sched/numa: Use effective_load() to balance NUMA loads
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
5ef20ca1 1065 ns->task_capacity =
ca8ce3d0 1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
28a21745 1098static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1099 struct task_numa_env *env)
1100{
1101 long imb, old_imb;
28a21745
RR
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
28a21745
RR
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
28a21745
RR
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
e63da036
RR
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
28a21745
RR
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1137
1138 /* Would this change make things worse? */
1662867a 1139 return (imb > old_imb);
e63da036
RR
1140}
1141
fb13c7ee
MG
1142/*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
887c290e
RR
1148static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
fb13c7ee
MG
1150{
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
6dc1a672 1154 struct task_group *tg;
28a21745 1155 long src_load, dst_load;
fb13c7ee 1156 long load;
887c290e 1157 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1158
1159 rcu_read_lock();
1160 cur = ACCESS_ONCE(dst_rq->curr);
1161 if (cur->pid == 0) /* idle */
1162 cur = NULL;
1163
1164 /*
1165 * "imp" is the fault differential for the source task between the
1166 * source and destination node. Calculate the total differential for
1167 * the source task and potential destination task. The more negative
1168 * the value is, the more rmeote accesses that would be expected to
1169 * be incurred if the tasks were swapped.
1170 */
1171 if (cur) {
1172 /* Skip this swap candidate if cannot move to the source cpu */
1173 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1174 goto unlock;
1175
887c290e
RR
1176 /*
1177 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1178 * in any group then look only at task weights.
887c290e 1179 */
ca28aa53 1180 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1181 imp = taskimp + task_weight(cur, env->src_nid) -
1182 task_weight(cur, env->dst_nid);
ca28aa53
RR
1183 /*
1184 * Add some hysteresis to prevent swapping the
1185 * tasks within a group over tiny differences.
1186 */
1187 if (cur->numa_group)
1188 imp -= imp/16;
887c290e 1189 } else {
ca28aa53
RR
1190 /*
1191 * Compare the group weights. If a task is all by
1192 * itself (not part of a group), use the task weight
1193 * instead.
1194 */
1195 if (env->p->numa_group)
1196 imp = groupimp;
1197 else
1198 imp = taskimp;
1199
1200 if (cur->numa_group)
1201 imp += group_weight(cur, env->src_nid) -
1202 group_weight(cur, env->dst_nid);
1203 else
1204 imp += task_weight(cur, env->src_nid) -
1205 task_weight(cur, env->dst_nid);
887c290e 1206 }
fb13c7ee
MG
1207 }
1208
1209 if (imp < env->best_imp)
1210 goto unlock;
1211
1212 if (!cur) {
1213 /* Is there capacity at our destination? */
1b6a7495
NP
1214 if (env->src_stats.has_free_capacity &&
1215 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1216 goto unlock;
1217
1218 goto balance;
1219 }
1220
1221 /* Balance doesn't matter much if we're running a task per cpu */
1222 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1223 goto assign;
1224
1225 /*
1226 * In the overloaded case, try and keep the load balanced.
1227 */
1228balance:
6dc1a672
RR
1229 src_load = env->src_stats.load;
1230 dst_load = env->dst_stats.load;
1231
1232 /* Calculate the effect of moving env->p from src to dst. */
1233 load = env->p->se.load.weight;
1234 tg = task_group(env->p);
1235 src_load += effective_load(tg, env->src_cpu, -load, -load);
1236 dst_load += effective_load(tg, env->dst_cpu, load, load);
fb13c7ee
MG
1237
1238 if (cur) {
6dc1a672
RR
1239 /* Cur moves in the opposite direction. */
1240 load = cur->se.load.weight;
1241 tg = task_group(cur);
1242 src_load += effective_load(tg, env->src_cpu, load, load);
1243 dst_load += effective_load(tg, env->dst_cpu, -load, -load);
fb13c7ee
MG
1244 }
1245
28a21745 1246 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1247 goto unlock;
1248
1249assign:
1250 task_numa_assign(env, cur, imp);
1251unlock:
1252 rcu_read_unlock();
1253}
1254
887c290e
RR
1255static void task_numa_find_cpu(struct task_numa_env *env,
1256 long taskimp, long groupimp)
2c8a50aa
MG
1257{
1258 int cpu;
1259
1260 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1261 /* Skip this CPU if the source task cannot migrate */
1262 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1263 continue;
1264
1265 env->dst_cpu = cpu;
887c290e 1266 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1267 }
1268}
1269
58d081b5
MG
1270static int task_numa_migrate(struct task_struct *p)
1271{
58d081b5
MG
1272 struct task_numa_env env = {
1273 .p = p,
fb13c7ee 1274
58d081b5 1275 .src_cpu = task_cpu(p),
b32e86b4 1276 .src_nid = task_node(p),
fb13c7ee
MG
1277
1278 .imbalance_pct = 112,
1279
1280 .best_task = NULL,
1281 .best_imp = 0,
1282 .best_cpu = -1
58d081b5
MG
1283 };
1284 struct sched_domain *sd;
887c290e 1285 unsigned long taskweight, groupweight;
2c8a50aa 1286 int nid, ret;
887c290e 1287 long taskimp, groupimp;
e6628d5b 1288
58d081b5 1289 /*
fb13c7ee
MG
1290 * Pick the lowest SD_NUMA domain, as that would have the smallest
1291 * imbalance and would be the first to start moving tasks about.
1292 *
1293 * And we want to avoid any moving of tasks about, as that would create
1294 * random movement of tasks -- counter the numa conditions we're trying
1295 * to satisfy here.
58d081b5
MG
1296 */
1297 rcu_read_lock();
fb13c7ee 1298 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1299 if (sd)
1300 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1301 rcu_read_unlock();
1302
46a73e8a
RR
1303 /*
1304 * Cpusets can break the scheduler domain tree into smaller
1305 * balance domains, some of which do not cross NUMA boundaries.
1306 * Tasks that are "trapped" in such domains cannot be migrated
1307 * elsewhere, so there is no point in (re)trying.
1308 */
1309 if (unlikely(!sd)) {
de1b301a 1310 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1311 return -EINVAL;
1312 }
1313
887c290e
RR
1314 taskweight = task_weight(p, env.src_nid);
1315 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1316 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1317 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1318 taskimp = task_weight(p, env.dst_nid) - taskweight;
1319 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1320 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1321
a43455a1
RR
1322 /* Try to find a spot on the preferred nid. */
1323 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1324
1325 /* No space available on the preferred nid. Look elsewhere. */
1326 if (env.best_cpu == -1) {
2c8a50aa
MG
1327 for_each_online_node(nid) {
1328 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1329 continue;
58d081b5 1330
83e1d2cd 1331 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1332 taskimp = task_weight(p, nid) - taskweight;
1333 groupimp = group_weight(p, nid) - groupweight;
1334 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1335 continue;
1336
2c8a50aa
MG
1337 env.dst_nid = nid;
1338 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1339 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1340 }
1341 }
1342
fb13c7ee
MG
1343 /* No better CPU than the current one was found. */
1344 if (env.best_cpu == -1)
1345 return -EAGAIN;
1346
68d1b02a
RR
1347 /*
1348 * If the task is part of a workload that spans multiple NUMA nodes,
1349 * and is migrating into one of the workload's active nodes, remember
1350 * this node as the task's preferred numa node, so the workload can
1351 * settle down.
1352 * A task that migrated to a second choice node will be better off
1353 * trying for a better one later. Do not set the preferred node here.
1354 */
1355 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1356 sched_setnuma(p, env.dst_nid);
0ec8aa00 1357
04bb2f94
RR
1358 /*
1359 * Reset the scan period if the task is being rescheduled on an
1360 * alternative node to recheck if the tasks is now properly placed.
1361 */
1362 p->numa_scan_period = task_scan_min(p);
1363
fb13c7ee 1364 if (env.best_task == NULL) {
286549dc
MG
1365 ret = migrate_task_to(p, env.best_cpu);
1366 if (ret != 0)
1367 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1368 return ret;
1369 }
1370
1371 ret = migrate_swap(p, env.best_task);
286549dc
MG
1372 if (ret != 0)
1373 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1374 put_task_struct(env.best_task);
1375 return ret;
e6628d5b
MG
1376}
1377
6b9a7460
MG
1378/* Attempt to migrate a task to a CPU on the preferred node. */
1379static void numa_migrate_preferred(struct task_struct *p)
1380{
5085e2a3
RR
1381 unsigned long interval = HZ;
1382
2739d3ee 1383 /* This task has no NUMA fault statistics yet */
ff1df896 1384 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1385 return;
1386
2739d3ee 1387 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1388 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1389 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1390
1391 /* Success if task is already running on preferred CPU */
de1b301a 1392 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1393 return;
1394
1395 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1396 task_numa_migrate(p);
6b9a7460
MG
1397}
1398
20e07dea
RR
1399/*
1400 * Find the nodes on which the workload is actively running. We do this by
1401 * tracking the nodes from which NUMA hinting faults are triggered. This can
1402 * be different from the set of nodes where the workload's memory is currently
1403 * located.
1404 *
1405 * The bitmask is used to make smarter decisions on when to do NUMA page
1406 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1407 * are added when they cause over 6/16 of the maximum number of faults, but
1408 * only removed when they drop below 3/16.
1409 */
1410static void update_numa_active_node_mask(struct numa_group *numa_group)
1411{
1412 unsigned long faults, max_faults = 0;
1413 int nid;
1414
1415 for_each_online_node(nid) {
1416 faults = group_faults_cpu(numa_group, nid);
1417 if (faults > max_faults)
1418 max_faults = faults;
1419 }
1420
1421 for_each_online_node(nid) {
1422 faults = group_faults_cpu(numa_group, nid);
1423 if (!node_isset(nid, numa_group->active_nodes)) {
1424 if (faults > max_faults * 6 / 16)
1425 node_set(nid, numa_group->active_nodes);
1426 } else if (faults < max_faults * 3 / 16)
1427 node_clear(nid, numa_group->active_nodes);
1428 }
1429}
1430
04bb2f94
RR
1431/*
1432 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1433 * increments. The more local the fault statistics are, the higher the scan
1434 * period will be for the next scan window. If local/remote ratio is below
1435 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1436 * scan period will decrease
1437 */
1438#define NUMA_PERIOD_SLOTS 10
1439#define NUMA_PERIOD_THRESHOLD 3
1440
1441/*
1442 * Increase the scan period (slow down scanning) if the majority of
1443 * our memory is already on our local node, or if the majority of
1444 * the page accesses are shared with other processes.
1445 * Otherwise, decrease the scan period.
1446 */
1447static void update_task_scan_period(struct task_struct *p,
1448 unsigned long shared, unsigned long private)
1449{
1450 unsigned int period_slot;
1451 int ratio;
1452 int diff;
1453
1454 unsigned long remote = p->numa_faults_locality[0];
1455 unsigned long local = p->numa_faults_locality[1];
1456
1457 /*
1458 * If there were no record hinting faults then either the task is
1459 * completely idle or all activity is areas that are not of interest
1460 * to automatic numa balancing. Scan slower
1461 */
1462 if (local + shared == 0) {
1463 p->numa_scan_period = min(p->numa_scan_period_max,
1464 p->numa_scan_period << 1);
1465
1466 p->mm->numa_next_scan = jiffies +
1467 msecs_to_jiffies(p->numa_scan_period);
1468
1469 return;
1470 }
1471
1472 /*
1473 * Prepare to scale scan period relative to the current period.
1474 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1475 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1476 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1477 */
1478 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1479 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1480 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1481 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1482 if (!slot)
1483 slot = 1;
1484 diff = slot * period_slot;
1485 } else {
1486 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1487
1488 /*
1489 * Scale scan rate increases based on sharing. There is an
1490 * inverse relationship between the degree of sharing and
1491 * the adjustment made to the scanning period. Broadly
1492 * speaking the intent is that there is little point
1493 * scanning faster if shared accesses dominate as it may
1494 * simply bounce migrations uselessly
1495 */
04bb2f94
RR
1496 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1497 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1498 }
1499
1500 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1501 task_scan_min(p), task_scan_max(p));
1502 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1503}
1504
7e2703e6
RR
1505/*
1506 * Get the fraction of time the task has been running since the last
1507 * NUMA placement cycle. The scheduler keeps similar statistics, but
1508 * decays those on a 32ms period, which is orders of magnitude off
1509 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1510 * stats only if the task is so new there are no NUMA statistics yet.
1511 */
1512static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1513{
1514 u64 runtime, delta, now;
1515 /* Use the start of this time slice to avoid calculations. */
1516 now = p->se.exec_start;
1517 runtime = p->se.sum_exec_runtime;
1518
1519 if (p->last_task_numa_placement) {
1520 delta = runtime - p->last_sum_exec_runtime;
1521 *period = now - p->last_task_numa_placement;
1522 } else {
1523 delta = p->se.avg.runnable_avg_sum;
1524 *period = p->se.avg.runnable_avg_period;
1525 }
1526
1527 p->last_sum_exec_runtime = runtime;
1528 p->last_task_numa_placement = now;
1529
1530 return delta;
1531}
1532
cbee9f88
PZ
1533static void task_numa_placement(struct task_struct *p)
1534{
83e1d2cd
MG
1535 int seq, nid, max_nid = -1, max_group_nid = -1;
1536 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1537 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1538 unsigned long total_faults;
1539 u64 runtime, period;
7dbd13ed 1540 spinlock_t *group_lock = NULL;
cbee9f88 1541
2832bc19 1542 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1543 if (p->numa_scan_seq == seq)
1544 return;
1545 p->numa_scan_seq = seq;
598f0ec0 1546 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1547
7e2703e6
RR
1548 total_faults = p->numa_faults_locality[0] +
1549 p->numa_faults_locality[1];
1550 runtime = numa_get_avg_runtime(p, &period);
1551
7dbd13ed
MG
1552 /* If the task is part of a group prevent parallel updates to group stats */
1553 if (p->numa_group) {
1554 group_lock = &p->numa_group->lock;
60e69eed 1555 spin_lock_irq(group_lock);
7dbd13ed
MG
1556 }
1557
688b7585
MG
1558 /* Find the node with the highest number of faults */
1559 for_each_online_node(nid) {
83e1d2cd 1560 unsigned long faults = 0, group_faults = 0;
ac8e895b 1561 int priv, i;
745d6147 1562
be1e4e76 1563 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1564 long diff, f_diff, f_weight;
8c8a743c 1565
ac8e895b 1566 i = task_faults_idx(nid, priv);
745d6147 1567
ac8e895b 1568 /* Decay existing window, copy faults since last scan */
35664fd4 1569 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1570 fault_types[priv] += p->numa_faults_buffer_memory[i];
1571 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1572
7e2703e6
RR
1573 /*
1574 * Normalize the faults_from, so all tasks in a group
1575 * count according to CPU use, instead of by the raw
1576 * number of faults. Tasks with little runtime have
1577 * little over-all impact on throughput, and thus their
1578 * faults are less important.
1579 */
1580 f_weight = div64_u64(runtime << 16, period + 1);
1581 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1582 (total_faults + 1);
35664fd4 1583 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1584 p->numa_faults_buffer_cpu[i] = 0;
1585
35664fd4
RR
1586 p->numa_faults_memory[i] += diff;
1587 p->numa_faults_cpu[i] += f_diff;
ff1df896 1588 faults += p->numa_faults_memory[i];
83e1d2cd 1589 p->total_numa_faults += diff;
8c8a743c
PZ
1590 if (p->numa_group) {
1591 /* safe because we can only change our own group */
989348b5 1592 p->numa_group->faults[i] += diff;
50ec8a40 1593 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1594 p->numa_group->total_faults += diff;
1595 group_faults += p->numa_group->faults[i];
8c8a743c 1596 }
ac8e895b
MG
1597 }
1598
688b7585
MG
1599 if (faults > max_faults) {
1600 max_faults = faults;
1601 max_nid = nid;
1602 }
83e1d2cd
MG
1603
1604 if (group_faults > max_group_faults) {
1605 max_group_faults = group_faults;
1606 max_group_nid = nid;
1607 }
1608 }
1609
04bb2f94
RR
1610 update_task_scan_period(p, fault_types[0], fault_types[1]);
1611
7dbd13ed 1612 if (p->numa_group) {
20e07dea 1613 update_numa_active_node_mask(p->numa_group);
60e69eed 1614 spin_unlock_irq(group_lock);
f0b8a4af 1615 max_nid = max_group_nid;
688b7585
MG
1616 }
1617
bb97fc31
RR
1618 if (max_faults) {
1619 /* Set the new preferred node */
1620 if (max_nid != p->numa_preferred_nid)
1621 sched_setnuma(p, max_nid);
1622
1623 if (task_node(p) != p->numa_preferred_nid)
1624 numa_migrate_preferred(p);
3a7053b3 1625 }
cbee9f88
PZ
1626}
1627
8c8a743c
PZ
1628static inline int get_numa_group(struct numa_group *grp)
1629{
1630 return atomic_inc_not_zero(&grp->refcount);
1631}
1632
1633static inline void put_numa_group(struct numa_group *grp)
1634{
1635 if (atomic_dec_and_test(&grp->refcount))
1636 kfree_rcu(grp, rcu);
1637}
1638
3e6a9418
MG
1639static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1640 int *priv)
8c8a743c
PZ
1641{
1642 struct numa_group *grp, *my_grp;
1643 struct task_struct *tsk;
1644 bool join = false;
1645 int cpu = cpupid_to_cpu(cpupid);
1646 int i;
1647
1648 if (unlikely(!p->numa_group)) {
1649 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1650 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1651
1652 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1653 if (!grp)
1654 return;
1655
1656 atomic_set(&grp->refcount, 1);
1657 spin_lock_init(&grp->lock);
1658 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1659 grp->gid = p->pid;
50ec8a40 1660 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1661 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1662 nr_node_ids;
8c8a743c 1663
20e07dea
RR
1664 node_set(task_node(current), grp->active_nodes);
1665
be1e4e76 1666 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1667 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1668
989348b5 1669 grp->total_faults = p->total_numa_faults;
83e1d2cd 1670
8c8a743c
PZ
1671 list_add(&p->numa_entry, &grp->task_list);
1672 grp->nr_tasks++;
1673 rcu_assign_pointer(p->numa_group, grp);
1674 }
1675
1676 rcu_read_lock();
1677 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1678
1679 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1680 goto no_join;
8c8a743c
PZ
1681
1682 grp = rcu_dereference(tsk->numa_group);
1683 if (!grp)
3354781a 1684 goto no_join;
8c8a743c
PZ
1685
1686 my_grp = p->numa_group;
1687 if (grp == my_grp)
3354781a 1688 goto no_join;
8c8a743c
PZ
1689
1690 /*
1691 * Only join the other group if its bigger; if we're the bigger group,
1692 * the other task will join us.
1693 */
1694 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1695 goto no_join;
8c8a743c
PZ
1696
1697 /*
1698 * Tie-break on the grp address.
1699 */
1700 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1701 goto no_join;
8c8a743c 1702
dabe1d99
RR
1703 /* Always join threads in the same process. */
1704 if (tsk->mm == current->mm)
1705 join = true;
1706
1707 /* Simple filter to avoid false positives due to PID collisions */
1708 if (flags & TNF_SHARED)
1709 join = true;
8c8a743c 1710
3e6a9418
MG
1711 /* Update priv based on whether false sharing was detected */
1712 *priv = !join;
1713
dabe1d99 1714 if (join && !get_numa_group(grp))
3354781a 1715 goto no_join;
8c8a743c 1716
8c8a743c
PZ
1717 rcu_read_unlock();
1718
1719 if (!join)
1720 return;
1721
60e69eed
MG
1722 BUG_ON(irqs_disabled());
1723 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1724
be1e4e76 1725 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1726 my_grp->faults[i] -= p->numa_faults_memory[i];
1727 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1728 }
989348b5
MG
1729 my_grp->total_faults -= p->total_numa_faults;
1730 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1731
1732 list_move(&p->numa_entry, &grp->task_list);
1733 my_grp->nr_tasks--;
1734 grp->nr_tasks++;
1735
1736 spin_unlock(&my_grp->lock);
60e69eed 1737 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1738
1739 rcu_assign_pointer(p->numa_group, grp);
1740
1741 put_numa_group(my_grp);
3354781a
PZ
1742 return;
1743
1744no_join:
1745 rcu_read_unlock();
1746 return;
8c8a743c
PZ
1747}
1748
1749void task_numa_free(struct task_struct *p)
1750{
1751 struct numa_group *grp = p->numa_group;
ff1df896 1752 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1753 unsigned long flags;
1754 int i;
8c8a743c
PZ
1755
1756 if (grp) {
e9dd685c 1757 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1758 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1759 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1760 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1761
8c8a743c
PZ
1762 list_del(&p->numa_entry);
1763 grp->nr_tasks--;
e9dd685c 1764 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1765 rcu_assign_pointer(p->numa_group, NULL);
1766 put_numa_group(grp);
1767 }
1768
ff1df896
RR
1769 p->numa_faults_memory = NULL;
1770 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1771 p->numa_faults_cpu= NULL;
1772 p->numa_faults_buffer_cpu = NULL;
82727018 1773 kfree(numa_faults);
8c8a743c
PZ
1774}
1775
cbee9f88
PZ
1776/*
1777 * Got a PROT_NONE fault for a page on @node.
1778 */
58b46da3 1779void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1780{
1781 struct task_struct *p = current;
6688cc05 1782 bool migrated = flags & TNF_MIGRATED;
58b46da3 1783 int cpu_node = task_node(current);
792568ec 1784 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1785 int priv;
cbee9f88 1786
10e84b97 1787 if (!numabalancing_enabled)
1a687c2e
MG
1788 return;
1789
9ff1d9ff
MG
1790 /* for example, ksmd faulting in a user's mm */
1791 if (!p->mm)
1792 return;
1793
82727018
RR
1794 /* Do not worry about placement if exiting */
1795 if (p->state == TASK_DEAD)
1796 return;
1797
f809ca9a 1798 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1799 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1800 int size = sizeof(*p->numa_faults_memory) *
1801 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1802
be1e4e76 1803 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1804 if (!p->numa_faults_memory)
f809ca9a 1805 return;
745d6147 1806
ff1df896 1807 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1808 /*
1809 * The averaged statistics, shared & private, memory & cpu,
1810 * occupy the first half of the array. The second half of the
1811 * array is for current counters, which are averaged into the
1812 * first set by task_numa_placement.
1813 */
50ec8a40
RR
1814 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1815 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1816 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1817 p->total_numa_faults = 0;
04bb2f94 1818 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1819 }
cbee9f88 1820
8c8a743c
PZ
1821 /*
1822 * First accesses are treated as private, otherwise consider accesses
1823 * to be private if the accessing pid has not changed
1824 */
1825 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1826 priv = 1;
1827 } else {
1828 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1829 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1830 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1831 }
1832
792568ec
RR
1833 /*
1834 * If a workload spans multiple NUMA nodes, a shared fault that
1835 * occurs wholly within the set of nodes that the workload is
1836 * actively using should be counted as local. This allows the
1837 * scan rate to slow down when a workload has settled down.
1838 */
1839 if (!priv && !local && p->numa_group &&
1840 node_isset(cpu_node, p->numa_group->active_nodes) &&
1841 node_isset(mem_node, p->numa_group->active_nodes))
1842 local = 1;
1843
cbee9f88 1844 task_numa_placement(p);
f809ca9a 1845
2739d3ee
RR
1846 /*
1847 * Retry task to preferred node migration periodically, in case it
1848 * case it previously failed, or the scheduler moved us.
1849 */
1850 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1851 numa_migrate_preferred(p);
1852
b32e86b4
IM
1853 if (migrated)
1854 p->numa_pages_migrated += pages;
1855
58b46da3
RR
1856 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1857 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1858 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1859}
1860
6e5fb223
PZ
1861static void reset_ptenuma_scan(struct task_struct *p)
1862{
1863 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1864 p->mm->numa_scan_offset = 0;
1865}
1866
cbee9f88
PZ
1867/*
1868 * The expensive part of numa migration is done from task_work context.
1869 * Triggered from task_tick_numa().
1870 */
1871void task_numa_work(struct callback_head *work)
1872{
1873 unsigned long migrate, next_scan, now = jiffies;
1874 struct task_struct *p = current;
1875 struct mm_struct *mm = p->mm;
6e5fb223 1876 struct vm_area_struct *vma;
9f40604c 1877 unsigned long start, end;
598f0ec0 1878 unsigned long nr_pte_updates = 0;
9f40604c 1879 long pages;
cbee9f88
PZ
1880
1881 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1882
1883 work->next = work; /* protect against double add */
1884 /*
1885 * Who cares about NUMA placement when they're dying.
1886 *
1887 * NOTE: make sure not to dereference p->mm before this check,
1888 * exit_task_work() happens _after_ exit_mm() so we could be called
1889 * without p->mm even though we still had it when we enqueued this
1890 * work.
1891 */
1892 if (p->flags & PF_EXITING)
1893 return;
1894
930aa174 1895 if (!mm->numa_next_scan) {
7e8d16b6
MG
1896 mm->numa_next_scan = now +
1897 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1898 }
1899
cbee9f88
PZ
1900 /*
1901 * Enforce maximal scan/migration frequency..
1902 */
1903 migrate = mm->numa_next_scan;
1904 if (time_before(now, migrate))
1905 return;
1906
598f0ec0
MG
1907 if (p->numa_scan_period == 0) {
1908 p->numa_scan_period_max = task_scan_max(p);
1909 p->numa_scan_period = task_scan_min(p);
1910 }
cbee9f88 1911
fb003b80 1912 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1913 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1914 return;
1915
19a78d11
PZ
1916 /*
1917 * Delay this task enough that another task of this mm will likely win
1918 * the next time around.
1919 */
1920 p->node_stamp += 2 * TICK_NSEC;
1921
9f40604c
MG
1922 start = mm->numa_scan_offset;
1923 pages = sysctl_numa_balancing_scan_size;
1924 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1925 if (!pages)
1926 return;
cbee9f88 1927
6e5fb223 1928 down_read(&mm->mmap_sem);
9f40604c 1929 vma = find_vma(mm, start);
6e5fb223
PZ
1930 if (!vma) {
1931 reset_ptenuma_scan(p);
9f40604c 1932 start = 0;
6e5fb223
PZ
1933 vma = mm->mmap;
1934 }
9f40604c 1935 for (; vma; vma = vma->vm_next) {
fc314724 1936 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1937 continue;
1938
4591ce4f
MG
1939 /*
1940 * Shared library pages mapped by multiple processes are not
1941 * migrated as it is expected they are cache replicated. Avoid
1942 * hinting faults in read-only file-backed mappings or the vdso
1943 * as migrating the pages will be of marginal benefit.
1944 */
1945 if (!vma->vm_mm ||
1946 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1947 continue;
1948
3c67f474
MG
1949 /*
1950 * Skip inaccessible VMAs to avoid any confusion between
1951 * PROT_NONE and NUMA hinting ptes
1952 */
1953 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1954 continue;
4591ce4f 1955
9f40604c
MG
1956 do {
1957 start = max(start, vma->vm_start);
1958 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1959 end = min(end, vma->vm_end);
598f0ec0
MG
1960 nr_pte_updates += change_prot_numa(vma, start, end);
1961
1962 /*
1963 * Scan sysctl_numa_balancing_scan_size but ensure that
1964 * at least one PTE is updated so that unused virtual
1965 * address space is quickly skipped.
1966 */
1967 if (nr_pte_updates)
1968 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1969
9f40604c
MG
1970 start = end;
1971 if (pages <= 0)
1972 goto out;
3cf1962c
RR
1973
1974 cond_resched();
9f40604c 1975 } while (end != vma->vm_end);
cbee9f88 1976 }
6e5fb223 1977
9f40604c 1978out:
6e5fb223 1979 /*
c69307d5
PZ
1980 * It is possible to reach the end of the VMA list but the last few
1981 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1982 * would find the !migratable VMA on the next scan but not reset the
1983 * scanner to the start so check it now.
6e5fb223
PZ
1984 */
1985 if (vma)
9f40604c 1986 mm->numa_scan_offset = start;
6e5fb223
PZ
1987 else
1988 reset_ptenuma_scan(p);
1989 up_read(&mm->mmap_sem);
cbee9f88
PZ
1990}
1991
1992/*
1993 * Drive the periodic memory faults..
1994 */
1995void task_tick_numa(struct rq *rq, struct task_struct *curr)
1996{
1997 struct callback_head *work = &curr->numa_work;
1998 u64 period, now;
1999
2000 /*
2001 * We don't care about NUMA placement if we don't have memory.
2002 */
2003 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2004 return;
2005
2006 /*
2007 * Using runtime rather than walltime has the dual advantage that
2008 * we (mostly) drive the selection from busy threads and that the
2009 * task needs to have done some actual work before we bother with
2010 * NUMA placement.
2011 */
2012 now = curr->se.sum_exec_runtime;
2013 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2014
2015 if (now - curr->node_stamp > period) {
4b96a29b 2016 if (!curr->node_stamp)
598f0ec0 2017 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2018 curr->node_stamp += period;
cbee9f88
PZ
2019
2020 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2021 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2022 task_work_add(curr, work, true);
2023 }
2024 }
2025}
2026#else
2027static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2028{
2029}
0ec8aa00
PZ
2030
2031static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2032{
2033}
2034
2035static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2036{
2037}
cbee9f88
PZ
2038#endif /* CONFIG_NUMA_BALANCING */
2039
30cfdcfc
DA
2040static void
2041account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2042{
2043 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2044 if (!parent_entity(se))
029632fb 2045 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2046#ifdef CONFIG_SMP
0ec8aa00
PZ
2047 if (entity_is_task(se)) {
2048 struct rq *rq = rq_of(cfs_rq);
2049
2050 account_numa_enqueue(rq, task_of(se));
2051 list_add(&se->group_node, &rq->cfs_tasks);
2052 }
367456c7 2053#endif
30cfdcfc 2054 cfs_rq->nr_running++;
30cfdcfc
DA
2055}
2056
2057static void
2058account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2059{
2060 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2061 if (!parent_entity(se))
029632fb 2062 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2063 if (entity_is_task(se)) {
2064 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2065 list_del_init(&se->group_node);
0ec8aa00 2066 }
30cfdcfc 2067 cfs_rq->nr_running--;
30cfdcfc
DA
2068}
2069
3ff6dcac
YZ
2070#ifdef CONFIG_FAIR_GROUP_SCHED
2071# ifdef CONFIG_SMP
cf5f0acf
PZ
2072static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2073{
2074 long tg_weight;
2075
2076 /*
2077 * Use this CPU's actual weight instead of the last load_contribution
2078 * to gain a more accurate current total weight. See
2079 * update_cfs_rq_load_contribution().
2080 */
bf5b986e 2081 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2082 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2083 tg_weight += cfs_rq->load.weight;
2084
2085 return tg_weight;
2086}
2087
6d5ab293 2088static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2089{
cf5f0acf 2090 long tg_weight, load, shares;
3ff6dcac 2091
cf5f0acf 2092 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2093 load = cfs_rq->load.weight;
3ff6dcac 2094
3ff6dcac 2095 shares = (tg->shares * load);
cf5f0acf
PZ
2096 if (tg_weight)
2097 shares /= tg_weight;
3ff6dcac
YZ
2098
2099 if (shares < MIN_SHARES)
2100 shares = MIN_SHARES;
2101 if (shares > tg->shares)
2102 shares = tg->shares;
2103
2104 return shares;
2105}
3ff6dcac 2106# else /* CONFIG_SMP */
6d5ab293 2107static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2108{
2109 return tg->shares;
2110}
3ff6dcac 2111# endif /* CONFIG_SMP */
2069dd75
PZ
2112static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2113 unsigned long weight)
2114{
19e5eebb
PT
2115 if (se->on_rq) {
2116 /* commit outstanding execution time */
2117 if (cfs_rq->curr == se)
2118 update_curr(cfs_rq);
2069dd75 2119 account_entity_dequeue(cfs_rq, se);
19e5eebb 2120 }
2069dd75
PZ
2121
2122 update_load_set(&se->load, weight);
2123
2124 if (se->on_rq)
2125 account_entity_enqueue(cfs_rq, se);
2126}
2127
82958366
PT
2128static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2129
6d5ab293 2130static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2131{
2132 struct task_group *tg;
2133 struct sched_entity *se;
3ff6dcac 2134 long shares;
2069dd75 2135
2069dd75
PZ
2136 tg = cfs_rq->tg;
2137 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2138 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2139 return;
3ff6dcac
YZ
2140#ifndef CONFIG_SMP
2141 if (likely(se->load.weight == tg->shares))
2142 return;
2143#endif
6d5ab293 2144 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2145
2146 reweight_entity(cfs_rq_of(se), se, shares);
2147}
2148#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2149static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2150{
2151}
2152#endif /* CONFIG_FAIR_GROUP_SCHED */
2153
141965c7 2154#ifdef CONFIG_SMP
5b51f2f8
PT
2155/*
2156 * We choose a half-life close to 1 scheduling period.
2157 * Note: The tables below are dependent on this value.
2158 */
2159#define LOAD_AVG_PERIOD 32
2160#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2161#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2162
2163/* Precomputed fixed inverse multiplies for multiplication by y^n */
2164static const u32 runnable_avg_yN_inv[] = {
2165 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2166 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2167 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2168 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2169 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2170 0x85aac367, 0x82cd8698,
2171};
2172
2173/*
2174 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2175 * over-estimates when re-combining.
2176 */
2177static const u32 runnable_avg_yN_sum[] = {
2178 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2179 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2180 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2181};
2182
9d85f21c
PT
2183/*
2184 * Approximate:
2185 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2186 */
2187static __always_inline u64 decay_load(u64 val, u64 n)
2188{
5b51f2f8
PT
2189 unsigned int local_n;
2190
2191 if (!n)
2192 return val;
2193 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2194 return 0;
2195
2196 /* after bounds checking we can collapse to 32-bit */
2197 local_n = n;
2198
2199 /*
2200 * As y^PERIOD = 1/2, we can combine
2201 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2202 * With a look-up table which covers k^n (n<PERIOD)
2203 *
2204 * To achieve constant time decay_load.
2205 */
2206 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2207 val >>= local_n / LOAD_AVG_PERIOD;
2208 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2209 }
2210
5b51f2f8
PT
2211 val *= runnable_avg_yN_inv[local_n];
2212 /* We don't use SRR here since we always want to round down. */
2213 return val >> 32;
2214}
2215
2216/*
2217 * For updates fully spanning n periods, the contribution to runnable
2218 * average will be: \Sum 1024*y^n
2219 *
2220 * We can compute this reasonably efficiently by combining:
2221 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2222 */
2223static u32 __compute_runnable_contrib(u64 n)
2224{
2225 u32 contrib = 0;
2226
2227 if (likely(n <= LOAD_AVG_PERIOD))
2228 return runnable_avg_yN_sum[n];
2229 else if (unlikely(n >= LOAD_AVG_MAX_N))
2230 return LOAD_AVG_MAX;
2231
2232 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2233 do {
2234 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2235 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2236
2237 n -= LOAD_AVG_PERIOD;
2238 } while (n > LOAD_AVG_PERIOD);
2239
2240 contrib = decay_load(contrib, n);
2241 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2242}
2243
2244/*
2245 * We can represent the historical contribution to runnable average as the
2246 * coefficients of a geometric series. To do this we sub-divide our runnable
2247 * history into segments of approximately 1ms (1024us); label the segment that
2248 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2249 *
2250 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2251 * p0 p1 p2
2252 * (now) (~1ms ago) (~2ms ago)
2253 *
2254 * Let u_i denote the fraction of p_i that the entity was runnable.
2255 *
2256 * We then designate the fractions u_i as our co-efficients, yielding the
2257 * following representation of historical load:
2258 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2259 *
2260 * We choose y based on the with of a reasonably scheduling period, fixing:
2261 * y^32 = 0.5
2262 *
2263 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2264 * approximately half as much as the contribution to load within the last ms
2265 * (u_0).
2266 *
2267 * When a period "rolls over" and we have new u_0`, multiplying the previous
2268 * sum again by y is sufficient to update:
2269 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2270 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2271 */
2272static __always_inline int __update_entity_runnable_avg(u64 now,
2273 struct sched_avg *sa,
2274 int runnable)
2275{
5b51f2f8
PT
2276 u64 delta, periods;
2277 u32 runnable_contrib;
9d85f21c
PT
2278 int delta_w, decayed = 0;
2279
2280 delta = now - sa->last_runnable_update;
2281 /*
2282 * This should only happen when time goes backwards, which it
2283 * unfortunately does during sched clock init when we swap over to TSC.
2284 */
2285 if ((s64)delta < 0) {
2286 sa->last_runnable_update = now;
2287 return 0;
2288 }
2289
2290 /*
2291 * Use 1024ns as the unit of measurement since it's a reasonable
2292 * approximation of 1us and fast to compute.
2293 */
2294 delta >>= 10;
2295 if (!delta)
2296 return 0;
2297 sa->last_runnable_update = now;
2298
2299 /* delta_w is the amount already accumulated against our next period */
2300 delta_w = sa->runnable_avg_period % 1024;
2301 if (delta + delta_w >= 1024) {
2302 /* period roll-over */
2303 decayed = 1;
2304
2305 /*
2306 * Now that we know we're crossing a period boundary, figure
2307 * out how much from delta we need to complete the current
2308 * period and accrue it.
2309 */
2310 delta_w = 1024 - delta_w;
5b51f2f8
PT
2311 if (runnable)
2312 sa->runnable_avg_sum += delta_w;
2313 sa->runnable_avg_period += delta_w;
2314
2315 delta -= delta_w;
2316
2317 /* Figure out how many additional periods this update spans */
2318 periods = delta / 1024;
2319 delta %= 1024;
2320
2321 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2322 periods + 1);
2323 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2324 periods + 1);
2325
2326 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2327 runnable_contrib = __compute_runnable_contrib(periods);
2328 if (runnable)
2329 sa->runnable_avg_sum += runnable_contrib;
2330 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2331 }
2332
2333 /* Remainder of delta accrued against u_0` */
2334 if (runnable)
2335 sa->runnable_avg_sum += delta;
2336 sa->runnable_avg_period += delta;
2337
2338 return decayed;
2339}
2340
9ee474f5 2341/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2342static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2343{
2344 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2345 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2346
2347 decays -= se->avg.decay_count;
2348 if (!decays)
aff3e498 2349 return 0;
9ee474f5
PT
2350
2351 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2352 se->avg.decay_count = 0;
aff3e498
PT
2353
2354 return decays;
9ee474f5
PT
2355}
2356
c566e8e9
PT
2357#ifdef CONFIG_FAIR_GROUP_SCHED
2358static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2359 int force_update)
2360{
2361 struct task_group *tg = cfs_rq->tg;
bf5b986e 2362 long tg_contrib;
c566e8e9
PT
2363
2364 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2365 tg_contrib -= cfs_rq->tg_load_contrib;
2366
bf5b986e
AS
2367 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2368 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2369 cfs_rq->tg_load_contrib += tg_contrib;
2370 }
2371}
8165e145 2372
bb17f655
PT
2373/*
2374 * Aggregate cfs_rq runnable averages into an equivalent task_group
2375 * representation for computing load contributions.
2376 */
2377static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2378 struct cfs_rq *cfs_rq)
2379{
2380 struct task_group *tg = cfs_rq->tg;
2381 long contrib;
2382
2383 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2384 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2385 sa->runnable_avg_period + 1);
2386 contrib -= cfs_rq->tg_runnable_contrib;
2387
2388 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2389 atomic_add(contrib, &tg->runnable_avg);
2390 cfs_rq->tg_runnable_contrib += contrib;
2391 }
2392}
2393
8165e145
PT
2394static inline void __update_group_entity_contrib(struct sched_entity *se)
2395{
2396 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2397 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2398 int runnable_avg;
2399
8165e145
PT
2400 u64 contrib;
2401
2402 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2403 se->avg.load_avg_contrib = div_u64(contrib,
2404 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2405
2406 /*
2407 * For group entities we need to compute a correction term in the case
2408 * that they are consuming <1 cpu so that we would contribute the same
2409 * load as a task of equal weight.
2410 *
2411 * Explicitly co-ordinating this measurement would be expensive, but
2412 * fortunately the sum of each cpus contribution forms a usable
2413 * lower-bound on the true value.
2414 *
2415 * Consider the aggregate of 2 contributions. Either they are disjoint
2416 * (and the sum represents true value) or they are disjoint and we are
2417 * understating by the aggregate of their overlap.
2418 *
2419 * Extending this to N cpus, for a given overlap, the maximum amount we
2420 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2421 * cpus that overlap for this interval and w_i is the interval width.
2422 *
2423 * On a small machine; the first term is well-bounded which bounds the
2424 * total error since w_i is a subset of the period. Whereas on a
2425 * larger machine, while this first term can be larger, if w_i is the
2426 * of consequential size guaranteed to see n_i*w_i quickly converge to
2427 * our upper bound of 1-cpu.
2428 */
2429 runnable_avg = atomic_read(&tg->runnable_avg);
2430 if (runnable_avg < NICE_0_LOAD) {
2431 se->avg.load_avg_contrib *= runnable_avg;
2432 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2433 }
8165e145 2434}
f5f9739d
DE
2435
2436static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2437{
2438 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2439 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2440}
6e83125c 2441#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2442static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2443 int force_update) {}
bb17f655
PT
2444static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2445 struct cfs_rq *cfs_rq) {}
8165e145 2446static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2447static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2448#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2449
8165e145
PT
2450static inline void __update_task_entity_contrib(struct sched_entity *se)
2451{
2452 u32 contrib;
2453
2454 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2455 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2456 contrib /= (se->avg.runnable_avg_period + 1);
2457 se->avg.load_avg_contrib = scale_load(contrib);
2458}
2459
2dac754e
PT
2460/* Compute the current contribution to load_avg by se, return any delta */
2461static long __update_entity_load_avg_contrib(struct sched_entity *se)
2462{
2463 long old_contrib = se->avg.load_avg_contrib;
2464
8165e145
PT
2465 if (entity_is_task(se)) {
2466 __update_task_entity_contrib(se);
2467 } else {
bb17f655 2468 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2469 __update_group_entity_contrib(se);
2470 }
2dac754e
PT
2471
2472 return se->avg.load_avg_contrib - old_contrib;
2473}
2474
9ee474f5
PT
2475static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2476 long load_contrib)
2477{
2478 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2479 cfs_rq->blocked_load_avg -= load_contrib;
2480 else
2481 cfs_rq->blocked_load_avg = 0;
2482}
2483
f1b17280
PT
2484static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2485
9d85f21c 2486/* Update a sched_entity's runnable average */
9ee474f5
PT
2487static inline void update_entity_load_avg(struct sched_entity *se,
2488 int update_cfs_rq)
9d85f21c 2489{
2dac754e
PT
2490 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2491 long contrib_delta;
f1b17280 2492 u64 now;
2dac754e 2493
f1b17280
PT
2494 /*
2495 * For a group entity we need to use their owned cfs_rq_clock_task() in
2496 * case they are the parent of a throttled hierarchy.
2497 */
2498 if (entity_is_task(se))
2499 now = cfs_rq_clock_task(cfs_rq);
2500 else
2501 now = cfs_rq_clock_task(group_cfs_rq(se));
2502
2503 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2504 return;
2505
2506 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2507
2508 if (!update_cfs_rq)
2509 return;
2510
2dac754e
PT
2511 if (se->on_rq)
2512 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2513 else
2514 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2515}
2516
2517/*
2518 * Decay the load contributed by all blocked children and account this so that
2519 * their contribution may appropriately discounted when they wake up.
2520 */
aff3e498 2521static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2522{
f1b17280 2523 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2524 u64 decays;
2525
2526 decays = now - cfs_rq->last_decay;
aff3e498 2527 if (!decays && !force_update)
9ee474f5
PT
2528 return;
2529
2509940f
AS
2530 if (atomic_long_read(&cfs_rq->removed_load)) {
2531 unsigned long removed_load;
2532 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2533 subtract_blocked_load_contrib(cfs_rq, removed_load);
2534 }
9ee474f5 2535
aff3e498
PT
2536 if (decays) {
2537 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2538 decays);
2539 atomic64_add(decays, &cfs_rq->decay_counter);
2540 cfs_rq->last_decay = now;
2541 }
c566e8e9
PT
2542
2543 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2544}
18bf2805 2545
2dac754e
PT
2546/* Add the load generated by se into cfs_rq's child load-average */
2547static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2548 struct sched_entity *se,
2549 int wakeup)
2dac754e 2550{
aff3e498
PT
2551 /*
2552 * We track migrations using entity decay_count <= 0, on a wake-up
2553 * migration we use a negative decay count to track the remote decays
2554 * accumulated while sleeping.
a75cdaa9
AS
2555 *
2556 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2557 * are seen by enqueue_entity_load_avg() as a migration with an already
2558 * constructed load_avg_contrib.
aff3e498
PT
2559 */
2560 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2561 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2562 if (se->avg.decay_count) {
2563 /*
2564 * In a wake-up migration we have to approximate the
2565 * time sleeping. This is because we can't synchronize
2566 * clock_task between the two cpus, and it is not
2567 * guaranteed to be read-safe. Instead, we can
2568 * approximate this using our carried decays, which are
2569 * explicitly atomically readable.
2570 */
2571 se->avg.last_runnable_update -= (-se->avg.decay_count)
2572 << 20;
2573 update_entity_load_avg(se, 0);
2574 /* Indicate that we're now synchronized and on-rq */
2575 se->avg.decay_count = 0;
2576 }
9ee474f5
PT
2577 wakeup = 0;
2578 } else {
9390675a 2579 __synchronize_entity_decay(se);
9ee474f5
PT
2580 }
2581
aff3e498
PT
2582 /* migrated tasks did not contribute to our blocked load */
2583 if (wakeup) {
9ee474f5 2584 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2585 update_entity_load_avg(se, 0);
2586 }
9ee474f5 2587
2dac754e 2588 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2589 /* we force update consideration on load-balancer moves */
2590 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2591}
2592
9ee474f5
PT
2593/*
2594 * Remove se's load from this cfs_rq child load-average, if the entity is
2595 * transitioning to a blocked state we track its projected decay using
2596 * blocked_load_avg.
2597 */
2dac754e 2598static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2599 struct sched_entity *se,
2600 int sleep)
2dac754e 2601{
9ee474f5 2602 update_entity_load_avg(se, 1);
aff3e498
PT
2603 /* we force update consideration on load-balancer moves */
2604 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2605
2dac754e 2606 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2607 if (sleep) {
2608 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2609 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2610 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2611}
642dbc39
VG
2612
2613/*
2614 * Update the rq's load with the elapsed running time before entering
2615 * idle. if the last scheduled task is not a CFS task, idle_enter will
2616 * be the only way to update the runnable statistic.
2617 */
2618void idle_enter_fair(struct rq *this_rq)
2619{
2620 update_rq_runnable_avg(this_rq, 1);
2621}
2622
2623/*
2624 * Update the rq's load with the elapsed idle time before a task is
2625 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2626 * be the only way to update the runnable statistic.
2627 */
2628void idle_exit_fair(struct rq *this_rq)
2629{
2630 update_rq_runnable_avg(this_rq, 0);
2631}
2632
6e83125c
PZ
2633static int idle_balance(struct rq *this_rq);
2634
38033c37
PZ
2635#else /* CONFIG_SMP */
2636
9ee474f5
PT
2637static inline void update_entity_load_avg(struct sched_entity *se,
2638 int update_cfs_rq) {}
18bf2805 2639static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2640static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2641 struct sched_entity *se,
2642 int wakeup) {}
2dac754e 2643static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2644 struct sched_entity *se,
2645 int sleep) {}
aff3e498
PT
2646static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2647 int force_update) {}
6e83125c
PZ
2648
2649static inline int idle_balance(struct rq *rq)
2650{
2651 return 0;
2652}
2653
38033c37 2654#endif /* CONFIG_SMP */
9d85f21c 2655
2396af69 2656static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2657{
bf0f6f24 2658#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2659 struct task_struct *tsk = NULL;
2660
2661 if (entity_is_task(se))
2662 tsk = task_of(se);
2663
41acab88 2664 if (se->statistics.sleep_start) {
78becc27 2665 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2666
2667 if ((s64)delta < 0)
2668 delta = 0;
2669
41acab88
LDM
2670 if (unlikely(delta > se->statistics.sleep_max))
2671 se->statistics.sleep_max = delta;
bf0f6f24 2672
8c79a045 2673 se->statistics.sleep_start = 0;
41acab88 2674 se->statistics.sum_sleep_runtime += delta;
9745512c 2675
768d0c27 2676 if (tsk) {
e414314c 2677 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2678 trace_sched_stat_sleep(tsk, delta);
2679 }
bf0f6f24 2680 }
41acab88 2681 if (se->statistics.block_start) {
78becc27 2682 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2683
2684 if ((s64)delta < 0)
2685 delta = 0;
2686
41acab88
LDM
2687 if (unlikely(delta > se->statistics.block_max))
2688 se->statistics.block_max = delta;
bf0f6f24 2689
8c79a045 2690 se->statistics.block_start = 0;
41acab88 2691 se->statistics.sum_sleep_runtime += delta;
30084fbd 2692
e414314c 2693 if (tsk) {
8f0dfc34 2694 if (tsk->in_iowait) {
41acab88
LDM
2695 se->statistics.iowait_sum += delta;
2696 se->statistics.iowait_count++;
768d0c27 2697 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2698 }
2699
b781a602
AV
2700 trace_sched_stat_blocked(tsk, delta);
2701
e414314c
PZ
2702 /*
2703 * Blocking time is in units of nanosecs, so shift by
2704 * 20 to get a milliseconds-range estimation of the
2705 * amount of time that the task spent sleeping:
2706 */
2707 if (unlikely(prof_on == SLEEP_PROFILING)) {
2708 profile_hits(SLEEP_PROFILING,
2709 (void *)get_wchan(tsk),
2710 delta >> 20);
2711 }
2712 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2713 }
bf0f6f24
IM
2714 }
2715#endif
2716}
2717
ddc97297
PZ
2718static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2719{
2720#ifdef CONFIG_SCHED_DEBUG
2721 s64 d = se->vruntime - cfs_rq->min_vruntime;
2722
2723 if (d < 0)
2724 d = -d;
2725
2726 if (d > 3*sysctl_sched_latency)
2727 schedstat_inc(cfs_rq, nr_spread_over);
2728#endif
2729}
2730
aeb73b04
PZ
2731static void
2732place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2733{
1af5f730 2734 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2735
2cb8600e
PZ
2736 /*
2737 * The 'current' period is already promised to the current tasks,
2738 * however the extra weight of the new task will slow them down a
2739 * little, place the new task so that it fits in the slot that
2740 * stays open at the end.
2741 */
94dfb5e7 2742 if (initial && sched_feat(START_DEBIT))
f9c0b095 2743 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2744
a2e7a7eb 2745 /* sleeps up to a single latency don't count. */
5ca9880c 2746 if (!initial) {
a2e7a7eb 2747 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2748
a2e7a7eb
MG
2749 /*
2750 * Halve their sleep time's effect, to allow
2751 * for a gentler effect of sleepers:
2752 */
2753 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2754 thresh >>= 1;
51e0304c 2755
a2e7a7eb 2756 vruntime -= thresh;
aeb73b04
PZ
2757 }
2758
b5d9d734 2759 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2760 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2761}
2762
d3d9dc33
PT
2763static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2764
bf0f6f24 2765static void
88ec22d3 2766enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2767{
88ec22d3
PZ
2768 /*
2769 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2770 * through calling update_curr().
88ec22d3 2771 */
371fd7e7 2772 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2773 se->vruntime += cfs_rq->min_vruntime;
2774
bf0f6f24 2775 /*
a2a2d680 2776 * Update run-time statistics of the 'current'.
bf0f6f24 2777 */
b7cc0896 2778 update_curr(cfs_rq);
f269ae04 2779 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2780 account_entity_enqueue(cfs_rq, se);
2781 update_cfs_shares(cfs_rq);
bf0f6f24 2782
88ec22d3 2783 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2784 place_entity(cfs_rq, se, 0);
2396af69 2785 enqueue_sleeper(cfs_rq, se);
e9acbff6 2786 }
bf0f6f24 2787
d2417e5a 2788 update_stats_enqueue(cfs_rq, se);
ddc97297 2789 check_spread(cfs_rq, se);
83b699ed
SV
2790 if (se != cfs_rq->curr)
2791 __enqueue_entity(cfs_rq, se);
2069dd75 2792 se->on_rq = 1;
3d4b47b4 2793
d3d9dc33 2794 if (cfs_rq->nr_running == 1) {
3d4b47b4 2795 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2796 check_enqueue_throttle(cfs_rq);
2797 }
bf0f6f24
IM
2798}
2799
2c13c919 2800static void __clear_buddies_last(struct sched_entity *se)
2002c695 2801{
2c13c919
RR
2802 for_each_sched_entity(se) {
2803 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2804 if (cfs_rq->last != se)
2c13c919 2805 break;
f1044799
PZ
2806
2807 cfs_rq->last = NULL;
2c13c919
RR
2808 }
2809}
2002c695 2810
2c13c919
RR
2811static void __clear_buddies_next(struct sched_entity *se)
2812{
2813 for_each_sched_entity(se) {
2814 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2815 if (cfs_rq->next != se)
2c13c919 2816 break;
f1044799
PZ
2817
2818 cfs_rq->next = NULL;
2c13c919 2819 }
2002c695
PZ
2820}
2821
ac53db59
RR
2822static void __clear_buddies_skip(struct sched_entity *se)
2823{
2824 for_each_sched_entity(se) {
2825 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2826 if (cfs_rq->skip != se)
ac53db59 2827 break;
f1044799
PZ
2828
2829 cfs_rq->skip = NULL;
ac53db59
RR
2830 }
2831}
2832
a571bbea
PZ
2833static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2834{
2c13c919
RR
2835 if (cfs_rq->last == se)
2836 __clear_buddies_last(se);
2837
2838 if (cfs_rq->next == se)
2839 __clear_buddies_next(se);
ac53db59
RR
2840
2841 if (cfs_rq->skip == se)
2842 __clear_buddies_skip(se);
a571bbea
PZ
2843}
2844
6c16a6dc 2845static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2846
bf0f6f24 2847static void
371fd7e7 2848dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2849{
a2a2d680
DA
2850 /*
2851 * Update run-time statistics of the 'current'.
2852 */
2853 update_curr(cfs_rq);
17bc14b7 2854 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2855
19b6a2e3 2856 update_stats_dequeue(cfs_rq, se);
371fd7e7 2857 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2858#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2859 if (entity_is_task(se)) {
2860 struct task_struct *tsk = task_of(se);
2861
2862 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2863 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2864 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2865 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2866 }
db36cc7d 2867#endif
67e9fb2a
PZ
2868 }
2869
2002c695 2870 clear_buddies(cfs_rq, se);
4793241b 2871
83b699ed 2872 if (se != cfs_rq->curr)
30cfdcfc 2873 __dequeue_entity(cfs_rq, se);
17bc14b7 2874 se->on_rq = 0;
30cfdcfc 2875 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2876
2877 /*
2878 * Normalize the entity after updating the min_vruntime because the
2879 * update can refer to the ->curr item and we need to reflect this
2880 * movement in our normalized position.
2881 */
371fd7e7 2882 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2883 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2884
d8b4986d
PT
2885 /* return excess runtime on last dequeue */
2886 return_cfs_rq_runtime(cfs_rq);
2887
1e876231 2888 update_min_vruntime(cfs_rq);
17bc14b7 2889 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2890}
2891
2892/*
2893 * Preempt the current task with a newly woken task if needed:
2894 */
7c92e54f 2895static void
2e09bf55 2896check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2897{
11697830 2898 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2899 struct sched_entity *se;
2900 s64 delta;
11697830 2901
6d0f0ebd 2902 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2903 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2904 if (delta_exec > ideal_runtime) {
bf0f6f24 2905 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2906 /*
2907 * The current task ran long enough, ensure it doesn't get
2908 * re-elected due to buddy favours.
2909 */
2910 clear_buddies(cfs_rq, curr);
f685ceac
MG
2911 return;
2912 }
2913
2914 /*
2915 * Ensure that a task that missed wakeup preemption by a
2916 * narrow margin doesn't have to wait for a full slice.
2917 * This also mitigates buddy induced latencies under load.
2918 */
f685ceac
MG
2919 if (delta_exec < sysctl_sched_min_granularity)
2920 return;
2921
f4cfb33e
WX
2922 se = __pick_first_entity(cfs_rq);
2923 delta = curr->vruntime - se->vruntime;
f685ceac 2924
f4cfb33e
WX
2925 if (delta < 0)
2926 return;
d7d82944 2927
f4cfb33e
WX
2928 if (delta > ideal_runtime)
2929 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2930}
2931
83b699ed 2932static void
8494f412 2933set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2934{
83b699ed
SV
2935 /* 'current' is not kept within the tree. */
2936 if (se->on_rq) {
2937 /*
2938 * Any task has to be enqueued before it get to execute on
2939 * a CPU. So account for the time it spent waiting on the
2940 * runqueue.
2941 */
2942 update_stats_wait_end(cfs_rq, se);
2943 __dequeue_entity(cfs_rq, se);
2944 }
2945
79303e9e 2946 update_stats_curr_start(cfs_rq, se);
429d43bc 2947 cfs_rq->curr = se;
eba1ed4b
IM
2948#ifdef CONFIG_SCHEDSTATS
2949 /*
2950 * Track our maximum slice length, if the CPU's load is at
2951 * least twice that of our own weight (i.e. dont track it
2952 * when there are only lesser-weight tasks around):
2953 */
495eca49 2954 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2955 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2956 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2957 }
2958#endif
4a55b450 2959 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2960}
2961
3f3a4904
PZ
2962static int
2963wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2964
ac53db59
RR
2965/*
2966 * Pick the next process, keeping these things in mind, in this order:
2967 * 1) keep things fair between processes/task groups
2968 * 2) pick the "next" process, since someone really wants that to run
2969 * 3) pick the "last" process, for cache locality
2970 * 4) do not run the "skip" process, if something else is available
2971 */
678d5718
PZ
2972static struct sched_entity *
2973pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2974{
678d5718
PZ
2975 struct sched_entity *left = __pick_first_entity(cfs_rq);
2976 struct sched_entity *se;
2977
2978 /*
2979 * If curr is set we have to see if its left of the leftmost entity
2980 * still in the tree, provided there was anything in the tree at all.
2981 */
2982 if (!left || (curr && entity_before(curr, left)))
2983 left = curr;
2984
2985 se = left; /* ideally we run the leftmost entity */
f4b6755f 2986
ac53db59
RR
2987 /*
2988 * Avoid running the skip buddy, if running something else can
2989 * be done without getting too unfair.
2990 */
2991 if (cfs_rq->skip == se) {
678d5718
PZ
2992 struct sched_entity *second;
2993
2994 if (se == curr) {
2995 second = __pick_first_entity(cfs_rq);
2996 } else {
2997 second = __pick_next_entity(se);
2998 if (!second || (curr && entity_before(curr, second)))
2999 second = curr;
3000 }
3001
ac53db59
RR
3002 if (second && wakeup_preempt_entity(second, left) < 1)
3003 se = second;
3004 }
aa2ac252 3005
f685ceac
MG
3006 /*
3007 * Prefer last buddy, try to return the CPU to a preempted task.
3008 */
3009 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3010 se = cfs_rq->last;
3011
ac53db59
RR
3012 /*
3013 * Someone really wants this to run. If it's not unfair, run it.
3014 */
3015 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3016 se = cfs_rq->next;
3017
f685ceac 3018 clear_buddies(cfs_rq, se);
4793241b
PZ
3019
3020 return se;
aa2ac252
PZ
3021}
3022
678d5718 3023static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3024
ab6cde26 3025static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3026{
3027 /*
3028 * If still on the runqueue then deactivate_task()
3029 * was not called and update_curr() has to be done:
3030 */
3031 if (prev->on_rq)
b7cc0896 3032 update_curr(cfs_rq);
bf0f6f24 3033
d3d9dc33
PT
3034 /* throttle cfs_rqs exceeding runtime */
3035 check_cfs_rq_runtime(cfs_rq);
3036
ddc97297 3037 check_spread(cfs_rq, prev);
30cfdcfc 3038 if (prev->on_rq) {
5870db5b 3039 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3040 /* Put 'current' back into the tree. */
3041 __enqueue_entity(cfs_rq, prev);
9d85f21c 3042 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3043 update_entity_load_avg(prev, 1);
30cfdcfc 3044 }
429d43bc 3045 cfs_rq->curr = NULL;
bf0f6f24
IM
3046}
3047
8f4d37ec
PZ
3048static void
3049entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3050{
bf0f6f24 3051 /*
30cfdcfc 3052 * Update run-time statistics of the 'current'.
bf0f6f24 3053 */
30cfdcfc 3054 update_curr(cfs_rq);
bf0f6f24 3055
9d85f21c
PT
3056 /*
3057 * Ensure that runnable average is periodically updated.
3058 */
9ee474f5 3059 update_entity_load_avg(curr, 1);
aff3e498 3060 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3061 update_cfs_shares(cfs_rq);
9d85f21c 3062
8f4d37ec
PZ
3063#ifdef CONFIG_SCHED_HRTICK
3064 /*
3065 * queued ticks are scheduled to match the slice, so don't bother
3066 * validating it and just reschedule.
3067 */
983ed7a6
HH
3068 if (queued) {
3069 resched_task(rq_of(cfs_rq)->curr);
3070 return;
3071 }
8f4d37ec
PZ
3072 /*
3073 * don't let the period tick interfere with the hrtick preemption
3074 */
3075 if (!sched_feat(DOUBLE_TICK) &&
3076 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3077 return;
3078#endif
3079
2c2efaed 3080 if (cfs_rq->nr_running > 1)
2e09bf55 3081 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3082}
3083
ab84d31e
PT
3084
3085/**************************************************
3086 * CFS bandwidth control machinery
3087 */
3088
3089#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3090
3091#ifdef HAVE_JUMP_LABEL
c5905afb 3092static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3093
3094static inline bool cfs_bandwidth_used(void)
3095{
c5905afb 3096 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3097}
3098
1ee14e6c 3099void cfs_bandwidth_usage_inc(void)
029632fb 3100{
1ee14e6c
BS
3101 static_key_slow_inc(&__cfs_bandwidth_used);
3102}
3103
3104void cfs_bandwidth_usage_dec(void)
3105{
3106 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3107}
3108#else /* HAVE_JUMP_LABEL */
3109static bool cfs_bandwidth_used(void)
3110{
3111 return true;
3112}
3113
1ee14e6c
BS
3114void cfs_bandwidth_usage_inc(void) {}
3115void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3116#endif /* HAVE_JUMP_LABEL */
3117
ab84d31e
PT
3118/*
3119 * default period for cfs group bandwidth.
3120 * default: 0.1s, units: nanoseconds
3121 */
3122static inline u64 default_cfs_period(void)
3123{
3124 return 100000000ULL;
3125}
ec12cb7f
PT
3126
3127static inline u64 sched_cfs_bandwidth_slice(void)
3128{
3129 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3130}
3131
a9cf55b2
PT
3132/*
3133 * Replenish runtime according to assigned quota and update expiration time.
3134 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3135 * additional synchronization around rq->lock.
3136 *
3137 * requires cfs_b->lock
3138 */
029632fb 3139void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3140{
3141 u64 now;
3142
3143 if (cfs_b->quota == RUNTIME_INF)
3144 return;
3145
3146 now = sched_clock_cpu(smp_processor_id());
3147 cfs_b->runtime = cfs_b->quota;
3148 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3149}
3150
029632fb
PZ
3151static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3152{
3153 return &tg->cfs_bandwidth;
3154}
3155
f1b17280
PT
3156/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3157static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3158{
3159 if (unlikely(cfs_rq->throttle_count))
3160 return cfs_rq->throttled_clock_task;
3161
78becc27 3162 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3163}
3164
85dac906
PT
3165/* returns 0 on failure to allocate runtime */
3166static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3167{
3168 struct task_group *tg = cfs_rq->tg;
3169 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3170 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3171
3172 /* note: this is a positive sum as runtime_remaining <= 0 */
3173 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3174
3175 raw_spin_lock(&cfs_b->lock);
3176 if (cfs_b->quota == RUNTIME_INF)
3177 amount = min_amount;
58088ad0 3178 else {
a9cf55b2
PT
3179 /*
3180 * If the bandwidth pool has become inactive, then at least one
3181 * period must have elapsed since the last consumption.
3182 * Refresh the global state and ensure bandwidth timer becomes
3183 * active.
3184 */
3185 if (!cfs_b->timer_active) {
3186 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3187 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3188 }
58088ad0
PT
3189
3190 if (cfs_b->runtime > 0) {
3191 amount = min(cfs_b->runtime, min_amount);
3192 cfs_b->runtime -= amount;
3193 cfs_b->idle = 0;
3194 }
ec12cb7f 3195 }
a9cf55b2 3196 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3197 raw_spin_unlock(&cfs_b->lock);
3198
3199 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3200 /*
3201 * we may have advanced our local expiration to account for allowed
3202 * spread between our sched_clock and the one on which runtime was
3203 * issued.
3204 */
3205 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3206 cfs_rq->runtime_expires = expires;
85dac906
PT
3207
3208 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3209}
3210
a9cf55b2
PT
3211/*
3212 * Note: This depends on the synchronization provided by sched_clock and the
3213 * fact that rq->clock snapshots this value.
3214 */
3215static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3216{
a9cf55b2 3217 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3218
3219 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3220 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3221 return;
3222
a9cf55b2
PT
3223 if (cfs_rq->runtime_remaining < 0)
3224 return;
3225
3226 /*
3227 * If the local deadline has passed we have to consider the
3228 * possibility that our sched_clock is 'fast' and the global deadline
3229 * has not truly expired.
3230 *
3231 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3232 * whether the global deadline has advanced. It is valid to compare
3233 * cfs_b->runtime_expires without any locks since we only care about
3234 * exact equality, so a partial write will still work.
a9cf55b2
PT
3235 */
3236
51f2176d 3237 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3238 /* extend local deadline, drift is bounded above by 2 ticks */
3239 cfs_rq->runtime_expires += TICK_NSEC;
3240 } else {
3241 /* global deadline is ahead, expiration has passed */
3242 cfs_rq->runtime_remaining = 0;
3243 }
3244}
3245
9dbdb155 3246static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3247{
3248 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3249 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3250 expire_cfs_rq_runtime(cfs_rq);
3251
3252 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3253 return;
3254
85dac906
PT
3255 /*
3256 * if we're unable to extend our runtime we resched so that the active
3257 * hierarchy can be throttled
3258 */
3259 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3260 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3261}
3262
6c16a6dc 3263static __always_inline
9dbdb155 3264void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3265{
56f570e5 3266 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3267 return;
3268
3269 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3270}
3271
85dac906
PT
3272static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3273{
56f570e5 3274 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3275}
3276
64660c86
PT
3277/* check whether cfs_rq, or any parent, is throttled */
3278static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3279{
56f570e5 3280 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3281}
3282
3283/*
3284 * Ensure that neither of the group entities corresponding to src_cpu or
3285 * dest_cpu are members of a throttled hierarchy when performing group
3286 * load-balance operations.
3287 */
3288static inline int throttled_lb_pair(struct task_group *tg,
3289 int src_cpu, int dest_cpu)
3290{
3291 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3292
3293 src_cfs_rq = tg->cfs_rq[src_cpu];
3294 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3295
3296 return throttled_hierarchy(src_cfs_rq) ||
3297 throttled_hierarchy(dest_cfs_rq);
3298}
3299
3300/* updated child weight may affect parent so we have to do this bottom up */
3301static int tg_unthrottle_up(struct task_group *tg, void *data)
3302{
3303 struct rq *rq = data;
3304 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3305
3306 cfs_rq->throttle_count--;
3307#ifdef CONFIG_SMP
3308 if (!cfs_rq->throttle_count) {
f1b17280 3309 /* adjust cfs_rq_clock_task() */
78becc27 3310 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3311 cfs_rq->throttled_clock_task;
64660c86
PT
3312 }
3313#endif
3314
3315 return 0;
3316}
3317
3318static int tg_throttle_down(struct task_group *tg, void *data)
3319{
3320 struct rq *rq = data;
3321 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3322
82958366
PT
3323 /* group is entering throttled state, stop time */
3324 if (!cfs_rq->throttle_count)
78becc27 3325 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3326 cfs_rq->throttle_count++;
3327
3328 return 0;
3329}
3330
d3d9dc33 3331static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3332{
3333 struct rq *rq = rq_of(cfs_rq);
3334 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3335 struct sched_entity *se;
3336 long task_delta, dequeue = 1;
3337
3338 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3339
f1b17280 3340 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3341 rcu_read_lock();
3342 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3343 rcu_read_unlock();
85dac906
PT
3344
3345 task_delta = cfs_rq->h_nr_running;
3346 for_each_sched_entity(se) {
3347 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3348 /* throttled entity or throttle-on-deactivate */
3349 if (!se->on_rq)
3350 break;
3351
3352 if (dequeue)
3353 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3354 qcfs_rq->h_nr_running -= task_delta;
3355
3356 if (qcfs_rq->load.weight)
3357 dequeue = 0;
3358 }
3359
3360 if (!se)
72465447 3361 sub_nr_running(rq, task_delta);
85dac906
PT
3362
3363 cfs_rq->throttled = 1;
78becc27 3364 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3365 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3366 /*
3367 * Add to the _head_ of the list, so that an already-started
3368 * distribute_cfs_runtime will not see us
3369 */
3370 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3371 if (!cfs_b->timer_active)
09dc4ab0 3372 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3373 raw_spin_unlock(&cfs_b->lock);
3374}
3375
029632fb 3376void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3377{
3378 struct rq *rq = rq_of(cfs_rq);
3379 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3380 struct sched_entity *se;
3381 int enqueue = 1;
3382 long task_delta;
3383
22b958d8 3384 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3385
3386 cfs_rq->throttled = 0;
1a55af2e
FW
3387
3388 update_rq_clock(rq);
3389
671fd9da 3390 raw_spin_lock(&cfs_b->lock);
78becc27 3391 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3392 list_del_rcu(&cfs_rq->throttled_list);
3393 raw_spin_unlock(&cfs_b->lock);
3394
64660c86
PT
3395 /* update hierarchical throttle state */
3396 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3397
671fd9da
PT
3398 if (!cfs_rq->load.weight)
3399 return;
3400
3401 task_delta = cfs_rq->h_nr_running;
3402 for_each_sched_entity(se) {
3403 if (se->on_rq)
3404 enqueue = 0;
3405
3406 cfs_rq = cfs_rq_of(se);
3407 if (enqueue)
3408 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3409 cfs_rq->h_nr_running += task_delta;
3410
3411 if (cfs_rq_throttled(cfs_rq))
3412 break;
3413 }
3414
3415 if (!se)
72465447 3416 add_nr_running(rq, task_delta);
671fd9da
PT
3417
3418 /* determine whether we need to wake up potentially idle cpu */
3419 if (rq->curr == rq->idle && rq->cfs.nr_running)
3420 resched_task(rq->curr);
3421}
3422
3423static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3424 u64 remaining, u64 expires)
3425{
3426 struct cfs_rq *cfs_rq;
c06f04c7
BS
3427 u64 runtime;
3428 u64 starting_runtime = remaining;
671fd9da
PT
3429
3430 rcu_read_lock();
3431 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3432 throttled_list) {
3433 struct rq *rq = rq_of(cfs_rq);
3434
3435 raw_spin_lock(&rq->lock);
3436 if (!cfs_rq_throttled(cfs_rq))
3437 goto next;
3438
3439 runtime = -cfs_rq->runtime_remaining + 1;
3440 if (runtime > remaining)
3441 runtime = remaining;
3442 remaining -= runtime;
3443
3444 cfs_rq->runtime_remaining += runtime;
3445 cfs_rq->runtime_expires = expires;
3446
3447 /* we check whether we're throttled above */
3448 if (cfs_rq->runtime_remaining > 0)
3449 unthrottle_cfs_rq(cfs_rq);
3450
3451next:
3452 raw_spin_unlock(&rq->lock);
3453
3454 if (!remaining)
3455 break;
3456 }
3457 rcu_read_unlock();
3458
c06f04c7 3459 return starting_runtime - remaining;
671fd9da
PT
3460}
3461
58088ad0
PT
3462/*
3463 * Responsible for refilling a task_group's bandwidth and unthrottling its
3464 * cfs_rqs as appropriate. If there has been no activity within the last
3465 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3466 * used to track this state.
3467 */
3468static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3469{
671fd9da 3470 u64 runtime, runtime_expires;
51f2176d 3471 int throttled;
58088ad0 3472
58088ad0
PT
3473 /* no need to continue the timer with no bandwidth constraint */
3474 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3475 goto out_deactivate;
58088ad0 3476
671fd9da 3477 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3478 cfs_b->nr_periods += overrun;
671fd9da 3479
51f2176d
BS
3480 /*
3481 * idle depends on !throttled (for the case of a large deficit), and if
3482 * we're going inactive then everything else can be deferred
3483 */
3484 if (cfs_b->idle && !throttled)
3485 goto out_deactivate;
a9cf55b2 3486
927b54fc
BS
3487 /*
3488 * if we have relooped after returning idle once, we need to update our
3489 * status as actually running, so that other cpus doing
3490 * __start_cfs_bandwidth will stop trying to cancel us.
3491 */
3492 cfs_b->timer_active = 1;
3493
a9cf55b2
PT
3494 __refill_cfs_bandwidth_runtime(cfs_b);
3495
671fd9da
PT
3496 if (!throttled) {
3497 /* mark as potentially idle for the upcoming period */
3498 cfs_b->idle = 1;
51f2176d 3499 return 0;
671fd9da
PT
3500 }
3501
e8da1b18
NR
3502 /* account preceding periods in which throttling occurred */
3503 cfs_b->nr_throttled += overrun;
3504
671fd9da 3505 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3506
3507 /*
c06f04c7
BS
3508 * This check is repeated as we are holding onto the new bandwidth while
3509 * we unthrottle. This can potentially race with an unthrottled group
3510 * trying to acquire new bandwidth from the global pool. This can result
3511 * in us over-using our runtime if it is all used during this loop, but
3512 * only by limited amounts in that extreme case.
671fd9da 3513 */
c06f04c7
BS
3514 while (throttled && cfs_b->runtime > 0) {
3515 runtime = cfs_b->runtime;
671fd9da
PT
3516 raw_spin_unlock(&cfs_b->lock);
3517 /* we can't nest cfs_b->lock while distributing bandwidth */
3518 runtime = distribute_cfs_runtime(cfs_b, runtime,
3519 runtime_expires);
3520 raw_spin_lock(&cfs_b->lock);
3521
3522 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3523
3524 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3525 }
58088ad0 3526
671fd9da
PT
3527 /*
3528 * While we are ensured activity in the period following an
3529 * unthrottle, this also covers the case in which the new bandwidth is
3530 * insufficient to cover the existing bandwidth deficit. (Forcing the
3531 * timer to remain active while there are any throttled entities.)
3532 */
3533 cfs_b->idle = 0;
58088ad0 3534
51f2176d
BS
3535 return 0;
3536
3537out_deactivate:
3538 cfs_b->timer_active = 0;
3539 return 1;
58088ad0 3540}
d3d9dc33 3541
d8b4986d
PT
3542/* a cfs_rq won't donate quota below this amount */
3543static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3544/* minimum remaining period time to redistribute slack quota */
3545static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3546/* how long we wait to gather additional slack before distributing */
3547static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3548
db06e78c
BS
3549/*
3550 * Are we near the end of the current quota period?
3551 *
3552 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3553 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3554 * migrate_hrtimers, base is never cleared, so we are fine.
3555 */
d8b4986d
PT
3556static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3557{
3558 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3559 u64 remaining;
3560
3561 /* if the call-back is running a quota refresh is already occurring */
3562 if (hrtimer_callback_running(refresh_timer))
3563 return 1;
3564
3565 /* is a quota refresh about to occur? */
3566 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3567 if (remaining < min_expire)
3568 return 1;
3569
3570 return 0;
3571}
3572
3573static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3574{
3575 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3576
3577 /* if there's a quota refresh soon don't bother with slack */
3578 if (runtime_refresh_within(cfs_b, min_left))
3579 return;
3580
3581 start_bandwidth_timer(&cfs_b->slack_timer,
3582 ns_to_ktime(cfs_bandwidth_slack_period));
3583}
3584
3585/* we know any runtime found here is valid as update_curr() precedes return */
3586static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3587{
3588 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3589 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3590
3591 if (slack_runtime <= 0)
3592 return;
3593
3594 raw_spin_lock(&cfs_b->lock);
3595 if (cfs_b->quota != RUNTIME_INF &&
3596 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3597 cfs_b->runtime += slack_runtime;
3598
3599 /* we are under rq->lock, defer unthrottling using a timer */
3600 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3601 !list_empty(&cfs_b->throttled_cfs_rq))
3602 start_cfs_slack_bandwidth(cfs_b);
3603 }
3604 raw_spin_unlock(&cfs_b->lock);
3605
3606 /* even if it's not valid for return we don't want to try again */
3607 cfs_rq->runtime_remaining -= slack_runtime;
3608}
3609
3610static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3611{
56f570e5
PT
3612 if (!cfs_bandwidth_used())
3613 return;
3614
fccfdc6f 3615 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3616 return;
3617
3618 __return_cfs_rq_runtime(cfs_rq);
3619}
3620
3621/*
3622 * This is done with a timer (instead of inline with bandwidth return) since
3623 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3624 */
3625static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3626{
3627 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3628 u64 expires;
3629
3630 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3631 raw_spin_lock(&cfs_b->lock);
3632 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3633 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3634 return;
db06e78c 3635 }
d8b4986d 3636
c06f04c7 3637 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3638 runtime = cfs_b->runtime;
c06f04c7 3639
d8b4986d
PT
3640 expires = cfs_b->runtime_expires;
3641 raw_spin_unlock(&cfs_b->lock);
3642
3643 if (!runtime)
3644 return;
3645
3646 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3647
3648 raw_spin_lock(&cfs_b->lock);
3649 if (expires == cfs_b->runtime_expires)
c06f04c7 3650 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3651 raw_spin_unlock(&cfs_b->lock);
3652}
3653
d3d9dc33
PT
3654/*
3655 * When a group wakes up we want to make sure that its quota is not already
3656 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3657 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3658 */
3659static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3660{
56f570e5
PT
3661 if (!cfs_bandwidth_used())
3662 return;
3663
d3d9dc33
PT
3664 /* an active group must be handled by the update_curr()->put() path */
3665 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3666 return;
3667
3668 /* ensure the group is not already throttled */
3669 if (cfs_rq_throttled(cfs_rq))
3670 return;
3671
3672 /* update runtime allocation */
3673 account_cfs_rq_runtime(cfs_rq, 0);
3674 if (cfs_rq->runtime_remaining <= 0)
3675 throttle_cfs_rq(cfs_rq);
3676}
3677
3678/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3679static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3680{
56f570e5 3681 if (!cfs_bandwidth_used())
678d5718 3682 return false;
56f570e5 3683
d3d9dc33 3684 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3685 return false;
d3d9dc33
PT
3686
3687 /*
3688 * it's possible for a throttled entity to be forced into a running
3689 * state (e.g. set_curr_task), in this case we're finished.
3690 */
3691 if (cfs_rq_throttled(cfs_rq))
678d5718 3692 return true;
d3d9dc33
PT
3693
3694 throttle_cfs_rq(cfs_rq);
678d5718 3695 return true;
d3d9dc33 3696}
029632fb 3697
029632fb
PZ
3698static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3699{
3700 struct cfs_bandwidth *cfs_b =
3701 container_of(timer, struct cfs_bandwidth, slack_timer);
3702 do_sched_cfs_slack_timer(cfs_b);
3703
3704 return HRTIMER_NORESTART;
3705}
3706
3707static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3708{
3709 struct cfs_bandwidth *cfs_b =
3710 container_of(timer, struct cfs_bandwidth, period_timer);
3711 ktime_t now;
3712 int overrun;
3713 int idle = 0;
3714
51f2176d 3715 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3716 for (;;) {
3717 now = hrtimer_cb_get_time(timer);
3718 overrun = hrtimer_forward(timer, now, cfs_b->period);
3719
3720 if (!overrun)
3721 break;
3722
3723 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3724 }
51f2176d 3725 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3726
3727 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3728}
3729
3730void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3731{
3732 raw_spin_lock_init(&cfs_b->lock);
3733 cfs_b->runtime = 0;
3734 cfs_b->quota = RUNTIME_INF;
3735 cfs_b->period = ns_to_ktime(default_cfs_period());
3736
3737 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3738 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3739 cfs_b->period_timer.function = sched_cfs_period_timer;
3740 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3741 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3742}
3743
3744static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3745{
3746 cfs_rq->runtime_enabled = 0;
3747 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3748}
3749
3750/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3751void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3752{
3753 /*
3754 * The timer may be active because we're trying to set a new bandwidth
3755 * period or because we're racing with the tear-down path
3756 * (timer_active==0 becomes visible before the hrtimer call-back
3757 * terminates). In either case we ensure that it's re-programmed
3758 */
927b54fc
BS
3759 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3760 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3761 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3762 raw_spin_unlock(&cfs_b->lock);
927b54fc 3763 cpu_relax();
029632fb
PZ
3764 raw_spin_lock(&cfs_b->lock);
3765 /* if someone else restarted the timer then we're done */
09dc4ab0 3766 if (!force && cfs_b->timer_active)
029632fb
PZ
3767 return;
3768 }
3769
3770 cfs_b->timer_active = 1;
3771 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3772}
3773
3774static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3775{
3776 hrtimer_cancel(&cfs_b->period_timer);
3777 hrtimer_cancel(&cfs_b->slack_timer);
3778}
3779
38dc3348 3780static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3781{
3782 struct cfs_rq *cfs_rq;
3783
3784 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3785 if (!cfs_rq->runtime_enabled)
3786 continue;
3787
3788 /*
3789 * clock_task is not advancing so we just need to make sure
3790 * there's some valid quota amount
3791 */
51f2176d 3792 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3793 if (cfs_rq_throttled(cfs_rq))
3794 unthrottle_cfs_rq(cfs_rq);
3795 }
3796}
3797
3798#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3799static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3800{
78becc27 3801 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3802}
3803
9dbdb155 3804static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3805static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3806static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3807static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3808
3809static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3810{
3811 return 0;
3812}
64660c86
PT
3813
3814static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3815{
3816 return 0;
3817}
3818
3819static inline int throttled_lb_pair(struct task_group *tg,
3820 int src_cpu, int dest_cpu)
3821{
3822 return 0;
3823}
029632fb
PZ
3824
3825void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3826
3827#ifdef CONFIG_FAIR_GROUP_SCHED
3828static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3829#endif
3830
029632fb
PZ
3831static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3832{
3833 return NULL;
3834}
3835static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3836static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3837
3838#endif /* CONFIG_CFS_BANDWIDTH */
3839
bf0f6f24
IM
3840/**************************************************
3841 * CFS operations on tasks:
3842 */
3843
8f4d37ec
PZ
3844#ifdef CONFIG_SCHED_HRTICK
3845static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3846{
8f4d37ec
PZ
3847 struct sched_entity *se = &p->se;
3848 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3849
3850 WARN_ON(task_rq(p) != rq);
3851
b39e66ea 3852 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3853 u64 slice = sched_slice(cfs_rq, se);
3854 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3855 s64 delta = slice - ran;
3856
3857 if (delta < 0) {
3858 if (rq->curr == p)
3859 resched_task(p);
3860 return;
3861 }
3862
3863 /*
3864 * Don't schedule slices shorter than 10000ns, that just
3865 * doesn't make sense. Rely on vruntime for fairness.
3866 */
31656519 3867 if (rq->curr != p)
157124c1 3868 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3869
31656519 3870 hrtick_start(rq, delta);
8f4d37ec
PZ
3871 }
3872}
a4c2f00f
PZ
3873
3874/*
3875 * called from enqueue/dequeue and updates the hrtick when the
3876 * current task is from our class and nr_running is low enough
3877 * to matter.
3878 */
3879static void hrtick_update(struct rq *rq)
3880{
3881 struct task_struct *curr = rq->curr;
3882
b39e66ea 3883 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3884 return;
3885
3886 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3887 hrtick_start_fair(rq, curr);
3888}
55e12e5e 3889#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3890static inline void
3891hrtick_start_fair(struct rq *rq, struct task_struct *p)
3892{
3893}
a4c2f00f
PZ
3894
3895static inline void hrtick_update(struct rq *rq)
3896{
3897}
8f4d37ec
PZ
3898#endif
3899
bf0f6f24
IM
3900/*
3901 * The enqueue_task method is called before nr_running is
3902 * increased. Here we update the fair scheduling stats and
3903 * then put the task into the rbtree:
3904 */
ea87bb78 3905static void
371fd7e7 3906enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3907{
3908 struct cfs_rq *cfs_rq;
62fb1851 3909 struct sched_entity *se = &p->se;
bf0f6f24
IM
3910
3911 for_each_sched_entity(se) {
62fb1851 3912 if (se->on_rq)
bf0f6f24
IM
3913 break;
3914 cfs_rq = cfs_rq_of(se);
88ec22d3 3915 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3916
3917 /*
3918 * end evaluation on encountering a throttled cfs_rq
3919 *
3920 * note: in the case of encountering a throttled cfs_rq we will
3921 * post the final h_nr_running increment below.
3922 */
3923 if (cfs_rq_throttled(cfs_rq))
3924 break;
953bfcd1 3925 cfs_rq->h_nr_running++;
85dac906 3926
88ec22d3 3927 flags = ENQUEUE_WAKEUP;
bf0f6f24 3928 }
8f4d37ec 3929
2069dd75 3930 for_each_sched_entity(se) {
0f317143 3931 cfs_rq = cfs_rq_of(se);
953bfcd1 3932 cfs_rq->h_nr_running++;
2069dd75 3933
85dac906
PT
3934 if (cfs_rq_throttled(cfs_rq))
3935 break;
3936
17bc14b7 3937 update_cfs_shares(cfs_rq);
9ee474f5 3938 update_entity_load_avg(se, 1);
2069dd75
PZ
3939 }
3940
18bf2805
BS
3941 if (!se) {
3942 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3943 add_nr_running(rq, 1);
18bf2805 3944 }
a4c2f00f 3945 hrtick_update(rq);
bf0f6f24
IM
3946}
3947
2f36825b
VP
3948static void set_next_buddy(struct sched_entity *se);
3949
bf0f6f24
IM
3950/*
3951 * The dequeue_task method is called before nr_running is
3952 * decreased. We remove the task from the rbtree and
3953 * update the fair scheduling stats:
3954 */
371fd7e7 3955static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3956{
3957 struct cfs_rq *cfs_rq;
62fb1851 3958 struct sched_entity *se = &p->se;
2f36825b 3959 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3960
3961 for_each_sched_entity(se) {
3962 cfs_rq = cfs_rq_of(se);
371fd7e7 3963 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3964
3965 /*
3966 * end evaluation on encountering a throttled cfs_rq
3967 *
3968 * note: in the case of encountering a throttled cfs_rq we will
3969 * post the final h_nr_running decrement below.
3970 */
3971 if (cfs_rq_throttled(cfs_rq))
3972 break;
953bfcd1 3973 cfs_rq->h_nr_running--;
2069dd75 3974
bf0f6f24 3975 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3976 if (cfs_rq->load.weight) {
3977 /*
3978 * Bias pick_next to pick a task from this cfs_rq, as
3979 * p is sleeping when it is within its sched_slice.
3980 */
3981 if (task_sleep && parent_entity(se))
3982 set_next_buddy(parent_entity(se));
9598c82d
PT
3983
3984 /* avoid re-evaluating load for this entity */
3985 se = parent_entity(se);
bf0f6f24 3986 break;
2f36825b 3987 }
371fd7e7 3988 flags |= DEQUEUE_SLEEP;
bf0f6f24 3989 }
8f4d37ec 3990
2069dd75 3991 for_each_sched_entity(se) {
0f317143 3992 cfs_rq = cfs_rq_of(se);
953bfcd1 3993 cfs_rq->h_nr_running--;
2069dd75 3994
85dac906
PT
3995 if (cfs_rq_throttled(cfs_rq))
3996 break;
3997
17bc14b7 3998 update_cfs_shares(cfs_rq);
9ee474f5 3999 update_entity_load_avg(se, 1);
2069dd75
PZ
4000 }
4001
18bf2805 4002 if (!se) {
72465447 4003 sub_nr_running(rq, 1);
18bf2805
BS
4004 update_rq_runnable_avg(rq, 1);
4005 }
a4c2f00f 4006 hrtick_update(rq);
bf0f6f24
IM
4007}
4008
e7693a36 4009#ifdef CONFIG_SMP
029632fb
PZ
4010/* Used instead of source_load when we know the type == 0 */
4011static unsigned long weighted_cpuload(const int cpu)
4012{
b92486cb 4013 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4014}
4015
4016/*
4017 * Return a low guess at the load of a migration-source cpu weighted
4018 * according to the scheduling class and "nice" value.
4019 *
4020 * We want to under-estimate the load of migration sources, to
4021 * balance conservatively.
4022 */
4023static unsigned long source_load(int cpu, int type)
4024{
4025 struct rq *rq = cpu_rq(cpu);
4026 unsigned long total = weighted_cpuload(cpu);
4027
4028 if (type == 0 || !sched_feat(LB_BIAS))
4029 return total;
4030
4031 return min(rq->cpu_load[type-1], total);
4032}
4033
4034/*
4035 * Return a high guess at the load of a migration-target cpu weighted
4036 * according to the scheduling class and "nice" value.
4037 */
4038static unsigned long target_load(int cpu, int type)
4039{
4040 struct rq *rq = cpu_rq(cpu);
4041 unsigned long total = weighted_cpuload(cpu);
4042
4043 if (type == 0 || !sched_feat(LB_BIAS))
4044 return total;
4045
4046 return max(rq->cpu_load[type-1], total);
4047}
4048
ced549fa 4049static unsigned long capacity_of(int cpu)
029632fb 4050{
ced549fa 4051 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4052}
4053
4054static unsigned long cpu_avg_load_per_task(int cpu)
4055{
4056 struct rq *rq = cpu_rq(cpu);
4057 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4058 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4059
4060 if (nr_running)
b92486cb 4061 return load_avg / nr_running;
029632fb
PZ
4062
4063 return 0;
4064}
4065
62470419
MW
4066static void record_wakee(struct task_struct *p)
4067{
4068 /*
4069 * Rough decay (wiping) for cost saving, don't worry
4070 * about the boundary, really active task won't care
4071 * about the loss.
4072 */
2538d960 4073 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4074 current->wakee_flips >>= 1;
62470419
MW
4075 current->wakee_flip_decay_ts = jiffies;
4076 }
4077
4078 if (current->last_wakee != p) {
4079 current->last_wakee = p;
4080 current->wakee_flips++;
4081 }
4082}
098fb9db 4083
74f8e4b2 4084static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4085{
4086 struct sched_entity *se = &p->se;
4087 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4088 u64 min_vruntime;
4089
4090#ifndef CONFIG_64BIT
4091 u64 min_vruntime_copy;
88ec22d3 4092
3fe1698b
PZ
4093 do {
4094 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4095 smp_rmb();
4096 min_vruntime = cfs_rq->min_vruntime;
4097 } while (min_vruntime != min_vruntime_copy);
4098#else
4099 min_vruntime = cfs_rq->min_vruntime;
4100#endif
88ec22d3 4101
3fe1698b 4102 se->vruntime -= min_vruntime;
62470419 4103 record_wakee(p);
88ec22d3
PZ
4104}
4105
bb3469ac 4106#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4107/*
4108 * effective_load() calculates the load change as seen from the root_task_group
4109 *
4110 * Adding load to a group doesn't make a group heavier, but can cause movement
4111 * of group shares between cpus. Assuming the shares were perfectly aligned one
4112 * can calculate the shift in shares.
cf5f0acf
PZ
4113 *
4114 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4115 * on this @cpu and results in a total addition (subtraction) of @wg to the
4116 * total group weight.
4117 *
4118 * Given a runqueue weight distribution (rw_i) we can compute a shares
4119 * distribution (s_i) using:
4120 *
4121 * s_i = rw_i / \Sum rw_j (1)
4122 *
4123 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4124 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4125 * shares distribution (s_i):
4126 *
4127 * rw_i = { 2, 4, 1, 0 }
4128 * s_i = { 2/7, 4/7, 1/7, 0 }
4129 *
4130 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4131 * task used to run on and the CPU the waker is running on), we need to
4132 * compute the effect of waking a task on either CPU and, in case of a sync
4133 * wakeup, compute the effect of the current task going to sleep.
4134 *
4135 * So for a change of @wl to the local @cpu with an overall group weight change
4136 * of @wl we can compute the new shares distribution (s'_i) using:
4137 *
4138 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4139 *
4140 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4141 * differences in waking a task to CPU 0. The additional task changes the
4142 * weight and shares distributions like:
4143 *
4144 * rw'_i = { 3, 4, 1, 0 }
4145 * s'_i = { 3/8, 4/8, 1/8, 0 }
4146 *
4147 * We can then compute the difference in effective weight by using:
4148 *
4149 * dw_i = S * (s'_i - s_i) (3)
4150 *
4151 * Where 'S' is the group weight as seen by its parent.
4152 *
4153 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4154 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4155 * 4/7) times the weight of the group.
f5bfb7d9 4156 */
2069dd75 4157static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4158{
4be9daaa 4159 struct sched_entity *se = tg->se[cpu];
f1d239f7 4160
9722c2da 4161 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4162 return wl;
4163
4be9daaa 4164 for_each_sched_entity(se) {
cf5f0acf 4165 long w, W;
4be9daaa 4166
977dda7c 4167 tg = se->my_q->tg;
bb3469ac 4168
cf5f0acf
PZ
4169 /*
4170 * W = @wg + \Sum rw_j
4171 */
4172 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4173
cf5f0acf
PZ
4174 /*
4175 * w = rw_i + @wl
4176 */
4177 w = se->my_q->load.weight + wl;
940959e9 4178
cf5f0acf
PZ
4179 /*
4180 * wl = S * s'_i; see (2)
4181 */
4182 if (W > 0 && w < W)
4183 wl = (w * tg->shares) / W;
977dda7c
PT
4184 else
4185 wl = tg->shares;
940959e9 4186
cf5f0acf
PZ
4187 /*
4188 * Per the above, wl is the new se->load.weight value; since
4189 * those are clipped to [MIN_SHARES, ...) do so now. See
4190 * calc_cfs_shares().
4191 */
977dda7c
PT
4192 if (wl < MIN_SHARES)
4193 wl = MIN_SHARES;
cf5f0acf
PZ
4194
4195 /*
4196 * wl = dw_i = S * (s'_i - s_i); see (3)
4197 */
977dda7c 4198 wl -= se->load.weight;
cf5f0acf
PZ
4199
4200 /*
4201 * Recursively apply this logic to all parent groups to compute
4202 * the final effective load change on the root group. Since
4203 * only the @tg group gets extra weight, all parent groups can
4204 * only redistribute existing shares. @wl is the shift in shares
4205 * resulting from this level per the above.
4206 */
4be9daaa 4207 wg = 0;
4be9daaa 4208 }
bb3469ac 4209
4be9daaa 4210 return wl;
bb3469ac
PZ
4211}
4212#else
4be9daaa 4213
58d081b5 4214static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4215{
83378269 4216 return wl;
bb3469ac 4217}
4be9daaa 4218
bb3469ac
PZ
4219#endif
4220
62470419
MW
4221static int wake_wide(struct task_struct *p)
4222{
7d9ffa89 4223 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4224
4225 /*
4226 * Yeah, it's the switching-frequency, could means many wakee or
4227 * rapidly switch, use factor here will just help to automatically
4228 * adjust the loose-degree, so bigger node will lead to more pull.
4229 */
4230 if (p->wakee_flips > factor) {
4231 /*
4232 * wakee is somewhat hot, it needs certain amount of cpu
4233 * resource, so if waker is far more hot, prefer to leave
4234 * it alone.
4235 */
4236 if (current->wakee_flips > (factor * p->wakee_flips))
4237 return 1;
4238 }
4239
4240 return 0;
4241}
4242
c88d5910 4243static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4244{
e37b6a7b 4245 s64 this_load, load;
c88d5910 4246 int idx, this_cpu, prev_cpu;
098fb9db 4247 unsigned long tl_per_task;
c88d5910 4248 struct task_group *tg;
83378269 4249 unsigned long weight;
b3137bc8 4250 int balanced;
098fb9db 4251
62470419
MW
4252 /*
4253 * If we wake multiple tasks be careful to not bounce
4254 * ourselves around too much.
4255 */
4256 if (wake_wide(p))
4257 return 0;
4258
c88d5910
PZ
4259 idx = sd->wake_idx;
4260 this_cpu = smp_processor_id();
4261 prev_cpu = task_cpu(p);
4262 load = source_load(prev_cpu, idx);
4263 this_load = target_load(this_cpu, idx);
098fb9db 4264
b3137bc8
MG
4265 /*
4266 * If sync wakeup then subtract the (maximum possible)
4267 * effect of the currently running task from the load
4268 * of the current CPU:
4269 */
83378269
PZ
4270 if (sync) {
4271 tg = task_group(current);
4272 weight = current->se.load.weight;
4273
c88d5910 4274 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4275 load += effective_load(tg, prev_cpu, 0, -weight);
4276 }
b3137bc8 4277
83378269
PZ
4278 tg = task_group(p);
4279 weight = p->se.load.weight;
b3137bc8 4280
71a29aa7
PZ
4281 /*
4282 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4283 * due to the sync cause above having dropped this_load to 0, we'll
4284 * always have an imbalance, but there's really nothing you can do
4285 * about that, so that's good too.
71a29aa7
PZ
4286 *
4287 * Otherwise check if either cpus are near enough in load to allow this
4288 * task to be woken on this_cpu.
4289 */
e37b6a7b
PT
4290 if (this_load > 0) {
4291 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4292
4293 this_eff_load = 100;
ced549fa 4294 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4295 this_eff_load *= this_load +
4296 effective_load(tg, this_cpu, weight, weight);
4297
4298 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4299 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4300 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4301
4302 balanced = this_eff_load <= prev_eff_load;
4303 } else
4304 balanced = true;
b3137bc8 4305
098fb9db 4306 /*
4ae7d5ce
IM
4307 * If the currently running task will sleep within
4308 * a reasonable amount of time then attract this newly
4309 * woken task:
098fb9db 4310 */
2fb7635c
PZ
4311 if (sync && balanced)
4312 return 1;
098fb9db 4313
41acab88 4314 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4315 tl_per_task = cpu_avg_load_per_task(this_cpu);
4316
c88d5910
PZ
4317 if (balanced ||
4318 (this_load <= load &&
4319 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4320 /*
4321 * This domain has SD_WAKE_AFFINE and
4322 * p is cache cold in this domain, and
4323 * there is no bad imbalance.
4324 */
c88d5910 4325 schedstat_inc(sd, ttwu_move_affine);
41acab88 4326 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4327
4328 return 1;
4329 }
4330 return 0;
4331}
4332
aaee1203
PZ
4333/*
4334 * find_idlest_group finds and returns the least busy CPU group within the
4335 * domain.
4336 */
4337static struct sched_group *
78e7ed53 4338find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4339 int this_cpu, int sd_flag)
e7693a36 4340{
b3bd3de6 4341 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4342 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4343 int load_idx = sd->forkexec_idx;
aaee1203 4344 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4345
c44f2a02
VG
4346 if (sd_flag & SD_BALANCE_WAKE)
4347 load_idx = sd->wake_idx;
4348
aaee1203
PZ
4349 do {
4350 unsigned long load, avg_load;
4351 int local_group;
4352 int i;
e7693a36 4353
aaee1203
PZ
4354 /* Skip over this group if it has no CPUs allowed */
4355 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4356 tsk_cpus_allowed(p)))
aaee1203
PZ
4357 continue;
4358
4359 local_group = cpumask_test_cpu(this_cpu,
4360 sched_group_cpus(group));
4361
4362 /* Tally up the load of all CPUs in the group */
4363 avg_load = 0;
4364
4365 for_each_cpu(i, sched_group_cpus(group)) {
4366 /* Bias balancing toward cpus of our domain */
4367 if (local_group)
4368 load = source_load(i, load_idx);
4369 else
4370 load = target_load(i, load_idx);
4371
4372 avg_load += load;
4373 }
4374
63b2ca30 4375 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4376 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4377
4378 if (local_group) {
4379 this_load = avg_load;
aaee1203
PZ
4380 } else if (avg_load < min_load) {
4381 min_load = avg_load;
4382 idlest = group;
4383 }
4384 } while (group = group->next, group != sd->groups);
4385
4386 if (!idlest || 100*this_load < imbalance*min_load)
4387 return NULL;
4388 return idlest;
4389}
4390
4391/*
4392 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4393 */
4394static int
4395find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4396{
4397 unsigned long load, min_load = ULONG_MAX;
4398 int idlest = -1;
4399 int i;
4400
4401 /* Traverse only the allowed CPUs */
fa17b507 4402 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4403 load = weighted_cpuload(i);
4404
4405 if (load < min_load || (load == min_load && i == this_cpu)) {
4406 min_load = load;
4407 idlest = i;
e7693a36
GH
4408 }
4409 }
4410
aaee1203
PZ
4411 return idlest;
4412}
e7693a36 4413
a50bde51
PZ
4414/*
4415 * Try and locate an idle CPU in the sched_domain.
4416 */
99bd5e2f 4417static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4418{
99bd5e2f 4419 struct sched_domain *sd;
37407ea7 4420 struct sched_group *sg;
e0a79f52 4421 int i = task_cpu(p);
a50bde51 4422
e0a79f52
MG
4423 if (idle_cpu(target))
4424 return target;
99bd5e2f
SS
4425
4426 /*
e0a79f52 4427 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4428 */
e0a79f52
MG
4429 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4430 return i;
a50bde51
PZ
4431
4432 /*
37407ea7 4433 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4434 */
518cd623 4435 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4436 for_each_lower_domain(sd) {
37407ea7
LT
4437 sg = sd->groups;
4438 do {
4439 if (!cpumask_intersects(sched_group_cpus(sg),
4440 tsk_cpus_allowed(p)))
4441 goto next;
4442
4443 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4444 if (i == target || !idle_cpu(i))
37407ea7
LT
4445 goto next;
4446 }
970e1789 4447
37407ea7
LT
4448 target = cpumask_first_and(sched_group_cpus(sg),
4449 tsk_cpus_allowed(p));
4450 goto done;
4451next:
4452 sg = sg->next;
4453 } while (sg != sd->groups);
4454 }
4455done:
a50bde51
PZ
4456 return target;
4457}
4458
aaee1203 4459/*
de91b9cb
MR
4460 * select_task_rq_fair: Select target runqueue for the waking task in domains
4461 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4462 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4463 *
de91b9cb
MR
4464 * Balances load by selecting the idlest cpu in the idlest group, or under
4465 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4466 *
de91b9cb 4467 * Returns the target cpu number.
aaee1203
PZ
4468 *
4469 * preempt must be disabled.
4470 */
0017d735 4471static int
ac66f547 4472select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4473{
29cd8bae 4474 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4475 int cpu = smp_processor_id();
c88d5910 4476 int new_cpu = cpu;
99bd5e2f 4477 int want_affine = 0;
5158f4e4 4478 int sync = wake_flags & WF_SYNC;
c88d5910 4479
29baa747 4480 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4481 return prev_cpu;
4482
0763a660 4483 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4484 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4485 want_affine = 1;
4486 new_cpu = prev_cpu;
4487 }
aaee1203 4488
dce840a0 4489 rcu_read_lock();
aaee1203 4490 for_each_domain(cpu, tmp) {
e4f42888
PZ
4491 if (!(tmp->flags & SD_LOAD_BALANCE))
4492 continue;
4493
fe3bcfe1 4494 /*
99bd5e2f
SS
4495 * If both cpu and prev_cpu are part of this domain,
4496 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4497 */
99bd5e2f
SS
4498 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4499 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4500 affine_sd = tmp;
29cd8bae 4501 break;
f03542a7 4502 }
29cd8bae 4503
f03542a7 4504 if (tmp->flags & sd_flag)
29cd8bae
PZ
4505 sd = tmp;
4506 }
4507
8bf21433
RR
4508 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4509 prev_cpu = cpu;
dce840a0 4510
8bf21433 4511 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4512 new_cpu = select_idle_sibling(p, prev_cpu);
4513 goto unlock;
8b911acd 4514 }
e7693a36 4515
aaee1203
PZ
4516 while (sd) {
4517 struct sched_group *group;
c88d5910 4518 int weight;
098fb9db 4519
0763a660 4520 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4521 sd = sd->child;
4522 continue;
4523 }
098fb9db 4524
c44f2a02 4525 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4526 if (!group) {
4527 sd = sd->child;
4528 continue;
4529 }
4ae7d5ce 4530
d7c33c49 4531 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4532 if (new_cpu == -1 || new_cpu == cpu) {
4533 /* Now try balancing at a lower domain level of cpu */
4534 sd = sd->child;
4535 continue;
e7693a36 4536 }
aaee1203
PZ
4537
4538 /* Now try balancing at a lower domain level of new_cpu */
4539 cpu = new_cpu;
669c55e9 4540 weight = sd->span_weight;
aaee1203
PZ
4541 sd = NULL;
4542 for_each_domain(cpu, tmp) {
669c55e9 4543 if (weight <= tmp->span_weight)
aaee1203 4544 break;
0763a660 4545 if (tmp->flags & sd_flag)
aaee1203
PZ
4546 sd = tmp;
4547 }
4548 /* while loop will break here if sd == NULL */
e7693a36 4549 }
dce840a0
PZ
4550unlock:
4551 rcu_read_unlock();
e7693a36 4552
c88d5910 4553 return new_cpu;
e7693a36 4554}
0a74bef8
PT
4555
4556/*
4557 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4558 * cfs_rq_of(p) references at time of call are still valid and identify the
4559 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4560 * other assumptions, including the state of rq->lock, should be made.
4561 */
4562static void
4563migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4564{
aff3e498
PT
4565 struct sched_entity *se = &p->se;
4566 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4567
4568 /*
4569 * Load tracking: accumulate removed load so that it can be processed
4570 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4571 * to blocked load iff they have a positive decay-count. It can never
4572 * be negative here since on-rq tasks have decay-count == 0.
4573 */
4574 if (se->avg.decay_count) {
4575 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4576 atomic_long_add(se->avg.load_avg_contrib,
4577 &cfs_rq->removed_load);
aff3e498 4578 }
3944a927
BS
4579
4580 /* We have migrated, no longer consider this task hot */
4581 se->exec_start = 0;
0a74bef8 4582}
e7693a36
GH
4583#endif /* CONFIG_SMP */
4584
e52fb7c0
PZ
4585static unsigned long
4586wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4587{
4588 unsigned long gran = sysctl_sched_wakeup_granularity;
4589
4590 /*
e52fb7c0
PZ
4591 * Since its curr running now, convert the gran from real-time
4592 * to virtual-time in his units.
13814d42
MG
4593 *
4594 * By using 'se' instead of 'curr' we penalize light tasks, so
4595 * they get preempted easier. That is, if 'se' < 'curr' then
4596 * the resulting gran will be larger, therefore penalizing the
4597 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4598 * be smaller, again penalizing the lighter task.
4599 *
4600 * This is especially important for buddies when the leftmost
4601 * task is higher priority than the buddy.
0bbd3336 4602 */
f4ad9bd2 4603 return calc_delta_fair(gran, se);
0bbd3336
PZ
4604}
4605
464b7527
PZ
4606/*
4607 * Should 'se' preempt 'curr'.
4608 *
4609 * |s1
4610 * |s2
4611 * |s3
4612 * g
4613 * |<--->|c
4614 *
4615 * w(c, s1) = -1
4616 * w(c, s2) = 0
4617 * w(c, s3) = 1
4618 *
4619 */
4620static int
4621wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4622{
4623 s64 gran, vdiff = curr->vruntime - se->vruntime;
4624
4625 if (vdiff <= 0)
4626 return -1;
4627
e52fb7c0 4628 gran = wakeup_gran(curr, se);
464b7527
PZ
4629 if (vdiff > gran)
4630 return 1;
4631
4632 return 0;
4633}
4634
02479099
PZ
4635static void set_last_buddy(struct sched_entity *se)
4636{
69c80f3e
VP
4637 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4638 return;
4639
4640 for_each_sched_entity(se)
4641 cfs_rq_of(se)->last = se;
02479099
PZ
4642}
4643
4644static void set_next_buddy(struct sched_entity *se)
4645{
69c80f3e
VP
4646 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4647 return;
4648
4649 for_each_sched_entity(se)
4650 cfs_rq_of(se)->next = se;
02479099
PZ
4651}
4652
ac53db59
RR
4653static void set_skip_buddy(struct sched_entity *se)
4654{
69c80f3e
VP
4655 for_each_sched_entity(se)
4656 cfs_rq_of(se)->skip = se;
ac53db59
RR
4657}
4658
bf0f6f24
IM
4659/*
4660 * Preempt the current task with a newly woken task if needed:
4661 */
5a9b86f6 4662static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4663{
4664 struct task_struct *curr = rq->curr;
8651a86c 4665 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4666 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4667 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4668 int next_buddy_marked = 0;
bf0f6f24 4669
4ae7d5ce
IM
4670 if (unlikely(se == pse))
4671 return;
4672
5238cdd3 4673 /*
ddcdf6e7 4674 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4675 * unconditionally check_prempt_curr() after an enqueue (which may have
4676 * lead to a throttle). This both saves work and prevents false
4677 * next-buddy nomination below.
4678 */
4679 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4680 return;
4681
2f36825b 4682 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4683 set_next_buddy(pse);
2f36825b
VP
4684 next_buddy_marked = 1;
4685 }
57fdc26d 4686
aec0a514
BR
4687 /*
4688 * We can come here with TIF_NEED_RESCHED already set from new task
4689 * wake up path.
5238cdd3
PT
4690 *
4691 * Note: this also catches the edge-case of curr being in a throttled
4692 * group (e.g. via set_curr_task), since update_curr() (in the
4693 * enqueue of curr) will have resulted in resched being set. This
4694 * prevents us from potentially nominating it as a false LAST_BUDDY
4695 * below.
aec0a514
BR
4696 */
4697 if (test_tsk_need_resched(curr))
4698 return;
4699
a2f5c9ab
DH
4700 /* Idle tasks are by definition preempted by non-idle tasks. */
4701 if (unlikely(curr->policy == SCHED_IDLE) &&
4702 likely(p->policy != SCHED_IDLE))
4703 goto preempt;
4704
91c234b4 4705 /*
a2f5c9ab
DH
4706 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4707 * is driven by the tick):
91c234b4 4708 */
8ed92e51 4709 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4710 return;
bf0f6f24 4711
464b7527 4712 find_matching_se(&se, &pse);
9bbd7374 4713 update_curr(cfs_rq_of(se));
002f128b 4714 BUG_ON(!pse);
2f36825b
VP
4715 if (wakeup_preempt_entity(se, pse) == 1) {
4716 /*
4717 * Bias pick_next to pick the sched entity that is
4718 * triggering this preemption.
4719 */
4720 if (!next_buddy_marked)
4721 set_next_buddy(pse);
3a7e73a2 4722 goto preempt;
2f36825b 4723 }
464b7527 4724
3a7e73a2 4725 return;
a65ac745 4726
3a7e73a2
PZ
4727preempt:
4728 resched_task(curr);
4729 /*
4730 * Only set the backward buddy when the current task is still
4731 * on the rq. This can happen when a wakeup gets interleaved
4732 * with schedule on the ->pre_schedule() or idle_balance()
4733 * point, either of which can * drop the rq lock.
4734 *
4735 * Also, during early boot the idle thread is in the fair class,
4736 * for obvious reasons its a bad idea to schedule back to it.
4737 */
4738 if (unlikely(!se->on_rq || curr == rq->idle))
4739 return;
4740
4741 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4742 set_last_buddy(se);
bf0f6f24
IM
4743}
4744
606dba2e
PZ
4745static struct task_struct *
4746pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4747{
4748 struct cfs_rq *cfs_rq = &rq->cfs;
4749 struct sched_entity *se;
678d5718 4750 struct task_struct *p;
37e117c0 4751 int new_tasks;
678d5718 4752
6e83125c 4753again:
678d5718
PZ
4754#ifdef CONFIG_FAIR_GROUP_SCHED
4755 if (!cfs_rq->nr_running)
38033c37 4756 goto idle;
678d5718 4757
3f1d2a31 4758 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4759 goto simple;
4760
4761 /*
4762 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4763 * likely that a next task is from the same cgroup as the current.
4764 *
4765 * Therefore attempt to avoid putting and setting the entire cgroup
4766 * hierarchy, only change the part that actually changes.
4767 */
4768
4769 do {
4770 struct sched_entity *curr = cfs_rq->curr;
4771
4772 /*
4773 * Since we got here without doing put_prev_entity() we also
4774 * have to consider cfs_rq->curr. If it is still a runnable
4775 * entity, update_curr() will update its vruntime, otherwise
4776 * forget we've ever seen it.
4777 */
4778 if (curr && curr->on_rq)
4779 update_curr(cfs_rq);
4780 else
4781 curr = NULL;
4782
4783 /*
4784 * This call to check_cfs_rq_runtime() will do the throttle and
4785 * dequeue its entity in the parent(s). Therefore the 'simple'
4786 * nr_running test will indeed be correct.
4787 */
4788 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4789 goto simple;
4790
4791 se = pick_next_entity(cfs_rq, curr);
4792 cfs_rq = group_cfs_rq(se);
4793 } while (cfs_rq);
4794
4795 p = task_of(se);
4796
4797 /*
4798 * Since we haven't yet done put_prev_entity and if the selected task
4799 * is a different task than we started out with, try and touch the
4800 * least amount of cfs_rqs.
4801 */
4802 if (prev != p) {
4803 struct sched_entity *pse = &prev->se;
4804
4805 while (!(cfs_rq = is_same_group(se, pse))) {
4806 int se_depth = se->depth;
4807 int pse_depth = pse->depth;
4808
4809 if (se_depth <= pse_depth) {
4810 put_prev_entity(cfs_rq_of(pse), pse);
4811 pse = parent_entity(pse);
4812 }
4813 if (se_depth >= pse_depth) {
4814 set_next_entity(cfs_rq_of(se), se);
4815 se = parent_entity(se);
4816 }
4817 }
4818
4819 put_prev_entity(cfs_rq, pse);
4820 set_next_entity(cfs_rq, se);
4821 }
4822
4823 if (hrtick_enabled(rq))
4824 hrtick_start_fair(rq, p);
4825
4826 return p;
4827simple:
4828 cfs_rq = &rq->cfs;
4829#endif
bf0f6f24 4830
36ace27e 4831 if (!cfs_rq->nr_running)
38033c37 4832 goto idle;
bf0f6f24 4833
3f1d2a31 4834 put_prev_task(rq, prev);
606dba2e 4835
bf0f6f24 4836 do {
678d5718 4837 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4838 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4839 cfs_rq = group_cfs_rq(se);
4840 } while (cfs_rq);
4841
8f4d37ec 4842 p = task_of(se);
678d5718 4843
b39e66ea
MG
4844 if (hrtick_enabled(rq))
4845 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4846
4847 return p;
38033c37
PZ
4848
4849idle:
e4aa358b 4850 new_tasks = idle_balance(rq);
37e117c0
PZ
4851 /*
4852 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4853 * possible for any higher priority task to appear. In that case we
4854 * must re-start the pick_next_entity() loop.
4855 */
e4aa358b 4856 if (new_tasks < 0)
37e117c0
PZ
4857 return RETRY_TASK;
4858
e4aa358b 4859 if (new_tasks > 0)
38033c37 4860 goto again;
38033c37
PZ
4861
4862 return NULL;
bf0f6f24
IM
4863}
4864
4865/*
4866 * Account for a descheduled task:
4867 */
31ee529c 4868static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4869{
4870 struct sched_entity *se = &prev->se;
4871 struct cfs_rq *cfs_rq;
4872
4873 for_each_sched_entity(se) {
4874 cfs_rq = cfs_rq_of(se);
ab6cde26 4875 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4876 }
4877}
4878
ac53db59
RR
4879/*
4880 * sched_yield() is very simple
4881 *
4882 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4883 */
4884static void yield_task_fair(struct rq *rq)
4885{
4886 struct task_struct *curr = rq->curr;
4887 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4888 struct sched_entity *se = &curr->se;
4889
4890 /*
4891 * Are we the only task in the tree?
4892 */
4893 if (unlikely(rq->nr_running == 1))
4894 return;
4895
4896 clear_buddies(cfs_rq, se);
4897
4898 if (curr->policy != SCHED_BATCH) {
4899 update_rq_clock(rq);
4900 /*
4901 * Update run-time statistics of the 'current'.
4902 */
4903 update_curr(cfs_rq);
916671c0
MG
4904 /*
4905 * Tell update_rq_clock() that we've just updated,
4906 * so we don't do microscopic update in schedule()
4907 * and double the fastpath cost.
4908 */
4909 rq->skip_clock_update = 1;
ac53db59
RR
4910 }
4911
4912 set_skip_buddy(se);
4913}
4914
d95f4122
MG
4915static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4916{
4917 struct sched_entity *se = &p->se;
4918
5238cdd3
PT
4919 /* throttled hierarchies are not runnable */
4920 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4921 return false;
4922
4923 /* Tell the scheduler that we'd really like pse to run next. */
4924 set_next_buddy(se);
4925
d95f4122
MG
4926 yield_task_fair(rq);
4927
4928 return true;
4929}
4930
681f3e68 4931#ifdef CONFIG_SMP
bf0f6f24 4932/**************************************************
e9c84cb8
PZ
4933 * Fair scheduling class load-balancing methods.
4934 *
4935 * BASICS
4936 *
4937 * The purpose of load-balancing is to achieve the same basic fairness the
4938 * per-cpu scheduler provides, namely provide a proportional amount of compute
4939 * time to each task. This is expressed in the following equation:
4940 *
4941 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4942 *
4943 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4944 * W_i,0 is defined as:
4945 *
4946 * W_i,0 = \Sum_j w_i,j (2)
4947 *
4948 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4949 * is derived from the nice value as per prio_to_weight[].
4950 *
4951 * The weight average is an exponential decay average of the instantaneous
4952 * weight:
4953 *
4954 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4955 *
ced549fa 4956 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4957 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4958 * can also include other factors [XXX].
4959 *
4960 * To achieve this balance we define a measure of imbalance which follows
4961 * directly from (1):
4962 *
ced549fa 4963 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4964 *
4965 * We them move tasks around to minimize the imbalance. In the continuous
4966 * function space it is obvious this converges, in the discrete case we get
4967 * a few fun cases generally called infeasible weight scenarios.
4968 *
4969 * [XXX expand on:
4970 * - infeasible weights;
4971 * - local vs global optima in the discrete case. ]
4972 *
4973 *
4974 * SCHED DOMAINS
4975 *
4976 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4977 * for all i,j solution, we create a tree of cpus that follows the hardware
4978 * topology where each level pairs two lower groups (or better). This results
4979 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4980 * tree to only the first of the previous level and we decrease the frequency
4981 * of load-balance at each level inv. proportional to the number of cpus in
4982 * the groups.
4983 *
4984 * This yields:
4985 *
4986 * log_2 n 1 n
4987 * \Sum { --- * --- * 2^i } = O(n) (5)
4988 * i = 0 2^i 2^i
4989 * `- size of each group
4990 * | | `- number of cpus doing load-balance
4991 * | `- freq
4992 * `- sum over all levels
4993 *
4994 * Coupled with a limit on how many tasks we can migrate every balance pass,
4995 * this makes (5) the runtime complexity of the balancer.
4996 *
4997 * An important property here is that each CPU is still (indirectly) connected
4998 * to every other cpu in at most O(log n) steps:
4999 *
5000 * The adjacency matrix of the resulting graph is given by:
5001 *
5002 * log_2 n
5003 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5004 * k = 0
5005 *
5006 * And you'll find that:
5007 *
5008 * A^(log_2 n)_i,j != 0 for all i,j (7)
5009 *
5010 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5011 * The task movement gives a factor of O(m), giving a convergence complexity
5012 * of:
5013 *
5014 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5015 *
5016 *
5017 * WORK CONSERVING
5018 *
5019 * In order to avoid CPUs going idle while there's still work to do, new idle
5020 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5021 * tree itself instead of relying on other CPUs to bring it work.
5022 *
5023 * This adds some complexity to both (5) and (8) but it reduces the total idle
5024 * time.
5025 *
5026 * [XXX more?]
5027 *
5028 *
5029 * CGROUPS
5030 *
5031 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5032 *
5033 * s_k,i
5034 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5035 * S_k
5036 *
5037 * Where
5038 *
5039 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5040 *
5041 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5042 *
5043 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5044 * property.
5045 *
5046 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5047 * rewrite all of this once again.]
5048 */
bf0f6f24 5049
ed387b78
HS
5050static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5051
0ec8aa00
PZ
5052enum fbq_type { regular, remote, all };
5053
ddcdf6e7 5054#define LBF_ALL_PINNED 0x01
367456c7 5055#define LBF_NEED_BREAK 0x02
6263322c
PZ
5056#define LBF_DST_PINNED 0x04
5057#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5058
5059struct lb_env {
5060 struct sched_domain *sd;
5061
ddcdf6e7 5062 struct rq *src_rq;
85c1e7da 5063 int src_cpu;
ddcdf6e7
PZ
5064
5065 int dst_cpu;
5066 struct rq *dst_rq;
5067
88b8dac0
SV
5068 struct cpumask *dst_grpmask;
5069 int new_dst_cpu;
ddcdf6e7 5070 enum cpu_idle_type idle;
bd939f45 5071 long imbalance;
b9403130
MW
5072 /* The set of CPUs under consideration for load-balancing */
5073 struct cpumask *cpus;
5074
ddcdf6e7 5075 unsigned int flags;
367456c7
PZ
5076
5077 unsigned int loop;
5078 unsigned int loop_break;
5079 unsigned int loop_max;
0ec8aa00
PZ
5080
5081 enum fbq_type fbq_type;
ddcdf6e7
PZ
5082};
5083
1e3c88bd 5084/*
ddcdf6e7 5085 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5086 * Both runqueues must be locked.
5087 */
ddcdf6e7 5088static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5089{
ddcdf6e7
PZ
5090 deactivate_task(env->src_rq, p, 0);
5091 set_task_cpu(p, env->dst_cpu);
5092 activate_task(env->dst_rq, p, 0);
5093 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5094}
5095
029632fb
PZ
5096/*
5097 * Is this task likely cache-hot:
5098 */
5d5e2b1b 5099static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5100{
5101 s64 delta;
5102
5103 if (p->sched_class != &fair_sched_class)
5104 return 0;
5105
5106 if (unlikely(p->policy == SCHED_IDLE))
5107 return 0;
5108
5109 /*
5110 * Buddy candidates are cache hot:
5111 */
5d5e2b1b 5112 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5113 (&p->se == cfs_rq_of(&p->se)->next ||
5114 &p->se == cfs_rq_of(&p->se)->last))
5115 return 1;
5116
5117 if (sysctl_sched_migration_cost == -1)
5118 return 1;
5119 if (sysctl_sched_migration_cost == 0)
5120 return 0;
5121
5d5e2b1b 5122 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5123
5124 return delta < (s64)sysctl_sched_migration_cost;
5125}
5126
3a7053b3
MG
5127#ifdef CONFIG_NUMA_BALANCING
5128/* Returns true if the destination node has incurred more faults */
5129static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5130{
b1ad065e 5131 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5132 int src_nid, dst_nid;
5133
ff1df896 5134 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5135 !(env->sd->flags & SD_NUMA)) {
5136 return false;
5137 }
5138
5139 src_nid = cpu_to_node(env->src_cpu);
5140 dst_nid = cpu_to_node(env->dst_cpu);
5141
83e1d2cd 5142 if (src_nid == dst_nid)
3a7053b3
MG
5143 return false;
5144
b1ad065e
RR
5145 if (numa_group) {
5146 /* Task is already in the group's interleave set. */
5147 if (node_isset(src_nid, numa_group->active_nodes))
5148 return false;
83e1d2cd 5149
b1ad065e
RR
5150 /* Task is moving into the group's interleave set. */
5151 if (node_isset(dst_nid, numa_group->active_nodes))
5152 return true;
83e1d2cd 5153
b1ad065e
RR
5154 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5155 }
5156
5157 /* Encourage migration to the preferred node. */
5158 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5159 return true;
5160
b1ad065e 5161 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5162}
7a0f3083
MG
5163
5164
5165static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5166{
b1ad065e 5167 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5168 int src_nid, dst_nid;
5169
5170 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5171 return false;
5172
ff1df896 5173 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5174 return false;
5175
5176 src_nid = cpu_to_node(env->src_cpu);
5177 dst_nid = cpu_to_node(env->dst_cpu);
5178
83e1d2cd 5179 if (src_nid == dst_nid)
7a0f3083
MG
5180 return false;
5181
b1ad065e
RR
5182 if (numa_group) {
5183 /* Task is moving within/into the group's interleave set. */
5184 if (node_isset(dst_nid, numa_group->active_nodes))
5185 return false;
5186
5187 /* Task is moving out of the group's interleave set. */
5188 if (node_isset(src_nid, numa_group->active_nodes))
5189 return true;
5190
5191 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5192 }
5193
83e1d2cd
MG
5194 /* Migrating away from the preferred node is always bad. */
5195 if (src_nid == p->numa_preferred_nid)
5196 return true;
5197
b1ad065e 5198 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5199}
5200
3a7053b3
MG
5201#else
5202static inline bool migrate_improves_locality(struct task_struct *p,
5203 struct lb_env *env)
5204{
5205 return false;
5206}
7a0f3083
MG
5207
5208static inline bool migrate_degrades_locality(struct task_struct *p,
5209 struct lb_env *env)
5210{
5211 return false;
5212}
3a7053b3
MG
5213#endif
5214
1e3c88bd
PZ
5215/*
5216 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5217 */
5218static
8e45cb54 5219int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5220{
5221 int tsk_cache_hot = 0;
5222 /*
5223 * We do not migrate tasks that are:
d3198084 5224 * 1) throttled_lb_pair, or
1e3c88bd 5225 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5226 * 3) running (obviously), or
5227 * 4) are cache-hot on their current CPU.
1e3c88bd 5228 */
d3198084
JK
5229 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5230 return 0;
5231
ddcdf6e7 5232 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5233 int cpu;
88b8dac0 5234
41acab88 5235 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5236
6263322c
PZ
5237 env->flags |= LBF_SOME_PINNED;
5238
88b8dac0
SV
5239 /*
5240 * Remember if this task can be migrated to any other cpu in
5241 * our sched_group. We may want to revisit it if we couldn't
5242 * meet load balance goals by pulling other tasks on src_cpu.
5243 *
5244 * Also avoid computing new_dst_cpu if we have already computed
5245 * one in current iteration.
5246 */
6263322c 5247 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5248 return 0;
5249
e02e60c1
JK
5250 /* Prevent to re-select dst_cpu via env's cpus */
5251 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5252 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5253 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5254 env->new_dst_cpu = cpu;
5255 break;
5256 }
88b8dac0 5257 }
e02e60c1 5258
1e3c88bd
PZ
5259 return 0;
5260 }
88b8dac0
SV
5261
5262 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5263 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5264
ddcdf6e7 5265 if (task_running(env->src_rq, p)) {
41acab88 5266 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5267 return 0;
5268 }
5269
5270 /*
5271 * Aggressive migration if:
3a7053b3
MG
5272 * 1) destination numa is preferred
5273 * 2) task is cache cold, or
5274 * 3) too many balance attempts have failed.
1e3c88bd 5275 */
5d5e2b1b 5276 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5277 if (!tsk_cache_hot)
5278 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5279
5280 if (migrate_improves_locality(p, env)) {
5281#ifdef CONFIG_SCHEDSTATS
5282 if (tsk_cache_hot) {
5283 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5284 schedstat_inc(p, se.statistics.nr_forced_migrations);
5285 }
5286#endif
5287 return 1;
5288 }
5289
1e3c88bd 5290 if (!tsk_cache_hot ||
8e45cb54 5291 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5292
1e3c88bd 5293 if (tsk_cache_hot) {
8e45cb54 5294 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5295 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5296 }
4e2dcb73 5297
1e3c88bd
PZ
5298 return 1;
5299 }
5300
4e2dcb73
ZH
5301 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5302 return 0;
1e3c88bd
PZ
5303}
5304
897c395f
PZ
5305/*
5306 * move_one_task tries to move exactly one task from busiest to this_rq, as
5307 * part of active balancing operations within "domain".
5308 * Returns 1 if successful and 0 otherwise.
5309 *
5310 * Called with both runqueues locked.
5311 */
8e45cb54 5312static int move_one_task(struct lb_env *env)
897c395f
PZ
5313{
5314 struct task_struct *p, *n;
897c395f 5315
367456c7 5316 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5317 if (!can_migrate_task(p, env))
5318 continue;
897c395f 5319
367456c7
PZ
5320 move_task(p, env);
5321 /*
5322 * Right now, this is only the second place move_task()
5323 * is called, so we can safely collect move_task()
5324 * stats here rather than inside move_task().
5325 */
5326 schedstat_inc(env->sd, lb_gained[env->idle]);
5327 return 1;
897c395f 5328 }
897c395f
PZ
5329 return 0;
5330}
5331
eb95308e
PZ
5332static const unsigned int sched_nr_migrate_break = 32;
5333
5d6523eb 5334/*
bd939f45 5335 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5336 * this_rq, as part of a balancing operation within domain "sd".
5337 * Returns 1 if successful and 0 otherwise.
5338 *
5339 * Called with both runqueues locked.
5340 */
5341static int move_tasks(struct lb_env *env)
1e3c88bd 5342{
5d6523eb
PZ
5343 struct list_head *tasks = &env->src_rq->cfs_tasks;
5344 struct task_struct *p;
367456c7
PZ
5345 unsigned long load;
5346 int pulled = 0;
1e3c88bd 5347
bd939f45 5348 if (env->imbalance <= 0)
5d6523eb 5349 return 0;
1e3c88bd 5350
5d6523eb
PZ
5351 while (!list_empty(tasks)) {
5352 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5353
367456c7
PZ
5354 env->loop++;
5355 /* We've more or less seen every task there is, call it quits */
5d6523eb 5356 if (env->loop > env->loop_max)
367456c7 5357 break;
5d6523eb
PZ
5358
5359 /* take a breather every nr_migrate tasks */
367456c7 5360 if (env->loop > env->loop_break) {
eb95308e 5361 env->loop_break += sched_nr_migrate_break;
8e45cb54 5362 env->flags |= LBF_NEED_BREAK;
ee00e66f 5363 break;
a195f004 5364 }
1e3c88bd 5365
d3198084 5366 if (!can_migrate_task(p, env))
367456c7
PZ
5367 goto next;
5368
5369 load = task_h_load(p);
5d6523eb 5370
eb95308e 5371 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5372 goto next;
5373
bd939f45 5374 if ((load / 2) > env->imbalance)
367456c7 5375 goto next;
1e3c88bd 5376
ddcdf6e7 5377 move_task(p, env);
ee00e66f 5378 pulled++;
bd939f45 5379 env->imbalance -= load;
1e3c88bd
PZ
5380
5381#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5382 /*
5383 * NEWIDLE balancing is a source of latency, so preemptible
5384 * kernels will stop after the first task is pulled to minimize
5385 * the critical section.
5386 */
5d6523eb 5387 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5388 break;
1e3c88bd
PZ
5389#endif
5390
ee00e66f
PZ
5391 /*
5392 * We only want to steal up to the prescribed amount of
5393 * weighted load.
5394 */
bd939f45 5395 if (env->imbalance <= 0)
ee00e66f 5396 break;
367456c7
PZ
5397
5398 continue;
5399next:
5d6523eb 5400 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5401 }
5d6523eb 5402
1e3c88bd 5403 /*
ddcdf6e7
PZ
5404 * Right now, this is one of only two places move_task() is called,
5405 * so we can safely collect move_task() stats here rather than
5406 * inside move_task().
1e3c88bd 5407 */
8e45cb54 5408 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5409
5d6523eb 5410 return pulled;
1e3c88bd
PZ
5411}
5412
230059de 5413#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5414/*
5415 * update tg->load_weight by folding this cpu's load_avg
5416 */
48a16753 5417static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5418{
48a16753
PT
5419 struct sched_entity *se = tg->se[cpu];
5420 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5421
48a16753
PT
5422 /* throttled entities do not contribute to load */
5423 if (throttled_hierarchy(cfs_rq))
5424 return;
9e3081ca 5425
aff3e498 5426 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5427
82958366
PT
5428 if (se) {
5429 update_entity_load_avg(se, 1);
5430 /*
5431 * We pivot on our runnable average having decayed to zero for
5432 * list removal. This generally implies that all our children
5433 * have also been removed (modulo rounding error or bandwidth
5434 * control); however, such cases are rare and we can fix these
5435 * at enqueue.
5436 *
5437 * TODO: fix up out-of-order children on enqueue.
5438 */
5439 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5440 list_del_leaf_cfs_rq(cfs_rq);
5441 } else {
48a16753 5442 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5443 update_rq_runnable_avg(rq, rq->nr_running);
5444 }
9e3081ca
PZ
5445}
5446
48a16753 5447static void update_blocked_averages(int cpu)
9e3081ca 5448{
9e3081ca 5449 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5450 struct cfs_rq *cfs_rq;
5451 unsigned long flags;
9e3081ca 5452
48a16753
PT
5453 raw_spin_lock_irqsave(&rq->lock, flags);
5454 update_rq_clock(rq);
9763b67f
PZ
5455 /*
5456 * Iterates the task_group tree in a bottom up fashion, see
5457 * list_add_leaf_cfs_rq() for details.
5458 */
64660c86 5459 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5460 /*
5461 * Note: We may want to consider periodically releasing
5462 * rq->lock about these updates so that creating many task
5463 * groups does not result in continually extending hold time.
5464 */
5465 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5466 }
48a16753
PT
5467
5468 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5469}
5470
9763b67f 5471/*
68520796 5472 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5473 * This needs to be done in a top-down fashion because the load of a child
5474 * group is a fraction of its parents load.
5475 */
68520796 5476static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5477{
68520796
VD
5478 struct rq *rq = rq_of(cfs_rq);
5479 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5480 unsigned long now = jiffies;
68520796 5481 unsigned long load;
a35b6466 5482
68520796 5483 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5484 return;
5485
68520796
VD
5486 cfs_rq->h_load_next = NULL;
5487 for_each_sched_entity(se) {
5488 cfs_rq = cfs_rq_of(se);
5489 cfs_rq->h_load_next = se;
5490 if (cfs_rq->last_h_load_update == now)
5491 break;
5492 }
a35b6466 5493
68520796 5494 if (!se) {
7e3115ef 5495 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5496 cfs_rq->last_h_load_update = now;
5497 }
5498
5499 while ((se = cfs_rq->h_load_next) != NULL) {
5500 load = cfs_rq->h_load;
5501 load = div64_ul(load * se->avg.load_avg_contrib,
5502 cfs_rq->runnable_load_avg + 1);
5503 cfs_rq = group_cfs_rq(se);
5504 cfs_rq->h_load = load;
5505 cfs_rq->last_h_load_update = now;
5506 }
9763b67f
PZ
5507}
5508
367456c7 5509static unsigned long task_h_load(struct task_struct *p)
230059de 5510{
367456c7 5511 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5512
68520796 5513 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5514 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5515 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5516}
5517#else
48a16753 5518static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5519{
5520}
5521
367456c7 5522static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5523{
a003a25b 5524 return p->se.avg.load_avg_contrib;
1e3c88bd 5525}
230059de 5526#endif
1e3c88bd 5527
1e3c88bd 5528/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5529/*
5530 * sg_lb_stats - stats of a sched_group required for load_balancing
5531 */
5532struct sg_lb_stats {
5533 unsigned long avg_load; /*Avg load across the CPUs of the group */
5534 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5535 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5536 unsigned long load_per_task;
63b2ca30 5537 unsigned long group_capacity;
147c5fc2 5538 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5539 unsigned int group_capacity_factor;
147c5fc2
PZ
5540 unsigned int idle_cpus;
5541 unsigned int group_weight;
1e3c88bd 5542 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5543 int group_has_free_capacity;
0ec8aa00
PZ
5544#ifdef CONFIG_NUMA_BALANCING
5545 unsigned int nr_numa_running;
5546 unsigned int nr_preferred_running;
5547#endif
1e3c88bd
PZ
5548};
5549
56cf515b
JK
5550/*
5551 * sd_lb_stats - Structure to store the statistics of a sched_domain
5552 * during load balancing.
5553 */
5554struct sd_lb_stats {
5555 struct sched_group *busiest; /* Busiest group in this sd */
5556 struct sched_group *local; /* Local group in this sd */
5557 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5558 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5559 unsigned long avg_load; /* Average load across all groups in sd */
5560
56cf515b 5561 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5562 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5563};
5564
147c5fc2
PZ
5565static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5566{
5567 /*
5568 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5569 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5570 * We must however clear busiest_stat::avg_load because
5571 * update_sd_pick_busiest() reads this before assignment.
5572 */
5573 *sds = (struct sd_lb_stats){
5574 .busiest = NULL,
5575 .local = NULL,
5576 .total_load = 0UL,
63b2ca30 5577 .total_capacity = 0UL,
147c5fc2
PZ
5578 .busiest_stat = {
5579 .avg_load = 0UL,
5580 },
5581 };
5582}
5583
1e3c88bd
PZ
5584/**
5585 * get_sd_load_idx - Obtain the load index for a given sched domain.
5586 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5587 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5588 *
5589 * Return: The load index.
1e3c88bd
PZ
5590 */
5591static inline int get_sd_load_idx(struct sched_domain *sd,
5592 enum cpu_idle_type idle)
5593{
5594 int load_idx;
5595
5596 switch (idle) {
5597 case CPU_NOT_IDLE:
5598 load_idx = sd->busy_idx;
5599 break;
5600
5601 case CPU_NEWLY_IDLE:
5602 load_idx = sd->newidle_idx;
5603 break;
5604 default:
5605 load_idx = sd->idle_idx;
5606 break;
5607 }
5608
5609 return load_idx;
5610}
5611
ced549fa 5612static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5613{
ca8ce3d0 5614 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5615}
5616
ca8ce3d0 5617unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5618{
ced549fa 5619 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5620}
5621
ced549fa 5622static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5623{
669c55e9 5624 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5625 unsigned long smt_gain = sd->smt_gain;
5626
5627 smt_gain /= weight;
5628
5629 return smt_gain;
5630}
5631
ca8ce3d0 5632unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5633{
ced549fa 5634 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5635}
5636
ced549fa 5637static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5638{
5639 struct rq *rq = cpu_rq(cpu);
b654f7de 5640 u64 total, available, age_stamp, avg;
cadefd3d 5641 s64 delta;
1e3c88bd 5642
b654f7de
PZ
5643 /*
5644 * Since we're reading these variables without serialization make sure
5645 * we read them once before doing sanity checks on them.
5646 */
5647 age_stamp = ACCESS_ONCE(rq->age_stamp);
5648 avg = ACCESS_ONCE(rq->rt_avg);
5649
cadefd3d
PZ
5650 delta = rq_clock(rq) - age_stamp;
5651 if (unlikely(delta < 0))
5652 delta = 0;
5653
5654 total = sched_avg_period() + delta;
aa483808 5655
b654f7de 5656 if (unlikely(total < avg)) {
ced549fa 5657 /* Ensures that capacity won't end up being negative */
aa483808
VP
5658 available = 0;
5659 } else {
b654f7de 5660 available = total - avg;
aa483808 5661 }
1e3c88bd 5662
ca8ce3d0
NP
5663 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5664 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5665
ca8ce3d0 5666 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5667
5668 return div_u64(available, total);
5669}
5670
ced549fa 5671static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5672{
669c55e9 5673 unsigned long weight = sd->span_weight;
ca8ce3d0 5674 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5675 struct sched_group *sdg = sd->groups;
5676
5d4dfddd
NP
5677 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5678 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5679 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5680 else
ced549fa 5681 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5682
ca8ce3d0 5683 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5684 }
5685
ced549fa 5686 sdg->sgc->capacity_orig = capacity;
9d5efe05 5687
5d4dfddd 5688 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5689 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5690 else
ced549fa 5691 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5692
ca8ce3d0 5693 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5694
ced549fa 5695 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5696 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5697
ced549fa
NP
5698 if (!capacity)
5699 capacity = 1;
1e3c88bd 5700
ced549fa
NP
5701 cpu_rq(cpu)->cpu_capacity = capacity;
5702 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5703}
5704
63b2ca30 5705void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5706{
5707 struct sched_domain *child = sd->child;
5708 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5709 unsigned long capacity, capacity_orig;
4ec4412e
VG
5710 unsigned long interval;
5711
5712 interval = msecs_to_jiffies(sd->balance_interval);
5713 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5714 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5715
5716 if (!child) {
ced549fa 5717 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5718 return;
5719 }
5720
63b2ca30 5721 capacity_orig = capacity = 0;
1e3c88bd 5722
74a5ce20
PZ
5723 if (child->flags & SD_OVERLAP) {
5724 /*
5725 * SD_OVERLAP domains cannot assume that child groups
5726 * span the current group.
5727 */
5728
863bffc8 5729 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5730 struct sched_group_capacity *sgc;
9abf24d4 5731 struct rq *rq = cpu_rq(cpu);
863bffc8 5732
9abf24d4 5733 /*
63b2ca30 5734 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5735 * gets here before we've attached the domains to the
5736 * runqueues.
5737 *
ced549fa
NP
5738 * Use capacity_of(), which is set irrespective of domains
5739 * in update_cpu_capacity().
9abf24d4 5740 *
63b2ca30 5741 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5742 * causing divide-by-zero issues on boot.
5743 *
63b2ca30 5744 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5745 */
5746 if (unlikely(!rq->sd)) {
ced549fa
NP
5747 capacity_orig += capacity_of(cpu);
5748 capacity += capacity_of(cpu);
9abf24d4
SD
5749 continue;
5750 }
863bffc8 5751
63b2ca30
NP
5752 sgc = rq->sd->groups->sgc;
5753 capacity_orig += sgc->capacity_orig;
5754 capacity += sgc->capacity;
863bffc8 5755 }
74a5ce20
PZ
5756 } else {
5757 /*
5758 * !SD_OVERLAP domains can assume that child groups
5759 * span the current group.
5760 */
5761
5762 group = child->groups;
5763 do {
63b2ca30
NP
5764 capacity_orig += group->sgc->capacity_orig;
5765 capacity += group->sgc->capacity;
74a5ce20
PZ
5766 group = group->next;
5767 } while (group != child->groups);
5768 }
1e3c88bd 5769
63b2ca30
NP
5770 sdg->sgc->capacity_orig = capacity_orig;
5771 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5772}
5773
9d5efe05
SV
5774/*
5775 * Try and fix up capacity for tiny siblings, this is needed when
5776 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5777 * which on its own isn't powerful enough.
5778 *
5779 * See update_sd_pick_busiest() and check_asym_packing().
5780 */
5781static inline int
5782fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5783{
5784 /*
ca8ce3d0 5785 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5786 */
5d4dfddd 5787 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5788 return 0;
5789
5790 /*
63b2ca30 5791 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5792 */
63b2ca30 5793 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5794 return 1;
5795
5796 return 0;
5797}
5798
30ce5dab
PZ
5799/*
5800 * Group imbalance indicates (and tries to solve) the problem where balancing
5801 * groups is inadequate due to tsk_cpus_allowed() constraints.
5802 *
5803 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5804 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5805 * Something like:
5806 *
5807 * { 0 1 2 3 } { 4 5 6 7 }
5808 * * * * *
5809 *
5810 * If we were to balance group-wise we'd place two tasks in the first group and
5811 * two tasks in the second group. Clearly this is undesired as it will overload
5812 * cpu 3 and leave one of the cpus in the second group unused.
5813 *
5814 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5815 * by noticing the lower domain failed to reach balance and had difficulty
5816 * moving tasks due to affinity constraints.
30ce5dab
PZ
5817 *
5818 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5819 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5820 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5821 * to create an effective group imbalance.
5822 *
5823 * This is a somewhat tricky proposition since the next run might not find the
5824 * group imbalance and decide the groups need to be balanced again. A most
5825 * subtle and fragile situation.
5826 */
5827
6263322c 5828static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5829{
63b2ca30 5830 return group->sgc->imbalance;
30ce5dab
PZ
5831}
5832
b37d9316 5833/*
0fedc6c8 5834 * Compute the group capacity factor.
b37d9316 5835 *
ced549fa 5836 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5837 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5838 * and limit unit capacity with that.
b37d9316 5839 */
0fedc6c8 5840static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5841{
0fedc6c8 5842 unsigned int capacity_factor, smt, cpus;
63b2ca30 5843 unsigned int capacity, capacity_orig;
c61037e9 5844
63b2ca30
NP
5845 capacity = group->sgc->capacity;
5846 capacity_orig = group->sgc->capacity_orig;
c61037e9 5847 cpus = group->group_weight;
b37d9316 5848
63b2ca30 5849 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5850 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5851 capacity_factor = cpus / smt; /* cores */
b37d9316 5852
63b2ca30 5853 capacity_factor = min_t(unsigned,
ca8ce3d0 5854 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5855 if (!capacity_factor)
5856 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5857
0fedc6c8 5858 return capacity_factor;
b37d9316
PZ
5859}
5860
1e3c88bd
PZ
5861/**
5862 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5863 * @env: The load balancing environment.
1e3c88bd 5864 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5865 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5866 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5867 * @sgs: variable to hold the statistics for this group.
5868 */
bd939f45
PZ
5869static inline void update_sg_lb_stats(struct lb_env *env,
5870 struct sched_group *group, int load_idx,
4486edd1
TC
5871 int local_group, struct sg_lb_stats *sgs,
5872 bool *overload)
1e3c88bd 5873{
30ce5dab 5874 unsigned long load;
bd939f45 5875 int i;
1e3c88bd 5876
b72ff13c
PZ
5877 memset(sgs, 0, sizeof(*sgs));
5878
b9403130 5879 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5880 struct rq *rq = cpu_rq(i);
5881
1e3c88bd 5882 /* Bias balancing toward cpus of our domain */
6263322c 5883 if (local_group)
04f733b4 5884 load = target_load(i, load_idx);
6263322c 5885 else
1e3c88bd 5886 load = source_load(i, load_idx);
1e3c88bd
PZ
5887
5888 sgs->group_load += load;
380c9077 5889 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
5890
5891 if (rq->nr_running > 1)
5892 *overload = true;
5893
0ec8aa00
PZ
5894#ifdef CONFIG_NUMA_BALANCING
5895 sgs->nr_numa_running += rq->nr_numa_running;
5896 sgs->nr_preferred_running += rq->nr_preferred_running;
5897#endif
1e3c88bd 5898 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5899 if (idle_cpu(i))
5900 sgs->idle_cpus++;
1e3c88bd
PZ
5901 }
5902
63b2ca30
NP
5903 /* Adjust by relative CPU capacity of the group */
5904 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5905 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5906
dd5feea1 5907 if (sgs->sum_nr_running)
38d0f770 5908 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5909
aae6d3dd 5910 sgs->group_weight = group->group_weight;
fab47622 5911
b37d9316 5912 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5913 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5914
0fedc6c8 5915 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5916 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5917}
5918
532cb4c4
MN
5919/**
5920 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5921 * @env: The load balancing environment.
532cb4c4
MN
5922 * @sds: sched_domain statistics
5923 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5924 * @sgs: sched_group statistics
532cb4c4
MN
5925 *
5926 * Determine if @sg is a busier group than the previously selected
5927 * busiest group.
e69f6186
YB
5928 *
5929 * Return: %true if @sg is a busier group than the previously selected
5930 * busiest group. %false otherwise.
532cb4c4 5931 */
bd939f45 5932static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5933 struct sd_lb_stats *sds,
5934 struct sched_group *sg,
bd939f45 5935 struct sg_lb_stats *sgs)
532cb4c4 5936{
56cf515b 5937 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5938 return false;
5939
0fedc6c8 5940 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5941 return true;
5942
5943 if (sgs->group_imb)
5944 return true;
5945
5946 /*
5947 * ASYM_PACKING needs to move all the work to the lowest
5948 * numbered CPUs in the group, therefore mark all groups
5949 * higher than ourself as busy.
5950 */
bd939f45
PZ
5951 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5952 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5953 if (!sds->busiest)
5954 return true;
5955
5956 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5957 return true;
5958 }
5959
5960 return false;
5961}
5962
0ec8aa00
PZ
5963#ifdef CONFIG_NUMA_BALANCING
5964static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5965{
5966 if (sgs->sum_nr_running > sgs->nr_numa_running)
5967 return regular;
5968 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5969 return remote;
5970 return all;
5971}
5972
5973static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5974{
5975 if (rq->nr_running > rq->nr_numa_running)
5976 return regular;
5977 if (rq->nr_running > rq->nr_preferred_running)
5978 return remote;
5979 return all;
5980}
5981#else
5982static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5983{
5984 return all;
5985}
5986
5987static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5988{
5989 return regular;
5990}
5991#endif /* CONFIG_NUMA_BALANCING */
5992
1e3c88bd 5993/**
461819ac 5994 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5995 * @env: The load balancing environment.
1e3c88bd
PZ
5996 * @sds: variable to hold the statistics for this sched_domain.
5997 */
0ec8aa00 5998static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5999{
bd939f45
PZ
6000 struct sched_domain *child = env->sd->child;
6001 struct sched_group *sg = env->sd->groups;
56cf515b 6002 struct sg_lb_stats tmp_sgs;
1e3c88bd 6003 int load_idx, prefer_sibling = 0;
4486edd1 6004 bool overload = false;
1e3c88bd
PZ
6005
6006 if (child && child->flags & SD_PREFER_SIBLING)
6007 prefer_sibling = 1;
6008
bd939f45 6009 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6010
6011 do {
56cf515b 6012 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6013 int local_group;
6014
bd939f45 6015 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6016 if (local_group) {
6017 sds->local = sg;
6018 sgs = &sds->local_stat;
b72ff13c
PZ
6019
6020 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6021 time_after_eq(jiffies, sg->sgc->next_update))
6022 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6023 }
1e3c88bd 6024
4486edd1
TC
6025 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6026 &overload);
1e3c88bd 6027
b72ff13c
PZ
6028 if (local_group)
6029 goto next_group;
6030
1e3c88bd
PZ
6031 /*
6032 * In case the child domain prefers tasks go to siblings
0fedc6c8 6033 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6034 * and move all the excess tasks away. We lower the capacity
6035 * of a group only if the local group has the capacity to fit
0fedc6c8 6036 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6037 * extra check prevents the case where you always pull from the
6038 * heaviest group when it is already under-utilized (possible
6039 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6040 */
b72ff13c 6041 if (prefer_sibling && sds->local &&
1b6a7495 6042 sds->local_stat.group_has_free_capacity)
0fedc6c8 6043 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6044
b72ff13c 6045 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6046 sds->busiest = sg;
56cf515b 6047 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6048 }
6049
b72ff13c
PZ
6050next_group:
6051 /* Now, start updating sd_lb_stats */
6052 sds->total_load += sgs->group_load;
63b2ca30 6053 sds->total_capacity += sgs->group_capacity;
b72ff13c 6054
532cb4c4 6055 sg = sg->next;
bd939f45 6056 } while (sg != env->sd->groups);
0ec8aa00
PZ
6057
6058 if (env->sd->flags & SD_NUMA)
6059 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6060
6061 if (!env->sd->parent) {
6062 /* update overload indicator if we are at root domain */
6063 if (env->dst_rq->rd->overload != overload)
6064 env->dst_rq->rd->overload = overload;
6065 }
6066
532cb4c4
MN
6067}
6068
532cb4c4
MN
6069/**
6070 * check_asym_packing - Check to see if the group is packed into the
6071 * sched doman.
6072 *
6073 * This is primarily intended to used at the sibling level. Some
6074 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6075 * case of POWER7, it can move to lower SMT modes only when higher
6076 * threads are idle. When in lower SMT modes, the threads will
6077 * perform better since they share less core resources. Hence when we
6078 * have idle threads, we want them to be the higher ones.
6079 *
6080 * This packing function is run on idle threads. It checks to see if
6081 * the busiest CPU in this domain (core in the P7 case) has a higher
6082 * CPU number than the packing function is being run on. Here we are
6083 * assuming lower CPU number will be equivalent to lower a SMT thread
6084 * number.
6085 *
e69f6186 6086 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6087 * this CPU. The amount of the imbalance is returned in *imbalance.
6088 *
cd96891d 6089 * @env: The load balancing environment.
532cb4c4 6090 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6091 */
bd939f45 6092static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6093{
6094 int busiest_cpu;
6095
bd939f45 6096 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6097 return 0;
6098
6099 if (!sds->busiest)
6100 return 0;
6101
6102 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6103 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6104 return 0;
6105
bd939f45 6106 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6107 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6108 SCHED_CAPACITY_SCALE);
bd939f45 6109
532cb4c4 6110 return 1;
1e3c88bd
PZ
6111}
6112
6113/**
6114 * fix_small_imbalance - Calculate the minor imbalance that exists
6115 * amongst the groups of a sched_domain, during
6116 * load balancing.
cd96891d 6117 * @env: The load balancing environment.
1e3c88bd 6118 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6119 */
bd939f45
PZ
6120static inline
6121void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6122{
63b2ca30 6123 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6124 unsigned int imbn = 2;
dd5feea1 6125 unsigned long scaled_busy_load_per_task;
56cf515b 6126 struct sg_lb_stats *local, *busiest;
1e3c88bd 6127
56cf515b
JK
6128 local = &sds->local_stat;
6129 busiest = &sds->busiest_stat;
1e3c88bd 6130
56cf515b
JK
6131 if (!local->sum_nr_running)
6132 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6133 else if (busiest->load_per_task > local->load_per_task)
6134 imbn = 1;
dd5feea1 6135
56cf515b 6136 scaled_busy_load_per_task =
ca8ce3d0 6137 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6138 busiest->group_capacity;
56cf515b 6139
3029ede3
VD
6140 if (busiest->avg_load + scaled_busy_load_per_task >=
6141 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6142 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6143 return;
6144 }
6145
6146 /*
6147 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6148 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6149 * moving them.
6150 */
6151
63b2ca30 6152 capa_now += busiest->group_capacity *
56cf515b 6153 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6154 capa_now += local->group_capacity *
56cf515b 6155 min(local->load_per_task, local->avg_load);
ca8ce3d0 6156 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6157
6158 /* Amount of load we'd subtract */
a2cd4260 6159 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6160 capa_move += busiest->group_capacity *
56cf515b 6161 min(busiest->load_per_task,
a2cd4260 6162 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6163 }
1e3c88bd
PZ
6164
6165 /* Amount of load we'd add */
63b2ca30 6166 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6167 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6168 tmp = (busiest->avg_load * busiest->group_capacity) /
6169 local->group_capacity;
56cf515b 6170 } else {
ca8ce3d0 6171 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6172 local->group_capacity;
56cf515b 6173 }
63b2ca30 6174 capa_move += local->group_capacity *
3ae11c90 6175 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6176 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6177
6178 /* Move if we gain throughput */
63b2ca30 6179 if (capa_move > capa_now)
56cf515b 6180 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6181}
6182
6183/**
6184 * calculate_imbalance - Calculate the amount of imbalance present within the
6185 * groups of a given sched_domain during load balance.
bd939f45 6186 * @env: load balance environment
1e3c88bd 6187 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6188 */
bd939f45 6189static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6190{
dd5feea1 6191 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6192 struct sg_lb_stats *local, *busiest;
6193
6194 local = &sds->local_stat;
56cf515b 6195 busiest = &sds->busiest_stat;
dd5feea1 6196
56cf515b 6197 if (busiest->group_imb) {
30ce5dab
PZ
6198 /*
6199 * In the group_imb case we cannot rely on group-wide averages
6200 * to ensure cpu-load equilibrium, look at wider averages. XXX
6201 */
56cf515b
JK
6202 busiest->load_per_task =
6203 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6204 }
6205
1e3c88bd
PZ
6206 /*
6207 * In the presence of smp nice balancing, certain scenarios can have
6208 * max load less than avg load(as we skip the groups at or below
ced549fa 6209 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6210 */
b1885550
VD
6211 if (busiest->avg_load <= sds->avg_load ||
6212 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6213 env->imbalance = 0;
6214 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6215 }
6216
56cf515b 6217 if (!busiest->group_imb) {
dd5feea1
SS
6218 /*
6219 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6220 * Except of course for the group_imb case, since then we might
6221 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6222 */
56cf515b 6223 load_above_capacity =
0fedc6c8 6224 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6225
ca8ce3d0 6226 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6227 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6228 }
6229
6230 /*
6231 * We're trying to get all the cpus to the average_load, so we don't
6232 * want to push ourselves above the average load, nor do we wish to
6233 * reduce the max loaded cpu below the average load. At the same time,
6234 * we also don't want to reduce the group load below the group capacity
6235 * (so that we can implement power-savings policies etc). Thus we look
6236 * for the minimum possible imbalance.
dd5feea1 6237 */
30ce5dab 6238 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6239
6240 /* How much load to actually move to equalise the imbalance */
56cf515b 6241 env->imbalance = min(
63b2ca30
NP
6242 max_pull * busiest->group_capacity,
6243 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6244 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6245
6246 /*
6247 * if *imbalance is less than the average load per runnable task
25985edc 6248 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6249 * a think about bumping its value to force at least one task to be
6250 * moved
6251 */
56cf515b 6252 if (env->imbalance < busiest->load_per_task)
bd939f45 6253 return fix_small_imbalance(env, sds);
1e3c88bd 6254}
fab47622 6255
1e3c88bd
PZ
6256/******* find_busiest_group() helpers end here *********************/
6257
6258/**
6259 * find_busiest_group - Returns the busiest group within the sched_domain
6260 * if there is an imbalance. If there isn't an imbalance, and
6261 * the user has opted for power-savings, it returns a group whose
6262 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6263 * such a group exists.
6264 *
6265 * Also calculates the amount of weighted load which should be moved
6266 * to restore balance.
6267 *
cd96891d 6268 * @env: The load balancing environment.
1e3c88bd 6269 *
e69f6186 6270 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6271 * - If no imbalance and user has opted for power-savings balance,
6272 * return the least loaded group whose CPUs can be
6273 * put to idle by rebalancing its tasks onto our group.
6274 */
56cf515b 6275static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6276{
56cf515b 6277 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6278 struct sd_lb_stats sds;
6279
147c5fc2 6280 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6281
6282 /*
6283 * Compute the various statistics relavent for load balancing at
6284 * this level.
6285 */
23f0d209 6286 update_sd_lb_stats(env, &sds);
56cf515b
JK
6287 local = &sds.local_stat;
6288 busiest = &sds.busiest_stat;
1e3c88bd 6289
bd939f45
PZ
6290 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6291 check_asym_packing(env, &sds))
532cb4c4
MN
6292 return sds.busiest;
6293
cc57aa8f 6294 /* There is no busy sibling group to pull tasks from */
56cf515b 6295 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6296 goto out_balanced;
6297
ca8ce3d0
NP
6298 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6299 / sds.total_capacity;
b0432d8f 6300
866ab43e
PZ
6301 /*
6302 * If the busiest group is imbalanced the below checks don't
30ce5dab 6303 * work because they assume all things are equal, which typically
866ab43e
PZ
6304 * isn't true due to cpus_allowed constraints and the like.
6305 */
56cf515b 6306 if (busiest->group_imb)
866ab43e
PZ
6307 goto force_balance;
6308
cc57aa8f 6309 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6310 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6311 !busiest->group_has_free_capacity)
fab47622
NR
6312 goto force_balance;
6313
cc57aa8f
PZ
6314 /*
6315 * If the local group is more busy than the selected busiest group
6316 * don't try and pull any tasks.
6317 */
56cf515b 6318 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6319 goto out_balanced;
6320
cc57aa8f
PZ
6321 /*
6322 * Don't pull any tasks if this group is already above the domain
6323 * average load.
6324 */
56cf515b 6325 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6326 goto out_balanced;
6327
bd939f45 6328 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6329 /*
6330 * This cpu is idle. If the busiest group load doesn't
6331 * have more tasks than the number of available cpu's and
6332 * there is no imbalance between this and busiest group
6333 * wrt to idle cpu's, it is balanced.
6334 */
56cf515b
JK
6335 if ((local->idle_cpus < busiest->idle_cpus) &&
6336 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6337 goto out_balanced;
c186fafe
PZ
6338 } else {
6339 /*
6340 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6341 * imbalance_pct to be conservative.
6342 */
56cf515b
JK
6343 if (100 * busiest->avg_load <=
6344 env->sd->imbalance_pct * local->avg_load)
c186fafe 6345 goto out_balanced;
aae6d3dd 6346 }
1e3c88bd 6347
fab47622 6348force_balance:
1e3c88bd 6349 /* Looks like there is an imbalance. Compute it */
bd939f45 6350 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6351 return sds.busiest;
6352
6353out_balanced:
bd939f45 6354 env->imbalance = 0;
1e3c88bd
PZ
6355 return NULL;
6356}
6357
6358/*
6359 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6360 */
bd939f45 6361static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6362 struct sched_group *group)
1e3c88bd
PZ
6363{
6364 struct rq *busiest = NULL, *rq;
ced549fa 6365 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6366 int i;
6367
6906a408 6368 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6369 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6370 enum fbq_type rt;
6371
6372 rq = cpu_rq(i);
6373 rt = fbq_classify_rq(rq);
1e3c88bd 6374
0ec8aa00
PZ
6375 /*
6376 * We classify groups/runqueues into three groups:
6377 * - regular: there are !numa tasks
6378 * - remote: there are numa tasks that run on the 'wrong' node
6379 * - all: there is no distinction
6380 *
6381 * In order to avoid migrating ideally placed numa tasks,
6382 * ignore those when there's better options.
6383 *
6384 * If we ignore the actual busiest queue to migrate another
6385 * task, the next balance pass can still reduce the busiest
6386 * queue by moving tasks around inside the node.
6387 *
6388 * If we cannot move enough load due to this classification
6389 * the next pass will adjust the group classification and
6390 * allow migration of more tasks.
6391 *
6392 * Both cases only affect the total convergence complexity.
6393 */
6394 if (rt > env->fbq_type)
6395 continue;
6396
ced549fa 6397 capacity = capacity_of(i);
ca8ce3d0 6398 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6399 if (!capacity_factor)
6400 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6401
6e40f5bb 6402 wl = weighted_cpuload(i);
1e3c88bd 6403
6e40f5bb
TG
6404 /*
6405 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6406 * which is not scaled with the cpu capacity.
6e40f5bb 6407 */
0fedc6c8 6408 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6409 continue;
6410
6e40f5bb
TG
6411 /*
6412 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6413 * the weighted_cpuload() scaled with the cpu capacity, so
6414 * that the load can be moved away from the cpu that is
6415 * potentially running at a lower capacity.
95a79b80 6416 *
ced549fa 6417 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6418 * multiplication to rid ourselves of the division works out
ced549fa
NP
6419 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6420 * our previous maximum.
6e40f5bb 6421 */
ced549fa 6422 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6423 busiest_load = wl;
ced549fa 6424 busiest_capacity = capacity;
1e3c88bd
PZ
6425 busiest = rq;
6426 }
6427 }
6428
6429 return busiest;
6430}
6431
6432/*
6433 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6434 * so long as it is large enough.
6435 */
6436#define MAX_PINNED_INTERVAL 512
6437
6438/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6439DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6440
bd939f45 6441static int need_active_balance(struct lb_env *env)
1af3ed3d 6442{
bd939f45
PZ
6443 struct sched_domain *sd = env->sd;
6444
6445 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6446
6447 /*
6448 * ASYM_PACKING needs to force migrate tasks from busy but
6449 * higher numbered CPUs in order to pack all tasks in the
6450 * lowest numbered CPUs.
6451 */
bd939f45 6452 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6453 return 1;
1af3ed3d
PZ
6454 }
6455
6456 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6457}
6458
969c7921
TH
6459static int active_load_balance_cpu_stop(void *data);
6460
23f0d209
JK
6461static int should_we_balance(struct lb_env *env)
6462{
6463 struct sched_group *sg = env->sd->groups;
6464 struct cpumask *sg_cpus, *sg_mask;
6465 int cpu, balance_cpu = -1;
6466
6467 /*
6468 * In the newly idle case, we will allow all the cpu's
6469 * to do the newly idle load balance.
6470 */
6471 if (env->idle == CPU_NEWLY_IDLE)
6472 return 1;
6473
6474 sg_cpus = sched_group_cpus(sg);
6475 sg_mask = sched_group_mask(sg);
6476 /* Try to find first idle cpu */
6477 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6478 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6479 continue;
6480
6481 balance_cpu = cpu;
6482 break;
6483 }
6484
6485 if (balance_cpu == -1)
6486 balance_cpu = group_balance_cpu(sg);
6487
6488 /*
6489 * First idle cpu or the first cpu(busiest) in this sched group
6490 * is eligible for doing load balancing at this and above domains.
6491 */
b0cff9d8 6492 return balance_cpu == env->dst_cpu;
23f0d209
JK
6493}
6494
1e3c88bd
PZ
6495/*
6496 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6497 * tasks if there is an imbalance.
6498 */
6499static int load_balance(int this_cpu, struct rq *this_rq,
6500 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6501 int *continue_balancing)
1e3c88bd 6502{
88b8dac0 6503 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6504 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6505 struct sched_group *group;
1e3c88bd
PZ
6506 struct rq *busiest;
6507 unsigned long flags;
e6252c3e 6508 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6509
8e45cb54
PZ
6510 struct lb_env env = {
6511 .sd = sd,
ddcdf6e7
PZ
6512 .dst_cpu = this_cpu,
6513 .dst_rq = this_rq,
88b8dac0 6514 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6515 .idle = idle,
eb95308e 6516 .loop_break = sched_nr_migrate_break,
b9403130 6517 .cpus = cpus,
0ec8aa00 6518 .fbq_type = all,
8e45cb54
PZ
6519 };
6520
cfc03118
JK
6521 /*
6522 * For NEWLY_IDLE load_balancing, we don't need to consider
6523 * other cpus in our group
6524 */
e02e60c1 6525 if (idle == CPU_NEWLY_IDLE)
cfc03118 6526 env.dst_grpmask = NULL;
cfc03118 6527
1e3c88bd
PZ
6528 cpumask_copy(cpus, cpu_active_mask);
6529
1e3c88bd
PZ
6530 schedstat_inc(sd, lb_count[idle]);
6531
6532redo:
23f0d209
JK
6533 if (!should_we_balance(&env)) {
6534 *continue_balancing = 0;
1e3c88bd 6535 goto out_balanced;
23f0d209 6536 }
1e3c88bd 6537
23f0d209 6538 group = find_busiest_group(&env);
1e3c88bd
PZ
6539 if (!group) {
6540 schedstat_inc(sd, lb_nobusyg[idle]);
6541 goto out_balanced;
6542 }
6543
b9403130 6544 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6545 if (!busiest) {
6546 schedstat_inc(sd, lb_nobusyq[idle]);
6547 goto out_balanced;
6548 }
6549
78feefc5 6550 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6551
bd939f45 6552 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6553
6554 ld_moved = 0;
6555 if (busiest->nr_running > 1) {
6556 /*
6557 * Attempt to move tasks. If find_busiest_group has found
6558 * an imbalance but busiest->nr_running <= 1, the group is
6559 * still unbalanced. ld_moved simply stays zero, so it is
6560 * correctly treated as an imbalance.
6561 */
8e45cb54 6562 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6563 env.src_cpu = busiest->cpu;
6564 env.src_rq = busiest;
6565 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6566
5d6523eb 6567more_balance:
1e3c88bd 6568 local_irq_save(flags);
78feefc5 6569 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6570
6571 /*
6572 * cur_ld_moved - load moved in current iteration
6573 * ld_moved - cumulative load moved across iterations
6574 */
6575 cur_ld_moved = move_tasks(&env);
6576 ld_moved += cur_ld_moved;
78feefc5 6577 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6578 local_irq_restore(flags);
6579
6580 /*
6581 * some other cpu did the load balance for us.
6582 */
88b8dac0
SV
6583 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6584 resched_cpu(env.dst_cpu);
6585
f1cd0858
JK
6586 if (env.flags & LBF_NEED_BREAK) {
6587 env.flags &= ~LBF_NEED_BREAK;
6588 goto more_balance;
6589 }
6590
88b8dac0
SV
6591 /*
6592 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6593 * us and move them to an alternate dst_cpu in our sched_group
6594 * where they can run. The upper limit on how many times we
6595 * iterate on same src_cpu is dependent on number of cpus in our
6596 * sched_group.
6597 *
6598 * This changes load balance semantics a bit on who can move
6599 * load to a given_cpu. In addition to the given_cpu itself
6600 * (or a ilb_cpu acting on its behalf where given_cpu is
6601 * nohz-idle), we now have balance_cpu in a position to move
6602 * load to given_cpu. In rare situations, this may cause
6603 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6604 * _independently_ and at _same_ time to move some load to
6605 * given_cpu) causing exceess load to be moved to given_cpu.
6606 * This however should not happen so much in practice and
6607 * moreover subsequent load balance cycles should correct the
6608 * excess load moved.
6609 */
6263322c 6610 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6611
7aff2e3a
VD
6612 /* Prevent to re-select dst_cpu via env's cpus */
6613 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6614
78feefc5 6615 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6616 env.dst_cpu = env.new_dst_cpu;
6263322c 6617 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6618 env.loop = 0;
6619 env.loop_break = sched_nr_migrate_break;
e02e60c1 6620
88b8dac0
SV
6621 /*
6622 * Go back to "more_balance" rather than "redo" since we
6623 * need to continue with same src_cpu.
6624 */
6625 goto more_balance;
6626 }
1e3c88bd 6627
6263322c
PZ
6628 /*
6629 * We failed to reach balance because of affinity.
6630 */
6631 if (sd_parent) {
63b2ca30 6632 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6633
6634 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6635 *group_imbalance = 1;
6636 } else if (*group_imbalance)
6637 *group_imbalance = 0;
6638 }
6639
1e3c88bd 6640 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6641 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6642 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6643 if (!cpumask_empty(cpus)) {
6644 env.loop = 0;
6645 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6646 goto redo;
bbf18b19 6647 }
1e3c88bd
PZ
6648 goto out_balanced;
6649 }
6650 }
6651
6652 if (!ld_moved) {
6653 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6654 /*
6655 * Increment the failure counter only on periodic balance.
6656 * We do not want newidle balance, which can be very
6657 * frequent, pollute the failure counter causing
6658 * excessive cache_hot migrations and active balances.
6659 */
6660 if (idle != CPU_NEWLY_IDLE)
6661 sd->nr_balance_failed++;
1e3c88bd 6662
bd939f45 6663 if (need_active_balance(&env)) {
1e3c88bd
PZ
6664 raw_spin_lock_irqsave(&busiest->lock, flags);
6665
969c7921
TH
6666 /* don't kick the active_load_balance_cpu_stop,
6667 * if the curr task on busiest cpu can't be
6668 * moved to this_cpu
1e3c88bd
PZ
6669 */
6670 if (!cpumask_test_cpu(this_cpu,
fa17b507 6671 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6672 raw_spin_unlock_irqrestore(&busiest->lock,
6673 flags);
8e45cb54 6674 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6675 goto out_one_pinned;
6676 }
6677
969c7921
TH
6678 /*
6679 * ->active_balance synchronizes accesses to
6680 * ->active_balance_work. Once set, it's cleared
6681 * only after active load balance is finished.
6682 */
1e3c88bd
PZ
6683 if (!busiest->active_balance) {
6684 busiest->active_balance = 1;
6685 busiest->push_cpu = this_cpu;
6686 active_balance = 1;
6687 }
6688 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6689
bd939f45 6690 if (active_balance) {
969c7921
TH
6691 stop_one_cpu_nowait(cpu_of(busiest),
6692 active_load_balance_cpu_stop, busiest,
6693 &busiest->active_balance_work);
bd939f45 6694 }
1e3c88bd
PZ
6695
6696 /*
6697 * We've kicked active balancing, reset the failure
6698 * counter.
6699 */
6700 sd->nr_balance_failed = sd->cache_nice_tries+1;
6701 }
6702 } else
6703 sd->nr_balance_failed = 0;
6704
6705 if (likely(!active_balance)) {
6706 /* We were unbalanced, so reset the balancing interval */
6707 sd->balance_interval = sd->min_interval;
6708 } else {
6709 /*
6710 * If we've begun active balancing, start to back off. This
6711 * case may not be covered by the all_pinned logic if there
6712 * is only 1 task on the busy runqueue (because we don't call
6713 * move_tasks).
6714 */
6715 if (sd->balance_interval < sd->max_interval)
6716 sd->balance_interval *= 2;
6717 }
6718
1e3c88bd
PZ
6719 goto out;
6720
6721out_balanced:
6722 schedstat_inc(sd, lb_balanced[idle]);
6723
6724 sd->nr_balance_failed = 0;
6725
6726out_one_pinned:
6727 /* tune up the balancing interval */
8e45cb54 6728 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6729 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6730 (sd->balance_interval < sd->max_interval))
6731 sd->balance_interval *= 2;
6732
46e49b38 6733 ld_moved = 0;
1e3c88bd 6734out:
1e3c88bd
PZ
6735 return ld_moved;
6736}
6737
52a08ef1
JL
6738static inline unsigned long
6739get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6740{
6741 unsigned long interval = sd->balance_interval;
6742
6743 if (cpu_busy)
6744 interval *= sd->busy_factor;
6745
6746 /* scale ms to jiffies */
6747 interval = msecs_to_jiffies(interval);
6748 interval = clamp(interval, 1UL, max_load_balance_interval);
6749
6750 return interval;
6751}
6752
6753static inline void
6754update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6755{
6756 unsigned long interval, next;
6757
6758 interval = get_sd_balance_interval(sd, cpu_busy);
6759 next = sd->last_balance + interval;
6760
6761 if (time_after(*next_balance, next))
6762 *next_balance = next;
6763}
6764
1e3c88bd
PZ
6765/*
6766 * idle_balance is called by schedule() if this_cpu is about to become
6767 * idle. Attempts to pull tasks from other CPUs.
6768 */
6e83125c 6769static int idle_balance(struct rq *this_rq)
1e3c88bd 6770{
52a08ef1
JL
6771 unsigned long next_balance = jiffies + HZ;
6772 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6773 struct sched_domain *sd;
6774 int pulled_task = 0;
9bd721c5 6775 u64 curr_cost = 0;
1e3c88bd 6776
6e83125c 6777 idle_enter_fair(this_rq);
0e5b5337 6778
6e83125c
PZ
6779 /*
6780 * We must set idle_stamp _before_ calling idle_balance(), such that we
6781 * measure the duration of idle_balance() as idle time.
6782 */
6783 this_rq->idle_stamp = rq_clock(this_rq);
6784
4486edd1
TC
6785 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6786 !this_rq->rd->overload) {
52a08ef1
JL
6787 rcu_read_lock();
6788 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6789 if (sd)
6790 update_next_balance(sd, 0, &next_balance);
6791 rcu_read_unlock();
6792
6e83125c 6793 goto out;
52a08ef1 6794 }
1e3c88bd 6795
f492e12e
PZ
6796 /*
6797 * Drop the rq->lock, but keep IRQ/preempt disabled.
6798 */
6799 raw_spin_unlock(&this_rq->lock);
6800
48a16753 6801 update_blocked_averages(this_cpu);
dce840a0 6802 rcu_read_lock();
1e3c88bd 6803 for_each_domain(this_cpu, sd) {
23f0d209 6804 int continue_balancing = 1;
9bd721c5 6805 u64 t0, domain_cost;
1e3c88bd
PZ
6806
6807 if (!(sd->flags & SD_LOAD_BALANCE))
6808 continue;
6809
52a08ef1
JL
6810 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6811 update_next_balance(sd, 0, &next_balance);
9bd721c5 6812 break;
52a08ef1 6813 }
9bd721c5 6814
f492e12e 6815 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6816 t0 = sched_clock_cpu(this_cpu);
6817
f492e12e 6818 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6819 sd, CPU_NEWLY_IDLE,
6820 &continue_balancing);
9bd721c5
JL
6821
6822 domain_cost = sched_clock_cpu(this_cpu) - t0;
6823 if (domain_cost > sd->max_newidle_lb_cost)
6824 sd->max_newidle_lb_cost = domain_cost;
6825
6826 curr_cost += domain_cost;
f492e12e 6827 }
1e3c88bd 6828
52a08ef1 6829 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6830
6831 /*
6832 * Stop searching for tasks to pull if there are
6833 * now runnable tasks on this rq.
6834 */
6835 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6836 break;
1e3c88bd 6837 }
dce840a0 6838 rcu_read_unlock();
f492e12e
PZ
6839
6840 raw_spin_lock(&this_rq->lock);
6841
0e5b5337
JL
6842 if (curr_cost > this_rq->max_idle_balance_cost)
6843 this_rq->max_idle_balance_cost = curr_cost;
6844
e5fc6611 6845 /*
0e5b5337
JL
6846 * While browsing the domains, we released the rq lock, a task could
6847 * have been enqueued in the meantime. Since we're not going idle,
6848 * pretend we pulled a task.
e5fc6611 6849 */
0e5b5337 6850 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6851 pulled_task = 1;
e5fc6611 6852
52a08ef1
JL
6853out:
6854 /* Move the next balance forward */
6855 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6856 this_rq->next_balance = next_balance;
9bd721c5 6857
e4aa358b 6858 /* Is there a task of a high priority class? */
46383648 6859 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6860 pulled_task = -1;
6861
6862 if (pulled_task) {
6863 idle_exit_fair(this_rq);
6e83125c 6864 this_rq->idle_stamp = 0;
e4aa358b 6865 }
6e83125c 6866
3c4017c1 6867 return pulled_task;
1e3c88bd
PZ
6868}
6869
6870/*
969c7921
TH
6871 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6872 * running tasks off the busiest CPU onto idle CPUs. It requires at
6873 * least 1 task to be running on each physical CPU where possible, and
6874 * avoids physical / logical imbalances.
1e3c88bd 6875 */
969c7921 6876static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6877{
969c7921
TH
6878 struct rq *busiest_rq = data;
6879 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6880 int target_cpu = busiest_rq->push_cpu;
969c7921 6881 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6882 struct sched_domain *sd;
969c7921
TH
6883
6884 raw_spin_lock_irq(&busiest_rq->lock);
6885
6886 /* make sure the requested cpu hasn't gone down in the meantime */
6887 if (unlikely(busiest_cpu != smp_processor_id() ||
6888 !busiest_rq->active_balance))
6889 goto out_unlock;
1e3c88bd
PZ
6890
6891 /* Is there any task to move? */
6892 if (busiest_rq->nr_running <= 1)
969c7921 6893 goto out_unlock;
1e3c88bd
PZ
6894
6895 /*
6896 * This condition is "impossible", if it occurs
6897 * we need to fix it. Originally reported by
6898 * Bjorn Helgaas on a 128-cpu setup.
6899 */
6900 BUG_ON(busiest_rq == target_rq);
6901
6902 /* move a task from busiest_rq to target_rq */
6903 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6904
6905 /* Search for an sd spanning us and the target CPU. */
dce840a0 6906 rcu_read_lock();
1e3c88bd
PZ
6907 for_each_domain(target_cpu, sd) {
6908 if ((sd->flags & SD_LOAD_BALANCE) &&
6909 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6910 break;
6911 }
6912
6913 if (likely(sd)) {
8e45cb54
PZ
6914 struct lb_env env = {
6915 .sd = sd,
ddcdf6e7
PZ
6916 .dst_cpu = target_cpu,
6917 .dst_rq = target_rq,
6918 .src_cpu = busiest_rq->cpu,
6919 .src_rq = busiest_rq,
8e45cb54
PZ
6920 .idle = CPU_IDLE,
6921 };
6922
1e3c88bd
PZ
6923 schedstat_inc(sd, alb_count);
6924
8e45cb54 6925 if (move_one_task(&env))
1e3c88bd
PZ
6926 schedstat_inc(sd, alb_pushed);
6927 else
6928 schedstat_inc(sd, alb_failed);
6929 }
dce840a0 6930 rcu_read_unlock();
1e3c88bd 6931 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6932out_unlock:
6933 busiest_rq->active_balance = 0;
6934 raw_spin_unlock_irq(&busiest_rq->lock);
6935 return 0;
1e3c88bd
PZ
6936}
6937
d987fc7f
MG
6938static inline int on_null_domain(struct rq *rq)
6939{
6940 return unlikely(!rcu_dereference_sched(rq->sd));
6941}
6942
3451d024 6943#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6944/*
6945 * idle load balancing details
83cd4fe2
VP
6946 * - When one of the busy CPUs notice that there may be an idle rebalancing
6947 * needed, they will kick the idle load balancer, which then does idle
6948 * load balancing for all the idle CPUs.
6949 */
1e3c88bd 6950static struct {
83cd4fe2 6951 cpumask_var_t idle_cpus_mask;
0b005cf5 6952 atomic_t nr_cpus;
83cd4fe2
VP
6953 unsigned long next_balance; /* in jiffy units */
6954} nohz ____cacheline_aligned;
1e3c88bd 6955
3dd0337d 6956static inline int find_new_ilb(void)
1e3c88bd 6957{
0b005cf5 6958 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6959
786d6dc7
SS
6960 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6961 return ilb;
6962
6963 return nr_cpu_ids;
1e3c88bd 6964}
1e3c88bd 6965
83cd4fe2
VP
6966/*
6967 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6968 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6969 * CPU (if there is one).
6970 */
0aeeeeba 6971static void nohz_balancer_kick(void)
83cd4fe2
VP
6972{
6973 int ilb_cpu;
6974
6975 nohz.next_balance++;
6976
3dd0337d 6977 ilb_cpu = find_new_ilb();
83cd4fe2 6978
0b005cf5
SS
6979 if (ilb_cpu >= nr_cpu_ids)
6980 return;
83cd4fe2 6981
cd490c5b 6982 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6983 return;
6984 /*
6985 * Use smp_send_reschedule() instead of resched_cpu().
6986 * This way we generate a sched IPI on the target cpu which
6987 * is idle. And the softirq performing nohz idle load balance
6988 * will be run before returning from the IPI.
6989 */
6990 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6991 return;
6992}
6993
c1cc017c 6994static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6995{
6996 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6997 /*
6998 * Completely isolated CPUs don't ever set, so we must test.
6999 */
7000 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7001 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7002 atomic_dec(&nohz.nr_cpus);
7003 }
71325960
SS
7004 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7005 }
7006}
7007
69e1e811
SS
7008static inline void set_cpu_sd_state_busy(void)
7009{
7010 struct sched_domain *sd;
37dc6b50 7011 int cpu = smp_processor_id();
69e1e811 7012
69e1e811 7013 rcu_read_lock();
37dc6b50 7014 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7015
7016 if (!sd || !sd->nohz_idle)
7017 goto unlock;
7018 sd->nohz_idle = 0;
7019
63b2ca30 7020 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7021unlock:
69e1e811
SS
7022 rcu_read_unlock();
7023}
7024
7025void set_cpu_sd_state_idle(void)
7026{
7027 struct sched_domain *sd;
37dc6b50 7028 int cpu = smp_processor_id();
69e1e811 7029
69e1e811 7030 rcu_read_lock();
37dc6b50 7031 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7032
7033 if (!sd || sd->nohz_idle)
7034 goto unlock;
7035 sd->nohz_idle = 1;
7036
63b2ca30 7037 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7038unlock:
69e1e811
SS
7039 rcu_read_unlock();
7040}
7041
1e3c88bd 7042/*
c1cc017c 7043 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7044 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7045 */
c1cc017c 7046void nohz_balance_enter_idle(int cpu)
1e3c88bd 7047{
71325960
SS
7048 /*
7049 * If this cpu is going down, then nothing needs to be done.
7050 */
7051 if (!cpu_active(cpu))
7052 return;
7053
c1cc017c
AS
7054 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7055 return;
1e3c88bd 7056
d987fc7f
MG
7057 /*
7058 * If we're a completely isolated CPU, we don't play.
7059 */
7060 if (on_null_domain(cpu_rq(cpu)))
7061 return;
7062
c1cc017c
AS
7063 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7064 atomic_inc(&nohz.nr_cpus);
7065 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7066}
71325960 7067
0db0628d 7068static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7069 unsigned long action, void *hcpu)
7070{
7071 switch (action & ~CPU_TASKS_FROZEN) {
7072 case CPU_DYING:
c1cc017c 7073 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7074 return NOTIFY_OK;
7075 default:
7076 return NOTIFY_DONE;
7077 }
7078}
1e3c88bd
PZ
7079#endif
7080
7081static DEFINE_SPINLOCK(balancing);
7082
49c022e6
PZ
7083/*
7084 * Scale the max load_balance interval with the number of CPUs in the system.
7085 * This trades load-balance latency on larger machines for less cross talk.
7086 */
029632fb 7087void update_max_interval(void)
49c022e6
PZ
7088{
7089 max_load_balance_interval = HZ*num_online_cpus()/10;
7090}
7091
1e3c88bd
PZ
7092/*
7093 * It checks each scheduling domain to see if it is due to be balanced,
7094 * and initiates a balancing operation if so.
7095 *
b9b0853a 7096 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7097 */
f7ed0a89 7098static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7099{
23f0d209 7100 int continue_balancing = 1;
f7ed0a89 7101 int cpu = rq->cpu;
1e3c88bd 7102 unsigned long interval;
04f733b4 7103 struct sched_domain *sd;
1e3c88bd
PZ
7104 /* Earliest time when we have to do rebalance again */
7105 unsigned long next_balance = jiffies + 60*HZ;
7106 int update_next_balance = 0;
f48627e6
JL
7107 int need_serialize, need_decay = 0;
7108 u64 max_cost = 0;
1e3c88bd 7109
48a16753 7110 update_blocked_averages(cpu);
2069dd75 7111
dce840a0 7112 rcu_read_lock();
1e3c88bd 7113 for_each_domain(cpu, sd) {
f48627e6
JL
7114 /*
7115 * Decay the newidle max times here because this is a regular
7116 * visit to all the domains. Decay ~1% per second.
7117 */
7118 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7119 sd->max_newidle_lb_cost =
7120 (sd->max_newidle_lb_cost * 253) / 256;
7121 sd->next_decay_max_lb_cost = jiffies + HZ;
7122 need_decay = 1;
7123 }
7124 max_cost += sd->max_newidle_lb_cost;
7125
1e3c88bd
PZ
7126 if (!(sd->flags & SD_LOAD_BALANCE))
7127 continue;
7128
f48627e6
JL
7129 /*
7130 * Stop the load balance at this level. There is another
7131 * CPU in our sched group which is doing load balancing more
7132 * actively.
7133 */
7134 if (!continue_balancing) {
7135 if (need_decay)
7136 continue;
7137 break;
7138 }
7139
52a08ef1 7140 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7141
7142 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7143 if (need_serialize) {
7144 if (!spin_trylock(&balancing))
7145 goto out;
7146 }
7147
7148 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7149 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7150 /*
6263322c 7151 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7152 * env->dst_cpu, so we can't know our idle
7153 * state even if we migrated tasks. Update it.
1e3c88bd 7154 */
de5eb2dd 7155 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7156 }
7157 sd->last_balance = jiffies;
52a08ef1 7158 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7159 }
7160 if (need_serialize)
7161 spin_unlock(&balancing);
7162out:
7163 if (time_after(next_balance, sd->last_balance + interval)) {
7164 next_balance = sd->last_balance + interval;
7165 update_next_balance = 1;
7166 }
f48627e6
JL
7167 }
7168 if (need_decay) {
1e3c88bd 7169 /*
f48627e6
JL
7170 * Ensure the rq-wide value also decays but keep it at a
7171 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7172 */
f48627e6
JL
7173 rq->max_idle_balance_cost =
7174 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7175 }
dce840a0 7176 rcu_read_unlock();
1e3c88bd
PZ
7177
7178 /*
7179 * next_balance will be updated only when there is a need.
7180 * When the cpu is attached to null domain for ex, it will not be
7181 * updated.
7182 */
7183 if (likely(update_next_balance))
7184 rq->next_balance = next_balance;
7185}
7186
3451d024 7187#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7188/*
3451d024 7189 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7190 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7191 */
208cb16b 7192static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7193{
208cb16b 7194 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7195 struct rq *rq;
7196 int balance_cpu;
7197
1c792db7
SS
7198 if (idle != CPU_IDLE ||
7199 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7200 goto end;
83cd4fe2
VP
7201
7202 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7203 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7204 continue;
7205
7206 /*
7207 * If this cpu gets work to do, stop the load balancing
7208 * work being done for other cpus. Next load
7209 * balancing owner will pick it up.
7210 */
1c792db7 7211 if (need_resched())
83cd4fe2 7212 break;
83cd4fe2 7213
5ed4f1d9
VG
7214 rq = cpu_rq(balance_cpu);
7215
ed61bbc6
TC
7216 /*
7217 * If time for next balance is due,
7218 * do the balance.
7219 */
7220 if (time_after_eq(jiffies, rq->next_balance)) {
7221 raw_spin_lock_irq(&rq->lock);
7222 update_rq_clock(rq);
7223 update_idle_cpu_load(rq);
7224 raw_spin_unlock_irq(&rq->lock);
7225 rebalance_domains(rq, CPU_IDLE);
7226 }
83cd4fe2 7227
83cd4fe2
VP
7228 if (time_after(this_rq->next_balance, rq->next_balance))
7229 this_rq->next_balance = rq->next_balance;
7230 }
7231 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7232end:
7233 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7234}
7235
7236/*
0b005cf5
SS
7237 * Current heuristic for kicking the idle load balancer in the presence
7238 * of an idle cpu is the system.
7239 * - This rq has more than one task.
7240 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7241 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7242 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7243 * domain span are idle.
83cd4fe2 7244 */
4a725627 7245static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7246{
7247 unsigned long now = jiffies;
0b005cf5 7248 struct sched_domain *sd;
63b2ca30 7249 struct sched_group_capacity *sgc;
4a725627 7250 int nr_busy, cpu = rq->cpu;
83cd4fe2 7251
4a725627 7252 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7253 return 0;
7254
1c792db7
SS
7255 /*
7256 * We may be recently in ticked or tickless idle mode. At the first
7257 * busy tick after returning from idle, we will update the busy stats.
7258 */
69e1e811 7259 set_cpu_sd_state_busy();
c1cc017c 7260 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7261
7262 /*
7263 * None are in tickless mode and hence no need for NOHZ idle load
7264 * balancing.
7265 */
7266 if (likely(!atomic_read(&nohz.nr_cpus)))
7267 return 0;
1c792db7
SS
7268
7269 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7270 return 0;
7271
0b005cf5
SS
7272 if (rq->nr_running >= 2)
7273 goto need_kick;
83cd4fe2 7274
067491b7 7275 rcu_read_lock();
37dc6b50 7276 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7277
37dc6b50 7278 if (sd) {
63b2ca30
NP
7279 sgc = sd->groups->sgc;
7280 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7281
37dc6b50 7282 if (nr_busy > 1)
067491b7 7283 goto need_kick_unlock;
83cd4fe2 7284 }
37dc6b50
PM
7285
7286 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7287
7288 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7289 sched_domain_span(sd)) < cpu))
7290 goto need_kick_unlock;
7291
067491b7 7292 rcu_read_unlock();
83cd4fe2 7293 return 0;
067491b7
PZ
7294
7295need_kick_unlock:
7296 rcu_read_unlock();
0b005cf5
SS
7297need_kick:
7298 return 1;
83cd4fe2
VP
7299}
7300#else
208cb16b 7301static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7302#endif
7303
7304/*
7305 * run_rebalance_domains is triggered when needed from the scheduler tick.
7306 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7307 */
1e3c88bd
PZ
7308static void run_rebalance_domains(struct softirq_action *h)
7309{
208cb16b 7310 struct rq *this_rq = this_rq();
6eb57e0d 7311 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7312 CPU_IDLE : CPU_NOT_IDLE;
7313
f7ed0a89 7314 rebalance_domains(this_rq, idle);
1e3c88bd 7315
1e3c88bd 7316 /*
83cd4fe2 7317 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7318 * balancing on behalf of the other idle cpus whose ticks are
7319 * stopped.
7320 */
208cb16b 7321 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7322}
7323
1e3c88bd
PZ
7324/*
7325 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7326 */
7caff66f 7327void trigger_load_balance(struct rq *rq)
1e3c88bd 7328{
1e3c88bd 7329 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7330 if (unlikely(on_null_domain(rq)))
7331 return;
7332
7333 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7334 raise_softirq(SCHED_SOFTIRQ);
3451d024 7335#ifdef CONFIG_NO_HZ_COMMON
c726099e 7336 if (nohz_kick_needed(rq))
0aeeeeba 7337 nohz_balancer_kick();
83cd4fe2 7338#endif
1e3c88bd
PZ
7339}
7340
0bcdcf28
CE
7341static void rq_online_fair(struct rq *rq)
7342{
7343 update_sysctl();
7344}
7345
7346static void rq_offline_fair(struct rq *rq)
7347{
7348 update_sysctl();
a4c96ae3
PB
7349
7350 /* Ensure any throttled groups are reachable by pick_next_task */
7351 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7352}
7353
55e12e5e 7354#endif /* CONFIG_SMP */
e1d1484f 7355
bf0f6f24
IM
7356/*
7357 * scheduler tick hitting a task of our scheduling class:
7358 */
8f4d37ec 7359static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7360{
7361 struct cfs_rq *cfs_rq;
7362 struct sched_entity *se = &curr->se;
7363
7364 for_each_sched_entity(se) {
7365 cfs_rq = cfs_rq_of(se);
8f4d37ec 7366 entity_tick(cfs_rq, se, queued);
bf0f6f24 7367 }
18bf2805 7368
10e84b97 7369 if (numabalancing_enabled)
cbee9f88 7370 task_tick_numa(rq, curr);
3d59eebc 7371
18bf2805 7372 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7373}
7374
7375/*
cd29fe6f
PZ
7376 * called on fork with the child task as argument from the parent's context
7377 * - child not yet on the tasklist
7378 * - preemption disabled
bf0f6f24 7379 */
cd29fe6f 7380static void task_fork_fair(struct task_struct *p)
bf0f6f24 7381{
4fc420c9
DN
7382 struct cfs_rq *cfs_rq;
7383 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7384 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7385 struct rq *rq = this_rq();
7386 unsigned long flags;
7387
05fa785c 7388 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7389
861d034e
PZ
7390 update_rq_clock(rq);
7391
4fc420c9
DN
7392 cfs_rq = task_cfs_rq(current);
7393 curr = cfs_rq->curr;
7394
6c9a27f5
DN
7395 /*
7396 * Not only the cpu but also the task_group of the parent might have
7397 * been changed after parent->se.parent,cfs_rq were copied to
7398 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7399 * of child point to valid ones.
7400 */
7401 rcu_read_lock();
7402 __set_task_cpu(p, this_cpu);
7403 rcu_read_unlock();
bf0f6f24 7404
7109c442 7405 update_curr(cfs_rq);
cd29fe6f 7406
b5d9d734
MG
7407 if (curr)
7408 se->vruntime = curr->vruntime;
aeb73b04 7409 place_entity(cfs_rq, se, 1);
4d78e7b6 7410
cd29fe6f 7411 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7412 /*
edcb60a3
IM
7413 * Upon rescheduling, sched_class::put_prev_task() will place
7414 * 'current' within the tree based on its new key value.
7415 */
4d78e7b6 7416 swap(curr->vruntime, se->vruntime);
aec0a514 7417 resched_task(rq->curr);
4d78e7b6 7418 }
bf0f6f24 7419
88ec22d3
PZ
7420 se->vruntime -= cfs_rq->min_vruntime;
7421
05fa785c 7422 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7423}
7424
cb469845
SR
7425/*
7426 * Priority of the task has changed. Check to see if we preempt
7427 * the current task.
7428 */
da7a735e
PZ
7429static void
7430prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7431{
da7a735e
PZ
7432 if (!p->se.on_rq)
7433 return;
7434
cb469845
SR
7435 /*
7436 * Reschedule if we are currently running on this runqueue and
7437 * our priority decreased, or if we are not currently running on
7438 * this runqueue and our priority is higher than the current's
7439 */
da7a735e 7440 if (rq->curr == p) {
cb469845
SR
7441 if (p->prio > oldprio)
7442 resched_task(rq->curr);
7443 } else
15afe09b 7444 check_preempt_curr(rq, p, 0);
cb469845
SR
7445}
7446
da7a735e
PZ
7447static void switched_from_fair(struct rq *rq, struct task_struct *p)
7448{
7449 struct sched_entity *se = &p->se;
7450 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7451
7452 /*
791c9e02 7453 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7454 * switched back to the fair class the enqueue_entity(.flags=0) will
7455 * do the right thing.
7456 *
791c9e02
GM
7457 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7458 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7459 * the task is sleeping will it still have non-normalized vruntime.
7460 */
791c9e02 7461 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7462 /*
7463 * Fix up our vruntime so that the current sleep doesn't
7464 * cause 'unlimited' sleep bonus.
7465 */
7466 place_entity(cfs_rq, se, 0);
7467 se->vruntime -= cfs_rq->min_vruntime;
7468 }
9ee474f5 7469
141965c7 7470#ifdef CONFIG_SMP
9ee474f5
PT
7471 /*
7472 * Remove our load from contribution when we leave sched_fair
7473 * and ensure we don't carry in an old decay_count if we
7474 * switch back.
7475 */
87e3c8ae
KT
7476 if (se->avg.decay_count) {
7477 __synchronize_entity_decay(se);
7478 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7479 }
7480#endif
da7a735e
PZ
7481}
7482
cb469845
SR
7483/*
7484 * We switched to the sched_fair class.
7485 */
da7a735e 7486static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7487{
eb7a59b2
M
7488 struct sched_entity *se = &p->se;
7489#ifdef CONFIG_FAIR_GROUP_SCHED
7490 /*
7491 * Since the real-depth could have been changed (only FAIR
7492 * class maintain depth value), reset depth properly.
7493 */
7494 se->depth = se->parent ? se->parent->depth + 1 : 0;
7495#endif
7496 if (!se->on_rq)
da7a735e
PZ
7497 return;
7498
cb469845
SR
7499 /*
7500 * We were most likely switched from sched_rt, so
7501 * kick off the schedule if running, otherwise just see
7502 * if we can still preempt the current task.
7503 */
da7a735e 7504 if (rq->curr == p)
cb469845
SR
7505 resched_task(rq->curr);
7506 else
15afe09b 7507 check_preempt_curr(rq, p, 0);
cb469845
SR
7508}
7509
83b699ed
SV
7510/* Account for a task changing its policy or group.
7511 *
7512 * This routine is mostly called to set cfs_rq->curr field when a task
7513 * migrates between groups/classes.
7514 */
7515static void set_curr_task_fair(struct rq *rq)
7516{
7517 struct sched_entity *se = &rq->curr->se;
7518
ec12cb7f
PT
7519 for_each_sched_entity(se) {
7520 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7521
7522 set_next_entity(cfs_rq, se);
7523 /* ensure bandwidth has been allocated on our new cfs_rq */
7524 account_cfs_rq_runtime(cfs_rq, 0);
7525 }
83b699ed
SV
7526}
7527
029632fb
PZ
7528void init_cfs_rq(struct cfs_rq *cfs_rq)
7529{
7530 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7531 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7532#ifndef CONFIG_64BIT
7533 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7534#endif
141965c7 7535#ifdef CONFIG_SMP
9ee474f5 7536 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7537 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7538#endif
029632fb
PZ
7539}
7540
810b3817 7541#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7542static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7543{
fed14d45 7544 struct sched_entity *se = &p->se;
aff3e498 7545 struct cfs_rq *cfs_rq;
fed14d45 7546
b2b5ce02
PZ
7547 /*
7548 * If the task was not on the rq at the time of this cgroup movement
7549 * it must have been asleep, sleeping tasks keep their ->vruntime
7550 * absolute on their old rq until wakeup (needed for the fair sleeper
7551 * bonus in place_entity()).
7552 *
7553 * If it was on the rq, we've just 'preempted' it, which does convert
7554 * ->vruntime to a relative base.
7555 *
7556 * Make sure both cases convert their relative position when migrating
7557 * to another cgroup's rq. This does somewhat interfere with the
7558 * fair sleeper stuff for the first placement, but who cares.
7559 */
7ceff013
DN
7560 /*
7561 * When !on_rq, vruntime of the task has usually NOT been normalized.
7562 * But there are some cases where it has already been normalized:
7563 *
7564 * - Moving a forked child which is waiting for being woken up by
7565 * wake_up_new_task().
62af3783
DN
7566 * - Moving a task which has been woken up by try_to_wake_up() and
7567 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7568 *
7569 * To prevent boost or penalty in the new cfs_rq caused by delta
7570 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7571 */
fed14d45 7572 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7573 on_rq = 1;
7574
b2b5ce02 7575 if (!on_rq)
fed14d45 7576 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7577 set_task_rq(p, task_cpu(p));
fed14d45 7578 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7579 if (!on_rq) {
fed14d45
PZ
7580 cfs_rq = cfs_rq_of(se);
7581 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7582#ifdef CONFIG_SMP
7583 /*
7584 * migrate_task_rq_fair() will have removed our previous
7585 * contribution, but we must synchronize for ongoing future
7586 * decay.
7587 */
fed14d45
PZ
7588 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7589 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7590#endif
7591 }
810b3817 7592}
029632fb
PZ
7593
7594void free_fair_sched_group(struct task_group *tg)
7595{
7596 int i;
7597
7598 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7599
7600 for_each_possible_cpu(i) {
7601 if (tg->cfs_rq)
7602 kfree(tg->cfs_rq[i]);
7603 if (tg->se)
7604 kfree(tg->se[i]);
7605 }
7606
7607 kfree(tg->cfs_rq);
7608 kfree(tg->se);
7609}
7610
7611int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7612{
7613 struct cfs_rq *cfs_rq;
7614 struct sched_entity *se;
7615 int i;
7616
7617 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7618 if (!tg->cfs_rq)
7619 goto err;
7620 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7621 if (!tg->se)
7622 goto err;
7623
7624 tg->shares = NICE_0_LOAD;
7625
7626 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7627
7628 for_each_possible_cpu(i) {
7629 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7630 GFP_KERNEL, cpu_to_node(i));
7631 if (!cfs_rq)
7632 goto err;
7633
7634 se = kzalloc_node(sizeof(struct sched_entity),
7635 GFP_KERNEL, cpu_to_node(i));
7636 if (!se)
7637 goto err_free_rq;
7638
7639 init_cfs_rq(cfs_rq);
7640 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7641 }
7642
7643 return 1;
7644
7645err_free_rq:
7646 kfree(cfs_rq);
7647err:
7648 return 0;
7649}
7650
7651void unregister_fair_sched_group(struct task_group *tg, int cpu)
7652{
7653 struct rq *rq = cpu_rq(cpu);
7654 unsigned long flags;
7655
7656 /*
7657 * Only empty task groups can be destroyed; so we can speculatively
7658 * check on_list without danger of it being re-added.
7659 */
7660 if (!tg->cfs_rq[cpu]->on_list)
7661 return;
7662
7663 raw_spin_lock_irqsave(&rq->lock, flags);
7664 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7665 raw_spin_unlock_irqrestore(&rq->lock, flags);
7666}
7667
7668void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7669 struct sched_entity *se, int cpu,
7670 struct sched_entity *parent)
7671{
7672 struct rq *rq = cpu_rq(cpu);
7673
7674 cfs_rq->tg = tg;
7675 cfs_rq->rq = rq;
029632fb
PZ
7676 init_cfs_rq_runtime(cfs_rq);
7677
7678 tg->cfs_rq[cpu] = cfs_rq;
7679 tg->se[cpu] = se;
7680
7681 /* se could be NULL for root_task_group */
7682 if (!se)
7683 return;
7684
fed14d45 7685 if (!parent) {
029632fb 7686 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7687 se->depth = 0;
7688 } else {
029632fb 7689 se->cfs_rq = parent->my_q;
fed14d45
PZ
7690 se->depth = parent->depth + 1;
7691 }
029632fb
PZ
7692
7693 se->my_q = cfs_rq;
0ac9b1c2
PT
7694 /* guarantee group entities always have weight */
7695 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7696 se->parent = parent;
7697}
7698
7699static DEFINE_MUTEX(shares_mutex);
7700
7701int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7702{
7703 int i;
7704 unsigned long flags;
7705
7706 /*
7707 * We can't change the weight of the root cgroup.
7708 */
7709 if (!tg->se[0])
7710 return -EINVAL;
7711
7712 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7713
7714 mutex_lock(&shares_mutex);
7715 if (tg->shares == shares)
7716 goto done;
7717
7718 tg->shares = shares;
7719 for_each_possible_cpu(i) {
7720 struct rq *rq = cpu_rq(i);
7721 struct sched_entity *se;
7722
7723 se = tg->se[i];
7724 /* Propagate contribution to hierarchy */
7725 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7726
7727 /* Possible calls to update_curr() need rq clock */
7728 update_rq_clock(rq);
17bc14b7 7729 for_each_sched_entity(se)
029632fb
PZ
7730 update_cfs_shares(group_cfs_rq(se));
7731 raw_spin_unlock_irqrestore(&rq->lock, flags);
7732 }
7733
7734done:
7735 mutex_unlock(&shares_mutex);
7736 return 0;
7737}
7738#else /* CONFIG_FAIR_GROUP_SCHED */
7739
7740void free_fair_sched_group(struct task_group *tg) { }
7741
7742int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7743{
7744 return 1;
7745}
7746
7747void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7748
7749#endif /* CONFIG_FAIR_GROUP_SCHED */
7750
810b3817 7751
6d686f45 7752static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7753{
7754 struct sched_entity *se = &task->se;
0d721cea
PW
7755 unsigned int rr_interval = 0;
7756
7757 /*
7758 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7759 * idle runqueue:
7760 */
0d721cea 7761 if (rq->cfs.load.weight)
a59f4e07 7762 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7763
7764 return rr_interval;
7765}
7766
bf0f6f24
IM
7767/*
7768 * All the scheduling class methods:
7769 */
029632fb 7770const struct sched_class fair_sched_class = {
5522d5d5 7771 .next = &idle_sched_class,
bf0f6f24
IM
7772 .enqueue_task = enqueue_task_fair,
7773 .dequeue_task = dequeue_task_fair,
7774 .yield_task = yield_task_fair,
d95f4122 7775 .yield_to_task = yield_to_task_fair,
bf0f6f24 7776
2e09bf55 7777 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7778
7779 .pick_next_task = pick_next_task_fair,
7780 .put_prev_task = put_prev_task_fair,
7781
681f3e68 7782#ifdef CONFIG_SMP
4ce72a2c 7783 .select_task_rq = select_task_rq_fair,
0a74bef8 7784 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7785
0bcdcf28
CE
7786 .rq_online = rq_online_fair,
7787 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7788
7789 .task_waking = task_waking_fair,
681f3e68 7790#endif
bf0f6f24 7791
83b699ed 7792 .set_curr_task = set_curr_task_fair,
bf0f6f24 7793 .task_tick = task_tick_fair,
cd29fe6f 7794 .task_fork = task_fork_fair,
cb469845
SR
7795
7796 .prio_changed = prio_changed_fair,
da7a735e 7797 .switched_from = switched_from_fair,
cb469845 7798 .switched_to = switched_to_fair,
810b3817 7799
0d721cea
PW
7800 .get_rr_interval = get_rr_interval_fair,
7801
810b3817 7802#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7803 .task_move_group = task_move_group_fair,
810b3817 7804#endif
bf0f6f24
IM
7805};
7806
7807#ifdef CONFIG_SCHED_DEBUG
029632fb 7808void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7809{
bf0f6f24
IM
7810 struct cfs_rq *cfs_rq;
7811
5973e5b9 7812 rcu_read_lock();
c3b64f1e 7813 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7814 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7815 rcu_read_unlock();
bf0f6f24
IM
7816}
7817#endif
029632fb
PZ
7818
7819__init void init_sched_fair_class(void)
7820{
7821#ifdef CONFIG_SMP
7822 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7823
3451d024 7824#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7825 nohz.next_balance = jiffies;
029632fb 7826 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7827 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7828#endif
7829#endif /* SMP */
7830
7831}