mm: numa: Copy cpupid on page migration
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
8c8a743c
PZ
891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
e29cf08b 896 pid_t gid;
8c8a743c
PZ
897 struct list_head task_list;
898
899 struct rcu_head rcu;
900 atomic_long_t faults[0];
901};
902
e29cf08b
MG
903pid_t task_numa_group_id(struct task_struct *p)
904{
905 return p->numa_group ? p->numa_group->gid : 0;
906}
907
ac8e895b
MG
908static inline int task_faults_idx(int nid, int priv)
909{
910 return 2 * nid + priv;
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(nid, 0)] +
919 p->numa_faults[task_faults_idx(nid, 1)];
920}
921
e6628d5b 922static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
923static unsigned long source_load(int cpu, int type);
924static unsigned long target_load(int cpu, int type);
925static unsigned long power_of(int cpu);
926static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
927
fb13c7ee 928/* Cached statistics for all CPUs within a node */
58d081b5 929struct numa_stats {
fb13c7ee 930 unsigned long nr_running;
58d081b5 931 unsigned long load;
fb13c7ee
MG
932
933 /* Total compute capacity of CPUs on a node */
934 unsigned long power;
935
936 /* Approximate capacity in terms of runnable tasks on a node */
937 unsigned long capacity;
938 int has_capacity;
58d081b5 939};
e6628d5b 940
fb13c7ee
MG
941/*
942 * XXX borrowed from update_sg_lb_stats
943 */
944static void update_numa_stats(struct numa_stats *ns, int nid)
945{
946 int cpu;
947
948 memset(ns, 0, sizeof(*ns));
949 for_each_cpu(cpu, cpumask_of_node(nid)) {
950 struct rq *rq = cpu_rq(cpu);
951
952 ns->nr_running += rq->nr_running;
953 ns->load += weighted_cpuload(cpu);
954 ns->power += power_of(cpu);
955 }
956
957 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
958 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
959 ns->has_capacity = (ns->nr_running < ns->capacity);
960}
961
58d081b5
MG
962struct task_numa_env {
963 struct task_struct *p;
e6628d5b 964
58d081b5
MG
965 int src_cpu, src_nid;
966 int dst_cpu, dst_nid;
e6628d5b 967
58d081b5 968 struct numa_stats src_stats, dst_stats;
e6628d5b 969
fb13c7ee
MG
970 int imbalance_pct, idx;
971
972 struct task_struct *best_task;
973 long best_imp;
58d081b5
MG
974 int best_cpu;
975};
976
fb13c7ee
MG
977static void task_numa_assign(struct task_numa_env *env,
978 struct task_struct *p, long imp)
979{
980 if (env->best_task)
981 put_task_struct(env->best_task);
982 if (p)
983 get_task_struct(p);
984
985 env->best_task = p;
986 env->best_imp = imp;
987 env->best_cpu = env->dst_cpu;
988}
989
990/*
991 * This checks if the overall compute and NUMA accesses of the system would
992 * be improved if the source tasks was migrated to the target dst_cpu taking
993 * into account that it might be best if task running on the dst_cpu should
994 * be exchanged with the source task
995 */
996static void task_numa_compare(struct task_numa_env *env, long imp)
997{
998 struct rq *src_rq = cpu_rq(env->src_cpu);
999 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1000 struct task_struct *cur;
1001 long dst_load, src_load;
1002 long load;
1003
1004 rcu_read_lock();
1005 cur = ACCESS_ONCE(dst_rq->curr);
1006 if (cur->pid == 0) /* idle */
1007 cur = NULL;
1008
1009 /*
1010 * "imp" is the fault differential for the source task between the
1011 * source and destination node. Calculate the total differential for
1012 * the source task and potential destination task. The more negative
1013 * the value is, the more rmeote accesses that would be expected to
1014 * be incurred if the tasks were swapped.
1015 */
1016 if (cur) {
1017 /* Skip this swap candidate if cannot move to the source cpu */
1018 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1019 goto unlock;
1020
1021 imp += task_faults(cur, env->src_nid) -
1022 task_faults(cur, env->dst_nid);
1023 }
1024
1025 if (imp < env->best_imp)
1026 goto unlock;
1027
1028 if (!cur) {
1029 /* Is there capacity at our destination? */
1030 if (env->src_stats.has_capacity &&
1031 !env->dst_stats.has_capacity)
1032 goto unlock;
1033
1034 goto balance;
1035 }
1036
1037 /* Balance doesn't matter much if we're running a task per cpu */
1038 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1039 goto assign;
1040
1041 /*
1042 * In the overloaded case, try and keep the load balanced.
1043 */
1044balance:
1045 dst_load = env->dst_stats.load;
1046 src_load = env->src_stats.load;
1047
1048 /* XXX missing power terms */
1049 load = task_h_load(env->p);
1050 dst_load += load;
1051 src_load -= load;
1052
1053 if (cur) {
1054 load = task_h_load(cur);
1055 dst_load -= load;
1056 src_load += load;
1057 }
1058
1059 /* make src_load the smaller */
1060 if (dst_load < src_load)
1061 swap(dst_load, src_load);
1062
1063 if (src_load * env->imbalance_pct < dst_load * 100)
1064 goto unlock;
1065
1066assign:
1067 task_numa_assign(env, cur, imp);
1068unlock:
1069 rcu_read_unlock();
1070}
1071
2c8a50aa
MG
1072static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1073{
1074 int cpu;
1075
1076 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1077 /* Skip this CPU if the source task cannot migrate */
1078 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1079 continue;
1080
1081 env->dst_cpu = cpu;
1082 task_numa_compare(env, imp);
1083 }
1084}
1085
58d081b5
MG
1086static int task_numa_migrate(struct task_struct *p)
1087{
58d081b5
MG
1088 struct task_numa_env env = {
1089 .p = p,
fb13c7ee 1090
58d081b5
MG
1091 .src_cpu = task_cpu(p),
1092 .src_nid = cpu_to_node(task_cpu(p)),
fb13c7ee
MG
1093
1094 .imbalance_pct = 112,
1095
1096 .best_task = NULL,
1097 .best_imp = 0,
1098 .best_cpu = -1
58d081b5
MG
1099 };
1100 struct sched_domain *sd;
fb13c7ee 1101 unsigned long faults;
2c8a50aa
MG
1102 int nid, ret;
1103 long imp;
e6628d5b 1104
58d081b5 1105 /*
fb13c7ee
MG
1106 * Pick the lowest SD_NUMA domain, as that would have the smallest
1107 * imbalance and would be the first to start moving tasks about.
1108 *
1109 * And we want to avoid any moving of tasks about, as that would create
1110 * random movement of tasks -- counter the numa conditions we're trying
1111 * to satisfy here.
58d081b5
MG
1112 */
1113 rcu_read_lock();
fb13c7ee
MG
1114 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1115 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1116 rcu_read_unlock();
1117
fb13c7ee
MG
1118 faults = task_faults(p, env.src_nid);
1119 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa
MG
1120 env.dst_nid = p->numa_preferred_nid;
1121 imp = task_faults(env.p, env.dst_nid) - faults;
1122 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1123
e1dda8a7
RR
1124 /* If the preferred nid has capacity, try to use it. */
1125 if (env.dst_stats.has_capacity)
2c8a50aa 1126 task_numa_find_cpu(&env, imp);
e1dda8a7
RR
1127
1128 /* No space available on the preferred nid. Look elsewhere. */
1129 if (env.best_cpu == -1) {
2c8a50aa
MG
1130 for_each_online_node(nid) {
1131 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1132 continue;
58d081b5 1133
2c8a50aa
MG
1134 /* Only consider nodes that recorded more faults */
1135 imp = task_faults(env.p, nid) - faults;
1136 if (imp < 0)
fb13c7ee
MG
1137 continue;
1138
2c8a50aa
MG
1139 env.dst_nid = nid;
1140 update_numa_stats(&env.dst_stats, env.dst_nid);
1141 task_numa_find_cpu(&env, imp);
58d081b5
MG
1142 }
1143 }
1144
fb13c7ee
MG
1145 /* No better CPU than the current one was found. */
1146 if (env.best_cpu == -1)
1147 return -EAGAIN;
1148
1149 if (env.best_task == NULL) {
1150 int ret = migrate_task_to(p, env.best_cpu);
1151 return ret;
1152 }
1153
1154 ret = migrate_swap(p, env.best_task);
1155 put_task_struct(env.best_task);
1156 return ret;
e6628d5b
MG
1157}
1158
6b9a7460
MG
1159/* Attempt to migrate a task to a CPU on the preferred node. */
1160static void numa_migrate_preferred(struct task_struct *p)
1161{
1162 /* Success if task is already running on preferred CPU */
1163 p->numa_migrate_retry = 0;
06ea5e03
RR
1164 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1165 /*
1166 * If migration is temporarily disabled due to a task migration
1167 * then re-enable it now as the task is running on its
1168 * preferred node and memory should migrate locally
1169 */
1170 if (!p->numa_migrate_seq)
1171 p->numa_migrate_seq++;
6b9a7460 1172 return;
06ea5e03 1173 }
6b9a7460
MG
1174
1175 /* This task has no NUMA fault statistics yet */
1176 if (unlikely(p->numa_preferred_nid == -1))
1177 return;
1178
1179 /* Otherwise, try migrate to a CPU on the preferred node */
1180 if (task_numa_migrate(p) != 0)
1181 p->numa_migrate_retry = jiffies + HZ*5;
1182}
1183
cbee9f88
PZ
1184static void task_numa_placement(struct task_struct *p)
1185{
688b7585
MG
1186 int seq, nid, max_nid = -1;
1187 unsigned long max_faults = 0;
cbee9f88 1188
2832bc19 1189 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1190 if (p->numa_scan_seq == seq)
1191 return;
1192 p->numa_scan_seq = seq;
3a7053b3 1193 p->numa_migrate_seq++;
598f0ec0 1194 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1195
688b7585
MG
1196 /* Find the node with the highest number of faults */
1197 for_each_online_node(nid) {
fb13c7ee 1198 unsigned long faults = 0;
ac8e895b 1199 int priv, i;
745d6147 1200
ac8e895b 1201 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1202 long diff;
1203
ac8e895b 1204 i = task_faults_idx(nid, priv);
8c8a743c 1205 diff = -p->numa_faults[i];
745d6147 1206
ac8e895b
MG
1207 /* Decay existing window, copy faults since last scan */
1208 p->numa_faults[i] >>= 1;
1209 p->numa_faults[i] += p->numa_faults_buffer[i];
1210 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1211
1212 faults += p->numa_faults[i];
8c8a743c
PZ
1213 diff += p->numa_faults[i];
1214 if (p->numa_group) {
1215 /* safe because we can only change our own group */
1216 atomic_long_add(diff, &p->numa_group->faults[i]);
1217 }
ac8e895b
MG
1218 }
1219
688b7585
MG
1220 if (faults > max_faults) {
1221 max_faults = faults;
1222 max_nid = nid;
1223 }
1224 }
1225
6b9a7460 1226 /* Preferred node as the node with the most faults */
3a7053b3 1227 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1228 /* Update the preferred nid and migrate task if possible */
688b7585 1229 p->numa_preferred_nid = max_nid;
6fe6b2d6 1230 p->numa_migrate_seq = 1;
6b9a7460 1231 numa_migrate_preferred(p);
3a7053b3 1232 }
cbee9f88
PZ
1233}
1234
8c8a743c
PZ
1235static inline int get_numa_group(struct numa_group *grp)
1236{
1237 return atomic_inc_not_zero(&grp->refcount);
1238}
1239
1240static inline void put_numa_group(struct numa_group *grp)
1241{
1242 if (atomic_dec_and_test(&grp->refcount))
1243 kfree_rcu(grp, rcu);
1244}
1245
1246static void double_lock(spinlock_t *l1, spinlock_t *l2)
1247{
1248 if (l1 > l2)
1249 swap(l1, l2);
1250
1251 spin_lock(l1);
1252 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1253}
1254
1255static void task_numa_group(struct task_struct *p, int cpupid)
1256{
1257 struct numa_group *grp, *my_grp;
1258 struct task_struct *tsk;
1259 bool join = false;
1260 int cpu = cpupid_to_cpu(cpupid);
1261 int i;
1262
1263 if (unlikely(!p->numa_group)) {
1264 unsigned int size = sizeof(struct numa_group) +
1265 2*nr_node_ids*sizeof(atomic_long_t);
1266
1267 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1268 if (!grp)
1269 return;
1270
1271 atomic_set(&grp->refcount, 1);
1272 spin_lock_init(&grp->lock);
1273 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1274 grp->gid = p->pid;
8c8a743c
PZ
1275
1276 for (i = 0; i < 2*nr_node_ids; i++)
1277 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1278
1279 list_add(&p->numa_entry, &grp->task_list);
1280 grp->nr_tasks++;
1281 rcu_assign_pointer(p->numa_group, grp);
1282 }
1283
1284 rcu_read_lock();
1285 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1286
1287 if (!cpupid_match_pid(tsk, cpupid))
1288 goto unlock;
1289
1290 grp = rcu_dereference(tsk->numa_group);
1291 if (!grp)
1292 goto unlock;
1293
1294 my_grp = p->numa_group;
1295 if (grp == my_grp)
1296 goto unlock;
1297
1298 /*
1299 * Only join the other group if its bigger; if we're the bigger group,
1300 * the other task will join us.
1301 */
1302 if (my_grp->nr_tasks > grp->nr_tasks)
1303 goto unlock;
1304
1305 /*
1306 * Tie-break on the grp address.
1307 */
1308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1309 goto unlock;
1310
1311 if (!get_numa_group(grp))
1312 goto unlock;
1313
1314 join = true;
1315
1316unlock:
1317 rcu_read_unlock();
1318
1319 if (!join)
1320 return;
1321
1322 for (i = 0; i < 2*nr_node_ids; i++) {
1323 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1324 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1325 }
1326
1327 double_lock(&my_grp->lock, &grp->lock);
1328
1329 list_move(&p->numa_entry, &grp->task_list);
1330 my_grp->nr_tasks--;
1331 grp->nr_tasks++;
1332
1333 spin_unlock(&my_grp->lock);
1334 spin_unlock(&grp->lock);
1335
1336 rcu_assign_pointer(p->numa_group, grp);
1337
1338 put_numa_group(my_grp);
1339}
1340
1341void task_numa_free(struct task_struct *p)
1342{
1343 struct numa_group *grp = p->numa_group;
1344 int i;
1345
1346 if (grp) {
1347 for (i = 0; i < 2*nr_node_ids; i++)
1348 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1349
1350 spin_lock(&grp->lock);
1351 list_del(&p->numa_entry);
1352 grp->nr_tasks--;
1353 spin_unlock(&grp->lock);
1354 rcu_assign_pointer(p->numa_group, NULL);
1355 put_numa_group(grp);
1356 }
1357
1358 kfree(p->numa_faults);
1359}
1360
cbee9f88
PZ
1361/*
1362 * Got a PROT_NONE fault for a page on @node.
1363 */
90572890 1364void task_numa_fault(int last_cpupid, int node, int pages, bool migrated)
cbee9f88
PZ
1365{
1366 struct task_struct *p = current;
ac8e895b 1367 int priv;
cbee9f88 1368
10e84b97 1369 if (!numabalancing_enabled)
1a687c2e
MG
1370 return;
1371
9ff1d9ff
MG
1372 /* for example, ksmd faulting in a user's mm */
1373 if (!p->mm)
1374 return;
1375
f809ca9a
MG
1376 /* Allocate buffer to track faults on a per-node basis */
1377 if (unlikely(!p->numa_faults)) {
ac8e895b 1378 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1379
745d6147
MG
1380 /* numa_faults and numa_faults_buffer share the allocation */
1381 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1382 if (!p->numa_faults)
1383 return;
745d6147
MG
1384
1385 BUG_ON(p->numa_faults_buffer);
ac8e895b 1386 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
f809ca9a 1387 }
cbee9f88 1388
8c8a743c
PZ
1389 /*
1390 * First accesses are treated as private, otherwise consider accesses
1391 * to be private if the accessing pid has not changed
1392 */
1393 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1394 priv = 1;
1395 } else {
1396 priv = cpupid_match_pid(p, last_cpupid);
1397 if (!priv)
1398 task_numa_group(p, last_cpupid);
1399 }
1400
fb003b80 1401 /*
b8593bfd
MG
1402 * If pages are properly placed (did not migrate) then scan slower.
1403 * This is reset periodically in case of phase changes
fb003b80 1404 */
598f0ec0
MG
1405 if (!migrated) {
1406 /* Initialise if necessary */
1407 if (!p->numa_scan_period_max)
1408 p->numa_scan_period_max = task_scan_max(p);
1409
1410 p->numa_scan_period = min(p->numa_scan_period_max,
1411 p->numa_scan_period + 10);
1412 }
fb003b80 1413
cbee9f88 1414 task_numa_placement(p);
f809ca9a 1415
6b9a7460
MG
1416 /* Retry task to preferred node migration if it previously failed */
1417 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1418 numa_migrate_preferred(p);
1419
ac8e895b 1420 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1421}
1422
6e5fb223
PZ
1423static void reset_ptenuma_scan(struct task_struct *p)
1424{
1425 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1426 p->mm->numa_scan_offset = 0;
1427}
1428
cbee9f88
PZ
1429/*
1430 * The expensive part of numa migration is done from task_work context.
1431 * Triggered from task_tick_numa().
1432 */
1433void task_numa_work(struct callback_head *work)
1434{
1435 unsigned long migrate, next_scan, now = jiffies;
1436 struct task_struct *p = current;
1437 struct mm_struct *mm = p->mm;
6e5fb223 1438 struct vm_area_struct *vma;
9f40604c 1439 unsigned long start, end;
598f0ec0 1440 unsigned long nr_pte_updates = 0;
9f40604c 1441 long pages;
cbee9f88
PZ
1442
1443 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1444
1445 work->next = work; /* protect against double add */
1446 /*
1447 * Who cares about NUMA placement when they're dying.
1448 *
1449 * NOTE: make sure not to dereference p->mm before this check,
1450 * exit_task_work() happens _after_ exit_mm() so we could be called
1451 * without p->mm even though we still had it when we enqueued this
1452 * work.
1453 */
1454 if (p->flags & PF_EXITING)
1455 return;
1456
7e8d16b6
MG
1457 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1458 mm->numa_next_scan = now +
1459 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1460 mm->numa_next_reset = now +
1461 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1462 }
1463
b8593bfd
MG
1464 /*
1465 * Reset the scan period if enough time has gone by. Objective is that
1466 * scanning will be reduced if pages are properly placed. As tasks
1467 * can enter different phases this needs to be re-examined. Lacking
1468 * proper tracking of reference behaviour, this blunt hammer is used.
1469 */
1470 migrate = mm->numa_next_reset;
1471 if (time_after(now, migrate)) {
598f0ec0 1472 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1473 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1474 xchg(&mm->numa_next_reset, next_scan);
1475 }
1476
cbee9f88
PZ
1477 /*
1478 * Enforce maximal scan/migration frequency..
1479 */
1480 migrate = mm->numa_next_scan;
1481 if (time_before(now, migrate))
1482 return;
1483
598f0ec0
MG
1484 if (p->numa_scan_period == 0) {
1485 p->numa_scan_period_max = task_scan_max(p);
1486 p->numa_scan_period = task_scan_min(p);
1487 }
cbee9f88 1488
fb003b80 1489 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1490 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1491 return;
1492
19a78d11
PZ
1493 /*
1494 * Delay this task enough that another task of this mm will likely win
1495 * the next time around.
1496 */
1497 p->node_stamp += 2 * TICK_NSEC;
1498
9f40604c
MG
1499 start = mm->numa_scan_offset;
1500 pages = sysctl_numa_balancing_scan_size;
1501 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1502 if (!pages)
1503 return;
cbee9f88 1504
6e5fb223 1505 down_read(&mm->mmap_sem);
9f40604c 1506 vma = find_vma(mm, start);
6e5fb223
PZ
1507 if (!vma) {
1508 reset_ptenuma_scan(p);
9f40604c 1509 start = 0;
6e5fb223
PZ
1510 vma = mm->mmap;
1511 }
9f40604c 1512 for (; vma; vma = vma->vm_next) {
fc314724 1513 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1514 continue;
1515
4591ce4f
MG
1516 /*
1517 * Shared library pages mapped by multiple processes are not
1518 * migrated as it is expected they are cache replicated. Avoid
1519 * hinting faults in read-only file-backed mappings or the vdso
1520 * as migrating the pages will be of marginal benefit.
1521 */
1522 if (!vma->vm_mm ||
1523 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1524 continue;
1525
9f40604c
MG
1526 do {
1527 start = max(start, vma->vm_start);
1528 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1529 end = min(end, vma->vm_end);
598f0ec0
MG
1530 nr_pte_updates += change_prot_numa(vma, start, end);
1531
1532 /*
1533 * Scan sysctl_numa_balancing_scan_size but ensure that
1534 * at least one PTE is updated so that unused virtual
1535 * address space is quickly skipped.
1536 */
1537 if (nr_pte_updates)
1538 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1539
9f40604c
MG
1540 start = end;
1541 if (pages <= 0)
1542 goto out;
1543 } while (end != vma->vm_end);
cbee9f88 1544 }
6e5fb223 1545
9f40604c 1546out:
f307cd1a
MG
1547 /*
1548 * If the whole process was scanned without updates then no NUMA
1549 * hinting faults are being recorded and scan rate should be lower.
1550 */
1551 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1552 p->numa_scan_period = min(p->numa_scan_period_max,
1553 p->numa_scan_period << 1);
1554
1555 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1556 mm->numa_next_scan = next_scan;
1557 }
1558
6e5fb223 1559 /*
c69307d5
PZ
1560 * It is possible to reach the end of the VMA list but the last few
1561 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1562 * would find the !migratable VMA on the next scan but not reset the
1563 * scanner to the start so check it now.
6e5fb223
PZ
1564 */
1565 if (vma)
9f40604c 1566 mm->numa_scan_offset = start;
6e5fb223
PZ
1567 else
1568 reset_ptenuma_scan(p);
1569 up_read(&mm->mmap_sem);
cbee9f88
PZ
1570}
1571
1572/*
1573 * Drive the periodic memory faults..
1574 */
1575void task_tick_numa(struct rq *rq, struct task_struct *curr)
1576{
1577 struct callback_head *work = &curr->numa_work;
1578 u64 period, now;
1579
1580 /*
1581 * We don't care about NUMA placement if we don't have memory.
1582 */
1583 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1584 return;
1585
1586 /*
1587 * Using runtime rather than walltime has the dual advantage that
1588 * we (mostly) drive the selection from busy threads and that the
1589 * task needs to have done some actual work before we bother with
1590 * NUMA placement.
1591 */
1592 now = curr->se.sum_exec_runtime;
1593 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1594
1595 if (now - curr->node_stamp > period) {
4b96a29b 1596 if (!curr->node_stamp)
598f0ec0 1597 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1598 curr->node_stamp += period;
cbee9f88
PZ
1599
1600 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1601 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1602 task_work_add(curr, work, true);
1603 }
1604 }
1605}
1606#else
1607static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1608{
1609}
1610#endif /* CONFIG_NUMA_BALANCING */
1611
30cfdcfc
DA
1612static void
1613account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1614{
1615 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1616 if (!parent_entity(se))
029632fb 1617 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1618#ifdef CONFIG_SMP
1619 if (entity_is_task(se))
eb95308e 1620 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1621#endif
30cfdcfc 1622 cfs_rq->nr_running++;
30cfdcfc
DA
1623}
1624
1625static void
1626account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1627{
1628 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1629 if (!parent_entity(se))
029632fb 1630 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1631 if (entity_is_task(se))
b87f1724 1632 list_del_init(&se->group_node);
30cfdcfc 1633 cfs_rq->nr_running--;
30cfdcfc
DA
1634}
1635
3ff6dcac
YZ
1636#ifdef CONFIG_FAIR_GROUP_SCHED
1637# ifdef CONFIG_SMP
cf5f0acf
PZ
1638static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1639{
1640 long tg_weight;
1641
1642 /*
1643 * Use this CPU's actual weight instead of the last load_contribution
1644 * to gain a more accurate current total weight. See
1645 * update_cfs_rq_load_contribution().
1646 */
bf5b986e 1647 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1648 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1649 tg_weight += cfs_rq->load.weight;
1650
1651 return tg_weight;
1652}
1653
6d5ab293 1654static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1655{
cf5f0acf 1656 long tg_weight, load, shares;
3ff6dcac 1657
cf5f0acf 1658 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1659 load = cfs_rq->load.weight;
3ff6dcac 1660
3ff6dcac 1661 shares = (tg->shares * load);
cf5f0acf
PZ
1662 if (tg_weight)
1663 shares /= tg_weight;
3ff6dcac
YZ
1664
1665 if (shares < MIN_SHARES)
1666 shares = MIN_SHARES;
1667 if (shares > tg->shares)
1668 shares = tg->shares;
1669
1670 return shares;
1671}
3ff6dcac 1672# else /* CONFIG_SMP */
6d5ab293 1673static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1674{
1675 return tg->shares;
1676}
3ff6dcac 1677# endif /* CONFIG_SMP */
2069dd75
PZ
1678static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1679 unsigned long weight)
1680{
19e5eebb
PT
1681 if (se->on_rq) {
1682 /* commit outstanding execution time */
1683 if (cfs_rq->curr == se)
1684 update_curr(cfs_rq);
2069dd75 1685 account_entity_dequeue(cfs_rq, se);
19e5eebb 1686 }
2069dd75
PZ
1687
1688 update_load_set(&se->load, weight);
1689
1690 if (se->on_rq)
1691 account_entity_enqueue(cfs_rq, se);
1692}
1693
82958366
PT
1694static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1695
6d5ab293 1696static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1697{
1698 struct task_group *tg;
1699 struct sched_entity *se;
3ff6dcac 1700 long shares;
2069dd75 1701
2069dd75
PZ
1702 tg = cfs_rq->tg;
1703 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1704 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1705 return;
3ff6dcac
YZ
1706#ifndef CONFIG_SMP
1707 if (likely(se->load.weight == tg->shares))
1708 return;
1709#endif
6d5ab293 1710 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1711
1712 reweight_entity(cfs_rq_of(se), se, shares);
1713}
1714#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1715static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1716{
1717}
1718#endif /* CONFIG_FAIR_GROUP_SCHED */
1719
141965c7 1720#ifdef CONFIG_SMP
5b51f2f8
PT
1721/*
1722 * We choose a half-life close to 1 scheduling period.
1723 * Note: The tables below are dependent on this value.
1724 */
1725#define LOAD_AVG_PERIOD 32
1726#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1727#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1728
1729/* Precomputed fixed inverse multiplies for multiplication by y^n */
1730static const u32 runnable_avg_yN_inv[] = {
1731 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1732 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1733 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1734 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1735 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1736 0x85aac367, 0x82cd8698,
1737};
1738
1739/*
1740 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1741 * over-estimates when re-combining.
1742 */
1743static const u32 runnable_avg_yN_sum[] = {
1744 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1745 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1746 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1747};
1748
9d85f21c
PT
1749/*
1750 * Approximate:
1751 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1752 */
1753static __always_inline u64 decay_load(u64 val, u64 n)
1754{
5b51f2f8
PT
1755 unsigned int local_n;
1756
1757 if (!n)
1758 return val;
1759 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1760 return 0;
1761
1762 /* after bounds checking we can collapse to 32-bit */
1763 local_n = n;
1764
1765 /*
1766 * As y^PERIOD = 1/2, we can combine
1767 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1768 * With a look-up table which covers k^n (n<PERIOD)
1769 *
1770 * To achieve constant time decay_load.
1771 */
1772 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1773 val >>= local_n / LOAD_AVG_PERIOD;
1774 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1775 }
1776
5b51f2f8
PT
1777 val *= runnable_avg_yN_inv[local_n];
1778 /* We don't use SRR here since we always want to round down. */
1779 return val >> 32;
1780}
1781
1782/*
1783 * For updates fully spanning n periods, the contribution to runnable
1784 * average will be: \Sum 1024*y^n
1785 *
1786 * We can compute this reasonably efficiently by combining:
1787 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1788 */
1789static u32 __compute_runnable_contrib(u64 n)
1790{
1791 u32 contrib = 0;
1792
1793 if (likely(n <= LOAD_AVG_PERIOD))
1794 return runnable_avg_yN_sum[n];
1795 else if (unlikely(n >= LOAD_AVG_MAX_N))
1796 return LOAD_AVG_MAX;
1797
1798 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1799 do {
1800 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1801 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1802
1803 n -= LOAD_AVG_PERIOD;
1804 } while (n > LOAD_AVG_PERIOD);
1805
1806 contrib = decay_load(contrib, n);
1807 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1808}
1809
1810/*
1811 * We can represent the historical contribution to runnable average as the
1812 * coefficients of a geometric series. To do this we sub-divide our runnable
1813 * history into segments of approximately 1ms (1024us); label the segment that
1814 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1815 *
1816 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1817 * p0 p1 p2
1818 * (now) (~1ms ago) (~2ms ago)
1819 *
1820 * Let u_i denote the fraction of p_i that the entity was runnable.
1821 *
1822 * We then designate the fractions u_i as our co-efficients, yielding the
1823 * following representation of historical load:
1824 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1825 *
1826 * We choose y based on the with of a reasonably scheduling period, fixing:
1827 * y^32 = 0.5
1828 *
1829 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1830 * approximately half as much as the contribution to load within the last ms
1831 * (u_0).
1832 *
1833 * When a period "rolls over" and we have new u_0`, multiplying the previous
1834 * sum again by y is sufficient to update:
1835 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1836 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1837 */
1838static __always_inline int __update_entity_runnable_avg(u64 now,
1839 struct sched_avg *sa,
1840 int runnable)
1841{
5b51f2f8
PT
1842 u64 delta, periods;
1843 u32 runnable_contrib;
9d85f21c
PT
1844 int delta_w, decayed = 0;
1845
1846 delta = now - sa->last_runnable_update;
1847 /*
1848 * This should only happen when time goes backwards, which it
1849 * unfortunately does during sched clock init when we swap over to TSC.
1850 */
1851 if ((s64)delta < 0) {
1852 sa->last_runnable_update = now;
1853 return 0;
1854 }
1855
1856 /*
1857 * Use 1024ns as the unit of measurement since it's a reasonable
1858 * approximation of 1us and fast to compute.
1859 */
1860 delta >>= 10;
1861 if (!delta)
1862 return 0;
1863 sa->last_runnable_update = now;
1864
1865 /* delta_w is the amount already accumulated against our next period */
1866 delta_w = sa->runnable_avg_period % 1024;
1867 if (delta + delta_w >= 1024) {
1868 /* period roll-over */
1869 decayed = 1;
1870
1871 /*
1872 * Now that we know we're crossing a period boundary, figure
1873 * out how much from delta we need to complete the current
1874 * period and accrue it.
1875 */
1876 delta_w = 1024 - delta_w;
5b51f2f8
PT
1877 if (runnable)
1878 sa->runnable_avg_sum += delta_w;
1879 sa->runnable_avg_period += delta_w;
1880
1881 delta -= delta_w;
1882
1883 /* Figure out how many additional periods this update spans */
1884 periods = delta / 1024;
1885 delta %= 1024;
1886
1887 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1888 periods + 1);
1889 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1890 periods + 1);
1891
1892 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1893 runnable_contrib = __compute_runnable_contrib(periods);
1894 if (runnable)
1895 sa->runnable_avg_sum += runnable_contrib;
1896 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1897 }
1898
1899 /* Remainder of delta accrued against u_0` */
1900 if (runnable)
1901 sa->runnable_avg_sum += delta;
1902 sa->runnable_avg_period += delta;
1903
1904 return decayed;
1905}
1906
9ee474f5 1907/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1908static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1909{
1910 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1911 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1912
1913 decays -= se->avg.decay_count;
1914 if (!decays)
aff3e498 1915 return 0;
9ee474f5
PT
1916
1917 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1918 se->avg.decay_count = 0;
aff3e498
PT
1919
1920 return decays;
9ee474f5
PT
1921}
1922
c566e8e9
PT
1923#ifdef CONFIG_FAIR_GROUP_SCHED
1924static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1925 int force_update)
1926{
1927 struct task_group *tg = cfs_rq->tg;
bf5b986e 1928 long tg_contrib;
c566e8e9
PT
1929
1930 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1931 tg_contrib -= cfs_rq->tg_load_contrib;
1932
bf5b986e
AS
1933 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1934 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1935 cfs_rq->tg_load_contrib += tg_contrib;
1936 }
1937}
8165e145 1938
bb17f655
PT
1939/*
1940 * Aggregate cfs_rq runnable averages into an equivalent task_group
1941 * representation for computing load contributions.
1942 */
1943static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1944 struct cfs_rq *cfs_rq)
1945{
1946 struct task_group *tg = cfs_rq->tg;
1947 long contrib;
1948
1949 /* The fraction of a cpu used by this cfs_rq */
1950 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1951 sa->runnable_avg_period + 1);
1952 contrib -= cfs_rq->tg_runnable_contrib;
1953
1954 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1955 atomic_add(contrib, &tg->runnable_avg);
1956 cfs_rq->tg_runnable_contrib += contrib;
1957 }
1958}
1959
8165e145
PT
1960static inline void __update_group_entity_contrib(struct sched_entity *se)
1961{
1962 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1963 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1964 int runnable_avg;
1965
8165e145
PT
1966 u64 contrib;
1967
1968 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1969 se->avg.load_avg_contrib = div_u64(contrib,
1970 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1971
1972 /*
1973 * For group entities we need to compute a correction term in the case
1974 * that they are consuming <1 cpu so that we would contribute the same
1975 * load as a task of equal weight.
1976 *
1977 * Explicitly co-ordinating this measurement would be expensive, but
1978 * fortunately the sum of each cpus contribution forms a usable
1979 * lower-bound on the true value.
1980 *
1981 * Consider the aggregate of 2 contributions. Either they are disjoint
1982 * (and the sum represents true value) or they are disjoint and we are
1983 * understating by the aggregate of their overlap.
1984 *
1985 * Extending this to N cpus, for a given overlap, the maximum amount we
1986 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1987 * cpus that overlap for this interval and w_i is the interval width.
1988 *
1989 * On a small machine; the first term is well-bounded which bounds the
1990 * total error since w_i is a subset of the period. Whereas on a
1991 * larger machine, while this first term can be larger, if w_i is the
1992 * of consequential size guaranteed to see n_i*w_i quickly converge to
1993 * our upper bound of 1-cpu.
1994 */
1995 runnable_avg = atomic_read(&tg->runnable_avg);
1996 if (runnable_avg < NICE_0_LOAD) {
1997 se->avg.load_avg_contrib *= runnable_avg;
1998 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1999 }
8165e145 2000}
c566e8e9
PT
2001#else
2002static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2003 int force_update) {}
bb17f655
PT
2004static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2005 struct cfs_rq *cfs_rq) {}
8165e145 2006static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2007#endif
2008
8165e145
PT
2009static inline void __update_task_entity_contrib(struct sched_entity *se)
2010{
2011 u32 contrib;
2012
2013 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2014 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2015 contrib /= (se->avg.runnable_avg_period + 1);
2016 se->avg.load_avg_contrib = scale_load(contrib);
2017}
2018
2dac754e
PT
2019/* Compute the current contribution to load_avg by se, return any delta */
2020static long __update_entity_load_avg_contrib(struct sched_entity *se)
2021{
2022 long old_contrib = se->avg.load_avg_contrib;
2023
8165e145
PT
2024 if (entity_is_task(se)) {
2025 __update_task_entity_contrib(se);
2026 } else {
bb17f655 2027 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2028 __update_group_entity_contrib(se);
2029 }
2dac754e
PT
2030
2031 return se->avg.load_avg_contrib - old_contrib;
2032}
2033
9ee474f5
PT
2034static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2035 long load_contrib)
2036{
2037 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2038 cfs_rq->blocked_load_avg -= load_contrib;
2039 else
2040 cfs_rq->blocked_load_avg = 0;
2041}
2042
f1b17280
PT
2043static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2044
9d85f21c 2045/* Update a sched_entity's runnable average */
9ee474f5
PT
2046static inline void update_entity_load_avg(struct sched_entity *se,
2047 int update_cfs_rq)
9d85f21c 2048{
2dac754e
PT
2049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2050 long contrib_delta;
f1b17280 2051 u64 now;
2dac754e 2052
f1b17280
PT
2053 /*
2054 * For a group entity we need to use their owned cfs_rq_clock_task() in
2055 * case they are the parent of a throttled hierarchy.
2056 */
2057 if (entity_is_task(se))
2058 now = cfs_rq_clock_task(cfs_rq);
2059 else
2060 now = cfs_rq_clock_task(group_cfs_rq(se));
2061
2062 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2063 return;
2064
2065 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2066
2067 if (!update_cfs_rq)
2068 return;
2069
2dac754e
PT
2070 if (se->on_rq)
2071 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2072 else
2073 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2074}
2075
2076/*
2077 * Decay the load contributed by all blocked children and account this so that
2078 * their contribution may appropriately discounted when they wake up.
2079 */
aff3e498 2080static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2081{
f1b17280 2082 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2083 u64 decays;
2084
2085 decays = now - cfs_rq->last_decay;
aff3e498 2086 if (!decays && !force_update)
9ee474f5
PT
2087 return;
2088
2509940f
AS
2089 if (atomic_long_read(&cfs_rq->removed_load)) {
2090 unsigned long removed_load;
2091 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2092 subtract_blocked_load_contrib(cfs_rq, removed_load);
2093 }
9ee474f5 2094
aff3e498
PT
2095 if (decays) {
2096 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2097 decays);
2098 atomic64_add(decays, &cfs_rq->decay_counter);
2099 cfs_rq->last_decay = now;
2100 }
c566e8e9
PT
2101
2102 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2103}
18bf2805
BS
2104
2105static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2106{
78becc27 2107 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2108 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2109}
2dac754e
PT
2110
2111/* Add the load generated by se into cfs_rq's child load-average */
2112static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2113 struct sched_entity *se,
2114 int wakeup)
2dac754e 2115{
aff3e498
PT
2116 /*
2117 * We track migrations using entity decay_count <= 0, on a wake-up
2118 * migration we use a negative decay count to track the remote decays
2119 * accumulated while sleeping.
a75cdaa9
AS
2120 *
2121 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2122 * are seen by enqueue_entity_load_avg() as a migration with an already
2123 * constructed load_avg_contrib.
aff3e498
PT
2124 */
2125 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2126 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2127 if (se->avg.decay_count) {
2128 /*
2129 * In a wake-up migration we have to approximate the
2130 * time sleeping. This is because we can't synchronize
2131 * clock_task between the two cpus, and it is not
2132 * guaranteed to be read-safe. Instead, we can
2133 * approximate this using our carried decays, which are
2134 * explicitly atomically readable.
2135 */
2136 se->avg.last_runnable_update -= (-se->avg.decay_count)
2137 << 20;
2138 update_entity_load_avg(se, 0);
2139 /* Indicate that we're now synchronized and on-rq */
2140 se->avg.decay_count = 0;
2141 }
9ee474f5
PT
2142 wakeup = 0;
2143 } else {
282cf499
AS
2144 /*
2145 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2146 * would have made count negative); we must be careful to avoid
2147 * double-accounting blocked time after synchronizing decays.
2148 */
2149 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2150 << 20;
9ee474f5
PT
2151 }
2152
aff3e498
PT
2153 /* migrated tasks did not contribute to our blocked load */
2154 if (wakeup) {
9ee474f5 2155 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2156 update_entity_load_avg(se, 0);
2157 }
9ee474f5 2158
2dac754e 2159 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2160 /* we force update consideration on load-balancer moves */
2161 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2162}
2163
9ee474f5
PT
2164/*
2165 * Remove se's load from this cfs_rq child load-average, if the entity is
2166 * transitioning to a blocked state we track its projected decay using
2167 * blocked_load_avg.
2168 */
2dac754e 2169static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2170 struct sched_entity *se,
2171 int sleep)
2dac754e 2172{
9ee474f5 2173 update_entity_load_avg(se, 1);
aff3e498
PT
2174 /* we force update consideration on load-balancer moves */
2175 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2176
2dac754e 2177 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2178 if (sleep) {
2179 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2180 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2181 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2182}
642dbc39
VG
2183
2184/*
2185 * Update the rq's load with the elapsed running time before entering
2186 * idle. if the last scheduled task is not a CFS task, idle_enter will
2187 * be the only way to update the runnable statistic.
2188 */
2189void idle_enter_fair(struct rq *this_rq)
2190{
2191 update_rq_runnable_avg(this_rq, 1);
2192}
2193
2194/*
2195 * Update the rq's load with the elapsed idle time before a task is
2196 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2197 * be the only way to update the runnable statistic.
2198 */
2199void idle_exit_fair(struct rq *this_rq)
2200{
2201 update_rq_runnable_avg(this_rq, 0);
2202}
2203
9d85f21c 2204#else
9ee474f5
PT
2205static inline void update_entity_load_avg(struct sched_entity *se,
2206 int update_cfs_rq) {}
18bf2805 2207static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2208static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2209 struct sched_entity *se,
2210 int wakeup) {}
2dac754e 2211static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2212 struct sched_entity *se,
2213 int sleep) {}
aff3e498
PT
2214static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2215 int force_update) {}
9d85f21c
PT
2216#endif
2217
2396af69 2218static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2219{
bf0f6f24 2220#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2221 struct task_struct *tsk = NULL;
2222
2223 if (entity_is_task(se))
2224 tsk = task_of(se);
2225
41acab88 2226 if (se->statistics.sleep_start) {
78becc27 2227 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2228
2229 if ((s64)delta < 0)
2230 delta = 0;
2231
41acab88
LDM
2232 if (unlikely(delta > se->statistics.sleep_max))
2233 se->statistics.sleep_max = delta;
bf0f6f24 2234
8c79a045 2235 se->statistics.sleep_start = 0;
41acab88 2236 se->statistics.sum_sleep_runtime += delta;
9745512c 2237
768d0c27 2238 if (tsk) {
e414314c 2239 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2240 trace_sched_stat_sleep(tsk, delta);
2241 }
bf0f6f24 2242 }
41acab88 2243 if (se->statistics.block_start) {
78becc27 2244 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2245
2246 if ((s64)delta < 0)
2247 delta = 0;
2248
41acab88
LDM
2249 if (unlikely(delta > se->statistics.block_max))
2250 se->statistics.block_max = delta;
bf0f6f24 2251
8c79a045 2252 se->statistics.block_start = 0;
41acab88 2253 se->statistics.sum_sleep_runtime += delta;
30084fbd 2254
e414314c 2255 if (tsk) {
8f0dfc34 2256 if (tsk->in_iowait) {
41acab88
LDM
2257 se->statistics.iowait_sum += delta;
2258 se->statistics.iowait_count++;
768d0c27 2259 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2260 }
2261
b781a602
AV
2262 trace_sched_stat_blocked(tsk, delta);
2263
e414314c
PZ
2264 /*
2265 * Blocking time is in units of nanosecs, so shift by
2266 * 20 to get a milliseconds-range estimation of the
2267 * amount of time that the task spent sleeping:
2268 */
2269 if (unlikely(prof_on == SLEEP_PROFILING)) {
2270 profile_hits(SLEEP_PROFILING,
2271 (void *)get_wchan(tsk),
2272 delta >> 20);
2273 }
2274 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2275 }
bf0f6f24
IM
2276 }
2277#endif
2278}
2279
ddc97297
PZ
2280static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2281{
2282#ifdef CONFIG_SCHED_DEBUG
2283 s64 d = se->vruntime - cfs_rq->min_vruntime;
2284
2285 if (d < 0)
2286 d = -d;
2287
2288 if (d > 3*sysctl_sched_latency)
2289 schedstat_inc(cfs_rq, nr_spread_over);
2290#endif
2291}
2292
aeb73b04
PZ
2293static void
2294place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2295{
1af5f730 2296 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2297
2cb8600e
PZ
2298 /*
2299 * The 'current' period is already promised to the current tasks,
2300 * however the extra weight of the new task will slow them down a
2301 * little, place the new task so that it fits in the slot that
2302 * stays open at the end.
2303 */
94dfb5e7 2304 if (initial && sched_feat(START_DEBIT))
f9c0b095 2305 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2306
a2e7a7eb 2307 /* sleeps up to a single latency don't count. */
5ca9880c 2308 if (!initial) {
a2e7a7eb 2309 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2310
a2e7a7eb
MG
2311 /*
2312 * Halve their sleep time's effect, to allow
2313 * for a gentler effect of sleepers:
2314 */
2315 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2316 thresh >>= 1;
51e0304c 2317
a2e7a7eb 2318 vruntime -= thresh;
aeb73b04
PZ
2319 }
2320
b5d9d734 2321 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2322 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2323}
2324
d3d9dc33
PT
2325static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2326
bf0f6f24 2327static void
88ec22d3 2328enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2329{
88ec22d3
PZ
2330 /*
2331 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2332 * through calling update_curr().
88ec22d3 2333 */
371fd7e7 2334 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2335 se->vruntime += cfs_rq->min_vruntime;
2336
bf0f6f24 2337 /*
a2a2d680 2338 * Update run-time statistics of the 'current'.
bf0f6f24 2339 */
b7cc0896 2340 update_curr(cfs_rq);
f269ae04 2341 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2342 account_entity_enqueue(cfs_rq, se);
2343 update_cfs_shares(cfs_rq);
bf0f6f24 2344
88ec22d3 2345 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2346 place_entity(cfs_rq, se, 0);
2396af69 2347 enqueue_sleeper(cfs_rq, se);
e9acbff6 2348 }
bf0f6f24 2349
d2417e5a 2350 update_stats_enqueue(cfs_rq, se);
ddc97297 2351 check_spread(cfs_rq, se);
83b699ed
SV
2352 if (se != cfs_rq->curr)
2353 __enqueue_entity(cfs_rq, se);
2069dd75 2354 se->on_rq = 1;
3d4b47b4 2355
d3d9dc33 2356 if (cfs_rq->nr_running == 1) {
3d4b47b4 2357 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2358 check_enqueue_throttle(cfs_rq);
2359 }
bf0f6f24
IM
2360}
2361
2c13c919 2362static void __clear_buddies_last(struct sched_entity *se)
2002c695 2363{
2c13c919
RR
2364 for_each_sched_entity(se) {
2365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2366 if (cfs_rq->last == se)
2367 cfs_rq->last = NULL;
2368 else
2369 break;
2370 }
2371}
2002c695 2372
2c13c919
RR
2373static void __clear_buddies_next(struct sched_entity *se)
2374{
2375 for_each_sched_entity(se) {
2376 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2377 if (cfs_rq->next == se)
2378 cfs_rq->next = NULL;
2379 else
2380 break;
2381 }
2002c695
PZ
2382}
2383
ac53db59
RR
2384static void __clear_buddies_skip(struct sched_entity *se)
2385{
2386 for_each_sched_entity(se) {
2387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2388 if (cfs_rq->skip == se)
2389 cfs_rq->skip = NULL;
2390 else
2391 break;
2392 }
2393}
2394
a571bbea
PZ
2395static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2396{
2c13c919
RR
2397 if (cfs_rq->last == se)
2398 __clear_buddies_last(se);
2399
2400 if (cfs_rq->next == se)
2401 __clear_buddies_next(se);
ac53db59
RR
2402
2403 if (cfs_rq->skip == se)
2404 __clear_buddies_skip(se);
a571bbea
PZ
2405}
2406
6c16a6dc 2407static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2408
bf0f6f24 2409static void
371fd7e7 2410dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2411{
a2a2d680
DA
2412 /*
2413 * Update run-time statistics of the 'current'.
2414 */
2415 update_curr(cfs_rq);
17bc14b7 2416 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2417
19b6a2e3 2418 update_stats_dequeue(cfs_rq, se);
371fd7e7 2419 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2420#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2421 if (entity_is_task(se)) {
2422 struct task_struct *tsk = task_of(se);
2423
2424 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2425 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2426 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2427 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2428 }
db36cc7d 2429#endif
67e9fb2a
PZ
2430 }
2431
2002c695 2432 clear_buddies(cfs_rq, se);
4793241b 2433
83b699ed 2434 if (se != cfs_rq->curr)
30cfdcfc 2435 __dequeue_entity(cfs_rq, se);
17bc14b7 2436 se->on_rq = 0;
30cfdcfc 2437 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2438
2439 /*
2440 * Normalize the entity after updating the min_vruntime because the
2441 * update can refer to the ->curr item and we need to reflect this
2442 * movement in our normalized position.
2443 */
371fd7e7 2444 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2445 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2446
d8b4986d
PT
2447 /* return excess runtime on last dequeue */
2448 return_cfs_rq_runtime(cfs_rq);
2449
1e876231 2450 update_min_vruntime(cfs_rq);
17bc14b7 2451 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2452}
2453
2454/*
2455 * Preempt the current task with a newly woken task if needed:
2456 */
7c92e54f 2457static void
2e09bf55 2458check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2459{
11697830 2460 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2461 struct sched_entity *se;
2462 s64 delta;
11697830 2463
6d0f0ebd 2464 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2465 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2466 if (delta_exec > ideal_runtime) {
bf0f6f24 2467 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2468 /*
2469 * The current task ran long enough, ensure it doesn't get
2470 * re-elected due to buddy favours.
2471 */
2472 clear_buddies(cfs_rq, curr);
f685ceac
MG
2473 return;
2474 }
2475
2476 /*
2477 * Ensure that a task that missed wakeup preemption by a
2478 * narrow margin doesn't have to wait for a full slice.
2479 * This also mitigates buddy induced latencies under load.
2480 */
f685ceac
MG
2481 if (delta_exec < sysctl_sched_min_granularity)
2482 return;
2483
f4cfb33e
WX
2484 se = __pick_first_entity(cfs_rq);
2485 delta = curr->vruntime - se->vruntime;
f685ceac 2486
f4cfb33e
WX
2487 if (delta < 0)
2488 return;
d7d82944 2489
f4cfb33e
WX
2490 if (delta > ideal_runtime)
2491 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2492}
2493
83b699ed 2494static void
8494f412 2495set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2496{
83b699ed
SV
2497 /* 'current' is not kept within the tree. */
2498 if (se->on_rq) {
2499 /*
2500 * Any task has to be enqueued before it get to execute on
2501 * a CPU. So account for the time it spent waiting on the
2502 * runqueue.
2503 */
2504 update_stats_wait_end(cfs_rq, se);
2505 __dequeue_entity(cfs_rq, se);
2506 }
2507
79303e9e 2508 update_stats_curr_start(cfs_rq, se);
429d43bc 2509 cfs_rq->curr = se;
eba1ed4b
IM
2510#ifdef CONFIG_SCHEDSTATS
2511 /*
2512 * Track our maximum slice length, if the CPU's load is at
2513 * least twice that of our own weight (i.e. dont track it
2514 * when there are only lesser-weight tasks around):
2515 */
495eca49 2516 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2517 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2518 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2519 }
2520#endif
4a55b450 2521 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2522}
2523
3f3a4904
PZ
2524static int
2525wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2526
ac53db59
RR
2527/*
2528 * Pick the next process, keeping these things in mind, in this order:
2529 * 1) keep things fair between processes/task groups
2530 * 2) pick the "next" process, since someone really wants that to run
2531 * 3) pick the "last" process, for cache locality
2532 * 4) do not run the "skip" process, if something else is available
2533 */
f4b6755f 2534static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2535{
ac53db59 2536 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2537 struct sched_entity *left = se;
f4b6755f 2538
ac53db59
RR
2539 /*
2540 * Avoid running the skip buddy, if running something else can
2541 * be done without getting too unfair.
2542 */
2543 if (cfs_rq->skip == se) {
2544 struct sched_entity *second = __pick_next_entity(se);
2545 if (second && wakeup_preempt_entity(second, left) < 1)
2546 se = second;
2547 }
aa2ac252 2548
f685ceac
MG
2549 /*
2550 * Prefer last buddy, try to return the CPU to a preempted task.
2551 */
2552 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2553 se = cfs_rq->last;
2554
ac53db59
RR
2555 /*
2556 * Someone really wants this to run. If it's not unfair, run it.
2557 */
2558 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2559 se = cfs_rq->next;
2560
f685ceac 2561 clear_buddies(cfs_rq, se);
4793241b
PZ
2562
2563 return se;
aa2ac252
PZ
2564}
2565
d3d9dc33
PT
2566static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2567
ab6cde26 2568static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2569{
2570 /*
2571 * If still on the runqueue then deactivate_task()
2572 * was not called and update_curr() has to be done:
2573 */
2574 if (prev->on_rq)
b7cc0896 2575 update_curr(cfs_rq);
bf0f6f24 2576
d3d9dc33
PT
2577 /* throttle cfs_rqs exceeding runtime */
2578 check_cfs_rq_runtime(cfs_rq);
2579
ddc97297 2580 check_spread(cfs_rq, prev);
30cfdcfc 2581 if (prev->on_rq) {
5870db5b 2582 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2583 /* Put 'current' back into the tree. */
2584 __enqueue_entity(cfs_rq, prev);
9d85f21c 2585 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2586 update_entity_load_avg(prev, 1);
30cfdcfc 2587 }
429d43bc 2588 cfs_rq->curr = NULL;
bf0f6f24
IM
2589}
2590
8f4d37ec
PZ
2591static void
2592entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2593{
bf0f6f24 2594 /*
30cfdcfc 2595 * Update run-time statistics of the 'current'.
bf0f6f24 2596 */
30cfdcfc 2597 update_curr(cfs_rq);
bf0f6f24 2598
9d85f21c
PT
2599 /*
2600 * Ensure that runnable average is periodically updated.
2601 */
9ee474f5 2602 update_entity_load_avg(curr, 1);
aff3e498 2603 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2604 update_cfs_shares(cfs_rq);
9d85f21c 2605
8f4d37ec
PZ
2606#ifdef CONFIG_SCHED_HRTICK
2607 /*
2608 * queued ticks are scheduled to match the slice, so don't bother
2609 * validating it and just reschedule.
2610 */
983ed7a6
HH
2611 if (queued) {
2612 resched_task(rq_of(cfs_rq)->curr);
2613 return;
2614 }
8f4d37ec
PZ
2615 /*
2616 * don't let the period tick interfere with the hrtick preemption
2617 */
2618 if (!sched_feat(DOUBLE_TICK) &&
2619 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2620 return;
2621#endif
2622
2c2efaed 2623 if (cfs_rq->nr_running > 1)
2e09bf55 2624 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2625}
2626
ab84d31e
PT
2627
2628/**************************************************
2629 * CFS bandwidth control machinery
2630 */
2631
2632#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2633
2634#ifdef HAVE_JUMP_LABEL
c5905afb 2635static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2636
2637static inline bool cfs_bandwidth_used(void)
2638{
c5905afb 2639 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2640}
2641
2642void account_cfs_bandwidth_used(int enabled, int was_enabled)
2643{
2644 /* only need to count groups transitioning between enabled/!enabled */
2645 if (enabled && !was_enabled)
c5905afb 2646 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2647 else if (!enabled && was_enabled)
c5905afb 2648 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2649}
2650#else /* HAVE_JUMP_LABEL */
2651static bool cfs_bandwidth_used(void)
2652{
2653 return true;
2654}
2655
2656void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2657#endif /* HAVE_JUMP_LABEL */
2658
ab84d31e
PT
2659/*
2660 * default period for cfs group bandwidth.
2661 * default: 0.1s, units: nanoseconds
2662 */
2663static inline u64 default_cfs_period(void)
2664{
2665 return 100000000ULL;
2666}
ec12cb7f
PT
2667
2668static inline u64 sched_cfs_bandwidth_slice(void)
2669{
2670 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2671}
2672
a9cf55b2
PT
2673/*
2674 * Replenish runtime according to assigned quota and update expiration time.
2675 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2676 * additional synchronization around rq->lock.
2677 *
2678 * requires cfs_b->lock
2679 */
029632fb 2680void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2681{
2682 u64 now;
2683
2684 if (cfs_b->quota == RUNTIME_INF)
2685 return;
2686
2687 now = sched_clock_cpu(smp_processor_id());
2688 cfs_b->runtime = cfs_b->quota;
2689 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2690}
2691
029632fb
PZ
2692static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2693{
2694 return &tg->cfs_bandwidth;
2695}
2696
f1b17280
PT
2697/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2698static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2699{
2700 if (unlikely(cfs_rq->throttle_count))
2701 return cfs_rq->throttled_clock_task;
2702
78becc27 2703 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2704}
2705
85dac906
PT
2706/* returns 0 on failure to allocate runtime */
2707static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2708{
2709 struct task_group *tg = cfs_rq->tg;
2710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2711 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2712
2713 /* note: this is a positive sum as runtime_remaining <= 0 */
2714 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2715
2716 raw_spin_lock(&cfs_b->lock);
2717 if (cfs_b->quota == RUNTIME_INF)
2718 amount = min_amount;
58088ad0 2719 else {
a9cf55b2
PT
2720 /*
2721 * If the bandwidth pool has become inactive, then at least one
2722 * period must have elapsed since the last consumption.
2723 * Refresh the global state and ensure bandwidth timer becomes
2724 * active.
2725 */
2726 if (!cfs_b->timer_active) {
2727 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2728 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2729 }
58088ad0
PT
2730
2731 if (cfs_b->runtime > 0) {
2732 amount = min(cfs_b->runtime, min_amount);
2733 cfs_b->runtime -= amount;
2734 cfs_b->idle = 0;
2735 }
ec12cb7f 2736 }
a9cf55b2 2737 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2738 raw_spin_unlock(&cfs_b->lock);
2739
2740 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2741 /*
2742 * we may have advanced our local expiration to account for allowed
2743 * spread between our sched_clock and the one on which runtime was
2744 * issued.
2745 */
2746 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2747 cfs_rq->runtime_expires = expires;
85dac906
PT
2748
2749 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2750}
2751
a9cf55b2
PT
2752/*
2753 * Note: This depends on the synchronization provided by sched_clock and the
2754 * fact that rq->clock snapshots this value.
2755 */
2756static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2757{
a9cf55b2 2758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2759
2760 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2761 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2762 return;
2763
a9cf55b2
PT
2764 if (cfs_rq->runtime_remaining < 0)
2765 return;
2766
2767 /*
2768 * If the local deadline has passed we have to consider the
2769 * possibility that our sched_clock is 'fast' and the global deadline
2770 * has not truly expired.
2771 *
2772 * Fortunately we can check determine whether this the case by checking
2773 * whether the global deadline has advanced.
2774 */
2775
2776 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2777 /* extend local deadline, drift is bounded above by 2 ticks */
2778 cfs_rq->runtime_expires += TICK_NSEC;
2779 } else {
2780 /* global deadline is ahead, expiration has passed */
2781 cfs_rq->runtime_remaining = 0;
2782 }
2783}
2784
2785static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2786 unsigned long delta_exec)
2787{
2788 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2789 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2790 expire_cfs_rq_runtime(cfs_rq);
2791
2792 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2793 return;
2794
85dac906
PT
2795 /*
2796 * if we're unable to extend our runtime we resched so that the active
2797 * hierarchy can be throttled
2798 */
2799 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2800 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2801}
2802
6c16a6dc
PZ
2803static __always_inline
2804void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2805{
56f570e5 2806 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2807 return;
2808
2809 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2810}
2811
85dac906
PT
2812static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2813{
56f570e5 2814 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2815}
2816
64660c86
PT
2817/* check whether cfs_rq, or any parent, is throttled */
2818static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2819{
56f570e5 2820 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2821}
2822
2823/*
2824 * Ensure that neither of the group entities corresponding to src_cpu or
2825 * dest_cpu are members of a throttled hierarchy when performing group
2826 * load-balance operations.
2827 */
2828static inline int throttled_lb_pair(struct task_group *tg,
2829 int src_cpu, int dest_cpu)
2830{
2831 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2832
2833 src_cfs_rq = tg->cfs_rq[src_cpu];
2834 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2835
2836 return throttled_hierarchy(src_cfs_rq) ||
2837 throttled_hierarchy(dest_cfs_rq);
2838}
2839
2840/* updated child weight may affect parent so we have to do this bottom up */
2841static int tg_unthrottle_up(struct task_group *tg, void *data)
2842{
2843 struct rq *rq = data;
2844 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2845
2846 cfs_rq->throttle_count--;
2847#ifdef CONFIG_SMP
2848 if (!cfs_rq->throttle_count) {
f1b17280 2849 /* adjust cfs_rq_clock_task() */
78becc27 2850 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2851 cfs_rq->throttled_clock_task;
64660c86
PT
2852 }
2853#endif
2854
2855 return 0;
2856}
2857
2858static int tg_throttle_down(struct task_group *tg, void *data)
2859{
2860 struct rq *rq = data;
2861 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2862
82958366
PT
2863 /* group is entering throttled state, stop time */
2864 if (!cfs_rq->throttle_count)
78becc27 2865 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2866 cfs_rq->throttle_count++;
2867
2868 return 0;
2869}
2870
d3d9dc33 2871static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2872{
2873 struct rq *rq = rq_of(cfs_rq);
2874 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2875 struct sched_entity *se;
2876 long task_delta, dequeue = 1;
2877
2878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2879
f1b17280 2880 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2881 rcu_read_lock();
2882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2883 rcu_read_unlock();
85dac906
PT
2884
2885 task_delta = cfs_rq->h_nr_running;
2886 for_each_sched_entity(se) {
2887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2888 /* throttled entity or throttle-on-deactivate */
2889 if (!se->on_rq)
2890 break;
2891
2892 if (dequeue)
2893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2894 qcfs_rq->h_nr_running -= task_delta;
2895
2896 if (qcfs_rq->load.weight)
2897 dequeue = 0;
2898 }
2899
2900 if (!se)
2901 rq->nr_running -= task_delta;
2902
2903 cfs_rq->throttled = 1;
78becc27 2904 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2905 raw_spin_lock(&cfs_b->lock);
2906 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2907 raw_spin_unlock(&cfs_b->lock);
2908}
2909
029632fb 2910void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2911{
2912 struct rq *rq = rq_of(cfs_rq);
2913 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2914 struct sched_entity *se;
2915 int enqueue = 1;
2916 long task_delta;
2917
22b958d8 2918 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2919
2920 cfs_rq->throttled = 0;
1a55af2e
FW
2921
2922 update_rq_clock(rq);
2923
671fd9da 2924 raw_spin_lock(&cfs_b->lock);
78becc27 2925 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2926 list_del_rcu(&cfs_rq->throttled_list);
2927 raw_spin_unlock(&cfs_b->lock);
2928
64660c86
PT
2929 /* update hierarchical throttle state */
2930 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2931
671fd9da
PT
2932 if (!cfs_rq->load.weight)
2933 return;
2934
2935 task_delta = cfs_rq->h_nr_running;
2936 for_each_sched_entity(se) {
2937 if (se->on_rq)
2938 enqueue = 0;
2939
2940 cfs_rq = cfs_rq_of(se);
2941 if (enqueue)
2942 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2943 cfs_rq->h_nr_running += task_delta;
2944
2945 if (cfs_rq_throttled(cfs_rq))
2946 break;
2947 }
2948
2949 if (!se)
2950 rq->nr_running += task_delta;
2951
2952 /* determine whether we need to wake up potentially idle cpu */
2953 if (rq->curr == rq->idle && rq->cfs.nr_running)
2954 resched_task(rq->curr);
2955}
2956
2957static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2958 u64 remaining, u64 expires)
2959{
2960 struct cfs_rq *cfs_rq;
2961 u64 runtime = remaining;
2962
2963 rcu_read_lock();
2964 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2965 throttled_list) {
2966 struct rq *rq = rq_of(cfs_rq);
2967
2968 raw_spin_lock(&rq->lock);
2969 if (!cfs_rq_throttled(cfs_rq))
2970 goto next;
2971
2972 runtime = -cfs_rq->runtime_remaining + 1;
2973 if (runtime > remaining)
2974 runtime = remaining;
2975 remaining -= runtime;
2976
2977 cfs_rq->runtime_remaining += runtime;
2978 cfs_rq->runtime_expires = expires;
2979
2980 /* we check whether we're throttled above */
2981 if (cfs_rq->runtime_remaining > 0)
2982 unthrottle_cfs_rq(cfs_rq);
2983
2984next:
2985 raw_spin_unlock(&rq->lock);
2986
2987 if (!remaining)
2988 break;
2989 }
2990 rcu_read_unlock();
2991
2992 return remaining;
2993}
2994
58088ad0
PT
2995/*
2996 * Responsible for refilling a task_group's bandwidth and unthrottling its
2997 * cfs_rqs as appropriate. If there has been no activity within the last
2998 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2999 * used to track this state.
3000 */
3001static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3002{
671fd9da
PT
3003 u64 runtime, runtime_expires;
3004 int idle = 1, throttled;
58088ad0
PT
3005
3006 raw_spin_lock(&cfs_b->lock);
3007 /* no need to continue the timer with no bandwidth constraint */
3008 if (cfs_b->quota == RUNTIME_INF)
3009 goto out_unlock;
3010
671fd9da
PT
3011 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3012 /* idle depends on !throttled (for the case of a large deficit) */
3013 idle = cfs_b->idle && !throttled;
e8da1b18 3014 cfs_b->nr_periods += overrun;
671fd9da 3015
a9cf55b2
PT
3016 /* if we're going inactive then everything else can be deferred */
3017 if (idle)
3018 goto out_unlock;
3019
3020 __refill_cfs_bandwidth_runtime(cfs_b);
3021
671fd9da
PT
3022 if (!throttled) {
3023 /* mark as potentially idle for the upcoming period */
3024 cfs_b->idle = 1;
3025 goto out_unlock;
3026 }
3027
e8da1b18
NR
3028 /* account preceding periods in which throttling occurred */
3029 cfs_b->nr_throttled += overrun;
3030
671fd9da
PT
3031 /*
3032 * There are throttled entities so we must first use the new bandwidth
3033 * to unthrottle them before making it generally available. This
3034 * ensures that all existing debts will be paid before a new cfs_rq is
3035 * allowed to run.
3036 */
3037 runtime = cfs_b->runtime;
3038 runtime_expires = cfs_b->runtime_expires;
3039 cfs_b->runtime = 0;
3040
3041 /*
3042 * This check is repeated as we are holding onto the new bandwidth
3043 * while we unthrottle. This can potentially race with an unthrottled
3044 * group trying to acquire new bandwidth from the global pool.
3045 */
3046 while (throttled && runtime > 0) {
3047 raw_spin_unlock(&cfs_b->lock);
3048 /* we can't nest cfs_b->lock while distributing bandwidth */
3049 runtime = distribute_cfs_runtime(cfs_b, runtime,
3050 runtime_expires);
3051 raw_spin_lock(&cfs_b->lock);
3052
3053 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3054 }
58088ad0 3055
671fd9da
PT
3056 /* return (any) remaining runtime */
3057 cfs_b->runtime = runtime;
3058 /*
3059 * While we are ensured activity in the period following an
3060 * unthrottle, this also covers the case in which the new bandwidth is
3061 * insufficient to cover the existing bandwidth deficit. (Forcing the
3062 * timer to remain active while there are any throttled entities.)
3063 */
3064 cfs_b->idle = 0;
58088ad0
PT
3065out_unlock:
3066 if (idle)
3067 cfs_b->timer_active = 0;
3068 raw_spin_unlock(&cfs_b->lock);
3069
3070 return idle;
3071}
d3d9dc33 3072
d8b4986d
PT
3073/* a cfs_rq won't donate quota below this amount */
3074static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3075/* minimum remaining period time to redistribute slack quota */
3076static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3077/* how long we wait to gather additional slack before distributing */
3078static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3079
3080/* are we near the end of the current quota period? */
3081static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3082{
3083 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3084 u64 remaining;
3085
3086 /* if the call-back is running a quota refresh is already occurring */
3087 if (hrtimer_callback_running(refresh_timer))
3088 return 1;
3089
3090 /* is a quota refresh about to occur? */
3091 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3092 if (remaining < min_expire)
3093 return 1;
3094
3095 return 0;
3096}
3097
3098static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3099{
3100 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3101
3102 /* if there's a quota refresh soon don't bother with slack */
3103 if (runtime_refresh_within(cfs_b, min_left))
3104 return;
3105
3106 start_bandwidth_timer(&cfs_b->slack_timer,
3107 ns_to_ktime(cfs_bandwidth_slack_period));
3108}
3109
3110/* we know any runtime found here is valid as update_curr() precedes return */
3111static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3112{
3113 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3114 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3115
3116 if (slack_runtime <= 0)
3117 return;
3118
3119 raw_spin_lock(&cfs_b->lock);
3120 if (cfs_b->quota != RUNTIME_INF &&
3121 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3122 cfs_b->runtime += slack_runtime;
3123
3124 /* we are under rq->lock, defer unthrottling using a timer */
3125 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3126 !list_empty(&cfs_b->throttled_cfs_rq))
3127 start_cfs_slack_bandwidth(cfs_b);
3128 }
3129 raw_spin_unlock(&cfs_b->lock);
3130
3131 /* even if it's not valid for return we don't want to try again */
3132 cfs_rq->runtime_remaining -= slack_runtime;
3133}
3134
3135static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3136{
56f570e5
PT
3137 if (!cfs_bandwidth_used())
3138 return;
3139
fccfdc6f 3140 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3141 return;
3142
3143 __return_cfs_rq_runtime(cfs_rq);
3144}
3145
3146/*
3147 * This is done with a timer (instead of inline with bandwidth return) since
3148 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3149 */
3150static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3151{
3152 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3153 u64 expires;
3154
3155 /* confirm we're still not at a refresh boundary */
3156 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3157 return;
3158
3159 raw_spin_lock(&cfs_b->lock);
3160 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3161 runtime = cfs_b->runtime;
3162 cfs_b->runtime = 0;
3163 }
3164 expires = cfs_b->runtime_expires;
3165 raw_spin_unlock(&cfs_b->lock);
3166
3167 if (!runtime)
3168 return;
3169
3170 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3171
3172 raw_spin_lock(&cfs_b->lock);
3173 if (expires == cfs_b->runtime_expires)
3174 cfs_b->runtime = runtime;
3175 raw_spin_unlock(&cfs_b->lock);
3176}
3177
d3d9dc33
PT
3178/*
3179 * When a group wakes up we want to make sure that its quota is not already
3180 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3181 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3182 */
3183static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3184{
56f570e5
PT
3185 if (!cfs_bandwidth_used())
3186 return;
3187
d3d9dc33
PT
3188 /* an active group must be handled by the update_curr()->put() path */
3189 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3190 return;
3191
3192 /* ensure the group is not already throttled */
3193 if (cfs_rq_throttled(cfs_rq))
3194 return;
3195
3196 /* update runtime allocation */
3197 account_cfs_rq_runtime(cfs_rq, 0);
3198 if (cfs_rq->runtime_remaining <= 0)
3199 throttle_cfs_rq(cfs_rq);
3200}
3201
3202/* conditionally throttle active cfs_rq's from put_prev_entity() */
3203static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3204{
56f570e5
PT
3205 if (!cfs_bandwidth_used())
3206 return;
3207
d3d9dc33
PT
3208 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3209 return;
3210
3211 /*
3212 * it's possible for a throttled entity to be forced into a running
3213 * state (e.g. set_curr_task), in this case we're finished.
3214 */
3215 if (cfs_rq_throttled(cfs_rq))
3216 return;
3217
3218 throttle_cfs_rq(cfs_rq);
3219}
029632fb 3220
029632fb
PZ
3221static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3222{
3223 struct cfs_bandwidth *cfs_b =
3224 container_of(timer, struct cfs_bandwidth, slack_timer);
3225 do_sched_cfs_slack_timer(cfs_b);
3226
3227 return HRTIMER_NORESTART;
3228}
3229
3230static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3231{
3232 struct cfs_bandwidth *cfs_b =
3233 container_of(timer, struct cfs_bandwidth, period_timer);
3234 ktime_t now;
3235 int overrun;
3236 int idle = 0;
3237
3238 for (;;) {
3239 now = hrtimer_cb_get_time(timer);
3240 overrun = hrtimer_forward(timer, now, cfs_b->period);
3241
3242 if (!overrun)
3243 break;
3244
3245 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3246 }
3247
3248 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3249}
3250
3251void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3252{
3253 raw_spin_lock_init(&cfs_b->lock);
3254 cfs_b->runtime = 0;
3255 cfs_b->quota = RUNTIME_INF;
3256 cfs_b->period = ns_to_ktime(default_cfs_period());
3257
3258 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3259 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3260 cfs_b->period_timer.function = sched_cfs_period_timer;
3261 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3262 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3263}
3264
3265static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3266{
3267 cfs_rq->runtime_enabled = 0;
3268 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3269}
3270
3271/* requires cfs_b->lock, may release to reprogram timer */
3272void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3273{
3274 /*
3275 * The timer may be active because we're trying to set a new bandwidth
3276 * period or because we're racing with the tear-down path
3277 * (timer_active==0 becomes visible before the hrtimer call-back
3278 * terminates). In either case we ensure that it's re-programmed
3279 */
3280 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3281 raw_spin_unlock(&cfs_b->lock);
3282 /* ensure cfs_b->lock is available while we wait */
3283 hrtimer_cancel(&cfs_b->period_timer);
3284
3285 raw_spin_lock(&cfs_b->lock);
3286 /* if someone else restarted the timer then we're done */
3287 if (cfs_b->timer_active)
3288 return;
3289 }
3290
3291 cfs_b->timer_active = 1;
3292 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3293}
3294
3295static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3296{
3297 hrtimer_cancel(&cfs_b->period_timer);
3298 hrtimer_cancel(&cfs_b->slack_timer);
3299}
3300
38dc3348 3301static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3302{
3303 struct cfs_rq *cfs_rq;
3304
3305 for_each_leaf_cfs_rq(rq, cfs_rq) {
3306 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3307
3308 if (!cfs_rq->runtime_enabled)
3309 continue;
3310
3311 /*
3312 * clock_task is not advancing so we just need to make sure
3313 * there's some valid quota amount
3314 */
3315 cfs_rq->runtime_remaining = cfs_b->quota;
3316 if (cfs_rq_throttled(cfs_rq))
3317 unthrottle_cfs_rq(cfs_rq);
3318 }
3319}
3320
3321#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3322static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3323{
78becc27 3324 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3325}
3326
3327static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3328 unsigned long delta_exec) {}
d3d9dc33
PT
3329static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3330static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3331static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3332
3333static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3334{
3335 return 0;
3336}
64660c86
PT
3337
3338static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3339{
3340 return 0;
3341}
3342
3343static inline int throttled_lb_pair(struct task_group *tg,
3344 int src_cpu, int dest_cpu)
3345{
3346 return 0;
3347}
029632fb
PZ
3348
3349void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3350
3351#ifdef CONFIG_FAIR_GROUP_SCHED
3352static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3353#endif
3354
029632fb
PZ
3355static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3356{
3357 return NULL;
3358}
3359static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3360static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3361
3362#endif /* CONFIG_CFS_BANDWIDTH */
3363
bf0f6f24
IM
3364/**************************************************
3365 * CFS operations on tasks:
3366 */
3367
8f4d37ec
PZ
3368#ifdef CONFIG_SCHED_HRTICK
3369static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3370{
8f4d37ec
PZ
3371 struct sched_entity *se = &p->se;
3372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3373
3374 WARN_ON(task_rq(p) != rq);
3375
b39e66ea 3376 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3377 u64 slice = sched_slice(cfs_rq, se);
3378 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3379 s64 delta = slice - ran;
3380
3381 if (delta < 0) {
3382 if (rq->curr == p)
3383 resched_task(p);
3384 return;
3385 }
3386
3387 /*
3388 * Don't schedule slices shorter than 10000ns, that just
3389 * doesn't make sense. Rely on vruntime for fairness.
3390 */
31656519 3391 if (rq->curr != p)
157124c1 3392 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3393
31656519 3394 hrtick_start(rq, delta);
8f4d37ec
PZ
3395 }
3396}
a4c2f00f
PZ
3397
3398/*
3399 * called from enqueue/dequeue and updates the hrtick when the
3400 * current task is from our class and nr_running is low enough
3401 * to matter.
3402 */
3403static void hrtick_update(struct rq *rq)
3404{
3405 struct task_struct *curr = rq->curr;
3406
b39e66ea 3407 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3408 return;
3409
3410 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3411 hrtick_start_fair(rq, curr);
3412}
55e12e5e 3413#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3414static inline void
3415hrtick_start_fair(struct rq *rq, struct task_struct *p)
3416{
3417}
a4c2f00f
PZ
3418
3419static inline void hrtick_update(struct rq *rq)
3420{
3421}
8f4d37ec
PZ
3422#endif
3423
bf0f6f24
IM
3424/*
3425 * The enqueue_task method is called before nr_running is
3426 * increased. Here we update the fair scheduling stats and
3427 * then put the task into the rbtree:
3428 */
ea87bb78 3429static void
371fd7e7 3430enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3431{
3432 struct cfs_rq *cfs_rq;
62fb1851 3433 struct sched_entity *se = &p->se;
bf0f6f24
IM
3434
3435 for_each_sched_entity(se) {
62fb1851 3436 if (se->on_rq)
bf0f6f24
IM
3437 break;
3438 cfs_rq = cfs_rq_of(se);
88ec22d3 3439 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3440
3441 /*
3442 * end evaluation on encountering a throttled cfs_rq
3443 *
3444 * note: in the case of encountering a throttled cfs_rq we will
3445 * post the final h_nr_running increment below.
3446 */
3447 if (cfs_rq_throttled(cfs_rq))
3448 break;
953bfcd1 3449 cfs_rq->h_nr_running++;
85dac906 3450
88ec22d3 3451 flags = ENQUEUE_WAKEUP;
bf0f6f24 3452 }
8f4d37ec 3453
2069dd75 3454 for_each_sched_entity(se) {
0f317143 3455 cfs_rq = cfs_rq_of(se);
953bfcd1 3456 cfs_rq->h_nr_running++;
2069dd75 3457
85dac906
PT
3458 if (cfs_rq_throttled(cfs_rq))
3459 break;
3460
17bc14b7 3461 update_cfs_shares(cfs_rq);
9ee474f5 3462 update_entity_load_avg(se, 1);
2069dd75
PZ
3463 }
3464
18bf2805
BS
3465 if (!se) {
3466 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3467 inc_nr_running(rq);
18bf2805 3468 }
a4c2f00f 3469 hrtick_update(rq);
bf0f6f24
IM
3470}
3471
2f36825b
VP
3472static void set_next_buddy(struct sched_entity *se);
3473
bf0f6f24
IM
3474/*
3475 * The dequeue_task method is called before nr_running is
3476 * decreased. We remove the task from the rbtree and
3477 * update the fair scheduling stats:
3478 */
371fd7e7 3479static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3480{
3481 struct cfs_rq *cfs_rq;
62fb1851 3482 struct sched_entity *se = &p->se;
2f36825b 3483 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3484
3485 for_each_sched_entity(se) {
3486 cfs_rq = cfs_rq_of(se);
371fd7e7 3487 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3488
3489 /*
3490 * end evaluation on encountering a throttled cfs_rq
3491 *
3492 * note: in the case of encountering a throttled cfs_rq we will
3493 * post the final h_nr_running decrement below.
3494 */
3495 if (cfs_rq_throttled(cfs_rq))
3496 break;
953bfcd1 3497 cfs_rq->h_nr_running--;
2069dd75 3498
bf0f6f24 3499 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3500 if (cfs_rq->load.weight) {
3501 /*
3502 * Bias pick_next to pick a task from this cfs_rq, as
3503 * p is sleeping when it is within its sched_slice.
3504 */
3505 if (task_sleep && parent_entity(se))
3506 set_next_buddy(parent_entity(se));
9598c82d
PT
3507
3508 /* avoid re-evaluating load for this entity */
3509 se = parent_entity(se);
bf0f6f24 3510 break;
2f36825b 3511 }
371fd7e7 3512 flags |= DEQUEUE_SLEEP;
bf0f6f24 3513 }
8f4d37ec 3514
2069dd75 3515 for_each_sched_entity(se) {
0f317143 3516 cfs_rq = cfs_rq_of(se);
953bfcd1 3517 cfs_rq->h_nr_running--;
2069dd75 3518
85dac906
PT
3519 if (cfs_rq_throttled(cfs_rq))
3520 break;
3521
17bc14b7 3522 update_cfs_shares(cfs_rq);
9ee474f5 3523 update_entity_load_avg(se, 1);
2069dd75
PZ
3524 }
3525
18bf2805 3526 if (!se) {
85dac906 3527 dec_nr_running(rq);
18bf2805
BS
3528 update_rq_runnable_avg(rq, 1);
3529 }
a4c2f00f 3530 hrtick_update(rq);
bf0f6f24
IM
3531}
3532
e7693a36 3533#ifdef CONFIG_SMP
029632fb
PZ
3534/* Used instead of source_load when we know the type == 0 */
3535static unsigned long weighted_cpuload(const int cpu)
3536{
b92486cb 3537 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3538}
3539
3540/*
3541 * Return a low guess at the load of a migration-source cpu weighted
3542 * according to the scheduling class and "nice" value.
3543 *
3544 * We want to under-estimate the load of migration sources, to
3545 * balance conservatively.
3546 */
3547static unsigned long source_load(int cpu, int type)
3548{
3549 struct rq *rq = cpu_rq(cpu);
3550 unsigned long total = weighted_cpuload(cpu);
3551
3552 if (type == 0 || !sched_feat(LB_BIAS))
3553 return total;
3554
3555 return min(rq->cpu_load[type-1], total);
3556}
3557
3558/*
3559 * Return a high guess at the load of a migration-target cpu weighted
3560 * according to the scheduling class and "nice" value.
3561 */
3562static unsigned long target_load(int cpu, int type)
3563{
3564 struct rq *rq = cpu_rq(cpu);
3565 unsigned long total = weighted_cpuload(cpu);
3566
3567 if (type == 0 || !sched_feat(LB_BIAS))
3568 return total;
3569
3570 return max(rq->cpu_load[type-1], total);
3571}
3572
3573static unsigned long power_of(int cpu)
3574{
3575 return cpu_rq(cpu)->cpu_power;
3576}
3577
3578static unsigned long cpu_avg_load_per_task(int cpu)
3579{
3580 struct rq *rq = cpu_rq(cpu);
3581 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3582 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3583
3584 if (nr_running)
b92486cb 3585 return load_avg / nr_running;
029632fb
PZ
3586
3587 return 0;
3588}
3589
62470419
MW
3590static void record_wakee(struct task_struct *p)
3591{
3592 /*
3593 * Rough decay (wiping) for cost saving, don't worry
3594 * about the boundary, really active task won't care
3595 * about the loss.
3596 */
3597 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3598 current->wakee_flips = 0;
3599 current->wakee_flip_decay_ts = jiffies;
3600 }
3601
3602 if (current->last_wakee != p) {
3603 current->last_wakee = p;
3604 current->wakee_flips++;
3605 }
3606}
098fb9db 3607
74f8e4b2 3608static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3609{
3610 struct sched_entity *se = &p->se;
3611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3612 u64 min_vruntime;
3613
3614#ifndef CONFIG_64BIT
3615 u64 min_vruntime_copy;
88ec22d3 3616
3fe1698b
PZ
3617 do {
3618 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3619 smp_rmb();
3620 min_vruntime = cfs_rq->min_vruntime;
3621 } while (min_vruntime != min_vruntime_copy);
3622#else
3623 min_vruntime = cfs_rq->min_vruntime;
3624#endif
88ec22d3 3625
3fe1698b 3626 se->vruntime -= min_vruntime;
62470419 3627 record_wakee(p);
88ec22d3
PZ
3628}
3629
bb3469ac 3630#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3631/*
3632 * effective_load() calculates the load change as seen from the root_task_group
3633 *
3634 * Adding load to a group doesn't make a group heavier, but can cause movement
3635 * of group shares between cpus. Assuming the shares were perfectly aligned one
3636 * can calculate the shift in shares.
cf5f0acf
PZ
3637 *
3638 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3639 * on this @cpu and results in a total addition (subtraction) of @wg to the
3640 * total group weight.
3641 *
3642 * Given a runqueue weight distribution (rw_i) we can compute a shares
3643 * distribution (s_i) using:
3644 *
3645 * s_i = rw_i / \Sum rw_j (1)
3646 *
3647 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3648 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3649 * shares distribution (s_i):
3650 *
3651 * rw_i = { 2, 4, 1, 0 }
3652 * s_i = { 2/7, 4/7, 1/7, 0 }
3653 *
3654 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3655 * task used to run on and the CPU the waker is running on), we need to
3656 * compute the effect of waking a task on either CPU and, in case of a sync
3657 * wakeup, compute the effect of the current task going to sleep.
3658 *
3659 * So for a change of @wl to the local @cpu with an overall group weight change
3660 * of @wl we can compute the new shares distribution (s'_i) using:
3661 *
3662 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3663 *
3664 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3665 * differences in waking a task to CPU 0. The additional task changes the
3666 * weight and shares distributions like:
3667 *
3668 * rw'_i = { 3, 4, 1, 0 }
3669 * s'_i = { 3/8, 4/8, 1/8, 0 }
3670 *
3671 * We can then compute the difference in effective weight by using:
3672 *
3673 * dw_i = S * (s'_i - s_i) (3)
3674 *
3675 * Where 'S' is the group weight as seen by its parent.
3676 *
3677 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3678 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3679 * 4/7) times the weight of the group.
f5bfb7d9 3680 */
2069dd75 3681static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3682{
4be9daaa 3683 struct sched_entity *se = tg->se[cpu];
f1d239f7 3684
58d081b5 3685 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3686 return wl;
3687
4be9daaa 3688 for_each_sched_entity(se) {
cf5f0acf 3689 long w, W;
4be9daaa 3690
977dda7c 3691 tg = se->my_q->tg;
bb3469ac 3692
cf5f0acf
PZ
3693 /*
3694 * W = @wg + \Sum rw_j
3695 */
3696 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3697
cf5f0acf
PZ
3698 /*
3699 * w = rw_i + @wl
3700 */
3701 w = se->my_q->load.weight + wl;
940959e9 3702
cf5f0acf
PZ
3703 /*
3704 * wl = S * s'_i; see (2)
3705 */
3706 if (W > 0 && w < W)
3707 wl = (w * tg->shares) / W;
977dda7c
PT
3708 else
3709 wl = tg->shares;
940959e9 3710
cf5f0acf
PZ
3711 /*
3712 * Per the above, wl is the new se->load.weight value; since
3713 * those are clipped to [MIN_SHARES, ...) do so now. See
3714 * calc_cfs_shares().
3715 */
977dda7c
PT
3716 if (wl < MIN_SHARES)
3717 wl = MIN_SHARES;
cf5f0acf
PZ
3718
3719 /*
3720 * wl = dw_i = S * (s'_i - s_i); see (3)
3721 */
977dda7c 3722 wl -= se->load.weight;
cf5f0acf
PZ
3723
3724 /*
3725 * Recursively apply this logic to all parent groups to compute
3726 * the final effective load change on the root group. Since
3727 * only the @tg group gets extra weight, all parent groups can
3728 * only redistribute existing shares. @wl is the shift in shares
3729 * resulting from this level per the above.
3730 */
4be9daaa 3731 wg = 0;
4be9daaa 3732 }
bb3469ac 3733
4be9daaa 3734 return wl;
bb3469ac
PZ
3735}
3736#else
4be9daaa 3737
58d081b5 3738static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3739{
83378269 3740 return wl;
bb3469ac 3741}
4be9daaa 3742
bb3469ac
PZ
3743#endif
3744
62470419
MW
3745static int wake_wide(struct task_struct *p)
3746{
7d9ffa89 3747 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3748
3749 /*
3750 * Yeah, it's the switching-frequency, could means many wakee or
3751 * rapidly switch, use factor here will just help to automatically
3752 * adjust the loose-degree, so bigger node will lead to more pull.
3753 */
3754 if (p->wakee_flips > factor) {
3755 /*
3756 * wakee is somewhat hot, it needs certain amount of cpu
3757 * resource, so if waker is far more hot, prefer to leave
3758 * it alone.
3759 */
3760 if (current->wakee_flips > (factor * p->wakee_flips))
3761 return 1;
3762 }
3763
3764 return 0;
3765}
3766
c88d5910 3767static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3768{
e37b6a7b 3769 s64 this_load, load;
c88d5910 3770 int idx, this_cpu, prev_cpu;
098fb9db 3771 unsigned long tl_per_task;
c88d5910 3772 struct task_group *tg;
83378269 3773 unsigned long weight;
b3137bc8 3774 int balanced;
098fb9db 3775
62470419
MW
3776 /*
3777 * If we wake multiple tasks be careful to not bounce
3778 * ourselves around too much.
3779 */
3780 if (wake_wide(p))
3781 return 0;
3782
c88d5910
PZ
3783 idx = sd->wake_idx;
3784 this_cpu = smp_processor_id();
3785 prev_cpu = task_cpu(p);
3786 load = source_load(prev_cpu, idx);
3787 this_load = target_load(this_cpu, idx);
098fb9db 3788
b3137bc8
MG
3789 /*
3790 * If sync wakeup then subtract the (maximum possible)
3791 * effect of the currently running task from the load
3792 * of the current CPU:
3793 */
83378269
PZ
3794 if (sync) {
3795 tg = task_group(current);
3796 weight = current->se.load.weight;
3797
c88d5910 3798 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3799 load += effective_load(tg, prev_cpu, 0, -weight);
3800 }
b3137bc8 3801
83378269
PZ
3802 tg = task_group(p);
3803 weight = p->se.load.weight;
b3137bc8 3804
71a29aa7
PZ
3805 /*
3806 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3807 * due to the sync cause above having dropped this_load to 0, we'll
3808 * always have an imbalance, but there's really nothing you can do
3809 * about that, so that's good too.
71a29aa7
PZ
3810 *
3811 * Otherwise check if either cpus are near enough in load to allow this
3812 * task to be woken on this_cpu.
3813 */
e37b6a7b
PT
3814 if (this_load > 0) {
3815 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3816
3817 this_eff_load = 100;
3818 this_eff_load *= power_of(prev_cpu);
3819 this_eff_load *= this_load +
3820 effective_load(tg, this_cpu, weight, weight);
3821
3822 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3823 prev_eff_load *= power_of(this_cpu);
3824 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3825
3826 balanced = this_eff_load <= prev_eff_load;
3827 } else
3828 balanced = true;
b3137bc8 3829
098fb9db 3830 /*
4ae7d5ce
IM
3831 * If the currently running task will sleep within
3832 * a reasonable amount of time then attract this newly
3833 * woken task:
098fb9db 3834 */
2fb7635c
PZ
3835 if (sync && balanced)
3836 return 1;
098fb9db 3837
41acab88 3838 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3839 tl_per_task = cpu_avg_load_per_task(this_cpu);
3840
c88d5910
PZ
3841 if (balanced ||
3842 (this_load <= load &&
3843 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3844 /*
3845 * This domain has SD_WAKE_AFFINE and
3846 * p is cache cold in this domain, and
3847 * there is no bad imbalance.
3848 */
c88d5910 3849 schedstat_inc(sd, ttwu_move_affine);
41acab88 3850 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3851
3852 return 1;
3853 }
3854 return 0;
3855}
3856
aaee1203
PZ
3857/*
3858 * find_idlest_group finds and returns the least busy CPU group within the
3859 * domain.
3860 */
3861static struct sched_group *
78e7ed53 3862find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3863 int this_cpu, int load_idx)
e7693a36 3864{
b3bd3de6 3865 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3866 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3867 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3868
aaee1203
PZ
3869 do {
3870 unsigned long load, avg_load;
3871 int local_group;
3872 int i;
e7693a36 3873
aaee1203
PZ
3874 /* Skip over this group if it has no CPUs allowed */
3875 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3876 tsk_cpus_allowed(p)))
aaee1203
PZ
3877 continue;
3878
3879 local_group = cpumask_test_cpu(this_cpu,
3880 sched_group_cpus(group));
3881
3882 /* Tally up the load of all CPUs in the group */
3883 avg_load = 0;
3884
3885 for_each_cpu(i, sched_group_cpus(group)) {
3886 /* Bias balancing toward cpus of our domain */
3887 if (local_group)
3888 load = source_load(i, load_idx);
3889 else
3890 load = target_load(i, load_idx);
3891
3892 avg_load += load;
3893 }
3894
3895 /* Adjust by relative CPU power of the group */
9c3f75cb 3896 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3897
3898 if (local_group) {
3899 this_load = avg_load;
aaee1203
PZ
3900 } else if (avg_load < min_load) {
3901 min_load = avg_load;
3902 idlest = group;
3903 }
3904 } while (group = group->next, group != sd->groups);
3905
3906 if (!idlest || 100*this_load < imbalance*min_load)
3907 return NULL;
3908 return idlest;
3909}
3910
3911/*
3912 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3913 */
3914static int
3915find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3916{
3917 unsigned long load, min_load = ULONG_MAX;
3918 int idlest = -1;
3919 int i;
3920
3921 /* Traverse only the allowed CPUs */
fa17b507 3922 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3923 load = weighted_cpuload(i);
3924
3925 if (load < min_load || (load == min_load && i == this_cpu)) {
3926 min_load = load;
3927 idlest = i;
e7693a36
GH
3928 }
3929 }
3930
aaee1203
PZ
3931 return idlest;
3932}
e7693a36 3933
a50bde51
PZ
3934/*
3935 * Try and locate an idle CPU in the sched_domain.
3936 */
99bd5e2f 3937static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3938{
99bd5e2f 3939 struct sched_domain *sd;
37407ea7 3940 struct sched_group *sg;
e0a79f52 3941 int i = task_cpu(p);
a50bde51 3942
e0a79f52
MG
3943 if (idle_cpu(target))
3944 return target;
99bd5e2f
SS
3945
3946 /*
e0a79f52 3947 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3948 */
e0a79f52
MG
3949 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3950 return i;
a50bde51
PZ
3951
3952 /*
37407ea7 3953 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3954 */
518cd623 3955 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3956 for_each_lower_domain(sd) {
37407ea7
LT
3957 sg = sd->groups;
3958 do {
3959 if (!cpumask_intersects(sched_group_cpus(sg),
3960 tsk_cpus_allowed(p)))
3961 goto next;
3962
3963 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3964 if (i == target || !idle_cpu(i))
37407ea7
LT
3965 goto next;
3966 }
970e1789 3967
37407ea7
LT
3968 target = cpumask_first_and(sched_group_cpus(sg),
3969 tsk_cpus_allowed(p));
3970 goto done;
3971next:
3972 sg = sg->next;
3973 } while (sg != sd->groups);
3974 }
3975done:
a50bde51
PZ
3976 return target;
3977}
3978
aaee1203
PZ
3979/*
3980 * sched_balance_self: balance the current task (running on cpu) in domains
3981 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3982 * SD_BALANCE_EXEC.
3983 *
3984 * Balance, ie. select the least loaded group.
3985 *
3986 * Returns the target CPU number, or the same CPU if no balancing is needed.
3987 *
3988 * preempt must be disabled.
3989 */
0017d735 3990static int
ac66f547 3991select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 3992{
29cd8bae 3993 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 3994 int cpu = smp_processor_id();
c88d5910 3995 int new_cpu = cpu;
99bd5e2f 3996 int want_affine = 0;
5158f4e4 3997 int sync = wake_flags & WF_SYNC;
c88d5910 3998
29baa747 3999 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4000 return prev_cpu;
4001
0763a660 4002 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4003 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4004 want_affine = 1;
4005 new_cpu = prev_cpu;
4006 }
aaee1203 4007
dce840a0 4008 rcu_read_lock();
aaee1203 4009 for_each_domain(cpu, tmp) {
e4f42888
PZ
4010 if (!(tmp->flags & SD_LOAD_BALANCE))
4011 continue;
4012
fe3bcfe1 4013 /*
99bd5e2f
SS
4014 * If both cpu and prev_cpu are part of this domain,
4015 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4016 */
99bd5e2f
SS
4017 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4018 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4019 affine_sd = tmp;
29cd8bae 4020 break;
f03542a7 4021 }
29cd8bae 4022
f03542a7 4023 if (tmp->flags & sd_flag)
29cd8bae
PZ
4024 sd = tmp;
4025 }
4026
8b911acd 4027 if (affine_sd) {
f03542a7 4028 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4029 prev_cpu = cpu;
4030
4031 new_cpu = select_idle_sibling(p, prev_cpu);
4032 goto unlock;
8b911acd 4033 }
e7693a36 4034
aaee1203 4035 while (sd) {
5158f4e4 4036 int load_idx = sd->forkexec_idx;
aaee1203 4037 struct sched_group *group;
c88d5910 4038 int weight;
098fb9db 4039
0763a660 4040 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4041 sd = sd->child;
4042 continue;
4043 }
098fb9db 4044
5158f4e4
PZ
4045 if (sd_flag & SD_BALANCE_WAKE)
4046 load_idx = sd->wake_idx;
098fb9db 4047
5158f4e4 4048 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4049 if (!group) {
4050 sd = sd->child;
4051 continue;
4052 }
4ae7d5ce 4053
d7c33c49 4054 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4055 if (new_cpu == -1 || new_cpu == cpu) {
4056 /* Now try balancing at a lower domain level of cpu */
4057 sd = sd->child;
4058 continue;
e7693a36 4059 }
aaee1203
PZ
4060
4061 /* Now try balancing at a lower domain level of new_cpu */
4062 cpu = new_cpu;
669c55e9 4063 weight = sd->span_weight;
aaee1203
PZ
4064 sd = NULL;
4065 for_each_domain(cpu, tmp) {
669c55e9 4066 if (weight <= tmp->span_weight)
aaee1203 4067 break;
0763a660 4068 if (tmp->flags & sd_flag)
aaee1203
PZ
4069 sd = tmp;
4070 }
4071 /* while loop will break here if sd == NULL */
e7693a36 4072 }
dce840a0
PZ
4073unlock:
4074 rcu_read_unlock();
e7693a36 4075
c88d5910 4076 return new_cpu;
e7693a36 4077}
0a74bef8
PT
4078
4079/*
4080 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4081 * cfs_rq_of(p) references at time of call are still valid and identify the
4082 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4083 * other assumptions, including the state of rq->lock, should be made.
4084 */
4085static void
4086migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4087{
aff3e498
PT
4088 struct sched_entity *se = &p->se;
4089 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4090
4091 /*
4092 * Load tracking: accumulate removed load so that it can be processed
4093 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4094 * to blocked load iff they have a positive decay-count. It can never
4095 * be negative here since on-rq tasks have decay-count == 0.
4096 */
4097 if (se->avg.decay_count) {
4098 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4099 atomic_long_add(se->avg.load_avg_contrib,
4100 &cfs_rq->removed_load);
aff3e498 4101 }
0a74bef8 4102}
e7693a36
GH
4103#endif /* CONFIG_SMP */
4104
e52fb7c0
PZ
4105static unsigned long
4106wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4107{
4108 unsigned long gran = sysctl_sched_wakeup_granularity;
4109
4110 /*
e52fb7c0
PZ
4111 * Since its curr running now, convert the gran from real-time
4112 * to virtual-time in his units.
13814d42
MG
4113 *
4114 * By using 'se' instead of 'curr' we penalize light tasks, so
4115 * they get preempted easier. That is, if 'se' < 'curr' then
4116 * the resulting gran will be larger, therefore penalizing the
4117 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4118 * be smaller, again penalizing the lighter task.
4119 *
4120 * This is especially important for buddies when the leftmost
4121 * task is higher priority than the buddy.
0bbd3336 4122 */
f4ad9bd2 4123 return calc_delta_fair(gran, se);
0bbd3336
PZ
4124}
4125
464b7527
PZ
4126/*
4127 * Should 'se' preempt 'curr'.
4128 *
4129 * |s1
4130 * |s2
4131 * |s3
4132 * g
4133 * |<--->|c
4134 *
4135 * w(c, s1) = -1
4136 * w(c, s2) = 0
4137 * w(c, s3) = 1
4138 *
4139 */
4140static int
4141wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4142{
4143 s64 gran, vdiff = curr->vruntime - se->vruntime;
4144
4145 if (vdiff <= 0)
4146 return -1;
4147
e52fb7c0 4148 gran = wakeup_gran(curr, se);
464b7527
PZ
4149 if (vdiff > gran)
4150 return 1;
4151
4152 return 0;
4153}
4154
02479099
PZ
4155static void set_last_buddy(struct sched_entity *se)
4156{
69c80f3e
VP
4157 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4158 return;
4159
4160 for_each_sched_entity(se)
4161 cfs_rq_of(se)->last = se;
02479099
PZ
4162}
4163
4164static void set_next_buddy(struct sched_entity *se)
4165{
69c80f3e
VP
4166 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4167 return;
4168
4169 for_each_sched_entity(se)
4170 cfs_rq_of(se)->next = se;
02479099
PZ
4171}
4172
ac53db59
RR
4173static void set_skip_buddy(struct sched_entity *se)
4174{
69c80f3e
VP
4175 for_each_sched_entity(se)
4176 cfs_rq_of(se)->skip = se;
ac53db59
RR
4177}
4178
bf0f6f24
IM
4179/*
4180 * Preempt the current task with a newly woken task if needed:
4181 */
5a9b86f6 4182static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4183{
4184 struct task_struct *curr = rq->curr;
8651a86c 4185 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4186 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4187 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4188 int next_buddy_marked = 0;
bf0f6f24 4189
4ae7d5ce
IM
4190 if (unlikely(se == pse))
4191 return;
4192
5238cdd3 4193 /*
ddcdf6e7 4194 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4195 * unconditionally check_prempt_curr() after an enqueue (which may have
4196 * lead to a throttle). This both saves work and prevents false
4197 * next-buddy nomination below.
4198 */
4199 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4200 return;
4201
2f36825b 4202 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4203 set_next_buddy(pse);
2f36825b
VP
4204 next_buddy_marked = 1;
4205 }
57fdc26d 4206
aec0a514
BR
4207 /*
4208 * We can come here with TIF_NEED_RESCHED already set from new task
4209 * wake up path.
5238cdd3
PT
4210 *
4211 * Note: this also catches the edge-case of curr being in a throttled
4212 * group (e.g. via set_curr_task), since update_curr() (in the
4213 * enqueue of curr) will have resulted in resched being set. This
4214 * prevents us from potentially nominating it as a false LAST_BUDDY
4215 * below.
aec0a514
BR
4216 */
4217 if (test_tsk_need_resched(curr))
4218 return;
4219
a2f5c9ab
DH
4220 /* Idle tasks are by definition preempted by non-idle tasks. */
4221 if (unlikely(curr->policy == SCHED_IDLE) &&
4222 likely(p->policy != SCHED_IDLE))
4223 goto preempt;
4224
91c234b4 4225 /*
a2f5c9ab
DH
4226 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4227 * is driven by the tick):
91c234b4 4228 */
8ed92e51 4229 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4230 return;
bf0f6f24 4231
464b7527 4232 find_matching_se(&se, &pse);
9bbd7374 4233 update_curr(cfs_rq_of(se));
002f128b 4234 BUG_ON(!pse);
2f36825b
VP
4235 if (wakeup_preempt_entity(se, pse) == 1) {
4236 /*
4237 * Bias pick_next to pick the sched entity that is
4238 * triggering this preemption.
4239 */
4240 if (!next_buddy_marked)
4241 set_next_buddy(pse);
3a7e73a2 4242 goto preempt;
2f36825b 4243 }
464b7527 4244
3a7e73a2 4245 return;
a65ac745 4246
3a7e73a2
PZ
4247preempt:
4248 resched_task(curr);
4249 /*
4250 * Only set the backward buddy when the current task is still
4251 * on the rq. This can happen when a wakeup gets interleaved
4252 * with schedule on the ->pre_schedule() or idle_balance()
4253 * point, either of which can * drop the rq lock.
4254 *
4255 * Also, during early boot the idle thread is in the fair class,
4256 * for obvious reasons its a bad idea to schedule back to it.
4257 */
4258 if (unlikely(!se->on_rq || curr == rq->idle))
4259 return;
4260
4261 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4262 set_last_buddy(se);
bf0f6f24
IM
4263}
4264
fb8d4724 4265static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4266{
8f4d37ec 4267 struct task_struct *p;
bf0f6f24
IM
4268 struct cfs_rq *cfs_rq = &rq->cfs;
4269 struct sched_entity *se;
4270
36ace27e 4271 if (!cfs_rq->nr_running)
bf0f6f24
IM
4272 return NULL;
4273
4274 do {
9948f4b2 4275 se = pick_next_entity(cfs_rq);
f4b6755f 4276 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4277 cfs_rq = group_cfs_rq(se);
4278 } while (cfs_rq);
4279
8f4d37ec 4280 p = task_of(se);
b39e66ea
MG
4281 if (hrtick_enabled(rq))
4282 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4283
4284 return p;
bf0f6f24
IM
4285}
4286
4287/*
4288 * Account for a descheduled task:
4289 */
31ee529c 4290static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4291{
4292 struct sched_entity *se = &prev->se;
4293 struct cfs_rq *cfs_rq;
4294
4295 for_each_sched_entity(se) {
4296 cfs_rq = cfs_rq_of(se);
ab6cde26 4297 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4298 }
4299}
4300
ac53db59
RR
4301/*
4302 * sched_yield() is very simple
4303 *
4304 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4305 */
4306static void yield_task_fair(struct rq *rq)
4307{
4308 struct task_struct *curr = rq->curr;
4309 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4310 struct sched_entity *se = &curr->se;
4311
4312 /*
4313 * Are we the only task in the tree?
4314 */
4315 if (unlikely(rq->nr_running == 1))
4316 return;
4317
4318 clear_buddies(cfs_rq, se);
4319
4320 if (curr->policy != SCHED_BATCH) {
4321 update_rq_clock(rq);
4322 /*
4323 * Update run-time statistics of the 'current'.
4324 */
4325 update_curr(cfs_rq);
916671c0
MG
4326 /*
4327 * Tell update_rq_clock() that we've just updated,
4328 * so we don't do microscopic update in schedule()
4329 * and double the fastpath cost.
4330 */
4331 rq->skip_clock_update = 1;
ac53db59
RR
4332 }
4333
4334 set_skip_buddy(se);
4335}
4336
d95f4122
MG
4337static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4338{
4339 struct sched_entity *se = &p->se;
4340
5238cdd3
PT
4341 /* throttled hierarchies are not runnable */
4342 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4343 return false;
4344
4345 /* Tell the scheduler that we'd really like pse to run next. */
4346 set_next_buddy(se);
4347
d95f4122
MG
4348 yield_task_fair(rq);
4349
4350 return true;
4351}
4352
681f3e68 4353#ifdef CONFIG_SMP
bf0f6f24 4354/**************************************************
e9c84cb8
PZ
4355 * Fair scheduling class load-balancing methods.
4356 *
4357 * BASICS
4358 *
4359 * The purpose of load-balancing is to achieve the same basic fairness the
4360 * per-cpu scheduler provides, namely provide a proportional amount of compute
4361 * time to each task. This is expressed in the following equation:
4362 *
4363 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4364 *
4365 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4366 * W_i,0 is defined as:
4367 *
4368 * W_i,0 = \Sum_j w_i,j (2)
4369 *
4370 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4371 * is derived from the nice value as per prio_to_weight[].
4372 *
4373 * The weight average is an exponential decay average of the instantaneous
4374 * weight:
4375 *
4376 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4377 *
4378 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4379 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4380 * can also include other factors [XXX].
4381 *
4382 * To achieve this balance we define a measure of imbalance which follows
4383 * directly from (1):
4384 *
4385 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4386 *
4387 * We them move tasks around to minimize the imbalance. In the continuous
4388 * function space it is obvious this converges, in the discrete case we get
4389 * a few fun cases generally called infeasible weight scenarios.
4390 *
4391 * [XXX expand on:
4392 * - infeasible weights;
4393 * - local vs global optima in the discrete case. ]
4394 *
4395 *
4396 * SCHED DOMAINS
4397 *
4398 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4399 * for all i,j solution, we create a tree of cpus that follows the hardware
4400 * topology where each level pairs two lower groups (or better). This results
4401 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4402 * tree to only the first of the previous level and we decrease the frequency
4403 * of load-balance at each level inv. proportional to the number of cpus in
4404 * the groups.
4405 *
4406 * This yields:
4407 *
4408 * log_2 n 1 n
4409 * \Sum { --- * --- * 2^i } = O(n) (5)
4410 * i = 0 2^i 2^i
4411 * `- size of each group
4412 * | | `- number of cpus doing load-balance
4413 * | `- freq
4414 * `- sum over all levels
4415 *
4416 * Coupled with a limit on how many tasks we can migrate every balance pass,
4417 * this makes (5) the runtime complexity of the balancer.
4418 *
4419 * An important property here is that each CPU is still (indirectly) connected
4420 * to every other cpu in at most O(log n) steps:
4421 *
4422 * The adjacency matrix of the resulting graph is given by:
4423 *
4424 * log_2 n
4425 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4426 * k = 0
4427 *
4428 * And you'll find that:
4429 *
4430 * A^(log_2 n)_i,j != 0 for all i,j (7)
4431 *
4432 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4433 * The task movement gives a factor of O(m), giving a convergence complexity
4434 * of:
4435 *
4436 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4437 *
4438 *
4439 * WORK CONSERVING
4440 *
4441 * In order to avoid CPUs going idle while there's still work to do, new idle
4442 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4443 * tree itself instead of relying on other CPUs to bring it work.
4444 *
4445 * This adds some complexity to both (5) and (8) but it reduces the total idle
4446 * time.
4447 *
4448 * [XXX more?]
4449 *
4450 *
4451 * CGROUPS
4452 *
4453 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4454 *
4455 * s_k,i
4456 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4457 * S_k
4458 *
4459 * Where
4460 *
4461 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4462 *
4463 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4464 *
4465 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4466 * property.
4467 *
4468 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4469 * rewrite all of this once again.]
4470 */
bf0f6f24 4471
ed387b78
HS
4472static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4473
ddcdf6e7 4474#define LBF_ALL_PINNED 0x01
367456c7 4475#define LBF_NEED_BREAK 0x02
6263322c
PZ
4476#define LBF_DST_PINNED 0x04
4477#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4478
4479struct lb_env {
4480 struct sched_domain *sd;
4481
ddcdf6e7 4482 struct rq *src_rq;
85c1e7da 4483 int src_cpu;
ddcdf6e7
PZ
4484
4485 int dst_cpu;
4486 struct rq *dst_rq;
4487
88b8dac0
SV
4488 struct cpumask *dst_grpmask;
4489 int new_dst_cpu;
ddcdf6e7 4490 enum cpu_idle_type idle;
bd939f45 4491 long imbalance;
b9403130
MW
4492 /* The set of CPUs under consideration for load-balancing */
4493 struct cpumask *cpus;
4494
ddcdf6e7 4495 unsigned int flags;
367456c7
PZ
4496
4497 unsigned int loop;
4498 unsigned int loop_break;
4499 unsigned int loop_max;
ddcdf6e7
PZ
4500};
4501
1e3c88bd 4502/*
ddcdf6e7 4503 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4504 * Both runqueues must be locked.
4505 */
ddcdf6e7 4506static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4507{
ddcdf6e7
PZ
4508 deactivate_task(env->src_rq, p, 0);
4509 set_task_cpu(p, env->dst_cpu);
4510 activate_task(env->dst_rq, p, 0);
4511 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4512#ifdef CONFIG_NUMA_BALANCING
4513 if (p->numa_preferred_nid != -1) {
4514 int src_nid = cpu_to_node(env->src_cpu);
4515 int dst_nid = cpu_to_node(env->dst_cpu);
4516
4517 /*
4518 * If the load balancer has moved the task then limit
4519 * migrations from taking place in the short term in
4520 * case this is a short-lived migration.
4521 */
4522 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4523 p->numa_migrate_seq = 0;
4524 }
4525#endif
1e3c88bd
PZ
4526}
4527
029632fb
PZ
4528/*
4529 * Is this task likely cache-hot:
4530 */
4531static int
4532task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4533{
4534 s64 delta;
4535
4536 if (p->sched_class != &fair_sched_class)
4537 return 0;
4538
4539 if (unlikely(p->policy == SCHED_IDLE))
4540 return 0;
4541
4542 /*
4543 * Buddy candidates are cache hot:
4544 */
4545 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4546 (&p->se == cfs_rq_of(&p->se)->next ||
4547 &p->se == cfs_rq_of(&p->se)->last))
4548 return 1;
4549
4550 if (sysctl_sched_migration_cost == -1)
4551 return 1;
4552 if (sysctl_sched_migration_cost == 0)
4553 return 0;
4554
4555 delta = now - p->se.exec_start;
4556
4557 return delta < (s64)sysctl_sched_migration_cost;
4558}
4559
3a7053b3
MG
4560#ifdef CONFIG_NUMA_BALANCING
4561/* Returns true if the destination node has incurred more faults */
4562static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4563{
4564 int src_nid, dst_nid;
4565
4566 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4567 !(env->sd->flags & SD_NUMA)) {
4568 return false;
4569 }
4570
4571 src_nid = cpu_to_node(env->src_cpu);
4572 dst_nid = cpu_to_node(env->dst_cpu);
4573
4574 if (src_nid == dst_nid ||
4575 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4576 return false;
4577
4578 if (dst_nid == p->numa_preferred_nid ||
ac8e895b 4579 task_faults(p, dst_nid) > task_faults(p, src_nid))
3a7053b3
MG
4580 return true;
4581
4582 return false;
4583}
7a0f3083
MG
4584
4585
4586static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4587{
4588 int src_nid, dst_nid;
4589
4590 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4591 return false;
4592
4593 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4594 return false;
4595
4596 src_nid = cpu_to_node(env->src_cpu);
4597 dst_nid = cpu_to_node(env->dst_cpu);
4598
4599 if (src_nid == dst_nid ||
4600 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4601 return false;
4602
ac8e895b 4603 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
7a0f3083
MG
4604 return true;
4605
4606 return false;
4607}
4608
3a7053b3
MG
4609#else
4610static inline bool migrate_improves_locality(struct task_struct *p,
4611 struct lb_env *env)
4612{
4613 return false;
4614}
7a0f3083
MG
4615
4616static inline bool migrate_degrades_locality(struct task_struct *p,
4617 struct lb_env *env)
4618{
4619 return false;
4620}
3a7053b3
MG
4621#endif
4622
1e3c88bd
PZ
4623/*
4624 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4625 */
4626static
8e45cb54 4627int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4628{
4629 int tsk_cache_hot = 0;
4630 /*
4631 * We do not migrate tasks that are:
d3198084 4632 * 1) throttled_lb_pair, or
1e3c88bd 4633 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4634 * 3) running (obviously), or
4635 * 4) are cache-hot on their current CPU.
1e3c88bd 4636 */
d3198084
JK
4637 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4638 return 0;
4639
ddcdf6e7 4640 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4641 int cpu;
88b8dac0 4642
41acab88 4643 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4644
6263322c
PZ
4645 env->flags |= LBF_SOME_PINNED;
4646
88b8dac0
SV
4647 /*
4648 * Remember if this task can be migrated to any other cpu in
4649 * our sched_group. We may want to revisit it if we couldn't
4650 * meet load balance goals by pulling other tasks on src_cpu.
4651 *
4652 * Also avoid computing new_dst_cpu if we have already computed
4653 * one in current iteration.
4654 */
6263322c 4655 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4656 return 0;
4657
e02e60c1
JK
4658 /* Prevent to re-select dst_cpu via env's cpus */
4659 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4660 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4661 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4662 env->new_dst_cpu = cpu;
4663 break;
4664 }
88b8dac0 4665 }
e02e60c1 4666
1e3c88bd
PZ
4667 return 0;
4668 }
88b8dac0
SV
4669
4670 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4671 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4672
ddcdf6e7 4673 if (task_running(env->src_rq, p)) {
41acab88 4674 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4675 return 0;
4676 }
4677
4678 /*
4679 * Aggressive migration if:
3a7053b3
MG
4680 * 1) destination numa is preferred
4681 * 2) task is cache cold, or
4682 * 3) too many balance attempts have failed.
1e3c88bd 4683 */
78becc27 4684 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4685 if (!tsk_cache_hot)
4686 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4687
4688 if (migrate_improves_locality(p, env)) {
4689#ifdef CONFIG_SCHEDSTATS
4690 if (tsk_cache_hot) {
4691 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4692 schedstat_inc(p, se.statistics.nr_forced_migrations);
4693 }
4694#endif
4695 return 1;
4696 }
4697
1e3c88bd 4698 if (!tsk_cache_hot ||
8e45cb54 4699 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4700
1e3c88bd 4701 if (tsk_cache_hot) {
8e45cb54 4702 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4703 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4704 }
4e2dcb73 4705
1e3c88bd
PZ
4706 return 1;
4707 }
4708
4e2dcb73
ZH
4709 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4710 return 0;
1e3c88bd
PZ
4711}
4712
897c395f
PZ
4713/*
4714 * move_one_task tries to move exactly one task from busiest to this_rq, as
4715 * part of active balancing operations within "domain".
4716 * Returns 1 if successful and 0 otherwise.
4717 *
4718 * Called with both runqueues locked.
4719 */
8e45cb54 4720static int move_one_task(struct lb_env *env)
897c395f
PZ
4721{
4722 struct task_struct *p, *n;
897c395f 4723
367456c7 4724 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4725 if (!can_migrate_task(p, env))
4726 continue;
897c395f 4727
367456c7
PZ
4728 move_task(p, env);
4729 /*
4730 * Right now, this is only the second place move_task()
4731 * is called, so we can safely collect move_task()
4732 * stats here rather than inside move_task().
4733 */
4734 schedstat_inc(env->sd, lb_gained[env->idle]);
4735 return 1;
897c395f 4736 }
897c395f
PZ
4737 return 0;
4738}
4739
eb95308e
PZ
4740static const unsigned int sched_nr_migrate_break = 32;
4741
5d6523eb 4742/*
bd939f45 4743 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4744 * this_rq, as part of a balancing operation within domain "sd".
4745 * Returns 1 if successful and 0 otherwise.
4746 *
4747 * Called with both runqueues locked.
4748 */
4749static int move_tasks(struct lb_env *env)
1e3c88bd 4750{
5d6523eb
PZ
4751 struct list_head *tasks = &env->src_rq->cfs_tasks;
4752 struct task_struct *p;
367456c7
PZ
4753 unsigned long load;
4754 int pulled = 0;
1e3c88bd 4755
bd939f45 4756 if (env->imbalance <= 0)
5d6523eb 4757 return 0;
1e3c88bd 4758
5d6523eb
PZ
4759 while (!list_empty(tasks)) {
4760 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4761
367456c7
PZ
4762 env->loop++;
4763 /* We've more or less seen every task there is, call it quits */
5d6523eb 4764 if (env->loop > env->loop_max)
367456c7 4765 break;
5d6523eb
PZ
4766
4767 /* take a breather every nr_migrate tasks */
367456c7 4768 if (env->loop > env->loop_break) {
eb95308e 4769 env->loop_break += sched_nr_migrate_break;
8e45cb54 4770 env->flags |= LBF_NEED_BREAK;
ee00e66f 4771 break;
a195f004 4772 }
1e3c88bd 4773
d3198084 4774 if (!can_migrate_task(p, env))
367456c7
PZ
4775 goto next;
4776
4777 load = task_h_load(p);
5d6523eb 4778
eb95308e 4779 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4780 goto next;
4781
bd939f45 4782 if ((load / 2) > env->imbalance)
367456c7 4783 goto next;
1e3c88bd 4784
ddcdf6e7 4785 move_task(p, env);
ee00e66f 4786 pulled++;
bd939f45 4787 env->imbalance -= load;
1e3c88bd
PZ
4788
4789#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4790 /*
4791 * NEWIDLE balancing is a source of latency, so preemptible
4792 * kernels will stop after the first task is pulled to minimize
4793 * the critical section.
4794 */
5d6523eb 4795 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4796 break;
1e3c88bd
PZ
4797#endif
4798
ee00e66f
PZ
4799 /*
4800 * We only want to steal up to the prescribed amount of
4801 * weighted load.
4802 */
bd939f45 4803 if (env->imbalance <= 0)
ee00e66f 4804 break;
367456c7
PZ
4805
4806 continue;
4807next:
5d6523eb 4808 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4809 }
5d6523eb 4810
1e3c88bd 4811 /*
ddcdf6e7
PZ
4812 * Right now, this is one of only two places move_task() is called,
4813 * so we can safely collect move_task() stats here rather than
4814 * inside move_task().
1e3c88bd 4815 */
8e45cb54 4816 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4817
5d6523eb 4818 return pulled;
1e3c88bd
PZ
4819}
4820
230059de 4821#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4822/*
4823 * update tg->load_weight by folding this cpu's load_avg
4824 */
48a16753 4825static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4826{
48a16753
PT
4827 struct sched_entity *se = tg->se[cpu];
4828 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4829
48a16753
PT
4830 /* throttled entities do not contribute to load */
4831 if (throttled_hierarchy(cfs_rq))
4832 return;
9e3081ca 4833
aff3e498 4834 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4835
82958366
PT
4836 if (se) {
4837 update_entity_load_avg(se, 1);
4838 /*
4839 * We pivot on our runnable average having decayed to zero for
4840 * list removal. This generally implies that all our children
4841 * have also been removed (modulo rounding error or bandwidth
4842 * control); however, such cases are rare and we can fix these
4843 * at enqueue.
4844 *
4845 * TODO: fix up out-of-order children on enqueue.
4846 */
4847 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4848 list_del_leaf_cfs_rq(cfs_rq);
4849 } else {
48a16753 4850 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4851 update_rq_runnable_avg(rq, rq->nr_running);
4852 }
9e3081ca
PZ
4853}
4854
48a16753 4855static void update_blocked_averages(int cpu)
9e3081ca 4856{
9e3081ca 4857 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4858 struct cfs_rq *cfs_rq;
4859 unsigned long flags;
9e3081ca 4860
48a16753
PT
4861 raw_spin_lock_irqsave(&rq->lock, flags);
4862 update_rq_clock(rq);
9763b67f
PZ
4863 /*
4864 * Iterates the task_group tree in a bottom up fashion, see
4865 * list_add_leaf_cfs_rq() for details.
4866 */
64660c86 4867 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4868 /*
4869 * Note: We may want to consider periodically releasing
4870 * rq->lock about these updates so that creating many task
4871 * groups does not result in continually extending hold time.
4872 */
4873 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4874 }
48a16753
PT
4875
4876 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4877}
4878
9763b67f 4879/*
68520796 4880 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4881 * This needs to be done in a top-down fashion because the load of a child
4882 * group is a fraction of its parents load.
4883 */
68520796 4884static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4885{
68520796
VD
4886 struct rq *rq = rq_of(cfs_rq);
4887 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4888 unsigned long now = jiffies;
68520796 4889 unsigned long load;
a35b6466 4890
68520796 4891 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4892 return;
4893
68520796
VD
4894 cfs_rq->h_load_next = NULL;
4895 for_each_sched_entity(se) {
4896 cfs_rq = cfs_rq_of(se);
4897 cfs_rq->h_load_next = se;
4898 if (cfs_rq->last_h_load_update == now)
4899 break;
4900 }
a35b6466 4901
68520796 4902 if (!se) {
7e3115ef 4903 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4904 cfs_rq->last_h_load_update = now;
4905 }
4906
4907 while ((se = cfs_rq->h_load_next) != NULL) {
4908 load = cfs_rq->h_load;
4909 load = div64_ul(load * se->avg.load_avg_contrib,
4910 cfs_rq->runnable_load_avg + 1);
4911 cfs_rq = group_cfs_rq(se);
4912 cfs_rq->h_load = load;
4913 cfs_rq->last_h_load_update = now;
4914 }
9763b67f
PZ
4915}
4916
367456c7 4917static unsigned long task_h_load(struct task_struct *p)
230059de 4918{
367456c7 4919 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4920
68520796 4921 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4922 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4923 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4924}
4925#else
48a16753 4926static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4927{
4928}
4929
367456c7 4930static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4931{
a003a25b 4932 return p->se.avg.load_avg_contrib;
1e3c88bd 4933}
230059de 4934#endif
1e3c88bd 4935
1e3c88bd 4936/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4937/*
4938 * sg_lb_stats - stats of a sched_group required for load_balancing
4939 */
4940struct sg_lb_stats {
4941 unsigned long avg_load; /*Avg load across the CPUs of the group */
4942 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4943 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4944 unsigned long load_per_task;
3ae11c90 4945 unsigned long group_power;
147c5fc2
PZ
4946 unsigned int sum_nr_running; /* Nr tasks running in the group */
4947 unsigned int group_capacity;
4948 unsigned int idle_cpus;
4949 unsigned int group_weight;
1e3c88bd 4950 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4951 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4952};
4953
56cf515b
JK
4954/*
4955 * sd_lb_stats - Structure to store the statistics of a sched_domain
4956 * during load balancing.
4957 */
4958struct sd_lb_stats {
4959 struct sched_group *busiest; /* Busiest group in this sd */
4960 struct sched_group *local; /* Local group in this sd */
4961 unsigned long total_load; /* Total load of all groups in sd */
4962 unsigned long total_pwr; /* Total power of all groups in sd */
4963 unsigned long avg_load; /* Average load across all groups in sd */
4964
56cf515b 4965 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4966 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4967};
4968
147c5fc2
PZ
4969static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4970{
4971 /*
4972 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4973 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4974 * We must however clear busiest_stat::avg_load because
4975 * update_sd_pick_busiest() reads this before assignment.
4976 */
4977 *sds = (struct sd_lb_stats){
4978 .busiest = NULL,
4979 .local = NULL,
4980 .total_load = 0UL,
4981 .total_pwr = 0UL,
4982 .busiest_stat = {
4983 .avg_load = 0UL,
4984 },
4985 };
4986}
4987
1e3c88bd
PZ
4988/**
4989 * get_sd_load_idx - Obtain the load index for a given sched domain.
4990 * @sd: The sched_domain whose load_idx is to be obtained.
4991 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4992 *
4993 * Return: The load index.
1e3c88bd
PZ
4994 */
4995static inline int get_sd_load_idx(struct sched_domain *sd,
4996 enum cpu_idle_type idle)
4997{
4998 int load_idx;
4999
5000 switch (idle) {
5001 case CPU_NOT_IDLE:
5002 load_idx = sd->busy_idx;
5003 break;
5004
5005 case CPU_NEWLY_IDLE:
5006 load_idx = sd->newidle_idx;
5007 break;
5008 default:
5009 load_idx = sd->idle_idx;
5010 break;
5011 }
5012
5013 return load_idx;
5014}
5015
15f803c9 5016static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5017{
1399fa78 5018 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5019}
5020
5021unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5022{
5023 return default_scale_freq_power(sd, cpu);
5024}
5025
15f803c9 5026static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5027{
669c55e9 5028 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5029 unsigned long smt_gain = sd->smt_gain;
5030
5031 smt_gain /= weight;
5032
5033 return smt_gain;
5034}
5035
5036unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5037{
5038 return default_scale_smt_power(sd, cpu);
5039}
5040
15f803c9 5041static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5042{
5043 struct rq *rq = cpu_rq(cpu);
b654f7de 5044 u64 total, available, age_stamp, avg;
1e3c88bd 5045
b654f7de
PZ
5046 /*
5047 * Since we're reading these variables without serialization make sure
5048 * we read them once before doing sanity checks on them.
5049 */
5050 age_stamp = ACCESS_ONCE(rq->age_stamp);
5051 avg = ACCESS_ONCE(rq->rt_avg);
5052
78becc27 5053 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5054
b654f7de 5055 if (unlikely(total < avg)) {
aa483808
VP
5056 /* Ensures that power won't end up being negative */
5057 available = 0;
5058 } else {
b654f7de 5059 available = total - avg;
aa483808 5060 }
1e3c88bd 5061
1399fa78
NR
5062 if (unlikely((s64)total < SCHED_POWER_SCALE))
5063 total = SCHED_POWER_SCALE;
1e3c88bd 5064
1399fa78 5065 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5066
5067 return div_u64(available, total);
5068}
5069
5070static void update_cpu_power(struct sched_domain *sd, int cpu)
5071{
669c55e9 5072 unsigned long weight = sd->span_weight;
1399fa78 5073 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5074 struct sched_group *sdg = sd->groups;
5075
1e3c88bd
PZ
5076 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5077 if (sched_feat(ARCH_POWER))
5078 power *= arch_scale_smt_power(sd, cpu);
5079 else
5080 power *= default_scale_smt_power(sd, cpu);
5081
1399fa78 5082 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5083 }
5084
9c3f75cb 5085 sdg->sgp->power_orig = power;
9d5efe05
SV
5086
5087 if (sched_feat(ARCH_POWER))
5088 power *= arch_scale_freq_power(sd, cpu);
5089 else
5090 power *= default_scale_freq_power(sd, cpu);
5091
1399fa78 5092 power >>= SCHED_POWER_SHIFT;
9d5efe05 5093
1e3c88bd 5094 power *= scale_rt_power(cpu);
1399fa78 5095 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5096
5097 if (!power)
5098 power = 1;
5099
e51fd5e2 5100 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5101 sdg->sgp->power = power;
1e3c88bd
PZ
5102}
5103
029632fb 5104void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5105{
5106 struct sched_domain *child = sd->child;
5107 struct sched_group *group, *sdg = sd->groups;
863bffc8 5108 unsigned long power, power_orig;
4ec4412e
VG
5109 unsigned long interval;
5110
5111 interval = msecs_to_jiffies(sd->balance_interval);
5112 interval = clamp(interval, 1UL, max_load_balance_interval);
5113 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5114
5115 if (!child) {
5116 update_cpu_power(sd, cpu);
5117 return;
5118 }
5119
863bffc8 5120 power_orig = power = 0;
1e3c88bd 5121
74a5ce20
PZ
5122 if (child->flags & SD_OVERLAP) {
5123 /*
5124 * SD_OVERLAP domains cannot assume that child groups
5125 * span the current group.
5126 */
5127
863bffc8
PZ
5128 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5129 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5130
5131 power_orig += sg->sgp->power_orig;
5132 power += sg->sgp->power;
5133 }
74a5ce20
PZ
5134 } else {
5135 /*
5136 * !SD_OVERLAP domains can assume that child groups
5137 * span the current group.
5138 */
5139
5140 group = child->groups;
5141 do {
863bffc8 5142 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5143 power += group->sgp->power;
5144 group = group->next;
5145 } while (group != child->groups);
5146 }
1e3c88bd 5147
863bffc8
PZ
5148 sdg->sgp->power_orig = power_orig;
5149 sdg->sgp->power = power;
1e3c88bd
PZ
5150}
5151
9d5efe05
SV
5152/*
5153 * Try and fix up capacity for tiny siblings, this is needed when
5154 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5155 * which on its own isn't powerful enough.
5156 *
5157 * See update_sd_pick_busiest() and check_asym_packing().
5158 */
5159static inline int
5160fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5161{
5162 /*
1399fa78 5163 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5164 */
a6c75f2f 5165 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5166 return 0;
5167
5168 /*
5169 * If ~90% of the cpu_power is still there, we're good.
5170 */
9c3f75cb 5171 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5172 return 1;
5173
5174 return 0;
5175}
5176
30ce5dab
PZ
5177/*
5178 * Group imbalance indicates (and tries to solve) the problem where balancing
5179 * groups is inadequate due to tsk_cpus_allowed() constraints.
5180 *
5181 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5182 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5183 * Something like:
5184 *
5185 * { 0 1 2 3 } { 4 5 6 7 }
5186 * * * * *
5187 *
5188 * If we were to balance group-wise we'd place two tasks in the first group and
5189 * two tasks in the second group. Clearly this is undesired as it will overload
5190 * cpu 3 and leave one of the cpus in the second group unused.
5191 *
5192 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5193 * by noticing the lower domain failed to reach balance and had difficulty
5194 * moving tasks due to affinity constraints.
30ce5dab
PZ
5195 *
5196 * When this is so detected; this group becomes a candidate for busiest; see
5197 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5198 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5199 * to create an effective group imbalance.
5200 *
5201 * This is a somewhat tricky proposition since the next run might not find the
5202 * group imbalance and decide the groups need to be balanced again. A most
5203 * subtle and fragile situation.
5204 */
5205
6263322c 5206static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5207{
6263322c 5208 return group->sgp->imbalance;
30ce5dab
PZ
5209}
5210
b37d9316
PZ
5211/*
5212 * Compute the group capacity.
5213 *
c61037e9
PZ
5214 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5215 * first dividing out the smt factor and computing the actual number of cores
5216 * and limit power unit capacity with that.
b37d9316
PZ
5217 */
5218static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5219{
c61037e9
PZ
5220 unsigned int capacity, smt, cpus;
5221 unsigned int power, power_orig;
5222
5223 power = group->sgp->power;
5224 power_orig = group->sgp->power_orig;
5225 cpus = group->group_weight;
b37d9316 5226
c61037e9
PZ
5227 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5228 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5229 capacity = cpus / smt; /* cores */
b37d9316 5230
c61037e9 5231 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5232 if (!capacity)
5233 capacity = fix_small_capacity(env->sd, group);
5234
5235 return capacity;
5236}
5237
1e3c88bd
PZ
5238/**
5239 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5240 * @env: The load balancing environment.
1e3c88bd 5241 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5242 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5243 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5244 * @sgs: variable to hold the statistics for this group.
5245 */
bd939f45
PZ
5246static inline void update_sg_lb_stats(struct lb_env *env,
5247 struct sched_group *group, int load_idx,
23f0d209 5248 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5249{
30ce5dab
PZ
5250 unsigned long nr_running;
5251 unsigned long load;
bd939f45 5252 int i;
1e3c88bd 5253
b72ff13c
PZ
5254 memset(sgs, 0, sizeof(*sgs));
5255
b9403130 5256 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5257 struct rq *rq = cpu_rq(i);
5258
e44bc5c5
PZ
5259 nr_running = rq->nr_running;
5260
1e3c88bd 5261 /* Bias balancing toward cpus of our domain */
6263322c 5262 if (local_group)
04f733b4 5263 load = target_load(i, load_idx);
6263322c 5264 else
1e3c88bd 5265 load = source_load(i, load_idx);
1e3c88bd
PZ
5266
5267 sgs->group_load += load;
e44bc5c5 5268 sgs->sum_nr_running += nr_running;
1e3c88bd 5269 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5270 if (idle_cpu(i))
5271 sgs->idle_cpus++;
1e3c88bd
PZ
5272 }
5273
1e3c88bd 5274 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5275 sgs->group_power = group->sgp->power;
5276 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5277
dd5feea1 5278 if (sgs->sum_nr_running)
38d0f770 5279 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5280
aae6d3dd 5281 sgs->group_weight = group->group_weight;
fab47622 5282
b37d9316
PZ
5283 sgs->group_imb = sg_imbalanced(group);
5284 sgs->group_capacity = sg_capacity(env, group);
5285
fab47622
NR
5286 if (sgs->group_capacity > sgs->sum_nr_running)
5287 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5288}
5289
532cb4c4
MN
5290/**
5291 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5292 * @env: The load balancing environment.
532cb4c4
MN
5293 * @sds: sched_domain statistics
5294 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5295 * @sgs: sched_group statistics
532cb4c4
MN
5296 *
5297 * Determine if @sg is a busier group than the previously selected
5298 * busiest group.
e69f6186
YB
5299 *
5300 * Return: %true if @sg is a busier group than the previously selected
5301 * busiest group. %false otherwise.
532cb4c4 5302 */
bd939f45 5303static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5304 struct sd_lb_stats *sds,
5305 struct sched_group *sg,
bd939f45 5306 struct sg_lb_stats *sgs)
532cb4c4 5307{
56cf515b 5308 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5309 return false;
5310
5311 if (sgs->sum_nr_running > sgs->group_capacity)
5312 return true;
5313
5314 if (sgs->group_imb)
5315 return true;
5316
5317 /*
5318 * ASYM_PACKING needs to move all the work to the lowest
5319 * numbered CPUs in the group, therefore mark all groups
5320 * higher than ourself as busy.
5321 */
bd939f45
PZ
5322 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5323 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5324 if (!sds->busiest)
5325 return true;
5326
5327 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5328 return true;
5329 }
5330
5331 return false;
5332}
5333
1e3c88bd 5334/**
461819ac 5335 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5336 * @env: The load balancing environment.
1e3c88bd
PZ
5337 * @balance: Should we balance.
5338 * @sds: variable to hold the statistics for this sched_domain.
5339 */
bd939f45 5340static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5341 struct sd_lb_stats *sds)
1e3c88bd 5342{
bd939f45
PZ
5343 struct sched_domain *child = env->sd->child;
5344 struct sched_group *sg = env->sd->groups;
56cf515b 5345 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5346 int load_idx, prefer_sibling = 0;
5347
5348 if (child && child->flags & SD_PREFER_SIBLING)
5349 prefer_sibling = 1;
5350
bd939f45 5351 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5352
5353 do {
56cf515b 5354 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5355 int local_group;
5356
bd939f45 5357 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5358 if (local_group) {
5359 sds->local = sg;
5360 sgs = &sds->local_stat;
b72ff13c
PZ
5361
5362 if (env->idle != CPU_NEWLY_IDLE ||
5363 time_after_eq(jiffies, sg->sgp->next_update))
5364 update_group_power(env->sd, env->dst_cpu);
56cf515b 5365 }
1e3c88bd 5366
56cf515b 5367 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5368
b72ff13c
PZ
5369 if (local_group)
5370 goto next_group;
5371
1e3c88bd
PZ
5372 /*
5373 * In case the child domain prefers tasks go to siblings
532cb4c4 5374 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5375 * and move all the excess tasks away. We lower the capacity
5376 * of a group only if the local group has the capacity to fit
5377 * these excess tasks, i.e. nr_running < group_capacity. The
5378 * extra check prevents the case where you always pull from the
5379 * heaviest group when it is already under-utilized (possible
5380 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5381 */
b72ff13c
PZ
5382 if (prefer_sibling && sds->local &&
5383 sds->local_stat.group_has_capacity)
147c5fc2 5384 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5385
b72ff13c 5386 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5387 sds->busiest = sg;
56cf515b 5388 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5389 }
5390
b72ff13c
PZ
5391next_group:
5392 /* Now, start updating sd_lb_stats */
5393 sds->total_load += sgs->group_load;
5394 sds->total_pwr += sgs->group_power;
5395
532cb4c4 5396 sg = sg->next;
bd939f45 5397 } while (sg != env->sd->groups);
532cb4c4
MN
5398}
5399
532cb4c4
MN
5400/**
5401 * check_asym_packing - Check to see if the group is packed into the
5402 * sched doman.
5403 *
5404 * This is primarily intended to used at the sibling level. Some
5405 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5406 * case of POWER7, it can move to lower SMT modes only when higher
5407 * threads are idle. When in lower SMT modes, the threads will
5408 * perform better since they share less core resources. Hence when we
5409 * have idle threads, we want them to be the higher ones.
5410 *
5411 * This packing function is run on idle threads. It checks to see if
5412 * the busiest CPU in this domain (core in the P7 case) has a higher
5413 * CPU number than the packing function is being run on. Here we are
5414 * assuming lower CPU number will be equivalent to lower a SMT thread
5415 * number.
5416 *
e69f6186 5417 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5418 * this CPU. The amount of the imbalance is returned in *imbalance.
5419 *
cd96891d 5420 * @env: The load balancing environment.
532cb4c4 5421 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5422 */
bd939f45 5423static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5424{
5425 int busiest_cpu;
5426
bd939f45 5427 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5428 return 0;
5429
5430 if (!sds->busiest)
5431 return 0;
5432
5433 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5434 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5435 return 0;
5436
bd939f45 5437 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5438 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5439 SCHED_POWER_SCALE);
bd939f45 5440
532cb4c4 5441 return 1;
1e3c88bd
PZ
5442}
5443
5444/**
5445 * fix_small_imbalance - Calculate the minor imbalance that exists
5446 * amongst the groups of a sched_domain, during
5447 * load balancing.
cd96891d 5448 * @env: The load balancing environment.
1e3c88bd 5449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5450 */
bd939f45
PZ
5451static inline
5452void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5453{
5454 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5455 unsigned int imbn = 2;
dd5feea1 5456 unsigned long scaled_busy_load_per_task;
56cf515b 5457 struct sg_lb_stats *local, *busiest;
1e3c88bd 5458
56cf515b
JK
5459 local = &sds->local_stat;
5460 busiest = &sds->busiest_stat;
1e3c88bd 5461
56cf515b
JK
5462 if (!local->sum_nr_running)
5463 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5464 else if (busiest->load_per_task > local->load_per_task)
5465 imbn = 1;
dd5feea1 5466
56cf515b
JK
5467 scaled_busy_load_per_task =
5468 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5469 busiest->group_power;
56cf515b 5470
3029ede3
VD
5471 if (busiest->avg_load + scaled_busy_load_per_task >=
5472 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5473 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5474 return;
5475 }
5476
5477 /*
5478 * OK, we don't have enough imbalance to justify moving tasks,
5479 * however we may be able to increase total CPU power used by
5480 * moving them.
5481 */
5482
3ae11c90 5483 pwr_now += busiest->group_power *
56cf515b 5484 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5485 pwr_now += local->group_power *
56cf515b 5486 min(local->load_per_task, local->avg_load);
1399fa78 5487 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5488
5489 /* Amount of load we'd subtract */
56cf515b 5490 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5491 busiest->group_power;
56cf515b 5492 if (busiest->avg_load > tmp) {
3ae11c90 5493 pwr_move += busiest->group_power *
56cf515b
JK
5494 min(busiest->load_per_task,
5495 busiest->avg_load - tmp);
5496 }
1e3c88bd
PZ
5497
5498 /* Amount of load we'd add */
3ae11c90 5499 if (busiest->avg_load * busiest->group_power <
56cf515b 5500 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5501 tmp = (busiest->avg_load * busiest->group_power) /
5502 local->group_power;
56cf515b
JK
5503 } else {
5504 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5505 local->group_power;
56cf515b 5506 }
3ae11c90
PZ
5507 pwr_move += local->group_power *
5508 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5509 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5510
5511 /* Move if we gain throughput */
5512 if (pwr_move > pwr_now)
56cf515b 5513 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5514}
5515
5516/**
5517 * calculate_imbalance - Calculate the amount of imbalance present within the
5518 * groups of a given sched_domain during load balance.
bd939f45 5519 * @env: load balance environment
1e3c88bd 5520 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5521 */
bd939f45 5522static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5523{
dd5feea1 5524 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5525 struct sg_lb_stats *local, *busiest;
5526
5527 local = &sds->local_stat;
56cf515b 5528 busiest = &sds->busiest_stat;
dd5feea1 5529
56cf515b 5530 if (busiest->group_imb) {
30ce5dab
PZ
5531 /*
5532 * In the group_imb case we cannot rely on group-wide averages
5533 * to ensure cpu-load equilibrium, look at wider averages. XXX
5534 */
56cf515b
JK
5535 busiest->load_per_task =
5536 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5537 }
5538
1e3c88bd
PZ
5539 /*
5540 * In the presence of smp nice balancing, certain scenarios can have
5541 * max load less than avg load(as we skip the groups at or below
5542 * its cpu_power, while calculating max_load..)
5543 */
b1885550
VD
5544 if (busiest->avg_load <= sds->avg_load ||
5545 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5546 env->imbalance = 0;
5547 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5548 }
5549
56cf515b 5550 if (!busiest->group_imb) {
dd5feea1
SS
5551 /*
5552 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5553 * Except of course for the group_imb case, since then we might
5554 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5555 */
56cf515b
JK
5556 load_above_capacity =
5557 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5558
1399fa78 5559 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5560 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5561 }
5562
5563 /*
5564 * We're trying to get all the cpus to the average_load, so we don't
5565 * want to push ourselves above the average load, nor do we wish to
5566 * reduce the max loaded cpu below the average load. At the same time,
5567 * we also don't want to reduce the group load below the group capacity
5568 * (so that we can implement power-savings policies etc). Thus we look
5569 * for the minimum possible imbalance.
dd5feea1 5570 */
30ce5dab 5571 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5572
5573 /* How much load to actually move to equalise the imbalance */
56cf515b 5574 env->imbalance = min(
3ae11c90
PZ
5575 max_pull * busiest->group_power,
5576 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5577 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5578
5579 /*
5580 * if *imbalance is less than the average load per runnable task
25985edc 5581 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5582 * a think about bumping its value to force at least one task to be
5583 * moved
5584 */
56cf515b 5585 if (env->imbalance < busiest->load_per_task)
bd939f45 5586 return fix_small_imbalance(env, sds);
1e3c88bd 5587}
fab47622 5588
1e3c88bd
PZ
5589/******* find_busiest_group() helpers end here *********************/
5590
5591/**
5592 * find_busiest_group - Returns the busiest group within the sched_domain
5593 * if there is an imbalance. If there isn't an imbalance, and
5594 * the user has opted for power-savings, it returns a group whose
5595 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5596 * such a group exists.
5597 *
5598 * Also calculates the amount of weighted load which should be moved
5599 * to restore balance.
5600 *
cd96891d 5601 * @env: The load balancing environment.
1e3c88bd 5602 *
e69f6186 5603 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5604 * - If no imbalance and user has opted for power-savings balance,
5605 * return the least loaded group whose CPUs can be
5606 * put to idle by rebalancing its tasks onto our group.
5607 */
56cf515b 5608static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5609{
56cf515b 5610 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5611 struct sd_lb_stats sds;
5612
147c5fc2 5613 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5614
5615 /*
5616 * Compute the various statistics relavent for load balancing at
5617 * this level.
5618 */
23f0d209 5619 update_sd_lb_stats(env, &sds);
56cf515b
JK
5620 local = &sds.local_stat;
5621 busiest = &sds.busiest_stat;
1e3c88bd 5622
bd939f45
PZ
5623 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5624 check_asym_packing(env, &sds))
532cb4c4
MN
5625 return sds.busiest;
5626
cc57aa8f 5627 /* There is no busy sibling group to pull tasks from */
56cf515b 5628 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5629 goto out_balanced;
5630
1399fa78 5631 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5632
866ab43e
PZ
5633 /*
5634 * If the busiest group is imbalanced the below checks don't
30ce5dab 5635 * work because they assume all things are equal, which typically
866ab43e
PZ
5636 * isn't true due to cpus_allowed constraints and the like.
5637 */
56cf515b 5638 if (busiest->group_imb)
866ab43e
PZ
5639 goto force_balance;
5640
cc57aa8f 5641 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5642 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5643 !busiest->group_has_capacity)
fab47622
NR
5644 goto force_balance;
5645
cc57aa8f
PZ
5646 /*
5647 * If the local group is more busy than the selected busiest group
5648 * don't try and pull any tasks.
5649 */
56cf515b 5650 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5651 goto out_balanced;
5652
cc57aa8f
PZ
5653 /*
5654 * Don't pull any tasks if this group is already above the domain
5655 * average load.
5656 */
56cf515b 5657 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5658 goto out_balanced;
5659
bd939f45 5660 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5661 /*
5662 * This cpu is idle. If the busiest group load doesn't
5663 * have more tasks than the number of available cpu's and
5664 * there is no imbalance between this and busiest group
5665 * wrt to idle cpu's, it is balanced.
5666 */
56cf515b
JK
5667 if ((local->idle_cpus < busiest->idle_cpus) &&
5668 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5669 goto out_balanced;
c186fafe
PZ
5670 } else {
5671 /*
5672 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5673 * imbalance_pct to be conservative.
5674 */
56cf515b
JK
5675 if (100 * busiest->avg_load <=
5676 env->sd->imbalance_pct * local->avg_load)
c186fafe 5677 goto out_balanced;
aae6d3dd 5678 }
1e3c88bd 5679
fab47622 5680force_balance:
1e3c88bd 5681 /* Looks like there is an imbalance. Compute it */
bd939f45 5682 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5683 return sds.busiest;
5684
5685out_balanced:
bd939f45 5686 env->imbalance = 0;
1e3c88bd
PZ
5687 return NULL;
5688}
5689
5690/*
5691 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5692 */
bd939f45 5693static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5694 struct sched_group *group)
1e3c88bd
PZ
5695{
5696 struct rq *busiest = NULL, *rq;
95a79b80 5697 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5698 int i;
5699
6906a408 5700 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5701 unsigned long power = power_of(i);
1399fa78
NR
5702 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5703 SCHED_POWER_SCALE);
1e3c88bd
PZ
5704 unsigned long wl;
5705
9d5efe05 5706 if (!capacity)
bd939f45 5707 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5708
1e3c88bd 5709 rq = cpu_rq(i);
6e40f5bb 5710 wl = weighted_cpuload(i);
1e3c88bd 5711
6e40f5bb
TG
5712 /*
5713 * When comparing with imbalance, use weighted_cpuload()
5714 * which is not scaled with the cpu power.
5715 */
bd939f45 5716 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5717 continue;
5718
6e40f5bb
TG
5719 /*
5720 * For the load comparisons with the other cpu's, consider
5721 * the weighted_cpuload() scaled with the cpu power, so that
5722 * the load can be moved away from the cpu that is potentially
5723 * running at a lower capacity.
95a79b80
JK
5724 *
5725 * Thus we're looking for max(wl_i / power_i), crosswise
5726 * multiplication to rid ourselves of the division works out
5727 * to: wl_i * power_j > wl_j * power_i; where j is our
5728 * previous maximum.
6e40f5bb 5729 */
95a79b80
JK
5730 if (wl * busiest_power > busiest_load * power) {
5731 busiest_load = wl;
5732 busiest_power = power;
1e3c88bd
PZ
5733 busiest = rq;
5734 }
5735 }
5736
5737 return busiest;
5738}
5739
5740/*
5741 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5742 * so long as it is large enough.
5743 */
5744#define MAX_PINNED_INTERVAL 512
5745
5746/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5747DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5748
bd939f45 5749static int need_active_balance(struct lb_env *env)
1af3ed3d 5750{
bd939f45
PZ
5751 struct sched_domain *sd = env->sd;
5752
5753 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5754
5755 /*
5756 * ASYM_PACKING needs to force migrate tasks from busy but
5757 * higher numbered CPUs in order to pack all tasks in the
5758 * lowest numbered CPUs.
5759 */
bd939f45 5760 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5761 return 1;
1af3ed3d
PZ
5762 }
5763
5764 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5765}
5766
969c7921
TH
5767static int active_load_balance_cpu_stop(void *data);
5768
23f0d209
JK
5769static int should_we_balance(struct lb_env *env)
5770{
5771 struct sched_group *sg = env->sd->groups;
5772 struct cpumask *sg_cpus, *sg_mask;
5773 int cpu, balance_cpu = -1;
5774
5775 /*
5776 * In the newly idle case, we will allow all the cpu's
5777 * to do the newly idle load balance.
5778 */
5779 if (env->idle == CPU_NEWLY_IDLE)
5780 return 1;
5781
5782 sg_cpus = sched_group_cpus(sg);
5783 sg_mask = sched_group_mask(sg);
5784 /* Try to find first idle cpu */
5785 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5786 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5787 continue;
5788
5789 balance_cpu = cpu;
5790 break;
5791 }
5792
5793 if (balance_cpu == -1)
5794 balance_cpu = group_balance_cpu(sg);
5795
5796 /*
5797 * First idle cpu or the first cpu(busiest) in this sched group
5798 * is eligible for doing load balancing at this and above domains.
5799 */
b0cff9d8 5800 return balance_cpu == env->dst_cpu;
23f0d209
JK
5801}
5802
1e3c88bd
PZ
5803/*
5804 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5805 * tasks if there is an imbalance.
5806 */
5807static int load_balance(int this_cpu, struct rq *this_rq,
5808 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5809 int *continue_balancing)
1e3c88bd 5810{
88b8dac0 5811 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5812 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5813 struct sched_group *group;
1e3c88bd
PZ
5814 struct rq *busiest;
5815 unsigned long flags;
e6252c3e 5816 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5817
8e45cb54
PZ
5818 struct lb_env env = {
5819 .sd = sd,
ddcdf6e7
PZ
5820 .dst_cpu = this_cpu,
5821 .dst_rq = this_rq,
88b8dac0 5822 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5823 .idle = idle,
eb95308e 5824 .loop_break = sched_nr_migrate_break,
b9403130 5825 .cpus = cpus,
8e45cb54
PZ
5826 };
5827
cfc03118
JK
5828 /*
5829 * For NEWLY_IDLE load_balancing, we don't need to consider
5830 * other cpus in our group
5831 */
e02e60c1 5832 if (idle == CPU_NEWLY_IDLE)
cfc03118 5833 env.dst_grpmask = NULL;
cfc03118 5834
1e3c88bd
PZ
5835 cpumask_copy(cpus, cpu_active_mask);
5836
1e3c88bd
PZ
5837 schedstat_inc(sd, lb_count[idle]);
5838
5839redo:
23f0d209
JK
5840 if (!should_we_balance(&env)) {
5841 *continue_balancing = 0;
1e3c88bd 5842 goto out_balanced;
23f0d209 5843 }
1e3c88bd 5844
23f0d209 5845 group = find_busiest_group(&env);
1e3c88bd
PZ
5846 if (!group) {
5847 schedstat_inc(sd, lb_nobusyg[idle]);
5848 goto out_balanced;
5849 }
5850
b9403130 5851 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5852 if (!busiest) {
5853 schedstat_inc(sd, lb_nobusyq[idle]);
5854 goto out_balanced;
5855 }
5856
78feefc5 5857 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5858
bd939f45 5859 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5860
5861 ld_moved = 0;
5862 if (busiest->nr_running > 1) {
5863 /*
5864 * Attempt to move tasks. If find_busiest_group has found
5865 * an imbalance but busiest->nr_running <= 1, the group is
5866 * still unbalanced. ld_moved simply stays zero, so it is
5867 * correctly treated as an imbalance.
5868 */
8e45cb54 5869 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5870 env.src_cpu = busiest->cpu;
5871 env.src_rq = busiest;
5872 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5873
5d6523eb 5874more_balance:
1e3c88bd 5875 local_irq_save(flags);
78feefc5 5876 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5877
5878 /*
5879 * cur_ld_moved - load moved in current iteration
5880 * ld_moved - cumulative load moved across iterations
5881 */
5882 cur_ld_moved = move_tasks(&env);
5883 ld_moved += cur_ld_moved;
78feefc5 5884 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5885 local_irq_restore(flags);
5886
5887 /*
5888 * some other cpu did the load balance for us.
5889 */
88b8dac0
SV
5890 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5891 resched_cpu(env.dst_cpu);
5892
f1cd0858
JK
5893 if (env.flags & LBF_NEED_BREAK) {
5894 env.flags &= ~LBF_NEED_BREAK;
5895 goto more_balance;
5896 }
5897
88b8dac0
SV
5898 /*
5899 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5900 * us and move them to an alternate dst_cpu in our sched_group
5901 * where they can run. The upper limit on how many times we
5902 * iterate on same src_cpu is dependent on number of cpus in our
5903 * sched_group.
5904 *
5905 * This changes load balance semantics a bit on who can move
5906 * load to a given_cpu. In addition to the given_cpu itself
5907 * (or a ilb_cpu acting on its behalf where given_cpu is
5908 * nohz-idle), we now have balance_cpu in a position to move
5909 * load to given_cpu. In rare situations, this may cause
5910 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5911 * _independently_ and at _same_ time to move some load to
5912 * given_cpu) causing exceess load to be moved to given_cpu.
5913 * This however should not happen so much in practice and
5914 * moreover subsequent load balance cycles should correct the
5915 * excess load moved.
5916 */
6263322c 5917 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5918
7aff2e3a
VD
5919 /* Prevent to re-select dst_cpu via env's cpus */
5920 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5921
78feefc5 5922 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5923 env.dst_cpu = env.new_dst_cpu;
6263322c 5924 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5925 env.loop = 0;
5926 env.loop_break = sched_nr_migrate_break;
e02e60c1 5927
88b8dac0
SV
5928 /*
5929 * Go back to "more_balance" rather than "redo" since we
5930 * need to continue with same src_cpu.
5931 */
5932 goto more_balance;
5933 }
1e3c88bd 5934
6263322c
PZ
5935 /*
5936 * We failed to reach balance because of affinity.
5937 */
5938 if (sd_parent) {
5939 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5940
5941 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5942 *group_imbalance = 1;
5943 } else if (*group_imbalance)
5944 *group_imbalance = 0;
5945 }
5946
1e3c88bd 5947 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5948 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5949 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5950 if (!cpumask_empty(cpus)) {
5951 env.loop = 0;
5952 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5953 goto redo;
bbf18b19 5954 }
1e3c88bd
PZ
5955 goto out_balanced;
5956 }
5957 }
5958
5959 if (!ld_moved) {
5960 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5961 /*
5962 * Increment the failure counter only on periodic balance.
5963 * We do not want newidle balance, which can be very
5964 * frequent, pollute the failure counter causing
5965 * excessive cache_hot migrations and active balances.
5966 */
5967 if (idle != CPU_NEWLY_IDLE)
5968 sd->nr_balance_failed++;
1e3c88bd 5969
bd939f45 5970 if (need_active_balance(&env)) {
1e3c88bd
PZ
5971 raw_spin_lock_irqsave(&busiest->lock, flags);
5972
969c7921
TH
5973 /* don't kick the active_load_balance_cpu_stop,
5974 * if the curr task on busiest cpu can't be
5975 * moved to this_cpu
1e3c88bd
PZ
5976 */
5977 if (!cpumask_test_cpu(this_cpu,
fa17b507 5978 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5979 raw_spin_unlock_irqrestore(&busiest->lock,
5980 flags);
8e45cb54 5981 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5982 goto out_one_pinned;
5983 }
5984
969c7921
TH
5985 /*
5986 * ->active_balance synchronizes accesses to
5987 * ->active_balance_work. Once set, it's cleared
5988 * only after active load balance is finished.
5989 */
1e3c88bd
PZ
5990 if (!busiest->active_balance) {
5991 busiest->active_balance = 1;
5992 busiest->push_cpu = this_cpu;
5993 active_balance = 1;
5994 }
5995 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5996
bd939f45 5997 if (active_balance) {
969c7921
TH
5998 stop_one_cpu_nowait(cpu_of(busiest),
5999 active_load_balance_cpu_stop, busiest,
6000 &busiest->active_balance_work);
bd939f45 6001 }
1e3c88bd
PZ
6002
6003 /*
6004 * We've kicked active balancing, reset the failure
6005 * counter.
6006 */
6007 sd->nr_balance_failed = sd->cache_nice_tries+1;
6008 }
6009 } else
6010 sd->nr_balance_failed = 0;
6011
6012 if (likely(!active_balance)) {
6013 /* We were unbalanced, so reset the balancing interval */
6014 sd->balance_interval = sd->min_interval;
6015 } else {
6016 /*
6017 * If we've begun active balancing, start to back off. This
6018 * case may not be covered by the all_pinned logic if there
6019 * is only 1 task on the busy runqueue (because we don't call
6020 * move_tasks).
6021 */
6022 if (sd->balance_interval < sd->max_interval)
6023 sd->balance_interval *= 2;
6024 }
6025
1e3c88bd
PZ
6026 goto out;
6027
6028out_balanced:
6029 schedstat_inc(sd, lb_balanced[idle]);
6030
6031 sd->nr_balance_failed = 0;
6032
6033out_one_pinned:
6034 /* tune up the balancing interval */
8e45cb54 6035 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6036 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6037 (sd->balance_interval < sd->max_interval))
6038 sd->balance_interval *= 2;
6039
46e49b38 6040 ld_moved = 0;
1e3c88bd 6041out:
1e3c88bd
PZ
6042 return ld_moved;
6043}
6044
1e3c88bd
PZ
6045/*
6046 * idle_balance is called by schedule() if this_cpu is about to become
6047 * idle. Attempts to pull tasks from other CPUs.
6048 */
029632fb 6049void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6050{
6051 struct sched_domain *sd;
6052 int pulled_task = 0;
6053 unsigned long next_balance = jiffies + HZ;
9bd721c5 6054 u64 curr_cost = 0;
1e3c88bd 6055
78becc27 6056 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6057
6058 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6059 return;
6060
f492e12e
PZ
6061 /*
6062 * Drop the rq->lock, but keep IRQ/preempt disabled.
6063 */
6064 raw_spin_unlock(&this_rq->lock);
6065
48a16753 6066 update_blocked_averages(this_cpu);
dce840a0 6067 rcu_read_lock();
1e3c88bd
PZ
6068 for_each_domain(this_cpu, sd) {
6069 unsigned long interval;
23f0d209 6070 int continue_balancing = 1;
9bd721c5 6071 u64 t0, domain_cost;
1e3c88bd
PZ
6072
6073 if (!(sd->flags & SD_LOAD_BALANCE))
6074 continue;
6075
9bd721c5
JL
6076 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6077 break;
6078
f492e12e 6079 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6080 t0 = sched_clock_cpu(this_cpu);
6081
1e3c88bd 6082 /* If we've pulled tasks over stop searching: */
f492e12e 6083 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6084 sd, CPU_NEWLY_IDLE,
6085 &continue_balancing);
9bd721c5
JL
6086
6087 domain_cost = sched_clock_cpu(this_cpu) - t0;
6088 if (domain_cost > sd->max_newidle_lb_cost)
6089 sd->max_newidle_lb_cost = domain_cost;
6090
6091 curr_cost += domain_cost;
f492e12e 6092 }
1e3c88bd
PZ
6093
6094 interval = msecs_to_jiffies(sd->balance_interval);
6095 if (time_after(next_balance, sd->last_balance + interval))
6096 next_balance = sd->last_balance + interval;
d5ad140b
NR
6097 if (pulled_task) {
6098 this_rq->idle_stamp = 0;
1e3c88bd 6099 break;
d5ad140b 6100 }
1e3c88bd 6101 }
dce840a0 6102 rcu_read_unlock();
f492e12e
PZ
6103
6104 raw_spin_lock(&this_rq->lock);
6105
1e3c88bd
PZ
6106 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6107 /*
6108 * We are going idle. next_balance may be set based on
6109 * a busy processor. So reset next_balance.
6110 */
6111 this_rq->next_balance = next_balance;
6112 }
9bd721c5
JL
6113
6114 if (curr_cost > this_rq->max_idle_balance_cost)
6115 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6116}
6117
6118/*
969c7921
TH
6119 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6120 * running tasks off the busiest CPU onto idle CPUs. It requires at
6121 * least 1 task to be running on each physical CPU where possible, and
6122 * avoids physical / logical imbalances.
1e3c88bd 6123 */
969c7921 6124static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6125{
969c7921
TH
6126 struct rq *busiest_rq = data;
6127 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6128 int target_cpu = busiest_rq->push_cpu;
969c7921 6129 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6130 struct sched_domain *sd;
969c7921
TH
6131
6132 raw_spin_lock_irq(&busiest_rq->lock);
6133
6134 /* make sure the requested cpu hasn't gone down in the meantime */
6135 if (unlikely(busiest_cpu != smp_processor_id() ||
6136 !busiest_rq->active_balance))
6137 goto out_unlock;
1e3c88bd
PZ
6138
6139 /* Is there any task to move? */
6140 if (busiest_rq->nr_running <= 1)
969c7921 6141 goto out_unlock;
1e3c88bd
PZ
6142
6143 /*
6144 * This condition is "impossible", if it occurs
6145 * we need to fix it. Originally reported by
6146 * Bjorn Helgaas on a 128-cpu setup.
6147 */
6148 BUG_ON(busiest_rq == target_rq);
6149
6150 /* move a task from busiest_rq to target_rq */
6151 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6152
6153 /* Search for an sd spanning us and the target CPU. */
dce840a0 6154 rcu_read_lock();
1e3c88bd
PZ
6155 for_each_domain(target_cpu, sd) {
6156 if ((sd->flags & SD_LOAD_BALANCE) &&
6157 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6158 break;
6159 }
6160
6161 if (likely(sd)) {
8e45cb54
PZ
6162 struct lb_env env = {
6163 .sd = sd,
ddcdf6e7
PZ
6164 .dst_cpu = target_cpu,
6165 .dst_rq = target_rq,
6166 .src_cpu = busiest_rq->cpu,
6167 .src_rq = busiest_rq,
8e45cb54
PZ
6168 .idle = CPU_IDLE,
6169 };
6170
1e3c88bd
PZ
6171 schedstat_inc(sd, alb_count);
6172
8e45cb54 6173 if (move_one_task(&env))
1e3c88bd
PZ
6174 schedstat_inc(sd, alb_pushed);
6175 else
6176 schedstat_inc(sd, alb_failed);
6177 }
dce840a0 6178 rcu_read_unlock();
1e3c88bd 6179 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6180out_unlock:
6181 busiest_rq->active_balance = 0;
6182 raw_spin_unlock_irq(&busiest_rq->lock);
6183 return 0;
1e3c88bd
PZ
6184}
6185
3451d024 6186#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6187/*
6188 * idle load balancing details
83cd4fe2
VP
6189 * - When one of the busy CPUs notice that there may be an idle rebalancing
6190 * needed, they will kick the idle load balancer, which then does idle
6191 * load balancing for all the idle CPUs.
6192 */
1e3c88bd 6193static struct {
83cd4fe2 6194 cpumask_var_t idle_cpus_mask;
0b005cf5 6195 atomic_t nr_cpus;
83cd4fe2
VP
6196 unsigned long next_balance; /* in jiffy units */
6197} nohz ____cacheline_aligned;
1e3c88bd 6198
8e7fbcbc 6199static inline int find_new_ilb(int call_cpu)
1e3c88bd 6200{
0b005cf5 6201 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6202
786d6dc7
SS
6203 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6204 return ilb;
6205
6206 return nr_cpu_ids;
1e3c88bd 6207}
1e3c88bd 6208
83cd4fe2
VP
6209/*
6210 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6211 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6212 * CPU (if there is one).
6213 */
6214static void nohz_balancer_kick(int cpu)
6215{
6216 int ilb_cpu;
6217
6218 nohz.next_balance++;
6219
0b005cf5 6220 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6221
0b005cf5
SS
6222 if (ilb_cpu >= nr_cpu_ids)
6223 return;
83cd4fe2 6224
cd490c5b 6225 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6226 return;
6227 /*
6228 * Use smp_send_reschedule() instead of resched_cpu().
6229 * This way we generate a sched IPI on the target cpu which
6230 * is idle. And the softirq performing nohz idle load balance
6231 * will be run before returning from the IPI.
6232 */
6233 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6234 return;
6235}
6236
c1cc017c 6237static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6238{
6239 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6240 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6241 atomic_dec(&nohz.nr_cpus);
6242 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6243 }
6244}
6245
69e1e811
SS
6246static inline void set_cpu_sd_state_busy(void)
6247{
6248 struct sched_domain *sd;
69e1e811 6249
69e1e811 6250 rcu_read_lock();
424c93fe 6251 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6252
6253 if (!sd || !sd->nohz_idle)
6254 goto unlock;
6255 sd->nohz_idle = 0;
6256
6257 for (; sd; sd = sd->parent)
69e1e811 6258 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6259unlock:
69e1e811
SS
6260 rcu_read_unlock();
6261}
6262
6263void set_cpu_sd_state_idle(void)
6264{
6265 struct sched_domain *sd;
69e1e811 6266
69e1e811 6267 rcu_read_lock();
424c93fe 6268 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6269
6270 if (!sd || sd->nohz_idle)
6271 goto unlock;
6272 sd->nohz_idle = 1;
6273
6274 for (; sd; sd = sd->parent)
69e1e811 6275 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6276unlock:
69e1e811
SS
6277 rcu_read_unlock();
6278}
6279
1e3c88bd 6280/*
c1cc017c 6281 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6282 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6283 */
c1cc017c 6284void nohz_balance_enter_idle(int cpu)
1e3c88bd 6285{
71325960
SS
6286 /*
6287 * If this cpu is going down, then nothing needs to be done.
6288 */
6289 if (!cpu_active(cpu))
6290 return;
6291
c1cc017c
AS
6292 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6293 return;
1e3c88bd 6294
c1cc017c
AS
6295 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6296 atomic_inc(&nohz.nr_cpus);
6297 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6298}
71325960 6299
0db0628d 6300static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6301 unsigned long action, void *hcpu)
6302{
6303 switch (action & ~CPU_TASKS_FROZEN) {
6304 case CPU_DYING:
c1cc017c 6305 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6306 return NOTIFY_OK;
6307 default:
6308 return NOTIFY_DONE;
6309 }
6310}
1e3c88bd
PZ
6311#endif
6312
6313static DEFINE_SPINLOCK(balancing);
6314
49c022e6
PZ
6315/*
6316 * Scale the max load_balance interval with the number of CPUs in the system.
6317 * This trades load-balance latency on larger machines for less cross talk.
6318 */
029632fb 6319void update_max_interval(void)
49c022e6
PZ
6320{
6321 max_load_balance_interval = HZ*num_online_cpus()/10;
6322}
6323
1e3c88bd
PZ
6324/*
6325 * It checks each scheduling domain to see if it is due to be balanced,
6326 * and initiates a balancing operation if so.
6327 *
b9b0853a 6328 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6329 */
6330static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6331{
23f0d209 6332 int continue_balancing = 1;
1e3c88bd
PZ
6333 struct rq *rq = cpu_rq(cpu);
6334 unsigned long interval;
04f733b4 6335 struct sched_domain *sd;
1e3c88bd
PZ
6336 /* Earliest time when we have to do rebalance again */
6337 unsigned long next_balance = jiffies + 60*HZ;
6338 int update_next_balance = 0;
f48627e6
JL
6339 int need_serialize, need_decay = 0;
6340 u64 max_cost = 0;
1e3c88bd 6341
48a16753 6342 update_blocked_averages(cpu);
2069dd75 6343
dce840a0 6344 rcu_read_lock();
1e3c88bd 6345 for_each_domain(cpu, sd) {
f48627e6
JL
6346 /*
6347 * Decay the newidle max times here because this is a regular
6348 * visit to all the domains. Decay ~1% per second.
6349 */
6350 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6351 sd->max_newidle_lb_cost =
6352 (sd->max_newidle_lb_cost * 253) / 256;
6353 sd->next_decay_max_lb_cost = jiffies + HZ;
6354 need_decay = 1;
6355 }
6356 max_cost += sd->max_newidle_lb_cost;
6357
1e3c88bd
PZ
6358 if (!(sd->flags & SD_LOAD_BALANCE))
6359 continue;
6360
f48627e6
JL
6361 /*
6362 * Stop the load balance at this level. There is another
6363 * CPU in our sched group which is doing load balancing more
6364 * actively.
6365 */
6366 if (!continue_balancing) {
6367 if (need_decay)
6368 continue;
6369 break;
6370 }
6371
1e3c88bd
PZ
6372 interval = sd->balance_interval;
6373 if (idle != CPU_IDLE)
6374 interval *= sd->busy_factor;
6375
6376 /* scale ms to jiffies */
6377 interval = msecs_to_jiffies(interval);
49c022e6 6378 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6379
6380 need_serialize = sd->flags & SD_SERIALIZE;
6381
6382 if (need_serialize) {
6383 if (!spin_trylock(&balancing))
6384 goto out;
6385 }
6386
6387 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6388 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6389 /*
6263322c 6390 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6391 * env->dst_cpu, so we can't know our idle
6392 * state even if we migrated tasks. Update it.
1e3c88bd 6393 */
de5eb2dd 6394 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6395 }
6396 sd->last_balance = jiffies;
6397 }
6398 if (need_serialize)
6399 spin_unlock(&balancing);
6400out:
6401 if (time_after(next_balance, sd->last_balance + interval)) {
6402 next_balance = sd->last_balance + interval;
6403 update_next_balance = 1;
6404 }
f48627e6
JL
6405 }
6406 if (need_decay) {
1e3c88bd 6407 /*
f48627e6
JL
6408 * Ensure the rq-wide value also decays but keep it at a
6409 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6410 */
f48627e6
JL
6411 rq->max_idle_balance_cost =
6412 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6413 }
dce840a0 6414 rcu_read_unlock();
1e3c88bd
PZ
6415
6416 /*
6417 * next_balance will be updated only when there is a need.
6418 * When the cpu is attached to null domain for ex, it will not be
6419 * updated.
6420 */
6421 if (likely(update_next_balance))
6422 rq->next_balance = next_balance;
6423}
6424
3451d024 6425#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6426/*
3451d024 6427 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6428 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6429 */
83cd4fe2
VP
6430static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6431{
6432 struct rq *this_rq = cpu_rq(this_cpu);
6433 struct rq *rq;
6434 int balance_cpu;
6435
1c792db7
SS
6436 if (idle != CPU_IDLE ||
6437 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6438 goto end;
83cd4fe2
VP
6439
6440 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6441 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6442 continue;
6443
6444 /*
6445 * If this cpu gets work to do, stop the load balancing
6446 * work being done for other cpus. Next load
6447 * balancing owner will pick it up.
6448 */
1c792db7 6449 if (need_resched())
83cd4fe2 6450 break;
83cd4fe2 6451
5ed4f1d9
VG
6452 rq = cpu_rq(balance_cpu);
6453
6454 raw_spin_lock_irq(&rq->lock);
6455 update_rq_clock(rq);
6456 update_idle_cpu_load(rq);
6457 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6458
6459 rebalance_domains(balance_cpu, CPU_IDLE);
6460
83cd4fe2
VP
6461 if (time_after(this_rq->next_balance, rq->next_balance))
6462 this_rq->next_balance = rq->next_balance;
6463 }
6464 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6465end:
6466 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6467}
6468
6469/*
0b005cf5
SS
6470 * Current heuristic for kicking the idle load balancer in the presence
6471 * of an idle cpu is the system.
6472 * - This rq has more than one task.
6473 * - At any scheduler domain level, this cpu's scheduler group has multiple
6474 * busy cpu's exceeding the group's power.
6475 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6476 * domain span are idle.
83cd4fe2
VP
6477 */
6478static inline int nohz_kick_needed(struct rq *rq, int cpu)
6479{
6480 unsigned long now = jiffies;
0b005cf5 6481 struct sched_domain *sd;
83cd4fe2 6482
1c792db7 6483 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6484 return 0;
6485
1c792db7
SS
6486 /*
6487 * We may be recently in ticked or tickless idle mode. At the first
6488 * busy tick after returning from idle, we will update the busy stats.
6489 */
69e1e811 6490 set_cpu_sd_state_busy();
c1cc017c 6491 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6492
6493 /*
6494 * None are in tickless mode and hence no need for NOHZ idle load
6495 * balancing.
6496 */
6497 if (likely(!atomic_read(&nohz.nr_cpus)))
6498 return 0;
1c792db7
SS
6499
6500 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6501 return 0;
6502
0b005cf5
SS
6503 if (rq->nr_running >= 2)
6504 goto need_kick;
83cd4fe2 6505
067491b7 6506 rcu_read_lock();
0b005cf5
SS
6507 for_each_domain(cpu, sd) {
6508 struct sched_group *sg = sd->groups;
6509 struct sched_group_power *sgp = sg->sgp;
6510 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6511
0b005cf5 6512 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6513 goto need_kick_unlock;
0b005cf5
SS
6514
6515 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6516 && (cpumask_first_and(nohz.idle_cpus_mask,
6517 sched_domain_span(sd)) < cpu))
067491b7 6518 goto need_kick_unlock;
0b005cf5
SS
6519
6520 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6521 break;
83cd4fe2 6522 }
067491b7 6523 rcu_read_unlock();
83cd4fe2 6524 return 0;
067491b7
PZ
6525
6526need_kick_unlock:
6527 rcu_read_unlock();
0b005cf5
SS
6528need_kick:
6529 return 1;
83cd4fe2
VP
6530}
6531#else
6532static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6533#endif
6534
6535/*
6536 * run_rebalance_domains is triggered when needed from the scheduler tick.
6537 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6538 */
1e3c88bd
PZ
6539static void run_rebalance_domains(struct softirq_action *h)
6540{
6541 int this_cpu = smp_processor_id();
6542 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6543 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6544 CPU_IDLE : CPU_NOT_IDLE;
6545
6546 rebalance_domains(this_cpu, idle);
6547
1e3c88bd 6548 /*
83cd4fe2 6549 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6550 * balancing on behalf of the other idle cpus whose ticks are
6551 * stopped.
6552 */
83cd4fe2 6553 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6554}
6555
6556static inline int on_null_domain(int cpu)
6557{
90a6501f 6558 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6559}
6560
6561/*
6562 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6563 */
029632fb 6564void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6565{
1e3c88bd
PZ
6566 /* Don't need to rebalance while attached to NULL domain */
6567 if (time_after_eq(jiffies, rq->next_balance) &&
6568 likely(!on_null_domain(cpu)))
6569 raise_softirq(SCHED_SOFTIRQ);
3451d024 6570#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6571 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6572 nohz_balancer_kick(cpu);
6573#endif
1e3c88bd
PZ
6574}
6575
0bcdcf28
CE
6576static void rq_online_fair(struct rq *rq)
6577{
6578 update_sysctl();
6579}
6580
6581static void rq_offline_fair(struct rq *rq)
6582{
6583 update_sysctl();
a4c96ae3
PB
6584
6585 /* Ensure any throttled groups are reachable by pick_next_task */
6586 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6587}
6588
55e12e5e 6589#endif /* CONFIG_SMP */
e1d1484f 6590
bf0f6f24
IM
6591/*
6592 * scheduler tick hitting a task of our scheduling class:
6593 */
8f4d37ec 6594static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6595{
6596 struct cfs_rq *cfs_rq;
6597 struct sched_entity *se = &curr->se;
6598
6599 for_each_sched_entity(se) {
6600 cfs_rq = cfs_rq_of(se);
8f4d37ec 6601 entity_tick(cfs_rq, se, queued);
bf0f6f24 6602 }
18bf2805 6603
10e84b97 6604 if (numabalancing_enabled)
cbee9f88 6605 task_tick_numa(rq, curr);
3d59eebc 6606
18bf2805 6607 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6608}
6609
6610/*
cd29fe6f
PZ
6611 * called on fork with the child task as argument from the parent's context
6612 * - child not yet on the tasklist
6613 * - preemption disabled
bf0f6f24 6614 */
cd29fe6f 6615static void task_fork_fair(struct task_struct *p)
bf0f6f24 6616{
4fc420c9
DN
6617 struct cfs_rq *cfs_rq;
6618 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6619 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6620 struct rq *rq = this_rq();
6621 unsigned long flags;
6622
05fa785c 6623 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6624
861d034e
PZ
6625 update_rq_clock(rq);
6626
4fc420c9
DN
6627 cfs_rq = task_cfs_rq(current);
6628 curr = cfs_rq->curr;
6629
6c9a27f5
DN
6630 /*
6631 * Not only the cpu but also the task_group of the parent might have
6632 * been changed after parent->se.parent,cfs_rq were copied to
6633 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6634 * of child point to valid ones.
6635 */
6636 rcu_read_lock();
6637 __set_task_cpu(p, this_cpu);
6638 rcu_read_unlock();
bf0f6f24 6639
7109c442 6640 update_curr(cfs_rq);
cd29fe6f 6641
b5d9d734
MG
6642 if (curr)
6643 se->vruntime = curr->vruntime;
aeb73b04 6644 place_entity(cfs_rq, se, 1);
4d78e7b6 6645
cd29fe6f 6646 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6647 /*
edcb60a3
IM
6648 * Upon rescheduling, sched_class::put_prev_task() will place
6649 * 'current' within the tree based on its new key value.
6650 */
4d78e7b6 6651 swap(curr->vruntime, se->vruntime);
aec0a514 6652 resched_task(rq->curr);
4d78e7b6 6653 }
bf0f6f24 6654
88ec22d3
PZ
6655 se->vruntime -= cfs_rq->min_vruntime;
6656
05fa785c 6657 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6658}
6659
cb469845
SR
6660/*
6661 * Priority of the task has changed. Check to see if we preempt
6662 * the current task.
6663 */
da7a735e
PZ
6664static void
6665prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6666{
da7a735e
PZ
6667 if (!p->se.on_rq)
6668 return;
6669
cb469845
SR
6670 /*
6671 * Reschedule if we are currently running on this runqueue and
6672 * our priority decreased, or if we are not currently running on
6673 * this runqueue and our priority is higher than the current's
6674 */
da7a735e 6675 if (rq->curr == p) {
cb469845
SR
6676 if (p->prio > oldprio)
6677 resched_task(rq->curr);
6678 } else
15afe09b 6679 check_preempt_curr(rq, p, 0);
cb469845
SR
6680}
6681
da7a735e
PZ
6682static void switched_from_fair(struct rq *rq, struct task_struct *p)
6683{
6684 struct sched_entity *se = &p->se;
6685 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6686
6687 /*
6688 * Ensure the task's vruntime is normalized, so that when its
6689 * switched back to the fair class the enqueue_entity(.flags=0) will
6690 * do the right thing.
6691 *
6692 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6693 * have normalized the vruntime, if it was !on_rq, then only when
6694 * the task is sleeping will it still have non-normalized vruntime.
6695 */
6696 if (!se->on_rq && p->state != TASK_RUNNING) {
6697 /*
6698 * Fix up our vruntime so that the current sleep doesn't
6699 * cause 'unlimited' sleep bonus.
6700 */
6701 place_entity(cfs_rq, se, 0);
6702 se->vruntime -= cfs_rq->min_vruntime;
6703 }
9ee474f5 6704
141965c7 6705#ifdef CONFIG_SMP
9ee474f5
PT
6706 /*
6707 * Remove our load from contribution when we leave sched_fair
6708 * and ensure we don't carry in an old decay_count if we
6709 * switch back.
6710 */
87e3c8ae
KT
6711 if (se->avg.decay_count) {
6712 __synchronize_entity_decay(se);
6713 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6714 }
6715#endif
da7a735e
PZ
6716}
6717
cb469845
SR
6718/*
6719 * We switched to the sched_fair class.
6720 */
da7a735e 6721static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6722{
da7a735e
PZ
6723 if (!p->se.on_rq)
6724 return;
6725
cb469845
SR
6726 /*
6727 * We were most likely switched from sched_rt, so
6728 * kick off the schedule if running, otherwise just see
6729 * if we can still preempt the current task.
6730 */
da7a735e 6731 if (rq->curr == p)
cb469845
SR
6732 resched_task(rq->curr);
6733 else
15afe09b 6734 check_preempt_curr(rq, p, 0);
cb469845
SR
6735}
6736
83b699ed
SV
6737/* Account for a task changing its policy or group.
6738 *
6739 * This routine is mostly called to set cfs_rq->curr field when a task
6740 * migrates between groups/classes.
6741 */
6742static void set_curr_task_fair(struct rq *rq)
6743{
6744 struct sched_entity *se = &rq->curr->se;
6745
ec12cb7f
PT
6746 for_each_sched_entity(se) {
6747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6748
6749 set_next_entity(cfs_rq, se);
6750 /* ensure bandwidth has been allocated on our new cfs_rq */
6751 account_cfs_rq_runtime(cfs_rq, 0);
6752 }
83b699ed
SV
6753}
6754
029632fb
PZ
6755void init_cfs_rq(struct cfs_rq *cfs_rq)
6756{
6757 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6758 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6759#ifndef CONFIG_64BIT
6760 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6761#endif
141965c7 6762#ifdef CONFIG_SMP
9ee474f5 6763 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6764 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6765#endif
029632fb
PZ
6766}
6767
810b3817 6768#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6769static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6770{
aff3e498 6771 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6772 /*
6773 * If the task was not on the rq at the time of this cgroup movement
6774 * it must have been asleep, sleeping tasks keep their ->vruntime
6775 * absolute on their old rq until wakeup (needed for the fair sleeper
6776 * bonus in place_entity()).
6777 *
6778 * If it was on the rq, we've just 'preempted' it, which does convert
6779 * ->vruntime to a relative base.
6780 *
6781 * Make sure both cases convert their relative position when migrating
6782 * to another cgroup's rq. This does somewhat interfere with the
6783 * fair sleeper stuff for the first placement, but who cares.
6784 */
7ceff013
DN
6785 /*
6786 * When !on_rq, vruntime of the task has usually NOT been normalized.
6787 * But there are some cases where it has already been normalized:
6788 *
6789 * - Moving a forked child which is waiting for being woken up by
6790 * wake_up_new_task().
62af3783
DN
6791 * - Moving a task which has been woken up by try_to_wake_up() and
6792 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6793 *
6794 * To prevent boost or penalty in the new cfs_rq caused by delta
6795 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6796 */
62af3783 6797 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6798 on_rq = 1;
6799
b2b5ce02
PZ
6800 if (!on_rq)
6801 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6802 set_task_rq(p, task_cpu(p));
aff3e498
PT
6803 if (!on_rq) {
6804 cfs_rq = cfs_rq_of(&p->se);
6805 p->se.vruntime += cfs_rq->min_vruntime;
6806#ifdef CONFIG_SMP
6807 /*
6808 * migrate_task_rq_fair() will have removed our previous
6809 * contribution, but we must synchronize for ongoing future
6810 * decay.
6811 */
6812 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6813 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6814#endif
6815 }
810b3817 6816}
029632fb
PZ
6817
6818void free_fair_sched_group(struct task_group *tg)
6819{
6820 int i;
6821
6822 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6823
6824 for_each_possible_cpu(i) {
6825 if (tg->cfs_rq)
6826 kfree(tg->cfs_rq[i]);
6827 if (tg->se)
6828 kfree(tg->se[i]);
6829 }
6830
6831 kfree(tg->cfs_rq);
6832 kfree(tg->se);
6833}
6834
6835int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6836{
6837 struct cfs_rq *cfs_rq;
6838 struct sched_entity *se;
6839 int i;
6840
6841 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6842 if (!tg->cfs_rq)
6843 goto err;
6844 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6845 if (!tg->se)
6846 goto err;
6847
6848 tg->shares = NICE_0_LOAD;
6849
6850 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6851
6852 for_each_possible_cpu(i) {
6853 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6854 GFP_KERNEL, cpu_to_node(i));
6855 if (!cfs_rq)
6856 goto err;
6857
6858 se = kzalloc_node(sizeof(struct sched_entity),
6859 GFP_KERNEL, cpu_to_node(i));
6860 if (!se)
6861 goto err_free_rq;
6862
6863 init_cfs_rq(cfs_rq);
6864 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6865 }
6866
6867 return 1;
6868
6869err_free_rq:
6870 kfree(cfs_rq);
6871err:
6872 return 0;
6873}
6874
6875void unregister_fair_sched_group(struct task_group *tg, int cpu)
6876{
6877 struct rq *rq = cpu_rq(cpu);
6878 unsigned long flags;
6879
6880 /*
6881 * Only empty task groups can be destroyed; so we can speculatively
6882 * check on_list without danger of it being re-added.
6883 */
6884 if (!tg->cfs_rq[cpu]->on_list)
6885 return;
6886
6887 raw_spin_lock_irqsave(&rq->lock, flags);
6888 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6889 raw_spin_unlock_irqrestore(&rq->lock, flags);
6890}
6891
6892void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6893 struct sched_entity *se, int cpu,
6894 struct sched_entity *parent)
6895{
6896 struct rq *rq = cpu_rq(cpu);
6897
6898 cfs_rq->tg = tg;
6899 cfs_rq->rq = rq;
029632fb
PZ
6900 init_cfs_rq_runtime(cfs_rq);
6901
6902 tg->cfs_rq[cpu] = cfs_rq;
6903 tg->se[cpu] = se;
6904
6905 /* se could be NULL for root_task_group */
6906 if (!se)
6907 return;
6908
6909 if (!parent)
6910 se->cfs_rq = &rq->cfs;
6911 else
6912 se->cfs_rq = parent->my_q;
6913
6914 se->my_q = cfs_rq;
6915 update_load_set(&se->load, 0);
6916 se->parent = parent;
6917}
6918
6919static DEFINE_MUTEX(shares_mutex);
6920
6921int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6922{
6923 int i;
6924 unsigned long flags;
6925
6926 /*
6927 * We can't change the weight of the root cgroup.
6928 */
6929 if (!tg->se[0])
6930 return -EINVAL;
6931
6932 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6933
6934 mutex_lock(&shares_mutex);
6935 if (tg->shares == shares)
6936 goto done;
6937
6938 tg->shares = shares;
6939 for_each_possible_cpu(i) {
6940 struct rq *rq = cpu_rq(i);
6941 struct sched_entity *se;
6942
6943 se = tg->se[i];
6944 /* Propagate contribution to hierarchy */
6945 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6946
6947 /* Possible calls to update_curr() need rq clock */
6948 update_rq_clock(rq);
17bc14b7 6949 for_each_sched_entity(se)
029632fb
PZ
6950 update_cfs_shares(group_cfs_rq(se));
6951 raw_spin_unlock_irqrestore(&rq->lock, flags);
6952 }
6953
6954done:
6955 mutex_unlock(&shares_mutex);
6956 return 0;
6957}
6958#else /* CONFIG_FAIR_GROUP_SCHED */
6959
6960void free_fair_sched_group(struct task_group *tg) { }
6961
6962int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6963{
6964 return 1;
6965}
6966
6967void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6968
6969#endif /* CONFIG_FAIR_GROUP_SCHED */
6970
810b3817 6971
6d686f45 6972static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6973{
6974 struct sched_entity *se = &task->se;
0d721cea
PW
6975 unsigned int rr_interval = 0;
6976
6977 /*
6978 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6979 * idle runqueue:
6980 */
0d721cea 6981 if (rq->cfs.load.weight)
a59f4e07 6982 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6983
6984 return rr_interval;
6985}
6986
bf0f6f24
IM
6987/*
6988 * All the scheduling class methods:
6989 */
029632fb 6990const struct sched_class fair_sched_class = {
5522d5d5 6991 .next = &idle_sched_class,
bf0f6f24
IM
6992 .enqueue_task = enqueue_task_fair,
6993 .dequeue_task = dequeue_task_fair,
6994 .yield_task = yield_task_fair,
d95f4122 6995 .yield_to_task = yield_to_task_fair,
bf0f6f24 6996
2e09bf55 6997 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6998
6999 .pick_next_task = pick_next_task_fair,
7000 .put_prev_task = put_prev_task_fair,
7001
681f3e68 7002#ifdef CONFIG_SMP
4ce72a2c 7003 .select_task_rq = select_task_rq_fair,
0a74bef8 7004 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7005
0bcdcf28
CE
7006 .rq_online = rq_online_fair,
7007 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7008
7009 .task_waking = task_waking_fair,
681f3e68 7010#endif
bf0f6f24 7011
83b699ed 7012 .set_curr_task = set_curr_task_fair,
bf0f6f24 7013 .task_tick = task_tick_fair,
cd29fe6f 7014 .task_fork = task_fork_fair,
cb469845
SR
7015
7016 .prio_changed = prio_changed_fair,
da7a735e 7017 .switched_from = switched_from_fair,
cb469845 7018 .switched_to = switched_to_fair,
810b3817 7019
0d721cea
PW
7020 .get_rr_interval = get_rr_interval_fair,
7021
810b3817 7022#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7023 .task_move_group = task_move_group_fair,
810b3817 7024#endif
bf0f6f24
IM
7025};
7026
7027#ifdef CONFIG_SCHED_DEBUG
029632fb 7028void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7029{
bf0f6f24
IM
7030 struct cfs_rq *cfs_rq;
7031
5973e5b9 7032 rcu_read_lock();
c3b64f1e 7033 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7034 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7035 rcu_read_unlock();
bf0f6f24
IM
7036}
7037#endif
029632fb
PZ
7038
7039__init void init_sched_fair_class(void)
7040{
7041#ifdef CONFIG_SMP
7042 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7043
3451d024 7044#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7045 nohz.next_balance = jiffies;
029632fb 7046 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7047 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7048#endif
7049#endif /* SMP */
7050
7051}