sched/fair: Implement update_blocked_averages() for CONFIG_FAIR_GROUP_SCHED=n
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9
AS
669
670/* Give new task start runnable values to heavy its load in infant time */
671void init_task_runnable_average(struct task_struct *p)
672{
9d89c257 673 struct sched_avg *sa = &p->se.avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
682 sa->load_avg = scale_load_down(p->se.load.weight);
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9
AS
687}
688#else
689void init_task_runnable_average(struct task_struct *p)
690{
691}
692#endif
693
bf0f6f24 694/*
9dbdb155 695 * Update the current task's runtime statistics.
bf0f6f24 696 */
b7cc0896 697static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 698{
429d43bc 699 struct sched_entity *curr = cfs_rq->curr;
78becc27 700 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 701 u64 delta_exec;
bf0f6f24
IM
702
703 if (unlikely(!curr))
704 return;
705
9dbdb155
PZ
706 delta_exec = now - curr->exec_start;
707 if (unlikely((s64)delta_exec <= 0))
34f28ecd 708 return;
bf0f6f24 709
8ebc91d9 710 curr->exec_start = now;
d842de87 711
9dbdb155
PZ
712 schedstat_set(curr->statistics.exec_max,
713 max(delta_exec, curr->statistics.exec_max));
714
715 curr->sum_exec_runtime += delta_exec;
716 schedstat_add(cfs_rq, exec_clock, delta_exec);
717
718 curr->vruntime += calc_delta_fair(delta_exec, curr);
719 update_min_vruntime(cfs_rq);
720
d842de87
SV
721 if (entity_is_task(curr)) {
722 struct task_struct *curtask = task_of(curr);
723
f977bb49 724 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 725 cpuacct_charge(curtask, delta_exec);
f06febc9 726 account_group_exec_runtime(curtask, delta_exec);
d842de87 727 }
ec12cb7f
PT
728
729 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
730}
731
6e998916
SG
732static void update_curr_fair(struct rq *rq)
733{
734 update_curr(cfs_rq_of(&rq->curr->se));
735}
736
bf0f6f24 737static inline void
5870db5b 738update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
78becc27 740 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
741}
742
bf0f6f24
IM
743/*
744 * Task is being enqueued - update stats:
745 */
d2417e5a 746static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 747{
bf0f6f24
IM
748 /*
749 * Are we enqueueing a waiting task? (for current tasks
750 * a dequeue/enqueue event is a NOP)
751 */
429d43bc 752 if (se != cfs_rq->curr)
5870db5b 753 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
754}
755
bf0f6f24 756static void
9ef0a961 757update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
41acab88 759 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
761 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
762 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764#ifdef CONFIG_SCHEDSTATS
765 if (entity_is_task(se)) {
766 trace_sched_stat_wait(task_of(se),
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
768 }
769#endif
41acab88 770 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
771}
772
773static inline void
19b6a2e3 774update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 775{
bf0f6f24
IM
776 /*
777 * Mark the end of the wait period if dequeueing a
778 * waiting task:
779 */
429d43bc 780 if (se != cfs_rq->curr)
9ef0a961 781 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
782}
783
784/*
785 * We are picking a new current task - update its stats:
786 */
787static inline void
79303e9e 788update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
789{
790 /*
791 * We are starting a new run period:
792 */
78becc27 793 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
794}
795
bf0f6f24
IM
796/**************************************************
797 * Scheduling class queueing methods:
798 */
799
cbee9f88
PZ
800#ifdef CONFIG_NUMA_BALANCING
801/*
598f0ec0
MG
802 * Approximate time to scan a full NUMA task in ms. The task scan period is
803 * calculated based on the tasks virtual memory size and
804 * numa_balancing_scan_size.
cbee9f88 805 */
598f0ec0
MG
806unsigned int sysctl_numa_balancing_scan_period_min = 1000;
807unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
808
809/* Portion of address space to scan in MB */
810unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 811
4b96a29b
PZ
812/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
813unsigned int sysctl_numa_balancing_scan_delay = 1000;
814
598f0ec0
MG
815static unsigned int task_nr_scan_windows(struct task_struct *p)
816{
817 unsigned long rss = 0;
818 unsigned long nr_scan_pages;
819
820 /*
821 * Calculations based on RSS as non-present and empty pages are skipped
822 * by the PTE scanner and NUMA hinting faults should be trapped based
823 * on resident pages
824 */
825 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
826 rss = get_mm_rss(p->mm);
827 if (!rss)
828 rss = nr_scan_pages;
829
830 rss = round_up(rss, nr_scan_pages);
831 return rss / nr_scan_pages;
832}
833
834/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
835#define MAX_SCAN_WINDOW 2560
836
837static unsigned int task_scan_min(struct task_struct *p)
838{
316c1608 839 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
840 unsigned int scan, floor;
841 unsigned int windows = 1;
842
64192658
KT
843 if (scan_size < MAX_SCAN_WINDOW)
844 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
845 floor = 1000 / windows;
846
847 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
848 return max_t(unsigned int, floor, scan);
849}
850
851static unsigned int task_scan_max(struct task_struct *p)
852{
853 unsigned int smin = task_scan_min(p);
854 unsigned int smax;
855
856 /* Watch for min being lower than max due to floor calculations */
857 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
858 return max(smin, smax);
859}
860
0ec8aa00
PZ
861static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
862{
863 rq->nr_numa_running += (p->numa_preferred_nid != -1);
864 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
865}
866
867static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
871}
872
8c8a743c
PZ
873struct numa_group {
874 atomic_t refcount;
875
876 spinlock_t lock; /* nr_tasks, tasks */
877 int nr_tasks;
e29cf08b 878 pid_t gid;
8c8a743c
PZ
879
880 struct rcu_head rcu;
20e07dea 881 nodemask_t active_nodes;
989348b5 882 unsigned long total_faults;
7e2703e6
RR
883 /*
884 * Faults_cpu is used to decide whether memory should move
885 * towards the CPU. As a consequence, these stats are weighted
886 * more by CPU use than by memory faults.
887 */
50ec8a40 888 unsigned long *faults_cpu;
989348b5 889 unsigned long faults[0];
8c8a743c
PZ
890};
891
be1e4e76
RR
892/* Shared or private faults. */
893#define NR_NUMA_HINT_FAULT_TYPES 2
894
895/* Memory and CPU locality */
896#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
897
898/* Averaged statistics, and temporary buffers. */
899#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
900
e29cf08b
MG
901pid_t task_numa_group_id(struct task_struct *p)
902{
903 return p->numa_group ? p->numa_group->gid : 0;
904}
905
44dba3d5
IM
906/*
907 * The averaged statistics, shared & private, memory & cpu,
908 * occupy the first half of the array. The second half of the
909 * array is for current counters, which are averaged into the
910 * first set by task_numa_placement.
911 */
912static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 913{
44dba3d5 914 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
915}
916
917static inline unsigned long task_faults(struct task_struct *p, int nid)
918{
44dba3d5 919 if (!p->numa_faults)
ac8e895b
MG
920 return 0;
921
44dba3d5
IM
922 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
923 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
924}
925
83e1d2cd
MG
926static inline unsigned long group_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_group)
929 return 0;
930
44dba3d5
IM
931 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
932 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
933}
934
20e07dea
RR
935static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
936{
44dba3d5
IM
937 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
938 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
939}
940
6c6b1193
RR
941/* Handle placement on systems where not all nodes are directly connected. */
942static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
943 int maxdist, bool task)
944{
945 unsigned long score = 0;
946 int node;
947
948 /*
949 * All nodes are directly connected, and the same distance
950 * from each other. No need for fancy placement algorithms.
951 */
952 if (sched_numa_topology_type == NUMA_DIRECT)
953 return 0;
954
955 /*
956 * This code is called for each node, introducing N^2 complexity,
957 * which should be ok given the number of nodes rarely exceeds 8.
958 */
959 for_each_online_node(node) {
960 unsigned long faults;
961 int dist = node_distance(nid, node);
962
963 /*
964 * The furthest away nodes in the system are not interesting
965 * for placement; nid was already counted.
966 */
967 if (dist == sched_max_numa_distance || node == nid)
968 continue;
969
970 /*
971 * On systems with a backplane NUMA topology, compare groups
972 * of nodes, and move tasks towards the group with the most
973 * memory accesses. When comparing two nodes at distance
974 * "hoplimit", only nodes closer by than "hoplimit" are part
975 * of each group. Skip other nodes.
976 */
977 if (sched_numa_topology_type == NUMA_BACKPLANE &&
978 dist > maxdist)
979 continue;
980
981 /* Add up the faults from nearby nodes. */
982 if (task)
983 faults = task_faults(p, node);
984 else
985 faults = group_faults(p, node);
986
987 /*
988 * On systems with a glueless mesh NUMA topology, there are
989 * no fixed "groups of nodes". Instead, nodes that are not
990 * directly connected bounce traffic through intermediate
991 * nodes; a numa_group can occupy any set of nodes.
992 * The further away a node is, the less the faults count.
993 * This seems to result in good task placement.
994 */
995 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
996 faults *= (sched_max_numa_distance - dist);
997 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
998 }
999
1000 score += faults;
1001 }
1002
1003 return score;
1004}
1005
83e1d2cd
MG
1006/*
1007 * These return the fraction of accesses done by a particular task, or
1008 * task group, on a particular numa node. The group weight is given a
1009 * larger multiplier, in order to group tasks together that are almost
1010 * evenly spread out between numa nodes.
1011 */
7bd95320
RR
1012static inline unsigned long task_weight(struct task_struct *p, int nid,
1013 int dist)
83e1d2cd 1014{
7bd95320 1015 unsigned long faults, total_faults;
83e1d2cd 1016
44dba3d5 1017 if (!p->numa_faults)
83e1d2cd
MG
1018 return 0;
1019
1020 total_faults = p->total_numa_faults;
1021
1022 if (!total_faults)
1023 return 0;
1024
7bd95320 1025 faults = task_faults(p, nid);
6c6b1193
RR
1026 faults += score_nearby_nodes(p, nid, dist, true);
1027
7bd95320 1028 return 1000 * faults / total_faults;
83e1d2cd
MG
1029}
1030
7bd95320
RR
1031static inline unsigned long group_weight(struct task_struct *p, int nid,
1032 int dist)
83e1d2cd 1033{
7bd95320
RR
1034 unsigned long faults, total_faults;
1035
1036 if (!p->numa_group)
1037 return 0;
1038
1039 total_faults = p->numa_group->total_faults;
1040
1041 if (!total_faults)
83e1d2cd
MG
1042 return 0;
1043
7bd95320 1044 faults = group_faults(p, nid);
6c6b1193
RR
1045 faults += score_nearby_nodes(p, nid, dist, false);
1046
7bd95320 1047 return 1000 * faults / total_faults;
83e1d2cd
MG
1048}
1049
10f39042
RR
1050bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1051 int src_nid, int dst_cpu)
1052{
1053 struct numa_group *ng = p->numa_group;
1054 int dst_nid = cpu_to_node(dst_cpu);
1055 int last_cpupid, this_cpupid;
1056
1057 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1058
1059 /*
1060 * Multi-stage node selection is used in conjunction with a periodic
1061 * migration fault to build a temporal task<->page relation. By using
1062 * a two-stage filter we remove short/unlikely relations.
1063 *
1064 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1065 * a task's usage of a particular page (n_p) per total usage of this
1066 * page (n_t) (in a given time-span) to a probability.
1067 *
1068 * Our periodic faults will sample this probability and getting the
1069 * same result twice in a row, given these samples are fully
1070 * independent, is then given by P(n)^2, provided our sample period
1071 * is sufficiently short compared to the usage pattern.
1072 *
1073 * This quadric squishes small probabilities, making it less likely we
1074 * act on an unlikely task<->page relation.
1075 */
1076 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1077 if (!cpupid_pid_unset(last_cpupid) &&
1078 cpupid_to_nid(last_cpupid) != dst_nid)
1079 return false;
1080
1081 /* Always allow migrate on private faults */
1082 if (cpupid_match_pid(p, last_cpupid))
1083 return true;
1084
1085 /* A shared fault, but p->numa_group has not been set up yet. */
1086 if (!ng)
1087 return true;
1088
1089 /*
1090 * Do not migrate if the destination is not a node that
1091 * is actively used by this numa group.
1092 */
1093 if (!node_isset(dst_nid, ng->active_nodes))
1094 return false;
1095
1096 /*
1097 * Source is a node that is not actively used by this
1098 * numa group, while the destination is. Migrate.
1099 */
1100 if (!node_isset(src_nid, ng->active_nodes))
1101 return true;
1102
1103 /*
1104 * Both source and destination are nodes in active
1105 * use by this numa group. Maximize memory bandwidth
1106 * by migrating from more heavily used groups, to less
1107 * heavily used ones, spreading the load around.
1108 * Use a 1/4 hysteresis to avoid spurious page movement.
1109 */
1110 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1111}
1112
e6628d5b 1113static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1114static unsigned long source_load(int cpu, int type);
1115static unsigned long target_load(int cpu, int type);
ced549fa 1116static unsigned long capacity_of(int cpu);
58d081b5
MG
1117static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1118
fb13c7ee 1119/* Cached statistics for all CPUs within a node */
58d081b5 1120struct numa_stats {
fb13c7ee 1121 unsigned long nr_running;
58d081b5 1122 unsigned long load;
fb13c7ee
MG
1123
1124 /* Total compute capacity of CPUs on a node */
5ef20ca1 1125 unsigned long compute_capacity;
fb13c7ee
MG
1126
1127 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1128 unsigned long task_capacity;
1b6a7495 1129 int has_free_capacity;
58d081b5 1130};
e6628d5b 1131
fb13c7ee
MG
1132/*
1133 * XXX borrowed from update_sg_lb_stats
1134 */
1135static void update_numa_stats(struct numa_stats *ns, int nid)
1136{
83d7f242
RR
1137 int smt, cpu, cpus = 0;
1138 unsigned long capacity;
fb13c7ee
MG
1139
1140 memset(ns, 0, sizeof(*ns));
1141 for_each_cpu(cpu, cpumask_of_node(nid)) {
1142 struct rq *rq = cpu_rq(cpu);
1143
1144 ns->nr_running += rq->nr_running;
1145 ns->load += weighted_cpuload(cpu);
ced549fa 1146 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1147
1148 cpus++;
fb13c7ee
MG
1149 }
1150
5eca82a9
PZ
1151 /*
1152 * If we raced with hotplug and there are no CPUs left in our mask
1153 * the @ns structure is NULL'ed and task_numa_compare() will
1154 * not find this node attractive.
1155 *
1b6a7495
NP
1156 * We'll either bail at !has_free_capacity, or we'll detect a huge
1157 * imbalance and bail there.
5eca82a9
PZ
1158 */
1159 if (!cpus)
1160 return;
1161
83d7f242
RR
1162 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1163 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1164 capacity = cpus / smt; /* cores */
1165
1166 ns->task_capacity = min_t(unsigned, capacity,
1167 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1168 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1169}
1170
58d081b5
MG
1171struct task_numa_env {
1172 struct task_struct *p;
e6628d5b 1173
58d081b5
MG
1174 int src_cpu, src_nid;
1175 int dst_cpu, dst_nid;
e6628d5b 1176
58d081b5 1177 struct numa_stats src_stats, dst_stats;
e6628d5b 1178
40ea2b42 1179 int imbalance_pct;
7bd95320 1180 int dist;
fb13c7ee
MG
1181
1182 struct task_struct *best_task;
1183 long best_imp;
58d081b5
MG
1184 int best_cpu;
1185};
1186
fb13c7ee
MG
1187static void task_numa_assign(struct task_numa_env *env,
1188 struct task_struct *p, long imp)
1189{
1190 if (env->best_task)
1191 put_task_struct(env->best_task);
1192 if (p)
1193 get_task_struct(p);
1194
1195 env->best_task = p;
1196 env->best_imp = imp;
1197 env->best_cpu = env->dst_cpu;
1198}
1199
28a21745 1200static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1201 struct task_numa_env *env)
1202{
e4991b24
RR
1203 long imb, old_imb;
1204 long orig_src_load, orig_dst_load;
28a21745
RR
1205 long src_capacity, dst_capacity;
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1218 if (dst_load < src_load)
1219 swap(dst_load, src_load);
e63da036
RR
1220
1221 /* Is the difference below the threshold? */
e4991b24
RR
1222 imb = dst_load * src_capacity * 100 -
1223 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
e4991b24 1229 * Compare it with the old imbalance.
e63da036 1230 */
28a21745 1231 orig_src_load = env->src_stats.load;
e4991b24 1232 orig_dst_load = env->dst_stats.load;
28a21745 1233
e4991b24
RR
1234 if (orig_dst_load < orig_src_load)
1235 swap(orig_dst_load, orig_src_load);
e63da036 1236
e4991b24
RR
1237 old_imb = orig_dst_load * src_capacity * 100 -
1238 orig_src_load * dst_capacity * env->imbalance_pct;
1239
1240 /* Would this change make things worse? */
1241 return (imb > old_imb);
e63da036
RR
1242}
1243
fb13c7ee
MG
1244/*
1245 * This checks if the overall compute and NUMA accesses of the system would
1246 * be improved if the source tasks was migrated to the target dst_cpu taking
1247 * into account that it might be best if task running on the dst_cpu should
1248 * be exchanged with the source task
1249 */
887c290e
RR
1250static void task_numa_compare(struct task_numa_env *env,
1251 long taskimp, long groupimp)
fb13c7ee
MG
1252{
1253 struct rq *src_rq = cpu_rq(env->src_cpu);
1254 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1255 struct task_struct *cur;
28a21745 1256 long src_load, dst_load;
fb13c7ee 1257 long load;
1c5d3eb3 1258 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1259 long moveimp = imp;
7bd95320 1260 int dist = env->dist;
fb13c7ee
MG
1261
1262 rcu_read_lock();
1effd9f1
KT
1263
1264 raw_spin_lock_irq(&dst_rq->lock);
1265 cur = dst_rq->curr;
1266 /*
1267 * No need to move the exiting task, and this ensures that ->curr
1268 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1269 * is safe under RCU read lock.
1270 * Note that rcu_read_lock() itself can't protect from the final
1271 * put_task_struct() after the last schedule().
1272 */
1273 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1274 cur = NULL;
1effd9f1 1275 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1276
7af68335
PZ
1277 /*
1278 * Because we have preemption enabled we can get migrated around and
1279 * end try selecting ourselves (current == env->p) as a swap candidate.
1280 */
1281 if (cur == env->p)
1282 goto unlock;
1283
fb13c7ee
MG
1284 /*
1285 * "imp" is the fault differential for the source task between the
1286 * source and destination node. Calculate the total differential for
1287 * the source task and potential destination task. The more negative
1288 * the value is, the more rmeote accesses that would be expected to
1289 * be incurred if the tasks were swapped.
1290 */
1291 if (cur) {
1292 /* Skip this swap candidate if cannot move to the source cpu */
1293 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1294 goto unlock;
1295
887c290e
RR
1296 /*
1297 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1298 * in any group then look only at task weights.
887c290e 1299 */
ca28aa53 1300 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1301 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1302 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1303 /*
1304 * Add some hysteresis to prevent swapping the
1305 * tasks within a group over tiny differences.
1306 */
1307 if (cur->numa_group)
1308 imp -= imp/16;
887c290e 1309 } else {
ca28aa53
RR
1310 /*
1311 * Compare the group weights. If a task is all by
1312 * itself (not part of a group), use the task weight
1313 * instead.
1314 */
ca28aa53 1315 if (cur->numa_group)
7bd95320
RR
1316 imp += group_weight(cur, env->src_nid, dist) -
1317 group_weight(cur, env->dst_nid, dist);
ca28aa53 1318 else
7bd95320
RR
1319 imp += task_weight(cur, env->src_nid, dist) -
1320 task_weight(cur, env->dst_nid, dist);
887c290e 1321 }
fb13c7ee
MG
1322 }
1323
0132c3e1 1324 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1325 goto unlock;
1326
1327 if (!cur) {
1328 /* Is there capacity at our destination? */
b932c03c 1329 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1330 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1331 goto unlock;
1332
1333 goto balance;
1334 }
1335
1336 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1337 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1338 dst_rq->nr_running == 1)
fb13c7ee
MG
1339 goto assign;
1340
1341 /*
1342 * In the overloaded case, try and keep the load balanced.
1343 */
1344balance:
e720fff6
PZ
1345 load = task_h_load(env->p);
1346 dst_load = env->dst_stats.load + load;
1347 src_load = env->src_stats.load - load;
fb13c7ee 1348
0132c3e1
RR
1349 if (moveimp > imp && moveimp > env->best_imp) {
1350 /*
1351 * If the improvement from just moving env->p direction is
1352 * better than swapping tasks around, check if a move is
1353 * possible. Store a slightly smaller score than moveimp,
1354 * so an actually idle CPU will win.
1355 */
1356 if (!load_too_imbalanced(src_load, dst_load, env)) {
1357 imp = moveimp - 1;
1358 cur = NULL;
1359 goto assign;
1360 }
1361 }
1362
1363 if (imp <= env->best_imp)
1364 goto unlock;
1365
fb13c7ee 1366 if (cur) {
e720fff6
PZ
1367 load = task_h_load(cur);
1368 dst_load -= load;
1369 src_load += load;
fb13c7ee
MG
1370 }
1371
28a21745 1372 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1373 goto unlock;
1374
ba7e5a27
RR
1375 /*
1376 * One idle CPU per node is evaluated for a task numa move.
1377 * Call select_idle_sibling to maybe find a better one.
1378 */
1379 if (!cur)
1380 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1381
fb13c7ee
MG
1382assign:
1383 task_numa_assign(env, cur, imp);
1384unlock:
1385 rcu_read_unlock();
1386}
1387
887c290e
RR
1388static void task_numa_find_cpu(struct task_numa_env *env,
1389 long taskimp, long groupimp)
2c8a50aa
MG
1390{
1391 int cpu;
1392
1393 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1394 /* Skip this CPU if the source task cannot migrate */
1395 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1396 continue;
1397
1398 env->dst_cpu = cpu;
887c290e 1399 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1400 }
1401}
1402
6f9aad0b
RR
1403/* Only move tasks to a NUMA node less busy than the current node. */
1404static bool numa_has_capacity(struct task_numa_env *env)
1405{
1406 struct numa_stats *src = &env->src_stats;
1407 struct numa_stats *dst = &env->dst_stats;
1408
1409 if (src->has_free_capacity && !dst->has_free_capacity)
1410 return false;
1411
1412 /*
1413 * Only consider a task move if the source has a higher load
1414 * than the destination, corrected for CPU capacity on each node.
1415 *
1416 * src->load dst->load
1417 * --------------------- vs ---------------------
1418 * src->compute_capacity dst->compute_capacity
1419 */
44dcb04f
SD
1420 if (src->load * dst->compute_capacity * env->imbalance_pct >
1421
1422 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1423 return true;
1424
1425 return false;
1426}
1427
58d081b5
MG
1428static int task_numa_migrate(struct task_struct *p)
1429{
58d081b5
MG
1430 struct task_numa_env env = {
1431 .p = p,
fb13c7ee 1432
58d081b5 1433 .src_cpu = task_cpu(p),
b32e86b4 1434 .src_nid = task_node(p),
fb13c7ee
MG
1435
1436 .imbalance_pct = 112,
1437
1438 .best_task = NULL,
1439 .best_imp = 0,
1440 .best_cpu = -1
58d081b5
MG
1441 };
1442 struct sched_domain *sd;
887c290e 1443 unsigned long taskweight, groupweight;
7bd95320 1444 int nid, ret, dist;
887c290e 1445 long taskimp, groupimp;
e6628d5b 1446
58d081b5 1447 /*
fb13c7ee
MG
1448 * Pick the lowest SD_NUMA domain, as that would have the smallest
1449 * imbalance and would be the first to start moving tasks about.
1450 *
1451 * And we want to avoid any moving of tasks about, as that would create
1452 * random movement of tasks -- counter the numa conditions we're trying
1453 * to satisfy here.
58d081b5
MG
1454 */
1455 rcu_read_lock();
fb13c7ee 1456 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1457 if (sd)
1458 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1459 rcu_read_unlock();
1460
46a73e8a
RR
1461 /*
1462 * Cpusets can break the scheduler domain tree into smaller
1463 * balance domains, some of which do not cross NUMA boundaries.
1464 * Tasks that are "trapped" in such domains cannot be migrated
1465 * elsewhere, so there is no point in (re)trying.
1466 */
1467 if (unlikely(!sd)) {
de1b301a 1468 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1469 return -EINVAL;
1470 }
1471
2c8a50aa 1472 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1473 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1474 taskweight = task_weight(p, env.src_nid, dist);
1475 groupweight = group_weight(p, env.src_nid, dist);
1476 update_numa_stats(&env.src_stats, env.src_nid);
1477 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1478 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1479 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1480
a43455a1 1481 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1482 if (numa_has_capacity(&env))
1483 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1484
9de05d48
RR
1485 /*
1486 * Look at other nodes in these cases:
1487 * - there is no space available on the preferred_nid
1488 * - the task is part of a numa_group that is interleaved across
1489 * multiple NUMA nodes; in order to better consolidate the group,
1490 * we need to check other locations.
1491 */
1492 if (env.best_cpu == -1 || (p->numa_group &&
1493 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1494 for_each_online_node(nid) {
1495 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1496 continue;
58d081b5 1497
7bd95320 1498 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1499 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1500 dist != env.dist) {
1501 taskweight = task_weight(p, env.src_nid, dist);
1502 groupweight = group_weight(p, env.src_nid, dist);
1503 }
7bd95320 1504
83e1d2cd 1505 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1506 taskimp = task_weight(p, nid, dist) - taskweight;
1507 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1508 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1509 continue;
1510
7bd95320 1511 env.dist = dist;
2c8a50aa
MG
1512 env.dst_nid = nid;
1513 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1514 if (numa_has_capacity(&env))
1515 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1516 }
1517 }
1518
68d1b02a
RR
1519 /*
1520 * If the task is part of a workload that spans multiple NUMA nodes,
1521 * and is migrating into one of the workload's active nodes, remember
1522 * this node as the task's preferred numa node, so the workload can
1523 * settle down.
1524 * A task that migrated to a second choice node will be better off
1525 * trying for a better one later. Do not set the preferred node here.
1526 */
db015dae
RR
1527 if (p->numa_group) {
1528 if (env.best_cpu == -1)
1529 nid = env.src_nid;
1530 else
1531 nid = env.dst_nid;
1532
1533 if (node_isset(nid, p->numa_group->active_nodes))
1534 sched_setnuma(p, env.dst_nid);
1535 }
1536
1537 /* No better CPU than the current one was found. */
1538 if (env.best_cpu == -1)
1539 return -EAGAIN;
0ec8aa00 1540
04bb2f94
RR
1541 /*
1542 * Reset the scan period if the task is being rescheduled on an
1543 * alternative node to recheck if the tasks is now properly placed.
1544 */
1545 p->numa_scan_period = task_scan_min(p);
1546
fb13c7ee 1547 if (env.best_task == NULL) {
286549dc
MG
1548 ret = migrate_task_to(p, env.best_cpu);
1549 if (ret != 0)
1550 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1551 return ret;
1552 }
1553
1554 ret = migrate_swap(p, env.best_task);
286549dc
MG
1555 if (ret != 0)
1556 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1557 put_task_struct(env.best_task);
1558 return ret;
e6628d5b
MG
1559}
1560
6b9a7460
MG
1561/* Attempt to migrate a task to a CPU on the preferred node. */
1562static void numa_migrate_preferred(struct task_struct *p)
1563{
5085e2a3
RR
1564 unsigned long interval = HZ;
1565
2739d3ee 1566 /* This task has no NUMA fault statistics yet */
44dba3d5 1567 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1568 return;
1569
2739d3ee 1570 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1571 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1572 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1573
1574 /* Success if task is already running on preferred CPU */
de1b301a 1575 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1576 return;
1577
1578 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1579 task_numa_migrate(p);
6b9a7460
MG
1580}
1581
20e07dea
RR
1582/*
1583 * Find the nodes on which the workload is actively running. We do this by
1584 * tracking the nodes from which NUMA hinting faults are triggered. This can
1585 * be different from the set of nodes where the workload's memory is currently
1586 * located.
1587 *
1588 * The bitmask is used to make smarter decisions on when to do NUMA page
1589 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1590 * are added when they cause over 6/16 of the maximum number of faults, but
1591 * only removed when they drop below 3/16.
1592 */
1593static void update_numa_active_node_mask(struct numa_group *numa_group)
1594{
1595 unsigned long faults, max_faults = 0;
1596 int nid;
1597
1598 for_each_online_node(nid) {
1599 faults = group_faults_cpu(numa_group, nid);
1600 if (faults > max_faults)
1601 max_faults = faults;
1602 }
1603
1604 for_each_online_node(nid) {
1605 faults = group_faults_cpu(numa_group, nid);
1606 if (!node_isset(nid, numa_group->active_nodes)) {
1607 if (faults > max_faults * 6 / 16)
1608 node_set(nid, numa_group->active_nodes);
1609 } else if (faults < max_faults * 3 / 16)
1610 node_clear(nid, numa_group->active_nodes);
1611 }
1612}
1613
04bb2f94
RR
1614/*
1615 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1616 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1617 * period will be for the next scan window. If local/(local+remote) ratio is
1618 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1619 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1620 */
1621#define NUMA_PERIOD_SLOTS 10
a22b4b01 1622#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1623
1624/*
1625 * Increase the scan period (slow down scanning) if the majority of
1626 * our memory is already on our local node, or if the majority of
1627 * the page accesses are shared with other processes.
1628 * Otherwise, decrease the scan period.
1629 */
1630static void update_task_scan_period(struct task_struct *p,
1631 unsigned long shared, unsigned long private)
1632{
1633 unsigned int period_slot;
1634 int ratio;
1635 int diff;
1636
1637 unsigned long remote = p->numa_faults_locality[0];
1638 unsigned long local = p->numa_faults_locality[1];
1639
1640 /*
1641 * If there were no record hinting faults then either the task is
1642 * completely idle or all activity is areas that are not of interest
074c2381
MG
1643 * to automatic numa balancing. Related to that, if there were failed
1644 * migration then it implies we are migrating too quickly or the local
1645 * node is overloaded. In either case, scan slower
04bb2f94 1646 */
074c2381 1647 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1648 p->numa_scan_period = min(p->numa_scan_period_max,
1649 p->numa_scan_period << 1);
1650
1651 p->mm->numa_next_scan = jiffies +
1652 msecs_to_jiffies(p->numa_scan_period);
1653
1654 return;
1655 }
1656
1657 /*
1658 * Prepare to scale scan period relative to the current period.
1659 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1660 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1661 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1662 */
1663 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1664 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1665 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1666 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1667 if (!slot)
1668 slot = 1;
1669 diff = slot * period_slot;
1670 } else {
1671 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1672
1673 /*
1674 * Scale scan rate increases based on sharing. There is an
1675 * inverse relationship between the degree of sharing and
1676 * the adjustment made to the scanning period. Broadly
1677 * speaking the intent is that there is little point
1678 * scanning faster if shared accesses dominate as it may
1679 * simply bounce migrations uselessly
1680 */
2847c90e 1681 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1682 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1683 }
1684
1685 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1686 task_scan_min(p), task_scan_max(p));
1687 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1688}
1689
7e2703e6
RR
1690/*
1691 * Get the fraction of time the task has been running since the last
1692 * NUMA placement cycle. The scheduler keeps similar statistics, but
1693 * decays those on a 32ms period, which is orders of magnitude off
1694 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1695 * stats only if the task is so new there are no NUMA statistics yet.
1696 */
1697static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1698{
1699 u64 runtime, delta, now;
1700 /* Use the start of this time slice to avoid calculations. */
1701 now = p->se.exec_start;
1702 runtime = p->se.sum_exec_runtime;
1703
1704 if (p->last_task_numa_placement) {
1705 delta = runtime - p->last_sum_exec_runtime;
1706 *period = now - p->last_task_numa_placement;
1707 } else {
9d89c257
YD
1708 delta = p->se.avg.load_sum / p->se.load.weight;
1709 *period = LOAD_AVG_MAX;
7e2703e6
RR
1710 }
1711
1712 p->last_sum_exec_runtime = runtime;
1713 p->last_task_numa_placement = now;
1714
1715 return delta;
1716}
1717
54009416
RR
1718/*
1719 * Determine the preferred nid for a task in a numa_group. This needs to
1720 * be done in a way that produces consistent results with group_weight,
1721 * otherwise workloads might not converge.
1722 */
1723static int preferred_group_nid(struct task_struct *p, int nid)
1724{
1725 nodemask_t nodes;
1726 int dist;
1727
1728 /* Direct connections between all NUMA nodes. */
1729 if (sched_numa_topology_type == NUMA_DIRECT)
1730 return nid;
1731
1732 /*
1733 * On a system with glueless mesh NUMA topology, group_weight
1734 * scores nodes according to the number of NUMA hinting faults on
1735 * both the node itself, and on nearby nodes.
1736 */
1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 unsigned long score, max_score = 0;
1739 int node, max_node = nid;
1740
1741 dist = sched_max_numa_distance;
1742
1743 for_each_online_node(node) {
1744 score = group_weight(p, node, dist);
1745 if (score > max_score) {
1746 max_score = score;
1747 max_node = node;
1748 }
1749 }
1750 return max_node;
1751 }
1752
1753 /*
1754 * Finding the preferred nid in a system with NUMA backplane
1755 * interconnect topology is more involved. The goal is to locate
1756 * tasks from numa_groups near each other in the system, and
1757 * untangle workloads from different sides of the system. This requires
1758 * searching down the hierarchy of node groups, recursively searching
1759 * inside the highest scoring group of nodes. The nodemask tricks
1760 * keep the complexity of the search down.
1761 */
1762 nodes = node_online_map;
1763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1764 unsigned long max_faults = 0;
81907478 1765 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1766 int a, b;
1767
1768 /* Are there nodes at this distance from each other? */
1769 if (!find_numa_distance(dist))
1770 continue;
1771
1772 for_each_node_mask(a, nodes) {
1773 unsigned long faults = 0;
1774 nodemask_t this_group;
1775 nodes_clear(this_group);
1776
1777 /* Sum group's NUMA faults; includes a==b case. */
1778 for_each_node_mask(b, nodes) {
1779 if (node_distance(a, b) < dist) {
1780 faults += group_faults(p, b);
1781 node_set(b, this_group);
1782 node_clear(b, nodes);
1783 }
1784 }
1785
1786 /* Remember the top group. */
1787 if (faults > max_faults) {
1788 max_faults = faults;
1789 max_group = this_group;
1790 /*
1791 * subtle: at the smallest distance there is
1792 * just one node left in each "group", the
1793 * winner is the preferred nid.
1794 */
1795 nid = a;
1796 }
1797 }
1798 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1799 if (!max_faults)
1800 break;
54009416
RR
1801 nodes = max_group;
1802 }
1803 return nid;
1804}
1805
cbee9f88
PZ
1806static void task_numa_placement(struct task_struct *p)
1807{
83e1d2cd
MG
1808 int seq, nid, max_nid = -1, max_group_nid = -1;
1809 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1810 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1811 unsigned long total_faults;
1812 u64 runtime, period;
7dbd13ed 1813 spinlock_t *group_lock = NULL;
cbee9f88 1814
7e5a2c17
JL
1815 /*
1816 * The p->mm->numa_scan_seq field gets updated without
1817 * exclusive access. Use READ_ONCE() here to ensure
1818 * that the field is read in a single access:
1819 */
316c1608 1820 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1821 if (p->numa_scan_seq == seq)
1822 return;
1823 p->numa_scan_seq = seq;
598f0ec0 1824 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1825
7e2703e6
RR
1826 total_faults = p->numa_faults_locality[0] +
1827 p->numa_faults_locality[1];
1828 runtime = numa_get_avg_runtime(p, &period);
1829
7dbd13ed
MG
1830 /* If the task is part of a group prevent parallel updates to group stats */
1831 if (p->numa_group) {
1832 group_lock = &p->numa_group->lock;
60e69eed 1833 spin_lock_irq(group_lock);
7dbd13ed
MG
1834 }
1835
688b7585
MG
1836 /* Find the node with the highest number of faults */
1837 for_each_online_node(nid) {
44dba3d5
IM
1838 /* Keep track of the offsets in numa_faults array */
1839 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1840 unsigned long faults = 0, group_faults = 0;
44dba3d5 1841 int priv;
745d6147 1842
be1e4e76 1843 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1844 long diff, f_diff, f_weight;
8c8a743c 1845
44dba3d5
IM
1846 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1847 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1848 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1849 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1850
ac8e895b 1851 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1852 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1853 fault_types[priv] += p->numa_faults[membuf_idx];
1854 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1855
7e2703e6
RR
1856 /*
1857 * Normalize the faults_from, so all tasks in a group
1858 * count according to CPU use, instead of by the raw
1859 * number of faults. Tasks with little runtime have
1860 * little over-all impact on throughput, and thus their
1861 * faults are less important.
1862 */
1863 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1864 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1865 (total_faults + 1);
44dba3d5
IM
1866 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1867 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1868
44dba3d5
IM
1869 p->numa_faults[mem_idx] += diff;
1870 p->numa_faults[cpu_idx] += f_diff;
1871 faults += p->numa_faults[mem_idx];
83e1d2cd 1872 p->total_numa_faults += diff;
8c8a743c 1873 if (p->numa_group) {
44dba3d5
IM
1874 /*
1875 * safe because we can only change our own group
1876 *
1877 * mem_idx represents the offset for a given
1878 * nid and priv in a specific region because it
1879 * is at the beginning of the numa_faults array.
1880 */
1881 p->numa_group->faults[mem_idx] += diff;
1882 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1883 p->numa_group->total_faults += diff;
44dba3d5 1884 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1885 }
ac8e895b
MG
1886 }
1887
688b7585
MG
1888 if (faults > max_faults) {
1889 max_faults = faults;
1890 max_nid = nid;
1891 }
83e1d2cd
MG
1892
1893 if (group_faults > max_group_faults) {
1894 max_group_faults = group_faults;
1895 max_group_nid = nid;
1896 }
1897 }
1898
04bb2f94
RR
1899 update_task_scan_period(p, fault_types[0], fault_types[1]);
1900
7dbd13ed 1901 if (p->numa_group) {
20e07dea 1902 update_numa_active_node_mask(p->numa_group);
60e69eed 1903 spin_unlock_irq(group_lock);
54009416 1904 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1905 }
1906
bb97fc31
RR
1907 if (max_faults) {
1908 /* Set the new preferred node */
1909 if (max_nid != p->numa_preferred_nid)
1910 sched_setnuma(p, max_nid);
1911
1912 if (task_node(p) != p->numa_preferred_nid)
1913 numa_migrate_preferred(p);
3a7053b3 1914 }
cbee9f88
PZ
1915}
1916
8c8a743c
PZ
1917static inline int get_numa_group(struct numa_group *grp)
1918{
1919 return atomic_inc_not_zero(&grp->refcount);
1920}
1921
1922static inline void put_numa_group(struct numa_group *grp)
1923{
1924 if (atomic_dec_and_test(&grp->refcount))
1925 kfree_rcu(grp, rcu);
1926}
1927
3e6a9418
MG
1928static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1929 int *priv)
8c8a743c
PZ
1930{
1931 struct numa_group *grp, *my_grp;
1932 struct task_struct *tsk;
1933 bool join = false;
1934 int cpu = cpupid_to_cpu(cpupid);
1935 int i;
1936
1937 if (unlikely(!p->numa_group)) {
1938 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1939 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1940
1941 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1942 if (!grp)
1943 return;
1944
1945 atomic_set(&grp->refcount, 1);
1946 spin_lock_init(&grp->lock);
e29cf08b 1947 grp->gid = p->pid;
50ec8a40 1948 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1949 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1950 nr_node_ids;
8c8a743c 1951
20e07dea
RR
1952 node_set(task_node(current), grp->active_nodes);
1953
be1e4e76 1954 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1955 grp->faults[i] = p->numa_faults[i];
8c8a743c 1956
989348b5 1957 grp->total_faults = p->total_numa_faults;
83e1d2cd 1958
8c8a743c
PZ
1959 grp->nr_tasks++;
1960 rcu_assign_pointer(p->numa_group, grp);
1961 }
1962
1963 rcu_read_lock();
316c1608 1964 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1965
1966 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1967 goto no_join;
8c8a743c
PZ
1968
1969 grp = rcu_dereference(tsk->numa_group);
1970 if (!grp)
3354781a 1971 goto no_join;
8c8a743c
PZ
1972
1973 my_grp = p->numa_group;
1974 if (grp == my_grp)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 /*
1978 * Only join the other group if its bigger; if we're the bigger group,
1979 * the other task will join us.
1980 */
1981 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1982 goto no_join;
8c8a743c
PZ
1983
1984 /*
1985 * Tie-break on the grp address.
1986 */
1987 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1988 goto no_join;
8c8a743c 1989
dabe1d99
RR
1990 /* Always join threads in the same process. */
1991 if (tsk->mm == current->mm)
1992 join = true;
1993
1994 /* Simple filter to avoid false positives due to PID collisions */
1995 if (flags & TNF_SHARED)
1996 join = true;
8c8a743c 1997
3e6a9418
MG
1998 /* Update priv based on whether false sharing was detected */
1999 *priv = !join;
2000
dabe1d99 2001 if (join && !get_numa_group(grp))
3354781a 2002 goto no_join;
8c8a743c 2003
8c8a743c
PZ
2004 rcu_read_unlock();
2005
2006 if (!join)
2007 return;
2008
60e69eed
MG
2009 BUG_ON(irqs_disabled());
2010 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2011
be1e4e76 2012 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2013 my_grp->faults[i] -= p->numa_faults[i];
2014 grp->faults[i] += p->numa_faults[i];
8c8a743c 2015 }
989348b5
MG
2016 my_grp->total_faults -= p->total_numa_faults;
2017 grp->total_faults += p->total_numa_faults;
8c8a743c 2018
8c8a743c
PZ
2019 my_grp->nr_tasks--;
2020 grp->nr_tasks++;
2021
2022 spin_unlock(&my_grp->lock);
60e69eed 2023 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2024
2025 rcu_assign_pointer(p->numa_group, grp);
2026
2027 put_numa_group(my_grp);
3354781a
PZ
2028 return;
2029
2030no_join:
2031 rcu_read_unlock();
2032 return;
8c8a743c
PZ
2033}
2034
2035void task_numa_free(struct task_struct *p)
2036{
2037 struct numa_group *grp = p->numa_group;
44dba3d5 2038 void *numa_faults = p->numa_faults;
e9dd685c
SR
2039 unsigned long flags;
2040 int i;
8c8a743c
PZ
2041
2042 if (grp) {
e9dd685c 2043 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2044 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2045 grp->faults[i] -= p->numa_faults[i];
989348b5 2046 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2047
8c8a743c 2048 grp->nr_tasks--;
e9dd685c 2049 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2050 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2051 put_numa_group(grp);
2052 }
2053
44dba3d5 2054 p->numa_faults = NULL;
82727018 2055 kfree(numa_faults);
8c8a743c
PZ
2056}
2057
cbee9f88
PZ
2058/*
2059 * Got a PROT_NONE fault for a page on @node.
2060 */
58b46da3 2061void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2062{
2063 struct task_struct *p = current;
6688cc05 2064 bool migrated = flags & TNF_MIGRATED;
58b46da3 2065 int cpu_node = task_node(current);
792568ec 2066 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2067 int priv;
cbee9f88 2068
10e84b97 2069 if (!numabalancing_enabled)
1a687c2e
MG
2070 return;
2071
9ff1d9ff
MG
2072 /* for example, ksmd faulting in a user's mm */
2073 if (!p->mm)
2074 return;
2075
f809ca9a 2076 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2077 if (unlikely(!p->numa_faults)) {
2078 int size = sizeof(*p->numa_faults) *
be1e4e76 2079 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2080
44dba3d5
IM
2081 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2082 if (!p->numa_faults)
f809ca9a 2083 return;
745d6147 2084
83e1d2cd 2085 p->total_numa_faults = 0;
04bb2f94 2086 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2087 }
cbee9f88 2088
8c8a743c
PZ
2089 /*
2090 * First accesses are treated as private, otherwise consider accesses
2091 * to be private if the accessing pid has not changed
2092 */
2093 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2094 priv = 1;
2095 } else {
2096 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2097 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2098 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2099 }
2100
792568ec
RR
2101 /*
2102 * If a workload spans multiple NUMA nodes, a shared fault that
2103 * occurs wholly within the set of nodes that the workload is
2104 * actively using should be counted as local. This allows the
2105 * scan rate to slow down when a workload has settled down.
2106 */
2107 if (!priv && !local && p->numa_group &&
2108 node_isset(cpu_node, p->numa_group->active_nodes) &&
2109 node_isset(mem_node, p->numa_group->active_nodes))
2110 local = 1;
2111
cbee9f88 2112 task_numa_placement(p);
f809ca9a 2113
2739d3ee
RR
2114 /*
2115 * Retry task to preferred node migration periodically, in case it
2116 * case it previously failed, or the scheduler moved us.
2117 */
2118 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2119 numa_migrate_preferred(p);
2120
b32e86b4
IM
2121 if (migrated)
2122 p->numa_pages_migrated += pages;
074c2381
MG
2123 if (flags & TNF_MIGRATE_FAIL)
2124 p->numa_faults_locality[2] += pages;
b32e86b4 2125
44dba3d5
IM
2126 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2127 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2128 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2129}
2130
6e5fb223
PZ
2131static void reset_ptenuma_scan(struct task_struct *p)
2132{
7e5a2c17
JL
2133 /*
2134 * We only did a read acquisition of the mmap sem, so
2135 * p->mm->numa_scan_seq is written to without exclusive access
2136 * and the update is not guaranteed to be atomic. That's not
2137 * much of an issue though, since this is just used for
2138 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2139 * expensive, to avoid any form of compiler optimizations:
2140 */
316c1608 2141 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2142 p->mm->numa_scan_offset = 0;
2143}
2144
cbee9f88
PZ
2145/*
2146 * The expensive part of numa migration is done from task_work context.
2147 * Triggered from task_tick_numa().
2148 */
2149void task_numa_work(struct callback_head *work)
2150{
2151 unsigned long migrate, next_scan, now = jiffies;
2152 struct task_struct *p = current;
2153 struct mm_struct *mm = p->mm;
6e5fb223 2154 struct vm_area_struct *vma;
9f40604c 2155 unsigned long start, end;
598f0ec0 2156 unsigned long nr_pte_updates = 0;
9f40604c 2157 long pages;
cbee9f88
PZ
2158
2159 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2160
2161 work->next = work; /* protect against double add */
2162 /*
2163 * Who cares about NUMA placement when they're dying.
2164 *
2165 * NOTE: make sure not to dereference p->mm before this check,
2166 * exit_task_work() happens _after_ exit_mm() so we could be called
2167 * without p->mm even though we still had it when we enqueued this
2168 * work.
2169 */
2170 if (p->flags & PF_EXITING)
2171 return;
2172
930aa174 2173 if (!mm->numa_next_scan) {
7e8d16b6
MG
2174 mm->numa_next_scan = now +
2175 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2176 }
2177
cbee9f88
PZ
2178 /*
2179 * Enforce maximal scan/migration frequency..
2180 */
2181 migrate = mm->numa_next_scan;
2182 if (time_before(now, migrate))
2183 return;
2184
598f0ec0
MG
2185 if (p->numa_scan_period == 0) {
2186 p->numa_scan_period_max = task_scan_max(p);
2187 p->numa_scan_period = task_scan_min(p);
2188 }
cbee9f88 2189
fb003b80 2190 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2191 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2192 return;
2193
19a78d11
PZ
2194 /*
2195 * Delay this task enough that another task of this mm will likely win
2196 * the next time around.
2197 */
2198 p->node_stamp += 2 * TICK_NSEC;
2199
9f40604c
MG
2200 start = mm->numa_scan_offset;
2201 pages = sysctl_numa_balancing_scan_size;
2202 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2203 if (!pages)
2204 return;
cbee9f88 2205
6e5fb223 2206 down_read(&mm->mmap_sem);
9f40604c 2207 vma = find_vma(mm, start);
6e5fb223
PZ
2208 if (!vma) {
2209 reset_ptenuma_scan(p);
9f40604c 2210 start = 0;
6e5fb223
PZ
2211 vma = mm->mmap;
2212 }
9f40604c 2213 for (; vma; vma = vma->vm_next) {
6b79c57b 2214 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2215 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2216 continue;
6b79c57b 2217 }
6e5fb223 2218
4591ce4f
MG
2219 /*
2220 * Shared library pages mapped by multiple processes are not
2221 * migrated as it is expected they are cache replicated. Avoid
2222 * hinting faults in read-only file-backed mappings or the vdso
2223 * as migrating the pages will be of marginal benefit.
2224 */
2225 if (!vma->vm_mm ||
2226 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2227 continue;
2228
3c67f474
MG
2229 /*
2230 * Skip inaccessible VMAs to avoid any confusion between
2231 * PROT_NONE and NUMA hinting ptes
2232 */
2233 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2234 continue;
4591ce4f 2235
9f40604c
MG
2236 do {
2237 start = max(start, vma->vm_start);
2238 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2239 end = min(end, vma->vm_end);
598f0ec0
MG
2240 nr_pte_updates += change_prot_numa(vma, start, end);
2241
2242 /*
2243 * Scan sysctl_numa_balancing_scan_size but ensure that
2244 * at least one PTE is updated so that unused virtual
2245 * address space is quickly skipped.
2246 */
2247 if (nr_pte_updates)
2248 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2249
9f40604c
MG
2250 start = end;
2251 if (pages <= 0)
2252 goto out;
3cf1962c
RR
2253
2254 cond_resched();
9f40604c 2255 } while (end != vma->vm_end);
cbee9f88 2256 }
6e5fb223 2257
9f40604c 2258out:
6e5fb223 2259 /*
c69307d5
PZ
2260 * It is possible to reach the end of the VMA list but the last few
2261 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2262 * would find the !migratable VMA on the next scan but not reset the
2263 * scanner to the start so check it now.
6e5fb223
PZ
2264 */
2265 if (vma)
9f40604c 2266 mm->numa_scan_offset = start;
6e5fb223
PZ
2267 else
2268 reset_ptenuma_scan(p);
2269 up_read(&mm->mmap_sem);
cbee9f88
PZ
2270}
2271
2272/*
2273 * Drive the periodic memory faults..
2274 */
2275void task_tick_numa(struct rq *rq, struct task_struct *curr)
2276{
2277 struct callback_head *work = &curr->numa_work;
2278 u64 period, now;
2279
2280 /*
2281 * We don't care about NUMA placement if we don't have memory.
2282 */
2283 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2284 return;
2285
2286 /*
2287 * Using runtime rather than walltime has the dual advantage that
2288 * we (mostly) drive the selection from busy threads and that the
2289 * task needs to have done some actual work before we bother with
2290 * NUMA placement.
2291 */
2292 now = curr->se.sum_exec_runtime;
2293 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2294
2295 if (now - curr->node_stamp > period) {
4b96a29b 2296 if (!curr->node_stamp)
598f0ec0 2297 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2298 curr->node_stamp += period;
cbee9f88
PZ
2299
2300 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2301 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2302 task_work_add(curr, work, true);
2303 }
2304 }
2305}
2306#else
2307static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2308{
2309}
0ec8aa00
PZ
2310
2311static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2312{
2313}
2314
2315static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2316{
2317}
cbee9f88
PZ
2318#endif /* CONFIG_NUMA_BALANCING */
2319
30cfdcfc
DA
2320static void
2321account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2322{
2323 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2324 if (!parent_entity(se))
029632fb 2325 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2326#ifdef CONFIG_SMP
0ec8aa00
PZ
2327 if (entity_is_task(se)) {
2328 struct rq *rq = rq_of(cfs_rq);
2329
2330 account_numa_enqueue(rq, task_of(se));
2331 list_add(&se->group_node, &rq->cfs_tasks);
2332 }
367456c7 2333#endif
30cfdcfc 2334 cfs_rq->nr_running++;
30cfdcfc
DA
2335}
2336
2337static void
2338account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2339{
2340 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2341 if (!parent_entity(se))
029632fb 2342 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2343 if (entity_is_task(se)) {
2344 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2345 list_del_init(&se->group_node);
0ec8aa00 2346 }
30cfdcfc 2347 cfs_rq->nr_running--;
30cfdcfc
DA
2348}
2349
3ff6dcac
YZ
2350#ifdef CONFIG_FAIR_GROUP_SCHED
2351# ifdef CONFIG_SMP
cf5f0acf
PZ
2352static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2353{
2354 long tg_weight;
2355
2356 /*
9d89c257
YD
2357 * Use this CPU's real-time load instead of the last load contribution
2358 * as the updating of the contribution is delayed, and we will use the
2359 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2360 */
bf5b986e 2361 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257
YD
2362 tg_weight -= cfs_rq->tg_load_avg_contrib;
2363 tg_weight += cfs_rq->avg.load_avg;
cf5f0acf
PZ
2364
2365 return tg_weight;
2366}
2367
6d5ab293 2368static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2369{
cf5f0acf 2370 long tg_weight, load, shares;
3ff6dcac 2371
cf5f0acf 2372 tg_weight = calc_tg_weight(tg, cfs_rq);
9d89c257 2373 load = cfs_rq->avg.load_avg;
3ff6dcac 2374
3ff6dcac 2375 shares = (tg->shares * load);
cf5f0acf
PZ
2376 if (tg_weight)
2377 shares /= tg_weight;
3ff6dcac
YZ
2378
2379 if (shares < MIN_SHARES)
2380 shares = MIN_SHARES;
2381 if (shares > tg->shares)
2382 shares = tg->shares;
2383
2384 return shares;
2385}
3ff6dcac 2386# else /* CONFIG_SMP */
6d5ab293 2387static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2388{
2389 return tg->shares;
2390}
3ff6dcac 2391# endif /* CONFIG_SMP */
2069dd75
PZ
2392static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2393 unsigned long weight)
2394{
19e5eebb
PT
2395 if (se->on_rq) {
2396 /* commit outstanding execution time */
2397 if (cfs_rq->curr == se)
2398 update_curr(cfs_rq);
2069dd75 2399 account_entity_dequeue(cfs_rq, se);
19e5eebb 2400 }
2069dd75
PZ
2401
2402 update_load_set(&se->load, weight);
2403
2404 if (se->on_rq)
2405 account_entity_enqueue(cfs_rq, se);
2406}
2407
82958366
PT
2408static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2409
6d5ab293 2410static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2411{
2412 struct task_group *tg;
2413 struct sched_entity *se;
3ff6dcac 2414 long shares;
2069dd75 2415
2069dd75
PZ
2416 tg = cfs_rq->tg;
2417 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2418 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2419 return;
3ff6dcac
YZ
2420#ifndef CONFIG_SMP
2421 if (likely(se->load.weight == tg->shares))
2422 return;
2423#endif
6d5ab293 2424 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2425
2426 reweight_entity(cfs_rq_of(se), se, shares);
2427}
2428#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2429static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2430{
2431}
2432#endif /* CONFIG_FAIR_GROUP_SCHED */
2433
141965c7 2434#ifdef CONFIG_SMP
5b51f2f8
PT
2435/* Precomputed fixed inverse multiplies for multiplication by y^n */
2436static const u32 runnable_avg_yN_inv[] = {
2437 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2438 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2439 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2440 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2441 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2442 0x85aac367, 0x82cd8698,
2443};
2444
2445/*
2446 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2447 * over-estimates when re-combining.
2448 */
2449static const u32 runnable_avg_yN_sum[] = {
2450 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2451 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2452 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2453};
2454
9d85f21c
PT
2455/*
2456 * Approximate:
2457 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2458 */
2459static __always_inline u64 decay_load(u64 val, u64 n)
2460{
5b51f2f8
PT
2461 unsigned int local_n;
2462
2463 if (!n)
2464 return val;
2465 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2466 return 0;
2467
2468 /* after bounds checking we can collapse to 32-bit */
2469 local_n = n;
2470
2471 /*
2472 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2473 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2474 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2475 *
2476 * To achieve constant time decay_load.
2477 */
2478 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2479 val >>= local_n / LOAD_AVG_PERIOD;
2480 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2481 }
2482
9d89c257
YD
2483 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2484 return val;
5b51f2f8
PT
2485}
2486
2487/*
2488 * For updates fully spanning n periods, the contribution to runnable
2489 * average will be: \Sum 1024*y^n
2490 *
2491 * We can compute this reasonably efficiently by combining:
2492 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2493 */
2494static u32 __compute_runnable_contrib(u64 n)
2495{
2496 u32 contrib = 0;
2497
2498 if (likely(n <= LOAD_AVG_PERIOD))
2499 return runnable_avg_yN_sum[n];
2500 else if (unlikely(n >= LOAD_AVG_MAX_N))
2501 return LOAD_AVG_MAX;
2502
2503 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2504 do {
2505 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2506 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2507
2508 n -= LOAD_AVG_PERIOD;
2509 } while (n > LOAD_AVG_PERIOD);
2510
2511 contrib = decay_load(contrib, n);
2512 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2513}
2514
2515/*
2516 * We can represent the historical contribution to runnable average as the
2517 * coefficients of a geometric series. To do this we sub-divide our runnable
2518 * history into segments of approximately 1ms (1024us); label the segment that
2519 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2520 *
2521 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2522 * p0 p1 p2
2523 * (now) (~1ms ago) (~2ms ago)
2524 *
2525 * Let u_i denote the fraction of p_i that the entity was runnable.
2526 *
2527 * We then designate the fractions u_i as our co-efficients, yielding the
2528 * following representation of historical load:
2529 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2530 *
2531 * We choose y based on the with of a reasonably scheduling period, fixing:
2532 * y^32 = 0.5
2533 *
2534 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2535 * approximately half as much as the contribution to load within the last ms
2536 * (u_0).
2537 *
2538 * When a period "rolls over" and we have new u_0`, multiplying the previous
2539 * sum again by y is sufficient to update:
2540 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2541 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2542 */
9d89c257
YD
2543static __always_inline int
2544__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2545 unsigned long weight, int running)
9d85f21c 2546{
5b51f2f8 2547 u64 delta, periods;
9d89c257 2548 u32 contrib;
9d85f21c 2549 int delta_w, decayed = 0;
0c1dc6b2 2550 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2551
9d89c257 2552 delta = now - sa->last_update_time;
9d85f21c
PT
2553 /*
2554 * This should only happen when time goes backwards, which it
2555 * unfortunately does during sched clock init when we swap over to TSC.
2556 */
2557 if ((s64)delta < 0) {
9d89c257 2558 sa->last_update_time = now;
9d85f21c
PT
2559 return 0;
2560 }
2561
2562 /*
2563 * Use 1024ns as the unit of measurement since it's a reasonable
2564 * approximation of 1us and fast to compute.
2565 */
2566 delta >>= 10;
2567 if (!delta)
2568 return 0;
9d89c257 2569 sa->last_update_time = now;
9d85f21c
PT
2570
2571 /* delta_w is the amount already accumulated against our next period */
9d89c257 2572 delta_w = sa->period_contrib;
9d85f21c 2573 if (delta + delta_w >= 1024) {
9d85f21c
PT
2574 decayed = 1;
2575
9d89c257
YD
2576 /* how much left for next period will start over, we don't know yet */
2577 sa->period_contrib = 0;
2578
9d85f21c
PT
2579 /*
2580 * Now that we know we're crossing a period boundary, figure
2581 * out how much from delta we need to complete the current
2582 * period and accrue it.
2583 */
2584 delta_w = 1024 - delta_w;
9d89c257
YD
2585 if (weight)
2586 sa->load_sum += weight * delta_w;
36ee28e4 2587 if (running)
9d89c257 2588 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
5b51f2f8
PT
2589
2590 delta -= delta_w;
2591
2592 /* Figure out how many additional periods this update spans */
2593 periods = delta / 1024;
2594 delta %= 1024;
2595
9d89c257
YD
2596 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2597 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2598
2599 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257
YD
2600 contrib = __compute_runnable_contrib(periods);
2601 if (weight)
2602 sa->load_sum += weight * contrib;
36ee28e4 2603 if (running)
9d89c257 2604 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
9d85f21c
PT
2605 }
2606
2607 /* Remainder of delta accrued against u_0` */
9d89c257
YD
2608 if (weight)
2609 sa->load_sum += weight * delta;
36ee28e4 2610 if (running)
9d89c257 2611 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
9ee474f5 2612
9d89c257 2613 sa->period_contrib += delta;
9ee474f5 2614
9d89c257
YD
2615 if (decayed) {
2616 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2617 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2618 }
aff3e498 2619
9d89c257 2620 return decayed;
9ee474f5
PT
2621}
2622
c566e8e9 2623#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2624/*
9d89c257
YD
2625 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2626 * and effective_load (which is not done because it is too costly).
bb17f655 2627 */
9d89c257 2628static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2629{
9d89c257 2630 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2631
9d89c257
YD
2632 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2633 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2634 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2635 }
8165e145 2636}
f5f9739d 2637
6e83125c 2638#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2639static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2640#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2641
9d89c257 2642static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2643
9d89c257
YD
2644/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2645static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2646{
9d89c257
YD
2647 int decayed;
2648 struct sched_avg *sa = &cfs_rq->avg;
2dac754e 2649
9d89c257
YD
2650 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2651 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2652 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2653 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2654 }
2dac754e 2655
9d89c257
YD
2656 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2657 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2658 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2659 sa->util_sum = max_t(s32, sa->util_sum -
2660 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2661 }
36ee28e4 2662
9d89c257
YD
2663 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2664 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL);
36ee28e4 2665
9d89c257
YD
2666#ifndef CONFIG_64BIT
2667 smp_wmb();
2668 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2669#endif
36ee28e4 2670
9d89c257 2671 return decayed;
9ee474f5
PT
2672}
2673
9d89c257
YD
2674/* Update task and its cfs_rq load average */
2675static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2676{
2dac754e 2677 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0c1dc6b2 2678 int cpu = cpu_of(rq_of(cfs_rq));
9d89c257 2679 u64 now = cfs_rq_clock_task(cfs_rq);
2dac754e 2680
f1b17280 2681 /*
9d89c257
YD
2682 * Track task load average for carrying it to new CPU after migrated, and
2683 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2684 */
9d89c257
YD
2685 __update_load_avg(now, cpu, &se->avg,
2686 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se);
f1b17280 2687
9d89c257
YD
2688 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2689 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2690}
2691
9d89c257
YD
2692/* Add the load generated by se into cfs_rq's load average */
2693static inline void
2694enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2695{
9d89c257
YD
2696 struct sched_avg *sa = &se->avg;
2697 u64 now = cfs_rq_clock_task(cfs_rq);
2698 int migrated = 0, decayed;
9ee474f5 2699
9d89c257
YD
2700 if (sa->last_update_time == 0) {
2701 sa->last_update_time = now;
2702 migrated = 1;
aff3e498 2703 }
9d89c257
YD
2704 else {
2705 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2706 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se);
aff3e498 2707 }
c566e8e9 2708
9d89c257 2709 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2710
9d89c257
YD
2711 if (migrated) {
2712 cfs_rq->avg.load_avg += sa->load_avg;
2713 cfs_rq->avg.load_sum += sa->load_sum;
2714 cfs_rq->avg.util_avg += sa->util_avg;
2715 cfs_rq->avg.util_sum += sa->util_sum;
9ee474f5
PT
2716 }
2717
9d89c257
YD
2718 if (decayed || migrated)
2719 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2720}
2721
9ee474f5 2722/*
9d89c257
YD
2723 * Task first catches up with cfs_rq, and then subtract
2724 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2725 */
9d89c257 2726void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2727{
9d89c257
YD
2728 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2729 u64 last_update_time;
2730
2731#ifndef CONFIG_64BIT
2732 u64 last_update_time_copy;
9ee474f5 2733
9d89c257
YD
2734 do {
2735 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2736 smp_rmb();
2737 last_update_time = cfs_rq->avg.last_update_time;
2738 } while (last_update_time != last_update_time_copy);
2739#else
2740 last_update_time = cfs_rq->avg.last_update_time;
2741#endif
2742
2743 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0);
2744 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2745 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2746}
642dbc39
VG
2747
2748/*
2749 * Update the rq's load with the elapsed running time before entering
2750 * idle. if the last scheduled task is not a CFS task, idle_enter will
2751 * be the only way to update the runnable statistic.
2752 */
2753void idle_enter_fair(struct rq *this_rq)
2754{
642dbc39
VG
2755}
2756
2757/*
2758 * Update the rq's load with the elapsed idle time before a task is
2759 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2760 * be the only way to update the runnable statistic.
2761 */
2762void idle_exit_fair(struct rq *this_rq)
2763{
642dbc39
VG
2764}
2765
6e83125c
PZ
2766static int idle_balance(struct rq *this_rq);
2767
38033c37
PZ
2768#else /* CONFIG_SMP */
2769
9d89c257
YD
2770static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2771static inline void
2772enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2773static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c
PZ
2774
2775static inline int idle_balance(struct rq *rq)
2776{
2777 return 0;
2778}
2779
38033c37 2780#endif /* CONFIG_SMP */
9d85f21c 2781
2396af69 2782static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2783{
bf0f6f24 2784#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2785 struct task_struct *tsk = NULL;
2786
2787 if (entity_is_task(se))
2788 tsk = task_of(se);
2789
41acab88 2790 if (se->statistics.sleep_start) {
78becc27 2791 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2792
2793 if ((s64)delta < 0)
2794 delta = 0;
2795
41acab88
LDM
2796 if (unlikely(delta > se->statistics.sleep_max))
2797 se->statistics.sleep_max = delta;
bf0f6f24 2798
8c79a045 2799 se->statistics.sleep_start = 0;
41acab88 2800 se->statistics.sum_sleep_runtime += delta;
9745512c 2801
768d0c27 2802 if (tsk) {
e414314c 2803 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2804 trace_sched_stat_sleep(tsk, delta);
2805 }
bf0f6f24 2806 }
41acab88 2807 if (se->statistics.block_start) {
78becc27 2808 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2809
2810 if ((s64)delta < 0)
2811 delta = 0;
2812
41acab88
LDM
2813 if (unlikely(delta > se->statistics.block_max))
2814 se->statistics.block_max = delta;
bf0f6f24 2815
8c79a045 2816 se->statistics.block_start = 0;
41acab88 2817 se->statistics.sum_sleep_runtime += delta;
30084fbd 2818
e414314c 2819 if (tsk) {
8f0dfc34 2820 if (tsk->in_iowait) {
41acab88
LDM
2821 se->statistics.iowait_sum += delta;
2822 se->statistics.iowait_count++;
768d0c27 2823 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2824 }
2825
b781a602
AV
2826 trace_sched_stat_blocked(tsk, delta);
2827
e414314c
PZ
2828 /*
2829 * Blocking time is in units of nanosecs, so shift by
2830 * 20 to get a milliseconds-range estimation of the
2831 * amount of time that the task spent sleeping:
2832 */
2833 if (unlikely(prof_on == SLEEP_PROFILING)) {
2834 profile_hits(SLEEP_PROFILING,
2835 (void *)get_wchan(tsk),
2836 delta >> 20);
2837 }
2838 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2839 }
bf0f6f24
IM
2840 }
2841#endif
2842}
2843
ddc97297
PZ
2844static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2845{
2846#ifdef CONFIG_SCHED_DEBUG
2847 s64 d = se->vruntime - cfs_rq->min_vruntime;
2848
2849 if (d < 0)
2850 d = -d;
2851
2852 if (d > 3*sysctl_sched_latency)
2853 schedstat_inc(cfs_rq, nr_spread_over);
2854#endif
2855}
2856
aeb73b04
PZ
2857static void
2858place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2859{
1af5f730 2860 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2861
2cb8600e
PZ
2862 /*
2863 * The 'current' period is already promised to the current tasks,
2864 * however the extra weight of the new task will slow them down a
2865 * little, place the new task so that it fits in the slot that
2866 * stays open at the end.
2867 */
94dfb5e7 2868 if (initial && sched_feat(START_DEBIT))
f9c0b095 2869 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2870
a2e7a7eb 2871 /* sleeps up to a single latency don't count. */
5ca9880c 2872 if (!initial) {
a2e7a7eb 2873 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2874
a2e7a7eb
MG
2875 /*
2876 * Halve their sleep time's effect, to allow
2877 * for a gentler effect of sleepers:
2878 */
2879 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2880 thresh >>= 1;
51e0304c 2881
a2e7a7eb 2882 vruntime -= thresh;
aeb73b04
PZ
2883 }
2884
b5d9d734 2885 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2886 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2887}
2888
d3d9dc33
PT
2889static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2890
bf0f6f24 2891static void
88ec22d3 2892enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2893{
88ec22d3
PZ
2894 /*
2895 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2896 * through calling update_curr().
88ec22d3 2897 */
371fd7e7 2898 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2899 se->vruntime += cfs_rq->min_vruntime;
2900
bf0f6f24 2901 /*
a2a2d680 2902 * Update run-time statistics of the 'current'.
bf0f6f24 2903 */
b7cc0896 2904 update_curr(cfs_rq);
9d89c257 2905 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2906 account_entity_enqueue(cfs_rq, se);
2907 update_cfs_shares(cfs_rq);
bf0f6f24 2908
88ec22d3 2909 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2910 place_entity(cfs_rq, se, 0);
2396af69 2911 enqueue_sleeper(cfs_rq, se);
e9acbff6 2912 }
bf0f6f24 2913
d2417e5a 2914 update_stats_enqueue(cfs_rq, se);
ddc97297 2915 check_spread(cfs_rq, se);
83b699ed
SV
2916 if (se != cfs_rq->curr)
2917 __enqueue_entity(cfs_rq, se);
2069dd75 2918 se->on_rq = 1;
3d4b47b4 2919
d3d9dc33 2920 if (cfs_rq->nr_running == 1) {
3d4b47b4 2921 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2922 check_enqueue_throttle(cfs_rq);
2923 }
bf0f6f24
IM
2924}
2925
2c13c919 2926static void __clear_buddies_last(struct sched_entity *se)
2002c695 2927{
2c13c919
RR
2928 for_each_sched_entity(se) {
2929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2930 if (cfs_rq->last != se)
2c13c919 2931 break;
f1044799
PZ
2932
2933 cfs_rq->last = NULL;
2c13c919
RR
2934 }
2935}
2002c695 2936
2c13c919
RR
2937static void __clear_buddies_next(struct sched_entity *se)
2938{
2939 for_each_sched_entity(se) {
2940 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2941 if (cfs_rq->next != se)
2c13c919 2942 break;
f1044799
PZ
2943
2944 cfs_rq->next = NULL;
2c13c919 2945 }
2002c695
PZ
2946}
2947
ac53db59
RR
2948static void __clear_buddies_skip(struct sched_entity *se)
2949{
2950 for_each_sched_entity(se) {
2951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2952 if (cfs_rq->skip != se)
ac53db59 2953 break;
f1044799
PZ
2954
2955 cfs_rq->skip = NULL;
ac53db59
RR
2956 }
2957}
2958
a571bbea
PZ
2959static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2960{
2c13c919
RR
2961 if (cfs_rq->last == se)
2962 __clear_buddies_last(se);
2963
2964 if (cfs_rq->next == se)
2965 __clear_buddies_next(se);
ac53db59
RR
2966
2967 if (cfs_rq->skip == se)
2968 __clear_buddies_skip(se);
a571bbea
PZ
2969}
2970
6c16a6dc 2971static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2972
bf0f6f24 2973static void
371fd7e7 2974dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2975{
a2a2d680
DA
2976 /*
2977 * Update run-time statistics of the 'current'.
2978 */
2979 update_curr(cfs_rq);
9d89c257 2980 update_load_avg(se, 1);
a2a2d680 2981
19b6a2e3 2982 update_stats_dequeue(cfs_rq, se);
371fd7e7 2983 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2984#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2985 if (entity_is_task(se)) {
2986 struct task_struct *tsk = task_of(se);
2987
2988 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2989 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2990 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2991 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2992 }
db36cc7d 2993#endif
67e9fb2a
PZ
2994 }
2995
2002c695 2996 clear_buddies(cfs_rq, se);
4793241b 2997
83b699ed 2998 if (se != cfs_rq->curr)
30cfdcfc 2999 __dequeue_entity(cfs_rq, se);
17bc14b7 3000 se->on_rq = 0;
30cfdcfc 3001 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3002
3003 /*
3004 * Normalize the entity after updating the min_vruntime because the
3005 * update can refer to the ->curr item and we need to reflect this
3006 * movement in our normalized position.
3007 */
371fd7e7 3008 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3009 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3010
d8b4986d
PT
3011 /* return excess runtime on last dequeue */
3012 return_cfs_rq_runtime(cfs_rq);
3013
1e876231 3014 update_min_vruntime(cfs_rq);
17bc14b7 3015 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3016}
3017
3018/*
3019 * Preempt the current task with a newly woken task if needed:
3020 */
7c92e54f 3021static void
2e09bf55 3022check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3023{
11697830 3024 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3025 struct sched_entity *se;
3026 s64 delta;
11697830 3027
6d0f0ebd 3028 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3029 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3030 if (delta_exec > ideal_runtime) {
8875125e 3031 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3032 /*
3033 * The current task ran long enough, ensure it doesn't get
3034 * re-elected due to buddy favours.
3035 */
3036 clear_buddies(cfs_rq, curr);
f685ceac
MG
3037 return;
3038 }
3039
3040 /*
3041 * Ensure that a task that missed wakeup preemption by a
3042 * narrow margin doesn't have to wait for a full slice.
3043 * This also mitigates buddy induced latencies under load.
3044 */
f685ceac
MG
3045 if (delta_exec < sysctl_sched_min_granularity)
3046 return;
3047
f4cfb33e
WX
3048 se = __pick_first_entity(cfs_rq);
3049 delta = curr->vruntime - se->vruntime;
f685ceac 3050
f4cfb33e
WX
3051 if (delta < 0)
3052 return;
d7d82944 3053
f4cfb33e 3054 if (delta > ideal_runtime)
8875125e 3055 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3056}
3057
83b699ed 3058static void
8494f412 3059set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3060{
83b699ed
SV
3061 /* 'current' is not kept within the tree. */
3062 if (se->on_rq) {
3063 /*
3064 * Any task has to be enqueued before it get to execute on
3065 * a CPU. So account for the time it spent waiting on the
3066 * runqueue.
3067 */
3068 update_stats_wait_end(cfs_rq, se);
3069 __dequeue_entity(cfs_rq, se);
9d89c257 3070 update_load_avg(se, 1);
83b699ed
SV
3071 }
3072
79303e9e 3073 update_stats_curr_start(cfs_rq, se);
429d43bc 3074 cfs_rq->curr = se;
eba1ed4b
IM
3075#ifdef CONFIG_SCHEDSTATS
3076 /*
3077 * Track our maximum slice length, if the CPU's load is at
3078 * least twice that of our own weight (i.e. dont track it
3079 * when there are only lesser-weight tasks around):
3080 */
495eca49 3081 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3082 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3083 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3084 }
3085#endif
4a55b450 3086 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3087}
3088
3f3a4904
PZ
3089static int
3090wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3091
ac53db59
RR
3092/*
3093 * Pick the next process, keeping these things in mind, in this order:
3094 * 1) keep things fair between processes/task groups
3095 * 2) pick the "next" process, since someone really wants that to run
3096 * 3) pick the "last" process, for cache locality
3097 * 4) do not run the "skip" process, if something else is available
3098 */
678d5718
PZ
3099static struct sched_entity *
3100pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3101{
678d5718
PZ
3102 struct sched_entity *left = __pick_first_entity(cfs_rq);
3103 struct sched_entity *se;
3104
3105 /*
3106 * If curr is set we have to see if its left of the leftmost entity
3107 * still in the tree, provided there was anything in the tree at all.
3108 */
3109 if (!left || (curr && entity_before(curr, left)))
3110 left = curr;
3111
3112 se = left; /* ideally we run the leftmost entity */
f4b6755f 3113
ac53db59
RR
3114 /*
3115 * Avoid running the skip buddy, if running something else can
3116 * be done without getting too unfair.
3117 */
3118 if (cfs_rq->skip == se) {
678d5718
PZ
3119 struct sched_entity *second;
3120
3121 if (se == curr) {
3122 second = __pick_first_entity(cfs_rq);
3123 } else {
3124 second = __pick_next_entity(se);
3125 if (!second || (curr && entity_before(curr, second)))
3126 second = curr;
3127 }
3128
ac53db59
RR
3129 if (second && wakeup_preempt_entity(second, left) < 1)
3130 se = second;
3131 }
aa2ac252 3132
f685ceac
MG
3133 /*
3134 * Prefer last buddy, try to return the CPU to a preempted task.
3135 */
3136 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3137 se = cfs_rq->last;
3138
ac53db59
RR
3139 /*
3140 * Someone really wants this to run. If it's not unfair, run it.
3141 */
3142 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3143 se = cfs_rq->next;
3144
f685ceac 3145 clear_buddies(cfs_rq, se);
4793241b
PZ
3146
3147 return se;
aa2ac252
PZ
3148}
3149
678d5718 3150static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3151
ab6cde26 3152static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3153{
3154 /*
3155 * If still on the runqueue then deactivate_task()
3156 * was not called and update_curr() has to be done:
3157 */
3158 if (prev->on_rq)
b7cc0896 3159 update_curr(cfs_rq);
bf0f6f24 3160
d3d9dc33
PT
3161 /* throttle cfs_rqs exceeding runtime */
3162 check_cfs_rq_runtime(cfs_rq);
3163
ddc97297 3164 check_spread(cfs_rq, prev);
30cfdcfc 3165 if (prev->on_rq) {
5870db5b 3166 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3167 /* Put 'current' back into the tree. */
3168 __enqueue_entity(cfs_rq, prev);
9d85f21c 3169 /* in !on_rq case, update occurred at dequeue */
9d89c257 3170 update_load_avg(prev, 0);
30cfdcfc 3171 }
429d43bc 3172 cfs_rq->curr = NULL;
bf0f6f24
IM
3173}
3174
8f4d37ec
PZ
3175static void
3176entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3177{
bf0f6f24 3178 /*
30cfdcfc 3179 * Update run-time statistics of the 'current'.
bf0f6f24 3180 */
30cfdcfc 3181 update_curr(cfs_rq);
bf0f6f24 3182
9d85f21c
PT
3183 /*
3184 * Ensure that runnable average is periodically updated.
3185 */
9d89c257 3186 update_load_avg(curr, 1);
bf0bd948 3187 update_cfs_shares(cfs_rq);
9d85f21c 3188
8f4d37ec
PZ
3189#ifdef CONFIG_SCHED_HRTICK
3190 /*
3191 * queued ticks are scheduled to match the slice, so don't bother
3192 * validating it and just reschedule.
3193 */
983ed7a6 3194 if (queued) {
8875125e 3195 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3196 return;
3197 }
8f4d37ec
PZ
3198 /*
3199 * don't let the period tick interfere with the hrtick preemption
3200 */
3201 if (!sched_feat(DOUBLE_TICK) &&
3202 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3203 return;
3204#endif
3205
2c2efaed 3206 if (cfs_rq->nr_running > 1)
2e09bf55 3207 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3208}
3209
ab84d31e
PT
3210
3211/**************************************************
3212 * CFS bandwidth control machinery
3213 */
3214
3215#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3216
3217#ifdef HAVE_JUMP_LABEL
c5905afb 3218static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3219
3220static inline bool cfs_bandwidth_used(void)
3221{
c5905afb 3222 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3223}
3224
1ee14e6c 3225void cfs_bandwidth_usage_inc(void)
029632fb 3226{
1ee14e6c
BS
3227 static_key_slow_inc(&__cfs_bandwidth_used);
3228}
3229
3230void cfs_bandwidth_usage_dec(void)
3231{
3232 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3233}
3234#else /* HAVE_JUMP_LABEL */
3235static bool cfs_bandwidth_used(void)
3236{
3237 return true;
3238}
3239
1ee14e6c
BS
3240void cfs_bandwidth_usage_inc(void) {}
3241void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3242#endif /* HAVE_JUMP_LABEL */
3243
ab84d31e
PT
3244/*
3245 * default period for cfs group bandwidth.
3246 * default: 0.1s, units: nanoseconds
3247 */
3248static inline u64 default_cfs_period(void)
3249{
3250 return 100000000ULL;
3251}
ec12cb7f
PT
3252
3253static inline u64 sched_cfs_bandwidth_slice(void)
3254{
3255 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3256}
3257
a9cf55b2
PT
3258/*
3259 * Replenish runtime according to assigned quota and update expiration time.
3260 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3261 * additional synchronization around rq->lock.
3262 *
3263 * requires cfs_b->lock
3264 */
029632fb 3265void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3266{
3267 u64 now;
3268
3269 if (cfs_b->quota == RUNTIME_INF)
3270 return;
3271
3272 now = sched_clock_cpu(smp_processor_id());
3273 cfs_b->runtime = cfs_b->quota;
3274 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3275}
3276
029632fb
PZ
3277static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3278{
3279 return &tg->cfs_bandwidth;
3280}
3281
f1b17280
PT
3282/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3283static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3284{
3285 if (unlikely(cfs_rq->throttle_count))
3286 return cfs_rq->throttled_clock_task;
3287
78becc27 3288 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3289}
3290
85dac906
PT
3291/* returns 0 on failure to allocate runtime */
3292static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3293{
3294 struct task_group *tg = cfs_rq->tg;
3295 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3296 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3297
3298 /* note: this is a positive sum as runtime_remaining <= 0 */
3299 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3300
3301 raw_spin_lock(&cfs_b->lock);
3302 if (cfs_b->quota == RUNTIME_INF)
3303 amount = min_amount;
58088ad0 3304 else {
77a4d1a1 3305 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3306
3307 if (cfs_b->runtime > 0) {
3308 amount = min(cfs_b->runtime, min_amount);
3309 cfs_b->runtime -= amount;
3310 cfs_b->idle = 0;
3311 }
ec12cb7f 3312 }
a9cf55b2 3313 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3314 raw_spin_unlock(&cfs_b->lock);
3315
3316 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3317 /*
3318 * we may have advanced our local expiration to account for allowed
3319 * spread between our sched_clock and the one on which runtime was
3320 * issued.
3321 */
3322 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3323 cfs_rq->runtime_expires = expires;
85dac906
PT
3324
3325 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3326}
3327
a9cf55b2
PT
3328/*
3329 * Note: This depends on the synchronization provided by sched_clock and the
3330 * fact that rq->clock snapshots this value.
3331 */
3332static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3333{
a9cf55b2 3334 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3335
3336 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3337 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3338 return;
3339
a9cf55b2
PT
3340 if (cfs_rq->runtime_remaining < 0)
3341 return;
3342
3343 /*
3344 * If the local deadline has passed we have to consider the
3345 * possibility that our sched_clock is 'fast' and the global deadline
3346 * has not truly expired.
3347 *
3348 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3349 * whether the global deadline has advanced. It is valid to compare
3350 * cfs_b->runtime_expires without any locks since we only care about
3351 * exact equality, so a partial write will still work.
a9cf55b2
PT
3352 */
3353
51f2176d 3354 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3355 /* extend local deadline, drift is bounded above by 2 ticks */
3356 cfs_rq->runtime_expires += TICK_NSEC;
3357 } else {
3358 /* global deadline is ahead, expiration has passed */
3359 cfs_rq->runtime_remaining = 0;
3360 }
3361}
3362
9dbdb155 3363static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3364{
3365 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3366 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3367 expire_cfs_rq_runtime(cfs_rq);
3368
3369 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3370 return;
3371
85dac906
PT
3372 /*
3373 * if we're unable to extend our runtime we resched so that the active
3374 * hierarchy can be throttled
3375 */
3376 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3377 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3378}
3379
6c16a6dc 3380static __always_inline
9dbdb155 3381void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3382{
56f570e5 3383 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3384 return;
3385
3386 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3387}
3388
85dac906
PT
3389static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3390{
56f570e5 3391 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3392}
3393
64660c86
PT
3394/* check whether cfs_rq, or any parent, is throttled */
3395static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3396{
56f570e5 3397 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3398}
3399
3400/*
3401 * Ensure that neither of the group entities corresponding to src_cpu or
3402 * dest_cpu are members of a throttled hierarchy when performing group
3403 * load-balance operations.
3404 */
3405static inline int throttled_lb_pair(struct task_group *tg,
3406 int src_cpu, int dest_cpu)
3407{
3408 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3409
3410 src_cfs_rq = tg->cfs_rq[src_cpu];
3411 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3412
3413 return throttled_hierarchy(src_cfs_rq) ||
3414 throttled_hierarchy(dest_cfs_rq);
3415}
3416
3417/* updated child weight may affect parent so we have to do this bottom up */
3418static int tg_unthrottle_up(struct task_group *tg, void *data)
3419{
3420 struct rq *rq = data;
3421 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3422
3423 cfs_rq->throttle_count--;
3424#ifdef CONFIG_SMP
3425 if (!cfs_rq->throttle_count) {
f1b17280 3426 /* adjust cfs_rq_clock_task() */
78becc27 3427 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3428 cfs_rq->throttled_clock_task;
64660c86
PT
3429 }
3430#endif
3431
3432 return 0;
3433}
3434
3435static int tg_throttle_down(struct task_group *tg, void *data)
3436{
3437 struct rq *rq = data;
3438 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3439
82958366
PT
3440 /* group is entering throttled state, stop time */
3441 if (!cfs_rq->throttle_count)
78becc27 3442 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3443 cfs_rq->throttle_count++;
3444
3445 return 0;
3446}
3447
d3d9dc33 3448static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3449{
3450 struct rq *rq = rq_of(cfs_rq);
3451 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3452 struct sched_entity *se;
3453 long task_delta, dequeue = 1;
77a4d1a1 3454 bool empty;
85dac906
PT
3455
3456 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3457
f1b17280 3458 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3459 rcu_read_lock();
3460 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3461 rcu_read_unlock();
85dac906
PT
3462
3463 task_delta = cfs_rq->h_nr_running;
3464 for_each_sched_entity(se) {
3465 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3466 /* throttled entity or throttle-on-deactivate */
3467 if (!se->on_rq)
3468 break;
3469
3470 if (dequeue)
3471 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3472 qcfs_rq->h_nr_running -= task_delta;
3473
3474 if (qcfs_rq->load.weight)
3475 dequeue = 0;
3476 }
3477
3478 if (!se)
72465447 3479 sub_nr_running(rq, task_delta);
85dac906
PT
3480
3481 cfs_rq->throttled = 1;
78becc27 3482 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3483 raw_spin_lock(&cfs_b->lock);
d49db342 3484 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3485
c06f04c7
BS
3486 /*
3487 * Add to the _head_ of the list, so that an already-started
3488 * distribute_cfs_runtime will not see us
3489 */
3490 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3491
3492 /*
3493 * If we're the first throttled task, make sure the bandwidth
3494 * timer is running.
3495 */
3496 if (empty)
3497 start_cfs_bandwidth(cfs_b);
3498
85dac906
PT
3499 raw_spin_unlock(&cfs_b->lock);
3500}
3501
029632fb 3502void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3503{
3504 struct rq *rq = rq_of(cfs_rq);
3505 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3506 struct sched_entity *se;
3507 int enqueue = 1;
3508 long task_delta;
3509
22b958d8 3510 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3511
3512 cfs_rq->throttled = 0;
1a55af2e
FW
3513
3514 update_rq_clock(rq);
3515
671fd9da 3516 raw_spin_lock(&cfs_b->lock);
78becc27 3517 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3518 list_del_rcu(&cfs_rq->throttled_list);
3519 raw_spin_unlock(&cfs_b->lock);
3520
64660c86
PT
3521 /* update hierarchical throttle state */
3522 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3523
671fd9da
PT
3524 if (!cfs_rq->load.weight)
3525 return;
3526
3527 task_delta = cfs_rq->h_nr_running;
3528 for_each_sched_entity(se) {
3529 if (se->on_rq)
3530 enqueue = 0;
3531
3532 cfs_rq = cfs_rq_of(se);
3533 if (enqueue)
3534 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3535 cfs_rq->h_nr_running += task_delta;
3536
3537 if (cfs_rq_throttled(cfs_rq))
3538 break;
3539 }
3540
3541 if (!se)
72465447 3542 add_nr_running(rq, task_delta);
671fd9da
PT
3543
3544 /* determine whether we need to wake up potentially idle cpu */
3545 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3546 resched_curr(rq);
671fd9da
PT
3547}
3548
3549static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3550 u64 remaining, u64 expires)
3551{
3552 struct cfs_rq *cfs_rq;
c06f04c7
BS
3553 u64 runtime;
3554 u64 starting_runtime = remaining;
671fd9da
PT
3555
3556 rcu_read_lock();
3557 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3558 throttled_list) {
3559 struct rq *rq = rq_of(cfs_rq);
3560
3561 raw_spin_lock(&rq->lock);
3562 if (!cfs_rq_throttled(cfs_rq))
3563 goto next;
3564
3565 runtime = -cfs_rq->runtime_remaining + 1;
3566 if (runtime > remaining)
3567 runtime = remaining;
3568 remaining -= runtime;
3569
3570 cfs_rq->runtime_remaining += runtime;
3571 cfs_rq->runtime_expires = expires;
3572
3573 /* we check whether we're throttled above */
3574 if (cfs_rq->runtime_remaining > 0)
3575 unthrottle_cfs_rq(cfs_rq);
3576
3577next:
3578 raw_spin_unlock(&rq->lock);
3579
3580 if (!remaining)
3581 break;
3582 }
3583 rcu_read_unlock();
3584
c06f04c7 3585 return starting_runtime - remaining;
671fd9da
PT
3586}
3587
58088ad0
PT
3588/*
3589 * Responsible for refilling a task_group's bandwidth and unthrottling its
3590 * cfs_rqs as appropriate. If there has been no activity within the last
3591 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3592 * used to track this state.
3593 */
3594static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3595{
671fd9da 3596 u64 runtime, runtime_expires;
51f2176d 3597 int throttled;
58088ad0 3598
58088ad0
PT
3599 /* no need to continue the timer with no bandwidth constraint */
3600 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3601 goto out_deactivate;
58088ad0 3602
671fd9da 3603 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3604 cfs_b->nr_periods += overrun;
671fd9da 3605
51f2176d
BS
3606 /*
3607 * idle depends on !throttled (for the case of a large deficit), and if
3608 * we're going inactive then everything else can be deferred
3609 */
3610 if (cfs_b->idle && !throttled)
3611 goto out_deactivate;
a9cf55b2
PT
3612
3613 __refill_cfs_bandwidth_runtime(cfs_b);
3614
671fd9da
PT
3615 if (!throttled) {
3616 /* mark as potentially idle for the upcoming period */
3617 cfs_b->idle = 1;
51f2176d 3618 return 0;
671fd9da
PT
3619 }
3620
e8da1b18
NR
3621 /* account preceding periods in which throttling occurred */
3622 cfs_b->nr_throttled += overrun;
3623
671fd9da 3624 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3625
3626 /*
c06f04c7
BS
3627 * This check is repeated as we are holding onto the new bandwidth while
3628 * we unthrottle. This can potentially race with an unthrottled group
3629 * trying to acquire new bandwidth from the global pool. This can result
3630 * in us over-using our runtime if it is all used during this loop, but
3631 * only by limited amounts in that extreme case.
671fd9da 3632 */
c06f04c7
BS
3633 while (throttled && cfs_b->runtime > 0) {
3634 runtime = cfs_b->runtime;
671fd9da
PT
3635 raw_spin_unlock(&cfs_b->lock);
3636 /* we can't nest cfs_b->lock while distributing bandwidth */
3637 runtime = distribute_cfs_runtime(cfs_b, runtime,
3638 runtime_expires);
3639 raw_spin_lock(&cfs_b->lock);
3640
3641 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3642
3643 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3644 }
58088ad0 3645
671fd9da
PT
3646 /*
3647 * While we are ensured activity in the period following an
3648 * unthrottle, this also covers the case in which the new bandwidth is
3649 * insufficient to cover the existing bandwidth deficit. (Forcing the
3650 * timer to remain active while there are any throttled entities.)
3651 */
3652 cfs_b->idle = 0;
58088ad0 3653
51f2176d
BS
3654 return 0;
3655
3656out_deactivate:
51f2176d 3657 return 1;
58088ad0 3658}
d3d9dc33 3659
d8b4986d
PT
3660/* a cfs_rq won't donate quota below this amount */
3661static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3662/* minimum remaining period time to redistribute slack quota */
3663static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3664/* how long we wait to gather additional slack before distributing */
3665static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3666
db06e78c
BS
3667/*
3668 * Are we near the end of the current quota period?
3669 *
3670 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3671 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3672 * migrate_hrtimers, base is never cleared, so we are fine.
3673 */
d8b4986d
PT
3674static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3675{
3676 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3677 u64 remaining;
3678
3679 /* if the call-back is running a quota refresh is already occurring */
3680 if (hrtimer_callback_running(refresh_timer))
3681 return 1;
3682
3683 /* is a quota refresh about to occur? */
3684 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3685 if (remaining < min_expire)
3686 return 1;
3687
3688 return 0;
3689}
3690
3691static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3692{
3693 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3694
3695 /* if there's a quota refresh soon don't bother with slack */
3696 if (runtime_refresh_within(cfs_b, min_left))
3697 return;
3698
4cfafd30
PZ
3699 hrtimer_start(&cfs_b->slack_timer,
3700 ns_to_ktime(cfs_bandwidth_slack_period),
3701 HRTIMER_MODE_REL);
d8b4986d
PT
3702}
3703
3704/* we know any runtime found here is valid as update_curr() precedes return */
3705static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3706{
3707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3708 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3709
3710 if (slack_runtime <= 0)
3711 return;
3712
3713 raw_spin_lock(&cfs_b->lock);
3714 if (cfs_b->quota != RUNTIME_INF &&
3715 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3716 cfs_b->runtime += slack_runtime;
3717
3718 /* we are under rq->lock, defer unthrottling using a timer */
3719 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3720 !list_empty(&cfs_b->throttled_cfs_rq))
3721 start_cfs_slack_bandwidth(cfs_b);
3722 }
3723 raw_spin_unlock(&cfs_b->lock);
3724
3725 /* even if it's not valid for return we don't want to try again */
3726 cfs_rq->runtime_remaining -= slack_runtime;
3727}
3728
3729static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3730{
56f570e5
PT
3731 if (!cfs_bandwidth_used())
3732 return;
3733
fccfdc6f 3734 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3735 return;
3736
3737 __return_cfs_rq_runtime(cfs_rq);
3738}
3739
3740/*
3741 * This is done with a timer (instead of inline with bandwidth return) since
3742 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3743 */
3744static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3745{
3746 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3747 u64 expires;
3748
3749 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3750 raw_spin_lock(&cfs_b->lock);
3751 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3752 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3753 return;
db06e78c 3754 }
d8b4986d 3755
c06f04c7 3756 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3757 runtime = cfs_b->runtime;
c06f04c7 3758
d8b4986d
PT
3759 expires = cfs_b->runtime_expires;
3760 raw_spin_unlock(&cfs_b->lock);
3761
3762 if (!runtime)
3763 return;
3764
3765 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3766
3767 raw_spin_lock(&cfs_b->lock);
3768 if (expires == cfs_b->runtime_expires)
c06f04c7 3769 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3770 raw_spin_unlock(&cfs_b->lock);
3771}
3772
d3d9dc33
PT
3773/*
3774 * When a group wakes up we want to make sure that its quota is not already
3775 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3776 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3777 */
3778static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3779{
56f570e5
PT
3780 if (!cfs_bandwidth_used())
3781 return;
3782
d3d9dc33
PT
3783 /* an active group must be handled by the update_curr()->put() path */
3784 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3785 return;
3786
3787 /* ensure the group is not already throttled */
3788 if (cfs_rq_throttled(cfs_rq))
3789 return;
3790
3791 /* update runtime allocation */
3792 account_cfs_rq_runtime(cfs_rq, 0);
3793 if (cfs_rq->runtime_remaining <= 0)
3794 throttle_cfs_rq(cfs_rq);
3795}
3796
3797/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3798static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3799{
56f570e5 3800 if (!cfs_bandwidth_used())
678d5718 3801 return false;
56f570e5 3802
d3d9dc33 3803 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3804 return false;
d3d9dc33
PT
3805
3806 /*
3807 * it's possible for a throttled entity to be forced into a running
3808 * state (e.g. set_curr_task), in this case we're finished.
3809 */
3810 if (cfs_rq_throttled(cfs_rq))
678d5718 3811 return true;
d3d9dc33
PT
3812
3813 throttle_cfs_rq(cfs_rq);
678d5718 3814 return true;
d3d9dc33 3815}
029632fb 3816
029632fb
PZ
3817static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3818{
3819 struct cfs_bandwidth *cfs_b =
3820 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3821
029632fb
PZ
3822 do_sched_cfs_slack_timer(cfs_b);
3823
3824 return HRTIMER_NORESTART;
3825}
3826
3827static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3828{
3829 struct cfs_bandwidth *cfs_b =
3830 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3831 int overrun;
3832 int idle = 0;
3833
51f2176d 3834 raw_spin_lock(&cfs_b->lock);
029632fb 3835 for (;;) {
77a4d1a1 3836 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3837 if (!overrun)
3838 break;
3839
3840 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3841 }
4cfafd30
PZ
3842 if (idle)
3843 cfs_b->period_active = 0;
51f2176d 3844 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3845
3846 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3847}
3848
3849void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3850{
3851 raw_spin_lock_init(&cfs_b->lock);
3852 cfs_b->runtime = 0;
3853 cfs_b->quota = RUNTIME_INF;
3854 cfs_b->period = ns_to_ktime(default_cfs_period());
3855
3856 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3857 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3858 cfs_b->period_timer.function = sched_cfs_period_timer;
3859 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3860 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3861}
3862
3863static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3864{
3865 cfs_rq->runtime_enabled = 0;
3866 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3867}
3868
77a4d1a1 3869void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3870{
4cfafd30 3871 lockdep_assert_held(&cfs_b->lock);
029632fb 3872
4cfafd30
PZ
3873 if (!cfs_b->period_active) {
3874 cfs_b->period_active = 1;
3875 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3876 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3877 }
029632fb
PZ
3878}
3879
3880static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3881{
7f1a169b
TH
3882 /* init_cfs_bandwidth() was not called */
3883 if (!cfs_b->throttled_cfs_rq.next)
3884 return;
3885
029632fb
PZ
3886 hrtimer_cancel(&cfs_b->period_timer);
3887 hrtimer_cancel(&cfs_b->slack_timer);
3888}
3889
0e59bdae
KT
3890static void __maybe_unused update_runtime_enabled(struct rq *rq)
3891{
3892 struct cfs_rq *cfs_rq;
3893
3894 for_each_leaf_cfs_rq(rq, cfs_rq) {
3895 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3896
3897 raw_spin_lock(&cfs_b->lock);
3898 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3899 raw_spin_unlock(&cfs_b->lock);
3900 }
3901}
3902
38dc3348 3903static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3904{
3905 struct cfs_rq *cfs_rq;
3906
3907 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3908 if (!cfs_rq->runtime_enabled)
3909 continue;
3910
3911 /*
3912 * clock_task is not advancing so we just need to make sure
3913 * there's some valid quota amount
3914 */
51f2176d 3915 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3916 /*
3917 * Offline rq is schedulable till cpu is completely disabled
3918 * in take_cpu_down(), so we prevent new cfs throttling here.
3919 */
3920 cfs_rq->runtime_enabled = 0;
3921
029632fb
PZ
3922 if (cfs_rq_throttled(cfs_rq))
3923 unthrottle_cfs_rq(cfs_rq);
3924 }
3925}
3926
3927#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3928static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3929{
78becc27 3930 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3931}
3932
9dbdb155 3933static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3934static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3935static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3936static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3937
3938static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3939{
3940 return 0;
3941}
64660c86
PT
3942
3943static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3944{
3945 return 0;
3946}
3947
3948static inline int throttled_lb_pair(struct task_group *tg,
3949 int src_cpu, int dest_cpu)
3950{
3951 return 0;
3952}
029632fb
PZ
3953
3954void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3955
3956#ifdef CONFIG_FAIR_GROUP_SCHED
3957static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3958#endif
3959
029632fb
PZ
3960static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3961{
3962 return NULL;
3963}
3964static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3965static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3966static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3967
3968#endif /* CONFIG_CFS_BANDWIDTH */
3969
bf0f6f24
IM
3970/**************************************************
3971 * CFS operations on tasks:
3972 */
3973
8f4d37ec
PZ
3974#ifdef CONFIG_SCHED_HRTICK
3975static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3976{
8f4d37ec
PZ
3977 struct sched_entity *se = &p->se;
3978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3979
3980 WARN_ON(task_rq(p) != rq);
3981
b39e66ea 3982 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3983 u64 slice = sched_slice(cfs_rq, se);
3984 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3985 s64 delta = slice - ran;
3986
3987 if (delta < 0) {
3988 if (rq->curr == p)
8875125e 3989 resched_curr(rq);
8f4d37ec
PZ
3990 return;
3991 }
31656519 3992 hrtick_start(rq, delta);
8f4d37ec
PZ
3993 }
3994}
a4c2f00f
PZ
3995
3996/*
3997 * called from enqueue/dequeue and updates the hrtick when the
3998 * current task is from our class and nr_running is low enough
3999 * to matter.
4000 */
4001static void hrtick_update(struct rq *rq)
4002{
4003 struct task_struct *curr = rq->curr;
4004
b39e66ea 4005 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4006 return;
4007
4008 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4009 hrtick_start_fair(rq, curr);
4010}
55e12e5e 4011#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4012static inline void
4013hrtick_start_fair(struct rq *rq, struct task_struct *p)
4014{
4015}
a4c2f00f
PZ
4016
4017static inline void hrtick_update(struct rq *rq)
4018{
4019}
8f4d37ec
PZ
4020#endif
4021
bf0f6f24
IM
4022/*
4023 * The enqueue_task method is called before nr_running is
4024 * increased. Here we update the fair scheduling stats and
4025 * then put the task into the rbtree:
4026 */
ea87bb78 4027static void
371fd7e7 4028enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4029{
4030 struct cfs_rq *cfs_rq;
62fb1851 4031 struct sched_entity *se = &p->se;
bf0f6f24
IM
4032
4033 for_each_sched_entity(se) {
62fb1851 4034 if (se->on_rq)
bf0f6f24
IM
4035 break;
4036 cfs_rq = cfs_rq_of(se);
88ec22d3 4037 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4038
4039 /*
4040 * end evaluation on encountering a throttled cfs_rq
4041 *
4042 * note: in the case of encountering a throttled cfs_rq we will
4043 * post the final h_nr_running increment below.
4044 */
4045 if (cfs_rq_throttled(cfs_rq))
4046 break;
953bfcd1 4047 cfs_rq->h_nr_running++;
85dac906 4048
88ec22d3 4049 flags = ENQUEUE_WAKEUP;
bf0f6f24 4050 }
8f4d37ec 4051
2069dd75 4052 for_each_sched_entity(se) {
0f317143 4053 cfs_rq = cfs_rq_of(se);
953bfcd1 4054 cfs_rq->h_nr_running++;
2069dd75 4055
85dac906
PT
4056 if (cfs_rq_throttled(cfs_rq))
4057 break;
4058
9d89c257 4059 update_load_avg(se, 1);
17bc14b7 4060 update_cfs_shares(cfs_rq);
2069dd75
PZ
4061 }
4062
cd126afe 4063 if (!se)
72465447 4064 add_nr_running(rq, 1);
cd126afe 4065
a4c2f00f 4066 hrtick_update(rq);
bf0f6f24
IM
4067}
4068
2f36825b
VP
4069static void set_next_buddy(struct sched_entity *se);
4070
bf0f6f24
IM
4071/*
4072 * The dequeue_task method is called before nr_running is
4073 * decreased. We remove the task from the rbtree and
4074 * update the fair scheduling stats:
4075 */
371fd7e7 4076static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4077{
4078 struct cfs_rq *cfs_rq;
62fb1851 4079 struct sched_entity *se = &p->se;
2f36825b 4080 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4081
4082 for_each_sched_entity(se) {
4083 cfs_rq = cfs_rq_of(se);
371fd7e7 4084 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4085
4086 /*
4087 * end evaluation on encountering a throttled cfs_rq
4088 *
4089 * note: in the case of encountering a throttled cfs_rq we will
4090 * post the final h_nr_running decrement below.
4091 */
4092 if (cfs_rq_throttled(cfs_rq))
4093 break;
953bfcd1 4094 cfs_rq->h_nr_running--;
2069dd75 4095
bf0f6f24 4096 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4097 if (cfs_rq->load.weight) {
4098 /*
4099 * Bias pick_next to pick a task from this cfs_rq, as
4100 * p is sleeping when it is within its sched_slice.
4101 */
4102 if (task_sleep && parent_entity(se))
4103 set_next_buddy(parent_entity(se));
9598c82d
PT
4104
4105 /* avoid re-evaluating load for this entity */
4106 se = parent_entity(se);
bf0f6f24 4107 break;
2f36825b 4108 }
371fd7e7 4109 flags |= DEQUEUE_SLEEP;
bf0f6f24 4110 }
8f4d37ec 4111
2069dd75 4112 for_each_sched_entity(se) {
0f317143 4113 cfs_rq = cfs_rq_of(se);
953bfcd1 4114 cfs_rq->h_nr_running--;
2069dd75 4115
85dac906
PT
4116 if (cfs_rq_throttled(cfs_rq))
4117 break;
4118
9d89c257 4119 update_load_avg(se, 1);
17bc14b7 4120 update_cfs_shares(cfs_rq);
2069dd75
PZ
4121 }
4122
cd126afe 4123 if (!se)
72465447 4124 sub_nr_running(rq, 1);
cd126afe 4125
a4c2f00f 4126 hrtick_update(rq);
bf0f6f24
IM
4127}
4128
e7693a36 4129#ifdef CONFIG_SMP
3289bdb4
PZ
4130
4131/*
4132 * per rq 'load' arrray crap; XXX kill this.
4133 */
4134
4135/*
4136 * The exact cpuload at various idx values, calculated at every tick would be
4137 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4138 *
4139 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4140 * on nth tick when cpu may be busy, then we have:
4141 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4142 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4143 *
4144 * decay_load_missed() below does efficient calculation of
4145 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4146 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4147 *
4148 * The calculation is approximated on a 128 point scale.
4149 * degrade_zero_ticks is the number of ticks after which load at any
4150 * particular idx is approximated to be zero.
4151 * degrade_factor is a precomputed table, a row for each load idx.
4152 * Each column corresponds to degradation factor for a power of two ticks,
4153 * based on 128 point scale.
4154 * Example:
4155 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4156 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4157 *
4158 * With this power of 2 load factors, we can degrade the load n times
4159 * by looking at 1 bits in n and doing as many mult/shift instead of
4160 * n mult/shifts needed by the exact degradation.
4161 */
4162#define DEGRADE_SHIFT 7
4163static const unsigned char
4164 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4165static const unsigned char
4166 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4167 {0, 0, 0, 0, 0, 0, 0, 0},
4168 {64, 32, 8, 0, 0, 0, 0, 0},
4169 {96, 72, 40, 12, 1, 0, 0},
4170 {112, 98, 75, 43, 15, 1, 0},
4171 {120, 112, 98, 76, 45, 16, 2} };
4172
4173/*
4174 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4175 * would be when CPU is idle and so we just decay the old load without
4176 * adding any new load.
4177 */
4178static unsigned long
4179decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4180{
4181 int j = 0;
4182
4183 if (!missed_updates)
4184 return load;
4185
4186 if (missed_updates >= degrade_zero_ticks[idx])
4187 return 0;
4188
4189 if (idx == 1)
4190 return load >> missed_updates;
4191
4192 while (missed_updates) {
4193 if (missed_updates % 2)
4194 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4195
4196 missed_updates >>= 1;
4197 j++;
4198 }
4199 return load;
4200}
4201
4202/*
4203 * Update rq->cpu_load[] statistics. This function is usually called every
4204 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4205 * every tick. We fix it up based on jiffies.
4206 */
4207static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4208 unsigned long pending_updates)
4209{
4210 int i, scale;
4211
4212 this_rq->nr_load_updates++;
4213
4214 /* Update our load: */
4215 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4216 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4217 unsigned long old_load, new_load;
4218
4219 /* scale is effectively 1 << i now, and >> i divides by scale */
4220
4221 old_load = this_rq->cpu_load[i];
4222 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4223 new_load = this_load;
4224 /*
4225 * Round up the averaging division if load is increasing. This
4226 * prevents us from getting stuck on 9 if the load is 10, for
4227 * example.
4228 */
4229 if (new_load > old_load)
4230 new_load += scale - 1;
4231
4232 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4233 }
4234
4235 sched_avg_update(this_rq);
4236}
4237
4238#ifdef CONFIG_NO_HZ_COMMON
4239/*
4240 * There is no sane way to deal with nohz on smp when using jiffies because the
4241 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4242 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4243 *
4244 * Therefore we cannot use the delta approach from the regular tick since that
4245 * would seriously skew the load calculation. However we'll make do for those
4246 * updates happening while idle (nohz_idle_balance) or coming out of idle
4247 * (tick_nohz_idle_exit).
4248 *
4249 * This means we might still be one tick off for nohz periods.
4250 */
4251
4252/*
4253 * Called from nohz_idle_balance() to update the load ratings before doing the
4254 * idle balance.
4255 */
4256static void update_idle_cpu_load(struct rq *this_rq)
4257{
316c1608 4258 unsigned long curr_jiffies = READ_ONCE(jiffies);
9d89c257 4259 unsigned long load = this_rq->cfs.avg.load_avg;
3289bdb4
PZ
4260 unsigned long pending_updates;
4261
4262 /*
4263 * bail if there's load or we're actually up-to-date.
4264 */
4265 if (load || curr_jiffies == this_rq->last_load_update_tick)
4266 return;
4267
4268 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4269 this_rq->last_load_update_tick = curr_jiffies;
4270
4271 __update_cpu_load(this_rq, load, pending_updates);
4272}
4273
4274/*
4275 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4276 */
4277void update_cpu_load_nohz(void)
4278{
4279 struct rq *this_rq = this_rq();
316c1608 4280 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4281 unsigned long pending_updates;
4282
4283 if (curr_jiffies == this_rq->last_load_update_tick)
4284 return;
4285
4286 raw_spin_lock(&this_rq->lock);
4287 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4288 if (pending_updates) {
4289 this_rq->last_load_update_tick = curr_jiffies;
4290 /*
4291 * We were idle, this means load 0, the current load might be
4292 * !0 due to remote wakeups and the sort.
4293 */
4294 __update_cpu_load(this_rq, 0, pending_updates);
4295 }
4296 raw_spin_unlock(&this_rq->lock);
4297}
4298#endif /* CONFIG_NO_HZ */
4299
4300/*
4301 * Called from scheduler_tick()
4302 */
4303void update_cpu_load_active(struct rq *this_rq)
4304{
9d89c257 4305 unsigned long load = this_rq->cfs.avg.load_avg;
3289bdb4
PZ
4306 /*
4307 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4308 */
4309 this_rq->last_load_update_tick = jiffies;
4310 __update_cpu_load(this_rq, load, 1);
4311}
4312
029632fb
PZ
4313/* Used instead of source_load when we know the type == 0 */
4314static unsigned long weighted_cpuload(const int cpu)
4315{
9d89c257 4316 return cpu_rq(cpu)->cfs.avg.load_avg;
029632fb
PZ
4317}
4318
4319/*
4320 * Return a low guess at the load of a migration-source cpu weighted
4321 * according to the scheduling class and "nice" value.
4322 *
4323 * We want to under-estimate the load of migration sources, to
4324 * balance conservatively.
4325 */
4326static unsigned long source_load(int cpu, int type)
4327{
4328 struct rq *rq = cpu_rq(cpu);
4329 unsigned long total = weighted_cpuload(cpu);
4330
4331 if (type == 0 || !sched_feat(LB_BIAS))
4332 return total;
4333
4334 return min(rq->cpu_load[type-1], total);
4335}
4336
4337/*
4338 * Return a high guess at the load of a migration-target cpu weighted
4339 * according to the scheduling class and "nice" value.
4340 */
4341static unsigned long target_load(int cpu, int type)
4342{
4343 struct rq *rq = cpu_rq(cpu);
4344 unsigned long total = weighted_cpuload(cpu);
4345
4346 if (type == 0 || !sched_feat(LB_BIAS))
4347 return total;
4348
4349 return max(rq->cpu_load[type-1], total);
4350}
4351
ced549fa 4352static unsigned long capacity_of(int cpu)
029632fb 4353{
ced549fa 4354 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4355}
4356
ca6d75e6
VG
4357static unsigned long capacity_orig_of(int cpu)
4358{
4359 return cpu_rq(cpu)->cpu_capacity_orig;
4360}
4361
029632fb
PZ
4362static unsigned long cpu_avg_load_per_task(int cpu)
4363{
4364 struct rq *rq = cpu_rq(cpu);
316c1608 4365 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
9d89c257 4366 unsigned long load_avg = rq->cfs.avg.load_avg;
029632fb
PZ
4367
4368 if (nr_running)
b92486cb 4369 return load_avg / nr_running;
029632fb
PZ
4370
4371 return 0;
4372}
4373
62470419
MW
4374static void record_wakee(struct task_struct *p)
4375{
4376 /*
4377 * Rough decay (wiping) for cost saving, don't worry
4378 * about the boundary, really active task won't care
4379 * about the loss.
4380 */
2538d960 4381 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4382 current->wakee_flips >>= 1;
62470419
MW
4383 current->wakee_flip_decay_ts = jiffies;
4384 }
4385
4386 if (current->last_wakee != p) {
4387 current->last_wakee = p;
4388 current->wakee_flips++;
4389 }
4390}
098fb9db 4391
74f8e4b2 4392static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4393{
4394 struct sched_entity *se = &p->se;
4395 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4396 u64 min_vruntime;
4397
4398#ifndef CONFIG_64BIT
4399 u64 min_vruntime_copy;
88ec22d3 4400
3fe1698b
PZ
4401 do {
4402 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4403 smp_rmb();
4404 min_vruntime = cfs_rq->min_vruntime;
4405 } while (min_vruntime != min_vruntime_copy);
4406#else
4407 min_vruntime = cfs_rq->min_vruntime;
4408#endif
88ec22d3 4409
3fe1698b 4410 se->vruntime -= min_vruntime;
62470419 4411 record_wakee(p);
88ec22d3
PZ
4412}
4413
bb3469ac 4414#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4415/*
4416 * effective_load() calculates the load change as seen from the root_task_group
4417 *
4418 * Adding load to a group doesn't make a group heavier, but can cause movement
4419 * of group shares between cpus. Assuming the shares were perfectly aligned one
4420 * can calculate the shift in shares.
cf5f0acf
PZ
4421 *
4422 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4423 * on this @cpu and results in a total addition (subtraction) of @wg to the
4424 * total group weight.
4425 *
4426 * Given a runqueue weight distribution (rw_i) we can compute a shares
4427 * distribution (s_i) using:
4428 *
4429 * s_i = rw_i / \Sum rw_j (1)
4430 *
4431 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4432 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4433 * shares distribution (s_i):
4434 *
4435 * rw_i = { 2, 4, 1, 0 }
4436 * s_i = { 2/7, 4/7, 1/7, 0 }
4437 *
4438 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4439 * task used to run on and the CPU the waker is running on), we need to
4440 * compute the effect of waking a task on either CPU and, in case of a sync
4441 * wakeup, compute the effect of the current task going to sleep.
4442 *
4443 * So for a change of @wl to the local @cpu with an overall group weight change
4444 * of @wl we can compute the new shares distribution (s'_i) using:
4445 *
4446 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4447 *
4448 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4449 * differences in waking a task to CPU 0. The additional task changes the
4450 * weight and shares distributions like:
4451 *
4452 * rw'_i = { 3, 4, 1, 0 }
4453 * s'_i = { 3/8, 4/8, 1/8, 0 }
4454 *
4455 * We can then compute the difference in effective weight by using:
4456 *
4457 * dw_i = S * (s'_i - s_i) (3)
4458 *
4459 * Where 'S' is the group weight as seen by its parent.
4460 *
4461 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4462 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4463 * 4/7) times the weight of the group.
f5bfb7d9 4464 */
2069dd75 4465static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4466{
4be9daaa 4467 struct sched_entity *se = tg->se[cpu];
f1d239f7 4468
9722c2da 4469 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4470 return wl;
4471
4be9daaa 4472 for_each_sched_entity(se) {
cf5f0acf 4473 long w, W;
4be9daaa 4474
977dda7c 4475 tg = se->my_q->tg;
bb3469ac 4476
cf5f0acf
PZ
4477 /*
4478 * W = @wg + \Sum rw_j
4479 */
4480 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4481
cf5f0acf
PZ
4482 /*
4483 * w = rw_i + @wl
4484 */
9d89c257 4485 w = se->my_q->avg.load_avg + wl;
940959e9 4486
cf5f0acf
PZ
4487 /*
4488 * wl = S * s'_i; see (2)
4489 */
4490 if (W > 0 && w < W)
32a8df4e 4491 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4492 else
4493 wl = tg->shares;
940959e9 4494
cf5f0acf
PZ
4495 /*
4496 * Per the above, wl is the new se->load.weight value; since
4497 * those are clipped to [MIN_SHARES, ...) do so now. See
4498 * calc_cfs_shares().
4499 */
977dda7c
PT
4500 if (wl < MIN_SHARES)
4501 wl = MIN_SHARES;
cf5f0acf
PZ
4502
4503 /*
4504 * wl = dw_i = S * (s'_i - s_i); see (3)
4505 */
9d89c257 4506 wl -= se->avg.load_avg;
cf5f0acf
PZ
4507
4508 /*
4509 * Recursively apply this logic to all parent groups to compute
4510 * the final effective load change on the root group. Since
4511 * only the @tg group gets extra weight, all parent groups can
4512 * only redistribute existing shares. @wl is the shift in shares
4513 * resulting from this level per the above.
4514 */
4be9daaa 4515 wg = 0;
4be9daaa 4516 }
bb3469ac 4517
4be9daaa 4518 return wl;
bb3469ac
PZ
4519}
4520#else
4be9daaa 4521
58d081b5 4522static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4523{
83378269 4524 return wl;
bb3469ac 4525}
4be9daaa 4526
bb3469ac
PZ
4527#endif
4528
63b0e9ed
MG
4529/*
4530 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4531 * A waker of many should wake a different task than the one last awakened
4532 * at a frequency roughly N times higher than one of its wakees. In order
4533 * to determine whether we should let the load spread vs consolodating to
4534 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4535 * partner, and a factor of lls_size higher frequency in the other. With
4536 * both conditions met, we can be relatively sure that the relationship is
4537 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4538 * being client/server, worker/dispatcher, interrupt source or whatever is
4539 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4540 */
62470419
MW
4541static int wake_wide(struct task_struct *p)
4542{
63b0e9ed
MG
4543 unsigned int master = current->wakee_flips;
4544 unsigned int slave = p->wakee_flips;
7d9ffa89 4545 int factor = this_cpu_read(sd_llc_size);
62470419 4546
63b0e9ed
MG
4547 if (master < slave)
4548 swap(master, slave);
4549 if (slave < factor || master < slave * factor)
4550 return 0;
4551 return 1;
62470419
MW
4552}
4553
c88d5910 4554static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4555{
e37b6a7b 4556 s64 this_load, load;
bd61c98f 4557 s64 this_eff_load, prev_eff_load;
c88d5910 4558 int idx, this_cpu, prev_cpu;
c88d5910 4559 struct task_group *tg;
83378269 4560 unsigned long weight;
b3137bc8 4561 int balanced;
098fb9db 4562
c88d5910
PZ
4563 idx = sd->wake_idx;
4564 this_cpu = smp_processor_id();
4565 prev_cpu = task_cpu(p);
4566 load = source_load(prev_cpu, idx);
4567 this_load = target_load(this_cpu, idx);
098fb9db 4568
b3137bc8
MG
4569 /*
4570 * If sync wakeup then subtract the (maximum possible)
4571 * effect of the currently running task from the load
4572 * of the current CPU:
4573 */
83378269
PZ
4574 if (sync) {
4575 tg = task_group(current);
9d89c257 4576 weight = current->se.avg.load_avg;
83378269 4577
c88d5910 4578 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4579 load += effective_load(tg, prev_cpu, 0, -weight);
4580 }
b3137bc8 4581
83378269 4582 tg = task_group(p);
9d89c257 4583 weight = p->se.avg.load_avg;
b3137bc8 4584
71a29aa7
PZ
4585 /*
4586 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4587 * due to the sync cause above having dropped this_load to 0, we'll
4588 * always have an imbalance, but there's really nothing you can do
4589 * about that, so that's good too.
71a29aa7
PZ
4590 *
4591 * Otherwise check if either cpus are near enough in load to allow this
4592 * task to be woken on this_cpu.
4593 */
bd61c98f
VG
4594 this_eff_load = 100;
4595 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4596
bd61c98f
VG
4597 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4598 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4599
bd61c98f 4600 if (this_load > 0) {
e51fd5e2
PZ
4601 this_eff_load *= this_load +
4602 effective_load(tg, this_cpu, weight, weight);
4603
e51fd5e2 4604 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4605 }
e51fd5e2 4606
bd61c98f 4607 balanced = this_eff_load <= prev_eff_load;
098fb9db 4608
41acab88 4609 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4610
05bfb65f
VG
4611 if (!balanced)
4612 return 0;
098fb9db 4613
05bfb65f
VG
4614 schedstat_inc(sd, ttwu_move_affine);
4615 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4616
4617 return 1;
098fb9db
IM
4618}
4619
aaee1203
PZ
4620/*
4621 * find_idlest_group finds and returns the least busy CPU group within the
4622 * domain.
4623 */
4624static struct sched_group *
78e7ed53 4625find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4626 int this_cpu, int sd_flag)
e7693a36 4627{
b3bd3de6 4628 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4629 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4630 int load_idx = sd->forkexec_idx;
aaee1203 4631 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4632
c44f2a02
VG
4633 if (sd_flag & SD_BALANCE_WAKE)
4634 load_idx = sd->wake_idx;
4635
aaee1203
PZ
4636 do {
4637 unsigned long load, avg_load;
4638 int local_group;
4639 int i;
e7693a36 4640
aaee1203
PZ
4641 /* Skip over this group if it has no CPUs allowed */
4642 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4643 tsk_cpus_allowed(p)))
aaee1203
PZ
4644 continue;
4645
4646 local_group = cpumask_test_cpu(this_cpu,
4647 sched_group_cpus(group));
4648
4649 /* Tally up the load of all CPUs in the group */
4650 avg_load = 0;
4651
4652 for_each_cpu(i, sched_group_cpus(group)) {
4653 /* Bias balancing toward cpus of our domain */
4654 if (local_group)
4655 load = source_load(i, load_idx);
4656 else
4657 load = target_load(i, load_idx);
4658
4659 avg_load += load;
4660 }
4661
63b2ca30 4662 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4663 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4664
4665 if (local_group) {
4666 this_load = avg_load;
aaee1203
PZ
4667 } else if (avg_load < min_load) {
4668 min_load = avg_load;
4669 idlest = group;
4670 }
4671 } while (group = group->next, group != sd->groups);
4672
4673 if (!idlest || 100*this_load < imbalance*min_load)
4674 return NULL;
4675 return idlest;
4676}
4677
4678/*
4679 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4680 */
4681static int
4682find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4683{
4684 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4685 unsigned int min_exit_latency = UINT_MAX;
4686 u64 latest_idle_timestamp = 0;
4687 int least_loaded_cpu = this_cpu;
4688 int shallowest_idle_cpu = -1;
aaee1203
PZ
4689 int i;
4690
4691 /* Traverse only the allowed CPUs */
fa17b507 4692 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4693 if (idle_cpu(i)) {
4694 struct rq *rq = cpu_rq(i);
4695 struct cpuidle_state *idle = idle_get_state(rq);
4696 if (idle && idle->exit_latency < min_exit_latency) {
4697 /*
4698 * We give priority to a CPU whose idle state
4699 * has the smallest exit latency irrespective
4700 * of any idle timestamp.
4701 */
4702 min_exit_latency = idle->exit_latency;
4703 latest_idle_timestamp = rq->idle_stamp;
4704 shallowest_idle_cpu = i;
4705 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4706 rq->idle_stamp > latest_idle_timestamp) {
4707 /*
4708 * If equal or no active idle state, then
4709 * the most recently idled CPU might have
4710 * a warmer cache.
4711 */
4712 latest_idle_timestamp = rq->idle_stamp;
4713 shallowest_idle_cpu = i;
4714 }
9f96742a 4715 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4716 load = weighted_cpuload(i);
4717 if (load < min_load || (load == min_load && i == this_cpu)) {
4718 min_load = load;
4719 least_loaded_cpu = i;
4720 }
e7693a36
GH
4721 }
4722 }
4723
83a0a96a 4724 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4725}
e7693a36 4726
a50bde51
PZ
4727/*
4728 * Try and locate an idle CPU in the sched_domain.
4729 */
99bd5e2f 4730static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4731{
99bd5e2f 4732 struct sched_domain *sd;
37407ea7 4733 struct sched_group *sg;
e0a79f52 4734 int i = task_cpu(p);
a50bde51 4735
e0a79f52
MG
4736 if (idle_cpu(target))
4737 return target;
99bd5e2f
SS
4738
4739 /*
e0a79f52 4740 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4741 */
e0a79f52
MG
4742 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4743 return i;
a50bde51
PZ
4744
4745 /*
37407ea7 4746 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4747 */
518cd623 4748 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4749 for_each_lower_domain(sd) {
37407ea7
LT
4750 sg = sd->groups;
4751 do {
4752 if (!cpumask_intersects(sched_group_cpus(sg),
4753 tsk_cpus_allowed(p)))
4754 goto next;
4755
4756 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4757 if (i == target || !idle_cpu(i))
37407ea7
LT
4758 goto next;
4759 }
970e1789 4760
37407ea7
LT
4761 target = cpumask_first_and(sched_group_cpus(sg),
4762 tsk_cpus_allowed(p));
4763 goto done;
4764next:
4765 sg = sg->next;
4766 } while (sg != sd->groups);
4767 }
4768done:
a50bde51
PZ
4769 return target;
4770}
8bb5b00c
VG
4771/*
4772 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4773 * tasks. The unit of the return value must be the one of capacity so we can
4774 * compare the usage with the capacity of the CPU that is available for CFS
4775 * task (ie cpu_capacity).
9d89c257 4776 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4777 * CPU. It represents the amount of utilization of a CPU in the range
4778 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4779 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4780 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4781 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4782 * after migrating tasks until the average stabilizes with the new running
4783 * time. So we need to check that the usage stays into the range
4784 * [0..cpu_capacity_orig] and cap if necessary.
4785 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4786 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4787 */
4788static int get_cpu_usage(int cpu)
4789{
9d89c257 4790 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4791 unsigned long capacity = capacity_orig_of(cpu);
4792
4793 if (usage >= SCHED_LOAD_SCALE)
4794 return capacity;
4795
4796 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4797}
a50bde51 4798
aaee1203 4799/*
de91b9cb
MR
4800 * select_task_rq_fair: Select target runqueue for the waking task in domains
4801 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4802 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4803 *
de91b9cb
MR
4804 * Balances load by selecting the idlest cpu in the idlest group, or under
4805 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4806 *
de91b9cb 4807 * Returns the target cpu number.
aaee1203
PZ
4808 *
4809 * preempt must be disabled.
4810 */
0017d735 4811static int
ac66f547 4812select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4813{
29cd8bae 4814 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4815 int cpu = smp_processor_id();
63b0e9ed 4816 int new_cpu = prev_cpu;
99bd5e2f 4817 int want_affine = 0;
5158f4e4 4818 int sync = wake_flags & WF_SYNC;
c88d5910 4819
a8edd075 4820 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4821 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4822
dce840a0 4823 rcu_read_lock();
aaee1203 4824 for_each_domain(cpu, tmp) {
e4f42888 4825 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4826 break;
e4f42888 4827
fe3bcfe1 4828 /*
99bd5e2f
SS
4829 * If both cpu and prev_cpu are part of this domain,
4830 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4831 */
99bd5e2f
SS
4832 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4833 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4834 affine_sd = tmp;
29cd8bae 4835 break;
f03542a7 4836 }
29cd8bae 4837
f03542a7 4838 if (tmp->flags & sd_flag)
29cd8bae 4839 sd = tmp;
63b0e9ed
MG
4840 else if (!want_affine)
4841 break;
29cd8bae
PZ
4842 }
4843
63b0e9ed
MG
4844 if (affine_sd) {
4845 sd = NULL; /* Prefer wake_affine over balance flags */
4846 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4847 new_cpu = cpu;
8b911acd 4848 }
e7693a36 4849
63b0e9ed
MG
4850 if (!sd) {
4851 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4852 new_cpu = select_idle_sibling(p, new_cpu);
4853
4854 } else while (sd) {
aaee1203 4855 struct sched_group *group;
c88d5910 4856 int weight;
098fb9db 4857
0763a660 4858 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4859 sd = sd->child;
4860 continue;
4861 }
098fb9db 4862
c44f2a02 4863 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4864 if (!group) {
4865 sd = sd->child;
4866 continue;
4867 }
4ae7d5ce 4868
d7c33c49 4869 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4870 if (new_cpu == -1 || new_cpu == cpu) {
4871 /* Now try balancing at a lower domain level of cpu */
4872 sd = sd->child;
4873 continue;
e7693a36 4874 }
aaee1203
PZ
4875
4876 /* Now try balancing at a lower domain level of new_cpu */
4877 cpu = new_cpu;
669c55e9 4878 weight = sd->span_weight;
aaee1203
PZ
4879 sd = NULL;
4880 for_each_domain(cpu, tmp) {
669c55e9 4881 if (weight <= tmp->span_weight)
aaee1203 4882 break;
0763a660 4883 if (tmp->flags & sd_flag)
aaee1203
PZ
4884 sd = tmp;
4885 }
4886 /* while loop will break here if sd == NULL */
e7693a36 4887 }
dce840a0 4888 rcu_read_unlock();
e7693a36 4889
c88d5910 4890 return new_cpu;
e7693a36 4891}
0a74bef8
PT
4892
4893/*
4894 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4895 * cfs_rq_of(p) references at time of call are still valid and identify the
4896 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4897 * other assumptions, including the state of rq->lock, should be made.
4898 */
9d89c257 4899static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4900{
aff3e498 4901 /*
9d89c257
YD
4902 * We are supposed to update the task to "current" time, then its up to date
4903 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4904 * what current time is, so simply throw away the out-of-date time. This
4905 * will result in the wakee task is less decayed, but giving the wakee more
4906 * load sounds not bad.
aff3e498 4907 */
9d89c257
YD
4908 remove_entity_load_avg(&p->se);
4909
4910 /* Tell new CPU we are migrated */
4911 p->se.avg.last_update_time = 0;
3944a927
BS
4912
4913 /* We have migrated, no longer consider this task hot */
9d89c257 4914 p->se.exec_start = 0;
0a74bef8 4915}
e7693a36
GH
4916#endif /* CONFIG_SMP */
4917
e52fb7c0
PZ
4918static unsigned long
4919wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4920{
4921 unsigned long gran = sysctl_sched_wakeup_granularity;
4922
4923 /*
e52fb7c0
PZ
4924 * Since its curr running now, convert the gran from real-time
4925 * to virtual-time in his units.
13814d42
MG
4926 *
4927 * By using 'se' instead of 'curr' we penalize light tasks, so
4928 * they get preempted easier. That is, if 'se' < 'curr' then
4929 * the resulting gran will be larger, therefore penalizing the
4930 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4931 * be smaller, again penalizing the lighter task.
4932 *
4933 * This is especially important for buddies when the leftmost
4934 * task is higher priority than the buddy.
0bbd3336 4935 */
f4ad9bd2 4936 return calc_delta_fair(gran, se);
0bbd3336
PZ
4937}
4938
464b7527
PZ
4939/*
4940 * Should 'se' preempt 'curr'.
4941 *
4942 * |s1
4943 * |s2
4944 * |s3
4945 * g
4946 * |<--->|c
4947 *
4948 * w(c, s1) = -1
4949 * w(c, s2) = 0
4950 * w(c, s3) = 1
4951 *
4952 */
4953static int
4954wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4955{
4956 s64 gran, vdiff = curr->vruntime - se->vruntime;
4957
4958 if (vdiff <= 0)
4959 return -1;
4960
e52fb7c0 4961 gran = wakeup_gran(curr, se);
464b7527
PZ
4962 if (vdiff > gran)
4963 return 1;
4964
4965 return 0;
4966}
4967
02479099
PZ
4968static void set_last_buddy(struct sched_entity *se)
4969{
69c80f3e
VP
4970 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4971 return;
4972
4973 for_each_sched_entity(se)
4974 cfs_rq_of(se)->last = se;
02479099
PZ
4975}
4976
4977static void set_next_buddy(struct sched_entity *se)
4978{
69c80f3e
VP
4979 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4980 return;
4981
4982 for_each_sched_entity(se)
4983 cfs_rq_of(se)->next = se;
02479099
PZ
4984}
4985
ac53db59
RR
4986static void set_skip_buddy(struct sched_entity *se)
4987{
69c80f3e
VP
4988 for_each_sched_entity(se)
4989 cfs_rq_of(se)->skip = se;
ac53db59
RR
4990}
4991
bf0f6f24
IM
4992/*
4993 * Preempt the current task with a newly woken task if needed:
4994 */
5a9b86f6 4995static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4996{
4997 struct task_struct *curr = rq->curr;
8651a86c 4998 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4999 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5000 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5001 int next_buddy_marked = 0;
bf0f6f24 5002
4ae7d5ce
IM
5003 if (unlikely(se == pse))
5004 return;
5005
5238cdd3 5006 /*
163122b7 5007 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5008 * unconditionally check_prempt_curr() after an enqueue (which may have
5009 * lead to a throttle). This both saves work and prevents false
5010 * next-buddy nomination below.
5011 */
5012 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5013 return;
5014
2f36825b 5015 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5016 set_next_buddy(pse);
2f36825b
VP
5017 next_buddy_marked = 1;
5018 }
57fdc26d 5019
aec0a514
BR
5020 /*
5021 * We can come here with TIF_NEED_RESCHED already set from new task
5022 * wake up path.
5238cdd3
PT
5023 *
5024 * Note: this also catches the edge-case of curr being in a throttled
5025 * group (e.g. via set_curr_task), since update_curr() (in the
5026 * enqueue of curr) will have resulted in resched being set. This
5027 * prevents us from potentially nominating it as a false LAST_BUDDY
5028 * below.
aec0a514
BR
5029 */
5030 if (test_tsk_need_resched(curr))
5031 return;
5032
a2f5c9ab
DH
5033 /* Idle tasks are by definition preempted by non-idle tasks. */
5034 if (unlikely(curr->policy == SCHED_IDLE) &&
5035 likely(p->policy != SCHED_IDLE))
5036 goto preempt;
5037
91c234b4 5038 /*
a2f5c9ab
DH
5039 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5040 * is driven by the tick):
91c234b4 5041 */
8ed92e51 5042 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5043 return;
bf0f6f24 5044
464b7527 5045 find_matching_se(&se, &pse);
9bbd7374 5046 update_curr(cfs_rq_of(se));
002f128b 5047 BUG_ON(!pse);
2f36825b
VP
5048 if (wakeup_preempt_entity(se, pse) == 1) {
5049 /*
5050 * Bias pick_next to pick the sched entity that is
5051 * triggering this preemption.
5052 */
5053 if (!next_buddy_marked)
5054 set_next_buddy(pse);
3a7e73a2 5055 goto preempt;
2f36825b 5056 }
464b7527 5057
3a7e73a2 5058 return;
a65ac745 5059
3a7e73a2 5060preempt:
8875125e 5061 resched_curr(rq);
3a7e73a2
PZ
5062 /*
5063 * Only set the backward buddy when the current task is still
5064 * on the rq. This can happen when a wakeup gets interleaved
5065 * with schedule on the ->pre_schedule() or idle_balance()
5066 * point, either of which can * drop the rq lock.
5067 *
5068 * Also, during early boot the idle thread is in the fair class,
5069 * for obvious reasons its a bad idea to schedule back to it.
5070 */
5071 if (unlikely(!se->on_rq || curr == rq->idle))
5072 return;
5073
5074 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5075 set_last_buddy(se);
bf0f6f24
IM
5076}
5077
606dba2e
PZ
5078static struct task_struct *
5079pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5080{
5081 struct cfs_rq *cfs_rq = &rq->cfs;
5082 struct sched_entity *se;
678d5718 5083 struct task_struct *p;
37e117c0 5084 int new_tasks;
678d5718 5085
6e83125c 5086again:
678d5718
PZ
5087#ifdef CONFIG_FAIR_GROUP_SCHED
5088 if (!cfs_rq->nr_running)
38033c37 5089 goto idle;
678d5718 5090
3f1d2a31 5091 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5092 goto simple;
5093
5094 /*
5095 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5096 * likely that a next task is from the same cgroup as the current.
5097 *
5098 * Therefore attempt to avoid putting and setting the entire cgroup
5099 * hierarchy, only change the part that actually changes.
5100 */
5101
5102 do {
5103 struct sched_entity *curr = cfs_rq->curr;
5104
5105 /*
5106 * Since we got here without doing put_prev_entity() we also
5107 * have to consider cfs_rq->curr. If it is still a runnable
5108 * entity, update_curr() will update its vruntime, otherwise
5109 * forget we've ever seen it.
5110 */
54d27365
BS
5111 if (curr) {
5112 if (curr->on_rq)
5113 update_curr(cfs_rq);
5114 else
5115 curr = NULL;
678d5718 5116
54d27365
BS
5117 /*
5118 * This call to check_cfs_rq_runtime() will do the
5119 * throttle and dequeue its entity in the parent(s).
5120 * Therefore the 'simple' nr_running test will indeed
5121 * be correct.
5122 */
5123 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5124 goto simple;
5125 }
678d5718
PZ
5126
5127 se = pick_next_entity(cfs_rq, curr);
5128 cfs_rq = group_cfs_rq(se);
5129 } while (cfs_rq);
5130
5131 p = task_of(se);
5132
5133 /*
5134 * Since we haven't yet done put_prev_entity and if the selected task
5135 * is a different task than we started out with, try and touch the
5136 * least amount of cfs_rqs.
5137 */
5138 if (prev != p) {
5139 struct sched_entity *pse = &prev->se;
5140
5141 while (!(cfs_rq = is_same_group(se, pse))) {
5142 int se_depth = se->depth;
5143 int pse_depth = pse->depth;
5144
5145 if (se_depth <= pse_depth) {
5146 put_prev_entity(cfs_rq_of(pse), pse);
5147 pse = parent_entity(pse);
5148 }
5149 if (se_depth >= pse_depth) {
5150 set_next_entity(cfs_rq_of(se), se);
5151 se = parent_entity(se);
5152 }
5153 }
5154
5155 put_prev_entity(cfs_rq, pse);
5156 set_next_entity(cfs_rq, se);
5157 }
5158
5159 if (hrtick_enabled(rq))
5160 hrtick_start_fair(rq, p);
5161
5162 return p;
5163simple:
5164 cfs_rq = &rq->cfs;
5165#endif
bf0f6f24 5166
36ace27e 5167 if (!cfs_rq->nr_running)
38033c37 5168 goto idle;
bf0f6f24 5169
3f1d2a31 5170 put_prev_task(rq, prev);
606dba2e 5171
bf0f6f24 5172 do {
678d5718 5173 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5174 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5175 cfs_rq = group_cfs_rq(se);
5176 } while (cfs_rq);
5177
8f4d37ec 5178 p = task_of(se);
678d5718 5179
b39e66ea
MG
5180 if (hrtick_enabled(rq))
5181 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5182
5183 return p;
38033c37
PZ
5184
5185idle:
cbce1a68
PZ
5186 /*
5187 * This is OK, because current is on_cpu, which avoids it being picked
5188 * for load-balance and preemption/IRQs are still disabled avoiding
5189 * further scheduler activity on it and we're being very careful to
5190 * re-start the picking loop.
5191 */
5192 lockdep_unpin_lock(&rq->lock);
e4aa358b 5193 new_tasks = idle_balance(rq);
cbce1a68 5194 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5195 /*
5196 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5197 * possible for any higher priority task to appear. In that case we
5198 * must re-start the pick_next_entity() loop.
5199 */
e4aa358b 5200 if (new_tasks < 0)
37e117c0
PZ
5201 return RETRY_TASK;
5202
e4aa358b 5203 if (new_tasks > 0)
38033c37 5204 goto again;
38033c37
PZ
5205
5206 return NULL;
bf0f6f24
IM
5207}
5208
5209/*
5210 * Account for a descheduled task:
5211 */
31ee529c 5212static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5213{
5214 struct sched_entity *se = &prev->se;
5215 struct cfs_rq *cfs_rq;
5216
5217 for_each_sched_entity(se) {
5218 cfs_rq = cfs_rq_of(se);
ab6cde26 5219 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5220 }
5221}
5222
ac53db59
RR
5223/*
5224 * sched_yield() is very simple
5225 *
5226 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5227 */
5228static void yield_task_fair(struct rq *rq)
5229{
5230 struct task_struct *curr = rq->curr;
5231 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5232 struct sched_entity *se = &curr->se;
5233
5234 /*
5235 * Are we the only task in the tree?
5236 */
5237 if (unlikely(rq->nr_running == 1))
5238 return;
5239
5240 clear_buddies(cfs_rq, se);
5241
5242 if (curr->policy != SCHED_BATCH) {
5243 update_rq_clock(rq);
5244 /*
5245 * Update run-time statistics of the 'current'.
5246 */
5247 update_curr(cfs_rq);
916671c0
MG
5248 /*
5249 * Tell update_rq_clock() that we've just updated,
5250 * so we don't do microscopic update in schedule()
5251 * and double the fastpath cost.
5252 */
9edfbfed 5253 rq_clock_skip_update(rq, true);
ac53db59
RR
5254 }
5255
5256 set_skip_buddy(se);
5257}
5258
d95f4122
MG
5259static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5260{
5261 struct sched_entity *se = &p->se;
5262
5238cdd3
PT
5263 /* throttled hierarchies are not runnable */
5264 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5265 return false;
5266
5267 /* Tell the scheduler that we'd really like pse to run next. */
5268 set_next_buddy(se);
5269
d95f4122
MG
5270 yield_task_fair(rq);
5271
5272 return true;
5273}
5274
681f3e68 5275#ifdef CONFIG_SMP
bf0f6f24 5276/**************************************************
e9c84cb8
PZ
5277 * Fair scheduling class load-balancing methods.
5278 *
5279 * BASICS
5280 *
5281 * The purpose of load-balancing is to achieve the same basic fairness the
5282 * per-cpu scheduler provides, namely provide a proportional amount of compute
5283 * time to each task. This is expressed in the following equation:
5284 *
5285 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5286 *
5287 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5288 * W_i,0 is defined as:
5289 *
5290 * W_i,0 = \Sum_j w_i,j (2)
5291 *
5292 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5293 * is derived from the nice value as per prio_to_weight[].
5294 *
5295 * The weight average is an exponential decay average of the instantaneous
5296 * weight:
5297 *
5298 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5299 *
ced549fa 5300 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5301 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5302 * can also include other factors [XXX].
5303 *
5304 * To achieve this balance we define a measure of imbalance which follows
5305 * directly from (1):
5306 *
ced549fa 5307 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5308 *
5309 * We them move tasks around to minimize the imbalance. In the continuous
5310 * function space it is obvious this converges, in the discrete case we get
5311 * a few fun cases generally called infeasible weight scenarios.
5312 *
5313 * [XXX expand on:
5314 * - infeasible weights;
5315 * - local vs global optima in the discrete case. ]
5316 *
5317 *
5318 * SCHED DOMAINS
5319 *
5320 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5321 * for all i,j solution, we create a tree of cpus that follows the hardware
5322 * topology where each level pairs two lower groups (or better). This results
5323 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5324 * tree to only the first of the previous level and we decrease the frequency
5325 * of load-balance at each level inv. proportional to the number of cpus in
5326 * the groups.
5327 *
5328 * This yields:
5329 *
5330 * log_2 n 1 n
5331 * \Sum { --- * --- * 2^i } = O(n) (5)
5332 * i = 0 2^i 2^i
5333 * `- size of each group
5334 * | | `- number of cpus doing load-balance
5335 * | `- freq
5336 * `- sum over all levels
5337 *
5338 * Coupled with a limit on how many tasks we can migrate every balance pass,
5339 * this makes (5) the runtime complexity of the balancer.
5340 *
5341 * An important property here is that each CPU is still (indirectly) connected
5342 * to every other cpu in at most O(log n) steps:
5343 *
5344 * The adjacency matrix of the resulting graph is given by:
5345 *
5346 * log_2 n
5347 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5348 * k = 0
5349 *
5350 * And you'll find that:
5351 *
5352 * A^(log_2 n)_i,j != 0 for all i,j (7)
5353 *
5354 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5355 * The task movement gives a factor of O(m), giving a convergence complexity
5356 * of:
5357 *
5358 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5359 *
5360 *
5361 * WORK CONSERVING
5362 *
5363 * In order to avoid CPUs going idle while there's still work to do, new idle
5364 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5365 * tree itself instead of relying on other CPUs to bring it work.
5366 *
5367 * This adds some complexity to both (5) and (8) but it reduces the total idle
5368 * time.
5369 *
5370 * [XXX more?]
5371 *
5372 *
5373 * CGROUPS
5374 *
5375 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5376 *
5377 * s_k,i
5378 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5379 * S_k
5380 *
5381 * Where
5382 *
5383 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5384 *
5385 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5386 *
5387 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5388 * property.
5389 *
5390 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5391 * rewrite all of this once again.]
5392 */
bf0f6f24 5393
ed387b78
HS
5394static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5395
0ec8aa00
PZ
5396enum fbq_type { regular, remote, all };
5397
ddcdf6e7 5398#define LBF_ALL_PINNED 0x01
367456c7 5399#define LBF_NEED_BREAK 0x02
6263322c
PZ
5400#define LBF_DST_PINNED 0x04
5401#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5402
5403struct lb_env {
5404 struct sched_domain *sd;
5405
ddcdf6e7 5406 struct rq *src_rq;
85c1e7da 5407 int src_cpu;
ddcdf6e7
PZ
5408
5409 int dst_cpu;
5410 struct rq *dst_rq;
5411
88b8dac0
SV
5412 struct cpumask *dst_grpmask;
5413 int new_dst_cpu;
ddcdf6e7 5414 enum cpu_idle_type idle;
bd939f45 5415 long imbalance;
b9403130
MW
5416 /* The set of CPUs under consideration for load-balancing */
5417 struct cpumask *cpus;
5418
ddcdf6e7 5419 unsigned int flags;
367456c7
PZ
5420
5421 unsigned int loop;
5422 unsigned int loop_break;
5423 unsigned int loop_max;
0ec8aa00
PZ
5424
5425 enum fbq_type fbq_type;
163122b7 5426 struct list_head tasks;
ddcdf6e7
PZ
5427};
5428
029632fb
PZ
5429/*
5430 * Is this task likely cache-hot:
5431 */
5d5e2b1b 5432static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5433{
5434 s64 delta;
5435
e5673f28
KT
5436 lockdep_assert_held(&env->src_rq->lock);
5437
029632fb
PZ
5438 if (p->sched_class != &fair_sched_class)
5439 return 0;
5440
5441 if (unlikely(p->policy == SCHED_IDLE))
5442 return 0;
5443
5444 /*
5445 * Buddy candidates are cache hot:
5446 */
5d5e2b1b 5447 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5448 (&p->se == cfs_rq_of(&p->se)->next ||
5449 &p->se == cfs_rq_of(&p->se)->last))
5450 return 1;
5451
5452 if (sysctl_sched_migration_cost == -1)
5453 return 1;
5454 if (sysctl_sched_migration_cost == 0)
5455 return 0;
5456
5d5e2b1b 5457 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5458
5459 return delta < (s64)sysctl_sched_migration_cost;
5460}
5461
3a7053b3 5462#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5463/*
2a1ed24c
SD
5464 * Returns 1, if task migration degrades locality
5465 * Returns 0, if task migration improves locality i.e migration preferred.
5466 * Returns -1, if task migration is not affected by locality.
c1ceac62 5467 */
2a1ed24c 5468static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5469{
b1ad065e 5470 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5471 unsigned long src_faults, dst_faults;
3a7053b3
MG
5472 int src_nid, dst_nid;
5473
44dba3d5 5474 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5475 return -1;
5476
5477 if (!sched_feat(NUMA))
5478 return -1;
7a0f3083
MG
5479
5480 src_nid = cpu_to_node(env->src_cpu);
5481 dst_nid = cpu_to_node(env->dst_cpu);
5482
83e1d2cd 5483 if (src_nid == dst_nid)
2a1ed24c 5484 return -1;
7a0f3083 5485
2a1ed24c
SD
5486 /* Migrating away from the preferred node is always bad. */
5487 if (src_nid == p->numa_preferred_nid) {
5488 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5489 return 1;
5490 else
5491 return -1;
5492 }
b1ad065e 5493
c1ceac62
RR
5494 /* Encourage migration to the preferred node. */
5495 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5496 return 0;
b1ad065e 5497
c1ceac62
RR
5498 if (numa_group) {
5499 src_faults = group_faults(p, src_nid);
5500 dst_faults = group_faults(p, dst_nid);
5501 } else {
5502 src_faults = task_faults(p, src_nid);
5503 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5504 }
5505
c1ceac62 5506 return dst_faults < src_faults;
7a0f3083
MG
5507}
5508
3a7053b3 5509#else
2a1ed24c 5510static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5511 struct lb_env *env)
5512{
2a1ed24c 5513 return -1;
7a0f3083 5514}
3a7053b3
MG
5515#endif
5516
1e3c88bd
PZ
5517/*
5518 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5519 */
5520static
8e45cb54 5521int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5522{
2a1ed24c 5523 int tsk_cache_hot;
e5673f28
KT
5524
5525 lockdep_assert_held(&env->src_rq->lock);
5526
1e3c88bd
PZ
5527 /*
5528 * We do not migrate tasks that are:
d3198084 5529 * 1) throttled_lb_pair, or
1e3c88bd 5530 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5531 * 3) running (obviously), or
5532 * 4) are cache-hot on their current CPU.
1e3c88bd 5533 */
d3198084
JK
5534 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5535 return 0;
5536
ddcdf6e7 5537 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5538 int cpu;
88b8dac0 5539
41acab88 5540 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5541
6263322c
PZ
5542 env->flags |= LBF_SOME_PINNED;
5543
88b8dac0
SV
5544 /*
5545 * Remember if this task can be migrated to any other cpu in
5546 * our sched_group. We may want to revisit it if we couldn't
5547 * meet load balance goals by pulling other tasks on src_cpu.
5548 *
5549 * Also avoid computing new_dst_cpu if we have already computed
5550 * one in current iteration.
5551 */
6263322c 5552 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5553 return 0;
5554
e02e60c1
JK
5555 /* Prevent to re-select dst_cpu via env's cpus */
5556 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5557 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5558 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5559 env->new_dst_cpu = cpu;
5560 break;
5561 }
88b8dac0 5562 }
e02e60c1 5563
1e3c88bd
PZ
5564 return 0;
5565 }
88b8dac0
SV
5566
5567 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5568 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5569
ddcdf6e7 5570 if (task_running(env->src_rq, p)) {
41acab88 5571 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5572 return 0;
5573 }
5574
5575 /*
5576 * Aggressive migration if:
3a7053b3
MG
5577 * 1) destination numa is preferred
5578 * 2) task is cache cold, or
5579 * 3) too many balance attempts have failed.
1e3c88bd 5580 */
2a1ed24c
SD
5581 tsk_cache_hot = migrate_degrades_locality(p, env);
5582 if (tsk_cache_hot == -1)
5583 tsk_cache_hot = task_hot(p, env);
3a7053b3 5584
2a1ed24c 5585 if (tsk_cache_hot <= 0 ||
7a96c231 5586 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5587 if (tsk_cache_hot == 1) {
3a7053b3
MG
5588 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5589 schedstat_inc(p, se.statistics.nr_forced_migrations);
5590 }
1e3c88bd
PZ
5591 return 1;
5592 }
5593
4e2dcb73
ZH
5594 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5595 return 0;
1e3c88bd
PZ
5596}
5597
897c395f 5598/*
163122b7
KT
5599 * detach_task() -- detach the task for the migration specified in env
5600 */
5601static void detach_task(struct task_struct *p, struct lb_env *env)
5602{
5603 lockdep_assert_held(&env->src_rq->lock);
5604
5605 deactivate_task(env->src_rq, p, 0);
5606 p->on_rq = TASK_ON_RQ_MIGRATING;
5607 set_task_cpu(p, env->dst_cpu);
5608}
5609
897c395f 5610/*
e5673f28 5611 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5612 * part of active balancing operations within "domain".
897c395f 5613 *
e5673f28 5614 * Returns a task if successful and NULL otherwise.
897c395f 5615 */
e5673f28 5616static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5617{
5618 struct task_struct *p, *n;
897c395f 5619
e5673f28
KT
5620 lockdep_assert_held(&env->src_rq->lock);
5621
367456c7 5622 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5623 if (!can_migrate_task(p, env))
5624 continue;
897c395f 5625
163122b7 5626 detach_task(p, env);
e5673f28 5627
367456c7 5628 /*
e5673f28 5629 * Right now, this is only the second place where
163122b7 5630 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5631 * so we can safely collect stats here rather than
163122b7 5632 * inside detach_tasks().
367456c7
PZ
5633 */
5634 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5635 return p;
897c395f 5636 }
e5673f28 5637 return NULL;
897c395f
PZ
5638}
5639
eb95308e
PZ
5640static const unsigned int sched_nr_migrate_break = 32;
5641
5d6523eb 5642/*
163122b7
KT
5643 * detach_tasks() -- tries to detach up to imbalance weighted load from
5644 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5645 *
163122b7 5646 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5647 */
163122b7 5648static int detach_tasks(struct lb_env *env)
1e3c88bd 5649{
5d6523eb
PZ
5650 struct list_head *tasks = &env->src_rq->cfs_tasks;
5651 struct task_struct *p;
367456c7 5652 unsigned long load;
163122b7
KT
5653 int detached = 0;
5654
5655 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5656
bd939f45 5657 if (env->imbalance <= 0)
5d6523eb 5658 return 0;
1e3c88bd 5659
5d6523eb 5660 while (!list_empty(tasks)) {
985d3a4c
YD
5661 /*
5662 * We don't want to steal all, otherwise we may be treated likewise,
5663 * which could at worst lead to a livelock crash.
5664 */
5665 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5666 break;
5667
5d6523eb 5668 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5669
367456c7
PZ
5670 env->loop++;
5671 /* We've more or less seen every task there is, call it quits */
5d6523eb 5672 if (env->loop > env->loop_max)
367456c7 5673 break;
5d6523eb
PZ
5674
5675 /* take a breather every nr_migrate tasks */
367456c7 5676 if (env->loop > env->loop_break) {
eb95308e 5677 env->loop_break += sched_nr_migrate_break;
8e45cb54 5678 env->flags |= LBF_NEED_BREAK;
ee00e66f 5679 break;
a195f004 5680 }
1e3c88bd 5681
d3198084 5682 if (!can_migrate_task(p, env))
367456c7
PZ
5683 goto next;
5684
5685 load = task_h_load(p);
5d6523eb 5686
eb95308e 5687 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5688 goto next;
5689
bd939f45 5690 if ((load / 2) > env->imbalance)
367456c7 5691 goto next;
1e3c88bd 5692
163122b7
KT
5693 detach_task(p, env);
5694 list_add(&p->se.group_node, &env->tasks);
5695
5696 detached++;
bd939f45 5697 env->imbalance -= load;
1e3c88bd
PZ
5698
5699#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5700 /*
5701 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5702 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5703 * the critical section.
5704 */
5d6523eb 5705 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5706 break;
1e3c88bd
PZ
5707#endif
5708
ee00e66f
PZ
5709 /*
5710 * We only want to steal up to the prescribed amount of
5711 * weighted load.
5712 */
bd939f45 5713 if (env->imbalance <= 0)
ee00e66f 5714 break;
367456c7
PZ
5715
5716 continue;
5717next:
5d6523eb 5718 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5719 }
5d6523eb 5720
1e3c88bd 5721 /*
163122b7
KT
5722 * Right now, this is one of only two places we collect this stat
5723 * so we can safely collect detach_one_task() stats here rather
5724 * than inside detach_one_task().
1e3c88bd 5725 */
163122b7 5726 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5727
163122b7
KT
5728 return detached;
5729}
5730
5731/*
5732 * attach_task() -- attach the task detached by detach_task() to its new rq.
5733 */
5734static void attach_task(struct rq *rq, struct task_struct *p)
5735{
5736 lockdep_assert_held(&rq->lock);
5737
5738 BUG_ON(task_rq(p) != rq);
5739 p->on_rq = TASK_ON_RQ_QUEUED;
5740 activate_task(rq, p, 0);
5741 check_preempt_curr(rq, p, 0);
5742}
5743
5744/*
5745 * attach_one_task() -- attaches the task returned from detach_one_task() to
5746 * its new rq.
5747 */
5748static void attach_one_task(struct rq *rq, struct task_struct *p)
5749{
5750 raw_spin_lock(&rq->lock);
5751 attach_task(rq, p);
5752 raw_spin_unlock(&rq->lock);
5753}
5754
5755/*
5756 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5757 * new rq.
5758 */
5759static void attach_tasks(struct lb_env *env)
5760{
5761 struct list_head *tasks = &env->tasks;
5762 struct task_struct *p;
5763
5764 raw_spin_lock(&env->dst_rq->lock);
5765
5766 while (!list_empty(tasks)) {
5767 p = list_first_entry(tasks, struct task_struct, se.group_node);
5768 list_del_init(&p->se.group_node);
1e3c88bd 5769
163122b7
KT
5770 attach_task(env->dst_rq, p);
5771 }
5772
5773 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5774}
5775
230059de 5776#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5777static void update_blocked_averages(int cpu)
9e3081ca 5778{
9e3081ca 5779 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5780 struct cfs_rq *cfs_rq;
5781 unsigned long flags;
9e3081ca 5782
48a16753
PT
5783 raw_spin_lock_irqsave(&rq->lock, flags);
5784 update_rq_clock(rq);
9d89c257 5785
9763b67f
PZ
5786 /*
5787 * Iterates the task_group tree in a bottom up fashion, see
5788 * list_add_leaf_cfs_rq() for details.
5789 */
64660c86 5790 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5791 /* throttled entities do not contribute to load */
5792 if (throttled_hierarchy(cfs_rq))
5793 continue;
48a16753 5794
9d89c257
YD
5795 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5796 update_tg_load_avg(cfs_rq, 0);
5797 }
48a16753 5798 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5799}
5800
9763b67f 5801/*
68520796 5802 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5803 * This needs to be done in a top-down fashion because the load of a child
5804 * group is a fraction of its parents load.
5805 */
68520796 5806static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5807{
68520796
VD
5808 struct rq *rq = rq_of(cfs_rq);
5809 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5810 unsigned long now = jiffies;
68520796 5811 unsigned long load;
a35b6466 5812
68520796 5813 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5814 return;
5815
68520796
VD
5816 cfs_rq->h_load_next = NULL;
5817 for_each_sched_entity(se) {
5818 cfs_rq = cfs_rq_of(se);
5819 cfs_rq->h_load_next = se;
5820 if (cfs_rq->last_h_load_update == now)
5821 break;
5822 }
a35b6466 5823
68520796 5824 if (!se) {
9d89c257 5825 cfs_rq->h_load = cfs_rq->avg.load_avg;
68520796
VD
5826 cfs_rq->last_h_load_update = now;
5827 }
5828
5829 while ((se = cfs_rq->h_load_next) != NULL) {
5830 load = cfs_rq->h_load;
9d89c257 5831 load = div64_ul(load * se->avg.load_avg, cfs_rq->avg.load_avg + 1);
68520796
VD
5832 cfs_rq = group_cfs_rq(se);
5833 cfs_rq->h_load = load;
5834 cfs_rq->last_h_load_update = now;
5835 }
9763b67f
PZ
5836}
5837
367456c7 5838static unsigned long task_h_load(struct task_struct *p)
230059de 5839{
367456c7 5840 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5841
68520796 5842 update_cfs_rq_h_load(cfs_rq);
9d89c257
YD
5843 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5844 cfs_rq->avg.load_avg + 1);
230059de
PZ
5845}
5846#else
48a16753 5847static inline void update_blocked_averages(int cpu)
9e3081ca 5848{
6c1d47c0
VG
5849 struct rq *rq = cpu_rq(cpu);
5850 struct cfs_rq *cfs_rq = &rq->cfs;
5851 unsigned long flags;
5852
5853 raw_spin_lock_irqsave(&rq->lock, flags);
5854 update_rq_clock(rq);
5855 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5856 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5857}
5858
367456c7 5859static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5860{
9d89c257 5861 return p->se.avg.load_avg;
1e3c88bd 5862}
230059de 5863#endif
1e3c88bd 5864
1e3c88bd 5865/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5866
5867enum group_type {
5868 group_other = 0,
5869 group_imbalanced,
5870 group_overloaded,
5871};
5872
1e3c88bd
PZ
5873/*
5874 * sg_lb_stats - stats of a sched_group required for load_balancing
5875 */
5876struct sg_lb_stats {
5877 unsigned long avg_load; /*Avg load across the CPUs of the group */
5878 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5879 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5880 unsigned long load_per_task;
63b2ca30 5881 unsigned long group_capacity;
8bb5b00c 5882 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5883 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5884 unsigned int idle_cpus;
5885 unsigned int group_weight;
caeb178c 5886 enum group_type group_type;
ea67821b 5887 int group_no_capacity;
0ec8aa00
PZ
5888#ifdef CONFIG_NUMA_BALANCING
5889 unsigned int nr_numa_running;
5890 unsigned int nr_preferred_running;
5891#endif
1e3c88bd
PZ
5892};
5893
56cf515b
JK
5894/*
5895 * sd_lb_stats - Structure to store the statistics of a sched_domain
5896 * during load balancing.
5897 */
5898struct sd_lb_stats {
5899 struct sched_group *busiest; /* Busiest group in this sd */
5900 struct sched_group *local; /* Local group in this sd */
5901 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5902 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5903 unsigned long avg_load; /* Average load across all groups in sd */
5904
56cf515b 5905 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5906 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5907};
5908
147c5fc2
PZ
5909static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5910{
5911 /*
5912 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5913 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5914 * We must however clear busiest_stat::avg_load because
5915 * update_sd_pick_busiest() reads this before assignment.
5916 */
5917 *sds = (struct sd_lb_stats){
5918 .busiest = NULL,
5919 .local = NULL,
5920 .total_load = 0UL,
63b2ca30 5921 .total_capacity = 0UL,
147c5fc2
PZ
5922 .busiest_stat = {
5923 .avg_load = 0UL,
caeb178c
RR
5924 .sum_nr_running = 0,
5925 .group_type = group_other,
147c5fc2
PZ
5926 },
5927 };
5928}
5929
1e3c88bd
PZ
5930/**
5931 * get_sd_load_idx - Obtain the load index for a given sched domain.
5932 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5933 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5934 *
5935 * Return: The load index.
1e3c88bd
PZ
5936 */
5937static inline int get_sd_load_idx(struct sched_domain *sd,
5938 enum cpu_idle_type idle)
5939{
5940 int load_idx;
5941
5942 switch (idle) {
5943 case CPU_NOT_IDLE:
5944 load_idx = sd->busy_idx;
5945 break;
5946
5947 case CPU_NEWLY_IDLE:
5948 load_idx = sd->newidle_idx;
5949 break;
5950 default:
5951 load_idx = sd->idle_idx;
5952 break;
5953 }
5954
5955 return load_idx;
5956}
5957
26bc3c50 5958static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5959{
26bc3c50
VG
5960 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5961 return sd->smt_gain / sd->span_weight;
1e3c88bd 5962
26bc3c50 5963 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5964}
5965
26bc3c50 5966unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5967{
26bc3c50 5968 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5969}
5970
ced549fa 5971static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5972{
5973 struct rq *rq = cpu_rq(cpu);
b5b4860d 5974 u64 total, used, age_stamp, avg;
cadefd3d 5975 s64 delta;
1e3c88bd 5976
b654f7de
PZ
5977 /*
5978 * Since we're reading these variables without serialization make sure
5979 * we read them once before doing sanity checks on them.
5980 */
316c1608
JL
5981 age_stamp = READ_ONCE(rq->age_stamp);
5982 avg = READ_ONCE(rq->rt_avg);
cebde6d6 5983 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 5984
cadefd3d
PZ
5985 if (unlikely(delta < 0))
5986 delta = 0;
5987
5988 total = sched_avg_period() + delta;
aa483808 5989
b5b4860d 5990 used = div_u64(avg, total);
1e3c88bd 5991
b5b4860d
VG
5992 if (likely(used < SCHED_CAPACITY_SCALE))
5993 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 5994
b5b4860d 5995 return 1;
1e3c88bd
PZ
5996}
5997
ced549fa 5998static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5999{
ca8ce3d0 6000 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6001 struct sched_group *sdg = sd->groups;
6002
26bc3c50
VG
6003 if (sched_feat(ARCH_CAPACITY))
6004 capacity *= arch_scale_cpu_capacity(sd, cpu);
6005 else
6006 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6007
26bc3c50 6008 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6009
ca6d75e6 6010 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6011
ced549fa 6012 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6013 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6014
ced549fa
NP
6015 if (!capacity)
6016 capacity = 1;
1e3c88bd 6017
ced549fa
NP
6018 cpu_rq(cpu)->cpu_capacity = capacity;
6019 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6020}
6021
63b2ca30 6022void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6023{
6024 struct sched_domain *child = sd->child;
6025 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6026 unsigned long capacity;
4ec4412e
VG
6027 unsigned long interval;
6028
6029 interval = msecs_to_jiffies(sd->balance_interval);
6030 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6031 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6032
6033 if (!child) {
ced549fa 6034 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6035 return;
6036 }
6037
dc7ff76e 6038 capacity = 0;
1e3c88bd 6039
74a5ce20
PZ
6040 if (child->flags & SD_OVERLAP) {
6041 /*
6042 * SD_OVERLAP domains cannot assume that child groups
6043 * span the current group.
6044 */
6045
863bffc8 6046 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6047 struct sched_group_capacity *sgc;
9abf24d4 6048 struct rq *rq = cpu_rq(cpu);
863bffc8 6049
9abf24d4 6050 /*
63b2ca30 6051 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6052 * gets here before we've attached the domains to the
6053 * runqueues.
6054 *
ced549fa
NP
6055 * Use capacity_of(), which is set irrespective of domains
6056 * in update_cpu_capacity().
9abf24d4 6057 *
dc7ff76e 6058 * This avoids capacity from being 0 and
9abf24d4 6059 * causing divide-by-zero issues on boot.
9abf24d4
SD
6060 */
6061 if (unlikely(!rq->sd)) {
ced549fa 6062 capacity += capacity_of(cpu);
9abf24d4
SD
6063 continue;
6064 }
863bffc8 6065
63b2ca30 6066 sgc = rq->sd->groups->sgc;
63b2ca30 6067 capacity += sgc->capacity;
863bffc8 6068 }
74a5ce20
PZ
6069 } else {
6070 /*
6071 * !SD_OVERLAP domains can assume that child groups
6072 * span the current group.
6073 */
6074
6075 group = child->groups;
6076 do {
63b2ca30 6077 capacity += group->sgc->capacity;
74a5ce20
PZ
6078 group = group->next;
6079 } while (group != child->groups);
6080 }
1e3c88bd 6081
63b2ca30 6082 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6083}
6084
9d5efe05 6085/*
ea67821b
VG
6086 * Check whether the capacity of the rq has been noticeably reduced by side
6087 * activity. The imbalance_pct is used for the threshold.
6088 * Return true is the capacity is reduced
9d5efe05
SV
6089 */
6090static inline int
ea67821b 6091check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6092{
ea67821b
VG
6093 return ((rq->cpu_capacity * sd->imbalance_pct) <
6094 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6095}
6096
30ce5dab
PZ
6097/*
6098 * Group imbalance indicates (and tries to solve) the problem where balancing
6099 * groups is inadequate due to tsk_cpus_allowed() constraints.
6100 *
6101 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6102 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6103 * Something like:
6104 *
6105 * { 0 1 2 3 } { 4 5 6 7 }
6106 * * * * *
6107 *
6108 * If we were to balance group-wise we'd place two tasks in the first group and
6109 * two tasks in the second group. Clearly this is undesired as it will overload
6110 * cpu 3 and leave one of the cpus in the second group unused.
6111 *
6112 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6113 * by noticing the lower domain failed to reach balance and had difficulty
6114 * moving tasks due to affinity constraints.
30ce5dab
PZ
6115 *
6116 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6117 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6118 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6119 * to create an effective group imbalance.
6120 *
6121 * This is a somewhat tricky proposition since the next run might not find the
6122 * group imbalance and decide the groups need to be balanced again. A most
6123 * subtle and fragile situation.
6124 */
6125
6263322c 6126static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6127{
63b2ca30 6128 return group->sgc->imbalance;
30ce5dab
PZ
6129}
6130
b37d9316 6131/*
ea67821b
VG
6132 * group_has_capacity returns true if the group has spare capacity that could
6133 * be used by some tasks.
6134 * We consider that a group has spare capacity if the * number of task is
6135 * smaller than the number of CPUs or if the usage is lower than the available
6136 * capacity for CFS tasks.
6137 * For the latter, we use a threshold to stabilize the state, to take into
6138 * account the variance of the tasks' load and to return true if the available
6139 * capacity in meaningful for the load balancer.
6140 * As an example, an available capacity of 1% can appear but it doesn't make
6141 * any benefit for the load balance.
b37d9316 6142 */
ea67821b
VG
6143static inline bool
6144group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6145{
ea67821b
VG
6146 if (sgs->sum_nr_running < sgs->group_weight)
6147 return true;
c61037e9 6148
ea67821b
VG
6149 if ((sgs->group_capacity * 100) >
6150 (sgs->group_usage * env->sd->imbalance_pct))
6151 return true;
b37d9316 6152
ea67821b
VG
6153 return false;
6154}
6155
6156/*
6157 * group_is_overloaded returns true if the group has more tasks than it can
6158 * handle.
6159 * group_is_overloaded is not equals to !group_has_capacity because a group
6160 * with the exact right number of tasks, has no more spare capacity but is not
6161 * overloaded so both group_has_capacity and group_is_overloaded return
6162 * false.
6163 */
6164static inline bool
6165group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6166{
6167 if (sgs->sum_nr_running <= sgs->group_weight)
6168 return false;
b37d9316 6169
ea67821b
VG
6170 if ((sgs->group_capacity * 100) <
6171 (sgs->group_usage * env->sd->imbalance_pct))
6172 return true;
b37d9316 6173
ea67821b 6174 return false;
b37d9316
PZ
6175}
6176
ea67821b
VG
6177static enum group_type group_classify(struct lb_env *env,
6178 struct sched_group *group,
6179 struct sg_lb_stats *sgs)
caeb178c 6180{
ea67821b 6181 if (sgs->group_no_capacity)
caeb178c
RR
6182 return group_overloaded;
6183
6184 if (sg_imbalanced(group))
6185 return group_imbalanced;
6186
6187 return group_other;
6188}
6189
1e3c88bd
PZ
6190/**
6191 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6192 * @env: The load balancing environment.
1e3c88bd 6193 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6194 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6195 * @local_group: Does group contain this_cpu.
1e3c88bd 6196 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6197 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6198 */
bd939f45
PZ
6199static inline void update_sg_lb_stats(struct lb_env *env,
6200 struct sched_group *group, int load_idx,
4486edd1
TC
6201 int local_group, struct sg_lb_stats *sgs,
6202 bool *overload)
1e3c88bd 6203{
30ce5dab 6204 unsigned long load;
bd939f45 6205 int i;
1e3c88bd 6206
b72ff13c
PZ
6207 memset(sgs, 0, sizeof(*sgs));
6208
b9403130 6209 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6210 struct rq *rq = cpu_rq(i);
6211
1e3c88bd 6212 /* Bias balancing toward cpus of our domain */
6263322c 6213 if (local_group)
04f733b4 6214 load = target_load(i, load_idx);
6263322c 6215 else
1e3c88bd 6216 load = source_load(i, load_idx);
1e3c88bd
PZ
6217
6218 sgs->group_load += load;
8bb5b00c 6219 sgs->group_usage += get_cpu_usage(i);
65fdac08 6220 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6221
6222 if (rq->nr_running > 1)
6223 *overload = true;
6224
0ec8aa00
PZ
6225#ifdef CONFIG_NUMA_BALANCING
6226 sgs->nr_numa_running += rq->nr_numa_running;
6227 sgs->nr_preferred_running += rq->nr_preferred_running;
6228#endif
1e3c88bd 6229 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6230 if (idle_cpu(i))
6231 sgs->idle_cpus++;
1e3c88bd
PZ
6232 }
6233
63b2ca30
NP
6234 /* Adjust by relative CPU capacity of the group */
6235 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6236 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6237
dd5feea1 6238 if (sgs->sum_nr_running)
38d0f770 6239 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6240
aae6d3dd 6241 sgs->group_weight = group->group_weight;
b37d9316 6242
ea67821b
VG
6243 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6244 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6245}
6246
532cb4c4
MN
6247/**
6248 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6249 * @env: The load balancing environment.
532cb4c4
MN
6250 * @sds: sched_domain statistics
6251 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6252 * @sgs: sched_group statistics
532cb4c4
MN
6253 *
6254 * Determine if @sg is a busier group than the previously selected
6255 * busiest group.
e69f6186
YB
6256 *
6257 * Return: %true if @sg is a busier group than the previously selected
6258 * busiest group. %false otherwise.
532cb4c4 6259 */
bd939f45 6260static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6261 struct sd_lb_stats *sds,
6262 struct sched_group *sg,
bd939f45 6263 struct sg_lb_stats *sgs)
532cb4c4 6264{
caeb178c 6265 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6266
caeb178c 6267 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6268 return true;
6269
caeb178c
RR
6270 if (sgs->group_type < busiest->group_type)
6271 return false;
6272
6273 if (sgs->avg_load <= busiest->avg_load)
6274 return false;
6275
6276 /* This is the busiest node in its class. */
6277 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6278 return true;
6279
6280 /*
6281 * ASYM_PACKING needs to move all the work to the lowest
6282 * numbered CPUs in the group, therefore mark all groups
6283 * higher than ourself as busy.
6284 */
caeb178c 6285 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6286 if (!sds->busiest)
6287 return true;
6288
6289 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6290 return true;
6291 }
6292
6293 return false;
6294}
6295
0ec8aa00
PZ
6296#ifdef CONFIG_NUMA_BALANCING
6297static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6298{
6299 if (sgs->sum_nr_running > sgs->nr_numa_running)
6300 return regular;
6301 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6302 return remote;
6303 return all;
6304}
6305
6306static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6307{
6308 if (rq->nr_running > rq->nr_numa_running)
6309 return regular;
6310 if (rq->nr_running > rq->nr_preferred_running)
6311 return remote;
6312 return all;
6313}
6314#else
6315static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6316{
6317 return all;
6318}
6319
6320static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6321{
6322 return regular;
6323}
6324#endif /* CONFIG_NUMA_BALANCING */
6325
1e3c88bd 6326/**
461819ac 6327 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6328 * @env: The load balancing environment.
1e3c88bd
PZ
6329 * @sds: variable to hold the statistics for this sched_domain.
6330 */
0ec8aa00 6331static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6332{
bd939f45
PZ
6333 struct sched_domain *child = env->sd->child;
6334 struct sched_group *sg = env->sd->groups;
56cf515b 6335 struct sg_lb_stats tmp_sgs;
1e3c88bd 6336 int load_idx, prefer_sibling = 0;
4486edd1 6337 bool overload = false;
1e3c88bd
PZ
6338
6339 if (child && child->flags & SD_PREFER_SIBLING)
6340 prefer_sibling = 1;
6341
bd939f45 6342 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6343
6344 do {
56cf515b 6345 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6346 int local_group;
6347
bd939f45 6348 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6349 if (local_group) {
6350 sds->local = sg;
6351 sgs = &sds->local_stat;
b72ff13c
PZ
6352
6353 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6354 time_after_eq(jiffies, sg->sgc->next_update))
6355 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6356 }
1e3c88bd 6357
4486edd1
TC
6358 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6359 &overload);
1e3c88bd 6360
b72ff13c
PZ
6361 if (local_group)
6362 goto next_group;
6363
1e3c88bd
PZ
6364 /*
6365 * In case the child domain prefers tasks go to siblings
ea67821b 6366 * first, lower the sg capacity so that we'll try
75dd321d
NR
6367 * and move all the excess tasks away. We lower the capacity
6368 * of a group only if the local group has the capacity to fit
ea67821b
VG
6369 * these excess tasks. The extra check prevents the case where
6370 * you always pull from the heaviest group when it is already
6371 * under-utilized (possible with a large weight task outweighs
6372 * the tasks on the system).
1e3c88bd 6373 */
b72ff13c 6374 if (prefer_sibling && sds->local &&
ea67821b
VG
6375 group_has_capacity(env, &sds->local_stat) &&
6376 (sgs->sum_nr_running > 1)) {
6377 sgs->group_no_capacity = 1;
6378 sgs->group_type = group_overloaded;
cb0b9f24 6379 }
1e3c88bd 6380
b72ff13c 6381 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6382 sds->busiest = sg;
56cf515b 6383 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6384 }
6385
b72ff13c
PZ
6386next_group:
6387 /* Now, start updating sd_lb_stats */
6388 sds->total_load += sgs->group_load;
63b2ca30 6389 sds->total_capacity += sgs->group_capacity;
b72ff13c 6390
532cb4c4 6391 sg = sg->next;
bd939f45 6392 } while (sg != env->sd->groups);
0ec8aa00
PZ
6393
6394 if (env->sd->flags & SD_NUMA)
6395 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6396
6397 if (!env->sd->parent) {
6398 /* update overload indicator if we are at root domain */
6399 if (env->dst_rq->rd->overload != overload)
6400 env->dst_rq->rd->overload = overload;
6401 }
6402
532cb4c4
MN
6403}
6404
532cb4c4
MN
6405/**
6406 * check_asym_packing - Check to see if the group is packed into the
6407 * sched doman.
6408 *
6409 * This is primarily intended to used at the sibling level. Some
6410 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6411 * case of POWER7, it can move to lower SMT modes only when higher
6412 * threads are idle. When in lower SMT modes, the threads will
6413 * perform better since they share less core resources. Hence when we
6414 * have idle threads, we want them to be the higher ones.
6415 *
6416 * This packing function is run on idle threads. It checks to see if
6417 * the busiest CPU in this domain (core in the P7 case) has a higher
6418 * CPU number than the packing function is being run on. Here we are
6419 * assuming lower CPU number will be equivalent to lower a SMT thread
6420 * number.
6421 *
e69f6186 6422 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6423 * this CPU. The amount of the imbalance is returned in *imbalance.
6424 *
cd96891d 6425 * @env: The load balancing environment.
532cb4c4 6426 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6427 */
bd939f45 6428static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6429{
6430 int busiest_cpu;
6431
bd939f45 6432 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6433 return 0;
6434
6435 if (!sds->busiest)
6436 return 0;
6437
6438 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6439 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6440 return 0;
6441
bd939f45 6442 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6443 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6444 SCHED_CAPACITY_SCALE);
bd939f45 6445
532cb4c4 6446 return 1;
1e3c88bd
PZ
6447}
6448
6449/**
6450 * fix_small_imbalance - Calculate the minor imbalance that exists
6451 * amongst the groups of a sched_domain, during
6452 * load balancing.
cd96891d 6453 * @env: The load balancing environment.
1e3c88bd 6454 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6455 */
bd939f45
PZ
6456static inline
6457void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6458{
63b2ca30 6459 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6460 unsigned int imbn = 2;
dd5feea1 6461 unsigned long scaled_busy_load_per_task;
56cf515b 6462 struct sg_lb_stats *local, *busiest;
1e3c88bd 6463
56cf515b
JK
6464 local = &sds->local_stat;
6465 busiest = &sds->busiest_stat;
1e3c88bd 6466
56cf515b
JK
6467 if (!local->sum_nr_running)
6468 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6469 else if (busiest->load_per_task > local->load_per_task)
6470 imbn = 1;
dd5feea1 6471
56cf515b 6472 scaled_busy_load_per_task =
ca8ce3d0 6473 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6474 busiest->group_capacity;
56cf515b 6475
3029ede3
VD
6476 if (busiest->avg_load + scaled_busy_load_per_task >=
6477 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6478 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6479 return;
6480 }
6481
6482 /*
6483 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6484 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6485 * moving them.
6486 */
6487
63b2ca30 6488 capa_now += busiest->group_capacity *
56cf515b 6489 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6490 capa_now += local->group_capacity *
56cf515b 6491 min(local->load_per_task, local->avg_load);
ca8ce3d0 6492 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6493
6494 /* Amount of load we'd subtract */
a2cd4260 6495 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6496 capa_move += busiest->group_capacity *
56cf515b 6497 min(busiest->load_per_task,
a2cd4260 6498 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6499 }
1e3c88bd
PZ
6500
6501 /* Amount of load we'd add */
63b2ca30 6502 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6503 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6504 tmp = (busiest->avg_load * busiest->group_capacity) /
6505 local->group_capacity;
56cf515b 6506 } else {
ca8ce3d0 6507 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6508 local->group_capacity;
56cf515b 6509 }
63b2ca30 6510 capa_move += local->group_capacity *
3ae11c90 6511 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6512 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6513
6514 /* Move if we gain throughput */
63b2ca30 6515 if (capa_move > capa_now)
56cf515b 6516 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6517}
6518
6519/**
6520 * calculate_imbalance - Calculate the amount of imbalance present within the
6521 * groups of a given sched_domain during load balance.
bd939f45 6522 * @env: load balance environment
1e3c88bd 6523 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6524 */
bd939f45 6525static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6526{
dd5feea1 6527 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6528 struct sg_lb_stats *local, *busiest;
6529
6530 local = &sds->local_stat;
56cf515b 6531 busiest = &sds->busiest_stat;
dd5feea1 6532
caeb178c 6533 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6534 /*
6535 * In the group_imb case we cannot rely on group-wide averages
6536 * to ensure cpu-load equilibrium, look at wider averages. XXX
6537 */
56cf515b
JK
6538 busiest->load_per_task =
6539 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6540 }
6541
1e3c88bd
PZ
6542 /*
6543 * In the presence of smp nice balancing, certain scenarios can have
6544 * max load less than avg load(as we skip the groups at or below
ced549fa 6545 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6546 */
b1885550
VD
6547 if (busiest->avg_load <= sds->avg_load ||
6548 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6549 env->imbalance = 0;
6550 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6551 }
6552
9a5d9ba6
PZ
6553 /*
6554 * If there aren't any idle cpus, avoid creating some.
6555 */
6556 if (busiest->group_type == group_overloaded &&
6557 local->group_type == group_overloaded) {
ea67821b
VG
6558 load_above_capacity = busiest->sum_nr_running *
6559 SCHED_LOAD_SCALE;
6560 if (load_above_capacity > busiest->group_capacity)
6561 load_above_capacity -= busiest->group_capacity;
6562 else
6563 load_above_capacity = ~0UL;
dd5feea1
SS
6564 }
6565
6566 /*
6567 * We're trying to get all the cpus to the average_load, so we don't
6568 * want to push ourselves above the average load, nor do we wish to
6569 * reduce the max loaded cpu below the average load. At the same time,
6570 * we also don't want to reduce the group load below the group capacity
6571 * (so that we can implement power-savings policies etc). Thus we look
6572 * for the minimum possible imbalance.
dd5feea1 6573 */
30ce5dab 6574 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6575
6576 /* How much load to actually move to equalise the imbalance */
56cf515b 6577 env->imbalance = min(
63b2ca30
NP
6578 max_pull * busiest->group_capacity,
6579 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6580 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6581
6582 /*
6583 * if *imbalance is less than the average load per runnable task
25985edc 6584 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6585 * a think about bumping its value to force at least one task to be
6586 * moved
6587 */
56cf515b 6588 if (env->imbalance < busiest->load_per_task)
bd939f45 6589 return fix_small_imbalance(env, sds);
1e3c88bd 6590}
fab47622 6591
1e3c88bd
PZ
6592/******* find_busiest_group() helpers end here *********************/
6593
6594/**
6595 * find_busiest_group - Returns the busiest group within the sched_domain
6596 * if there is an imbalance. If there isn't an imbalance, and
6597 * the user has opted for power-savings, it returns a group whose
6598 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6599 * such a group exists.
6600 *
6601 * Also calculates the amount of weighted load which should be moved
6602 * to restore balance.
6603 *
cd96891d 6604 * @env: The load balancing environment.
1e3c88bd 6605 *
e69f6186 6606 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6607 * - If no imbalance and user has opted for power-savings balance,
6608 * return the least loaded group whose CPUs can be
6609 * put to idle by rebalancing its tasks onto our group.
6610 */
56cf515b 6611static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6612{
56cf515b 6613 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6614 struct sd_lb_stats sds;
6615
147c5fc2 6616 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6617
6618 /*
6619 * Compute the various statistics relavent for load balancing at
6620 * this level.
6621 */
23f0d209 6622 update_sd_lb_stats(env, &sds);
56cf515b
JK
6623 local = &sds.local_stat;
6624 busiest = &sds.busiest_stat;
1e3c88bd 6625
ea67821b 6626 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6627 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6628 check_asym_packing(env, &sds))
532cb4c4
MN
6629 return sds.busiest;
6630
cc57aa8f 6631 /* There is no busy sibling group to pull tasks from */
56cf515b 6632 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6633 goto out_balanced;
6634
ca8ce3d0
NP
6635 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6636 / sds.total_capacity;
b0432d8f 6637
866ab43e
PZ
6638 /*
6639 * If the busiest group is imbalanced the below checks don't
30ce5dab 6640 * work because they assume all things are equal, which typically
866ab43e
PZ
6641 * isn't true due to cpus_allowed constraints and the like.
6642 */
caeb178c 6643 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6644 goto force_balance;
6645
cc57aa8f 6646 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6647 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6648 busiest->group_no_capacity)
fab47622
NR
6649 goto force_balance;
6650
cc57aa8f 6651 /*
9c58c79a 6652 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6653 * don't try and pull any tasks.
6654 */
56cf515b 6655 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6656 goto out_balanced;
6657
cc57aa8f
PZ
6658 /*
6659 * Don't pull any tasks if this group is already above the domain
6660 * average load.
6661 */
56cf515b 6662 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6663 goto out_balanced;
6664
bd939f45 6665 if (env->idle == CPU_IDLE) {
aae6d3dd 6666 /*
43f4d666
VG
6667 * This cpu is idle. If the busiest group is not overloaded
6668 * and there is no imbalance between this and busiest group
6669 * wrt idle cpus, it is balanced. The imbalance becomes
6670 * significant if the diff is greater than 1 otherwise we
6671 * might end up to just move the imbalance on another group
aae6d3dd 6672 */
43f4d666
VG
6673 if ((busiest->group_type != group_overloaded) &&
6674 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6675 goto out_balanced;
c186fafe
PZ
6676 } else {
6677 /*
6678 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6679 * imbalance_pct to be conservative.
6680 */
56cf515b
JK
6681 if (100 * busiest->avg_load <=
6682 env->sd->imbalance_pct * local->avg_load)
c186fafe 6683 goto out_balanced;
aae6d3dd 6684 }
1e3c88bd 6685
fab47622 6686force_balance:
1e3c88bd 6687 /* Looks like there is an imbalance. Compute it */
bd939f45 6688 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6689 return sds.busiest;
6690
6691out_balanced:
bd939f45 6692 env->imbalance = 0;
1e3c88bd
PZ
6693 return NULL;
6694}
6695
6696/*
6697 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6698 */
bd939f45 6699static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6700 struct sched_group *group)
1e3c88bd
PZ
6701{
6702 struct rq *busiest = NULL, *rq;
ced549fa 6703 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6704 int i;
6705
6906a408 6706 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6707 unsigned long capacity, wl;
0ec8aa00
PZ
6708 enum fbq_type rt;
6709
6710 rq = cpu_rq(i);
6711 rt = fbq_classify_rq(rq);
1e3c88bd 6712
0ec8aa00
PZ
6713 /*
6714 * We classify groups/runqueues into three groups:
6715 * - regular: there are !numa tasks
6716 * - remote: there are numa tasks that run on the 'wrong' node
6717 * - all: there is no distinction
6718 *
6719 * In order to avoid migrating ideally placed numa tasks,
6720 * ignore those when there's better options.
6721 *
6722 * If we ignore the actual busiest queue to migrate another
6723 * task, the next balance pass can still reduce the busiest
6724 * queue by moving tasks around inside the node.
6725 *
6726 * If we cannot move enough load due to this classification
6727 * the next pass will adjust the group classification and
6728 * allow migration of more tasks.
6729 *
6730 * Both cases only affect the total convergence complexity.
6731 */
6732 if (rt > env->fbq_type)
6733 continue;
6734
ced549fa 6735 capacity = capacity_of(i);
9d5efe05 6736
6e40f5bb 6737 wl = weighted_cpuload(i);
1e3c88bd 6738
6e40f5bb
TG
6739 /*
6740 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6741 * which is not scaled with the cpu capacity.
6e40f5bb 6742 */
ea67821b
VG
6743
6744 if (rq->nr_running == 1 && wl > env->imbalance &&
6745 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6746 continue;
6747
6e40f5bb
TG
6748 /*
6749 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6750 * the weighted_cpuload() scaled with the cpu capacity, so
6751 * that the load can be moved away from the cpu that is
6752 * potentially running at a lower capacity.
95a79b80 6753 *
ced549fa 6754 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6755 * multiplication to rid ourselves of the division works out
ced549fa
NP
6756 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6757 * our previous maximum.
6e40f5bb 6758 */
ced549fa 6759 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6760 busiest_load = wl;
ced549fa 6761 busiest_capacity = capacity;
1e3c88bd
PZ
6762 busiest = rq;
6763 }
6764 }
6765
6766 return busiest;
6767}
6768
6769/*
6770 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6771 * so long as it is large enough.
6772 */
6773#define MAX_PINNED_INTERVAL 512
6774
6775/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6776DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6777
bd939f45 6778static int need_active_balance(struct lb_env *env)
1af3ed3d 6779{
bd939f45
PZ
6780 struct sched_domain *sd = env->sd;
6781
6782 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6783
6784 /*
6785 * ASYM_PACKING needs to force migrate tasks from busy but
6786 * higher numbered CPUs in order to pack all tasks in the
6787 * lowest numbered CPUs.
6788 */
bd939f45 6789 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6790 return 1;
1af3ed3d
PZ
6791 }
6792
1aaf90a4
VG
6793 /*
6794 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6795 * It's worth migrating the task if the src_cpu's capacity is reduced
6796 * because of other sched_class or IRQs if more capacity stays
6797 * available on dst_cpu.
6798 */
6799 if ((env->idle != CPU_NOT_IDLE) &&
6800 (env->src_rq->cfs.h_nr_running == 1)) {
6801 if ((check_cpu_capacity(env->src_rq, sd)) &&
6802 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6803 return 1;
6804 }
6805
1af3ed3d
PZ
6806 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6807}
6808
969c7921
TH
6809static int active_load_balance_cpu_stop(void *data);
6810
23f0d209
JK
6811static int should_we_balance(struct lb_env *env)
6812{
6813 struct sched_group *sg = env->sd->groups;
6814 struct cpumask *sg_cpus, *sg_mask;
6815 int cpu, balance_cpu = -1;
6816
6817 /*
6818 * In the newly idle case, we will allow all the cpu's
6819 * to do the newly idle load balance.
6820 */
6821 if (env->idle == CPU_NEWLY_IDLE)
6822 return 1;
6823
6824 sg_cpus = sched_group_cpus(sg);
6825 sg_mask = sched_group_mask(sg);
6826 /* Try to find first idle cpu */
6827 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6828 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6829 continue;
6830
6831 balance_cpu = cpu;
6832 break;
6833 }
6834
6835 if (balance_cpu == -1)
6836 balance_cpu = group_balance_cpu(sg);
6837
6838 /*
6839 * First idle cpu or the first cpu(busiest) in this sched group
6840 * is eligible for doing load balancing at this and above domains.
6841 */
b0cff9d8 6842 return balance_cpu == env->dst_cpu;
23f0d209
JK
6843}
6844
1e3c88bd
PZ
6845/*
6846 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6847 * tasks if there is an imbalance.
6848 */
6849static int load_balance(int this_cpu, struct rq *this_rq,
6850 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6851 int *continue_balancing)
1e3c88bd 6852{
88b8dac0 6853 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6854 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6855 struct sched_group *group;
1e3c88bd
PZ
6856 struct rq *busiest;
6857 unsigned long flags;
4ba29684 6858 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6859
8e45cb54
PZ
6860 struct lb_env env = {
6861 .sd = sd,
ddcdf6e7
PZ
6862 .dst_cpu = this_cpu,
6863 .dst_rq = this_rq,
88b8dac0 6864 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6865 .idle = idle,
eb95308e 6866 .loop_break = sched_nr_migrate_break,
b9403130 6867 .cpus = cpus,
0ec8aa00 6868 .fbq_type = all,
163122b7 6869 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6870 };
6871
cfc03118
JK
6872 /*
6873 * For NEWLY_IDLE load_balancing, we don't need to consider
6874 * other cpus in our group
6875 */
e02e60c1 6876 if (idle == CPU_NEWLY_IDLE)
cfc03118 6877 env.dst_grpmask = NULL;
cfc03118 6878
1e3c88bd
PZ
6879 cpumask_copy(cpus, cpu_active_mask);
6880
1e3c88bd
PZ
6881 schedstat_inc(sd, lb_count[idle]);
6882
6883redo:
23f0d209
JK
6884 if (!should_we_balance(&env)) {
6885 *continue_balancing = 0;
1e3c88bd 6886 goto out_balanced;
23f0d209 6887 }
1e3c88bd 6888
23f0d209 6889 group = find_busiest_group(&env);
1e3c88bd
PZ
6890 if (!group) {
6891 schedstat_inc(sd, lb_nobusyg[idle]);
6892 goto out_balanced;
6893 }
6894
b9403130 6895 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6896 if (!busiest) {
6897 schedstat_inc(sd, lb_nobusyq[idle]);
6898 goto out_balanced;
6899 }
6900
78feefc5 6901 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6902
bd939f45 6903 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6904
1aaf90a4
VG
6905 env.src_cpu = busiest->cpu;
6906 env.src_rq = busiest;
6907
1e3c88bd
PZ
6908 ld_moved = 0;
6909 if (busiest->nr_running > 1) {
6910 /*
6911 * Attempt to move tasks. If find_busiest_group has found
6912 * an imbalance but busiest->nr_running <= 1, the group is
6913 * still unbalanced. ld_moved simply stays zero, so it is
6914 * correctly treated as an imbalance.
6915 */
8e45cb54 6916 env.flags |= LBF_ALL_PINNED;
c82513e5 6917 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6918
5d6523eb 6919more_balance:
163122b7 6920 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6921
6922 /*
6923 * cur_ld_moved - load moved in current iteration
6924 * ld_moved - cumulative load moved across iterations
6925 */
163122b7 6926 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6927
6928 /*
163122b7
KT
6929 * We've detached some tasks from busiest_rq. Every
6930 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6931 * unlock busiest->lock, and we are able to be sure
6932 * that nobody can manipulate the tasks in parallel.
6933 * See task_rq_lock() family for the details.
1e3c88bd 6934 */
163122b7
KT
6935
6936 raw_spin_unlock(&busiest->lock);
6937
6938 if (cur_ld_moved) {
6939 attach_tasks(&env);
6940 ld_moved += cur_ld_moved;
6941 }
6942
1e3c88bd 6943 local_irq_restore(flags);
88b8dac0 6944
f1cd0858
JK
6945 if (env.flags & LBF_NEED_BREAK) {
6946 env.flags &= ~LBF_NEED_BREAK;
6947 goto more_balance;
6948 }
6949
88b8dac0
SV
6950 /*
6951 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6952 * us and move them to an alternate dst_cpu in our sched_group
6953 * where they can run. The upper limit on how many times we
6954 * iterate on same src_cpu is dependent on number of cpus in our
6955 * sched_group.
6956 *
6957 * This changes load balance semantics a bit on who can move
6958 * load to a given_cpu. In addition to the given_cpu itself
6959 * (or a ilb_cpu acting on its behalf where given_cpu is
6960 * nohz-idle), we now have balance_cpu in a position to move
6961 * load to given_cpu. In rare situations, this may cause
6962 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6963 * _independently_ and at _same_ time to move some load to
6964 * given_cpu) causing exceess load to be moved to given_cpu.
6965 * This however should not happen so much in practice and
6966 * moreover subsequent load balance cycles should correct the
6967 * excess load moved.
6968 */
6263322c 6969 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6970
7aff2e3a
VD
6971 /* Prevent to re-select dst_cpu via env's cpus */
6972 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6973
78feefc5 6974 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6975 env.dst_cpu = env.new_dst_cpu;
6263322c 6976 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6977 env.loop = 0;
6978 env.loop_break = sched_nr_migrate_break;
e02e60c1 6979
88b8dac0
SV
6980 /*
6981 * Go back to "more_balance" rather than "redo" since we
6982 * need to continue with same src_cpu.
6983 */
6984 goto more_balance;
6985 }
1e3c88bd 6986
6263322c
PZ
6987 /*
6988 * We failed to reach balance because of affinity.
6989 */
6990 if (sd_parent) {
63b2ca30 6991 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6992
afdeee05 6993 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6994 *group_imbalance = 1;
6263322c
PZ
6995 }
6996
1e3c88bd 6997 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6998 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6999 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7000 if (!cpumask_empty(cpus)) {
7001 env.loop = 0;
7002 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7003 goto redo;
bbf18b19 7004 }
afdeee05 7005 goto out_all_pinned;
1e3c88bd
PZ
7006 }
7007 }
7008
7009 if (!ld_moved) {
7010 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7011 /*
7012 * Increment the failure counter only on periodic balance.
7013 * We do not want newidle balance, which can be very
7014 * frequent, pollute the failure counter causing
7015 * excessive cache_hot migrations and active balances.
7016 */
7017 if (idle != CPU_NEWLY_IDLE)
7018 sd->nr_balance_failed++;
1e3c88bd 7019
bd939f45 7020 if (need_active_balance(&env)) {
1e3c88bd
PZ
7021 raw_spin_lock_irqsave(&busiest->lock, flags);
7022
969c7921
TH
7023 /* don't kick the active_load_balance_cpu_stop,
7024 * if the curr task on busiest cpu can't be
7025 * moved to this_cpu
1e3c88bd
PZ
7026 */
7027 if (!cpumask_test_cpu(this_cpu,
fa17b507 7028 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7029 raw_spin_unlock_irqrestore(&busiest->lock,
7030 flags);
8e45cb54 7031 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7032 goto out_one_pinned;
7033 }
7034
969c7921
TH
7035 /*
7036 * ->active_balance synchronizes accesses to
7037 * ->active_balance_work. Once set, it's cleared
7038 * only after active load balance is finished.
7039 */
1e3c88bd
PZ
7040 if (!busiest->active_balance) {
7041 busiest->active_balance = 1;
7042 busiest->push_cpu = this_cpu;
7043 active_balance = 1;
7044 }
7045 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7046
bd939f45 7047 if (active_balance) {
969c7921
TH
7048 stop_one_cpu_nowait(cpu_of(busiest),
7049 active_load_balance_cpu_stop, busiest,
7050 &busiest->active_balance_work);
bd939f45 7051 }
1e3c88bd
PZ
7052
7053 /*
7054 * We've kicked active balancing, reset the failure
7055 * counter.
7056 */
7057 sd->nr_balance_failed = sd->cache_nice_tries+1;
7058 }
7059 } else
7060 sd->nr_balance_failed = 0;
7061
7062 if (likely(!active_balance)) {
7063 /* We were unbalanced, so reset the balancing interval */
7064 sd->balance_interval = sd->min_interval;
7065 } else {
7066 /*
7067 * If we've begun active balancing, start to back off. This
7068 * case may not be covered by the all_pinned logic if there
7069 * is only 1 task on the busy runqueue (because we don't call
163122b7 7070 * detach_tasks).
1e3c88bd
PZ
7071 */
7072 if (sd->balance_interval < sd->max_interval)
7073 sd->balance_interval *= 2;
7074 }
7075
1e3c88bd
PZ
7076 goto out;
7077
7078out_balanced:
afdeee05
VG
7079 /*
7080 * We reach balance although we may have faced some affinity
7081 * constraints. Clear the imbalance flag if it was set.
7082 */
7083 if (sd_parent) {
7084 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7085
7086 if (*group_imbalance)
7087 *group_imbalance = 0;
7088 }
7089
7090out_all_pinned:
7091 /*
7092 * We reach balance because all tasks are pinned at this level so
7093 * we can't migrate them. Let the imbalance flag set so parent level
7094 * can try to migrate them.
7095 */
1e3c88bd
PZ
7096 schedstat_inc(sd, lb_balanced[idle]);
7097
7098 sd->nr_balance_failed = 0;
7099
7100out_one_pinned:
7101 /* tune up the balancing interval */
8e45cb54 7102 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7103 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7104 (sd->balance_interval < sd->max_interval))
7105 sd->balance_interval *= 2;
7106
46e49b38 7107 ld_moved = 0;
1e3c88bd 7108out:
1e3c88bd
PZ
7109 return ld_moved;
7110}
7111
52a08ef1
JL
7112static inline unsigned long
7113get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7114{
7115 unsigned long interval = sd->balance_interval;
7116
7117 if (cpu_busy)
7118 interval *= sd->busy_factor;
7119
7120 /* scale ms to jiffies */
7121 interval = msecs_to_jiffies(interval);
7122 interval = clamp(interval, 1UL, max_load_balance_interval);
7123
7124 return interval;
7125}
7126
7127static inline void
7128update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7129{
7130 unsigned long interval, next;
7131
7132 interval = get_sd_balance_interval(sd, cpu_busy);
7133 next = sd->last_balance + interval;
7134
7135 if (time_after(*next_balance, next))
7136 *next_balance = next;
7137}
7138
1e3c88bd
PZ
7139/*
7140 * idle_balance is called by schedule() if this_cpu is about to become
7141 * idle. Attempts to pull tasks from other CPUs.
7142 */
6e83125c 7143static int idle_balance(struct rq *this_rq)
1e3c88bd 7144{
52a08ef1
JL
7145 unsigned long next_balance = jiffies + HZ;
7146 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7147 struct sched_domain *sd;
7148 int pulled_task = 0;
9bd721c5 7149 u64 curr_cost = 0;
1e3c88bd 7150
6e83125c 7151 idle_enter_fair(this_rq);
0e5b5337 7152
6e83125c
PZ
7153 /*
7154 * We must set idle_stamp _before_ calling idle_balance(), such that we
7155 * measure the duration of idle_balance() as idle time.
7156 */
7157 this_rq->idle_stamp = rq_clock(this_rq);
7158
4486edd1
TC
7159 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7160 !this_rq->rd->overload) {
52a08ef1
JL
7161 rcu_read_lock();
7162 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7163 if (sd)
7164 update_next_balance(sd, 0, &next_balance);
7165 rcu_read_unlock();
7166
6e83125c 7167 goto out;
52a08ef1 7168 }
1e3c88bd 7169
f492e12e
PZ
7170 raw_spin_unlock(&this_rq->lock);
7171
48a16753 7172 update_blocked_averages(this_cpu);
dce840a0 7173 rcu_read_lock();
1e3c88bd 7174 for_each_domain(this_cpu, sd) {
23f0d209 7175 int continue_balancing = 1;
9bd721c5 7176 u64 t0, domain_cost;
1e3c88bd
PZ
7177
7178 if (!(sd->flags & SD_LOAD_BALANCE))
7179 continue;
7180
52a08ef1
JL
7181 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7182 update_next_balance(sd, 0, &next_balance);
9bd721c5 7183 break;
52a08ef1 7184 }
9bd721c5 7185
f492e12e 7186 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7187 t0 = sched_clock_cpu(this_cpu);
7188
f492e12e 7189 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7190 sd, CPU_NEWLY_IDLE,
7191 &continue_balancing);
9bd721c5
JL
7192
7193 domain_cost = sched_clock_cpu(this_cpu) - t0;
7194 if (domain_cost > sd->max_newidle_lb_cost)
7195 sd->max_newidle_lb_cost = domain_cost;
7196
7197 curr_cost += domain_cost;
f492e12e 7198 }
1e3c88bd 7199
52a08ef1 7200 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7201
7202 /*
7203 * Stop searching for tasks to pull if there are
7204 * now runnable tasks on this rq.
7205 */
7206 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7207 break;
1e3c88bd 7208 }
dce840a0 7209 rcu_read_unlock();
f492e12e
PZ
7210
7211 raw_spin_lock(&this_rq->lock);
7212
0e5b5337
JL
7213 if (curr_cost > this_rq->max_idle_balance_cost)
7214 this_rq->max_idle_balance_cost = curr_cost;
7215
e5fc6611 7216 /*
0e5b5337
JL
7217 * While browsing the domains, we released the rq lock, a task could
7218 * have been enqueued in the meantime. Since we're not going idle,
7219 * pretend we pulled a task.
e5fc6611 7220 */
0e5b5337 7221 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7222 pulled_task = 1;
e5fc6611 7223
52a08ef1
JL
7224out:
7225 /* Move the next balance forward */
7226 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7227 this_rq->next_balance = next_balance;
9bd721c5 7228
e4aa358b 7229 /* Is there a task of a high priority class? */
46383648 7230 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7231 pulled_task = -1;
7232
7233 if (pulled_task) {
7234 idle_exit_fair(this_rq);
6e83125c 7235 this_rq->idle_stamp = 0;
e4aa358b 7236 }
6e83125c 7237
3c4017c1 7238 return pulled_task;
1e3c88bd
PZ
7239}
7240
7241/*
969c7921
TH
7242 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7243 * running tasks off the busiest CPU onto idle CPUs. It requires at
7244 * least 1 task to be running on each physical CPU where possible, and
7245 * avoids physical / logical imbalances.
1e3c88bd 7246 */
969c7921 7247static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7248{
969c7921
TH
7249 struct rq *busiest_rq = data;
7250 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7251 int target_cpu = busiest_rq->push_cpu;
969c7921 7252 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7253 struct sched_domain *sd;
e5673f28 7254 struct task_struct *p = NULL;
969c7921
TH
7255
7256 raw_spin_lock_irq(&busiest_rq->lock);
7257
7258 /* make sure the requested cpu hasn't gone down in the meantime */
7259 if (unlikely(busiest_cpu != smp_processor_id() ||
7260 !busiest_rq->active_balance))
7261 goto out_unlock;
1e3c88bd
PZ
7262
7263 /* Is there any task to move? */
7264 if (busiest_rq->nr_running <= 1)
969c7921 7265 goto out_unlock;
1e3c88bd
PZ
7266
7267 /*
7268 * This condition is "impossible", if it occurs
7269 * we need to fix it. Originally reported by
7270 * Bjorn Helgaas on a 128-cpu setup.
7271 */
7272 BUG_ON(busiest_rq == target_rq);
7273
1e3c88bd 7274 /* Search for an sd spanning us and the target CPU. */
dce840a0 7275 rcu_read_lock();
1e3c88bd
PZ
7276 for_each_domain(target_cpu, sd) {
7277 if ((sd->flags & SD_LOAD_BALANCE) &&
7278 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7279 break;
7280 }
7281
7282 if (likely(sd)) {
8e45cb54
PZ
7283 struct lb_env env = {
7284 .sd = sd,
ddcdf6e7
PZ
7285 .dst_cpu = target_cpu,
7286 .dst_rq = target_rq,
7287 .src_cpu = busiest_rq->cpu,
7288 .src_rq = busiest_rq,
8e45cb54
PZ
7289 .idle = CPU_IDLE,
7290 };
7291
1e3c88bd
PZ
7292 schedstat_inc(sd, alb_count);
7293
e5673f28
KT
7294 p = detach_one_task(&env);
7295 if (p)
1e3c88bd
PZ
7296 schedstat_inc(sd, alb_pushed);
7297 else
7298 schedstat_inc(sd, alb_failed);
7299 }
dce840a0 7300 rcu_read_unlock();
969c7921
TH
7301out_unlock:
7302 busiest_rq->active_balance = 0;
e5673f28
KT
7303 raw_spin_unlock(&busiest_rq->lock);
7304
7305 if (p)
7306 attach_one_task(target_rq, p);
7307
7308 local_irq_enable();
7309
969c7921 7310 return 0;
1e3c88bd
PZ
7311}
7312
d987fc7f
MG
7313static inline int on_null_domain(struct rq *rq)
7314{
7315 return unlikely(!rcu_dereference_sched(rq->sd));
7316}
7317
3451d024 7318#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7319/*
7320 * idle load balancing details
83cd4fe2
VP
7321 * - When one of the busy CPUs notice that there may be an idle rebalancing
7322 * needed, they will kick the idle load balancer, which then does idle
7323 * load balancing for all the idle CPUs.
7324 */
1e3c88bd 7325static struct {
83cd4fe2 7326 cpumask_var_t idle_cpus_mask;
0b005cf5 7327 atomic_t nr_cpus;
83cd4fe2
VP
7328 unsigned long next_balance; /* in jiffy units */
7329} nohz ____cacheline_aligned;
1e3c88bd 7330
3dd0337d 7331static inline int find_new_ilb(void)
1e3c88bd 7332{
0b005cf5 7333 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7334
786d6dc7
SS
7335 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7336 return ilb;
7337
7338 return nr_cpu_ids;
1e3c88bd 7339}
1e3c88bd 7340
83cd4fe2
VP
7341/*
7342 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7343 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7344 * CPU (if there is one).
7345 */
0aeeeeba 7346static void nohz_balancer_kick(void)
83cd4fe2
VP
7347{
7348 int ilb_cpu;
7349
7350 nohz.next_balance++;
7351
3dd0337d 7352 ilb_cpu = find_new_ilb();
83cd4fe2 7353
0b005cf5
SS
7354 if (ilb_cpu >= nr_cpu_ids)
7355 return;
83cd4fe2 7356
cd490c5b 7357 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7358 return;
7359 /*
7360 * Use smp_send_reschedule() instead of resched_cpu().
7361 * This way we generate a sched IPI on the target cpu which
7362 * is idle. And the softirq performing nohz idle load balance
7363 * will be run before returning from the IPI.
7364 */
7365 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7366 return;
7367}
7368
c1cc017c 7369static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7370{
7371 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7372 /*
7373 * Completely isolated CPUs don't ever set, so we must test.
7374 */
7375 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7376 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7377 atomic_dec(&nohz.nr_cpus);
7378 }
71325960
SS
7379 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7380 }
7381}
7382
69e1e811
SS
7383static inline void set_cpu_sd_state_busy(void)
7384{
7385 struct sched_domain *sd;
37dc6b50 7386 int cpu = smp_processor_id();
69e1e811 7387
69e1e811 7388 rcu_read_lock();
37dc6b50 7389 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7390
7391 if (!sd || !sd->nohz_idle)
7392 goto unlock;
7393 sd->nohz_idle = 0;
7394
63b2ca30 7395 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7396unlock:
69e1e811
SS
7397 rcu_read_unlock();
7398}
7399
7400void set_cpu_sd_state_idle(void)
7401{
7402 struct sched_domain *sd;
37dc6b50 7403 int cpu = smp_processor_id();
69e1e811 7404
69e1e811 7405 rcu_read_lock();
37dc6b50 7406 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7407
7408 if (!sd || sd->nohz_idle)
7409 goto unlock;
7410 sd->nohz_idle = 1;
7411
63b2ca30 7412 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7413unlock:
69e1e811
SS
7414 rcu_read_unlock();
7415}
7416
1e3c88bd 7417/*
c1cc017c 7418 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7419 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7420 */
c1cc017c 7421void nohz_balance_enter_idle(int cpu)
1e3c88bd 7422{
71325960
SS
7423 /*
7424 * If this cpu is going down, then nothing needs to be done.
7425 */
7426 if (!cpu_active(cpu))
7427 return;
7428
c1cc017c
AS
7429 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7430 return;
1e3c88bd 7431
d987fc7f
MG
7432 /*
7433 * If we're a completely isolated CPU, we don't play.
7434 */
7435 if (on_null_domain(cpu_rq(cpu)))
7436 return;
7437
c1cc017c
AS
7438 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7439 atomic_inc(&nohz.nr_cpus);
7440 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7441}
71325960 7442
0db0628d 7443static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7444 unsigned long action, void *hcpu)
7445{
7446 switch (action & ~CPU_TASKS_FROZEN) {
7447 case CPU_DYING:
c1cc017c 7448 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7449 return NOTIFY_OK;
7450 default:
7451 return NOTIFY_DONE;
7452 }
7453}
1e3c88bd
PZ
7454#endif
7455
7456static DEFINE_SPINLOCK(balancing);
7457
49c022e6
PZ
7458/*
7459 * Scale the max load_balance interval with the number of CPUs in the system.
7460 * This trades load-balance latency on larger machines for less cross talk.
7461 */
029632fb 7462void update_max_interval(void)
49c022e6
PZ
7463{
7464 max_load_balance_interval = HZ*num_online_cpus()/10;
7465}
7466
1e3c88bd
PZ
7467/*
7468 * It checks each scheduling domain to see if it is due to be balanced,
7469 * and initiates a balancing operation if so.
7470 *
b9b0853a 7471 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7472 */
f7ed0a89 7473static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7474{
23f0d209 7475 int continue_balancing = 1;
f7ed0a89 7476 int cpu = rq->cpu;
1e3c88bd 7477 unsigned long interval;
04f733b4 7478 struct sched_domain *sd;
1e3c88bd
PZ
7479 /* Earliest time when we have to do rebalance again */
7480 unsigned long next_balance = jiffies + 60*HZ;
7481 int update_next_balance = 0;
f48627e6
JL
7482 int need_serialize, need_decay = 0;
7483 u64 max_cost = 0;
1e3c88bd 7484
48a16753 7485 update_blocked_averages(cpu);
2069dd75 7486
dce840a0 7487 rcu_read_lock();
1e3c88bd 7488 for_each_domain(cpu, sd) {
f48627e6
JL
7489 /*
7490 * Decay the newidle max times here because this is a regular
7491 * visit to all the domains. Decay ~1% per second.
7492 */
7493 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7494 sd->max_newidle_lb_cost =
7495 (sd->max_newidle_lb_cost * 253) / 256;
7496 sd->next_decay_max_lb_cost = jiffies + HZ;
7497 need_decay = 1;
7498 }
7499 max_cost += sd->max_newidle_lb_cost;
7500
1e3c88bd
PZ
7501 if (!(sd->flags & SD_LOAD_BALANCE))
7502 continue;
7503
f48627e6
JL
7504 /*
7505 * Stop the load balance at this level. There is another
7506 * CPU in our sched group which is doing load balancing more
7507 * actively.
7508 */
7509 if (!continue_balancing) {
7510 if (need_decay)
7511 continue;
7512 break;
7513 }
7514
52a08ef1 7515 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7516
7517 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7518 if (need_serialize) {
7519 if (!spin_trylock(&balancing))
7520 goto out;
7521 }
7522
7523 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7524 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7525 /*
6263322c 7526 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7527 * env->dst_cpu, so we can't know our idle
7528 * state even if we migrated tasks. Update it.
1e3c88bd 7529 */
de5eb2dd 7530 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7531 }
7532 sd->last_balance = jiffies;
52a08ef1 7533 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7534 }
7535 if (need_serialize)
7536 spin_unlock(&balancing);
7537out:
7538 if (time_after(next_balance, sd->last_balance + interval)) {
7539 next_balance = sd->last_balance + interval;
7540 update_next_balance = 1;
7541 }
f48627e6
JL
7542 }
7543 if (need_decay) {
1e3c88bd 7544 /*
f48627e6
JL
7545 * Ensure the rq-wide value also decays but keep it at a
7546 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7547 */
f48627e6
JL
7548 rq->max_idle_balance_cost =
7549 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7550 }
dce840a0 7551 rcu_read_unlock();
1e3c88bd
PZ
7552
7553 /*
7554 * next_balance will be updated only when there is a need.
7555 * When the cpu is attached to null domain for ex, it will not be
7556 * updated.
7557 */
7558 if (likely(update_next_balance))
7559 rq->next_balance = next_balance;
7560}
7561
3451d024 7562#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7563/*
3451d024 7564 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7565 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7566 */
208cb16b 7567static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7568{
208cb16b 7569 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7570 struct rq *rq;
7571 int balance_cpu;
7572
1c792db7
SS
7573 if (idle != CPU_IDLE ||
7574 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7575 goto end;
83cd4fe2
VP
7576
7577 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7578 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7579 continue;
7580
7581 /*
7582 * If this cpu gets work to do, stop the load balancing
7583 * work being done for other cpus. Next load
7584 * balancing owner will pick it up.
7585 */
1c792db7 7586 if (need_resched())
83cd4fe2 7587 break;
83cd4fe2 7588
5ed4f1d9
VG
7589 rq = cpu_rq(balance_cpu);
7590
ed61bbc6
TC
7591 /*
7592 * If time for next balance is due,
7593 * do the balance.
7594 */
7595 if (time_after_eq(jiffies, rq->next_balance)) {
7596 raw_spin_lock_irq(&rq->lock);
7597 update_rq_clock(rq);
7598 update_idle_cpu_load(rq);
7599 raw_spin_unlock_irq(&rq->lock);
7600 rebalance_domains(rq, CPU_IDLE);
7601 }
83cd4fe2 7602
83cd4fe2
VP
7603 if (time_after(this_rq->next_balance, rq->next_balance))
7604 this_rq->next_balance = rq->next_balance;
7605 }
7606 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7607end:
7608 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7609}
7610
7611/*
0b005cf5 7612 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7613 * of an idle cpu in the system.
0b005cf5 7614 * - This rq has more than one task.
1aaf90a4
VG
7615 * - This rq has at least one CFS task and the capacity of the CPU is
7616 * significantly reduced because of RT tasks or IRQs.
7617 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7618 * multiple busy cpu.
0b005cf5
SS
7619 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7620 * domain span are idle.
83cd4fe2 7621 */
1aaf90a4 7622static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7623{
7624 unsigned long now = jiffies;
0b005cf5 7625 struct sched_domain *sd;
63b2ca30 7626 struct sched_group_capacity *sgc;
4a725627 7627 int nr_busy, cpu = rq->cpu;
1aaf90a4 7628 bool kick = false;
83cd4fe2 7629
4a725627 7630 if (unlikely(rq->idle_balance))
1aaf90a4 7631 return false;
83cd4fe2 7632
1c792db7
SS
7633 /*
7634 * We may be recently in ticked or tickless idle mode. At the first
7635 * busy tick after returning from idle, we will update the busy stats.
7636 */
69e1e811 7637 set_cpu_sd_state_busy();
c1cc017c 7638 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7639
7640 /*
7641 * None are in tickless mode and hence no need for NOHZ idle load
7642 * balancing.
7643 */
7644 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7645 return false;
1c792db7
SS
7646
7647 if (time_before(now, nohz.next_balance))
1aaf90a4 7648 return false;
83cd4fe2 7649
0b005cf5 7650 if (rq->nr_running >= 2)
1aaf90a4 7651 return true;
83cd4fe2 7652
067491b7 7653 rcu_read_lock();
37dc6b50 7654 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7655 if (sd) {
63b2ca30
NP
7656 sgc = sd->groups->sgc;
7657 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7658
1aaf90a4
VG
7659 if (nr_busy > 1) {
7660 kick = true;
7661 goto unlock;
7662 }
7663
83cd4fe2 7664 }
37dc6b50 7665
1aaf90a4
VG
7666 sd = rcu_dereference(rq->sd);
7667 if (sd) {
7668 if ((rq->cfs.h_nr_running >= 1) &&
7669 check_cpu_capacity(rq, sd)) {
7670 kick = true;
7671 goto unlock;
7672 }
7673 }
37dc6b50 7674
1aaf90a4 7675 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7676 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7677 sched_domain_span(sd)) < cpu)) {
7678 kick = true;
7679 goto unlock;
7680 }
067491b7 7681
1aaf90a4 7682unlock:
067491b7 7683 rcu_read_unlock();
1aaf90a4 7684 return kick;
83cd4fe2
VP
7685}
7686#else
208cb16b 7687static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7688#endif
7689
7690/*
7691 * run_rebalance_domains is triggered when needed from the scheduler tick.
7692 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7693 */
1e3c88bd
PZ
7694static void run_rebalance_domains(struct softirq_action *h)
7695{
208cb16b 7696 struct rq *this_rq = this_rq();
6eb57e0d 7697 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7698 CPU_IDLE : CPU_NOT_IDLE;
7699
1e3c88bd 7700 /*
83cd4fe2 7701 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7702 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7703 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7704 * give the idle cpus a chance to load balance. Else we may
7705 * load balance only within the local sched_domain hierarchy
7706 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7707 */
208cb16b 7708 nohz_idle_balance(this_rq, idle);
d4573c3e 7709 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7710}
7711
1e3c88bd
PZ
7712/*
7713 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7714 */
7caff66f 7715void trigger_load_balance(struct rq *rq)
1e3c88bd 7716{
1e3c88bd 7717 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7718 if (unlikely(on_null_domain(rq)))
7719 return;
7720
7721 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7722 raise_softirq(SCHED_SOFTIRQ);
3451d024 7723#ifdef CONFIG_NO_HZ_COMMON
c726099e 7724 if (nohz_kick_needed(rq))
0aeeeeba 7725 nohz_balancer_kick();
83cd4fe2 7726#endif
1e3c88bd
PZ
7727}
7728
0bcdcf28
CE
7729static void rq_online_fair(struct rq *rq)
7730{
7731 update_sysctl();
0e59bdae
KT
7732
7733 update_runtime_enabled(rq);
0bcdcf28
CE
7734}
7735
7736static void rq_offline_fair(struct rq *rq)
7737{
7738 update_sysctl();
a4c96ae3
PB
7739
7740 /* Ensure any throttled groups are reachable by pick_next_task */
7741 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7742}
7743
55e12e5e 7744#endif /* CONFIG_SMP */
e1d1484f 7745
bf0f6f24
IM
7746/*
7747 * scheduler tick hitting a task of our scheduling class:
7748 */
8f4d37ec 7749static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7750{
7751 struct cfs_rq *cfs_rq;
7752 struct sched_entity *se = &curr->se;
7753
7754 for_each_sched_entity(se) {
7755 cfs_rq = cfs_rq_of(se);
8f4d37ec 7756 entity_tick(cfs_rq, se, queued);
bf0f6f24 7757 }
18bf2805 7758
10e84b97 7759 if (numabalancing_enabled)
cbee9f88 7760 task_tick_numa(rq, curr);
bf0f6f24
IM
7761}
7762
7763/*
cd29fe6f
PZ
7764 * called on fork with the child task as argument from the parent's context
7765 * - child not yet on the tasklist
7766 * - preemption disabled
bf0f6f24 7767 */
cd29fe6f 7768static void task_fork_fair(struct task_struct *p)
bf0f6f24 7769{
4fc420c9
DN
7770 struct cfs_rq *cfs_rq;
7771 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7772 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7773 struct rq *rq = this_rq();
7774 unsigned long flags;
7775
05fa785c 7776 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7777
861d034e
PZ
7778 update_rq_clock(rq);
7779
4fc420c9
DN
7780 cfs_rq = task_cfs_rq(current);
7781 curr = cfs_rq->curr;
7782
6c9a27f5
DN
7783 /*
7784 * Not only the cpu but also the task_group of the parent might have
7785 * been changed after parent->se.parent,cfs_rq were copied to
7786 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7787 * of child point to valid ones.
7788 */
7789 rcu_read_lock();
7790 __set_task_cpu(p, this_cpu);
7791 rcu_read_unlock();
bf0f6f24 7792
7109c442 7793 update_curr(cfs_rq);
cd29fe6f 7794
b5d9d734
MG
7795 if (curr)
7796 se->vruntime = curr->vruntime;
aeb73b04 7797 place_entity(cfs_rq, se, 1);
4d78e7b6 7798
cd29fe6f 7799 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7800 /*
edcb60a3
IM
7801 * Upon rescheduling, sched_class::put_prev_task() will place
7802 * 'current' within the tree based on its new key value.
7803 */
4d78e7b6 7804 swap(curr->vruntime, se->vruntime);
8875125e 7805 resched_curr(rq);
4d78e7b6 7806 }
bf0f6f24 7807
88ec22d3
PZ
7808 se->vruntime -= cfs_rq->min_vruntime;
7809
05fa785c 7810 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7811}
7812
cb469845
SR
7813/*
7814 * Priority of the task has changed. Check to see if we preempt
7815 * the current task.
7816 */
da7a735e
PZ
7817static void
7818prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7819{
da0c1e65 7820 if (!task_on_rq_queued(p))
da7a735e
PZ
7821 return;
7822
cb469845
SR
7823 /*
7824 * Reschedule if we are currently running on this runqueue and
7825 * our priority decreased, or if we are not currently running on
7826 * this runqueue and our priority is higher than the current's
7827 */
da7a735e 7828 if (rq->curr == p) {
cb469845 7829 if (p->prio > oldprio)
8875125e 7830 resched_curr(rq);
cb469845 7831 } else
15afe09b 7832 check_preempt_curr(rq, p, 0);
cb469845
SR
7833}
7834
da7a735e
PZ
7835static void switched_from_fair(struct rq *rq, struct task_struct *p)
7836{
7837 struct sched_entity *se = &p->se;
7838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7839
7840 /*
791c9e02 7841 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7842 * switched back to the fair class the enqueue_entity(.flags=0) will
7843 * do the right thing.
7844 *
da0c1e65
KT
7845 * If it's queued, then the dequeue_entity(.flags=0) will already
7846 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7847 * the task is sleeping will it still have non-normalized vruntime.
7848 */
da0c1e65 7849 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7850 /*
7851 * Fix up our vruntime so that the current sleep doesn't
7852 * cause 'unlimited' sleep bonus.
7853 */
7854 place_entity(cfs_rq, se, 0);
7855 se->vruntime -= cfs_rq->min_vruntime;
7856 }
9ee474f5 7857
141965c7 7858#ifdef CONFIG_SMP
9d89c257
YD
7859 /* Catch up with the cfs_rq and remove our load when we leave */
7860 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
7861 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se);
7862
7863 cfs_rq->avg.load_avg =
7864 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7865 cfs_rq->avg.load_sum =
7866 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7867 cfs_rq->avg.util_avg =
7868 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7869 cfs_rq->avg.util_sum =
7870 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
9ee474f5 7871#endif
da7a735e
PZ
7872}
7873
cb469845
SR
7874/*
7875 * We switched to the sched_fair class.
7876 */
da7a735e 7877static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7878{
eb7a59b2 7879#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7880 struct sched_entity *se = &p->se;
eb7a59b2
M
7881 /*
7882 * Since the real-depth could have been changed (only FAIR
7883 * class maintain depth value), reset depth properly.
7884 */
7885 se->depth = se->parent ? se->parent->depth + 1 : 0;
7886#endif
da0c1e65 7887 if (!task_on_rq_queued(p))
da7a735e
PZ
7888 return;
7889
cb469845
SR
7890 /*
7891 * We were most likely switched from sched_rt, so
7892 * kick off the schedule if running, otherwise just see
7893 * if we can still preempt the current task.
7894 */
da7a735e 7895 if (rq->curr == p)
8875125e 7896 resched_curr(rq);
cb469845 7897 else
15afe09b 7898 check_preempt_curr(rq, p, 0);
cb469845
SR
7899}
7900
83b699ed
SV
7901/* Account for a task changing its policy or group.
7902 *
7903 * This routine is mostly called to set cfs_rq->curr field when a task
7904 * migrates between groups/classes.
7905 */
7906static void set_curr_task_fair(struct rq *rq)
7907{
7908 struct sched_entity *se = &rq->curr->se;
7909
ec12cb7f
PT
7910 for_each_sched_entity(se) {
7911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7912
7913 set_next_entity(cfs_rq, se);
7914 /* ensure bandwidth has been allocated on our new cfs_rq */
7915 account_cfs_rq_runtime(cfs_rq, 0);
7916 }
83b699ed
SV
7917}
7918
029632fb
PZ
7919void init_cfs_rq(struct cfs_rq *cfs_rq)
7920{
7921 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7922 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7923#ifndef CONFIG_64BIT
7924 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7925#endif
141965c7 7926#ifdef CONFIG_SMP
9d89c257
YD
7927 atomic_long_set(&cfs_rq->removed_load_avg, 0);
7928 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 7929#endif
029632fb
PZ
7930}
7931
810b3817 7932#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7933static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7934{
fed14d45 7935 struct sched_entity *se = &p->se;
aff3e498 7936 struct cfs_rq *cfs_rq;
fed14d45 7937
b2b5ce02
PZ
7938 /*
7939 * If the task was not on the rq at the time of this cgroup movement
7940 * it must have been asleep, sleeping tasks keep their ->vruntime
7941 * absolute on their old rq until wakeup (needed for the fair sleeper
7942 * bonus in place_entity()).
7943 *
7944 * If it was on the rq, we've just 'preempted' it, which does convert
7945 * ->vruntime to a relative base.
7946 *
7947 * Make sure both cases convert their relative position when migrating
7948 * to another cgroup's rq. This does somewhat interfere with the
7949 * fair sleeper stuff for the first placement, but who cares.
7950 */
7ceff013 7951 /*
da0c1e65 7952 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7953 * But there are some cases where it has already been normalized:
7954 *
7955 * - Moving a forked child which is waiting for being woken up by
7956 * wake_up_new_task().
62af3783
DN
7957 * - Moving a task which has been woken up by try_to_wake_up() and
7958 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7959 *
7960 * To prevent boost or penalty in the new cfs_rq caused by delta
7961 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7962 */
da0c1e65
KT
7963 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7964 queued = 1;
7ceff013 7965
da0c1e65 7966 if (!queued)
fed14d45 7967 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7968 set_task_rq(p, task_cpu(p));
fed14d45 7969 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7970 if (!queued) {
fed14d45
PZ
7971 cfs_rq = cfs_rq_of(se);
7972 se->vruntime += cfs_rq->min_vruntime;
9d89c257 7973
aff3e498 7974#ifdef CONFIG_SMP
9d89c257
YD
7975 /* Virtually synchronize task with its new cfs_rq */
7976 p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
7977 cfs_rq->avg.load_avg += p->se.avg.load_avg;
7978 cfs_rq->avg.load_sum += p->se.avg.load_sum;
7979 cfs_rq->avg.util_avg += p->se.avg.util_avg;
7980 cfs_rq->avg.util_sum += p->se.avg.util_sum;
aff3e498
PT
7981#endif
7982 }
810b3817 7983}
029632fb
PZ
7984
7985void free_fair_sched_group(struct task_group *tg)
7986{
7987 int i;
7988
7989 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7990
7991 for_each_possible_cpu(i) {
7992 if (tg->cfs_rq)
7993 kfree(tg->cfs_rq[i]);
7994 if (tg->se)
7995 kfree(tg->se[i]);
7996 }
7997
7998 kfree(tg->cfs_rq);
7999 kfree(tg->se);
8000}
8001
8002int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8003{
8004 struct cfs_rq *cfs_rq;
8005 struct sched_entity *se;
8006 int i;
8007
8008 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8009 if (!tg->cfs_rq)
8010 goto err;
8011 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8012 if (!tg->se)
8013 goto err;
8014
8015 tg->shares = NICE_0_LOAD;
8016
8017 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8018
8019 for_each_possible_cpu(i) {
8020 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8021 GFP_KERNEL, cpu_to_node(i));
8022 if (!cfs_rq)
8023 goto err;
8024
8025 se = kzalloc_node(sizeof(struct sched_entity),
8026 GFP_KERNEL, cpu_to_node(i));
8027 if (!se)
8028 goto err_free_rq;
8029
8030 init_cfs_rq(cfs_rq);
8031 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8032 }
8033
8034 return 1;
8035
8036err_free_rq:
8037 kfree(cfs_rq);
8038err:
8039 return 0;
8040}
8041
8042void unregister_fair_sched_group(struct task_group *tg, int cpu)
8043{
8044 struct rq *rq = cpu_rq(cpu);
8045 unsigned long flags;
8046
8047 /*
8048 * Only empty task groups can be destroyed; so we can speculatively
8049 * check on_list without danger of it being re-added.
8050 */
8051 if (!tg->cfs_rq[cpu]->on_list)
8052 return;
8053
8054 raw_spin_lock_irqsave(&rq->lock, flags);
8055 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8056 raw_spin_unlock_irqrestore(&rq->lock, flags);
8057}
8058
8059void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8060 struct sched_entity *se, int cpu,
8061 struct sched_entity *parent)
8062{
8063 struct rq *rq = cpu_rq(cpu);
8064
8065 cfs_rq->tg = tg;
8066 cfs_rq->rq = rq;
029632fb
PZ
8067 init_cfs_rq_runtime(cfs_rq);
8068
8069 tg->cfs_rq[cpu] = cfs_rq;
8070 tg->se[cpu] = se;
8071
8072 /* se could be NULL for root_task_group */
8073 if (!se)
8074 return;
8075
fed14d45 8076 if (!parent) {
029632fb 8077 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8078 se->depth = 0;
8079 } else {
029632fb 8080 se->cfs_rq = parent->my_q;
fed14d45
PZ
8081 se->depth = parent->depth + 1;
8082 }
029632fb
PZ
8083
8084 se->my_q = cfs_rq;
0ac9b1c2
PT
8085 /* guarantee group entities always have weight */
8086 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8087 se->parent = parent;
8088}
8089
8090static DEFINE_MUTEX(shares_mutex);
8091
8092int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8093{
8094 int i;
8095 unsigned long flags;
8096
8097 /*
8098 * We can't change the weight of the root cgroup.
8099 */
8100 if (!tg->se[0])
8101 return -EINVAL;
8102
8103 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8104
8105 mutex_lock(&shares_mutex);
8106 if (tg->shares == shares)
8107 goto done;
8108
8109 tg->shares = shares;
8110 for_each_possible_cpu(i) {
8111 struct rq *rq = cpu_rq(i);
8112 struct sched_entity *se;
8113
8114 se = tg->se[i];
8115 /* Propagate contribution to hierarchy */
8116 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8117
8118 /* Possible calls to update_curr() need rq clock */
8119 update_rq_clock(rq);
17bc14b7 8120 for_each_sched_entity(se)
029632fb
PZ
8121 update_cfs_shares(group_cfs_rq(se));
8122 raw_spin_unlock_irqrestore(&rq->lock, flags);
8123 }
8124
8125done:
8126 mutex_unlock(&shares_mutex);
8127 return 0;
8128}
8129#else /* CONFIG_FAIR_GROUP_SCHED */
8130
8131void free_fair_sched_group(struct task_group *tg) { }
8132
8133int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8134{
8135 return 1;
8136}
8137
8138void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8139
8140#endif /* CONFIG_FAIR_GROUP_SCHED */
8141
810b3817 8142
6d686f45 8143static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8144{
8145 struct sched_entity *se = &task->se;
0d721cea
PW
8146 unsigned int rr_interval = 0;
8147
8148 /*
8149 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8150 * idle runqueue:
8151 */
0d721cea 8152 if (rq->cfs.load.weight)
a59f4e07 8153 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8154
8155 return rr_interval;
8156}
8157
bf0f6f24
IM
8158/*
8159 * All the scheduling class methods:
8160 */
029632fb 8161const struct sched_class fair_sched_class = {
5522d5d5 8162 .next = &idle_sched_class,
bf0f6f24
IM
8163 .enqueue_task = enqueue_task_fair,
8164 .dequeue_task = dequeue_task_fair,
8165 .yield_task = yield_task_fair,
d95f4122 8166 .yield_to_task = yield_to_task_fair,
bf0f6f24 8167
2e09bf55 8168 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8169
8170 .pick_next_task = pick_next_task_fair,
8171 .put_prev_task = put_prev_task_fair,
8172
681f3e68 8173#ifdef CONFIG_SMP
4ce72a2c 8174 .select_task_rq = select_task_rq_fair,
0a74bef8 8175 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8176
0bcdcf28
CE
8177 .rq_online = rq_online_fair,
8178 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8179
8180 .task_waking = task_waking_fair,
681f3e68 8181#endif
bf0f6f24 8182
83b699ed 8183 .set_curr_task = set_curr_task_fair,
bf0f6f24 8184 .task_tick = task_tick_fair,
cd29fe6f 8185 .task_fork = task_fork_fair,
cb469845
SR
8186
8187 .prio_changed = prio_changed_fair,
da7a735e 8188 .switched_from = switched_from_fair,
cb469845 8189 .switched_to = switched_to_fair,
810b3817 8190
0d721cea
PW
8191 .get_rr_interval = get_rr_interval_fair,
8192
6e998916
SG
8193 .update_curr = update_curr_fair,
8194
810b3817 8195#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8196 .task_move_group = task_move_group_fair,
810b3817 8197#endif
bf0f6f24
IM
8198};
8199
8200#ifdef CONFIG_SCHED_DEBUG
029632fb 8201void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8202{
bf0f6f24
IM
8203 struct cfs_rq *cfs_rq;
8204
5973e5b9 8205 rcu_read_lock();
c3b64f1e 8206 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8207 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8208 rcu_read_unlock();
bf0f6f24 8209}
397f2378
SD
8210
8211#ifdef CONFIG_NUMA_BALANCING
8212void show_numa_stats(struct task_struct *p, struct seq_file *m)
8213{
8214 int node;
8215 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8216
8217 for_each_online_node(node) {
8218 if (p->numa_faults) {
8219 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8220 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8221 }
8222 if (p->numa_group) {
8223 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8224 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8225 }
8226 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8227 }
8228}
8229#endif /* CONFIG_NUMA_BALANCING */
8230#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8231
8232__init void init_sched_fair_class(void)
8233{
8234#ifdef CONFIG_SMP
8235 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8236
3451d024 8237#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8238 nohz.next_balance = jiffies;
029632fb 8239 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8240 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8241#endif
8242#endif /* SMP */
8243
8244}