*
2966 * If the task is going to be woken-up on the cpu where it previously
2967 * ran and if it is currently idle, then it the right target.
2968 */
2969 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2970 return prev_cpu;
a50bde51
PZ
2971
2972 /*
37407ea7 2973 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2974 */
518cd623 2975 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 2976 for_each_lower_domain(sd) {
37407ea7
LT
2977 sg = sd->groups;
2978 do {
2979 if (!cpumask_intersects(sched_group_cpus(sg),
2980 tsk_cpus_allowed(p)))
2981 goto next;
2982
2983 for_each_cpu(i, sched_group_cpus(sg)) {
2984 if (!idle_cpu(i))
2985 goto next;
2986 }
970e1789 2987
37407ea7
LT
2988 target = cpumask_first_and(sched_group_cpus(sg),
2989 tsk_cpus_allowed(p));
2990 goto done;
2991next:
2992 sg = sg->next;
2993 } while (sg != sd->groups);
2994 }
2995done:
a50bde51
PZ
2996 return target;
2997}
2998
aaee1203
PZ
2999/*
3000 * sched_balance_self: balance the current task (running on cpu) in domains
3001 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3002 * SD_BALANCE_EXEC.
3003 *
3004 * Balance, ie. select the least loaded group.
3005 *
3006 * Returns the target CPU number, or the same CPU if no balancing is needed.
3007 *
3008 * preempt must be disabled.
3009 */
0017d735 3010static int
7608dec2 3011select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3012{
29cd8bae 3013 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3014 int cpu = smp_processor_id();
3015 int prev_cpu = task_cpu(p);
3016 int new_cpu = cpu;
99bd5e2f 3017 int want_affine = 0;
5158f4e4 3018 int sync = wake_flags & WF_SYNC;
c88d5910 3019
29baa747 3020 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3021 return prev_cpu;
3022
0763a660 3023 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3024 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3025 want_affine = 1;
3026 new_cpu = prev_cpu;
3027 }
aaee1203 3028
dce840a0 3029 rcu_read_lock();
aaee1203 3030 for_each_domain(cpu, tmp) {
e4f42888
PZ
3031 if (!(tmp->flags & SD_LOAD_BALANCE))
3032 continue;
3033
fe3bcfe1 3034 /*
99bd5e2f
SS
3035 * If both cpu and prev_cpu are part of this domain,
3036 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3037 */
99bd5e2f
SS
3038 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3039 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3040 affine_sd = tmp;
29cd8bae 3041 break;
f03542a7 3042 }
29cd8bae 3043
f03542a7 3044 if (tmp->flags & sd_flag)
29cd8bae
PZ
3045 sd = tmp;
3046 }
3047
8b911acd 3048 if (affine_sd) {
f03542a7 3049 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3050 prev_cpu = cpu;
3051
3052 new_cpu = select_idle_sibling(p, prev_cpu);
3053 goto unlock;
8b911acd 3054 }
e7693a36 3055
aaee1203 3056 while (sd) {
5158f4e4 3057 int load_idx = sd->forkexec_idx;
aaee1203 3058 struct sched_group *group;
c88d5910 3059 int weight;
098fb9db 3060
0763a660 3061 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3062 sd = sd->child;
3063 continue;
3064 }
098fb9db 3065
5158f4e4
PZ
3066 if (sd_flag & SD_BALANCE_WAKE)
3067 load_idx = sd->wake_idx;
098fb9db 3068
5158f4e4 3069 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3070 if (!group) {
3071 sd = sd->child;
3072 continue;
3073 }
4ae7d5ce 3074
d7c33c49 3075 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3076 if (new_cpu == -1 || new_cpu == cpu) {
3077 /* Now try balancing at a lower domain level of cpu */
3078 sd = sd->child;
3079 continue;
e7693a36 3080 }
aaee1203
PZ
3081
3082 /* Now try balancing at a lower domain level of new_cpu */
3083 cpu = new_cpu;
669c55e9 3084 weight = sd->span_weight;
aaee1203
PZ
3085 sd = NULL;
3086 for_each_domain(cpu, tmp) {
669c55e9 3087 if (weight <= tmp->span_weight)
aaee1203 3088 break;
0763a660 3089 if (tmp->flags & sd_flag)
aaee1203
PZ
3090 sd = tmp;
3091 }
3092 /* while loop will break here if sd == NULL */
e7693a36 3093 }
dce840a0
PZ
3094unlock:
3095 rcu_read_unlock();
e7693a36 3096
c88d5910 3097 return new_cpu;
e7693a36 3098}
0a74bef8
PT
3099
3100/*
3101 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3102 * cfs_rq_of(p) references at time of call are still valid and identify the
3103 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3104 * other assumptions, including the state of rq->lock, should be made.
3105 */
3106static void
3107migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3108{
aff3e498
PT
3109 struct sched_entity *se = &p->se;
3110 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3111
3112 /*
3113 * Load tracking: accumulate removed load so that it can be processed
3114 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3115 * to blocked load iff they have a positive decay-count. It can never
3116 * be negative here since on-rq tasks have decay-count == 0.
3117 */
3118 if (se->avg.decay_count) {
3119 se->avg.decay_count = -__synchronize_entity_decay(se);
3120 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3121 }
0a74bef8 3122}
e7693a36
GH
3123#endif /* CONFIG_SMP */
3124
e52fb7c0
PZ
3125static unsigned long
3126wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3127{
3128 unsigned long gran = sysctl_sched_wakeup_granularity;
3129
3130 /*
e52fb7c0
PZ
3131 * Since its curr running now, convert the gran from real-time
3132 * to virtual-time in his units.
13814d42
MG
3133 *
3134 * By using 'se' instead of 'curr' we penalize light tasks, so
3135 * they get preempted easier. That is, if 'se' < 'curr' then
3136 * the resulting gran will be larger, therefore penalizing the
3137 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3138 * be smaller, again penalizing the lighter task.
3139 *
3140 * This is especially important for buddies when the leftmost
3141 * task is higher priority than the buddy.
0bbd3336 3142 */
f4ad9bd2 3143 return calc_delta_fair(gran, se);
0bbd3336
PZ
3144}
3145
464b7527
PZ
3146/*
3147 * Should 'se' preempt 'curr'.
3148 *
3149 * |s1
3150 * |s2
3151 * |s3
3152 * g
3153 * |<--->|c
3154 *
3155 * w(c, s1) = -1
3156 * w(c, s2) = 0
3157 * w(c, s3) = 1
3158 *
3159 */
3160static int
3161wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3162{
3163 s64 gran, vdiff = curr->vruntime - se->vruntime;
3164
3165 if (vdiff <= 0)
3166 return -1;
3167
e52fb7c0 3168 gran = wakeup_gran(curr, se);
464b7527
PZ
3169 if (vdiff > gran)
3170 return 1;
3171
3172 return 0;
3173}
3174
02479099
PZ
3175static void set_last_buddy(struct sched_entity *se)
3176{
69c80f3e
VP
3177 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3178 return;
3179
3180 for_each_sched_entity(se)
3181 cfs_rq_of(se)->last = se;
02479099
PZ
3182}
3183
3184static void set_next_buddy(struct sched_entity *se)
3185{
69c80f3e
VP
3186 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3187 return;
3188
3189 for_each_sched_entity(se)
3190 cfs_rq_of(se)->next = se;
02479099
PZ
3191}
3192
ac53db59
RR
3193static void set_skip_buddy(struct sched_entity *se)
3194{
69c80f3e
VP
3195 for_each_sched_entity(se)
3196 cfs_rq_of(se)->skip = se;
ac53db59
RR
3197}
3198
bf0f6f24
IM
3199/*
3200 * Preempt the current task with a newly woken task if needed:
3201 */
5a9b86f6 3202static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3203{
3204 struct task_struct *curr = rq->curr;
8651a86c 3205 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3206 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3207 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3208 int next_buddy_marked = 0;
bf0f6f24 3209
4ae7d5ce
IM
3210 if (unlikely(se == pse))
3211 return;
3212
5238cdd3 3213 /*
ddcdf6e7 3214 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3215 * unconditionally check_prempt_curr() after an enqueue (which may have
3216 * lead to a throttle). This both saves work and prevents false
3217 * next-buddy nomination below.
3218 */
3219 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3220 return;
3221
2f36825b 3222 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3223 set_next_buddy(pse);
2f36825b
VP
3224 next_buddy_marked = 1;
3225 }
57fdc26d 3226
aec0a514
BR
3227 /*
3228 * We can come here with TIF_NEED_RESCHED already set from new task
3229 * wake up path.
5238cdd3
PT
3230 *
3231 * Note: this also catches the edge-case of curr being in a throttled
3232 * group (e.g. via set_curr_task), since update_curr() (in the
3233 * enqueue of curr) will have resulted in resched being set. This
3234 * prevents us from potentially nominating it as a false LAST_BUDDY
3235 * below.
aec0a514
BR
3236 */
3237 if (test_tsk_need_resched(curr))
3238 return;
3239
a2f5c9ab
DH
3240 /* Idle tasks are by definition preempted by non-idle tasks. */
3241 if (unlikely(curr->policy == SCHED_IDLE) &&
3242 likely(p->policy != SCHED_IDLE))
3243 goto preempt;
3244
91c234b4 3245 /*
a2f5c9ab
DH
3246 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3247 * is driven by the tick):
91c234b4 3248 */
6bc912b7 3249 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 3250 return;
bf0f6f24 3251
464b7527 3252 find_matching_se(&se, &pse);
9bbd7374 3253 update_curr(cfs_rq_of(se));
002f128b 3254 BUG_ON(!pse);
2f36825b
VP
3255 if (wakeup_preempt_entity(se, pse) == 1) {
3256 /*
3257 * Bias pick_next to pick the sched entity that is
3258 * triggering this preemption.
3259 */
3260 if (!next_buddy_marked)
3261 set_next_buddy(pse);
3a7e73a2 3262 goto preempt;
2f36825b 3263 }
464b7527 3264
3a7e73a2 3265 return;
a65ac745 3266
3a7e73a2
PZ
3267preempt:
3268 resched_task(curr);
3269 /*
3270 * Only set the backward buddy when the current task is still
3271 * on the rq. This can happen when a wakeup gets interleaved
3272 * with schedule on the ->pre_schedule() or idle_balance()
3273 * point, either of which can * drop the rq lock.
3274 *
3275 * Also, during early boot the idle thread is in the fair class,
3276 * for obvious reasons its a bad idea to schedule back to it.
3277 */
3278 if (unlikely(!se->on_rq || curr == rq->idle))
3279 return;
3280
3281 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3282 set_last_buddy(se);
bf0f6f24
IM
3283}
3284
fb8d4724 3285static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3286{
8f4d37ec 3287 struct task_struct *p;
bf0f6f24
IM
3288 struct cfs_rq *cfs_rq = &rq->cfs;
3289 struct sched_entity *se;
3290
36ace27e 3291 if (!cfs_rq->nr_running)
bf0f6f24
IM
3292 return NULL;
3293
3294 do {
9948f4b2 3295 se = pick_next_entity(cfs_rq);
f4b6755f 3296 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3297 cfs_rq = group_cfs_rq(se);
3298 } while (cfs_rq);
3299
8f4d37ec 3300 p = task_of(se);
b39e66ea
MG
3301 if (hrtick_enabled(rq))
3302 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3303
3304 return p;
bf0f6f24
IM
3305}
3306
3307/*
3308 * Account for a descheduled task:
3309 */
31ee529c 3310static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3311{
3312 struct sched_entity *se = &prev->se;
3313 struct cfs_rq *cfs_rq;
3314
3315 for_each_sched_entity(se) {
3316 cfs_rq = cfs_rq_of(se);
ab6cde26 3317 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3318 }
3319}
3320
ac53db59
RR
3321/*
3322 * sched_yield() is very simple
3323 *
3324 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3325 */
3326static void yield_task_fair(struct rq *rq)
3327{
3328 struct task_struct *curr = rq->curr;
3329 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3330 struct sched_entity *se = &curr->se;
3331
3332 /*
3333 * Are we the only task in the tree?
3334 */
3335 if (unlikely(rq->nr_running == 1))
3336 return;
3337
3338 clear_buddies(cfs_rq, se);
3339
3340 if (curr->policy != SCHED_BATCH) {
3341 update_rq_clock(rq);
3342 /*
3343 * Update run-time statistics of the 'current'.
3344 */
3345 update_curr(cfs_rq);
916671c0
MG
3346 /*
3347 * Tell update_rq_clock() that we've just updated,
3348 * so we don't do microscopic update in schedule()
3349 * and double the fastpath cost.
3350 */
3351 rq->skip_clock_update = 1;
ac53db59
RR
3352 }
3353
3354 set_skip_buddy(se);
3355}
3356
d95f4122
MG
3357static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3358{
3359 struct sched_entity *se = &p->se;
3360
5238cdd3
PT
3361 /* throttled hierarchies are not runnable */
3362 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3363 return false;
3364
3365 /* Tell the scheduler that we'd really like pse to run next. */
3366 set_next_buddy(se);
3367
d95f4122
MG
3368 yield_task_fair(rq);
3369
3370 return true;
3371}
3372
681f3e68 3373#ifdef CONFIG_SMP
bf0f6f24
IM
3374/**************************************************
3375 * Fair scheduling class load-balancing methods:
3376 */
3377
ed387b78
HS
3378static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3379
ddcdf6e7 3380#define LBF_ALL_PINNED 0x01
367456c7 3381#define LBF_NEED_BREAK 0x02
88b8dac0 3382#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3383
3384struct lb_env {
3385 struct sched_domain *sd;
3386
ddcdf6e7 3387 struct rq *src_rq;
85c1e7da 3388 int src_cpu;
ddcdf6e7
PZ
3389
3390 int dst_cpu;
3391 struct rq *dst_rq;
3392
88b8dac0
SV
3393 struct cpumask *dst_grpmask;
3394 int new_dst_cpu;
ddcdf6e7 3395 enum cpu_idle_type idle;
bd939f45 3396 long imbalance;
b9403130
MW
3397 /* The set of CPUs under consideration for load-balancing */
3398 struct cpumask *cpus;
3399
ddcdf6e7 3400 unsigned int flags;
367456c7
PZ
3401
3402 unsigned int loop;
3403 unsigned int loop_break;
3404 unsigned int loop_max;
ddcdf6e7
PZ
3405};
3406
1e3c88bd 3407/*
ddcdf6e7 3408 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3409 * Both runqueues must be locked.
3410 */
ddcdf6e7 3411static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3412{
ddcdf6e7
PZ
3413 deactivate_task(env->src_rq, p, 0);
3414 set_task_cpu(p, env->dst_cpu);
3415 activate_task(env->dst_rq, p, 0);
3416 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3417}
3418
029632fb
PZ
3419/*
3420 * Is this task likely cache-hot:
3421 */
3422static int
3423task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3424{
3425 s64 delta;
3426
3427 if (p->sched_class != &fair_sched_class)
3428 return 0;
3429
3430 if (unlikely(p->policy == SCHED_IDLE))
3431 return 0;
3432
3433 /*
3434 * Buddy candidates are cache hot:
3435 */
3436 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3437 (&p->se == cfs_rq_of(&p->se)->next ||
3438 &p->se == cfs_rq_of(&p->se)->last))
3439 return 1;
3440
3441 if (sysctl_sched_migration_cost == -1)
3442 return 1;
3443 if (sysctl_sched_migration_cost == 0)
3444 return 0;
3445
3446 delta = now - p->se.exec_start;
3447
3448 return delta < (s64)sysctl_sched_migration_cost;
3449}
3450
1e3c88bd
PZ
3451/*
3452 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3453 */
3454static
8e45cb54 3455int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3456{
3457 int tsk_cache_hot = 0;
3458 /*
3459 * We do not migrate tasks that are:
3460 * 1) running (obviously), or
3461 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3462 * 3) are cache-hot on their current CPU.
3463 */
ddcdf6e7 3464 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3465 int new_dst_cpu;
3466
41acab88 3467 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3468
3469 /*
3470 * Remember if this task can be migrated to any other cpu in
3471 * our sched_group. We may want to revisit it if we couldn't
3472 * meet load balance goals by pulling other tasks on src_cpu.
3473 *
3474 * Also avoid computing new_dst_cpu if we have already computed
3475 * one in current iteration.
3476 */
3477 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3478 return 0;
3479
3480 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3481 tsk_cpus_allowed(p));
3482 if (new_dst_cpu < nr_cpu_ids) {
3483 env->flags |= LBF_SOME_PINNED;
3484 env->new_dst_cpu = new_dst_cpu;
3485 }
1e3c88bd
PZ
3486 return 0;
3487 }
88b8dac0
SV
3488
3489 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3490 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3491
ddcdf6e7 3492 if (task_running(env->src_rq, p)) {
41acab88 3493 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3494 return 0;
3495 }
3496
3497 /*
3498 * Aggressive migration if:
3499 * 1) task is cache cold, or
3500 * 2) too many balance attempts have failed.
3501 */
3502
ddcdf6e7 3503 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3504 if (!tsk_cache_hot ||
8e45cb54 3505 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3506#ifdef CONFIG_SCHEDSTATS
3507 if (tsk_cache_hot) {
8e45cb54 3508 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3509 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3510 }
3511#endif
3512 return 1;
3513 }
3514
3515 if (tsk_cache_hot) {
41acab88 3516 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3517 return 0;
3518 }
3519 return 1;
3520}
3521
897c395f
PZ
3522/*
3523 * move_one_task tries to move exactly one task from busiest to this_rq, as
3524 * part of active balancing operations within "domain".
3525 * Returns 1 if successful and 0 otherwise.
3526 *
3527 * Called with both runqueues locked.
3528 */
8e45cb54 3529static int move_one_task(struct lb_env *env)
897c395f
PZ
3530{
3531 struct task_struct *p, *n;
897c395f 3532
367456c7
PZ
3533 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3534 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3535 continue;
897c395f 3536
367456c7
PZ
3537 if (!can_migrate_task(p, env))
3538 continue;
897c395f 3539
367456c7
PZ
3540 move_task(p, env);
3541 /*
3542 * Right now, this is only the second place move_task()
3543 * is called, so we can safely collect move_task()
3544 * stats here rather than inside move_task().
3545 */
3546 schedstat_inc(env->sd, lb_gained[env->idle]);
3547 return 1;
897c395f 3548 }
897c395f
PZ
3549 return 0;
3550}
3551
367456c7
PZ
3552static unsigned long task_h_load(struct task_struct *p);
3553
eb95308e
PZ
3554static const unsigned int sched_nr_migrate_break = 32;
3555
5d6523eb 3556/*
bd939f45 3557 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3558 * this_rq, as part of a balancing operation within domain "sd".
3559 * Returns 1 if successful and 0 otherwise.
3560 *
3561 * Called with both runqueues locked.
3562 */
3563static int move_tasks(struct lb_env *env)
1e3c88bd 3564{
5d6523eb
PZ
3565 struct list_head *tasks = &env->src_rq->cfs_tasks;
3566 struct task_struct *p;
367456c7
PZ
3567 unsigned long load;
3568 int pulled = 0;
1e3c88bd 3569
bd939f45 3570 if (env->imbalance <= 0)
5d6523eb 3571 return 0;
1e3c88bd 3572
5d6523eb
PZ
3573 while (!list_empty(tasks)) {
3574 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3575
367456c7
PZ
3576 env->loop++;
3577 /* We've more or less seen every task there is, call it quits */
5d6523eb 3578 if (env->loop > env->loop_max)
367456c7 3579 break;
5d6523eb
PZ
3580
3581 /* take a breather every nr_migrate tasks */
367456c7 3582 if (env->loop > env->loop_break) {
eb95308e 3583 env->loop_break += sched_nr_migrate_break;
8e45cb54 3584 env->flags |= LBF_NEED_BREAK;
ee00e66f 3585 break;
a195f004 3586 }
1e3c88bd 3587
5d6523eb 3588 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3589 goto next;
3590
3591 load = task_h_load(p);
5d6523eb 3592
eb95308e 3593 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3594 goto next;
3595
bd939f45 3596 if ((load / 2) > env->imbalance)
367456c7 3597 goto next;
1e3c88bd 3598
367456c7
PZ
3599 if (!can_migrate_task(p, env))
3600 goto next;
1e3c88bd 3601
ddcdf6e7 3602 move_task(p, env);
ee00e66f 3603 pulled++;
bd939f45 3604 env->imbalance -= load;
1e3c88bd
PZ
3605
3606#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3607 /*
3608 * NEWIDLE balancing is a source of latency, so preemptible
3609 * kernels will stop after the first task is pulled to minimize
3610 * the critical section.
3611 */
5d6523eb 3612 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3613 break;
1e3c88bd
PZ
3614#endif
3615
ee00e66f
PZ
3616 /*
3617 * We only want to steal up to the prescribed amount of
3618 * weighted load.
3619 */
bd939f45 3620 if (env->imbalance <= 0)
ee00e66f 3621 break;
367456c7
PZ
3622
3623 continue;
3624next:
5d6523eb 3625 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3626 }
5d6523eb 3627
1e3c88bd 3628 /*
ddcdf6e7
PZ
3629 * Right now, this is one of only two places move_task() is called,
3630 * so we can safely collect move_task() stats here rather than
3631 * inside move_task().
1e3c88bd 3632 */
8e45cb54 3633 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3634
5d6523eb 3635 return pulled;
1e3c88bd
PZ
3636}
3637
230059de 3638#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3639/*
3640 * update tg->load_weight by folding this cpu's load_avg
3641 */
67e86250 3642static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca 3643{
82958366 3644 struct sched_entity *se;
9e3081ca
PZ
3645 struct cfs_rq *cfs_rq;
3646 unsigned long flags;
3647 struct rq *rq;
9e3081ca 3648
9e3081ca 3649 rq = cpu_rq(cpu);
82958366 3650 se = tg->se[cpu];
9e3081ca
PZ
3651 cfs_rq = tg->cfs_rq[cpu];
3652
3653 raw_spin_lock_irqsave(&rq->lock, flags);
3654
3655 update_rq_clock(rq);
aff3e498 3656 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 3657
82958366
PT
3658 if (se) {
3659 update_entity_load_avg(se, 1);
3660 /*
3661 * We pivot on our runnable average having decayed to zero for
3662 * list removal. This generally implies that all our children
3663 * have also been removed (modulo rounding error or bandwidth
3664 * control); however, such cases are rare and we can fix these
3665 * at enqueue.
3666 *
3667 * TODO: fix up out-of-order children on enqueue.
3668 */
3669 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
3670 list_del_leaf_cfs_rq(cfs_rq);
3671 } else {
3672 update_rq_runnable_avg(rq, rq->nr_running);
3673 }
9e3081ca
PZ
3674
3675 raw_spin_unlock_irqrestore(&rq->lock, flags);
3676
3677 return 0;
3678}
3679
3680static void update_shares(int cpu)
3681{
3682 struct cfs_rq *cfs_rq;
3683 struct rq *rq = cpu_rq(cpu);
3684
3685 rcu_read_lock();
9763b67f
PZ
3686 /*
3687 * Iterates the task_group tree in a bottom up fashion, see
3688 * list_add_leaf_cfs_rq() for details.
3689 */
64660c86
PT
3690 for_each_leaf_cfs_rq(rq, cfs_rq) {
3691 /* throttled entities do not contribute to load */
3692 if (throttled_hierarchy(cfs_rq))
3693 continue;
3694
67e86250 3695 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3696 }
9e3081ca
PZ
3697 rcu_read_unlock();
3698}
3699
9763b67f
PZ
3700/*
3701 * Compute the cpu's hierarchical load factor for each task group.
3702 * This needs to be done in a top-down fashion because the load of a child
3703 * group is a fraction of its parents load.
3704 */
3705static int tg_load_down(struct task_group *tg, void *data)
3706{
3707 unsigned long load;
3708 long cpu = (long)data;
3709
3710 if (!tg->parent) {
3711 load = cpu_rq(cpu)->load.weight;
3712 } else {
3713 load = tg->parent->cfs_rq[cpu]->h_load;
3714 load *= tg->se[cpu]->load.weight;
3715 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3716 }
3717
3718 tg->cfs_rq[cpu]->h_load = load;
3719
3720 return 0;
3721}
3722
3723static void update_h_load(long cpu)
3724{
a35b6466
PZ
3725 struct rq *rq = cpu_rq(cpu);
3726 unsigned long now = jiffies;
3727
3728 if (rq->h_load_throttle == now)
3729 return;
3730
3731 rq->h_load_throttle = now;
3732
367456c7 3733 rcu_read_lock();
9763b67f 3734 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3735 rcu_read_unlock();
9763b67f
PZ
3736}
3737
367456c7 3738static unsigned long task_h_load(struct task_struct *p)
230059de 3739{
367456c7
PZ
3740 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3741 unsigned long load;
230059de 3742
367456c7
PZ
3743 load = p->se.load.weight;
3744 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3745
367456c7 3746 return load;
230059de
PZ
3747}
3748#else
9e3081ca
PZ
3749static inline void update_shares(int cpu)
3750{
3751}
3752
367456c7 3753static inline void update_h_load(long cpu)
230059de 3754{
230059de 3755}
230059de 3756
367456c7 3757static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3758{
367456c7 3759 return p->se.load.weight;
1e3c88bd 3760}
230059de 3761#endif
1e3c88bd 3762
1e3c88bd
PZ
3763/********** Helpers for find_busiest_group ************************/
3764/*
3765 * sd_lb_stats - Structure to store the statistics of a sched_domain
3766 * during load balancing.
3767 */
3768struct sd_lb_stats {
3769 struct sched_group *busiest; /* Busiest group in this sd */
3770 struct sched_group *this; /* Local group in this sd */
3771 unsigned long total_load; /* Total load of all groups in sd */
3772 unsigned long total_pwr; /* Total power of all groups in sd */
3773 unsigned long avg_load; /* Average load across all groups in sd */
3774
3775 /** Statistics of this group */
3776 unsigned long this_load;
3777 unsigned long this_load_per_task;
3778 unsigned long this_nr_running;
fab47622 3779 unsigned long this_has_capacity;
aae6d3dd 3780 unsigned int this_idle_cpus;
1e3c88bd
PZ
3781
3782 /* Statistics of the busiest group */
aae6d3dd 3783 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3784 unsigned long max_load;
3785 unsigned long busiest_load_per_task;
3786 unsigned long busiest_nr_running;
dd5feea1 3787 unsigned long busiest_group_capacity;
fab47622 3788 unsigned long busiest_has_capacity;
aae6d3dd 3789 unsigned int busiest_group_weight;
1e3c88bd
PZ
3790
3791 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3792};
3793
3794/*
3795 * sg_lb_stats - stats of a sched_group required for load_balancing
3796 */
3797struct sg_lb_stats {
3798 unsigned long avg_load; /*Avg load across the CPUs of the group */
3799 unsigned long group_load; /* Total load over the CPUs of the group */
3800 unsigned long sum_nr_running; /* Nr tasks running in the group */
3801 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3802 unsigned long group_capacity;
aae6d3dd
SS
3803 unsigned long idle_cpus;
3804 unsigned long group_weight;
1e3c88bd 3805 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3806 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3807};
3808
1e3c88bd
PZ
3809/**
3810 * get_sd_load_idx - Obtain the load index for a given sched domain.
3811 * @sd: The sched_domain whose load_idx is to be obtained.
3812 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3813 */
3814static inline int get_sd_load_idx(struct sched_domain *sd,
3815 enum cpu_idle_type idle)
3816{
3817 int load_idx;
3818
3819 switch (idle) {
3820 case CPU_NOT_IDLE:
3821 load_idx = sd->busy_idx;
3822 break;
3823
3824 case CPU_NEWLY_IDLE:
3825 load_idx = sd->newidle_idx;
3826 break;
3827 default:
3828 load_idx = sd->idle_idx;
3829 break;
3830 }
3831
3832 return load_idx;
3833}
3834
1e3c88bd
PZ
3835unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3836{
1399fa78 3837 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3838}
3839
3840unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3841{
3842 return default_scale_freq_power(sd, cpu);
3843}
3844
3845unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3846{
669c55e9 3847 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3848 unsigned long smt_gain = sd->smt_gain;
3849
3850 smt_gain /= weight;
3851
3852 return smt_gain;
3853}
3854
3855unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3856{
3857 return default_scale_smt_power(sd, cpu);
3858}
3859
3860unsigned long scale_rt_power(int cpu)
3861{
3862 struct rq *rq = cpu_rq(cpu);
b654f7de 3863 u64 total, available, age_stamp, avg;
1e3c88bd 3864
b654f7de
PZ
3865 /*
3866 * Since we're reading these variables without serialization make sure
3867 * we read them once before doing sanity checks on them.
3868 */
3869 age_stamp = ACCESS_ONCE(rq->age_stamp);
3870 avg = ACCESS_ONCE(rq->rt_avg);
3871
3872 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3873
b654f7de 3874 if (unlikely(total < avg)) {
aa483808
VP
3875 /* Ensures that power won't end up being negative */
3876 available = 0;
3877 } else {
b654f7de 3878 available = total - avg;
aa483808 3879 }
1e3c88bd 3880
1399fa78
NR
3881 if (unlikely((s64)total < SCHED_POWER_SCALE))
3882 total = SCHED_POWER_SCALE;
1e3c88bd 3883
1399fa78 3884 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3885
3886 return div_u64(available, total);
3887}
3888
3889static void update_cpu_power(struct sched_domain *sd, int cpu)
3890{
669c55e9 3891 unsigned long weight = sd->span_weight;
1399fa78 3892 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3893 struct sched_group *sdg = sd->groups;
3894
1e3c88bd
PZ
3895 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3896 if (sched_feat(ARCH_POWER))
3897 power *= arch_scale_smt_power(sd, cpu);
3898 else
3899 power *= default_scale_smt_power(sd, cpu);
3900
1399fa78 3901 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3902 }
3903
9c3f75cb 3904 sdg->sgp->power_orig = power;
9d5efe05
SV
3905
3906 if (sched_feat(ARCH_POWER))
3907 power *= arch_scale_freq_power(sd, cpu);
3908 else
3909 power *= default_scale_freq_power(sd, cpu);
3910
1399fa78 3911 power >>= SCHED_POWER_SHIFT;
9d5efe05 3912
1e3c88bd 3913 power *= scale_rt_power(cpu);
1399fa78 3914 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3915
3916 if (!power)
3917 power = 1;
3918
e51fd5e2 3919 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3920 sdg->sgp->power = power;
1e3c88bd
PZ
3921}
3922
029632fb 3923void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3924{
3925 struct sched_domain *child = sd->child;
3926 struct sched_group *group, *sdg = sd->groups;
3927 unsigned long power;
4ec4412e
VG
3928 unsigned long interval;
3929
3930 interval = msecs_to_jiffies(sd->balance_interval);
3931 interval = clamp(interval, 1UL, max_load_balance_interval);
3932 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3933
3934 if (!child) {
3935 update_cpu_power(sd, cpu);
3936 return;
3937 }
3938
3939 power = 0;
3940
74a5ce20
PZ
3941 if (child->flags & SD_OVERLAP) {
3942 /*
3943 * SD_OVERLAP domains cannot assume that child groups
3944 * span the current group.
3945 */
3946
3947 for_each_cpu(cpu, sched_group_cpus(sdg))
3948 power += power_of(cpu);
3949 } else {
3950 /*
3951 * !SD_OVERLAP domains can assume that child groups
3952 * span the current group.
3953 */
3954
3955 group = child->groups;
3956 do {
3957 power += group->sgp->power;
3958 group = group->next;
3959 } while (group != child->groups);
3960 }
1e3c88bd 3961
c3decf0d 3962 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3963}
3964
9d5efe05
SV
3965/*
3966 * Try and fix up capacity for tiny siblings, this is needed when
3967 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3968 * which on its own isn't powerful enough.
3969 *
3970 * See update_sd_pick_busiest() and check_asym_packing().
3971 */
3972static inline int
3973fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3974{
3975 /*
1399fa78 3976 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3977 */
a6c75f2f 3978 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3979 return 0;
3980
3981 /*
3982 * If ~90% of the cpu_power is still there, we're good.
3983 */
9c3f75cb 3984 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3985 return 1;
3986
3987 return 0;
3988}
3989
1e3c88bd
PZ
3990/**
3991 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3992 * @env: The load balancing environment.
1e3c88bd 3993 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3994 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 3995 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
3996 * @balance: Should we balance.
3997 * @sgs: variable to hold the statistics for this group.
3998 */
bd939f45
PZ
3999static inline void update_sg_lb_stats(struct lb_env *env,
4000 struct sched_group *group, int load_idx,
b9403130 4001 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4002{
e44bc5c5
PZ
4003 unsigned long nr_running, max_nr_running, min_nr_running;
4004 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4005 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4006 unsigned long avg_load_per_task = 0;
bd939f45 4007 int i;
1e3c88bd 4008
871e35bc 4009 if (local_group)
c1174876 4010 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4011
4012 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4013 max_cpu_load = 0;
4014 min_cpu_load = ~0UL;
2582f0eb 4015 max_nr_running = 0;
e44bc5c5 4016 min_nr_running = ~0UL;
1e3c88bd 4017
b9403130 4018 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4019 struct rq *rq = cpu_rq(i);
4020
e44bc5c5
PZ
4021 nr_running = rq->nr_running;
4022
1e3c88bd
PZ
4023 /* Bias balancing toward cpus of our domain */
4024 if (local_group) {
c1174876
PZ
4025 if (idle_cpu(i) && !first_idle_cpu &&
4026 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4027 first_idle_cpu = 1;
1e3c88bd
PZ
4028 balance_cpu = i;
4029 }
04f733b4
PZ
4030
4031 load = target_load(i, load_idx);
1e3c88bd
PZ
4032 } else {
4033 load = source_load(i, load_idx);
e44bc5c5 4034 if (load > max_cpu_load)
1e3c88bd
PZ
4035 max_cpu_load = load;
4036 if (min_cpu_load > load)
4037 min_cpu_load = load;
e44bc5c5
PZ
4038
4039 if (nr_running > max_nr_running)
4040 max_nr_running = nr_running;
4041 if (min_nr_running > nr_running)
4042 min_nr_running = nr_running;
1e3c88bd
PZ
4043 }
4044
4045 sgs->group_load += load;
e44bc5c5 4046 sgs->sum_nr_running += nr_running;
1e3c88bd 4047 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4048 if (idle_cpu(i))
4049 sgs->idle_cpus++;
1e3c88bd
PZ
4050 }
4051
4052 /*
4053 * First idle cpu or the first cpu(busiest) in this sched group
4054 * is eligible for doing load balancing at this and above
4055 * domains. In the newly idle case, we will allow all the cpu's
4056 * to do the newly idle load balance.
4057 */
4ec4412e 4058 if (local_group) {
bd939f45 4059 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4060 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4061 *balance = 0;
4062 return;
4063 }
bd939f45 4064 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4065 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4066 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4067 }
4068
4069 /* Adjust by relative CPU power of the group */
9c3f75cb 4070 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4071
1e3c88bd
PZ
4072 /*
4073 * Consider the group unbalanced when the imbalance is larger
866ab43e 4074 * than the average weight of a task.
1e3c88bd
PZ
4075 *
4076 * APZ: with cgroup the avg task weight can vary wildly and
4077 * might not be a suitable number - should we keep a
4078 * normalized nr_running number somewhere that negates
4079 * the hierarchy?
4080 */
dd5feea1
SS
4081 if (sgs->sum_nr_running)
4082 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4083
e44bc5c5
PZ
4084 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4085 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4086 sgs->group_imb = 1;
4087
9c3f75cb 4088 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4089 SCHED_POWER_SCALE);
9d5efe05 4090 if (!sgs->group_capacity)
bd939f45 4091 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4092 sgs->group_weight = group->group_weight;
fab47622
NR
4093
4094 if (sgs->group_capacity > sgs->sum_nr_running)
4095 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4096}
4097
532cb4c4
MN
4098/**
4099 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4100 * @env: The load balancing environment.
532cb4c4
MN
4101 * @sds: sched_domain statistics
4102 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4103 * @sgs: sched_group statistics
532cb4c4
MN
4104 *
4105 * Determine if @sg is a busier group than the previously selected
4106 * busiest group.
4107 */
bd939f45 4108static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4109 struct sd_lb_stats *sds,
4110 struct sched_group *sg,
bd939f45 4111 struct sg_lb_stats *sgs)
532cb4c4
MN
4112{
4113 if (sgs->avg_load <= sds->max_load)
4114 return false;
4115
4116 if (sgs->sum_nr_running > sgs->group_capacity)
4117 return true;
4118
4119 if (sgs->group_imb)
4120 return true;
4121
4122 /*
4123 * ASYM_PACKING needs to move all the work to the lowest
4124 * numbered CPUs in the group, therefore mark all groups
4125 * higher than ourself as busy.
4126 */
bd939f45
PZ
4127 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4128 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4129 if (!sds->busiest)
4130 return true;
4131
4132 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4133 return true;
4134 }
4135
4136 return false;
4137}
4138
1e3c88bd 4139/**
461819ac 4140 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4141 * @env: The load balancing environment.
1e3c88bd
PZ
4142 * @balance: Should we balance.
4143 * @sds: variable to hold the statistics for this sched_domain.
4144 */
bd939f45 4145static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4146 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4147{
bd939f45
PZ
4148 struct sched_domain *child = env->sd->child;
4149 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4150 struct sg_lb_stats sgs;
4151 int load_idx, prefer_sibling = 0;
4152
4153 if (child && child->flags & SD_PREFER_SIBLING)
4154 prefer_sibling = 1;
4155
bd939f45 4156 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4157
4158 do {
4159 int local_group;
4160
bd939f45 4161 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4162 memset(&sgs, 0, sizeof(sgs));
b9403130 4163 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4164
8f190fb3 4165 if (local_group && !(*balance))
1e3c88bd
PZ
4166 return;
4167
4168 sds->total_load += sgs.group_load;
9c3f75cb 4169 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4170
4171 /*
4172 * In case the child domain prefers tasks go to siblings
532cb4c4 4173 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4174 * and move all the excess tasks away. We lower the capacity
4175 * of a group only if the local group has the capacity to fit
4176 * these excess tasks, i.e. nr_running < group_capacity. The
4177 * extra check prevents the case where you always pull from the
4178 * heaviest group when it is already under-utilized (possible
4179 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4180 */
75dd321d 4181 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4182 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4183
4184 if (local_group) {
4185 sds->this_load = sgs.avg_load;
532cb4c4 4186 sds->this = sg;
1e3c88bd
PZ
4187 sds->this_nr_running = sgs.sum_nr_running;
4188 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4189 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4190 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4191 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4192 sds->max_load = sgs.avg_load;
532cb4c4 4193 sds->busiest = sg;
1e3c88bd 4194 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4195 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4196 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4197 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4198 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4199 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4200 sds->group_imb = sgs.group_imb;
4201 }
4202
532cb4c4 4203 sg = sg->next;
bd939f45 4204 } while (sg != env->sd->groups);
532cb4c4
MN
4205}
4206
532cb4c4
MN
4207/**
4208 * check_asym_packing - Check to see if the group is packed into the
4209 * sched doman.
4210 *
4211 * This is primarily intended to used at the sibling level. Some
4212 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4213 * case of POWER7, it can move to lower SMT modes only when higher
4214 * threads are idle. When in lower SMT modes, the threads will
4215 * perform better since they share less core resources. Hence when we
4216 * have idle threads, we want them to be the higher ones.
4217 *
4218 * This packing function is run on idle threads. It checks to see if
4219 * the busiest CPU in this domain (core in the P7 case) has a higher
4220 * CPU number than the packing function is being run on. Here we are
4221 * assuming lower CPU number will be equivalent to lower a SMT thread
4222 * number.
4223 *
b6b12294
MN
4224 * Returns 1 when packing is required and a task should be moved to
4225 * this CPU. The amount of the imbalance is returned in *imbalance.
4226 *
cd96891d 4227 * @env: The load balancing environment.
532cb4c4 4228 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4229 */
bd939f45 4230static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4231{
4232 int busiest_cpu;
4233
bd939f45 4234 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4235 return 0;
4236
4237 if (!sds->busiest)
4238 return 0;
4239
4240 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4241 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4242 return 0;
4243
bd939f45
PZ
4244 env->imbalance = DIV_ROUND_CLOSEST(
4245 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4246
532cb4c4 4247 return 1;
1e3c88bd
PZ
4248}
4249
4250/**
4251 * fix_small_imbalance - Calculate the minor imbalance that exists
4252 * amongst the groups of a sched_domain, during
4253 * load balancing.
cd96891d 4254 * @env: The load balancing environment.
1e3c88bd 4255 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4256 */
bd939f45
PZ
4257static inline
4258void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4259{
4260 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4261 unsigned int imbn = 2;
dd5feea1 4262 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4263
4264 if (sds->this_nr_running) {
4265 sds->this_load_per_task /= sds->this_nr_running;
4266 if (sds->busiest_load_per_task >
4267 sds->this_load_per_task)
4268 imbn = 1;
bd939f45 4269 } else {
1e3c88bd 4270 sds->this_load_per_task =
bd939f45
PZ
4271 cpu_avg_load_per_task(env->dst_cpu);
4272 }
1e3c88bd 4273
dd5feea1 4274 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4275 * SCHED_POWER_SCALE;
9c3f75cb 4276 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4277
4278 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4279 (scaled_busy_load_per_task * imbn)) {
bd939f45 4280 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4281 return;
4282 }
4283
4284 /*
4285 * OK, we don't have enough imbalance to justify moving tasks,
4286 * however we may be able to increase total CPU power used by
4287 * moving them.
4288 */
4289
9c3f75cb 4290 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4291 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4292 pwr_now += sds->this->sgp->power *
1e3c88bd 4293 min(sds->this_load_per_task, sds->this_load);
1399fa78 4294 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4295
4296 /* Amount of load we'd subtract */
1399fa78 4297 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4298 sds->busiest->sgp->power;
1e3c88bd 4299 if (sds->max_load > tmp)
9c3f75cb 4300 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4301 min(sds->busiest_load_per_task, sds->max_load - tmp);
4302
4303 /* Amount of load we'd add */
9c3f75cb 4304 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4305 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4306 tmp = (sds->max_load * sds->busiest->sgp->power) /
4307 sds->this->sgp->power;
1e3c88bd 4308 else
1399fa78 4309 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4310 sds->this->sgp->power;
4311 pwr_move += sds->this->sgp->power *
1e3c88bd 4312 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4313 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4314
4315 /* Move if we gain throughput */
4316 if (pwr_move > pwr_now)
bd939f45 4317 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4318}
4319
4320/**
4321 * calculate_imbalance - Calculate the amount of imbalance present within the
4322 * groups of a given sched_domain during load balance.
bd939f45 4323 * @env: load balance environment
1e3c88bd 4324 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4325 */
bd939f45 4326static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4327{
dd5feea1
SS
4328 unsigned long max_pull, load_above_capacity = ~0UL;
4329
4330 sds->busiest_load_per_task /= sds->busiest_nr_running;
4331 if (sds->group_imb) {
4332 sds->busiest_load_per_task =
4333 min(sds->busiest_load_per_task, sds->avg_load);
4334 }
4335
1e3c88bd
PZ
4336 /*
4337 * In the presence of smp nice balancing, certain scenarios can have
4338 * max load less than avg load(as we skip the groups at or below
4339 * its cpu_power, while calculating max_load..)
4340 */
4341 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4342 env->imbalance = 0;
4343 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4344 }
4345
dd5feea1
SS
4346 if (!sds->group_imb) {
4347 /*
4348 * Don't want to pull so many tasks that a group would go idle.
4349 */
4350 load_above_capacity = (sds->busiest_nr_running -
4351 sds->busiest_group_capacity);
4352
1399fa78 4353 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4354
9c3f75cb 4355 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4356 }
4357
4358 /*
4359 * We're trying to get all the cpus to the average_load, so we don't
4360 * want to push ourselves above the average load, nor do we wish to
4361 * reduce the max loaded cpu below the average load. At the same time,
4362 * we also don't want to reduce the group load below the group capacity
4363 * (so that we can implement power-savings policies etc). Thus we look
4364 * for the minimum possible imbalance.
4365 * Be careful of negative numbers as they'll appear as very large values
4366 * with unsigned longs.
4367 */
4368 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4369
4370 /* How much load to actually move to equalise the imbalance */
bd939f45 4371 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4372 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4373 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4374
4375 /*
4376 * if *imbalance is less than the average load per runnable task
25985edc 4377 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4378 * a think about bumping its value to force at least one task to be
4379 * moved
4380 */
bd939f45
PZ
4381 if (env->imbalance < sds->busiest_load_per_task)
4382 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4383
4384}
fab47622 4385
1e3c88bd
PZ
4386/******* find_busiest_group() helpers end here *********************/
4387
4388/**
4389 * find_busiest_group - Returns the busiest group within the sched_domain
4390 * if there is an imbalance. If there isn't an imbalance, and
4391 * the user has opted for power-savings, it returns a group whose
4392 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4393 * such a group exists.
4394 *
4395 * Also calculates the amount of weighted load which should be moved
4396 * to restore balance.
4397 *
cd96891d 4398 * @env: The load balancing environment.
1e3c88bd
PZ
4399 * @balance: Pointer to a variable indicating if this_cpu
4400 * is the appropriate cpu to perform load balancing at this_level.
4401 *
4402 * Returns: - the busiest group if imbalance exists.
4403 * - If no imbalance and user has opted for power-savings balance,
4404 * return the least loaded group whose CPUs can be
4405 * put to idle by rebalancing its tasks onto our group.
4406 */
4407static struct sched_group *
b9403130 4408find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4409{
4410 struct sd_lb_stats sds;
4411
4412 memset(&sds, 0, sizeof(sds));
4413
4414 /*
4415 * Compute the various statistics relavent for load balancing at
4416 * this level.
4417 */
b9403130 4418 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4419
cc57aa8f
PZ
4420 /*
4421 * this_cpu is not the appropriate cpu to perform load balancing at
4422 * this level.
1e3c88bd 4423 */
8f190fb3 4424 if (!(*balance))
1e3c88bd
PZ
4425 goto ret;
4426
bd939f45
PZ
4427 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4428 check_asym_packing(env, &sds))
532cb4c4
MN
4429 return sds.busiest;
4430
cc57aa8f 4431 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4432 if (!sds.busiest || sds.busiest_nr_running == 0)
4433 goto out_balanced;
4434
1399fa78 4435 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4436
866ab43e
PZ
4437 /*
4438 * If the busiest group is imbalanced the below checks don't
4439 * work because they assumes all things are equal, which typically
4440 * isn't true due to cpus_allowed constraints and the like.
4441 */
4442 if (sds.group_imb)
4443 goto force_balance;
4444
cc57aa8f 4445 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4446 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4447 !sds.busiest_has_capacity)
4448 goto force_balance;
4449
cc57aa8f
PZ
4450 /*
4451 * If the local group is more busy than the selected busiest group
4452 * don't try and pull any tasks.
4453 */
1e3c88bd
PZ
4454 if (sds.this_load >= sds.max_load)
4455 goto out_balanced;
4456
cc57aa8f
PZ
4457 /*
4458 * Don't pull any tasks if this group is already above the domain
4459 * average load.
4460 */
1e3c88bd
PZ
4461 if (sds.this_load >= sds.avg_load)
4462 goto out_balanced;
4463
bd939f45 4464 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4465 /*
4466 * This cpu is idle. If the busiest group load doesn't
4467 * have more tasks than the number of available cpu's and
4468 * there is no imbalance between this and busiest group
4469 * wrt to idle cpu's, it is balanced.
4470 */
c186fafe 4471 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4472 sds.busiest_nr_running <= sds.busiest_group_weight)
4473 goto out_balanced;
c186fafe
PZ
4474 } else {
4475 /*
4476 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4477 * imbalance_pct to be conservative.
4478 */
bd939f45 4479 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4480 goto out_balanced;
aae6d3dd 4481 }
1e3c88bd 4482
fab47622 4483force_balance:
1e3c88bd 4484 /* Looks like there is an imbalance. Compute it */
bd939f45 4485 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4486 return sds.busiest;
4487
4488out_balanced:
1e3c88bd 4489ret:
bd939f45 4490 env->imbalance = 0;
1e3c88bd
PZ
4491 return NULL;
4492}
4493
4494/*
4495 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4496 */
bd939f45 4497static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4498 struct sched_group *group)
1e3c88bd
PZ
4499{
4500 struct rq *busiest = NULL, *rq;
4501 unsigned long max_load = 0;
4502 int i;
4503
4504 for_each_cpu(i, sched_group_cpus(group)) {
4505 unsigned long power = power_of(i);
1399fa78
NR
4506 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4507 SCHED_POWER_SCALE);
1e3c88bd
PZ
4508 unsigned long wl;
4509
9d5efe05 4510 if (!capacity)
bd939f45 4511 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4512
b9403130 4513 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4514 continue;
4515
4516 rq = cpu_rq(i);
6e40f5bb 4517 wl = weighted_cpuload(i);
1e3c88bd 4518
6e40f5bb
TG
4519 /*
4520 * When comparing with imbalance, use weighted_cpuload()
4521 * which is not scaled with the cpu power.
4522 */
bd939f45 4523 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4524 continue;
4525
6e40f5bb
TG
4526 /*
4527 * For the load comparisons with the other cpu's, consider
4528 * the weighted_cpuload() scaled with the cpu power, so that
4529 * the load can be moved away from the cpu that is potentially
4530 * running at a lower capacity.
4531 */
1399fa78 4532 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4533
1e3c88bd
PZ
4534 if (wl > max_load) {
4535 max_load = wl;
4536 busiest = rq;
4537 }
4538 }
4539
4540 return busiest;
4541}
4542
4543/*
4544 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4545 * so long as it is large enough.
4546 */
4547#define MAX_PINNED_INTERVAL 512
4548
4549/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4550DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4551
bd939f45 4552static int need_active_balance(struct lb_env *env)
1af3ed3d 4553{
bd939f45
PZ
4554 struct sched_domain *sd = env->sd;
4555
4556 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4557
4558 /*
4559 * ASYM_PACKING needs to force migrate tasks from busy but
4560 * higher numbered CPUs in order to pack all tasks in the
4561 * lowest numbered CPUs.
4562 */
bd939f45 4563 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4564 return 1;
1af3ed3d
PZ
4565 }
4566
4567 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4568}
4569
969c7921
TH
4570static int active_load_balance_cpu_stop(void *data);
4571
1e3c88bd
PZ
4572/*
4573 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4574 * tasks if there is an imbalance.
4575 */
4576static int load_balance(int this_cpu, struct rq *this_rq,
4577 struct sched_domain *sd, enum cpu_idle_type idle,
4578 int *balance)
4579{
88b8dac0
SV
4580 int ld_moved, cur_ld_moved, active_balance = 0;
4581 int lb_iterations, max_lb_iterations;
1e3c88bd 4582 struct sched_group *group;
1e3c88bd
PZ
4583 struct rq *busiest;
4584 unsigned long flags;
4585 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4586
8e45cb54
PZ
4587 struct lb_env env = {
4588 .sd = sd,
ddcdf6e7
PZ
4589 .dst_cpu = this_cpu,
4590 .dst_rq = this_rq,
88b8dac0 4591 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4592 .idle = idle,
eb95308e 4593 .loop_break = sched_nr_migrate_break,
b9403130 4594 .cpus = cpus,
8e45cb54
PZ
4595 };
4596
1e3c88bd 4597 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4598 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4599
1e3c88bd
PZ
4600 schedstat_inc(sd, lb_count[idle]);
4601
4602redo:
b9403130 4603 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4604
4605 if (*balance == 0)
4606 goto out_balanced;
4607
4608 if (!group) {
4609 schedstat_inc(sd, lb_nobusyg[idle]);
4610 goto out_balanced;
4611 }
4612
b9403130 4613 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4614 if (!busiest) {
4615 schedstat_inc(sd, lb_nobusyq[idle]);
4616 goto out_balanced;
4617 }
4618
78feefc5 4619 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4620
bd939f45 4621 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4622
4623 ld_moved = 0;
88b8dac0 4624 lb_iterations = 1;
1e3c88bd
PZ
4625 if (busiest->nr_running > 1) {
4626 /*
4627 * Attempt to move tasks. If find_busiest_group has found
4628 * an imbalance but busiest->nr_running <= 1, the group is
4629 * still unbalanced. ld_moved simply stays zero, so it is
4630 * correctly treated as an imbalance.
4631 */
8e45cb54 4632 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4633 env.src_cpu = busiest->cpu;
4634 env.src_rq = busiest;
4635 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4636
a35b6466 4637 update_h_load(env.src_cpu);
5d6523eb 4638more_balance:
1e3c88bd 4639 local_irq_save(flags);
78feefc5 4640 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4641
4642 /*
4643 * cur_ld_moved - load moved in current iteration
4644 * ld_moved - cumulative load moved across iterations
4645 */
4646 cur_ld_moved = move_tasks(&env);
4647 ld_moved += cur_ld_moved;
78feefc5 4648 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4649 local_irq_restore(flags);
4650
5d6523eb
PZ
4651 if (env.flags & LBF_NEED_BREAK) {
4652 env.flags &= ~LBF_NEED_BREAK;
4653 goto more_balance;
4654 }
4655
1e3c88bd
PZ
4656 /*
4657 * some other cpu did the load balance for us.
4658 */
88b8dac0
SV
4659 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4660 resched_cpu(env.dst_cpu);
4661
4662 /*
4663 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4664 * us and move them to an alternate dst_cpu in our sched_group
4665 * where they can run. The upper limit on how many times we
4666 * iterate on same src_cpu is dependent on number of cpus in our
4667 * sched_group.
4668 *
4669 * This changes load balance semantics a bit on who can move
4670 * load to a given_cpu. In addition to the given_cpu itself
4671 * (or a ilb_cpu acting on its behalf where given_cpu is
4672 * nohz-idle), we now have balance_cpu in a position to move
4673 * load to given_cpu. In rare situations, this may cause
4674 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4675 * _independently_ and at _same_ time to move some load to
4676 * given_cpu) causing exceess load to be moved to given_cpu.
4677 * This however should not happen so much in practice and
4678 * moreover subsequent load balance cycles should correct the
4679 * excess load moved.
4680 */
4681 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4682 lb_iterations++ < max_lb_iterations) {
4683
78feefc5 4684 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4685 env.dst_cpu = env.new_dst_cpu;
4686 env.flags &= ~LBF_SOME_PINNED;
4687 env.loop = 0;
4688 env.loop_break = sched_nr_migrate_break;
4689 /*
4690 * Go back to "more_balance" rather than "redo" since we
4691 * need to continue with same src_cpu.
4692 */
4693 goto more_balance;
4694 }
1e3c88bd
PZ
4695
4696 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4697 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4698 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4699 if (!cpumask_empty(cpus)) {
4700 env.loop = 0;
4701 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4702 goto redo;
bbf18b19 4703 }
1e3c88bd
PZ
4704 goto out_balanced;
4705 }
4706 }
4707
4708 if (!ld_moved) {
4709 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4710 /*
4711 * Increment the failure counter only on periodic balance.
4712 * We do not want newidle balance, which can be very
4713 * frequent, pollute the failure counter causing
4714 * excessive cache_hot migrations and active balances.
4715 */
4716 if (idle != CPU_NEWLY_IDLE)
4717 sd->nr_balance_failed++;
1e3c88bd 4718
bd939f45 4719 if (need_active_balance(&env)) {
1e3c88bd
PZ
4720 raw_spin_lock_irqsave(&busiest->lock, flags);
4721
969c7921
TH
4722 /* don't kick the active_load_balance_cpu_stop,
4723 * if the curr task on busiest cpu can't be
4724 * moved to this_cpu
1e3c88bd
PZ
4725 */
4726 if (!cpumask_test_cpu(this_cpu,
fa17b507 4727 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4728 raw_spin_unlock_irqrestore(&busiest->lock,
4729 flags);
8e45cb54 4730 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4731 goto out_one_pinned;
4732 }
4733
969c7921
TH
4734 /*
4735 * ->active_balance synchronizes accesses to
4736 * ->active_balance_work. Once set, it's cleared
4737 * only after active load balance is finished.
4738 */
1e3c88bd
PZ
4739 if (!busiest->active_balance) {
4740 busiest->active_balance = 1;
4741 busiest->push_cpu = this_cpu;
4742 active_balance = 1;
4743 }
4744 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4745
bd939f45 4746 if (active_balance) {
969c7921
TH
4747 stop_one_cpu_nowait(cpu_of(busiest),
4748 active_load_balance_cpu_stop, busiest,
4749 &busiest->active_balance_work);
bd939f45 4750 }
1e3c88bd
PZ
4751
4752 /*
4753 * We've kicked active balancing, reset the failure
4754 * counter.
4755 */
4756 sd->nr_balance_failed = sd->cache_nice_tries+1;
4757 }
4758 } else
4759 sd->nr_balance_failed = 0;
4760
4761 if (likely(!active_balance)) {
4762 /* We were unbalanced, so reset the balancing interval */
4763 sd->balance_interval = sd->min_interval;
4764 } else {
4765 /*
4766 * If we've begun active balancing, start to back off. This
4767 * case may not be covered by the all_pinned logic if there
4768 * is only 1 task on the busy runqueue (because we don't call
4769 * move_tasks).
4770 */
4771 if (sd->balance_interval < sd->max_interval)
4772 sd->balance_interval *= 2;
4773 }
4774
1e3c88bd
PZ
4775 goto out;
4776
4777out_balanced:
4778 schedstat_inc(sd, lb_balanced[idle]);
4779
4780 sd->nr_balance_failed = 0;
4781
4782out_one_pinned:
4783 /* tune up the balancing interval */
8e45cb54 4784 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4785 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4786 (sd->balance_interval < sd->max_interval))
4787 sd->balance_interval *= 2;
4788
46e49b38 4789 ld_moved = 0;
1e3c88bd 4790out:
1e3c88bd
PZ
4791 return ld_moved;
4792}
4793
1e3c88bd
PZ
4794/*
4795 * idle_balance is called by schedule() if this_cpu is about to become
4796 * idle. Attempts to pull tasks from other CPUs.
4797 */
029632fb 4798void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4799{
4800 struct sched_domain *sd;
4801 int pulled_task = 0;
4802 unsigned long next_balance = jiffies + HZ;
4803
4804 this_rq->idle_stamp = this_rq->clock;
4805
4806 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4807 return;
4808
18bf2805
BS
4809 update_rq_runnable_avg(this_rq, 1);
4810
f492e12e
PZ
4811 /*
4812 * Drop the rq->lock, but keep IRQ/preempt disabled.
4813 */
4814 raw_spin_unlock(&this_rq->lock);
4815
c66eaf61 4816 update_shares(this_cpu);
dce840a0 4817 rcu_read_lock();
1e3c88bd
PZ
4818 for_each_domain(this_cpu, sd) {
4819 unsigned long interval;
f492e12e 4820 int balance = 1;
1e3c88bd
PZ
4821
4822 if (!(sd->flags & SD_LOAD_BALANCE))
4823 continue;
4824
f492e12e 4825 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4826 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4827 pulled_task = load_balance(this_cpu, this_rq,
4828 sd, CPU_NEWLY_IDLE, &balance);
4829 }
1e3c88bd
PZ
4830
4831 interval = msecs_to_jiffies(sd->balance_interval);
4832 if (time_after(next_balance, sd->last_balance + interval))
4833 next_balance = sd->last_balance + interval;
d5ad140b
NR
4834 if (pulled_task) {
4835 this_rq->idle_stamp = 0;
1e3c88bd 4836 break;
d5ad140b 4837 }
1e3c88bd 4838 }
dce840a0 4839 rcu_read_unlock();
f492e12e
PZ
4840
4841 raw_spin_lock(&this_rq->lock);
4842
1e3c88bd
PZ
4843 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4844 /*
4845 * We are going idle. next_balance may be set based on
4846 * a busy processor. So reset next_balance.
4847 */
4848 this_rq->next_balance = next_balance;
4849 }
4850}
4851
4852/*
969c7921
TH
4853 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4854 * running tasks off the busiest CPU onto idle CPUs. It requires at
4855 * least 1 task to be running on each physical CPU where possible, and
4856 * avoids physical / logical imbalances.
1e3c88bd 4857 */
969c7921 4858static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4859{
969c7921
TH
4860 struct rq *busiest_rq = data;
4861 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4862 int target_cpu = busiest_rq->push_cpu;
969c7921 4863 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4864 struct sched_domain *sd;
969c7921
TH
4865
4866 raw_spin_lock_irq(&busiest_rq->lock);
4867
4868 /* make sure the requested cpu hasn't gone down in the meantime */
4869 if (unlikely(busiest_cpu != smp_processor_id() ||
4870 !busiest_rq->active_balance))
4871 goto out_unlock;
1e3c88bd
PZ
4872
4873 /* Is there any task to move? */
4874 if (busiest_rq->nr_running <= 1)
969c7921 4875 goto out_unlock;
1e3c88bd
PZ
4876
4877 /*
4878 * This condition is "impossible", if it occurs
4879 * we need to fix it. Originally reported by
4880 * Bjorn Helgaas on a 128-cpu setup.
4881 */
4882 BUG_ON(busiest_rq == target_rq);
4883
4884 /* move a task from busiest_rq to target_rq */
4885 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4886
4887 /* Search for an sd spanning us and the target CPU. */
dce840a0 4888 rcu_read_lock();
1e3c88bd
PZ
4889 for_each_domain(target_cpu, sd) {
4890 if ((sd->flags & SD_LOAD_BALANCE) &&
4891 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4892 break;
4893 }
4894
4895 if (likely(sd)) {
8e45cb54
PZ
4896 struct lb_env env = {
4897 .sd = sd,
ddcdf6e7
PZ
4898 .dst_cpu = target_cpu,
4899 .dst_rq = target_rq,
4900 .src_cpu = busiest_rq->cpu,
4901 .src_rq = busiest_rq,
8e45cb54
PZ
4902 .idle = CPU_IDLE,
4903 };
4904
1e3c88bd
PZ
4905 schedstat_inc(sd, alb_count);
4906
8e45cb54 4907 if (move_one_task(&env))
1e3c88bd
PZ
4908 schedstat_inc(sd, alb_pushed);
4909 else
4910 schedstat_inc(sd, alb_failed);
4911 }
dce840a0 4912 rcu_read_unlock();
1e3c88bd 4913 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4914out_unlock:
4915 busiest_rq->active_balance = 0;
4916 raw_spin_unlock_irq(&busiest_rq->lock);
4917 return 0;
1e3c88bd
PZ
4918}
4919
4920#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4921/*
4922 * idle load balancing details
83cd4fe2
VP
4923 * - When one of the busy CPUs notice that there may be an idle rebalancing
4924 * needed, they will kick the idle load balancer, which then does idle
4925 * load balancing for all the idle CPUs.
4926 */
1e3c88bd 4927static struct {
83cd4fe2 4928 cpumask_var_t idle_cpus_mask;
0b005cf5 4929 atomic_t nr_cpus;
83cd4fe2
VP
4930 unsigned long next_balance; /* in jiffy units */
4931} nohz ____cacheline_aligned;
1e3c88bd 4932
8e7fbcbc 4933static inline int find_new_ilb(int call_cpu)
1e3c88bd 4934{
0b005cf5 4935 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4936
786d6dc7
SS
4937 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4938 return ilb;
4939
4940 return nr_cpu_ids;
1e3c88bd 4941}
1e3c88bd 4942
83cd4fe2
VP
4943/*
4944 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4945 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4946 * CPU (if there is one).
4947 */
4948static void nohz_balancer_kick(int cpu)
4949{
4950 int ilb_cpu;
4951
4952 nohz.next_balance++;
4953
0b005cf5 4954 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4955
0b005cf5
SS
4956 if (ilb_cpu >= nr_cpu_ids)
4957 return;
83cd4fe2 4958
cd490c5b 4959 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4960 return;
4961 /*
4962 * Use smp_send_reschedule() instead of resched_cpu().
4963 * This way we generate a sched IPI on the target cpu which
4964 * is idle. And the softirq performing nohz idle load balance
4965 * will be run before returning from the IPI.
4966 */
4967 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4968 return;
4969}
4970
c1cc017c 4971static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
4972{
4973 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4974 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4975 atomic_dec(&nohz.nr_cpus);
4976 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4977 }
4978}
4979
69e1e811
SS
4980static inline void set_cpu_sd_state_busy(void)
4981{
4982 struct sched_domain *sd;
4983 int cpu = smp_processor_id();
4984
4985 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4986 return;
4987 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4988
4989 rcu_read_lock();
4990 for_each_domain(cpu, sd)
4991 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4992 rcu_read_unlock();
4993}
4994
4995void set_cpu_sd_state_idle(void)
4996{
4997 struct sched_domain *sd;
4998 int cpu = smp_processor_id();
4999
5000 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5001 return;
5002 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5003
5004 rcu_read_lock();
5005 for_each_domain(cpu, sd)
5006 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5007 rcu_read_unlock();
5008}
5009
1e3c88bd 5010/*
c1cc017c 5011 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5012 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5013 */
c1cc017c 5014void nohz_balance_enter_idle(int cpu)
1e3c88bd 5015{
71325960
SS
5016 /*
5017 * If this cpu is going down, then nothing needs to be done.
5018 */
5019 if (!cpu_active(cpu))
5020 return;
5021
c1cc017c
AS
5022 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5023 return;
1e3c88bd 5024
c1cc017c
AS
5025 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5026 atomic_inc(&nohz.nr_cpus);
5027 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5028}
71325960
SS
5029
5030static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5031 unsigned long action, void *hcpu)
5032{
5033 switch (action & ~CPU_TASKS_FROZEN) {
5034 case CPU_DYING:
c1cc017c 5035 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5036 return NOTIFY_OK;
5037 default:
5038 return NOTIFY_DONE;
5039 }
5040}
1e3c88bd
PZ
5041#endif
5042
5043static DEFINE_SPINLOCK(balancing);
5044
49c022e6
PZ
5045/*
5046 * Scale the max load_balance interval with the number of CPUs in the system.
5047 * This trades load-balance latency on larger machines for less cross talk.
5048 */
029632fb 5049void update_max_interval(void)
49c022e6
PZ
5050{
5051 max_load_balance_interval = HZ*num_online_cpus()/10;
5052}
5053
1e3c88bd
PZ
5054/*
5055 * It checks each scheduling domain to see if it is due to be balanced,
5056 * and initiates a balancing operation if so.
5057 *
5058 * Balancing parameters are set up in arch_init_sched_domains.
5059 */
5060static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5061{
5062 int balance = 1;
5063 struct rq *rq = cpu_rq(cpu);
5064 unsigned long interval;
04f733b4 5065 struct sched_domain *sd;
1e3c88bd
PZ
5066 /* Earliest time when we have to do rebalance again */
5067 unsigned long next_balance = jiffies + 60*HZ;
5068 int update_next_balance = 0;
5069 int need_serialize;
5070
2069dd75
PZ
5071 update_shares(cpu);
5072
dce840a0 5073 rcu_read_lock();
1e3c88bd
PZ
5074 for_each_domain(cpu, sd) {
5075 if (!(sd->flags & SD_LOAD_BALANCE))
5076 continue;
5077
5078 interval = sd->balance_interval;
5079 if (idle != CPU_IDLE)
5080 interval *= sd->busy_factor;
5081
5082 /* scale ms to jiffies */
5083 interval = msecs_to_jiffies(interval);
49c022e6 5084 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5085
5086 need_serialize = sd->flags & SD_SERIALIZE;
5087
5088 if (need_serialize) {
5089 if (!spin_trylock(&balancing))
5090 goto out;
5091 }
5092
5093 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5094 if (load_balance(cpu, rq, sd, idle, &balance)) {
5095 /*
5096 * We've pulled tasks over so either we're no
c186fafe 5097 * longer idle.
1e3c88bd
PZ
5098 */
5099 idle = CPU_NOT_IDLE;
5100 }
5101 sd->last_balance = jiffies;
5102 }
5103 if (need_serialize)
5104 spin_unlock(&balancing);
5105out:
5106 if (time_after(next_balance, sd->last_balance + interval)) {
5107 next_balance = sd->last_balance + interval;
5108 update_next_balance = 1;
5109 }
5110
5111 /*
5112 * Stop the load balance at this level. There is another
5113 * CPU in our sched group which is doing load balancing more
5114 * actively.
5115 */
5116 if (!balance)
5117 break;
5118 }
dce840a0 5119 rcu_read_unlock();
1e3c88bd
PZ
5120
5121 /*
5122 * next_balance will be updated only when there is a need.
5123 * When the cpu is attached to null domain for ex, it will not be
5124 * updated.
5125 */
5126 if (likely(update_next_balance))
5127 rq->next_balance = next_balance;
5128}
5129
83cd4fe2 5130#ifdef CONFIG_NO_HZ
1e3c88bd 5131/*
83cd4fe2 5132 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5133 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5134 */
83cd4fe2
VP
5135static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5136{
5137 struct rq *this_rq = cpu_rq(this_cpu);
5138 struct rq *rq;
5139 int balance_cpu;
5140
1c792db7
SS
5141 if (idle != CPU_IDLE ||
5142 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5143 goto end;
83cd4fe2
VP
5144
5145 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5146 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5147 continue;
5148
5149 /*
5150 * If this cpu gets work to do, stop the load balancing
5151 * work being done for other cpus. Next load
5152 * balancing owner will pick it up.
5153 */
1c792db7 5154 if (need_resched())
83cd4fe2 5155 break;
83cd4fe2 5156
5ed4f1d9
VG
5157 rq = cpu_rq(balance_cpu);
5158
5159 raw_spin_lock_irq(&rq->lock);
5160 update_rq_clock(rq);
5161 update_idle_cpu_load(rq);
5162 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5163
5164 rebalance_domains(balance_cpu, CPU_IDLE);
5165
83cd4fe2
VP
5166 if (time_after(this_rq->next_balance, rq->next_balance))
5167 this_rq->next_balance = rq->next_balance;
5168 }
5169 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5170end:
5171 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5172}
5173
5174/*
0b005cf5
SS
5175 * Current heuristic for kicking the idle load balancer in the presence
5176 * of an idle cpu is the system.
5177 * - This rq has more than one task.
5178 * - At any scheduler domain level, this cpu's scheduler group has multiple
5179 * busy cpu's exceeding the group's power.
5180 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5181 * domain span are idle.
83cd4fe2
VP
5182 */
5183static inline int nohz_kick_needed(struct rq *rq, int cpu)
5184{
5185 unsigned long now = jiffies;
0b005cf5 5186 struct sched_domain *sd;
83cd4fe2 5187
1c792db7 5188 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5189 return 0;
5190
1c792db7
SS
5191 /*
5192 * We may be recently in ticked or tickless idle mode. At the first
5193 * busy tick after returning from idle, we will update the busy stats.
5194 */
69e1e811 5195 set_cpu_sd_state_busy();
c1cc017c 5196 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5197
5198 /*
5199 * None are in tickless mode and hence no need for NOHZ idle load
5200 * balancing.
5201 */
5202 if (likely(!atomic_read(&nohz.nr_cpus)))
5203 return 0;
1c792db7
SS
5204
5205 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5206 return 0;
5207
0b005cf5
SS
5208 if (rq->nr_running >= 2)
5209 goto need_kick;
83cd4fe2 5210
067491b7 5211 rcu_read_lock();
0b005cf5
SS
5212 for_each_domain(cpu, sd) {
5213 struct sched_group *sg = sd->groups;
5214 struct sched_group_power *sgp = sg->sgp;
5215 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5216
0b005cf5 5217 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5218 goto need_kick_unlock;
0b005cf5
SS
5219
5220 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5221 && (cpumask_first_and(nohz.idle_cpus_mask,
5222 sched_domain_span(sd)) < cpu))
067491b7 5223 goto need_kick_unlock;
0b005cf5
SS
5224
5225 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5226 break;
83cd4fe2 5227 }
067491b7 5228 rcu_read_unlock();
83cd4fe2 5229 return 0;
067491b7
PZ
5230
5231need_kick_unlock:
5232 rcu_read_unlock();
0b005cf5
SS
5233need_kick:
5234 return 1;
83cd4fe2
VP
5235}
5236#else
5237static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5238#endif
5239
5240/*
5241 * run_rebalance_domains is triggered when needed from the scheduler tick.
5242 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5243 */
1e3c88bd
PZ
5244static void run_rebalance_domains(struct softirq_action *h)
5245{
5246 int this_cpu = smp_processor_id();
5247 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5248 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5249 CPU_IDLE : CPU_NOT_IDLE;
5250
5251 rebalance_domains(this_cpu, idle);
5252
1e3c88bd 5253 /*
83cd4fe2 5254 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5255 * balancing on behalf of the other idle cpus whose ticks are
5256 * stopped.
5257 */
83cd4fe2 5258 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5259}
5260
5261static inline int on_null_domain(int cpu)
5262{
90a6501f 5263 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5264}
5265
5266/*
5267 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5268 */
029632fb 5269void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5270{
1e3c88bd
PZ
5271 /* Don't need to rebalance while attached to NULL domain */
5272 if (time_after_eq(jiffies, rq->next_balance) &&
5273 likely(!on_null_domain(cpu)))
5274 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5275#ifdef CONFIG_NO_HZ
1c792db7 5276 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5277 nohz_balancer_kick(cpu);
5278#endif
1e3c88bd
PZ
5279}
5280
0bcdcf28
CE
5281static void rq_online_fair(struct rq *rq)
5282{
5283 update_sysctl();
5284}
5285
5286static void rq_offline_fair(struct rq *rq)
5287{
5288 update_sysctl();
a4c96ae3
PB
5289
5290 /* Ensure any throttled groups are reachable by pick_next_task */
5291 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5292}
5293
55e12e5e 5294#endif /* CONFIG_SMP */
e1d1484f 5295
bf0f6f24
IM
5296/*
5297 * scheduler tick hitting a task of our scheduling class:
5298 */
8f4d37ec 5299static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5300{
5301 struct cfs_rq *cfs_rq;
5302 struct sched_entity *se = &curr->se;
5303
5304 for_each_sched_entity(se) {
5305 cfs_rq = cfs_rq_of(se);
8f4d37ec 5306 entity_tick(cfs_rq, se, queued);
bf0f6f24 5307 }
18bf2805
BS
5308
5309 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5310}
5311
5312/*
cd29fe6f
PZ
5313 * called on fork with the child task as argument from the parent's context
5314 * - child not yet on the tasklist
5315 * - preemption disabled
bf0f6f24 5316 */
cd29fe6f 5317static void task_fork_fair(struct task_struct *p)
bf0f6f24 5318{
4fc420c9
DN
5319 struct cfs_rq *cfs_rq;
5320 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5321 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5322 struct rq *rq = this_rq();
5323 unsigned long flags;
5324
05fa785c 5325 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5326
861d034e
PZ
5327 update_rq_clock(rq);
5328
4fc420c9
DN
5329 cfs_rq = task_cfs_rq(current);
5330 curr = cfs_rq->curr;
5331
b0a0f667
PM
5332 if (unlikely(task_cpu(p) != this_cpu)) {
5333 rcu_read_lock();
cd29fe6f 5334 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5335 rcu_read_unlock();
5336 }
bf0f6f24 5337
7109c442 5338 update_curr(cfs_rq);
cd29fe6f 5339
b5d9d734
MG
5340 if (curr)
5341 se->vruntime = curr->vruntime;
aeb73b04 5342 place_entity(cfs_rq, se, 1);
4d78e7b6 5343
cd29fe6f 5344 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5345 /*
edcb60a3
IM
5346 * Upon rescheduling, sched_class::put_prev_task() will place
5347 * 'current' within the tree based on its new key value.
5348 */
4d78e7b6 5349 swap(curr->vruntime, se->vruntime);
aec0a514 5350 resched_task(rq->curr);
4d78e7b6 5351 }
bf0f6f24 5352
88ec22d3
PZ
5353 se->vruntime -= cfs_rq->min_vruntime;
5354
05fa785c 5355 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5356}
5357
cb469845
SR
5358/*
5359 * Priority of the task has changed. Check to see if we preempt
5360 * the current task.
5361 */
da7a735e
PZ
5362static void
5363prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5364{
da7a735e
PZ
5365 if (!p->se.on_rq)
5366 return;
5367
cb469845
SR
5368 /*
5369 * Reschedule if we are currently running on this runqueue and
5370 * our priority decreased, or if we are not currently running on
5371 * this runqueue and our priority is higher than the current's
5372 */
da7a735e 5373 if (rq->curr == p) {
cb469845
SR
5374 if (p->prio > oldprio)
5375 resched_task(rq->curr);
5376 } else
15afe09b 5377 check_preempt_curr(rq, p, 0);
cb469845
SR
5378}
5379
da7a735e
PZ
5380static void switched_from_fair(struct rq *rq, struct task_struct *p)
5381{
5382 struct sched_entity *se = &p->se;
5383 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5384
5385 /*
5386 * Ensure the task's vruntime is normalized, so that when its
5387 * switched back to the fair class the enqueue_entity(.flags=0) will
5388 * do the right thing.
5389 *
5390 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5391 * have normalized the vruntime, if it was !on_rq, then only when
5392 * the task is sleeping will it still have non-normalized vruntime.
5393 */
5394 if (!se->on_rq && p->state != TASK_RUNNING) {
5395 /*
5396 * Fix up our vruntime so that the current sleep doesn't
5397 * cause 'unlimited' sleep bonus.
5398 */
5399 place_entity(cfs_rq, se, 0);
5400 se->vruntime -= cfs_rq->min_vruntime;
5401 }
9ee474f5
PT
5402
5403#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5404 /*
5405 * Remove our load from contribution when we leave sched_fair
5406 * and ensure we don't carry in an old decay_count if we
5407 * switch back.
5408 */
5409 if (p->se.avg.decay_count) {
5410 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5411 __synchronize_entity_decay(&p->se);
5412 subtract_blocked_load_contrib(cfs_rq,
5413 p->se.avg.load_avg_contrib);
5414 }
5415#endif
da7a735e
PZ
5416}
5417
cb469845
SR
5418/*
5419 * We switched to the sched_fair class.
5420 */
da7a735e 5421static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5422{
da7a735e
PZ
5423 if (!p->se.on_rq)
5424 return;
5425
cb469845
SR
5426 /*
5427 * We were most likely switched from sched_rt, so
5428 * kick off the schedule if running, otherwise just see
5429 * if we can still preempt the current task.
5430 */
da7a735e 5431 if (rq->curr == p)
cb469845
SR
5432 resched_task(rq->curr);
5433 else
15afe09b 5434 check_preempt_curr(rq, p, 0);
cb469845
SR
5435}
5436
83b699ed
SV
5437/* Account for a task changing its policy or group.
5438 *
5439 * This routine is mostly called to set cfs_rq->curr field when a task
5440 * migrates between groups/classes.
5441 */
5442static void set_curr_task_fair(struct rq *rq)
5443{
5444 struct sched_entity *se = &rq->curr->se;
5445
ec12cb7f
PT
5446 for_each_sched_entity(se) {
5447 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5448
5449 set_next_entity(cfs_rq, se);
5450 /* ensure bandwidth has been allocated on our new cfs_rq */
5451 account_cfs_rq_runtime(cfs_rq, 0);
5452 }
83b699ed
SV
5453}
5454
029632fb
PZ
5455void init_cfs_rq(struct cfs_rq *cfs_rq)
5456{
5457 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5458 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5459#ifndef CONFIG_64BIT
5460 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5461#endif
9ee474f5
PT
5462#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5463 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5464 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5465#endif
029632fb
PZ
5466}
5467
810b3817 5468#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5469static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5470{
aff3e498 5471 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5472 /*
5473 * If the task was not on the rq at the time of this cgroup movement
5474 * it must have been asleep, sleeping tasks keep their ->vruntime
5475 * absolute on their old rq until wakeup (needed for the fair sleeper
5476 * bonus in place_entity()).
5477 *
5478 * If it was on the rq, we've just 'preempted' it, which does convert
5479 * ->vruntime to a relative base.
5480 *
5481 * Make sure both cases convert their relative position when migrating
5482 * to another cgroup's rq. This does somewhat interfere with the
5483 * fair sleeper stuff for the first placement, but who cares.
5484 */
7ceff013
DN
5485 /*
5486 * When !on_rq, vruntime of the task has usually NOT been normalized.
5487 * But there are some cases where it has already been normalized:
5488 *
5489 * - Moving a forked child which is waiting for being woken up by
5490 * wake_up_new_task().
62af3783
DN
5491 * - Moving a task which has been woken up by try_to_wake_up() and
5492 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5493 *
5494 * To prevent boost or penalty in the new cfs_rq caused by delta
5495 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5496 */
62af3783 5497 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5498 on_rq = 1;
5499
b2b5ce02
PZ
5500 if (!on_rq)
5501 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5502 set_task_rq(p, task_cpu(p));
aff3e498
PT
5503 if (!on_rq) {
5504 cfs_rq = cfs_rq_of(&p->se);
5505 p->se.vruntime += cfs_rq->min_vruntime;
5506#ifdef CONFIG_SMP
5507 /*
5508 * migrate_task_rq_fair() will have removed our previous
5509 * contribution, but we must synchronize for ongoing future
5510 * decay.
5511 */
5512 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5513 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5514#endif
5515 }
810b3817 5516}
029632fb
PZ
5517
5518void free_fair_sched_group(struct task_group *tg)
5519{
5520 int i;
5521
5522 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5523
5524 for_each_possible_cpu(i) {
5525 if (tg->cfs_rq)
5526 kfree(tg->cfs_rq[i]);
5527 if (tg->se)
5528 kfree(tg->se[i]);
5529 }
5530
5531 kfree(tg->cfs_rq);
5532 kfree(tg->se);
5533}
5534
5535int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5536{
5537 struct cfs_rq *cfs_rq;
5538 struct sched_entity *se;
5539 int i;
5540
5541 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5542 if (!tg->cfs_rq)
5543 goto err;
5544 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5545 if (!tg->se)
5546 goto err;
5547
5548 tg->shares = NICE_0_LOAD;
5549
5550 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5551
5552 for_each_possible_cpu(i) {
5553 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5554 GFP_KERNEL, cpu_to_node(i));
5555 if (!cfs_rq)
5556 goto err;
5557
5558 se = kzalloc_node(sizeof(struct sched_entity),
5559 GFP_KERNEL, cpu_to_node(i));
5560 if (!se)
5561 goto err_free_rq;
5562
5563 init_cfs_rq(cfs_rq);
5564 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5565 }
5566
5567 return 1;
5568
5569err_free_rq:
5570 kfree(cfs_rq);
5571err:
5572 return 0;
5573}
5574
5575void unregister_fair_sched_group(struct task_group *tg, int cpu)
5576{
5577 struct rq *rq = cpu_rq(cpu);
5578 unsigned long flags;
5579
5580 /*
5581 * Only empty task groups can be destroyed; so we can speculatively
5582 * check on_list without danger of it being re-added.
5583 */
5584 if (!tg->cfs_rq[cpu]->on_list)
5585 return;
5586
5587 raw_spin_lock_irqsave(&rq->lock, flags);
5588 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5589 raw_spin_unlock_irqrestore(&rq->lock, flags);
5590}
5591
5592void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5593 struct sched_entity *se, int cpu,
5594 struct sched_entity *parent)
5595{
5596 struct rq *rq = cpu_rq(cpu);
5597
5598 cfs_rq->tg = tg;
5599 cfs_rq->rq = rq;
029632fb
PZ
5600 init_cfs_rq_runtime(cfs_rq);
5601
5602 tg->cfs_rq[cpu] = cfs_rq;
5603 tg->se[cpu] = se;
5604
5605 /* se could be NULL for root_task_group */
5606 if (!se)
5607 return;
5608
5609 if (!parent)
5610 se->cfs_rq = &rq->cfs;
5611 else
5612 se->cfs_rq = parent->my_q;
5613
5614 se->my_q = cfs_rq;
5615 update_load_set(&se->load, 0);
5616 se->parent = parent;
5617}
5618
5619static DEFINE_MUTEX(shares_mutex);
5620
5621int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5622{
5623 int i;
5624 unsigned long flags;
5625
5626 /*
5627 * We can't change the weight of the root cgroup.
5628 */
5629 if (!tg->se[0])
5630 return -EINVAL;
5631
5632 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5633
5634 mutex_lock(&shares_mutex);
5635 if (tg->shares == shares)
5636 goto done;
5637
5638 tg->shares = shares;
5639 for_each_possible_cpu(i) {
5640 struct rq *rq = cpu_rq(i);
5641 struct sched_entity *se;
5642
5643 se = tg->se[i];
5644 /* Propagate contribution to hierarchy */
5645 raw_spin_lock_irqsave(&rq->lock, flags);
5646 for_each_sched_entity(se)
5647 update_cfs_shares(group_cfs_rq(se));
5648 raw_spin_unlock_irqrestore(&rq->lock, flags);
5649 }
5650
5651done:
5652 mutex_unlock(&shares_mutex);
5653 return 0;
5654}
5655#else /* CONFIG_FAIR_GROUP_SCHED */
5656
5657void free_fair_sched_group(struct task_group *tg) { }
5658
5659int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5660{
5661 return 1;
5662}
5663
5664void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5665
5666#endif /* CONFIG_FAIR_GROUP_SCHED */
5667
810b3817 5668
6d686f45 5669static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5670{
5671 struct sched_entity *se = &task->se;
0d721cea
PW
5672 unsigned int rr_interval = 0;
5673
5674 /*
5675 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5676 * idle runqueue:
5677 */
0d721cea
PW
5678 if (rq->cfs.load.weight)
5679 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5680
5681 return rr_interval;
5682}
5683
bf0f6f24
IM
5684/*
5685 * All the scheduling class methods:
5686 */
029632fb 5687const struct sched_class fair_sched_class = {
5522d5d5 5688 .next = &idle_sched_class,
bf0f6f24
IM
5689 .enqueue_task = enqueue_task_fair,
5690 .dequeue_task = dequeue_task_fair,
5691 .yield_task = yield_task_fair,
d95f4122 5692 .yield_to_task = yield_to_task_fair,
bf0f6f24 5693
2e09bf55 5694 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5695
5696 .pick_next_task = pick_next_task_fair,
5697 .put_prev_task = put_prev_task_fair,
5698
681f3e68 5699#ifdef CONFIG_SMP
4ce72a2c 5700 .select_task_rq = select_task_rq_fair,
0a74bef8 5701 .migrate_task_rq = migrate_task_rq_fair,
4ce72a2c 5702
0bcdcf28
CE
5703 .rq_online = rq_online_fair,
5704 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5705
5706 .task_waking = task_waking_fair,
681f3e68 5707#endif
bf0f6f24 5708
83b699ed 5709 .set_curr_task = set_curr_task_fair,
bf0f6f24 5710 .task_tick = task_tick_fair,
cd29fe6f 5711 .task_fork = task_fork_fair,
cb469845
SR
5712
5713 .prio_changed = prio_changed_fair,
da7a735e 5714 .switched_from = switched_from_fair,
cb469845 5715 .switched_to = switched_to_fair,
810b3817 5716
0d721cea
PW
5717 .get_rr_interval = get_rr_interval_fair,
5718
810b3817 5719#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5720 .task_move_group = task_move_group_fair,
810b3817 5721#endif
bf0f6f24
IM
5722};
5723
5724#ifdef CONFIG_SCHED_DEBUG
029632fb 5725void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5726{
bf0f6f24
IM
5727 struct cfs_rq *cfs_rq;
5728
5973e5b9 5729 rcu_read_lock();
c3b64f1e 5730 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5731 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5732 rcu_read_unlock();
bf0f6f24
IM
5733}
5734#endif
029632fb
PZ
5735
5736__init void init_sched_fair_class(void)
5737{
5738#ifdef CONFIG_SMP
5739 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5740
5741#ifdef CONFIG_NO_HZ
554cecaf 5742 nohz.next_balance = jiffies;
029632fb 5743 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5744 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5745#endif
5746#endif /* SMP */
5747
5748}