sched/fair: Fix effective_load() to consistently use smoothed load
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
a75cdaa9 738#else
540247fb 739void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
740{
741}
2b8c41da
YD
742void post_init_entity_util_avg(struct sched_entity *se)
743{
744}
a75cdaa9
AS
745#endif
746
bf0f6f24 747/*
9dbdb155 748 * Update the current task's runtime statistics.
bf0f6f24 749 */
b7cc0896 750static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 751{
429d43bc 752 struct sched_entity *curr = cfs_rq->curr;
78becc27 753 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 754 u64 delta_exec;
bf0f6f24
IM
755
756 if (unlikely(!curr))
757 return;
758
9dbdb155
PZ
759 delta_exec = now - curr->exec_start;
760 if (unlikely((s64)delta_exec <= 0))
34f28ecd 761 return;
bf0f6f24 762
8ebc91d9 763 curr->exec_start = now;
d842de87 764
9dbdb155
PZ
765 schedstat_set(curr->statistics.exec_max,
766 max(delta_exec, curr->statistics.exec_max));
767
768 curr->sum_exec_runtime += delta_exec;
769 schedstat_add(cfs_rq, exec_clock, delta_exec);
770
771 curr->vruntime += calc_delta_fair(delta_exec, curr);
772 update_min_vruntime(cfs_rq);
773
d842de87
SV
774 if (entity_is_task(curr)) {
775 struct task_struct *curtask = task_of(curr);
776
f977bb49 777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 778 cpuacct_charge(curtask, delta_exec);
f06febc9 779 account_group_exec_runtime(curtask, delta_exec);
d842de87 780 }
ec12cb7f
PT
781
782 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
783}
784
6e998916
SG
785static void update_curr_fair(struct rq *rq)
786{
787 update_curr(cfs_rq_of(&rq->curr->se));
788}
789
3ea94de1 790#ifdef CONFIG_SCHEDSTATS
bf0f6f24 791static inline void
5870db5b 792update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 793{
3ea94de1
JP
794 u64 wait_start = rq_clock(rq_of(cfs_rq));
795
796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
797 likely(wait_start > se->statistics.wait_start))
798 wait_start -= se->statistics.wait_start;
799
800 se->statistics.wait_start = wait_start;
bf0f6f24
IM
801}
802
3ea94de1
JP
803static void
804update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
805{
806 struct task_struct *p;
cb251765
MG
807 u64 delta;
808
809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
810
811 if (entity_is_task(se)) {
812 p = task_of(se);
813 if (task_on_rq_migrating(p)) {
814 /*
815 * Preserve migrating task's wait time so wait_start
816 * time stamp can be adjusted to accumulate wait time
817 * prior to migration.
818 */
819 se->statistics.wait_start = delta;
820 return;
821 }
822 trace_sched_stat_wait(p, delta);
823 }
824
825 se->statistics.wait_max = max(se->statistics.wait_max, delta);
826 se->statistics.wait_count++;
827 se->statistics.wait_sum += delta;
828 se->statistics.wait_start = 0;
829}
3ea94de1 830
bf0f6f24
IM
831/*
832 * Task is being enqueued - update stats:
833 */
cb251765
MG
834static inline void
835update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 836{
bf0f6f24
IM
837 /*
838 * Are we enqueueing a waiting task? (for current tasks
839 * a dequeue/enqueue event is a NOP)
840 */
429d43bc 841 if (se != cfs_rq->curr)
5870db5b 842 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
843}
844
bf0f6f24 845static inline void
cb251765 846update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 847{
bf0f6f24
IM
848 /*
849 * Mark the end of the wait period if dequeueing a
850 * waiting task:
851 */
429d43bc 852 if (se != cfs_rq->curr)
9ef0a961 853 update_stats_wait_end(cfs_rq, se);
cb251765
MG
854
855 if (flags & DEQUEUE_SLEEP) {
856 if (entity_is_task(se)) {
857 struct task_struct *tsk = task_of(se);
858
859 if (tsk->state & TASK_INTERRUPTIBLE)
860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
861 if (tsk->state & TASK_UNINTERRUPTIBLE)
862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
863 }
864 }
865
866}
867#else
868static inline void
869update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
870{
871}
872
873static inline void
874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876}
877
878static inline void
879update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
880{
881}
882
883static inline void
884update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
885{
bf0f6f24 886}
cb251765 887#endif
bf0f6f24
IM
888
889/*
890 * We are picking a new current task - update its stats:
891 */
892static inline void
79303e9e 893update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
894{
895 /*
896 * We are starting a new run period:
897 */
78becc27 898 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
899}
900
bf0f6f24
IM
901/**************************************************
902 * Scheduling class queueing methods:
903 */
904
cbee9f88
PZ
905#ifdef CONFIG_NUMA_BALANCING
906/*
598f0ec0
MG
907 * Approximate time to scan a full NUMA task in ms. The task scan period is
908 * calculated based on the tasks virtual memory size and
909 * numa_balancing_scan_size.
cbee9f88 910 */
598f0ec0
MG
911unsigned int sysctl_numa_balancing_scan_period_min = 1000;
912unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
913
914/* Portion of address space to scan in MB */
915unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 916
4b96a29b
PZ
917/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
918unsigned int sysctl_numa_balancing_scan_delay = 1000;
919
598f0ec0
MG
920static unsigned int task_nr_scan_windows(struct task_struct *p)
921{
922 unsigned long rss = 0;
923 unsigned long nr_scan_pages;
924
925 /*
926 * Calculations based on RSS as non-present and empty pages are skipped
927 * by the PTE scanner and NUMA hinting faults should be trapped based
928 * on resident pages
929 */
930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
931 rss = get_mm_rss(p->mm);
932 if (!rss)
933 rss = nr_scan_pages;
934
935 rss = round_up(rss, nr_scan_pages);
936 return rss / nr_scan_pages;
937}
938
939/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
940#define MAX_SCAN_WINDOW 2560
941
942static unsigned int task_scan_min(struct task_struct *p)
943{
316c1608 944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
945 unsigned int scan, floor;
946 unsigned int windows = 1;
947
64192658
KT
948 if (scan_size < MAX_SCAN_WINDOW)
949 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
950 floor = 1000 / windows;
951
952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
953 return max_t(unsigned int, floor, scan);
954}
955
956static unsigned int task_scan_max(struct task_struct *p)
957{
958 unsigned int smin = task_scan_min(p);
959 unsigned int smax;
960
961 /* Watch for min being lower than max due to floor calculations */
962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
963 return max(smin, smax);
964}
965
0ec8aa00
PZ
966static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
967{
968 rq->nr_numa_running += (p->numa_preferred_nid != -1);
969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
970}
971
972static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
973{
974 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
976}
977
8c8a743c
PZ
978struct numa_group {
979 atomic_t refcount;
980
981 spinlock_t lock; /* nr_tasks, tasks */
982 int nr_tasks;
e29cf08b 983 pid_t gid;
4142c3eb 984 int active_nodes;
8c8a743c
PZ
985
986 struct rcu_head rcu;
989348b5 987 unsigned long total_faults;
4142c3eb 988 unsigned long max_faults_cpu;
7e2703e6
RR
989 /*
990 * Faults_cpu is used to decide whether memory should move
991 * towards the CPU. As a consequence, these stats are weighted
992 * more by CPU use than by memory faults.
993 */
50ec8a40 994 unsigned long *faults_cpu;
989348b5 995 unsigned long faults[0];
8c8a743c
PZ
996};
997
be1e4e76
RR
998/* Shared or private faults. */
999#define NR_NUMA_HINT_FAULT_TYPES 2
1000
1001/* Memory and CPU locality */
1002#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1003
1004/* Averaged statistics, and temporary buffers. */
1005#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1006
e29cf08b
MG
1007pid_t task_numa_group_id(struct task_struct *p)
1008{
1009 return p->numa_group ? p->numa_group->gid : 0;
1010}
1011
44dba3d5
IM
1012/*
1013 * The averaged statistics, shared & private, memory & cpu,
1014 * occupy the first half of the array. The second half of the
1015 * array is for current counters, which are averaged into the
1016 * first set by task_numa_placement.
1017 */
1018static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1019{
44dba3d5 1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1021}
1022
1023static inline unsigned long task_faults(struct task_struct *p, int nid)
1024{
44dba3d5 1025 if (!p->numa_faults)
ac8e895b
MG
1026 return 0;
1027
44dba3d5
IM
1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1030}
1031
83e1d2cd
MG
1032static inline unsigned long group_faults(struct task_struct *p, int nid)
1033{
1034 if (!p->numa_group)
1035 return 0;
1036
44dba3d5
IM
1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1039}
1040
20e07dea
RR
1041static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1042{
44dba3d5
IM
1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1045}
1046
4142c3eb
RR
1047/*
1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1049 * considered part of a numa group's pseudo-interleaving set. Migrations
1050 * between these nodes are slowed down, to allow things to settle down.
1051 */
1052#define ACTIVE_NODE_FRACTION 3
1053
1054static bool numa_is_active_node(int nid, struct numa_group *ng)
1055{
1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1057}
1058
6c6b1193
RR
1059/* Handle placement on systems where not all nodes are directly connected. */
1060static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1061 int maxdist, bool task)
1062{
1063 unsigned long score = 0;
1064 int node;
1065
1066 /*
1067 * All nodes are directly connected, and the same distance
1068 * from each other. No need for fancy placement algorithms.
1069 */
1070 if (sched_numa_topology_type == NUMA_DIRECT)
1071 return 0;
1072
1073 /*
1074 * This code is called for each node, introducing N^2 complexity,
1075 * which should be ok given the number of nodes rarely exceeds 8.
1076 */
1077 for_each_online_node(node) {
1078 unsigned long faults;
1079 int dist = node_distance(nid, node);
1080
1081 /*
1082 * The furthest away nodes in the system are not interesting
1083 * for placement; nid was already counted.
1084 */
1085 if (dist == sched_max_numa_distance || node == nid)
1086 continue;
1087
1088 /*
1089 * On systems with a backplane NUMA topology, compare groups
1090 * of nodes, and move tasks towards the group with the most
1091 * memory accesses. When comparing two nodes at distance
1092 * "hoplimit", only nodes closer by than "hoplimit" are part
1093 * of each group. Skip other nodes.
1094 */
1095 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1096 dist > maxdist)
1097 continue;
1098
1099 /* Add up the faults from nearby nodes. */
1100 if (task)
1101 faults = task_faults(p, node);
1102 else
1103 faults = group_faults(p, node);
1104
1105 /*
1106 * On systems with a glueless mesh NUMA topology, there are
1107 * no fixed "groups of nodes". Instead, nodes that are not
1108 * directly connected bounce traffic through intermediate
1109 * nodes; a numa_group can occupy any set of nodes.
1110 * The further away a node is, the less the faults count.
1111 * This seems to result in good task placement.
1112 */
1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1114 faults *= (sched_max_numa_distance - dist);
1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1116 }
1117
1118 score += faults;
1119 }
1120
1121 return score;
1122}
1123
83e1d2cd
MG
1124/*
1125 * These return the fraction of accesses done by a particular task, or
1126 * task group, on a particular numa node. The group weight is given a
1127 * larger multiplier, in order to group tasks together that are almost
1128 * evenly spread out between numa nodes.
1129 */
7bd95320
RR
1130static inline unsigned long task_weight(struct task_struct *p, int nid,
1131 int dist)
83e1d2cd 1132{
7bd95320 1133 unsigned long faults, total_faults;
83e1d2cd 1134
44dba3d5 1135 if (!p->numa_faults)
83e1d2cd
MG
1136 return 0;
1137
1138 total_faults = p->total_numa_faults;
1139
1140 if (!total_faults)
1141 return 0;
1142
7bd95320 1143 faults = task_faults(p, nid);
6c6b1193
RR
1144 faults += score_nearby_nodes(p, nid, dist, true);
1145
7bd95320 1146 return 1000 * faults / total_faults;
83e1d2cd
MG
1147}
1148
7bd95320
RR
1149static inline unsigned long group_weight(struct task_struct *p, int nid,
1150 int dist)
83e1d2cd 1151{
7bd95320
RR
1152 unsigned long faults, total_faults;
1153
1154 if (!p->numa_group)
1155 return 0;
1156
1157 total_faults = p->numa_group->total_faults;
1158
1159 if (!total_faults)
83e1d2cd
MG
1160 return 0;
1161
7bd95320 1162 faults = group_faults(p, nid);
6c6b1193
RR
1163 faults += score_nearby_nodes(p, nid, dist, false);
1164
7bd95320 1165 return 1000 * faults / total_faults;
83e1d2cd
MG
1166}
1167
10f39042
RR
1168bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1169 int src_nid, int dst_cpu)
1170{
1171 struct numa_group *ng = p->numa_group;
1172 int dst_nid = cpu_to_node(dst_cpu);
1173 int last_cpupid, this_cpupid;
1174
1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1176
1177 /*
1178 * Multi-stage node selection is used in conjunction with a periodic
1179 * migration fault to build a temporal task<->page relation. By using
1180 * a two-stage filter we remove short/unlikely relations.
1181 *
1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1183 * a task's usage of a particular page (n_p) per total usage of this
1184 * page (n_t) (in a given time-span) to a probability.
1185 *
1186 * Our periodic faults will sample this probability and getting the
1187 * same result twice in a row, given these samples are fully
1188 * independent, is then given by P(n)^2, provided our sample period
1189 * is sufficiently short compared to the usage pattern.
1190 *
1191 * This quadric squishes small probabilities, making it less likely we
1192 * act on an unlikely task<->page relation.
1193 */
1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1195 if (!cpupid_pid_unset(last_cpupid) &&
1196 cpupid_to_nid(last_cpupid) != dst_nid)
1197 return false;
1198
1199 /* Always allow migrate on private faults */
1200 if (cpupid_match_pid(p, last_cpupid))
1201 return true;
1202
1203 /* A shared fault, but p->numa_group has not been set up yet. */
1204 if (!ng)
1205 return true;
1206
1207 /*
4142c3eb
RR
1208 * Destination node is much more heavily used than the source
1209 * node? Allow migration.
10f39042 1210 */
4142c3eb
RR
1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1212 ACTIVE_NODE_FRACTION)
10f39042
RR
1213 return true;
1214
1215 /*
4142c3eb
RR
1216 * Distribute memory according to CPU & memory use on each node,
1217 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1218 *
1219 * faults_cpu(dst) 3 faults_cpu(src)
1220 * --------------- * - > ---------------
1221 * faults_mem(dst) 4 faults_mem(src)
10f39042 1222 */
4142c3eb
RR
1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1225}
1226
e6628d5b 1227static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1228static unsigned long source_load(int cpu, int type);
1229static unsigned long target_load(int cpu, int type);
ced549fa 1230static unsigned long capacity_of(int cpu);
58d081b5
MG
1231static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1232
fb13c7ee 1233/* Cached statistics for all CPUs within a node */
58d081b5 1234struct numa_stats {
fb13c7ee 1235 unsigned long nr_running;
58d081b5 1236 unsigned long load;
fb13c7ee
MG
1237
1238 /* Total compute capacity of CPUs on a node */
5ef20ca1 1239 unsigned long compute_capacity;
fb13c7ee
MG
1240
1241 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1242 unsigned long task_capacity;
1b6a7495 1243 int has_free_capacity;
58d081b5 1244};
e6628d5b 1245
fb13c7ee
MG
1246/*
1247 * XXX borrowed from update_sg_lb_stats
1248 */
1249static void update_numa_stats(struct numa_stats *ns, int nid)
1250{
83d7f242
RR
1251 int smt, cpu, cpus = 0;
1252 unsigned long capacity;
fb13c7ee
MG
1253
1254 memset(ns, 0, sizeof(*ns));
1255 for_each_cpu(cpu, cpumask_of_node(nid)) {
1256 struct rq *rq = cpu_rq(cpu);
1257
1258 ns->nr_running += rq->nr_running;
1259 ns->load += weighted_cpuload(cpu);
ced549fa 1260 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1261
1262 cpus++;
fb13c7ee
MG
1263 }
1264
5eca82a9
PZ
1265 /*
1266 * If we raced with hotplug and there are no CPUs left in our mask
1267 * the @ns structure is NULL'ed and task_numa_compare() will
1268 * not find this node attractive.
1269 *
1b6a7495
NP
1270 * We'll either bail at !has_free_capacity, or we'll detect a huge
1271 * imbalance and bail there.
5eca82a9
PZ
1272 */
1273 if (!cpus)
1274 return;
1275
83d7f242
RR
1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1278 capacity = cpus / smt; /* cores */
1279
1280 ns->task_capacity = min_t(unsigned, capacity,
1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1283}
1284
58d081b5
MG
1285struct task_numa_env {
1286 struct task_struct *p;
e6628d5b 1287
58d081b5
MG
1288 int src_cpu, src_nid;
1289 int dst_cpu, dst_nid;
e6628d5b 1290
58d081b5 1291 struct numa_stats src_stats, dst_stats;
e6628d5b 1292
40ea2b42 1293 int imbalance_pct;
7bd95320 1294 int dist;
fb13c7ee
MG
1295
1296 struct task_struct *best_task;
1297 long best_imp;
58d081b5
MG
1298 int best_cpu;
1299};
1300
fb13c7ee
MG
1301static void task_numa_assign(struct task_numa_env *env,
1302 struct task_struct *p, long imp)
1303{
1304 if (env->best_task)
1305 put_task_struct(env->best_task);
fb13c7ee
MG
1306
1307 env->best_task = p;
1308 env->best_imp = imp;
1309 env->best_cpu = env->dst_cpu;
1310}
1311
28a21745 1312static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1313 struct task_numa_env *env)
1314{
e4991b24
RR
1315 long imb, old_imb;
1316 long orig_src_load, orig_dst_load;
28a21745
RR
1317 long src_capacity, dst_capacity;
1318
1319 /*
1320 * The load is corrected for the CPU capacity available on each node.
1321 *
1322 * src_load dst_load
1323 * ------------ vs ---------
1324 * src_capacity dst_capacity
1325 */
1326 src_capacity = env->src_stats.compute_capacity;
1327 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1328
1329 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1330 if (dst_load < src_load)
1331 swap(dst_load, src_load);
e63da036
RR
1332
1333 /* Is the difference below the threshold? */
e4991b24
RR
1334 imb = dst_load * src_capacity * 100 -
1335 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1336 if (imb <= 0)
1337 return false;
1338
1339 /*
1340 * The imbalance is above the allowed threshold.
e4991b24 1341 * Compare it with the old imbalance.
e63da036 1342 */
28a21745 1343 orig_src_load = env->src_stats.load;
e4991b24 1344 orig_dst_load = env->dst_stats.load;
28a21745 1345
e4991b24
RR
1346 if (orig_dst_load < orig_src_load)
1347 swap(orig_dst_load, orig_src_load);
e63da036 1348
e4991b24
RR
1349 old_imb = orig_dst_load * src_capacity * 100 -
1350 orig_src_load * dst_capacity * env->imbalance_pct;
1351
1352 /* Would this change make things worse? */
1353 return (imb > old_imb);
e63da036
RR
1354}
1355
fb13c7ee
MG
1356/*
1357 * This checks if the overall compute and NUMA accesses of the system would
1358 * be improved if the source tasks was migrated to the target dst_cpu taking
1359 * into account that it might be best if task running on the dst_cpu should
1360 * be exchanged with the source task
1361 */
887c290e
RR
1362static void task_numa_compare(struct task_numa_env *env,
1363 long taskimp, long groupimp)
fb13c7ee
MG
1364{
1365 struct rq *src_rq = cpu_rq(env->src_cpu);
1366 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1367 struct task_struct *cur;
28a21745 1368 long src_load, dst_load;
fb13c7ee 1369 long load;
1c5d3eb3 1370 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1371 long moveimp = imp;
7bd95320 1372 int dist = env->dist;
1dff76b9 1373 bool assigned = false;
fb13c7ee
MG
1374
1375 rcu_read_lock();
1effd9f1
KT
1376
1377 raw_spin_lock_irq(&dst_rq->lock);
1378 cur = dst_rq->curr;
1379 /*
1dff76b9 1380 * No need to move the exiting task or idle task.
1effd9f1
KT
1381 */
1382 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1383 cur = NULL;
1dff76b9
GG
1384 else {
1385 /*
1386 * The task_struct must be protected here to protect the
1387 * p->numa_faults access in the task_weight since the
1388 * numa_faults could already be freed in the following path:
1389 * finish_task_switch()
1390 * --> put_task_struct()
1391 * --> __put_task_struct()
1392 * --> task_numa_free()
1393 */
1394 get_task_struct(cur);
1395 }
1396
1effd9f1 1397 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1398
7af68335
PZ
1399 /*
1400 * Because we have preemption enabled we can get migrated around and
1401 * end try selecting ourselves (current == env->p) as a swap candidate.
1402 */
1403 if (cur == env->p)
1404 goto unlock;
1405
fb13c7ee
MG
1406 /*
1407 * "imp" is the fault differential for the source task between the
1408 * source and destination node. Calculate the total differential for
1409 * the source task and potential destination task. The more negative
1410 * the value is, the more rmeote accesses that would be expected to
1411 * be incurred if the tasks were swapped.
1412 */
1413 if (cur) {
1414 /* Skip this swap candidate if cannot move to the source cpu */
1415 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1416 goto unlock;
1417
887c290e
RR
1418 /*
1419 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1420 * in any group then look only at task weights.
887c290e 1421 */
ca28aa53 1422 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1423 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1424 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1425 /*
1426 * Add some hysteresis to prevent swapping the
1427 * tasks within a group over tiny differences.
1428 */
1429 if (cur->numa_group)
1430 imp -= imp/16;
887c290e 1431 } else {
ca28aa53
RR
1432 /*
1433 * Compare the group weights. If a task is all by
1434 * itself (not part of a group), use the task weight
1435 * instead.
1436 */
ca28aa53 1437 if (cur->numa_group)
7bd95320
RR
1438 imp += group_weight(cur, env->src_nid, dist) -
1439 group_weight(cur, env->dst_nid, dist);
ca28aa53 1440 else
7bd95320
RR
1441 imp += task_weight(cur, env->src_nid, dist) -
1442 task_weight(cur, env->dst_nid, dist);
887c290e 1443 }
fb13c7ee
MG
1444 }
1445
0132c3e1 1446 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1447 goto unlock;
1448
1449 if (!cur) {
1450 /* Is there capacity at our destination? */
b932c03c 1451 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1452 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1453 goto unlock;
1454
1455 goto balance;
1456 }
1457
1458 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1459 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1460 dst_rq->nr_running == 1)
fb13c7ee
MG
1461 goto assign;
1462
1463 /*
1464 * In the overloaded case, try and keep the load balanced.
1465 */
1466balance:
e720fff6
PZ
1467 load = task_h_load(env->p);
1468 dst_load = env->dst_stats.load + load;
1469 src_load = env->src_stats.load - load;
fb13c7ee 1470
0132c3e1
RR
1471 if (moveimp > imp && moveimp > env->best_imp) {
1472 /*
1473 * If the improvement from just moving env->p direction is
1474 * better than swapping tasks around, check if a move is
1475 * possible. Store a slightly smaller score than moveimp,
1476 * so an actually idle CPU will win.
1477 */
1478 if (!load_too_imbalanced(src_load, dst_load, env)) {
1479 imp = moveimp - 1;
1dff76b9 1480 put_task_struct(cur);
0132c3e1
RR
1481 cur = NULL;
1482 goto assign;
1483 }
1484 }
1485
1486 if (imp <= env->best_imp)
1487 goto unlock;
1488
fb13c7ee 1489 if (cur) {
e720fff6
PZ
1490 load = task_h_load(cur);
1491 dst_load -= load;
1492 src_load += load;
fb13c7ee
MG
1493 }
1494
28a21745 1495 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1496 goto unlock;
1497
ba7e5a27
RR
1498 /*
1499 * One idle CPU per node is evaluated for a task numa move.
1500 * Call select_idle_sibling to maybe find a better one.
1501 */
1502 if (!cur)
1503 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1504
fb13c7ee 1505assign:
1dff76b9 1506 assigned = true;
fb13c7ee
MG
1507 task_numa_assign(env, cur, imp);
1508unlock:
1509 rcu_read_unlock();
1dff76b9
GG
1510 /*
1511 * The dst_rq->curr isn't assigned. The protection for task_struct is
1512 * finished.
1513 */
1514 if (cur && !assigned)
1515 put_task_struct(cur);
fb13c7ee
MG
1516}
1517
887c290e
RR
1518static void task_numa_find_cpu(struct task_numa_env *env,
1519 long taskimp, long groupimp)
2c8a50aa
MG
1520{
1521 int cpu;
1522
1523 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1524 /* Skip this CPU if the source task cannot migrate */
1525 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1526 continue;
1527
1528 env->dst_cpu = cpu;
887c290e 1529 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1530 }
1531}
1532
6f9aad0b
RR
1533/* Only move tasks to a NUMA node less busy than the current node. */
1534static bool numa_has_capacity(struct task_numa_env *env)
1535{
1536 struct numa_stats *src = &env->src_stats;
1537 struct numa_stats *dst = &env->dst_stats;
1538
1539 if (src->has_free_capacity && !dst->has_free_capacity)
1540 return false;
1541
1542 /*
1543 * Only consider a task move if the source has a higher load
1544 * than the destination, corrected for CPU capacity on each node.
1545 *
1546 * src->load dst->load
1547 * --------------------- vs ---------------------
1548 * src->compute_capacity dst->compute_capacity
1549 */
44dcb04f
SD
1550 if (src->load * dst->compute_capacity * env->imbalance_pct >
1551
1552 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1553 return true;
1554
1555 return false;
1556}
1557
58d081b5
MG
1558static int task_numa_migrate(struct task_struct *p)
1559{
58d081b5
MG
1560 struct task_numa_env env = {
1561 .p = p,
fb13c7ee 1562
58d081b5 1563 .src_cpu = task_cpu(p),
b32e86b4 1564 .src_nid = task_node(p),
fb13c7ee
MG
1565
1566 .imbalance_pct = 112,
1567
1568 .best_task = NULL,
1569 .best_imp = 0,
4142c3eb 1570 .best_cpu = -1,
58d081b5
MG
1571 };
1572 struct sched_domain *sd;
887c290e 1573 unsigned long taskweight, groupweight;
7bd95320 1574 int nid, ret, dist;
887c290e 1575 long taskimp, groupimp;
e6628d5b 1576
58d081b5 1577 /*
fb13c7ee
MG
1578 * Pick the lowest SD_NUMA domain, as that would have the smallest
1579 * imbalance and would be the first to start moving tasks about.
1580 *
1581 * And we want to avoid any moving of tasks about, as that would create
1582 * random movement of tasks -- counter the numa conditions we're trying
1583 * to satisfy here.
58d081b5
MG
1584 */
1585 rcu_read_lock();
fb13c7ee 1586 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1587 if (sd)
1588 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1589 rcu_read_unlock();
1590
46a73e8a
RR
1591 /*
1592 * Cpusets can break the scheduler domain tree into smaller
1593 * balance domains, some of which do not cross NUMA boundaries.
1594 * Tasks that are "trapped" in such domains cannot be migrated
1595 * elsewhere, so there is no point in (re)trying.
1596 */
1597 if (unlikely(!sd)) {
de1b301a 1598 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1599 return -EINVAL;
1600 }
1601
2c8a50aa 1602 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1603 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 update_numa_stats(&env.src_stats, env.src_nid);
1607 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1608 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1609 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1610
a43455a1 1611 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1612 if (numa_has_capacity(&env))
1613 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1614
9de05d48
RR
1615 /*
1616 * Look at other nodes in these cases:
1617 * - there is no space available on the preferred_nid
1618 * - the task is part of a numa_group that is interleaved across
1619 * multiple NUMA nodes; in order to better consolidate the group,
1620 * we need to check other locations.
1621 */
4142c3eb 1622 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1623 for_each_online_node(nid) {
1624 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1625 continue;
58d081b5 1626
7bd95320 1627 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1628 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1629 dist != env.dist) {
1630 taskweight = task_weight(p, env.src_nid, dist);
1631 groupweight = group_weight(p, env.src_nid, dist);
1632 }
7bd95320 1633
83e1d2cd 1634 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1635 taskimp = task_weight(p, nid, dist) - taskweight;
1636 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1637 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1638 continue;
1639
7bd95320 1640 env.dist = dist;
2c8a50aa
MG
1641 env.dst_nid = nid;
1642 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1643 if (numa_has_capacity(&env))
1644 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1645 }
1646 }
1647
68d1b02a
RR
1648 /*
1649 * If the task is part of a workload that spans multiple NUMA nodes,
1650 * and is migrating into one of the workload's active nodes, remember
1651 * this node as the task's preferred numa node, so the workload can
1652 * settle down.
1653 * A task that migrated to a second choice node will be better off
1654 * trying for a better one later. Do not set the preferred node here.
1655 */
db015dae 1656 if (p->numa_group) {
4142c3eb
RR
1657 struct numa_group *ng = p->numa_group;
1658
db015dae
RR
1659 if (env.best_cpu == -1)
1660 nid = env.src_nid;
1661 else
1662 nid = env.dst_nid;
1663
4142c3eb 1664 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1665 sched_setnuma(p, env.dst_nid);
1666 }
1667
1668 /* No better CPU than the current one was found. */
1669 if (env.best_cpu == -1)
1670 return -EAGAIN;
0ec8aa00 1671
04bb2f94
RR
1672 /*
1673 * Reset the scan period if the task is being rescheduled on an
1674 * alternative node to recheck if the tasks is now properly placed.
1675 */
1676 p->numa_scan_period = task_scan_min(p);
1677
fb13c7ee 1678 if (env.best_task == NULL) {
286549dc
MG
1679 ret = migrate_task_to(p, env.best_cpu);
1680 if (ret != 0)
1681 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1682 return ret;
1683 }
1684
1685 ret = migrate_swap(p, env.best_task);
286549dc
MG
1686 if (ret != 0)
1687 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1688 put_task_struct(env.best_task);
1689 return ret;
e6628d5b
MG
1690}
1691
6b9a7460
MG
1692/* Attempt to migrate a task to a CPU on the preferred node. */
1693static void numa_migrate_preferred(struct task_struct *p)
1694{
5085e2a3
RR
1695 unsigned long interval = HZ;
1696
2739d3ee 1697 /* This task has no NUMA fault statistics yet */
44dba3d5 1698 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1699 return;
1700
2739d3ee 1701 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1702 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1703 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1704
1705 /* Success if task is already running on preferred CPU */
de1b301a 1706 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1707 return;
1708
1709 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1710 task_numa_migrate(p);
6b9a7460
MG
1711}
1712
20e07dea 1713/*
4142c3eb 1714 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1715 * tracking the nodes from which NUMA hinting faults are triggered. This can
1716 * be different from the set of nodes where the workload's memory is currently
1717 * located.
20e07dea 1718 */
4142c3eb 1719static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1720{
1721 unsigned long faults, max_faults = 0;
4142c3eb 1722 int nid, active_nodes = 0;
20e07dea
RR
1723
1724 for_each_online_node(nid) {
1725 faults = group_faults_cpu(numa_group, nid);
1726 if (faults > max_faults)
1727 max_faults = faults;
1728 }
1729
1730 for_each_online_node(nid) {
1731 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1732 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1733 active_nodes++;
20e07dea 1734 }
4142c3eb
RR
1735
1736 numa_group->max_faults_cpu = max_faults;
1737 numa_group->active_nodes = active_nodes;
20e07dea
RR
1738}
1739
04bb2f94
RR
1740/*
1741 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1742 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1743 * period will be for the next scan window. If local/(local+remote) ratio is
1744 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1745 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1746 */
1747#define NUMA_PERIOD_SLOTS 10
a22b4b01 1748#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1749
1750/*
1751 * Increase the scan period (slow down scanning) if the majority of
1752 * our memory is already on our local node, or if the majority of
1753 * the page accesses are shared with other processes.
1754 * Otherwise, decrease the scan period.
1755 */
1756static void update_task_scan_period(struct task_struct *p,
1757 unsigned long shared, unsigned long private)
1758{
1759 unsigned int period_slot;
1760 int ratio;
1761 int diff;
1762
1763 unsigned long remote = p->numa_faults_locality[0];
1764 unsigned long local = p->numa_faults_locality[1];
1765
1766 /*
1767 * If there were no record hinting faults then either the task is
1768 * completely idle or all activity is areas that are not of interest
074c2381
MG
1769 * to automatic numa balancing. Related to that, if there were failed
1770 * migration then it implies we are migrating too quickly or the local
1771 * node is overloaded. In either case, scan slower
04bb2f94 1772 */
074c2381 1773 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1774 p->numa_scan_period = min(p->numa_scan_period_max,
1775 p->numa_scan_period << 1);
1776
1777 p->mm->numa_next_scan = jiffies +
1778 msecs_to_jiffies(p->numa_scan_period);
1779
1780 return;
1781 }
1782
1783 /*
1784 * Prepare to scale scan period relative to the current period.
1785 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1786 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1787 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1788 */
1789 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1790 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1791 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1792 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1793 if (!slot)
1794 slot = 1;
1795 diff = slot * period_slot;
1796 } else {
1797 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1798
1799 /*
1800 * Scale scan rate increases based on sharing. There is an
1801 * inverse relationship between the degree of sharing and
1802 * the adjustment made to the scanning period. Broadly
1803 * speaking the intent is that there is little point
1804 * scanning faster if shared accesses dominate as it may
1805 * simply bounce migrations uselessly
1806 */
2847c90e 1807 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1808 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1809 }
1810
1811 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1812 task_scan_min(p), task_scan_max(p));
1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814}
1815
7e2703e6
RR
1816/*
1817 * Get the fraction of time the task has been running since the last
1818 * NUMA placement cycle. The scheduler keeps similar statistics, but
1819 * decays those on a 32ms period, which is orders of magnitude off
1820 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1821 * stats only if the task is so new there are no NUMA statistics yet.
1822 */
1823static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1824{
1825 u64 runtime, delta, now;
1826 /* Use the start of this time slice to avoid calculations. */
1827 now = p->se.exec_start;
1828 runtime = p->se.sum_exec_runtime;
1829
1830 if (p->last_task_numa_placement) {
1831 delta = runtime - p->last_sum_exec_runtime;
1832 *period = now - p->last_task_numa_placement;
1833 } else {
9d89c257
YD
1834 delta = p->se.avg.load_sum / p->se.load.weight;
1835 *period = LOAD_AVG_MAX;
7e2703e6
RR
1836 }
1837
1838 p->last_sum_exec_runtime = runtime;
1839 p->last_task_numa_placement = now;
1840
1841 return delta;
1842}
1843
54009416
RR
1844/*
1845 * Determine the preferred nid for a task in a numa_group. This needs to
1846 * be done in a way that produces consistent results with group_weight,
1847 * otherwise workloads might not converge.
1848 */
1849static int preferred_group_nid(struct task_struct *p, int nid)
1850{
1851 nodemask_t nodes;
1852 int dist;
1853
1854 /* Direct connections between all NUMA nodes. */
1855 if (sched_numa_topology_type == NUMA_DIRECT)
1856 return nid;
1857
1858 /*
1859 * On a system with glueless mesh NUMA topology, group_weight
1860 * scores nodes according to the number of NUMA hinting faults on
1861 * both the node itself, and on nearby nodes.
1862 */
1863 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1864 unsigned long score, max_score = 0;
1865 int node, max_node = nid;
1866
1867 dist = sched_max_numa_distance;
1868
1869 for_each_online_node(node) {
1870 score = group_weight(p, node, dist);
1871 if (score > max_score) {
1872 max_score = score;
1873 max_node = node;
1874 }
1875 }
1876 return max_node;
1877 }
1878
1879 /*
1880 * Finding the preferred nid in a system with NUMA backplane
1881 * interconnect topology is more involved. The goal is to locate
1882 * tasks from numa_groups near each other in the system, and
1883 * untangle workloads from different sides of the system. This requires
1884 * searching down the hierarchy of node groups, recursively searching
1885 * inside the highest scoring group of nodes. The nodemask tricks
1886 * keep the complexity of the search down.
1887 */
1888 nodes = node_online_map;
1889 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1890 unsigned long max_faults = 0;
81907478 1891 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1892 int a, b;
1893
1894 /* Are there nodes at this distance from each other? */
1895 if (!find_numa_distance(dist))
1896 continue;
1897
1898 for_each_node_mask(a, nodes) {
1899 unsigned long faults = 0;
1900 nodemask_t this_group;
1901 nodes_clear(this_group);
1902
1903 /* Sum group's NUMA faults; includes a==b case. */
1904 for_each_node_mask(b, nodes) {
1905 if (node_distance(a, b) < dist) {
1906 faults += group_faults(p, b);
1907 node_set(b, this_group);
1908 node_clear(b, nodes);
1909 }
1910 }
1911
1912 /* Remember the top group. */
1913 if (faults > max_faults) {
1914 max_faults = faults;
1915 max_group = this_group;
1916 /*
1917 * subtle: at the smallest distance there is
1918 * just one node left in each "group", the
1919 * winner is the preferred nid.
1920 */
1921 nid = a;
1922 }
1923 }
1924 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1925 if (!max_faults)
1926 break;
54009416
RR
1927 nodes = max_group;
1928 }
1929 return nid;
1930}
1931
cbee9f88
PZ
1932static void task_numa_placement(struct task_struct *p)
1933{
83e1d2cd
MG
1934 int seq, nid, max_nid = -1, max_group_nid = -1;
1935 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1936 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1937 unsigned long total_faults;
1938 u64 runtime, period;
7dbd13ed 1939 spinlock_t *group_lock = NULL;
cbee9f88 1940
7e5a2c17
JL
1941 /*
1942 * The p->mm->numa_scan_seq field gets updated without
1943 * exclusive access. Use READ_ONCE() here to ensure
1944 * that the field is read in a single access:
1945 */
316c1608 1946 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1947 if (p->numa_scan_seq == seq)
1948 return;
1949 p->numa_scan_seq = seq;
598f0ec0 1950 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1951
7e2703e6
RR
1952 total_faults = p->numa_faults_locality[0] +
1953 p->numa_faults_locality[1];
1954 runtime = numa_get_avg_runtime(p, &period);
1955
7dbd13ed
MG
1956 /* If the task is part of a group prevent parallel updates to group stats */
1957 if (p->numa_group) {
1958 group_lock = &p->numa_group->lock;
60e69eed 1959 spin_lock_irq(group_lock);
7dbd13ed
MG
1960 }
1961
688b7585
MG
1962 /* Find the node with the highest number of faults */
1963 for_each_online_node(nid) {
44dba3d5
IM
1964 /* Keep track of the offsets in numa_faults array */
1965 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1966 unsigned long faults = 0, group_faults = 0;
44dba3d5 1967 int priv;
745d6147 1968
be1e4e76 1969 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1970 long diff, f_diff, f_weight;
8c8a743c 1971
44dba3d5
IM
1972 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1973 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1974 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1975 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1976
ac8e895b 1977 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1978 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1979 fault_types[priv] += p->numa_faults[membuf_idx];
1980 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1981
7e2703e6
RR
1982 /*
1983 * Normalize the faults_from, so all tasks in a group
1984 * count according to CPU use, instead of by the raw
1985 * number of faults. Tasks with little runtime have
1986 * little over-all impact on throughput, and thus their
1987 * faults are less important.
1988 */
1989 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1990 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1991 (total_faults + 1);
44dba3d5
IM
1992 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1993 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1994
44dba3d5
IM
1995 p->numa_faults[mem_idx] += diff;
1996 p->numa_faults[cpu_idx] += f_diff;
1997 faults += p->numa_faults[mem_idx];
83e1d2cd 1998 p->total_numa_faults += diff;
8c8a743c 1999 if (p->numa_group) {
44dba3d5
IM
2000 /*
2001 * safe because we can only change our own group
2002 *
2003 * mem_idx represents the offset for a given
2004 * nid and priv in a specific region because it
2005 * is at the beginning of the numa_faults array.
2006 */
2007 p->numa_group->faults[mem_idx] += diff;
2008 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2009 p->numa_group->total_faults += diff;
44dba3d5 2010 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2011 }
ac8e895b
MG
2012 }
2013
688b7585
MG
2014 if (faults > max_faults) {
2015 max_faults = faults;
2016 max_nid = nid;
2017 }
83e1d2cd
MG
2018
2019 if (group_faults > max_group_faults) {
2020 max_group_faults = group_faults;
2021 max_group_nid = nid;
2022 }
2023 }
2024
04bb2f94
RR
2025 update_task_scan_period(p, fault_types[0], fault_types[1]);
2026
7dbd13ed 2027 if (p->numa_group) {
4142c3eb 2028 numa_group_count_active_nodes(p->numa_group);
60e69eed 2029 spin_unlock_irq(group_lock);
54009416 2030 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2031 }
2032
bb97fc31
RR
2033 if (max_faults) {
2034 /* Set the new preferred node */
2035 if (max_nid != p->numa_preferred_nid)
2036 sched_setnuma(p, max_nid);
2037
2038 if (task_node(p) != p->numa_preferred_nid)
2039 numa_migrate_preferred(p);
3a7053b3 2040 }
cbee9f88
PZ
2041}
2042
8c8a743c
PZ
2043static inline int get_numa_group(struct numa_group *grp)
2044{
2045 return atomic_inc_not_zero(&grp->refcount);
2046}
2047
2048static inline void put_numa_group(struct numa_group *grp)
2049{
2050 if (atomic_dec_and_test(&grp->refcount))
2051 kfree_rcu(grp, rcu);
2052}
2053
3e6a9418
MG
2054static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2055 int *priv)
8c8a743c
PZ
2056{
2057 struct numa_group *grp, *my_grp;
2058 struct task_struct *tsk;
2059 bool join = false;
2060 int cpu = cpupid_to_cpu(cpupid);
2061 int i;
2062
2063 if (unlikely(!p->numa_group)) {
2064 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2065 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2066
2067 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2068 if (!grp)
2069 return;
2070
2071 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2072 grp->active_nodes = 1;
2073 grp->max_faults_cpu = 0;
8c8a743c 2074 spin_lock_init(&grp->lock);
e29cf08b 2075 grp->gid = p->pid;
50ec8a40 2076 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2077 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2078 nr_node_ids;
8c8a743c 2079
be1e4e76 2080 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2081 grp->faults[i] = p->numa_faults[i];
8c8a743c 2082
989348b5 2083 grp->total_faults = p->total_numa_faults;
83e1d2cd 2084
8c8a743c
PZ
2085 grp->nr_tasks++;
2086 rcu_assign_pointer(p->numa_group, grp);
2087 }
2088
2089 rcu_read_lock();
316c1608 2090 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2091
2092 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2093 goto no_join;
8c8a743c
PZ
2094
2095 grp = rcu_dereference(tsk->numa_group);
2096 if (!grp)
3354781a 2097 goto no_join;
8c8a743c
PZ
2098
2099 my_grp = p->numa_group;
2100 if (grp == my_grp)
3354781a 2101 goto no_join;
8c8a743c
PZ
2102
2103 /*
2104 * Only join the other group if its bigger; if we're the bigger group,
2105 * the other task will join us.
2106 */
2107 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2108 goto no_join;
8c8a743c
PZ
2109
2110 /*
2111 * Tie-break on the grp address.
2112 */
2113 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2114 goto no_join;
8c8a743c 2115
dabe1d99
RR
2116 /* Always join threads in the same process. */
2117 if (tsk->mm == current->mm)
2118 join = true;
2119
2120 /* Simple filter to avoid false positives due to PID collisions */
2121 if (flags & TNF_SHARED)
2122 join = true;
8c8a743c 2123
3e6a9418
MG
2124 /* Update priv based on whether false sharing was detected */
2125 *priv = !join;
2126
dabe1d99 2127 if (join && !get_numa_group(grp))
3354781a 2128 goto no_join;
8c8a743c 2129
8c8a743c
PZ
2130 rcu_read_unlock();
2131
2132 if (!join)
2133 return;
2134
60e69eed
MG
2135 BUG_ON(irqs_disabled());
2136 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2137
be1e4e76 2138 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2139 my_grp->faults[i] -= p->numa_faults[i];
2140 grp->faults[i] += p->numa_faults[i];
8c8a743c 2141 }
989348b5
MG
2142 my_grp->total_faults -= p->total_numa_faults;
2143 grp->total_faults += p->total_numa_faults;
8c8a743c 2144
8c8a743c
PZ
2145 my_grp->nr_tasks--;
2146 grp->nr_tasks++;
2147
2148 spin_unlock(&my_grp->lock);
60e69eed 2149 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2150
2151 rcu_assign_pointer(p->numa_group, grp);
2152
2153 put_numa_group(my_grp);
3354781a
PZ
2154 return;
2155
2156no_join:
2157 rcu_read_unlock();
2158 return;
8c8a743c
PZ
2159}
2160
2161void task_numa_free(struct task_struct *p)
2162{
2163 struct numa_group *grp = p->numa_group;
44dba3d5 2164 void *numa_faults = p->numa_faults;
e9dd685c
SR
2165 unsigned long flags;
2166 int i;
8c8a743c
PZ
2167
2168 if (grp) {
e9dd685c 2169 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2170 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2171 grp->faults[i] -= p->numa_faults[i];
989348b5 2172 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2173
8c8a743c 2174 grp->nr_tasks--;
e9dd685c 2175 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2176 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2177 put_numa_group(grp);
2178 }
2179
44dba3d5 2180 p->numa_faults = NULL;
82727018 2181 kfree(numa_faults);
8c8a743c
PZ
2182}
2183
cbee9f88
PZ
2184/*
2185 * Got a PROT_NONE fault for a page on @node.
2186 */
58b46da3 2187void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2188{
2189 struct task_struct *p = current;
6688cc05 2190 bool migrated = flags & TNF_MIGRATED;
58b46da3 2191 int cpu_node = task_node(current);
792568ec 2192 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2193 struct numa_group *ng;
ac8e895b 2194 int priv;
cbee9f88 2195
2a595721 2196 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2197 return;
2198
9ff1d9ff
MG
2199 /* for example, ksmd faulting in a user's mm */
2200 if (!p->mm)
2201 return;
2202
f809ca9a 2203 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2204 if (unlikely(!p->numa_faults)) {
2205 int size = sizeof(*p->numa_faults) *
be1e4e76 2206 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2207
44dba3d5
IM
2208 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2209 if (!p->numa_faults)
f809ca9a 2210 return;
745d6147 2211
83e1d2cd 2212 p->total_numa_faults = 0;
04bb2f94 2213 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2214 }
cbee9f88 2215
8c8a743c
PZ
2216 /*
2217 * First accesses are treated as private, otherwise consider accesses
2218 * to be private if the accessing pid has not changed
2219 */
2220 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2221 priv = 1;
2222 } else {
2223 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2224 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2225 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2226 }
2227
792568ec
RR
2228 /*
2229 * If a workload spans multiple NUMA nodes, a shared fault that
2230 * occurs wholly within the set of nodes that the workload is
2231 * actively using should be counted as local. This allows the
2232 * scan rate to slow down when a workload has settled down.
2233 */
4142c3eb
RR
2234 ng = p->numa_group;
2235 if (!priv && !local && ng && ng->active_nodes > 1 &&
2236 numa_is_active_node(cpu_node, ng) &&
2237 numa_is_active_node(mem_node, ng))
792568ec
RR
2238 local = 1;
2239
cbee9f88 2240 task_numa_placement(p);
f809ca9a 2241
2739d3ee
RR
2242 /*
2243 * Retry task to preferred node migration periodically, in case it
2244 * case it previously failed, or the scheduler moved us.
2245 */
2246 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2247 numa_migrate_preferred(p);
2248
b32e86b4
IM
2249 if (migrated)
2250 p->numa_pages_migrated += pages;
074c2381
MG
2251 if (flags & TNF_MIGRATE_FAIL)
2252 p->numa_faults_locality[2] += pages;
b32e86b4 2253
44dba3d5
IM
2254 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2255 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2256 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2257}
2258
6e5fb223
PZ
2259static void reset_ptenuma_scan(struct task_struct *p)
2260{
7e5a2c17
JL
2261 /*
2262 * We only did a read acquisition of the mmap sem, so
2263 * p->mm->numa_scan_seq is written to without exclusive access
2264 * and the update is not guaranteed to be atomic. That's not
2265 * much of an issue though, since this is just used for
2266 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2267 * expensive, to avoid any form of compiler optimizations:
2268 */
316c1608 2269 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2270 p->mm->numa_scan_offset = 0;
2271}
2272
cbee9f88
PZ
2273/*
2274 * The expensive part of numa migration is done from task_work context.
2275 * Triggered from task_tick_numa().
2276 */
2277void task_numa_work(struct callback_head *work)
2278{
2279 unsigned long migrate, next_scan, now = jiffies;
2280 struct task_struct *p = current;
2281 struct mm_struct *mm = p->mm;
51170840 2282 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2283 struct vm_area_struct *vma;
9f40604c 2284 unsigned long start, end;
598f0ec0 2285 unsigned long nr_pte_updates = 0;
4620f8c1 2286 long pages, virtpages;
cbee9f88
PZ
2287
2288 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2289
2290 work->next = work; /* protect against double add */
2291 /*
2292 * Who cares about NUMA placement when they're dying.
2293 *
2294 * NOTE: make sure not to dereference p->mm before this check,
2295 * exit_task_work() happens _after_ exit_mm() so we could be called
2296 * without p->mm even though we still had it when we enqueued this
2297 * work.
2298 */
2299 if (p->flags & PF_EXITING)
2300 return;
2301
930aa174 2302 if (!mm->numa_next_scan) {
7e8d16b6
MG
2303 mm->numa_next_scan = now +
2304 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2305 }
2306
cbee9f88
PZ
2307 /*
2308 * Enforce maximal scan/migration frequency..
2309 */
2310 migrate = mm->numa_next_scan;
2311 if (time_before(now, migrate))
2312 return;
2313
598f0ec0
MG
2314 if (p->numa_scan_period == 0) {
2315 p->numa_scan_period_max = task_scan_max(p);
2316 p->numa_scan_period = task_scan_min(p);
2317 }
cbee9f88 2318
fb003b80 2319 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2320 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2321 return;
2322
19a78d11
PZ
2323 /*
2324 * Delay this task enough that another task of this mm will likely win
2325 * the next time around.
2326 */
2327 p->node_stamp += 2 * TICK_NSEC;
2328
9f40604c
MG
2329 start = mm->numa_scan_offset;
2330 pages = sysctl_numa_balancing_scan_size;
2331 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2332 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2333 if (!pages)
2334 return;
cbee9f88 2335
4620f8c1 2336
6e5fb223 2337 down_read(&mm->mmap_sem);
9f40604c 2338 vma = find_vma(mm, start);
6e5fb223
PZ
2339 if (!vma) {
2340 reset_ptenuma_scan(p);
9f40604c 2341 start = 0;
6e5fb223
PZ
2342 vma = mm->mmap;
2343 }
9f40604c 2344 for (; vma; vma = vma->vm_next) {
6b79c57b 2345 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2346 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2347 continue;
6b79c57b 2348 }
6e5fb223 2349
4591ce4f
MG
2350 /*
2351 * Shared library pages mapped by multiple processes are not
2352 * migrated as it is expected they are cache replicated. Avoid
2353 * hinting faults in read-only file-backed mappings or the vdso
2354 * as migrating the pages will be of marginal benefit.
2355 */
2356 if (!vma->vm_mm ||
2357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2358 continue;
2359
3c67f474
MG
2360 /*
2361 * Skip inaccessible VMAs to avoid any confusion between
2362 * PROT_NONE and NUMA hinting ptes
2363 */
2364 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2365 continue;
4591ce4f 2366
9f40604c
MG
2367 do {
2368 start = max(start, vma->vm_start);
2369 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2370 end = min(end, vma->vm_end);
4620f8c1 2371 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2372
2373 /*
4620f8c1
RR
2374 * Try to scan sysctl_numa_balancing_size worth of
2375 * hpages that have at least one present PTE that
2376 * is not already pte-numa. If the VMA contains
2377 * areas that are unused or already full of prot_numa
2378 * PTEs, scan up to virtpages, to skip through those
2379 * areas faster.
598f0ec0
MG
2380 */
2381 if (nr_pte_updates)
2382 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2383 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2384
9f40604c 2385 start = end;
4620f8c1 2386 if (pages <= 0 || virtpages <= 0)
9f40604c 2387 goto out;
3cf1962c
RR
2388
2389 cond_resched();
9f40604c 2390 } while (end != vma->vm_end);
cbee9f88 2391 }
6e5fb223 2392
9f40604c 2393out:
6e5fb223 2394 /*
c69307d5
PZ
2395 * It is possible to reach the end of the VMA list but the last few
2396 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2397 * would find the !migratable VMA on the next scan but not reset the
2398 * scanner to the start so check it now.
6e5fb223
PZ
2399 */
2400 if (vma)
9f40604c 2401 mm->numa_scan_offset = start;
6e5fb223
PZ
2402 else
2403 reset_ptenuma_scan(p);
2404 up_read(&mm->mmap_sem);
51170840
RR
2405
2406 /*
2407 * Make sure tasks use at least 32x as much time to run other code
2408 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2409 * Usually update_task_scan_period slows down scanning enough; on an
2410 * overloaded system we need to limit overhead on a per task basis.
2411 */
2412 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2413 u64 diff = p->se.sum_exec_runtime - runtime;
2414 p->node_stamp += 32 * diff;
2415 }
cbee9f88
PZ
2416}
2417
2418/*
2419 * Drive the periodic memory faults..
2420 */
2421void task_tick_numa(struct rq *rq, struct task_struct *curr)
2422{
2423 struct callback_head *work = &curr->numa_work;
2424 u64 period, now;
2425
2426 /*
2427 * We don't care about NUMA placement if we don't have memory.
2428 */
2429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2430 return;
2431
2432 /*
2433 * Using runtime rather than walltime has the dual advantage that
2434 * we (mostly) drive the selection from busy threads and that the
2435 * task needs to have done some actual work before we bother with
2436 * NUMA placement.
2437 */
2438 now = curr->se.sum_exec_runtime;
2439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2440
25b3e5a3 2441 if (now > curr->node_stamp + period) {
4b96a29b 2442 if (!curr->node_stamp)
598f0ec0 2443 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2444 curr->node_stamp += period;
cbee9f88
PZ
2445
2446 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2448 task_work_add(curr, work, true);
2449 }
2450 }
2451}
2452#else
2453static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2454{
2455}
0ec8aa00
PZ
2456
2457static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2458{
2459}
2460
2461static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2462{
2463}
cbee9f88
PZ
2464#endif /* CONFIG_NUMA_BALANCING */
2465
30cfdcfc
DA
2466static void
2467account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2468{
2469 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2470 if (!parent_entity(se))
029632fb 2471 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2472#ifdef CONFIG_SMP
0ec8aa00
PZ
2473 if (entity_is_task(se)) {
2474 struct rq *rq = rq_of(cfs_rq);
2475
2476 account_numa_enqueue(rq, task_of(se));
2477 list_add(&se->group_node, &rq->cfs_tasks);
2478 }
367456c7 2479#endif
30cfdcfc 2480 cfs_rq->nr_running++;
30cfdcfc
DA
2481}
2482
2483static void
2484account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2485{
2486 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2487 if (!parent_entity(se))
029632fb 2488 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2489#ifdef CONFIG_SMP
0ec8aa00
PZ
2490 if (entity_is_task(se)) {
2491 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2492 list_del_init(&se->group_node);
0ec8aa00 2493 }
bfdb198c 2494#endif
30cfdcfc 2495 cfs_rq->nr_running--;
30cfdcfc
DA
2496}
2497
3ff6dcac
YZ
2498#ifdef CONFIG_FAIR_GROUP_SCHED
2499# ifdef CONFIG_SMP
cf5f0acf
PZ
2500static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2501{
2502 long tg_weight;
2503
2504 /*
9d89c257
YD
2505 * Use this CPU's real-time load instead of the last load contribution
2506 * as the updating of the contribution is delayed, and we will use the
2507 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2508 */
bf5b986e 2509 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2510 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2511 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2512
2513 return tg_weight;
2514}
2515
6d5ab293 2516static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2517{
cf5f0acf 2518 long tg_weight, load, shares;
3ff6dcac 2519
cf5f0acf 2520 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2521 load = cfs_rq->load.weight;
3ff6dcac 2522
3ff6dcac 2523 shares = (tg->shares * load);
cf5f0acf
PZ
2524 if (tg_weight)
2525 shares /= tg_weight;
3ff6dcac
YZ
2526
2527 if (shares < MIN_SHARES)
2528 shares = MIN_SHARES;
2529 if (shares > tg->shares)
2530 shares = tg->shares;
2531
2532 return shares;
2533}
3ff6dcac 2534# else /* CONFIG_SMP */
6d5ab293 2535static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2536{
2537 return tg->shares;
2538}
3ff6dcac 2539# endif /* CONFIG_SMP */
2069dd75
PZ
2540static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2541 unsigned long weight)
2542{
19e5eebb
PT
2543 if (se->on_rq) {
2544 /* commit outstanding execution time */
2545 if (cfs_rq->curr == se)
2546 update_curr(cfs_rq);
2069dd75 2547 account_entity_dequeue(cfs_rq, se);
19e5eebb 2548 }
2069dd75
PZ
2549
2550 update_load_set(&se->load, weight);
2551
2552 if (se->on_rq)
2553 account_entity_enqueue(cfs_rq, se);
2554}
2555
82958366
PT
2556static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2557
6d5ab293 2558static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2559{
2560 struct task_group *tg;
2561 struct sched_entity *se;
3ff6dcac 2562 long shares;
2069dd75 2563
2069dd75
PZ
2564 tg = cfs_rq->tg;
2565 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2566 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2567 return;
3ff6dcac
YZ
2568#ifndef CONFIG_SMP
2569 if (likely(se->load.weight == tg->shares))
2570 return;
2571#endif
6d5ab293 2572 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2573
2574 reweight_entity(cfs_rq_of(se), se, shares);
2575}
2576#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2577static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2578{
2579}
2580#endif /* CONFIG_FAIR_GROUP_SCHED */
2581
141965c7 2582#ifdef CONFIG_SMP
5b51f2f8
PT
2583/* Precomputed fixed inverse multiplies for multiplication by y^n */
2584static const u32 runnable_avg_yN_inv[] = {
2585 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2586 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2587 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2588 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2589 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2590 0x85aac367, 0x82cd8698,
2591};
2592
2593/*
2594 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2595 * over-estimates when re-combining.
2596 */
2597static const u32 runnable_avg_yN_sum[] = {
2598 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2599 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2600 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2601};
2602
7b20b916
YD
2603/*
2604 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2605 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2606 * were generated:
2607 */
2608static const u32 __accumulated_sum_N32[] = {
2609 0, 23371, 35056, 40899, 43820, 45281,
2610 46011, 46376, 46559, 46650, 46696, 46719,
2611};
2612
9d85f21c
PT
2613/*
2614 * Approximate:
2615 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2616 */
2617static __always_inline u64 decay_load(u64 val, u64 n)
2618{
5b51f2f8
PT
2619 unsigned int local_n;
2620
2621 if (!n)
2622 return val;
2623 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2624 return 0;
2625
2626 /* after bounds checking we can collapse to 32-bit */
2627 local_n = n;
2628
2629 /*
2630 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2631 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2632 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2633 *
2634 * To achieve constant time decay_load.
2635 */
2636 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2637 val >>= local_n / LOAD_AVG_PERIOD;
2638 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2639 }
2640
9d89c257
YD
2641 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2642 return val;
5b51f2f8
PT
2643}
2644
2645/*
2646 * For updates fully spanning n periods, the contribution to runnable
2647 * average will be: \Sum 1024*y^n
2648 *
2649 * We can compute this reasonably efficiently by combining:
2650 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2651 */
2652static u32 __compute_runnable_contrib(u64 n)
2653{
2654 u32 contrib = 0;
2655
2656 if (likely(n <= LOAD_AVG_PERIOD))
2657 return runnable_avg_yN_sum[n];
2658 else if (unlikely(n >= LOAD_AVG_MAX_N))
2659 return LOAD_AVG_MAX;
2660
7b20b916
YD
2661 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2662 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2663 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2664 contrib = decay_load(contrib, n);
2665 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2666}
2667
54a21385 2668#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2669
9d85f21c
PT
2670/*
2671 * We can represent the historical contribution to runnable average as the
2672 * coefficients of a geometric series. To do this we sub-divide our runnable
2673 * history into segments of approximately 1ms (1024us); label the segment that
2674 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2675 *
2676 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2677 * p0 p1 p2
2678 * (now) (~1ms ago) (~2ms ago)
2679 *
2680 * Let u_i denote the fraction of p_i that the entity was runnable.
2681 *
2682 * We then designate the fractions u_i as our co-efficients, yielding the
2683 * following representation of historical load:
2684 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2685 *
2686 * We choose y based on the with of a reasonably scheduling period, fixing:
2687 * y^32 = 0.5
2688 *
2689 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2690 * approximately half as much as the contribution to load within the last ms
2691 * (u_0).
2692 *
2693 * When a period "rolls over" and we have new u_0`, multiplying the previous
2694 * sum again by y is sufficient to update:
2695 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2696 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2697 */
9d89c257
YD
2698static __always_inline int
2699__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2700 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2701{
e0f5f3af 2702 u64 delta, scaled_delta, periods;
9d89c257 2703 u32 contrib;
6115c793 2704 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2705 unsigned long scale_freq, scale_cpu;
9d85f21c 2706
9d89c257 2707 delta = now - sa->last_update_time;
9d85f21c
PT
2708 /*
2709 * This should only happen when time goes backwards, which it
2710 * unfortunately does during sched clock init when we swap over to TSC.
2711 */
2712 if ((s64)delta < 0) {
9d89c257 2713 sa->last_update_time = now;
9d85f21c
PT
2714 return 0;
2715 }
2716
2717 /*
2718 * Use 1024ns as the unit of measurement since it's a reasonable
2719 * approximation of 1us and fast to compute.
2720 */
2721 delta >>= 10;
2722 if (!delta)
2723 return 0;
9d89c257 2724 sa->last_update_time = now;
9d85f21c 2725
6f2b0452
DE
2726 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2727 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2728
9d85f21c 2729 /* delta_w is the amount already accumulated against our next period */
9d89c257 2730 delta_w = sa->period_contrib;
9d85f21c 2731 if (delta + delta_w >= 1024) {
9d85f21c
PT
2732 decayed = 1;
2733
9d89c257
YD
2734 /* how much left for next period will start over, we don't know yet */
2735 sa->period_contrib = 0;
2736
9d85f21c
PT
2737 /*
2738 * Now that we know we're crossing a period boundary, figure
2739 * out how much from delta we need to complete the current
2740 * period and accrue it.
2741 */
2742 delta_w = 1024 - delta_w;
54a21385 2743 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2744 if (weight) {
e0f5f3af
DE
2745 sa->load_sum += weight * scaled_delta_w;
2746 if (cfs_rq) {
2747 cfs_rq->runnable_load_sum +=
2748 weight * scaled_delta_w;
2749 }
13962234 2750 }
36ee28e4 2751 if (running)
006cdf02 2752 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2753
2754 delta -= delta_w;
2755
2756 /* Figure out how many additional periods this update spans */
2757 periods = delta / 1024;
2758 delta %= 1024;
2759
9d89c257 2760 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2761 if (cfs_rq) {
2762 cfs_rq->runnable_load_sum =
2763 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2764 }
9d89c257 2765 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2766
2767 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2768 contrib = __compute_runnable_contrib(periods);
54a21385 2769 contrib = cap_scale(contrib, scale_freq);
13962234 2770 if (weight) {
9d89c257 2771 sa->load_sum += weight * contrib;
13962234
YD
2772 if (cfs_rq)
2773 cfs_rq->runnable_load_sum += weight * contrib;
2774 }
36ee28e4 2775 if (running)
006cdf02 2776 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2777 }
2778
2779 /* Remainder of delta accrued against u_0` */
54a21385 2780 scaled_delta = cap_scale(delta, scale_freq);
13962234 2781 if (weight) {
e0f5f3af 2782 sa->load_sum += weight * scaled_delta;
13962234 2783 if (cfs_rq)
e0f5f3af 2784 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2785 }
36ee28e4 2786 if (running)
006cdf02 2787 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2788
9d89c257 2789 sa->period_contrib += delta;
9ee474f5 2790
9d89c257
YD
2791 if (decayed) {
2792 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2793 if (cfs_rq) {
2794 cfs_rq->runnable_load_avg =
2795 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2796 }
006cdf02 2797 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2798 }
aff3e498 2799
9d89c257 2800 return decayed;
9ee474f5
PT
2801}
2802
c566e8e9 2803#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2804/*
9d89c257
YD
2805 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2806 * and effective_load (which is not done because it is too costly).
bb17f655 2807 */
9d89c257 2808static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2809{
9d89c257 2810 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2811
aa0b7ae0
WL
2812 /*
2813 * No need to update load_avg for root_task_group as it is not used.
2814 */
2815 if (cfs_rq->tg == &root_task_group)
2816 return;
2817
9d89c257
YD
2818 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2819 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2820 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2821 }
8165e145 2822}
f5f9739d 2823
ad936d86
BP
2824/*
2825 * Called within set_task_rq() right before setting a task's cpu. The
2826 * caller only guarantees p->pi_lock is held; no other assumptions,
2827 * including the state of rq->lock, should be made.
2828 */
2829void set_task_rq_fair(struct sched_entity *se,
2830 struct cfs_rq *prev, struct cfs_rq *next)
2831{
2832 if (!sched_feat(ATTACH_AGE_LOAD))
2833 return;
2834
2835 /*
2836 * We are supposed to update the task to "current" time, then its up to
2837 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2838 * getting what current time is, so simply throw away the out-of-date
2839 * time. This will result in the wakee task is less decayed, but giving
2840 * the wakee more load sounds not bad.
2841 */
2842 if (se->avg.last_update_time && prev) {
2843 u64 p_last_update_time;
2844 u64 n_last_update_time;
2845
2846#ifndef CONFIG_64BIT
2847 u64 p_last_update_time_copy;
2848 u64 n_last_update_time_copy;
2849
2850 do {
2851 p_last_update_time_copy = prev->load_last_update_time_copy;
2852 n_last_update_time_copy = next->load_last_update_time_copy;
2853
2854 smp_rmb();
2855
2856 p_last_update_time = prev->avg.last_update_time;
2857 n_last_update_time = next->avg.last_update_time;
2858
2859 } while (p_last_update_time != p_last_update_time_copy ||
2860 n_last_update_time != n_last_update_time_copy);
2861#else
2862 p_last_update_time = prev->avg.last_update_time;
2863 n_last_update_time = next->avg.last_update_time;
2864#endif
2865 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2866 &se->avg, 0, 0, NULL);
2867 se->avg.last_update_time = n_last_update_time;
2868 }
2869}
6e83125c 2870#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2871static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2872#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2873
9d89c257 2874static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2875
a2c6c91f
SM
2876static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877{
2878 struct rq *rq = rq_of(cfs_rq);
2879 int cpu = cpu_of(rq);
2880
2881 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2882 unsigned long max = rq->cpu_capacity_orig;
2883
2884 /*
2885 * There are a few boundary cases this might miss but it should
2886 * get called often enough that that should (hopefully) not be
2887 * a real problem -- added to that it only calls on the local
2888 * CPU, so if we enqueue remotely we'll miss an update, but
2889 * the next tick/schedule should update.
2890 *
2891 * It will not get called when we go idle, because the idle
2892 * thread is a different class (!fair), nor will the utilization
2893 * number include things like RT tasks.
2894 *
2895 * As is, the util number is not freq-invariant (we'd have to
2896 * implement arch_scale_freq_capacity() for that).
2897 *
2898 * See cpu_util().
2899 */
2900 cpufreq_update_util(rq_clock(rq),
2901 min(cfs_rq->avg.util_avg, max), max);
2902 }
2903}
2904
89741892
PZ
2905/*
2906 * Unsigned subtract and clamp on underflow.
2907 *
2908 * Explicitly do a load-store to ensure the intermediate value never hits
2909 * memory. This allows lockless observations without ever seeing the negative
2910 * values.
2911 */
2912#define sub_positive(_ptr, _val) do { \
2913 typeof(_ptr) ptr = (_ptr); \
2914 typeof(*ptr) val = (_val); \
2915 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2916 res = var - val; \
2917 if (res > var) \
2918 res = 0; \
2919 WRITE_ONCE(*ptr, res); \
2920} while (0)
2921
9d89c257 2922/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2923static inline int
2924update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2925{
9d89c257 2926 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2927 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2928
9d89c257 2929 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2930 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2931 sub_positive(&sa->load_avg, r);
2932 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2933 removed_load = 1;
8165e145 2934 }
2dac754e 2935
9d89c257
YD
2936 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2937 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2938 sub_positive(&sa->util_avg, r);
2939 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2940 removed_util = 1;
9d89c257 2941 }
36ee28e4 2942
a2c6c91f 2943 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2944 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2945
9d89c257
YD
2946#ifndef CONFIG_64BIT
2947 smp_wmb();
2948 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2949#endif
36ee28e4 2950
a2c6c91f
SM
2951 if (update_freq && (decayed || removed_util))
2952 cfs_rq_util_change(cfs_rq);
21e96f88 2953
41e0d37f 2954 return decayed || removed_load;
21e96f88
SM
2955}
2956
2957/* Update task and its cfs_rq load average */
2958static inline void update_load_avg(struct sched_entity *se, int update_tg)
2959{
2960 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2961 u64 now = cfs_rq_clock_task(cfs_rq);
2962 struct rq *rq = rq_of(cfs_rq);
2963 int cpu = cpu_of(rq);
2964
2965 /*
2966 * Track task load average for carrying it to new CPU after migrated, and
2967 * track group sched_entity load average for task_h_load calc in migration
2968 */
2969 __update_load_avg(now, cpu, &se->avg,
2970 se->on_rq * scale_load_down(se->load.weight),
2971 cfs_rq->curr == se, NULL);
2972
a2c6c91f 2973 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2974 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2975}
2976
a05e8c51
BP
2977static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2978{
a9280514
PZ
2979 if (!sched_feat(ATTACH_AGE_LOAD))
2980 goto skip_aging;
2981
6efdb105
BP
2982 /*
2983 * If we got migrated (either between CPUs or between cgroups) we'll
2984 * have aged the average right before clearing @last_update_time.
2985 */
2986 if (se->avg.last_update_time) {
2987 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2988 &se->avg, 0, 0, NULL);
2989
2990 /*
2991 * XXX: we could have just aged the entire load away if we've been
2992 * absent from the fair class for too long.
2993 */
2994 }
2995
a9280514 2996skip_aging:
a05e8c51
BP
2997 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2998 cfs_rq->avg.load_avg += se->avg.load_avg;
2999 cfs_rq->avg.load_sum += se->avg.load_sum;
3000 cfs_rq->avg.util_avg += se->avg.util_avg;
3001 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3002
3003 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3004}
3005
3006static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3007{
3008 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3009 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3010 cfs_rq->curr == se, NULL);
3011
89741892
PZ
3012 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3013 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3014 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3015 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3016
3017 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3018}
3019
9d89c257
YD
3020/* Add the load generated by se into cfs_rq's load average */
3021static inline void
3022enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3023{
9d89c257
YD
3024 struct sched_avg *sa = &se->avg;
3025 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3026 int migrated, decayed;
9ee474f5 3027
a05e8c51
BP
3028 migrated = !sa->last_update_time;
3029 if (!migrated) {
9d89c257 3030 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3031 se->on_rq * scale_load_down(se->load.weight),
3032 cfs_rq->curr == se, NULL);
aff3e498 3033 }
c566e8e9 3034
a2c6c91f 3035 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3036
13962234
YD
3037 cfs_rq->runnable_load_avg += sa->load_avg;
3038 cfs_rq->runnable_load_sum += sa->load_sum;
3039
a05e8c51
BP
3040 if (migrated)
3041 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3042
9d89c257
YD
3043 if (decayed || migrated)
3044 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3045}
3046
13962234
YD
3047/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3048static inline void
3049dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3050{
3051 update_load_avg(se, 1);
3052
3053 cfs_rq->runnable_load_avg =
3054 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3055 cfs_rq->runnable_load_sum =
a05e8c51 3056 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3057}
3058
9d89c257 3059#ifndef CONFIG_64BIT
0905f04e
YD
3060static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3061{
9d89c257 3062 u64 last_update_time_copy;
0905f04e 3063 u64 last_update_time;
9ee474f5 3064
9d89c257
YD
3065 do {
3066 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3067 smp_rmb();
3068 last_update_time = cfs_rq->avg.last_update_time;
3069 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3070
3071 return last_update_time;
3072}
9d89c257 3073#else
0905f04e
YD
3074static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3075{
3076 return cfs_rq->avg.last_update_time;
3077}
9d89c257
YD
3078#endif
3079
0905f04e
YD
3080/*
3081 * Task first catches up with cfs_rq, and then subtract
3082 * itself from the cfs_rq (task must be off the queue now).
3083 */
3084void remove_entity_load_avg(struct sched_entity *se)
3085{
3086 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3087 u64 last_update_time;
3088
3089 /*
3090 * Newly created task or never used group entity should not be removed
3091 * from its (source) cfs_rq
3092 */
3093 if (se->avg.last_update_time == 0)
3094 return;
3095
3096 last_update_time = cfs_rq_last_update_time(cfs_rq);
3097
13962234 3098 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3099 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3100 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3101}
642dbc39 3102
7ea241af
YD
3103static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3104{
3105 return cfs_rq->runnable_load_avg;
3106}
3107
3108static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3109{
3110 return cfs_rq->avg.load_avg;
3111}
3112
6e83125c
PZ
3113static int idle_balance(struct rq *this_rq);
3114
38033c37
PZ
3115#else /* CONFIG_SMP */
3116
536bd00c
RW
3117static inline void update_load_avg(struct sched_entity *se, int not_used)
3118{
3119 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3120 struct rq *rq = rq_of(cfs_rq);
3121
3122 cpufreq_trigger_update(rq_clock(rq));
3123}
3124
9d89c257
YD
3125static inline void
3126enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3127static inline void
3128dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3129static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3130
a05e8c51
BP
3131static inline void
3132attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3133static inline void
3134detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3135
6e83125c
PZ
3136static inline int idle_balance(struct rq *rq)
3137{
3138 return 0;
3139}
3140
38033c37 3141#endif /* CONFIG_SMP */
9d85f21c 3142
2396af69 3143static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3144{
bf0f6f24 3145#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3146 struct task_struct *tsk = NULL;
3147
3148 if (entity_is_task(se))
3149 tsk = task_of(se);
3150
41acab88 3151 if (se->statistics.sleep_start) {
78becc27 3152 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3153
3154 if ((s64)delta < 0)
3155 delta = 0;
3156
41acab88
LDM
3157 if (unlikely(delta > se->statistics.sleep_max))
3158 se->statistics.sleep_max = delta;
bf0f6f24 3159
8c79a045 3160 se->statistics.sleep_start = 0;
41acab88 3161 se->statistics.sum_sleep_runtime += delta;
9745512c 3162
768d0c27 3163 if (tsk) {
e414314c 3164 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3165 trace_sched_stat_sleep(tsk, delta);
3166 }
bf0f6f24 3167 }
41acab88 3168 if (se->statistics.block_start) {
78becc27 3169 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3170
3171 if ((s64)delta < 0)
3172 delta = 0;
3173
41acab88
LDM
3174 if (unlikely(delta > se->statistics.block_max))
3175 se->statistics.block_max = delta;
bf0f6f24 3176
8c79a045 3177 se->statistics.block_start = 0;
41acab88 3178 se->statistics.sum_sleep_runtime += delta;
30084fbd 3179
e414314c 3180 if (tsk) {
8f0dfc34 3181 if (tsk->in_iowait) {
41acab88
LDM
3182 se->statistics.iowait_sum += delta;
3183 se->statistics.iowait_count++;
768d0c27 3184 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3185 }
3186
b781a602
AV
3187 trace_sched_stat_blocked(tsk, delta);
3188
e414314c
PZ
3189 /*
3190 * Blocking time is in units of nanosecs, so shift by
3191 * 20 to get a milliseconds-range estimation of the
3192 * amount of time that the task spent sleeping:
3193 */
3194 if (unlikely(prof_on == SLEEP_PROFILING)) {
3195 profile_hits(SLEEP_PROFILING,
3196 (void *)get_wchan(tsk),
3197 delta >> 20);
3198 }
3199 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3200 }
bf0f6f24
IM
3201 }
3202#endif
3203}
3204
ddc97297
PZ
3205static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3206{
3207#ifdef CONFIG_SCHED_DEBUG
3208 s64 d = se->vruntime - cfs_rq->min_vruntime;
3209
3210 if (d < 0)
3211 d = -d;
3212
3213 if (d > 3*sysctl_sched_latency)
3214 schedstat_inc(cfs_rq, nr_spread_over);
3215#endif
3216}
3217
aeb73b04
PZ
3218static void
3219place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3220{
1af5f730 3221 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3222
2cb8600e
PZ
3223 /*
3224 * The 'current' period is already promised to the current tasks,
3225 * however the extra weight of the new task will slow them down a
3226 * little, place the new task so that it fits in the slot that
3227 * stays open at the end.
3228 */
94dfb5e7 3229 if (initial && sched_feat(START_DEBIT))
f9c0b095 3230 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3231
a2e7a7eb 3232 /* sleeps up to a single latency don't count. */
5ca9880c 3233 if (!initial) {
a2e7a7eb 3234 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3235
a2e7a7eb
MG
3236 /*
3237 * Halve their sleep time's effect, to allow
3238 * for a gentler effect of sleepers:
3239 */
3240 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3241 thresh >>= 1;
51e0304c 3242
a2e7a7eb 3243 vruntime -= thresh;
aeb73b04
PZ
3244 }
3245
b5d9d734 3246 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3247 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3248}
3249
d3d9dc33
PT
3250static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3251
cb251765
MG
3252static inline void check_schedstat_required(void)
3253{
3254#ifdef CONFIG_SCHEDSTATS
3255 if (schedstat_enabled())
3256 return;
3257
3258 /* Force schedstat enabled if a dependent tracepoint is active */
3259 if (trace_sched_stat_wait_enabled() ||
3260 trace_sched_stat_sleep_enabled() ||
3261 trace_sched_stat_iowait_enabled() ||
3262 trace_sched_stat_blocked_enabled() ||
3263 trace_sched_stat_runtime_enabled()) {
eda8dca5 3264 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3265 "stat_blocked and stat_runtime require the "
3266 "kernel parameter schedstats=enabled or "
3267 "kernel.sched_schedstats=1\n");
3268 }
3269#endif
3270}
3271
b5179ac7
PZ
3272
3273/*
3274 * MIGRATION
3275 *
3276 * dequeue
3277 * update_curr()
3278 * update_min_vruntime()
3279 * vruntime -= min_vruntime
3280 *
3281 * enqueue
3282 * update_curr()
3283 * update_min_vruntime()
3284 * vruntime += min_vruntime
3285 *
3286 * this way the vruntime transition between RQs is done when both
3287 * min_vruntime are up-to-date.
3288 *
3289 * WAKEUP (remote)
3290 *
59efa0ba 3291 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3292 * vruntime -= min_vruntime
3293 *
3294 * enqueue
3295 * update_curr()
3296 * update_min_vruntime()
3297 * vruntime += min_vruntime
3298 *
3299 * this way we don't have the most up-to-date min_vruntime on the originating
3300 * CPU and an up-to-date min_vruntime on the destination CPU.
3301 */
3302
bf0f6f24 3303static void
88ec22d3 3304enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3305{
2f950354
PZ
3306 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3307 bool curr = cfs_rq->curr == se;
3308
88ec22d3 3309 /*
2f950354
PZ
3310 * If we're the current task, we must renormalise before calling
3311 * update_curr().
88ec22d3 3312 */
2f950354 3313 if (renorm && curr)
88ec22d3
PZ
3314 se->vruntime += cfs_rq->min_vruntime;
3315
2f950354
PZ
3316 update_curr(cfs_rq);
3317
bf0f6f24 3318 /*
2f950354
PZ
3319 * Otherwise, renormalise after, such that we're placed at the current
3320 * moment in time, instead of some random moment in the past. Being
3321 * placed in the past could significantly boost this task to the
3322 * fairness detriment of existing tasks.
bf0f6f24 3323 */
2f950354
PZ
3324 if (renorm && !curr)
3325 se->vruntime += cfs_rq->min_vruntime;
3326
9d89c257 3327 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3328 account_entity_enqueue(cfs_rq, se);
3329 update_cfs_shares(cfs_rq);
bf0f6f24 3330
88ec22d3 3331 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3332 place_entity(cfs_rq, se, 0);
cb251765
MG
3333 if (schedstat_enabled())
3334 enqueue_sleeper(cfs_rq, se);
e9acbff6 3335 }
bf0f6f24 3336
cb251765
MG
3337 check_schedstat_required();
3338 if (schedstat_enabled()) {
3339 update_stats_enqueue(cfs_rq, se);
3340 check_spread(cfs_rq, se);
3341 }
2f950354 3342 if (!curr)
83b699ed 3343 __enqueue_entity(cfs_rq, se);
2069dd75 3344 se->on_rq = 1;
3d4b47b4 3345
d3d9dc33 3346 if (cfs_rq->nr_running == 1) {
3d4b47b4 3347 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3348 check_enqueue_throttle(cfs_rq);
3349 }
bf0f6f24
IM
3350}
3351
2c13c919 3352static void __clear_buddies_last(struct sched_entity *se)
2002c695 3353{
2c13c919
RR
3354 for_each_sched_entity(se) {
3355 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3356 if (cfs_rq->last != se)
2c13c919 3357 break;
f1044799
PZ
3358
3359 cfs_rq->last = NULL;
2c13c919
RR
3360 }
3361}
2002c695 3362
2c13c919
RR
3363static void __clear_buddies_next(struct sched_entity *se)
3364{
3365 for_each_sched_entity(se) {
3366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3367 if (cfs_rq->next != se)
2c13c919 3368 break;
f1044799
PZ
3369
3370 cfs_rq->next = NULL;
2c13c919 3371 }
2002c695
PZ
3372}
3373
ac53db59
RR
3374static void __clear_buddies_skip(struct sched_entity *se)
3375{
3376 for_each_sched_entity(se) {
3377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3378 if (cfs_rq->skip != se)
ac53db59 3379 break;
f1044799
PZ
3380
3381 cfs_rq->skip = NULL;
ac53db59
RR
3382 }
3383}
3384
a571bbea
PZ
3385static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3386{
2c13c919
RR
3387 if (cfs_rq->last == se)
3388 __clear_buddies_last(se);
3389
3390 if (cfs_rq->next == se)
3391 __clear_buddies_next(se);
ac53db59
RR
3392
3393 if (cfs_rq->skip == se)
3394 __clear_buddies_skip(se);
a571bbea
PZ
3395}
3396
6c16a6dc 3397static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3398
bf0f6f24 3399static void
371fd7e7 3400dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3401{
a2a2d680
DA
3402 /*
3403 * Update run-time statistics of the 'current'.
3404 */
3405 update_curr(cfs_rq);
13962234 3406 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3407
cb251765
MG
3408 if (schedstat_enabled())
3409 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3410
2002c695 3411 clear_buddies(cfs_rq, se);
4793241b 3412
83b699ed 3413 if (se != cfs_rq->curr)
30cfdcfc 3414 __dequeue_entity(cfs_rq, se);
17bc14b7 3415 se->on_rq = 0;
30cfdcfc 3416 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3417
3418 /*
3419 * Normalize the entity after updating the min_vruntime because the
3420 * update can refer to the ->curr item and we need to reflect this
3421 * movement in our normalized position.
3422 */
371fd7e7 3423 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3424 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3425
d8b4986d
PT
3426 /* return excess runtime on last dequeue */
3427 return_cfs_rq_runtime(cfs_rq);
3428
1e876231 3429 update_min_vruntime(cfs_rq);
17bc14b7 3430 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3431}
3432
3433/*
3434 * Preempt the current task with a newly woken task if needed:
3435 */
7c92e54f 3436static void
2e09bf55 3437check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3438{
11697830 3439 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3440 struct sched_entity *se;
3441 s64 delta;
11697830 3442
6d0f0ebd 3443 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3444 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3445 if (delta_exec > ideal_runtime) {
8875125e 3446 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3447 /*
3448 * The current task ran long enough, ensure it doesn't get
3449 * re-elected due to buddy favours.
3450 */
3451 clear_buddies(cfs_rq, curr);
f685ceac
MG
3452 return;
3453 }
3454
3455 /*
3456 * Ensure that a task that missed wakeup preemption by a
3457 * narrow margin doesn't have to wait for a full slice.
3458 * This also mitigates buddy induced latencies under load.
3459 */
f685ceac
MG
3460 if (delta_exec < sysctl_sched_min_granularity)
3461 return;
3462
f4cfb33e
WX
3463 se = __pick_first_entity(cfs_rq);
3464 delta = curr->vruntime - se->vruntime;
f685ceac 3465
f4cfb33e
WX
3466 if (delta < 0)
3467 return;
d7d82944 3468
f4cfb33e 3469 if (delta > ideal_runtime)
8875125e 3470 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3471}
3472
83b699ed 3473static void
8494f412 3474set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3475{
83b699ed
SV
3476 /* 'current' is not kept within the tree. */
3477 if (se->on_rq) {
3478 /*
3479 * Any task has to be enqueued before it get to execute on
3480 * a CPU. So account for the time it spent waiting on the
3481 * runqueue.
3482 */
cb251765
MG
3483 if (schedstat_enabled())
3484 update_stats_wait_end(cfs_rq, se);
83b699ed 3485 __dequeue_entity(cfs_rq, se);
9d89c257 3486 update_load_avg(se, 1);
83b699ed
SV
3487 }
3488
79303e9e 3489 update_stats_curr_start(cfs_rq, se);
429d43bc 3490 cfs_rq->curr = se;
eba1ed4b
IM
3491#ifdef CONFIG_SCHEDSTATS
3492 /*
3493 * Track our maximum slice length, if the CPU's load is at
3494 * least twice that of our own weight (i.e. dont track it
3495 * when there are only lesser-weight tasks around):
3496 */
cb251765 3497 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3498 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3499 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3500 }
3501#endif
4a55b450 3502 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3503}
3504
3f3a4904
PZ
3505static int
3506wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3507
ac53db59
RR
3508/*
3509 * Pick the next process, keeping these things in mind, in this order:
3510 * 1) keep things fair between processes/task groups
3511 * 2) pick the "next" process, since someone really wants that to run
3512 * 3) pick the "last" process, for cache locality
3513 * 4) do not run the "skip" process, if something else is available
3514 */
678d5718
PZ
3515static struct sched_entity *
3516pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3517{
678d5718
PZ
3518 struct sched_entity *left = __pick_first_entity(cfs_rq);
3519 struct sched_entity *se;
3520
3521 /*
3522 * If curr is set we have to see if its left of the leftmost entity
3523 * still in the tree, provided there was anything in the tree at all.
3524 */
3525 if (!left || (curr && entity_before(curr, left)))
3526 left = curr;
3527
3528 se = left; /* ideally we run the leftmost entity */
f4b6755f 3529
ac53db59
RR
3530 /*
3531 * Avoid running the skip buddy, if running something else can
3532 * be done without getting too unfair.
3533 */
3534 if (cfs_rq->skip == se) {
678d5718
PZ
3535 struct sched_entity *second;
3536
3537 if (se == curr) {
3538 second = __pick_first_entity(cfs_rq);
3539 } else {
3540 second = __pick_next_entity(se);
3541 if (!second || (curr && entity_before(curr, second)))
3542 second = curr;
3543 }
3544
ac53db59
RR
3545 if (second && wakeup_preempt_entity(second, left) < 1)
3546 se = second;
3547 }
aa2ac252 3548
f685ceac
MG
3549 /*
3550 * Prefer last buddy, try to return the CPU to a preempted task.
3551 */
3552 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3553 se = cfs_rq->last;
3554
ac53db59
RR
3555 /*
3556 * Someone really wants this to run. If it's not unfair, run it.
3557 */
3558 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3559 se = cfs_rq->next;
3560
f685ceac 3561 clear_buddies(cfs_rq, se);
4793241b
PZ
3562
3563 return se;
aa2ac252
PZ
3564}
3565
678d5718 3566static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3567
ab6cde26 3568static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3569{
3570 /*
3571 * If still on the runqueue then deactivate_task()
3572 * was not called and update_curr() has to be done:
3573 */
3574 if (prev->on_rq)
b7cc0896 3575 update_curr(cfs_rq);
bf0f6f24 3576
d3d9dc33
PT
3577 /* throttle cfs_rqs exceeding runtime */
3578 check_cfs_rq_runtime(cfs_rq);
3579
cb251765
MG
3580 if (schedstat_enabled()) {
3581 check_spread(cfs_rq, prev);
3582 if (prev->on_rq)
3583 update_stats_wait_start(cfs_rq, prev);
3584 }
3585
30cfdcfc 3586 if (prev->on_rq) {
30cfdcfc
DA
3587 /* Put 'current' back into the tree. */
3588 __enqueue_entity(cfs_rq, prev);
9d85f21c 3589 /* in !on_rq case, update occurred at dequeue */
9d89c257 3590 update_load_avg(prev, 0);
30cfdcfc 3591 }
429d43bc 3592 cfs_rq->curr = NULL;
bf0f6f24
IM
3593}
3594
8f4d37ec
PZ
3595static void
3596entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3597{
bf0f6f24 3598 /*
30cfdcfc 3599 * Update run-time statistics of the 'current'.
bf0f6f24 3600 */
30cfdcfc 3601 update_curr(cfs_rq);
bf0f6f24 3602
9d85f21c
PT
3603 /*
3604 * Ensure that runnable average is periodically updated.
3605 */
9d89c257 3606 update_load_avg(curr, 1);
bf0bd948 3607 update_cfs_shares(cfs_rq);
9d85f21c 3608
8f4d37ec
PZ
3609#ifdef CONFIG_SCHED_HRTICK
3610 /*
3611 * queued ticks are scheduled to match the slice, so don't bother
3612 * validating it and just reschedule.
3613 */
983ed7a6 3614 if (queued) {
8875125e 3615 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3616 return;
3617 }
8f4d37ec
PZ
3618 /*
3619 * don't let the period tick interfere with the hrtick preemption
3620 */
3621 if (!sched_feat(DOUBLE_TICK) &&
3622 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3623 return;
3624#endif
3625
2c2efaed 3626 if (cfs_rq->nr_running > 1)
2e09bf55 3627 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3628}
3629
ab84d31e
PT
3630
3631/**************************************************
3632 * CFS bandwidth control machinery
3633 */
3634
3635#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3636
3637#ifdef HAVE_JUMP_LABEL
c5905afb 3638static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3639
3640static inline bool cfs_bandwidth_used(void)
3641{
c5905afb 3642 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3643}
3644
1ee14e6c 3645void cfs_bandwidth_usage_inc(void)
029632fb 3646{
1ee14e6c
BS
3647 static_key_slow_inc(&__cfs_bandwidth_used);
3648}
3649
3650void cfs_bandwidth_usage_dec(void)
3651{
3652 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3653}
3654#else /* HAVE_JUMP_LABEL */
3655static bool cfs_bandwidth_used(void)
3656{
3657 return true;
3658}
3659
1ee14e6c
BS
3660void cfs_bandwidth_usage_inc(void) {}
3661void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3662#endif /* HAVE_JUMP_LABEL */
3663
ab84d31e
PT
3664/*
3665 * default period for cfs group bandwidth.
3666 * default: 0.1s, units: nanoseconds
3667 */
3668static inline u64 default_cfs_period(void)
3669{
3670 return 100000000ULL;
3671}
ec12cb7f
PT
3672
3673static inline u64 sched_cfs_bandwidth_slice(void)
3674{
3675 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3676}
3677
a9cf55b2
PT
3678/*
3679 * Replenish runtime according to assigned quota and update expiration time.
3680 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3681 * additional synchronization around rq->lock.
3682 *
3683 * requires cfs_b->lock
3684 */
029632fb 3685void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3686{
3687 u64 now;
3688
3689 if (cfs_b->quota == RUNTIME_INF)
3690 return;
3691
3692 now = sched_clock_cpu(smp_processor_id());
3693 cfs_b->runtime = cfs_b->quota;
3694 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3695}
3696
029632fb
PZ
3697static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3698{
3699 return &tg->cfs_bandwidth;
3700}
3701
f1b17280
PT
3702/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3703static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3704{
3705 if (unlikely(cfs_rq->throttle_count))
3706 return cfs_rq->throttled_clock_task;
3707
78becc27 3708 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3709}
3710
85dac906
PT
3711/* returns 0 on failure to allocate runtime */
3712static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3713{
3714 struct task_group *tg = cfs_rq->tg;
3715 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3716 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3717
3718 /* note: this is a positive sum as runtime_remaining <= 0 */
3719 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3720
3721 raw_spin_lock(&cfs_b->lock);
3722 if (cfs_b->quota == RUNTIME_INF)
3723 amount = min_amount;
58088ad0 3724 else {
77a4d1a1 3725 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3726
3727 if (cfs_b->runtime > 0) {
3728 amount = min(cfs_b->runtime, min_amount);
3729 cfs_b->runtime -= amount;
3730 cfs_b->idle = 0;
3731 }
ec12cb7f 3732 }
a9cf55b2 3733 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3734 raw_spin_unlock(&cfs_b->lock);
3735
3736 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3737 /*
3738 * we may have advanced our local expiration to account for allowed
3739 * spread between our sched_clock and the one on which runtime was
3740 * issued.
3741 */
3742 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3743 cfs_rq->runtime_expires = expires;
85dac906
PT
3744
3745 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3746}
3747
a9cf55b2
PT
3748/*
3749 * Note: This depends on the synchronization provided by sched_clock and the
3750 * fact that rq->clock snapshots this value.
3751 */
3752static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3753{
a9cf55b2 3754 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3755
3756 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3757 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3758 return;
3759
a9cf55b2
PT
3760 if (cfs_rq->runtime_remaining < 0)
3761 return;
3762
3763 /*
3764 * If the local deadline has passed we have to consider the
3765 * possibility that our sched_clock is 'fast' and the global deadline
3766 * has not truly expired.
3767 *
3768 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3769 * whether the global deadline has advanced. It is valid to compare
3770 * cfs_b->runtime_expires without any locks since we only care about
3771 * exact equality, so a partial write will still work.
a9cf55b2
PT
3772 */
3773
51f2176d 3774 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3775 /* extend local deadline, drift is bounded above by 2 ticks */
3776 cfs_rq->runtime_expires += TICK_NSEC;
3777 } else {
3778 /* global deadline is ahead, expiration has passed */
3779 cfs_rq->runtime_remaining = 0;
3780 }
3781}
3782
9dbdb155 3783static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3784{
3785 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3786 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3787 expire_cfs_rq_runtime(cfs_rq);
3788
3789 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3790 return;
3791
85dac906
PT
3792 /*
3793 * if we're unable to extend our runtime we resched so that the active
3794 * hierarchy can be throttled
3795 */
3796 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3797 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3798}
3799
6c16a6dc 3800static __always_inline
9dbdb155 3801void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3802{
56f570e5 3803 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3804 return;
3805
3806 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3807}
3808
85dac906
PT
3809static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3810{
56f570e5 3811 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3812}
3813
64660c86
PT
3814/* check whether cfs_rq, or any parent, is throttled */
3815static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3816{
56f570e5 3817 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3818}
3819
3820/*
3821 * Ensure that neither of the group entities corresponding to src_cpu or
3822 * dest_cpu are members of a throttled hierarchy when performing group
3823 * load-balance operations.
3824 */
3825static inline int throttled_lb_pair(struct task_group *tg,
3826 int src_cpu, int dest_cpu)
3827{
3828 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3829
3830 src_cfs_rq = tg->cfs_rq[src_cpu];
3831 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3832
3833 return throttled_hierarchy(src_cfs_rq) ||
3834 throttled_hierarchy(dest_cfs_rq);
3835}
3836
3837/* updated child weight may affect parent so we have to do this bottom up */
3838static int tg_unthrottle_up(struct task_group *tg, void *data)
3839{
3840 struct rq *rq = data;
3841 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3842
3843 cfs_rq->throttle_count--;
3844#ifdef CONFIG_SMP
3845 if (!cfs_rq->throttle_count) {
f1b17280 3846 /* adjust cfs_rq_clock_task() */
78becc27 3847 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3848 cfs_rq->throttled_clock_task;
64660c86
PT
3849 }
3850#endif
3851
3852 return 0;
3853}
3854
3855static int tg_throttle_down(struct task_group *tg, void *data)
3856{
3857 struct rq *rq = data;
3858 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3859
82958366
PT
3860 /* group is entering throttled state, stop time */
3861 if (!cfs_rq->throttle_count)
78becc27 3862 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3863 cfs_rq->throttle_count++;
3864
3865 return 0;
3866}
3867
d3d9dc33 3868static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3869{
3870 struct rq *rq = rq_of(cfs_rq);
3871 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3872 struct sched_entity *se;
3873 long task_delta, dequeue = 1;
77a4d1a1 3874 bool empty;
85dac906
PT
3875
3876 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3877
f1b17280 3878 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3879 rcu_read_lock();
3880 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3881 rcu_read_unlock();
85dac906
PT
3882
3883 task_delta = cfs_rq->h_nr_running;
3884 for_each_sched_entity(se) {
3885 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3886 /* throttled entity or throttle-on-deactivate */
3887 if (!se->on_rq)
3888 break;
3889
3890 if (dequeue)
3891 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3892 qcfs_rq->h_nr_running -= task_delta;
3893
3894 if (qcfs_rq->load.weight)
3895 dequeue = 0;
3896 }
3897
3898 if (!se)
72465447 3899 sub_nr_running(rq, task_delta);
85dac906
PT
3900
3901 cfs_rq->throttled = 1;
78becc27 3902 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3903 raw_spin_lock(&cfs_b->lock);
d49db342 3904 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3905
c06f04c7
BS
3906 /*
3907 * Add to the _head_ of the list, so that an already-started
3908 * distribute_cfs_runtime will not see us
3909 */
3910 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3911
3912 /*
3913 * If we're the first throttled task, make sure the bandwidth
3914 * timer is running.
3915 */
3916 if (empty)
3917 start_cfs_bandwidth(cfs_b);
3918
85dac906
PT
3919 raw_spin_unlock(&cfs_b->lock);
3920}
3921
029632fb 3922void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3923{
3924 struct rq *rq = rq_of(cfs_rq);
3925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3926 struct sched_entity *se;
3927 int enqueue = 1;
3928 long task_delta;
3929
22b958d8 3930 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3931
3932 cfs_rq->throttled = 0;
1a55af2e
FW
3933
3934 update_rq_clock(rq);
3935
671fd9da 3936 raw_spin_lock(&cfs_b->lock);
78becc27 3937 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3938 list_del_rcu(&cfs_rq->throttled_list);
3939 raw_spin_unlock(&cfs_b->lock);
3940
64660c86
PT
3941 /* update hierarchical throttle state */
3942 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3943
671fd9da
PT
3944 if (!cfs_rq->load.weight)
3945 return;
3946
3947 task_delta = cfs_rq->h_nr_running;
3948 for_each_sched_entity(se) {
3949 if (se->on_rq)
3950 enqueue = 0;
3951
3952 cfs_rq = cfs_rq_of(se);
3953 if (enqueue)
3954 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3955 cfs_rq->h_nr_running += task_delta;
3956
3957 if (cfs_rq_throttled(cfs_rq))
3958 break;
3959 }
3960
3961 if (!se)
72465447 3962 add_nr_running(rq, task_delta);
671fd9da
PT
3963
3964 /* determine whether we need to wake up potentially idle cpu */
3965 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3966 resched_curr(rq);
671fd9da
PT
3967}
3968
3969static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3970 u64 remaining, u64 expires)
3971{
3972 struct cfs_rq *cfs_rq;
c06f04c7
BS
3973 u64 runtime;
3974 u64 starting_runtime = remaining;
671fd9da
PT
3975
3976 rcu_read_lock();
3977 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3978 throttled_list) {
3979 struct rq *rq = rq_of(cfs_rq);
3980
3981 raw_spin_lock(&rq->lock);
3982 if (!cfs_rq_throttled(cfs_rq))
3983 goto next;
3984
3985 runtime = -cfs_rq->runtime_remaining + 1;
3986 if (runtime > remaining)
3987 runtime = remaining;
3988 remaining -= runtime;
3989
3990 cfs_rq->runtime_remaining += runtime;
3991 cfs_rq->runtime_expires = expires;
3992
3993 /* we check whether we're throttled above */
3994 if (cfs_rq->runtime_remaining > 0)
3995 unthrottle_cfs_rq(cfs_rq);
3996
3997next:
3998 raw_spin_unlock(&rq->lock);
3999
4000 if (!remaining)
4001 break;
4002 }
4003 rcu_read_unlock();
4004
c06f04c7 4005 return starting_runtime - remaining;
671fd9da
PT
4006}
4007
58088ad0
PT
4008/*
4009 * Responsible for refilling a task_group's bandwidth and unthrottling its
4010 * cfs_rqs as appropriate. If there has been no activity within the last
4011 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4012 * used to track this state.
4013 */
4014static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4015{
671fd9da 4016 u64 runtime, runtime_expires;
51f2176d 4017 int throttled;
58088ad0 4018
58088ad0
PT
4019 /* no need to continue the timer with no bandwidth constraint */
4020 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4021 goto out_deactivate;
58088ad0 4022
671fd9da 4023 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4024 cfs_b->nr_periods += overrun;
671fd9da 4025
51f2176d
BS
4026 /*
4027 * idle depends on !throttled (for the case of a large deficit), and if
4028 * we're going inactive then everything else can be deferred
4029 */
4030 if (cfs_b->idle && !throttled)
4031 goto out_deactivate;
a9cf55b2
PT
4032
4033 __refill_cfs_bandwidth_runtime(cfs_b);
4034
671fd9da
PT
4035 if (!throttled) {
4036 /* mark as potentially idle for the upcoming period */
4037 cfs_b->idle = 1;
51f2176d 4038 return 0;
671fd9da
PT
4039 }
4040
e8da1b18
NR
4041 /* account preceding periods in which throttling occurred */
4042 cfs_b->nr_throttled += overrun;
4043
671fd9da 4044 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4045
4046 /*
c06f04c7
BS
4047 * This check is repeated as we are holding onto the new bandwidth while
4048 * we unthrottle. This can potentially race with an unthrottled group
4049 * trying to acquire new bandwidth from the global pool. This can result
4050 * in us over-using our runtime if it is all used during this loop, but
4051 * only by limited amounts in that extreme case.
671fd9da 4052 */
c06f04c7
BS
4053 while (throttled && cfs_b->runtime > 0) {
4054 runtime = cfs_b->runtime;
671fd9da
PT
4055 raw_spin_unlock(&cfs_b->lock);
4056 /* we can't nest cfs_b->lock while distributing bandwidth */
4057 runtime = distribute_cfs_runtime(cfs_b, runtime,
4058 runtime_expires);
4059 raw_spin_lock(&cfs_b->lock);
4060
4061 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4062
4063 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4064 }
58088ad0 4065
671fd9da
PT
4066 /*
4067 * While we are ensured activity in the period following an
4068 * unthrottle, this also covers the case in which the new bandwidth is
4069 * insufficient to cover the existing bandwidth deficit. (Forcing the
4070 * timer to remain active while there are any throttled entities.)
4071 */
4072 cfs_b->idle = 0;
58088ad0 4073
51f2176d
BS
4074 return 0;
4075
4076out_deactivate:
51f2176d 4077 return 1;
58088ad0 4078}
d3d9dc33 4079
d8b4986d
PT
4080/* a cfs_rq won't donate quota below this amount */
4081static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4082/* minimum remaining period time to redistribute slack quota */
4083static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4084/* how long we wait to gather additional slack before distributing */
4085static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4086
db06e78c
BS
4087/*
4088 * Are we near the end of the current quota period?
4089 *
4090 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4091 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4092 * migrate_hrtimers, base is never cleared, so we are fine.
4093 */
d8b4986d
PT
4094static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4095{
4096 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4097 u64 remaining;
4098
4099 /* if the call-back is running a quota refresh is already occurring */
4100 if (hrtimer_callback_running(refresh_timer))
4101 return 1;
4102
4103 /* is a quota refresh about to occur? */
4104 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4105 if (remaining < min_expire)
4106 return 1;
4107
4108 return 0;
4109}
4110
4111static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4112{
4113 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4114
4115 /* if there's a quota refresh soon don't bother with slack */
4116 if (runtime_refresh_within(cfs_b, min_left))
4117 return;
4118
4cfafd30
PZ
4119 hrtimer_start(&cfs_b->slack_timer,
4120 ns_to_ktime(cfs_bandwidth_slack_period),
4121 HRTIMER_MODE_REL);
d8b4986d
PT
4122}
4123
4124/* we know any runtime found here is valid as update_curr() precedes return */
4125static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4126{
4127 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4128 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4129
4130 if (slack_runtime <= 0)
4131 return;
4132
4133 raw_spin_lock(&cfs_b->lock);
4134 if (cfs_b->quota != RUNTIME_INF &&
4135 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4136 cfs_b->runtime += slack_runtime;
4137
4138 /* we are under rq->lock, defer unthrottling using a timer */
4139 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4140 !list_empty(&cfs_b->throttled_cfs_rq))
4141 start_cfs_slack_bandwidth(cfs_b);
4142 }
4143 raw_spin_unlock(&cfs_b->lock);
4144
4145 /* even if it's not valid for return we don't want to try again */
4146 cfs_rq->runtime_remaining -= slack_runtime;
4147}
4148
4149static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4150{
56f570e5
PT
4151 if (!cfs_bandwidth_used())
4152 return;
4153
fccfdc6f 4154 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4155 return;
4156
4157 __return_cfs_rq_runtime(cfs_rq);
4158}
4159
4160/*
4161 * This is done with a timer (instead of inline with bandwidth return) since
4162 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4163 */
4164static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4165{
4166 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4167 u64 expires;
4168
4169 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4170 raw_spin_lock(&cfs_b->lock);
4171 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4172 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4173 return;
db06e78c 4174 }
d8b4986d 4175
c06f04c7 4176 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4177 runtime = cfs_b->runtime;
c06f04c7 4178
d8b4986d
PT
4179 expires = cfs_b->runtime_expires;
4180 raw_spin_unlock(&cfs_b->lock);
4181
4182 if (!runtime)
4183 return;
4184
4185 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4186
4187 raw_spin_lock(&cfs_b->lock);
4188 if (expires == cfs_b->runtime_expires)
c06f04c7 4189 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4190 raw_spin_unlock(&cfs_b->lock);
4191}
4192
d3d9dc33
PT
4193/*
4194 * When a group wakes up we want to make sure that its quota is not already
4195 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4196 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4197 */
4198static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4199{
56f570e5
PT
4200 if (!cfs_bandwidth_used())
4201 return;
4202
094f4691
KK
4203 /* Synchronize hierarchical throttle counter: */
4204 if (unlikely(!cfs_rq->throttle_uptodate)) {
4205 struct rq *rq = rq_of(cfs_rq);
4206 struct cfs_rq *pcfs_rq;
4207 struct task_group *tg;
4208
4209 cfs_rq->throttle_uptodate = 1;
4210
4211 /* Get closest up-to-date node, because leaves go first: */
4212 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4213 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4214 if (pcfs_rq->throttle_uptodate)
4215 break;
4216 }
4217 if (tg) {
4218 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4219 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4220 }
4221 }
4222
d3d9dc33
PT
4223 /* an active group must be handled by the update_curr()->put() path */
4224 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4225 return;
4226
4227 /* ensure the group is not already throttled */
4228 if (cfs_rq_throttled(cfs_rq))
4229 return;
4230
4231 /* update runtime allocation */
4232 account_cfs_rq_runtime(cfs_rq, 0);
4233 if (cfs_rq->runtime_remaining <= 0)
4234 throttle_cfs_rq(cfs_rq);
4235}
4236
4237/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4238static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4239{
56f570e5 4240 if (!cfs_bandwidth_used())
678d5718 4241 return false;
56f570e5 4242
d3d9dc33 4243 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4244 return false;
d3d9dc33
PT
4245
4246 /*
4247 * it's possible for a throttled entity to be forced into a running
4248 * state (e.g. set_curr_task), in this case we're finished.
4249 */
4250 if (cfs_rq_throttled(cfs_rq))
678d5718 4251 return true;
d3d9dc33
PT
4252
4253 throttle_cfs_rq(cfs_rq);
678d5718 4254 return true;
d3d9dc33 4255}
029632fb 4256
029632fb
PZ
4257static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4258{
4259 struct cfs_bandwidth *cfs_b =
4260 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4261
029632fb
PZ
4262 do_sched_cfs_slack_timer(cfs_b);
4263
4264 return HRTIMER_NORESTART;
4265}
4266
4267static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4268{
4269 struct cfs_bandwidth *cfs_b =
4270 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4271 int overrun;
4272 int idle = 0;
4273
51f2176d 4274 raw_spin_lock(&cfs_b->lock);
029632fb 4275 for (;;) {
77a4d1a1 4276 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4277 if (!overrun)
4278 break;
4279
4280 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4281 }
4cfafd30
PZ
4282 if (idle)
4283 cfs_b->period_active = 0;
51f2176d 4284 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4285
4286 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4287}
4288
4289void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4290{
4291 raw_spin_lock_init(&cfs_b->lock);
4292 cfs_b->runtime = 0;
4293 cfs_b->quota = RUNTIME_INF;
4294 cfs_b->period = ns_to_ktime(default_cfs_period());
4295
4296 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4297 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4298 cfs_b->period_timer.function = sched_cfs_period_timer;
4299 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4300 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4301}
4302
4303static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4304{
4305 cfs_rq->runtime_enabled = 0;
4306 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4307}
4308
77a4d1a1 4309void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4310{
4cfafd30 4311 lockdep_assert_held(&cfs_b->lock);
029632fb 4312
4cfafd30
PZ
4313 if (!cfs_b->period_active) {
4314 cfs_b->period_active = 1;
4315 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4316 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4317 }
029632fb
PZ
4318}
4319
4320static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4321{
7f1a169b
TH
4322 /* init_cfs_bandwidth() was not called */
4323 if (!cfs_b->throttled_cfs_rq.next)
4324 return;
4325
029632fb
PZ
4326 hrtimer_cancel(&cfs_b->period_timer);
4327 hrtimer_cancel(&cfs_b->slack_timer);
4328}
4329
0e59bdae
KT
4330static void __maybe_unused update_runtime_enabled(struct rq *rq)
4331{
4332 struct cfs_rq *cfs_rq;
4333
4334 for_each_leaf_cfs_rq(rq, cfs_rq) {
4335 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4336
4337 raw_spin_lock(&cfs_b->lock);
4338 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4339 raw_spin_unlock(&cfs_b->lock);
4340 }
4341}
4342
38dc3348 4343static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4344{
4345 struct cfs_rq *cfs_rq;
4346
4347 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4348 if (!cfs_rq->runtime_enabled)
4349 continue;
4350
4351 /*
4352 * clock_task is not advancing so we just need to make sure
4353 * there's some valid quota amount
4354 */
51f2176d 4355 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4356 /*
4357 * Offline rq is schedulable till cpu is completely disabled
4358 * in take_cpu_down(), so we prevent new cfs throttling here.
4359 */
4360 cfs_rq->runtime_enabled = 0;
4361
029632fb
PZ
4362 if (cfs_rq_throttled(cfs_rq))
4363 unthrottle_cfs_rq(cfs_rq);
4364 }
4365}
4366
4367#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4368static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4369{
78becc27 4370 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4371}
4372
9dbdb155 4373static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4374static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4375static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4376static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4377
4378static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4379{
4380 return 0;
4381}
64660c86
PT
4382
4383static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4384{
4385 return 0;
4386}
4387
4388static inline int throttled_lb_pair(struct task_group *tg,
4389 int src_cpu, int dest_cpu)
4390{
4391 return 0;
4392}
029632fb
PZ
4393
4394void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4395
4396#ifdef CONFIG_FAIR_GROUP_SCHED
4397static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4398#endif
4399
029632fb
PZ
4400static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4401{
4402 return NULL;
4403}
4404static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4405static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4406static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4407
4408#endif /* CONFIG_CFS_BANDWIDTH */
4409
bf0f6f24
IM
4410/**************************************************
4411 * CFS operations on tasks:
4412 */
4413
8f4d37ec
PZ
4414#ifdef CONFIG_SCHED_HRTICK
4415static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4416{
8f4d37ec
PZ
4417 struct sched_entity *se = &p->se;
4418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4419
4420 WARN_ON(task_rq(p) != rq);
4421
b39e66ea 4422 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4423 u64 slice = sched_slice(cfs_rq, se);
4424 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4425 s64 delta = slice - ran;
4426
4427 if (delta < 0) {
4428 if (rq->curr == p)
8875125e 4429 resched_curr(rq);
8f4d37ec
PZ
4430 return;
4431 }
31656519 4432 hrtick_start(rq, delta);
8f4d37ec
PZ
4433 }
4434}
a4c2f00f
PZ
4435
4436/*
4437 * called from enqueue/dequeue and updates the hrtick when the
4438 * current task is from our class and nr_running is low enough
4439 * to matter.
4440 */
4441static void hrtick_update(struct rq *rq)
4442{
4443 struct task_struct *curr = rq->curr;
4444
b39e66ea 4445 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4446 return;
4447
4448 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4449 hrtick_start_fair(rq, curr);
4450}
55e12e5e 4451#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4452static inline void
4453hrtick_start_fair(struct rq *rq, struct task_struct *p)
4454{
4455}
a4c2f00f
PZ
4456
4457static inline void hrtick_update(struct rq *rq)
4458{
4459}
8f4d37ec
PZ
4460#endif
4461
bf0f6f24
IM
4462/*
4463 * The enqueue_task method is called before nr_running is
4464 * increased. Here we update the fair scheduling stats and
4465 * then put the task into the rbtree:
4466 */
ea87bb78 4467static void
371fd7e7 4468enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4469{
4470 struct cfs_rq *cfs_rq;
62fb1851 4471 struct sched_entity *se = &p->se;
bf0f6f24
IM
4472
4473 for_each_sched_entity(se) {
62fb1851 4474 if (se->on_rq)
bf0f6f24
IM
4475 break;
4476 cfs_rq = cfs_rq_of(se);
88ec22d3 4477 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4478
4479 /*
4480 * end evaluation on encountering a throttled cfs_rq
4481 *
4482 * note: in the case of encountering a throttled cfs_rq we will
4483 * post the final h_nr_running increment below.
4484 */
4485 if (cfs_rq_throttled(cfs_rq))
4486 break;
953bfcd1 4487 cfs_rq->h_nr_running++;
85dac906 4488
88ec22d3 4489 flags = ENQUEUE_WAKEUP;
bf0f6f24 4490 }
8f4d37ec 4491
2069dd75 4492 for_each_sched_entity(se) {
0f317143 4493 cfs_rq = cfs_rq_of(se);
953bfcd1 4494 cfs_rq->h_nr_running++;
2069dd75 4495
85dac906
PT
4496 if (cfs_rq_throttled(cfs_rq))
4497 break;
4498
9d89c257 4499 update_load_avg(se, 1);
17bc14b7 4500 update_cfs_shares(cfs_rq);
2069dd75
PZ
4501 }
4502
cd126afe 4503 if (!se)
72465447 4504 add_nr_running(rq, 1);
cd126afe 4505
a4c2f00f 4506 hrtick_update(rq);
bf0f6f24
IM
4507}
4508
2f36825b
VP
4509static void set_next_buddy(struct sched_entity *se);
4510
bf0f6f24
IM
4511/*
4512 * The dequeue_task method is called before nr_running is
4513 * decreased. We remove the task from the rbtree and
4514 * update the fair scheduling stats:
4515 */
371fd7e7 4516static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4517{
4518 struct cfs_rq *cfs_rq;
62fb1851 4519 struct sched_entity *se = &p->se;
2f36825b 4520 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4521
4522 for_each_sched_entity(se) {
4523 cfs_rq = cfs_rq_of(se);
371fd7e7 4524 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4525
4526 /*
4527 * end evaluation on encountering a throttled cfs_rq
4528 *
4529 * note: in the case of encountering a throttled cfs_rq we will
4530 * post the final h_nr_running decrement below.
4531 */
4532 if (cfs_rq_throttled(cfs_rq))
4533 break;
953bfcd1 4534 cfs_rq->h_nr_running--;
2069dd75 4535
bf0f6f24 4536 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4537 if (cfs_rq->load.weight) {
754bd598
KK
4538 /* Avoid re-evaluating load for this entity: */
4539 se = parent_entity(se);
2f36825b
VP
4540 /*
4541 * Bias pick_next to pick a task from this cfs_rq, as
4542 * p is sleeping when it is within its sched_slice.
4543 */
754bd598
KK
4544 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4545 set_next_buddy(se);
bf0f6f24 4546 break;
2f36825b 4547 }
371fd7e7 4548 flags |= DEQUEUE_SLEEP;
bf0f6f24 4549 }
8f4d37ec 4550
2069dd75 4551 for_each_sched_entity(se) {
0f317143 4552 cfs_rq = cfs_rq_of(se);
953bfcd1 4553 cfs_rq->h_nr_running--;
2069dd75 4554
85dac906
PT
4555 if (cfs_rq_throttled(cfs_rq))
4556 break;
4557
9d89c257 4558 update_load_avg(se, 1);
17bc14b7 4559 update_cfs_shares(cfs_rq);
2069dd75
PZ
4560 }
4561
cd126afe 4562 if (!se)
72465447 4563 sub_nr_running(rq, 1);
cd126afe 4564
a4c2f00f 4565 hrtick_update(rq);
bf0f6f24
IM
4566}
4567
e7693a36 4568#ifdef CONFIG_SMP
9fd81dd5 4569#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4570/*
4571 * per rq 'load' arrray crap; XXX kill this.
4572 */
4573
4574/*
d937cdc5 4575 * The exact cpuload calculated at every tick would be:
3289bdb4 4576 *
d937cdc5
PZ
4577 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4578 *
4579 * If a cpu misses updates for n ticks (as it was idle) and update gets
4580 * called on the n+1-th tick when cpu may be busy, then we have:
4581 *
4582 * load_n = (1 - 1/2^i)^n * load_0
4583 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4584 *
4585 * decay_load_missed() below does efficient calculation of
3289bdb4 4586 *
d937cdc5
PZ
4587 * load' = (1 - 1/2^i)^n * load
4588 *
4589 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4590 * This allows us to precompute the above in said factors, thereby allowing the
4591 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4592 * fixed_power_int())
3289bdb4 4593 *
d937cdc5 4594 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4595 */
4596#define DEGRADE_SHIFT 7
d937cdc5
PZ
4597
4598static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4599static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4600 { 0, 0, 0, 0, 0, 0, 0, 0 },
4601 { 64, 32, 8, 0, 0, 0, 0, 0 },
4602 { 96, 72, 40, 12, 1, 0, 0, 0 },
4603 { 112, 98, 75, 43, 15, 1, 0, 0 },
4604 { 120, 112, 98, 76, 45, 16, 2, 0 }
4605};
3289bdb4
PZ
4606
4607/*
4608 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4609 * would be when CPU is idle and so we just decay the old load without
4610 * adding any new load.
4611 */
4612static unsigned long
4613decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4614{
4615 int j = 0;
4616
4617 if (!missed_updates)
4618 return load;
4619
4620 if (missed_updates >= degrade_zero_ticks[idx])
4621 return 0;
4622
4623 if (idx == 1)
4624 return load >> missed_updates;
4625
4626 while (missed_updates) {
4627 if (missed_updates % 2)
4628 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4629
4630 missed_updates >>= 1;
4631 j++;
4632 }
4633 return load;
4634}
9fd81dd5 4635#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4636
59543275 4637/**
cee1afce 4638 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4639 * @this_rq: The rq to update statistics for
4640 * @this_load: The current load
4641 * @pending_updates: The number of missed updates
59543275 4642 *
3289bdb4 4643 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4644 * scheduler tick (TICK_NSEC).
4645 *
4646 * This function computes a decaying average:
4647 *
4648 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4649 *
4650 * Because of NOHZ it might not get called on every tick which gives need for
4651 * the @pending_updates argument.
4652 *
4653 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4654 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4655 * = A * (A * load[i]_n-2 + B) + B
4656 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4657 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4658 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4659 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4660 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4661 *
4662 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4663 * any change in load would have resulted in the tick being turned back on.
4664 *
4665 * For regular NOHZ, this reduces to:
4666 *
4667 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4668 *
4669 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4670 * term.
3289bdb4 4671 */
1f41906a
FW
4672static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4673 unsigned long pending_updates)
3289bdb4 4674{
9fd81dd5 4675 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4676 int i, scale;
4677
4678 this_rq->nr_load_updates++;
4679
4680 /* Update our load: */
4681 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4682 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4683 unsigned long old_load, new_load;
4684
4685 /* scale is effectively 1 << i now, and >> i divides by scale */
4686
7400d3bb 4687 old_load = this_rq->cpu_load[i];
9fd81dd5 4688#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4689 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4690 if (tickless_load) {
4691 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4692 /*
4693 * old_load can never be a negative value because a
4694 * decayed tickless_load cannot be greater than the
4695 * original tickless_load.
4696 */
4697 old_load += tickless_load;
4698 }
9fd81dd5 4699#endif
3289bdb4
PZ
4700 new_load = this_load;
4701 /*
4702 * Round up the averaging division if load is increasing. This
4703 * prevents us from getting stuck on 9 if the load is 10, for
4704 * example.
4705 */
4706 if (new_load > old_load)
4707 new_load += scale - 1;
4708
4709 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4710 }
4711
4712 sched_avg_update(this_rq);
4713}
4714
7ea241af
YD
4715/* Used instead of source_load when we know the type == 0 */
4716static unsigned long weighted_cpuload(const int cpu)
4717{
4718 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4719}
4720
3289bdb4 4721#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4722/*
4723 * There is no sane way to deal with nohz on smp when using jiffies because the
4724 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4725 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4726 *
4727 * Therefore we need to avoid the delta approach from the regular tick when
4728 * possible since that would seriously skew the load calculation. This is why we
4729 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4730 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4731 * loop exit, nohz_idle_balance, nohz full exit...)
4732 *
4733 * This means we might still be one tick off for nohz periods.
4734 */
4735
4736static void cpu_load_update_nohz(struct rq *this_rq,
4737 unsigned long curr_jiffies,
4738 unsigned long load)
be68a682
FW
4739{
4740 unsigned long pending_updates;
4741
4742 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4743 if (pending_updates) {
4744 this_rq->last_load_update_tick = curr_jiffies;
4745 /*
4746 * In the regular NOHZ case, we were idle, this means load 0.
4747 * In the NOHZ_FULL case, we were non-idle, we should consider
4748 * its weighted load.
4749 */
1f41906a 4750 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4751 }
4752}
4753
3289bdb4
PZ
4754/*
4755 * Called from nohz_idle_balance() to update the load ratings before doing the
4756 * idle balance.
4757 */
cee1afce 4758static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4759{
3289bdb4
PZ
4760 /*
4761 * bail if there's load or we're actually up-to-date.
4762 */
be68a682 4763 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4764 return;
4765
1f41906a 4766 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4767}
4768
4769/*
1f41906a
FW
4770 * Record CPU load on nohz entry so we know the tickless load to account
4771 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4772 * than other cpu_load[idx] but it should be fine as cpu_load readers
4773 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4774 */
1f41906a 4775void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4776{
4777 struct rq *this_rq = this_rq();
1f41906a
FW
4778
4779 /*
4780 * This is all lockless but should be fine. If weighted_cpuload changes
4781 * concurrently we'll exit nohz. And cpu_load write can race with
4782 * cpu_load_update_idle() but both updater would be writing the same.
4783 */
4784 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4785}
4786
4787/*
4788 * Account the tickless load in the end of a nohz frame.
4789 */
4790void cpu_load_update_nohz_stop(void)
4791{
316c1608 4792 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4793 struct rq *this_rq = this_rq();
4794 unsigned long load;
3289bdb4
PZ
4795
4796 if (curr_jiffies == this_rq->last_load_update_tick)
4797 return;
4798
1f41906a 4799 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4800 raw_spin_lock(&this_rq->lock);
b52fad2d 4801 update_rq_clock(this_rq);
1f41906a 4802 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4803 raw_spin_unlock(&this_rq->lock);
4804}
1f41906a
FW
4805#else /* !CONFIG_NO_HZ_COMMON */
4806static inline void cpu_load_update_nohz(struct rq *this_rq,
4807 unsigned long curr_jiffies,
4808 unsigned long load) { }
4809#endif /* CONFIG_NO_HZ_COMMON */
4810
4811static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4812{
9fd81dd5 4813#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4814 /* See the mess around cpu_load_update_nohz(). */
4815 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4816#endif
1f41906a
FW
4817 cpu_load_update(this_rq, load, 1);
4818}
3289bdb4
PZ
4819
4820/*
4821 * Called from scheduler_tick()
4822 */
cee1afce 4823void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4824{
7ea241af 4825 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4826
4827 if (tick_nohz_tick_stopped())
4828 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4829 else
4830 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4831}
4832
029632fb
PZ
4833/*
4834 * Return a low guess at the load of a migration-source cpu weighted
4835 * according to the scheduling class and "nice" value.
4836 *
4837 * We want to under-estimate the load of migration sources, to
4838 * balance conservatively.
4839 */
4840static unsigned long source_load(int cpu, int type)
4841{
4842 struct rq *rq = cpu_rq(cpu);
4843 unsigned long total = weighted_cpuload(cpu);
4844
4845 if (type == 0 || !sched_feat(LB_BIAS))
4846 return total;
4847
4848 return min(rq->cpu_load[type-1], total);
4849}
4850
4851/*
4852 * Return a high guess at the load of a migration-target cpu weighted
4853 * according to the scheduling class and "nice" value.
4854 */
4855static unsigned long target_load(int cpu, int type)
4856{
4857 struct rq *rq = cpu_rq(cpu);
4858 unsigned long total = weighted_cpuload(cpu);
4859
4860 if (type == 0 || !sched_feat(LB_BIAS))
4861 return total;
4862
4863 return max(rq->cpu_load[type-1], total);
4864}
4865
ced549fa 4866static unsigned long capacity_of(int cpu)
029632fb 4867{
ced549fa 4868 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4869}
4870
ca6d75e6
VG
4871static unsigned long capacity_orig_of(int cpu)
4872{
4873 return cpu_rq(cpu)->cpu_capacity_orig;
4874}
4875
029632fb
PZ
4876static unsigned long cpu_avg_load_per_task(int cpu)
4877{
4878 struct rq *rq = cpu_rq(cpu);
316c1608 4879 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4880 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4881
4882 if (nr_running)
b92486cb 4883 return load_avg / nr_running;
029632fb
PZ
4884
4885 return 0;
4886}
4887
bb3469ac 4888#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4889/*
4890 * effective_load() calculates the load change as seen from the root_task_group
4891 *
4892 * Adding load to a group doesn't make a group heavier, but can cause movement
4893 * of group shares between cpus. Assuming the shares were perfectly aligned one
4894 * can calculate the shift in shares.
cf5f0acf
PZ
4895 *
4896 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4897 * on this @cpu and results in a total addition (subtraction) of @wg to the
4898 * total group weight.
4899 *
4900 * Given a runqueue weight distribution (rw_i) we can compute a shares
4901 * distribution (s_i) using:
4902 *
4903 * s_i = rw_i / \Sum rw_j (1)
4904 *
4905 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4906 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4907 * shares distribution (s_i):
4908 *
4909 * rw_i = { 2, 4, 1, 0 }
4910 * s_i = { 2/7, 4/7, 1/7, 0 }
4911 *
4912 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4913 * task used to run on and the CPU the waker is running on), we need to
4914 * compute the effect of waking a task on either CPU and, in case of a sync
4915 * wakeup, compute the effect of the current task going to sleep.
4916 *
4917 * So for a change of @wl to the local @cpu with an overall group weight change
4918 * of @wl we can compute the new shares distribution (s'_i) using:
4919 *
4920 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4921 *
4922 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4923 * differences in waking a task to CPU 0. The additional task changes the
4924 * weight and shares distributions like:
4925 *
4926 * rw'_i = { 3, 4, 1, 0 }
4927 * s'_i = { 3/8, 4/8, 1/8, 0 }
4928 *
4929 * We can then compute the difference in effective weight by using:
4930 *
4931 * dw_i = S * (s'_i - s_i) (3)
4932 *
4933 * Where 'S' is the group weight as seen by its parent.
4934 *
4935 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4936 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4937 * 4/7) times the weight of the group.
f5bfb7d9 4938 */
2069dd75 4939static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4940{
4be9daaa 4941 struct sched_entity *se = tg->se[cpu];
f1d239f7 4942
9722c2da 4943 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4944 return wl;
4945
4be9daaa 4946 for_each_sched_entity(se) {
7dd49125
PZ
4947 struct cfs_rq *cfs_rq = se->my_q;
4948 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4949
7dd49125 4950 tg = cfs_rq->tg;
bb3469ac 4951
cf5f0acf
PZ
4952 /*
4953 * W = @wg + \Sum rw_j
4954 */
7dd49125
PZ
4955 W = wg + atomic_long_read(&tg->load_avg);
4956
4957 /* Ensure \Sum rw_j >= rw_i */
4958 W -= cfs_rq->tg_load_avg_contrib;
4959 W += w;
4be9daaa 4960
cf5f0acf
PZ
4961 /*
4962 * w = rw_i + @wl
4963 */
7dd49125 4964 w += wl;
940959e9 4965
cf5f0acf
PZ
4966 /*
4967 * wl = S * s'_i; see (2)
4968 */
4969 if (W > 0 && w < W)
32a8df4e 4970 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4971 else
4972 wl = tg->shares;
940959e9 4973
cf5f0acf
PZ
4974 /*
4975 * Per the above, wl is the new se->load.weight value; since
4976 * those are clipped to [MIN_SHARES, ...) do so now. See
4977 * calc_cfs_shares().
4978 */
977dda7c
PT
4979 if (wl < MIN_SHARES)
4980 wl = MIN_SHARES;
cf5f0acf
PZ
4981
4982 /*
4983 * wl = dw_i = S * (s'_i - s_i); see (3)
4984 */
9d89c257 4985 wl -= se->avg.load_avg;
cf5f0acf
PZ
4986
4987 /*
4988 * Recursively apply this logic to all parent groups to compute
4989 * the final effective load change on the root group. Since
4990 * only the @tg group gets extra weight, all parent groups can
4991 * only redistribute existing shares. @wl is the shift in shares
4992 * resulting from this level per the above.
4993 */
4be9daaa 4994 wg = 0;
4be9daaa 4995 }
bb3469ac 4996
4be9daaa 4997 return wl;
bb3469ac
PZ
4998}
4999#else
4be9daaa 5000
58d081b5 5001static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5002{
83378269 5003 return wl;
bb3469ac 5004}
4be9daaa 5005
bb3469ac
PZ
5006#endif
5007
c58d25f3
PZ
5008static void record_wakee(struct task_struct *p)
5009{
5010 /*
5011 * Only decay a single time; tasks that have less then 1 wakeup per
5012 * jiffy will not have built up many flips.
5013 */
5014 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5015 current->wakee_flips >>= 1;
5016 current->wakee_flip_decay_ts = jiffies;
5017 }
5018
5019 if (current->last_wakee != p) {
5020 current->last_wakee = p;
5021 current->wakee_flips++;
5022 }
5023}
5024
63b0e9ed
MG
5025/*
5026 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5027 *
63b0e9ed 5028 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5029 * at a frequency roughly N times higher than one of its wakees.
5030 *
5031 * In order to determine whether we should let the load spread vs consolidating
5032 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5033 * partner, and a factor of lls_size higher frequency in the other.
5034 *
5035 * With both conditions met, we can be relatively sure that the relationship is
5036 * non-monogamous, with partner count exceeding socket size.
5037 *
5038 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5039 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5040 * socket size.
63b0e9ed 5041 */
62470419
MW
5042static int wake_wide(struct task_struct *p)
5043{
63b0e9ed
MG
5044 unsigned int master = current->wakee_flips;
5045 unsigned int slave = p->wakee_flips;
7d9ffa89 5046 int factor = this_cpu_read(sd_llc_size);
62470419 5047
63b0e9ed
MG
5048 if (master < slave)
5049 swap(master, slave);
5050 if (slave < factor || master < slave * factor)
5051 return 0;
5052 return 1;
62470419
MW
5053}
5054
c88d5910 5055static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5056{
e37b6a7b 5057 s64 this_load, load;
bd61c98f 5058 s64 this_eff_load, prev_eff_load;
c88d5910 5059 int idx, this_cpu, prev_cpu;
c88d5910 5060 struct task_group *tg;
83378269 5061 unsigned long weight;
b3137bc8 5062 int balanced;
098fb9db 5063
c88d5910
PZ
5064 idx = sd->wake_idx;
5065 this_cpu = smp_processor_id();
5066 prev_cpu = task_cpu(p);
5067 load = source_load(prev_cpu, idx);
5068 this_load = target_load(this_cpu, idx);
098fb9db 5069
b3137bc8
MG
5070 /*
5071 * If sync wakeup then subtract the (maximum possible)
5072 * effect of the currently running task from the load
5073 * of the current CPU:
5074 */
83378269
PZ
5075 if (sync) {
5076 tg = task_group(current);
9d89c257 5077 weight = current->se.avg.load_avg;
83378269 5078
c88d5910 5079 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5080 load += effective_load(tg, prev_cpu, 0, -weight);
5081 }
b3137bc8 5082
83378269 5083 tg = task_group(p);
9d89c257 5084 weight = p->se.avg.load_avg;
b3137bc8 5085
71a29aa7
PZ
5086 /*
5087 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5088 * due to the sync cause above having dropped this_load to 0, we'll
5089 * always have an imbalance, but there's really nothing you can do
5090 * about that, so that's good too.
71a29aa7
PZ
5091 *
5092 * Otherwise check if either cpus are near enough in load to allow this
5093 * task to be woken on this_cpu.
5094 */
bd61c98f
VG
5095 this_eff_load = 100;
5096 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5097
bd61c98f
VG
5098 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5099 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5100
bd61c98f 5101 if (this_load > 0) {
e51fd5e2
PZ
5102 this_eff_load *= this_load +
5103 effective_load(tg, this_cpu, weight, weight);
5104
e51fd5e2 5105 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5106 }
e51fd5e2 5107
bd61c98f 5108 balanced = this_eff_load <= prev_eff_load;
098fb9db 5109
41acab88 5110 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5111
05bfb65f
VG
5112 if (!balanced)
5113 return 0;
098fb9db 5114
05bfb65f
VG
5115 schedstat_inc(sd, ttwu_move_affine);
5116 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5117
5118 return 1;
098fb9db
IM
5119}
5120
aaee1203
PZ
5121/*
5122 * find_idlest_group finds and returns the least busy CPU group within the
5123 * domain.
5124 */
5125static struct sched_group *
78e7ed53 5126find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5127 int this_cpu, int sd_flag)
e7693a36 5128{
b3bd3de6 5129 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5130 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5131 int load_idx = sd->forkexec_idx;
aaee1203 5132 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5133
c44f2a02
VG
5134 if (sd_flag & SD_BALANCE_WAKE)
5135 load_idx = sd->wake_idx;
5136
aaee1203
PZ
5137 do {
5138 unsigned long load, avg_load;
5139 int local_group;
5140 int i;
e7693a36 5141
aaee1203
PZ
5142 /* Skip over this group if it has no CPUs allowed */
5143 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5144 tsk_cpus_allowed(p)))
aaee1203
PZ
5145 continue;
5146
5147 local_group = cpumask_test_cpu(this_cpu,
5148 sched_group_cpus(group));
5149
5150 /* Tally up the load of all CPUs in the group */
5151 avg_load = 0;
5152
5153 for_each_cpu(i, sched_group_cpus(group)) {
5154 /* Bias balancing toward cpus of our domain */
5155 if (local_group)
5156 load = source_load(i, load_idx);
5157 else
5158 load = target_load(i, load_idx);
5159
5160 avg_load += load;
5161 }
5162
63b2ca30 5163 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5164 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5165
5166 if (local_group) {
5167 this_load = avg_load;
aaee1203
PZ
5168 } else if (avg_load < min_load) {
5169 min_load = avg_load;
5170 idlest = group;
5171 }
5172 } while (group = group->next, group != sd->groups);
5173
5174 if (!idlest || 100*this_load < imbalance*min_load)
5175 return NULL;
5176 return idlest;
5177}
5178
5179/*
5180 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5181 */
5182static int
5183find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5184{
5185 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5186 unsigned int min_exit_latency = UINT_MAX;
5187 u64 latest_idle_timestamp = 0;
5188 int least_loaded_cpu = this_cpu;
5189 int shallowest_idle_cpu = -1;
aaee1203
PZ
5190 int i;
5191
5192 /* Traverse only the allowed CPUs */
fa17b507 5193 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5194 if (idle_cpu(i)) {
5195 struct rq *rq = cpu_rq(i);
5196 struct cpuidle_state *idle = idle_get_state(rq);
5197 if (idle && idle->exit_latency < min_exit_latency) {
5198 /*
5199 * We give priority to a CPU whose idle state
5200 * has the smallest exit latency irrespective
5201 * of any idle timestamp.
5202 */
5203 min_exit_latency = idle->exit_latency;
5204 latest_idle_timestamp = rq->idle_stamp;
5205 shallowest_idle_cpu = i;
5206 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5207 rq->idle_stamp > latest_idle_timestamp) {
5208 /*
5209 * If equal or no active idle state, then
5210 * the most recently idled CPU might have
5211 * a warmer cache.
5212 */
5213 latest_idle_timestamp = rq->idle_stamp;
5214 shallowest_idle_cpu = i;
5215 }
9f96742a 5216 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5217 load = weighted_cpuload(i);
5218 if (load < min_load || (load == min_load && i == this_cpu)) {
5219 min_load = load;
5220 least_loaded_cpu = i;
5221 }
e7693a36
GH
5222 }
5223 }
5224
83a0a96a 5225 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5226}
e7693a36 5227
a50bde51
PZ
5228/*
5229 * Try and locate an idle CPU in the sched_domain.
5230 */
99bd5e2f 5231static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5232{
99bd5e2f 5233 struct sched_domain *sd;
37407ea7 5234 struct sched_group *sg;
e0a79f52 5235 int i = task_cpu(p);
a50bde51 5236
e0a79f52
MG
5237 if (idle_cpu(target))
5238 return target;
99bd5e2f
SS
5239
5240 /*
e0a79f52 5241 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5242 */
e0a79f52
MG
5243 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5244 return i;
a50bde51
PZ
5245
5246 /*
d4335581
MF
5247 * Otherwise, iterate the domains and find an eligible idle cpu.
5248 *
5249 * A completely idle sched group at higher domains is more
5250 * desirable than an idle group at a lower level, because lower
5251 * domains have smaller groups and usually share hardware
5252 * resources which causes tasks to contend on them, e.g. x86
5253 * hyperthread siblings in the lowest domain (SMT) can contend
5254 * on the shared cpu pipeline.
5255 *
5256 * However, while we prefer idle groups at higher domains
5257 * finding an idle cpu at the lowest domain is still better than
5258 * returning 'target', which we've already established, isn't
5259 * idle.
a50bde51 5260 */
518cd623 5261 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5262 for_each_lower_domain(sd) {
37407ea7
LT
5263 sg = sd->groups;
5264 do {
5265 if (!cpumask_intersects(sched_group_cpus(sg),
5266 tsk_cpus_allowed(p)))
5267 goto next;
5268
d4335581 5269 /* Ensure the entire group is idle */
37407ea7 5270 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5271 if (i == target || !idle_cpu(i))
37407ea7
LT
5272 goto next;
5273 }
970e1789 5274
d4335581
MF
5275 /*
5276 * It doesn't matter which cpu we pick, the
5277 * whole group is idle.
5278 */
37407ea7
LT
5279 target = cpumask_first_and(sched_group_cpus(sg),
5280 tsk_cpus_allowed(p));
5281 goto done;
5282next:
5283 sg = sg->next;
5284 } while (sg != sd->groups);
5285 }
5286done:
a50bde51
PZ
5287 return target;
5288}
231678b7 5289
8bb5b00c 5290/*
9e91d61d 5291 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5292 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5293 * compare the utilization with the capacity of the CPU that is available for
5294 * CFS task (ie cpu_capacity).
231678b7
DE
5295 *
5296 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5297 * recent utilization of currently non-runnable tasks on a CPU. It represents
5298 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5299 * capacity_orig is the cpu_capacity available at the highest frequency
5300 * (arch_scale_freq_capacity()).
5301 * The utilization of a CPU converges towards a sum equal to or less than the
5302 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5303 * the running time on this CPU scaled by capacity_curr.
5304 *
5305 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5306 * higher than capacity_orig because of unfortunate rounding in
5307 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5308 * the average stabilizes with the new running time. We need to check that the
5309 * utilization stays within the range of [0..capacity_orig] and cap it if
5310 * necessary. Without utilization capping, a group could be seen as overloaded
5311 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5312 * available capacity. We allow utilization to overshoot capacity_curr (but not
5313 * capacity_orig) as it useful for predicting the capacity required after task
5314 * migrations (scheduler-driven DVFS).
8bb5b00c 5315 */
9e91d61d 5316static int cpu_util(int cpu)
8bb5b00c 5317{
9e91d61d 5318 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5319 unsigned long capacity = capacity_orig_of(cpu);
5320
231678b7 5321 return (util >= capacity) ? capacity : util;
8bb5b00c 5322}
a50bde51 5323
aaee1203 5324/*
de91b9cb
MR
5325 * select_task_rq_fair: Select target runqueue for the waking task in domains
5326 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5327 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5328 *
de91b9cb
MR
5329 * Balances load by selecting the idlest cpu in the idlest group, or under
5330 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5331 *
de91b9cb 5332 * Returns the target cpu number.
aaee1203
PZ
5333 *
5334 * preempt must be disabled.
5335 */
0017d735 5336static int
ac66f547 5337select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5338{
29cd8bae 5339 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5340 int cpu = smp_processor_id();
63b0e9ed 5341 int new_cpu = prev_cpu;
99bd5e2f 5342 int want_affine = 0;
5158f4e4 5343 int sync = wake_flags & WF_SYNC;
c88d5910 5344
c58d25f3
PZ
5345 if (sd_flag & SD_BALANCE_WAKE) {
5346 record_wakee(p);
63b0e9ed 5347 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5348 }
aaee1203 5349
dce840a0 5350 rcu_read_lock();
aaee1203 5351 for_each_domain(cpu, tmp) {
e4f42888 5352 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5353 break;
e4f42888 5354
fe3bcfe1 5355 /*
99bd5e2f
SS
5356 * If both cpu and prev_cpu are part of this domain,
5357 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5358 */
99bd5e2f
SS
5359 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5360 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5361 affine_sd = tmp;
29cd8bae 5362 break;
f03542a7 5363 }
29cd8bae 5364
f03542a7 5365 if (tmp->flags & sd_flag)
29cd8bae 5366 sd = tmp;
63b0e9ed
MG
5367 else if (!want_affine)
5368 break;
29cd8bae
PZ
5369 }
5370
63b0e9ed
MG
5371 if (affine_sd) {
5372 sd = NULL; /* Prefer wake_affine over balance flags */
5373 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5374 new_cpu = cpu;
8b911acd 5375 }
e7693a36 5376
63b0e9ed
MG
5377 if (!sd) {
5378 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5379 new_cpu = select_idle_sibling(p, new_cpu);
5380
5381 } else while (sd) {
aaee1203 5382 struct sched_group *group;
c88d5910 5383 int weight;
098fb9db 5384
0763a660 5385 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5386 sd = sd->child;
5387 continue;
5388 }
098fb9db 5389
c44f2a02 5390 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5391 if (!group) {
5392 sd = sd->child;
5393 continue;
5394 }
4ae7d5ce 5395
d7c33c49 5396 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5397 if (new_cpu == -1 || new_cpu == cpu) {
5398 /* Now try balancing at a lower domain level of cpu */
5399 sd = sd->child;
5400 continue;
e7693a36 5401 }
aaee1203
PZ
5402
5403 /* Now try balancing at a lower domain level of new_cpu */
5404 cpu = new_cpu;
669c55e9 5405 weight = sd->span_weight;
aaee1203
PZ
5406 sd = NULL;
5407 for_each_domain(cpu, tmp) {
669c55e9 5408 if (weight <= tmp->span_weight)
aaee1203 5409 break;
0763a660 5410 if (tmp->flags & sd_flag)
aaee1203
PZ
5411 sd = tmp;
5412 }
5413 /* while loop will break here if sd == NULL */
e7693a36 5414 }
dce840a0 5415 rcu_read_unlock();
e7693a36 5416
c88d5910 5417 return new_cpu;
e7693a36 5418}
0a74bef8
PT
5419
5420/*
5421 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5422 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5423 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5424 */
5a4fd036 5425static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5426{
59efa0ba
PZ
5427 /*
5428 * As blocked tasks retain absolute vruntime the migration needs to
5429 * deal with this by subtracting the old and adding the new
5430 * min_vruntime -- the latter is done by enqueue_entity() when placing
5431 * the task on the new runqueue.
5432 */
5433 if (p->state == TASK_WAKING) {
5434 struct sched_entity *se = &p->se;
5435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5436 u64 min_vruntime;
5437
5438#ifndef CONFIG_64BIT
5439 u64 min_vruntime_copy;
5440
5441 do {
5442 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5443 smp_rmb();
5444 min_vruntime = cfs_rq->min_vruntime;
5445 } while (min_vruntime != min_vruntime_copy);
5446#else
5447 min_vruntime = cfs_rq->min_vruntime;
5448#endif
5449
5450 se->vruntime -= min_vruntime;
5451 }
5452
aff3e498 5453 /*
9d89c257
YD
5454 * We are supposed to update the task to "current" time, then its up to date
5455 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5456 * what current time is, so simply throw away the out-of-date time. This
5457 * will result in the wakee task is less decayed, but giving the wakee more
5458 * load sounds not bad.
aff3e498 5459 */
9d89c257
YD
5460 remove_entity_load_avg(&p->se);
5461
5462 /* Tell new CPU we are migrated */
5463 p->se.avg.last_update_time = 0;
3944a927
BS
5464
5465 /* We have migrated, no longer consider this task hot */
9d89c257 5466 p->se.exec_start = 0;
0a74bef8 5467}
12695578
YD
5468
5469static void task_dead_fair(struct task_struct *p)
5470{
5471 remove_entity_load_avg(&p->se);
5472}
e7693a36
GH
5473#endif /* CONFIG_SMP */
5474
e52fb7c0
PZ
5475static unsigned long
5476wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5477{
5478 unsigned long gran = sysctl_sched_wakeup_granularity;
5479
5480 /*
e52fb7c0
PZ
5481 * Since its curr running now, convert the gran from real-time
5482 * to virtual-time in his units.
13814d42
MG
5483 *
5484 * By using 'se' instead of 'curr' we penalize light tasks, so
5485 * they get preempted easier. That is, if 'se' < 'curr' then
5486 * the resulting gran will be larger, therefore penalizing the
5487 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5488 * be smaller, again penalizing the lighter task.
5489 *
5490 * This is especially important for buddies when the leftmost
5491 * task is higher priority than the buddy.
0bbd3336 5492 */
f4ad9bd2 5493 return calc_delta_fair(gran, se);
0bbd3336
PZ
5494}
5495
464b7527
PZ
5496/*
5497 * Should 'se' preempt 'curr'.
5498 *
5499 * |s1
5500 * |s2
5501 * |s3
5502 * g
5503 * |<--->|c
5504 *
5505 * w(c, s1) = -1
5506 * w(c, s2) = 0
5507 * w(c, s3) = 1
5508 *
5509 */
5510static int
5511wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5512{
5513 s64 gran, vdiff = curr->vruntime - se->vruntime;
5514
5515 if (vdiff <= 0)
5516 return -1;
5517
e52fb7c0 5518 gran = wakeup_gran(curr, se);
464b7527
PZ
5519 if (vdiff > gran)
5520 return 1;
5521
5522 return 0;
5523}
5524
02479099
PZ
5525static void set_last_buddy(struct sched_entity *se)
5526{
69c80f3e
VP
5527 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5528 return;
5529
5530 for_each_sched_entity(se)
5531 cfs_rq_of(se)->last = se;
02479099
PZ
5532}
5533
5534static void set_next_buddy(struct sched_entity *se)
5535{
69c80f3e
VP
5536 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5537 return;
5538
5539 for_each_sched_entity(se)
5540 cfs_rq_of(se)->next = se;
02479099
PZ
5541}
5542
ac53db59
RR
5543static void set_skip_buddy(struct sched_entity *se)
5544{
69c80f3e
VP
5545 for_each_sched_entity(se)
5546 cfs_rq_of(se)->skip = se;
ac53db59
RR
5547}
5548
bf0f6f24
IM
5549/*
5550 * Preempt the current task with a newly woken task if needed:
5551 */
5a9b86f6 5552static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5553{
5554 struct task_struct *curr = rq->curr;
8651a86c 5555 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5556 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5557 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5558 int next_buddy_marked = 0;
bf0f6f24 5559
4ae7d5ce
IM
5560 if (unlikely(se == pse))
5561 return;
5562
5238cdd3 5563 /*
163122b7 5564 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5565 * unconditionally check_prempt_curr() after an enqueue (which may have
5566 * lead to a throttle). This both saves work and prevents false
5567 * next-buddy nomination below.
5568 */
5569 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5570 return;
5571
2f36825b 5572 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5573 set_next_buddy(pse);
2f36825b
VP
5574 next_buddy_marked = 1;
5575 }
57fdc26d 5576
aec0a514
BR
5577 /*
5578 * We can come here with TIF_NEED_RESCHED already set from new task
5579 * wake up path.
5238cdd3
PT
5580 *
5581 * Note: this also catches the edge-case of curr being in a throttled
5582 * group (e.g. via set_curr_task), since update_curr() (in the
5583 * enqueue of curr) will have resulted in resched being set. This
5584 * prevents us from potentially nominating it as a false LAST_BUDDY
5585 * below.
aec0a514
BR
5586 */
5587 if (test_tsk_need_resched(curr))
5588 return;
5589
a2f5c9ab
DH
5590 /* Idle tasks are by definition preempted by non-idle tasks. */
5591 if (unlikely(curr->policy == SCHED_IDLE) &&
5592 likely(p->policy != SCHED_IDLE))
5593 goto preempt;
5594
91c234b4 5595 /*
a2f5c9ab
DH
5596 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5597 * is driven by the tick):
91c234b4 5598 */
8ed92e51 5599 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5600 return;
bf0f6f24 5601
464b7527 5602 find_matching_se(&se, &pse);
9bbd7374 5603 update_curr(cfs_rq_of(se));
002f128b 5604 BUG_ON(!pse);
2f36825b
VP
5605 if (wakeup_preempt_entity(se, pse) == 1) {
5606 /*
5607 * Bias pick_next to pick the sched entity that is
5608 * triggering this preemption.
5609 */
5610 if (!next_buddy_marked)
5611 set_next_buddy(pse);
3a7e73a2 5612 goto preempt;
2f36825b 5613 }
464b7527 5614
3a7e73a2 5615 return;
a65ac745 5616
3a7e73a2 5617preempt:
8875125e 5618 resched_curr(rq);
3a7e73a2
PZ
5619 /*
5620 * Only set the backward buddy when the current task is still
5621 * on the rq. This can happen when a wakeup gets interleaved
5622 * with schedule on the ->pre_schedule() or idle_balance()
5623 * point, either of which can * drop the rq lock.
5624 *
5625 * Also, during early boot the idle thread is in the fair class,
5626 * for obvious reasons its a bad idea to schedule back to it.
5627 */
5628 if (unlikely(!se->on_rq || curr == rq->idle))
5629 return;
5630
5631 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5632 set_last_buddy(se);
bf0f6f24
IM
5633}
5634
606dba2e 5635static struct task_struct *
e7904a28 5636pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5637{
5638 struct cfs_rq *cfs_rq = &rq->cfs;
5639 struct sched_entity *se;
678d5718 5640 struct task_struct *p;
37e117c0 5641 int new_tasks;
678d5718 5642
6e83125c 5643again:
678d5718
PZ
5644#ifdef CONFIG_FAIR_GROUP_SCHED
5645 if (!cfs_rq->nr_running)
38033c37 5646 goto idle;
678d5718 5647
3f1d2a31 5648 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5649 goto simple;
5650
5651 /*
5652 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5653 * likely that a next task is from the same cgroup as the current.
5654 *
5655 * Therefore attempt to avoid putting and setting the entire cgroup
5656 * hierarchy, only change the part that actually changes.
5657 */
5658
5659 do {
5660 struct sched_entity *curr = cfs_rq->curr;
5661
5662 /*
5663 * Since we got here without doing put_prev_entity() we also
5664 * have to consider cfs_rq->curr. If it is still a runnable
5665 * entity, update_curr() will update its vruntime, otherwise
5666 * forget we've ever seen it.
5667 */
54d27365
BS
5668 if (curr) {
5669 if (curr->on_rq)
5670 update_curr(cfs_rq);
5671 else
5672 curr = NULL;
678d5718 5673
54d27365
BS
5674 /*
5675 * This call to check_cfs_rq_runtime() will do the
5676 * throttle and dequeue its entity in the parent(s).
5677 * Therefore the 'simple' nr_running test will indeed
5678 * be correct.
5679 */
5680 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5681 goto simple;
5682 }
678d5718
PZ
5683
5684 se = pick_next_entity(cfs_rq, curr);
5685 cfs_rq = group_cfs_rq(se);
5686 } while (cfs_rq);
5687
5688 p = task_of(se);
5689
5690 /*
5691 * Since we haven't yet done put_prev_entity and if the selected task
5692 * is a different task than we started out with, try and touch the
5693 * least amount of cfs_rqs.
5694 */
5695 if (prev != p) {
5696 struct sched_entity *pse = &prev->se;
5697
5698 while (!(cfs_rq = is_same_group(se, pse))) {
5699 int se_depth = se->depth;
5700 int pse_depth = pse->depth;
5701
5702 if (se_depth <= pse_depth) {
5703 put_prev_entity(cfs_rq_of(pse), pse);
5704 pse = parent_entity(pse);
5705 }
5706 if (se_depth >= pse_depth) {
5707 set_next_entity(cfs_rq_of(se), se);
5708 se = parent_entity(se);
5709 }
5710 }
5711
5712 put_prev_entity(cfs_rq, pse);
5713 set_next_entity(cfs_rq, se);
5714 }
5715
5716 if (hrtick_enabled(rq))
5717 hrtick_start_fair(rq, p);
5718
5719 return p;
5720simple:
5721 cfs_rq = &rq->cfs;
5722#endif
bf0f6f24 5723
36ace27e 5724 if (!cfs_rq->nr_running)
38033c37 5725 goto idle;
bf0f6f24 5726
3f1d2a31 5727 put_prev_task(rq, prev);
606dba2e 5728
bf0f6f24 5729 do {
678d5718 5730 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5731 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5732 cfs_rq = group_cfs_rq(se);
5733 } while (cfs_rq);
5734
8f4d37ec 5735 p = task_of(se);
678d5718 5736
b39e66ea
MG
5737 if (hrtick_enabled(rq))
5738 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5739
5740 return p;
38033c37
PZ
5741
5742idle:
cbce1a68
PZ
5743 /*
5744 * This is OK, because current is on_cpu, which avoids it being picked
5745 * for load-balance and preemption/IRQs are still disabled avoiding
5746 * further scheduler activity on it and we're being very careful to
5747 * re-start the picking loop.
5748 */
e7904a28 5749 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5750 new_tasks = idle_balance(rq);
e7904a28 5751 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5752 /*
5753 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5754 * possible for any higher priority task to appear. In that case we
5755 * must re-start the pick_next_entity() loop.
5756 */
e4aa358b 5757 if (new_tasks < 0)
37e117c0
PZ
5758 return RETRY_TASK;
5759
e4aa358b 5760 if (new_tasks > 0)
38033c37 5761 goto again;
38033c37
PZ
5762
5763 return NULL;
bf0f6f24
IM
5764}
5765
5766/*
5767 * Account for a descheduled task:
5768 */
31ee529c 5769static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5770{
5771 struct sched_entity *se = &prev->se;
5772 struct cfs_rq *cfs_rq;
5773
5774 for_each_sched_entity(se) {
5775 cfs_rq = cfs_rq_of(se);
ab6cde26 5776 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5777 }
5778}
5779
ac53db59
RR
5780/*
5781 * sched_yield() is very simple
5782 *
5783 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5784 */
5785static void yield_task_fair(struct rq *rq)
5786{
5787 struct task_struct *curr = rq->curr;
5788 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5789 struct sched_entity *se = &curr->se;
5790
5791 /*
5792 * Are we the only task in the tree?
5793 */
5794 if (unlikely(rq->nr_running == 1))
5795 return;
5796
5797 clear_buddies(cfs_rq, se);
5798
5799 if (curr->policy != SCHED_BATCH) {
5800 update_rq_clock(rq);
5801 /*
5802 * Update run-time statistics of the 'current'.
5803 */
5804 update_curr(cfs_rq);
916671c0
MG
5805 /*
5806 * Tell update_rq_clock() that we've just updated,
5807 * so we don't do microscopic update in schedule()
5808 * and double the fastpath cost.
5809 */
9edfbfed 5810 rq_clock_skip_update(rq, true);
ac53db59
RR
5811 }
5812
5813 set_skip_buddy(se);
5814}
5815
d95f4122
MG
5816static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5817{
5818 struct sched_entity *se = &p->se;
5819
5238cdd3
PT
5820 /* throttled hierarchies are not runnable */
5821 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5822 return false;
5823
5824 /* Tell the scheduler that we'd really like pse to run next. */
5825 set_next_buddy(se);
5826
d95f4122
MG
5827 yield_task_fair(rq);
5828
5829 return true;
5830}
5831
681f3e68 5832#ifdef CONFIG_SMP
bf0f6f24 5833/**************************************************
e9c84cb8
PZ
5834 * Fair scheduling class load-balancing methods.
5835 *
5836 * BASICS
5837 *
5838 * The purpose of load-balancing is to achieve the same basic fairness the
5839 * per-cpu scheduler provides, namely provide a proportional amount of compute
5840 * time to each task. This is expressed in the following equation:
5841 *
5842 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5843 *
5844 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5845 * W_i,0 is defined as:
5846 *
5847 * W_i,0 = \Sum_j w_i,j (2)
5848 *
5849 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5850 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5851 *
5852 * The weight average is an exponential decay average of the instantaneous
5853 * weight:
5854 *
5855 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5856 *
ced549fa 5857 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5858 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5859 * can also include other factors [XXX].
5860 *
5861 * To achieve this balance we define a measure of imbalance which follows
5862 * directly from (1):
5863 *
ced549fa 5864 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5865 *
5866 * We them move tasks around to minimize the imbalance. In the continuous
5867 * function space it is obvious this converges, in the discrete case we get
5868 * a few fun cases generally called infeasible weight scenarios.
5869 *
5870 * [XXX expand on:
5871 * - infeasible weights;
5872 * - local vs global optima in the discrete case. ]
5873 *
5874 *
5875 * SCHED DOMAINS
5876 *
5877 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5878 * for all i,j solution, we create a tree of cpus that follows the hardware
5879 * topology where each level pairs two lower groups (or better). This results
5880 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5881 * tree to only the first of the previous level and we decrease the frequency
5882 * of load-balance at each level inv. proportional to the number of cpus in
5883 * the groups.
5884 *
5885 * This yields:
5886 *
5887 * log_2 n 1 n
5888 * \Sum { --- * --- * 2^i } = O(n) (5)
5889 * i = 0 2^i 2^i
5890 * `- size of each group
5891 * | | `- number of cpus doing load-balance
5892 * | `- freq
5893 * `- sum over all levels
5894 *
5895 * Coupled with a limit on how many tasks we can migrate every balance pass,
5896 * this makes (5) the runtime complexity of the balancer.
5897 *
5898 * An important property here is that each CPU is still (indirectly) connected
5899 * to every other cpu in at most O(log n) steps:
5900 *
5901 * The adjacency matrix of the resulting graph is given by:
5902 *
5903 * log_2 n
5904 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5905 * k = 0
5906 *
5907 * And you'll find that:
5908 *
5909 * A^(log_2 n)_i,j != 0 for all i,j (7)
5910 *
5911 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5912 * The task movement gives a factor of O(m), giving a convergence complexity
5913 * of:
5914 *
5915 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5916 *
5917 *
5918 * WORK CONSERVING
5919 *
5920 * In order to avoid CPUs going idle while there's still work to do, new idle
5921 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5922 * tree itself instead of relying on other CPUs to bring it work.
5923 *
5924 * This adds some complexity to both (5) and (8) but it reduces the total idle
5925 * time.
5926 *
5927 * [XXX more?]
5928 *
5929 *
5930 * CGROUPS
5931 *
5932 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5933 *
5934 * s_k,i
5935 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5936 * S_k
5937 *
5938 * Where
5939 *
5940 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5941 *
5942 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5943 *
5944 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5945 * property.
5946 *
5947 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5948 * rewrite all of this once again.]
5949 */
bf0f6f24 5950
ed387b78
HS
5951static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5952
0ec8aa00
PZ
5953enum fbq_type { regular, remote, all };
5954
ddcdf6e7 5955#define LBF_ALL_PINNED 0x01
367456c7 5956#define LBF_NEED_BREAK 0x02
6263322c
PZ
5957#define LBF_DST_PINNED 0x04
5958#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5959
5960struct lb_env {
5961 struct sched_domain *sd;
5962
ddcdf6e7 5963 struct rq *src_rq;
85c1e7da 5964 int src_cpu;
ddcdf6e7
PZ
5965
5966 int dst_cpu;
5967 struct rq *dst_rq;
5968
88b8dac0
SV
5969 struct cpumask *dst_grpmask;
5970 int new_dst_cpu;
ddcdf6e7 5971 enum cpu_idle_type idle;
bd939f45 5972 long imbalance;
b9403130
MW
5973 /* The set of CPUs under consideration for load-balancing */
5974 struct cpumask *cpus;
5975
ddcdf6e7 5976 unsigned int flags;
367456c7
PZ
5977
5978 unsigned int loop;
5979 unsigned int loop_break;
5980 unsigned int loop_max;
0ec8aa00
PZ
5981
5982 enum fbq_type fbq_type;
163122b7 5983 struct list_head tasks;
ddcdf6e7
PZ
5984};
5985
029632fb
PZ
5986/*
5987 * Is this task likely cache-hot:
5988 */
5d5e2b1b 5989static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5990{
5991 s64 delta;
5992
e5673f28
KT
5993 lockdep_assert_held(&env->src_rq->lock);
5994
029632fb
PZ
5995 if (p->sched_class != &fair_sched_class)
5996 return 0;
5997
5998 if (unlikely(p->policy == SCHED_IDLE))
5999 return 0;
6000
6001 /*
6002 * Buddy candidates are cache hot:
6003 */
5d5e2b1b 6004 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6005 (&p->se == cfs_rq_of(&p->se)->next ||
6006 &p->se == cfs_rq_of(&p->se)->last))
6007 return 1;
6008
6009 if (sysctl_sched_migration_cost == -1)
6010 return 1;
6011 if (sysctl_sched_migration_cost == 0)
6012 return 0;
6013
5d5e2b1b 6014 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6015
6016 return delta < (s64)sysctl_sched_migration_cost;
6017}
6018
3a7053b3 6019#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6020/*
2a1ed24c
SD
6021 * Returns 1, if task migration degrades locality
6022 * Returns 0, if task migration improves locality i.e migration preferred.
6023 * Returns -1, if task migration is not affected by locality.
c1ceac62 6024 */
2a1ed24c 6025static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6026{
b1ad065e 6027 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6028 unsigned long src_faults, dst_faults;
3a7053b3
MG
6029 int src_nid, dst_nid;
6030
2a595721 6031 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6032 return -1;
6033
c3b9bc5b 6034 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6035 return -1;
7a0f3083
MG
6036
6037 src_nid = cpu_to_node(env->src_cpu);
6038 dst_nid = cpu_to_node(env->dst_cpu);
6039
83e1d2cd 6040 if (src_nid == dst_nid)
2a1ed24c 6041 return -1;
7a0f3083 6042
2a1ed24c
SD
6043 /* Migrating away from the preferred node is always bad. */
6044 if (src_nid == p->numa_preferred_nid) {
6045 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6046 return 1;
6047 else
6048 return -1;
6049 }
b1ad065e 6050
c1ceac62
RR
6051 /* Encourage migration to the preferred node. */
6052 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6053 return 0;
b1ad065e 6054
c1ceac62
RR
6055 if (numa_group) {
6056 src_faults = group_faults(p, src_nid);
6057 dst_faults = group_faults(p, dst_nid);
6058 } else {
6059 src_faults = task_faults(p, src_nid);
6060 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6061 }
6062
c1ceac62 6063 return dst_faults < src_faults;
7a0f3083
MG
6064}
6065
3a7053b3 6066#else
2a1ed24c 6067static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6068 struct lb_env *env)
6069{
2a1ed24c 6070 return -1;
7a0f3083 6071}
3a7053b3
MG
6072#endif
6073
1e3c88bd
PZ
6074/*
6075 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6076 */
6077static
8e45cb54 6078int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6079{
2a1ed24c 6080 int tsk_cache_hot;
e5673f28
KT
6081
6082 lockdep_assert_held(&env->src_rq->lock);
6083
1e3c88bd
PZ
6084 /*
6085 * We do not migrate tasks that are:
d3198084 6086 * 1) throttled_lb_pair, or
1e3c88bd 6087 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6088 * 3) running (obviously), or
6089 * 4) are cache-hot on their current CPU.
1e3c88bd 6090 */
d3198084
JK
6091 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6092 return 0;
6093
ddcdf6e7 6094 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6095 int cpu;
88b8dac0 6096
41acab88 6097 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6098
6263322c
PZ
6099 env->flags |= LBF_SOME_PINNED;
6100
88b8dac0
SV
6101 /*
6102 * Remember if this task can be migrated to any other cpu in
6103 * our sched_group. We may want to revisit it if we couldn't
6104 * meet load balance goals by pulling other tasks on src_cpu.
6105 *
6106 * Also avoid computing new_dst_cpu if we have already computed
6107 * one in current iteration.
6108 */
6263322c 6109 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6110 return 0;
6111
e02e60c1
JK
6112 /* Prevent to re-select dst_cpu via env's cpus */
6113 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6114 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6115 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6116 env->new_dst_cpu = cpu;
6117 break;
6118 }
88b8dac0 6119 }
e02e60c1 6120
1e3c88bd
PZ
6121 return 0;
6122 }
88b8dac0
SV
6123
6124 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6125 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6126
ddcdf6e7 6127 if (task_running(env->src_rq, p)) {
41acab88 6128 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6129 return 0;
6130 }
6131
6132 /*
6133 * Aggressive migration if:
3a7053b3
MG
6134 * 1) destination numa is preferred
6135 * 2) task is cache cold, or
6136 * 3) too many balance attempts have failed.
1e3c88bd 6137 */
2a1ed24c
SD
6138 tsk_cache_hot = migrate_degrades_locality(p, env);
6139 if (tsk_cache_hot == -1)
6140 tsk_cache_hot = task_hot(p, env);
3a7053b3 6141
2a1ed24c 6142 if (tsk_cache_hot <= 0 ||
7a96c231 6143 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6144 if (tsk_cache_hot == 1) {
3a7053b3
MG
6145 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6146 schedstat_inc(p, se.statistics.nr_forced_migrations);
6147 }
1e3c88bd
PZ
6148 return 1;
6149 }
6150
4e2dcb73
ZH
6151 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6152 return 0;
1e3c88bd
PZ
6153}
6154
897c395f 6155/*
163122b7
KT
6156 * detach_task() -- detach the task for the migration specified in env
6157 */
6158static void detach_task(struct task_struct *p, struct lb_env *env)
6159{
6160 lockdep_assert_held(&env->src_rq->lock);
6161
163122b7 6162 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6163 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6164 set_task_cpu(p, env->dst_cpu);
6165}
6166
897c395f 6167/*
e5673f28 6168 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6169 * part of active balancing operations within "domain".
897c395f 6170 *
e5673f28 6171 * Returns a task if successful and NULL otherwise.
897c395f 6172 */
e5673f28 6173static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6174{
6175 struct task_struct *p, *n;
897c395f 6176
e5673f28
KT
6177 lockdep_assert_held(&env->src_rq->lock);
6178
367456c7 6179 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6180 if (!can_migrate_task(p, env))
6181 continue;
897c395f 6182
163122b7 6183 detach_task(p, env);
e5673f28 6184
367456c7 6185 /*
e5673f28 6186 * Right now, this is only the second place where
163122b7 6187 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6188 * so we can safely collect stats here rather than
163122b7 6189 * inside detach_tasks().
367456c7
PZ
6190 */
6191 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6192 return p;
897c395f 6193 }
e5673f28 6194 return NULL;
897c395f
PZ
6195}
6196
eb95308e
PZ
6197static const unsigned int sched_nr_migrate_break = 32;
6198
5d6523eb 6199/*
163122b7
KT
6200 * detach_tasks() -- tries to detach up to imbalance weighted load from
6201 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6202 *
163122b7 6203 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6204 */
163122b7 6205static int detach_tasks(struct lb_env *env)
1e3c88bd 6206{
5d6523eb
PZ
6207 struct list_head *tasks = &env->src_rq->cfs_tasks;
6208 struct task_struct *p;
367456c7 6209 unsigned long load;
163122b7
KT
6210 int detached = 0;
6211
6212 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6213
bd939f45 6214 if (env->imbalance <= 0)
5d6523eb 6215 return 0;
1e3c88bd 6216
5d6523eb 6217 while (!list_empty(tasks)) {
985d3a4c
YD
6218 /*
6219 * We don't want to steal all, otherwise we may be treated likewise,
6220 * which could at worst lead to a livelock crash.
6221 */
6222 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6223 break;
6224
5d6523eb 6225 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6226
367456c7
PZ
6227 env->loop++;
6228 /* We've more or less seen every task there is, call it quits */
5d6523eb 6229 if (env->loop > env->loop_max)
367456c7 6230 break;
5d6523eb
PZ
6231
6232 /* take a breather every nr_migrate tasks */
367456c7 6233 if (env->loop > env->loop_break) {
eb95308e 6234 env->loop_break += sched_nr_migrate_break;
8e45cb54 6235 env->flags |= LBF_NEED_BREAK;
ee00e66f 6236 break;
a195f004 6237 }
1e3c88bd 6238
d3198084 6239 if (!can_migrate_task(p, env))
367456c7
PZ
6240 goto next;
6241
6242 load = task_h_load(p);
5d6523eb 6243
eb95308e 6244 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6245 goto next;
6246
bd939f45 6247 if ((load / 2) > env->imbalance)
367456c7 6248 goto next;
1e3c88bd 6249
163122b7
KT
6250 detach_task(p, env);
6251 list_add(&p->se.group_node, &env->tasks);
6252
6253 detached++;
bd939f45 6254 env->imbalance -= load;
1e3c88bd
PZ
6255
6256#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6257 /*
6258 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6259 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6260 * the critical section.
6261 */
5d6523eb 6262 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6263 break;
1e3c88bd
PZ
6264#endif
6265
ee00e66f
PZ
6266 /*
6267 * We only want to steal up to the prescribed amount of
6268 * weighted load.
6269 */
bd939f45 6270 if (env->imbalance <= 0)
ee00e66f 6271 break;
367456c7
PZ
6272
6273 continue;
6274next:
5d6523eb 6275 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6276 }
5d6523eb 6277
1e3c88bd 6278 /*
163122b7
KT
6279 * Right now, this is one of only two places we collect this stat
6280 * so we can safely collect detach_one_task() stats here rather
6281 * than inside detach_one_task().
1e3c88bd 6282 */
163122b7 6283 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6284
163122b7
KT
6285 return detached;
6286}
6287
6288/*
6289 * attach_task() -- attach the task detached by detach_task() to its new rq.
6290 */
6291static void attach_task(struct rq *rq, struct task_struct *p)
6292{
6293 lockdep_assert_held(&rq->lock);
6294
6295 BUG_ON(task_rq(p) != rq);
163122b7 6296 activate_task(rq, p, 0);
3ea94de1 6297 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6298 check_preempt_curr(rq, p, 0);
6299}
6300
6301/*
6302 * attach_one_task() -- attaches the task returned from detach_one_task() to
6303 * its new rq.
6304 */
6305static void attach_one_task(struct rq *rq, struct task_struct *p)
6306{
6307 raw_spin_lock(&rq->lock);
6308 attach_task(rq, p);
6309 raw_spin_unlock(&rq->lock);
6310}
6311
6312/*
6313 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6314 * new rq.
6315 */
6316static void attach_tasks(struct lb_env *env)
6317{
6318 struct list_head *tasks = &env->tasks;
6319 struct task_struct *p;
6320
6321 raw_spin_lock(&env->dst_rq->lock);
6322
6323 while (!list_empty(tasks)) {
6324 p = list_first_entry(tasks, struct task_struct, se.group_node);
6325 list_del_init(&p->se.group_node);
1e3c88bd 6326
163122b7
KT
6327 attach_task(env->dst_rq, p);
6328 }
6329
6330 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6331}
6332
230059de 6333#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6334static void update_blocked_averages(int cpu)
9e3081ca 6335{
9e3081ca 6336 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6337 struct cfs_rq *cfs_rq;
6338 unsigned long flags;
9e3081ca 6339
48a16753
PT
6340 raw_spin_lock_irqsave(&rq->lock, flags);
6341 update_rq_clock(rq);
9d89c257 6342
9763b67f
PZ
6343 /*
6344 * Iterates the task_group tree in a bottom up fashion, see
6345 * list_add_leaf_cfs_rq() for details.
6346 */
64660c86 6347 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6348 /* throttled entities do not contribute to load */
6349 if (throttled_hierarchy(cfs_rq))
6350 continue;
48a16753 6351
a2c6c91f 6352 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6353 update_tg_load_avg(cfs_rq, 0);
6354 }
48a16753 6355 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6356}
6357
9763b67f 6358/*
68520796 6359 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6360 * This needs to be done in a top-down fashion because the load of a child
6361 * group is a fraction of its parents load.
6362 */
68520796 6363static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6364{
68520796
VD
6365 struct rq *rq = rq_of(cfs_rq);
6366 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6367 unsigned long now = jiffies;
68520796 6368 unsigned long load;
a35b6466 6369
68520796 6370 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6371 return;
6372
68520796
VD
6373 cfs_rq->h_load_next = NULL;
6374 for_each_sched_entity(se) {
6375 cfs_rq = cfs_rq_of(se);
6376 cfs_rq->h_load_next = se;
6377 if (cfs_rq->last_h_load_update == now)
6378 break;
6379 }
a35b6466 6380
68520796 6381 if (!se) {
7ea241af 6382 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6383 cfs_rq->last_h_load_update = now;
6384 }
6385
6386 while ((se = cfs_rq->h_load_next) != NULL) {
6387 load = cfs_rq->h_load;
7ea241af
YD
6388 load = div64_ul(load * se->avg.load_avg,
6389 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6390 cfs_rq = group_cfs_rq(se);
6391 cfs_rq->h_load = load;
6392 cfs_rq->last_h_load_update = now;
6393 }
9763b67f
PZ
6394}
6395
367456c7 6396static unsigned long task_h_load(struct task_struct *p)
230059de 6397{
367456c7 6398 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6399
68520796 6400 update_cfs_rq_h_load(cfs_rq);
9d89c257 6401 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6402 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6403}
6404#else
48a16753 6405static inline void update_blocked_averages(int cpu)
9e3081ca 6406{
6c1d47c0
VG
6407 struct rq *rq = cpu_rq(cpu);
6408 struct cfs_rq *cfs_rq = &rq->cfs;
6409 unsigned long flags;
6410
6411 raw_spin_lock_irqsave(&rq->lock, flags);
6412 update_rq_clock(rq);
a2c6c91f 6413 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6414 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6415}
6416
367456c7 6417static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6418{
9d89c257 6419 return p->se.avg.load_avg;
1e3c88bd 6420}
230059de 6421#endif
1e3c88bd 6422
1e3c88bd 6423/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6424
6425enum group_type {
6426 group_other = 0,
6427 group_imbalanced,
6428 group_overloaded,
6429};
6430
1e3c88bd
PZ
6431/*
6432 * sg_lb_stats - stats of a sched_group required for load_balancing
6433 */
6434struct sg_lb_stats {
6435 unsigned long avg_load; /*Avg load across the CPUs of the group */
6436 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6437 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6438 unsigned long load_per_task;
63b2ca30 6439 unsigned long group_capacity;
9e91d61d 6440 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6441 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6442 unsigned int idle_cpus;
6443 unsigned int group_weight;
caeb178c 6444 enum group_type group_type;
ea67821b 6445 int group_no_capacity;
0ec8aa00
PZ
6446#ifdef CONFIG_NUMA_BALANCING
6447 unsigned int nr_numa_running;
6448 unsigned int nr_preferred_running;
6449#endif
1e3c88bd
PZ
6450};
6451
56cf515b
JK
6452/*
6453 * sd_lb_stats - Structure to store the statistics of a sched_domain
6454 * during load balancing.
6455 */
6456struct sd_lb_stats {
6457 struct sched_group *busiest; /* Busiest group in this sd */
6458 struct sched_group *local; /* Local group in this sd */
6459 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6460 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6461 unsigned long avg_load; /* Average load across all groups in sd */
6462
56cf515b 6463 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6464 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6465};
6466
147c5fc2
PZ
6467static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6468{
6469 /*
6470 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6471 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6472 * We must however clear busiest_stat::avg_load because
6473 * update_sd_pick_busiest() reads this before assignment.
6474 */
6475 *sds = (struct sd_lb_stats){
6476 .busiest = NULL,
6477 .local = NULL,
6478 .total_load = 0UL,
63b2ca30 6479 .total_capacity = 0UL,
147c5fc2
PZ
6480 .busiest_stat = {
6481 .avg_load = 0UL,
caeb178c
RR
6482 .sum_nr_running = 0,
6483 .group_type = group_other,
147c5fc2
PZ
6484 },
6485 };
6486}
6487
1e3c88bd
PZ
6488/**
6489 * get_sd_load_idx - Obtain the load index for a given sched domain.
6490 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6491 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6492 *
6493 * Return: The load index.
1e3c88bd
PZ
6494 */
6495static inline int get_sd_load_idx(struct sched_domain *sd,
6496 enum cpu_idle_type idle)
6497{
6498 int load_idx;
6499
6500 switch (idle) {
6501 case CPU_NOT_IDLE:
6502 load_idx = sd->busy_idx;
6503 break;
6504
6505 case CPU_NEWLY_IDLE:
6506 load_idx = sd->newidle_idx;
6507 break;
6508 default:
6509 load_idx = sd->idle_idx;
6510 break;
6511 }
6512
6513 return load_idx;
6514}
6515
ced549fa 6516static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6517{
6518 struct rq *rq = cpu_rq(cpu);
b5b4860d 6519 u64 total, used, age_stamp, avg;
cadefd3d 6520 s64 delta;
1e3c88bd 6521
b654f7de
PZ
6522 /*
6523 * Since we're reading these variables without serialization make sure
6524 * we read them once before doing sanity checks on them.
6525 */
316c1608
JL
6526 age_stamp = READ_ONCE(rq->age_stamp);
6527 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6528 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6529
cadefd3d
PZ
6530 if (unlikely(delta < 0))
6531 delta = 0;
6532
6533 total = sched_avg_period() + delta;
aa483808 6534
b5b4860d 6535 used = div_u64(avg, total);
1e3c88bd 6536
b5b4860d
VG
6537 if (likely(used < SCHED_CAPACITY_SCALE))
6538 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6539
b5b4860d 6540 return 1;
1e3c88bd
PZ
6541}
6542
ced549fa 6543static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6544{
8cd5601c 6545 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6546 struct sched_group *sdg = sd->groups;
6547
ca6d75e6 6548 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6549
ced549fa 6550 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6551 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6552
ced549fa
NP
6553 if (!capacity)
6554 capacity = 1;
1e3c88bd 6555
ced549fa
NP
6556 cpu_rq(cpu)->cpu_capacity = capacity;
6557 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6558}
6559
63b2ca30 6560void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6561{
6562 struct sched_domain *child = sd->child;
6563 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6564 unsigned long capacity;
4ec4412e
VG
6565 unsigned long interval;
6566
6567 interval = msecs_to_jiffies(sd->balance_interval);
6568 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6569 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6570
6571 if (!child) {
ced549fa 6572 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6573 return;
6574 }
6575
dc7ff76e 6576 capacity = 0;
1e3c88bd 6577
74a5ce20
PZ
6578 if (child->flags & SD_OVERLAP) {
6579 /*
6580 * SD_OVERLAP domains cannot assume that child groups
6581 * span the current group.
6582 */
6583
863bffc8 6584 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6585 struct sched_group_capacity *sgc;
9abf24d4 6586 struct rq *rq = cpu_rq(cpu);
863bffc8 6587
9abf24d4 6588 /*
63b2ca30 6589 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6590 * gets here before we've attached the domains to the
6591 * runqueues.
6592 *
ced549fa
NP
6593 * Use capacity_of(), which is set irrespective of domains
6594 * in update_cpu_capacity().
9abf24d4 6595 *
dc7ff76e 6596 * This avoids capacity from being 0 and
9abf24d4 6597 * causing divide-by-zero issues on boot.
9abf24d4
SD
6598 */
6599 if (unlikely(!rq->sd)) {
ced549fa 6600 capacity += capacity_of(cpu);
9abf24d4
SD
6601 continue;
6602 }
863bffc8 6603
63b2ca30 6604 sgc = rq->sd->groups->sgc;
63b2ca30 6605 capacity += sgc->capacity;
863bffc8 6606 }
74a5ce20
PZ
6607 } else {
6608 /*
6609 * !SD_OVERLAP domains can assume that child groups
6610 * span the current group.
6611 */
6612
6613 group = child->groups;
6614 do {
63b2ca30 6615 capacity += group->sgc->capacity;
74a5ce20
PZ
6616 group = group->next;
6617 } while (group != child->groups);
6618 }
1e3c88bd 6619
63b2ca30 6620 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6621}
6622
9d5efe05 6623/*
ea67821b
VG
6624 * Check whether the capacity of the rq has been noticeably reduced by side
6625 * activity. The imbalance_pct is used for the threshold.
6626 * Return true is the capacity is reduced
9d5efe05
SV
6627 */
6628static inline int
ea67821b 6629check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6630{
ea67821b
VG
6631 return ((rq->cpu_capacity * sd->imbalance_pct) <
6632 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6633}
6634
30ce5dab
PZ
6635/*
6636 * Group imbalance indicates (and tries to solve) the problem where balancing
6637 * groups is inadequate due to tsk_cpus_allowed() constraints.
6638 *
6639 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6640 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6641 * Something like:
6642 *
6643 * { 0 1 2 3 } { 4 5 6 7 }
6644 * * * * *
6645 *
6646 * If we were to balance group-wise we'd place two tasks in the first group and
6647 * two tasks in the second group. Clearly this is undesired as it will overload
6648 * cpu 3 and leave one of the cpus in the second group unused.
6649 *
6650 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6651 * by noticing the lower domain failed to reach balance and had difficulty
6652 * moving tasks due to affinity constraints.
30ce5dab
PZ
6653 *
6654 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6655 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6656 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6657 * to create an effective group imbalance.
6658 *
6659 * This is a somewhat tricky proposition since the next run might not find the
6660 * group imbalance and decide the groups need to be balanced again. A most
6661 * subtle and fragile situation.
6662 */
6663
6263322c 6664static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6665{
63b2ca30 6666 return group->sgc->imbalance;
30ce5dab
PZ
6667}
6668
b37d9316 6669/*
ea67821b
VG
6670 * group_has_capacity returns true if the group has spare capacity that could
6671 * be used by some tasks.
6672 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6673 * smaller than the number of CPUs or if the utilization is lower than the
6674 * available capacity for CFS tasks.
ea67821b
VG
6675 * For the latter, we use a threshold to stabilize the state, to take into
6676 * account the variance of the tasks' load and to return true if the available
6677 * capacity in meaningful for the load balancer.
6678 * As an example, an available capacity of 1% can appear but it doesn't make
6679 * any benefit for the load balance.
b37d9316 6680 */
ea67821b
VG
6681static inline bool
6682group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6683{
ea67821b
VG
6684 if (sgs->sum_nr_running < sgs->group_weight)
6685 return true;
c61037e9 6686
ea67821b 6687 if ((sgs->group_capacity * 100) >
9e91d61d 6688 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6689 return true;
b37d9316 6690
ea67821b
VG
6691 return false;
6692}
6693
6694/*
6695 * group_is_overloaded returns true if the group has more tasks than it can
6696 * handle.
6697 * group_is_overloaded is not equals to !group_has_capacity because a group
6698 * with the exact right number of tasks, has no more spare capacity but is not
6699 * overloaded so both group_has_capacity and group_is_overloaded return
6700 * false.
6701 */
6702static inline bool
6703group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6704{
6705 if (sgs->sum_nr_running <= sgs->group_weight)
6706 return false;
b37d9316 6707
ea67821b 6708 if ((sgs->group_capacity * 100) <
9e91d61d 6709 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6710 return true;
b37d9316 6711
ea67821b 6712 return false;
b37d9316
PZ
6713}
6714
79a89f92
LY
6715static inline enum
6716group_type group_classify(struct sched_group *group,
6717 struct sg_lb_stats *sgs)
caeb178c 6718{
ea67821b 6719 if (sgs->group_no_capacity)
caeb178c
RR
6720 return group_overloaded;
6721
6722 if (sg_imbalanced(group))
6723 return group_imbalanced;
6724
6725 return group_other;
6726}
6727
1e3c88bd
PZ
6728/**
6729 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6730 * @env: The load balancing environment.
1e3c88bd 6731 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6732 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6733 * @local_group: Does group contain this_cpu.
1e3c88bd 6734 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6735 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6736 */
bd939f45
PZ
6737static inline void update_sg_lb_stats(struct lb_env *env,
6738 struct sched_group *group, int load_idx,
4486edd1
TC
6739 int local_group, struct sg_lb_stats *sgs,
6740 bool *overload)
1e3c88bd 6741{
30ce5dab 6742 unsigned long load;
a426f99c 6743 int i, nr_running;
1e3c88bd 6744
b72ff13c
PZ
6745 memset(sgs, 0, sizeof(*sgs));
6746
b9403130 6747 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6748 struct rq *rq = cpu_rq(i);
6749
1e3c88bd 6750 /* Bias balancing toward cpus of our domain */
6263322c 6751 if (local_group)
04f733b4 6752 load = target_load(i, load_idx);
6263322c 6753 else
1e3c88bd 6754 load = source_load(i, load_idx);
1e3c88bd
PZ
6755
6756 sgs->group_load += load;
9e91d61d 6757 sgs->group_util += cpu_util(i);
65fdac08 6758 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6759
a426f99c
WL
6760 nr_running = rq->nr_running;
6761 if (nr_running > 1)
4486edd1
TC
6762 *overload = true;
6763
0ec8aa00
PZ
6764#ifdef CONFIG_NUMA_BALANCING
6765 sgs->nr_numa_running += rq->nr_numa_running;
6766 sgs->nr_preferred_running += rq->nr_preferred_running;
6767#endif
1e3c88bd 6768 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6769 /*
6770 * No need to call idle_cpu() if nr_running is not 0
6771 */
6772 if (!nr_running && idle_cpu(i))
aae6d3dd 6773 sgs->idle_cpus++;
1e3c88bd
PZ
6774 }
6775
63b2ca30
NP
6776 /* Adjust by relative CPU capacity of the group */
6777 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6778 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6779
dd5feea1 6780 if (sgs->sum_nr_running)
38d0f770 6781 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6782
aae6d3dd 6783 sgs->group_weight = group->group_weight;
b37d9316 6784
ea67821b 6785 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6786 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6787}
6788
532cb4c4
MN
6789/**
6790 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6791 * @env: The load balancing environment.
532cb4c4
MN
6792 * @sds: sched_domain statistics
6793 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6794 * @sgs: sched_group statistics
532cb4c4
MN
6795 *
6796 * Determine if @sg is a busier group than the previously selected
6797 * busiest group.
e69f6186
YB
6798 *
6799 * Return: %true if @sg is a busier group than the previously selected
6800 * busiest group. %false otherwise.
532cb4c4 6801 */
bd939f45 6802static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6803 struct sd_lb_stats *sds,
6804 struct sched_group *sg,
bd939f45 6805 struct sg_lb_stats *sgs)
532cb4c4 6806{
caeb178c 6807 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6808
caeb178c 6809 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6810 return true;
6811
caeb178c
RR
6812 if (sgs->group_type < busiest->group_type)
6813 return false;
6814
6815 if (sgs->avg_load <= busiest->avg_load)
6816 return false;
6817
6818 /* This is the busiest node in its class. */
6819 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6820 return true;
6821
1f621e02
SD
6822 /* No ASYM_PACKING if target cpu is already busy */
6823 if (env->idle == CPU_NOT_IDLE)
6824 return true;
532cb4c4
MN
6825 /*
6826 * ASYM_PACKING needs to move all the work to the lowest
6827 * numbered CPUs in the group, therefore mark all groups
6828 * higher than ourself as busy.
6829 */
caeb178c 6830 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6831 if (!sds->busiest)
6832 return true;
6833
1f621e02
SD
6834 /* Prefer to move from highest possible cpu's work */
6835 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6836 return true;
6837 }
6838
6839 return false;
6840}
6841
0ec8aa00
PZ
6842#ifdef CONFIG_NUMA_BALANCING
6843static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6844{
6845 if (sgs->sum_nr_running > sgs->nr_numa_running)
6846 return regular;
6847 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6848 return remote;
6849 return all;
6850}
6851
6852static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6853{
6854 if (rq->nr_running > rq->nr_numa_running)
6855 return regular;
6856 if (rq->nr_running > rq->nr_preferred_running)
6857 return remote;
6858 return all;
6859}
6860#else
6861static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6862{
6863 return all;
6864}
6865
6866static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6867{
6868 return regular;
6869}
6870#endif /* CONFIG_NUMA_BALANCING */
6871
1e3c88bd 6872/**
461819ac 6873 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6874 * @env: The load balancing environment.
1e3c88bd
PZ
6875 * @sds: variable to hold the statistics for this sched_domain.
6876 */
0ec8aa00 6877static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6878{
bd939f45
PZ
6879 struct sched_domain *child = env->sd->child;
6880 struct sched_group *sg = env->sd->groups;
56cf515b 6881 struct sg_lb_stats tmp_sgs;
1e3c88bd 6882 int load_idx, prefer_sibling = 0;
4486edd1 6883 bool overload = false;
1e3c88bd
PZ
6884
6885 if (child && child->flags & SD_PREFER_SIBLING)
6886 prefer_sibling = 1;
6887
bd939f45 6888 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6889
6890 do {
56cf515b 6891 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6892 int local_group;
6893
bd939f45 6894 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6895 if (local_group) {
6896 sds->local = sg;
6897 sgs = &sds->local_stat;
b72ff13c
PZ
6898
6899 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6900 time_after_eq(jiffies, sg->sgc->next_update))
6901 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6902 }
1e3c88bd 6903
4486edd1
TC
6904 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6905 &overload);
1e3c88bd 6906
b72ff13c
PZ
6907 if (local_group)
6908 goto next_group;
6909
1e3c88bd
PZ
6910 /*
6911 * In case the child domain prefers tasks go to siblings
ea67821b 6912 * first, lower the sg capacity so that we'll try
75dd321d
NR
6913 * and move all the excess tasks away. We lower the capacity
6914 * of a group only if the local group has the capacity to fit
ea67821b
VG
6915 * these excess tasks. The extra check prevents the case where
6916 * you always pull from the heaviest group when it is already
6917 * under-utilized (possible with a large weight task outweighs
6918 * the tasks on the system).
1e3c88bd 6919 */
b72ff13c 6920 if (prefer_sibling && sds->local &&
ea67821b
VG
6921 group_has_capacity(env, &sds->local_stat) &&
6922 (sgs->sum_nr_running > 1)) {
6923 sgs->group_no_capacity = 1;
79a89f92 6924 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6925 }
1e3c88bd 6926
b72ff13c 6927 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6928 sds->busiest = sg;
56cf515b 6929 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6930 }
6931
b72ff13c
PZ
6932next_group:
6933 /* Now, start updating sd_lb_stats */
6934 sds->total_load += sgs->group_load;
63b2ca30 6935 sds->total_capacity += sgs->group_capacity;
b72ff13c 6936
532cb4c4 6937 sg = sg->next;
bd939f45 6938 } while (sg != env->sd->groups);
0ec8aa00
PZ
6939
6940 if (env->sd->flags & SD_NUMA)
6941 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6942
6943 if (!env->sd->parent) {
6944 /* update overload indicator if we are at root domain */
6945 if (env->dst_rq->rd->overload != overload)
6946 env->dst_rq->rd->overload = overload;
6947 }
6948
532cb4c4
MN
6949}
6950
532cb4c4
MN
6951/**
6952 * check_asym_packing - Check to see if the group is packed into the
6953 * sched doman.
6954 *
6955 * This is primarily intended to used at the sibling level. Some
6956 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6957 * case of POWER7, it can move to lower SMT modes only when higher
6958 * threads are idle. When in lower SMT modes, the threads will
6959 * perform better since they share less core resources. Hence when we
6960 * have idle threads, we want them to be the higher ones.
6961 *
6962 * This packing function is run on idle threads. It checks to see if
6963 * the busiest CPU in this domain (core in the P7 case) has a higher
6964 * CPU number than the packing function is being run on. Here we are
6965 * assuming lower CPU number will be equivalent to lower a SMT thread
6966 * number.
6967 *
e69f6186 6968 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6969 * this CPU. The amount of the imbalance is returned in *imbalance.
6970 *
cd96891d 6971 * @env: The load balancing environment.
532cb4c4 6972 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6973 */
bd939f45 6974static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6975{
6976 int busiest_cpu;
6977
bd939f45 6978 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6979 return 0;
6980
1f621e02
SD
6981 if (env->idle == CPU_NOT_IDLE)
6982 return 0;
6983
532cb4c4
MN
6984 if (!sds->busiest)
6985 return 0;
6986
6987 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6988 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6989 return 0;
6990
bd939f45 6991 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6992 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6993 SCHED_CAPACITY_SCALE);
bd939f45 6994
532cb4c4 6995 return 1;
1e3c88bd
PZ
6996}
6997
6998/**
6999 * fix_small_imbalance - Calculate the minor imbalance that exists
7000 * amongst the groups of a sched_domain, during
7001 * load balancing.
cd96891d 7002 * @env: The load balancing environment.
1e3c88bd 7003 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7004 */
bd939f45
PZ
7005static inline
7006void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7007{
63b2ca30 7008 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7009 unsigned int imbn = 2;
dd5feea1 7010 unsigned long scaled_busy_load_per_task;
56cf515b 7011 struct sg_lb_stats *local, *busiest;
1e3c88bd 7012
56cf515b
JK
7013 local = &sds->local_stat;
7014 busiest = &sds->busiest_stat;
1e3c88bd 7015
56cf515b
JK
7016 if (!local->sum_nr_running)
7017 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7018 else if (busiest->load_per_task > local->load_per_task)
7019 imbn = 1;
dd5feea1 7020
56cf515b 7021 scaled_busy_load_per_task =
ca8ce3d0 7022 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7023 busiest->group_capacity;
56cf515b 7024
3029ede3
VD
7025 if (busiest->avg_load + scaled_busy_load_per_task >=
7026 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7027 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7028 return;
7029 }
7030
7031 /*
7032 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7033 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7034 * moving them.
7035 */
7036
63b2ca30 7037 capa_now += busiest->group_capacity *
56cf515b 7038 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7039 capa_now += local->group_capacity *
56cf515b 7040 min(local->load_per_task, local->avg_load);
ca8ce3d0 7041 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7042
7043 /* Amount of load we'd subtract */
a2cd4260 7044 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7045 capa_move += busiest->group_capacity *
56cf515b 7046 min(busiest->load_per_task,
a2cd4260 7047 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7048 }
1e3c88bd
PZ
7049
7050 /* Amount of load we'd add */
63b2ca30 7051 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7052 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7053 tmp = (busiest->avg_load * busiest->group_capacity) /
7054 local->group_capacity;
56cf515b 7055 } else {
ca8ce3d0 7056 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7057 local->group_capacity;
56cf515b 7058 }
63b2ca30 7059 capa_move += local->group_capacity *
3ae11c90 7060 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7061 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7062
7063 /* Move if we gain throughput */
63b2ca30 7064 if (capa_move > capa_now)
56cf515b 7065 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7066}
7067
7068/**
7069 * calculate_imbalance - Calculate the amount of imbalance present within the
7070 * groups of a given sched_domain during load balance.
bd939f45 7071 * @env: load balance environment
1e3c88bd 7072 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7073 */
bd939f45 7074static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7075{
dd5feea1 7076 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7077 struct sg_lb_stats *local, *busiest;
7078
7079 local = &sds->local_stat;
56cf515b 7080 busiest = &sds->busiest_stat;
dd5feea1 7081
caeb178c 7082 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7083 /*
7084 * In the group_imb case we cannot rely on group-wide averages
7085 * to ensure cpu-load equilibrium, look at wider averages. XXX
7086 */
56cf515b
JK
7087 busiest->load_per_task =
7088 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7089 }
7090
1e3c88bd 7091 /*
885e542c
DE
7092 * Avg load of busiest sg can be less and avg load of local sg can
7093 * be greater than avg load across all sgs of sd because avg load
7094 * factors in sg capacity and sgs with smaller group_type are
7095 * skipped when updating the busiest sg:
1e3c88bd 7096 */
b1885550
VD
7097 if (busiest->avg_load <= sds->avg_load ||
7098 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7099 env->imbalance = 0;
7100 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7101 }
7102
9a5d9ba6
PZ
7103 /*
7104 * If there aren't any idle cpus, avoid creating some.
7105 */
7106 if (busiest->group_type == group_overloaded &&
7107 local->group_type == group_overloaded) {
1be0eb2a 7108 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7109 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7110 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7111 load_above_capacity *= NICE_0_LOAD;
7112 load_above_capacity /= busiest->group_capacity;
7113 } else
ea67821b 7114 load_above_capacity = ~0UL;
dd5feea1
SS
7115 }
7116
7117 /*
7118 * We're trying to get all the cpus to the average_load, so we don't
7119 * want to push ourselves above the average load, nor do we wish to
7120 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7121 * we also don't want to reduce the group load below the group
7122 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7123 */
30ce5dab 7124 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7125
7126 /* How much load to actually move to equalise the imbalance */
56cf515b 7127 env->imbalance = min(
63b2ca30
NP
7128 max_pull * busiest->group_capacity,
7129 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7130 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7131
7132 /*
7133 * if *imbalance is less than the average load per runnable task
25985edc 7134 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7135 * a think about bumping its value to force at least one task to be
7136 * moved
7137 */
56cf515b 7138 if (env->imbalance < busiest->load_per_task)
bd939f45 7139 return fix_small_imbalance(env, sds);
1e3c88bd 7140}
fab47622 7141
1e3c88bd
PZ
7142/******* find_busiest_group() helpers end here *********************/
7143
7144/**
7145 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7146 * if there is an imbalance.
1e3c88bd
PZ
7147 *
7148 * Also calculates the amount of weighted load which should be moved
7149 * to restore balance.
7150 *
cd96891d 7151 * @env: The load balancing environment.
1e3c88bd 7152 *
e69f6186 7153 * Return: - The busiest group if imbalance exists.
1e3c88bd 7154 */
56cf515b 7155static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7156{
56cf515b 7157 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7158 struct sd_lb_stats sds;
7159
147c5fc2 7160 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7161
7162 /*
7163 * Compute the various statistics relavent for load balancing at
7164 * this level.
7165 */
23f0d209 7166 update_sd_lb_stats(env, &sds);
56cf515b
JK
7167 local = &sds.local_stat;
7168 busiest = &sds.busiest_stat;
1e3c88bd 7169
ea67821b 7170 /* ASYM feature bypasses nice load balance check */
1f621e02 7171 if (check_asym_packing(env, &sds))
532cb4c4
MN
7172 return sds.busiest;
7173
cc57aa8f 7174 /* There is no busy sibling group to pull tasks from */
56cf515b 7175 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7176 goto out_balanced;
7177
ca8ce3d0
NP
7178 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7179 / sds.total_capacity;
b0432d8f 7180
866ab43e
PZ
7181 /*
7182 * If the busiest group is imbalanced the below checks don't
30ce5dab 7183 * work because they assume all things are equal, which typically
866ab43e
PZ
7184 * isn't true due to cpus_allowed constraints and the like.
7185 */
caeb178c 7186 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7187 goto force_balance;
7188
cc57aa8f 7189 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7190 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7191 busiest->group_no_capacity)
fab47622
NR
7192 goto force_balance;
7193
cc57aa8f 7194 /*
9c58c79a 7195 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7196 * don't try and pull any tasks.
7197 */
56cf515b 7198 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7199 goto out_balanced;
7200
cc57aa8f
PZ
7201 /*
7202 * Don't pull any tasks if this group is already above the domain
7203 * average load.
7204 */
56cf515b 7205 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7206 goto out_balanced;
7207
bd939f45 7208 if (env->idle == CPU_IDLE) {
aae6d3dd 7209 /*
43f4d666
VG
7210 * This cpu is idle. If the busiest group is not overloaded
7211 * and there is no imbalance between this and busiest group
7212 * wrt idle cpus, it is balanced. The imbalance becomes
7213 * significant if the diff is greater than 1 otherwise we
7214 * might end up to just move the imbalance on another group
aae6d3dd 7215 */
43f4d666
VG
7216 if ((busiest->group_type != group_overloaded) &&
7217 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7218 goto out_balanced;
c186fafe
PZ
7219 } else {
7220 /*
7221 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7222 * imbalance_pct to be conservative.
7223 */
56cf515b
JK
7224 if (100 * busiest->avg_load <=
7225 env->sd->imbalance_pct * local->avg_load)
c186fafe 7226 goto out_balanced;
aae6d3dd 7227 }
1e3c88bd 7228
fab47622 7229force_balance:
1e3c88bd 7230 /* Looks like there is an imbalance. Compute it */
bd939f45 7231 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7232 return sds.busiest;
7233
7234out_balanced:
bd939f45 7235 env->imbalance = 0;
1e3c88bd
PZ
7236 return NULL;
7237}
7238
7239/*
7240 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7241 */
bd939f45 7242static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7243 struct sched_group *group)
1e3c88bd
PZ
7244{
7245 struct rq *busiest = NULL, *rq;
ced549fa 7246 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7247 int i;
7248
6906a408 7249 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7250 unsigned long capacity, wl;
0ec8aa00
PZ
7251 enum fbq_type rt;
7252
7253 rq = cpu_rq(i);
7254 rt = fbq_classify_rq(rq);
1e3c88bd 7255
0ec8aa00
PZ
7256 /*
7257 * We classify groups/runqueues into three groups:
7258 * - regular: there are !numa tasks
7259 * - remote: there are numa tasks that run on the 'wrong' node
7260 * - all: there is no distinction
7261 *
7262 * In order to avoid migrating ideally placed numa tasks,
7263 * ignore those when there's better options.
7264 *
7265 * If we ignore the actual busiest queue to migrate another
7266 * task, the next balance pass can still reduce the busiest
7267 * queue by moving tasks around inside the node.
7268 *
7269 * If we cannot move enough load due to this classification
7270 * the next pass will adjust the group classification and
7271 * allow migration of more tasks.
7272 *
7273 * Both cases only affect the total convergence complexity.
7274 */
7275 if (rt > env->fbq_type)
7276 continue;
7277
ced549fa 7278 capacity = capacity_of(i);
9d5efe05 7279
6e40f5bb 7280 wl = weighted_cpuload(i);
1e3c88bd 7281
6e40f5bb
TG
7282 /*
7283 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7284 * which is not scaled with the cpu capacity.
6e40f5bb 7285 */
ea67821b
VG
7286
7287 if (rq->nr_running == 1 && wl > env->imbalance &&
7288 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7289 continue;
7290
6e40f5bb
TG
7291 /*
7292 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7293 * the weighted_cpuload() scaled with the cpu capacity, so
7294 * that the load can be moved away from the cpu that is
7295 * potentially running at a lower capacity.
95a79b80 7296 *
ced549fa 7297 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7298 * multiplication to rid ourselves of the division works out
ced549fa
NP
7299 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7300 * our previous maximum.
6e40f5bb 7301 */
ced549fa 7302 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7303 busiest_load = wl;
ced549fa 7304 busiest_capacity = capacity;
1e3c88bd
PZ
7305 busiest = rq;
7306 }
7307 }
7308
7309 return busiest;
7310}
7311
7312/*
7313 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7314 * so long as it is large enough.
7315 */
7316#define MAX_PINNED_INTERVAL 512
7317
7318/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7319DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7320
bd939f45 7321static int need_active_balance(struct lb_env *env)
1af3ed3d 7322{
bd939f45
PZ
7323 struct sched_domain *sd = env->sd;
7324
7325 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7326
7327 /*
7328 * ASYM_PACKING needs to force migrate tasks from busy but
7329 * higher numbered CPUs in order to pack all tasks in the
7330 * lowest numbered CPUs.
7331 */
bd939f45 7332 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7333 return 1;
1af3ed3d
PZ
7334 }
7335
1aaf90a4
VG
7336 /*
7337 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7338 * It's worth migrating the task if the src_cpu's capacity is reduced
7339 * because of other sched_class or IRQs if more capacity stays
7340 * available on dst_cpu.
7341 */
7342 if ((env->idle != CPU_NOT_IDLE) &&
7343 (env->src_rq->cfs.h_nr_running == 1)) {
7344 if ((check_cpu_capacity(env->src_rq, sd)) &&
7345 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7346 return 1;
7347 }
7348
1af3ed3d
PZ
7349 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7350}
7351
969c7921
TH
7352static int active_load_balance_cpu_stop(void *data);
7353
23f0d209
JK
7354static int should_we_balance(struct lb_env *env)
7355{
7356 struct sched_group *sg = env->sd->groups;
7357 struct cpumask *sg_cpus, *sg_mask;
7358 int cpu, balance_cpu = -1;
7359
7360 /*
7361 * In the newly idle case, we will allow all the cpu's
7362 * to do the newly idle load balance.
7363 */
7364 if (env->idle == CPU_NEWLY_IDLE)
7365 return 1;
7366
7367 sg_cpus = sched_group_cpus(sg);
7368 sg_mask = sched_group_mask(sg);
7369 /* Try to find first idle cpu */
7370 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7371 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7372 continue;
7373
7374 balance_cpu = cpu;
7375 break;
7376 }
7377
7378 if (balance_cpu == -1)
7379 balance_cpu = group_balance_cpu(sg);
7380
7381 /*
7382 * First idle cpu or the first cpu(busiest) in this sched group
7383 * is eligible for doing load balancing at this and above domains.
7384 */
b0cff9d8 7385 return balance_cpu == env->dst_cpu;
23f0d209
JK
7386}
7387
1e3c88bd
PZ
7388/*
7389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7390 * tasks if there is an imbalance.
7391 */
7392static int load_balance(int this_cpu, struct rq *this_rq,
7393 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7394 int *continue_balancing)
1e3c88bd 7395{
88b8dac0 7396 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7397 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7398 struct sched_group *group;
1e3c88bd
PZ
7399 struct rq *busiest;
7400 unsigned long flags;
4ba29684 7401 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7402
8e45cb54
PZ
7403 struct lb_env env = {
7404 .sd = sd,
ddcdf6e7
PZ
7405 .dst_cpu = this_cpu,
7406 .dst_rq = this_rq,
88b8dac0 7407 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7408 .idle = idle,
eb95308e 7409 .loop_break = sched_nr_migrate_break,
b9403130 7410 .cpus = cpus,
0ec8aa00 7411 .fbq_type = all,
163122b7 7412 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7413 };
7414
cfc03118
JK
7415 /*
7416 * For NEWLY_IDLE load_balancing, we don't need to consider
7417 * other cpus in our group
7418 */
e02e60c1 7419 if (idle == CPU_NEWLY_IDLE)
cfc03118 7420 env.dst_grpmask = NULL;
cfc03118 7421
1e3c88bd
PZ
7422 cpumask_copy(cpus, cpu_active_mask);
7423
1e3c88bd
PZ
7424 schedstat_inc(sd, lb_count[idle]);
7425
7426redo:
23f0d209
JK
7427 if (!should_we_balance(&env)) {
7428 *continue_balancing = 0;
1e3c88bd 7429 goto out_balanced;
23f0d209 7430 }
1e3c88bd 7431
23f0d209 7432 group = find_busiest_group(&env);
1e3c88bd
PZ
7433 if (!group) {
7434 schedstat_inc(sd, lb_nobusyg[idle]);
7435 goto out_balanced;
7436 }
7437
b9403130 7438 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7439 if (!busiest) {
7440 schedstat_inc(sd, lb_nobusyq[idle]);
7441 goto out_balanced;
7442 }
7443
78feefc5 7444 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7445
bd939f45 7446 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7447
1aaf90a4
VG
7448 env.src_cpu = busiest->cpu;
7449 env.src_rq = busiest;
7450
1e3c88bd
PZ
7451 ld_moved = 0;
7452 if (busiest->nr_running > 1) {
7453 /*
7454 * Attempt to move tasks. If find_busiest_group has found
7455 * an imbalance but busiest->nr_running <= 1, the group is
7456 * still unbalanced. ld_moved simply stays zero, so it is
7457 * correctly treated as an imbalance.
7458 */
8e45cb54 7459 env.flags |= LBF_ALL_PINNED;
c82513e5 7460 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7461
5d6523eb 7462more_balance:
163122b7 7463 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7464
7465 /*
7466 * cur_ld_moved - load moved in current iteration
7467 * ld_moved - cumulative load moved across iterations
7468 */
163122b7 7469 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7470
7471 /*
163122b7
KT
7472 * We've detached some tasks from busiest_rq. Every
7473 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7474 * unlock busiest->lock, and we are able to be sure
7475 * that nobody can manipulate the tasks in parallel.
7476 * See task_rq_lock() family for the details.
1e3c88bd 7477 */
163122b7
KT
7478
7479 raw_spin_unlock(&busiest->lock);
7480
7481 if (cur_ld_moved) {
7482 attach_tasks(&env);
7483 ld_moved += cur_ld_moved;
7484 }
7485
1e3c88bd 7486 local_irq_restore(flags);
88b8dac0 7487
f1cd0858
JK
7488 if (env.flags & LBF_NEED_BREAK) {
7489 env.flags &= ~LBF_NEED_BREAK;
7490 goto more_balance;
7491 }
7492
88b8dac0
SV
7493 /*
7494 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7495 * us and move them to an alternate dst_cpu in our sched_group
7496 * where they can run. The upper limit on how many times we
7497 * iterate on same src_cpu is dependent on number of cpus in our
7498 * sched_group.
7499 *
7500 * This changes load balance semantics a bit on who can move
7501 * load to a given_cpu. In addition to the given_cpu itself
7502 * (or a ilb_cpu acting on its behalf where given_cpu is
7503 * nohz-idle), we now have balance_cpu in a position to move
7504 * load to given_cpu. In rare situations, this may cause
7505 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7506 * _independently_ and at _same_ time to move some load to
7507 * given_cpu) causing exceess load to be moved to given_cpu.
7508 * This however should not happen so much in practice and
7509 * moreover subsequent load balance cycles should correct the
7510 * excess load moved.
7511 */
6263322c 7512 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7513
7aff2e3a
VD
7514 /* Prevent to re-select dst_cpu via env's cpus */
7515 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7516
78feefc5 7517 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7518 env.dst_cpu = env.new_dst_cpu;
6263322c 7519 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7520 env.loop = 0;
7521 env.loop_break = sched_nr_migrate_break;
e02e60c1 7522
88b8dac0
SV
7523 /*
7524 * Go back to "more_balance" rather than "redo" since we
7525 * need to continue with same src_cpu.
7526 */
7527 goto more_balance;
7528 }
1e3c88bd 7529
6263322c
PZ
7530 /*
7531 * We failed to reach balance because of affinity.
7532 */
7533 if (sd_parent) {
63b2ca30 7534 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7535
afdeee05 7536 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7537 *group_imbalance = 1;
6263322c
PZ
7538 }
7539
1e3c88bd 7540 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7541 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7542 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7543 if (!cpumask_empty(cpus)) {
7544 env.loop = 0;
7545 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7546 goto redo;
bbf18b19 7547 }
afdeee05 7548 goto out_all_pinned;
1e3c88bd
PZ
7549 }
7550 }
7551
7552 if (!ld_moved) {
7553 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7554 /*
7555 * Increment the failure counter only on periodic balance.
7556 * We do not want newidle balance, which can be very
7557 * frequent, pollute the failure counter causing
7558 * excessive cache_hot migrations and active balances.
7559 */
7560 if (idle != CPU_NEWLY_IDLE)
7561 sd->nr_balance_failed++;
1e3c88bd 7562
bd939f45 7563 if (need_active_balance(&env)) {
1e3c88bd
PZ
7564 raw_spin_lock_irqsave(&busiest->lock, flags);
7565
969c7921
TH
7566 /* don't kick the active_load_balance_cpu_stop,
7567 * if the curr task on busiest cpu can't be
7568 * moved to this_cpu
1e3c88bd
PZ
7569 */
7570 if (!cpumask_test_cpu(this_cpu,
fa17b507 7571 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7572 raw_spin_unlock_irqrestore(&busiest->lock,
7573 flags);
8e45cb54 7574 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7575 goto out_one_pinned;
7576 }
7577
969c7921
TH
7578 /*
7579 * ->active_balance synchronizes accesses to
7580 * ->active_balance_work. Once set, it's cleared
7581 * only after active load balance is finished.
7582 */
1e3c88bd
PZ
7583 if (!busiest->active_balance) {
7584 busiest->active_balance = 1;
7585 busiest->push_cpu = this_cpu;
7586 active_balance = 1;
7587 }
7588 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7589
bd939f45 7590 if (active_balance) {
969c7921
TH
7591 stop_one_cpu_nowait(cpu_of(busiest),
7592 active_load_balance_cpu_stop, busiest,
7593 &busiest->active_balance_work);
bd939f45 7594 }
1e3c88bd 7595
d02c0711 7596 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7597 sd->nr_balance_failed = sd->cache_nice_tries+1;
7598 }
7599 } else
7600 sd->nr_balance_failed = 0;
7601
7602 if (likely(!active_balance)) {
7603 /* We were unbalanced, so reset the balancing interval */
7604 sd->balance_interval = sd->min_interval;
7605 } else {
7606 /*
7607 * If we've begun active balancing, start to back off. This
7608 * case may not be covered by the all_pinned logic if there
7609 * is only 1 task on the busy runqueue (because we don't call
163122b7 7610 * detach_tasks).
1e3c88bd
PZ
7611 */
7612 if (sd->balance_interval < sd->max_interval)
7613 sd->balance_interval *= 2;
7614 }
7615
1e3c88bd
PZ
7616 goto out;
7617
7618out_balanced:
afdeee05
VG
7619 /*
7620 * We reach balance although we may have faced some affinity
7621 * constraints. Clear the imbalance flag if it was set.
7622 */
7623 if (sd_parent) {
7624 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7625
7626 if (*group_imbalance)
7627 *group_imbalance = 0;
7628 }
7629
7630out_all_pinned:
7631 /*
7632 * We reach balance because all tasks are pinned at this level so
7633 * we can't migrate them. Let the imbalance flag set so parent level
7634 * can try to migrate them.
7635 */
1e3c88bd
PZ
7636 schedstat_inc(sd, lb_balanced[idle]);
7637
7638 sd->nr_balance_failed = 0;
7639
7640out_one_pinned:
7641 /* tune up the balancing interval */
8e45cb54 7642 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7643 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7644 (sd->balance_interval < sd->max_interval))
7645 sd->balance_interval *= 2;
7646
46e49b38 7647 ld_moved = 0;
1e3c88bd 7648out:
1e3c88bd
PZ
7649 return ld_moved;
7650}
7651
52a08ef1
JL
7652static inline unsigned long
7653get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7654{
7655 unsigned long interval = sd->balance_interval;
7656
7657 if (cpu_busy)
7658 interval *= sd->busy_factor;
7659
7660 /* scale ms to jiffies */
7661 interval = msecs_to_jiffies(interval);
7662 interval = clamp(interval, 1UL, max_load_balance_interval);
7663
7664 return interval;
7665}
7666
7667static inline void
7668update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7669{
7670 unsigned long interval, next;
7671
7672 interval = get_sd_balance_interval(sd, cpu_busy);
7673 next = sd->last_balance + interval;
7674
7675 if (time_after(*next_balance, next))
7676 *next_balance = next;
7677}
7678
1e3c88bd
PZ
7679/*
7680 * idle_balance is called by schedule() if this_cpu is about to become
7681 * idle. Attempts to pull tasks from other CPUs.
7682 */
6e83125c 7683static int idle_balance(struct rq *this_rq)
1e3c88bd 7684{
52a08ef1
JL
7685 unsigned long next_balance = jiffies + HZ;
7686 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7687 struct sched_domain *sd;
7688 int pulled_task = 0;
9bd721c5 7689 u64 curr_cost = 0;
1e3c88bd 7690
6e83125c
PZ
7691 /*
7692 * We must set idle_stamp _before_ calling idle_balance(), such that we
7693 * measure the duration of idle_balance() as idle time.
7694 */
7695 this_rq->idle_stamp = rq_clock(this_rq);
7696
4486edd1
TC
7697 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7698 !this_rq->rd->overload) {
52a08ef1
JL
7699 rcu_read_lock();
7700 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7701 if (sd)
7702 update_next_balance(sd, 0, &next_balance);
7703 rcu_read_unlock();
7704
6e83125c 7705 goto out;
52a08ef1 7706 }
1e3c88bd 7707
f492e12e
PZ
7708 raw_spin_unlock(&this_rq->lock);
7709
48a16753 7710 update_blocked_averages(this_cpu);
dce840a0 7711 rcu_read_lock();
1e3c88bd 7712 for_each_domain(this_cpu, sd) {
23f0d209 7713 int continue_balancing = 1;
9bd721c5 7714 u64 t0, domain_cost;
1e3c88bd
PZ
7715
7716 if (!(sd->flags & SD_LOAD_BALANCE))
7717 continue;
7718
52a08ef1
JL
7719 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7720 update_next_balance(sd, 0, &next_balance);
9bd721c5 7721 break;
52a08ef1 7722 }
9bd721c5 7723
f492e12e 7724 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7725 t0 = sched_clock_cpu(this_cpu);
7726
f492e12e 7727 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7728 sd, CPU_NEWLY_IDLE,
7729 &continue_balancing);
9bd721c5
JL
7730
7731 domain_cost = sched_clock_cpu(this_cpu) - t0;
7732 if (domain_cost > sd->max_newidle_lb_cost)
7733 sd->max_newidle_lb_cost = domain_cost;
7734
7735 curr_cost += domain_cost;
f492e12e 7736 }
1e3c88bd 7737
52a08ef1 7738 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7739
7740 /*
7741 * Stop searching for tasks to pull if there are
7742 * now runnable tasks on this rq.
7743 */
7744 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7745 break;
1e3c88bd 7746 }
dce840a0 7747 rcu_read_unlock();
f492e12e
PZ
7748
7749 raw_spin_lock(&this_rq->lock);
7750
0e5b5337
JL
7751 if (curr_cost > this_rq->max_idle_balance_cost)
7752 this_rq->max_idle_balance_cost = curr_cost;
7753
e5fc6611 7754 /*
0e5b5337
JL
7755 * While browsing the domains, we released the rq lock, a task could
7756 * have been enqueued in the meantime. Since we're not going idle,
7757 * pretend we pulled a task.
e5fc6611 7758 */
0e5b5337 7759 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7760 pulled_task = 1;
e5fc6611 7761
52a08ef1
JL
7762out:
7763 /* Move the next balance forward */
7764 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7765 this_rq->next_balance = next_balance;
9bd721c5 7766
e4aa358b 7767 /* Is there a task of a high priority class? */
46383648 7768 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7769 pulled_task = -1;
7770
38c6ade2 7771 if (pulled_task)
6e83125c
PZ
7772 this_rq->idle_stamp = 0;
7773
3c4017c1 7774 return pulled_task;
1e3c88bd
PZ
7775}
7776
7777/*
969c7921
TH
7778 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7779 * running tasks off the busiest CPU onto idle CPUs. It requires at
7780 * least 1 task to be running on each physical CPU where possible, and
7781 * avoids physical / logical imbalances.
1e3c88bd 7782 */
969c7921 7783static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7784{
969c7921
TH
7785 struct rq *busiest_rq = data;
7786 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7787 int target_cpu = busiest_rq->push_cpu;
969c7921 7788 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7789 struct sched_domain *sd;
e5673f28 7790 struct task_struct *p = NULL;
969c7921
TH
7791
7792 raw_spin_lock_irq(&busiest_rq->lock);
7793
7794 /* make sure the requested cpu hasn't gone down in the meantime */
7795 if (unlikely(busiest_cpu != smp_processor_id() ||
7796 !busiest_rq->active_balance))
7797 goto out_unlock;
1e3c88bd
PZ
7798
7799 /* Is there any task to move? */
7800 if (busiest_rq->nr_running <= 1)
969c7921 7801 goto out_unlock;
1e3c88bd
PZ
7802
7803 /*
7804 * This condition is "impossible", if it occurs
7805 * we need to fix it. Originally reported by
7806 * Bjorn Helgaas on a 128-cpu setup.
7807 */
7808 BUG_ON(busiest_rq == target_rq);
7809
1e3c88bd 7810 /* Search for an sd spanning us and the target CPU. */
dce840a0 7811 rcu_read_lock();
1e3c88bd
PZ
7812 for_each_domain(target_cpu, sd) {
7813 if ((sd->flags & SD_LOAD_BALANCE) &&
7814 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7815 break;
7816 }
7817
7818 if (likely(sd)) {
8e45cb54
PZ
7819 struct lb_env env = {
7820 .sd = sd,
ddcdf6e7
PZ
7821 .dst_cpu = target_cpu,
7822 .dst_rq = target_rq,
7823 .src_cpu = busiest_rq->cpu,
7824 .src_rq = busiest_rq,
8e45cb54
PZ
7825 .idle = CPU_IDLE,
7826 };
7827
1e3c88bd
PZ
7828 schedstat_inc(sd, alb_count);
7829
e5673f28 7830 p = detach_one_task(&env);
d02c0711 7831 if (p) {
1e3c88bd 7832 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7833 /* Active balancing done, reset the failure counter. */
7834 sd->nr_balance_failed = 0;
7835 } else {
1e3c88bd 7836 schedstat_inc(sd, alb_failed);
d02c0711 7837 }
1e3c88bd 7838 }
dce840a0 7839 rcu_read_unlock();
969c7921
TH
7840out_unlock:
7841 busiest_rq->active_balance = 0;
e5673f28
KT
7842 raw_spin_unlock(&busiest_rq->lock);
7843
7844 if (p)
7845 attach_one_task(target_rq, p);
7846
7847 local_irq_enable();
7848
969c7921 7849 return 0;
1e3c88bd
PZ
7850}
7851
d987fc7f
MG
7852static inline int on_null_domain(struct rq *rq)
7853{
7854 return unlikely(!rcu_dereference_sched(rq->sd));
7855}
7856
3451d024 7857#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7858/*
7859 * idle load balancing details
83cd4fe2
VP
7860 * - When one of the busy CPUs notice that there may be an idle rebalancing
7861 * needed, they will kick the idle load balancer, which then does idle
7862 * load balancing for all the idle CPUs.
7863 */
1e3c88bd 7864static struct {
83cd4fe2 7865 cpumask_var_t idle_cpus_mask;
0b005cf5 7866 atomic_t nr_cpus;
83cd4fe2
VP
7867 unsigned long next_balance; /* in jiffy units */
7868} nohz ____cacheline_aligned;
1e3c88bd 7869
3dd0337d 7870static inline int find_new_ilb(void)
1e3c88bd 7871{
0b005cf5 7872 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7873
786d6dc7
SS
7874 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7875 return ilb;
7876
7877 return nr_cpu_ids;
1e3c88bd 7878}
1e3c88bd 7879
83cd4fe2
VP
7880/*
7881 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7882 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7883 * CPU (if there is one).
7884 */
0aeeeeba 7885static void nohz_balancer_kick(void)
83cd4fe2
VP
7886{
7887 int ilb_cpu;
7888
7889 nohz.next_balance++;
7890
3dd0337d 7891 ilb_cpu = find_new_ilb();
83cd4fe2 7892
0b005cf5
SS
7893 if (ilb_cpu >= nr_cpu_ids)
7894 return;
83cd4fe2 7895
cd490c5b 7896 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7897 return;
7898 /*
7899 * Use smp_send_reschedule() instead of resched_cpu().
7900 * This way we generate a sched IPI on the target cpu which
7901 * is idle. And the softirq performing nohz idle load balance
7902 * will be run before returning from the IPI.
7903 */
7904 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7905 return;
7906}
7907
20a5c8cc 7908void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7909{
7910 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7911 /*
7912 * Completely isolated CPUs don't ever set, so we must test.
7913 */
7914 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7915 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7916 atomic_dec(&nohz.nr_cpus);
7917 }
71325960
SS
7918 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7919 }
7920}
7921
69e1e811
SS
7922static inline void set_cpu_sd_state_busy(void)
7923{
7924 struct sched_domain *sd;
37dc6b50 7925 int cpu = smp_processor_id();
69e1e811 7926
69e1e811 7927 rcu_read_lock();
37dc6b50 7928 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7929
7930 if (!sd || !sd->nohz_idle)
7931 goto unlock;
7932 sd->nohz_idle = 0;
7933
63b2ca30 7934 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7935unlock:
69e1e811
SS
7936 rcu_read_unlock();
7937}
7938
7939void set_cpu_sd_state_idle(void)
7940{
7941 struct sched_domain *sd;
37dc6b50 7942 int cpu = smp_processor_id();
69e1e811 7943
69e1e811 7944 rcu_read_lock();
37dc6b50 7945 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7946
7947 if (!sd || sd->nohz_idle)
7948 goto unlock;
7949 sd->nohz_idle = 1;
7950
63b2ca30 7951 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7952unlock:
69e1e811
SS
7953 rcu_read_unlock();
7954}
7955
1e3c88bd 7956/*
c1cc017c 7957 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7958 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7959 */
c1cc017c 7960void nohz_balance_enter_idle(int cpu)
1e3c88bd 7961{
71325960
SS
7962 /*
7963 * If this cpu is going down, then nothing needs to be done.
7964 */
7965 if (!cpu_active(cpu))
7966 return;
7967
c1cc017c
AS
7968 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7969 return;
1e3c88bd 7970
d987fc7f
MG
7971 /*
7972 * If we're a completely isolated CPU, we don't play.
7973 */
7974 if (on_null_domain(cpu_rq(cpu)))
7975 return;
7976
c1cc017c
AS
7977 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7978 atomic_inc(&nohz.nr_cpus);
7979 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7980}
7981#endif
7982
7983static DEFINE_SPINLOCK(balancing);
7984
49c022e6
PZ
7985/*
7986 * Scale the max load_balance interval with the number of CPUs in the system.
7987 * This trades load-balance latency on larger machines for less cross talk.
7988 */
029632fb 7989void update_max_interval(void)
49c022e6
PZ
7990{
7991 max_load_balance_interval = HZ*num_online_cpus()/10;
7992}
7993
1e3c88bd
PZ
7994/*
7995 * It checks each scheduling domain to see if it is due to be balanced,
7996 * and initiates a balancing operation if so.
7997 *
b9b0853a 7998 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7999 */
f7ed0a89 8000static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8001{
23f0d209 8002 int continue_balancing = 1;
f7ed0a89 8003 int cpu = rq->cpu;
1e3c88bd 8004 unsigned long interval;
04f733b4 8005 struct sched_domain *sd;
1e3c88bd
PZ
8006 /* Earliest time when we have to do rebalance again */
8007 unsigned long next_balance = jiffies + 60*HZ;
8008 int update_next_balance = 0;
f48627e6
JL
8009 int need_serialize, need_decay = 0;
8010 u64 max_cost = 0;
1e3c88bd 8011
48a16753 8012 update_blocked_averages(cpu);
2069dd75 8013
dce840a0 8014 rcu_read_lock();
1e3c88bd 8015 for_each_domain(cpu, sd) {
f48627e6
JL
8016 /*
8017 * Decay the newidle max times here because this is a regular
8018 * visit to all the domains. Decay ~1% per second.
8019 */
8020 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8021 sd->max_newidle_lb_cost =
8022 (sd->max_newidle_lb_cost * 253) / 256;
8023 sd->next_decay_max_lb_cost = jiffies + HZ;
8024 need_decay = 1;
8025 }
8026 max_cost += sd->max_newidle_lb_cost;
8027
1e3c88bd
PZ
8028 if (!(sd->flags & SD_LOAD_BALANCE))
8029 continue;
8030
f48627e6
JL
8031 /*
8032 * Stop the load balance at this level. There is another
8033 * CPU in our sched group which is doing load balancing more
8034 * actively.
8035 */
8036 if (!continue_balancing) {
8037 if (need_decay)
8038 continue;
8039 break;
8040 }
8041
52a08ef1 8042 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8043
8044 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8045 if (need_serialize) {
8046 if (!spin_trylock(&balancing))
8047 goto out;
8048 }
8049
8050 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8051 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8052 /*
6263322c 8053 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8054 * env->dst_cpu, so we can't know our idle
8055 * state even if we migrated tasks. Update it.
1e3c88bd 8056 */
de5eb2dd 8057 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8058 }
8059 sd->last_balance = jiffies;
52a08ef1 8060 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8061 }
8062 if (need_serialize)
8063 spin_unlock(&balancing);
8064out:
8065 if (time_after(next_balance, sd->last_balance + interval)) {
8066 next_balance = sd->last_balance + interval;
8067 update_next_balance = 1;
8068 }
f48627e6
JL
8069 }
8070 if (need_decay) {
1e3c88bd 8071 /*
f48627e6
JL
8072 * Ensure the rq-wide value also decays but keep it at a
8073 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8074 */
f48627e6
JL
8075 rq->max_idle_balance_cost =
8076 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8077 }
dce840a0 8078 rcu_read_unlock();
1e3c88bd
PZ
8079
8080 /*
8081 * next_balance will be updated only when there is a need.
8082 * When the cpu is attached to null domain for ex, it will not be
8083 * updated.
8084 */
c5afb6a8 8085 if (likely(update_next_balance)) {
1e3c88bd 8086 rq->next_balance = next_balance;
c5afb6a8
VG
8087
8088#ifdef CONFIG_NO_HZ_COMMON
8089 /*
8090 * If this CPU has been elected to perform the nohz idle
8091 * balance. Other idle CPUs have already rebalanced with
8092 * nohz_idle_balance() and nohz.next_balance has been
8093 * updated accordingly. This CPU is now running the idle load
8094 * balance for itself and we need to update the
8095 * nohz.next_balance accordingly.
8096 */
8097 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8098 nohz.next_balance = rq->next_balance;
8099#endif
8100 }
1e3c88bd
PZ
8101}
8102
3451d024 8103#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8104/*
3451d024 8105 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8106 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8107 */
208cb16b 8108static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8109{
208cb16b 8110 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8111 struct rq *rq;
8112 int balance_cpu;
c5afb6a8
VG
8113 /* Earliest time when we have to do rebalance again */
8114 unsigned long next_balance = jiffies + 60*HZ;
8115 int update_next_balance = 0;
83cd4fe2 8116
1c792db7
SS
8117 if (idle != CPU_IDLE ||
8118 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8119 goto end;
83cd4fe2
VP
8120
8121 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8122 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8123 continue;
8124
8125 /*
8126 * If this cpu gets work to do, stop the load balancing
8127 * work being done for other cpus. Next load
8128 * balancing owner will pick it up.
8129 */
1c792db7 8130 if (need_resched())
83cd4fe2 8131 break;
83cd4fe2 8132
5ed4f1d9
VG
8133 rq = cpu_rq(balance_cpu);
8134
ed61bbc6
TC
8135 /*
8136 * If time for next balance is due,
8137 * do the balance.
8138 */
8139 if (time_after_eq(jiffies, rq->next_balance)) {
8140 raw_spin_lock_irq(&rq->lock);
8141 update_rq_clock(rq);
cee1afce 8142 cpu_load_update_idle(rq);
ed61bbc6
TC
8143 raw_spin_unlock_irq(&rq->lock);
8144 rebalance_domains(rq, CPU_IDLE);
8145 }
83cd4fe2 8146
c5afb6a8
VG
8147 if (time_after(next_balance, rq->next_balance)) {
8148 next_balance = rq->next_balance;
8149 update_next_balance = 1;
8150 }
83cd4fe2 8151 }
c5afb6a8
VG
8152
8153 /*
8154 * next_balance will be updated only when there is a need.
8155 * When the CPU is attached to null domain for ex, it will not be
8156 * updated.
8157 */
8158 if (likely(update_next_balance))
8159 nohz.next_balance = next_balance;
1c792db7
SS
8160end:
8161 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8162}
8163
8164/*
0b005cf5 8165 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8166 * of an idle cpu in the system.
0b005cf5 8167 * - This rq has more than one task.
1aaf90a4
VG
8168 * - This rq has at least one CFS task and the capacity of the CPU is
8169 * significantly reduced because of RT tasks or IRQs.
8170 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8171 * multiple busy cpu.
0b005cf5
SS
8172 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8173 * domain span are idle.
83cd4fe2 8174 */
1aaf90a4 8175static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8176{
8177 unsigned long now = jiffies;
0b005cf5 8178 struct sched_domain *sd;
63b2ca30 8179 struct sched_group_capacity *sgc;
4a725627 8180 int nr_busy, cpu = rq->cpu;
1aaf90a4 8181 bool kick = false;
83cd4fe2 8182
4a725627 8183 if (unlikely(rq->idle_balance))
1aaf90a4 8184 return false;
83cd4fe2 8185
1c792db7
SS
8186 /*
8187 * We may be recently in ticked or tickless idle mode. At the first
8188 * busy tick after returning from idle, we will update the busy stats.
8189 */
69e1e811 8190 set_cpu_sd_state_busy();
c1cc017c 8191 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8192
8193 /*
8194 * None are in tickless mode and hence no need for NOHZ idle load
8195 * balancing.
8196 */
8197 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8198 return false;
1c792db7
SS
8199
8200 if (time_before(now, nohz.next_balance))
1aaf90a4 8201 return false;
83cd4fe2 8202
0b005cf5 8203 if (rq->nr_running >= 2)
1aaf90a4 8204 return true;
83cd4fe2 8205
067491b7 8206 rcu_read_lock();
37dc6b50 8207 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8208 if (sd) {
63b2ca30
NP
8209 sgc = sd->groups->sgc;
8210 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8211
1aaf90a4
VG
8212 if (nr_busy > 1) {
8213 kick = true;
8214 goto unlock;
8215 }
8216
83cd4fe2 8217 }
37dc6b50 8218
1aaf90a4
VG
8219 sd = rcu_dereference(rq->sd);
8220 if (sd) {
8221 if ((rq->cfs.h_nr_running >= 1) &&
8222 check_cpu_capacity(rq, sd)) {
8223 kick = true;
8224 goto unlock;
8225 }
8226 }
37dc6b50 8227
1aaf90a4 8228 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8229 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8230 sched_domain_span(sd)) < cpu)) {
8231 kick = true;
8232 goto unlock;
8233 }
067491b7 8234
1aaf90a4 8235unlock:
067491b7 8236 rcu_read_unlock();
1aaf90a4 8237 return kick;
83cd4fe2
VP
8238}
8239#else
208cb16b 8240static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8241#endif
8242
8243/*
8244 * run_rebalance_domains is triggered when needed from the scheduler tick.
8245 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8246 */
1e3c88bd
PZ
8247static void run_rebalance_domains(struct softirq_action *h)
8248{
208cb16b 8249 struct rq *this_rq = this_rq();
6eb57e0d 8250 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8251 CPU_IDLE : CPU_NOT_IDLE;
8252
1e3c88bd 8253 /*
83cd4fe2 8254 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8255 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8256 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8257 * give the idle cpus a chance to load balance. Else we may
8258 * load balance only within the local sched_domain hierarchy
8259 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8260 */
208cb16b 8261 nohz_idle_balance(this_rq, idle);
d4573c3e 8262 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8263}
8264
1e3c88bd
PZ
8265/*
8266 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8267 */
7caff66f 8268void trigger_load_balance(struct rq *rq)
1e3c88bd 8269{
1e3c88bd 8270 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8271 if (unlikely(on_null_domain(rq)))
8272 return;
8273
8274 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8275 raise_softirq(SCHED_SOFTIRQ);
3451d024 8276#ifdef CONFIG_NO_HZ_COMMON
c726099e 8277 if (nohz_kick_needed(rq))
0aeeeeba 8278 nohz_balancer_kick();
83cd4fe2 8279#endif
1e3c88bd
PZ
8280}
8281
0bcdcf28
CE
8282static void rq_online_fair(struct rq *rq)
8283{
8284 update_sysctl();
0e59bdae
KT
8285
8286 update_runtime_enabled(rq);
0bcdcf28
CE
8287}
8288
8289static void rq_offline_fair(struct rq *rq)
8290{
8291 update_sysctl();
a4c96ae3
PB
8292
8293 /* Ensure any throttled groups are reachable by pick_next_task */
8294 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8295}
8296
55e12e5e 8297#endif /* CONFIG_SMP */
e1d1484f 8298
bf0f6f24
IM
8299/*
8300 * scheduler tick hitting a task of our scheduling class:
8301 */
8f4d37ec 8302static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8303{
8304 struct cfs_rq *cfs_rq;
8305 struct sched_entity *se = &curr->se;
8306
8307 for_each_sched_entity(se) {
8308 cfs_rq = cfs_rq_of(se);
8f4d37ec 8309 entity_tick(cfs_rq, se, queued);
bf0f6f24 8310 }
18bf2805 8311
b52da86e 8312 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8313 task_tick_numa(rq, curr);
bf0f6f24
IM
8314}
8315
8316/*
cd29fe6f
PZ
8317 * called on fork with the child task as argument from the parent's context
8318 * - child not yet on the tasklist
8319 * - preemption disabled
bf0f6f24 8320 */
cd29fe6f 8321static void task_fork_fair(struct task_struct *p)
bf0f6f24 8322{
4fc420c9
DN
8323 struct cfs_rq *cfs_rq;
8324 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8325 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8326 struct rq *rq = this_rq();
8327 unsigned long flags;
8328
05fa785c 8329 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8330
861d034e
PZ
8331 update_rq_clock(rq);
8332
4fc420c9
DN
8333 cfs_rq = task_cfs_rq(current);
8334 curr = cfs_rq->curr;
8335
6c9a27f5
DN
8336 /*
8337 * Not only the cpu but also the task_group of the parent might have
8338 * been changed after parent->se.parent,cfs_rq were copied to
8339 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8340 * of child point to valid ones.
8341 */
8342 rcu_read_lock();
8343 __set_task_cpu(p, this_cpu);
8344 rcu_read_unlock();
bf0f6f24 8345
7109c442 8346 update_curr(cfs_rq);
cd29fe6f 8347
b5d9d734
MG
8348 if (curr)
8349 se->vruntime = curr->vruntime;
aeb73b04 8350 place_entity(cfs_rq, se, 1);
4d78e7b6 8351
cd29fe6f 8352 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8353 /*
edcb60a3
IM
8354 * Upon rescheduling, sched_class::put_prev_task() will place
8355 * 'current' within the tree based on its new key value.
8356 */
4d78e7b6 8357 swap(curr->vruntime, se->vruntime);
8875125e 8358 resched_curr(rq);
4d78e7b6 8359 }
bf0f6f24 8360
88ec22d3
PZ
8361 se->vruntime -= cfs_rq->min_vruntime;
8362
05fa785c 8363 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8364}
8365
cb469845
SR
8366/*
8367 * Priority of the task has changed. Check to see if we preempt
8368 * the current task.
8369 */
da7a735e
PZ
8370static void
8371prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8372{
da0c1e65 8373 if (!task_on_rq_queued(p))
da7a735e
PZ
8374 return;
8375
cb469845
SR
8376 /*
8377 * Reschedule if we are currently running on this runqueue and
8378 * our priority decreased, or if we are not currently running on
8379 * this runqueue and our priority is higher than the current's
8380 */
da7a735e 8381 if (rq->curr == p) {
cb469845 8382 if (p->prio > oldprio)
8875125e 8383 resched_curr(rq);
cb469845 8384 } else
15afe09b 8385 check_preempt_curr(rq, p, 0);
cb469845
SR
8386}
8387
daa59407 8388static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8389{
8390 struct sched_entity *se = &p->se;
da7a735e
PZ
8391
8392 /*
daa59407
BP
8393 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8394 * the dequeue_entity(.flags=0) will already have normalized the
8395 * vruntime.
8396 */
8397 if (p->on_rq)
8398 return true;
8399
8400 /*
8401 * When !on_rq, vruntime of the task has usually NOT been normalized.
8402 * But there are some cases where it has already been normalized:
da7a735e 8403 *
daa59407
BP
8404 * - A forked child which is waiting for being woken up by
8405 * wake_up_new_task().
8406 * - A task which has been woken up by try_to_wake_up() and
8407 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8408 */
daa59407
BP
8409 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8410 return true;
8411
8412 return false;
8413}
8414
8415static void detach_task_cfs_rq(struct task_struct *p)
8416{
8417 struct sched_entity *se = &p->se;
8418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8419
8420 if (!vruntime_normalized(p)) {
da7a735e
PZ
8421 /*
8422 * Fix up our vruntime so that the current sleep doesn't
8423 * cause 'unlimited' sleep bonus.
8424 */
8425 place_entity(cfs_rq, se, 0);
8426 se->vruntime -= cfs_rq->min_vruntime;
8427 }
9ee474f5 8428
9d89c257 8429 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8430 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8431}
8432
daa59407 8433static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8434{
f36c019c 8435 struct sched_entity *se = &p->se;
daa59407 8436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8437
8438#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8439 /*
8440 * Since the real-depth could have been changed (only FAIR
8441 * class maintain depth value), reset depth properly.
8442 */
8443 se->depth = se->parent ? se->parent->depth + 1 : 0;
8444#endif
7855a35a 8445
6efdb105 8446 /* Synchronize task with its cfs_rq */
daa59407
BP
8447 attach_entity_load_avg(cfs_rq, se);
8448
8449 if (!vruntime_normalized(p))
8450 se->vruntime += cfs_rq->min_vruntime;
8451}
6efdb105 8452
daa59407
BP
8453static void switched_from_fair(struct rq *rq, struct task_struct *p)
8454{
8455 detach_task_cfs_rq(p);
8456}
8457
8458static void switched_to_fair(struct rq *rq, struct task_struct *p)
8459{
8460 attach_task_cfs_rq(p);
7855a35a 8461
daa59407 8462 if (task_on_rq_queued(p)) {
7855a35a 8463 /*
daa59407
BP
8464 * We were most likely switched from sched_rt, so
8465 * kick off the schedule if running, otherwise just see
8466 * if we can still preempt the current task.
7855a35a 8467 */
daa59407
BP
8468 if (rq->curr == p)
8469 resched_curr(rq);
8470 else
8471 check_preempt_curr(rq, p, 0);
7855a35a 8472 }
cb469845
SR
8473}
8474
83b699ed
SV
8475/* Account for a task changing its policy or group.
8476 *
8477 * This routine is mostly called to set cfs_rq->curr field when a task
8478 * migrates between groups/classes.
8479 */
8480static void set_curr_task_fair(struct rq *rq)
8481{
8482 struct sched_entity *se = &rq->curr->se;
8483
ec12cb7f
PT
8484 for_each_sched_entity(se) {
8485 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8486
8487 set_next_entity(cfs_rq, se);
8488 /* ensure bandwidth has been allocated on our new cfs_rq */
8489 account_cfs_rq_runtime(cfs_rq, 0);
8490 }
83b699ed
SV
8491}
8492
029632fb
PZ
8493void init_cfs_rq(struct cfs_rq *cfs_rq)
8494{
8495 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8496 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8497#ifndef CONFIG_64BIT
8498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8499#endif
141965c7 8500#ifdef CONFIG_SMP
9d89c257
YD
8501 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8502 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8503#endif
029632fb
PZ
8504}
8505
810b3817 8506#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8507static void task_move_group_fair(struct task_struct *p)
810b3817 8508{
daa59407 8509 detach_task_cfs_rq(p);
b2b5ce02 8510 set_task_rq(p, task_cpu(p));
6efdb105
BP
8511
8512#ifdef CONFIG_SMP
8513 /* Tell se's cfs_rq has been changed -- migrated */
8514 p->se.avg.last_update_time = 0;
8515#endif
daa59407 8516 attach_task_cfs_rq(p);
810b3817 8517}
029632fb
PZ
8518
8519void free_fair_sched_group(struct task_group *tg)
8520{
8521 int i;
8522
8523 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8524
8525 for_each_possible_cpu(i) {
8526 if (tg->cfs_rq)
8527 kfree(tg->cfs_rq[i]);
6fe1f348 8528 if (tg->se)
029632fb
PZ
8529 kfree(tg->se[i]);
8530 }
8531
8532 kfree(tg->cfs_rq);
8533 kfree(tg->se);
8534}
8535
8536int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8537{
029632fb 8538 struct sched_entity *se;
b7fa30c9
PZ
8539 struct cfs_rq *cfs_rq;
8540 struct rq *rq;
029632fb
PZ
8541 int i;
8542
8543 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8544 if (!tg->cfs_rq)
8545 goto err;
8546 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8547 if (!tg->se)
8548 goto err;
8549
8550 tg->shares = NICE_0_LOAD;
8551
8552 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8553
8554 for_each_possible_cpu(i) {
b7fa30c9
PZ
8555 rq = cpu_rq(i);
8556
029632fb
PZ
8557 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8558 GFP_KERNEL, cpu_to_node(i));
8559 if (!cfs_rq)
8560 goto err;
8561
8562 se = kzalloc_node(sizeof(struct sched_entity),
8563 GFP_KERNEL, cpu_to_node(i));
8564 if (!se)
8565 goto err_free_rq;
8566
8567 init_cfs_rq(cfs_rq);
8568 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8569 init_entity_runnable_average(se);
b7fa30c9
PZ
8570
8571 raw_spin_lock_irq(&rq->lock);
2b8c41da 8572 post_init_entity_util_avg(se);
b7fa30c9 8573 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8574 }
8575
8576 return 1;
8577
8578err_free_rq:
8579 kfree(cfs_rq);
8580err:
8581 return 0;
8582}
8583
6fe1f348 8584void unregister_fair_sched_group(struct task_group *tg)
029632fb 8585{
029632fb 8586 unsigned long flags;
6fe1f348
PZ
8587 struct rq *rq;
8588 int cpu;
029632fb 8589
6fe1f348
PZ
8590 for_each_possible_cpu(cpu) {
8591 if (tg->se[cpu])
8592 remove_entity_load_avg(tg->se[cpu]);
029632fb 8593
6fe1f348
PZ
8594 /*
8595 * Only empty task groups can be destroyed; so we can speculatively
8596 * check on_list without danger of it being re-added.
8597 */
8598 if (!tg->cfs_rq[cpu]->on_list)
8599 continue;
8600
8601 rq = cpu_rq(cpu);
8602
8603 raw_spin_lock_irqsave(&rq->lock, flags);
8604 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8605 raw_spin_unlock_irqrestore(&rq->lock, flags);
8606 }
029632fb
PZ
8607}
8608
8609void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8610 struct sched_entity *se, int cpu,
8611 struct sched_entity *parent)
8612{
8613 struct rq *rq = cpu_rq(cpu);
8614
8615 cfs_rq->tg = tg;
8616 cfs_rq->rq = rq;
029632fb
PZ
8617 init_cfs_rq_runtime(cfs_rq);
8618
8619 tg->cfs_rq[cpu] = cfs_rq;
8620 tg->se[cpu] = se;
8621
8622 /* se could be NULL for root_task_group */
8623 if (!se)
8624 return;
8625
fed14d45 8626 if (!parent) {
029632fb 8627 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8628 se->depth = 0;
8629 } else {
029632fb 8630 se->cfs_rq = parent->my_q;
fed14d45
PZ
8631 se->depth = parent->depth + 1;
8632 }
029632fb
PZ
8633
8634 se->my_q = cfs_rq;
0ac9b1c2
PT
8635 /* guarantee group entities always have weight */
8636 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8637 se->parent = parent;
8638}
8639
8640static DEFINE_MUTEX(shares_mutex);
8641
8642int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8643{
8644 int i;
8645 unsigned long flags;
8646
8647 /*
8648 * We can't change the weight of the root cgroup.
8649 */
8650 if (!tg->se[0])
8651 return -EINVAL;
8652
8653 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8654
8655 mutex_lock(&shares_mutex);
8656 if (tg->shares == shares)
8657 goto done;
8658
8659 tg->shares = shares;
8660 for_each_possible_cpu(i) {
8661 struct rq *rq = cpu_rq(i);
8662 struct sched_entity *se;
8663
8664 se = tg->se[i];
8665 /* Propagate contribution to hierarchy */
8666 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8667
8668 /* Possible calls to update_curr() need rq clock */
8669 update_rq_clock(rq);
17bc14b7 8670 for_each_sched_entity(se)
029632fb
PZ
8671 update_cfs_shares(group_cfs_rq(se));
8672 raw_spin_unlock_irqrestore(&rq->lock, flags);
8673 }
8674
8675done:
8676 mutex_unlock(&shares_mutex);
8677 return 0;
8678}
8679#else /* CONFIG_FAIR_GROUP_SCHED */
8680
8681void free_fair_sched_group(struct task_group *tg) { }
8682
8683int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8684{
8685 return 1;
8686}
8687
6fe1f348 8688void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8689
8690#endif /* CONFIG_FAIR_GROUP_SCHED */
8691
810b3817 8692
6d686f45 8693static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8694{
8695 struct sched_entity *se = &task->se;
0d721cea
PW
8696 unsigned int rr_interval = 0;
8697
8698 /*
8699 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8700 * idle runqueue:
8701 */
0d721cea 8702 if (rq->cfs.load.weight)
a59f4e07 8703 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8704
8705 return rr_interval;
8706}
8707
bf0f6f24
IM
8708/*
8709 * All the scheduling class methods:
8710 */
029632fb 8711const struct sched_class fair_sched_class = {
5522d5d5 8712 .next = &idle_sched_class,
bf0f6f24
IM
8713 .enqueue_task = enqueue_task_fair,
8714 .dequeue_task = dequeue_task_fair,
8715 .yield_task = yield_task_fair,
d95f4122 8716 .yield_to_task = yield_to_task_fair,
bf0f6f24 8717
2e09bf55 8718 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8719
8720 .pick_next_task = pick_next_task_fair,
8721 .put_prev_task = put_prev_task_fair,
8722
681f3e68 8723#ifdef CONFIG_SMP
4ce72a2c 8724 .select_task_rq = select_task_rq_fair,
0a74bef8 8725 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8726
0bcdcf28
CE
8727 .rq_online = rq_online_fair,
8728 .rq_offline = rq_offline_fair,
88ec22d3 8729
12695578 8730 .task_dead = task_dead_fair,
c5b28038 8731 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8732#endif
bf0f6f24 8733
83b699ed 8734 .set_curr_task = set_curr_task_fair,
bf0f6f24 8735 .task_tick = task_tick_fair,
cd29fe6f 8736 .task_fork = task_fork_fair,
cb469845
SR
8737
8738 .prio_changed = prio_changed_fair,
da7a735e 8739 .switched_from = switched_from_fair,
cb469845 8740 .switched_to = switched_to_fair,
810b3817 8741
0d721cea
PW
8742 .get_rr_interval = get_rr_interval_fair,
8743
6e998916
SG
8744 .update_curr = update_curr_fair,
8745
810b3817 8746#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8747 .task_move_group = task_move_group_fair,
810b3817 8748#endif
bf0f6f24
IM
8749};
8750
8751#ifdef CONFIG_SCHED_DEBUG
029632fb 8752void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8753{
bf0f6f24
IM
8754 struct cfs_rq *cfs_rq;
8755
5973e5b9 8756 rcu_read_lock();
c3b64f1e 8757 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8758 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8759 rcu_read_unlock();
bf0f6f24 8760}
397f2378
SD
8761
8762#ifdef CONFIG_NUMA_BALANCING
8763void show_numa_stats(struct task_struct *p, struct seq_file *m)
8764{
8765 int node;
8766 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8767
8768 for_each_online_node(node) {
8769 if (p->numa_faults) {
8770 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8771 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8772 }
8773 if (p->numa_group) {
8774 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8775 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8776 }
8777 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8778 }
8779}
8780#endif /* CONFIG_NUMA_BALANCING */
8781#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8782
8783__init void init_sched_fair_class(void)
8784{
8785#ifdef CONFIG_SMP
8786 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8787
3451d024 8788#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8789 nohz.next_balance = jiffies;
029632fb 8790 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8791#endif
8792#endif /* SMP */
8793
8794}