sched/numa: Retry placement more frequently when misplaced
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
5085e2a3
RR
1329 unsigned long interval = HZ;
1330
2739d3ee 1331 /* This task has no NUMA fault statistics yet */
ff1df896 1332 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1333 return;
1334
2739d3ee 1335 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1336 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1337 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1338
1339 /* Success if task is already running on preferred CPU */
de1b301a 1340 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1341 return;
1342
1343 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1344 task_numa_migrate(p);
6b9a7460
MG
1345}
1346
20e07dea
RR
1347/*
1348 * Find the nodes on which the workload is actively running. We do this by
1349 * tracking the nodes from which NUMA hinting faults are triggered. This can
1350 * be different from the set of nodes where the workload's memory is currently
1351 * located.
1352 *
1353 * The bitmask is used to make smarter decisions on when to do NUMA page
1354 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1355 * are added when they cause over 6/16 of the maximum number of faults, but
1356 * only removed when they drop below 3/16.
1357 */
1358static void update_numa_active_node_mask(struct numa_group *numa_group)
1359{
1360 unsigned long faults, max_faults = 0;
1361 int nid;
1362
1363 for_each_online_node(nid) {
1364 faults = group_faults_cpu(numa_group, nid);
1365 if (faults > max_faults)
1366 max_faults = faults;
1367 }
1368
1369 for_each_online_node(nid) {
1370 faults = group_faults_cpu(numa_group, nid);
1371 if (!node_isset(nid, numa_group->active_nodes)) {
1372 if (faults > max_faults * 6 / 16)
1373 node_set(nid, numa_group->active_nodes);
1374 } else if (faults < max_faults * 3 / 16)
1375 node_clear(nid, numa_group->active_nodes);
1376 }
1377}
1378
04bb2f94
RR
1379/*
1380 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1381 * increments. The more local the fault statistics are, the higher the scan
1382 * period will be for the next scan window. If local/remote ratio is below
1383 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1384 * scan period will decrease
1385 */
1386#define NUMA_PERIOD_SLOTS 10
1387#define NUMA_PERIOD_THRESHOLD 3
1388
1389/*
1390 * Increase the scan period (slow down scanning) if the majority of
1391 * our memory is already on our local node, or if the majority of
1392 * the page accesses are shared with other processes.
1393 * Otherwise, decrease the scan period.
1394 */
1395static void update_task_scan_period(struct task_struct *p,
1396 unsigned long shared, unsigned long private)
1397{
1398 unsigned int period_slot;
1399 int ratio;
1400 int diff;
1401
1402 unsigned long remote = p->numa_faults_locality[0];
1403 unsigned long local = p->numa_faults_locality[1];
1404
1405 /*
1406 * If there were no record hinting faults then either the task is
1407 * completely idle or all activity is areas that are not of interest
1408 * to automatic numa balancing. Scan slower
1409 */
1410 if (local + shared == 0) {
1411 p->numa_scan_period = min(p->numa_scan_period_max,
1412 p->numa_scan_period << 1);
1413
1414 p->mm->numa_next_scan = jiffies +
1415 msecs_to_jiffies(p->numa_scan_period);
1416
1417 return;
1418 }
1419
1420 /*
1421 * Prepare to scale scan period relative to the current period.
1422 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1423 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1424 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1425 */
1426 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1427 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1428 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1429 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1430 if (!slot)
1431 slot = 1;
1432 diff = slot * period_slot;
1433 } else {
1434 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1435
1436 /*
1437 * Scale scan rate increases based on sharing. There is an
1438 * inverse relationship between the degree of sharing and
1439 * the adjustment made to the scanning period. Broadly
1440 * speaking the intent is that there is little point
1441 * scanning faster if shared accesses dominate as it may
1442 * simply bounce migrations uselessly
1443 */
04bb2f94
RR
1444 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1445 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1446 }
1447
1448 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1449 task_scan_min(p), task_scan_max(p));
1450 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1451}
1452
7e2703e6
RR
1453/*
1454 * Get the fraction of time the task has been running since the last
1455 * NUMA placement cycle. The scheduler keeps similar statistics, but
1456 * decays those on a 32ms period, which is orders of magnitude off
1457 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1458 * stats only if the task is so new there are no NUMA statistics yet.
1459 */
1460static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1461{
1462 u64 runtime, delta, now;
1463 /* Use the start of this time slice to avoid calculations. */
1464 now = p->se.exec_start;
1465 runtime = p->se.sum_exec_runtime;
1466
1467 if (p->last_task_numa_placement) {
1468 delta = runtime - p->last_sum_exec_runtime;
1469 *period = now - p->last_task_numa_placement;
1470 } else {
1471 delta = p->se.avg.runnable_avg_sum;
1472 *period = p->se.avg.runnable_avg_period;
1473 }
1474
1475 p->last_sum_exec_runtime = runtime;
1476 p->last_task_numa_placement = now;
1477
1478 return delta;
1479}
1480
cbee9f88
PZ
1481static void task_numa_placement(struct task_struct *p)
1482{
83e1d2cd
MG
1483 int seq, nid, max_nid = -1, max_group_nid = -1;
1484 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1485 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1486 unsigned long total_faults;
1487 u64 runtime, period;
7dbd13ed 1488 spinlock_t *group_lock = NULL;
cbee9f88 1489
2832bc19 1490 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1491 if (p->numa_scan_seq == seq)
1492 return;
1493 p->numa_scan_seq = seq;
598f0ec0 1494 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1495
7e2703e6
RR
1496 total_faults = p->numa_faults_locality[0] +
1497 p->numa_faults_locality[1];
1498 runtime = numa_get_avg_runtime(p, &period);
1499
7dbd13ed
MG
1500 /* If the task is part of a group prevent parallel updates to group stats */
1501 if (p->numa_group) {
1502 group_lock = &p->numa_group->lock;
60e69eed 1503 spin_lock_irq(group_lock);
7dbd13ed
MG
1504 }
1505
688b7585
MG
1506 /* Find the node with the highest number of faults */
1507 for_each_online_node(nid) {
83e1d2cd 1508 unsigned long faults = 0, group_faults = 0;
ac8e895b 1509 int priv, i;
745d6147 1510
be1e4e76 1511 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1512 long diff, f_diff, f_weight;
8c8a743c 1513
ac8e895b 1514 i = task_faults_idx(nid, priv);
745d6147 1515
ac8e895b 1516 /* Decay existing window, copy faults since last scan */
35664fd4 1517 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1518 fault_types[priv] += p->numa_faults_buffer_memory[i];
1519 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1520
7e2703e6
RR
1521 /*
1522 * Normalize the faults_from, so all tasks in a group
1523 * count according to CPU use, instead of by the raw
1524 * number of faults. Tasks with little runtime have
1525 * little over-all impact on throughput, and thus their
1526 * faults are less important.
1527 */
1528 f_weight = div64_u64(runtime << 16, period + 1);
1529 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1530 (total_faults + 1);
35664fd4 1531 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1532 p->numa_faults_buffer_cpu[i] = 0;
1533
35664fd4
RR
1534 p->numa_faults_memory[i] += diff;
1535 p->numa_faults_cpu[i] += f_diff;
ff1df896 1536 faults += p->numa_faults_memory[i];
83e1d2cd 1537 p->total_numa_faults += diff;
8c8a743c
PZ
1538 if (p->numa_group) {
1539 /* safe because we can only change our own group */
989348b5 1540 p->numa_group->faults[i] += diff;
50ec8a40 1541 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1542 p->numa_group->total_faults += diff;
1543 group_faults += p->numa_group->faults[i];
8c8a743c 1544 }
ac8e895b
MG
1545 }
1546
688b7585
MG
1547 if (faults > max_faults) {
1548 max_faults = faults;
1549 max_nid = nid;
1550 }
83e1d2cd
MG
1551
1552 if (group_faults > max_group_faults) {
1553 max_group_faults = group_faults;
1554 max_group_nid = nid;
1555 }
1556 }
1557
04bb2f94
RR
1558 update_task_scan_period(p, fault_types[0], fault_types[1]);
1559
7dbd13ed 1560 if (p->numa_group) {
20e07dea 1561 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1562 /*
1563 * If the preferred task and group nids are different,
1564 * iterate over the nodes again to find the best place.
1565 */
1566 if (max_nid != max_group_nid) {
1567 unsigned long weight, max_weight = 0;
1568
1569 for_each_online_node(nid) {
1570 weight = task_weight(p, nid) + group_weight(p, nid);
1571 if (weight > max_weight) {
1572 max_weight = weight;
1573 max_nid = nid;
1574 }
83e1d2cd
MG
1575 }
1576 }
7dbd13ed 1577
60e69eed 1578 spin_unlock_irq(group_lock);
688b7585
MG
1579 }
1580
6b9a7460 1581 /* Preferred node as the node with the most faults */
3a7053b3 1582 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1583 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1584 sched_setnuma(p, max_nid);
6b9a7460 1585 numa_migrate_preferred(p);
3a7053b3 1586 }
cbee9f88
PZ
1587}
1588
8c8a743c
PZ
1589static inline int get_numa_group(struct numa_group *grp)
1590{
1591 return atomic_inc_not_zero(&grp->refcount);
1592}
1593
1594static inline void put_numa_group(struct numa_group *grp)
1595{
1596 if (atomic_dec_and_test(&grp->refcount))
1597 kfree_rcu(grp, rcu);
1598}
1599
3e6a9418
MG
1600static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1601 int *priv)
8c8a743c
PZ
1602{
1603 struct numa_group *grp, *my_grp;
1604 struct task_struct *tsk;
1605 bool join = false;
1606 int cpu = cpupid_to_cpu(cpupid);
1607 int i;
1608
1609 if (unlikely(!p->numa_group)) {
1610 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1611 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1612
1613 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1614 if (!grp)
1615 return;
1616
1617 atomic_set(&grp->refcount, 1);
1618 spin_lock_init(&grp->lock);
1619 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1620 grp->gid = p->pid;
50ec8a40 1621 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1622 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1623 nr_node_ids;
8c8a743c 1624
20e07dea
RR
1625 node_set(task_node(current), grp->active_nodes);
1626
be1e4e76 1627 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1628 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1629
989348b5 1630 grp->total_faults = p->total_numa_faults;
83e1d2cd 1631
8c8a743c
PZ
1632 list_add(&p->numa_entry, &grp->task_list);
1633 grp->nr_tasks++;
1634 rcu_assign_pointer(p->numa_group, grp);
1635 }
1636
1637 rcu_read_lock();
1638 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1639
1640 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1641 goto no_join;
8c8a743c
PZ
1642
1643 grp = rcu_dereference(tsk->numa_group);
1644 if (!grp)
3354781a 1645 goto no_join;
8c8a743c
PZ
1646
1647 my_grp = p->numa_group;
1648 if (grp == my_grp)
3354781a 1649 goto no_join;
8c8a743c
PZ
1650
1651 /*
1652 * Only join the other group if its bigger; if we're the bigger group,
1653 * the other task will join us.
1654 */
1655 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1656 goto no_join;
8c8a743c
PZ
1657
1658 /*
1659 * Tie-break on the grp address.
1660 */
1661 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1662 goto no_join;
8c8a743c 1663
dabe1d99
RR
1664 /* Always join threads in the same process. */
1665 if (tsk->mm == current->mm)
1666 join = true;
1667
1668 /* Simple filter to avoid false positives due to PID collisions */
1669 if (flags & TNF_SHARED)
1670 join = true;
8c8a743c 1671
3e6a9418
MG
1672 /* Update priv based on whether false sharing was detected */
1673 *priv = !join;
1674
dabe1d99 1675 if (join && !get_numa_group(grp))
3354781a 1676 goto no_join;
8c8a743c 1677
8c8a743c
PZ
1678 rcu_read_unlock();
1679
1680 if (!join)
1681 return;
1682
60e69eed
MG
1683 BUG_ON(irqs_disabled());
1684 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1685
be1e4e76 1686 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1687 my_grp->faults[i] -= p->numa_faults_memory[i];
1688 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1689 }
989348b5
MG
1690 my_grp->total_faults -= p->total_numa_faults;
1691 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1692
1693 list_move(&p->numa_entry, &grp->task_list);
1694 my_grp->nr_tasks--;
1695 grp->nr_tasks++;
1696
1697 spin_unlock(&my_grp->lock);
60e69eed 1698 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1699
1700 rcu_assign_pointer(p->numa_group, grp);
1701
1702 put_numa_group(my_grp);
3354781a
PZ
1703 return;
1704
1705no_join:
1706 rcu_read_unlock();
1707 return;
8c8a743c
PZ
1708}
1709
1710void task_numa_free(struct task_struct *p)
1711{
1712 struct numa_group *grp = p->numa_group;
1713 int i;
ff1df896 1714 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1715
1716 if (grp) {
60e69eed 1717 spin_lock_irq(&grp->lock);
be1e4e76 1718 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1719 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1720 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1721
8c8a743c
PZ
1722 list_del(&p->numa_entry);
1723 grp->nr_tasks--;
60e69eed 1724 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1725 rcu_assign_pointer(p->numa_group, NULL);
1726 put_numa_group(grp);
1727 }
1728
ff1df896
RR
1729 p->numa_faults_memory = NULL;
1730 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1731 p->numa_faults_cpu= NULL;
1732 p->numa_faults_buffer_cpu = NULL;
82727018 1733 kfree(numa_faults);
8c8a743c
PZ
1734}
1735
cbee9f88
PZ
1736/*
1737 * Got a PROT_NONE fault for a page on @node.
1738 */
58b46da3 1739void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1740{
1741 struct task_struct *p = current;
6688cc05 1742 bool migrated = flags & TNF_MIGRATED;
58b46da3 1743 int cpu_node = task_node(current);
792568ec 1744 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1745 int priv;
cbee9f88 1746
10e84b97 1747 if (!numabalancing_enabled)
1a687c2e
MG
1748 return;
1749
9ff1d9ff
MG
1750 /* for example, ksmd faulting in a user's mm */
1751 if (!p->mm)
1752 return;
1753
82727018
RR
1754 /* Do not worry about placement if exiting */
1755 if (p->state == TASK_DEAD)
1756 return;
1757
f809ca9a 1758 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1759 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1760 int size = sizeof(*p->numa_faults_memory) *
1761 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1762
be1e4e76 1763 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1764 if (!p->numa_faults_memory)
f809ca9a 1765 return;
745d6147 1766
ff1df896 1767 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1768 /*
1769 * The averaged statistics, shared & private, memory & cpu,
1770 * occupy the first half of the array. The second half of the
1771 * array is for current counters, which are averaged into the
1772 * first set by task_numa_placement.
1773 */
50ec8a40
RR
1774 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1775 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1776 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1777 p->total_numa_faults = 0;
04bb2f94 1778 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1779 }
cbee9f88 1780
8c8a743c
PZ
1781 /*
1782 * First accesses are treated as private, otherwise consider accesses
1783 * to be private if the accessing pid has not changed
1784 */
1785 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1786 priv = 1;
1787 } else {
1788 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1789 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1790 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1791 }
1792
792568ec
RR
1793 /*
1794 * If a workload spans multiple NUMA nodes, a shared fault that
1795 * occurs wholly within the set of nodes that the workload is
1796 * actively using should be counted as local. This allows the
1797 * scan rate to slow down when a workload has settled down.
1798 */
1799 if (!priv && !local && p->numa_group &&
1800 node_isset(cpu_node, p->numa_group->active_nodes) &&
1801 node_isset(mem_node, p->numa_group->active_nodes))
1802 local = 1;
1803
cbee9f88 1804 task_numa_placement(p);
f809ca9a 1805
2739d3ee
RR
1806 /*
1807 * Retry task to preferred node migration periodically, in case it
1808 * case it previously failed, or the scheduler moved us.
1809 */
1810 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1811 numa_migrate_preferred(p);
1812
b32e86b4
IM
1813 if (migrated)
1814 p->numa_pages_migrated += pages;
1815
58b46da3
RR
1816 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1817 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1818 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1819}
1820
6e5fb223
PZ
1821static void reset_ptenuma_scan(struct task_struct *p)
1822{
1823 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1824 p->mm->numa_scan_offset = 0;
1825}
1826
cbee9f88
PZ
1827/*
1828 * The expensive part of numa migration is done from task_work context.
1829 * Triggered from task_tick_numa().
1830 */
1831void task_numa_work(struct callback_head *work)
1832{
1833 unsigned long migrate, next_scan, now = jiffies;
1834 struct task_struct *p = current;
1835 struct mm_struct *mm = p->mm;
6e5fb223 1836 struct vm_area_struct *vma;
9f40604c 1837 unsigned long start, end;
598f0ec0 1838 unsigned long nr_pte_updates = 0;
9f40604c 1839 long pages;
cbee9f88
PZ
1840
1841 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1842
1843 work->next = work; /* protect against double add */
1844 /*
1845 * Who cares about NUMA placement when they're dying.
1846 *
1847 * NOTE: make sure not to dereference p->mm before this check,
1848 * exit_task_work() happens _after_ exit_mm() so we could be called
1849 * without p->mm even though we still had it when we enqueued this
1850 * work.
1851 */
1852 if (p->flags & PF_EXITING)
1853 return;
1854
930aa174 1855 if (!mm->numa_next_scan) {
7e8d16b6
MG
1856 mm->numa_next_scan = now +
1857 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1858 }
1859
cbee9f88
PZ
1860 /*
1861 * Enforce maximal scan/migration frequency..
1862 */
1863 migrate = mm->numa_next_scan;
1864 if (time_before(now, migrate))
1865 return;
1866
598f0ec0
MG
1867 if (p->numa_scan_period == 0) {
1868 p->numa_scan_period_max = task_scan_max(p);
1869 p->numa_scan_period = task_scan_min(p);
1870 }
cbee9f88 1871
fb003b80 1872 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1873 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1874 return;
1875
19a78d11
PZ
1876 /*
1877 * Delay this task enough that another task of this mm will likely win
1878 * the next time around.
1879 */
1880 p->node_stamp += 2 * TICK_NSEC;
1881
9f40604c
MG
1882 start = mm->numa_scan_offset;
1883 pages = sysctl_numa_balancing_scan_size;
1884 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1885 if (!pages)
1886 return;
cbee9f88 1887
6e5fb223 1888 down_read(&mm->mmap_sem);
9f40604c 1889 vma = find_vma(mm, start);
6e5fb223
PZ
1890 if (!vma) {
1891 reset_ptenuma_scan(p);
9f40604c 1892 start = 0;
6e5fb223
PZ
1893 vma = mm->mmap;
1894 }
9f40604c 1895 for (; vma; vma = vma->vm_next) {
fc314724 1896 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1897 continue;
1898
4591ce4f
MG
1899 /*
1900 * Shared library pages mapped by multiple processes are not
1901 * migrated as it is expected they are cache replicated. Avoid
1902 * hinting faults in read-only file-backed mappings or the vdso
1903 * as migrating the pages will be of marginal benefit.
1904 */
1905 if (!vma->vm_mm ||
1906 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1907 continue;
1908
3c67f474
MG
1909 /*
1910 * Skip inaccessible VMAs to avoid any confusion between
1911 * PROT_NONE and NUMA hinting ptes
1912 */
1913 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1914 continue;
4591ce4f 1915
9f40604c
MG
1916 do {
1917 start = max(start, vma->vm_start);
1918 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1919 end = min(end, vma->vm_end);
598f0ec0
MG
1920 nr_pte_updates += change_prot_numa(vma, start, end);
1921
1922 /*
1923 * Scan sysctl_numa_balancing_scan_size but ensure that
1924 * at least one PTE is updated so that unused virtual
1925 * address space is quickly skipped.
1926 */
1927 if (nr_pte_updates)
1928 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1929
9f40604c
MG
1930 start = end;
1931 if (pages <= 0)
1932 goto out;
3cf1962c
RR
1933
1934 cond_resched();
9f40604c 1935 } while (end != vma->vm_end);
cbee9f88 1936 }
6e5fb223 1937
9f40604c 1938out:
6e5fb223 1939 /*
c69307d5
PZ
1940 * It is possible to reach the end of the VMA list but the last few
1941 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1942 * would find the !migratable VMA on the next scan but not reset the
1943 * scanner to the start so check it now.
6e5fb223
PZ
1944 */
1945 if (vma)
9f40604c 1946 mm->numa_scan_offset = start;
6e5fb223
PZ
1947 else
1948 reset_ptenuma_scan(p);
1949 up_read(&mm->mmap_sem);
cbee9f88
PZ
1950}
1951
1952/*
1953 * Drive the periodic memory faults..
1954 */
1955void task_tick_numa(struct rq *rq, struct task_struct *curr)
1956{
1957 struct callback_head *work = &curr->numa_work;
1958 u64 period, now;
1959
1960 /*
1961 * We don't care about NUMA placement if we don't have memory.
1962 */
1963 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1964 return;
1965
1966 /*
1967 * Using runtime rather than walltime has the dual advantage that
1968 * we (mostly) drive the selection from busy threads and that the
1969 * task needs to have done some actual work before we bother with
1970 * NUMA placement.
1971 */
1972 now = curr->se.sum_exec_runtime;
1973 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1974
1975 if (now - curr->node_stamp > period) {
4b96a29b 1976 if (!curr->node_stamp)
598f0ec0 1977 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1978 curr->node_stamp += period;
cbee9f88
PZ
1979
1980 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1981 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1982 task_work_add(curr, work, true);
1983 }
1984 }
1985}
1986#else
1987static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1988{
1989}
0ec8aa00
PZ
1990
1991static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1992{
1993}
1994
1995static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1996{
1997}
cbee9f88
PZ
1998#endif /* CONFIG_NUMA_BALANCING */
1999
30cfdcfc
DA
2000static void
2001account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002{
2003 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2004 if (!parent_entity(se))
029632fb 2005 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2006#ifdef CONFIG_SMP
0ec8aa00
PZ
2007 if (entity_is_task(se)) {
2008 struct rq *rq = rq_of(cfs_rq);
2009
2010 account_numa_enqueue(rq, task_of(se));
2011 list_add(&se->group_node, &rq->cfs_tasks);
2012 }
367456c7 2013#endif
30cfdcfc 2014 cfs_rq->nr_running++;
30cfdcfc
DA
2015}
2016
2017static void
2018account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2019{
2020 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2021 if (!parent_entity(se))
029632fb 2022 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2023 if (entity_is_task(se)) {
2024 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2025 list_del_init(&se->group_node);
0ec8aa00 2026 }
30cfdcfc 2027 cfs_rq->nr_running--;
30cfdcfc
DA
2028}
2029
3ff6dcac
YZ
2030#ifdef CONFIG_FAIR_GROUP_SCHED
2031# ifdef CONFIG_SMP
cf5f0acf
PZ
2032static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2033{
2034 long tg_weight;
2035
2036 /*
2037 * Use this CPU's actual weight instead of the last load_contribution
2038 * to gain a more accurate current total weight. See
2039 * update_cfs_rq_load_contribution().
2040 */
bf5b986e 2041 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2042 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2043 tg_weight += cfs_rq->load.weight;
2044
2045 return tg_weight;
2046}
2047
6d5ab293 2048static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2049{
cf5f0acf 2050 long tg_weight, load, shares;
3ff6dcac 2051
cf5f0acf 2052 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2053 load = cfs_rq->load.weight;
3ff6dcac 2054
3ff6dcac 2055 shares = (tg->shares * load);
cf5f0acf
PZ
2056 if (tg_weight)
2057 shares /= tg_weight;
3ff6dcac
YZ
2058
2059 if (shares < MIN_SHARES)
2060 shares = MIN_SHARES;
2061 if (shares > tg->shares)
2062 shares = tg->shares;
2063
2064 return shares;
2065}
3ff6dcac 2066# else /* CONFIG_SMP */
6d5ab293 2067static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2068{
2069 return tg->shares;
2070}
3ff6dcac 2071# endif /* CONFIG_SMP */
2069dd75
PZ
2072static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2073 unsigned long weight)
2074{
19e5eebb
PT
2075 if (se->on_rq) {
2076 /* commit outstanding execution time */
2077 if (cfs_rq->curr == se)
2078 update_curr(cfs_rq);
2069dd75 2079 account_entity_dequeue(cfs_rq, se);
19e5eebb 2080 }
2069dd75
PZ
2081
2082 update_load_set(&se->load, weight);
2083
2084 if (se->on_rq)
2085 account_entity_enqueue(cfs_rq, se);
2086}
2087
82958366
PT
2088static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2089
6d5ab293 2090static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2091{
2092 struct task_group *tg;
2093 struct sched_entity *se;
3ff6dcac 2094 long shares;
2069dd75 2095
2069dd75
PZ
2096 tg = cfs_rq->tg;
2097 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2098 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2099 return;
3ff6dcac
YZ
2100#ifndef CONFIG_SMP
2101 if (likely(se->load.weight == tg->shares))
2102 return;
2103#endif
6d5ab293 2104 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2105
2106 reweight_entity(cfs_rq_of(se), se, shares);
2107}
2108#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2109static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2110{
2111}
2112#endif /* CONFIG_FAIR_GROUP_SCHED */
2113
141965c7 2114#ifdef CONFIG_SMP
5b51f2f8
PT
2115/*
2116 * We choose a half-life close to 1 scheduling period.
2117 * Note: The tables below are dependent on this value.
2118 */
2119#define LOAD_AVG_PERIOD 32
2120#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2121#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2122
2123/* Precomputed fixed inverse multiplies for multiplication by y^n */
2124static const u32 runnable_avg_yN_inv[] = {
2125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2130 0x85aac367, 0x82cd8698,
2131};
2132
2133/*
2134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2135 * over-estimates when re-combining.
2136 */
2137static const u32 runnable_avg_yN_sum[] = {
2138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2141};
2142
9d85f21c
PT
2143/*
2144 * Approximate:
2145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2146 */
2147static __always_inline u64 decay_load(u64 val, u64 n)
2148{
5b51f2f8
PT
2149 unsigned int local_n;
2150
2151 if (!n)
2152 return val;
2153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2154 return 0;
2155
2156 /* after bounds checking we can collapse to 32-bit */
2157 local_n = n;
2158
2159 /*
2160 * As y^PERIOD = 1/2, we can combine
2161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2162 * With a look-up table which covers k^n (n<PERIOD)
2163 *
2164 * To achieve constant time decay_load.
2165 */
2166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2167 val >>= local_n / LOAD_AVG_PERIOD;
2168 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2169 }
2170
5b51f2f8
PT
2171 val *= runnable_avg_yN_inv[local_n];
2172 /* We don't use SRR here since we always want to round down. */
2173 return val >> 32;
2174}
2175
2176/*
2177 * For updates fully spanning n periods, the contribution to runnable
2178 * average will be: \Sum 1024*y^n
2179 *
2180 * We can compute this reasonably efficiently by combining:
2181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2182 */
2183static u32 __compute_runnable_contrib(u64 n)
2184{
2185 u32 contrib = 0;
2186
2187 if (likely(n <= LOAD_AVG_PERIOD))
2188 return runnable_avg_yN_sum[n];
2189 else if (unlikely(n >= LOAD_AVG_MAX_N))
2190 return LOAD_AVG_MAX;
2191
2192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2193 do {
2194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2196
2197 n -= LOAD_AVG_PERIOD;
2198 } while (n > LOAD_AVG_PERIOD);
2199
2200 contrib = decay_load(contrib, n);
2201 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2202}
2203
2204/*
2205 * We can represent the historical contribution to runnable average as the
2206 * coefficients of a geometric series. To do this we sub-divide our runnable
2207 * history into segments of approximately 1ms (1024us); label the segment that
2208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2209 *
2210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2211 * p0 p1 p2
2212 * (now) (~1ms ago) (~2ms ago)
2213 *
2214 * Let u_i denote the fraction of p_i that the entity was runnable.
2215 *
2216 * We then designate the fractions u_i as our co-efficients, yielding the
2217 * following representation of historical load:
2218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2219 *
2220 * We choose y based on the with of a reasonably scheduling period, fixing:
2221 * y^32 = 0.5
2222 *
2223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2224 * approximately half as much as the contribution to load within the last ms
2225 * (u_0).
2226 *
2227 * When a period "rolls over" and we have new u_0`, multiplying the previous
2228 * sum again by y is sufficient to update:
2229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2231 */
2232static __always_inline int __update_entity_runnable_avg(u64 now,
2233 struct sched_avg *sa,
2234 int runnable)
2235{
5b51f2f8
PT
2236 u64 delta, periods;
2237 u32 runnable_contrib;
9d85f21c
PT
2238 int delta_w, decayed = 0;
2239
2240 delta = now - sa->last_runnable_update;
2241 /*
2242 * This should only happen when time goes backwards, which it
2243 * unfortunately does during sched clock init when we swap over to TSC.
2244 */
2245 if ((s64)delta < 0) {
2246 sa->last_runnable_update = now;
2247 return 0;
2248 }
2249
2250 /*
2251 * Use 1024ns as the unit of measurement since it's a reasonable
2252 * approximation of 1us and fast to compute.
2253 */
2254 delta >>= 10;
2255 if (!delta)
2256 return 0;
2257 sa->last_runnable_update = now;
2258
2259 /* delta_w is the amount already accumulated against our next period */
2260 delta_w = sa->runnable_avg_period % 1024;
2261 if (delta + delta_w >= 1024) {
2262 /* period roll-over */
2263 decayed = 1;
2264
2265 /*
2266 * Now that we know we're crossing a period boundary, figure
2267 * out how much from delta we need to complete the current
2268 * period and accrue it.
2269 */
2270 delta_w = 1024 - delta_w;
5b51f2f8
PT
2271 if (runnable)
2272 sa->runnable_avg_sum += delta_w;
2273 sa->runnable_avg_period += delta_w;
2274
2275 delta -= delta_w;
2276
2277 /* Figure out how many additional periods this update spans */
2278 periods = delta / 1024;
2279 delta %= 1024;
2280
2281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2282 periods + 1);
2283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2284 periods + 1);
2285
2286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2287 runnable_contrib = __compute_runnable_contrib(periods);
2288 if (runnable)
2289 sa->runnable_avg_sum += runnable_contrib;
2290 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2291 }
2292
2293 /* Remainder of delta accrued against u_0` */
2294 if (runnable)
2295 sa->runnable_avg_sum += delta;
2296 sa->runnable_avg_period += delta;
2297
2298 return decayed;
2299}
2300
9ee474f5 2301/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2302static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2303{
2304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2306
2307 decays -= se->avg.decay_count;
2308 if (!decays)
aff3e498 2309 return 0;
9ee474f5
PT
2310
2311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2312 se->avg.decay_count = 0;
aff3e498
PT
2313
2314 return decays;
9ee474f5
PT
2315}
2316
c566e8e9
PT
2317#ifdef CONFIG_FAIR_GROUP_SCHED
2318static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2319 int force_update)
2320{
2321 struct task_group *tg = cfs_rq->tg;
bf5b986e 2322 long tg_contrib;
c566e8e9
PT
2323
2324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2325 tg_contrib -= cfs_rq->tg_load_contrib;
2326
bf5b986e
AS
2327 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2328 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2329 cfs_rq->tg_load_contrib += tg_contrib;
2330 }
2331}
8165e145 2332
bb17f655
PT
2333/*
2334 * Aggregate cfs_rq runnable averages into an equivalent task_group
2335 * representation for computing load contributions.
2336 */
2337static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2338 struct cfs_rq *cfs_rq)
2339{
2340 struct task_group *tg = cfs_rq->tg;
2341 long contrib;
2342
2343 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2344 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2345 sa->runnable_avg_period + 1);
2346 contrib -= cfs_rq->tg_runnable_contrib;
2347
2348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2349 atomic_add(contrib, &tg->runnable_avg);
2350 cfs_rq->tg_runnable_contrib += contrib;
2351 }
2352}
2353
8165e145
PT
2354static inline void __update_group_entity_contrib(struct sched_entity *se)
2355{
2356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2357 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2358 int runnable_avg;
2359
8165e145
PT
2360 u64 contrib;
2361
2362 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2363 se->avg.load_avg_contrib = div_u64(contrib,
2364 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2365
2366 /*
2367 * For group entities we need to compute a correction term in the case
2368 * that they are consuming <1 cpu so that we would contribute the same
2369 * load as a task of equal weight.
2370 *
2371 * Explicitly co-ordinating this measurement would be expensive, but
2372 * fortunately the sum of each cpus contribution forms a usable
2373 * lower-bound on the true value.
2374 *
2375 * Consider the aggregate of 2 contributions. Either they are disjoint
2376 * (and the sum represents true value) or they are disjoint and we are
2377 * understating by the aggregate of their overlap.
2378 *
2379 * Extending this to N cpus, for a given overlap, the maximum amount we
2380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2381 * cpus that overlap for this interval and w_i is the interval width.
2382 *
2383 * On a small machine; the first term is well-bounded which bounds the
2384 * total error since w_i is a subset of the period. Whereas on a
2385 * larger machine, while this first term can be larger, if w_i is the
2386 * of consequential size guaranteed to see n_i*w_i quickly converge to
2387 * our upper bound of 1-cpu.
2388 */
2389 runnable_avg = atomic_read(&tg->runnable_avg);
2390 if (runnable_avg < NICE_0_LOAD) {
2391 se->avg.load_avg_contrib *= runnable_avg;
2392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2393 }
8165e145 2394}
f5f9739d
DE
2395
2396static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2397{
2398 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2399 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2400}
6e83125c 2401#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2402static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2403 int force_update) {}
bb17f655
PT
2404static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2405 struct cfs_rq *cfs_rq) {}
8165e145 2406static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2407static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2408#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2409
8165e145
PT
2410static inline void __update_task_entity_contrib(struct sched_entity *se)
2411{
2412 u32 contrib;
2413
2414 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2415 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2416 contrib /= (se->avg.runnable_avg_period + 1);
2417 se->avg.load_avg_contrib = scale_load(contrib);
2418}
2419
2dac754e
PT
2420/* Compute the current contribution to load_avg by se, return any delta */
2421static long __update_entity_load_avg_contrib(struct sched_entity *se)
2422{
2423 long old_contrib = se->avg.load_avg_contrib;
2424
8165e145
PT
2425 if (entity_is_task(se)) {
2426 __update_task_entity_contrib(se);
2427 } else {
bb17f655 2428 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2429 __update_group_entity_contrib(se);
2430 }
2dac754e
PT
2431
2432 return se->avg.load_avg_contrib - old_contrib;
2433}
2434
9ee474f5
PT
2435static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2436 long load_contrib)
2437{
2438 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2439 cfs_rq->blocked_load_avg -= load_contrib;
2440 else
2441 cfs_rq->blocked_load_avg = 0;
2442}
2443
f1b17280
PT
2444static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2445
9d85f21c 2446/* Update a sched_entity's runnable average */
9ee474f5
PT
2447static inline void update_entity_load_avg(struct sched_entity *se,
2448 int update_cfs_rq)
9d85f21c 2449{
2dac754e
PT
2450 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2451 long contrib_delta;
f1b17280 2452 u64 now;
2dac754e 2453
f1b17280
PT
2454 /*
2455 * For a group entity we need to use their owned cfs_rq_clock_task() in
2456 * case they are the parent of a throttled hierarchy.
2457 */
2458 if (entity_is_task(se))
2459 now = cfs_rq_clock_task(cfs_rq);
2460 else
2461 now = cfs_rq_clock_task(group_cfs_rq(se));
2462
2463 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2464 return;
2465
2466 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2467
2468 if (!update_cfs_rq)
2469 return;
2470
2dac754e
PT
2471 if (se->on_rq)
2472 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2473 else
2474 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2475}
2476
2477/*
2478 * Decay the load contributed by all blocked children and account this so that
2479 * their contribution may appropriately discounted when they wake up.
2480 */
aff3e498 2481static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2482{
f1b17280 2483 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2484 u64 decays;
2485
2486 decays = now - cfs_rq->last_decay;
aff3e498 2487 if (!decays && !force_update)
9ee474f5
PT
2488 return;
2489
2509940f
AS
2490 if (atomic_long_read(&cfs_rq->removed_load)) {
2491 unsigned long removed_load;
2492 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2493 subtract_blocked_load_contrib(cfs_rq, removed_load);
2494 }
9ee474f5 2495
aff3e498
PT
2496 if (decays) {
2497 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2498 decays);
2499 atomic64_add(decays, &cfs_rq->decay_counter);
2500 cfs_rq->last_decay = now;
2501 }
c566e8e9
PT
2502
2503 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2504}
18bf2805 2505
2dac754e
PT
2506/* Add the load generated by se into cfs_rq's child load-average */
2507static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2508 struct sched_entity *se,
2509 int wakeup)
2dac754e 2510{
aff3e498
PT
2511 /*
2512 * We track migrations using entity decay_count <= 0, on a wake-up
2513 * migration we use a negative decay count to track the remote decays
2514 * accumulated while sleeping.
a75cdaa9
AS
2515 *
2516 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2517 * are seen by enqueue_entity_load_avg() as a migration with an already
2518 * constructed load_avg_contrib.
aff3e498
PT
2519 */
2520 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2521 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2522 if (se->avg.decay_count) {
2523 /*
2524 * In a wake-up migration we have to approximate the
2525 * time sleeping. This is because we can't synchronize
2526 * clock_task between the two cpus, and it is not
2527 * guaranteed to be read-safe. Instead, we can
2528 * approximate this using our carried decays, which are
2529 * explicitly atomically readable.
2530 */
2531 se->avg.last_runnable_update -= (-se->avg.decay_count)
2532 << 20;
2533 update_entity_load_avg(se, 0);
2534 /* Indicate that we're now synchronized and on-rq */
2535 se->avg.decay_count = 0;
2536 }
9ee474f5
PT
2537 wakeup = 0;
2538 } else {
9390675a 2539 __synchronize_entity_decay(se);
9ee474f5
PT
2540 }
2541
aff3e498
PT
2542 /* migrated tasks did not contribute to our blocked load */
2543 if (wakeup) {
9ee474f5 2544 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2545 update_entity_load_avg(se, 0);
2546 }
9ee474f5 2547
2dac754e 2548 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2549 /* we force update consideration on load-balancer moves */
2550 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2551}
2552
9ee474f5
PT
2553/*
2554 * Remove se's load from this cfs_rq child load-average, if the entity is
2555 * transitioning to a blocked state we track its projected decay using
2556 * blocked_load_avg.
2557 */
2dac754e 2558static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2559 struct sched_entity *se,
2560 int sleep)
2dac754e 2561{
9ee474f5 2562 update_entity_load_avg(se, 1);
aff3e498
PT
2563 /* we force update consideration on load-balancer moves */
2564 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2565
2dac754e 2566 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2567 if (sleep) {
2568 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2569 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2570 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2571}
642dbc39
VG
2572
2573/*
2574 * Update the rq's load with the elapsed running time before entering
2575 * idle. if the last scheduled task is not a CFS task, idle_enter will
2576 * be the only way to update the runnable statistic.
2577 */
2578void idle_enter_fair(struct rq *this_rq)
2579{
2580 update_rq_runnable_avg(this_rq, 1);
2581}
2582
2583/*
2584 * Update the rq's load with the elapsed idle time before a task is
2585 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2586 * be the only way to update the runnable statistic.
2587 */
2588void idle_exit_fair(struct rq *this_rq)
2589{
2590 update_rq_runnable_avg(this_rq, 0);
2591}
2592
6e83125c
PZ
2593static int idle_balance(struct rq *this_rq);
2594
38033c37
PZ
2595#else /* CONFIG_SMP */
2596
9ee474f5
PT
2597static inline void update_entity_load_avg(struct sched_entity *se,
2598 int update_cfs_rq) {}
18bf2805 2599static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2600static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2601 struct sched_entity *se,
2602 int wakeup) {}
2dac754e 2603static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2604 struct sched_entity *se,
2605 int sleep) {}
aff3e498
PT
2606static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2607 int force_update) {}
6e83125c
PZ
2608
2609static inline int idle_balance(struct rq *rq)
2610{
2611 return 0;
2612}
2613
38033c37 2614#endif /* CONFIG_SMP */
9d85f21c 2615
2396af69 2616static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2617{
bf0f6f24 2618#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2619 struct task_struct *tsk = NULL;
2620
2621 if (entity_is_task(se))
2622 tsk = task_of(se);
2623
41acab88 2624 if (se->statistics.sleep_start) {
78becc27 2625 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2626
2627 if ((s64)delta < 0)
2628 delta = 0;
2629
41acab88
LDM
2630 if (unlikely(delta > se->statistics.sleep_max))
2631 se->statistics.sleep_max = delta;
bf0f6f24 2632
8c79a045 2633 se->statistics.sleep_start = 0;
41acab88 2634 se->statistics.sum_sleep_runtime += delta;
9745512c 2635
768d0c27 2636 if (tsk) {
e414314c 2637 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2638 trace_sched_stat_sleep(tsk, delta);
2639 }
bf0f6f24 2640 }
41acab88 2641 if (se->statistics.block_start) {
78becc27 2642 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2643
2644 if ((s64)delta < 0)
2645 delta = 0;
2646
41acab88
LDM
2647 if (unlikely(delta > se->statistics.block_max))
2648 se->statistics.block_max = delta;
bf0f6f24 2649
8c79a045 2650 se->statistics.block_start = 0;
41acab88 2651 se->statistics.sum_sleep_runtime += delta;
30084fbd 2652
e414314c 2653 if (tsk) {
8f0dfc34 2654 if (tsk->in_iowait) {
41acab88
LDM
2655 se->statistics.iowait_sum += delta;
2656 se->statistics.iowait_count++;
768d0c27 2657 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2658 }
2659
b781a602
AV
2660 trace_sched_stat_blocked(tsk, delta);
2661
e414314c
PZ
2662 /*
2663 * Blocking time is in units of nanosecs, so shift by
2664 * 20 to get a milliseconds-range estimation of the
2665 * amount of time that the task spent sleeping:
2666 */
2667 if (unlikely(prof_on == SLEEP_PROFILING)) {
2668 profile_hits(SLEEP_PROFILING,
2669 (void *)get_wchan(tsk),
2670 delta >> 20);
2671 }
2672 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2673 }
bf0f6f24
IM
2674 }
2675#endif
2676}
2677
ddc97297
PZ
2678static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2679{
2680#ifdef CONFIG_SCHED_DEBUG
2681 s64 d = se->vruntime - cfs_rq->min_vruntime;
2682
2683 if (d < 0)
2684 d = -d;
2685
2686 if (d > 3*sysctl_sched_latency)
2687 schedstat_inc(cfs_rq, nr_spread_over);
2688#endif
2689}
2690
aeb73b04
PZ
2691static void
2692place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2693{
1af5f730 2694 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2695
2cb8600e
PZ
2696 /*
2697 * The 'current' period is already promised to the current tasks,
2698 * however the extra weight of the new task will slow them down a
2699 * little, place the new task so that it fits in the slot that
2700 * stays open at the end.
2701 */
94dfb5e7 2702 if (initial && sched_feat(START_DEBIT))
f9c0b095 2703 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2704
a2e7a7eb 2705 /* sleeps up to a single latency don't count. */
5ca9880c 2706 if (!initial) {
a2e7a7eb 2707 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2708
a2e7a7eb
MG
2709 /*
2710 * Halve their sleep time's effect, to allow
2711 * for a gentler effect of sleepers:
2712 */
2713 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2714 thresh >>= 1;
51e0304c 2715
a2e7a7eb 2716 vruntime -= thresh;
aeb73b04
PZ
2717 }
2718
b5d9d734 2719 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2720 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2721}
2722
d3d9dc33
PT
2723static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2724
bf0f6f24 2725static void
88ec22d3 2726enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2727{
88ec22d3
PZ
2728 /*
2729 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2730 * through calling update_curr().
88ec22d3 2731 */
371fd7e7 2732 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2733 se->vruntime += cfs_rq->min_vruntime;
2734
bf0f6f24 2735 /*
a2a2d680 2736 * Update run-time statistics of the 'current'.
bf0f6f24 2737 */
b7cc0896 2738 update_curr(cfs_rq);
f269ae04 2739 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2740 account_entity_enqueue(cfs_rq, se);
2741 update_cfs_shares(cfs_rq);
bf0f6f24 2742
88ec22d3 2743 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2744 place_entity(cfs_rq, se, 0);
2396af69 2745 enqueue_sleeper(cfs_rq, se);
e9acbff6 2746 }
bf0f6f24 2747
d2417e5a 2748 update_stats_enqueue(cfs_rq, se);
ddc97297 2749 check_spread(cfs_rq, se);
83b699ed
SV
2750 if (se != cfs_rq->curr)
2751 __enqueue_entity(cfs_rq, se);
2069dd75 2752 se->on_rq = 1;
3d4b47b4 2753
d3d9dc33 2754 if (cfs_rq->nr_running == 1) {
3d4b47b4 2755 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2756 check_enqueue_throttle(cfs_rq);
2757 }
bf0f6f24
IM
2758}
2759
2c13c919 2760static void __clear_buddies_last(struct sched_entity *se)
2002c695 2761{
2c13c919
RR
2762 for_each_sched_entity(se) {
2763 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2764 if (cfs_rq->last != se)
2c13c919 2765 break;
f1044799
PZ
2766
2767 cfs_rq->last = NULL;
2c13c919
RR
2768 }
2769}
2002c695 2770
2c13c919
RR
2771static void __clear_buddies_next(struct sched_entity *se)
2772{
2773 for_each_sched_entity(se) {
2774 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2775 if (cfs_rq->next != se)
2c13c919 2776 break;
f1044799
PZ
2777
2778 cfs_rq->next = NULL;
2c13c919 2779 }
2002c695
PZ
2780}
2781
ac53db59
RR
2782static void __clear_buddies_skip(struct sched_entity *se)
2783{
2784 for_each_sched_entity(se) {
2785 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2786 if (cfs_rq->skip != se)
ac53db59 2787 break;
f1044799
PZ
2788
2789 cfs_rq->skip = NULL;
ac53db59
RR
2790 }
2791}
2792
a571bbea
PZ
2793static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2794{
2c13c919
RR
2795 if (cfs_rq->last == se)
2796 __clear_buddies_last(se);
2797
2798 if (cfs_rq->next == se)
2799 __clear_buddies_next(se);
ac53db59
RR
2800
2801 if (cfs_rq->skip == se)
2802 __clear_buddies_skip(se);
a571bbea
PZ
2803}
2804
6c16a6dc 2805static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2806
bf0f6f24 2807static void
371fd7e7 2808dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2809{
a2a2d680
DA
2810 /*
2811 * Update run-time statistics of the 'current'.
2812 */
2813 update_curr(cfs_rq);
17bc14b7 2814 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2815
19b6a2e3 2816 update_stats_dequeue(cfs_rq, se);
371fd7e7 2817 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2818#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2819 if (entity_is_task(se)) {
2820 struct task_struct *tsk = task_of(se);
2821
2822 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2823 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2824 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2825 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2826 }
db36cc7d 2827#endif
67e9fb2a
PZ
2828 }
2829
2002c695 2830 clear_buddies(cfs_rq, se);
4793241b 2831
83b699ed 2832 if (se != cfs_rq->curr)
30cfdcfc 2833 __dequeue_entity(cfs_rq, se);
17bc14b7 2834 se->on_rq = 0;
30cfdcfc 2835 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2836
2837 /*
2838 * Normalize the entity after updating the min_vruntime because the
2839 * update can refer to the ->curr item and we need to reflect this
2840 * movement in our normalized position.
2841 */
371fd7e7 2842 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2843 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2844
d8b4986d
PT
2845 /* return excess runtime on last dequeue */
2846 return_cfs_rq_runtime(cfs_rq);
2847
1e876231 2848 update_min_vruntime(cfs_rq);
17bc14b7 2849 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2850}
2851
2852/*
2853 * Preempt the current task with a newly woken task if needed:
2854 */
7c92e54f 2855static void
2e09bf55 2856check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2857{
11697830 2858 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2859 struct sched_entity *se;
2860 s64 delta;
11697830 2861
6d0f0ebd 2862 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2863 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2864 if (delta_exec > ideal_runtime) {
bf0f6f24 2865 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2866 /*
2867 * The current task ran long enough, ensure it doesn't get
2868 * re-elected due to buddy favours.
2869 */
2870 clear_buddies(cfs_rq, curr);
f685ceac
MG
2871 return;
2872 }
2873
2874 /*
2875 * Ensure that a task that missed wakeup preemption by a
2876 * narrow margin doesn't have to wait for a full slice.
2877 * This also mitigates buddy induced latencies under load.
2878 */
f685ceac
MG
2879 if (delta_exec < sysctl_sched_min_granularity)
2880 return;
2881
f4cfb33e
WX
2882 se = __pick_first_entity(cfs_rq);
2883 delta = curr->vruntime - se->vruntime;
f685ceac 2884
f4cfb33e
WX
2885 if (delta < 0)
2886 return;
d7d82944 2887
f4cfb33e
WX
2888 if (delta > ideal_runtime)
2889 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2890}
2891
83b699ed 2892static void
8494f412 2893set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2894{
83b699ed
SV
2895 /* 'current' is not kept within the tree. */
2896 if (se->on_rq) {
2897 /*
2898 * Any task has to be enqueued before it get to execute on
2899 * a CPU. So account for the time it spent waiting on the
2900 * runqueue.
2901 */
2902 update_stats_wait_end(cfs_rq, se);
2903 __dequeue_entity(cfs_rq, se);
2904 }
2905
79303e9e 2906 update_stats_curr_start(cfs_rq, se);
429d43bc 2907 cfs_rq->curr = se;
eba1ed4b
IM
2908#ifdef CONFIG_SCHEDSTATS
2909 /*
2910 * Track our maximum slice length, if the CPU's load is at
2911 * least twice that of our own weight (i.e. dont track it
2912 * when there are only lesser-weight tasks around):
2913 */
495eca49 2914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2915 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2917 }
2918#endif
4a55b450 2919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2920}
2921
3f3a4904
PZ
2922static int
2923wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2924
ac53db59
RR
2925/*
2926 * Pick the next process, keeping these things in mind, in this order:
2927 * 1) keep things fair between processes/task groups
2928 * 2) pick the "next" process, since someone really wants that to run
2929 * 3) pick the "last" process, for cache locality
2930 * 4) do not run the "skip" process, if something else is available
2931 */
678d5718
PZ
2932static struct sched_entity *
2933pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2934{
678d5718
PZ
2935 struct sched_entity *left = __pick_first_entity(cfs_rq);
2936 struct sched_entity *se;
2937
2938 /*
2939 * If curr is set we have to see if its left of the leftmost entity
2940 * still in the tree, provided there was anything in the tree at all.
2941 */
2942 if (!left || (curr && entity_before(curr, left)))
2943 left = curr;
2944
2945 se = left; /* ideally we run the leftmost entity */
f4b6755f 2946
ac53db59
RR
2947 /*
2948 * Avoid running the skip buddy, if running something else can
2949 * be done without getting too unfair.
2950 */
2951 if (cfs_rq->skip == se) {
678d5718
PZ
2952 struct sched_entity *second;
2953
2954 if (se == curr) {
2955 second = __pick_first_entity(cfs_rq);
2956 } else {
2957 second = __pick_next_entity(se);
2958 if (!second || (curr && entity_before(curr, second)))
2959 second = curr;
2960 }
2961
ac53db59
RR
2962 if (second && wakeup_preempt_entity(second, left) < 1)
2963 se = second;
2964 }
aa2ac252 2965
f685ceac
MG
2966 /*
2967 * Prefer last buddy, try to return the CPU to a preempted task.
2968 */
2969 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2970 se = cfs_rq->last;
2971
ac53db59
RR
2972 /*
2973 * Someone really wants this to run. If it's not unfair, run it.
2974 */
2975 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2976 se = cfs_rq->next;
2977
f685ceac 2978 clear_buddies(cfs_rq, se);
4793241b
PZ
2979
2980 return se;
aa2ac252
PZ
2981}
2982
678d5718 2983static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2984
ab6cde26 2985static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2986{
2987 /*
2988 * If still on the runqueue then deactivate_task()
2989 * was not called and update_curr() has to be done:
2990 */
2991 if (prev->on_rq)
b7cc0896 2992 update_curr(cfs_rq);
bf0f6f24 2993
d3d9dc33
PT
2994 /* throttle cfs_rqs exceeding runtime */
2995 check_cfs_rq_runtime(cfs_rq);
2996
ddc97297 2997 check_spread(cfs_rq, prev);
30cfdcfc 2998 if (prev->on_rq) {
5870db5b 2999 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3000 /* Put 'current' back into the tree. */
3001 __enqueue_entity(cfs_rq, prev);
9d85f21c 3002 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3003 update_entity_load_avg(prev, 1);
30cfdcfc 3004 }
429d43bc 3005 cfs_rq->curr = NULL;
bf0f6f24
IM
3006}
3007
8f4d37ec
PZ
3008static void
3009entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3010{
bf0f6f24 3011 /*
30cfdcfc 3012 * Update run-time statistics of the 'current'.
bf0f6f24 3013 */
30cfdcfc 3014 update_curr(cfs_rq);
bf0f6f24 3015
9d85f21c
PT
3016 /*
3017 * Ensure that runnable average is periodically updated.
3018 */
9ee474f5 3019 update_entity_load_avg(curr, 1);
aff3e498 3020 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3021 update_cfs_shares(cfs_rq);
9d85f21c 3022
8f4d37ec
PZ
3023#ifdef CONFIG_SCHED_HRTICK
3024 /*
3025 * queued ticks are scheduled to match the slice, so don't bother
3026 * validating it and just reschedule.
3027 */
983ed7a6
HH
3028 if (queued) {
3029 resched_task(rq_of(cfs_rq)->curr);
3030 return;
3031 }
8f4d37ec
PZ
3032 /*
3033 * don't let the period tick interfere with the hrtick preemption
3034 */
3035 if (!sched_feat(DOUBLE_TICK) &&
3036 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3037 return;
3038#endif
3039
2c2efaed 3040 if (cfs_rq->nr_running > 1)
2e09bf55 3041 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3042}
3043
ab84d31e
PT
3044
3045/**************************************************
3046 * CFS bandwidth control machinery
3047 */
3048
3049#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3050
3051#ifdef HAVE_JUMP_LABEL
c5905afb 3052static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3053
3054static inline bool cfs_bandwidth_used(void)
3055{
c5905afb 3056 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3057}
3058
1ee14e6c 3059void cfs_bandwidth_usage_inc(void)
029632fb 3060{
1ee14e6c
BS
3061 static_key_slow_inc(&__cfs_bandwidth_used);
3062}
3063
3064void cfs_bandwidth_usage_dec(void)
3065{
3066 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3067}
3068#else /* HAVE_JUMP_LABEL */
3069static bool cfs_bandwidth_used(void)
3070{
3071 return true;
3072}
3073
1ee14e6c
BS
3074void cfs_bandwidth_usage_inc(void) {}
3075void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3076#endif /* HAVE_JUMP_LABEL */
3077
ab84d31e
PT
3078/*
3079 * default period for cfs group bandwidth.
3080 * default: 0.1s, units: nanoseconds
3081 */
3082static inline u64 default_cfs_period(void)
3083{
3084 return 100000000ULL;
3085}
ec12cb7f
PT
3086
3087static inline u64 sched_cfs_bandwidth_slice(void)
3088{
3089 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3090}
3091
a9cf55b2
PT
3092/*
3093 * Replenish runtime according to assigned quota and update expiration time.
3094 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3095 * additional synchronization around rq->lock.
3096 *
3097 * requires cfs_b->lock
3098 */
029632fb 3099void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3100{
3101 u64 now;
3102
3103 if (cfs_b->quota == RUNTIME_INF)
3104 return;
3105
3106 now = sched_clock_cpu(smp_processor_id());
3107 cfs_b->runtime = cfs_b->quota;
3108 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3109}
3110
029632fb
PZ
3111static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3112{
3113 return &tg->cfs_bandwidth;
3114}
3115
f1b17280
PT
3116/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3117static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3118{
3119 if (unlikely(cfs_rq->throttle_count))
3120 return cfs_rq->throttled_clock_task;
3121
78becc27 3122 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3123}
3124
85dac906
PT
3125/* returns 0 on failure to allocate runtime */
3126static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3127{
3128 struct task_group *tg = cfs_rq->tg;
3129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3130 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3131
3132 /* note: this is a positive sum as runtime_remaining <= 0 */
3133 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3134
3135 raw_spin_lock(&cfs_b->lock);
3136 if (cfs_b->quota == RUNTIME_INF)
3137 amount = min_amount;
58088ad0 3138 else {
a9cf55b2
PT
3139 /*
3140 * If the bandwidth pool has become inactive, then at least one
3141 * period must have elapsed since the last consumption.
3142 * Refresh the global state and ensure bandwidth timer becomes
3143 * active.
3144 */
3145 if (!cfs_b->timer_active) {
3146 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3147 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3148 }
58088ad0
PT
3149
3150 if (cfs_b->runtime > 0) {
3151 amount = min(cfs_b->runtime, min_amount);
3152 cfs_b->runtime -= amount;
3153 cfs_b->idle = 0;
3154 }
ec12cb7f 3155 }
a9cf55b2 3156 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3157 raw_spin_unlock(&cfs_b->lock);
3158
3159 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3160 /*
3161 * we may have advanced our local expiration to account for allowed
3162 * spread between our sched_clock and the one on which runtime was
3163 * issued.
3164 */
3165 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3166 cfs_rq->runtime_expires = expires;
85dac906
PT
3167
3168 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3169}
3170
a9cf55b2
PT
3171/*
3172 * Note: This depends on the synchronization provided by sched_clock and the
3173 * fact that rq->clock snapshots this value.
3174 */
3175static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3176{
a9cf55b2 3177 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3178
3179 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3180 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3181 return;
3182
a9cf55b2
PT
3183 if (cfs_rq->runtime_remaining < 0)
3184 return;
3185
3186 /*
3187 * If the local deadline has passed we have to consider the
3188 * possibility that our sched_clock is 'fast' and the global deadline
3189 * has not truly expired.
3190 *
3191 * Fortunately we can check determine whether this the case by checking
3192 * whether the global deadline has advanced.
3193 */
3194
3195 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3196 /* extend local deadline, drift is bounded above by 2 ticks */
3197 cfs_rq->runtime_expires += TICK_NSEC;
3198 } else {
3199 /* global deadline is ahead, expiration has passed */
3200 cfs_rq->runtime_remaining = 0;
3201 }
3202}
3203
9dbdb155 3204static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3205{
3206 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3207 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3208 expire_cfs_rq_runtime(cfs_rq);
3209
3210 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3211 return;
3212
85dac906
PT
3213 /*
3214 * if we're unable to extend our runtime we resched so that the active
3215 * hierarchy can be throttled
3216 */
3217 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3218 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3219}
3220
6c16a6dc 3221static __always_inline
9dbdb155 3222void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3223{
56f570e5 3224 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3225 return;
3226
3227 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3228}
3229
85dac906
PT
3230static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3231{
56f570e5 3232 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3233}
3234
64660c86
PT
3235/* check whether cfs_rq, or any parent, is throttled */
3236static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3237{
56f570e5 3238 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3239}
3240
3241/*
3242 * Ensure that neither of the group entities corresponding to src_cpu or
3243 * dest_cpu are members of a throttled hierarchy when performing group
3244 * load-balance operations.
3245 */
3246static inline int throttled_lb_pair(struct task_group *tg,
3247 int src_cpu, int dest_cpu)
3248{
3249 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3250
3251 src_cfs_rq = tg->cfs_rq[src_cpu];
3252 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3253
3254 return throttled_hierarchy(src_cfs_rq) ||
3255 throttled_hierarchy(dest_cfs_rq);
3256}
3257
3258/* updated child weight may affect parent so we have to do this bottom up */
3259static int tg_unthrottle_up(struct task_group *tg, void *data)
3260{
3261 struct rq *rq = data;
3262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3263
3264 cfs_rq->throttle_count--;
3265#ifdef CONFIG_SMP
3266 if (!cfs_rq->throttle_count) {
f1b17280 3267 /* adjust cfs_rq_clock_task() */
78becc27 3268 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3269 cfs_rq->throttled_clock_task;
64660c86
PT
3270 }
3271#endif
3272
3273 return 0;
3274}
3275
3276static int tg_throttle_down(struct task_group *tg, void *data)
3277{
3278 struct rq *rq = data;
3279 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3280
82958366
PT
3281 /* group is entering throttled state, stop time */
3282 if (!cfs_rq->throttle_count)
78becc27 3283 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3284 cfs_rq->throttle_count++;
3285
3286 return 0;
3287}
3288
d3d9dc33 3289static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3290{
3291 struct rq *rq = rq_of(cfs_rq);
3292 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3293 struct sched_entity *se;
3294 long task_delta, dequeue = 1;
3295
3296 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3297
f1b17280 3298 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3299 rcu_read_lock();
3300 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3301 rcu_read_unlock();
85dac906
PT
3302
3303 task_delta = cfs_rq->h_nr_running;
3304 for_each_sched_entity(se) {
3305 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3306 /* throttled entity or throttle-on-deactivate */
3307 if (!se->on_rq)
3308 break;
3309
3310 if (dequeue)
3311 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3312 qcfs_rq->h_nr_running -= task_delta;
3313
3314 if (qcfs_rq->load.weight)
3315 dequeue = 0;
3316 }
3317
3318 if (!se)
3319 rq->nr_running -= task_delta;
3320
3321 cfs_rq->throttled = 1;
78becc27 3322 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3323 raw_spin_lock(&cfs_b->lock);
3324 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3325 if (!cfs_b->timer_active)
3326 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3327 raw_spin_unlock(&cfs_b->lock);
3328}
3329
029632fb 3330void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3331{
3332 struct rq *rq = rq_of(cfs_rq);
3333 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3334 struct sched_entity *se;
3335 int enqueue = 1;
3336 long task_delta;
3337
22b958d8 3338 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3339
3340 cfs_rq->throttled = 0;
1a55af2e
FW
3341
3342 update_rq_clock(rq);
3343
671fd9da 3344 raw_spin_lock(&cfs_b->lock);
78becc27 3345 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3346 list_del_rcu(&cfs_rq->throttled_list);
3347 raw_spin_unlock(&cfs_b->lock);
3348
64660c86
PT
3349 /* update hierarchical throttle state */
3350 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3351
671fd9da
PT
3352 if (!cfs_rq->load.weight)
3353 return;
3354
3355 task_delta = cfs_rq->h_nr_running;
3356 for_each_sched_entity(se) {
3357 if (se->on_rq)
3358 enqueue = 0;
3359
3360 cfs_rq = cfs_rq_of(se);
3361 if (enqueue)
3362 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3363 cfs_rq->h_nr_running += task_delta;
3364
3365 if (cfs_rq_throttled(cfs_rq))
3366 break;
3367 }
3368
3369 if (!se)
3370 rq->nr_running += task_delta;
3371
3372 /* determine whether we need to wake up potentially idle cpu */
3373 if (rq->curr == rq->idle && rq->cfs.nr_running)
3374 resched_task(rq->curr);
3375}
3376
3377static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3378 u64 remaining, u64 expires)
3379{
3380 struct cfs_rq *cfs_rq;
3381 u64 runtime = remaining;
3382
3383 rcu_read_lock();
3384 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3385 throttled_list) {
3386 struct rq *rq = rq_of(cfs_rq);
3387
3388 raw_spin_lock(&rq->lock);
3389 if (!cfs_rq_throttled(cfs_rq))
3390 goto next;
3391
3392 runtime = -cfs_rq->runtime_remaining + 1;
3393 if (runtime > remaining)
3394 runtime = remaining;
3395 remaining -= runtime;
3396
3397 cfs_rq->runtime_remaining += runtime;
3398 cfs_rq->runtime_expires = expires;
3399
3400 /* we check whether we're throttled above */
3401 if (cfs_rq->runtime_remaining > 0)
3402 unthrottle_cfs_rq(cfs_rq);
3403
3404next:
3405 raw_spin_unlock(&rq->lock);
3406
3407 if (!remaining)
3408 break;
3409 }
3410 rcu_read_unlock();
3411
3412 return remaining;
3413}
3414
58088ad0
PT
3415/*
3416 * Responsible for refilling a task_group's bandwidth and unthrottling its
3417 * cfs_rqs as appropriate. If there has been no activity within the last
3418 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3419 * used to track this state.
3420 */
3421static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3422{
671fd9da
PT
3423 u64 runtime, runtime_expires;
3424 int idle = 1, throttled;
58088ad0
PT
3425
3426 raw_spin_lock(&cfs_b->lock);
3427 /* no need to continue the timer with no bandwidth constraint */
3428 if (cfs_b->quota == RUNTIME_INF)
3429 goto out_unlock;
3430
671fd9da
PT
3431 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3432 /* idle depends on !throttled (for the case of a large deficit) */
3433 idle = cfs_b->idle && !throttled;
e8da1b18 3434 cfs_b->nr_periods += overrun;
671fd9da 3435
a9cf55b2
PT
3436 /* if we're going inactive then everything else can be deferred */
3437 if (idle)
3438 goto out_unlock;
3439
927b54fc
BS
3440 /*
3441 * if we have relooped after returning idle once, we need to update our
3442 * status as actually running, so that other cpus doing
3443 * __start_cfs_bandwidth will stop trying to cancel us.
3444 */
3445 cfs_b->timer_active = 1;
3446
a9cf55b2
PT
3447 __refill_cfs_bandwidth_runtime(cfs_b);
3448
671fd9da
PT
3449 if (!throttled) {
3450 /* mark as potentially idle for the upcoming period */
3451 cfs_b->idle = 1;
3452 goto out_unlock;
3453 }
3454
e8da1b18
NR
3455 /* account preceding periods in which throttling occurred */
3456 cfs_b->nr_throttled += overrun;
3457
671fd9da
PT
3458 /*
3459 * There are throttled entities so we must first use the new bandwidth
3460 * to unthrottle them before making it generally available. This
3461 * ensures that all existing debts will be paid before a new cfs_rq is
3462 * allowed to run.
3463 */
3464 runtime = cfs_b->runtime;
3465 runtime_expires = cfs_b->runtime_expires;
3466 cfs_b->runtime = 0;
3467
3468 /*
3469 * This check is repeated as we are holding onto the new bandwidth
3470 * while we unthrottle. This can potentially race with an unthrottled
3471 * group trying to acquire new bandwidth from the global pool.
3472 */
3473 while (throttled && runtime > 0) {
3474 raw_spin_unlock(&cfs_b->lock);
3475 /* we can't nest cfs_b->lock while distributing bandwidth */
3476 runtime = distribute_cfs_runtime(cfs_b, runtime,
3477 runtime_expires);
3478 raw_spin_lock(&cfs_b->lock);
3479
3480 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3481 }
58088ad0 3482
671fd9da
PT
3483 /* return (any) remaining runtime */
3484 cfs_b->runtime = runtime;
3485 /*
3486 * While we are ensured activity in the period following an
3487 * unthrottle, this also covers the case in which the new bandwidth is
3488 * insufficient to cover the existing bandwidth deficit. (Forcing the
3489 * timer to remain active while there are any throttled entities.)
3490 */
3491 cfs_b->idle = 0;
58088ad0
PT
3492out_unlock:
3493 if (idle)
3494 cfs_b->timer_active = 0;
3495 raw_spin_unlock(&cfs_b->lock);
3496
3497 return idle;
3498}
d3d9dc33 3499
d8b4986d
PT
3500/* a cfs_rq won't donate quota below this amount */
3501static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3502/* minimum remaining period time to redistribute slack quota */
3503static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3504/* how long we wait to gather additional slack before distributing */
3505static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3506
db06e78c
BS
3507/*
3508 * Are we near the end of the current quota period?
3509 *
3510 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3511 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3512 * migrate_hrtimers, base is never cleared, so we are fine.
3513 */
d8b4986d
PT
3514static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3515{
3516 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3517 u64 remaining;
3518
3519 /* if the call-back is running a quota refresh is already occurring */
3520 if (hrtimer_callback_running(refresh_timer))
3521 return 1;
3522
3523 /* is a quota refresh about to occur? */
3524 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3525 if (remaining < min_expire)
3526 return 1;
3527
3528 return 0;
3529}
3530
3531static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3532{
3533 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3534
3535 /* if there's a quota refresh soon don't bother with slack */
3536 if (runtime_refresh_within(cfs_b, min_left))
3537 return;
3538
3539 start_bandwidth_timer(&cfs_b->slack_timer,
3540 ns_to_ktime(cfs_bandwidth_slack_period));
3541}
3542
3543/* we know any runtime found here is valid as update_curr() precedes return */
3544static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3545{
3546 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3547 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3548
3549 if (slack_runtime <= 0)
3550 return;
3551
3552 raw_spin_lock(&cfs_b->lock);
3553 if (cfs_b->quota != RUNTIME_INF &&
3554 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3555 cfs_b->runtime += slack_runtime;
3556
3557 /* we are under rq->lock, defer unthrottling using a timer */
3558 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3559 !list_empty(&cfs_b->throttled_cfs_rq))
3560 start_cfs_slack_bandwidth(cfs_b);
3561 }
3562 raw_spin_unlock(&cfs_b->lock);
3563
3564 /* even if it's not valid for return we don't want to try again */
3565 cfs_rq->runtime_remaining -= slack_runtime;
3566}
3567
3568static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3569{
56f570e5
PT
3570 if (!cfs_bandwidth_used())
3571 return;
3572
fccfdc6f 3573 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3574 return;
3575
3576 __return_cfs_rq_runtime(cfs_rq);
3577}
3578
3579/*
3580 * This is done with a timer (instead of inline with bandwidth return) since
3581 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3582 */
3583static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3584{
3585 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3586 u64 expires;
3587
3588 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3589 raw_spin_lock(&cfs_b->lock);
3590 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3591 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3592 return;
db06e78c 3593 }
d8b4986d 3594
d8b4986d
PT
3595 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3596 runtime = cfs_b->runtime;
3597 cfs_b->runtime = 0;
3598 }
3599 expires = cfs_b->runtime_expires;
3600 raw_spin_unlock(&cfs_b->lock);
3601
3602 if (!runtime)
3603 return;
3604
3605 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3606
3607 raw_spin_lock(&cfs_b->lock);
3608 if (expires == cfs_b->runtime_expires)
3609 cfs_b->runtime = runtime;
3610 raw_spin_unlock(&cfs_b->lock);
3611}
3612
d3d9dc33
PT
3613/*
3614 * When a group wakes up we want to make sure that its quota is not already
3615 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3616 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3617 */
3618static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3619{
56f570e5
PT
3620 if (!cfs_bandwidth_used())
3621 return;
3622
d3d9dc33
PT
3623 /* an active group must be handled by the update_curr()->put() path */
3624 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3625 return;
3626
3627 /* ensure the group is not already throttled */
3628 if (cfs_rq_throttled(cfs_rq))
3629 return;
3630
3631 /* update runtime allocation */
3632 account_cfs_rq_runtime(cfs_rq, 0);
3633 if (cfs_rq->runtime_remaining <= 0)
3634 throttle_cfs_rq(cfs_rq);
3635}
3636
3637/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3638static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3639{
56f570e5 3640 if (!cfs_bandwidth_used())
678d5718 3641 return false;
56f570e5 3642
d3d9dc33 3643 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3644 return false;
d3d9dc33
PT
3645
3646 /*
3647 * it's possible for a throttled entity to be forced into a running
3648 * state (e.g. set_curr_task), in this case we're finished.
3649 */
3650 if (cfs_rq_throttled(cfs_rq))
678d5718 3651 return true;
d3d9dc33
PT
3652
3653 throttle_cfs_rq(cfs_rq);
678d5718 3654 return true;
d3d9dc33 3655}
029632fb 3656
029632fb
PZ
3657static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3658{
3659 struct cfs_bandwidth *cfs_b =
3660 container_of(timer, struct cfs_bandwidth, slack_timer);
3661 do_sched_cfs_slack_timer(cfs_b);
3662
3663 return HRTIMER_NORESTART;
3664}
3665
3666static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3667{
3668 struct cfs_bandwidth *cfs_b =
3669 container_of(timer, struct cfs_bandwidth, period_timer);
3670 ktime_t now;
3671 int overrun;
3672 int idle = 0;
3673
3674 for (;;) {
3675 now = hrtimer_cb_get_time(timer);
3676 overrun = hrtimer_forward(timer, now, cfs_b->period);
3677
3678 if (!overrun)
3679 break;
3680
3681 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3682 }
3683
3684 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3685}
3686
3687void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3688{
3689 raw_spin_lock_init(&cfs_b->lock);
3690 cfs_b->runtime = 0;
3691 cfs_b->quota = RUNTIME_INF;
3692 cfs_b->period = ns_to_ktime(default_cfs_period());
3693
3694 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3695 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3696 cfs_b->period_timer.function = sched_cfs_period_timer;
3697 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3698 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3699}
3700
3701static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3702{
3703 cfs_rq->runtime_enabled = 0;
3704 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3705}
3706
3707/* requires cfs_b->lock, may release to reprogram timer */
3708void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3709{
3710 /*
3711 * The timer may be active because we're trying to set a new bandwidth
3712 * period or because we're racing with the tear-down path
3713 * (timer_active==0 becomes visible before the hrtimer call-back
3714 * terminates). In either case we ensure that it's re-programmed
3715 */
927b54fc
BS
3716 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3717 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3718 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3719 raw_spin_unlock(&cfs_b->lock);
927b54fc 3720 cpu_relax();
029632fb
PZ
3721 raw_spin_lock(&cfs_b->lock);
3722 /* if someone else restarted the timer then we're done */
3723 if (cfs_b->timer_active)
3724 return;
3725 }
3726
3727 cfs_b->timer_active = 1;
3728 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3729}
3730
3731static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3732{
3733 hrtimer_cancel(&cfs_b->period_timer);
3734 hrtimer_cancel(&cfs_b->slack_timer);
3735}
3736
38dc3348 3737static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3738{
3739 struct cfs_rq *cfs_rq;
3740
3741 for_each_leaf_cfs_rq(rq, cfs_rq) {
3742 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3743
3744 if (!cfs_rq->runtime_enabled)
3745 continue;
3746
3747 /*
3748 * clock_task is not advancing so we just need to make sure
3749 * there's some valid quota amount
3750 */
3751 cfs_rq->runtime_remaining = cfs_b->quota;
3752 if (cfs_rq_throttled(cfs_rq))
3753 unthrottle_cfs_rq(cfs_rq);
3754 }
3755}
3756
3757#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3758static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3759{
78becc27 3760 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3761}
3762
9dbdb155 3763static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3764static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3765static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3766static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3767
3768static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3769{
3770 return 0;
3771}
64660c86
PT
3772
3773static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3774{
3775 return 0;
3776}
3777
3778static inline int throttled_lb_pair(struct task_group *tg,
3779 int src_cpu, int dest_cpu)
3780{
3781 return 0;
3782}
029632fb
PZ
3783
3784void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3785
3786#ifdef CONFIG_FAIR_GROUP_SCHED
3787static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3788#endif
3789
029632fb
PZ
3790static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3791{
3792 return NULL;
3793}
3794static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3795static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3796
3797#endif /* CONFIG_CFS_BANDWIDTH */
3798
bf0f6f24
IM
3799/**************************************************
3800 * CFS operations on tasks:
3801 */
3802
8f4d37ec
PZ
3803#ifdef CONFIG_SCHED_HRTICK
3804static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3805{
8f4d37ec
PZ
3806 struct sched_entity *se = &p->se;
3807 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3808
3809 WARN_ON(task_rq(p) != rq);
3810
b39e66ea 3811 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3812 u64 slice = sched_slice(cfs_rq, se);
3813 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3814 s64 delta = slice - ran;
3815
3816 if (delta < 0) {
3817 if (rq->curr == p)
3818 resched_task(p);
3819 return;
3820 }
3821
3822 /*
3823 * Don't schedule slices shorter than 10000ns, that just
3824 * doesn't make sense. Rely on vruntime for fairness.
3825 */
31656519 3826 if (rq->curr != p)
157124c1 3827 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3828
31656519 3829 hrtick_start(rq, delta);
8f4d37ec
PZ
3830 }
3831}
a4c2f00f
PZ
3832
3833/*
3834 * called from enqueue/dequeue and updates the hrtick when the
3835 * current task is from our class and nr_running is low enough
3836 * to matter.
3837 */
3838static void hrtick_update(struct rq *rq)
3839{
3840 struct task_struct *curr = rq->curr;
3841
b39e66ea 3842 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3843 return;
3844
3845 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3846 hrtick_start_fair(rq, curr);
3847}
55e12e5e 3848#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3849static inline void
3850hrtick_start_fair(struct rq *rq, struct task_struct *p)
3851{
3852}
a4c2f00f
PZ
3853
3854static inline void hrtick_update(struct rq *rq)
3855{
3856}
8f4d37ec
PZ
3857#endif
3858
bf0f6f24
IM
3859/*
3860 * The enqueue_task method is called before nr_running is
3861 * increased. Here we update the fair scheduling stats and
3862 * then put the task into the rbtree:
3863 */
ea87bb78 3864static void
371fd7e7 3865enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3866{
3867 struct cfs_rq *cfs_rq;
62fb1851 3868 struct sched_entity *se = &p->se;
bf0f6f24
IM
3869
3870 for_each_sched_entity(se) {
62fb1851 3871 if (se->on_rq)
bf0f6f24
IM
3872 break;
3873 cfs_rq = cfs_rq_of(se);
88ec22d3 3874 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3875
3876 /*
3877 * end evaluation on encountering a throttled cfs_rq
3878 *
3879 * note: in the case of encountering a throttled cfs_rq we will
3880 * post the final h_nr_running increment below.
3881 */
3882 if (cfs_rq_throttled(cfs_rq))
3883 break;
953bfcd1 3884 cfs_rq->h_nr_running++;
85dac906 3885
88ec22d3 3886 flags = ENQUEUE_WAKEUP;
bf0f6f24 3887 }
8f4d37ec 3888
2069dd75 3889 for_each_sched_entity(se) {
0f317143 3890 cfs_rq = cfs_rq_of(se);
953bfcd1 3891 cfs_rq->h_nr_running++;
2069dd75 3892
85dac906
PT
3893 if (cfs_rq_throttled(cfs_rq))
3894 break;
3895
17bc14b7 3896 update_cfs_shares(cfs_rq);
9ee474f5 3897 update_entity_load_avg(se, 1);
2069dd75
PZ
3898 }
3899
18bf2805
BS
3900 if (!se) {
3901 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3902 inc_nr_running(rq);
18bf2805 3903 }
a4c2f00f 3904 hrtick_update(rq);
bf0f6f24
IM
3905}
3906
2f36825b
VP
3907static void set_next_buddy(struct sched_entity *se);
3908
bf0f6f24
IM
3909/*
3910 * The dequeue_task method is called before nr_running is
3911 * decreased. We remove the task from the rbtree and
3912 * update the fair scheduling stats:
3913 */
371fd7e7 3914static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3915{
3916 struct cfs_rq *cfs_rq;
62fb1851 3917 struct sched_entity *se = &p->se;
2f36825b 3918 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3919
3920 for_each_sched_entity(se) {
3921 cfs_rq = cfs_rq_of(se);
371fd7e7 3922 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3923
3924 /*
3925 * end evaluation on encountering a throttled cfs_rq
3926 *
3927 * note: in the case of encountering a throttled cfs_rq we will
3928 * post the final h_nr_running decrement below.
3929 */
3930 if (cfs_rq_throttled(cfs_rq))
3931 break;
953bfcd1 3932 cfs_rq->h_nr_running--;
2069dd75 3933
bf0f6f24 3934 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3935 if (cfs_rq->load.weight) {
3936 /*
3937 * Bias pick_next to pick a task from this cfs_rq, as
3938 * p is sleeping when it is within its sched_slice.
3939 */
3940 if (task_sleep && parent_entity(se))
3941 set_next_buddy(parent_entity(se));
9598c82d
PT
3942
3943 /* avoid re-evaluating load for this entity */
3944 se = parent_entity(se);
bf0f6f24 3945 break;
2f36825b 3946 }
371fd7e7 3947 flags |= DEQUEUE_SLEEP;
bf0f6f24 3948 }
8f4d37ec 3949
2069dd75 3950 for_each_sched_entity(se) {
0f317143 3951 cfs_rq = cfs_rq_of(se);
953bfcd1 3952 cfs_rq->h_nr_running--;
2069dd75 3953
85dac906
PT
3954 if (cfs_rq_throttled(cfs_rq))
3955 break;
3956
17bc14b7 3957 update_cfs_shares(cfs_rq);
9ee474f5 3958 update_entity_load_avg(se, 1);
2069dd75
PZ
3959 }
3960
18bf2805 3961 if (!se) {
85dac906 3962 dec_nr_running(rq);
18bf2805
BS
3963 update_rq_runnable_avg(rq, 1);
3964 }
a4c2f00f 3965 hrtick_update(rq);
bf0f6f24
IM
3966}
3967
e7693a36 3968#ifdef CONFIG_SMP
029632fb
PZ
3969/* Used instead of source_load when we know the type == 0 */
3970static unsigned long weighted_cpuload(const int cpu)
3971{
b92486cb 3972 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3973}
3974
3975/*
3976 * Return a low guess at the load of a migration-source cpu weighted
3977 * according to the scheduling class and "nice" value.
3978 *
3979 * We want to under-estimate the load of migration sources, to
3980 * balance conservatively.
3981 */
3982static unsigned long source_load(int cpu, int type)
3983{
3984 struct rq *rq = cpu_rq(cpu);
3985 unsigned long total = weighted_cpuload(cpu);
3986
3987 if (type == 0 || !sched_feat(LB_BIAS))
3988 return total;
3989
3990 return min(rq->cpu_load[type-1], total);
3991}
3992
3993/*
3994 * Return a high guess at the load of a migration-target cpu weighted
3995 * according to the scheduling class and "nice" value.
3996 */
3997static unsigned long target_load(int cpu, int type)
3998{
3999 struct rq *rq = cpu_rq(cpu);
4000 unsigned long total = weighted_cpuload(cpu);
4001
4002 if (type == 0 || !sched_feat(LB_BIAS))
4003 return total;
4004
4005 return max(rq->cpu_load[type-1], total);
4006}
4007
4008static unsigned long power_of(int cpu)
4009{
4010 return cpu_rq(cpu)->cpu_power;
4011}
4012
4013static unsigned long cpu_avg_load_per_task(int cpu)
4014{
4015 struct rq *rq = cpu_rq(cpu);
4016 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4017 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4018
4019 if (nr_running)
b92486cb 4020 return load_avg / nr_running;
029632fb
PZ
4021
4022 return 0;
4023}
4024
62470419
MW
4025static void record_wakee(struct task_struct *p)
4026{
4027 /*
4028 * Rough decay (wiping) for cost saving, don't worry
4029 * about the boundary, really active task won't care
4030 * about the loss.
4031 */
4032 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4033 current->wakee_flips = 0;
4034 current->wakee_flip_decay_ts = jiffies;
4035 }
4036
4037 if (current->last_wakee != p) {
4038 current->last_wakee = p;
4039 current->wakee_flips++;
4040 }
4041}
098fb9db 4042
74f8e4b2 4043static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4044{
4045 struct sched_entity *se = &p->se;
4046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4047 u64 min_vruntime;
4048
4049#ifndef CONFIG_64BIT
4050 u64 min_vruntime_copy;
88ec22d3 4051
3fe1698b
PZ
4052 do {
4053 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4054 smp_rmb();
4055 min_vruntime = cfs_rq->min_vruntime;
4056 } while (min_vruntime != min_vruntime_copy);
4057#else
4058 min_vruntime = cfs_rq->min_vruntime;
4059#endif
88ec22d3 4060
3fe1698b 4061 se->vruntime -= min_vruntime;
62470419 4062 record_wakee(p);
88ec22d3
PZ
4063}
4064
bb3469ac 4065#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4066/*
4067 * effective_load() calculates the load change as seen from the root_task_group
4068 *
4069 * Adding load to a group doesn't make a group heavier, but can cause movement
4070 * of group shares between cpus. Assuming the shares were perfectly aligned one
4071 * can calculate the shift in shares.
cf5f0acf
PZ
4072 *
4073 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4074 * on this @cpu and results in a total addition (subtraction) of @wg to the
4075 * total group weight.
4076 *
4077 * Given a runqueue weight distribution (rw_i) we can compute a shares
4078 * distribution (s_i) using:
4079 *
4080 * s_i = rw_i / \Sum rw_j (1)
4081 *
4082 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4083 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4084 * shares distribution (s_i):
4085 *
4086 * rw_i = { 2, 4, 1, 0 }
4087 * s_i = { 2/7, 4/7, 1/7, 0 }
4088 *
4089 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4090 * task used to run on and the CPU the waker is running on), we need to
4091 * compute the effect of waking a task on either CPU and, in case of a sync
4092 * wakeup, compute the effect of the current task going to sleep.
4093 *
4094 * So for a change of @wl to the local @cpu with an overall group weight change
4095 * of @wl we can compute the new shares distribution (s'_i) using:
4096 *
4097 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4098 *
4099 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4100 * differences in waking a task to CPU 0. The additional task changes the
4101 * weight and shares distributions like:
4102 *
4103 * rw'_i = { 3, 4, 1, 0 }
4104 * s'_i = { 3/8, 4/8, 1/8, 0 }
4105 *
4106 * We can then compute the difference in effective weight by using:
4107 *
4108 * dw_i = S * (s'_i - s_i) (3)
4109 *
4110 * Where 'S' is the group weight as seen by its parent.
4111 *
4112 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4113 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4114 * 4/7) times the weight of the group.
f5bfb7d9 4115 */
2069dd75 4116static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4117{
4be9daaa 4118 struct sched_entity *se = tg->se[cpu];
f1d239f7 4119
9722c2da 4120 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4121 return wl;
4122
4be9daaa 4123 for_each_sched_entity(se) {
cf5f0acf 4124 long w, W;
4be9daaa 4125
977dda7c 4126 tg = se->my_q->tg;
bb3469ac 4127
cf5f0acf
PZ
4128 /*
4129 * W = @wg + \Sum rw_j
4130 */
4131 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4132
cf5f0acf
PZ
4133 /*
4134 * w = rw_i + @wl
4135 */
4136 w = se->my_q->load.weight + wl;
940959e9 4137
cf5f0acf
PZ
4138 /*
4139 * wl = S * s'_i; see (2)
4140 */
4141 if (W > 0 && w < W)
4142 wl = (w * tg->shares) / W;
977dda7c
PT
4143 else
4144 wl = tg->shares;
940959e9 4145
cf5f0acf
PZ
4146 /*
4147 * Per the above, wl is the new se->load.weight value; since
4148 * those are clipped to [MIN_SHARES, ...) do so now. See
4149 * calc_cfs_shares().
4150 */
977dda7c
PT
4151 if (wl < MIN_SHARES)
4152 wl = MIN_SHARES;
cf5f0acf
PZ
4153
4154 /*
4155 * wl = dw_i = S * (s'_i - s_i); see (3)
4156 */
977dda7c 4157 wl -= se->load.weight;
cf5f0acf
PZ
4158
4159 /*
4160 * Recursively apply this logic to all parent groups to compute
4161 * the final effective load change on the root group. Since
4162 * only the @tg group gets extra weight, all parent groups can
4163 * only redistribute existing shares. @wl is the shift in shares
4164 * resulting from this level per the above.
4165 */
4be9daaa 4166 wg = 0;
4be9daaa 4167 }
bb3469ac 4168
4be9daaa 4169 return wl;
bb3469ac
PZ
4170}
4171#else
4be9daaa 4172
58d081b5 4173static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4174{
83378269 4175 return wl;
bb3469ac 4176}
4be9daaa 4177
bb3469ac
PZ
4178#endif
4179
62470419
MW
4180static int wake_wide(struct task_struct *p)
4181{
7d9ffa89 4182 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4183
4184 /*
4185 * Yeah, it's the switching-frequency, could means many wakee or
4186 * rapidly switch, use factor here will just help to automatically
4187 * adjust the loose-degree, so bigger node will lead to more pull.
4188 */
4189 if (p->wakee_flips > factor) {
4190 /*
4191 * wakee is somewhat hot, it needs certain amount of cpu
4192 * resource, so if waker is far more hot, prefer to leave
4193 * it alone.
4194 */
4195 if (current->wakee_flips > (factor * p->wakee_flips))
4196 return 1;
4197 }
4198
4199 return 0;
4200}
4201
c88d5910 4202static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4203{
e37b6a7b 4204 s64 this_load, load;
c88d5910 4205 int idx, this_cpu, prev_cpu;
098fb9db 4206 unsigned long tl_per_task;
c88d5910 4207 struct task_group *tg;
83378269 4208 unsigned long weight;
b3137bc8 4209 int balanced;
098fb9db 4210
62470419
MW
4211 /*
4212 * If we wake multiple tasks be careful to not bounce
4213 * ourselves around too much.
4214 */
4215 if (wake_wide(p))
4216 return 0;
4217
c88d5910
PZ
4218 idx = sd->wake_idx;
4219 this_cpu = smp_processor_id();
4220 prev_cpu = task_cpu(p);
4221 load = source_load(prev_cpu, idx);
4222 this_load = target_load(this_cpu, idx);
098fb9db 4223
b3137bc8
MG
4224 /*
4225 * If sync wakeup then subtract the (maximum possible)
4226 * effect of the currently running task from the load
4227 * of the current CPU:
4228 */
83378269
PZ
4229 if (sync) {
4230 tg = task_group(current);
4231 weight = current->se.load.weight;
4232
c88d5910 4233 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4234 load += effective_load(tg, prev_cpu, 0, -weight);
4235 }
b3137bc8 4236
83378269
PZ
4237 tg = task_group(p);
4238 weight = p->se.load.weight;
b3137bc8 4239
71a29aa7
PZ
4240 /*
4241 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4242 * due to the sync cause above having dropped this_load to 0, we'll
4243 * always have an imbalance, but there's really nothing you can do
4244 * about that, so that's good too.
71a29aa7
PZ
4245 *
4246 * Otherwise check if either cpus are near enough in load to allow this
4247 * task to be woken on this_cpu.
4248 */
e37b6a7b
PT
4249 if (this_load > 0) {
4250 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4251
4252 this_eff_load = 100;
4253 this_eff_load *= power_of(prev_cpu);
4254 this_eff_load *= this_load +
4255 effective_load(tg, this_cpu, weight, weight);
4256
4257 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4258 prev_eff_load *= power_of(this_cpu);
4259 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4260
4261 balanced = this_eff_load <= prev_eff_load;
4262 } else
4263 balanced = true;
b3137bc8 4264
098fb9db 4265 /*
4ae7d5ce
IM
4266 * If the currently running task will sleep within
4267 * a reasonable amount of time then attract this newly
4268 * woken task:
098fb9db 4269 */
2fb7635c
PZ
4270 if (sync && balanced)
4271 return 1;
098fb9db 4272
41acab88 4273 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4274 tl_per_task = cpu_avg_load_per_task(this_cpu);
4275
c88d5910
PZ
4276 if (balanced ||
4277 (this_load <= load &&
4278 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4279 /*
4280 * This domain has SD_WAKE_AFFINE and
4281 * p is cache cold in this domain, and
4282 * there is no bad imbalance.
4283 */
c88d5910 4284 schedstat_inc(sd, ttwu_move_affine);
41acab88 4285 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4286
4287 return 1;
4288 }
4289 return 0;
4290}
4291
aaee1203
PZ
4292/*
4293 * find_idlest_group finds and returns the least busy CPU group within the
4294 * domain.
4295 */
4296static struct sched_group *
78e7ed53 4297find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4298 int this_cpu, int sd_flag)
e7693a36 4299{
b3bd3de6 4300 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4301 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4302 int load_idx = sd->forkexec_idx;
aaee1203 4303 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4304
c44f2a02
VG
4305 if (sd_flag & SD_BALANCE_WAKE)
4306 load_idx = sd->wake_idx;
4307
aaee1203
PZ
4308 do {
4309 unsigned long load, avg_load;
4310 int local_group;
4311 int i;
e7693a36 4312
aaee1203
PZ
4313 /* Skip over this group if it has no CPUs allowed */
4314 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4315 tsk_cpus_allowed(p)))
aaee1203
PZ
4316 continue;
4317
4318 local_group = cpumask_test_cpu(this_cpu,
4319 sched_group_cpus(group));
4320
4321 /* Tally up the load of all CPUs in the group */
4322 avg_load = 0;
4323
4324 for_each_cpu(i, sched_group_cpus(group)) {
4325 /* Bias balancing toward cpus of our domain */
4326 if (local_group)
4327 load = source_load(i, load_idx);
4328 else
4329 load = target_load(i, load_idx);
4330
4331 avg_load += load;
4332 }
4333
4334 /* Adjust by relative CPU power of the group */
9c3f75cb 4335 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4336
4337 if (local_group) {
4338 this_load = avg_load;
aaee1203
PZ
4339 } else if (avg_load < min_load) {
4340 min_load = avg_load;
4341 idlest = group;
4342 }
4343 } while (group = group->next, group != sd->groups);
4344
4345 if (!idlest || 100*this_load < imbalance*min_load)
4346 return NULL;
4347 return idlest;
4348}
4349
4350/*
4351 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4352 */
4353static int
4354find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4355{
4356 unsigned long load, min_load = ULONG_MAX;
4357 int idlest = -1;
4358 int i;
4359
4360 /* Traverse only the allowed CPUs */
fa17b507 4361 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4362 load = weighted_cpuload(i);
4363
4364 if (load < min_load || (load == min_load && i == this_cpu)) {
4365 min_load = load;
4366 idlest = i;
e7693a36
GH
4367 }
4368 }
4369
aaee1203
PZ
4370 return idlest;
4371}
e7693a36 4372
a50bde51
PZ
4373/*
4374 * Try and locate an idle CPU in the sched_domain.
4375 */
99bd5e2f 4376static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4377{
99bd5e2f 4378 struct sched_domain *sd;
37407ea7 4379 struct sched_group *sg;
e0a79f52 4380 int i = task_cpu(p);
a50bde51 4381
e0a79f52
MG
4382 if (idle_cpu(target))
4383 return target;
99bd5e2f
SS
4384
4385 /*
e0a79f52 4386 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4387 */
e0a79f52
MG
4388 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4389 return i;
a50bde51
PZ
4390
4391 /*
37407ea7 4392 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4393 */
518cd623 4394 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4395 for_each_lower_domain(sd) {
37407ea7
LT
4396 sg = sd->groups;
4397 do {
4398 if (!cpumask_intersects(sched_group_cpus(sg),
4399 tsk_cpus_allowed(p)))
4400 goto next;
4401
4402 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4403 if (i == target || !idle_cpu(i))
37407ea7
LT
4404 goto next;
4405 }
970e1789 4406
37407ea7
LT
4407 target = cpumask_first_and(sched_group_cpus(sg),
4408 tsk_cpus_allowed(p));
4409 goto done;
4410next:
4411 sg = sg->next;
4412 } while (sg != sd->groups);
4413 }
4414done:
a50bde51
PZ
4415 return target;
4416}
4417
aaee1203 4418/*
de91b9cb
MR
4419 * select_task_rq_fair: Select target runqueue for the waking task in domains
4420 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4421 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4422 *
de91b9cb
MR
4423 * Balances load by selecting the idlest cpu in the idlest group, or under
4424 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4425 *
de91b9cb 4426 * Returns the target cpu number.
aaee1203
PZ
4427 *
4428 * preempt must be disabled.
4429 */
0017d735 4430static int
ac66f547 4431select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4432{
29cd8bae 4433 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4434 int cpu = smp_processor_id();
c88d5910 4435 int new_cpu = cpu;
99bd5e2f 4436 int want_affine = 0;
5158f4e4 4437 int sync = wake_flags & WF_SYNC;
c88d5910 4438
29baa747 4439 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4440 return prev_cpu;
4441
0763a660 4442 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4443 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4444 want_affine = 1;
4445 new_cpu = prev_cpu;
4446 }
aaee1203 4447
dce840a0 4448 rcu_read_lock();
aaee1203 4449 for_each_domain(cpu, tmp) {
e4f42888
PZ
4450 if (!(tmp->flags & SD_LOAD_BALANCE))
4451 continue;
4452
fe3bcfe1 4453 /*
99bd5e2f
SS
4454 * If both cpu and prev_cpu are part of this domain,
4455 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4456 */
99bd5e2f
SS
4457 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4458 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4459 affine_sd = tmp;
29cd8bae 4460 break;
f03542a7 4461 }
29cd8bae 4462
f03542a7 4463 if (tmp->flags & sd_flag)
29cd8bae
PZ
4464 sd = tmp;
4465 }
4466
8b911acd 4467 if (affine_sd) {
f03542a7 4468 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4469 prev_cpu = cpu;
4470
4471 new_cpu = select_idle_sibling(p, prev_cpu);
4472 goto unlock;
8b911acd 4473 }
e7693a36 4474
aaee1203
PZ
4475 while (sd) {
4476 struct sched_group *group;
c88d5910 4477 int weight;
098fb9db 4478
0763a660 4479 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4480 sd = sd->child;
4481 continue;
4482 }
098fb9db 4483
c44f2a02 4484 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4485 if (!group) {
4486 sd = sd->child;
4487 continue;
4488 }
4ae7d5ce 4489
d7c33c49 4490 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4491 if (new_cpu == -1 || new_cpu == cpu) {
4492 /* Now try balancing at a lower domain level of cpu */
4493 sd = sd->child;
4494 continue;
e7693a36 4495 }
aaee1203
PZ
4496
4497 /* Now try balancing at a lower domain level of new_cpu */
4498 cpu = new_cpu;
669c55e9 4499 weight = sd->span_weight;
aaee1203
PZ
4500 sd = NULL;
4501 for_each_domain(cpu, tmp) {
669c55e9 4502 if (weight <= tmp->span_weight)
aaee1203 4503 break;
0763a660 4504 if (tmp->flags & sd_flag)
aaee1203
PZ
4505 sd = tmp;
4506 }
4507 /* while loop will break here if sd == NULL */
e7693a36 4508 }
dce840a0
PZ
4509unlock:
4510 rcu_read_unlock();
e7693a36 4511
c88d5910 4512 return new_cpu;
e7693a36 4513}
0a74bef8
PT
4514
4515/*
4516 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4517 * cfs_rq_of(p) references at time of call are still valid and identify the
4518 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4519 * other assumptions, including the state of rq->lock, should be made.
4520 */
4521static void
4522migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4523{
aff3e498
PT
4524 struct sched_entity *se = &p->se;
4525 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4526
4527 /*
4528 * Load tracking: accumulate removed load so that it can be processed
4529 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4530 * to blocked load iff they have a positive decay-count. It can never
4531 * be negative here since on-rq tasks have decay-count == 0.
4532 */
4533 if (se->avg.decay_count) {
4534 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4535 atomic_long_add(se->avg.load_avg_contrib,
4536 &cfs_rq->removed_load);
aff3e498 4537 }
0a74bef8 4538}
e7693a36
GH
4539#endif /* CONFIG_SMP */
4540
e52fb7c0
PZ
4541static unsigned long
4542wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4543{
4544 unsigned long gran = sysctl_sched_wakeup_granularity;
4545
4546 /*
e52fb7c0
PZ
4547 * Since its curr running now, convert the gran from real-time
4548 * to virtual-time in his units.
13814d42
MG
4549 *
4550 * By using 'se' instead of 'curr' we penalize light tasks, so
4551 * they get preempted easier. That is, if 'se' < 'curr' then
4552 * the resulting gran will be larger, therefore penalizing the
4553 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4554 * be smaller, again penalizing the lighter task.
4555 *
4556 * This is especially important for buddies when the leftmost
4557 * task is higher priority than the buddy.
0bbd3336 4558 */
f4ad9bd2 4559 return calc_delta_fair(gran, se);
0bbd3336
PZ
4560}
4561
464b7527
PZ
4562/*
4563 * Should 'se' preempt 'curr'.
4564 *
4565 * |s1
4566 * |s2
4567 * |s3
4568 * g
4569 * |<--->|c
4570 *
4571 * w(c, s1) = -1
4572 * w(c, s2) = 0
4573 * w(c, s3) = 1
4574 *
4575 */
4576static int
4577wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4578{
4579 s64 gran, vdiff = curr->vruntime - se->vruntime;
4580
4581 if (vdiff <= 0)
4582 return -1;
4583
e52fb7c0 4584 gran = wakeup_gran(curr, se);
464b7527
PZ
4585 if (vdiff > gran)
4586 return 1;
4587
4588 return 0;
4589}
4590
02479099
PZ
4591static void set_last_buddy(struct sched_entity *se)
4592{
69c80f3e
VP
4593 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4594 return;
4595
4596 for_each_sched_entity(se)
4597 cfs_rq_of(se)->last = se;
02479099
PZ
4598}
4599
4600static void set_next_buddy(struct sched_entity *se)
4601{
69c80f3e
VP
4602 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4603 return;
4604
4605 for_each_sched_entity(se)
4606 cfs_rq_of(se)->next = se;
02479099
PZ
4607}
4608
ac53db59
RR
4609static void set_skip_buddy(struct sched_entity *se)
4610{
69c80f3e
VP
4611 for_each_sched_entity(se)
4612 cfs_rq_of(se)->skip = se;
ac53db59
RR
4613}
4614
bf0f6f24
IM
4615/*
4616 * Preempt the current task with a newly woken task if needed:
4617 */
5a9b86f6 4618static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4619{
4620 struct task_struct *curr = rq->curr;
8651a86c 4621 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4622 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4623 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4624 int next_buddy_marked = 0;
bf0f6f24 4625
4ae7d5ce
IM
4626 if (unlikely(se == pse))
4627 return;
4628
5238cdd3 4629 /*
ddcdf6e7 4630 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4631 * unconditionally check_prempt_curr() after an enqueue (which may have
4632 * lead to a throttle). This both saves work and prevents false
4633 * next-buddy nomination below.
4634 */
4635 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4636 return;
4637
2f36825b 4638 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4639 set_next_buddy(pse);
2f36825b
VP
4640 next_buddy_marked = 1;
4641 }
57fdc26d 4642
aec0a514
BR
4643 /*
4644 * We can come here with TIF_NEED_RESCHED already set from new task
4645 * wake up path.
5238cdd3
PT
4646 *
4647 * Note: this also catches the edge-case of curr being in a throttled
4648 * group (e.g. via set_curr_task), since update_curr() (in the
4649 * enqueue of curr) will have resulted in resched being set. This
4650 * prevents us from potentially nominating it as a false LAST_BUDDY
4651 * below.
aec0a514
BR
4652 */
4653 if (test_tsk_need_resched(curr))
4654 return;
4655
a2f5c9ab
DH
4656 /* Idle tasks are by definition preempted by non-idle tasks. */
4657 if (unlikely(curr->policy == SCHED_IDLE) &&
4658 likely(p->policy != SCHED_IDLE))
4659 goto preempt;
4660
91c234b4 4661 /*
a2f5c9ab
DH
4662 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4663 * is driven by the tick):
91c234b4 4664 */
8ed92e51 4665 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4666 return;
bf0f6f24 4667
464b7527 4668 find_matching_se(&se, &pse);
9bbd7374 4669 update_curr(cfs_rq_of(se));
002f128b 4670 BUG_ON(!pse);
2f36825b
VP
4671 if (wakeup_preempt_entity(se, pse) == 1) {
4672 /*
4673 * Bias pick_next to pick the sched entity that is
4674 * triggering this preemption.
4675 */
4676 if (!next_buddy_marked)
4677 set_next_buddy(pse);
3a7e73a2 4678 goto preempt;
2f36825b 4679 }
464b7527 4680
3a7e73a2 4681 return;
a65ac745 4682
3a7e73a2
PZ
4683preempt:
4684 resched_task(curr);
4685 /*
4686 * Only set the backward buddy when the current task is still
4687 * on the rq. This can happen when a wakeup gets interleaved
4688 * with schedule on the ->pre_schedule() or idle_balance()
4689 * point, either of which can * drop the rq lock.
4690 *
4691 * Also, during early boot the idle thread is in the fair class,
4692 * for obvious reasons its a bad idea to schedule back to it.
4693 */
4694 if (unlikely(!se->on_rq || curr == rq->idle))
4695 return;
4696
4697 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4698 set_last_buddy(se);
bf0f6f24
IM
4699}
4700
606dba2e
PZ
4701static struct task_struct *
4702pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4703{
4704 struct cfs_rq *cfs_rq = &rq->cfs;
4705 struct sched_entity *se;
678d5718 4706 struct task_struct *p;
37e117c0 4707 int new_tasks;
678d5718 4708
6e83125c 4709again:
678d5718
PZ
4710#ifdef CONFIG_FAIR_GROUP_SCHED
4711 if (!cfs_rq->nr_running)
38033c37 4712 goto idle;
678d5718 4713
3f1d2a31 4714 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4715 goto simple;
4716
4717 /*
4718 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4719 * likely that a next task is from the same cgroup as the current.
4720 *
4721 * Therefore attempt to avoid putting and setting the entire cgroup
4722 * hierarchy, only change the part that actually changes.
4723 */
4724
4725 do {
4726 struct sched_entity *curr = cfs_rq->curr;
4727
4728 /*
4729 * Since we got here without doing put_prev_entity() we also
4730 * have to consider cfs_rq->curr. If it is still a runnable
4731 * entity, update_curr() will update its vruntime, otherwise
4732 * forget we've ever seen it.
4733 */
4734 if (curr && curr->on_rq)
4735 update_curr(cfs_rq);
4736 else
4737 curr = NULL;
4738
4739 /*
4740 * This call to check_cfs_rq_runtime() will do the throttle and
4741 * dequeue its entity in the parent(s). Therefore the 'simple'
4742 * nr_running test will indeed be correct.
4743 */
4744 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4745 goto simple;
4746
4747 se = pick_next_entity(cfs_rq, curr);
4748 cfs_rq = group_cfs_rq(se);
4749 } while (cfs_rq);
4750
4751 p = task_of(se);
4752
4753 /*
4754 * Since we haven't yet done put_prev_entity and if the selected task
4755 * is a different task than we started out with, try and touch the
4756 * least amount of cfs_rqs.
4757 */
4758 if (prev != p) {
4759 struct sched_entity *pse = &prev->se;
4760
4761 while (!(cfs_rq = is_same_group(se, pse))) {
4762 int se_depth = se->depth;
4763 int pse_depth = pse->depth;
4764
4765 if (se_depth <= pse_depth) {
4766 put_prev_entity(cfs_rq_of(pse), pse);
4767 pse = parent_entity(pse);
4768 }
4769 if (se_depth >= pse_depth) {
4770 set_next_entity(cfs_rq_of(se), se);
4771 se = parent_entity(se);
4772 }
4773 }
4774
4775 put_prev_entity(cfs_rq, pse);
4776 set_next_entity(cfs_rq, se);
4777 }
4778
4779 if (hrtick_enabled(rq))
4780 hrtick_start_fair(rq, p);
4781
4782 return p;
4783simple:
4784 cfs_rq = &rq->cfs;
4785#endif
bf0f6f24 4786
36ace27e 4787 if (!cfs_rq->nr_running)
38033c37 4788 goto idle;
bf0f6f24 4789
3f1d2a31 4790 put_prev_task(rq, prev);
606dba2e 4791
bf0f6f24 4792 do {
678d5718 4793 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4794 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4795 cfs_rq = group_cfs_rq(se);
4796 } while (cfs_rq);
4797
8f4d37ec 4798 p = task_of(se);
678d5718 4799
b39e66ea
MG
4800 if (hrtick_enabled(rq))
4801 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4802
4803 return p;
38033c37
PZ
4804
4805idle:
e4aa358b 4806 new_tasks = idle_balance(rq);
37e117c0
PZ
4807 /*
4808 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4809 * possible for any higher priority task to appear. In that case we
4810 * must re-start the pick_next_entity() loop.
4811 */
e4aa358b 4812 if (new_tasks < 0)
37e117c0
PZ
4813 return RETRY_TASK;
4814
e4aa358b 4815 if (new_tasks > 0)
38033c37 4816 goto again;
38033c37
PZ
4817
4818 return NULL;
bf0f6f24
IM
4819}
4820
4821/*
4822 * Account for a descheduled task:
4823 */
31ee529c 4824static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4825{
4826 struct sched_entity *se = &prev->se;
4827 struct cfs_rq *cfs_rq;
4828
4829 for_each_sched_entity(se) {
4830 cfs_rq = cfs_rq_of(se);
ab6cde26 4831 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4832 }
4833}
4834
ac53db59
RR
4835/*
4836 * sched_yield() is very simple
4837 *
4838 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4839 */
4840static void yield_task_fair(struct rq *rq)
4841{
4842 struct task_struct *curr = rq->curr;
4843 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4844 struct sched_entity *se = &curr->se;
4845
4846 /*
4847 * Are we the only task in the tree?
4848 */
4849 if (unlikely(rq->nr_running == 1))
4850 return;
4851
4852 clear_buddies(cfs_rq, se);
4853
4854 if (curr->policy != SCHED_BATCH) {
4855 update_rq_clock(rq);
4856 /*
4857 * Update run-time statistics of the 'current'.
4858 */
4859 update_curr(cfs_rq);
916671c0
MG
4860 /*
4861 * Tell update_rq_clock() that we've just updated,
4862 * so we don't do microscopic update in schedule()
4863 * and double the fastpath cost.
4864 */
4865 rq->skip_clock_update = 1;
ac53db59
RR
4866 }
4867
4868 set_skip_buddy(se);
4869}
4870
d95f4122
MG
4871static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4872{
4873 struct sched_entity *se = &p->se;
4874
5238cdd3
PT
4875 /* throttled hierarchies are not runnable */
4876 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4877 return false;
4878
4879 /* Tell the scheduler that we'd really like pse to run next. */
4880 set_next_buddy(se);
4881
d95f4122
MG
4882 yield_task_fair(rq);
4883
4884 return true;
4885}
4886
681f3e68 4887#ifdef CONFIG_SMP
bf0f6f24 4888/**************************************************
e9c84cb8
PZ
4889 * Fair scheduling class load-balancing methods.
4890 *
4891 * BASICS
4892 *
4893 * The purpose of load-balancing is to achieve the same basic fairness the
4894 * per-cpu scheduler provides, namely provide a proportional amount of compute
4895 * time to each task. This is expressed in the following equation:
4896 *
4897 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4898 *
4899 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4900 * W_i,0 is defined as:
4901 *
4902 * W_i,0 = \Sum_j w_i,j (2)
4903 *
4904 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4905 * is derived from the nice value as per prio_to_weight[].
4906 *
4907 * The weight average is an exponential decay average of the instantaneous
4908 * weight:
4909 *
4910 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4911 *
4912 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4913 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4914 * can also include other factors [XXX].
4915 *
4916 * To achieve this balance we define a measure of imbalance which follows
4917 * directly from (1):
4918 *
4919 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4920 *
4921 * We them move tasks around to minimize the imbalance. In the continuous
4922 * function space it is obvious this converges, in the discrete case we get
4923 * a few fun cases generally called infeasible weight scenarios.
4924 *
4925 * [XXX expand on:
4926 * - infeasible weights;
4927 * - local vs global optima in the discrete case. ]
4928 *
4929 *
4930 * SCHED DOMAINS
4931 *
4932 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4933 * for all i,j solution, we create a tree of cpus that follows the hardware
4934 * topology where each level pairs two lower groups (or better). This results
4935 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4936 * tree to only the first of the previous level and we decrease the frequency
4937 * of load-balance at each level inv. proportional to the number of cpus in
4938 * the groups.
4939 *
4940 * This yields:
4941 *
4942 * log_2 n 1 n
4943 * \Sum { --- * --- * 2^i } = O(n) (5)
4944 * i = 0 2^i 2^i
4945 * `- size of each group
4946 * | | `- number of cpus doing load-balance
4947 * | `- freq
4948 * `- sum over all levels
4949 *
4950 * Coupled with a limit on how many tasks we can migrate every balance pass,
4951 * this makes (5) the runtime complexity of the balancer.
4952 *
4953 * An important property here is that each CPU is still (indirectly) connected
4954 * to every other cpu in at most O(log n) steps:
4955 *
4956 * The adjacency matrix of the resulting graph is given by:
4957 *
4958 * log_2 n
4959 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4960 * k = 0
4961 *
4962 * And you'll find that:
4963 *
4964 * A^(log_2 n)_i,j != 0 for all i,j (7)
4965 *
4966 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4967 * The task movement gives a factor of O(m), giving a convergence complexity
4968 * of:
4969 *
4970 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4971 *
4972 *
4973 * WORK CONSERVING
4974 *
4975 * In order to avoid CPUs going idle while there's still work to do, new idle
4976 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4977 * tree itself instead of relying on other CPUs to bring it work.
4978 *
4979 * This adds some complexity to both (5) and (8) but it reduces the total idle
4980 * time.
4981 *
4982 * [XXX more?]
4983 *
4984 *
4985 * CGROUPS
4986 *
4987 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4988 *
4989 * s_k,i
4990 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4991 * S_k
4992 *
4993 * Where
4994 *
4995 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4996 *
4997 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4998 *
4999 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5000 * property.
5001 *
5002 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5003 * rewrite all of this once again.]
5004 */
bf0f6f24 5005
ed387b78
HS
5006static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5007
0ec8aa00
PZ
5008enum fbq_type { regular, remote, all };
5009
ddcdf6e7 5010#define LBF_ALL_PINNED 0x01
367456c7 5011#define LBF_NEED_BREAK 0x02
6263322c
PZ
5012#define LBF_DST_PINNED 0x04
5013#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5014
5015struct lb_env {
5016 struct sched_domain *sd;
5017
ddcdf6e7 5018 struct rq *src_rq;
85c1e7da 5019 int src_cpu;
ddcdf6e7
PZ
5020
5021 int dst_cpu;
5022 struct rq *dst_rq;
5023
88b8dac0
SV
5024 struct cpumask *dst_grpmask;
5025 int new_dst_cpu;
ddcdf6e7 5026 enum cpu_idle_type idle;
bd939f45 5027 long imbalance;
b9403130
MW
5028 /* The set of CPUs under consideration for load-balancing */
5029 struct cpumask *cpus;
5030
ddcdf6e7 5031 unsigned int flags;
367456c7
PZ
5032
5033 unsigned int loop;
5034 unsigned int loop_break;
5035 unsigned int loop_max;
0ec8aa00
PZ
5036
5037 enum fbq_type fbq_type;
ddcdf6e7
PZ
5038};
5039
1e3c88bd 5040/*
ddcdf6e7 5041 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5042 * Both runqueues must be locked.
5043 */
ddcdf6e7 5044static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5045{
ddcdf6e7
PZ
5046 deactivate_task(env->src_rq, p, 0);
5047 set_task_cpu(p, env->dst_cpu);
5048 activate_task(env->dst_rq, p, 0);
5049 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5050}
5051
029632fb
PZ
5052/*
5053 * Is this task likely cache-hot:
5054 */
5055static int
6037dd1a 5056task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5057{
5058 s64 delta;
5059
5060 if (p->sched_class != &fair_sched_class)
5061 return 0;
5062
5063 if (unlikely(p->policy == SCHED_IDLE))
5064 return 0;
5065
5066 /*
5067 * Buddy candidates are cache hot:
5068 */
5069 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5070 (&p->se == cfs_rq_of(&p->se)->next ||
5071 &p->se == cfs_rq_of(&p->se)->last))
5072 return 1;
5073
5074 if (sysctl_sched_migration_cost == -1)
5075 return 1;
5076 if (sysctl_sched_migration_cost == 0)
5077 return 0;
5078
5079 delta = now - p->se.exec_start;
5080
5081 return delta < (s64)sysctl_sched_migration_cost;
5082}
5083
3a7053b3
MG
5084#ifdef CONFIG_NUMA_BALANCING
5085/* Returns true if the destination node has incurred more faults */
5086static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5087{
5088 int src_nid, dst_nid;
5089
ff1df896 5090 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5091 !(env->sd->flags & SD_NUMA)) {
5092 return false;
5093 }
5094
5095 src_nid = cpu_to_node(env->src_cpu);
5096 dst_nid = cpu_to_node(env->dst_cpu);
5097
83e1d2cd 5098 if (src_nid == dst_nid)
3a7053b3
MG
5099 return false;
5100
83e1d2cd
MG
5101 /* Always encourage migration to the preferred node. */
5102 if (dst_nid == p->numa_preferred_nid)
5103 return true;
5104
887c290e
RR
5105 /* If both task and group weight improve, this move is a winner. */
5106 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5107 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5108 return true;
5109
5110 return false;
5111}
7a0f3083
MG
5112
5113
5114static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5115{
5116 int src_nid, dst_nid;
5117
5118 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5119 return false;
5120
ff1df896 5121 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5122 return false;
5123
5124 src_nid = cpu_to_node(env->src_cpu);
5125 dst_nid = cpu_to_node(env->dst_cpu);
5126
83e1d2cd 5127 if (src_nid == dst_nid)
7a0f3083
MG
5128 return false;
5129
83e1d2cd
MG
5130 /* Migrating away from the preferred node is always bad. */
5131 if (src_nid == p->numa_preferred_nid)
5132 return true;
5133
887c290e
RR
5134 /* If either task or group weight get worse, don't do it. */
5135 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5136 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5137 return true;
5138
5139 return false;
5140}
5141
3a7053b3
MG
5142#else
5143static inline bool migrate_improves_locality(struct task_struct *p,
5144 struct lb_env *env)
5145{
5146 return false;
5147}
7a0f3083
MG
5148
5149static inline bool migrate_degrades_locality(struct task_struct *p,
5150 struct lb_env *env)
5151{
5152 return false;
5153}
3a7053b3
MG
5154#endif
5155
1e3c88bd
PZ
5156/*
5157 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5158 */
5159static
8e45cb54 5160int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5161{
5162 int tsk_cache_hot = 0;
5163 /*
5164 * We do not migrate tasks that are:
d3198084 5165 * 1) throttled_lb_pair, or
1e3c88bd 5166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5167 * 3) running (obviously), or
5168 * 4) are cache-hot on their current CPU.
1e3c88bd 5169 */
d3198084
JK
5170 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5171 return 0;
5172
ddcdf6e7 5173 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5174 int cpu;
88b8dac0 5175
41acab88 5176 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5177
6263322c
PZ
5178 env->flags |= LBF_SOME_PINNED;
5179
88b8dac0
SV
5180 /*
5181 * Remember if this task can be migrated to any other cpu in
5182 * our sched_group. We may want to revisit it if we couldn't
5183 * meet load balance goals by pulling other tasks on src_cpu.
5184 *
5185 * Also avoid computing new_dst_cpu if we have already computed
5186 * one in current iteration.
5187 */
6263322c 5188 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5189 return 0;
5190
e02e60c1
JK
5191 /* Prevent to re-select dst_cpu via env's cpus */
5192 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5193 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5194 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5195 env->new_dst_cpu = cpu;
5196 break;
5197 }
88b8dac0 5198 }
e02e60c1 5199
1e3c88bd
PZ
5200 return 0;
5201 }
88b8dac0
SV
5202
5203 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5204 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5205
ddcdf6e7 5206 if (task_running(env->src_rq, p)) {
41acab88 5207 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5208 return 0;
5209 }
5210
5211 /*
5212 * Aggressive migration if:
3a7053b3
MG
5213 * 1) destination numa is preferred
5214 * 2) task is cache cold, or
5215 * 3) too many balance attempts have failed.
1e3c88bd 5216 */
6037dd1a 5217 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5218 if (!tsk_cache_hot)
5219 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5220
5221 if (migrate_improves_locality(p, env)) {
5222#ifdef CONFIG_SCHEDSTATS
5223 if (tsk_cache_hot) {
5224 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5225 schedstat_inc(p, se.statistics.nr_forced_migrations);
5226 }
5227#endif
5228 return 1;
5229 }
5230
1e3c88bd 5231 if (!tsk_cache_hot ||
8e45cb54 5232 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5233
1e3c88bd 5234 if (tsk_cache_hot) {
8e45cb54 5235 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5236 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5237 }
4e2dcb73 5238
1e3c88bd
PZ
5239 return 1;
5240 }
5241
4e2dcb73
ZH
5242 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5243 return 0;
1e3c88bd
PZ
5244}
5245
897c395f
PZ
5246/*
5247 * move_one_task tries to move exactly one task from busiest to this_rq, as
5248 * part of active balancing operations within "domain".
5249 * Returns 1 if successful and 0 otherwise.
5250 *
5251 * Called with both runqueues locked.
5252 */
8e45cb54 5253static int move_one_task(struct lb_env *env)
897c395f
PZ
5254{
5255 struct task_struct *p, *n;
897c395f 5256
367456c7 5257 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5258 if (!can_migrate_task(p, env))
5259 continue;
897c395f 5260
367456c7
PZ
5261 move_task(p, env);
5262 /*
5263 * Right now, this is only the second place move_task()
5264 * is called, so we can safely collect move_task()
5265 * stats here rather than inside move_task().
5266 */
5267 schedstat_inc(env->sd, lb_gained[env->idle]);
5268 return 1;
897c395f 5269 }
897c395f
PZ
5270 return 0;
5271}
5272
eb95308e
PZ
5273static const unsigned int sched_nr_migrate_break = 32;
5274
5d6523eb 5275/*
bd939f45 5276 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5277 * this_rq, as part of a balancing operation within domain "sd".
5278 * Returns 1 if successful and 0 otherwise.
5279 *
5280 * Called with both runqueues locked.
5281 */
5282static int move_tasks(struct lb_env *env)
1e3c88bd 5283{
5d6523eb
PZ
5284 struct list_head *tasks = &env->src_rq->cfs_tasks;
5285 struct task_struct *p;
367456c7
PZ
5286 unsigned long load;
5287 int pulled = 0;
1e3c88bd 5288
bd939f45 5289 if (env->imbalance <= 0)
5d6523eb 5290 return 0;
1e3c88bd 5291
5d6523eb
PZ
5292 while (!list_empty(tasks)) {
5293 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5294
367456c7
PZ
5295 env->loop++;
5296 /* We've more or less seen every task there is, call it quits */
5d6523eb 5297 if (env->loop > env->loop_max)
367456c7 5298 break;
5d6523eb
PZ
5299
5300 /* take a breather every nr_migrate tasks */
367456c7 5301 if (env->loop > env->loop_break) {
eb95308e 5302 env->loop_break += sched_nr_migrate_break;
8e45cb54 5303 env->flags |= LBF_NEED_BREAK;
ee00e66f 5304 break;
a195f004 5305 }
1e3c88bd 5306
d3198084 5307 if (!can_migrate_task(p, env))
367456c7
PZ
5308 goto next;
5309
5310 load = task_h_load(p);
5d6523eb 5311
eb95308e 5312 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5313 goto next;
5314
bd939f45 5315 if ((load / 2) > env->imbalance)
367456c7 5316 goto next;
1e3c88bd 5317
ddcdf6e7 5318 move_task(p, env);
ee00e66f 5319 pulled++;
bd939f45 5320 env->imbalance -= load;
1e3c88bd
PZ
5321
5322#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5323 /*
5324 * NEWIDLE balancing is a source of latency, so preemptible
5325 * kernels will stop after the first task is pulled to minimize
5326 * the critical section.
5327 */
5d6523eb 5328 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5329 break;
1e3c88bd
PZ
5330#endif
5331
ee00e66f
PZ
5332 /*
5333 * We only want to steal up to the prescribed amount of
5334 * weighted load.
5335 */
bd939f45 5336 if (env->imbalance <= 0)
ee00e66f 5337 break;
367456c7
PZ
5338
5339 continue;
5340next:
5d6523eb 5341 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5342 }
5d6523eb 5343
1e3c88bd 5344 /*
ddcdf6e7
PZ
5345 * Right now, this is one of only two places move_task() is called,
5346 * so we can safely collect move_task() stats here rather than
5347 * inside move_task().
1e3c88bd 5348 */
8e45cb54 5349 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5350
5d6523eb 5351 return pulled;
1e3c88bd
PZ
5352}
5353
230059de 5354#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5355/*
5356 * update tg->load_weight by folding this cpu's load_avg
5357 */
48a16753 5358static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5359{
48a16753
PT
5360 struct sched_entity *se = tg->se[cpu];
5361 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5362
48a16753
PT
5363 /* throttled entities do not contribute to load */
5364 if (throttled_hierarchy(cfs_rq))
5365 return;
9e3081ca 5366
aff3e498 5367 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5368
82958366
PT
5369 if (se) {
5370 update_entity_load_avg(se, 1);
5371 /*
5372 * We pivot on our runnable average having decayed to zero for
5373 * list removal. This generally implies that all our children
5374 * have also been removed (modulo rounding error or bandwidth
5375 * control); however, such cases are rare and we can fix these
5376 * at enqueue.
5377 *
5378 * TODO: fix up out-of-order children on enqueue.
5379 */
5380 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5381 list_del_leaf_cfs_rq(cfs_rq);
5382 } else {
48a16753 5383 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5384 update_rq_runnable_avg(rq, rq->nr_running);
5385 }
9e3081ca
PZ
5386}
5387
48a16753 5388static void update_blocked_averages(int cpu)
9e3081ca 5389{
9e3081ca 5390 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5391 struct cfs_rq *cfs_rq;
5392 unsigned long flags;
9e3081ca 5393
48a16753
PT
5394 raw_spin_lock_irqsave(&rq->lock, flags);
5395 update_rq_clock(rq);
9763b67f
PZ
5396 /*
5397 * Iterates the task_group tree in a bottom up fashion, see
5398 * list_add_leaf_cfs_rq() for details.
5399 */
64660c86 5400 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5401 /*
5402 * Note: We may want to consider periodically releasing
5403 * rq->lock about these updates so that creating many task
5404 * groups does not result in continually extending hold time.
5405 */
5406 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5407 }
48a16753
PT
5408
5409 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5410}
5411
9763b67f 5412/*
68520796 5413 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5414 * This needs to be done in a top-down fashion because the load of a child
5415 * group is a fraction of its parents load.
5416 */
68520796 5417static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5418{
68520796
VD
5419 struct rq *rq = rq_of(cfs_rq);
5420 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5421 unsigned long now = jiffies;
68520796 5422 unsigned long load;
a35b6466 5423
68520796 5424 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5425 return;
5426
68520796
VD
5427 cfs_rq->h_load_next = NULL;
5428 for_each_sched_entity(se) {
5429 cfs_rq = cfs_rq_of(se);
5430 cfs_rq->h_load_next = se;
5431 if (cfs_rq->last_h_load_update == now)
5432 break;
5433 }
a35b6466 5434
68520796 5435 if (!se) {
7e3115ef 5436 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5437 cfs_rq->last_h_load_update = now;
5438 }
5439
5440 while ((se = cfs_rq->h_load_next) != NULL) {
5441 load = cfs_rq->h_load;
5442 load = div64_ul(load * se->avg.load_avg_contrib,
5443 cfs_rq->runnable_load_avg + 1);
5444 cfs_rq = group_cfs_rq(se);
5445 cfs_rq->h_load = load;
5446 cfs_rq->last_h_load_update = now;
5447 }
9763b67f
PZ
5448}
5449
367456c7 5450static unsigned long task_h_load(struct task_struct *p)
230059de 5451{
367456c7 5452 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5453
68520796 5454 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5455 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5456 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5457}
5458#else
48a16753 5459static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5460{
5461}
5462
367456c7 5463static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5464{
a003a25b 5465 return p->se.avg.load_avg_contrib;
1e3c88bd 5466}
230059de 5467#endif
1e3c88bd 5468
1e3c88bd 5469/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5470/*
5471 * sg_lb_stats - stats of a sched_group required for load_balancing
5472 */
5473struct sg_lb_stats {
5474 unsigned long avg_load; /*Avg load across the CPUs of the group */
5475 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5476 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5477 unsigned long load_per_task;
3ae11c90 5478 unsigned long group_power;
147c5fc2
PZ
5479 unsigned int sum_nr_running; /* Nr tasks running in the group */
5480 unsigned int group_capacity;
5481 unsigned int idle_cpus;
5482 unsigned int group_weight;
1e3c88bd 5483 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5484 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5485#ifdef CONFIG_NUMA_BALANCING
5486 unsigned int nr_numa_running;
5487 unsigned int nr_preferred_running;
5488#endif
1e3c88bd
PZ
5489};
5490
56cf515b
JK
5491/*
5492 * sd_lb_stats - Structure to store the statistics of a sched_domain
5493 * during load balancing.
5494 */
5495struct sd_lb_stats {
5496 struct sched_group *busiest; /* Busiest group in this sd */
5497 struct sched_group *local; /* Local group in this sd */
5498 unsigned long total_load; /* Total load of all groups in sd */
5499 unsigned long total_pwr; /* Total power of all groups in sd */
5500 unsigned long avg_load; /* Average load across all groups in sd */
5501
56cf515b 5502 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5503 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5504};
5505
147c5fc2
PZ
5506static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5507{
5508 /*
5509 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5510 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5511 * We must however clear busiest_stat::avg_load because
5512 * update_sd_pick_busiest() reads this before assignment.
5513 */
5514 *sds = (struct sd_lb_stats){
5515 .busiest = NULL,
5516 .local = NULL,
5517 .total_load = 0UL,
5518 .total_pwr = 0UL,
5519 .busiest_stat = {
5520 .avg_load = 0UL,
5521 },
5522 };
5523}
5524
1e3c88bd
PZ
5525/**
5526 * get_sd_load_idx - Obtain the load index for a given sched domain.
5527 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5528 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5529 *
5530 * Return: The load index.
1e3c88bd
PZ
5531 */
5532static inline int get_sd_load_idx(struct sched_domain *sd,
5533 enum cpu_idle_type idle)
5534{
5535 int load_idx;
5536
5537 switch (idle) {
5538 case CPU_NOT_IDLE:
5539 load_idx = sd->busy_idx;
5540 break;
5541
5542 case CPU_NEWLY_IDLE:
5543 load_idx = sd->newidle_idx;
5544 break;
5545 default:
5546 load_idx = sd->idle_idx;
5547 break;
5548 }
5549
5550 return load_idx;
5551}
5552
15f803c9 5553static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5554{
1399fa78 5555 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5556}
5557
5558unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5559{
5560 return default_scale_freq_power(sd, cpu);
5561}
5562
15f803c9 5563static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5564{
669c55e9 5565 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5566 unsigned long smt_gain = sd->smt_gain;
5567
5568 smt_gain /= weight;
5569
5570 return smt_gain;
5571}
5572
5573unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5574{
5575 return default_scale_smt_power(sd, cpu);
5576}
5577
15f803c9 5578static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5579{
5580 struct rq *rq = cpu_rq(cpu);
b654f7de 5581 u64 total, available, age_stamp, avg;
cadefd3d 5582 s64 delta;
1e3c88bd 5583
b654f7de
PZ
5584 /*
5585 * Since we're reading these variables without serialization make sure
5586 * we read them once before doing sanity checks on them.
5587 */
5588 age_stamp = ACCESS_ONCE(rq->age_stamp);
5589 avg = ACCESS_ONCE(rq->rt_avg);
5590
cadefd3d
PZ
5591 delta = rq_clock(rq) - age_stamp;
5592 if (unlikely(delta < 0))
5593 delta = 0;
5594
5595 total = sched_avg_period() + delta;
aa483808 5596
b654f7de 5597 if (unlikely(total < avg)) {
aa483808
VP
5598 /* Ensures that power won't end up being negative */
5599 available = 0;
5600 } else {
b654f7de 5601 available = total - avg;
aa483808 5602 }
1e3c88bd 5603
1399fa78
NR
5604 if (unlikely((s64)total < SCHED_POWER_SCALE))
5605 total = SCHED_POWER_SCALE;
1e3c88bd 5606
1399fa78 5607 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5608
5609 return div_u64(available, total);
5610}
5611
5612static void update_cpu_power(struct sched_domain *sd, int cpu)
5613{
669c55e9 5614 unsigned long weight = sd->span_weight;
1399fa78 5615 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5616 struct sched_group *sdg = sd->groups;
5617
1e3c88bd
PZ
5618 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5619 if (sched_feat(ARCH_POWER))
5620 power *= arch_scale_smt_power(sd, cpu);
5621 else
5622 power *= default_scale_smt_power(sd, cpu);
5623
1399fa78 5624 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5625 }
5626
9c3f75cb 5627 sdg->sgp->power_orig = power;
9d5efe05
SV
5628
5629 if (sched_feat(ARCH_POWER))
5630 power *= arch_scale_freq_power(sd, cpu);
5631 else
5632 power *= default_scale_freq_power(sd, cpu);
5633
1399fa78 5634 power >>= SCHED_POWER_SHIFT;
9d5efe05 5635
1e3c88bd 5636 power *= scale_rt_power(cpu);
1399fa78 5637 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5638
5639 if (!power)
5640 power = 1;
5641
e51fd5e2 5642 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5643 sdg->sgp->power = power;
1e3c88bd
PZ
5644}
5645
029632fb 5646void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5647{
5648 struct sched_domain *child = sd->child;
5649 struct sched_group *group, *sdg = sd->groups;
863bffc8 5650 unsigned long power, power_orig;
4ec4412e
VG
5651 unsigned long interval;
5652
5653 interval = msecs_to_jiffies(sd->balance_interval);
5654 interval = clamp(interval, 1UL, max_load_balance_interval);
5655 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5656
5657 if (!child) {
5658 update_cpu_power(sd, cpu);
5659 return;
5660 }
5661
863bffc8 5662 power_orig = power = 0;
1e3c88bd 5663
74a5ce20
PZ
5664 if (child->flags & SD_OVERLAP) {
5665 /*
5666 * SD_OVERLAP domains cannot assume that child groups
5667 * span the current group.
5668 */
5669
863bffc8 5670 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5671 struct sched_group_power *sgp;
5672 struct rq *rq = cpu_rq(cpu);
863bffc8 5673
9abf24d4
SD
5674 /*
5675 * build_sched_domains() -> init_sched_groups_power()
5676 * gets here before we've attached the domains to the
5677 * runqueues.
5678 *
5679 * Use power_of(), which is set irrespective of domains
5680 * in update_cpu_power().
5681 *
5682 * This avoids power/power_orig from being 0 and
5683 * causing divide-by-zero issues on boot.
5684 *
5685 * Runtime updates will correct power_orig.
5686 */
5687 if (unlikely(!rq->sd)) {
5688 power_orig += power_of(cpu);
5689 power += power_of(cpu);
5690 continue;
5691 }
863bffc8 5692
9abf24d4
SD
5693 sgp = rq->sd->groups->sgp;
5694 power_orig += sgp->power_orig;
5695 power += sgp->power;
863bffc8 5696 }
74a5ce20
PZ
5697 } else {
5698 /*
5699 * !SD_OVERLAP domains can assume that child groups
5700 * span the current group.
5701 */
5702
5703 group = child->groups;
5704 do {
863bffc8 5705 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5706 power += group->sgp->power;
5707 group = group->next;
5708 } while (group != child->groups);
5709 }
1e3c88bd 5710
863bffc8
PZ
5711 sdg->sgp->power_orig = power_orig;
5712 sdg->sgp->power = power;
1e3c88bd
PZ
5713}
5714
9d5efe05
SV
5715/*
5716 * Try and fix up capacity for tiny siblings, this is needed when
5717 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5718 * which on its own isn't powerful enough.
5719 *
5720 * See update_sd_pick_busiest() and check_asym_packing().
5721 */
5722static inline int
5723fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5724{
5725 /*
1399fa78 5726 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5727 */
a6c75f2f 5728 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5729 return 0;
5730
5731 /*
5732 * If ~90% of the cpu_power is still there, we're good.
5733 */
9c3f75cb 5734 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5735 return 1;
5736
5737 return 0;
5738}
5739
30ce5dab
PZ
5740/*
5741 * Group imbalance indicates (and tries to solve) the problem where balancing
5742 * groups is inadequate due to tsk_cpus_allowed() constraints.
5743 *
5744 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5745 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5746 * Something like:
5747 *
5748 * { 0 1 2 3 } { 4 5 6 7 }
5749 * * * * *
5750 *
5751 * If we were to balance group-wise we'd place two tasks in the first group and
5752 * two tasks in the second group. Clearly this is undesired as it will overload
5753 * cpu 3 and leave one of the cpus in the second group unused.
5754 *
5755 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5756 * by noticing the lower domain failed to reach balance and had difficulty
5757 * moving tasks due to affinity constraints.
30ce5dab
PZ
5758 *
5759 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5760 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5761 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5762 * to create an effective group imbalance.
5763 *
5764 * This is a somewhat tricky proposition since the next run might not find the
5765 * group imbalance and decide the groups need to be balanced again. A most
5766 * subtle and fragile situation.
5767 */
5768
6263322c 5769static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5770{
6263322c 5771 return group->sgp->imbalance;
30ce5dab
PZ
5772}
5773
b37d9316
PZ
5774/*
5775 * Compute the group capacity.
5776 *
c61037e9
PZ
5777 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5778 * first dividing out the smt factor and computing the actual number of cores
5779 * and limit power unit capacity with that.
b37d9316
PZ
5780 */
5781static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5782{
c61037e9
PZ
5783 unsigned int capacity, smt, cpus;
5784 unsigned int power, power_orig;
5785
5786 power = group->sgp->power;
5787 power_orig = group->sgp->power_orig;
5788 cpus = group->group_weight;
b37d9316 5789
c61037e9
PZ
5790 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5791 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5792 capacity = cpus / smt; /* cores */
b37d9316 5793
c61037e9 5794 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5795 if (!capacity)
5796 capacity = fix_small_capacity(env->sd, group);
5797
5798 return capacity;
5799}
5800
1e3c88bd
PZ
5801/**
5802 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5803 * @env: The load balancing environment.
1e3c88bd 5804 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5805 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5806 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5807 * @sgs: variable to hold the statistics for this group.
5808 */
bd939f45
PZ
5809static inline void update_sg_lb_stats(struct lb_env *env,
5810 struct sched_group *group, int load_idx,
23f0d209 5811 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5812{
30ce5dab 5813 unsigned long load;
bd939f45 5814 int i;
1e3c88bd 5815
b72ff13c
PZ
5816 memset(sgs, 0, sizeof(*sgs));
5817
b9403130 5818 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5819 struct rq *rq = cpu_rq(i);
5820
1e3c88bd 5821 /* Bias balancing toward cpus of our domain */
6263322c 5822 if (local_group)
04f733b4 5823 load = target_load(i, load_idx);
6263322c 5824 else
1e3c88bd 5825 load = source_load(i, load_idx);
1e3c88bd
PZ
5826
5827 sgs->group_load += load;
380c9077 5828 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5829#ifdef CONFIG_NUMA_BALANCING
5830 sgs->nr_numa_running += rq->nr_numa_running;
5831 sgs->nr_preferred_running += rq->nr_preferred_running;
5832#endif
1e3c88bd 5833 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5834 if (idle_cpu(i))
5835 sgs->idle_cpus++;
1e3c88bd
PZ
5836 }
5837
1e3c88bd 5838 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5839 sgs->group_power = group->sgp->power;
5840 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5841
dd5feea1 5842 if (sgs->sum_nr_running)
38d0f770 5843 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5844
aae6d3dd 5845 sgs->group_weight = group->group_weight;
fab47622 5846
b37d9316
PZ
5847 sgs->group_imb = sg_imbalanced(group);
5848 sgs->group_capacity = sg_capacity(env, group);
5849
fab47622
NR
5850 if (sgs->group_capacity > sgs->sum_nr_running)
5851 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5852}
5853
532cb4c4
MN
5854/**
5855 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5856 * @env: The load balancing environment.
532cb4c4
MN
5857 * @sds: sched_domain statistics
5858 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5859 * @sgs: sched_group statistics
532cb4c4
MN
5860 *
5861 * Determine if @sg is a busier group than the previously selected
5862 * busiest group.
e69f6186
YB
5863 *
5864 * Return: %true if @sg is a busier group than the previously selected
5865 * busiest group. %false otherwise.
532cb4c4 5866 */
bd939f45 5867static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5868 struct sd_lb_stats *sds,
5869 struct sched_group *sg,
bd939f45 5870 struct sg_lb_stats *sgs)
532cb4c4 5871{
56cf515b 5872 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5873 return false;
5874
5875 if (sgs->sum_nr_running > sgs->group_capacity)
5876 return true;
5877
5878 if (sgs->group_imb)
5879 return true;
5880
5881 /*
5882 * ASYM_PACKING needs to move all the work to the lowest
5883 * numbered CPUs in the group, therefore mark all groups
5884 * higher than ourself as busy.
5885 */
bd939f45
PZ
5886 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5887 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5888 if (!sds->busiest)
5889 return true;
5890
5891 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5892 return true;
5893 }
5894
5895 return false;
5896}
5897
0ec8aa00
PZ
5898#ifdef CONFIG_NUMA_BALANCING
5899static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5900{
5901 if (sgs->sum_nr_running > sgs->nr_numa_running)
5902 return regular;
5903 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5904 return remote;
5905 return all;
5906}
5907
5908static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5909{
5910 if (rq->nr_running > rq->nr_numa_running)
5911 return regular;
5912 if (rq->nr_running > rq->nr_preferred_running)
5913 return remote;
5914 return all;
5915}
5916#else
5917static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5918{
5919 return all;
5920}
5921
5922static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5923{
5924 return regular;
5925}
5926#endif /* CONFIG_NUMA_BALANCING */
5927
1e3c88bd 5928/**
461819ac 5929 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5930 * @env: The load balancing environment.
1e3c88bd
PZ
5931 * @sds: variable to hold the statistics for this sched_domain.
5932 */
0ec8aa00 5933static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5934{
bd939f45
PZ
5935 struct sched_domain *child = env->sd->child;
5936 struct sched_group *sg = env->sd->groups;
56cf515b 5937 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5938 int load_idx, prefer_sibling = 0;
5939
5940 if (child && child->flags & SD_PREFER_SIBLING)
5941 prefer_sibling = 1;
5942
bd939f45 5943 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5944
5945 do {
56cf515b 5946 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5947 int local_group;
5948
bd939f45 5949 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5950 if (local_group) {
5951 sds->local = sg;
5952 sgs = &sds->local_stat;
b72ff13c
PZ
5953
5954 if (env->idle != CPU_NEWLY_IDLE ||
5955 time_after_eq(jiffies, sg->sgp->next_update))
5956 update_group_power(env->sd, env->dst_cpu);
56cf515b 5957 }
1e3c88bd 5958
56cf515b 5959 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5960
b72ff13c
PZ
5961 if (local_group)
5962 goto next_group;
5963
1e3c88bd
PZ
5964 /*
5965 * In case the child domain prefers tasks go to siblings
532cb4c4 5966 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5967 * and move all the excess tasks away. We lower the capacity
5968 * of a group only if the local group has the capacity to fit
5969 * these excess tasks, i.e. nr_running < group_capacity. The
5970 * extra check prevents the case where you always pull from the
5971 * heaviest group when it is already under-utilized (possible
5972 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5973 */
b72ff13c
PZ
5974 if (prefer_sibling && sds->local &&
5975 sds->local_stat.group_has_capacity)
147c5fc2 5976 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5977
b72ff13c 5978 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5979 sds->busiest = sg;
56cf515b 5980 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5981 }
5982
b72ff13c
PZ
5983next_group:
5984 /* Now, start updating sd_lb_stats */
5985 sds->total_load += sgs->group_load;
5986 sds->total_pwr += sgs->group_power;
5987
532cb4c4 5988 sg = sg->next;
bd939f45 5989 } while (sg != env->sd->groups);
0ec8aa00
PZ
5990
5991 if (env->sd->flags & SD_NUMA)
5992 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5993}
5994
532cb4c4
MN
5995/**
5996 * check_asym_packing - Check to see if the group is packed into the
5997 * sched doman.
5998 *
5999 * This is primarily intended to used at the sibling level. Some
6000 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6001 * case of POWER7, it can move to lower SMT modes only when higher
6002 * threads are idle. When in lower SMT modes, the threads will
6003 * perform better since they share less core resources. Hence when we
6004 * have idle threads, we want them to be the higher ones.
6005 *
6006 * This packing function is run on idle threads. It checks to see if
6007 * the busiest CPU in this domain (core in the P7 case) has a higher
6008 * CPU number than the packing function is being run on. Here we are
6009 * assuming lower CPU number will be equivalent to lower a SMT thread
6010 * number.
6011 *
e69f6186 6012 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6013 * this CPU. The amount of the imbalance is returned in *imbalance.
6014 *
cd96891d 6015 * @env: The load balancing environment.
532cb4c4 6016 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6017 */
bd939f45 6018static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6019{
6020 int busiest_cpu;
6021
bd939f45 6022 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6023 return 0;
6024
6025 if (!sds->busiest)
6026 return 0;
6027
6028 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6029 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6030 return 0;
6031
bd939f45 6032 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6033 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6034 SCHED_POWER_SCALE);
bd939f45 6035
532cb4c4 6036 return 1;
1e3c88bd
PZ
6037}
6038
6039/**
6040 * fix_small_imbalance - Calculate the minor imbalance that exists
6041 * amongst the groups of a sched_domain, during
6042 * load balancing.
cd96891d 6043 * @env: The load balancing environment.
1e3c88bd 6044 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6045 */
bd939f45
PZ
6046static inline
6047void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6048{
6049 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6050 unsigned int imbn = 2;
dd5feea1 6051 unsigned long scaled_busy_load_per_task;
56cf515b 6052 struct sg_lb_stats *local, *busiest;
1e3c88bd 6053
56cf515b
JK
6054 local = &sds->local_stat;
6055 busiest = &sds->busiest_stat;
1e3c88bd 6056
56cf515b
JK
6057 if (!local->sum_nr_running)
6058 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6059 else if (busiest->load_per_task > local->load_per_task)
6060 imbn = 1;
dd5feea1 6061
56cf515b
JK
6062 scaled_busy_load_per_task =
6063 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6064 busiest->group_power;
56cf515b 6065
3029ede3
VD
6066 if (busiest->avg_load + scaled_busy_load_per_task >=
6067 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6068 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6069 return;
6070 }
6071
6072 /*
6073 * OK, we don't have enough imbalance to justify moving tasks,
6074 * however we may be able to increase total CPU power used by
6075 * moving them.
6076 */
6077
3ae11c90 6078 pwr_now += busiest->group_power *
56cf515b 6079 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6080 pwr_now += local->group_power *
56cf515b 6081 min(local->load_per_task, local->avg_load);
1399fa78 6082 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6083
6084 /* Amount of load we'd subtract */
a2cd4260 6085 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6086 pwr_move += busiest->group_power *
56cf515b 6087 min(busiest->load_per_task,
a2cd4260 6088 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6089 }
1e3c88bd
PZ
6090
6091 /* Amount of load we'd add */
3ae11c90 6092 if (busiest->avg_load * busiest->group_power <
56cf515b 6093 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6094 tmp = (busiest->avg_load * busiest->group_power) /
6095 local->group_power;
56cf515b
JK
6096 } else {
6097 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6098 local->group_power;
56cf515b 6099 }
3ae11c90
PZ
6100 pwr_move += local->group_power *
6101 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6102 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6103
6104 /* Move if we gain throughput */
6105 if (pwr_move > pwr_now)
56cf515b 6106 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6107}
6108
6109/**
6110 * calculate_imbalance - Calculate the amount of imbalance present within the
6111 * groups of a given sched_domain during load balance.
bd939f45 6112 * @env: load balance environment
1e3c88bd 6113 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6114 */
bd939f45 6115static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6116{
dd5feea1 6117 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6118 struct sg_lb_stats *local, *busiest;
6119
6120 local = &sds->local_stat;
56cf515b 6121 busiest = &sds->busiest_stat;
dd5feea1 6122
56cf515b 6123 if (busiest->group_imb) {
30ce5dab
PZ
6124 /*
6125 * In the group_imb case we cannot rely on group-wide averages
6126 * to ensure cpu-load equilibrium, look at wider averages. XXX
6127 */
56cf515b
JK
6128 busiest->load_per_task =
6129 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6130 }
6131
1e3c88bd
PZ
6132 /*
6133 * In the presence of smp nice balancing, certain scenarios can have
6134 * max load less than avg load(as we skip the groups at or below
6135 * its cpu_power, while calculating max_load..)
6136 */
b1885550
VD
6137 if (busiest->avg_load <= sds->avg_load ||
6138 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6139 env->imbalance = 0;
6140 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6141 }
6142
56cf515b 6143 if (!busiest->group_imb) {
dd5feea1
SS
6144 /*
6145 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6146 * Except of course for the group_imb case, since then we might
6147 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6148 */
56cf515b
JK
6149 load_above_capacity =
6150 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6151
1399fa78 6152 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6153 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6154 }
6155
6156 /*
6157 * We're trying to get all the cpus to the average_load, so we don't
6158 * want to push ourselves above the average load, nor do we wish to
6159 * reduce the max loaded cpu below the average load. At the same time,
6160 * we also don't want to reduce the group load below the group capacity
6161 * (so that we can implement power-savings policies etc). Thus we look
6162 * for the minimum possible imbalance.
dd5feea1 6163 */
30ce5dab 6164 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6165
6166 /* How much load to actually move to equalise the imbalance */
56cf515b 6167 env->imbalance = min(
3ae11c90
PZ
6168 max_pull * busiest->group_power,
6169 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6170 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6171
6172 /*
6173 * if *imbalance is less than the average load per runnable task
25985edc 6174 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6175 * a think about bumping its value to force at least one task to be
6176 * moved
6177 */
56cf515b 6178 if (env->imbalance < busiest->load_per_task)
bd939f45 6179 return fix_small_imbalance(env, sds);
1e3c88bd 6180}
fab47622 6181
1e3c88bd
PZ
6182/******* find_busiest_group() helpers end here *********************/
6183
6184/**
6185 * find_busiest_group - Returns the busiest group within the sched_domain
6186 * if there is an imbalance. If there isn't an imbalance, and
6187 * the user has opted for power-savings, it returns a group whose
6188 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6189 * such a group exists.
6190 *
6191 * Also calculates the amount of weighted load which should be moved
6192 * to restore balance.
6193 *
cd96891d 6194 * @env: The load balancing environment.
1e3c88bd 6195 *
e69f6186 6196 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6197 * - If no imbalance and user has opted for power-savings balance,
6198 * return the least loaded group whose CPUs can be
6199 * put to idle by rebalancing its tasks onto our group.
6200 */
56cf515b 6201static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6202{
56cf515b 6203 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6204 struct sd_lb_stats sds;
6205
147c5fc2 6206 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6207
6208 /*
6209 * Compute the various statistics relavent for load balancing at
6210 * this level.
6211 */
23f0d209 6212 update_sd_lb_stats(env, &sds);
56cf515b
JK
6213 local = &sds.local_stat;
6214 busiest = &sds.busiest_stat;
1e3c88bd 6215
bd939f45
PZ
6216 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6217 check_asym_packing(env, &sds))
532cb4c4
MN
6218 return sds.busiest;
6219
cc57aa8f 6220 /* There is no busy sibling group to pull tasks from */
56cf515b 6221 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6222 goto out_balanced;
6223
1399fa78 6224 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6225
866ab43e
PZ
6226 /*
6227 * If the busiest group is imbalanced the below checks don't
30ce5dab 6228 * work because they assume all things are equal, which typically
866ab43e
PZ
6229 * isn't true due to cpus_allowed constraints and the like.
6230 */
56cf515b 6231 if (busiest->group_imb)
866ab43e
PZ
6232 goto force_balance;
6233
cc57aa8f 6234 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6235 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6236 !busiest->group_has_capacity)
fab47622
NR
6237 goto force_balance;
6238
cc57aa8f
PZ
6239 /*
6240 * If the local group is more busy than the selected busiest group
6241 * don't try and pull any tasks.
6242 */
56cf515b 6243 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6244 goto out_balanced;
6245
cc57aa8f
PZ
6246 /*
6247 * Don't pull any tasks if this group is already above the domain
6248 * average load.
6249 */
56cf515b 6250 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6251 goto out_balanced;
6252
bd939f45 6253 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6254 /*
6255 * This cpu is idle. If the busiest group load doesn't
6256 * have more tasks than the number of available cpu's and
6257 * there is no imbalance between this and busiest group
6258 * wrt to idle cpu's, it is balanced.
6259 */
56cf515b
JK
6260 if ((local->idle_cpus < busiest->idle_cpus) &&
6261 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6262 goto out_balanced;
c186fafe
PZ
6263 } else {
6264 /*
6265 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6266 * imbalance_pct to be conservative.
6267 */
56cf515b
JK
6268 if (100 * busiest->avg_load <=
6269 env->sd->imbalance_pct * local->avg_load)
c186fafe 6270 goto out_balanced;
aae6d3dd 6271 }
1e3c88bd 6272
fab47622 6273force_balance:
1e3c88bd 6274 /* Looks like there is an imbalance. Compute it */
bd939f45 6275 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6276 return sds.busiest;
6277
6278out_balanced:
bd939f45 6279 env->imbalance = 0;
1e3c88bd
PZ
6280 return NULL;
6281}
6282
6283/*
6284 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6285 */
bd939f45 6286static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6287 struct sched_group *group)
1e3c88bd
PZ
6288{
6289 struct rq *busiest = NULL, *rq;
95a79b80 6290 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6291 int i;
6292
6906a408 6293 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6294 unsigned long power, capacity, wl;
6295 enum fbq_type rt;
6296
6297 rq = cpu_rq(i);
6298 rt = fbq_classify_rq(rq);
1e3c88bd 6299
0ec8aa00
PZ
6300 /*
6301 * We classify groups/runqueues into three groups:
6302 * - regular: there are !numa tasks
6303 * - remote: there are numa tasks that run on the 'wrong' node
6304 * - all: there is no distinction
6305 *
6306 * In order to avoid migrating ideally placed numa tasks,
6307 * ignore those when there's better options.
6308 *
6309 * If we ignore the actual busiest queue to migrate another
6310 * task, the next balance pass can still reduce the busiest
6311 * queue by moving tasks around inside the node.
6312 *
6313 * If we cannot move enough load due to this classification
6314 * the next pass will adjust the group classification and
6315 * allow migration of more tasks.
6316 *
6317 * Both cases only affect the total convergence complexity.
6318 */
6319 if (rt > env->fbq_type)
6320 continue;
6321
6322 power = power_of(i);
6323 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6324 if (!capacity)
bd939f45 6325 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6326
6e40f5bb 6327 wl = weighted_cpuload(i);
1e3c88bd 6328
6e40f5bb
TG
6329 /*
6330 * When comparing with imbalance, use weighted_cpuload()
6331 * which is not scaled with the cpu power.
6332 */
bd939f45 6333 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6334 continue;
6335
6e40f5bb
TG
6336 /*
6337 * For the load comparisons with the other cpu's, consider
6338 * the weighted_cpuload() scaled with the cpu power, so that
6339 * the load can be moved away from the cpu that is potentially
6340 * running at a lower capacity.
95a79b80
JK
6341 *
6342 * Thus we're looking for max(wl_i / power_i), crosswise
6343 * multiplication to rid ourselves of the division works out
6344 * to: wl_i * power_j > wl_j * power_i; where j is our
6345 * previous maximum.
6e40f5bb 6346 */
95a79b80
JK
6347 if (wl * busiest_power > busiest_load * power) {
6348 busiest_load = wl;
6349 busiest_power = power;
1e3c88bd
PZ
6350 busiest = rq;
6351 }
6352 }
6353
6354 return busiest;
6355}
6356
6357/*
6358 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6359 * so long as it is large enough.
6360 */
6361#define MAX_PINNED_INTERVAL 512
6362
6363/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6364DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6365
bd939f45 6366static int need_active_balance(struct lb_env *env)
1af3ed3d 6367{
bd939f45
PZ
6368 struct sched_domain *sd = env->sd;
6369
6370 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6371
6372 /*
6373 * ASYM_PACKING needs to force migrate tasks from busy but
6374 * higher numbered CPUs in order to pack all tasks in the
6375 * lowest numbered CPUs.
6376 */
bd939f45 6377 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6378 return 1;
1af3ed3d
PZ
6379 }
6380
6381 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6382}
6383
969c7921
TH
6384static int active_load_balance_cpu_stop(void *data);
6385
23f0d209
JK
6386static int should_we_balance(struct lb_env *env)
6387{
6388 struct sched_group *sg = env->sd->groups;
6389 struct cpumask *sg_cpus, *sg_mask;
6390 int cpu, balance_cpu = -1;
6391
6392 /*
6393 * In the newly idle case, we will allow all the cpu's
6394 * to do the newly idle load balance.
6395 */
6396 if (env->idle == CPU_NEWLY_IDLE)
6397 return 1;
6398
6399 sg_cpus = sched_group_cpus(sg);
6400 sg_mask = sched_group_mask(sg);
6401 /* Try to find first idle cpu */
6402 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6403 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6404 continue;
6405
6406 balance_cpu = cpu;
6407 break;
6408 }
6409
6410 if (balance_cpu == -1)
6411 balance_cpu = group_balance_cpu(sg);
6412
6413 /*
6414 * First idle cpu or the first cpu(busiest) in this sched group
6415 * is eligible for doing load balancing at this and above domains.
6416 */
b0cff9d8 6417 return balance_cpu == env->dst_cpu;
23f0d209
JK
6418}
6419
1e3c88bd
PZ
6420/*
6421 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6422 * tasks if there is an imbalance.
6423 */
6424static int load_balance(int this_cpu, struct rq *this_rq,
6425 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6426 int *continue_balancing)
1e3c88bd 6427{
88b8dac0 6428 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6429 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6430 struct sched_group *group;
1e3c88bd
PZ
6431 struct rq *busiest;
6432 unsigned long flags;
e6252c3e 6433 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6434
8e45cb54
PZ
6435 struct lb_env env = {
6436 .sd = sd,
ddcdf6e7
PZ
6437 .dst_cpu = this_cpu,
6438 .dst_rq = this_rq,
88b8dac0 6439 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6440 .idle = idle,
eb95308e 6441 .loop_break = sched_nr_migrate_break,
b9403130 6442 .cpus = cpus,
0ec8aa00 6443 .fbq_type = all,
8e45cb54
PZ
6444 };
6445
cfc03118
JK
6446 /*
6447 * For NEWLY_IDLE load_balancing, we don't need to consider
6448 * other cpus in our group
6449 */
e02e60c1 6450 if (idle == CPU_NEWLY_IDLE)
cfc03118 6451 env.dst_grpmask = NULL;
cfc03118 6452
1e3c88bd
PZ
6453 cpumask_copy(cpus, cpu_active_mask);
6454
1e3c88bd
PZ
6455 schedstat_inc(sd, lb_count[idle]);
6456
6457redo:
23f0d209
JK
6458 if (!should_we_balance(&env)) {
6459 *continue_balancing = 0;
1e3c88bd 6460 goto out_balanced;
23f0d209 6461 }
1e3c88bd 6462
23f0d209 6463 group = find_busiest_group(&env);
1e3c88bd
PZ
6464 if (!group) {
6465 schedstat_inc(sd, lb_nobusyg[idle]);
6466 goto out_balanced;
6467 }
6468
b9403130 6469 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6470 if (!busiest) {
6471 schedstat_inc(sd, lb_nobusyq[idle]);
6472 goto out_balanced;
6473 }
6474
78feefc5 6475 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6476
bd939f45 6477 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6478
6479 ld_moved = 0;
6480 if (busiest->nr_running > 1) {
6481 /*
6482 * Attempt to move tasks. If find_busiest_group has found
6483 * an imbalance but busiest->nr_running <= 1, the group is
6484 * still unbalanced. ld_moved simply stays zero, so it is
6485 * correctly treated as an imbalance.
6486 */
8e45cb54 6487 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6488 env.src_cpu = busiest->cpu;
6489 env.src_rq = busiest;
6490 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6491
5d6523eb 6492more_balance:
1e3c88bd 6493 local_irq_save(flags);
78feefc5 6494 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6495
6496 /*
6497 * cur_ld_moved - load moved in current iteration
6498 * ld_moved - cumulative load moved across iterations
6499 */
6500 cur_ld_moved = move_tasks(&env);
6501 ld_moved += cur_ld_moved;
78feefc5 6502 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6503 local_irq_restore(flags);
6504
6505 /*
6506 * some other cpu did the load balance for us.
6507 */
88b8dac0
SV
6508 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6509 resched_cpu(env.dst_cpu);
6510
f1cd0858
JK
6511 if (env.flags & LBF_NEED_BREAK) {
6512 env.flags &= ~LBF_NEED_BREAK;
6513 goto more_balance;
6514 }
6515
88b8dac0
SV
6516 /*
6517 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6518 * us and move them to an alternate dst_cpu in our sched_group
6519 * where they can run. The upper limit on how many times we
6520 * iterate on same src_cpu is dependent on number of cpus in our
6521 * sched_group.
6522 *
6523 * This changes load balance semantics a bit on who can move
6524 * load to a given_cpu. In addition to the given_cpu itself
6525 * (or a ilb_cpu acting on its behalf where given_cpu is
6526 * nohz-idle), we now have balance_cpu in a position to move
6527 * load to given_cpu. In rare situations, this may cause
6528 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6529 * _independently_ and at _same_ time to move some load to
6530 * given_cpu) causing exceess load to be moved to given_cpu.
6531 * This however should not happen so much in practice and
6532 * moreover subsequent load balance cycles should correct the
6533 * excess load moved.
6534 */
6263322c 6535 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6536
7aff2e3a
VD
6537 /* Prevent to re-select dst_cpu via env's cpus */
6538 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6539
78feefc5 6540 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6541 env.dst_cpu = env.new_dst_cpu;
6263322c 6542 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6543 env.loop = 0;
6544 env.loop_break = sched_nr_migrate_break;
e02e60c1 6545
88b8dac0
SV
6546 /*
6547 * Go back to "more_balance" rather than "redo" since we
6548 * need to continue with same src_cpu.
6549 */
6550 goto more_balance;
6551 }
1e3c88bd 6552
6263322c
PZ
6553 /*
6554 * We failed to reach balance because of affinity.
6555 */
6556 if (sd_parent) {
6557 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6558
6559 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6560 *group_imbalance = 1;
6561 } else if (*group_imbalance)
6562 *group_imbalance = 0;
6563 }
6564
1e3c88bd 6565 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6566 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6567 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6568 if (!cpumask_empty(cpus)) {
6569 env.loop = 0;
6570 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6571 goto redo;
bbf18b19 6572 }
1e3c88bd
PZ
6573 goto out_balanced;
6574 }
6575 }
6576
6577 if (!ld_moved) {
6578 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6579 /*
6580 * Increment the failure counter only on periodic balance.
6581 * We do not want newidle balance, which can be very
6582 * frequent, pollute the failure counter causing
6583 * excessive cache_hot migrations and active balances.
6584 */
6585 if (idle != CPU_NEWLY_IDLE)
6586 sd->nr_balance_failed++;
1e3c88bd 6587
bd939f45 6588 if (need_active_balance(&env)) {
1e3c88bd
PZ
6589 raw_spin_lock_irqsave(&busiest->lock, flags);
6590
969c7921
TH
6591 /* don't kick the active_load_balance_cpu_stop,
6592 * if the curr task on busiest cpu can't be
6593 * moved to this_cpu
1e3c88bd
PZ
6594 */
6595 if (!cpumask_test_cpu(this_cpu,
fa17b507 6596 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6597 raw_spin_unlock_irqrestore(&busiest->lock,
6598 flags);
8e45cb54 6599 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6600 goto out_one_pinned;
6601 }
6602
969c7921
TH
6603 /*
6604 * ->active_balance synchronizes accesses to
6605 * ->active_balance_work. Once set, it's cleared
6606 * only after active load balance is finished.
6607 */
1e3c88bd
PZ
6608 if (!busiest->active_balance) {
6609 busiest->active_balance = 1;
6610 busiest->push_cpu = this_cpu;
6611 active_balance = 1;
6612 }
6613 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6614
bd939f45 6615 if (active_balance) {
969c7921
TH
6616 stop_one_cpu_nowait(cpu_of(busiest),
6617 active_load_balance_cpu_stop, busiest,
6618 &busiest->active_balance_work);
bd939f45 6619 }
1e3c88bd
PZ
6620
6621 /*
6622 * We've kicked active balancing, reset the failure
6623 * counter.
6624 */
6625 sd->nr_balance_failed = sd->cache_nice_tries+1;
6626 }
6627 } else
6628 sd->nr_balance_failed = 0;
6629
6630 if (likely(!active_balance)) {
6631 /* We were unbalanced, so reset the balancing interval */
6632 sd->balance_interval = sd->min_interval;
6633 } else {
6634 /*
6635 * If we've begun active balancing, start to back off. This
6636 * case may not be covered by the all_pinned logic if there
6637 * is only 1 task on the busy runqueue (because we don't call
6638 * move_tasks).
6639 */
6640 if (sd->balance_interval < sd->max_interval)
6641 sd->balance_interval *= 2;
6642 }
6643
1e3c88bd
PZ
6644 goto out;
6645
6646out_balanced:
6647 schedstat_inc(sd, lb_balanced[idle]);
6648
6649 sd->nr_balance_failed = 0;
6650
6651out_one_pinned:
6652 /* tune up the balancing interval */
8e45cb54 6653 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6654 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6655 (sd->balance_interval < sd->max_interval))
6656 sd->balance_interval *= 2;
6657
46e49b38 6658 ld_moved = 0;
1e3c88bd 6659out:
1e3c88bd
PZ
6660 return ld_moved;
6661}
6662
1e3c88bd
PZ
6663/*
6664 * idle_balance is called by schedule() if this_cpu is about to become
6665 * idle. Attempts to pull tasks from other CPUs.
6666 */
6e83125c 6667static int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6668{
6669 struct sched_domain *sd;
6670 int pulled_task = 0;
6671 unsigned long next_balance = jiffies + HZ;
9bd721c5 6672 u64 curr_cost = 0;
b4f2ab43 6673 int this_cpu = this_rq->cpu;
1e3c88bd 6674
6e83125c 6675 idle_enter_fair(this_rq);
0e5b5337 6676
6e83125c
PZ
6677 /*
6678 * We must set idle_stamp _before_ calling idle_balance(), such that we
6679 * measure the duration of idle_balance() as idle time.
6680 */
6681 this_rq->idle_stamp = rq_clock(this_rq);
6682
1e3c88bd 6683 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6e83125c 6684 goto out;
1e3c88bd 6685
f492e12e
PZ
6686 /*
6687 * Drop the rq->lock, but keep IRQ/preempt disabled.
6688 */
6689 raw_spin_unlock(&this_rq->lock);
6690
48a16753 6691 update_blocked_averages(this_cpu);
dce840a0 6692 rcu_read_lock();
1e3c88bd
PZ
6693 for_each_domain(this_cpu, sd) {
6694 unsigned long interval;
23f0d209 6695 int continue_balancing = 1;
9bd721c5 6696 u64 t0, domain_cost;
1e3c88bd
PZ
6697
6698 if (!(sd->flags & SD_LOAD_BALANCE))
6699 continue;
6700
9bd721c5
JL
6701 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6702 break;
6703
f492e12e 6704 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6705 t0 = sched_clock_cpu(this_cpu);
6706
1e3c88bd 6707 /* If we've pulled tasks over stop searching: */
f492e12e 6708 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6709 sd, CPU_NEWLY_IDLE,
6710 &continue_balancing);
9bd721c5
JL
6711
6712 domain_cost = sched_clock_cpu(this_cpu) - t0;
6713 if (domain_cost > sd->max_newidle_lb_cost)
6714 sd->max_newidle_lb_cost = domain_cost;
6715
6716 curr_cost += domain_cost;
f492e12e 6717 }
1e3c88bd
PZ
6718
6719 interval = msecs_to_jiffies(sd->balance_interval);
6720 if (time_after(next_balance, sd->last_balance + interval))
6721 next_balance = sd->last_balance + interval;
3c4017c1 6722 if (pulled_task)
1e3c88bd 6723 break;
1e3c88bd 6724 }
dce840a0 6725 rcu_read_unlock();
f492e12e
PZ
6726
6727 raw_spin_lock(&this_rq->lock);
6728
0e5b5337
JL
6729 if (curr_cost > this_rq->max_idle_balance_cost)
6730 this_rq->max_idle_balance_cost = curr_cost;
6731
e5fc6611 6732 /*
0e5b5337
JL
6733 * While browsing the domains, we released the rq lock, a task could
6734 * have been enqueued in the meantime. Since we're not going idle,
6735 * pretend we pulled a task.
e5fc6611 6736 */
0e5b5337 6737 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6738 pulled_task = 1;
e5fc6611 6739
1e3c88bd
PZ
6740 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6741 /*
6742 * We are going idle. next_balance may be set based on
6743 * a busy processor. So reset next_balance.
6744 */
6745 this_rq->next_balance = next_balance;
6746 }
9bd721c5 6747
6e83125c 6748out:
e4aa358b 6749 /* Is there a task of a high priority class? */
46383648 6750 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6751 pulled_task = -1;
6752
6753 if (pulled_task) {
6754 idle_exit_fair(this_rq);
6e83125c 6755 this_rq->idle_stamp = 0;
e4aa358b 6756 }
6e83125c 6757
3c4017c1 6758 return pulled_task;
1e3c88bd
PZ
6759}
6760
6761/*
969c7921
TH
6762 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6763 * running tasks off the busiest CPU onto idle CPUs. It requires at
6764 * least 1 task to be running on each physical CPU where possible, and
6765 * avoids physical / logical imbalances.
1e3c88bd 6766 */
969c7921 6767static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6768{
969c7921
TH
6769 struct rq *busiest_rq = data;
6770 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6771 int target_cpu = busiest_rq->push_cpu;
969c7921 6772 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6773 struct sched_domain *sd;
969c7921
TH
6774
6775 raw_spin_lock_irq(&busiest_rq->lock);
6776
6777 /* make sure the requested cpu hasn't gone down in the meantime */
6778 if (unlikely(busiest_cpu != smp_processor_id() ||
6779 !busiest_rq->active_balance))
6780 goto out_unlock;
1e3c88bd
PZ
6781
6782 /* Is there any task to move? */
6783 if (busiest_rq->nr_running <= 1)
969c7921 6784 goto out_unlock;
1e3c88bd
PZ
6785
6786 /*
6787 * This condition is "impossible", if it occurs
6788 * we need to fix it. Originally reported by
6789 * Bjorn Helgaas on a 128-cpu setup.
6790 */
6791 BUG_ON(busiest_rq == target_rq);
6792
6793 /* move a task from busiest_rq to target_rq */
6794 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6795
6796 /* Search for an sd spanning us and the target CPU. */
dce840a0 6797 rcu_read_lock();
1e3c88bd
PZ
6798 for_each_domain(target_cpu, sd) {
6799 if ((sd->flags & SD_LOAD_BALANCE) &&
6800 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6801 break;
6802 }
6803
6804 if (likely(sd)) {
8e45cb54
PZ
6805 struct lb_env env = {
6806 .sd = sd,
ddcdf6e7
PZ
6807 .dst_cpu = target_cpu,
6808 .dst_rq = target_rq,
6809 .src_cpu = busiest_rq->cpu,
6810 .src_rq = busiest_rq,
8e45cb54
PZ
6811 .idle = CPU_IDLE,
6812 };
6813
1e3c88bd
PZ
6814 schedstat_inc(sd, alb_count);
6815
8e45cb54 6816 if (move_one_task(&env))
1e3c88bd
PZ
6817 schedstat_inc(sd, alb_pushed);
6818 else
6819 schedstat_inc(sd, alb_failed);
6820 }
dce840a0 6821 rcu_read_unlock();
1e3c88bd 6822 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6823out_unlock:
6824 busiest_rq->active_balance = 0;
6825 raw_spin_unlock_irq(&busiest_rq->lock);
6826 return 0;
1e3c88bd
PZ
6827}
6828
d987fc7f
MG
6829static inline int on_null_domain(struct rq *rq)
6830{
6831 return unlikely(!rcu_dereference_sched(rq->sd));
6832}
6833
3451d024 6834#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6835/*
6836 * idle load balancing details
83cd4fe2
VP
6837 * - When one of the busy CPUs notice that there may be an idle rebalancing
6838 * needed, they will kick the idle load balancer, which then does idle
6839 * load balancing for all the idle CPUs.
6840 */
1e3c88bd 6841static struct {
83cd4fe2 6842 cpumask_var_t idle_cpus_mask;
0b005cf5 6843 atomic_t nr_cpus;
83cd4fe2
VP
6844 unsigned long next_balance; /* in jiffy units */
6845} nohz ____cacheline_aligned;
1e3c88bd 6846
3dd0337d 6847static inline int find_new_ilb(void)
1e3c88bd 6848{
0b005cf5 6849 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6850
786d6dc7
SS
6851 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6852 return ilb;
6853
6854 return nr_cpu_ids;
1e3c88bd 6855}
1e3c88bd 6856
83cd4fe2
VP
6857/*
6858 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6859 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6860 * CPU (if there is one).
6861 */
0aeeeeba 6862static void nohz_balancer_kick(void)
83cd4fe2
VP
6863{
6864 int ilb_cpu;
6865
6866 nohz.next_balance++;
6867
3dd0337d 6868 ilb_cpu = find_new_ilb();
83cd4fe2 6869
0b005cf5
SS
6870 if (ilb_cpu >= nr_cpu_ids)
6871 return;
83cd4fe2 6872
cd490c5b 6873 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6874 return;
6875 /*
6876 * Use smp_send_reschedule() instead of resched_cpu().
6877 * This way we generate a sched IPI on the target cpu which
6878 * is idle. And the softirq performing nohz idle load balance
6879 * will be run before returning from the IPI.
6880 */
6881 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6882 return;
6883}
6884
c1cc017c 6885static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6886{
6887 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6888 /*
6889 * Completely isolated CPUs don't ever set, so we must test.
6890 */
6891 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6892 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6893 atomic_dec(&nohz.nr_cpus);
6894 }
71325960
SS
6895 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6896 }
6897}
6898
69e1e811
SS
6899static inline void set_cpu_sd_state_busy(void)
6900{
6901 struct sched_domain *sd;
37dc6b50 6902 int cpu = smp_processor_id();
69e1e811 6903
69e1e811 6904 rcu_read_lock();
37dc6b50 6905 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6906
6907 if (!sd || !sd->nohz_idle)
6908 goto unlock;
6909 sd->nohz_idle = 0;
6910
37dc6b50 6911 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6912unlock:
69e1e811
SS
6913 rcu_read_unlock();
6914}
6915
6916void set_cpu_sd_state_idle(void)
6917{
6918 struct sched_domain *sd;
37dc6b50 6919 int cpu = smp_processor_id();
69e1e811 6920
69e1e811 6921 rcu_read_lock();
37dc6b50 6922 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6923
6924 if (!sd || sd->nohz_idle)
6925 goto unlock;
6926 sd->nohz_idle = 1;
6927
37dc6b50 6928 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6929unlock:
69e1e811
SS
6930 rcu_read_unlock();
6931}
6932
1e3c88bd 6933/*
c1cc017c 6934 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6935 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6936 */
c1cc017c 6937void nohz_balance_enter_idle(int cpu)
1e3c88bd 6938{
71325960
SS
6939 /*
6940 * If this cpu is going down, then nothing needs to be done.
6941 */
6942 if (!cpu_active(cpu))
6943 return;
6944
c1cc017c
AS
6945 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6946 return;
1e3c88bd 6947
d987fc7f
MG
6948 /*
6949 * If we're a completely isolated CPU, we don't play.
6950 */
6951 if (on_null_domain(cpu_rq(cpu)))
6952 return;
6953
c1cc017c
AS
6954 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6955 atomic_inc(&nohz.nr_cpus);
6956 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6957}
71325960 6958
0db0628d 6959static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6960 unsigned long action, void *hcpu)
6961{
6962 switch (action & ~CPU_TASKS_FROZEN) {
6963 case CPU_DYING:
c1cc017c 6964 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6965 return NOTIFY_OK;
6966 default:
6967 return NOTIFY_DONE;
6968 }
6969}
1e3c88bd
PZ
6970#endif
6971
6972static DEFINE_SPINLOCK(balancing);
6973
49c022e6
PZ
6974/*
6975 * Scale the max load_balance interval with the number of CPUs in the system.
6976 * This trades load-balance latency on larger machines for less cross talk.
6977 */
029632fb 6978void update_max_interval(void)
49c022e6
PZ
6979{
6980 max_load_balance_interval = HZ*num_online_cpus()/10;
6981}
6982
1e3c88bd
PZ
6983/*
6984 * It checks each scheduling domain to see if it is due to be balanced,
6985 * and initiates a balancing operation if so.
6986 *
b9b0853a 6987 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6988 */
f7ed0a89 6989static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6990{
23f0d209 6991 int continue_balancing = 1;
f7ed0a89 6992 int cpu = rq->cpu;
1e3c88bd 6993 unsigned long interval;
04f733b4 6994 struct sched_domain *sd;
1e3c88bd
PZ
6995 /* Earliest time when we have to do rebalance again */
6996 unsigned long next_balance = jiffies + 60*HZ;
6997 int update_next_balance = 0;
f48627e6
JL
6998 int need_serialize, need_decay = 0;
6999 u64 max_cost = 0;
1e3c88bd 7000
48a16753 7001 update_blocked_averages(cpu);
2069dd75 7002
dce840a0 7003 rcu_read_lock();
1e3c88bd 7004 for_each_domain(cpu, sd) {
f48627e6
JL
7005 /*
7006 * Decay the newidle max times here because this is a regular
7007 * visit to all the domains. Decay ~1% per second.
7008 */
7009 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7010 sd->max_newidle_lb_cost =
7011 (sd->max_newidle_lb_cost * 253) / 256;
7012 sd->next_decay_max_lb_cost = jiffies + HZ;
7013 need_decay = 1;
7014 }
7015 max_cost += sd->max_newidle_lb_cost;
7016
1e3c88bd
PZ
7017 if (!(sd->flags & SD_LOAD_BALANCE))
7018 continue;
7019
f48627e6
JL
7020 /*
7021 * Stop the load balance at this level. There is another
7022 * CPU in our sched group which is doing load balancing more
7023 * actively.
7024 */
7025 if (!continue_balancing) {
7026 if (need_decay)
7027 continue;
7028 break;
7029 }
7030
1e3c88bd
PZ
7031 interval = sd->balance_interval;
7032 if (idle != CPU_IDLE)
7033 interval *= sd->busy_factor;
7034
7035 /* scale ms to jiffies */
7036 interval = msecs_to_jiffies(interval);
49c022e6 7037 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
7038
7039 need_serialize = sd->flags & SD_SERIALIZE;
7040
7041 if (need_serialize) {
7042 if (!spin_trylock(&balancing))
7043 goto out;
7044 }
7045
7046 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7047 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7048 /*
6263322c 7049 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7050 * env->dst_cpu, so we can't know our idle
7051 * state even if we migrated tasks. Update it.
1e3c88bd 7052 */
de5eb2dd 7053 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7054 }
7055 sd->last_balance = jiffies;
7056 }
7057 if (need_serialize)
7058 spin_unlock(&balancing);
7059out:
7060 if (time_after(next_balance, sd->last_balance + interval)) {
7061 next_balance = sd->last_balance + interval;
7062 update_next_balance = 1;
7063 }
f48627e6
JL
7064 }
7065 if (need_decay) {
1e3c88bd 7066 /*
f48627e6
JL
7067 * Ensure the rq-wide value also decays but keep it at a
7068 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7069 */
f48627e6
JL
7070 rq->max_idle_balance_cost =
7071 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7072 }
dce840a0 7073 rcu_read_unlock();
1e3c88bd
PZ
7074
7075 /*
7076 * next_balance will be updated only when there is a need.
7077 * When the cpu is attached to null domain for ex, it will not be
7078 * updated.
7079 */
7080 if (likely(update_next_balance))
7081 rq->next_balance = next_balance;
7082}
7083
3451d024 7084#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7085/*
3451d024 7086 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7087 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7088 */
208cb16b 7089static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7090{
208cb16b 7091 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7092 struct rq *rq;
7093 int balance_cpu;
7094
1c792db7
SS
7095 if (idle != CPU_IDLE ||
7096 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7097 goto end;
83cd4fe2
VP
7098
7099 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7100 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7101 continue;
7102
7103 /*
7104 * If this cpu gets work to do, stop the load balancing
7105 * work being done for other cpus. Next load
7106 * balancing owner will pick it up.
7107 */
1c792db7 7108 if (need_resched())
83cd4fe2 7109 break;
83cd4fe2 7110
5ed4f1d9
VG
7111 rq = cpu_rq(balance_cpu);
7112
7113 raw_spin_lock_irq(&rq->lock);
7114 update_rq_clock(rq);
7115 update_idle_cpu_load(rq);
7116 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7117
f7ed0a89 7118 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7119
83cd4fe2
VP
7120 if (time_after(this_rq->next_balance, rq->next_balance))
7121 this_rq->next_balance = rq->next_balance;
7122 }
7123 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7124end:
7125 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7126}
7127
7128/*
0b005cf5
SS
7129 * Current heuristic for kicking the idle load balancer in the presence
7130 * of an idle cpu is the system.
7131 * - This rq has more than one task.
7132 * - At any scheduler domain level, this cpu's scheduler group has multiple
7133 * busy cpu's exceeding the group's power.
7134 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7135 * domain span are idle.
83cd4fe2 7136 */
4a725627 7137static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7138{
7139 unsigned long now = jiffies;
0b005cf5 7140 struct sched_domain *sd;
37dc6b50 7141 struct sched_group_power *sgp;
4a725627 7142 int nr_busy, cpu = rq->cpu;
83cd4fe2 7143
4a725627 7144 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7145 return 0;
7146
1c792db7
SS
7147 /*
7148 * We may be recently in ticked or tickless idle mode. At the first
7149 * busy tick after returning from idle, we will update the busy stats.
7150 */
69e1e811 7151 set_cpu_sd_state_busy();
c1cc017c 7152 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7153
7154 /*
7155 * None are in tickless mode and hence no need for NOHZ idle load
7156 * balancing.
7157 */
7158 if (likely(!atomic_read(&nohz.nr_cpus)))
7159 return 0;
1c792db7
SS
7160
7161 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7162 return 0;
7163
0b005cf5
SS
7164 if (rq->nr_running >= 2)
7165 goto need_kick;
83cd4fe2 7166
067491b7 7167 rcu_read_lock();
37dc6b50 7168 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7169
37dc6b50
PM
7170 if (sd) {
7171 sgp = sd->groups->sgp;
7172 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7173
37dc6b50 7174 if (nr_busy > 1)
067491b7 7175 goto need_kick_unlock;
83cd4fe2 7176 }
37dc6b50
PM
7177
7178 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7179
7180 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7181 sched_domain_span(sd)) < cpu))
7182 goto need_kick_unlock;
7183
067491b7 7184 rcu_read_unlock();
83cd4fe2 7185 return 0;
067491b7
PZ
7186
7187need_kick_unlock:
7188 rcu_read_unlock();
0b005cf5
SS
7189need_kick:
7190 return 1;
83cd4fe2
VP
7191}
7192#else
208cb16b 7193static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7194#endif
7195
7196/*
7197 * run_rebalance_domains is triggered when needed from the scheduler tick.
7198 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7199 */
1e3c88bd
PZ
7200static void run_rebalance_domains(struct softirq_action *h)
7201{
208cb16b 7202 struct rq *this_rq = this_rq();
6eb57e0d 7203 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7204 CPU_IDLE : CPU_NOT_IDLE;
7205
f7ed0a89 7206 rebalance_domains(this_rq, idle);
1e3c88bd 7207
1e3c88bd 7208 /*
83cd4fe2 7209 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7210 * balancing on behalf of the other idle cpus whose ticks are
7211 * stopped.
7212 */
208cb16b 7213 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7214}
7215
1e3c88bd
PZ
7216/*
7217 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7218 */
7caff66f 7219void trigger_load_balance(struct rq *rq)
1e3c88bd 7220{
1e3c88bd 7221 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7222 if (unlikely(on_null_domain(rq)))
7223 return;
7224
7225 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7226 raise_softirq(SCHED_SOFTIRQ);
3451d024 7227#ifdef CONFIG_NO_HZ_COMMON
c726099e 7228 if (nohz_kick_needed(rq))
0aeeeeba 7229 nohz_balancer_kick();
83cd4fe2 7230#endif
1e3c88bd
PZ
7231}
7232
0bcdcf28
CE
7233static void rq_online_fair(struct rq *rq)
7234{
7235 update_sysctl();
7236}
7237
7238static void rq_offline_fair(struct rq *rq)
7239{
7240 update_sysctl();
a4c96ae3
PB
7241
7242 /* Ensure any throttled groups are reachable by pick_next_task */
7243 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7244}
7245
55e12e5e 7246#endif /* CONFIG_SMP */
e1d1484f 7247
bf0f6f24
IM
7248/*
7249 * scheduler tick hitting a task of our scheduling class:
7250 */
8f4d37ec 7251static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7252{
7253 struct cfs_rq *cfs_rq;
7254 struct sched_entity *se = &curr->se;
7255
7256 for_each_sched_entity(se) {
7257 cfs_rq = cfs_rq_of(se);
8f4d37ec 7258 entity_tick(cfs_rq, se, queued);
bf0f6f24 7259 }
18bf2805 7260
10e84b97 7261 if (numabalancing_enabled)
cbee9f88 7262 task_tick_numa(rq, curr);
3d59eebc 7263
18bf2805 7264 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7265}
7266
7267/*
cd29fe6f
PZ
7268 * called on fork with the child task as argument from the parent's context
7269 * - child not yet on the tasklist
7270 * - preemption disabled
bf0f6f24 7271 */
cd29fe6f 7272static void task_fork_fair(struct task_struct *p)
bf0f6f24 7273{
4fc420c9
DN
7274 struct cfs_rq *cfs_rq;
7275 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7276 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7277 struct rq *rq = this_rq();
7278 unsigned long flags;
7279
05fa785c 7280 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7281
861d034e
PZ
7282 update_rq_clock(rq);
7283
4fc420c9
DN
7284 cfs_rq = task_cfs_rq(current);
7285 curr = cfs_rq->curr;
7286
6c9a27f5
DN
7287 /*
7288 * Not only the cpu but also the task_group of the parent might have
7289 * been changed after parent->se.parent,cfs_rq were copied to
7290 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7291 * of child point to valid ones.
7292 */
7293 rcu_read_lock();
7294 __set_task_cpu(p, this_cpu);
7295 rcu_read_unlock();
bf0f6f24 7296
7109c442 7297 update_curr(cfs_rq);
cd29fe6f 7298
b5d9d734
MG
7299 if (curr)
7300 se->vruntime = curr->vruntime;
aeb73b04 7301 place_entity(cfs_rq, se, 1);
4d78e7b6 7302
cd29fe6f 7303 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7304 /*
edcb60a3
IM
7305 * Upon rescheduling, sched_class::put_prev_task() will place
7306 * 'current' within the tree based on its new key value.
7307 */
4d78e7b6 7308 swap(curr->vruntime, se->vruntime);
aec0a514 7309 resched_task(rq->curr);
4d78e7b6 7310 }
bf0f6f24 7311
88ec22d3
PZ
7312 se->vruntime -= cfs_rq->min_vruntime;
7313
05fa785c 7314 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7315}
7316
cb469845
SR
7317/*
7318 * Priority of the task has changed. Check to see if we preempt
7319 * the current task.
7320 */
da7a735e
PZ
7321static void
7322prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7323{
da7a735e
PZ
7324 if (!p->se.on_rq)
7325 return;
7326
cb469845
SR
7327 /*
7328 * Reschedule if we are currently running on this runqueue and
7329 * our priority decreased, or if we are not currently running on
7330 * this runqueue and our priority is higher than the current's
7331 */
da7a735e 7332 if (rq->curr == p) {
cb469845
SR
7333 if (p->prio > oldprio)
7334 resched_task(rq->curr);
7335 } else
15afe09b 7336 check_preempt_curr(rq, p, 0);
cb469845
SR
7337}
7338
da7a735e
PZ
7339static void switched_from_fair(struct rq *rq, struct task_struct *p)
7340{
7341 struct sched_entity *se = &p->se;
7342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7343
7344 /*
791c9e02 7345 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7346 * switched back to the fair class the enqueue_entity(.flags=0) will
7347 * do the right thing.
7348 *
791c9e02
GM
7349 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7350 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7351 * the task is sleeping will it still have non-normalized vruntime.
7352 */
791c9e02 7353 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7354 /*
7355 * Fix up our vruntime so that the current sleep doesn't
7356 * cause 'unlimited' sleep bonus.
7357 */
7358 place_entity(cfs_rq, se, 0);
7359 se->vruntime -= cfs_rq->min_vruntime;
7360 }
9ee474f5 7361
141965c7 7362#ifdef CONFIG_SMP
9ee474f5
PT
7363 /*
7364 * Remove our load from contribution when we leave sched_fair
7365 * and ensure we don't carry in an old decay_count if we
7366 * switch back.
7367 */
87e3c8ae
KT
7368 if (se->avg.decay_count) {
7369 __synchronize_entity_decay(se);
7370 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7371 }
7372#endif
da7a735e
PZ
7373}
7374
cb469845
SR
7375/*
7376 * We switched to the sched_fair class.
7377 */
da7a735e 7378static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7379{
eb7a59b2
M
7380 struct sched_entity *se = &p->se;
7381#ifdef CONFIG_FAIR_GROUP_SCHED
7382 /*
7383 * Since the real-depth could have been changed (only FAIR
7384 * class maintain depth value), reset depth properly.
7385 */
7386 se->depth = se->parent ? se->parent->depth + 1 : 0;
7387#endif
7388 if (!se->on_rq)
da7a735e
PZ
7389 return;
7390
cb469845
SR
7391 /*
7392 * We were most likely switched from sched_rt, so
7393 * kick off the schedule if running, otherwise just see
7394 * if we can still preempt the current task.
7395 */
da7a735e 7396 if (rq->curr == p)
cb469845
SR
7397 resched_task(rq->curr);
7398 else
15afe09b 7399 check_preempt_curr(rq, p, 0);
cb469845
SR
7400}
7401
83b699ed
SV
7402/* Account for a task changing its policy or group.
7403 *
7404 * This routine is mostly called to set cfs_rq->curr field when a task
7405 * migrates between groups/classes.
7406 */
7407static void set_curr_task_fair(struct rq *rq)
7408{
7409 struct sched_entity *se = &rq->curr->se;
7410
ec12cb7f
PT
7411 for_each_sched_entity(se) {
7412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7413
7414 set_next_entity(cfs_rq, se);
7415 /* ensure bandwidth has been allocated on our new cfs_rq */
7416 account_cfs_rq_runtime(cfs_rq, 0);
7417 }
83b699ed
SV
7418}
7419
029632fb
PZ
7420void init_cfs_rq(struct cfs_rq *cfs_rq)
7421{
7422 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7423 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7424#ifndef CONFIG_64BIT
7425 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7426#endif
141965c7 7427#ifdef CONFIG_SMP
9ee474f5 7428 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7429 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7430#endif
029632fb
PZ
7431}
7432
810b3817 7433#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7434static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7435{
fed14d45 7436 struct sched_entity *se = &p->se;
aff3e498 7437 struct cfs_rq *cfs_rq;
fed14d45 7438
b2b5ce02
PZ
7439 /*
7440 * If the task was not on the rq at the time of this cgroup movement
7441 * it must have been asleep, sleeping tasks keep their ->vruntime
7442 * absolute on their old rq until wakeup (needed for the fair sleeper
7443 * bonus in place_entity()).
7444 *
7445 * If it was on the rq, we've just 'preempted' it, which does convert
7446 * ->vruntime to a relative base.
7447 *
7448 * Make sure both cases convert their relative position when migrating
7449 * to another cgroup's rq. This does somewhat interfere with the
7450 * fair sleeper stuff for the first placement, but who cares.
7451 */
7ceff013
DN
7452 /*
7453 * When !on_rq, vruntime of the task has usually NOT been normalized.
7454 * But there are some cases where it has already been normalized:
7455 *
7456 * - Moving a forked child which is waiting for being woken up by
7457 * wake_up_new_task().
62af3783
DN
7458 * - Moving a task which has been woken up by try_to_wake_up() and
7459 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7460 *
7461 * To prevent boost or penalty in the new cfs_rq caused by delta
7462 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7463 */
fed14d45 7464 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7465 on_rq = 1;
7466
b2b5ce02 7467 if (!on_rq)
fed14d45 7468 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7469 set_task_rq(p, task_cpu(p));
fed14d45 7470 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7471 if (!on_rq) {
fed14d45
PZ
7472 cfs_rq = cfs_rq_of(se);
7473 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7474#ifdef CONFIG_SMP
7475 /*
7476 * migrate_task_rq_fair() will have removed our previous
7477 * contribution, but we must synchronize for ongoing future
7478 * decay.
7479 */
fed14d45
PZ
7480 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7481 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7482#endif
7483 }
810b3817 7484}
029632fb
PZ
7485
7486void free_fair_sched_group(struct task_group *tg)
7487{
7488 int i;
7489
7490 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7491
7492 for_each_possible_cpu(i) {
7493 if (tg->cfs_rq)
7494 kfree(tg->cfs_rq[i]);
7495 if (tg->se)
7496 kfree(tg->se[i]);
7497 }
7498
7499 kfree(tg->cfs_rq);
7500 kfree(tg->se);
7501}
7502
7503int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7504{
7505 struct cfs_rq *cfs_rq;
7506 struct sched_entity *se;
7507 int i;
7508
7509 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7510 if (!tg->cfs_rq)
7511 goto err;
7512 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7513 if (!tg->se)
7514 goto err;
7515
7516 tg->shares = NICE_0_LOAD;
7517
7518 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7519
7520 for_each_possible_cpu(i) {
7521 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7522 GFP_KERNEL, cpu_to_node(i));
7523 if (!cfs_rq)
7524 goto err;
7525
7526 se = kzalloc_node(sizeof(struct sched_entity),
7527 GFP_KERNEL, cpu_to_node(i));
7528 if (!se)
7529 goto err_free_rq;
7530
7531 init_cfs_rq(cfs_rq);
7532 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7533 }
7534
7535 return 1;
7536
7537err_free_rq:
7538 kfree(cfs_rq);
7539err:
7540 return 0;
7541}
7542
7543void unregister_fair_sched_group(struct task_group *tg, int cpu)
7544{
7545 struct rq *rq = cpu_rq(cpu);
7546 unsigned long flags;
7547
7548 /*
7549 * Only empty task groups can be destroyed; so we can speculatively
7550 * check on_list without danger of it being re-added.
7551 */
7552 if (!tg->cfs_rq[cpu]->on_list)
7553 return;
7554
7555 raw_spin_lock_irqsave(&rq->lock, flags);
7556 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7557 raw_spin_unlock_irqrestore(&rq->lock, flags);
7558}
7559
7560void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7561 struct sched_entity *se, int cpu,
7562 struct sched_entity *parent)
7563{
7564 struct rq *rq = cpu_rq(cpu);
7565
7566 cfs_rq->tg = tg;
7567 cfs_rq->rq = rq;
029632fb
PZ
7568 init_cfs_rq_runtime(cfs_rq);
7569
7570 tg->cfs_rq[cpu] = cfs_rq;
7571 tg->se[cpu] = se;
7572
7573 /* se could be NULL for root_task_group */
7574 if (!se)
7575 return;
7576
fed14d45 7577 if (!parent) {
029632fb 7578 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7579 se->depth = 0;
7580 } else {
029632fb 7581 se->cfs_rq = parent->my_q;
fed14d45
PZ
7582 se->depth = parent->depth + 1;
7583 }
029632fb
PZ
7584
7585 se->my_q = cfs_rq;
0ac9b1c2
PT
7586 /* guarantee group entities always have weight */
7587 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7588 se->parent = parent;
7589}
7590
7591static DEFINE_MUTEX(shares_mutex);
7592
7593int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7594{
7595 int i;
7596 unsigned long flags;
7597
7598 /*
7599 * We can't change the weight of the root cgroup.
7600 */
7601 if (!tg->se[0])
7602 return -EINVAL;
7603
7604 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7605
7606 mutex_lock(&shares_mutex);
7607 if (tg->shares == shares)
7608 goto done;
7609
7610 tg->shares = shares;
7611 for_each_possible_cpu(i) {
7612 struct rq *rq = cpu_rq(i);
7613 struct sched_entity *se;
7614
7615 se = tg->se[i];
7616 /* Propagate contribution to hierarchy */
7617 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7618
7619 /* Possible calls to update_curr() need rq clock */
7620 update_rq_clock(rq);
17bc14b7 7621 for_each_sched_entity(se)
029632fb
PZ
7622 update_cfs_shares(group_cfs_rq(se));
7623 raw_spin_unlock_irqrestore(&rq->lock, flags);
7624 }
7625
7626done:
7627 mutex_unlock(&shares_mutex);
7628 return 0;
7629}
7630#else /* CONFIG_FAIR_GROUP_SCHED */
7631
7632void free_fair_sched_group(struct task_group *tg) { }
7633
7634int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7635{
7636 return 1;
7637}
7638
7639void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7640
7641#endif /* CONFIG_FAIR_GROUP_SCHED */
7642
810b3817 7643
6d686f45 7644static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7645{
7646 struct sched_entity *se = &task->se;
0d721cea
PW
7647 unsigned int rr_interval = 0;
7648
7649 /*
7650 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7651 * idle runqueue:
7652 */
0d721cea 7653 if (rq->cfs.load.weight)
a59f4e07 7654 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7655
7656 return rr_interval;
7657}
7658
bf0f6f24
IM
7659/*
7660 * All the scheduling class methods:
7661 */
029632fb 7662const struct sched_class fair_sched_class = {
5522d5d5 7663 .next = &idle_sched_class,
bf0f6f24
IM
7664 .enqueue_task = enqueue_task_fair,
7665 .dequeue_task = dequeue_task_fair,
7666 .yield_task = yield_task_fair,
d95f4122 7667 .yield_to_task = yield_to_task_fair,
bf0f6f24 7668
2e09bf55 7669 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7670
7671 .pick_next_task = pick_next_task_fair,
7672 .put_prev_task = put_prev_task_fair,
7673
681f3e68 7674#ifdef CONFIG_SMP
4ce72a2c 7675 .select_task_rq = select_task_rq_fair,
0a74bef8 7676 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7677
0bcdcf28
CE
7678 .rq_online = rq_online_fair,
7679 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7680
7681 .task_waking = task_waking_fair,
681f3e68 7682#endif
bf0f6f24 7683
83b699ed 7684 .set_curr_task = set_curr_task_fair,
bf0f6f24 7685 .task_tick = task_tick_fair,
cd29fe6f 7686 .task_fork = task_fork_fair,
cb469845
SR
7687
7688 .prio_changed = prio_changed_fair,
da7a735e 7689 .switched_from = switched_from_fair,
cb469845 7690 .switched_to = switched_to_fair,
810b3817 7691
0d721cea
PW
7692 .get_rr_interval = get_rr_interval_fair,
7693
810b3817 7694#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7695 .task_move_group = task_move_group_fair,
810b3817 7696#endif
bf0f6f24
IM
7697};
7698
7699#ifdef CONFIG_SCHED_DEBUG
029632fb 7700void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7701{
bf0f6f24
IM
7702 struct cfs_rq *cfs_rq;
7703
5973e5b9 7704 rcu_read_lock();
c3b64f1e 7705 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7706 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7707 rcu_read_unlock();
bf0f6f24
IM
7708}
7709#endif
029632fb
PZ
7710
7711__init void init_sched_fair_class(void)
7712{
7713#ifdef CONFIG_SMP
7714 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7715
3451d024 7716#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7717 nohz.next_balance = jiffies;
029632fb 7718 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7719 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7720#endif
7721#endif /* SMP */
7722
7723}