sched/rt: Code cleanup, remove a redundant function call
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
ec12cb7f
PT
419static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
c09595f6
PZ
779#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
780static void
781add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
782{
783 cfs_rq->task_weight += weight;
784}
785#else
786static inline void
787add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
788{
789}
790#endif
791
30cfdcfc
DA
792static void
793account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 798 if (entity_is_task(se)) {
c09595f6 799 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
800 list_add(&se->group_node, &cfs_rq->tasks);
801 }
30cfdcfc 802 cfs_rq->nr_running++;
30cfdcfc
DA
803}
804
805static void
806account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 809 if (!parent_entity(se))
029632fb 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 811 if (entity_is_task(se)) {
c09595f6 812 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
813 list_del_init(&se->group_node);
814 }
30cfdcfc 815 cfs_rq->nr_running--;
30cfdcfc
DA
816}
817
3ff6dcac 818#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
819/* we need this in update_cfs_load and load-balance functions below */
820static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 821# ifdef CONFIG_SMP
d6b55918
PT
822static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
823 int global_update)
824{
825 struct task_group *tg = cfs_rq->tg;
826 long load_avg;
827
828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
829 load_avg -= cfs_rq->load_contribution;
830
831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
832 atomic_add(load_avg, &tg->load_weight);
833 cfs_rq->load_contribution += load_avg;
834 }
835}
836
837static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 838{
a7a4f8a7 839 u64 period = sysctl_sched_shares_window;
2069dd75 840 u64 now, delta;
e33078ba 841 unsigned long load = cfs_rq->load.weight;
2069dd75 842
64660c86 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
844 return;
845
05ca62c6 846 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
847 delta = now - cfs_rq->load_stamp;
848
e33078ba
PT
849 /* truncate load history at 4 idle periods */
850 if (cfs_rq->load_stamp > cfs_rq->load_last &&
851 now - cfs_rq->load_last > 4 * period) {
852 cfs_rq->load_period = 0;
853 cfs_rq->load_avg = 0;
f07333bf 854 delta = period - 1;
e33078ba
PT
855 }
856
2069dd75 857 cfs_rq->load_stamp = now;
3b3d190e 858 cfs_rq->load_unacc_exec_time = 0;
2069dd75 859 cfs_rq->load_period += delta;
e33078ba
PT
860 if (load) {
861 cfs_rq->load_last = now;
862 cfs_rq->load_avg += delta * load;
863 }
2069dd75 864
d6b55918
PT
865 /* consider updating load contribution on each fold or truncate */
866 if (global_update || cfs_rq->load_period > period
867 || !cfs_rq->load_period)
868 update_cfs_rq_load_contribution(cfs_rq, global_update);
869
2069dd75
PZ
870 while (cfs_rq->load_period > period) {
871 /*
872 * Inline assembly required to prevent the compiler
873 * optimising this loop into a divmod call.
874 * See __iter_div_u64_rem() for another example of this.
875 */
876 asm("" : "+rm" (cfs_rq->load_period));
877 cfs_rq->load_period /= 2;
878 cfs_rq->load_avg /= 2;
879 }
3d4b47b4 880
e33078ba
PT
881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
882 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
883}
884
cf5f0acf
PZ
885static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
886{
887 long tg_weight;
888
889 /*
890 * Use this CPU's actual weight instead of the last load_contribution
891 * to gain a more accurate current total weight. See
892 * update_cfs_rq_load_contribution().
893 */
894 tg_weight = atomic_read(&tg->load_weight);
895 tg_weight -= cfs_rq->load_contribution;
896 tg_weight += cfs_rq->load.weight;
897
898 return tg_weight;
899}
900
6d5ab293 901static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 902{
cf5f0acf 903 long tg_weight, load, shares;
3ff6dcac 904
cf5f0acf 905 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 906 load = cfs_rq->load.weight;
3ff6dcac 907
3ff6dcac 908 shares = (tg->shares * load);
cf5f0acf
PZ
909 if (tg_weight)
910 shares /= tg_weight;
3ff6dcac
YZ
911
912 if (shares < MIN_SHARES)
913 shares = MIN_SHARES;
914 if (shares > tg->shares)
915 shares = tg->shares;
916
917 return shares;
918}
919
920static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
921{
922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
923 update_cfs_load(cfs_rq, 0);
6d5ab293 924 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
925 }
926}
927# else /* CONFIG_SMP */
928static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
929{
930}
931
6d5ab293 932static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
933{
934 return tg->shares;
935}
936
937static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
938{
939}
940# endif /* CONFIG_SMP */
2069dd75
PZ
941static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
942 unsigned long weight)
943{
19e5eebb
PT
944 if (se->on_rq) {
945 /* commit outstanding execution time */
946 if (cfs_rq->curr == se)
947 update_curr(cfs_rq);
2069dd75 948 account_entity_dequeue(cfs_rq, se);
19e5eebb 949 }
2069dd75
PZ
950
951 update_load_set(&se->load, weight);
952
953 if (se->on_rq)
954 account_entity_enqueue(cfs_rq, se);
955}
956
6d5ab293 957static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
958{
959 struct task_group *tg;
960 struct sched_entity *se;
3ff6dcac 961 long shares;
2069dd75 962
2069dd75
PZ
963 tg = cfs_rq->tg;
964 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 965 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 966 return;
3ff6dcac
YZ
967#ifndef CONFIG_SMP
968 if (likely(se->load.weight == tg->shares))
969 return;
970#endif
6d5ab293 971 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
972
973 reweight_entity(cfs_rq_of(se), se, shares);
974}
975#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 976static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
977{
978}
979
6d5ab293 980static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
981{
982}
43365bd7
PT
983
984static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
985{
986}
2069dd75
PZ
987#endif /* CONFIG_FAIR_GROUP_SCHED */
988
2396af69 989static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 990{
bf0f6f24 991#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
992 struct task_struct *tsk = NULL;
993
994 if (entity_is_task(se))
995 tsk = task_of(se);
996
41acab88
LDM
997 if (se->statistics.sleep_start) {
998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
999
1000 if ((s64)delta < 0)
1001 delta = 0;
1002
41acab88
LDM
1003 if (unlikely(delta > se->statistics.sleep_max))
1004 se->statistics.sleep_max = delta;
bf0f6f24 1005
41acab88
LDM
1006 se->statistics.sleep_start = 0;
1007 se->statistics.sum_sleep_runtime += delta;
9745512c 1008
768d0c27 1009 if (tsk) {
e414314c 1010 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1011 trace_sched_stat_sleep(tsk, delta);
1012 }
bf0f6f24 1013 }
41acab88
LDM
1014 if (se->statistics.block_start) {
1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1016
1017 if ((s64)delta < 0)
1018 delta = 0;
1019
41acab88
LDM
1020 if (unlikely(delta > se->statistics.block_max))
1021 se->statistics.block_max = delta;
bf0f6f24 1022
41acab88
LDM
1023 se->statistics.block_start = 0;
1024 se->statistics.sum_sleep_runtime += delta;
30084fbd 1025
e414314c 1026 if (tsk) {
8f0dfc34 1027 if (tsk->in_iowait) {
41acab88
LDM
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
768d0c27 1030 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1031 }
1032
b781a602
AV
1033 trace_sched_stat_blocked(tsk, delta);
1034
e414314c
PZ
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1046 }
bf0f6f24
IM
1047 }
1048#endif
1049}
1050
ddc97297
PZ
1051static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061#endif
1062}
1063
aeb73b04
PZ
1064static void
1065place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066{
1af5f730 1067 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1068
2cb8600e
PZ
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
94dfb5e7 1075 if (initial && sched_feat(START_DEBIT))
f9c0b095 1076 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1077
a2e7a7eb 1078 /* sleeps up to a single latency don't count. */
5ca9880c 1079 if (!initial) {
a2e7a7eb 1080 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1081
a2e7a7eb
MG
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
51e0304c 1088
a2e7a7eb 1089 vruntime -= thresh;
aeb73b04
PZ
1090 }
1091
b5d9d734
MG
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
67e9fb2a 1095 se->vruntime = vruntime;
aeb73b04
PZ
1096}
1097
d3d9dc33
PT
1098static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
bf0f6f24 1100static void
88ec22d3 1101enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1102{
88ec22d3
PZ
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
371fd7e7 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1108 se->vruntime += cfs_rq->min_vruntime;
1109
bf0f6f24 1110 /*
a2a2d680 1111 * Update run-time statistics of the 'current'.
bf0f6f24 1112 */
b7cc0896 1113 update_curr(cfs_rq);
d6b55918 1114 update_cfs_load(cfs_rq, 0);
a992241d 1115 account_entity_enqueue(cfs_rq, se);
6d5ab293 1116 update_cfs_shares(cfs_rq);
bf0f6f24 1117
88ec22d3 1118 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1119 place_entity(cfs_rq, se, 0);
2396af69 1120 enqueue_sleeper(cfs_rq, se);
e9acbff6 1121 }
bf0f6f24 1122
d2417e5a 1123 update_stats_enqueue(cfs_rq, se);
ddc97297 1124 check_spread(cfs_rq, se);
83b699ed
SV
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
2069dd75 1127 se->on_rq = 1;
3d4b47b4 1128
d3d9dc33 1129 if (cfs_rq->nr_running == 1) {
3d4b47b4 1130 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1131 check_enqueue_throttle(cfs_rq);
1132 }
bf0f6f24
IM
1133}
1134
2c13c919 1135static void __clear_buddies_last(struct sched_entity *se)
2002c695 1136{
2c13c919
RR
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144}
2002c695 1145
2c13c919
RR
1146static void __clear_buddies_next(struct sched_entity *se)
1147{
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
2002c695
PZ
1155}
1156
ac53db59
RR
1157static void __clear_buddies_skip(struct sched_entity *se)
1158{
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166}
1167
a571bbea
PZ
1168static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169{
2c13c919
RR
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
ac53db59
RR
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
a571bbea
PZ
1178}
1179
d8b4986d
PT
1180static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
bf0f6f24 1182static void
371fd7e7 1183dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1184{
a2a2d680
DA
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
19b6a2e3 1190 update_stats_dequeue(cfs_rq, se);
371fd7e7 1191 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1192#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1200 }
db36cc7d 1201#endif
67e9fb2a
PZ
1202 }
1203
2002c695 1204 clear_buddies(cfs_rq, se);
4793241b 1205
83b699ed 1206 if (se != cfs_rq->curr)
30cfdcfc 1207 __dequeue_entity(cfs_rq, se);
2069dd75 1208 se->on_rq = 0;
d6b55918 1209 update_cfs_load(cfs_rq, 0);
30cfdcfc 1210 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
371fd7e7 1217 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1218 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1219
d8b4986d
PT
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1e876231
PZ
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1225}
1226
1227/*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
7c92e54f 1230static void
2e09bf55 1231check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1232{
11697830 1233 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1234 struct sched_entity *se;
1235 s64 delta;
11697830 1236
6d0f0ebd 1237 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1239 if (delta_exec > ideal_runtime) {
bf0f6f24 1240 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
f685ceac
MG
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
f685ceac
MG
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
f4cfb33e
WX
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
f685ceac 1259
f4cfb33e
WX
1260 if (delta < 0)
1261 return;
d7d82944 1262
f4cfb33e
WX
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1265}
1266
83b699ed 1267static void
8494f412 1268set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1269{
83b699ed
SV
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
79303e9e 1281 update_stats_curr_start(cfs_rq, se);
429d43bc 1282 cfs_rq->curr = se;
eba1ed4b
IM
1283#ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
495eca49 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1290 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293#endif
4a55b450 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1295}
1296
3f3a4904
PZ
1297static int
1298wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
ac53db59
RR
1300/*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
f4b6755f 1307static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1308{
ac53db59 1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1310 struct sched_entity *left = se;
f4b6755f 1311
ac53db59
RR
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
aa2ac252 1321
f685ceac
MG
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
ac53db59
RR
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
f685ceac 1334 clear_buddies(cfs_rq, se);
4793241b
PZ
1335
1336 return se;
aa2ac252
PZ
1337}
1338
d3d9dc33
PT
1339static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
ab6cde26 1341static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1342{
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
b7cc0896 1348 update_curr(cfs_rq);
bf0f6f24 1349
d3d9dc33
PT
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
ddc97297 1353 check_spread(cfs_rq, prev);
30cfdcfc 1354 if (prev->on_rq) {
5870db5b 1355 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
429d43bc 1359 cfs_rq->curr = NULL;
bf0f6f24
IM
1360}
1361
8f4d37ec
PZ
1362static void
1363entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1364{
bf0f6f24 1365 /*
30cfdcfc 1366 * Update run-time statistics of the 'current'.
bf0f6f24 1367 */
30cfdcfc 1368 update_curr(cfs_rq);
bf0f6f24 1369
43365bd7
PT
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
8f4d37ec
PZ
1375#ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
983ed7a6
HH
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
8f4d37ec
PZ
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390#endif
1391
2c2efaed 1392 if (cfs_rq->nr_running > 1)
2e09bf55 1393 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1394}
1395
ab84d31e
PT
1396
1397/**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1402
1403#ifdef HAVE_JUMP_LABEL
1404static struct jump_label_key __cfs_bandwidth_used;
1405
1406static inline bool cfs_bandwidth_used(void)
1407{
1408 return static_branch(&__cfs_bandwidth_used);
1409}
1410
1411void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412{
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418}
1419#else /* HAVE_JUMP_LABEL */
1420static bool cfs_bandwidth_used(void)
1421{
1422 return true;
1423}
1424
1425void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426#endif /* HAVE_JUMP_LABEL */
1427
ab84d31e
PT
1428/*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432static inline u64 default_cfs_period(void)
1433{
1434 return 100000000ULL;
1435}
ec12cb7f
PT
1436
1437static inline u64 sched_cfs_bandwidth_slice(void)
1438{
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440}
1441
a9cf55b2
PT
1442/*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
029632fb 1449void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1450{
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459}
1460
029632fb
PZ
1461static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462{
1463 return &tg->cfs_bandwidth;
1464}
1465
85dac906
PT
1466/* returns 0 on failure to allocate runtime */
1467static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1468{
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1471 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
58088ad0 1479 else {
a9cf55b2
PT
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1488 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1489 }
58088ad0
PT
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
ec12cb7f 1496 }
a9cf55b2 1497 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
85dac906
PT
1508
1509 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1510}
1511
a9cf55b2
PT
1512/*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1517{
a9cf55b2
PT
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1523 return;
1524
a9cf55b2
PT
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544}
1545
1546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548{
1549 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1550 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1554 return;
1555
85dac906
PT
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1562}
1563
1564static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566{
56f570e5 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571}
1572
85dac906
PT
1573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574{
56f570e5 1575 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1576}
1577
64660c86
PT
1578/* check whether cfs_rq, or any parent, is throttled */
1579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580{
56f570e5 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1582}
1583
1584/*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591{
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599}
1600
1601/* updated child weight may affect parent so we have to do this bottom up */
1602static int tg_unthrottle_up(struct task_group *tg, void *data)
1603{
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608#ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619#endif
1620
1621 return 0;
1622}
1623
1624static int tg_throttle_down(struct task_group *tg, void *data)
1625{
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635}
1636
d3d9dc33 1637static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1638{
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
64660c86
PT
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
85dac906
PT
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
e8da1b18 1670 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674}
1675
029632fb 1676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1677{
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
e8da1b18 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1691 cfs_rq->throttled_timestamp = 0;
671fd9da 1692
64660c86
PT
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
671fd9da
PT
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720}
1721
1722static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724{
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758}
1759
58088ad0
PT
1760/*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767{
671fd9da
PT
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
58088ad0
PT
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
671fd9da
PT
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
e8da1b18 1779 cfs_b->nr_periods += overrun;
671fd9da 1780
a9cf55b2
PT
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
671fd9da
PT
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
e8da1b18
NR
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
671fd9da
PT
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
58088ad0 1820
671fd9da
PT
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
58088ad0
PT
1830out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836}
d3d9dc33 1837
d8b4986d
PT
1838/* a cfs_rq won't donate quota below this amount */
1839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840/* minimum remaining period time to redistribute slack quota */
1841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842/* how long we wait to gather additional slack before distributing */
1843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845/* are we near the end of the current quota period? */
1846static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847{
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861}
1862
1863static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864{
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873}
1874
1875/* we know any runtime found here is valid as update_curr() precedes return */
1876static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877{
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898}
1899
1900static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901{
56f570e5
PT
1902 if (!cfs_bandwidth_used())
1903 return;
1904
fccfdc6f 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909}
1910
1911/*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916{
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941}
1942
d3d9dc33
PT
1943/*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949{
56f570e5
PT
1950 if (!cfs_bandwidth_used())
1951 return;
1952
d3d9dc33
PT
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965}
1966
1967/* conditionally throttle active cfs_rq's from put_prev_entity() */
1968static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969{
56f570e5
PT
1970 if (!cfs_bandwidth_used())
1971 return;
1972
d3d9dc33
PT
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984}
029632fb
PZ
1985
1986static inline u64 default_cfs_period(void);
1987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991{
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997}
1998
1999static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000{
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018}
2019
2020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021{
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032}
2033
2034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035{
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038}
2039
2040/* requires cfs_b->lock, may release to reprogram timer */
2041void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042{
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062}
2063
2064static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065{
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068}
2069
2070void unthrottle_offline_cfs_rqs(struct rq *rq)
2071{
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088}
2089
2090#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
d3d9dc33
PT
2093static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2095static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2096
2097static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098{
2099 return 0;
2100}
64660c86
PT
2101
2102static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103{
2104 return 0;
2105}
2106
2107static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109{
2110 return 0;
2111}
029632fb
PZ
2112
2113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115#ifdef CONFIG_FAIR_GROUP_SCHED
2116static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2117#endif
2118
029632fb
PZ
2119static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120{
2121 return NULL;
2122}
2123static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126#endif /* CONFIG_CFS_BANDWIDTH */
2127
bf0f6f24
IM
2128/**************************************************
2129 * CFS operations on tasks:
2130 */
2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134{
8f4d37ec
PZ
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
2140 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
31656519 2155 if (rq->curr != p)
157124c1 2156 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2157
31656519 2158 hrtick_start(rq, delta);
8f4d37ec
PZ
2159 }
2160}
a4c2f00f
PZ
2161
2162/*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167static void hrtick_update(struct rq *rq)
2168{
2169 struct task_struct *curr = rq->curr;
2170
2171 if (curr->sched_class != &fair_sched_class)
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176}
55e12e5e 2177#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2178static inline void
2179hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180{
2181}
a4c2f00f
PZ
2182
2183static inline void hrtick_update(struct rq *rq)
2184{
2185}
8f4d37ec
PZ
2186#endif
2187
bf0f6f24
IM
2188/*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
ea87bb78 2193static void
371fd7e7 2194enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2195{
2196 struct cfs_rq *cfs_rq;
62fb1851 2197 struct sched_entity *se = &p->se;
bf0f6f24
IM
2198
2199 for_each_sched_entity(se) {
62fb1851 2200 if (se->on_rq)
bf0f6f24
IM
2201 break;
2202 cfs_rq = cfs_rq_of(se);
88ec22d3 2203 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
953bfcd1 2213 cfs_rq->h_nr_running++;
85dac906 2214
88ec22d3 2215 flags = ENQUEUE_WAKEUP;
bf0f6f24 2216 }
8f4d37ec 2217
2069dd75 2218 for_each_sched_entity(se) {
0f317143 2219 cfs_rq = cfs_rq_of(se);
953bfcd1 2220 cfs_rq->h_nr_running++;
2069dd75 2221
85dac906
PT
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
d6b55918 2225 update_cfs_load(cfs_rq, 0);
6d5ab293 2226 update_cfs_shares(cfs_rq);
2069dd75
PZ
2227 }
2228
85dac906
PT
2229 if (!se)
2230 inc_nr_running(rq);
a4c2f00f 2231 hrtick_update(rq);
bf0f6f24
IM
2232}
2233
2f36825b
VP
2234static void set_next_buddy(struct sched_entity *se);
2235
bf0f6f24
IM
2236/*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
371fd7e7 2241static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2242{
2243 struct cfs_rq *cfs_rq;
62fb1851 2244 struct sched_entity *se = &p->se;
2f36825b 2245 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
371fd7e7 2249 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
953bfcd1 2259 cfs_rq->h_nr_running--;
2069dd75 2260
bf0f6f24 2261 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
9598c82d
PT
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
bf0f6f24 2272 break;
2f36825b 2273 }
371fd7e7 2274 flags |= DEQUEUE_SLEEP;
bf0f6f24 2275 }
8f4d37ec 2276
2069dd75 2277 for_each_sched_entity(se) {
0f317143 2278 cfs_rq = cfs_rq_of(se);
953bfcd1 2279 cfs_rq->h_nr_running--;
2069dd75 2280
85dac906
PT
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
d6b55918 2284 update_cfs_load(cfs_rq, 0);
6d5ab293 2285 update_cfs_shares(cfs_rq);
2069dd75
PZ
2286 }
2287
85dac906
PT
2288 if (!se)
2289 dec_nr_running(rq);
a4c2f00f 2290 hrtick_update(rq);
bf0f6f24
IM
2291}
2292
e7693a36 2293#ifdef CONFIG_SMP
029632fb
PZ
2294/* Used instead of source_load when we know the type == 0 */
2295static unsigned long weighted_cpuload(const int cpu)
2296{
2297 return cpu_rq(cpu)->load.weight;
2298}
2299
2300/*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307static unsigned long source_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316}
2317
2318/*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322static unsigned long target_load(int cpu, int type)
2323{
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331}
2332
2333static unsigned long power_of(int cpu)
2334{
2335 return cpu_rq(cpu)->cpu_power;
2336}
2337
2338static unsigned long cpu_avg_load_per_task(int cpu)
2339{
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347}
2348
098fb9db 2349
74f8e4b2 2350static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2351{
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2354 u64 min_vruntime;
2355
2356#ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
88ec22d3 2358
3fe1698b
PZ
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364#else
2365 min_vruntime = cfs_rq->min_vruntime;
2366#endif
88ec22d3 2367
3fe1698b 2368 se->vruntime -= min_vruntime;
88ec22d3
PZ
2369}
2370
bb3469ac 2371#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2372/*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
cf5f0acf
PZ
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
f5bfb7d9 2421 */
2069dd75 2422static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2423{
4be9daaa 2424 struct sched_entity *se = tg->se[cpu];
f1d239f7 2425
cf5f0acf 2426 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2427 return wl;
2428
4be9daaa 2429 for_each_sched_entity(se) {
cf5f0acf 2430 long w, W;
4be9daaa 2431
977dda7c 2432 tg = se->my_q->tg;
bb3469ac 2433
cf5f0acf
PZ
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2438
cf5f0acf
PZ
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
940959e9 2443
cf5f0acf
PZ
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
977dda7c
PT
2449 else
2450 wl = tg->shares;
940959e9 2451
cf5f0acf
PZ
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
977dda7c
PT
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
cf5f0acf
PZ
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
977dda7c 2463 wl -= se->load.weight;
cf5f0acf
PZ
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
4be9daaa 2472 wg = 0;
4be9daaa 2473 }
bb3469ac 2474
4be9daaa 2475 return wl;
bb3469ac
PZ
2476}
2477#else
4be9daaa 2478
83378269
PZ
2479static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
4be9daaa 2481{
83378269 2482 return wl;
bb3469ac 2483}
4be9daaa 2484
bb3469ac
PZ
2485#endif
2486
c88d5910 2487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2488{
e37b6a7b 2489 s64 this_load, load;
c88d5910 2490 int idx, this_cpu, prev_cpu;
098fb9db 2491 unsigned long tl_per_task;
c88d5910 2492 struct task_group *tg;
83378269 2493 unsigned long weight;
b3137bc8 2494 int balanced;
098fb9db 2495
c88d5910
PZ
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
098fb9db 2501
b3137bc8
MG
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
83378269
PZ
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
c88d5910 2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
b3137bc8 2514
83378269
PZ
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
b3137bc8 2517
71a29aa7
PZ
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
71a29aa7
PZ
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
e37b6a7b
PT
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
b3137bc8 2542
098fb9db 2543 /*
4ae7d5ce
IM
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
098fb9db 2547 */
2fb7635c
PZ
2548 if (sync && balanced)
2549 return 1;
098fb9db 2550
41acab88 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
c88d5910
PZ
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
c88d5910 2562 schedstat_inc(sd, ttwu_move_affine);
41acab88 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2564
2565 return 1;
2566 }
2567 return 0;
2568}
2569
aaee1203
PZ
2570/*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574static struct sched_group *
78e7ed53 2575find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2576 int this_cpu, int load_idx)
e7693a36 2577{
b3bd3de6 2578 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2579 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2581
aaee1203
PZ
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
e7693a36 2586
aaee1203
PZ
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2589 tsk_cpus_allowed(p)))
aaee1203
PZ
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
9c3f75cb 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2610
2611 if (local_group) {
2612 this_load = avg_load;
aaee1203
PZ
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622}
2623
2624/*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627static int
2628find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629{
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
fa17b507 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
e7693a36
GH
2641 }
2642 }
2643
aaee1203
PZ
2644 return idlest;
2645}
e7693a36 2646
77e81365
SS
2647/**
2648 * highest_flag_domain - Return highest sched_domain containing flag.
2649 * @cpu: The cpu whose highest level of sched domain is to
2650 * be returned.
2651 * @flag: The flag to check for the highest sched_domain
2652 * for the given cpu.
2653 *
2654 * Returns the highest sched_domain of a cpu which contains the given flag.
2655 */
2656static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
2657{
2658 struct sched_domain *sd, *hsd = NULL;
2659
2660 for_each_domain(cpu, sd) {
2661 if (!(sd->flags & flag))
2662 break;
2663 hsd = sd;
2664 }
2665
2666 return hsd;
2667}
2668
a50bde51
PZ
2669/*
2670 * Try and locate an idle CPU in the sched_domain.
2671 */
99bd5e2f 2672static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2673{
2674 int cpu = smp_processor_id();
2675 int prev_cpu = task_cpu(p);
99bd5e2f 2676 struct sched_domain *sd;
4dcfe102 2677 struct sched_group *sg;
77e81365 2678 int i;
a50bde51
PZ
2679
2680 /*
99bd5e2f
SS
2681 * If the task is going to be woken-up on this cpu and if it is
2682 * already idle, then it is the right target.
a50bde51 2683 */
99bd5e2f
SS
2684 if (target == cpu && idle_cpu(cpu))
2685 return cpu;
2686
2687 /*
2688 * If the task is going to be woken-up on the cpu where it previously
2689 * ran and if it is currently idle, then it the right target.
2690 */
2691 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2692 return prev_cpu;
a50bde51
PZ
2693
2694 /*
99bd5e2f 2695 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2696 */
dce840a0 2697 rcu_read_lock();
99bd5e2f 2698
77e81365
SS
2699 sd = highest_flag_domain(target, SD_SHARE_PKG_RESOURCES);
2700 for_each_lower_domain(sd) {
4dcfe102
PZ
2701 sg = sd->groups;
2702 do {
2703 if (!cpumask_intersects(sched_group_cpus(sg),
2704 tsk_cpus_allowed(p)))
2705 goto next;
2706
2707 for_each_cpu(i, sched_group_cpus(sg)) {
2708 if (!idle_cpu(i))
2709 goto next;
2710 }
2711
2712 target = cpumask_first_and(sched_group_cpus(sg),
2713 tsk_cpus_allowed(p));
2714 goto done;
2715next:
2716 sg = sg->next;
2717 } while (sg != sd->groups);
a50bde51 2718 }
4dcfe102 2719done:
dce840a0 2720 rcu_read_unlock();
a50bde51
PZ
2721
2722 return target;
2723}
2724
aaee1203
PZ
2725/*
2726 * sched_balance_self: balance the current task (running on cpu) in domains
2727 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2728 * SD_BALANCE_EXEC.
2729 *
2730 * Balance, ie. select the least loaded group.
2731 *
2732 * Returns the target CPU number, or the same CPU if no balancing is needed.
2733 *
2734 * preempt must be disabled.
2735 */
0017d735 2736static int
7608dec2 2737select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2738{
29cd8bae 2739 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2740 int cpu = smp_processor_id();
2741 int prev_cpu = task_cpu(p);
2742 int new_cpu = cpu;
99bd5e2f 2743 int want_affine = 0;
29cd8bae 2744 int want_sd = 1;
5158f4e4 2745 int sync = wake_flags & WF_SYNC;
c88d5910 2746
76854c7e
MG
2747 if (p->rt.nr_cpus_allowed == 1)
2748 return prev_cpu;
2749
0763a660 2750 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2751 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2752 want_affine = 1;
2753 new_cpu = prev_cpu;
2754 }
aaee1203 2755
dce840a0 2756 rcu_read_lock();
aaee1203 2757 for_each_domain(cpu, tmp) {
e4f42888
PZ
2758 if (!(tmp->flags & SD_LOAD_BALANCE))
2759 continue;
2760
aaee1203 2761 /*
ae154be1
PZ
2762 * If power savings logic is enabled for a domain, see if we
2763 * are not overloaded, if so, don't balance wider.
aaee1203 2764 */
59abf026 2765 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2766 unsigned long power = 0;
2767 unsigned long nr_running = 0;
2768 unsigned long capacity;
2769 int i;
2770
2771 for_each_cpu(i, sched_domain_span(tmp)) {
2772 power += power_of(i);
2773 nr_running += cpu_rq(i)->cfs.nr_running;
2774 }
2775
1399fa78 2776 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2777
59abf026
PZ
2778 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2779 nr_running /= 2;
2780
2781 if (nr_running < capacity)
29cd8bae 2782 want_sd = 0;
ae154be1 2783 }
aaee1203 2784
fe3bcfe1 2785 /*
99bd5e2f
SS
2786 * If both cpu and prev_cpu are part of this domain,
2787 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2788 */
99bd5e2f
SS
2789 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2790 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2791 affine_sd = tmp;
2792 want_affine = 0;
c88d5910
PZ
2793 }
2794
29cd8bae
PZ
2795 if (!want_sd && !want_affine)
2796 break;
2797
0763a660 2798 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2799 continue;
2800
29cd8bae
PZ
2801 if (want_sd)
2802 sd = tmp;
2803 }
2804
8b911acd 2805 if (affine_sd) {
99bd5e2f 2806 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2807 prev_cpu = cpu;
2808
2809 new_cpu = select_idle_sibling(p, prev_cpu);
2810 goto unlock;
8b911acd 2811 }
e7693a36 2812
aaee1203 2813 while (sd) {
5158f4e4 2814 int load_idx = sd->forkexec_idx;
aaee1203 2815 struct sched_group *group;
c88d5910 2816 int weight;
098fb9db 2817
0763a660 2818 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2819 sd = sd->child;
2820 continue;
2821 }
098fb9db 2822
5158f4e4
PZ
2823 if (sd_flag & SD_BALANCE_WAKE)
2824 load_idx = sd->wake_idx;
098fb9db 2825
5158f4e4 2826 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2827 if (!group) {
2828 sd = sd->child;
2829 continue;
2830 }
4ae7d5ce 2831
d7c33c49 2832 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2833 if (new_cpu == -1 || new_cpu == cpu) {
2834 /* Now try balancing at a lower domain level of cpu */
2835 sd = sd->child;
2836 continue;
e7693a36 2837 }
aaee1203
PZ
2838
2839 /* Now try balancing at a lower domain level of new_cpu */
2840 cpu = new_cpu;
669c55e9 2841 weight = sd->span_weight;
aaee1203
PZ
2842 sd = NULL;
2843 for_each_domain(cpu, tmp) {
669c55e9 2844 if (weight <= tmp->span_weight)
aaee1203 2845 break;
0763a660 2846 if (tmp->flags & sd_flag)
aaee1203
PZ
2847 sd = tmp;
2848 }
2849 /* while loop will break here if sd == NULL */
e7693a36 2850 }
dce840a0
PZ
2851unlock:
2852 rcu_read_unlock();
e7693a36 2853
c88d5910 2854 return new_cpu;
e7693a36
GH
2855}
2856#endif /* CONFIG_SMP */
2857
e52fb7c0
PZ
2858static unsigned long
2859wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2860{
2861 unsigned long gran = sysctl_sched_wakeup_granularity;
2862
2863 /*
e52fb7c0
PZ
2864 * Since its curr running now, convert the gran from real-time
2865 * to virtual-time in his units.
13814d42
MG
2866 *
2867 * By using 'se' instead of 'curr' we penalize light tasks, so
2868 * they get preempted easier. That is, if 'se' < 'curr' then
2869 * the resulting gran will be larger, therefore penalizing the
2870 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2871 * be smaller, again penalizing the lighter task.
2872 *
2873 * This is especially important for buddies when the leftmost
2874 * task is higher priority than the buddy.
0bbd3336 2875 */
f4ad9bd2 2876 return calc_delta_fair(gran, se);
0bbd3336
PZ
2877}
2878
464b7527
PZ
2879/*
2880 * Should 'se' preempt 'curr'.
2881 *
2882 * |s1
2883 * |s2
2884 * |s3
2885 * g
2886 * |<--->|c
2887 *
2888 * w(c, s1) = -1
2889 * w(c, s2) = 0
2890 * w(c, s3) = 1
2891 *
2892 */
2893static int
2894wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2895{
2896 s64 gran, vdiff = curr->vruntime - se->vruntime;
2897
2898 if (vdiff <= 0)
2899 return -1;
2900
e52fb7c0 2901 gran = wakeup_gran(curr, se);
464b7527
PZ
2902 if (vdiff > gran)
2903 return 1;
2904
2905 return 0;
2906}
2907
02479099
PZ
2908static void set_last_buddy(struct sched_entity *se)
2909{
69c80f3e
VP
2910 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2911 return;
2912
2913 for_each_sched_entity(se)
2914 cfs_rq_of(se)->last = se;
02479099
PZ
2915}
2916
2917static void set_next_buddy(struct sched_entity *se)
2918{
69c80f3e
VP
2919 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2920 return;
2921
2922 for_each_sched_entity(se)
2923 cfs_rq_of(se)->next = se;
02479099
PZ
2924}
2925
ac53db59
RR
2926static void set_skip_buddy(struct sched_entity *se)
2927{
69c80f3e
VP
2928 for_each_sched_entity(se)
2929 cfs_rq_of(se)->skip = se;
ac53db59
RR
2930}
2931
bf0f6f24
IM
2932/*
2933 * Preempt the current task with a newly woken task if needed:
2934 */
5a9b86f6 2935static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2936{
2937 struct task_struct *curr = rq->curr;
8651a86c 2938 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2939 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2940 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2941 int next_buddy_marked = 0;
bf0f6f24 2942
4ae7d5ce
IM
2943 if (unlikely(se == pse))
2944 return;
2945
5238cdd3
PT
2946 /*
2947 * This is possible from callers such as pull_task(), in which we
2948 * unconditionally check_prempt_curr() after an enqueue (which may have
2949 * lead to a throttle). This both saves work and prevents false
2950 * next-buddy nomination below.
2951 */
2952 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2953 return;
2954
2f36825b 2955 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2956 set_next_buddy(pse);
2f36825b
VP
2957 next_buddy_marked = 1;
2958 }
57fdc26d 2959
aec0a514
BR
2960 /*
2961 * We can come here with TIF_NEED_RESCHED already set from new task
2962 * wake up path.
5238cdd3
PT
2963 *
2964 * Note: this also catches the edge-case of curr being in a throttled
2965 * group (e.g. via set_curr_task), since update_curr() (in the
2966 * enqueue of curr) will have resulted in resched being set. This
2967 * prevents us from potentially nominating it as a false LAST_BUDDY
2968 * below.
aec0a514
BR
2969 */
2970 if (test_tsk_need_resched(curr))
2971 return;
2972
a2f5c9ab
DH
2973 /* Idle tasks are by definition preempted by non-idle tasks. */
2974 if (unlikely(curr->policy == SCHED_IDLE) &&
2975 likely(p->policy != SCHED_IDLE))
2976 goto preempt;
2977
91c234b4 2978 /*
a2f5c9ab
DH
2979 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2980 * is driven by the tick):
91c234b4 2981 */
6bc912b7 2982 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2983 return;
bf0f6f24 2984
464b7527 2985 find_matching_se(&se, &pse);
9bbd7374 2986 update_curr(cfs_rq_of(se));
002f128b 2987 BUG_ON(!pse);
2f36825b
VP
2988 if (wakeup_preempt_entity(se, pse) == 1) {
2989 /*
2990 * Bias pick_next to pick the sched entity that is
2991 * triggering this preemption.
2992 */
2993 if (!next_buddy_marked)
2994 set_next_buddy(pse);
3a7e73a2 2995 goto preempt;
2f36825b 2996 }
464b7527 2997
3a7e73a2 2998 return;
a65ac745 2999
3a7e73a2
PZ
3000preempt:
3001 resched_task(curr);
3002 /*
3003 * Only set the backward buddy when the current task is still
3004 * on the rq. This can happen when a wakeup gets interleaved
3005 * with schedule on the ->pre_schedule() or idle_balance()
3006 * point, either of which can * drop the rq lock.
3007 *
3008 * Also, during early boot the idle thread is in the fair class,
3009 * for obvious reasons its a bad idea to schedule back to it.
3010 */
3011 if (unlikely(!se->on_rq || curr == rq->idle))
3012 return;
3013
3014 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3015 set_last_buddy(se);
bf0f6f24
IM
3016}
3017
fb8d4724 3018static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3019{
8f4d37ec 3020 struct task_struct *p;
bf0f6f24
IM
3021 struct cfs_rq *cfs_rq = &rq->cfs;
3022 struct sched_entity *se;
3023
36ace27e 3024 if (!cfs_rq->nr_running)
bf0f6f24
IM
3025 return NULL;
3026
3027 do {
9948f4b2 3028 se = pick_next_entity(cfs_rq);
f4b6755f 3029 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3030 cfs_rq = group_cfs_rq(se);
3031 } while (cfs_rq);
3032
8f4d37ec
PZ
3033 p = task_of(se);
3034 hrtick_start_fair(rq, p);
3035
3036 return p;
bf0f6f24
IM
3037}
3038
3039/*
3040 * Account for a descheduled task:
3041 */
31ee529c 3042static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3043{
3044 struct sched_entity *se = &prev->se;
3045 struct cfs_rq *cfs_rq;
3046
3047 for_each_sched_entity(se) {
3048 cfs_rq = cfs_rq_of(se);
ab6cde26 3049 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3050 }
3051}
3052
ac53db59
RR
3053/*
3054 * sched_yield() is very simple
3055 *
3056 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3057 */
3058static void yield_task_fair(struct rq *rq)
3059{
3060 struct task_struct *curr = rq->curr;
3061 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3062 struct sched_entity *se = &curr->se;
3063
3064 /*
3065 * Are we the only task in the tree?
3066 */
3067 if (unlikely(rq->nr_running == 1))
3068 return;
3069
3070 clear_buddies(cfs_rq, se);
3071
3072 if (curr->policy != SCHED_BATCH) {
3073 update_rq_clock(rq);
3074 /*
3075 * Update run-time statistics of the 'current'.
3076 */
3077 update_curr(cfs_rq);
916671c0
MG
3078 /*
3079 * Tell update_rq_clock() that we've just updated,
3080 * so we don't do microscopic update in schedule()
3081 * and double the fastpath cost.
3082 */
3083 rq->skip_clock_update = 1;
ac53db59
RR
3084 }
3085
3086 set_skip_buddy(se);
3087}
3088
d95f4122
MG
3089static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3090{
3091 struct sched_entity *se = &p->se;
3092
5238cdd3
PT
3093 /* throttled hierarchies are not runnable */
3094 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3095 return false;
3096
3097 /* Tell the scheduler that we'd really like pse to run next. */
3098 set_next_buddy(se);
3099
d95f4122
MG
3100 yield_task_fair(rq);
3101
3102 return true;
3103}
3104
681f3e68 3105#ifdef CONFIG_SMP
bf0f6f24
IM
3106/**************************************************
3107 * Fair scheduling class load-balancing methods:
3108 */
3109
1e3c88bd
PZ
3110/*
3111 * pull_task - move a task from a remote runqueue to the local runqueue.
3112 * Both runqueues must be locked.
3113 */
3114static void pull_task(struct rq *src_rq, struct task_struct *p,
3115 struct rq *this_rq, int this_cpu)
3116{
3117 deactivate_task(src_rq, p, 0);
3118 set_task_cpu(p, this_cpu);
3119 activate_task(this_rq, p, 0);
3120 check_preempt_curr(this_rq, p, 0);
3121}
3122
029632fb
PZ
3123/*
3124 * Is this task likely cache-hot:
3125 */
3126static int
3127task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3128{
3129 s64 delta;
3130
3131 if (p->sched_class != &fair_sched_class)
3132 return 0;
3133
3134 if (unlikely(p->policy == SCHED_IDLE))
3135 return 0;
3136
3137 /*
3138 * Buddy candidates are cache hot:
3139 */
3140 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3141 (&p->se == cfs_rq_of(&p->se)->next ||
3142 &p->se == cfs_rq_of(&p->se)->last))
3143 return 1;
3144
3145 if (sysctl_sched_migration_cost == -1)
3146 return 1;
3147 if (sysctl_sched_migration_cost == 0)
3148 return 0;
3149
3150 delta = now - p->se.exec_start;
3151
3152 return delta < (s64)sysctl_sched_migration_cost;
3153}
3154
1e3c88bd
PZ
3155/*
3156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3157 */
3158static
3159int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3160 struct sched_domain *sd, enum cpu_idle_type idle,
3161 int *all_pinned)
3162{
3163 int tsk_cache_hot = 0;
3164 /*
3165 * We do not migrate tasks that are:
3166 * 1) running (obviously), or
3167 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3168 * 3) are cache-hot on their current CPU.
3169 */
fa17b507 3170 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 3171 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3172 return 0;
3173 }
3174 *all_pinned = 0;
3175
3176 if (task_running(rq, p)) {
41acab88 3177 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3178 return 0;
3179 }
3180
3181 /*
3182 * Aggressive migration if:
3183 * 1) task is cache cold, or
3184 * 2) too many balance attempts have failed.
3185 */
3186
305e6835 3187 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
3188 if (!tsk_cache_hot ||
3189 sd->nr_balance_failed > sd->cache_nice_tries) {
3190#ifdef CONFIG_SCHEDSTATS
3191 if (tsk_cache_hot) {
3192 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 3193 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3194 }
3195#endif
3196 return 1;
3197 }
3198
3199 if (tsk_cache_hot) {
41acab88 3200 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3201 return 0;
3202 }
3203 return 1;
3204}
3205
897c395f
PZ
3206/*
3207 * move_one_task tries to move exactly one task from busiest to this_rq, as
3208 * part of active balancing operations within "domain".
3209 * Returns 1 if successful and 0 otherwise.
3210 *
3211 * Called with both runqueues locked.
3212 */
3213static int
3214move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3215 struct sched_domain *sd, enum cpu_idle_type idle)
3216{
3217 struct task_struct *p, *n;
3218 struct cfs_rq *cfs_rq;
3219 int pinned = 0;
3220
3221 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3222 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
3223 if (throttled_lb_pair(task_group(p),
3224 busiest->cpu, this_cpu))
3225 break;
897c395f
PZ
3226
3227 if (!can_migrate_task(p, busiest, this_cpu,
3228 sd, idle, &pinned))
3229 continue;
3230
3231 pull_task(busiest, p, this_rq, this_cpu);
3232 /*
3233 * Right now, this is only the second place pull_task()
3234 * is called, so we can safely collect pull_task()
3235 * stats here rather than inside pull_task().
3236 */
3237 schedstat_inc(sd, lb_gained[idle]);
3238 return 1;
3239 }
3240 }
3241
3242 return 0;
3243}
3244
1e3c88bd
PZ
3245static unsigned long
3246balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3247 unsigned long max_load_move, struct sched_domain *sd,
3248 enum cpu_idle_type idle, int *all_pinned,
931aeeda 3249 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 3250{
b30aef17 3251 int loops = 0, pulled = 0;
1e3c88bd 3252 long rem_load_move = max_load_move;
ee00e66f 3253 struct task_struct *p, *n;
1e3c88bd
PZ
3254
3255 if (max_load_move == 0)
3256 goto out;
3257
ee00e66f
PZ
3258 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
3259 if (loops++ > sysctl_sched_nr_migrate)
3260 break;
1e3c88bd 3261
ee00e66f 3262 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
3263 !can_migrate_task(p, busiest, this_cpu, sd, idle,
3264 all_pinned))
ee00e66f 3265 continue;
1e3c88bd 3266
ee00e66f
PZ
3267 pull_task(busiest, p, this_rq, this_cpu);
3268 pulled++;
3269 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
3270
3271#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3272 /*
3273 * NEWIDLE balancing is a source of latency, so preemptible
3274 * kernels will stop after the first task is pulled to minimize
3275 * the critical section.
3276 */
3277 if (idle == CPU_NEWLY_IDLE)
3278 break;
1e3c88bd
PZ
3279#endif
3280
ee00e66f
PZ
3281 /*
3282 * We only want to steal up to the prescribed amount of
3283 * weighted load.
3284 */
3285 if (rem_load_move <= 0)
3286 break;
1e3c88bd
PZ
3287 }
3288out:
3289 /*
3290 * Right now, this is one of only two places pull_task() is called,
3291 * so we can safely collect pull_task() stats here rather than
3292 * inside pull_task().
3293 */
3294 schedstat_add(sd, lb_gained[idle], pulled);
3295
1e3c88bd
PZ
3296 return max_load_move - rem_load_move;
3297}
3298
230059de 3299#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3300/*
3301 * update tg->load_weight by folding this cpu's load_avg
3302 */
67e86250 3303static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3304{
3305 struct cfs_rq *cfs_rq;
3306 unsigned long flags;
3307 struct rq *rq;
9e3081ca
PZ
3308
3309 if (!tg->se[cpu])
3310 return 0;
3311
3312 rq = cpu_rq(cpu);
3313 cfs_rq = tg->cfs_rq[cpu];
3314
3315 raw_spin_lock_irqsave(&rq->lock, flags);
3316
3317 update_rq_clock(rq);
d6b55918 3318 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3319
3320 /*
3321 * We need to update shares after updating tg->load_weight in
3322 * order to adjust the weight of groups with long running tasks.
3323 */
6d5ab293 3324 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3325
3326 raw_spin_unlock_irqrestore(&rq->lock, flags);
3327
3328 return 0;
3329}
3330
3331static void update_shares(int cpu)
3332{
3333 struct cfs_rq *cfs_rq;
3334 struct rq *rq = cpu_rq(cpu);
3335
3336 rcu_read_lock();
9763b67f
PZ
3337 /*
3338 * Iterates the task_group tree in a bottom up fashion, see
3339 * list_add_leaf_cfs_rq() for details.
3340 */
64660c86
PT
3341 for_each_leaf_cfs_rq(rq, cfs_rq) {
3342 /* throttled entities do not contribute to load */
3343 if (throttled_hierarchy(cfs_rq))
3344 continue;
3345
67e86250 3346 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3347 }
9e3081ca
PZ
3348 rcu_read_unlock();
3349}
3350
9763b67f
PZ
3351/*
3352 * Compute the cpu's hierarchical load factor for each task group.
3353 * This needs to be done in a top-down fashion because the load of a child
3354 * group is a fraction of its parents load.
3355 */
3356static int tg_load_down(struct task_group *tg, void *data)
3357{
3358 unsigned long load;
3359 long cpu = (long)data;
3360
3361 if (!tg->parent) {
3362 load = cpu_rq(cpu)->load.weight;
3363 } else {
3364 load = tg->parent->cfs_rq[cpu]->h_load;
3365 load *= tg->se[cpu]->load.weight;
3366 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3367 }
3368
3369 tg->cfs_rq[cpu]->h_load = load;
3370
3371 return 0;
3372}
3373
3374static void update_h_load(long cpu)
3375{
3376 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3377}
3378
230059de
PZ
3379static unsigned long
3380load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3381 unsigned long max_load_move,
3382 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3383 int *all_pinned)
230059de
PZ
3384{
3385 long rem_load_move = max_load_move;
9763b67f 3386 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3387
3388 rcu_read_lock();
9763b67f 3389 update_h_load(cpu_of(busiest));
230059de 3390
9763b67f 3391 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3392 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3393 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3394 u64 rem_load, moved_load;
3395
3396 /*
64660c86 3397 * empty group or part of a throttled hierarchy
230059de 3398 */
64660c86
PT
3399 if (!busiest_cfs_rq->task_weight ||
3400 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3401 continue;
3402
3403 rem_load = (u64)rem_load_move * busiest_weight;
3404 rem_load = div_u64(rem_load, busiest_h_load + 1);
3405
3406 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 3407 rem_load, sd, idle, all_pinned,
230059de
PZ
3408 busiest_cfs_rq);
3409
3410 if (!moved_load)
3411 continue;
3412
3413 moved_load *= busiest_h_load;
3414 moved_load = div_u64(moved_load, busiest_weight + 1);
3415
3416 rem_load_move -= moved_load;
3417 if (rem_load_move < 0)
3418 break;
3419 }
3420 rcu_read_unlock();
3421
3422 return max_load_move - rem_load_move;
3423}
3424#else
9e3081ca
PZ
3425static inline void update_shares(int cpu)
3426{
3427}
3428
230059de
PZ
3429static unsigned long
3430load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3431 unsigned long max_load_move,
3432 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3433 int *all_pinned)
230059de
PZ
3434{
3435 return balance_tasks(this_rq, this_cpu, busiest,
3436 max_load_move, sd, idle, all_pinned,
931aeeda 3437 &busiest->cfs);
230059de
PZ
3438}
3439#endif
3440
1e3c88bd
PZ
3441/*
3442 * move_tasks tries to move up to max_load_move weighted load from busiest to
3443 * this_rq, as part of a balancing operation within domain "sd".
3444 * Returns 1 if successful and 0 otherwise.
3445 *
3446 * Called with both runqueues locked.
3447 */
3448static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3449 unsigned long max_load_move,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *all_pinned)
3452{
3d45fd80 3453 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3454
3455 do {
3d45fd80 3456 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3457 max_load_move - total_load_moved,
931aeeda 3458 sd, idle, all_pinned);
3d45fd80
PZ
3459
3460 total_load_moved += load_moved;
1e3c88bd
PZ
3461
3462#ifdef CONFIG_PREEMPT
3463 /*
3464 * NEWIDLE balancing is a source of latency, so preemptible
3465 * kernels will stop after the first task is pulled to minimize
3466 * the critical section.
3467 */
3468 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3469 break;
baa8c110
PZ
3470
3471 if (raw_spin_is_contended(&this_rq->lock) ||
3472 raw_spin_is_contended(&busiest->lock))
3473 break;
1e3c88bd 3474#endif
3d45fd80 3475 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3476
3477 return total_load_moved > 0;
3478}
3479
1e3c88bd
PZ
3480/********** Helpers for find_busiest_group ************************/
3481/*
3482 * sd_lb_stats - Structure to store the statistics of a sched_domain
3483 * during load balancing.
3484 */
3485struct sd_lb_stats {
3486 struct sched_group *busiest; /* Busiest group in this sd */
3487 struct sched_group *this; /* Local group in this sd */
3488 unsigned long total_load; /* Total load of all groups in sd */
3489 unsigned long total_pwr; /* Total power of all groups in sd */
3490 unsigned long avg_load; /* Average load across all groups in sd */
3491
3492 /** Statistics of this group */
3493 unsigned long this_load;
3494 unsigned long this_load_per_task;
3495 unsigned long this_nr_running;
fab47622 3496 unsigned long this_has_capacity;
aae6d3dd 3497 unsigned int this_idle_cpus;
1e3c88bd
PZ
3498
3499 /* Statistics of the busiest group */
aae6d3dd 3500 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3501 unsigned long max_load;
3502 unsigned long busiest_load_per_task;
3503 unsigned long busiest_nr_running;
dd5feea1 3504 unsigned long busiest_group_capacity;
fab47622 3505 unsigned long busiest_has_capacity;
aae6d3dd 3506 unsigned int busiest_group_weight;
1e3c88bd
PZ
3507
3508 int group_imb; /* Is there imbalance in this sd */
3509#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3510 int power_savings_balance; /* Is powersave balance needed for this sd */
3511 struct sched_group *group_min; /* Least loaded group in sd */
3512 struct sched_group *group_leader; /* Group which relieves group_min */
3513 unsigned long min_load_per_task; /* load_per_task in group_min */
3514 unsigned long leader_nr_running; /* Nr running of group_leader */
3515 unsigned long min_nr_running; /* Nr running of group_min */
3516#endif
3517};
3518
3519/*
3520 * sg_lb_stats - stats of a sched_group required for load_balancing
3521 */
3522struct sg_lb_stats {
3523 unsigned long avg_load; /*Avg load across the CPUs of the group */
3524 unsigned long group_load; /* Total load over the CPUs of the group */
3525 unsigned long sum_nr_running; /* Nr tasks running in the group */
3526 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3527 unsigned long group_capacity;
aae6d3dd
SS
3528 unsigned long idle_cpus;
3529 unsigned long group_weight;
1e3c88bd 3530 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3531 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3532};
3533
1e3c88bd
PZ
3534/**
3535 * get_sd_load_idx - Obtain the load index for a given sched domain.
3536 * @sd: The sched_domain whose load_idx is to be obtained.
3537 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3538 */
3539static inline int get_sd_load_idx(struct sched_domain *sd,
3540 enum cpu_idle_type idle)
3541{
3542 int load_idx;
3543
3544 switch (idle) {
3545 case CPU_NOT_IDLE:
3546 load_idx = sd->busy_idx;
3547 break;
3548
3549 case CPU_NEWLY_IDLE:
3550 load_idx = sd->newidle_idx;
3551 break;
3552 default:
3553 load_idx = sd->idle_idx;
3554 break;
3555 }
3556
3557 return load_idx;
3558}
3559
3560
3561#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3562/**
3563 * init_sd_power_savings_stats - Initialize power savings statistics for
3564 * the given sched_domain, during load balancing.
3565 *
3566 * @sd: Sched domain whose power-savings statistics are to be initialized.
3567 * @sds: Variable containing the statistics for sd.
3568 * @idle: Idle status of the CPU at which we're performing load-balancing.
3569 */
3570static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3571 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3572{
3573 /*
3574 * Busy processors will not participate in power savings
3575 * balance.
3576 */
3577 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3578 sds->power_savings_balance = 0;
3579 else {
3580 sds->power_savings_balance = 1;
3581 sds->min_nr_running = ULONG_MAX;
3582 sds->leader_nr_running = 0;
3583 }
3584}
3585
3586/**
3587 * update_sd_power_savings_stats - Update the power saving stats for a
3588 * sched_domain while performing load balancing.
3589 *
3590 * @group: sched_group belonging to the sched_domain under consideration.
3591 * @sds: Variable containing the statistics of the sched_domain
3592 * @local_group: Does group contain the CPU for which we're performing
3593 * load balancing ?
3594 * @sgs: Variable containing the statistics of the group.
3595 */
3596static inline void update_sd_power_savings_stats(struct sched_group *group,
3597 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3598{
3599
3600 if (!sds->power_savings_balance)
3601 return;
3602
3603 /*
3604 * If the local group is idle or completely loaded
3605 * no need to do power savings balance at this domain
3606 */
3607 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3608 !sds->this_nr_running))
3609 sds->power_savings_balance = 0;
3610
3611 /*
3612 * If a group is already running at full capacity or idle,
3613 * don't include that group in power savings calculations
3614 */
3615 if (!sds->power_savings_balance ||
3616 sgs->sum_nr_running >= sgs->group_capacity ||
3617 !sgs->sum_nr_running)
3618 return;
3619
3620 /*
3621 * Calculate the group which has the least non-idle load.
3622 * This is the group from where we need to pick up the load
3623 * for saving power
3624 */
3625 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3626 (sgs->sum_nr_running == sds->min_nr_running &&
3627 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3628 sds->group_min = group;
3629 sds->min_nr_running = sgs->sum_nr_running;
3630 sds->min_load_per_task = sgs->sum_weighted_load /
3631 sgs->sum_nr_running;
3632 }
3633
3634 /*
3635 * Calculate the group which is almost near its
3636 * capacity but still has some space to pick up some load
3637 * from other group and save more power
3638 */
3639 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3640 return;
3641
3642 if (sgs->sum_nr_running > sds->leader_nr_running ||
3643 (sgs->sum_nr_running == sds->leader_nr_running &&
3644 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3645 sds->group_leader = group;
3646 sds->leader_nr_running = sgs->sum_nr_running;
3647 }
3648}
3649
3650/**
3651 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3652 * @sds: Variable containing the statistics of the sched_domain
3653 * under consideration.
3654 * @this_cpu: Cpu at which we're currently performing load-balancing.
3655 * @imbalance: Variable to store the imbalance.
3656 *
3657 * Description:
3658 * Check if we have potential to perform some power-savings balance.
3659 * If yes, set the busiest group to be the least loaded group in the
3660 * sched_domain, so that it's CPUs can be put to idle.
3661 *
3662 * Returns 1 if there is potential to perform power-savings balance.
3663 * Else returns 0.
3664 */
3665static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3666 int this_cpu, unsigned long *imbalance)
3667{
3668 if (!sds->power_savings_balance)
3669 return 0;
3670
3671 if (sds->this != sds->group_leader ||
3672 sds->group_leader == sds->group_min)
3673 return 0;
3674
3675 *imbalance = sds->min_load_per_task;
3676 sds->busiest = sds->group_min;
3677
3678 return 1;
3679
3680}
3681#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3682static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3683 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3684{
3685 return;
3686}
3687
3688static inline void update_sd_power_savings_stats(struct sched_group *group,
3689 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3690{
3691 return;
3692}
3693
3694static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3695 int this_cpu, unsigned long *imbalance)
3696{
3697 return 0;
3698}
3699#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3700
3701
3702unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3703{
1399fa78 3704 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3705}
3706
3707unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3708{
3709 return default_scale_freq_power(sd, cpu);
3710}
3711
3712unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3713{
669c55e9 3714 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3715 unsigned long smt_gain = sd->smt_gain;
3716
3717 smt_gain /= weight;
3718
3719 return smt_gain;
3720}
3721
3722unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3723{
3724 return default_scale_smt_power(sd, cpu);
3725}
3726
3727unsigned long scale_rt_power(int cpu)
3728{
3729 struct rq *rq = cpu_rq(cpu);
3730 u64 total, available;
3731
1e3c88bd 3732 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3733
3734 if (unlikely(total < rq->rt_avg)) {
3735 /* Ensures that power won't end up being negative */
3736 available = 0;
3737 } else {
3738 available = total - rq->rt_avg;
3739 }
1e3c88bd 3740
1399fa78
NR
3741 if (unlikely((s64)total < SCHED_POWER_SCALE))
3742 total = SCHED_POWER_SCALE;
1e3c88bd 3743
1399fa78 3744 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3745
3746 return div_u64(available, total);
3747}
3748
3749static void update_cpu_power(struct sched_domain *sd, int cpu)
3750{
669c55e9 3751 unsigned long weight = sd->span_weight;
1399fa78 3752 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3753 struct sched_group *sdg = sd->groups;
3754
1e3c88bd
PZ
3755 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3756 if (sched_feat(ARCH_POWER))
3757 power *= arch_scale_smt_power(sd, cpu);
3758 else
3759 power *= default_scale_smt_power(sd, cpu);
3760
1399fa78 3761 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3762 }
3763
9c3f75cb 3764 sdg->sgp->power_orig = power;
9d5efe05
SV
3765
3766 if (sched_feat(ARCH_POWER))
3767 power *= arch_scale_freq_power(sd, cpu);
3768 else
3769 power *= default_scale_freq_power(sd, cpu);
3770
1399fa78 3771 power >>= SCHED_POWER_SHIFT;
9d5efe05 3772
1e3c88bd 3773 power *= scale_rt_power(cpu);
1399fa78 3774 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3775
3776 if (!power)
3777 power = 1;
3778
e51fd5e2 3779 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3780 sdg->sgp->power = power;
1e3c88bd
PZ
3781}
3782
029632fb 3783void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3784{
3785 struct sched_domain *child = sd->child;
3786 struct sched_group *group, *sdg = sd->groups;
3787 unsigned long power;
3788
3789 if (!child) {
3790 update_cpu_power(sd, cpu);
3791 return;
3792 }
3793
3794 power = 0;
3795
3796 group = child->groups;
3797 do {
9c3f75cb 3798 power += group->sgp->power;
1e3c88bd
PZ
3799 group = group->next;
3800 } while (group != child->groups);
3801
9c3f75cb 3802 sdg->sgp->power = power;
1e3c88bd
PZ
3803}
3804
9d5efe05
SV
3805/*
3806 * Try and fix up capacity for tiny siblings, this is needed when
3807 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3808 * which on its own isn't powerful enough.
3809 *
3810 * See update_sd_pick_busiest() and check_asym_packing().
3811 */
3812static inline int
3813fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3814{
3815 /*
1399fa78 3816 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3817 */
a6c75f2f 3818 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3819 return 0;
3820
3821 /*
3822 * If ~90% of the cpu_power is still there, we're good.
3823 */
9c3f75cb 3824 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3825 return 1;
3826
3827 return 0;
3828}
3829
1e3c88bd
PZ
3830/**
3831 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3832 * @sd: The sched_domain whose statistics are to be updated.
3833 * @group: sched_group whose statistics are to be updated.
3834 * @this_cpu: Cpu for which load balance is currently performed.
3835 * @idle: Idle status of this_cpu
3836 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3837 * @local_group: Does group contain this_cpu.
3838 * @cpus: Set of cpus considered for load balancing.
3839 * @balance: Should we balance.
3840 * @sgs: variable to hold the statistics for this group.
3841 */
3842static inline void update_sg_lb_stats(struct sched_domain *sd,
3843 struct sched_group *group, int this_cpu,
46e49b38 3844 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3845 int local_group, const struct cpumask *cpus,
3846 int *balance, struct sg_lb_stats *sgs)
3847{
2582f0eb 3848 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3849 int i;
3850 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3851 unsigned long avg_load_per_task = 0;
1e3c88bd 3852
871e35bc 3853 if (local_group)
1e3c88bd 3854 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3855
3856 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3857 max_cpu_load = 0;
3858 min_cpu_load = ~0UL;
2582f0eb 3859 max_nr_running = 0;
1e3c88bd
PZ
3860
3861 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3862 struct rq *rq = cpu_rq(i);
3863
1e3c88bd
PZ
3864 /* Bias balancing toward cpus of our domain */
3865 if (local_group) {
3866 if (idle_cpu(i) && !first_idle_cpu) {
3867 first_idle_cpu = 1;
3868 balance_cpu = i;
3869 }
3870
3871 load = target_load(i, load_idx);
3872 } else {
3873 load = source_load(i, load_idx);
2582f0eb 3874 if (load > max_cpu_load) {
1e3c88bd 3875 max_cpu_load = load;
2582f0eb
NR
3876 max_nr_running = rq->nr_running;
3877 }
1e3c88bd
PZ
3878 if (min_cpu_load > load)
3879 min_cpu_load = load;
3880 }
3881
3882 sgs->group_load += load;
3883 sgs->sum_nr_running += rq->nr_running;
3884 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3885 if (idle_cpu(i))
3886 sgs->idle_cpus++;
1e3c88bd
PZ
3887 }
3888
3889 /*
3890 * First idle cpu or the first cpu(busiest) in this sched group
3891 * is eligible for doing load balancing at this and above
3892 * domains. In the newly idle case, we will allow all the cpu's
3893 * to do the newly idle load balance.
3894 */
bbc8cb5b
PZ
3895 if (idle != CPU_NEWLY_IDLE && local_group) {
3896 if (balance_cpu != this_cpu) {
3897 *balance = 0;
3898 return;
3899 }
3900 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3901 }
3902
3903 /* Adjust by relative CPU power of the group */
9c3f75cb 3904 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3905
1e3c88bd
PZ
3906 /*
3907 * Consider the group unbalanced when the imbalance is larger
866ab43e 3908 * than the average weight of a task.
1e3c88bd
PZ
3909 *
3910 * APZ: with cgroup the avg task weight can vary wildly and
3911 * might not be a suitable number - should we keep a
3912 * normalized nr_running number somewhere that negates
3913 * the hierarchy?
3914 */
dd5feea1
SS
3915 if (sgs->sum_nr_running)
3916 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3917
866ab43e 3918 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3919 sgs->group_imb = 1;
3920
9c3f75cb 3921 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3922 SCHED_POWER_SCALE);
9d5efe05
SV
3923 if (!sgs->group_capacity)
3924 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3925 sgs->group_weight = group->group_weight;
fab47622
NR
3926
3927 if (sgs->group_capacity > sgs->sum_nr_running)
3928 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3929}
3930
532cb4c4
MN
3931/**
3932 * update_sd_pick_busiest - return 1 on busiest group
3933 * @sd: sched_domain whose statistics are to be checked
3934 * @sds: sched_domain statistics
3935 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3936 * @sgs: sched_group statistics
3937 * @this_cpu: the current cpu
532cb4c4
MN
3938 *
3939 * Determine if @sg is a busier group than the previously selected
3940 * busiest group.
3941 */
3942static bool update_sd_pick_busiest(struct sched_domain *sd,
3943 struct sd_lb_stats *sds,
3944 struct sched_group *sg,
3945 struct sg_lb_stats *sgs,
3946 int this_cpu)
3947{
3948 if (sgs->avg_load <= sds->max_load)
3949 return false;
3950
3951 if (sgs->sum_nr_running > sgs->group_capacity)
3952 return true;
3953
3954 if (sgs->group_imb)
3955 return true;
3956
3957 /*
3958 * ASYM_PACKING needs to move all the work to the lowest
3959 * numbered CPUs in the group, therefore mark all groups
3960 * higher than ourself as busy.
3961 */
3962 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3963 this_cpu < group_first_cpu(sg)) {
3964 if (!sds->busiest)
3965 return true;
3966
3967 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3968 return true;
3969 }
3970
3971 return false;
3972}
3973
1e3c88bd 3974/**
461819ac 3975 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3976 * @sd: sched_domain whose statistics are to be updated.
3977 * @this_cpu: Cpu for which load balance is currently performed.
3978 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3979 * @cpus: Set of cpus considered for load balancing.
3980 * @balance: Should we balance.
3981 * @sds: variable to hold the statistics for this sched_domain.
3982 */
3983static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3984 enum cpu_idle_type idle, const struct cpumask *cpus,
3985 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3986{
3987 struct sched_domain *child = sd->child;
532cb4c4 3988 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3989 struct sg_lb_stats sgs;
3990 int load_idx, prefer_sibling = 0;
3991
3992 if (child && child->flags & SD_PREFER_SIBLING)
3993 prefer_sibling = 1;
3994
3995 init_sd_power_savings_stats(sd, sds, idle);
3996 load_idx = get_sd_load_idx(sd, idle);
3997
3998 do {
3999 int local_group;
4000
532cb4c4 4001 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 4002 memset(&sgs, 0, sizeof(sgs));
46e49b38 4003 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
4004 local_group, cpus, balance, &sgs);
4005
8f190fb3 4006 if (local_group && !(*balance))
1e3c88bd
PZ
4007 return;
4008
4009 sds->total_load += sgs.group_load;
9c3f75cb 4010 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4011
4012 /*
4013 * In case the child domain prefers tasks go to siblings
532cb4c4 4014 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4015 * and move all the excess tasks away. We lower the capacity
4016 * of a group only if the local group has the capacity to fit
4017 * these excess tasks, i.e. nr_running < group_capacity. The
4018 * extra check prevents the case where you always pull from the
4019 * heaviest group when it is already under-utilized (possible
4020 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4021 */
75dd321d 4022 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4023 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4024
4025 if (local_group) {
4026 sds->this_load = sgs.avg_load;
532cb4c4 4027 sds->this = sg;
1e3c88bd
PZ
4028 sds->this_nr_running = sgs.sum_nr_running;
4029 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4030 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4031 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 4032 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4033 sds->max_load = sgs.avg_load;
532cb4c4 4034 sds->busiest = sg;
1e3c88bd 4035 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4036 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4037 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4038 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4039 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4040 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4041 sds->group_imb = sgs.group_imb;
4042 }
4043
532cb4c4
MN
4044 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4045 sg = sg->next;
4046 } while (sg != sd->groups);
4047}
4048
532cb4c4
MN
4049/**
4050 * check_asym_packing - Check to see if the group is packed into the
4051 * sched doman.
4052 *
4053 * This is primarily intended to used at the sibling level. Some
4054 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4055 * case of POWER7, it can move to lower SMT modes only when higher
4056 * threads are idle. When in lower SMT modes, the threads will
4057 * perform better since they share less core resources. Hence when we
4058 * have idle threads, we want them to be the higher ones.
4059 *
4060 * This packing function is run on idle threads. It checks to see if
4061 * the busiest CPU in this domain (core in the P7 case) has a higher
4062 * CPU number than the packing function is being run on. Here we are
4063 * assuming lower CPU number will be equivalent to lower a SMT thread
4064 * number.
4065 *
b6b12294
MN
4066 * Returns 1 when packing is required and a task should be moved to
4067 * this CPU. The amount of the imbalance is returned in *imbalance.
4068 *
532cb4c4
MN
4069 * @sd: The sched_domain whose packing is to be checked.
4070 * @sds: Statistics of the sched_domain which is to be packed
4071 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4072 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4073 */
4074static int check_asym_packing(struct sched_domain *sd,
4075 struct sd_lb_stats *sds,
4076 int this_cpu, unsigned long *imbalance)
4077{
4078 int busiest_cpu;
4079
4080 if (!(sd->flags & SD_ASYM_PACKING))
4081 return 0;
4082
4083 if (!sds->busiest)
4084 return 0;
4085
4086 busiest_cpu = group_first_cpu(sds->busiest);
4087 if (this_cpu > busiest_cpu)
4088 return 0;
4089
9c3f75cb 4090 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4091 SCHED_POWER_SCALE);
532cb4c4 4092 return 1;
1e3c88bd
PZ
4093}
4094
4095/**
4096 * fix_small_imbalance - Calculate the minor imbalance that exists
4097 * amongst the groups of a sched_domain, during
4098 * load balancing.
4099 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4100 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4101 * @imbalance: Variable to store the imbalance.
4102 */
4103static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4104 int this_cpu, unsigned long *imbalance)
4105{
4106 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4107 unsigned int imbn = 2;
dd5feea1 4108 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4109
4110 if (sds->this_nr_running) {
4111 sds->this_load_per_task /= sds->this_nr_running;
4112 if (sds->busiest_load_per_task >
4113 sds->this_load_per_task)
4114 imbn = 1;
4115 } else
4116 sds->this_load_per_task =
4117 cpu_avg_load_per_task(this_cpu);
4118
dd5feea1 4119 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4120 * SCHED_POWER_SCALE;
9c3f75cb 4121 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4122
4123 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4124 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4125 *imbalance = sds->busiest_load_per_task;
4126 return;
4127 }
4128
4129 /*
4130 * OK, we don't have enough imbalance to justify moving tasks,
4131 * however we may be able to increase total CPU power used by
4132 * moving them.
4133 */
4134
9c3f75cb 4135 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4136 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4137 pwr_now += sds->this->sgp->power *
1e3c88bd 4138 min(sds->this_load_per_task, sds->this_load);
1399fa78 4139 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4140
4141 /* Amount of load we'd subtract */
1399fa78 4142 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4143 sds->busiest->sgp->power;
1e3c88bd 4144 if (sds->max_load > tmp)
9c3f75cb 4145 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4146 min(sds->busiest_load_per_task, sds->max_load - tmp);
4147
4148 /* Amount of load we'd add */
9c3f75cb 4149 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4150 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4151 tmp = (sds->max_load * sds->busiest->sgp->power) /
4152 sds->this->sgp->power;
1e3c88bd 4153 else
1399fa78 4154 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4155 sds->this->sgp->power;
4156 pwr_move += sds->this->sgp->power *
1e3c88bd 4157 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4158 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4159
4160 /* Move if we gain throughput */
4161 if (pwr_move > pwr_now)
4162 *imbalance = sds->busiest_load_per_task;
4163}
4164
4165/**
4166 * calculate_imbalance - Calculate the amount of imbalance present within the
4167 * groups of a given sched_domain during load balance.
4168 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4169 * @this_cpu: Cpu for which currently load balance is being performed.
4170 * @imbalance: The variable to store the imbalance.
4171 */
4172static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4173 unsigned long *imbalance)
4174{
dd5feea1
SS
4175 unsigned long max_pull, load_above_capacity = ~0UL;
4176
4177 sds->busiest_load_per_task /= sds->busiest_nr_running;
4178 if (sds->group_imb) {
4179 sds->busiest_load_per_task =
4180 min(sds->busiest_load_per_task, sds->avg_load);
4181 }
4182
1e3c88bd
PZ
4183 /*
4184 * In the presence of smp nice balancing, certain scenarios can have
4185 * max load less than avg load(as we skip the groups at or below
4186 * its cpu_power, while calculating max_load..)
4187 */
4188 if (sds->max_load < sds->avg_load) {
4189 *imbalance = 0;
4190 return fix_small_imbalance(sds, this_cpu, imbalance);
4191 }
4192
dd5feea1
SS
4193 if (!sds->group_imb) {
4194 /*
4195 * Don't want to pull so many tasks that a group would go idle.
4196 */
4197 load_above_capacity = (sds->busiest_nr_running -
4198 sds->busiest_group_capacity);
4199
1399fa78 4200 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4201
9c3f75cb 4202 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4203 }
4204
4205 /*
4206 * We're trying to get all the cpus to the average_load, so we don't
4207 * want to push ourselves above the average load, nor do we wish to
4208 * reduce the max loaded cpu below the average load. At the same time,
4209 * we also don't want to reduce the group load below the group capacity
4210 * (so that we can implement power-savings policies etc). Thus we look
4211 * for the minimum possible imbalance.
4212 * Be careful of negative numbers as they'll appear as very large values
4213 * with unsigned longs.
4214 */
4215 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4216
4217 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4218 *imbalance = min(max_pull * sds->busiest->sgp->power,
4219 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4220 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4221
4222 /*
4223 * if *imbalance is less than the average load per runnable task
25985edc 4224 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4225 * a think about bumping its value to force at least one task to be
4226 * moved
4227 */
4228 if (*imbalance < sds->busiest_load_per_task)
4229 return fix_small_imbalance(sds, this_cpu, imbalance);
4230
4231}
fab47622 4232
1e3c88bd
PZ
4233/******* find_busiest_group() helpers end here *********************/
4234
4235/**
4236 * find_busiest_group - Returns the busiest group within the sched_domain
4237 * if there is an imbalance. If there isn't an imbalance, and
4238 * the user has opted for power-savings, it returns a group whose
4239 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4240 * such a group exists.
4241 *
4242 * Also calculates the amount of weighted load which should be moved
4243 * to restore balance.
4244 *
4245 * @sd: The sched_domain whose busiest group is to be returned.
4246 * @this_cpu: The cpu for which load balancing is currently being performed.
4247 * @imbalance: Variable which stores amount of weighted load which should
4248 * be moved to restore balance/put a group to idle.
4249 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4250 * @cpus: The set of CPUs under consideration for load-balancing.
4251 * @balance: Pointer to a variable indicating if this_cpu
4252 * is the appropriate cpu to perform load balancing at this_level.
4253 *
4254 * Returns: - the busiest group if imbalance exists.
4255 * - If no imbalance and user has opted for power-savings balance,
4256 * return the least loaded group whose CPUs can be
4257 * put to idle by rebalancing its tasks onto our group.
4258 */
4259static struct sched_group *
4260find_busiest_group(struct sched_domain *sd, int this_cpu,
4261 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4262 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4263{
4264 struct sd_lb_stats sds;
4265
4266 memset(&sds, 0, sizeof(sds));
4267
4268 /*
4269 * Compute the various statistics relavent for load balancing at
4270 * this level.
4271 */
46e49b38 4272 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4273
cc57aa8f
PZ
4274 /*
4275 * this_cpu is not the appropriate cpu to perform load balancing at
4276 * this level.
1e3c88bd 4277 */
8f190fb3 4278 if (!(*balance))
1e3c88bd
PZ
4279 goto ret;
4280
532cb4c4
MN
4281 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4282 check_asym_packing(sd, &sds, this_cpu, imbalance))
4283 return sds.busiest;
4284
cc57aa8f 4285 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4286 if (!sds.busiest || sds.busiest_nr_running == 0)
4287 goto out_balanced;
4288
1399fa78 4289 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4290
866ab43e
PZ
4291 /*
4292 * If the busiest group is imbalanced the below checks don't
4293 * work because they assumes all things are equal, which typically
4294 * isn't true due to cpus_allowed constraints and the like.
4295 */
4296 if (sds.group_imb)
4297 goto force_balance;
4298
cc57aa8f 4299 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4300 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4301 !sds.busiest_has_capacity)
4302 goto force_balance;
4303
cc57aa8f
PZ
4304 /*
4305 * If the local group is more busy than the selected busiest group
4306 * don't try and pull any tasks.
4307 */
1e3c88bd
PZ
4308 if (sds.this_load >= sds.max_load)
4309 goto out_balanced;
4310
cc57aa8f
PZ
4311 /*
4312 * Don't pull any tasks if this group is already above the domain
4313 * average load.
4314 */
1e3c88bd
PZ
4315 if (sds.this_load >= sds.avg_load)
4316 goto out_balanced;
4317
c186fafe 4318 if (idle == CPU_IDLE) {
aae6d3dd
SS
4319 /*
4320 * This cpu is idle. If the busiest group load doesn't
4321 * have more tasks than the number of available cpu's and
4322 * there is no imbalance between this and busiest group
4323 * wrt to idle cpu's, it is balanced.
4324 */
c186fafe 4325 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4326 sds.busiest_nr_running <= sds.busiest_group_weight)
4327 goto out_balanced;
c186fafe
PZ
4328 } else {
4329 /*
4330 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4331 * imbalance_pct to be conservative.
4332 */
4333 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4334 goto out_balanced;
aae6d3dd 4335 }
1e3c88bd 4336
fab47622 4337force_balance:
1e3c88bd
PZ
4338 /* Looks like there is an imbalance. Compute it */
4339 calculate_imbalance(&sds, this_cpu, imbalance);
4340 return sds.busiest;
4341
4342out_balanced:
4343 /*
4344 * There is no obvious imbalance. But check if we can do some balancing
4345 * to save power.
4346 */
4347 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4348 return sds.busiest;
4349ret:
4350 *imbalance = 0;
4351 return NULL;
4352}
4353
4354/*
4355 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4356 */
4357static struct rq *
9d5efe05
SV
4358find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4359 enum cpu_idle_type idle, unsigned long imbalance,
4360 const struct cpumask *cpus)
1e3c88bd
PZ
4361{
4362 struct rq *busiest = NULL, *rq;
4363 unsigned long max_load = 0;
4364 int i;
4365
4366 for_each_cpu(i, sched_group_cpus(group)) {
4367 unsigned long power = power_of(i);
1399fa78
NR
4368 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4369 SCHED_POWER_SCALE);
1e3c88bd
PZ
4370 unsigned long wl;
4371
9d5efe05
SV
4372 if (!capacity)
4373 capacity = fix_small_capacity(sd, group);
4374
1e3c88bd
PZ
4375 if (!cpumask_test_cpu(i, cpus))
4376 continue;
4377
4378 rq = cpu_rq(i);
6e40f5bb 4379 wl = weighted_cpuload(i);
1e3c88bd 4380
6e40f5bb
TG
4381 /*
4382 * When comparing with imbalance, use weighted_cpuload()
4383 * which is not scaled with the cpu power.
4384 */
1e3c88bd
PZ
4385 if (capacity && rq->nr_running == 1 && wl > imbalance)
4386 continue;
4387
6e40f5bb
TG
4388 /*
4389 * For the load comparisons with the other cpu's, consider
4390 * the weighted_cpuload() scaled with the cpu power, so that
4391 * the load can be moved away from the cpu that is potentially
4392 * running at a lower capacity.
4393 */
1399fa78 4394 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4395
1e3c88bd
PZ
4396 if (wl > max_load) {
4397 max_load = wl;
4398 busiest = rq;
4399 }
4400 }
4401
4402 return busiest;
4403}
4404
4405/*
4406 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4407 * so long as it is large enough.
4408 */
4409#define MAX_PINNED_INTERVAL 512
4410
4411/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4412DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4413
46e49b38 4414static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4415 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4416{
4417 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4418
4419 /*
4420 * ASYM_PACKING needs to force migrate tasks from busy but
4421 * higher numbered CPUs in order to pack all tasks in the
4422 * lowest numbered CPUs.
4423 */
4424 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4425 return 1;
4426
1af3ed3d
PZ
4427 /*
4428 * The only task running in a non-idle cpu can be moved to this
4429 * cpu in an attempt to completely freeup the other CPU
4430 * package.
4431 *
4432 * The package power saving logic comes from
4433 * find_busiest_group(). If there are no imbalance, then
4434 * f_b_g() will return NULL. However when sched_mc={1,2} then
4435 * f_b_g() will select a group from which a running task may be
4436 * pulled to this cpu in order to make the other package idle.
4437 * If there is no opportunity to make a package idle and if
4438 * there are no imbalance, then f_b_g() will return NULL and no
4439 * action will be taken in load_balance_newidle().
4440 *
4441 * Under normal task pull operation due to imbalance, there
4442 * will be more than one task in the source run queue and
4443 * move_tasks() will succeed. ld_moved will be true and this
4444 * active balance code will not be triggered.
4445 */
1af3ed3d
PZ
4446 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4447 return 0;
4448 }
4449
4450 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4451}
4452
969c7921
TH
4453static int active_load_balance_cpu_stop(void *data);
4454
1e3c88bd
PZ
4455/*
4456 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4457 * tasks if there is an imbalance.
4458 */
4459static int load_balance(int this_cpu, struct rq *this_rq,
4460 struct sched_domain *sd, enum cpu_idle_type idle,
4461 int *balance)
4462{
46e49b38 4463 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
4464 struct sched_group *group;
4465 unsigned long imbalance;
4466 struct rq *busiest;
4467 unsigned long flags;
4468 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4469
4470 cpumask_copy(cpus, cpu_active_mask);
4471
1e3c88bd
PZ
4472 schedstat_inc(sd, lb_count[idle]);
4473
4474redo:
46e49b38 4475 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4476 cpus, balance);
4477
4478 if (*balance == 0)
4479 goto out_balanced;
4480
4481 if (!group) {
4482 schedstat_inc(sd, lb_nobusyg[idle]);
4483 goto out_balanced;
4484 }
4485
9d5efe05 4486 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4487 if (!busiest) {
4488 schedstat_inc(sd, lb_nobusyq[idle]);
4489 goto out_balanced;
4490 }
4491
4492 BUG_ON(busiest == this_rq);
4493
4494 schedstat_add(sd, lb_imbalance[idle], imbalance);
4495
4496 ld_moved = 0;
4497 if (busiest->nr_running > 1) {
4498 /*
4499 * Attempt to move tasks. If find_busiest_group has found
4500 * an imbalance but busiest->nr_running <= 1, the group is
4501 * still unbalanced. ld_moved simply stays zero, so it is
4502 * correctly treated as an imbalance.
4503 */
b30aef17 4504 all_pinned = 1;
1e3c88bd
PZ
4505 local_irq_save(flags);
4506 double_rq_lock(this_rq, busiest);
4507 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4508 imbalance, sd, idle, &all_pinned);
4509 double_rq_unlock(this_rq, busiest);
4510 local_irq_restore(flags);
4511
4512 /*
4513 * some other cpu did the load balance for us.
4514 */
4515 if (ld_moved && this_cpu != smp_processor_id())
4516 resched_cpu(this_cpu);
4517
4518 /* All tasks on this runqueue were pinned by CPU affinity */
4519 if (unlikely(all_pinned)) {
4520 cpumask_clear_cpu(cpu_of(busiest), cpus);
4521 if (!cpumask_empty(cpus))
4522 goto redo;
4523 goto out_balanced;
4524 }
4525 }
4526
4527 if (!ld_moved) {
4528 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4529 /*
4530 * Increment the failure counter only on periodic balance.
4531 * We do not want newidle balance, which can be very
4532 * frequent, pollute the failure counter causing
4533 * excessive cache_hot migrations and active balances.
4534 */
4535 if (idle != CPU_NEWLY_IDLE)
4536 sd->nr_balance_failed++;
1e3c88bd 4537
46e49b38 4538 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4539 raw_spin_lock_irqsave(&busiest->lock, flags);
4540
969c7921
TH
4541 /* don't kick the active_load_balance_cpu_stop,
4542 * if the curr task on busiest cpu can't be
4543 * moved to this_cpu
1e3c88bd
PZ
4544 */
4545 if (!cpumask_test_cpu(this_cpu,
fa17b507 4546 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4547 raw_spin_unlock_irqrestore(&busiest->lock,
4548 flags);
4549 all_pinned = 1;
4550 goto out_one_pinned;
4551 }
4552
969c7921
TH
4553 /*
4554 * ->active_balance synchronizes accesses to
4555 * ->active_balance_work. Once set, it's cleared
4556 * only after active load balance is finished.
4557 */
1e3c88bd
PZ
4558 if (!busiest->active_balance) {
4559 busiest->active_balance = 1;
4560 busiest->push_cpu = this_cpu;
4561 active_balance = 1;
4562 }
4563 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4564
1e3c88bd 4565 if (active_balance)
969c7921
TH
4566 stop_one_cpu_nowait(cpu_of(busiest),
4567 active_load_balance_cpu_stop, busiest,
4568 &busiest->active_balance_work);
1e3c88bd
PZ
4569
4570 /*
4571 * We've kicked active balancing, reset the failure
4572 * counter.
4573 */
4574 sd->nr_balance_failed = sd->cache_nice_tries+1;
4575 }
4576 } else
4577 sd->nr_balance_failed = 0;
4578
4579 if (likely(!active_balance)) {
4580 /* We were unbalanced, so reset the balancing interval */
4581 sd->balance_interval = sd->min_interval;
4582 } else {
4583 /*
4584 * If we've begun active balancing, start to back off. This
4585 * case may not be covered by the all_pinned logic if there
4586 * is only 1 task on the busy runqueue (because we don't call
4587 * move_tasks).
4588 */
4589 if (sd->balance_interval < sd->max_interval)
4590 sd->balance_interval *= 2;
4591 }
4592
1e3c88bd
PZ
4593 goto out;
4594
4595out_balanced:
4596 schedstat_inc(sd, lb_balanced[idle]);
4597
4598 sd->nr_balance_failed = 0;
4599
4600out_one_pinned:
4601 /* tune up the balancing interval */
4602 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4603 (sd->balance_interval < sd->max_interval))
4604 sd->balance_interval *= 2;
4605
46e49b38 4606 ld_moved = 0;
1e3c88bd 4607out:
1e3c88bd
PZ
4608 return ld_moved;
4609}
4610
1e3c88bd
PZ
4611/*
4612 * idle_balance is called by schedule() if this_cpu is about to become
4613 * idle. Attempts to pull tasks from other CPUs.
4614 */
029632fb 4615void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4616{
4617 struct sched_domain *sd;
4618 int pulled_task = 0;
4619 unsigned long next_balance = jiffies + HZ;
4620
4621 this_rq->idle_stamp = this_rq->clock;
4622
4623 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4624 return;
4625
f492e12e
PZ
4626 /*
4627 * Drop the rq->lock, but keep IRQ/preempt disabled.
4628 */
4629 raw_spin_unlock(&this_rq->lock);
4630
c66eaf61 4631 update_shares(this_cpu);
dce840a0 4632 rcu_read_lock();
1e3c88bd
PZ
4633 for_each_domain(this_cpu, sd) {
4634 unsigned long interval;
f492e12e 4635 int balance = 1;
1e3c88bd
PZ
4636
4637 if (!(sd->flags & SD_LOAD_BALANCE))
4638 continue;
4639
f492e12e 4640 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4641 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4642 pulled_task = load_balance(this_cpu, this_rq,
4643 sd, CPU_NEWLY_IDLE, &balance);
4644 }
1e3c88bd
PZ
4645
4646 interval = msecs_to_jiffies(sd->balance_interval);
4647 if (time_after(next_balance, sd->last_balance + interval))
4648 next_balance = sd->last_balance + interval;
d5ad140b
NR
4649 if (pulled_task) {
4650 this_rq->idle_stamp = 0;
1e3c88bd 4651 break;
d5ad140b 4652 }
1e3c88bd 4653 }
dce840a0 4654 rcu_read_unlock();
f492e12e
PZ
4655
4656 raw_spin_lock(&this_rq->lock);
4657
1e3c88bd
PZ
4658 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4659 /*
4660 * We are going idle. next_balance may be set based on
4661 * a busy processor. So reset next_balance.
4662 */
4663 this_rq->next_balance = next_balance;
4664 }
4665}
4666
4667/*
969c7921
TH
4668 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4669 * running tasks off the busiest CPU onto idle CPUs. It requires at
4670 * least 1 task to be running on each physical CPU where possible, and
4671 * avoids physical / logical imbalances.
1e3c88bd 4672 */
969c7921 4673static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4674{
969c7921
TH
4675 struct rq *busiest_rq = data;
4676 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4677 int target_cpu = busiest_rq->push_cpu;
969c7921 4678 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4679 struct sched_domain *sd;
969c7921
TH
4680
4681 raw_spin_lock_irq(&busiest_rq->lock);
4682
4683 /* make sure the requested cpu hasn't gone down in the meantime */
4684 if (unlikely(busiest_cpu != smp_processor_id() ||
4685 !busiest_rq->active_balance))
4686 goto out_unlock;
1e3c88bd
PZ
4687
4688 /* Is there any task to move? */
4689 if (busiest_rq->nr_running <= 1)
969c7921 4690 goto out_unlock;
1e3c88bd
PZ
4691
4692 /*
4693 * This condition is "impossible", if it occurs
4694 * we need to fix it. Originally reported by
4695 * Bjorn Helgaas on a 128-cpu setup.
4696 */
4697 BUG_ON(busiest_rq == target_rq);
4698
4699 /* move a task from busiest_rq to target_rq */
4700 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4701
4702 /* Search for an sd spanning us and the target CPU. */
dce840a0 4703 rcu_read_lock();
1e3c88bd
PZ
4704 for_each_domain(target_cpu, sd) {
4705 if ((sd->flags & SD_LOAD_BALANCE) &&
4706 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4707 break;
4708 }
4709
4710 if (likely(sd)) {
4711 schedstat_inc(sd, alb_count);
4712
4713 if (move_one_task(target_rq, target_cpu, busiest_rq,
4714 sd, CPU_IDLE))
4715 schedstat_inc(sd, alb_pushed);
4716 else
4717 schedstat_inc(sd, alb_failed);
4718 }
dce840a0 4719 rcu_read_unlock();
1e3c88bd 4720 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4721out_unlock:
4722 busiest_rq->active_balance = 0;
4723 raw_spin_unlock_irq(&busiest_rq->lock);
4724 return 0;
1e3c88bd
PZ
4725}
4726
4727#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4728/*
4729 * idle load balancing details
4730 * - One of the idle CPUs nominates itself as idle load_balancer, while
4731 * entering idle.
4732 * - This idle load balancer CPU will also go into tickless mode when
4733 * it is idle, just like all other idle CPUs
4734 * - When one of the busy CPUs notice that there may be an idle rebalancing
4735 * needed, they will kick the idle load balancer, which then does idle
4736 * load balancing for all the idle CPUs.
4737 */
1e3c88bd
PZ
4738static struct {
4739 atomic_t load_balancer;
83cd4fe2
VP
4740 atomic_t first_pick_cpu;
4741 atomic_t second_pick_cpu;
4742 cpumask_var_t idle_cpus_mask;
4743 cpumask_var_t grp_idle_mask;
4744 unsigned long next_balance; /* in jiffy units */
4745} nohz ____cacheline_aligned;
1e3c88bd
PZ
4746
4747int get_nohz_load_balancer(void)
4748{
4749 return atomic_read(&nohz.load_balancer);
4750}
4751
4752#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4753/**
4754 * lowest_flag_domain - Return lowest sched_domain containing flag.
4755 * @cpu: The cpu whose lowest level of sched domain is to
4756 * be returned.
4757 * @flag: The flag to check for the lowest sched_domain
4758 * for the given cpu.
4759 *
4760 * Returns the lowest sched_domain of a cpu which contains the given flag.
4761 */
4762static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4763{
4764 struct sched_domain *sd;
4765
4766 for_each_domain(cpu, sd)
08354716 4767 if (sd->flags & flag)
1e3c88bd
PZ
4768 break;
4769
4770 return sd;
4771}
4772
4773/**
4774 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4775 * @cpu: The cpu whose domains we're iterating over.
4776 * @sd: variable holding the value of the power_savings_sd
4777 * for cpu.
4778 * @flag: The flag to filter the sched_domains to be iterated.
4779 *
4780 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4781 * set, starting from the lowest sched_domain to the highest.
4782 */
4783#define for_each_flag_domain(cpu, sd, flag) \
4784 for (sd = lowest_flag_domain(cpu, flag); \
4785 (sd && (sd->flags & flag)); sd = sd->parent)
4786
4787/**
4788 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4789 * @ilb_group: group to be checked for semi-idleness
4790 *
4791 * Returns: 1 if the group is semi-idle. 0 otherwise.
4792 *
4793 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4794 * and atleast one non-idle CPU. This helper function checks if the given
4795 * sched_group is semi-idle or not.
4796 */
4797static inline int is_semi_idle_group(struct sched_group *ilb_group)
4798{
83cd4fe2 4799 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4800 sched_group_cpus(ilb_group));
4801
4802 /*
4803 * A sched_group is semi-idle when it has atleast one busy cpu
4804 * and atleast one idle cpu.
4805 */
83cd4fe2 4806 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4807 return 0;
4808
83cd4fe2 4809 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4810 return 0;
4811
4812 return 1;
4813}
4814/**
4815 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4816 * @cpu: The cpu which is nominating a new idle_load_balancer.
4817 *
4818 * Returns: Returns the id of the idle load balancer if it exists,
4819 * Else, returns >= nr_cpu_ids.
4820 *
4821 * This algorithm picks the idle load balancer such that it belongs to a
4822 * semi-idle powersavings sched_domain. The idea is to try and avoid
4823 * completely idle packages/cores just for the purpose of idle load balancing
4824 * when there are other idle cpu's which are better suited for that job.
4825 */
4826static int find_new_ilb(int cpu)
4827{
4828 struct sched_domain *sd;
4829 struct sched_group *ilb_group;
dce840a0 4830 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4831
4832 /*
4833 * Have idle load balancer selection from semi-idle packages only
4834 * when power-aware load balancing is enabled
4835 */
4836 if (!(sched_smt_power_savings || sched_mc_power_savings))
4837 goto out_done;
4838
4839 /*
4840 * Optimize for the case when we have no idle CPUs or only one
4841 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4842 */
83cd4fe2 4843 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4844 goto out_done;
4845
dce840a0 4846 rcu_read_lock();
1e3c88bd
PZ
4847 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4848 ilb_group = sd->groups;
4849
4850 do {
dce840a0
PZ
4851 if (is_semi_idle_group(ilb_group)) {
4852 ilb = cpumask_first(nohz.grp_idle_mask);
4853 goto unlock;
4854 }
1e3c88bd
PZ
4855
4856 ilb_group = ilb_group->next;
4857
4858 } while (ilb_group != sd->groups);
4859 }
dce840a0
PZ
4860unlock:
4861 rcu_read_unlock();
1e3c88bd
PZ
4862
4863out_done:
dce840a0 4864 return ilb;
1e3c88bd
PZ
4865}
4866#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4867static inline int find_new_ilb(int call_cpu)
4868{
83cd4fe2 4869 return nr_cpu_ids;
1e3c88bd
PZ
4870}
4871#endif
4872
83cd4fe2
VP
4873/*
4874 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4875 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4876 * CPU (if there is one).
4877 */
4878static void nohz_balancer_kick(int cpu)
4879{
4880 int ilb_cpu;
4881
4882 nohz.next_balance++;
4883
4884 ilb_cpu = get_nohz_load_balancer();
4885
4886 if (ilb_cpu >= nr_cpu_ids) {
4887 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4888 if (ilb_cpu >= nr_cpu_ids)
4889 return;
4890 }
4891
4892 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
83cd4fe2 4893 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
ca38062e
SS
4894
4895 smp_mb();
4896 /*
4897 * Use smp_send_reschedule() instead of resched_cpu().
4898 * This way we generate a sched IPI on the target cpu which
4899 * is idle. And the softirq performing nohz idle load balance
4900 * will be run before returning from the IPI.
4901 */
4902 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4903 }
4904 return;
4905}
4906
1e3c88bd
PZ
4907/*
4908 * This routine will try to nominate the ilb (idle load balancing)
4909 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4910 * load balancing on behalf of all those cpus.
1e3c88bd 4911 *
83cd4fe2
VP
4912 * When the ilb owner becomes busy, we will not have new ilb owner until some
4913 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4914 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4915 *
83cd4fe2
VP
4916 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4917 * ilb owner CPU in future (when there is a need for idle load balancing on
4918 * behalf of all idle CPUs).
1e3c88bd 4919 */
83cd4fe2 4920void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4921{
4922 int cpu = smp_processor_id();
4923
4924 if (stop_tick) {
1e3c88bd
PZ
4925 if (!cpu_active(cpu)) {
4926 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4927 return;
1e3c88bd
PZ
4928
4929 /*
4930 * If we are going offline and still the leader,
4931 * give up!
4932 */
83cd4fe2
VP
4933 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4934 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4935 BUG();
4936
83cd4fe2 4937 return;
1e3c88bd
PZ
4938 }
4939
83cd4fe2 4940 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4941
83cd4fe2
VP
4942 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4943 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4944 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4945 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4946
83cd4fe2 4947 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4948 int new_ilb;
4949
83cd4fe2
VP
4950 /* make me the ilb owner */
4951 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4952 cpu) != nr_cpu_ids)
4953 return;
4954
1e3c88bd
PZ
4955 /*
4956 * Check to see if there is a more power-efficient
4957 * ilb.
4958 */
4959 new_ilb = find_new_ilb(cpu);
4960 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4961 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4962 resched_cpu(new_ilb);
83cd4fe2 4963 return;
1e3c88bd 4964 }
83cd4fe2 4965 return;
1e3c88bd
PZ
4966 }
4967 } else {
83cd4fe2
VP
4968 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4969 return;
1e3c88bd 4970
83cd4fe2 4971 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4972
4973 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4974 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4975 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4976 BUG();
4977 }
83cd4fe2 4978 return;
1e3c88bd
PZ
4979}
4980#endif
4981
4982static DEFINE_SPINLOCK(balancing);
4983
49c022e6
PZ
4984static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4985
4986/*
4987 * Scale the max load_balance interval with the number of CPUs in the system.
4988 * This trades load-balance latency on larger machines for less cross talk.
4989 */
029632fb 4990void update_max_interval(void)
49c022e6
PZ
4991{
4992 max_load_balance_interval = HZ*num_online_cpus()/10;
4993}
4994
1e3c88bd
PZ
4995/*
4996 * It checks each scheduling domain to see if it is due to be balanced,
4997 * and initiates a balancing operation if so.
4998 *
4999 * Balancing parameters are set up in arch_init_sched_domains.
5000 */
5001static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5002{
5003 int balance = 1;
5004 struct rq *rq = cpu_rq(cpu);
5005 unsigned long interval;
5006 struct sched_domain *sd;
5007 /* Earliest time when we have to do rebalance again */
5008 unsigned long next_balance = jiffies + 60*HZ;
5009 int update_next_balance = 0;
5010 int need_serialize;
5011
2069dd75
PZ
5012 update_shares(cpu);
5013
dce840a0 5014 rcu_read_lock();
1e3c88bd
PZ
5015 for_each_domain(cpu, sd) {
5016 if (!(sd->flags & SD_LOAD_BALANCE))
5017 continue;
5018
5019 interval = sd->balance_interval;
5020 if (idle != CPU_IDLE)
5021 interval *= sd->busy_factor;
5022
5023 /* scale ms to jiffies */
5024 interval = msecs_to_jiffies(interval);
49c022e6 5025 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5026
5027 need_serialize = sd->flags & SD_SERIALIZE;
5028
5029 if (need_serialize) {
5030 if (!spin_trylock(&balancing))
5031 goto out;
5032 }
5033
5034 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5035 if (load_balance(cpu, rq, sd, idle, &balance)) {
5036 /*
5037 * We've pulled tasks over so either we're no
c186fafe 5038 * longer idle.
1e3c88bd
PZ
5039 */
5040 idle = CPU_NOT_IDLE;
5041 }
5042 sd->last_balance = jiffies;
5043 }
5044 if (need_serialize)
5045 spin_unlock(&balancing);
5046out:
5047 if (time_after(next_balance, sd->last_balance + interval)) {
5048 next_balance = sd->last_balance + interval;
5049 update_next_balance = 1;
5050 }
5051
5052 /*
5053 * Stop the load balance at this level. There is another
5054 * CPU in our sched group which is doing load balancing more
5055 * actively.
5056 */
5057 if (!balance)
5058 break;
5059 }
dce840a0 5060 rcu_read_unlock();
1e3c88bd
PZ
5061
5062 /*
5063 * next_balance will be updated only when there is a need.
5064 * When the cpu is attached to null domain for ex, it will not be
5065 * updated.
5066 */
5067 if (likely(update_next_balance))
5068 rq->next_balance = next_balance;
5069}
5070
83cd4fe2 5071#ifdef CONFIG_NO_HZ
1e3c88bd 5072/*
83cd4fe2 5073 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5074 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5075 */
83cd4fe2
VP
5076static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5077{
5078 struct rq *this_rq = cpu_rq(this_cpu);
5079 struct rq *rq;
5080 int balance_cpu;
5081
5082 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
5083 return;
5084
5085 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5086 if (balance_cpu == this_cpu)
5087 continue;
5088
5089 /*
5090 * If this cpu gets work to do, stop the load balancing
5091 * work being done for other cpus. Next load
5092 * balancing owner will pick it up.
5093 */
5094 if (need_resched()) {
5095 this_rq->nohz_balance_kick = 0;
5096 break;
5097 }
5098
5099 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5100 update_rq_clock(this_rq);
83cd4fe2
VP
5101 update_cpu_load(this_rq);
5102 raw_spin_unlock_irq(&this_rq->lock);
5103
5104 rebalance_domains(balance_cpu, CPU_IDLE);
5105
5106 rq = cpu_rq(balance_cpu);
5107 if (time_after(this_rq->next_balance, rq->next_balance))
5108 this_rq->next_balance = rq->next_balance;
5109 }
5110 nohz.next_balance = this_rq->next_balance;
5111 this_rq->nohz_balance_kick = 0;
5112}
5113
5114/*
5115 * Current heuristic for kicking the idle load balancer
5116 * - first_pick_cpu is the one of the busy CPUs. It will kick
5117 * idle load balancer when it has more than one process active. This
5118 * eliminates the need for idle load balancing altogether when we have
5119 * only one running process in the system (common case).
5120 * - If there are more than one busy CPU, idle load balancer may have
5121 * to run for active_load_balance to happen (i.e., two busy CPUs are
5122 * SMT or core siblings and can run better if they move to different
5123 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
5124 * which will kick idle load balancer as soon as it has any load.
5125 */
5126static inline int nohz_kick_needed(struct rq *rq, int cpu)
5127{
5128 unsigned long now = jiffies;
5129 int ret;
5130 int first_pick_cpu, second_pick_cpu;
5131
5132 if (time_before(now, nohz.next_balance))
5133 return 0;
5134
6eb57e0d 5135 if (idle_cpu(cpu))
83cd4fe2
VP
5136 return 0;
5137
5138 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
5139 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
5140
5141 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
5142 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
5143 return 0;
5144
5145 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
5146 if (ret == nr_cpu_ids || ret == cpu) {
5147 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
5148 if (rq->nr_running > 1)
5149 return 1;
5150 } else {
5151 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
5152 if (ret == nr_cpu_ids || ret == cpu) {
5153 if (rq->nr_running)
5154 return 1;
5155 }
5156 }
5157 return 0;
5158}
5159#else
5160static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5161#endif
5162
5163/*
5164 * run_rebalance_domains is triggered when needed from the scheduler tick.
5165 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5166 */
1e3c88bd
PZ
5167static void run_rebalance_domains(struct softirq_action *h)
5168{
5169 int this_cpu = smp_processor_id();
5170 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5171 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5172 CPU_IDLE : CPU_NOT_IDLE;
5173
5174 rebalance_domains(this_cpu, idle);
5175
1e3c88bd 5176 /*
83cd4fe2 5177 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5178 * balancing on behalf of the other idle cpus whose ticks are
5179 * stopped.
5180 */
83cd4fe2 5181 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5182}
5183
5184static inline int on_null_domain(int cpu)
5185{
90a6501f 5186 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5187}
5188
5189/*
5190 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5191 */
029632fb 5192void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5193{
1e3c88bd
PZ
5194 /* Don't need to rebalance while attached to NULL domain */
5195 if (time_after_eq(jiffies, rq->next_balance) &&
5196 likely(!on_null_domain(cpu)))
5197 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
5198#ifdef CONFIG_NO_HZ
5199 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5200 nohz_balancer_kick(cpu);
5201#endif
1e3c88bd
PZ
5202}
5203
0bcdcf28
CE
5204static void rq_online_fair(struct rq *rq)
5205{
5206 update_sysctl();
5207}
5208
5209static void rq_offline_fair(struct rq *rq)
5210{
5211 update_sysctl();
5212}
5213
55e12e5e 5214#endif /* CONFIG_SMP */
e1d1484f 5215
bf0f6f24
IM
5216/*
5217 * scheduler tick hitting a task of our scheduling class:
5218 */
8f4d37ec 5219static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5220{
5221 struct cfs_rq *cfs_rq;
5222 struct sched_entity *se = &curr->se;
5223
5224 for_each_sched_entity(se) {
5225 cfs_rq = cfs_rq_of(se);
8f4d37ec 5226 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5227 }
5228}
5229
5230/*
cd29fe6f
PZ
5231 * called on fork with the child task as argument from the parent's context
5232 * - child not yet on the tasklist
5233 * - preemption disabled
bf0f6f24 5234 */
cd29fe6f 5235static void task_fork_fair(struct task_struct *p)
bf0f6f24 5236{
cd29fe6f 5237 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 5238 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 5239 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5240 struct rq *rq = this_rq();
5241 unsigned long flags;
5242
05fa785c 5243 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5244
861d034e
PZ
5245 update_rq_clock(rq);
5246
b0a0f667
PM
5247 if (unlikely(task_cpu(p) != this_cpu)) {
5248 rcu_read_lock();
cd29fe6f 5249 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5250 rcu_read_unlock();
5251 }
bf0f6f24 5252
7109c442 5253 update_curr(cfs_rq);
cd29fe6f 5254
b5d9d734
MG
5255 if (curr)
5256 se->vruntime = curr->vruntime;
aeb73b04 5257 place_entity(cfs_rq, se, 1);
4d78e7b6 5258
cd29fe6f 5259 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5260 /*
edcb60a3
IM
5261 * Upon rescheduling, sched_class::put_prev_task() will place
5262 * 'current' within the tree based on its new key value.
5263 */
4d78e7b6 5264 swap(curr->vruntime, se->vruntime);
aec0a514 5265 resched_task(rq->curr);
4d78e7b6 5266 }
bf0f6f24 5267
88ec22d3
PZ
5268 se->vruntime -= cfs_rq->min_vruntime;
5269
05fa785c 5270 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5271}
5272
cb469845
SR
5273/*
5274 * Priority of the task has changed. Check to see if we preempt
5275 * the current task.
5276 */
da7a735e
PZ
5277static void
5278prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5279{
da7a735e
PZ
5280 if (!p->se.on_rq)
5281 return;
5282
cb469845
SR
5283 /*
5284 * Reschedule if we are currently running on this runqueue and
5285 * our priority decreased, or if we are not currently running on
5286 * this runqueue and our priority is higher than the current's
5287 */
da7a735e 5288 if (rq->curr == p) {
cb469845
SR
5289 if (p->prio > oldprio)
5290 resched_task(rq->curr);
5291 } else
15afe09b 5292 check_preempt_curr(rq, p, 0);
cb469845
SR
5293}
5294
da7a735e
PZ
5295static void switched_from_fair(struct rq *rq, struct task_struct *p)
5296{
5297 struct sched_entity *se = &p->se;
5298 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5299
5300 /*
5301 * Ensure the task's vruntime is normalized, so that when its
5302 * switched back to the fair class the enqueue_entity(.flags=0) will
5303 * do the right thing.
5304 *
5305 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5306 * have normalized the vruntime, if it was !on_rq, then only when
5307 * the task is sleeping will it still have non-normalized vruntime.
5308 */
5309 if (!se->on_rq && p->state != TASK_RUNNING) {
5310 /*
5311 * Fix up our vruntime so that the current sleep doesn't
5312 * cause 'unlimited' sleep bonus.
5313 */
5314 place_entity(cfs_rq, se, 0);
5315 se->vruntime -= cfs_rq->min_vruntime;
5316 }
5317}
5318
cb469845
SR
5319/*
5320 * We switched to the sched_fair class.
5321 */
da7a735e 5322static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5323{
da7a735e
PZ
5324 if (!p->se.on_rq)
5325 return;
5326
cb469845
SR
5327 /*
5328 * We were most likely switched from sched_rt, so
5329 * kick off the schedule if running, otherwise just see
5330 * if we can still preempt the current task.
5331 */
da7a735e 5332 if (rq->curr == p)
cb469845
SR
5333 resched_task(rq->curr);
5334 else
15afe09b 5335 check_preempt_curr(rq, p, 0);
cb469845
SR
5336}
5337
83b699ed
SV
5338/* Account for a task changing its policy or group.
5339 *
5340 * This routine is mostly called to set cfs_rq->curr field when a task
5341 * migrates between groups/classes.
5342 */
5343static void set_curr_task_fair(struct rq *rq)
5344{
5345 struct sched_entity *se = &rq->curr->se;
5346
ec12cb7f
PT
5347 for_each_sched_entity(se) {
5348 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5349
5350 set_next_entity(cfs_rq, se);
5351 /* ensure bandwidth has been allocated on our new cfs_rq */
5352 account_cfs_rq_runtime(cfs_rq, 0);
5353 }
83b699ed
SV
5354}
5355
029632fb
PZ
5356void init_cfs_rq(struct cfs_rq *cfs_rq)
5357{
5358 cfs_rq->tasks_timeline = RB_ROOT;
5359 INIT_LIST_HEAD(&cfs_rq->tasks);
5360 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5361#ifndef CONFIG_64BIT
5362 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5363#endif
5364}
5365
810b3817 5366#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5367static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5368{
b2b5ce02
PZ
5369 /*
5370 * If the task was not on the rq at the time of this cgroup movement
5371 * it must have been asleep, sleeping tasks keep their ->vruntime
5372 * absolute on their old rq until wakeup (needed for the fair sleeper
5373 * bonus in place_entity()).
5374 *
5375 * If it was on the rq, we've just 'preempted' it, which does convert
5376 * ->vruntime to a relative base.
5377 *
5378 * Make sure both cases convert their relative position when migrating
5379 * to another cgroup's rq. This does somewhat interfere with the
5380 * fair sleeper stuff for the first placement, but who cares.
5381 */
5382 if (!on_rq)
5383 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5384 set_task_rq(p, task_cpu(p));
88ec22d3 5385 if (!on_rq)
b2b5ce02 5386 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5387}
029632fb
PZ
5388
5389void free_fair_sched_group(struct task_group *tg)
5390{
5391 int i;
5392
5393 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5394
5395 for_each_possible_cpu(i) {
5396 if (tg->cfs_rq)
5397 kfree(tg->cfs_rq[i]);
5398 if (tg->se)
5399 kfree(tg->se[i]);
5400 }
5401
5402 kfree(tg->cfs_rq);
5403 kfree(tg->se);
5404}
5405
5406int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5407{
5408 struct cfs_rq *cfs_rq;
5409 struct sched_entity *se;
5410 int i;
5411
5412 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5413 if (!tg->cfs_rq)
5414 goto err;
5415 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5416 if (!tg->se)
5417 goto err;
5418
5419 tg->shares = NICE_0_LOAD;
5420
5421 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5422
5423 for_each_possible_cpu(i) {
5424 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5425 GFP_KERNEL, cpu_to_node(i));
5426 if (!cfs_rq)
5427 goto err;
5428
5429 se = kzalloc_node(sizeof(struct sched_entity),
5430 GFP_KERNEL, cpu_to_node(i));
5431 if (!se)
5432 goto err_free_rq;
5433
5434 init_cfs_rq(cfs_rq);
5435 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5436 }
5437
5438 return 1;
5439
5440err_free_rq:
5441 kfree(cfs_rq);
5442err:
5443 return 0;
5444}
5445
5446void unregister_fair_sched_group(struct task_group *tg, int cpu)
5447{
5448 struct rq *rq = cpu_rq(cpu);
5449 unsigned long flags;
5450
5451 /*
5452 * Only empty task groups can be destroyed; so we can speculatively
5453 * check on_list without danger of it being re-added.
5454 */
5455 if (!tg->cfs_rq[cpu]->on_list)
5456 return;
5457
5458 raw_spin_lock_irqsave(&rq->lock, flags);
5459 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5460 raw_spin_unlock_irqrestore(&rq->lock, flags);
5461}
5462
5463void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5464 struct sched_entity *se, int cpu,
5465 struct sched_entity *parent)
5466{
5467 struct rq *rq = cpu_rq(cpu);
5468
5469 cfs_rq->tg = tg;
5470 cfs_rq->rq = rq;
5471#ifdef CONFIG_SMP
5472 /* allow initial update_cfs_load() to truncate */
5473 cfs_rq->load_stamp = 1;
810b3817 5474#endif
029632fb
PZ
5475 init_cfs_rq_runtime(cfs_rq);
5476
5477 tg->cfs_rq[cpu] = cfs_rq;
5478 tg->se[cpu] = se;
5479
5480 /* se could be NULL for root_task_group */
5481 if (!se)
5482 return;
5483
5484 if (!parent)
5485 se->cfs_rq = &rq->cfs;
5486 else
5487 se->cfs_rq = parent->my_q;
5488
5489 se->my_q = cfs_rq;
5490 update_load_set(&se->load, 0);
5491 se->parent = parent;
5492}
5493
5494static DEFINE_MUTEX(shares_mutex);
5495
5496int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5497{
5498 int i;
5499 unsigned long flags;
5500
5501 /*
5502 * We can't change the weight of the root cgroup.
5503 */
5504 if (!tg->se[0])
5505 return -EINVAL;
5506
5507 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5508
5509 mutex_lock(&shares_mutex);
5510 if (tg->shares == shares)
5511 goto done;
5512
5513 tg->shares = shares;
5514 for_each_possible_cpu(i) {
5515 struct rq *rq = cpu_rq(i);
5516 struct sched_entity *se;
5517
5518 se = tg->se[i];
5519 /* Propagate contribution to hierarchy */
5520 raw_spin_lock_irqsave(&rq->lock, flags);
5521 for_each_sched_entity(se)
5522 update_cfs_shares(group_cfs_rq(se));
5523 raw_spin_unlock_irqrestore(&rq->lock, flags);
5524 }
5525
5526done:
5527 mutex_unlock(&shares_mutex);
5528 return 0;
5529}
5530#else /* CONFIG_FAIR_GROUP_SCHED */
5531
5532void free_fair_sched_group(struct task_group *tg) { }
5533
5534int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5535{
5536 return 1;
5537}
5538
5539void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5540
5541#endif /* CONFIG_FAIR_GROUP_SCHED */
5542
810b3817 5543
6d686f45 5544static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5545{
5546 struct sched_entity *se = &task->se;
0d721cea
PW
5547 unsigned int rr_interval = 0;
5548
5549 /*
5550 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5551 * idle runqueue:
5552 */
0d721cea
PW
5553 if (rq->cfs.load.weight)
5554 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5555
5556 return rr_interval;
5557}
5558
bf0f6f24
IM
5559/*
5560 * All the scheduling class methods:
5561 */
029632fb 5562const struct sched_class fair_sched_class = {
5522d5d5 5563 .next = &idle_sched_class,
bf0f6f24
IM
5564 .enqueue_task = enqueue_task_fair,
5565 .dequeue_task = dequeue_task_fair,
5566 .yield_task = yield_task_fair,
d95f4122 5567 .yield_to_task = yield_to_task_fair,
bf0f6f24 5568
2e09bf55 5569 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5570
5571 .pick_next_task = pick_next_task_fair,
5572 .put_prev_task = put_prev_task_fair,
5573
681f3e68 5574#ifdef CONFIG_SMP
4ce72a2c
LZ
5575 .select_task_rq = select_task_rq_fair,
5576
0bcdcf28
CE
5577 .rq_online = rq_online_fair,
5578 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5579
5580 .task_waking = task_waking_fair,
681f3e68 5581#endif
bf0f6f24 5582
83b699ed 5583 .set_curr_task = set_curr_task_fair,
bf0f6f24 5584 .task_tick = task_tick_fair,
cd29fe6f 5585 .task_fork = task_fork_fair,
cb469845
SR
5586
5587 .prio_changed = prio_changed_fair,
da7a735e 5588 .switched_from = switched_from_fair,
cb469845 5589 .switched_to = switched_to_fair,
810b3817 5590
0d721cea
PW
5591 .get_rr_interval = get_rr_interval_fair,
5592
810b3817 5593#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5594 .task_move_group = task_move_group_fair,
810b3817 5595#endif
bf0f6f24
IM
5596};
5597
5598#ifdef CONFIG_SCHED_DEBUG
029632fb 5599void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5600{
bf0f6f24
IM
5601 struct cfs_rq *cfs_rq;
5602
5973e5b9 5603 rcu_read_lock();
c3b64f1e 5604 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5605 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5606 rcu_read_unlock();
bf0f6f24
IM
5607}
5608#endif
029632fb
PZ
5609
5610__init void init_sched_fair_class(void)
5611{
5612#ifdef CONFIG_SMP
5613 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5614
5615#ifdef CONFIG_NO_HZ
5616 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5617 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
5618 atomic_set(&nohz.load_balancer, nr_cpu_ids);
5619 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
5620 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
5621#endif
5622#endif /* SMP */
5623
5624}