sched: Remove bogus parameter in structured comment
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
2739d3ee
RR
1262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1264 return;
1265
2739d3ee
RR
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
1269 /* Success if task is already running on preferred CPU */
1270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1271 return;
1272
1273 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1274 task_numa_migrate(p);
6b9a7460
MG
1275}
1276
04bb2f94
RR
1277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
cbee9f88
PZ
1352static void task_numa_placement(struct task_struct *p)
1353{
83e1d2cd
MG
1354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1356 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1357 spinlock_t *group_lock = NULL;
cbee9f88 1358
2832bc19 1359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
598f0ec0 1363 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1364
7dbd13ed
MG
1365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
688b7585
MG
1371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
83e1d2cd 1373 unsigned long faults = 0, group_faults = 0;
ac8e895b 1374 int priv, i;
745d6147 1375
ac8e895b 1376 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1377 long diff;
1378
ac8e895b 1379 i = task_faults_idx(nid, priv);
8c8a743c 1380 diff = -p->numa_faults[i];
745d6147 1381
ac8e895b
MG
1382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1385 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1386 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1387
1388 faults += p->numa_faults[i];
8c8a743c 1389 diff += p->numa_faults[i];
83e1d2cd 1390 p->total_numa_faults += diff;
8c8a743c
PZ
1391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
989348b5
MG
1393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
8c8a743c 1396 }
ac8e895b
MG
1397 }
1398
688b7585
MG
1399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
83e1d2cd
MG
1403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
04bb2f94
RR
1410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
7dbd13ed
MG
1412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
1419
1420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
83e1d2cd
MG
1426 }
1427 }
7dbd13ed
MG
1428
1429 spin_unlock(group_lock);
688b7585
MG
1430 }
1431
6b9a7460 1432 /* Preferred node as the node with the most faults */
3a7053b3 1433 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1434 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1435 sched_setnuma(p, max_nid);
6b9a7460 1436 numa_migrate_preferred(p);
3a7053b3 1437 }
cbee9f88
PZ
1438}
1439
8c8a743c
PZ
1440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
1451static void double_lock(spinlock_t *l1, spinlock_t *l2)
1452{
1453 if (l1 > l2)
1454 swap(l1, l2);
1455
1456 spin_lock(l1);
1457 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1458}
1459
3e6a9418
MG
1460static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1461 int *priv)
8c8a743c
PZ
1462{
1463 struct numa_group *grp, *my_grp;
1464 struct task_struct *tsk;
1465 bool join = false;
1466 int cpu = cpupid_to_cpu(cpupid);
1467 int i;
1468
1469 if (unlikely(!p->numa_group)) {
1470 unsigned int size = sizeof(struct numa_group) +
989348b5 1471 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1472
1473 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1474 if (!grp)
1475 return;
1476
1477 atomic_set(&grp->refcount, 1);
1478 spin_lock_init(&grp->lock);
1479 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1480 grp->gid = p->pid;
8c8a743c
PZ
1481
1482 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1483 grp->faults[i] = p->numa_faults[i];
8c8a743c 1484
989348b5 1485 grp->total_faults = p->total_numa_faults;
83e1d2cd 1486
8c8a743c
PZ
1487 list_add(&p->numa_entry, &grp->task_list);
1488 grp->nr_tasks++;
1489 rcu_assign_pointer(p->numa_group, grp);
1490 }
1491
1492 rcu_read_lock();
1493 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1494
1495 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1496 goto no_join;
8c8a743c
PZ
1497
1498 grp = rcu_dereference(tsk->numa_group);
1499 if (!grp)
3354781a 1500 goto no_join;
8c8a743c
PZ
1501
1502 my_grp = p->numa_group;
1503 if (grp == my_grp)
3354781a 1504 goto no_join;
8c8a743c
PZ
1505
1506 /*
1507 * Only join the other group if its bigger; if we're the bigger group,
1508 * the other task will join us.
1509 */
1510 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1511 goto no_join;
8c8a743c
PZ
1512
1513 /*
1514 * Tie-break on the grp address.
1515 */
1516 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1517 goto no_join;
8c8a743c 1518
dabe1d99
RR
1519 /* Always join threads in the same process. */
1520 if (tsk->mm == current->mm)
1521 join = true;
1522
1523 /* Simple filter to avoid false positives due to PID collisions */
1524 if (flags & TNF_SHARED)
1525 join = true;
8c8a743c 1526
3e6a9418
MG
1527 /* Update priv based on whether false sharing was detected */
1528 *priv = !join;
1529
dabe1d99 1530 if (join && !get_numa_group(grp))
3354781a 1531 goto no_join;
8c8a743c 1532
8c8a743c
PZ
1533 rcu_read_unlock();
1534
1535 if (!join)
1536 return;
1537
989348b5
MG
1538 double_lock(&my_grp->lock, &grp->lock);
1539
8c8a743c 1540 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1541 my_grp->faults[i] -= p->numa_faults[i];
1542 grp->faults[i] += p->numa_faults[i];
8c8a743c 1543 }
989348b5
MG
1544 my_grp->total_faults -= p->total_numa_faults;
1545 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1546
1547 list_move(&p->numa_entry, &grp->task_list);
1548 my_grp->nr_tasks--;
1549 grp->nr_tasks++;
1550
1551 spin_unlock(&my_grp->lock);
1552 spin_unlock(&grp->lock);
1553
1554 rcu_assign_pointer(p->numa_group, grp);
1555
1556 put_numa_group(my_grp);
3354781a
PZ
1557 return;
1558
1559no_join:
1560 rcu_read_unlock();
1561 return;
8c8a743c
PZ
1562}
1563
1564void task_numa_free(struct task_struct *p)
1565{
1566 struct numa_group *grp = p->numa_group;
1567 int i;
82727018 1568 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1569
1570 if (grp) {
989348b5 1571 spin_lock(&grp->lock);
8c8a743c 1572 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1573 grp->faults[i] -= p->numa_faults[i];
1574 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1575
8c8a743c
PZ
1576 list_del(&p->numa_entry);
1577 grp->nr_tasks--;
1578 spin_unlock(&grp->lock);
1579 rcu_assign_pointer(p->numa_group, NULL);
1580 put_numa_group(grp);
1581 }
1582
82727018
RR
1583 p->numa_faults = NULL;
1584 p->numa_faults_buffer = NULL;
1585 kfree(numa_faults);
8c8a743c
PZ
1586}
1587
cbee9f88
PZ
1588/*
1589 * Got a PROT_NONE fault for a page on @node.
1590 */
6688cc05 1591void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1592{
1593 struct task_struct *p = current;
6688cc05 1594 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1595 int priv;
cbee9f88 1596
10e84b97 1597 if (!numabalancing_enabled)
1a687c2e
MG
1598 return;
1599
9ff1d9ff
MG
1600 /* for example, ksmd faulting in a user's mm */
1601 if (!p->mm)
1602 return;
1603
82727018
RR
1604 /* Do not worry about placement if exiting */
1605 if (p->state == TASK_DEAD)
1606 return;
1607
f809ca9a
MG
1608 /* Allocate buffer to track faults on a per-node basis */
1609 if (unlikely(!p->numa_faults)) {
ac8e895b 1610 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1611
745d6147
MG
1612 /* numa_faults and numa_faults_buffer share the allocation */
1613 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1614 if (!p->numa_faults)
1615 return;
745d6147
MG
1616
1617 BUG_ON(p->numa_faults_buffer);
ac8e895b 1618 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1619 p->total_numa_faults = 0;
04bb2f94 1620 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1621 }
cbee9f88 1622
8c8a743c
PZ
1623 /*
1624 * First accesses are treated as private, otherwise consider accesses
1625 * to be private if the accessing pid has not changed
1626 */
1627 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1628 priv = 1;
1629 } else {
1630 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1631 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1632 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1633 }
1634
cbee9f88 1635 task_numa_placement(p);
f809ca9a 1636
2739d3ee
RR
1637 /*
1638 * Retry task to preferred node migration periodically, in case it
1639 * case it previously failed, or the scheduler moved us.
1640 */
1641 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1642 numa_migrate_preferred(p);
1643
b32e86b4
IM
1644 if (migrated)
1645 p->numa_pages_migrated += pages;
1646
ac8e895b 1647 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1648 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1649}
1650
6e5fb223
PZ
1651static void reset_ptenuma_scan(struct task_struct *p)
1652{
1653 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1654 p->mm->numa_scan_offset = 0;
1655}
1656
cbee9f88
PZ
1657/*
1658 * The expensive part of numa migration is done from task_work context.
1659 * Triggered from task_tick_numa().
1660 */
1661void task_numa_work(struct callback_head *work)
1662{
1663 unsigned long migrate, next_scan, now = jiffies;
1664 struct task_struct *p = current;
1665 struct mm_struct *mm = p->mm;
6e5fb223 1666 struct vm_area_struct *vma;
9f40604c 1667 unsigned long start, end;
598f0ec0 1668 unsigned long nr_pte_updates = 0;
9f40604c 1669 long pages;
cbee9f88
PZ
1670
1671 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1672
1673 work->next = work; /* protect against double add */
1674 /*
1675 * Who cares about NUMA placement when they're dying.
1676 *
1677 * NOTE: make sure not to dereference p->mm before this check,
1678 * exit_task_work() happens _after_ exit_mm() so we could be called
1679 * without p->mm even though we still had it when we enqueued this
1680 * work.
1681 */
1682 if (p->flags & PF_EXITING)
1683 return;
1684
930aa174 1685 if (!mm->numa_next_scan) {
7e8d16b6
MG
1686 mm->numa_next_scan = now +
1687 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1688 }
1689
cbee9f88
PZ
1690 /*
1691 * Enforce maximal scan/migration frequency..
1692 */
1693 migrate = mm->numa_next_scan;
1694 if (time_before(now, migrate))
1695 return;
1696
598f0ec0
MG
1697 if (p->numa_scan_period == 0) {
1698 p->numa_scan_period_max = task_scan_max(p);
1699 p->numa_scan_period = task_scan_min(p);
1700 }
cbee9f88 1701
fb003b80 1702 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1703 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1704 return;
1705
19a78d11
PZ
1706 /*
1707 * Delay this task enough that another task of this mm will likely win
1708 * the next time around.
1709 */
1710 p->node_stamp += 2 * TICK_NSEC;
1711
9f40604c
MG
1712 start = mm->numa_scan_offset;
1713 pages = sysctl_numa_balancing_scan_size;
1714 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1715 if (!pages)
1716 return;
cbee9f88 1717
6e5fb223 1718 down_read(&mm->mmap_sem);
9f40604c 1719 vma = find_vma(mm, start);
6e5fb223
PZ
1720 if (!vma) {
1721 reset_ptenuma_scan(p);
9f40604c 1722 start = 0;
6e5fb223
PZ
1723 vma = mm->mmap;
1724 }
9f40604c 1725 for (; vma; vma = vma->vm_next) {
fc314724 1726 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1727 continue;
1728
4591ce4f
MG
1729 /*
1730 * Shared library pages mapped by multiple processes are not
1731 * migrated as it is expected they are cache replicated. Avoid
1732 * hinting faults in read-only file-backed mappings or the vdso
1733 * as migrating the pages will be of marginal benefit.
1734 */
1735 if (!vma->vm_mm ||
1736 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1737 continue;
1738
9f40604c
MG
1739 do {
1740 start = max(start, vma->vm_start);
1741 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1742 end = min(end, vma->vm_end);
598f0ec0
MG
1743 nr_pte_updates += change_prot_numa(vma, start, end);
1744
1745 /*
1746 * Scan sysctl_numa_balancing_scan_size but ensure that
1747 * at least one PTE is updated so that unused virtual
1748 * address space is quickly skipped.
1749 */
1750 if (nr_pte_updates)
1751 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1752
9f40604c
MG
1753 start = end;
1754 if (pages <= 0)
1755 goto out;
1756 } while (end != vma->vm_end);
cbee9f88 1757 }
6e5fb223 1758
9f40604c 1759out:
6e5fb223 1760 /*
c69307d5
PZ
1761 * It is possible to reach the end of the VMA list but the last few
1762 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1763 * would find the !migratable VMA on the next scan but not reset the
1764 * scanner to the start so check it now.
6e5fb223
PZ
1765 */
1766 if (vma)
9f40604c 1767 mm->numa_scan_offset = start;
6e5fb223
PZ
1768 else
1769 reset_ptenuma_scan(p);
1770 up_read(&mm->mmap_sem);
cbee9f88
PZ
1771}
1772
1773/*
1774 * Drive the periodic memory faults..
1775 */
1776void task_tick_numa(struct rq *rq, struct task_struct *curr)
1777{
1778 struct callback_head *work = &curr->numa_work;
1779 u64 period, now;
1780
1781 /*
1782 * We don't care about NUMA placement if we don't have memory.
1783 */
1784 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1785 return;
1786
1787 /*
1788 * Using runtime rather than walltime has the dual advantage that
1789 * we (mostly) drive the selection from busy threads and that the
1790 * task needs to have done some actual work before we bother with
1791 * NUMA placement.
1792 */
1793 now = curr->se.sum_exec_runtime;
1794 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1795
1796 if (now - curr->node_stamp > period) {
4b96a29b 1797 if (!curr->node_stamp)
598f0ec0 1798 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1799 curr->node_stamp += period;
cbee9f88
PZ
1800
1801 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1802 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1803 task_work_add(curr, work, true);
1804 }
1805 }
1806}
1807#else
1808static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1809{
1810}
0ec8aa00
PZ
1811
1812static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1817{
1818}
cbee9f88
PZ
1819#endif /* CONFIG_NUMA_BALANCING */
1820
30cfdcfc
DA
1821static void
1822account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1823{
1824 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1825 if (!parent_entity(se))
029632fb 1826 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1827#ifdef CONFIG_SMP
0ec8aa00
PZ
1828 if (entity_is_task(se)) {
1829 struct rq *rq = rq_of(cfs_rq);
1830
1831 account_numa_enqueue(rq, task_of(se));
1832 list_add(&se->group_node, &rq->cfs_tasks);
1833 }
367456c7 1834#endif
30cfdcfc 1835 cfs_rq->nr_running++;
30cfdcfc
DA
1836}
1837
1838static void
1839account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1840{
1841 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1842 if (!parent_entity(se))
029632fb 1843 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1844 if (entity_is_task(se)) {
1845 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1846 list_del_init(&se->group_node);
0ec8aa00 1847 }
30cfdcfc 1848 cfs_rq->nr_running--;
30cfdcfc
DA
1849}
1850
3ff6dcac
YZ
1851#ifdef CONFIG_FAIR_GROUP_SCHED
1852# ifdef CONFIG_SMP
cf5f0acf
PZ
1853static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1854{
1855 long tg_weight;
1856
1857 /*
1858 * Use this CPU's actual weight instead of the last load_contribution
1859 * to gain a more accurate current total weight. See
1860 * update_cfs_rq_load_contribution().
1861 */
bf5b986e 1862 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1863 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1864 tg_weight += cfs_rq->load.weight;
1865
1866 return tg_weight;
1867}
1868
6d5ab293 1869static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1870{
cf5f0acf 1871 long tg_weight, load, shares;
3ff6dcac 1872
cf5f0acf 1873 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1874 load = cfs_rq->load.weight;
3ff6dcac 1875
3ff6dcac 1876 shares = (tg->shares * load);
cf5f0acf
PZ
1877 if (tg_weight)
1878 shares /= tg_weight;
3ff6dcac
YZ
1879
1880 if (shares < MIN_SHARES)
1881 shares = MIN_SHARES;
1882 if (shares > tg->shares)
1883 shares = tg->shares;
1884
1885 return shares;
1886}
3ff6dcac 1887# else /* CONFIG_SMP */
6d5ab293 1888static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1889{
1890 return tg->shares;
1891}
3ff6dcac 1892# endif /* CONFIG_SMP */
2069dd75
PZ
1893static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1894 unsigned long weight)
1895{
19e5eebb
PT
1896 if (se->on_rq) {
1897 /* commit outstanding execution time */
1898 if (cfs_rq->curr == se)
1899 update_curr(cfs_rq);
2069dd75 1900 account_entity_dequeue(cfs_rq, se);
19e5eebb 1901 }
2069dd75
PZ
1902
1903 update_load_set(&se->load, weight);
1904
1905 if (se->on_rq)
1906 account_entity_enqueue(cfs_rq, se);
1907}
1908
82958366
PT
1909static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1910
6d5ab293 1911static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1912{
1913 struct task_group *tg;
1914 struct sched_entity *se;
3ff6dcac 1915 long shares;
2069dd75 1916
2069dd75
PZ
1917 tg = cfs_rq->tg;
1918 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1919 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1920 return;
3ff6dcac
YZ
1921#ifndef CONFIG_SMP
1922 if (likely(se->load.weight == tg->shares))
1923 return;
1924#endif
6d5ab293 1925 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1926
1927 reweight_entity(cfs_rq_of(se), se, shares);
1928}
1929#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1930static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1931{
1932}
1933#endif /* CONFIG_FAIR_GROUP_SCHED */
1934
141965c7 1935#ifdef CONFIG_SMP
5b51f2f8
PT
1936/*
1937 * We choose a half-life close to 1 scheduling period.
1938 * Note: The tables below are dependent on this value.
1939 */
1940#define LOAD_AVG_PERIOD 32
1941#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1942#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1943
1944/* Precomputed fixed inverse multiplies for multiplication by y^n */
1945static const u32 runnable_avg_yN_inv[] = {
1946 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1947 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1948 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1949 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1950 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1951 0x85aac367, 0x82cd8698,
1952};
1953
1954/*
1955 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1956 * over-estimates when re-combining.
1957 */
1958static const u32 runnable_avg_yN_sum[] = {
1959 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1960 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1961 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1962};
1963
9d85f21c
PT
1964/*
1965 * Approximate:
1966 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1967 */
1968static __always_inline u64 decay_load(u64 val, u64 n)
1969{
5b51f2f8
PT
1970 unsigned int local_n;
1971
1972 if (!n)
1973 return val;
1974 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1975 return 0;
1976
1977 /* after bounds checking we can collapse to 32-bit */
1978 local_n = n;
1979
1980 /*
1981 * As y^PERIOD = 1/2, we can combine
1982 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1983 * With a look-up table which covers k^n (n<PERIOD)
1984 *
1985 * To achieve constant time decay_load.
1986 */
1987 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1988 val >>= local_n / LOAD_AVG_PERIOD;
1989 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1990 }
1991
5b51f2f8
PT
1992 val *= runnable_avg_yN_inv[local_n];
1993 /* We don't use SRR here since we always want to round down. */
1994 return val >> 32;
1995}
1996
1997/*
1998 * For updates fully spanning n periods, the contribution to runnable
1999 * average will be: \Sum 1024*y^n
2000 *
2001 * We can compute this reasonably efficiently by combining:
2002 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2003 */
2004static u32 __compute_runnable_contrib(u64 n)
2005{
2006 u32 contrib = 0;
2007
2008 if (likely(n <= LOAD_AVG_PERIOD))
2009 return runnable_avg_yN_sum[n];
2010 else if (unlikely(n >= LOAD_AVG_MAX_N))
2011 return LOAD_AVG_MAX;
2012
2013 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2014 do {
2015 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2016 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2017
2018 n -= LOAD_AVG_PERIOD;
2019 } while (n > LOAD_AVG_PERIOD);
2020
2021 contrib = decay_load(contrib, n);
2022 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2023}
2024
2025/*
2026 * We can represent the historical contribution to runnable average as the
2027 * coefficients of a geometric series. To do this we sub-divide our runnable
2028 * history into segments of approximately 1ms (1024us); label the segment that
2029 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2030 *
2031 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2032 * p0 p1 p2
2033 * (now) (~1ms ago) (~2ms ago)
2034 *
2035 * Let u_i denote the fraction of p_i that the entity was runnable.
2036 *
2037 * We then designate the fractions u_i as our co-efficients, yielding the
2038 * following representation of historical load:
2039 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2040 *
2041 * We choose y based on the with of a reasonably scheduling period, fixing:
2042 * y^32 = 0.5
2043 *
2044 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2045 * approximately half as much as the contribution to load within the last ms
2046 * (u_0).
2047 *
2048 * When a period "rolls over" and we have new u_0`, multiplying the previous
2049 * sum again by y is sufficient to update:
2050 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2051 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2052 */
2053static __always_inline int __update_entity_runnable_avg(u64 now,
2054 struct sched_avg *sa,
2055 int runnable)
2056{
5b51f2f8
PT
2057 u64 delta, periods;
2058 u32 runnable_contrib;
9d85f21c
PT
2059 int delta_w, decayed = 0;
2060
2061 delta = now - sa->last_runnable_update;
2062 /*
2063 * This should only happen when time goes backwards, which it
2064 * unfortunately does during sched clock init when we swap over to TSC.
2065 */
2066 if ((s64)delta < 0) {
2067 sa->last_runnable_update = now;
2068 return 0;
2069 }
2070
2071 /*
2072 * Use 1024ns as the unit of measurement since it's a reasonable
2073 * approximation of 1us and fast to compute.
2074 */
2075 delta >>= 10;
2076 if (!delta)
2077 return 0;
2078 sa->last_runnable_update = now;
2079
2080 /* delta_w is the amount already accumulated against our next period */
2081 delta_w = sa->runnable_avg_period % 1024;
2082 if (delta + delta_w >= 1024) {
2083 /* period roll-over */
2084 decayed = 1;
2085
2086 /*
2087 * Now that we know we're crossing a period boundary, figure
2088 * out how much from delta we need to complete the current
2089 * period and accrue it.
2090 */
2091 delta_w = 1024 - delta_w;
5b51f2f8
PT
2092 if (runnable)
2093 sa->runnable_avg_sum += delta_w;
2094 sa->runnable_avg_period += delta_w;
2095
2096 delta -= delta_w;
2097
2098 /* Figure out how many additional periods this update spans */
2099 periods = delta / 1024;
2100 delta %= 1024;
2101
2102 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2103 periods + 1);
2104 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2105 periods + 1);
2106
2107 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2108 runnable_contrib = __compute_runnable_contrib(periods);
2109 if (runnable)
2110 sa->runnable_avg_sum += runnable_contrib;
2111 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2112 }
2113
2114 /* Remainder of delta accrued against u_0` */
2115 if (runnable)
2116 sa->runnable_avg_sum += delta;
2117 sa->runnable_avg_period += delta;
2118
2119 return decayed;
2120}
2121
9ee474f5 2122/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2123static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2124{
2125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2126 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2127
2128 decays -= se->avg.decay_count;
2129 if (!decays)
aff3e498 2130 return 0;
9ee474f5
PT
2131
2132 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2133 se->avg.decay_count = 0;
aff3e498
PT
2134
2135 return decays;
9ee474f5
PT
2136}
2137
c566e8e9
PT
2138#ifdef CONFIG_FAIR_GROUP_SCHED
2139static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2140 int force_update)
2141{
2142 struct task_group *tg = cfs_rq->tg;
bf5b986e 2143 long tg_contrib;
c566e8e9
PT
2144
2145 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2146 tg_contrib -= cfs_rq->tg_load_contrib;
2147
bf5b986e
AS
2148 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2149 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2150 cfs_rq->tg_load_contrib += tg_contrib;
2151 }
2152}
8165e145 2153
bb17f655
PT
2154/*
2155 * Aggregate cfs_rq runnable averages into an equivalent task_group
2156 * representation for computing load contributions.
2157 */
2158static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2159 struct cfs_rq *cfs_rq)
2160{
2161 struct task_group *tg = cfs_rq->tg;
2162 long contrib;
2163
2164 /* The fraction of a cpu used by this cfs_rq */
2165 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2166 sa->runnable_avg_period + 1);
2167 contrib -= cfs_rq->tg_runnable_contrib;
2168
2169 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2170 atomic_add(contrib, &tg->runnable_avg);
2171 cfs_rq->tg_runnable_contrib += contrib;
2172 }
2173}
2174
8165e145
PT
2175static inline void __update_group_entity_contrib(struct sched_entity *se)
2176{
2177 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2178 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2179 int runnable_avg;
2180
8165e145
PT
2181 u64 contrib;
2182
2183 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2184 se->avg.load_avg_contrib = div_u64(contrib,
2185 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2186
2187 /*
2188 * For group entities we need to compute a correction term in the case
2189 * that they are consuming <1 cpu so that we would contribute the same
2190 * load as a task of equal weight.
2191 *
2192 * Explicitly co-ordinating this measurement would be expensive, but
2193 * fortunately the sum of each cpus contribution forms a usable
2194 * lower-bound on the true value.
2195 *
2196 * Consider the aggregate of 2 contributions. Either they are disjoint
2197 * (and the sum represents true value) or they are disjoint and we are
2198 * understating by the aggregate of their overlap.
2199 *
2200 * Extending this to N cpus, for a given overlap, the maximum amount we
2201 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2202 * cpus that overlap for this interval and w_i is the interval width.
2203 *
2204 * On a small machine; the first term is well-bounded which bounds the
2205 * total error since w_i is a subset of the period. Whereas on a
2206 * larger machine, while this first term can be larger, if w_i is the
2207 * of consequential size guaranteed to see n_i*w_i quickly converge to
2208 * our upper bound of 1-cpu.
2209 */
2210 runnable_avg = atomic_read(&tg->runnable_avg);
2211 if (runnable_avg < NICE_0_LOAD) {
2212 se->avg.load_avg_contrib *= runnable_avg;
2213 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2214 }
8165e145 2215}
c566e8e9
PT
2216#else
2217static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2218 int force_update) {}
bb17f655
PT
2219static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2220 struct cfs_rq *cfs_rq) {}
8165e145 2221static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2222#endif
2223
8165e145
PT
2224static inline void __update_task_entity_contrib(struct sched_entity *se)
2225{
2226 u32 contrib;
2227
2228 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2229 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2230 contrib /= (se->avg.runnable_avg_period + 1);
2231 se->avg.load_avg_contrib = scale_load(contrib);
2232}
2233
2dac754e
PT
2234/* Compute the current contribution to load_avg by se, return any delta */
2235static long __update_entity_load_avg_contrib(struct sched_entity *se)
2236{
2237 long old_contrib = se->avg.load_avg_contrib;
2238
8165e145
PT
2239 if (entity_is_task(se)) {
2240 __update_task_entity_contrib(se);
2241 } else {
bb17f655 2242 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2243 __update_group_entity_contrib(se);
2244 }
2dac754e
PT
2245
2246 return se->avg.load_avg_contrib - old_contrib;
2247}
2248
9ee474f5
PT
2249static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2250 long load_contrib)
2251{
2252 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2253 cfs_rq->blocked_load_avg -= load_contrib;
2254 else
2255 cfs_rq->blocked_load_avg = 0;
2256}
2257
f1b17280
PT
2258static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2259
9d85f21c 2260/* Update a sched_entity's runnable average */
9ee474f5
PT
2261static inline void update_entity_load_avg(struct sched_entity *se,
2262 int update_cfs_rq)
9d85f21c 2263{
2dac754e
PT
2264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2265 long contrib_delta;
f1b17280 2266 u64 now;
2dac754e 2267
f1b17280
PT
2268 /*
2269 * For a group entity we need to use their owned cfs_rq_clock_task() in
2270 * case they are the parent of a throttled hierarchy.
2271 */
2272 if (entity_is_task(se))
2273 now = cfs_rq_clock_task(cfs_rq);
2274 else
2275 now = cfs_rq_clock_task(group_cfs_rq(se));
2276
2277 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2278 return;
2279
2280 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2281
2282 if (!update_cfs_rq)
2283 return;
2284
2dac754e
PT
2285 if (se->on_rq)
2286 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2287 else
2288 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2289}
2290
2291/*
2292 * Decay the load contributed by all blocked children and account this so that
2293 * their contribution may appropriately discounted when they wake up.
2294 */
aff3e498 2295static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2296{
f1b17280 2297 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2298 u64 decays;
2299
2300 decays = now - cfs_rq->last_decay;
aff3e498 2301 if (!decays && !force_update)
9ee474f5
PT
2302 return;
2303
2509940f
AS
2304 if (atomic_long_read(&cfs_rq->removed_load)) {
2305 unsigned long removed_load;
2306 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2307 subtract_blocked_load_contrib(cfs_rq, removed_load);
2308 }
9ee474f5 2309
aff3e498
PT
2310 if (decays) {
2311 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2312 decays);
2313 atomic64_add(decays, &cfs_rq->decay_counter);
2314 cfs_rq->last_decay = now;
2315 }
c566e8e9
PT
2316
2317 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2318}
18bf2805
BS
2319
2320static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2321{
78becc27 2322 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2323 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2324}
2dac754e
PT
2325
2326/* Add the load generated by se into cfs_rq's child load-average */
2327static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2328 struct sched_entity *se,
2329 int wakeup)
2dac754e 2330{
aff3e498
PT
2331 /*
2332 * We track migrations using entity decay_count <= 0, on a wake-up
2333 * migration we use a negative decay count to track the remote decays
2334 * accumulated while sleeping.
a75cdaa9
AS
2335 *
2336 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2337 * are seen by enqueue_entity_load_avg() as a migration with an already
2338 * constructed load_avg_contrib.
aff3e498
PT
2339 */
2340 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2341 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2342 if (se->avg.decay_count) {
2343 /*
2344 * In a wake-up migration we have to approximate the
2345 * time sleeping. This is because we can't synchronize
2346 * clock_task between the two cpus, and it is not
2347 * guaranteed to be read-safe. Instead, we can
2348 * approximate this using our carried decays, which are
2349 * explicitly atomically readable.
2350 */
2351 se->avg.last_runnable_update -= (-se->avg.decay_count)
2352 << 20;
2353 update_entity_load_avg(se, 0);
2354 /* Indicate that we're now synchronized and on-rq */
2355 se->avg.decay_count = 0;
2356 }
9ee474f5
PT
2357 wakeup = 0;
2358 } else {
282cf499
AS
2359 /*
2360 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2361 * would have made count negative); we must be careful to avoid
2362 * double-accounting blocked time after synchronizing decays.
2363 */
2364 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2365 << 20;
9ee474f5
PT
2366 }
2367
aff3e498
PT
2368 /* migrated tasks did not contribute to our blocked load */
2369 if (wakeup) {
9ee474f5 2370 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2371 update_entity_load_avg(se, 0);
2372 }
9ee474f5 2373
2dac754e 2374 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2377}
2378
9ee474f5
PT
2379/*
2380 * Remove se's load from this cfs_rq child load-average, if the entity is
2381 * transitioning to a blocked state we track its projected decay using
2382 * blocked_load_avg.
2383 */
2dac754e 2384static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2385 struct sched_entity *se,
2386 int sleep)
2dac754e 2387{
9ee474f5 2388 update_entity_load_avg(se, 1);
aff3e498
PT
2389 /* we force update consideration on load-balancer moves */
2390 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2391
2dac754e 2392 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2393 if (sleep) {
2394 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2395 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2396 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2397}
642dbc39
VG
2398
2399/*
2400 * Update the rq's load with the elapsed running time before entering
2401 * idle. if the last scheduled task is not a CFS task, idle_enter will
2402 * be the only way to update the runnable statistic.
2403 */
2404void idle_enter_fair(struct rq *this_rq)
2405{
2406 update_rq_runnable_avg(this_rq, 1);
2407}
2408
2409/*
2410 * Update the rq's load with the elapsed idle time before a task is
2411 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2412 * be the only way to update the runnable statistic.
2413 */
2414void idle_exit_fair(struct rq *this_rq)
2415{
2416 update_rq_runnable_avg(this_rq, 0);
2417}
2418
9d85f21c 2419#else
9ee474f5
PT
2420static inline void update_entity_load_avg(struct sched_entity *se,
2421 int update_cfs_rq) {}
18bf2805 2422static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2423static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2424 struct sched_entity *se,
2425 int wakeup) {}
2dac754e 2426static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2427 struct sched_entity *se,
2428 int sleep) {}
aff3e498
PT
2429static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2430 int force_update) {}
9d85f21c
PT
2431#endif
2432
2396af69 2433static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2434{
bf0f6f24 2435#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2436 struct task_struct *tsk = NULL;
2437
2438 if (entity_is_task(se))
2439 tsk = task_of(se);
2440
41acab88 2441 if (se->statistics.sleep_start) {
78becc27 2442 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2443
2444 if ((s64)delta < 0)
2445 delta = 0;
2446
41acab88
LDM
2447 if (unlikely(delta > se->statistics.sleep_max))
2448 se->statistics.sleep_max = delta;
bf0f6f24 2449
8c79a045 2450 se->statistics.sleep_start = 0;
41acab88 2451 se->statistics.sum_sleep_runtime += delta;
9745512c 2452
768d0c27 2453 if (tsk) {
e414314c 2454 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2455 trace_sched_stat_sleep(tsk, delta);
2456 }
bf0f6f24 2457 }
41acab88 2458 if (se->statistics.block_start) {
78becc27 2459 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2460
2461 if ((s64)delta < 0)
2462 delta = 0;
2463
41acab88
LDM
2464 if (unlikely(delta > se->statistics.block_max))
2465 se->statistics.block_max = delta;
bf0f6f24 2466
8c79a045 2467 se->statistics.block_start = 0;
41acab88 2468 se->statistics.sum_sleep_runtime += delta;
30084fbd 2469
e414314c 2470 if (tsk) {
8f0dfc34 2471 if (tsk->in_iowait) {
41acab88
LDM
2472 se->statistics.iowait_sum += delta;
2473 se->statistics.iowait_count++;
768d0c27 2474 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2475 }
2476
b781a602
AV
2477 trace_sched_stat_blocked(tsk, delta);
2478
e414314c
PZ
2479 /*
2480 * Blocking time is in units of nanosecs, so shift by
2481 * 20 to get a milliseconds-range estimation of the
2482 * amount of time that the task spent sleeping:
2483 */
2484 if (unlikely(prof_on == SLEEP_PROFILING)) {
2485 profile_hits(SLEEP_PROFILING,
2486 (void *)get_wchan(tsk),
2487 delta >> 20);
2488 }
2489 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2490 }
bf0f6f24
IM
2491 }
2492#endif
2493}
2494
ddc97297
PZ
2495static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2496{
2497#ifdef CONFIG_SCHED_DEBUG
2498 s64 d = se->vruntime - cfs_rq->min_vruntime;
2499
2500 if (d < 0)
2501 d = -d;
2502
2503 if (d > 3*sysctl_sched_latency)
2504 schedstat_inc(cfs_rq, nr_spread_over);
2505#endif
2506}
2507
aeb73b04
PZ
2508static void
2509place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2510{
1af5f730 2511 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2512
2cb8600e
PZ
2513 /*
2514 * The 'current' period is already promised to the current tasks,
2515 * however the extra weight of the new task will slow them down a
2516 * little, place the new task so that it fits in the slot that
2517 * stays open at the end.
2518 */
94dfb5e7 2519 if (initial && sched_feat(START_DEBIT))
f9c0b095 2520 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2521
a2e7a7eb 2522 /* sleeps up to a single latency don't count. */
5ca9880c 2523 if (!initial) {
a2e7a7eb 2524 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2525
a2e7a7eb
MG
2526 /*
2527 * Halve their sleep time's effect, to allow
2528 * for a gentler effect of sleepers:
2529 */
2530 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2531 thresh >>= 1;
51e0304c 2532
a2e7a7eb 2533 vruntime -= thresh;
aeb73b04
PZ
2534 }
2535
b5d9d734 2536 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2537 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2538}
2539
d3d9dc33
PT
2540static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2541
bf0f6f24 2542static void
88ec22d3 2543enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2544{
88ec22d3
PZ
2545 /*
2546 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2547 * through calling update_curr().
88ec22d3 2548 */
371fd7e7 2549 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2550 se->vruntime += cfs_rq->min_vruntime;
2551
bf0f6f24 2552 /*
a2a2d680 2553 * Update run-time statistics of the 'current'.
bf0f6f24 2554 */
b7cc0896 2555 update_curr(cfs_rq);
f269ae04 2556 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2557 account_entity_enqueue(cfs_rq, se);
2558 update_cfs_shares(cfs_rq);
bf0f6f24 2559
88ec22d3 2560 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2561 place_entity(cfs_rq, se, 0);
2396af69 2562 enqueue_sleeper(cfs_rq, se);
e9acbff6 2563 }
bf0f6f24 2564
d2417e5a 2565 update_stats_enqueue(cfs_rq, se);
ddc97297 2566 check_spread(cfs_rq, se);
83b699ed
SV
2567 if (se != cfs_rq->curr)
2568 __enqueue_entity(cfs_rq, se);
2069dd75 2569 se->on_rq = 1;
3d4b47b4 2570
d3d9dc33 2571 if (cfs_rq->nr_running == 1) {
3d4b47b4 2572 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2573 check_enqueue_throttle(cfs_rq);
2574 }
bf0f6f24
IM
2575}
2576
2c13c919 2577static void __clear_buddies_last(struct sched_entity *se)
2002c695 2578{
2c13c919
RR
2579 for_each_sched_entity(se) {
2580 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2581 if (cfs_rq->last == se)
2582 cfs_rq->last = NULL;
2583 else
2584 break;
2585 }
2586}
2002c695 2587
2c13c919
RR
2588static void __clear_buddies_next(struct sched_entity *se)
2589{
2590 for_each_sched_entity(se) {
2591 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2592 if (cfs_rq->next == se)
2593 cfs_rq->next = NULL;
2594 else
2595 break;
2596 }
2002c695
PZ
2597}
2598
ac53db59
RR
2599static void __clear_buddies_skip(struct sched_entity *se)
2600{
2601 for_each_sched_entity(se) {
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 if (cfs_rq->skip == se)
2604 cfs_rq->skip = NULL;
2605 else
2606 break;
2607 }
2608}
2609
a571bbea
PZ
2610static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2611{
2c13c919
RR
2612 if (cfs_rq->last == se)
2613 __clear_buddies_last(se);
2614
2615 if (cfs_rq->next == se)
2616 __clear_buddies_next(se);
ac53db59
RR
2617
2618 if (cfs_rq->skip == se)
2619 __clear_buddies_skip(se);
a571bbea
PZ
2620}
2621
6c16a6dc 2622static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2623
bf0f6f24 2624static void
371fd7e7 2625dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2626{
a2a2d680
DA
2627 /*
2628 * Update run-time statistics of the 'current'.
2629 */
2630 update_curr(cfs_rq);
17bc14b7 2631 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2632
19b6a2e3 2633 update_stats_dequeue(cfs_rq, se);
371fd7e7 2634 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2635#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2636 if (entity_is_task(se)) {
2637 struct task_struct *tsk = task_of(se);
2638
2639 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2640 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2641 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2642 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2643 }
db36cc7d 2644#endif
67e9fb2a
PZ
2645 }
2646
2002c695 2647 clear_buddies(cfs_rq, se);
4793241b 2648
83b699ed 2649 if (se != cfs_rq->curr)
30cfdcfc 2650 __dequeue_entity(cfs_rq, se);
17bc14b7 2651 se->on_rq = 0;
30cfdcfc 2652 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2653
2654 /*
2655 * Normalize the entity after updating the min_vruntime because the
2656 * update can refer to the ->curr item and we need to reflect this
2657 * movement in our normalized position.
2658 */
371fd7e7 2659 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2660 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2661
d8b4986d
PT
2662 /* return excess runtime on last dequeue */
2663 return_cfs_rq_runtime(cfs_rq);
2664
1e876231 2665 update_min_vruntime(cfs_rq);
17bc14b7 2666 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2667}
2668
2669/*
2670 * Preempt the current task with a newly woken task if needed:
2671 */
7c92e54f 2672static void
2e09bf55 2673check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2674{
11697830 2675 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2676 struct sched_entity *se;
2677 s64 delta;
11697830 2678
6d0f0ebd 2679 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2680 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2681 if (delta_exec > ideal_runtime) {
bf0f6f24 2682 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2683 /*
2684 * The current task ran long enough, ensure it doesn't get
2685 * re-elected due to buddy favours.
2686 */
2687 clear_buddies(cfs_rq, curr);
f685ceac
MG
2688 return;
2689 }
2690
2691 /*
2692 * Ensure that a task that missed wakeup preemption by a
2693 * narrow margin doesn't have to wait for a full slice.
2694 * This also mitigates buddy induced latencies under load.
2695 */
f685ceac
MG
2696 if (delta_exec < sysctl_sched_min_granularity)
2697 return;
2698
f4cfb33e
WX
2699 se = __pick_first_entity(cfs_rq);
2700 delta = curr->vruntime - se->vruntime;
f685ceac 2701
f4cfb33e
WX
2702 if (delta < 0)
2703 return;
d7d82944 2704
f4cfb33e
WX
2705 if (delta > ideal_runtime)
2706 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2707}
2708
83b699ed 2709static void
8494f412 2710set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2711{
83b699ed
SV
2712 /* 'current' is not kept within the tree. */
2713 if (se->on_rq) {
2714 /*
2715 * Any task has to be enqueued before it get to execute on
2716 * a CPU. So account for the time it spent waiting on the
2717 * runqueue.
2718 */
2719 update_stats_wait_end(cfs_rq, se);
2720 __dequeue_entity(cfs_rq, se);
2721 }
2722
79303e9e 2723 update_stats_curr_start(cfs_rq, se);
429d43bc 2724 cfs_rq->curr = se;
eba1ed4b
IM
2725#ifdef CONFIG_SCHEDSTATS
2726 /*
2727 * Track our maximum slice length, if the CPU's load is at
2728 * least twice that of our own weight (i.e. dont track it
2729 * when there are only lesser-weight tasks around):
2730 */
495eca49 2731 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2732 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2733 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2734 }
2735#endif
4a55b450 2736 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2737}
2738
3f3a4904
PZ
2739static int
2740wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2741
ac53db59
RR
2742/*
2743 * Pick the next process, keeping these things in mind, in this order:
2744 * 1) keep things fair between processes/task groups
2745 * 2) pick the "next" process, since someone really wants that to run
2746 * 3) pick the "last" process, for cache locality
2747 * 4) do not run the "skip" process, if something else is available
2748 */
f4b6755f 2749static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2750{
ac53db59 2751 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2752 struct sched_entity *left = se;
f4b6755f 2753
ac53db59
RR
2754 /*
2755 * Avoid running the skip buddy, if running something else can
2756 * be done without getting too unfair.
2757 */
2758 if (cfs_rq->skip == se) {
2759 struct sched_entity *second = __pick_next_entity(se);
2760 if (second && wakeup_preempt_entity(second, left) < 1)
2761 se = second;
2762 }
aa2ac252 2763
f685ceac
MG
2764 /*
2765 * Prefer last buddy, try to return the CPU to a preempted task.
2766 */
2767 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2768 se = cfs_rq->last;
2769
ac53db59
RR
2770 /*
2771 * Someone really wants this to run. If it's not unfair, run it.
2772 */
2773 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2774 se = cfs_rq->next;
2775
f685ceac 2776 clear_buddies(cfs_rq, se);
4793241b
PZ
2777
2778 return se;
aa2ac252
PZ
2779}
2780
d3d9dc33
PT
2781static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2782
ab6cde26 2783static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2784{
2785 /*
2786 * If still on the runqueue then deactivate_task()
2787 * was not called and update_curr() has to be done:
2788 */
2789 if (prev->on_rq)
b7cc0896 2790 update_curr(cfs_rq);
bf0f6f24 2791
d3d9dc33
PT
2792 /* throttle cfs_rqs exceeding runtime */
2793 check_cfs_rq_runtime(cfs_rq);
2794
ddc97297 2795 check_spread(cfs_rq, prev);
30cfdcfc 2796 if (prev->on_rq) {
5870db5b 2797 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2798 /* Put 'current' back into the tree. */
2799 __enqueue_entity(cfs_rq, prev);
9d85f21c 2800 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2801 update_entity_load_avg(prev, 1);
30cfdcfc 2802 }
429d43bc 2803 cfs_rq->curr = NULL;
bf0f6f24
IM
2804}
2805
8f4d37ec
PZ
2806static void
2807entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2808{
bf0f6f24 2809 /*
30cfdcfc 2810 * Update run-time statistics of the 'current'.
bf0f6f24 2811 */
30cfdcfc 2812 update_curr(cfs_rq);
bf0f6f24 2813
9d85f21c
PT
2814 /*
2815 * Ensure that runnable average is periodically updated.
2816 */
9ee474f5 2817 update_entity_load_avg(curr, 1);
aff3e498 2818 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2819 update_cfs_shares(cfs_rq);
9d85f21c 2820
8f4d37ec
PZ
2821#ifdef CONFIG_SCHED_HRTICK
2822 /*
2823 * queued ticks are scheduled to match the slice, so don't bother
2824 * validating it and just reschedule.
2825 */
983ed7a6
HH
2826 if (queued) {
2827 resched_task(rq_of(cfs_rq)->curr);
2828 return;
2829 }
8f4d37ec
PZ
2830 /*
2831 * don't let the period tick interfere with the hrtick preemption
2832 */
2833 if (!sched_feat(DOUBLE_TICK) &&
2834 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2835 return;
2836#endif
2837
2c2efaed 2838 if (cfs_rq->nr_running > 1)
2e09bf55 2839 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2840}
2841
ab84d31e
PT
2842
2843/**************************************************
2844 * CFS bandwidth control machinery
2845 */
2846
2847#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2848
2849#ifdef HAVE_JUMP_LABEL
c5905afb 2850static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2851
2852static inline bool cfs_bandwidth_used(void)
2853{
c5905afb 2854 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2855}
2856
2857void account_cfs_bandwidth_used(int enabled, int was_enabled)
2858{
2859 /* only need to count groups transitioning between enabled/!enabled */
2860 if (enabled && !was_enabled)
c5905afb 2861 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2862 else if (!enabled && was_enabled)
c5905afb 2863 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2864}
2865#else /* HAVE_JUMP_LABEL */
2866static bool cfs_bandwidth_used(void)
2867{
2868 return true;
2869}
2870
2871void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2872#endif /* HAVE_JUMP_LABEL */
2873
ab84d31e
PT
2874/*
2875 * default period for cfs group bandwidth.
2876 * default: 0.1s, units: nanoseconds
2877 */
2878static inline u64 default_cfs_period(void)
2879{
2880 return 100000000ULL;
2881}
ec12cb7f
PT
2882
2883static inline u64 sched_cfs_bandwidth_slice(void)
2884{
2885 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2886}
2887
a9cf55b2
PT
2888/*
2889 * Replenish runtime according to assigned quota and update expiration time.
2890 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2891 * additional synchronization around rq->lock.
2892 *
2893 * requires cfs_b->lock
2894 */
029632fb 2895void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2896{
2897 u64 now;
2898
2899 if (cfs_b->quota == RUNTIME_INF)
2900 return;
2901
2902 now = sched_clock_cpu(smp_processor_id());
2903 cfs_b->runtime = cfs_b->quota;
2904 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2905}
2906
029632fb
PZ
2907static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2908{
2909 return &tg->cfs_bandwidth;
2910}
2911
f1b17280
PT
2912/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2913static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2914{
2915 if (unlikely(cfs_rq->throttle_count))
2916 return cfs_rq->throttled_clock_task;
2917
78becc27 2918 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2919}
2920
85dac906
PT
2921/* returns 0 on failure to allocate runtime */
2922static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2923{
2924 struct task_group *tg = cfs_rq->tg;
2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2926 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2927
2928 /* note: this is a positive sum as runtime_remaining <= 0 */
2929 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2930
2931 raw_spin_lock(&cfs_b->lock);
2932 if (cfs_b->quota == RUNTIME_INF)
2933 amount = min_amount;
58088ad0 2934 else {
a9cf55b2
PT
2935 /*
2936 * If the bandwidth pool has become inactive, then at least one
2937 * period must have elapsed since the last consumption.
2938 * Refresh the global state and ensure bandwidth timer becomes
2939 * active.
2940 */
2941 if (!cfs_b->timer_active) {
2942 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2943 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2944 }
58088ad0
PT
2945
2946 if (cfs_b->runtime > 0) {
2947 amount = min(cfs_b->runtime, min_amount);
2948 cfs_b->runtime -= amount;
2949 cfs_b->idle = 0;
2950 }
ec12cb7f 2951 }
a9cf55b2 2952 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2953 raw_spin_unlock(&cfs_b->lock);
2954
2955 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2956 /*
2957 * we may have advanced our local expiration to account for allowed
2958 * spread between our sched_clock and the one on which runtime was
2959 * issued.
2960 */
2961 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2962 cfs_rq->runtime_expires = expires;
85dac906
PT
2963
2964 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2965}
2966
a9cf55b2
PT
2967/*
2968 * Note: This depends on the synchronization provided by sched_clock and the
2969 * fact that rq->clock snapshots this value.
2970 */
2971static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2972{
a9cf55b2 2973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2974
2975 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2976 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2977 return;
2978
a9cf55b2
PT
2979 if (cfs_rq->runtime_remaining < 0)
2980 return;
2981
2982 /*
2983 * If the local deadline has passed we have to consider the
2984 * possibility that our sched_clock is 'fast' and the global deadline
2985 * has not truly expired.
2986 *
2987 * Fortunately we can check determine whether this the case by checking
2988 * whether the global deadline has advanced.
2989 */
2990
2991 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2992 /* extend local deadline, drift is bounded above by 2 ticks */
2993 cfs_rq->runtime_expires += TICK_NSEC;
2994 } else {
2995 /* global deadline is ahead, expiration has passed */
2996 cfs_rq->runtime_remaining = 0;
2997 }
2998}
2999
3000static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3001 unsigned long delta_exec)
3002{
3003 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3004 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3005 expire_cfs_rq_runtime(cfs_rq);
3006
3007 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3008 return;
3009
85dac906
PT
3010 /*
3011 * if we're unable to extend our runtime we resched so that the active
3012 * hierarchy can be throttled
3013 */
3014 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3015 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3016}
3017
6c16a6dc
PZ
3018static __always_inline
3019void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3020{
56f570e5 3021 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3022 return;
3023
3024 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3025}
3026
85dac906
PT
3027static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3028{
56f570e5 3029 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3030}
3031
64660c86
PT
3032/* check whether cfs_rq, or any parent, is throttled */
3033static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3034{
56f570e5 3035 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3036}
3037
3038/*
3039 * Ensure that neither of the group entities corresponding to src_cpu or
3040 * dest_cpu are members of a throttled hierarchy when performing group
3041 * load-balance operations.
3042 */
3043static inline int throttled_lb_pair(struct task_group *tg,
3044 int src_cpu, int dest_cpu)
3045{
3046 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3047
3048 src_cfs_rq = tg->cfs_rq[src_cpu];
3049 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3050
3051 return throttled_hierarchy(src_cfs_rq) ||
3052 throttled_hierarchy(dest_cfs_rq);
3053}
3054
3055/* updated child weight may affect parent so we have to do this bottom up */
3056static int tg_unthrottle_up(struct task_group *tg, void *data)
3057{
3058 struct rq *rq = data;
3059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3060
3061 cfs_rq->throttle_count--;
3062#ifdef CONFIG_SMP
3063 if (!cfs_rq->throttle_count) {
f1b17280 3064 /* adjust cfs_rq_clock_task() */
78becc27 3065 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3066 cfs_rq->throttled_clock_task;
64660c86
PT
3067 }
3068#endif
3069
3070 return 0;
3071}
3072
3073static int tg_throttle_down(struct task_group *tg, void *data)
3074{
3075 struct rq *rq = data;
3076 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3077
82958366
PT
3078 /* group is entering throttled state, stop time */
3079 if (!cfs_rq->throttle_count)
78becc27 3080 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3081 cfs_rq->throttle_count++;
3082
3083 return 0;
3084}
3085
d3d9dc33 3086static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3087{
3088 struct rq *rq = rq_of(cfs_rq);
3089 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3090 struct sched_entity *se;
3091 long task_delta, dequeue = 1;
3092
3093 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3094
f1b17280 3095 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3096 rcu_read_lock();
3097 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3098 rcu_read_unlock();
85dac906
PT
3099
3100 task_delta = cfs_rq->h_nr_running;
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3103 /* throttled entity or throttle-on-deactivate */
3104 if (!se->on_rq)
3105 break;
3106
3107 if (dequeue)
3108 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3109 qcfs_rq->h_nr_running -= task_delta;
3110
3111 if (qcfs_rq->load.weight)
3112 dequeue = 0;
3113 }
3114
3115 if (!se)
3116 rq->nr_running -= task_delta;
3117
3118 cfs_rq->throttled = 1;
78becc27 3119 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3120 raw_spin_lock(&cfs_b->lock);
3121 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3122 raw_spin_unlock(&cfs_b->lock);
3123}
3124
029632fb 3125void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3126{
3127 struct rq *rq = rq_of(cfs_rq);
3128 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3129 struct sched_entity *se;
3130 int enqueue = 1;
3131 long task_delta;
3132
22b958d8 3133 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3134
3135 cfs_rq->throttled = 0;
1a55af2e
FW
3136
3137 update_rq_clock(rq);
3138
671fd9da 3139 raw_spin_lock(&cfs_b->lock);
78becc27 3140 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3141 list_del_rcu(&cfs_rq->throttled_list);
3142 raw_spin_unlock(&cfs_b->lock);
3143
64660c86
PT
3144 /* update hierarchical throttle state */
3145 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3146
671fd9da
PT
3147 if (!cfs_rq->load.weight)
3148 return;
3149
3150 task_delta = cfs_rq->h_nr_running;
3151 for_each_sched_entity(se) {
3152 if (se->on_rq)
3153 enqueue = 0;
3154
3155 cfs_rq = cfs_rq_of(se);
3156 if (enqueue)
3157 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3158 cfs_rq->h_nr_running += task_delta;
3159
3160 if (cfs_rq_throttled(cfs_rq))
3161 break;
3162 }
3163
3164 if (!se)
3165 rq->nr_running += task_delta;
3166
3167 /* determine whether we need to wake up potentially idle cpu */
3168 if (rq->curr == rq->idle && rq->cfs.nr_running)
3169 resched_task(rq->curr);
3170}
3171
3172static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3173 u64 remaining, u64 expires)
3174{
3175 struct cfs_rq *cfs_rq;
3176 u64 runtime = remaining;
3177
3178 rcu_read_lock();
3179 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3180 throttled_list) {
3181 struct rq *rq = rq_of(cfs_rq);
3182
3183 raw_spin_lock(&rq->lock);
3184 if (!cfs_rq_throttled(cfs_rq))
3185 goto next;
3186
3187 runtime = -cfs_rq->runtime_remaining + 1;
3188 if (runtime > remaining)
3189 runtime = remaining;
3190 remaining -= runtime;
3191
3192 cfs_rq->runtime_remaining += runtime;
3193 cfs_rq->runtime_expires = expires;
3194
3195 /* we check whether we're throttled above */
3196 if (cfs_rq->runtime_remaining > 0)
3197 unthrottle_cfs_rq(cfs_rq);
3198
3199next:
3200 raw_spin_unlock(&rq->lock);
3201
3202 if (!remaining)
3203 break;
3204 }
3205 rcu_read_unlock();
3206
3207 return remaining;
3208}
3209
58088ad0
PT
3210/*
3211 * Responsible for refilling a task_group's bandwidth and unthrottling its
3212 * cfs_rqs as appropriate. If there has been no activity within the last
3213 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3214 * used to track this state.
3215 */
3216static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3217{
671fd9da
PT
3218 u64 runtime, runtime_expires;
3219 int idle = 1, throttled;
58088ad0
PT
3220
3221 raw_spin_lock(&cfs_b->lock);
3222 /* no need to continue the timer with no bandwidth constraint */
3223 if (cfs_b->quota == RUNTIME_INF)
3224 goto out_unlock;
3225
671fd9da
PT
3226 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3227 /* idle depends on !throttled (for the case of a large deficit) */
3228 idle = cfs_b->idle && !throttled;
e8da1b18 3229 cfs_b->nr_periods += overrun;
671fd9da 3230
a9cf55b2
PT
3231 /* if we're going inactive then everything else can be deferred */
3232 if (idle)
3233 goto out_unlock;
3234
3235 __refill_cfs_bandwidth_runtime(cfs_b);
3236
671fd9da
PT
3237 if (!throttled) {
3238 /* mark as potentially idle for the upcoming period */
3239 cfs_b->idle = 1;
3240 goto out_unlock;
3241 }
3242
e8da1b18
NR
3243 /* account preceding periods in which throttling occurred */
3244 cfs_b->nr_throttled += overrun;
3245
671fd9da
PT
3246 /*
3247 * There are throttled entities so we must first use the new bandwidth
3248 * to unthrottle them before making it generally available. This
3249 * ensures that all existing debts will be paid before a new cfs_rq is
3250 * allowed to run.
3251 */
3252 runtime = cfs_b->runtime;
3253 runtime_expires = cfs_b->runtime_expires;
3254 cfs_b->runtime = 0;
3255
3256 /*
3257 * This check is repeated as we are holding onto the new bandwidth
3258 * while we unthrottle. This can potentially race with an unthrottled
3259 * group trying to acquire new bandwidth from the global pool.
3260 */
3261 while (throttled && runtime > 0) {
3262 raw_spin_unlock(&cfs_b->lock);
3263 /* we can't nest cfs_b->lock while distributing bandwidth */
3264 runtime = distribute_cfs_runtime(cfs_b, runtime,
3265 runtime_expires);
3266 raw_spin_lock(&cfs_b->lock);
3267
3268 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3269 }
58088ad0 3270
671fd9da
PT
3271 /* return (any) remaining runtime */
3272 cfs_b->runtime = runtime;
3273 /*
3274 * While we are ensured activity in the period following an
3275 * unthrottle, this also covers the case in which the new bandwidth is
3276 * insufficient to cover the existing bandwidth deficit. (Forcing the
3277 * timer to remain active while there are any throttled entities.)
3278 */
3279 cfs_b->idle = 0;
58088ad0
PT
3280out_unlock:
3281 if (idle)
3282 cfs_b->timer_active = 0;
3283 raw_spin_unlock(&cfs_b->lock);
3284
3285 return idle;
3286}
d3d9dc33 3287
d8b4986d
PT
3288/* a cfs_rq won't donate quota below this amount */
3289static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3290/* minimum remaining period time to redistribute slack quota */
3291static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3292/* how long we wait to gather additional slack before distributing */
3293static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3294
3295/* are we near the end of the current quota period? */
3296static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3297{
3298 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3299 u64 remaining;
3300
3301 /* if the call-back is running a quota refresh is already occurring */
3302 if (hrtimer_callback_running(refresh_timer))
3303 return 1;
3304
3305 /* is a quota refresh about to occur? */
3306 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3307 if (remaining < min_expire)
3308 return 1;
3309
3310 return 0;
3311}
3312
3313static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3314{
3315 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3316
3317 /* if there's a quota refresh soon don't bother with slack */
3318 if (runtime_refresh_within(cfs_b, min_left))
3319 return;
3320
3321 start_bandwidth_timer(&cfs_b->slack_timer,
3322 ns_to_ktime(cfs_bandwidth_slack_period));
3323}
3324
3325/* we know any runtime found here is valid as update_curr() precedes return */
3326static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3327{
3328 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3329 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3330
3331 if (slack_runtime <= 0)
3332 return;
3333
3334 raw_spin_lock(&cfs_b->lock);
3335 if (cfs_b->quota != RUNTIME_INF &&
3336 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3337 cfs_b->runtime += slack_runtime;
3338
3339 /* we are under rq->lock, defer unthrottling using a timer */
3340 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3341 !list_empty(&cfs_b->throttled_cfs_rq))
3342 start_cfs_slack_bandwidth(cfs_b);
3343 }
3344 raw_spin_unlock(&cfs_b->lock);
3345
3346 /* even if it's not valid for return we don't want to try again */
3347 cfs_rq->runtime_remaining -= slack_runtime;
3348}
3349
3350static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3351{
56f570e5
PT
3352 if (!cfs_bandwidth_used())
3353 return;
3354
fccfdc6f 3355 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3356 return;
3357
3358 __return_cfs_rq_runtime(cfs_rq);
3359}
3360
3361/*
3362 * This is done with a timer (instead of inline with bandwidth return) since
3363 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3364 */
3365static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3366{
3367 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3368 u64 expires;
3369
3370 /* confirm we're still not at a refresh boundary */
3371 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3372 return;
3373
3374 raw_spin_lock(&cfs_b->lock);
3375 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3376 runtime = cfs_b->runtime;
3377 cfs_b->runtime = 0;
3378 }
3379 expires = cfs_b->runtime_expires;
3380 raw_spin_unlock(&cfs_b->lock);
3381
3382 if (!runtime)
3383 return;
3384
3385 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3386
3387 raw_spin_lock(&cfs_b->lock);
3388 if (expires == cfs_b->runtime_expires)
3389 cfs_b->runtime = runtime;
3390 raw_spin_unlock(&cfs_b->lock);
3391}
3392
d3d9dc33
PT
3393/*
3394 * When a group wakes up we want to make sure that its quota is not already
3395 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3396 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3397 */
3398static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3399{
56f570e5
PT
3400 if (!cfs_bandwidth_used())
3401 return;
3402
d3d9dc33
PT
3403 /* an active group must be handled by the update_curr()->put() path */
3404 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3405 return;
3406
3407 /* ensure the group is not already throttled */
3408 if (cfs_rq_throttled(cfs_rq))
3409 return;
3410
3411 /* update runtime allocation */
3412 account_cfs_rq_runtime(cfs_rq, 0);
3413 if (cfs_rq->runtime_remaining <= 0)
3414 throttle_cfs_rq(cfs_rq);
3415}
3416
3417/* conditionally throttle active cfs_rq's from put_prev_entity() */
3418static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3419{
56f570e5
PT
3420 if (!cfs_bandwidth_used())
3421 return;
3422
d3d9dc33
PT
3423 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3424 return;
3425
3426 /*
3427 * it's possible for a throttled entity to be forced into a running
3428 * state (e.g. set_curr_task), in this case we're finished.
3429 */
3430 if (cfs_rq_throttled(cfs_rq))
3431 return;
3432
3433 throttle_cfs_rq(cfs_rq);
3434}
029632fb 3435
029632fb
PZ
3436static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3437{
3438 struct cfs_bandwidth *cfs_b =
3439 container_of(timer, struct cfs_bandwidth, slack_timer);
3440 do_sched_cfs_slack_timer(cfs_b);
3441
3442 return HRTIMER_NORESTART;
3443}
3444
3445static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3446{
3447 struct cfs_bandwidth *cfs_b =
3448 container_of(timer, struct cfs_bandwidth, period_timer);
3449 ktime_t now;
3450 int overrun;
3451 int idle = 0;
3452
3453 for (;;) {
3454 now = hrtimer_cb_get_time(timer);
3455 overrun = hrtimer_forward(timer, now, cfs_b->period);
3456
3457 if (!overrun)
3458 break;
3459
3460 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3461 }
3462
3463 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3464}
3465
3466void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3467{
3468 raw_spin_lock_init(&cfs_b->lock);
3469 cfs_b->runtime = 0;
3470 cfs_b->quota = RUNTIME_INF;
3471 cfs_b->period = ns_to_ktime(default_cfs_period());
3472
3473 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3474 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3475 cfs_b->period_timer.function = sched_cfs_period_timer;
3476 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3477 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3478}
3479
3480static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3481{
3482 cfs_rq->runtime_enabled = 0;
3483 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3484}
3485
3486/* requires cfs_b->lock, may release to reprogram timer */
3487void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3488{
3489 /*
3490 * The timer may be active because we're trying to set a new bandwidth
3491 * period or because we're racing with the tear-down path
3492 * (timer_active==0 becomes visible before the hrtimer call-back
3493 * terminates). In either case we ensure that it's re-programmed
3494 */
3495 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3496 raw_spin_unlock(&cfs_b->lock);
3497 /* ensure cfs_b->lock is available while we wait */
3498 hrtimer_cancel(&cfs_b->period_timer);
3499
3500 raw_spin_lock(&cfs_b->lock);
3501 /* if someone else restarted the timer then we're done */
3502 if (cfs_b->timer_active)
3503 return;
3504 }
3505
3506 cfs_b->timer_active = 1;
3507 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3508}
3509
3510static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3511{
3512 hrtimer_cancel(&cfs_b->period_timer);
3513 hrtimer_cancel(&cfs_b->slack_timer);
3514}
3515
38dc3348 3516static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3517{
3518 struct cfs_rq *cfs_rq;
3519
3520 for_each_leaf_cfs_rq(rq, cfs_rq) {
3521 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3522
3523 if (!cfs_rq->runtime_enabled)
3524 continue;
3525
3526 /*
3527 * clock_task is not advancing so we just need to make sure
3528 * there's some valid quota amount
3529 */
3530 cfs_rq->runtime_remaining = cfs_b->quota;
3531 if (cfs_rq_throttled(cfs_rq))
3532 unthrottle_cfs_rq(cfs_rq);
3533 }
3534}
3535
3536#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3537static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3538{
78becc27 3539 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3540}
3541
3542static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3543 unsigned long delta_exec) {}
d3d9dc33
PT
3544static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3545static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3546static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3547
3548static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3549{
3550 return 0;
3551}
64660c86
PT
3552
3553static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3554{
3555 return 0;
3556}
3557
3558static inline int throttled_lb_pair(struct task_group *tg,
3559 int src_cpu, int dest_cpu)
3560{
3561 return 0;
3562}
029632fb
PZ
3563
3564void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3565
3566#ifdef CONFIG_FAIR_GROUP_SCHED
3567static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3568#endif
3569
029632fb
PZ
3570static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3571{
3572 return NULL;
3573}
3574static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3575static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3576
3577#endif /* CONFIG_CFS_BANDWIDTH */
3578
bf0f6f24
IM
3579/**************************************************
3580 * CFS operations on tasks:
3581 */
3582
8f4d37ec
PZ
3583#ifdef CONFIG_SCHED_HRTICK
3584static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3585{
8f4d37ec
PZ
3586 struct sched_entity *se = &p->se;
3587 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3588
3589 WARN_ON(task_rq(p) != rq);
3590
b39e66ea 3591 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3592 u64 slice = sched_slice(cfs_rq, se);
3593 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3594 s64 delta = slice - ran;
3595
3596 if (delta < 0) {
3597 if (rq->curr == p)
3598 resched_task(p);
3599 return;
3600 }
3601
3602 /*
3603 * Don't schedule slices shorter than 10000ns, that just
3604 * doesn't make sense. Rely on vruntime for fairness.
3605 */
31656519 3606 if (rq->curr != p)
157124c1 3607 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3608
31656519 3609 hrtick_start(rq, delta);
8f4d37ec
PZ
3610 }
3611}
a4c2f00f
PZ
3612
3613/*
3614 * called from enqueue/dequeue and updates the hrtick when the
3615 * current task is from our class and nr_running is low enough
3616 * to matter.
3617 */
3618static void hrtick_update(struct rq *rq)
3619{
3620 struct task_struct *curr = rq->curr;
3621
b39e66ea 3622 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3623 return;
3624
3625 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3626 hrtick_start_fair(rq, curr);
3627}
55e12e5e 3628#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3629static inline void
3630hrtick_start_fair(struct rq *rq, struct task_struct *p)
3631{
3632}
a4c2f00f
PZ
3633
3634static inline void hrtick_update(struct rq *rq)
3635{
3636}
8f4d37ec
PZ
3637#endif
3638
bf0f6f24
IM
3639/*
3640 * The enqueue_task method is called before nr_running is
3641 * increased. Here we update the fair scheduling stats and
3642 * then put the task into the rbtree:
3643 */
ea87bb78 3644static void
371fd7e7 3645enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3646{
3647 struct cfs_rq *cfs_rq;
62fb1851 3648 struct sched_entity *se = &p->se;
bf0f6f24
IM
3649
3650 for_each_sched_entity(se) {
62fb1851 3651 if (se->on_rq)
bf0f6f24
IM
3652 break;
3653 cfs_rq = cfs_rq_of(se);
88ec22d3 3654 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3655
3656 /*
3657 * end evaluation on encountering a throttled cfs_rq
3658 *
3659 * note: in the case of encountering a throttled cfs_rq we will
3660 * post the final h_nr_running increment below.
3661 */
3662 if (cfs_rq_throttled(cfs_rq))
3663 break;
953bfcd1 3664 cfs_rq->h_nr_running++;
85dac906 3665
88ec22d3 3666 flags = ENQUEUE_WAKEUP;
bf0f6f24 3667 }
8f4d37ec 3668
2069dd75 3669 for_each_sched_entity(se) {
0f317143 3670 cfs_rq = cfs_rq_of(se);
953bfcd1 3671 cfs_rq->h_nr_running++;
2069dd75 3672
85dac906
PT
3673 if (cfs_rq_throttled(cfs_rq))
3674 break;
3675
17bc14b7 3676 update_cfs_shares(cfs_rq);
9ee474f5 3677 update_entity_load_avg(se, 1);
2069dd75
PZ
3678 }
3679
18bf2805
BS
3680 if (!se) {
3681 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3682 inc_nr_running(rq);
18bf2805 3683 }
a4c2f00f 3684 hrtick_update(rq);
bf0f6f24
IM
3685}
3686
2f36825b
VP
3687static void set_next_buddy(struct sched_entity *se);
3688
bf0f6f24
IM
3689/*
3690 * The dequeue_task method is called before nr_running is
3691 * decreased. We remove the task from the rbtree and
3692 * update the fair scheduling stats:
3693 */
371fd7e7 3694static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3695{
3696 struct cfs_rq *cfs_rq;
62fb1851 3697 struct sched_entity *se = &p->se;
2f36825b 3698 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3699
3700 for_each_sched_entity(se) {
3701 cfs_rq = cfs_rq_of(se);
371fd7e7 3702 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3703
3704 /*
3705 * end evaluation on encountering a throttled cfs_rq
3706 *
3707 * note: in the case of encountering a throttled cfs_rq we will
3708 * post the final h_nr_running decrement below.
3709 */
3710 if (cfs_rq_throttled(cfs_rq))
3711 break;
953bfcd1 3712 cfs_rq->h_nr_running--;
2069dd75 3713
bf0f6f24 3714 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3715 if (cfs_rq->load.weight) {
3716 /*
3717 * Bias pick_next to pick a task from this cfs_rq, as
3718 * p is sleeping when it is within its sched_slice.
3719 */
3720 if (task_sleep && parent_entity(se))
3721 set_next_buddy(parent_entity(se));
9598c82d
PT
3722
3723 /* avoid re-evaluating load for this entity */
3724 se = parent_entity(se);
bf0f6f24 3725 break;
2f36825b 3726 }
371fd7e7 3727 flags |= DEQUEUE_SLEEP;
bf0f6f24 3728 }
8f4d37ec 3729
2069dd75 3730 for_each_sched_entity(se) {
0f317143 3731 cfs_rq = cfs_rq_of(se);
953bfcd1 3732 cfs_rq->h_nr_running--;
2069dd75 3733
85dac906
PT
3734 if (cfs_rq_throttled(cfs_rq))
3735 break;
3736
17bc14b7 3737 update_cfs_shares(cfs_rq);
9ee474f5 3738 update_entity_load_avg(se, 1);
2069dd75
PZ
3739 }
3740
18bf2805 3741 if (!se) {
85dac906 3742 dec_nr_running(rq);
18bf2805
BS
3743 update_rq_runnable_avg(rq, 1);
3744 }
a4c2f00f 3745 hrtick_update(rq);
bf0f6f24
IM
3746}
3747
e7693a36 3748#ifdef CONFIG_SMP
029632fb
PZ
3749/* Used instead of source_load when we know the type == 0 */
3750static unsigned long weighted_cpuload(const int cpu)
3751{
b92486cb 3752 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3753}
3754
3755/*
3756 * Return a low guess at the load of a migration-source cpu weighted
3757 * according to the scheduling class and "nice" value.
3758 *
3759 * We want to under-estimate the load of migration sources, to
3760 * balance conservatively.
3761 */
3762static unsigned long source_load(int cpu, int type)
3763{
3764 struct rq *rq = cpu_rq(cpu);
3765 unsigned long total = weighted_cpuload(cpu);
3766
3767 if (type == 0 || !sched_feat(LB_BIAS))
3768 return total;
3769
3770 return min(rq->cpu_load[type-1], total);
3771}
3772
3773/*
3774 * Return a high guess at the load of a migration-target cpu weighted
3775 * according to the scheduling class and "nice" value.
3776 */
3777static unsigned long target_load(int cpu, int type)
3778{
3779 struct rq *rq = cpu_rq(cpu);
3780 unsigned long total = weighted_cpuload(cpu);
3781
3782 if (type == 0 || !sched_feat(LB_BIAS))
3783 return total;
3784
3785 return max(rq->cpu_load[type-1], total);
3786}
3787
3788static unsigned long power_of(int cpu)
3789{
3790 return cpu_rq(cpu)->cpu_power;
3791}
3792
3793static unsigned long cpu_avg_load_per_task(int cpu)
3794{
3795 struct rq *rq = cpu_rq(cpu);
3796 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3797 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3798
3799 if (nr_running)
b92486cb 3800 return load_avg / nr_running;
029632fb
PZ
3801
3802 return 0;
3803}
3804
62470419
MW
3805static void record_wakee(struct task_struct *p)
3806{
3807 /*
3808 * Rough decay (wiping) for cost saving, don't worry
3809 * about the boundary, really active task won't care
3810 * about the loss.
3811 */
3812 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3813 current->wakee_flips = 0;
3814 current->wakee_flip_decay_ts = jiffies;
3815 }
3816
3817 if (current->last_wakee != p) {
3818 current->last_wakee = p;
3819 current->wakee_flips++;
3820 }
3821}
098fb9db 3822
74f8e4b2 3823static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3824{
3825 struct sched_entity *se = &p->se;
3826 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3827 u64 min_vruntime;
3828
3829#ifndef CONFIG_64BIT
3830 u64 min_vruntime_copy;
88ec22d3 3831
3fe1698b
PZ
3832 do {
3833 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3834 smp_rmb();
3835 min_vruntime = cfs_rq->min_vruntime;
3836 } while (min_vruntime != min_vruntime_copy);
3837#else
3838 min_vruntime = cfs_rq->min_vruntime;
3839#endif
88ec22d3 3840
3fe1698b 3841 se->vruntime -= min_vruntime;
62470419 3842 record_wakee(p);
88ec22d3
PZ
3843}
3844
bb3469ac 3845#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3846/*
3847 * effective_load() calculates the load change as seen from the root_task_group
3848 *
3849 * Adding load to a group doesn't make a group heavier, but can cause movement
3850 * of group shares between cpus. Assuming the shares were perfectly aligned one
3851 * can calculate the shift in shares.
cf5f0acf
PZ
3852 *
3853 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3854 * on this @cpu and results in a total addition (subtraction) of @wg to the
3855 * total group weight.
3856 *
3857 * Given a runqueue weight distribution (rw_i) we can compute a shares
3858 * distribution (s_i) using:
3859 *
3860 * s_i = rw_i / \Sum rw_j (1)
3861 *
3862 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3863 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3864 * shares distribution (s_i):
3865 *
3866 * rw_i = { 2, 4, 1, 0 }
3867 * s_i = { 2/7, 4/7, 1/7, 0 }
3868 *
3869 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3870 * task used to run on and the CPU the waker is running on), we need to
3871 * compute the effect of waking a task on either CPU and, in case of a sync
3872 * wakeup, compute the effect of the current task going to sleep.
3873 *
3874 * So for a change of @wl to the local @cpu with an overall group weight change
3875 * of @wl we can compute the new shares distribution (s'_i) using:
3876 *
3877 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3878 *
3879 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3880 * differences in waking a task to CPU 0. The additional task changes the
3881 * weight and shares distributions like:
3882 *
3883 * rw'_i = { 3, 4, 1, 0 }
3884 * s'_i = { 3/8, 4/8, 1/8, 0 }
3885 *
3886 * We can then compute the difference in effective weight by using:
3887 *
3888 * dw_i = S * (s'_i - s_i) (3)
3889 *
3890 * Where 'S' is the group weight as seen by its parent.
3891 *
3892 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3893 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3894 * 4/7) times the weight of the group.
f5bfb7d9 3895 */
2069dd75 3896static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3897{
4be9daaa 3898 struct sched_entity *se = tg->se[cpu];
f1d239f7 3899
58d081b5 3900 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3901 return wl;
3902
4be9daaa 3903 for_each_sched_entity(se) {
cf5f0acf 3904 long w, W;
4be9daaa 3905
977dda7c 3906 tg = se->my_q->tg;
bb3469ac 3907
cf5f0acf
PZ
3908 /*
3909 * W = @wg + \Sum rw_j
3910 */
3911 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3912
cf5f0acf
PZ
3913 /*
3914 * w = rw_i + @wl
3915 */
3916 w = se->my_q->load.weight + wl;
940959e9 3917
cf5f0acf
PZ
3918 /*
3919 * wl = S * s'_i; see (2)
3920 */
3921 if (W > 0 && w < W)
3922 wl = (w * tg->shares) / W;
977dda7c
PT
3923 else
3924 wl = tg->shares;
940959e9 3925
cf5f0acf
PZ
3926 /*
3927 * Per the above, wl is the new se->load.weight value; since
3928 * those are clipped to [MIN_SHARES, ...) do so now. See
3929 * calc_cfs_shares().
3930 */
977dda7c
PT
3931 if (wl < MIN_SHARES)
3932 wl = MIN_SHARES;
cf5f0acf
PZ
3933
3934 /*
3935 * wl = dw_i = S * (s'_i - s_i); see (3)
3936 */
977dda7c 3937 wl -= se->load.weight;
cf5f0acf
PZ
3938
3939 /*
3940 * Recursively apply this logic to all parent groups to compute
3941 * the final effective load change on the root group. Since
3942 * only the @tg group gets extra weight, all parent groups can
3943 * only redistribute existing shares. @wl is the shift in shares
3944 * resulting from this level per the above.
3945 */
4be9daaa 3946 wg = 0;
4be9daaa 3947 }
bb3469ac 3948
4be9daaa 3949 return wl;
bb3469ac
PZ
3950}
3951#else
4be9daaa 3952
58d081b5 3953static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3954{
83378269 3955 return wl;
bb3469ac 3956}
4be9daaa 3957
bb3469ac
PZ
3958#endif
3959
62470419
MW
3960static int wake_wide(struct task_struct *p)
3961{
7d9ffa89 3962 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3963
3964 /*
3965 * Yeah, it's the switching-frequency, could means many wakee or
3966 * rapidly switch, use factor here will just help to automatically
3967 * adjust the loose-degree, so bigger node will lead to more pull.
3968 */
3969 if (p->wakee_flips > factor) {
3970 /*
3971 * wakee is somewhat hot, it needs certain amount of cpu
3972 * resource, so if waker is far more hot, prefer to leave
3973 * it alone.
3974 */
3975 if (current->wakee_flips > (factor * p->wakee_flips))
3976 return 1;
3977 }
3978
3979 return 0;
3980}
3981
c88d5910 3982static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3983{
e37b6a7b 3984 s64 this_load, load;
c88d5910 3985 int idx, this_cpu, prev_cpu;
098fb9db 3986 unsigned long tl_per_task;
c88d5910 3987 struct task_group *tg;
83378269 3988 unsigned long weight;
b3137bc8 3989 int balanced;
098fb9db 3990
62470419
MW
3991 /*
3992 * If we wake multiple tasks be careful to not bounce
3993 * ourselves around too much.
3994 */
3995 if (wake_wide(p))
3996 return 0;
3997
c88d5910
PZ
3998 idx = sd->wake_idx;
3999 this_cpu = smp_processor_id();
4000 prev_cpu = task_cpu(p);
4001 load = source_load(prev_cpu, idx);
4002 this_load = target_load(this_cpu, idx);
098fb9db 4003
b3137bc8
MG
4004 /*
4005 * If sync wakeup then subtract the (maximum possible)
4006 * effect of the currently running task from the load
4007 * of the current CPU:
4008 */
83378269
PZ
4009 if (sync) {
4010 tg = task_group(current);
4011 weight = current->se.load.weight;
4012
c88d5910 4013 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4014 load += effective_load(tg, prev_cpu, 0, -weight);
4015 }
b3137bc8 4016
83378269
PZ
4017 tg = task_group(p);
4018 weight = p->se.load.weight;
b3137bc8 4019
71a29aa7
PZ
4020 /*
4021 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4022 * due to the sync cause above having dropped this_load to 0, we'll
4023 * always have an imbalance, but there's really nothing you can do
4024 * about that, so that's good too.
71a29aa7
PZ
4025 *
4026 * Otherwise check if either cpus are near enough in load to allow this
4027 * task to be woken on this_cpu.
4028 */
e37b6a7b
PT
4029 if (this_load > 0) {
4030 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4031
4032 this_eff_load = 100;
4033 this_eff_load *= power_of(prev_cpu);
4034 this_eff_load *= this_load +
4035 effective_load(tg, this_cpu, weight, weight);
4036
4037 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4038 prev_eff_load *= power_of(this_cpu);
4039 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4040
4041 balanced = this_eff_load <= prev_eff_load;
4042 } else
4043 balanced = true;
b3137bc8 4044
098fb9db 4045 /*
4ae7d5ce
IM
4046 * If the currently running task will sleep within
4047 * a reasonable amount of time then attract this newly
4048 * woken task:
098fb9db 4049 */
2fb7635c
PZ
4050 if (sync && balanced)
4051 return 1;
098fb9db 4052
41acab88 4053 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4054 tl_per_task = cpu_avg_load_per_task(this_cpu);
4055
c88d5910
PZ
4056 if (balanced ||
4057 (this_load <= load &&
4058 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4059 /*
4060 * This domain has SD_WAKE_AFFINE and
4061 * p is cache cold in this domain, and
4062 * there is no bad imbalance.
4063 */
c88d5910 4064 schedstat_inc(sd, ttwu_move_affine);
41acab88 4065 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4066
4067 return 1;
4068 }
4069 return 0;
4070}
4071
aaee1203
PZ
4072/*
4073 * find_idlest_group finds and returns the least busy CPU group within the
4074 * domain.
4075 */
4076static struct sched_group *
78e7ed53 4077find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4078 int this_cpu, int load_idx)
e7693a36 4079{
b3bd3de6 4080 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4081 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4082 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4083
aaee1203
PZ
4084 do {
4085 unsigned long load, avg_load;
4086 int local_group;
4087 int i;
e7693a36 4088
aaee1203
PZ
4089 /* Skip over this group if it has no CPUs allowed */
4090 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4091 tsk_cpus_allowed(p)))
aaee1203
PZ
4092 continue;
4093
4094 local_group = cpumask_test_cpu(this_cpu,
4095 sched_group_cpus(group));
4096
4097 /* Tally up the load of all CPUs in the group */
4098 avg_load = 0;
4099
4100 for_each_cpu(i, sched_group_cpus(group)) {
4101 /* Bias balancing toward cpus of our domain */
4102 if (local_group)
4103 load = source_load(i, load_idx);
4104 else
4105 load = target_load(i, load_idx);
4106
4107 avg_load += load;
4108 }
4109
4110 /* Adjust by relative CPU power of the group */
9c3f75cb 4111 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4112
4113 if (local_group) {
4114 this_load = avg_load;
aaee1203
PZ
4115 } else if (avg_load < min_load) {
4116 min_load = avg_load;
4117 idlest = group;
4118 }
4119 } while (group = group->next, group != sd->groups);
4120
4121 if (!idlest || 100*this_load < imbalance*min_load)
4122 return NULL;
4123 return idlest;
4124}
4125
4126/*
4127 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4128 */
4129static int
4130find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4131{
4132 unsigned long load, min_load = ULONG_MAX;
4133 int idlest = -1;
4134 int i;
4135
4136 /* Traverse only the allowed CPUs */
fa17b507 4137 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4138 load = weighted_cpuload(i);
4139
4140 if (load < min_load || (load == min_load && i == this_cpu)) {
4141 min_load = load;
4142 idlest = i;
e7693a36
GH
4143 }
4144 }
4145
aaee1203
PZ
4146 return idlest;
4147}
e7693a36 4148
a50bde51
PZ
4149/*
4150 * Try and locate an idle CPU in the sched_domain.
4151 */
99bd5e2f 4152static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4153{
99bd5e2f 4154 struct sched_domain *sd;
37407ea7 4155 struct sched_group *sg;
e0a79f52 4156 int i = task_cpu(p);
a50bde51 4157
e0a79f52
MG
4158 if (idle_cpu(target))
4159 return target;
99bd5e2f
SS
4160
4161 /*
e0a79f52 4162 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4163 */
e0a79f52
MG
4164 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4165 return i;
a50bde51
PZ
4166
4167 /*
37407ea7 4168 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4169 */
518cd623 4170 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4171 for_each_lower_domain(sd) {
37407ea7
LT
4172 sg = sd->groups;
4173 do {
4174 if (!cpumask_intersects(sched_group_cpus(sg),
4175 tsk_cpus_allowed(p)))
4176 goto next;
4177
4178 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4179 if (i == target || !idle_cpu(i))
37407ea7
LT
4180 goto next;
4181 }
970e1789 4182
37407ea7
LT
4183 target = cpumask_first_and(sched_group_cpus(sg),
4184 tsk_cpus_allowed(p));
4185 goto done;
4186next:
4187 sg = sg->next;
4188 } while (sg != sd->groups);
4189 }
4190done:
a50bde51
PZ
4191 return target;
4192}
4193
aaee1203
PZ
4194/*
4195 * sched_balance_self: balance the current task (running on cpu) in domains
4196 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4197 * SD_BALANCE_EXEC.
4198 *
4199 * Balance, ie. select the least loaded group.
4200 *
4201 * Returns the target CPU number, or the same CPU if no balancing is needed.
4202 *
4203 * preempt must be disabled.
4204 */
0017d735 4205static int
ac66f547 4206select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4207{
29cd8bae 4208 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4209 int cpu = smp_processor_id();
c88d5910 4210 int new_cpu = cpu;
99bd5e2f 4211 int want_affine = 0;
5158f4e4 4212 int sync = wake_flags & WF_SYNC;
c88d5910 4213
29baa747 4214 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4215 return prev_cpu;
4216
0763a660 4217 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4218 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4219 want_affine = 1;
4220 new_cpu = prev_cpu;
4221 }
aaee1203 4222
dce840a0 4223 rcu_read_lock();
aaee1203 4224 for_each_domain(cpu, tmp) {
e4f42888
PZ
4225 if (!(tmp->flags & SD_LOAD_BALANCE))
4226 continue;
4227
fe3bcfe1 4228 /*
99bd5e2f
SS
4229 * If both cpu and prev_cpu are part of this domain,
4230 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4231 */
99bd5e2f
SS
4232 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4233 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4234 affine_sd = tmp;
29cd8bae 4235 break;
f03542a7 4236 }
29cd8bae 4237
f03542a7 4238 if (tmp->flags & sd_flag)
29cd8bae
PZ
4239 sd = tmp;
4240 }
4241
8b911acd 4242 if (affine_sd) {
f03542a7 4243 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4244 prev_cpu = cpu;
4245
4246 new_cpu = select_idle_sibling(p, prev_cpu);
4247 goto unlock;
8b911acd 4248 }
e7693a36 4249
aaee1203 4250 while (sd) {
5158f4e4 4251 int load_idx = sd->forkexec_idx;
aaee1203 4252 struct sched_group *group;
c88d5910 4253 int weight;
098fb9db 4254
0763a660 4255 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4256 sd = sd->child;
4257 continue;
4258 }
098fb9db 4259
5158f4e4
PZ
4260 if (sd_flag & SD_BALANCE_WAKE)
4261 load_idx = sd->wake_idx;
098fb9db 4262
5158f4e4 4263 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4264 if (!group) {
4265 sd = sd->child;
4266 continue;
4267 }
4ae7d5ce 4268
d7c33c49 4269 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4270 if (new_cpu == -1 || new_cpu == cpu) {
4271 /* Now try balancing at a lower domain level of cpu */
4272 sd = sd->child;
4273 continue;
e7693a36 4274 }
aaee1203
PZ
4275
4276 /* Now try balancing at a lower domain level of new_cpu */
4277 cpu = new_cpu;
669c55e9 4278 weight = sd->span_weight;
aaee1203
PZ
4279 sd = NULL;
4280 for_each_domain(cpu, tmp) {
669c55e9 4281 if (weight <= tmp->span_weight)
aaee1203 4282 break;
0763a660 4283 if (tmp->flags & sd_flag)
aaee1203
PZ
4284 sd = tmp;
4285 }
4286 /* while loop will break here if sd == NULL */
e7693a36 4287 }
dce840a0
PZ
4288unlock:
4289 rcu_read_unlock();
e7693a36 4290
c88d5910 4291 return new_cpu;
e7693a36 4292}
0a74bef8
PT
4293
4294/*
4295 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4296 * cfs_rq_of(p) references at time of call are still valid and identify the
4297 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4298 * other assumptions, including the state of rq->lock, should be made.
4299 */
4300static void
4301migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4302{
aff3e498
PT
4303 struct sched_entity *se = &p->se;
4304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4305
4306 /*
4307 * Load tracking: accumulate removed load so that it can be processed
4308 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4309 * to blocked load iff they have a positive decay-count. It can never
4310 * be negative here since on-rq tasks have decay-count == 0.
4311 */
4312 if (se->avg.decay_count) {
4313 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4314 atomic_long_add(se->avg.load_avg_contrib,
4315 &cfs_rq->removed_load);
aff3e498 4316 }
0a74bef8 4317}
e7693a36
GH
4318#endif /* CONFIG_SMP */
4319
e52fb7c0
PZ
4320static unsigned long
4321wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4322{
4323 unsigned long gran = sysctl_sched_wakeup_granularity;
4324
4325 /*
e52fb7c0
PZ
4326 * Since its curr running now, convert the gran from real-time
4327 * to virtual-time in his units.
13814d42
MG
4328 *
4329 * By using 'se' instead of 'curr' we penalize light tasks, so
4330 * they get preempted easier. That is, if 'se' < 'curr' then
4331 * the resulting gran will be larger, therefore penalizing the
4332 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4333 * be smaller, again penalizing the lighter task.
4334 *
4335 * This is especially important for buddies when the leftmost
4336 * task is higher priority than the buddy.
0bbd3336 4337 */
f4ad9bd2 4338 return calc_delta_fair(gran, se);
0bbd3336
PZ
4339}
4340
464b7527
PZ
4341/*
4342 * Should 'se' preempt 'curr'.
4343 *
4344 * |s1
4345 * |s2
4346 * |s3
4347 * g
4348 * |<--->|c
4349 *
4350 * w(c, s1) = -1
4351 * w(c, s2) = 0
4352 * w(c, s3) = 1
4353 *
4354 */
4355static int
4356wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4357{
4358 s64 gran, vdiff = curr->vruntime - se->vruntime;
4359
4360 if (vdiff <= 0)
4361 return -1;
4362
e52fb7c0 4363 gran = wakeup_gran(curr, se);
464b7527
PZ
4364 if (vdiff > gran)
4365 return 1;
4366
4367 return 0;
4368}
4369
02479099
PZ
4370static void set_last_buddy(struct sched_entity *se)
4371{
69c80f3e
VP
4372 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4373 return;
4374
4375 for_each_sched_entity(se)
4376 cfs_rq_of(se)->last = se;
02479099
PZ
4377}
4378
4379static void set_next_buddy(struct sched_entity *se)
4380{
69c80f3e
VP
4381 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4382 return;
4383
4384 for_each_sched_entity(se)
4385 cfs_rq_of(se)->next = se;
02479099
PZ
4386}
4387
ac53db59
RR
4388static void set_skip_buddy(struct sched_entity *se)
4389{
69c80f3e
VP
4390 for_each_sched_entity(se)
4391 cfs_rq_of(se)->skip = se;
ac53db59
RR
4392}
4393
bf0f6f24
IM
4394/*
4395 * Preempt the current task with a newly woken task if needed:
4396 */
5a9b86f6 4397static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4398{
4399 struct task_struct *curr = rq->curr;
8651a86c 4400 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4401 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4402 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4403 int next_buddy_marked = 0;
bf0f6f24 4404
4ae7d5ce
IM
4405 if (unlikely(se == pse))
4406 return;
4407
5238cdd3 4408 /*
ddcdf6e7 4409 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4410 * unconditionally check_prempt_curr() after an enqueue (which may have
4411 * lead to a throttle). This both saves work and prevents false
4412 * next-buddy nomination below.
4413 */
4414 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4415 return;
4416
2f36825b 4417 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4418 set_next_buddy(pse);
2f36825b
VP
4419 next_buddy_marked = 1;
4420 }
57fdc26d 4421
aec0a514
BR
4422 /*
4423 * We can come here with TIF_NEED_RESCHED already set from new task
4424 * wake up path.
5238cdd3
PT
4425 *
4426 * Note: this also catches the edge-case of curr being in a throttled
4427 * group (e.g. via set_curr_task), since update_curr() (in the
4428 * enqueue of curr) will have resulted in resched being set. This
4429 * prevents us from potentially nominating it as a false LAST_BUDDY
4430 * below.
aec0a514
BR
4431 */
4432 if (test_tsk_need_resched(curr))
4433 return;
4434
a2f5c9ab
DH
4435 /* Idle tasks are by definition preempted by non-idle tasks. */
4436 if (unlikely(curr->policy == SCHED_IDLE) &&
4437 likely(p->policy != SCHED_IDLE))
4438 goto preempt;
4439
91c234b4 4440 /*
a2f5c9ab
DH
4441 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4442 * is driven by the tick):
91c234b4 4443 */
8ed92e51 4444 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4445 return;
bf0f6f24 4446
464b7527 4447 find_matching_se(&se, &pse);
9bbd7374 4448 update_curr(cfs_rq_of(se));
002f128b 4449 BUG_ON(!pse);
2f36825b
VP
4450 if (wakeup_preempt_entity(se, pse) == 1) {
4451 /*
4452 * Bias pick_next to pick the sched entity that is
4453 * triggering this preemption.
4454 */
4455 if (!next_buddy_marked)
4456 set_next_buddy(pse);
3a7e73a2 4457 goto preempt;
2f36825b 4458 }
464b7527 4459
3a7e73a2 4460 return;
a65ac745 4461
3a7e73a2
PZ
4462preempt:
4463 resched_task(curr);
4464 /*
4465 * Only set the backward buddy when the current task is still
4466 * on the rq. This can happen when a wakeup gets interleaved
4467 * with schedule on the ->pre_schedule() or idle_balance()
4468 * point, either of which can * drop the rq lock.
4469 *
4470 * Also, during early boot the idle thread is in the fair class,
4471 * for obvious reasons its a bad idea to schedule back to it.
4472 */
4473 if (unlikely(!se->on_rq || curr == rq->idle))
4474 return;
4475
4476 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4477 set_last_buddy(se);
bf0f6f24
IM
4478}
4479
fb8d4724 4480static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4481{
8f4d37ec 4482 struct task_struct *p;
bf0f6f24
IM
4483 struct cfs_rq *cfs_rq = &rq->cfs;
4484 struct sched_entity *se;
4485
36ace27e 4486 if (!cfs_rq->nr_running)
bf0f6f24
IM
4487 return NULL;
4488
4489 do {
9948f4b2 4490 se = pick_next_entity(cfs_rq);
f4b6755f 4491 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4492 cfs_rq = group_cfs_rq(se);
4493 } while (cfs_rq);
4494
8f4d37ec 4495 p = task_of(se);
b39e66ea
MG
4496 if (hrtick_enabled(rq))
4497 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4498
4499 return p;
bf0f6f24
IM
4500}
4501
4502/*
4503 * Account for a descheduled task:
4504 */
31ee529c 4505static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4506{
4507 struct sched_entity *se = &prev->se;
4508 struct cfs_rq *cfs_rq;
4509
4510 for_each_sched_entity(se) {
4511 cfs_rq = cfs_rq_of(se);
ab6cde26 4512 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4513 }
4514}
4515
ac53db59
RR
4516/*
4517 * sched_yield() is very simple
4518 *
4519 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4520 */
4521static void yield_task_fair(struct rq *rq)
4522{
4523 struct task_struct *curr = rq->curr;
4524 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4525 struct sched_entity *se = &curr->se;
4526
4527 /*
4528 * Are we the only task in the tree?
4529 */
4530 if (unlikely(rq->nr_running == 1))
4531 return;
4532
4533 clear_buddies(cfs_rq, se);
4534
4535 if (curr->policy != SCHED_BATCH) {
4536 update_rq_clock(rq);
4537 /*
4538 * Update run-time statistics of the 'current'.
4539 */
4540 update_curr(cfs_rq);
916671c0
MG
4541 /*
4542 * Tell update_rq_clock() that we've just updated,
4543 * so we don't do microscopic update in schedule()
4544 * and double the fastpath cost.
4545 */
4546 rq->skip_clock_update = 1;
ac53db59
RR
4547 }
4548
4549 set_skip_buddy(se);
4550}
4551
d95f4122
MG
4552static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4553{
4554 struct sched_entity *se = &p->se;
4555
5238cdd3
PT
4556 /* throttled hierarchies are not runnable */
4557 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4558 return false;
4559
4560 /* Tell the scheduler that we'd really like pse to run next. */
4561 set_next_buddy(se);
4562
d95f4122
MG
4563 yield_task_fair(rq);
4564
4565 return true;
4566}
4567
681f3e68 4568#ifdef CONFIG_SMP
bf0f6f24 4569/**************************************************
e9c84cb8
PZ
4570 * Fair scheduling class load-balancing methods.
4571 *
4572 * BASICS
4573 *
4574 * The purpose of load-balancing is to achieve the same basic fairness the
4575 * per-cpu scheduler provides, namely provide a proportional amount of compute
4576 * time to each task. This is expressed in the following equation:
4577 *
4578 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4579 *
4580 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4581 * W_i,0 is defined as:
4582 *
4583 * W_i,0 = \Sum_j w_i,j (2)
4584 *
4585 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4586 * is derived from the nice value as per prio_to_weight[].
4587 *
4588 * The weight average is an exponential decay average of the instantaneous
4589 * weight:
4590 *
4591 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4592 *
4593 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4594 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4595 * can also include other factors [XXX].
4596 *
4597 * To achieve this balance we define a measure of imbalance which follows
4598 * directly from (1):
4599 *
4600 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4601 *
4602 * We them move tasks around to minimize the imbalance. In the continuous
4603 * function space it is obvious this converges, in the discrete case we get
4604 * a few fun cases generally called infeasible weight scenarios.
4605 *
4606 * [XXX expand on:
4607 * - infeasible weights;
4608 * - local vs global optima in the discrete case. ]
4609 *
4610 *
4611 * SCHED DOMAINS
4612 *
4613 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4614 * for all i,j solution, we create a tree of cpus that follows the hardware
4615 * topology where each level pairs two lower groups (or better). This results
4616 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4617 * tree to only the first of the previous level and we decrease the frequency
4618 * of load-balance at each level inv. proportional to the number of cpus in
4619 * the groups.
4620 *
4621 * This yields:
4622 *
4623 * log_2 n 1 n
4624 * \Sum { --- * --- * 2^i } = O(n) (5)
4625 * i = 0 2^i 2^i
4626 * `- size of each group
4627 * | | `- number of cpus doing load-balance
4628 * | `- freq
4629 * `- sum over all levels
4630 *
4631 * Coupled with a limit on how many tasks we can migrate every balance pass,
4632 * this makes (5) the runtime complexity of the balancer.
4633 *
4634 * An important property here is that each CPU is still (indirectly) connected
4635 * to every other cpu in at most O(log n) steps:
4636 *
4637 * The adjacency matrix of the resulting graph is given by:
4638 *
4639 * log_2 n
4640 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4641 * k = 0
4642 *
4643 * And you'll find that:
4644 *
4645 * A^(log_2 n)_i,j != 0 for all i,j (7)
4646 *
4647 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4648 * The task movement gives a factor of O(m), giving a convergence complexity
4649 * of:
4650 *
4651 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4652 *
4653 *
4654 * WORK CONSERVING
4655 *
4656 * In order to avoid CPUs going idle while there's still work to do, new idle
4657 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4658 * tree itself instead of relying on other CPUs to bring it work.
4659 *
4660 * This adds some complexity to both (5) and (8) but it reduces the total idle
4661 * time.
4662 *
4663 * [XXX more?]
4664 *
4665 *
4666 * CGROUPS
4667 *
4668 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4669 *
4670 * s_k,i
4671 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4672 * S_k
4673 *
4674 * Where
4675 *
4676 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4677 *
4678 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4679 *
4680 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4681 * property.
4682 *
4683 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4684 * rewrite all of this once again.]
4685 */
bf0f6f24 4686
ed387b78
HS
4687static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4688
0ec8aa00
PZ
4689enum fbq_type { regular, remote, all };
4690
ddcdf6e7 4691#define LBF_ALL_PINNED 0x01
367456c7 4692#define LBF_NEED_BREAK 0x02
6263322c
PZ
4693#define LBF_DST_PINNED 0x04
4694#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4695
4696struct lb_env {
4697 struct sched_domain *sd;
4698
ddcdf6e7 4699 struct rq *src_rq;
85c1e7da 4700 int src_cpu;
ddcdf6e7
PZ
4701
4702 int dst_cpu;
4703 struct rq *dst_rq;
4704
88b8dac0
SV
4705 struct cpumask *dst_grpmask;
4706 int new_dst_cpu;
ddcdf6e7 4707 enum cpu_idle_type idle;
bd939f45 4708 long imbalance;
b9403130
MW
4709 /* The set of CPUs under consideration for load-balancing */
4710 struct cpumask *cpus;
4711
ddcdf6e7 4712 unsigned int flags;
367456c7
PZ
4713
4714 unsigned int loop;
4715 unsigned int loop_break;
4716 unsigned int loop_max;
0ec8aa00
PZ
4717
4718 enum fbq_type fbq_type;
ddcdf6e7
PZ
4719};
4720
1e3c88bd 4721/*
ddcdf6e7 4722 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4723 * Both runqueues must be locked.
4724 */
ddcdf6e7 4725static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4726{
ddcdf6e7
PZ
4727 deactivate_task(env->src_rq, p, 0);
4728 set_task_cpu(p, env->dst_cpu);
4729 activate_task(env->dst_rq, p, 0);
4730 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4731}
4732
029632fb
PZ
4733/*
4734 * Is this task likely cache-hot:
4735 */
4736static int
4737task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4738{
4739 s64 delta;
4740
4741 if (p->sched_class != &fair_sched_class)
4742 return 0;
4743
4744 if (unlikely(p->policy == SCHED_IDLE))
4745 return 0;
4746
4747 /*
4748 * Buddy candidates are cache hot:
4749 */
4750 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4751 (&p->se == cfs_rq_of(&p->se)->next ||
4752 &p->se == cfs_rq_of(&p->se)->last))
4753 return 1;
4754
4755 if (sysctl_sched_migration_cost == -1)
4756 return 1;
4757 if (sysctl_sched_migration_cost == 0)
4758 return 0;
4759
4760 delta = now - p->se.exec_start;
4761
4762 return delta < (s64)sysctl_sched_migration_cost;
4763}
4764
3a7053b3
MG
4765#ifdef CONFIG_NUMA_BALANCING
4766/* Returns true if the destination node has incurred more faults */
4767static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4768{
4769 int src_nid, dst_nid;
4770
4771 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4772 !(env->sd->flags & SD_NUMA)) {
4773 return false;
4774 }
4775
4776 src_nid = cpu_to_node(env->src_cpu);
4777 dst_nid = cpu_to_node(env->dst_cpu);
4778
83e1d2cd 4779 if (src_nid == dst_nid)
3a7053b3
MG
4780 return false;
4781
83e1d2cd
MG
4782 /* Always encourage migration to the preferred node. */
4783 if (dst_nid == p->numa_preferred_nid)
4784 return true;
4785
887c290e
RR
4786 /* If both task and group weight improve, this move is a winner. */
4787 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4788 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4789 return true;
4790
4791 return false;
4792}
7a0f3083
MG
4793
4794
4795static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4796{
4797 int src_nid, dst_nid;
4798
4799 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4800 return false;
4801
4802 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4803 return false;
4804
4805 src_nid = cpu_to_node(env->src_cpu);
4806 dst_nid = cpu_to_node(env->dst_cpu);
4807
83e1d2cd 4808 if (src_nid == dst_nid)
7a0f3083
MG
4809 return false;
4810
83e1d2cd
MG
4811 /* Migrating away from the preferred node is always bad. */
4812 if (src_nid == p->numa_preferred_nid)
4813 return true;
4814
887c290e
RR
4815 /* If either task or group weight get worse, don't do it. */
4816 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4817 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4818 return true;
4819
4820 return false;
4821}
4822
3a7053b3
MG
4823#else
4824static inline bool migrate_improves_locality(struct task_struct *p,
4825 struct lb_env *env)
4826{
4827 return false;
4828}
7a0f3083
MG
4829
4830static inline bool migrate_degrades_locality(struct task_struct *p,
4831 struct lb_env *env)
4832{
4833 return false;
4834}
3a7053b3
MG
4835#endif
4836
1e3c88bd
PZ
4837/*
4838 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4839 */
4840static
8e45cb54 4841int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4842{
4843 int tsk_cache_hot = 0;
4844 /*
4845 * We do not migrate tasks that are:
d3198084 4846 * 1) throttled_lb_pair, or
1e3c88bd 4847 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4848 * 3) running (obviously), or
4849 * 4) are cache-hot on their current CPU.
1e3c88bd 4850 */
d3198084
JK
4851 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4852 return 0;
4853
ddcdf6e7 4854 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4855 int cpu;
88b8dac0 4856
41acab88 4857 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4858
6263322c
PZ
4859 env->flags |= LBF_SOME_PINNED;
4860
88b8dac0
SV
4861 /*
4862 * Remember if this task can be migrated to any other cpu in
4863 * our sched_group. We may want to revisit it if we couldn't
4864 * meet load balance goals by pulling other tasks on src_cpu.
4865 *
4866 * Also avoid computing new_dst_cpu if we have already computed
4867 * one in current iteration.
4868 */
6263322c 4869 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4870 return 0;
4871
e02e60c1
JK
4872 /* Prevent to re-select dst_cpu via env's cpus */
4873 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4874 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4875 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4876 env->new_dst_cpu = cpu;
4877 break;
4878 }
88b8dac0 4879 }
e02e60c1 4880
1e3c88bd
PZ
4881 return 0;
4882 }
88b8dac0
SV
4883
4884 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4885 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4886
ddcdf6e7 4887 if (task_running(env->src_rq, p)) {
41acab88 4888 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4889 return 0;
4890 }
4891
4892 /*
4893 * Aggressive migration if:
3a7053b3
MG
4894 * 1) destination numa is preferred
4895 * 2) task is cache cold, or
4896 * 3) too many balance attempts have failed.
1e3c88bd 4897 */
78becc27 4898 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4899 if (!tsk_cache_hot)
4900 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4901
4902 if (migrate_improves_locality(p, env)) {
4903#ifdef CONFIG_SCHEDSTATS
4904 if (tsk_cache_hot) {
4905 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4906 schedstat_inc(p, se.statistics.nr_forced_migrations);
4907 }
4908#endif
4909 return 1;
4910 }
4911
1e3c88bd 4912 if (!tsk_cache_hot ||
8e45cb54 4913 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4914
1e3c88bd 4915 if (tsk_cache_hot) {
8e45cb54 4916 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4917 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4918 }
4e2dcb73 4919
1e3c88bd
PZ
4920 return 1;
4921 }
4922
4e2dcb73
ZH
4923 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4924 return 0;
1e3c88bd
PZ
4925}
4926
897c395f
PZ
4927/*
4928 * move_one_task tries to move exactly one task from busiest to this_rq, as
4929 * part of active balancing operations within "domain".
4930 * Returns 1 if successful and 0 otherwise.
4931 *
4932 * Called with both runqueues locked.
4933 */
8e45cb54 4934static int move_one_task(struct lb_env *env)
897c395f
PZ
4935{
4936 struct task_struct *p, *n;
897c395f 4937
367456c7 4938 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4939 if (!can_migrate_task(p, env))
4940 continue;
897c395f 4941
367456c7
PZ
4942 move_task(p, env);
4943 /*
4944 * Right now, this is only the second place move_task()
4945 * is called, so we can safely collect move_task()
4946 * stats here rather than inside move_task().
4947 */
4948 schedstat_inc(env->sd, lb_gained[env->idle]);
4949 return 1;
897c395f 4950 }
897c395f
PZ
4951 return 0;
4952}
4953
eb95308e
PZ
4954static const unsigned int sched_nr_migrate_break = 32;
4955
5d6523eb 4956/*
bd939f45 4957 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4958 * this_rq, as part of a balancing operation within domain "sd".
4959 * Returns 1 if successful and 0 otherwise.
4960 *
4961 * Called with both runqueues locked.
4962 */
4963static int move_tasks(struct lb_env *env)
1e3c88bd 4964{
5d6523eb
PZ
4965 struct list_head *tasks = &env->src_rq->cfs_tasks;
4966 struct task_struct *p;
367456c7
PZ
4967 unsigned long load;
4968 int pulled = 0;
1e3c88bd 4969
bd939f45 4970 if (env->imbalance <= 0)
5d6523eb 4971 return 0;
1e3c88bd 4972
5d6523eb
PZ
4973 while (!list_empty(tasks)) {
4974 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4975
367456c7
PZ
4976 env->loop++;
4977 /* We've more or less seen every task there is, call it quits */
5d6523eb 4978 if (env->loop > env->loop_max)
367456c7 4979 break;
5d6523eb
PZ
4980
4981 /* take a breather every nr_migrate tasks */
367456c7 4982 if (env->loop > env->loop_break) {
eb95308e 4983 env->loop_break += sched_nr_migrate_break;
8e45cb54 4984 env->flags |= LBF_NEED_BREAK;
ee00e66f 4985 break;
a195f004 4986 }
1e3c88bd 4987
d3198084 4988 if (!can_migrate_task(p, env))
367456c7
PZ
4989 goto next;
4990
4991 load = task_h_load(p);
5d6523eb 4992
eb95308e 4993 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4994 goto next;
4995
bd939f45 4996 if ((load / 2) > env->imbalance)
367456c7 4997 goto next;
1e3c88bd 4998
ddcdf6e7 4999 move_task(p, env);
ee00e66f 5000 pulled++;
bd939f45 5001 env->imbalance -= load;
1e3c88bd
PZ
5002
5003#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5004 /*
5005 * NEWIDLE balancing is a source of latency, so preemptible
5006 * kernels will stop after the first task is pulled to minimize
5007 * the critical section.
5008 */
5d6523eb 5009 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5010 break;
1e3c88bd
PZ
5011#endif
5012
ee00e66f
PZ
5013 /*
5014 * We only want to steal up to the prescribed amount of
5015 * weighted load.
5016 */
bd939f45 5017 if (env->imbalance <= 0)
ee00e66f 5018 break;
367456c7
PZ
5019
5020 continue;
5021next:
5d6523eb 5022 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5023 }
5d6523eb 5024
1e3c88bd 5025 /*
ddcdf6e7
PZ
5026 * Right now, this is one of only two places move_task() is called,
5027 * so we can safely collect move_task() stats here rather than
5028 * inside move_task().
1e3c88bd 5029 */
8e45cb54 5030 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5031
5d6523eb 5032 return pulled;
1e3c88bd
PZ
5033}
5034
230059de 5035#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5036/*
5037 * update tg->load_weight by folding this cpu's load_avg
5038 */
48a16753 5039static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5040{
48a16753
PT
5041 struct sched_entity *se = tg->se[cpu];
5042 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5043
48a16753
PT
5044 /* throttled entities do not contribute to load */
5045 if (throttled_hierarchy(cfs_rq))
5046 return;
9e3081ca 5047
aff3e498 5048 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5049
82958366
PT
5050 if (se) {
5051 update_entity_load_avg(se, 1);
5052 /*
5053 * We pivot on our runnable average having decayed to zero for
5054 * list removal. This generally implies that all our children
5055 * have also been removed (modulo rounding error or bandwidth
5056 * control); however, such cases are rare and we can fix these
5057 * at enqueue.
5058 *
5059 * TODO: fix up out-of-order children on enqueue.
5060 */
5061 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5062 list_del_leaf_cfs_rq(cfs_rq);
5063 } else {
48a16753 5064 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5065 update_rq_runnable_avg(rq, rq->nr_running);
5066 }
9e3081ca
PZ
5067}
5068
48a16753 5069static void update_blocked_averages(int cpu)
9e3081ca 5070{
9e3081ca 5071 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5072 struct cfs_rq *cfs_rq;
5073 unsigned long flags;
9e3081ca 5074
48a16753
PT
5075 raw_spin_lock_irqsave(&rq->lock, flags);
5076 update_rq_clock(rq);
9763b67f
PZ
5077 /*
5078 * Iterates the task_group tree in a bottom up fashion, see
5079 * list_add_leaf_cfs_rq() for details.
5080 */
64660c86 5081 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5082 /*
5083 * Note: We may want to consider periodically releasing
5084 * rq->lock about these updates so that creating many task
5085 * groups does not result in continually extending hold time.
5086 */
5087 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5088 }
48a16753
PT
5089
5090 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5091}
5092
9763b67f 5093/*
68520796 5094 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5095 * This needs to be done in a top-down fashion because the load of a child
5096 * group is a fraction of its parents load.
5097 */
68520796 5098static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5099{
68520796
VD
5100 struct rq *rq = rq_of(cfs_rq);
5101 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5102 unsigned long now = jiffies;
68520796 5103 unsigned long load;
a35b6466 5104
68520796 5105 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5106 return;
5107
68520796
VD
5108 cfs_rq->h_load_next = NULL;
5109 for_each_sched_entity(se) {
5110 cfs_rq = cfs_rq_of(se);
5111 cfs_rq->h_load_next = se;
5112 if (cfs_rq->last_h_load_update == now)
5113 break;
5114 }
a35b6466 5115
68520796 5116 if (!se) {
7e3115ef 5117 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5118 cfs_rq->last_h_load_update = now;
5119 }
5120
5121 while ((se = cfs_rq->h_load_next) != NULL) {
5122 load = cfs_rq->h_load;
5123 load = div64_ul(load * se->avg.load_avg_contrib,
5124 cfs_rq->runnable_load_avg + 1);
5125 cfs_rq = group_cfs_rq(se);
5126 cfs_rq->h_load = load;
5127 cfs_rq->last_h_load_update = now;
5128 }
9763b67f
PZ
5129}
5130
367456c7 5131static unsigned long task_h_load(struct task_struct *p)
230059de 5132{
367456c7 5133 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5134
68520796 5135 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5136 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5137 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5138}
5139#else
48a16753 5140static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5141{
5142}
5143
367456c7 5144static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5145{
a003a25b 5146 return p->se.avg.load_avg_contrib;
1e3c88bd 5147}
230059de 5148#endif
1e3c88bd 5149
1e3c88bd 5150/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5151/*
5152 * sg_lb_stats - stats of a sched_group required for load_balancing
5153 */
5154struct sg_lb_stats {
5155 unsigned long avg_load; /*Avg load across the CPUs of the group */
5156 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5157 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5158 unsigned long load_per_task;
3ae11c90 5159 unsigned long group_power;
147c5fc2
PZ
5160 unsigned int sum_nr_running; /* Nr tasks running in the group */
5161 unsigned int group_capacity;
5162 unsigned int idle_cpus;
5163 unsigned int group_weight;
1e3c88bd 5164 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5165 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5166#ifdef CONFIG_NUMA_BALANCING
5167 unsigned int nr_numa_running;
5168 unsigned int nr_preferred_running;
5169#endif
1e3c88bd
PZ
5170};
5171
56cf515b
JK
5172/*
5173 * sd_lb_stats - Structure to store the statistics of a sched_domain
5174 * during load balancing.
5175 */
5176struct sd_lb_stats {
5177 struct sched_group *busiest; /* Busiest group in this sd */
5178 struct sched_group *local; /* Local group in this sd */
5179 unsigned long total_load; /* Total load of all groups in sd */
5180 unsigned long total_pwr; /* Total power of all groups in sd */
5181 unsigned long avg_load; /* Average load across all groups in sd */
5182
56cf515b 5183 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5184 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5185};
5186
147c5fc2
PZ
5187static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5188{
5189 /*
5190 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5191 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5192 * We must however clear busiest_stat::avg_load because
5193 * update_sd_pick_busiest() reads this before assignment.
5194 */
5195 *sds = (struct sd_lb_stats){
5196 .busiest = NULL,
5197 .local = NULL,
5198 .total_load = 0UL,
5199 .total_pwr = 0UL,
5200 .busiest_stat = {
5201 .avg_load = 0UL,
5202 },
5203 };
5204}
5205
1e3c88bd
PZ
5206/**
5207 * get_sd_load_idx - Obtain the load index for a given sched domain.
5208 * @sd: The sched_domain whose load_idx is to be obtained.
5209 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5210 *
5211 * Return: The load index.
1e3c88bd
PZ
5212 */
5213static inline int get_sd_load_idx(struct sched_domain *sd,
5214 enum cpu_idle_type idle)
5215{
5216 int load_idx;
5217
5218 switch (idle) {
5219 case CPU_NOT_IDLE:
5220 load_idx = sd->busy_idx;
5221 break;
5222
5223 case CPU_NEWLY_IDLE:
5224 load_idx = sd->newidle_idx;
5225 break;
5226 default:
5227 load_idx = sd->idle_idx;
5228 break;
5229 }
5230
5231 return load_idx;
5232}
5233
15f803c9 5234static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5235{
1399fa78 5236 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5237}
5238
5239unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5240{
5241 return default_scale_freq_power(sd, cpu);
5242}
5243
15f803c9 5244static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5245{
669c55e9 5246 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5247 unsigned long smt_gain = sd->smt_gain;
5248
5249 smt_gain /= weight;
5250
5251 return smt_gain;
5252}
5253
5254unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5255{
5256 return default_scale_smt_power(sd, cpu);
5257}
5258
15f803c9 5259static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5260{
5261 struct rq *rq = cpu_rq(cpu);
b654f7de 5262 u64 total, available, age_stamp, avg;
1e3c88bd 5263
b654f7de
PZ
5264 /*
5265 * Since we're reading these variables without serialization make sure
5266 * we read them once before doing sanity checks on them.
5267 */
5268 age_stamp = ACCESS_ONCE(rq->age_stamp);
5269 avg = ACCESS_ONCE(rq->rt_avg);
5270
78becc27 5271 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5272
b654f7de 5273 if (unlikely(total < avg)) {
aa483808
VP
5274 /* Ensures that power won't end up being negative */
5275 available = 0;
5276 } else {
b654f7de 5277 available = total - avg;
aa483808 5278 }
1e3c88bd 5279
1399fa78
NR
5280 if (unlikely((s64)total < SCHED_POWER_SCALE))
5281 total = SCHED_POWER_SCALE;
1e3c88bd 5282
1399fa78 5283 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5284
5285 return div_u64(available, total);
5286}
5287
5288static void update_cpu_power(struct sched_domain *sd, int cpu)
5289{
669c55e9 5290 unsigned long weight = sd->span_weight;
1399fa78 5291 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5292 struct sched_group *sdg = sd->groups;
5293
1e3c88bd
PZ
5294 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5295 if (sched_feat(ARCH_POWER))
5296 power *= arch_scale_smt_power(sd, cpu);
5297 else
5298 power *= default_scale_smt_power(sd, cpu);
5299
1399fa78 5300 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5301 }
5302
9c3f75cb 5303 sdg->sgp->power_orig = power;
9d5efe05
SV
5304
5305 if (sched_feat(ARCH_POWER))
5306 power *= arch_scale_freq_power(sd, cpu);
5307 else
5308 power *= default_scale_freq_power(sd, cpu);
5309
1399fa78 5310 power >>= SCHED_POWER_SHIFT;
9d5efe05 5311
1e3c88bd 5312 power *= scale_rt_power(cpu);
1399fa78 5313 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5314
5315 if (!power)
5316 power = 1;
5317
e51fd5e2 5318 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5319 sdg->sgp->power = power;
1e3c88bd
PZ
5320}
5321
029632fb 5322void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5323{
5324 struct sched_domain *child = sd->child;
5325 struct sched_group *group, *sdg = sd->groups;
863bffc8 5326 unsigned long power, power_orig;
4ec4412e
VG
5327 unsigned long interval;
5328
5329 interval = msecs_to_jiffies(sd->balance_interval);
5330 interval = clamp(interval, 1UL, max_load_balance_interval);
5331 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5332
5333 if (!child) {
5334 update_cpu_power(sd, cpu);
5335 return;
5336 }
5337
863bffc8 5338 power_orig = power = 0;
1e3c88bd 5339
74a5ce20
PZ
5340 if (child->flags & SD_OVERLAP) {
5341 /*
5342 * SD_OVERLAP domains cannot assume that child groups
5343 * span the current group.
5344 */
5345
863bffc8
PZ
5346 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5347 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5348
5349 power_orig += sg->sgp->power_orig;
5350 power += sg->sgp->power;
5351 }
74a5ce20
PZ
5352 } else {
5353 /*
5354 * !SD_OVERLAP domains can assume that child groups
5355 * span the current group.
5356 */
5357
5358 group = child->groups;
5359 do {
863bffc8 5360 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5361 power += group->sgp->power;
5362 group = group->next;
5363 } while (group != child->groups);
5364 }
1e3c88bd 5365
863bffc8
PZ
5366 sdg->sgp->power_orig = power_orig;
5367 sdg->sgp->power = power;
1e3c88bd
PZ
5368}
5369
9d5efe05
SV
5370/*
5371 * Try and fix up capacity for tiny siblings, this is needed when
5372 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5373 * which on its own isn't powerful enough.
5374 *
5375 * See update_sd_pick_busiest() and check_asym_packing().
5376 */
5377static inline int
5378fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5379{
5380 /*
1399fa78 5381 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5382 */
a6c75f2f 5383 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5384 return 0;
5385
5386 /*
5387 * If ~90% of the cpu_power is still there, we're good.
5388 */
9c3f75cb 5389 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5390 return 1;
5391
5392 return 0;
5393}
5394
30ce5dab
PZ
5395/*
5396 * Group imbalance indicates (and tries to solve) the problem where balancing
5397 * groups is inadequate due to tsk_cpus_allowed() constraints.
5398 *
5399 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5400 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5401 * Something like:
5402 *
5403 * { 0 1 2 3 } { 4 5 6 7 }
5404 * * * * *
5405 *
5406 * If we were to balance group-wise we'd place two tasks in the first group and
5407 * two tasks in the second group. Clearly this is undesired as it will overload
5408 * cpu 3 and leave one of the cpus in the second group unused.
5409 *
5410 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5411 * by noticing the lower domain failed to reach balance and had difficulty
5412 * moving tasks due to affinity constraints.
30ce5dab
PZ
5413 *
5414 * When this is so detected; this group becomes a candidate for busiest; see
5415 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5416 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5417 * to create an effective group imbalance.
5418 *
5419 * This is a somewhat tricky proposition since the next run might not find the
5420 * group imbalance and decide the groups need to be balanced again. A most
5421 * subtle and fragile situation.
5422 */
5423
6263322c 5424static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5425{
6263322c 5426 return group->sgp->imbalance;
30ce5dab
PZ
5427}
5428
b37d9316
PZ
5429/*
5430 * Compute the group capacity.
5431 *
c61037e9
PZ
5432 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5433 * first dividing out the smt factor and computing the actual number of cores
5434 * and limit power unit capacity with that.
b37d9316
PZ
5435 */
5436static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5437{
c61037e9
PZ
5438 unsigned int capacity, smt, cpus;
5439 unsigned int power, power_orig;
5440
5441 power = group->sgp->power;
5442 power_orig = group->sgp->power_orig;
5443 cpus = group->group_weight;
b37d9316 5444
c61037e9
PZ
5445 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5446 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5447 capacity = cpus / smt; /* cores */
b37d9316 5448
c61037e9 5449 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5450 if (!capacity)
5451 capacity = fix_small_capacity(env->sd, group);
5452
5453 return capacity;
5454}
5455
1e3c88bd
PZ
5456/**
5457 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5458 * @env: The load balancing environment.
1e3c88bd 5459 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5460 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5461 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5462 * @sgs: variable to hold the statistics for this group.
5463 */
bd939f45
PZ
5464static inline void update_sg_lb_stats(struct lb_env *env,
5465 struct sched_group *group, int load_idx,
23f0d209 5466 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5467{
30ce5dab
PZ
5468 unsigned long nr_running;
5469 unsigned long load;
bd939f45 5470 int i;
1e3c88bd 5471
b72ff13c
PZ
5472 memset(sgs, 0, sizeof(*sgs));
5473
b9403130 5474 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5475 struct rq *rq = cpu_rq(i);
5476
e44bc5c5
PZ
5477 nr_running = rq->nr_running;
5478
1e3c88bd 5479 /* Bias balancing toward cpus of our domain */
6263322c 5480 if (local_group)
04f733b4 5481 load = target_load(i, load_idx);
6263322c 5482 else
1e3c88bd 5483 load = source_load(i, load_idx);
1e3c88bd
PZ
5484
5485 sgs->group_load += load;
e44bc5c5 5486 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5487#ifdef CONFIG_NUMA_BALANCING
5488 sgs->nr_numa_running += rq->nr_numa_running;
5489 sgs->nr_preferred_running += rq->nr_preferred_running;
5490#endif
1e3c88bd 5491 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5492 if (idle_cpu(i))
5493 sgs->idle_cpus++;
1e3c88bd
PZ
5494 }
5495
1e3c88bd 5496 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5497 sgs->group_power = group->sgp->power;
5498 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5499
dd5feea1 5500 if (sgs->sum_nr_running)
38d0f770 5501 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5502
aae6d3dd 5503 sgs->group_weight = group->group_weight;
fab47622 5504
b37d9316
PZ
5505 sgs->group_imb = sg_imbalanced(group);
5506 sgs->group_capacity = sg_capacity(env, group);
5507
fab47622
NR
5508 if (sgs->group_capacity > sgs->sum_nr_running)
5509 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5510}
5511
532cb4c4
MN
5512/**
5513 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5514 * @env: The load balancing environment.
532cb4c4
MN
5515 * @sds: sched_domain statistics
5516 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5517 * @sgs: sched_group statistics
532cb4c4
MN
5518 *
5519 * Determine if @sg is a busier group than the previously selected
5520 * busiest group.
e69f6186
YB
5521 *
5522 * Return: %true if @sg is a busier group than the previously selected
5523 * busiest group. %false otherwise.
532cb4c4 5524 */
bd939f45 5525static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5526 struct sd_lb_stats *sds,
5527 struct sched_group *sg,
bd939f45 5528 struct sg_lb_stats *sgs)
532cb4c4 5529{
56cf515b 5530 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5531 return false;
5532
5533 if (sgs->sum_nr_running > sgs->group_capacity)
5534 return true;
5535
5536 if (sgs->group_imb)
5537 return true;
5538
5539 /*
5540 * ASYM_PACKING needs to move all the work to the lowest
5541 * numbered CPUs in the group, therefore mark all groups
5542 * higher than ourself as busy.
5543 */
bd939f45
PZ
5544 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5545 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5546 if (!sds->busiest)
5547 return true;
5548
5549 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5550 return true;
5551 }
5552
5553 return false;
5554}
5555
0ec8aa00
PZ
5556#ifdef CONFIG_NUMA_BALANCING
5557static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5558{
5559 if (sgs->sum_nr_running > sgs->nr_numa_running)
5560 return regular;
5561 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5562 return remote;
5563 return all;
5564}
5565
5566static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5567{
5568 if (rq->nr_running > rq->nr_numa_running)
5569 return regular;
5570 if (rq->nr_running > rq->nr_preferred_running)
5571 return remote;
5572 return all;
5573}
5574#else
5575static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5576{
5577 return all;
5578}
5579
5580static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5581{
5582 return regular;
5583}
5584#endif /* CONFIG_NUMA_BALANCING */
5585
1e3c88bd 5586/**
461819ac 5587 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5588 * @env: The load balancing environment.
1e3c88bd
PZ
5589 * @sds: variable to hold the statistics for this sched_domain.
5590 */
0ec8aa00 5591static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5592{
bd939f45
PZ
5593 struct sched_domain *child = env->sd->child;
5594 struct sched_group *sg = env->sd->groups;
56cf515b 5595 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5596 int load_idx, prefer_sibling = 0;
5597
5598 if (child && child->flags & SD_PREFER_SIBLING)
5599 prefer_sibling = 1;
5600
bd939f45 5601 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5602
5603 do {
56cf515b 5604 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5605 int local_group;
5606
bd939f45 5607 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5608 if (local_group) {
5609 sds->local = sg;
5610 sgs = &sds->local_stat;
b72ff13c
PZ
5611
5612 if (env->idle != CPU_NEWLY_IDLE ||
5613 time_after_eq(jiffies, sg->sgp->next_update))
5614 update_group_power(env->sd, env->dst_cpu);
56cf515b 5615 }
1e3c88bd 5616
56cf515b 5617 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5618
b72ff13c
PZ
5619 if (local_group)
5620 goto next_group;
5621
1e3c88bd
PZ
5622 /*
5623 * In case the child domain prefers tasks go to siblings
532cb4c4 5624 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5625 * and move all the excess tasks away. We lower the capacity
5626 * of a group only if the local group has the capacity to fit
5627 * these excess tasks, i.e. nr_running < group_capacity. The
5628 * extra check prevents the case where you always pull from the
5629 * heaviest group when it is already under-utilized (possible
5630 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5631 */
b72ff13c
PZ
5632 if (prefer_sibling && sds->local &&
5633 sds->local_stat.group_has_capacity)
147c5fc2 5634 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5635
b72ff13c 5636 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5637 sds->busiest = sg;
56cf515b 5638 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5639 }
5640
b72ff13c
PZ
5641next_group:
5642 /* Now, start updating sd_lb_stats */
5643 sds->total_load += sgs->group_load;
5644 sds->total_pwr += sgs->group_power;
5645
532cb4c4 5646 sg = sg->next;
bd939f45 5647 } while (sg != env->sd->groups);
0ec8aa00
PZ
5648
5649 if (env->sd->flags & SD_NUMA)
5650 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5651}
5652
532cb4c4
MN
5653/**
5654 * check_asym_packing - Check to see if the group is packed into the
5655 * sched doman.
5656 *
5657 * This is primarily intended to used at the sibling level. Some
5658 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5659 * case of POWER7, it can move to lower SMT modes only when higher
5660 * threads are idle. When in lower SMT modes, the threads will
5661 * perform better since they share less core resources. Hence when we
5662 * have idle threads, we want them to be the higher ones.
5663 *
5664 * This packing function is run on idle threads. It checks to see if
5665 * the busiest CPU in this domain (core in the P7 case) has a higher
5666 * CPU number than the packing function is being run on. Here we are
5667 * assuming lower CPU number will be equivalent to lower a SMT thread
5668 * number.
5669 *
e69f6186 5670 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5671 * this CPU. The amount of the imbalance is returned in *imbalance.
5672 *
cd96891d 5673 * @env: The load balancing environment.
532cb4c4 5674 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5675 */
bd939f45 5676static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5677{
5678 int busiest_cpu;
5679
bd939f45 5680 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5681 return 0;
5682
5683 if (!sds->busiest)
5684 return 0;
5685
5686 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5687 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5688 return 0;
5689
bd939f45 5690 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5691 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5692 SCHED_POWER_SCALE);
bd939f45 5693
532cb4c4 5694 return 1;
1e3c88bd
PZ
5695}
5696
5697/**
5698 * fix_small_imbalance - Calculate the minor imbalance that exists
5699 * amongst the groups of a sched_domain, during
5700 * load balancing.
cd96891d 5701 * @env: The load balancing environment.
1e3c88bd 5702 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5703 */
bd939f45
PZ
5704static inline
5705void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5706{
5707 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5708 unsigned int imbn = 2;
dd5feea1 5709 unsigned long scaled_busy_load_per_task;
56cf515b 5710 struct sg_lb_stats *local, *busiest;
1e3c88bd 5711
56cf515b
JK
5712 local = &sds->local_stat;
5713 busiest = &sds->busiest_stat;
1e3c88bd 5714
56cf515b
JK
5715 if (!local->sum_nr_running)
5716 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5717 else if (busiest->load_per_task > local->load_per_task)
5718 imbn = 1;
dd5feea1 5719
56cf515b
JK
5720 scaled_busy_load_per_task =
5721 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5722 busiest->group_power;
56cf515b 5723
3029ede3
VD
5724 if (busiest->avg_load + scaled_busy_load_per_task >=
5725 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5726 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5727 return;
5728 }
5729
5730 /*
5731 * OK, we don't have enough imbalance to justify moving tasks,
5732 * however we may be able to increase total CPU power used by
5733 * moving them.
5734 */
5735
3ae11c90 5736 pwr_now += busiest->group_power *
56cf515b 5737 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5738 pwr_now += local->group_power *
56cf515b 5739 min(local->load_per_task, local->avg_load);
1399fa78 5740 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5741
5742 /* Amount of load we'd subtract */
56cf515b 5743 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5744 busiest->group_power;
56cf515b 5745 if (busiest->avg_load > tmp) {
3ae11c90 5746 pwr_move += busiest->group_power *
56cf515b
JK
5747 min(busiest->load_per_task,
5748 busiest->avg_load - tmp);
5749 }
1e3c88bd
PZ
5750
5751 /* Amount of load we'd add */
3ae11c90 5752 if (busiest->avg_load * busiest->group_power <
56cf515b 5753 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5754 tmp = (busiest->avg_load * busiest->group_power) /
5755 local->group_power;
56cf515b
JK
5756 } else {
5757 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5758 local->group_power;
56cf515b 5759 }
3ae11c90
PZ
5760 pwr_move += local->group_power *
5761 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5762 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5763
5764 /* Move if we gain throughput */
5765 if (pwr_move > pwr_now)
56cf515b 5766 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5767}
5768
5769/**
5770 * calculate_imbalance - Calculate the amount of imbalance present within the
5771 * groups of a given sched_domain during load balance.
bd939f45 5772 * @env: load balance environment
1e3c88bd 5773 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5774 */
bd939f45 5775static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5776{
dd5feea1 5777 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5778 struct sg_lb_stats *local, *busiest;
5779
5780 local = &sds->local_stat;
56cf515b 5781 busiest = &sds->busiest_stat;
dd5feea1 5782
56cf515b 5783 if (busiest->group_imb) {
30ce5dab
PZ
5784 /*
5785 * In the group_imb case we cannot rely on group-wide averages
5786 * to ensure cpu-load equilibrium, look at wider averages. XXX
5787 */
56cf515b
JK
5788 busiest->load_per_task =
5789 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5790 }
5791
1e3c88bd
PZ
5792 /*
5793 * In the presence of smp nice balancing, certain scenarios can have
5794 * max load less than avg load(as we skip the groups at or below
5795 * its cpu_power, while calculating max_load..)
5796 */
b1885550
VD
5797 if (busiest->avg_load <= sds->avg_load ||
5798 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5799 env->imbalance = 0;
5800 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5801 }
5802
56cf515b 5803 if (!busiest->group_imb) {
dd5feea1
SS
5804 /*
5805 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5806 * Except of course for the group_imb case, since then we might
5807 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5808 */
56cf515b
JK
5809 load_above_capacity =
5810 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5811
1399fa78 5812 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5813 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5814 }
5815
5816 /*
5817 * We're trying to get all the cpus to the average_load, so we don't
5818 * want to push ourselves above the average load, nor do we wish to
5819 * reduce the max loaded cpu below the average load. At the same time,
5820 * we also don't want to reduce the group load below the group capacity
5821 * (so that we can implement power-savings policies etc). Thus we look
5822 * for the minimum possible imbalance.
dd5feea1 5823 */
30ce5dab 5824 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5825
5826 /* How much load to actually move to equalise the imbalance */
56cf515b 5827 env->imbalance = min(
3ae11c90
PZ
5828 max_pull * busiest->group_power,
5829 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5830 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5831
5832 /*
5833 * if *imbalance is less than the average load per runnable task
25985edc 5834 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5835 * a think about bumping its value to force at least one task to be
5836 * moved
5837 */
56cf515b 5838 if (env->imbalance < busiest->load_per_task)
bd939f45 5839 return fix_small_imbalance(env, sds);
1e3c88bd 5840}
fab47622 5841
1e3c88bd
PZ
5842/******* find_busiest_group() helpers end here *********************/
5843
5844/**
5845 * find_busiest_group - Returns the busiest group within the sched_domain
5846 * if there is an imbalance. If there isn't an imbalance, and
5847 * the user has opted for power-savings, it returns a group whose
5848 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5849 * such a group exists.
5850 *
5851 * Also calculates the amount of weighted load which should be moved
5852 * to restore balance.
5853 *
cd96891d 5854 * @env: The load balancing environment.
1e3c88bd 5855 *
e69f6186 5856 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5857 * - If no imbalance and user has opted for power-savings balance,
5858 * return the least loaded group whose CPUs can be
5859 * put to idle by rebalancing its tasks onto our group.
5860 */
56cf515b 5861static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5862{
56cf515b 5863 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5864 struct sd_lb_stats sds;
5865
147c5fc2 5866 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5867
5868 /*
5869 * Compute the various statistics relavent for load balancing at
5870 * this level.
5871 */
23f0d209 5872 update_sd_lb_stats(env, &sds);
56cf515b
JK
5873 local = &sds.local_stat;
5874 busiest = &sds.busiest_stat;
1e3c88bd 5875
bd939f45
PZ
5876 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5877 check_asym_packing(env, &sds))
532cb4c4
MN
5878 return sds.busiest;
5879
cc57aa8f 5880 /* There is no busy sibling group to pull tasks from */
56cf515b 5881 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5882 goto out_balanced;
5883
1399fa78 5884 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5885
866ab43e
PZ
5886 /*
5887 * If the busiest group is imbalanced the below checks don't
30ce5dab 5888 * work because they assume all things are equal, which typically
866ab43e
PZ
5889 * isn't true due to cpus_allowed constraints and the like.
5890 */
56cf515b 5891 if (busiest->group_imb)
866ab43e
PZ
5892 goto force_balance;
5893
cc57aa8f 5894 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5895 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5896 !busiest->group_has_capacity)
fab47622
NR
5897 goto force_balance;
5898
cc57aa8f
PZ
5899 /*
5900 * If the local group is more busy than the selected busiest group
5901 * don't try and pull any tasks.
5902 */
56cf515b 5903 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5904 goto out_balanced;
5905
cc57aa8f
PZ
5906 /*
5907 * Don't pull any tasks if this group is already above the domain
5908 * average load.
5909 */
56cf515b 5910 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5911 goto out_balanced;
5912
bd939f45 5913 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5914 /*
5915 * This cpu is idle. If the busiest group load doesn't
5916 * have more tasks than the number of available cpu's and
5917 * there is no imbalance between this and busiest group
5918 * wrt to idle cpu's, it is balanced.
5919 */
56cf515b
JK
5920 if ((local->idle_cpus < busiest->idle_cpus) &&
5921 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5922 goto out_balanced;
c186fafe
PZ
5923 } else {
5924 /*
5925 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5926 * imbalance_pct to be conservative.
5927 */
56cf515b
JK
5928 if (100 * busiest->avg_load <=
5929 env->sd->imbalance_pct * local->avg_load)
c186fafe 5930 goto out_balanced;
aae6d3dd 5931 }
1e3c88bd 5932
fab47622 5933force_balance:
1e3c88bd 5934 /* Looks like there is an imbalance. Compute it */
bd939f45 5935 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5936 return sds.busiest;
5937
5938out_balanced:
bd939f45 5939 env->imbalance = 0;
1e3c88bd
PZ
5940 return NULL;
5941}
5942
5943/*
5944 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5945 */
bd939f45 5946static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5947 struct sched_group *group)
1e3c88bd
PZ
5948{
5949 struct rq *busiest = NULL, *rq;
95a79b80 5950 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5951 int i;
5952
6906a408 5953 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5954 unsigned long power, capacity, wl;
5955 enum fbq_type rt;
5956
5957 rq = cpu_rq(i);
5958 rt = fbq_classify_rq(rq);
1e3c88bd 5959
0ec8aa00
PZ
5960 /*
5961 * We classify groups/runqueues into three groups:
5962 * - regular: there are !numa tasks
5963 * - remote: there are numa tasks that run on the 'wrong' node
5964 * - all: there is no distinction
5965 *
5966 * In order to avoid migrating ideally placed numa tasks,
5967 * ignore those when there's better options.
5968 *
5969 * If we ignore the actual busiest queue to migrate another
5970 * task, the next balance pass can still reduce the busiest
5971 * queue by moving tasks around inside the node.
5972 *
5973 * If we cannot move enough load due to this classification
5974 * the next pass will adjust the group classification and
5975 * allow migration of more tasks.
5976 *
5977 * Both cases only affect the total convergence complexity.
5978 */
5979 if (rt > env->fbq_type)
5980 continue;
5981
5982 power = power_of(i);
5983 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5984 if (!capacity)
bd939f45 5985 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5986
6e40f5bb 5987 wl = weighted_cpuload(i);
1e3c88bd 5988
6e40f5bb
TG
5989 /*
5990 * When comparing with imbalance, use weighted_cpuload()
5991 * which is not scaled with the cpu power.
5992 */
bd939f45 5993 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5994 continue;
5995
6e40f5bb
TG
5996 /*
5997 * For the load comparisons with the other cpu's, consider
5998 * the weighted_cpuload() scaled with the cpu power, so that
5999 * the load can be moved away from the cpu that is potentially
6000 * running at a lower capacity.
95a79b80
JK
6001 *
6002 * Thus we're looking for max(wl_i / power_i), crosswise
6003 * multiplication to rid ourselves of the division works out
6004 * to: wl_i * power_j > wl_j * power_i; where j is our
6005 * previous maximum.
6e40f5bb 6006 */
95a79b80
JK
6007 if (wl * busiest_power > busiest_load * power) {
6008 busiest_load = wl;
6009 busiest_power = power;
1e3c88bd
PZ
6010 busiest = rq;
6011 }
6012 }
6013
6014 return busiest;
6015}
6016
6017/*
6018 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6019 * so long as it is large enough.
6020 */
6021#define MAX_PINNED_INTERVAL 512
6022
6023/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6024DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6025
bd939f45 6026static int need_active_balance(struct lb_env *env)
1af3ed3d 6027{
bd939f45
PZ
6028 struct sched_domain *sd = env->sd;
6029
6030 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6031
6032 /*
6033 * ASYM_PACKING needs to force migrate tasks from busy but
6034 * higher numbered CPUs in order to pack all tasks in the
6035 * lowest numbered CPUs.
6036 */
bd939f45 6037 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6038 return 1;
1af3ed3d
PZ
6039 }
6040
6041 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6042}
6043
969c7921
TH
6044static int active_load_balance_cpu_stop(void *data);
6045
23f0d209
JK
6046static int should_we_balance(struct lb_env *env)
6047{
6048 struct sched_group *sg = env->sd->groups;
6049 struct cpumask *sg_cpus, *sg_mask;
6050 int cpu, balance_cpu = -1;
6051
6052 /*
6053 * In the newly idle case, we will allow all the cpu's
6054 * to do the newly idle load balance.
6055 */
6056 if (env->idle == CPU_NEWLY_IDLE)
6057 return 1;
6058
6059 sg_cpus = sched_group_cpus(sg);
6060 sg_mask = sched_group_mask(sg);
6061 /* Try to find first idle cpu */
6062 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6063 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6064 continue;
6065
6066 balance_cpu = cpu;
6067 break;
6068 }
6069
6070 if (balance_cpu == -1)
6071 balance_cpu = group_balance_cpu(sg);
6072
6073 /*
6074 * First idle cpu or the first cpu(busiest) in this sched group
6075 * is eligible for doing load balancing at this and above domains.
6076 */
b0cff9d8 6077 return balance_cpu == env->dst_cpu;
23f0d209
JK
6078}
6079
1e3c88bd
PZ
6080/*
6081 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6082 * tasks if there is an imbalance.
6083 */
6084static int load_balance(int this_cpu, struct rq *this_rq,
6085 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6086 int *continue_balancing)
1e3c88bd 6087{
88b8dac0 6088 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6089 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6090 struct sched_group *group;
1e3c88bd
PZ
6091 struct rq *busiest;
6092 unsigned long flags;
e6252c3e 6093 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6094
8e45cb54
PZ
6095 struct lb_env env = {
6096 .sd = sd,
ddcdf6e7
PZ
6097 .dst_cpu = this_cpu,
6098 .dst_rq = this_rq,
88b8dac0 6099 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6100 .idle = idle,
eb95308e 6101 .loop_break = sched_nr_migrate_break,
b9403130 6102 .cpus = cpus,
0ec8aa00 6103 .fbq_type = all,
8e45cb54
PZ
6104 };
6105
cfc03118
JK
6106 /*
6107 * For NEWLY_IDLE load_balancing, we don't need to consider
6108 * other cpus in our group
6109 */
e02e60c1 6110 if (idle == CPU_NEWLY_IDLE)
cfc03118 6111 env.dst_grpmask = NULL;
cfc03118 6112
1e3c88bd
PZ
6113 cpumask_copy(cpus, cpu_active_mask);
6114
1e3c88bd
PZ
6115 schedstat_inc(sd, lb_count[idle]);
6116
6117redo:
23f0d209
JK
6118 if (!should_we_balance(&env)) {
6119 *continue_balancing = 0;
1e3c88bd 6120 goto out_balanced;
23f0d209 6121 }
1e3c88bd 6122
23f0d209 6123 group = find_busiest_group(&env);
1e3c88bd
PZ
6124 if (!group) {
6125 schedstat_inc(sd, lb_nobusyg[idle]);
6126 goto out_balanced;
6127 }
6128
b9403130 6129 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6130 if (!busiest) {
6131 schedstat_inc(sd, lb_nobusyq[idle]);
6132 goto out_balanced;
6133 }
6134
78feefc5 6135 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6136
bd939f45 6137 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6138
6139 ld_moved = 0;
6140 if (busiest->nr_running > 1) {
6141 /*
6142 * Attempt to move tasks. If find_busiest_group has found
6143 * an imbalance but busiest->nr_running <= 1, the group is
6144 * still unbalanced. ld_moved simply stays zero, so it is
6145 * correctly treated as an imbalance.
6146 */
8e45cb54 6147 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6148 env.src_cpu = busiest->cpu;
6149 env.src_rq = busiest;
6150 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6151
5d6523eb 6152more_balance:
1e3c88bd 6153 local_irq_save(flags);
78feefc5 6154 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6155
6156 /*
6157 * cur_ld_moved - load moved in current iteration
6158 * ld_moved - cumulative load moved across iterations
6159 */
6160 cur_ld_moved = move_tasks(&env);
6161 ld_moved += cur_ld_moved;
78feefc5 6162 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6163 local_irq_restore(flags);
6164
6165 /*
6166 * some other cpu did the load balance for us.
6167 */
88b8dac0
SV
6168 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6169 resched_cpu(env.dst_cpu);
6170
f1cd0858
JK
6171 if (env.flags & LBF_NEED_BREAK) {
6172 env.flags &= ~LBF_NEED_BREAK;
6173 goto more_balance;
6174 }
6175
88b8dac0
SV
6176 /*
6177 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6178 * us and move them to an alternate dst_cpu in our sched_group
6179 * where they can run. The upper limit on how many times we
6180 * iterate on same src_cpu is dependent on number of cpus in our
6181 * sched_group.
6182 *
6183 * This changes load balance semantics a bit on who can move
6184 * load to a given_cpu. In addition to the given_cpu itself
6185 * (or a ilb_cpu acting on its behalf where given_cpu is
6186 * nohz-idle), we now have balance_cpu in a position to move
6187 * load to given_cpu. In rare situations, this may cause
6188 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6189 * _independently_ and at _same_ time to move some load to
6190 * given_cpu) causing exceess load to be moved to given_cpu.
6191 * This however should not happen so much in practice and
6192 * moreover subsequent load balance cycles should correct the
6193 * excess load moved.
6194 */
6263322c 6195 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6196
7aff2e3a
VD
6197 /* Prevent to re-select dst_cpu via env's cpus */
6198 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6199
78feefc5 6200 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6201 env.dst_cpu = env.new_dst_cpu;
6263322c 6202 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6203 env.loop = 0;
6204 env.loop_break = sched_nr_migrate_break;
e02e60c1 6205
88b8dac0
SV
6206 /*
6207 * Go back to "more_balance" rather than "redo" since we
6208 * need to continue with same src_cpu.
6209 */
6210 goto more_balance;
6211 }
1e3c88bd 6212
6263322c
PZ
6213 /*
6214 * We failed to reach balance because of affinity.
6215 */
6216 if (sd_parent) {
6217 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6218
6219 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6220 *group_imbalance = 1;
6221 } else if (*group_imbalance)
6222 *group_imbalance = 0;
6223 }
6224
1e3c88bd 6225 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6226 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6227 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6228 if (!cpumask_empty(cpus)) {
6229 env.loop = 0;
6230 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6231 goto redo;
bbf18b19 6232 }
1e3c88bd
PZ
6233 goto out_balanced;
6234 }
6235 }
6236
6237 if (!ld_moved) {
6238 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6239 /*
6240 * Increment the failure counter only on periodic balance.
6241 * We do not want newidle balance, which can be very
6242 * frequent, pollute the failure counter causing
6243 * excessive cache_hot migrations and active balances.
6244 */
6245 if (idle != CPU_NEWLY_IDLE)
6246 sd->nr_balance_failed++;
1e3c88bd 6247
bd939f45 6248 if (need_active_balance(&env)) {
1e3c88bd
PZ
6249 raw_spin_lock_irqsave(&busiest->lock, flags);
6250
969c7921
TH
6251 /* don't kick the active_load_balance_cpu_stop,
6252 * if the curr task on busiest cpu can't be
6253 * moved to this_cpu
1e3c88bd
PZ
6254 */
6255 if (!cpumask_test_cpu(this_cpu,
fa17b507 6256 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6257 raw_spin_unlock_irqrestore(&busiest->lock,
6258 flags);
8e45cb54 6259 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6260 goto out_one_pinned;
6261 }
6262
969c7921
TH
6263 /*
6264 * ->active_balance synchronizes accesses to
6265 * ->active_balance_work. Once set, it's cleared
6266 * only after active load balance is finished.
6267 */
1e3c88bd
PZ
6268 if (!busiest->active_balance) {
6269 busiest->active_balance = 1;
6270 busiest->push_cpu = this_cpu;
6271 active_balance = 1;
6272 }
6273 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6274
bd939f45 6275 if (active_balance) {
969c7921
TH
6276 stop_one_cpu_nowait(cpu_of(busiest),
6277 active_load_balance_cpu_stop, busiest,
6278 &busiest->active_balance_work);
bd939f45 6279 }
1e3c88bd
PZ
6280
6281 /*
6282 * We've kicked active balancing, reset the failure
6283 * counter.
6284 */
6285 sd->nr_balance_failed = sd->cache_nice_tries+1;
6286 }
6287 } else
6288 sd->nr_balance_failed = 0;
6289
6290 if (likely(!active_balance)) {
6291 /* We were unbalanced, so reset the balancing interval */
6292 sd->balance_interval = sd->min_interval;
6293 } else {
6294 /*
6295 * If we've begun active balancing, start to back off. This
6296 * case may not be covered by the all_pinned logic if there
6297 * is only 1 task on the busy runqueue (because we don't call
6298 * move_tasks).
6299 */
6300 if (sd->balance_interval < sd->max_interval)
6301 sd->balance_interval *= 2;
6302 }
6303
1e3c88bd
PZ
6304 goto out;
6305
6306out_balanced:
6307 schedstat_inc(sd, lb_balanced[idle]);
6308
6309 sd->nr_balance_failed = 0;
6310
6311out_one_pinned:
6312 /* tune up the balancing interval */
8e45cb54 6313 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6314 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6315 (sd->balance_interval < sd->max_interval))
6316 sd->balance_interval *= 2;
6317
46e49b38 6318 ld_moved = 0;
1e3c88bd 6319out:
1e3c88bd
PZ
6320 return ld_moved;
6321}
6322
1e3c88bd
PZ
6323/*
6324 * idle_balance is called by schedule() if this_cpu is about to become
6325 * idle. Attempts to pull tasks from other CPUs.
6326 */
029632fb 6327void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6328{
6329 struct sched_domain *sd;
6330 int pulled_task = 0;
6331 unsigned long next_balance = jiffies + HZ;
9bd721c5 6332 u64 curr_cost = 0;
1e3c88bd 6333
78becc27 6334 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6335
6336 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6337 return;
6338
f492e12e
PZ
6339 /*
6340 * Drop the rq->lock, but keep IRQ/preempt disabled.
6341 */
6342 raw_spin_unlock(&this_rq->lock);
6343
48a16753 6344 update_blocked_averages(this_cpu);
dce840a0 6345 rcu_read_lock();
1e3c88bd
PZ
6346 for_each_domain(this_cpu, sd) {
6347 unsigned long interval;
23f0d209 6348 int continue_balancing = 1;
9bd721c5 6349 u64 t0, domain_cost;
1e3c88bd
PZ
6350
6351 if (!(sd->flags & SD_LOAD_BALANCE))
6352 continue;
6353
9bd721c5
JL
6354 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6355 break;
6356
f492e12e 6357 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6358 t0 = sched_clock_cpu(this_cpu);
6359
1e3c88bd 6360 /* If we've pulled tasks over stop searching: */
f492e12e 6361 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6362 sd, CPU_NEWLY_IDLE,
6363 &continue_balancing);
9bd721c5
JL
6364
6365 domain_cost = sched_clock_cpu(this_cpu) - t0;
6366 if (domain_cost > sd->max_newidle_lb_cost)
6367 sd->max_newidle_lb_cost = domain_cost;
6368
6369 curr_cost += domain_cost;
f492e12e 6370 }
1e3c88bd
PZ
6371
6372 interval = msecs_to_jiffies(sd->balance_interval);
6373 if (time_after(next_balance, sd->last_balance + interval))
6374 next_balance = sd->last_balance + interval;
d5ad140b
NR
6375 if (pulled_task) {
6376 this_rq->idle_stamp = 0;
1e3c88bd 6377 break;
d5ad140b 6378 }
1e3c88bd 6379 }
dce840a0 6380 rcu_read_unlock();
f492e12e
PZ
6381
6382 raw_spin_lock(&this_rq->lock);
6383
1e3c88bd
PZ
6384 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6385 /*
6386 * We are going idle. next_balance may be set based on
6387 * a busy processor. So reset next_balance.
6388 */
6389 this_rq->next_balance = next_balance;
6390 }
9bd721c5
JL
6391
6392 if (curr_cost > this_rq->max_idle_balance_cost)
6393 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6394}
6395
6396/*
969c7921
TH
6397 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6398 * running tasks off the busiest CPU onto idle CPUs. It requires at
6399 * least 1 task to be running on each physical CPU where possible, and
6400 * avoids physical / logical imbalances.
1e3c88bd 6401 */
969c7921 6402static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6403{
969c7921
TH
6404 struct rq *busiest_rq = data;
6405 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6406 int target_cpu = busiest_rq->push_cpu;
969c7921 6407 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6408 struct sched_domain *sd;
969c7921
TH
6409
6410 raw_spin_lock_irq(&busiest_rq->lock);
6411
6412 /* make sure the requested cpu hasn't gone down in the meantime */
6413 if (unlikely(busiest_cpu != smp_processor_id() ||
6414 !busiest_rq->active_balance))
6415 goto out_unlock;
1e3c88bd
PZ
6416
6417 /* Is there any task to move? */
6418 if (busiest_rq->nr_running <= 1)
969c7921 6419 goto out_unlock;
1e3c88bd
PZ
6420
6421 /*
6422 * This condition is "impossible", if it occurs
6423 * we need to fix it. Originally reported by
6424 * Bjorn Helgaas on a 128-cpu setup.
6425 */
6426 BUG_ON(busiest_rq == target_rq);
6427
6428 /* move a task from busiest_rq to target_rq */
6429 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6430
6431 /* Search for an sd spanning us and the target CPU. */
dce840a0 6432 rcu_read_lock();
1e3c88bd
PZ
6433 for_each_domain(target_cpu, sd) {
6434 if ((sd->flags & SD_LOAD_BALANCE) &&
6435 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6436 break;
6437 }
6438
6439 if (likely(sd)) {
8e45cb54
PZ
6440 struct lb_env env = {
6441 .sd = sd,
ddcdf6e7
PZ
6442 .dst_cpu = target_cpu,
6443 .dst_rq = target_rq,
6444 .src_cpu = busiest_rq->cpu,
6445 .src_rq = busiest_rq,
8e45cb54
PZ
6446 .idle = CPU_IDLE,
6447 };
6448
1e3c88bd
PZ
6449 schedstat_inc(sd, alb_count);
6450
8e45cb54 6451 if (move_one_task(&env))
1e3c88bd
PZ
6452 schedstat_inc(sd, alb_pushed);
6453 else
6454 schedstat_inc(sd, alb_failed);
6455 }
dce840a0 6456 rcu_read_unlock();
1e3c88bd 6457 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6458out_unlock:
6459 busiest_rq->active_balance = 0;
6460 raw_spin_unlock_irq(&busiest_rq->lock);
6461 return 0;
1e3c88bd
PZ
6462}
6463
3451d024 6464#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6465/*
6466 * idle load balancing details
83cd4fe2
VP
6467 * - When one of the busy CPUs notice that there may be an idle rebalancing
6468 * needed, they will kick the idle load balancer, which then does idle
6469 * load balancing for all the idle CPUs.
6470 */
1e3c88bd 6471static struct {
83cd4fe2 6472 cpumask_var_t idle_cpus_mask;
0b005cf5 6473 atomic_t nr_cpus;
83cd4fe2
VP
6474 unsigned long next_balance; /* in jiffy units */
6475} nohz ____cacheline_aligned;
1e3c88bd 6476
8e7fbcbc 6477static inline int find_new_ilb(int call_cpu)
1e3c88bd 6478{
0b005cf5 6479 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6480
786d6dc7
SS
6481 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6482 return ilb;
6483
6484 return nr_cpu_ids;
1e3c88bd 6485}
1e3c88bd 6486
83cd4fe2
VP
6487/*
6488 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6489 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6490 * CPU (if there is one).
6491 */
6492static void nohz_balancer_kick(int cpu)
6493{
6494 int ilb_cpu;
6495
6496 nohz.next_balance++;
6497
0b005cf5 6498 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6499
0b005cf5
SS
6500 if (ilb_cpu >= nr_cpu_ids)
6501 return;
83cd4fe2 6502
cd490c5b 6503 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6504 return;
6505 /*
6506 * Use smp_send_reschedule() instead of resched_cpu().
6507 * This way we generate a sched IPI on the target cpu which
6508 * is idle. And the softirq performing nohz idle load balance
6509 * will be run before returning from the IPI.
6510 */
6511 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6512 return;
6513}
6514
c1cc017c 6515static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6516{
6517 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6518 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6519 atomic_dec(&nohz.nr_cpus);
6520 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6521 }
6522}
6523
69e1e811
SS
6524static inline void set_cpu_sd_state_busy(void)
6525{
6526 struct sched_domain *sd;
69e1e811 6527
69e1e811 6528 rcu_read_lock();
424c93fe 6529 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6530
6531 if (!sd || !sd->nohz_idle)
6532 goto unlock;
6533 sd->nohz_idle = 0;
6534
6535 for (; sd; sd = sd->parent)
69e1e811 6536 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6537unlock:
69e1e811
SS
6538 rcu_read_unlock();
6539}
6540
6541void set_cpu_sd_state_idle(void)
6542{
6543 struct sched_domain *sd;
69e1e811 6544
69e1e811 6545 rcu_read_lock();
424c93fe 6546 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6547
6548 if (!sd || sd->nohz_idle)
6549 goto unlock;
6550 sd->nohz_idle = 1;
6551
6552 for (; sd; sd = sd->parent)
69e1e811 6553 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6554unlock:
69e1e811
SS
6555 rcu_read_unlock();
6556}
6557
1e3c88bd 6558/*
c1cc017c 6559 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6560 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6561 */
c1cc017c 6562void nohz_balance_enter_idle(int cpu)
1e3c88bd 6563{
71325960
SS
6564 /*
6565 * If this cpu is going down, then nothing needs to be done.
6566 */
6567 if (!cpu_active(cpu))
6568 return;
6569
c1cc017c
AS
6570 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6571 return;
1e3c88bd 6572
c1cc017c
AS
6573 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6574 atomic_inc(&nohz.nr_cpus);
6575 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6576}
71325960 6577
0db0628d 6578static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6579 unsigned long action, void *hcpu)
6580{
6581 switch (action & ~CPU_TASKS_FROZEN) {
6582 case CPU_DYING:
c1cc017c 6583 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6584 return NOTIFY_OK;
6585 default:
6586 return NOTIFY_DONE;
6587 }
6588}
1e3c88bd
PZ
6589#endif
6590
6591static DEFINE_SPINLOCK(balancing);
6592
49c022e6
PZ
6593/*
6594 * Scale the max load_balance interval with the number of CPUs in the system.
6595 * This trades load-balance latency on larger machines for less cross talk.
6596 */
029632fb 6597void update_max_interval(void)
49c022e6
PZ
6598{
6599 max_load_balance_interval = HZ*num_online_cpus()/10;
6600}
6601
1e3c88bd
PZ
6602/*
6603 * It checks each scheduling domain to see if it is due to be balanced,
6604 * and initiates a balancing operation if so.
6605 *
b9b0853a 6606 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6607 */
6608static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6609{
23f0d209 6610 int continue_balancing = 1;
1e3c88bd
PZ
6611 struct rq *rq = cpu_rq(cpu);
6612 unsigned long interval;
04f733b4 6613 struct sched_domain *sd;
1e3c88bd
PZ
6614 /* Earliest time when we have to do rebalance again */
6615 unsigned long next_balance = jiffies + 60*HZ;
6616 int update_next_balance = 0;
f48627e6
JL
6617 int need_serialize, need_decay = 0;
6618 u64 max_cost = 0;
1e3c88bd 6619
48a16753 6620 update_blocked_averages(cpu);
2069dd75 6621
dce840a0 6622 rcu_read_lock();
1e3c88bd 6623 for_each_domain(cpu, sd) {
f48627e6
JL
6624 /*
6625 * Decay the newidle max times here because this is a regular
6626 * visit to all the domains. Decay ~1% per second.
6627 */
6628 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6629 sd->max_newidle_lb_cost =
6630 (sd->max_newidle_lb_cost * 253) / 256;
6631 sd->next_decay_max_lb_cost = jiffies + HZ;
6632 need_decay = 1;
6633 }
6634 max_cost += sd->max_newidle_lb_cost;
6635
1e3c88bd
PZ
6636 if (!(sd->flags & SD_LOAD_BALANCE))
6637 continue;
6638
f48627e6
JL
6639 /*
6640 * Stop the load balance at this level. There is another
6641 * CPU in our sched group which is doing load balancing more
6642 * actively.
6643 */
6644 if (!continue_balancing) {
6645 if (need_decay)
6646 continue;
6647 break;
6648 }
6649
1e3c88bd
PZ
6650 interval = sd->balance_interval;
6651 if (idle != CPU_IDLE)
6652 interval *= sd->busy_factor;
6653
6654 /* scale ms to jiffies */
6655 interval = msecs_to_jiffies(interval);
49c022e6 6656 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6657
6658 need_serialize = sd->flags & SD_SERIALIZE;
6659
6660 if (need_serialize) {
6661 if (!spin_trylock(&balancing))
6662 goto out;
6663 }
6664
6665 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6666 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6667 /*
6263322c 6668 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6669 * env->dst_cpu, so we can't know our idle
6670 * state even if we migrated tasks. Update it.
1e3c88bd 6671 */
de5eb2dd 6672 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6673 }
6674 sd->last_balance = jiffies;
6675 }
6676 if (need_serialize)
6677 spin_unlock(&balancing);
6678out:
6679 if (time_after(next_balance, sd->last_balance + interval)) {
6680 next_balance = sd->last_balance + interval;
6681 update_next_balance = 1;
6682 }
f48627e6
JL
6683 }
6684 if (need_decay) {
1e3c88bd 6685 /*
f48627e6
JL
6686 * Ensure the rq-wide value also decays but keep it at a
6687 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6688 */
f48627e6
JL
6689 rq->max_idle_balance_cost =
6690 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6691 }
dce840a0 6692 rcu_read_unlock();
1e3c88bd
PZ
6693
6694 /*
6695 * next_balance will be updated only when there is a need.
6696 * When the cpu is attached to null domain for ex, it will not be
6697 * updated.
6698 */
6699 if (likely(update_next_balance))
6700 rq->next_balance = next_balance;
6701}
6702
3451d024 6703#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6704/*
3451d024 6705 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6706 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6707 */
83cd4fe2
VP
6708static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6709{
6710 struct rq *this_rq = cpu_rq(this_cpu);
6711 struct rq *rq;
6712 int balance_cpu;
6713
1c792db7
SS
6714 if (idle != CPU_IDLE ||
6715 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6716 goto end;
83cd4fe2
VP
6717
6718 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6719 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6720 continue;
6721
6722 /*
6723 * If this cpu gets work to do, stop the load balancing
6724 * work being done for other cpus. Next load
6725 * balancing owner will pick it up.
6726 */
1c792db7 6727 if (need_resched())
83cd4fe2 6728 break;
83cd4fe2 6729
5ed4f1d9
VG
6730 rq = cpu_rq(balance_cpu);
6731
6732 raw_spin_lock_irq(&rq->lock);
6733 update_rq_clock(rq);
6734 update_idle_cpu_load(rq);
6735 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6736
6737 rebalance_domains(balance_cpu, CPU_IDLE);
6738
83cd4fe2
VP
6739 if (time_after(this_rq->next_balance, rq->next_balance))
6740 this_rq->next_balance = rq->next_balance;
6741 }
6742 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6743end:
6744 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6745}
6746
6747/*
0b005cf5
SS
6748 * Current heuristic for kicking the idle load balancer in the presence
6749 * of an idle cpu is the system.
6750 * - This rq has more than one task.
6751 * - At any scheduler domain level, this cpu's scheduler group has multiple
6752 * busy cpu's exceeding the group's power.
6753 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6754 * domain span are idle.
83cd4fe2
VP
6755 */
6756static inline int nohz_kick_needed(struct rq *rq, int cpu)
6757{
6758 unsigned long now = jiffies;
0b005cf5 6759 struct sched_domain *sd;
83cd4fe2 6760
1c792db7 6761 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6762 return 0;
6763
1c792db7
SS
6764 /*
6765 * We may be recently in ticked or tickless idle mode. At the first
6766 * busy tick after returning from idle, we will update the busy stats.
6767 */
69e1e811 6768 set_cpu_sd_state_busy();
c1cc017c 6769 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6770
6771 /*
6772 * None are in tickless mode and hence no need for NOHZ idle load
6773 * balancing.
6774 */
6775 if (likely(!atomic_read(&nohz.nr_cpus)))
6776 return 0;
1c792db7
SS
6777
6778 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6779 return 0;
6780
0b005cf5
SS
6781 if (rq->nr_running >= 2)
6782 goto need_kick;
83cd4fe2 6783
067491b7 6784 rcu_read_lock();
0b005cf5
SS
6785 for_each_domain(cpu, sd) {
6786 struct sched_group *sg = sd->groups;
6787 struct sched_group_power *sgp = sg->sgp;
6788 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6789
0b005cf5 6790 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6791 goto need_kick_unlock;
0b005cf5
SS
6792
6793 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6794 && (cpumask_first_and(nohz.idle_cpus_mask,
6795 sched_domain_span(sd)) < cpu))
067491b7 6796 goto need_kick_unlock;
0b005cf5
SS
6797
6798 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6799 break;
83cd4fe2 6800 }
067491b7 6801 rcu_read_unlock();
83cd4fe2 6802 return 0;
067491b7
PZ
6803
6804need_kick_unlock:
6805 rcu_read_unlock();
0b005cf5
SS
6806need_kick:
6807 return 1;
83cd4fe2
VP
6808}
6809#else
6810static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6811#endif
6812
6813/*
6814 * run_rebalance_domains is triggered when needed from the scheduler tick.
6815 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6816 */
1e3c88bd
PZ
6817static void run_rebalance_domains(struct softirq_action *h)
6818{
6819 int this_cpu = smp_processor_id();
6820 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6821 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6822 CPU_IDLE : CPU_NOT_IDLE;
6823
6824 rebalance_domains(this_cpu, idle);
6825
1e3c88bd 6826 /*
83cd4fe2 6827 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6828 * balancing on behalf of the other idle cpus whose ticks are
6829 * stopped.
6830 */
83cd4fe2 6831 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6832}
6833
6834static inline int on_null_domain(int cpu)
6835{
90a6501f 6836 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6837}
6838
6839/*
6840 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6841 */
029632fb 6842void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6843{
1e3c88bd
PZ
6844 /* Don't need to rebalance while attached to NULL domain */
6845 if (time_after_eq(jiffies, rq->next_balance) &&
6846 likely(!on_null_domain(cpu)))
6847 raise_softirq(SCHED_SOFTIRQ);
3451d024 6848#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6849 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6850 nohz_balancer_kick(cpu);
6851#endif
1e3c88bd
PZ
6852}
6853
0bcdcf28
CE
6854static void rq_online_fair(struct rq *rq)
6855{
6856 update_sysctl();
6857}
6858
6859static void rq_offline_fair(struct rq *rq)
6860{
6861 update_sysctl();
a4c96ae3
PB
6862
6863 /* Ensure any throttled groups are reachable by pick_next_task */
6864 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6865}
6866
55e12e5e 6867#endif /* CONFIG_SMP */
e1d1484f 6868
bf0f6f24
IM
6869/*
6870 * scheduler tick hitting a task of our scheduling class:
6871 */
8f4d37ec 6872static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6873{
6874 struct cfs_rq *cfs_rq;
6875 struct sched_entity *se = &curr->se;
6876
6877 for_each_sched_entity(se) {
6878 cfs_rq = cfs_rq_of(se);
8f4d37ec 6879 entity_tick(cfs_rq, se, queued);
bf0f6f24 6880 }
18bf2805 6881
10e84b97 6882 if (numabalancing_enabled)
cbee9f88 6883 task_tick_numa(rq, curr);
3d59eebc 6884
18bf2805 6885 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6886}
6887
6888/*
cd29fe6f
PZ
6889 * called on fork with the child task as argument from the parent's context
6890 * - child not yet on the tasklist
6891 * - preemption disabled
bf0f6f24 6892 */
cd29fe6f 6893static void task_fork_fair(struct task_struct *p)
bf0f6f24 6894{
4fc420c9
DN
6895 struct cfs_rq *cfs_rq;
6896 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6897 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6898 struct rq *rq = this_rq();
6899 unsigned long flags;
6900
05fa785c 6901 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6902
861d034e
PZ
6903 update_rq_clock(rq);
6904
4fc420c9
DN
6905 cfs_rq = task_cfs_rq(current);
6906 curr = cfs_rq->curr;
6907
6c9a27f5
DN
6908 /*
6909 * Not only the cpu but also the task_group of the parent might have
6910 * been changed after parent->se.parent,cfs_rq were copied to
6911 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6912 * of child point to valid ones.
6913 */
6914 rcu_read_lock();
6915 __set_task_cpu(p, this_cpu);
6916 rcu_read_unlock();
bf0f6f24 6917
7109c442 6918 update_curr(cfs_rq);
cd29fe6f 6919
b5d9d734
MG
6920 if (curr)
6921 se->vruntime = curr->vruntime;
aeb73b04 6922 place_entity(cfs_rq, se, 1);
4d78e7b6 6923
cd29fe6f 6924 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6925 /*
edcb60a3
IM
6926 * Upon rescheduling, sched_class::put_prev_task() will place
6927 * 'current' within the tree based on its new key value.
6928 */
4d78e7b6 6929 swap(curr->vruntime, se->vruntime);
aec0a514 6930 resched_task(rq->curr);
4d78e7b6 6931 }
bf0f6f24 6932
88ec22d3
PZ
6933 se->vruntime -= cfs_rq->min_vruntime;
6934
05fa785c 6935 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6936}
6937
cb469845
SR
6938/*
6939 * Priority of the task has changed. Check to see if we preempt
6940 * the current task.
6941 */
da7a735e
PZ
6942static void
6943prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6944{
da7a735e
PZ
6945 if (!p->se.on_rq)
6946 return;
6947
cb469845
SR
6948 /*
6949 * Reschedule if we are currently running on this runqueue and
6950 * our priority decreased, or if we are not currently running on
6951 * this runqueue and our priority is higher than the current's
6952 */
da7a735e 6953 if (rq->curr == p) {
cb469845
SR
6954 if (p->prio > oldprio)
6955 resched_task(rq->curr);
6956 } else
15afe09b 6957 check_preempt_curr(rq, p, 0);
cb469845
SR
6958}
6959
da7a735e
PZ
6960static void switched_from_fair(struct rq *rq, struct task_struct *p)
6961{
6962 struct sched_entity *se = &p->se;
6963 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6964
6965 /*
6966 * Ensure the task's vruntime is normalized, so that when its
6967 * switched back to the fair class the enqueue_entity(.flags=0) will
6968 * do the right thing.
6969 *
6970 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6971 * have normalized the vruntime, if it was !on_rq, then only when
6972 * the task is sleeping will it still have non-normalized vruntime.
6973 */
6974 if (!se->on_rq && p->state != TASK_RUNNING) {
6975 /*
6976 * Fix up our vruntime so that the current sleep doesn't
6977 * cause 'unlimited' sleep bonus.
6978 */
6979 place_entity(cfs_rq, se, 0);
6980 se->vruntime -= cfs_rq->min_vruntime;
6981 }
9ee474f5 6982
141965c7 6983#ifdef CONFIG_SMP
9ee474f5
PT
6984 /*
6985 * Remove our load from contribution when we leave sched_fair
6986 * and ensure we don't carry in an old decay_count if we
6987 * switch back.
6988 */
87e3c8ae
KT
6989 if (se->avg.decay_count) {
6990 __synchronize_entity_decay(se);
6991 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6992 }
6993#endif
da7a735e
PZ
6994}
6995
cb469845
SR
6996/*
6997 * We switched to the sched_fair class.
6998 */
da7a735e 6999static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7000{
da7a735e
PZ
7001 if (!p->se.on_rq)
7002 return;
7003
cb469845
SR
7004 /*
7005 * We were most likely switched from sched_rt, so
7006 * kick off the schedule if running, otherwise just see
7007 * if we can still preempt the current task.
7008 */
da7a735e 7009 if (rq->curr == p)
cb469845
SR
7010 resched_task(rq->curr);
7011 else
15afe09b 7012 check_preempt_curr(rq, p, 0);
cb469845
SR
7013}
7014
83b699ed
SV
7015/* Account for a task changing its policy or group.
7016 *
7017 * This routine is mostly called to set cfs_rq->curr field when a task
7018 * migrates between groups/classes.
7019 */
7020static void set_curr_task_fair(struct rq *rq)
7021{
7022 struct sched_entity *se = &rq->curr->se;
7023
ec12cb7f
PT
7024 for_each_sched_entity(se) {
7025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7026
7027 set_next_entity(cfs_rq, se);
7028 /* ensure bandwidth has been allocated on our new cfs_rq */
7029 account_cfs_rq_runtime(cfs_rq, 0);
7030 }
83b699ed
SV
7031}
7032
029632fb
PZ
7033void init_cfs_rq(struct cfs_rq *cfs_rq)
7034{
7035 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7036 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7037#ifndef CONFIG_64BIT
7038 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7039#endif
141965c7 7040#ifdef CONFIG_SMP
9ee474f5 7041 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7042 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7043#endif
029632fb
PZ
7044}
7045
810b3817 7046#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7047static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7048{
aff3e498 7049 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7050 /*
7051 * If the task was not on the rq at the time of this cgroup movement
7052 * it must have been asleep, sleeping tasks keep their ->vruntime
7053 * absolute on their old rq until wakeup (needed for the fair sleeper
7054 * bonus in place_entity()).
7055 *
7056 * If it was on the rq, we've just 'preempted' it, which does convert
7057 * ->vruntime to a relative base.
7058 *
7059 * Make sure both cases convert their relative position when migrating
7060 * to another cgroup's rq. This does somewhat interfere with the
7061 * fair sleeper stuff for the first placement, but who cares.
7062 */
7ceff013
DN
7063 /*
7064 * When !on_rq, vruntime of the task has usually NOT been normalized.
7065 * But there are some cases where it has already been normalized:
7066 *
7067 * - Moving a forked child which is waiting for being woken up by
7068 * wake_up_new_task().
62af3783
DN
7069 * - Moving a task which has been woken up by try_to_wake_up() and
7070 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7071 *
7072 * To prevent boost or penalty in the new cfs_rq caused by delta
7073 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7074 */
62af3783 7075 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7076 on_rq = 1;
7077
b2b5ce02
PZ
7078 if (!on_rq)
7079 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7080 set_task_rq(p, task_cpu(p));
aff3e498
PT
7081 if (!on_rq) {
7082 cfs_rq = cfs_rq_of(&p->se);
7083 p->se.vruntime += cfs_rq->min_vruntime;
7084#ifdef CONFIG_SMP
7085 /*
7086 * migrate_task_rq_fair() will have removed our previous
7087 * contribution, but we must synchronize for ongoing future
7088 * decay.
7089 */
7090 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7091 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7092#endif
7093 }
810b3817 7094}
029632fb
PZ
7095
7096void free_fair_sched_group(struct task_group *tg)
7097{
7098 int i;
7099
7100 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7101
7102 for_each_possible_cpu(i) {
7103 if (tg->cfs_rq)
7104 kfree(tg->cfs_rq[i]);
7105 if (tg->se)
7106 kfree(tg->se[i]);
7107 }
7108
7109 kfree(tg->cfs_rq);
7110 kfree(tg->se);
7111}
7112
7113int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7114{
7115 struct cfs_rq *cfs_rq;
7116 struct sched_entity *se;
7117 int i;
7118
7119 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7120 if (!tg->cfs_rq)
7121 goto err;
7122 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7123 if (!tg->se)
7124 goto err;
7125
7126 tg->shares = NICE_0_LOAD;
7127
7128 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7129
7130 for_each_possible_cpu(i) {
7131 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7132 GFP_KERNEL, cpu_to_node(i));
7133 if (!cfs_rq)
7134 goto err;
7135
7136 se = kzalloc_node(sizeof(struct sched_entity),
7137 GFP_KERNEL, cpu_to_node(i));
7138 if (!se)
7139 goto err_free_rq;
7140
7141 init_cfs_rq(cfs_rq);
7142 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7143 }
7144
7145 return 1;
7146
7147err_free_rq:
7148 kfree(cfs_rq);
7149err:
7150 return 0;
7151}
7152
7153void unregister_fair_sched_group(struct task_group *tg, int cpu)
7154{
7155 struct rq *rq = cpu_rq(cpu);
7156 unsigned long flags;
7157
7158 /*
7159 * Only empty task groups can be destroyed; so we can speculatively
7160 * check on_list without danger of it being re-added.
7161 */
7162 if (!tg->cfs_rq[cpu]->on_list)
7163 return;
7164
7165 raw_spin_lock_irqsave(&rq->lock, flags);
7166 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7167 raw_spin_unlock_irqrestore(&rq->lock, flags);
7168}
7169
7170void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7171 struct sched_entity *se, int cpu,
7172 struct sched_entity *parent)
7173{
7174 struct rq *rq = cpu_rq(cpu);
7175
7176 cfs_rq->tg = tg;
7177 cfs_rq->rq = rq;
029632fb
PZ
7178 init_cfs_rq_runtime(cfs_rq);
7179
7180 tg->cfs_rq[cpu] = cfs_rq;
7181 tg->se[cpu] = se;
7182
7183 /* se could be NULL for root_task_group */
7184 if (!se)
7185 return;
7186
7187 if (!parent)
7188 se->cfs_rq = &rq->cfs;
7189 else
7190 se->cfs_rq = parent->my_q;
7191
7192 se->my_q = cfs_rq;
7193 update_load_set(&se->load, 0);
7194 se->parent = parent;
7195}
7196
7197static DEFINE_MUTEX(shares_mutex);
7198
7199int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7200{
7201 int i;
7202 unsigned long flags;
7203
7204 /*
7205 * We can't change the weight of the root cgroup.
7206 */
7207 if (!tg->se[0])
7208 return -EINVAL;
7209
7210 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7211
7212 mutex_lock(&shares_mutex);
7213 if (tg->shares == shares)
7214 goto done;
7215
7216 tg->shares = shares;
7217 for_each_possible_cpu(i) {
7218 struct rq *rq = cpu_rq(i);
7219 struct sched_entity *se;
7220
7221 se = tg->se[i];
7222 /* Propagate contribution to hierarchy */
7223 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7224
7225 /* Possible calls to update_curr() need rq clock */
7226 update_rq_clock(rq);
17bc14b7 7227 for_each_sched_entity(se)
029632fb
PZ
7228 update_cfs_shares(group_cfs_rq(se));
7229 raw_spin_unlock_irqrestore(&rq->lock, flags);
7230 }
7231
7232done:
7233 mutex_unlock(&shares_mutex);
7234 return 0;
7235}
7236#else /* CONFIG_FAIR_GROUP_SCHED */
7237
7238void free_fair_sched_group(struct task_group *tg) { }
7239
7240int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7241{
7242 return 1;
7243}
7244
7245void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7246
7247#endif /* CONFIG_FAIR_GROUP_SCHED */
7248
810b3817 7249
6d686f45 7250static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7251{
7252 struct sched_entity *se = &task->se;
0d721cea
PW
7253 unsigned int rr_interval = 0;
7254
7255 /*
7256 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7257 * idle runqueue:
7258 */
0d721cea 7259 if (rq->cfs.load.weight)
a59f4e07 7260 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7261
7262 return rr_interval;
7263}
7264
bf0f6f24
IM
7265/*
7266 * All the scheduling class methods:
7267 */
029632fb 7268const struct sched_class fair_sched_class = {
5522d5d5 7269 .next = &idle_sched_class,
bf0f6f24
IM
7270 .enqueue_task = enqueue_task_fair,
7271 .dequeue_task = dequeue_task_fair,
7272 .yield_task = yield_task_fair,
d95f4122 7273 .yield_to_task = yield_to_task_fair,
bf0f6f24 7274
2e09bf55 7275 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7276
7277 .pick_next_task = pick_next_task_fair,
7278 .put_prev_task = put_prev_task_fair,
7279
681f3e68 7280#ifdef CONFIG_SMP
4ce72a2c 7281 .select_task_rq = select_task_rq_fair,
0a74bef8 7282 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7283
0bcdcf28
CE
7284 .rq_online = rq_online_fair,
7285 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7286
7287 .task_waking = task_waking_fair,
681f3e68 7288#endif
bf0f6f24 7289
83b699ed 7290 .set_curr_task = set_curr_task_fair,
bf0f6f24 7291 .task_tick = task_tick_fair,
cd29fe6f 7292 .task_fork = task_fork_fair,
cb469845
SR
7293
7294 .prio_changed = prio_changed_fair,
da7a735e 7295 .switched_from = switched_from_fair,
cb469845 7296 .switched_to = switched_to_fair,
810b3817 7297
0d721cea
PW
7298 .get_rr_interval = get_rr_interval_fair,
7299
810b3817 7300#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7301 .task_move_group = task_move_group_fair,
810b3817 7302#endif
bf0f6f24
IM
7303};
7304
7305#ifdef CONFIG_SCHED_DEBUG
029632fb 7306void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7307{
bf0f6f24
IM
7308 struct cfs_rq *cfs_rq;
7309
5973e5b9 7310 rcu_read_lock();
c3b64f1e 7311 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7312 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7313 rcu_read_unlock();
bf0f6f24
IM
7314}
7315#endif
029632fb
PZ
7316
7317__init void init_sched_fair_class(void)
7318{
7319#ifdef CONFIG_SMP
7320 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7321
3451d024 7322#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7323 nohz.next_balance = jiffies;
029632fb 7324 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7325 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7326#endif
7327#endif /* SMP */
7328
7329}