Merge branch 'smp/hotplug' into sched/core, to resolve conflicts
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
9d89c257 2876static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2877
a2c6c91f
SM
2878static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2879{
2880 struct rq *rq = rq_of(cfs_rq);
2881 int cpu = cpu_of(rq);
2882
2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2884 unsigned long max = rq->cpu_capacity_orig;
2885
2886 /*
2887 * There are a few boundary cases this might miss but it should
2888 * get called often enough that that should (hopefully) not be
2889 * a real problem -- added to that it only calls on the local
2890 * CPU, so if we enqueue remotely we'll miss an update, but
2891 * the next tick/schedule should update.
2892 *
2893 * It will not get called when we go idle, because the idle
2894 * thread is a different class (!fair), nor will the utilization
2895 * number include things like RT tasks.
2896 *
2897 * As is, the util number is not freq-invariant (we'd have to
2898 * implement arch_scale_freq_capacity() for that).
2899 *
2900 * See cpu_util().
2901 */
2902 cpufreq_update_util(rq_clock(rq),
2903 min(cfs_rq->avg.util_avg, max), max);
2904 }
2905}
2906
9d89c257 2907/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2908static inline int
2909update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2910{
9d89c257 2911 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2912 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2913
9d89c257 2914 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2915 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2916 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2917 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2918 removed_load = 1;
8165e145 2919 }
2dac754e 2920
9d89c257
YD
2921 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2922 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2923 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2924 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
41e0d37f 2925 removed_util = 1;
9d89c257 2926 }
36ee28e4 2927
a2c6c91f 2928 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2929 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2930
9d89c257
YD
2931#ifndef CONFIG_64BIT
2932 smp_wmb();
2933 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2934#endif
36ee28e4 2935
a2c6c91f
SM
2936 if (update_freq && (decayed || removed_util))
2937 cfs_rq_util_change(cfs_rq);
21e96f88 2938
41e0d37f 2939 return decayed || removed_load;
21e96f88
SM
2940}
2941
2942/* Update task and its cfs_rq load average */
2943static inline void update_load_avg(struct sched_entity *se, int update_tg)
2944{
2945 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2946 u64 now = cfs_rq_clock_task(cfs_rq);
2947 struct rq *rq = rq_of(cfs_rq);
2948 int cpu = cpu_of(rq);
2949
2950 /*
2951 * Track task load average for carrying it to new CPU after migrated, and
2952 * track group sched_entity load average for task_h_load calc in migration
2953 */
2954 __update_load_avg(now, cpu, &se->avg,
2955 se->on_rq * scale_load_down(se->load.weight),
2956 cfs_rq->curr == se, NULL);
2957
a2c6c91f 2958 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2959 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2960}
2961
a05e8c51
BP
2962static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963{
a9280514
PZ
2964 if (!sched_feat(ATTACH_AGE_LOAD))
2965 goto skip_aging;
2966
6efdb105
BP
2967 /*
2968 * If we got migrated (either between CPUs or between cgroups) we'll
2969 * have aged the average right before clearing @last_update_time.
2970 */
2971 if (se->avg.last_update_time) {
2972 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2973 &se->avg, 0, 0, NULL);
2974
2975 /*
2976 * XXX: we could have just aged the entire load away if we've been
2977 * absent from the fair class for too long.
2978 */
2979 }
2980
a9280514 2981skip_aging:
a05e8c51
BP
2982 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2983 cfs_rq->avg.load_avg += se->avg.load_avg;
2984 cfs_rq->avg.load_sum += se->avg.load_sum;
2985 cfs_rq->avg.util_avg += se->avg.util_avg;
2986 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2987
2988 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2989}
2990
2991static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2992{
2993 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2994 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2995 cfs_rq->curr == se, NULL);
2996
2997 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2998 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2999 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
3000 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
a2c6c91f
SM
3001
3002 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3003}
3004
9d89c257
YD
3005/* Add the load generated by se into cfs_rq's load average */
3006static inline void
3007enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3008{
9d89c257
YD
3009 struct sched_avg *sa = &se->avg;
3010 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3011 int migrated, decayed;
9ee474f5 3012
a05e8c51
BP
3013 migrated = !sa->last_update_time;
3014 if (!migrated) {
9d89c257 3015 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3016 se->on_rq * scale_load_down(se->load.weight),
3017 cfs_rq->curr == se, NULL);
aff3e498 3018 }
c566e8e9 3019
a2c6c91f 3020 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3021
13962234
YD
3022 cfs_rq->runnable_load_avg += sa->load_avg;
3023 cfs_rq->runnable_load_sum += sa->load_sum;
3024
a05e8c51
BP
3025 if (migrated)
3026 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3027
9d89c257
YD
3028 if (decayed || migrated)
3029 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3030}
3031
13962234
YD
3032/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3033static inline void
3034dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035{
3036 update_load_avg(se, 1);
3037
3038 cfs_rq->runnable_load_avg =
3039 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3040 cfs_rq->runnable_load_sum =
a05e8c51 3041 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3042}
3043
9d89c257 3044#ifndef CONFIG_64BIT
0905f04e
YD
3045static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3046{
9d89c257 3047 u64 last_update_time_copy;
0905f04e 3048 u64 last_update_time;
9ee474f5 3049
9d89c257
YD
3050 do {
3051 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3052 smp_rmb();
3053 last_update_time = cfs_rq->avg.last_update_time;
3054 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3055
3056 return last_update_time;
3057}
9d89c257 3058#else
0905f04e
YD
3059static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3060{
3061 return cfs_rq->avg.last_update_time;
3062}
9d89c257
YD
3063#endif
3064
0905f04e
YD
3065/*
3066 * Task first catches up with cfs_rq, and then subtract
3067 * itself from the cfs_rq (task must be off the queue now).
3068 */
3069void remove_entity_load_avg(struct sched_entity *se)
3070{
3071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3072 u64 last_update_time;
3073
3074 /*
3075 * Newly created task or never used group entity should not be removed
3076 * from its (source) cfs_rq
3077 */
3078 if (se->avg.last_update_time == 0)
3079 return;
3080
3081 last_update_time = cfs_rq_last_update_time(cfs_rq);
3082
13962234 3083 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3084 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3085 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3086}
642dbc39 3087
7ea241af
YD
3088static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3089{
3090 return cfs_rq->runnable_load_avg;
3091}
3092
3093static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3094{
3095 return cfs_rq->avg.load_avg;
3096}
3097
6e83125c
PZ
3098static int idle_balance(struct rq *this_rq);
3099
38033c37
PZ
3100#else /* CONFIG_SMP */
3101
536bd00c
RW
3102static inline void update_load_avg(struct sched_entity *se, int not_used)
3103{
3104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3105 struct rq *rq = rq_of(cfs_rq);
3106
3107 cpufreq_trigger_update(rq_clock(rq));
3108}
3109
9d89c257
YD
3110static inline void
3111enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3112static inline void
3113dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3114static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3115
a05e8c51
BP
3116static inline void
3117attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3118static inline void
3119detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3120
6e83125c
PZ
3121static inline int idle_balance(struct rq *rq)
3122{
3123 return 0;
3124}
3125
38033c37 3126#endif /* CONFIG_SMP */
9d85f21c 3127
2396af69 3128static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3129{
bf0f6f24 3130#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3131 struct task_struct *tsk = NULL;
3132
3133 if (entity_is_task(se))
3134 tsk = task_of(se);
3135
41acab88 3136 if (se->statistics.sleep_start) {
78becc27 3137 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3138
3139 if ((s64)delta < 0)
3140 delta = 0;
3141
41acab88
LDM
3142 if (unlikely(delta > se->statistics.sleep_max))
3143 se->statistics.sleep_max = delta;
bf0f6f24 3144
8c79a045 3145 se->statistics.sleep_start = 0;
41acab88 3146 se->statistics.sum_sleep_runtime += delta;
9745512c 3147
768d0c27 3148 if (tsk) {
e414314c 3149 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3150 trace_sched_stat_sleep(tsk, delta);
3151 }
bf0f6f24 3152 }
41acab88 3153 if (se->statistics.block_start) {
78becc27 3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3155
3156 if ((s64)delta < 0)
3157 delta = 0;
3158
41acab88
LDM
3159 if (unlikely(delta > se->statistics.block_max))
3160 se->statistics.block_max = delta;
bf0f6f24 3161
8c79a045 3162 se->statistics.block_start = 0;
41acab88 3163 se->statistics.sum_sleep_runtime += delta;
30084fbd 3164
e414314c 3165 if (tsk) {
8f0dfc34 3166 if (tsk->in_iowait) {
41acab88
LDM
3167 se->statistics.iowait_sum += delta;
3168 se->statistics.iowait_count++;
768d0c27 3169 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3170 }
3171
b781a602
AV
3172 trace_sched_stat_blocked(tsk, delta);
3173
e414314c
PZ
3174 /*
3175 * Blocking time is in units of nanosecs, so shift by
3176 * 20 to get a milliseconds-range estimation of the
3177 * amount of time that the task spent sleeping:
3178 */
3179 if (unlikely(prof_on == SLEEP_PROFILING)) {
3180 profile_hits(SLEEP_PROFILING,
3181 (void *)get_wchan(tsk),
3182 delta >> 20);
3183 }
3184 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3185 }
bf0f6f24
IM
3186 }
3187#endif
3188}
3189
ddc97297
PZ
3190static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3191{
3192#ifdef CONFIG_SCHED_DEBUG
3193 s64 d = se->vruntime - cfs_rq->min_vruntime;
3194
3195 if (d < 0)
3196 d = -d;
3197
3198 if (d > 3*sysctl_sched_latency)
3199 schedstat_inc(cfs_rq, nr_spread_over);
3200#endif
3201}
3202
aeb73b04
PZ
3203static void
3204place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3205{
1af5f730 3206 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3207
2cb8600e
PZ
3208 /*
3209 * The 'current' period is already promised to the current tasks,
3210 * however the extra weight of the new task will slow them down a
3211 * little, place the new task so that it fits in the slot that
3212 * stays open at the end.
3213 */
94dfb5e7 3214 if (initial && sched_feat(START_DEBIT))
f9c0b095 3215 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3216
a2e7a7eb 3217 /* sleeps up to a single latency don't count. */
5ca9880c 3218 if (!initial) {
a2e7a7eb 3219 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3220
a2e7a7eb
MG
3221 /*
3222 * Halve their sleep time's effect, to allow
3223 * for a gentler effect of sleepers:
3224 */
3225 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3226 thresh >>= 1;
51e0304c 3227
a2e7a7eb 3228 vruntime -= thresh;
aeb73b04
PZ
3229 }
3230
b5d9d734 3231 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3232 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3233}
3234
d3d9dc33
PT
3235static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3236
cb251765
MG
3237static inline void check_schedstat_required(void)
3238{
3239#ifdef CONFIG_SCHEDSTATS
3240 if (schedstat_enabled())
3241 return;
3242
3243 /* Force schedstat enabled if a dependent tracepoint is active */
3244 if (trace_sched_stat_wait_enabled() ||
3245 trace_sched_stat_sleep_enabled() ||
3246 trace_sched_stat_iowait_enabled() ||
3247 trace_sched_stat_blocked_enabled() ||
3248 trace_sched_stat_runtime_enabled()) {
3249 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3250 "stat_blocked and stat_runtime require the "
3251 "kernel parameter schedstats=enabled or "
3252 "kernel.sched_schedstats=1\n");
3253 }
3254#endif
3255}
3256
bf0f6f24 3257static void
88ec22d3 3258enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3259{
88ec22d3 3260 /*
53d3bc77
IM
3261 * Update the normalized vruntime before updating min_vruntime
3262 * through calling update_curr().
88ec22d3 3263 */
53d3bc77 3264 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3265 se->vruntime += cfs_rq->min_vruntime;
3266
bf0f6f24 3267 /*
53d3bc77 3268 * Update run-time statistics of the 'current'.
bf0f6f24 3269 */
53d3bc77 3270 update_curr(cfs_rq);
9d89c257 3271 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3272 account_entity_enqueue(cfs_rq, se);
3273 update_cfs_shares(cfs_rq);
bf0f6f24 3274
88ec22d3 3275 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3276 place_entity(cfs_rq, se, 0);
cb251765
MG
3277 if (schedstat_enabled())
3278 enqueue_sleeper(cfs_rq, se);
e9acbff6 3279 }
bf0f6f24 3280
cb251765
MG
3281 check_schedstat_required();
3282 if (schedstat_enabled()) {
3283 update_stats_enqueue(cfs_rq, se);
3284 check_spread(cfs_rq, se);
3285 }
53d3bc77 3286 if (se != cfs_rq->curr)
83b699ed 3287 __enqueue_entity(cfs_rq, se);
2069dd75 3288 se->on_rq = 1;
3d4b47b4 3289
d3d9dc33 3290 if (cfs_rq->nr_running == 1) {
3d4b47b4 3291 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3292 check_enqueue_throttle(cfs_rq);
3293 }
bf0f6f24
IM
3294}
3295
2c13c919 3296static void __clear_buddies_last(struct sched_entity *se)
2002c695 3297{
2c13c919
RR
3298 for_each_sched_entity(se) {
3299 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3300 if (cfs_rq->last != se)
2c13c919 3301 break;
f1044799
PZ
3302
3303 cfs_rq->last = NULL;
2c13c919
RR
3304 }
3305}
2002c695 3306
2c13c919
RR
3307static void __clear_buddies_next(struct sched_entity *se)
3308{
3309 for_each_sched_entity(se) {
3310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3311 if (cfs_rq->next != se)
2c13c919 3312 break;
f1044799
PZ
3313
3314 cfs_rq->next = NULL;
2c13c919 3315 }
2002c695
PZ
3316}
3317
ac53db59
RR
3318static void __clear_buddies_skip(struct sched_entity *se)
3319{
3320 for_each_sched_entity(se) {
3321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3322 if (cfs_rq->skip != se)
ac53db59 3323 break;
f1044799
PZ
3324
3325 cfs_rq->skip = NULL;
ac53db59
RR
3326 }
3327}
3328
a571bbea
PZ
3329static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3330{
2c13c919
RR
3331 if (cfs_rq->last == se)
3332 __clear_buddies_last(se);
3333
3334 if (cfs_rq->next == se)
3335 __clear_buddies_next(se);
ac53db59
RR
3336
3337 if (cfs_rq->skip == se)
3338 __clear_buddies_skip(se);
a571bbea
PZ
3339}
3340
6c16a6dc 3341static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3342
bf0f6f24 3343static void
371fd7e7 3344dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3345{
a2a2d680
DA
3346 /*
3347 * Update run-time statistics of the 'current'.
3348 */
3349 update_curr(cfs_rq);
13962234 3350 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3351
cb251765
MG
3352 if (schedstat_enabled())
3353 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3354
2002c695 3355 clear_buddies(cfs_rq, se);
4793241b 3356
83b699ed 3357 if (se != cfs_rq->curr)
30cfdcfc 3358 __dequeue_entity(cfs_rq, se);
17bc14b7 3359 se->on_rq = 0;
30cfdcfc 3360 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3361
3362 /*
3363 * Normalize the entity after updating the min_vruntime because the
3364 * update can refer to the ->curr item and we need to reflect this
3365 * movement in our normalized position.
3366 */
371fd7e7 3367 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3368 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3369
d8b4986d
PT
3370 /* return excess runtime on last dequeue */
3371 return_cfs_rq_runtime(cfs_rq);
3372
1e876231 3373 update_min_vruntime(cfs_rq);
17bc14b7 3374 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3375}
3376
3377/*
3378 * Preempt the current task with a newly woken task if needed:
3379 */
7c92e54f 3380static void
2e09bf55 3381check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3382{
11697830 3383 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3384 struct sched_entity *se;
3385 s64 delta;
11697830 3386
6d0f0ebd 3387 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3388 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3389 if (delta_exec > ideal_runtime) {
8875125e 3390 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3391 /*
3392 * The current task ran long enough, ensure it doesn't get
3393 * re-elected due to buddy favours.
3394 */
3395 clear_buddies(cfs_rq, curr);
f685ceac
MG
3396 return;
3397 }
3398
3399 /*
3400 * Ensure that a task that missed wakeup preemption by a
3401 * narrow margin doesn't have to wait for a full slice.
3402 * This also mitigates buddy induced latencies under load.
3403 */
f685ceac
MG
3404 if (delta_exec < sysctl_sched_min_granularity)
3405 return;
3406
f4cfb33e
WX
3407 se = __pick_first_entity(cfs_rq);
3408 delta = curr->vruntime - se->vruntime;
f685ceac 3409
f4cfb33e
WX
3410 if (delta < 0)
3411 return;
d7d82944 3412
f4cfb33e 3413 if (delta > ideal_runtime)
8875125e 3414 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3415}
3416
83b699ed 3417static void
8494f412 3418set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3419{
83b699ed
SV
3420 /* 'current' is not kept within the tree. */
3421 if (se->on_rq) {
3422 /*
3423 * Any task has to be enqueued before it get to execute on
3424 * a CPU. So account for the time it spent waiting on the
3425 * runqueue.
3426 */
cb251765
MG
3427 if (schedstat_enabled())
3428 update_stats_wait_end(cfs_rq, se);
83b699ed 3429 __dequeue_entity(cfs_rq, se);
9d89c257 3430 update_load_avg(se, 1);
83b699ed
SV
3431 }
3432
79303e9e 3433 update_stats_curr_start(cfs_rq, se);
429d43bc 3434 cfs_rq->curr = se;
eba1ed4b
IM
3435#ifdef CONFIG_SCHEDSTATS
3436 /*
3437 * Track our maximum slice length, if the CPU's load is at
3438 * least twice that of our own weight (i.e. dont track it
3439 * when there are only lesser-weight tasks around):
3440 */
cb251765 3441 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3442 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3443 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3444 }
3445#endif
4a55b450 3446 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3447}
3448
3f3a4904
PZ
3449static int
3450wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3451
ac53db59
RR
3452/*
3453 * Pick the next process, keeping these things in mind, in this order:
3454 * 1) keep things fair between processes/task groups
3455 * 2) pick the "next" process, since someone really wants that to run
3456 * 3) pick the "last" process, for cache locality
3457 * 4) do not run the "skip" process, if something else is available
3458 */
678d5718
PZ
3459static struct sched_entity *
3460pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3461{
678d5718
PZ
3462 struct sched_entity *left = __pick_first_entity(cfs_rq);
3463 struct sched_entity *se;
3464
3465 /*
3466 * If curr is set we have to see if its left of the leftmost entity
3467 * still in the tree, provided there was anything in the tree at all.
3468 */
3469 if (!left || (curr && entity_before(curr, left)))
3470 left = curr;
3471
3472 se = left; /* ideally we run the leftmost entity */
f4b6755f 3473
ac53db59
RR
3474 /*
3475 * Avoid running the skip buddy, if running something else can
3476 * be done without getting too unfair.
3477 */
3478 if (cfs_rq->skip == se) {
678d5718
PZ
3479 struct sched_entity *second;
3480
3481 if (se == curr) {
3482 second = __pick_first_entity(cfs_rq);
3483 } else {
3484 second = __pick_next_entity(se);
3485 if (!second || (curr && entity_before(curr, second)))
3486 second = curr;
3487 }
3488
ac53db59
RR
3489 if (second && wakeup_preempt_entity(second, left) < 1)
3490 se = second;
3491 }
aa2ac252 3492
f685ceac
MG
3493 /*
3494 * Prefer last buddy, try to return the CPU to a preempted task.
3495 */
3496 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3497 se = cfs_rq->last;
3498
ac53db59
RR
3499 /*
3500 * Someone really wants this to run. If it's not unfair, run it.
3501 */
3502 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3503 se = cfs_rq->next;
3504
f685ceac 3505 clear_buddies(cfs_rq, se);
4793241b
PZ
3506
3507 return se;
aa2ac252
PZ
3508}
3509
678d5718 3510static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3511
ab6cde26 3512static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3513{
3514 /*
3515 * If still on the runqueue then deactivate_task()
3516 * was not called and update_curr() has to be done:
3517 */
3518 if (prev->on_rq)
b7cc0896 3519 update_curr(cfs_rq);
bf0f6f24 3520
d3d9dc33
PT
3521 /* throttle cfs_rqs exceeding runtime */
3522 check_cfs_rq_runtime(cfs_rq);
3523
cb251765
MG
3524 if (schedstat_enabled()) {
3525 check_spread(cfs_rq, prev);
3526 if (prev->on_rq)
3527 update_stats_wait_start(cfs_rq, prev);
3528 }
3529
30cfdcfc 3530 if (prev->on_rq) {
30cfdcfc
DA
3531 /* Put 'current' back into the tree. */
3532 __enqueue_entity(cfs_rq, prev);
9d85f21c 3533 /* in !on_rq case, update occurred at dequeue */
9d89c257 3534 update_load_avg(prev, 0);
30cfdcfc 3535 }
429d43bc 3536 cfs_rq->curr = NULL;
bf0f6f24
IM
3537}
3538
8f4d37ec
PZ
3539static void
3540entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3541{
bf0f6f24 3542 /*
30cfdcfc 3543 * Update run-time statistics of the 'current'.
bf0f6f24 3544 */
30cfdcfc 3545 update_curr(cfs_rq);
bf0f6f24 3546
9d85f21c
PT
3547 /*
3548 * Ensure that runnable average is periodically updated.
3549 */
9d89c257 3550 update_load_avg(curr, 1);
bf0bd948 3551 update_cfs_shares(cfs_rq);
9d85f21c 3552
8f4d37ec
PZ
3553#ifdef CONFIG_SCHED_HRTICK
3554 /*
3555 * queued ticks are scheduled to match the slice, so don't bother
3556 * validating it and just reschedule.
3557 */
983ed7a6 3558 if (queued) {
8875125e 3559 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3560 return;
3561 }
8f4d37ec
PZ
3562 /*
3563 * don't let the period tick interfere with the hrtick preemption
3564 */
3565 if (!sched_feat(DOUBLE_TICK) &&
3566 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3567 return;
3568#endif
3569
2c2efaed 3570 if (cfs_rq->nr_running > 1)
2e09bf55 3571 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3572}
3573
ab84d31e
PT
3574
3575/**************************************************
3576 * CFS bandwidth control machinery
3577 */
3578
3579#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3580
3581#ifdef HAVE_JUMP_LABEL
c5905afb 3582static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3583
3584static inline bool cfs_bandwidth_used(void)
3585{
c5905afb 3586 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3587}
3588
1ee14e6c 3589void cfs_bandwidth_usage_inc(void)
029632fb 3590{
1ee14e6c
BS
3591 static_key_slow_inc(&__cfs_bandwidth_used);
3592}
3593
3594void cfs_bandwidth_usage_dec(void)
3595{
3596 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3597}
3598#else /* HAVE_JUMP_LABEL */
3599static bool cfs_bandwidth_used(void)
3600{
3601 return true;
3602}
3603
1ee14e6c
BS
3604void cfs_bandwidth_usage_inc(void) {}
3605void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3606#endif /* HAVE_JUMP_LABEL */
3607
ab84d31e
PT
3608/*
3609 * default period for cfs group bandwidth.
3610 * default: 0.1s, units: nanoseconds
3611 */
3612static inline u64 default_cfs_period(void)
3613{
3614 return 100000000ULL;
3615}
ec12cb7f
PT
3616
3617static inline u64 sched_cfs_bandwidth_slice(void)
3618{
3619 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3620}
3621
a9cf55b2
PT
3622/*
3623 * Replenish runtime according to assigned quota and update expiration time.
3624 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3625 * additional synchronization around rq->lock.
3626 *
3627 * requires cfs_b->lock
3628 */
029632fb 3629void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3630{
3631 u64 now;
3632
3633 if (cfs_b->quota == RUNTIME_INF)
3634 return;
3635
3636 now = sched_clock_cpu(smp_processor_id());
3637 cfs_b->runtime = cfs_b->quota;
3638 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3639}
3640
029632fb
PZ
3641static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3642{
3643 return &tg->cfs_bandwidth;
3644}
3645
f1b17280
PT
3646/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3647static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3648{
3649 if (unlikely(cfs_rq->throttle_count))
3650 return cfs_rq->throttled_clock_task;
3651
78becc27 3652 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3653}
3654
85dac906
PT
3655/* returns 0 on failure to allocate runtime */
3656static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3657{
3658 struct task_group *tg = cfs_rq->tg;
3659 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3660 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3661
3662 /* note: this is a positive sum as runtime_remaining <= 0 */
3663 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3664
3665 raw_spin_lock(&cfs_b->lock);
3666 if (cfs_b->quota == RUNTIME_INF)
3667 amount = min_amount;
58088ad0 3668 else {
77a4d1a1 3669 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3670
3671 if (cfs_b->runtime > 0) {
3672 amount = min(cfs_b->runtime, min_amount);
3673 cfs_b->runtime -= amount;
3674 cfs_b->idle = 0;
3675 }
ec12cb7f 3676 }
a9cf55b2 3677 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3678 raw_spin_unlock(&cfs_b->lock);
3679
3680 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3681 /*
3682 * we may have advanced our local expiration to account for allowed
3683 * spread between our sched_clock and the one on which runtime was
3684 * issued.
3685 */
3686 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3687 cfs_rq->runtime_expires = expires;
85dac906
PT
3688
3689 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3690}
3691
a9cf55b2
PT
3692/*
3693 * Note: This depends on the synchronization provided by sched_clock and the
3694 * fact that rq->clock snapshots this value.
3695 */
3696static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3697{
a9cf55b2 3698 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3699
3700 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3701 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3702 return;
3703
a9cf55b2
PT
3704 if (cfs_rq->runtime_remaining < 0)
3705 return;
3706
3707 /*
3708 * If the local deadline has passed we have to consider the
3709 * possibility that our sched_clock is 'fast' and the global deadline
3710 * has not truly expired.
3711 *
3712 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3713 * whether the global deadline has advanced. It is valid to compare
3714 * cfs_b->runtime_expires without any locks since we only care about
3715 * exact equality, so a partial write will still work.
a9cf55b2
PT
3716 */
3717
51f2176d 3718 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3719 /* extend local deadline, drift is bounded above by 2 ticks */
3720 cfs_rq->runtime_expires += TICK_NSEC;
3721 } else {
3722 /* global deadline is ahead, expiration has passed */
3723 cfs_rq->runtime_remaining = 0;
3724 }
3725}
3726
9dbdb155 3727static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3728{
3729 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3730 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3731 expire_cfs_rq_runtime(cfs_rq);
3732
3733 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3734 return;
3735
85dac906
PT
3736 /*
3737 * if we're unable to extend our runtime we resched so that the active
3738 * hierarchy can be throttled
3739 */
3740 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3741 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3742}
3743
6c16a6dc 3744static __always_inline
9dbdb155 3745void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3746{
56f570e5 3747 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3748 return;
3749
3750 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3751}
3752
85dac906
PT
3753static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3754{
56f570e5 3755 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3756}
3757
64660c86
PT
3758/* check whether cfs_rq, or any parent, is throttled */
3759static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760{
56f570e5 3761 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3762}
3763
3764/*
3765 * Ensure that neither of the group entities corresponding to src_cpu or
3766 * dest_cpu are members of a throttled hierarchy when performing group
3767 * load-balance operations.
3768 */
3769static inline int throttled_lb_pair(struct task_group *tg,
3770 int src_cpu, int dest_cpu)
3771{
3772 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3773
3774 src_cfs_rq = tg->cfs_rq[src_cpu];
3775 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3776
3777 return throttled_hierarchy(src_cfs_rq) ||
3778 throttled_hierarchy(dest_cfs_rq);
3779}
3780
3781/* updated child weight may affect parent so we have to do this bottom up */
3782static int tg_unthrottle_up(struct task_group *tg, void *data)
3783{
3784 struct rq *rq = data;
3785 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3786
3787 cfs_rq->throttle_count--;
3788#ifdef CONFIG_SMP
3789 if (!cfs_rq->throttle_count) {
f1b17280 3790 /* adjust cfs_rq_clock_task() */
78becc27 3791 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3792 cfs_rq->throttled_clock_task;
64660c86
PT
3793 }
3794#endif
3795
3796 return 0;
3797}
3798
3799static int tg_throttle_down(struct task_group *tg, void *data)
3800{
3801 struct rq *rq = data;
3802 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3803
82958366
PT
3804 /* group is entering throttled state, stop time */
3805 if (!cfs_rq->throttle_count)
78becc27 3806 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3807 cfs_rq->throttle_count++;
3808
3809 return 0;
3810}
3811
d3d9dc33 3812static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3813{
3814 struct rq *rq = rq_of(cfs_rq);
3815 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3816 struct sched_entity *se;
3817 long task_delta, dequeue = 1;
77a4d1a1 3818 bool empty;
85dac906
PT
3819
3820 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3821
f1b17280 3822 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3823 rcu_read_lock();
3824 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3825 rcu_read_unlock();
85dac906
PT
3826
3827 task_delta = cfs_rq->h_nr_running;
3828 for_each_sched_entity(se) {
3829 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3830 /* throttled entity or throttle-on-deactivate */
3831 if (!se->on_rq)
3832 break;
3833
3834 if (dequeue)
3835 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3836 qcfs_rq->h_nr_running -= task_delta;
3837
3838 if (qcfs_rq->load.weight)
3839 dequeue = 0;
3840 }
3841
3842 if (!se)
72465447 3843 sub_nr_running(rq, task_delta);
85dac906
PT
3844
3845 cfs_rq->throttled = 1;
78becc27 3846 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3847 raw_spin_lock(&cfs_b->lock);
d49db342 3848 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3849
c06f04c7
BS
3850 /*
3851 * Add to the _head_ of the list, so that an already-started
3852 * distribute_cfs_runtime will not see us
3853 */
3854 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3855
3856 /*
3857 * If we're the first throttled task, make sure the bandwidth
3858 * timer is running.
3859 */
3860 if (empty)
3861 start_cfs_bandwidth(cfs_b);
3862
85dac906
PT
3863 raw_spin_unlock(&cfs_b->lock);
3864}
3865
029632fb 3866void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3867{
3868 struct rq *rq = rq_of(cfs_rq);
3869 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3870 struct sched_entity *se;
3871 int enqueue = 1;
3872 long task_delta;
3873
22b958d8 3874 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3875
3876 cfs_rq->throttled = 0;
1a55af2e
FW
3877
3878 update_rq_clock(rq);
3879
671fd9da 3880 raw_spin_lock(&cfs_b->lock);
78becc27 3881 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3882 list_del_rcu(&cfs_rq->throttled_list);
3883 raw_spin_unlock(&cfs_b->lock);
3884
64660c86
PT
3885 /* update hierarchical throttle state */
3886 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3887
671fd9da
PT
3888 if (!cfs_rq->load.weight)
3889 return;
3890
3891 task_delta = cfs_rq->h_nr_running;
3892 for_each_sched_entity(se) {
3893 if (se->on_rq)
3894 enqueue = 0;
3895
3896 cfs_rq = cfs_rq_of(se);
3897 if (enqueue)
3898 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3899 cfs_rq->h_nr_running += task_delta;
3900
3901 if (cfs_rq_throttled(cfs_rq))
3902 break;
3903 }
3904
3905 if (!se)
72465447 3906 add_nr_running(rq, task_delta);
671fd9da
PT
3907
3908 /* determine whether we need to wake up potentially idle cpu */
3909 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3910 resched_curr(rq);
671fd9da
PT
3911}
3912
3913static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3914 u64 remaining, u64 expires)
3915{
3916 struct cfs_rq *cfs_rq;
c06f04c7
BS
3917 u64 runtime;
3918 u64 starting_runtime = remaining;
671fd9da
PT
3919
3920 rcu_read_lock();
3921 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3922 throttled_list) {
3923 struct rq *rq = rq_of(cfs_rq);
3924
3925 raw_spin_lock(&rq->lock);
3926 if (!cfs_rq_throttled(cfs_rq))
3927 goto next;
3928
3929 runtime = -cfs_rq->runtime_remaining + 1;
3930 if (runtime > remaining)
3931 runtime = remaining;
3932 remaining -= runtime;
3933
3934 cfs_rq->runtime_remaining += runtime;
3935 cfs_rq->runtime_expires = expires;
3936
3937 /* we check whether we're throttled above */
3938 if (cfs_rq->runtime_remaining > 0)
3939 unthrottle_cfs_rq(cfs_rq);
3940
3941next:
3942 raw_spin_unlock(&rq->lock);
3943
3944 if (!remaining)
3945 break;
3946 }
3947 rcu_read_unlock();
3948
c06f04c7 3949 return starting_runtime - remaining;
671fd9da
PT
3950}
3951
58088ad0
PT
3952/*
3953 * Responsible for refilling a task_group's bandwidth and unthrottling its
3954 * cfs_rqs as appropriate. If there has been no activity within the last
3955 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3956 * used to track this state.
3957 */
3958static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3959{
671fd9da 3960 u64 runtime, runtime_expires;
51f2176d 3961 int throttled;
58088ad0 3962
58088ad0
PT
3963 /* no need to continue the timer with no bandwidth constraint */
3964 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3965 goto out_deactivate;
58088ad0 3966
671fd9da 3967 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3968 cfs_b->nr_periods += overrun;
671fd9da 3969
51f2176d
BS
3970 /*
3971 * idle depends on !throttled (for the case of a large deficit), and if
3972 * we're going inactive then everything else can be deferred
3973 */
3974 if (cfs_b->idle && !throttled)
3975 goto out_deactivate;
a9cf55b2
PT
3976
3977 __refill_cfs_bandwidth_runtime(cfs_b);
3978
671fd9da
PT
3979 if (!throttled) {
3980 /* mark as potentially idle for the upcoming period */
3981 cfs_b->idle = 1;
51f2176d 3982 return 0;
671fd9da
PT
3983 }
3984
e8da1b18
NR
3985 /* account preceding periods in which throttling occurred */
3986 cfs_b->nr_throttled += overrun;
3987
671fd9da 3988 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3989
3990 /*
c06f04c7
BS
3991 * This check is repeated as we are holding onto the new bandwidth while
3992 * we unthrottle. This can potentially race with an unthrottled group
3993 * trying to acquire new bandwidth from the global pool. This can result
3994 * in us over-using our runtime if it is all used during this loop, but
3995 * only by limited amounts in that extreme case.
671fd9da 3996 */
c06f04c7
BS
3997 while (throttled && cfs_b->runtime > 0) {
3998 runtime = cfs_b->runtime;
671fd9da
PT
3999 raw_spin_unlock(&cfs_b->lock);
4000 /* we can't nest cfs_b->lock while distributing bandwidth */
4001 runtime = distribute_cfs_runtime(cfs_b, runtime,
4002 runtime_expires);
4003 raw_spin_lock(&cfs_b->lock);
4004
4005 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4006
4007 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4008 }
58088ad0 4009
671fd9da
PT
4010 /*
4011 * While we are ensured activity in the period following an
4012 * unthrottle, this also covers the case in which the new bandwidth is
4013 * insufficient to cover the existing bandwidth deficit. (Forcing the
4014 * timer to remain active while there are any throttled entities.)
4015 */
4016 cfs_b->idle = 0;
58088ad0 4017
51f2176d
BS
4018 return 0;
4019
4020out_deactivate:
51f2176d 4021 return 1;
58088ad0 4022}
d3d9dc33 4023
d8b4986d
PT
4024/* a cfs_rq won't donate quota below this amount */
4025static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4026/* minimum remaining period time to redistribute slack quota */
4027static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4028/* how long we wait to gather additional slack before distributing */
4029static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4030
db06e78c
BS
4031/*
4032 * Are we near the end of the current quota period?
4033 *
4034 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4035 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4036 * migrate_hrtimers, base is never cleared, so we are fine.
4037 */
d8b4986d
PT
4038static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4039{
4040 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4041 u64 remaining;
4042
4043 /* if the call-back is running a quota refresh is already occurring */
4044 if (hrtimer_callback_running(refresh_timer))
4045 return 1;
4046
4047 /* is a quota refresh about to occur? */
4048 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4049 if (remaining < min_expire)
4050 return 1;
4051
4052 return 0;
4053}
4054
4055static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4056{
4057 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4058
4059 /* if there's a quota refresh soon don't bother with slack */
4060 if (runtime_refresh_within(cfs_b, min_left))
4061 return;
4062
4cfafd30
PZ
4063 hrtimer_start(&cfs_b->slack_timer,
4064 ns_to_ktime(cfs_bandwidth_slack_period),
4065 HRTIMER_MODE_REL);
d8b4986d
PT
4066}
4067
4068/* we know any runtime found here is valid as update_curr() precedes return */
4069static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4070{
4071 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4072 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4073
4074 if (slack_runtime <= 0)
4075 return;
4076
4077 raw_spin_lock(&cfs_b->lock);
4078 if (cfs_b->quota != RUNTIME_INF &&
4079 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4080 cfs_b->runtime += slack_runtime;
4081
4082 /* we are under rq->lock, defer unthrottling using a timer */
4083 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4084 !list_empty(&cfs_b->throttled_cfs_rq))
4085 start_cfs_slack_bandwidth(cfs_b);
4086 }
4087 raw_spin_unlock(&cfs_b->lock);
4088
4089 /* even if it's not valid for return we don't want to try again */
4090 cfs_rq->runtime_remaining -= slack_runtime;
4091}
4092
4093static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4094{
56f570e5
PT
4095 if (!cfs_bandwidth_used())
4096 return;
4097
fccfdc6f 4098 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4099 return;
4100
4101 __return_cfs_rq_runtime(cfs_rq);
4102}
4103
4104/*
4105 * This is done with a timer (instead of inline with bandwidth return) since
4106 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4107 */
4108static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4109{
4110 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4111 u64 expires;
4112
4113 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4114 raw_spin_lock(&cfs_b->lock);
4115 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4116 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4117 return;
db06e78c 4118 }
d8b4986d 4119
c06f04c7 4120 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4121 runtime = cfs_b->runtime;
c06f04c7 4122
d8b4986d
PT
4123 expires = cfs_b->runtime_expires;
4124 raw_spin_unlock(&cfs_b->lock);
4125
4126 if (!runtime)
4127 return;
4128
4129 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4130
4131 raw_spin_lock(&cfs_b->lock);
4132 if (expires == cfs_b->runtime_expires)
c06f04c7 4133 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4134 raw_spin_unlock(&cfs_b->lock);
4135}
4136
d3d9dc33
PT
4137/*
4138 * When a group wakes up we want to make sure that its quota is not already
4139 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4140 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4141 */
4142static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4143{
56f570e5
PT
4144 if (!cfs_bandwidth_used())
4145 return;
4146
d3d9dc33
PT
4147 /* an active group must be handled by the update_curr()->put() path */
4148 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4149 return;
4150
4151 /* ensure the group is not already throttled */
4152 if (cfs_rq_throttled(cfs_rq))
4153 return;
4154
4155 /* update runtime allocation */
4156 account_cfs_rq_runtime(cfs_rq, 0);
4157 if (cfs_rq->runtime_remaining <= 0)
4158 throttle_cfs_rq(cfs_rq);
4159}
4160
4161/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4162static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4163{
56f570e5 4164 if (!cfs_bandwidth_used())
678d5718 4165 return false;
56f570e5 4166
d3d9dc33 4167 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4168 return false;
d3d9dc33
PT
4169
4170 /*
4171 * it's possible for a throttled entity to be forced into a running
4172 * state (e.g. set_curr_task), in this case we're finished.
4173 */
4174 if (cfs_rq_throttled(cfs_rq))
678d5718 4175 return true;
d3d9dc33
PT
4176
4177 throttle_cfs_rq(cfs_rq);
678d5718 4178 return true;
d3d9dc33 4179}
029632fb 4180
029632fb
PZ
4181static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4182{
4183 struct cfs_bandwidth *cfs_b =
4184 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4185
029632fb
PZ
4186 do_sched_cfs_slack_timer(cfs_b);
4187
4188 return HRTIMER_NORESTART;
4189}
4190
4191static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4192{
4193 struct cfs_bandwidth *cfs_b =
4194 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4195 int overrun;
4196 int idle = 0;
4197
51f2176d 4198 raw_spin_lock(&cfs_b->lock);
029632fb 4199 for (;;) {
77a4d1a1 4200 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4201 if (!overrun)
4202 break;
4203
4204 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4205 }
4cfafd30
PZ
4206 if (idle)
4207 cfs_b->period_active = 0;
51f2176d 4208 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4209
4210 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4211}
4212
4213void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4214{
4215 raw_spin_lock_init(&cfs_b->lock);
4216 cfs_b->runtime = 0;
4217 cfs_b->quota = RUNTIME_INF;
4218 cfs_b->period = ns_to_ktime(default_cfs_period());
4219
4220 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4221 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4222 cfs_b->period_timer.function = sched_cfs_period_timer;
4223 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4224 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4225}
4226
4227static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4228{
4229 cfs_rq->runtime_enabled = 0;
4230 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4231}
4232
77a4d1a1 4233void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4234{
4cfafd30 4235 lockdep_assert_held(&cfs_b->lock);
029632fb 4236
4cfafd30
PZ
4237 if (!cfs_b->period_active) {
4238 cfs_b->period_active = 1;
4239 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4240 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4241 }
029632fb
PZ
4242}
4243
4244static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4245{
7f1a169b
TH
4246 /* init_cfs_bandwidth() was not called */
4247 if (!cfs_b->throttled_cfs_rq.next)
4248 return;
4249
029632fb
PZ
4250 hrtimer_cancel(&cfs_b->period_timer);
4251 hrtimer_cancel(&cfs_b->slack_timer);
4252}
4253
0e59bdae
KT
4254static void __maybe_unused update_runtime_enabled(struct rq *rq)
4255{
4256 struct cfs_rq *cfs_rq;
4257
4258 for_each_leaf_cfs_rq(rq, cfs_rq) {
4259 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4260
4261 raw_spin_lock(&cfs_b->lock);
4262 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4263 raw_spin_unlock(&cfs_b->lock);
4264 }
4265}
4266
38dc3348 4267static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4268{
4269 struct cfs_rq *cfs_rq;
4270
4271 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4272 if (!cfs_rq->runtime_enabled)
4273 continue;
4274
4275 /*
4276 * clock_task is not advancing so we just need to make sure
4277 * there's some valid quota amount
4278 */
51f2176d 4279 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4280 /*
4281 * Offline rq is schedulable till cpu is completely disabled
4282 * in take_cpu_down(), so we prevent new cfs throttling here.
4283 */
4284 cfs_rq->runtime_enabled = 0;
4285
029632fb
PZ
4286 if (cfs_rq_throttled(cfs_rq))
4287 unthrottle_cfs_rq(cfs_rq);
4288 }
4289}
4290
4291#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4292static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4293{
78becc27 4294 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4295}
4296
9dbdb155 4297static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4298static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4299static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4300static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4301
4302static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4303{
4304 return 0;
4305}
64660c86
PT
4306
4307static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4308{
4309 return 0;
4310}
4311
4312static inline int throttled_lb_pair(struct task_group *tg,
4313 int src_cpu, int dest_cpu)
4314{
4315 return 0;
4316}
029632fb
PZ
4317
4318void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4319
4320#ifdef CONFIG_FAIR_GROUP_SCHED
4321static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4322#endif
4323
029632fb
PZ
4324static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4325{
4326 return NULL;
4327}
4328static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4329static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4330static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4331
4332#endif /* CONFIG_CFS_BANDWIDTH */
4333
bf0f6f24
IM
4334/**************************************************
4335 * CFS operations on tasks:
4336 */
4337
8f4d37ec
PZ
4338#ifdef CONFIG_SCHED_HRTICK
4339static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4340{
8f4d37ec
PZ
4341 struct sched_entity *se = &p->se;
4342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4343
4344 WARN_ON(task_rq(p) != rq);
4345
b39e66ea 4346 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4347 u64 slice = sched_slice(cfs_rq, se);
4348 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4349 s64 delta = slice - ran;
4350
4351 if (delta < 0) {
4352 if (rq->curr == p)
8875125e 4353 resched_curr(rq);
8f4d37ec
PZ
4354 return;
4355 }
31656519 4356 hrtick_start(rq, delta);
8f4d37ec
PZ
4357 }
4358}
a4c2f00f
PZ
4359
4360/*
4361 * called from enqueue/dequeue and updates the hrtick when the
4362 * current task is from our class and nr_running is low enough
4363 * to matter.
4364 */
4365static void hrtick_update(struct rq *rq)
4366{
4367 struct task_struct *curr = rq->curr;
4368
b39e66ea 4369 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4370 return;
4371
4372 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4373 hrtick_start_fair(rq, curr);
4374}
55e12e5e 4375#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4376static inline void
4377hrtick_start_fair(struct rq *rq, struct task_struct *p)
4378{
4379}
a4c2f00f
PZ
4380
4381static inline void hrtick_update(struct rq *rq)
4382{
4383}
8f4d37ec
PZ
4384#endif
4385
bf0f6f24
IM
4386/*
4387 * The enqueue_task method is called before nr_running is
4388 * increased. Here we update the fair scheduling stats and
4389 * then put the task into the rbtree:
4390 */
ea87bb78 4391static void
371fd7e7 4392enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4393{
4394 struct cfs_rq *cfs_rq;
62fb1851 4395 struct sched_entity *se = &p->se;
bf0f6f24
IM
4396
4397 for_each_sched_entity(se) {
62fb1851 4398 if (se->on_rq)
bf0f6f24
IM
4399 break;
4400 cfs_rq = cfs_rq_of(se);
88ec22d3 4401 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4402
4403 /*
4404 * end evaluation on encountering a throttled cfs_rq
4405 *
4406 * note: in the case of encountering a throttled cfs_rq we will
4407 * post the final h_nr_running increment below.
4408 */
4409 if (cfs_rq_throttled(cfs_rq))
4410 break;
953bfcd1 4411 cfs_rq->h_nr_running++;
85dac906 4412
88ec22d3 4413 flags = ENQUEUE_WAKEUP;
bf0f6f24 4414 }
8f4d37ec 4415
2069dd75 4416 for_each_sched_entity(se) {
0f317143 4417 cfs_rq = cfs_rq_of(se);
953bfcd1 4418 cfs_rq->h_nr_running++;
2069dd75 4419
85dac906
PT
4420 if (cfs_rq_throttled(cfs_rq))
4421 break;
4422
9d89c257 4423 update_load_avg(se, 1);
17bc14b7 4424 update_cfs_shares(cfs_rq);
2069dd75
PZ
4425 }
4426
cd126afe 4427 if (!se)
72465447 4428 add_nr_running(rq, 1);
cd126afe 4429
a4c2f00f 4430 hrtick_update(rq);
bf0f6f24
IM
4431}
4432
2f36825b
VP
4433static void set_next_buddy(struct sched_entity *se);
4434
bf0f6f24
IM
4435/*
4436 * The dequeue_task method is called before nr_running is
4437 * decreased. We remove the task from the rbtree and
4438 * update the fair scheduling stats:
4439 */
371fd7e7 4440static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4441{
4442 struct cfs_rq *cfs_rq;
62fb1851 4443 struct sched_entity *se = &p->se;
2f36825b 4444 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4445
4446 for_each_sched_entity(se) {
4447 cfs_rq = cfs_rq_of(se);
371fd7e7 4448 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4449
4450 /*
4451 * end evaluation on encountering a throttled cfs_rq
4452 *
4453 * note: in the case of encountering a throttled cfs_rq we will
4454 * post the final h_nr_running decrement below.
4455 */
4456 if (cfs_rq_throttled(cfs_rq))
4457 break;
953bfcd1 4458 cfs_rq->h_nr_running--;
2069dd75 4459
bf0f6f24 4460 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4461 if (cfs_rq->load.weight) {
4462 /*
4463 * Bias pick_next to pick a task from this cfs_rq, as
4464 * p is sleeping when it is within its sched_slice.
4465 */
4466 if (task_sleep && parent_entity(se))
4467 set_next_buddy(parent_entity(se));
9598c82d
PT
4468
4469 /* avoid re-evaluating load for this entity */
4470 se = parent_entity(se);
bf0f6f24 4471 break;
2f36825b 4472 }
371fd7e7 4473 flags |= DEQUEUE_SLEEP;
bf0f6f24 4474 }
8f4d37ec 4475
2069dd75 4476 for_each_sched_entity(se) {
0f317143 4477 cfs_rq = cfs_rq_of(se);
953bfcd1 4478 cfs_rq->h_nr_running--;
2069dd75 4479
85dac906
PT
4480 if (cfs_rq_throttled(cfs_rq))
4481 break;
4482
9d89c257 4483 update_load_avg(se, 1);
17bc14b7 4484 update_cfs_shares(cfs_rq);
2069dd75
PZ
4485 }
4486
cd126afe 4487 if (!se)
72465447 4488 sub_nr_running(rq, 1);
cd126afe 4489
a4c2f00f 4490 hrtick_update(rq);
bf0f6f24
IM
4491}
4492
e7693a36 4493#ifdef CONFIG_SMP
9fd81dd5 4494#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4495/*
4496 * per rq 'load' arrray crap; XXX kill this.
4497 */
4498
4499/*
d937cdc5 4500 * The exact cpuload calculated at every tick would be:
3289bdb4 4501 *
d937cdc5
PZ
4502 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4503 *
4504 * If a cpu misses updates for n ticks (as it was idle) and update gets
4505 * called on the n+1-th tick when cpu may be busy, then we have:
4506 *
4507 * load_n = (1 - 1/2^i)^n * load_0
4508 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4509 *
4510 * decay_load_missed() below does efficient calculation of
3289bdb4 4511 *
d937cdc5
PZ
4512 * load' = (1 - 1/2^i)^n * load
4513 *
4514 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4515 * This allows us to precompute the above in said factors, thereby allowing the
4516 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4517 * fixed_power_int())
3289bdb4 4518 *
d937cdc5 4519 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4520 */
4521#define DEGRADE_SHIFT 7
d937cdc5
PZ
4522
4523static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4524static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4525 { 0, 0, 0, 0, 0, 0, 0, 0 },
4526 { 64, 32, 8, 0, 0, 0, 0, 0 },
4527 { 96, 72, 40, 12, 1, 0, 0, 0 },
4528 { 112, 98, 75, 43, 15, 1, 0, 0 },
4529 { 120, 112, 98, 76, 45, 16, 2, 0 }
4530};
3289bdb4
PZ
4531
4532/*
4533 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4534 * would be when CPU is idle and so we just decay the old load without
4535 * adding any new load.
4536 */
4537static unsigned long
4538decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4539{
4540 int j = 0;
4541
4542 if (!missed_updates)
4543 return load;
4544
4545 if (missed_updates >= degrade_zero_ticks[idx])
4546 return 0;
4547
4548 if (idx == 1)
4549 return load >> missed_updates;
4550
4551 while (missed_updates) {
4552 if (missed_updates % 2)
4553 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4554
4555 missed_updates >>= 1;
4556 j++;
4557 }
4558 return load;
4559}
9fd81dd5 4560#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4561
59543275 4562/**
cee1afce 4563 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4564 * @this_rq: The rq to update statistics for
4565 * @this_load: The current load
4566 * @pending_updates: The number of missed updates
59543275 4567 *
3289bdb4 4568 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4569 * scheduler tick (TICK_NSEC).
4570 *
4571 * This function computes a decaying average:
4572 *
4573 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4574 *
4575 * Because of NOHZ it might not get called on every tick which gives need for
4576 * the @pending_updates argument.
4577 *
4578 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4579 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4580 * = A * (A * load[i]_n-2 + B) + B
4581 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4582 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4583 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4584 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4585 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4586 *
4587 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4588 * any change in load would have resulted in the tick being turned back on.
4589 *
4590 * For regular NOHZ, this reduces to:
4591 *
4592 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4593 *
4594 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4595 * term.
3289bdb4 4596 */
1f41906a
FW
4597static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4598 unsigned long pending_updates)
3289bdb4 4599{
9fd81dd5 4600 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4601 int i, scale;
4602
4603 this_rq->nr_load_updates++;
4604
4605 /* Update our load: */
4606 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4607 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4608 unsigned long old_load, new_load;
4609
4610 /* scale is effectively 1 << i now, and >> i divides by scale */
4611
7400d3bb 4612 old_load = this_rq->cpu_load[i];
9fd81dd5 4613#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4614 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4615 if (tickless_load) {
4616 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4617 /*
4618 * old_load can never be a negative value because a
4619 * decayed tickless_load cannot be greater than the
4620 * original tickless_load.
4621 */
4622 old_load += tickless_load;
4623 }
9fd81dd5 4624#endif
3289bdb4
PZ
4625 new_load = this_load;
4626 /*
4627 * Round up the averaging division if load is increasing. This
4628 * prevents us from getting stuck on 9 if the load is 10, for
4629 * example.
4630 */
4631 if (new_load > old_load)
4632 new_load += scale - 1;
4633
4634 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4635 }
4636
4637 sched_avg_update(this_rq);
4638}
4639
7ea241af
YD
4640/* Used instead of source_load when we know the type == 0 */
4641static unsigned long weighted_cpuload(const int cpu)
4642{
4643 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4644}
4645
3289bdb4 4646#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4647/*
4648 * There is no sane way to deal with nohz on smp when using jiffies because the
4649 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4650 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4651 *
4652 * Therefore we need to avoid the delta approach from the regular tick when
4653 * possible since that would seriously skew the load calculation. This is why we
4654 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4655 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4656 * loop exit, nohz_idle_balance, nohz full exit...)
4657 *
4658 * This means we might still be one tick off for nohz periods.
4659 */
4660
4661static void cpu_load_update_nohz(struct rq *this_rq,
4662 unsigned long curr_jiffies,
4663 unsigned long load)
be68a682
FW
4664{
4665 unsigned long pending_updates;
4666
4667 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4668 if (pending_updates) {
4669 this_rq->last_load_update_tick = curr_jiffies;
4670 /*
4671 * In the regular NOHZ case, we were idle, this means load 0.
4672 * In the NOHZ_FULL case, we were non-idle, we should consider
4673 * its weighted load.
4674 */
1f41906a 4675 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4676 }
4677}
4678
3289bdb4
PZ
4679/*
4680 * Called from nohz_idle_balance() to update the load ratings before doing the
4681 * idle balance.
4682 */
cee1afce 4683static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4684{
3289bdb4
PZ
4685 /*
4686 * bail if there's load or we're actually up-to-date.
4687 */
be68a682 4688 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4689 return;
4690
1f41906a 4691 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4692}
4693
4694/*
1f41906a
FW
4695 * Record CPU load on nohz entry so we know the tickless load to account
4696 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4697 * than other cpu_load[idx] but it should be fine as cpu_load readers
4698 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4699 */
1f41906a 4700void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4701{
4702 struct rq *this_rq = this_rq();
1f41906a
FW
4703
4704 /*
4705 * This is all lockless but should be fine. If weighted_cpuload changes
4706 * concurrently we'll exit nohz. And cpu_load write can race with
4707 * cpu_load_update_idle() but both updater would be writing the same.
4708 */
4709 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4710}
4711
4712/*
4713 * Account the tickless load in the end of a nohz frame.
4714 */
4715void cpu_load_update_nohz_stop(void)
4716{
316c1608 4717 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4718 struct rq *this_rq = this_rq();
4719 unsigned long load;
3289bdb4
PZ
4720
4721 if (curr_jiffies == this_rq->last_load_update_tick)
4722 return;
4723
1f41906a 4724 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4725 raw_spin_lock(&this_rq->lock);
b52fad2d 4726 update_rq_clock(this_rq);
1f41906a 4727 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4728 raw_spin_unlock(&this_rq->lock);
4729}
1f41906a
FW
4730#else /* !CONFIG_NO_HZ_COMMON */
4731static inline void cpu_load_update_nohz(struct rq *this_rq,
4732 unsigned long curr_jiffies,
4733 unsigned long load) { }
4734#endif /* CONFIG_NO_HZ_COMMON */
4735
4736static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4737{
9fd81dd5 4738#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4739 /* See the mess around cpu_load_update_nohz(). */
4740 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4741#endif
1f41906a
FW
4742 cpu_load_update(this_rq, load, 1);
4743}
3289bdb4
PZ
4744
4745/*
4746 * Called from scheduler_tick()
4747 */
cee1afce 4748void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4749{
7ea241af 4750 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4751
4752 if (tick_nohz_tick_stopped())
4753 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4754 else
4755 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4756}
4757
029632fb
PZ
4758/*
4759 * Return a low guess at the load of a migration-source cpu weighted
4760 * according to the scheduling class and "nice" value.
4761 *
4762 * We want to under-estimate the load of migration sources, to
4763 * balance conservatively.
4764 */
4765static unsigned long source_load(int cpu, int type)
4766{
4767 struct rq *rq = cpu_rq(cpu);
4768 unsigned long total = weighted_cpuload(cpu);
4769
4770 if (type == 0 || !sched_feat(LB_BIAS))
4771 return total;
4772
4773 return min(rq->cpu_load[type-1], total);
4774}
4775
4776/*
4777 * Return a high guess at the load of a migration-target cpu weighted
4778 * according to the scheduling class and "nice" value.
4779 */
4780static unsigned long target_load(int cpu, int type)
4781{
4782 struct rq *rq = cpu_rq(cpu);
4783 unsigned long total = weighted_cpuload(cpu);
4784
4785 if (type == 0 || !sched_feat(LB_BIAS))
4786 return total;
4787
4788 return max(rq->cpu_load[type-1], total);
4789}
4790
ced549fa 4791static unsigned long capacity_of(int cpu)
029632fb 4792{
ced549fa 4793 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4794}
4795
ca6d75e6
VG
4796static unsigned long capacity_orig_of(int cpu)
4797{
4798 return cpu_rq(cpu)->cpu_capacity_orig;
4799}
4800
029632fb
PZ
4801static unsigned long cpu_avg_load_per_task(int cpu)
4802{
4803 struct rq *rq = cpu_rq(cpu);
316c1608 4804 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4805 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4806
4807 if (nr_running)
b92486cb 4808 return load_avg / nr_running;
029632fb
PZ
4809
4810 return 0;
4811}
4812
62470419
MW
4813static void record_wakee(struct task_struct *p)
4814{
4815 /*
4816 * Rough decay (wiping) for cost saving, don't worry
4817 * about the boundary, really active task won't care
4818 * about the loss.
4819 */
2538d960 4820 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4821 current->wakee_flips >>= 1;
62470419
MW
4822 current->wakee_flip_decay_ts = jiffies;
4823 }
4824
4825 if (current->last_wakee != p) {
4826 current->last_wakee = p;
4827 current->wakee_flips++;
4828 }
4829}
098fb9db 4830
74f8e4b2 4831static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4832{
4833 struct sched_entity *se = &p->se;
4834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4835 u64 min_vruntime;
4836
4837#ifndef CONFIG_64BIT
4838 u64 min_vruntime_copy;
88ec22d3 4839
3fe1698b
PZ
4840 do {
4841 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4842 smp_rmb();
4843 min_vruntime = cfs_rq->min_vruntime;
4844 } while (min_vruntime != min_vruntime_copy);
4845#else
4846 min_vruntime = cfs_rq->min_vruntime;
4847#endif
88ec22d3 4848
3fe1698b 4849 se->vruntime -= min_vruntime;
62470419 4850 record_wakee(p);
88ec22d3
PZ
4851}
4852
bb3469ac 4853#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4854/*
4855 * effective_load() calculates the load change as seen from the root_task_group
4856 *
4857 * Adding load to a group doesn't make a group heavier, but can cause movement
4858 * of group shares between cpus. Assuming the shares were perfectly aligned one
4859 * can calculate the shift in shares.
cf5f0acf
PZ
4860 *
4861 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4862 * on this @cpu and results in a total addition (subtraction) of @wg to the
4863 * total group weight.
4864 *
4865 * Given a runqueue weight distribution (rw_i) we can compute a shares
4866 * distribution (s_i) using:
4867 *
4868 * s_i = rw_i / \Sum rw_j (1)
4869 *
4870 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4871 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4872 * shares distribution (s_i):
4873 *
4874 * rw_i = { 2, 4, 1, 0 }
4875 * s_i = { 2/7, 4/7, 1/7, 0 }
4876 *
4877 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4878 * task used to run on and the CPU the waker is running on), we need to
4879 * compute the effect of waking a task on either CPU and, in case of a sync
4880 * wakeup, compute the effect of the current task going to sleep.
4881 *
4882 * So for a change of @wl to the local @cpu with an overall group weight change
4883 * of @wl we can compute the new shares distribution (s'_i) using:
4884 *
4885 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4886 *
4887 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4888 * differences in waking a task to CPU 0. The additional task changes the
4889 * weight and shares distributions like:
4890 *
4891 * rw'_i = { 3, 4, 1, 0 }
4892 * s'_i = { 3/8, 4/8, 1/8, 0 }
4893 *
4894 * We can then compute the difference in effective weight by using:
4895 *
4896 * dw_i = S * (s'_i - s_i) (3)
4897 *
4898 * Where 'S' is the group weight as seen by its parent.
4899 *
4900 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4901 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4902 * 4/7) times the weight of the group.
f5bfb7d9 4903 */
2069dd75 4904static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4905{
4be9daaa 4906 struct sched_entity *se = tg->se[cpu];
f1d239f7 4907
9722c2da 4908 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4909 return wl;
4910
4be9daaa 4911 for_each_sched_entity(se) {
cf5f0acf 4912 long w, W;
4be9daaa 4913
977dda7c 4914 tg = se->my_q->tg;
bb3469ac 4915
cf5f0acf
PZ
4916 /*
4917 * W = @wg + \Sum rw_j
4918 */
4919 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4920
cf5f0acf
PZ
4921 /*
4922 * w = rw_i + @wl
4923 */
7ea241af 4924 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4925
cf5f0acf
PZ
4926 /*
4927 * wl = S * s'_i; see (2)
4928 */
4929 if (W > 0 && w < W)
32a8df4e 4930 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4931 else
4932 wl = tg->shares;
940959e9 4933
cf5f0acf
PZ
4934 /*
4935 * Per the above, wl is the new se->load.weight value; since
4936 * those are clipped to [MIN_SHARES, ...) do so now. See
4937 * calc_cfs_shares().
4938 */
977dda7c
PT
4939 if (wl < MIN_SHARES)
4940 wl = MIN_SHARES;
cf5f0acf
PZ
4941
4942 /*
4943 * wl = dw_i = S * (s'_i - s_i); see (3)
4944 */
9d89c257 4945 wl -= se->avg.load_avg;
cf5f0acf
PZ
4946
4947 /*
4948 * Recursively apply this logic to all parent groups to compute
4949 * the final effective load change on the root group. Since
4950 * only the @tg group gets extra weight, all parent groups can
4951 * only redistribute existing shares. @wl is the shift in shares
4952 * resulting from this level per the above.
4953 */
4be9daaa 4954 wg = 0;
4be9daaa 4955 }
bb3469ac 4956
4be9daaa 4957 return wl;
bb3469ac
PZ
4958}
4959#else
4be9daaa 4960
58d081b5 4961static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4962{
83378269 4963 return wl;
bb3469ac 4964}
4be9daaa 4965
bb3469ac
PZ
4966#endif
4967
63b0e9ed
MG
4968/*
4969 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4970 * A waker of many should wake a different task than the one last awakened
4971 * at a frequency roughly N times higher than one of its wakees. In order
4972 * to determine whether we should let the load spread vs consolodating to
4973 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4974 * partner, and a factor of lls_size higher frequency in the other. With
4975 * both conditions met, we can be relatively sure that the relationship is
4976 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4977 * being client/server, worker/dispatcher, interrupt source or whatever is
4978 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4979 */
62470419
MW
4980static int wake_wide(struct task_struct *p)
4981{
63b0e9ed
MG
4982 unsigned int master = current->wakee_flips;
4983 unsigned int slave = p->wakee_flips;
7d9ffa89 4984 int factor = this_cpu_read(sd_llc_size);
62470419 4985
63b0e9ed
MG
4986 if (master < slave)
4987 swap(master, slave);
4988 if (slave < factor || master < slave * factor)
4989 return 0;
4990 return 1;
62470419
MW
4991}
4992
c88d5910 4993static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4994{
e37b6a7b 4995 s64 this_load, load;
bd61c98f 4996 s64 this_eff_load, prev_eff_load;
c88d5910 4997 int idx, this_cpu, prev_cpu;
c88d5910 4998 struct task_group *tg;
83378269 4999 unsigned long weight;
b3137bc8 5000 int balanced;
098fb9db 5001
c88d5910
PZ
5002 idx = sd->wake_idx;
5003 this_cpu = smp_processor_id();
5004 prev_cpu = task_cpu(p);
5005 load = source_load(prev_cpu, idx);
5006 this_load = target_load(this_cpu, idx);
098fb9db 5007
b3137bc8
MG
5008 /*
5009 * If sync wakeup then subtract the (maximum possible)
5010 * effect of the currently running task from the load
5011 * of the current CPU:
5012 */
83378269
PZ
5013 if (sync) {
5014 tg = task_group(current);
9d89c257 5015 weight = current->se.avg.load_avg;
83378269 5016
c88d5910 5017 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5018 load += effective_load(tg, prev_cpu, 0, -weight);
5019 }
b3137bc8 5020
83378269 5021 tg = task_group(p);
9d89c257 5022 weight = p->se.avg.load_avg;
b3137bc8 5023
71a29aa7
PZ
5024 /*
5025 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5026 * due to the sync cause above having dropped this_load to 0, we'll
5027 * always have an imbalance, but there's really nothing you can do
5028 * about that, so that's good too.
71a29aa7
PZ
5029 *
5030 * Otherwise check if either cpus are near enough in load to allow this
5031 * task to be woken on this_cpu.
5032 */
bd61c98f
VG
5033 this_eff_load = 100;
5034 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5035
bd61c98f
VG
5036 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5037 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5038
bd61c98f 5039 if (this_load > 0) {
e51fd5e2
PZ
5040 this_eff_load *= this_load +
5041 effective_load(tg, this_cpu, weight, weight);
5042
e51fd5e2 5043 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5044 }
e51fd5e2 5045
bd61c98f 5046 balanced = this_eff_load <= prev_eff_load;
098fb9db 5047
41acab88 5048 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5049
05bfb65f
VG
5050 if (!balanced)
5051 return 0;
098fb9db 5052
05bfb65f
VG
5053 schedstat_inc(sd, ttwu_move_affine);
5054 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5055
5056 return 1;
098fb9db
IM
5057}
5058
aaee1203
PZ
5059/*
5060 * find_idlest_group finds and returns the least busy CPU group within the
5061 * domain.
5062 */
5063static struct sched_group *
78e7ed53 5064find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5065 int this_cpu, int sd_flag)
e7693a36 5066{
b3bd3de6 5067 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5068 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5069 int load_idx = sd->forkexec_idx;
aaee1203 5070 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5071
c44f2a02
VG
5072 if (sd_flag & SD_BALANCE_WAKE)
5073 load_idx = sd->wake_idx;
5074
aaee1203
PZ
5075 do {
5076 unsigned long load, avg_load;
5077 int local_group;
5078 int i;
e7693a36 5079
aaee1203
PZ
5080 /* Skip over this group if it has no CPUs allowed */
5081 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5082 tsk_cpus_allowed(p)))
aaee1203
PZ
5083 continue;
5084
5085 local_group = cpumask_test_cpu(this_cpu,
5086 sched_group_cpus(group));
5087
5088 /* Tally up the load of all CPUs in the group */
5089 avg_load = 0;
5090
5091 for_each_cpu(i, sched_group_cpus(group)) {
5092 /* Bias balancing toward cpus of our domain */
5093 if (local_group)
5094 load = source_load(i, load_idx);
5095 else
5096 load = target_load(i, load_idx);
5097
5098 avg_load += load;
5099 }
5100
63b2ca30 5101 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5102 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5103
5104 if (local_group) {
5105 this_load = avg_load;
aaee1203
PZ
5106 } else if (avg_load < min_load) {
5107 min_load = avg_load;
5108 idlest = group;
5109 }
5110 } while (group = group->next, group != sd->groups);
5111
5112 if (!idlest || 100*this_load < imbalance*min_load)
5113 return NULL;
5114 return idlest;
5115}
5116
5117/*
5118 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5119 */
5120static int
5121find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5122{
5123 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5124 unsigned int min_exit_latency = UINT_MAX;
5125 u64 latest_idle_timestamp = 0;
5126 int least_loaded_cpu = this_cpu;
5127 int shallowest_idle_cpu = -1;
aaee1203
PZ
5128 int i;
5129
5130 /* Traverse only the allowed CPUs */
fa17b507 5131 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5132 if (idle_cpu(i)) {
5133 struct rq *rq = cpu_rq(i);
5134 struct cpuidle_state *idle = idle_get_state(rq);
5135 if (idle && idle->exit_latency < min_exit_latency) {
5136 /*
5137 * We give priority to a CPU whose idle state
5138 * has the smallest exit latency irrespective
5139 * of any idle timestamp.
5140 */
5141 min_exit_latency = idle->exit_latency;
5142 latest_idle_timestamp = rq->idle_stamp;
5143 shallowest_idle_cpu = i;
5144 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5145 rq->idle_stamp > latest_idle_timestamp) {
5146 /*
5147 * If equal or no active idle state, then
5148 * the most recently idled CPU might have
5149 * a warmer cache.
5150 */
5151 latest_idle_timestamp = rq->idle_stamp;
5152 shallowest_idle_cpu = i;
5153 }
9f96742a 5154 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5155 load = weighted_cpuload(i);
5156 if (load < min_load || (load == min_load && i == this_cpu)) {
5157 min_load = load;
5158 least_loaded_cpu = i;
5159 }
e7693a36
GH
5160 }
5161 }
5162
83a0a96a 5163 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5164}
e7693a36 5165
a50bde51
PZ
5166/*
5167 * Try and locate an idle CPU in the sched_domain.
5168 */
99bd5e2f 5169static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5170{
99bd5e2f 5171 struct sched_domain *sd;
37407ea7 5172 struct sched_group *sg;
e0a79f52 5173 int i = task_cpu(p);
a50bde51 5174
e0a79f52
MG
5175 if (idle_cpu(target))
5176 return target;
99bd5e2f
SS
5177
5178 /*
e0a79f52 5179 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5180 */
e0a79f52
MG
5181 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5182 return i;
a50bde51
PZ
5183
5184 /*
d4335581
MF
5185 * Otherwise, iterate the domains and find an eligible idle cpu.
5186 *
5187 * A completely idle sched group at higher domains is more
5188 * desirable than an idle group at a lower level, because lower
5189 * domains have smaller groups and usually share hardware
5190 * resources which causes tasks to contend on them, e.g. x86
5191 * hyperthread siblings in the lowest domain (SMT) can contend
5192 * on the shared cpu pipeline.
5193 *
5194 * However, while we prefer idle groups at higher domains
5195 * finding an idle cpu at the lowest domain is still better than
5196 * returning 'target', which we've already established, isn't
5197 * idle.
a50bde51 5198 */
518cd623 5199 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5200 for_each_lower_domain(sd) {
37407ea7
LT
5201 sg = sd->groups;
5202 do {
5203 if (!cpumask_intersects(sched_group_cpus(sg),
5204 tsk_cpus_allowed(p)))
5205 goto next;
5206
d4335581 5207 /* Ensure the entire group is idle */
37407ea7 5208 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5209 if (i == target || !idle_cpu(i))
37407ea7
LT
5210 goto next;
5211 }
970e1789 5212
d4335581
MF
5213 /*
5214 * It doesn't matter which cpu we pick, the
5215 * whole group is idle.
5216 */
37407ea7
LT
5217 target = cpumask_first_and(sched_group_cpus(sg),
5218 tsk_cpus_allowed(p));
5219 goto done;
5220next:
5221 sg = sg->next;
5222 } while (sg != sd->groups);
5223 }
5224done:
a50bde51
PZ
5225 return target;
5226}
231678b7 5227
8bb5b00c 5228/*
9e91d61d 5229 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5230 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5231 * compare the utilization with the capacity of the CPU that is available for
5232 * CFS task (ie cpu_capacity).
231678b7
DE
5233 *
5234 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5235 * recent utilization of currently non-runnable tasks on a CPU. It represents
5236 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5237 * capacity_orig is the cpu_capacity available at the highest frequency
5238 * (arch_scale_freq_capacity()).
5239 * The utilization of a CPU converges towards a sum equal to or less than the
5240 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5241 * the running time on this CPU scaled by capacity_curr.
5242 *
5243 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5244 * higher than capacity_orig because of unfortunate rounding in
5245 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5246 * the average stabilizes with the new running time. We need to check that the
5247 * utilization stays within the range of [0..capacity_orig] and cap it if
5248 * necessary. Without utilization capping, a group could be seen as overloaded
5249 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5250 * available capacity. We allow utilization to overshoot capacity_curr (but not
5251 * capacity_orig) as it useful for predicting the capacity required after task
5252 * migrations (scheduler-driven DVFS).
8bb5b00c 5253 */
9e91d61d 5254static int cpu_util(int cpu)
8bb5b00c 5255{
9e91d61d 5256 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5257 unsigned long capacity = capacity_orig_of(cpu);
5258
231678b7 5259 return (util >= capacity) ? capacity : util;
8bb5b00c 5260}
a50bde51 5261
aaee1203 5262/*
de91b9cb
MR
5263 * select_task_rq_fair: Select target runqueue for the waking task in domains
5264 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5265 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5266 *
de91b9cb
MR
5267 * Balances load by selecting the idlest cpu in the idlest group, or under
5268 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5269 *
de91b9cb 5270 * Returns the target cpu number.
aaee1203
PZ
5271 *
5272 * preempt must be disabled.
5273 */
0017d735 5274static int
ac66f547 5275select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5276{
29cd8bae 5277 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5278 int cpu = smp_processor_id();
63b0e9ed 5279 int new_cpu = prev_cpu;
99bd5e2f 5280 int want_affine = 0;
5158f4e4 5281 int sync = wake_flags & WF_SYNC;
c88d5910 5282
a8edd075 5283 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5284 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5285
dce840a0 5286 rcu_read_lock();
aaee1203 5287 for_each_domain(cpu, tmp) {
e4f42888 5288 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5289 break;
e4f42888 5290
fe3bcfe1 5291 /*
99bd5e2f
SS
5292 * If both cpu and prev_cpu are part of this domain,
5293 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5294 */
99bd5e2f
SS
5295 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5296 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5297 affine_sd = tmp;
29cd8bae 5298 break;
f03542a7 5299 }
29cd8bae 5300
f03542a7 5301 if (tmp->flags & sd_flag)
29cd8bae 5302 sd = tmp;
63b0e9ed
MG
5303 else if (!want_affine)
5304 break;
29cd8bae
PZ
5305 }
5306
63b0e9ed
MG
5307 if (affine_sd) {
5308 sd = NULL; /* Prefer wake_affine over balance flags */
5309 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5310 new_cpu = cpu;
8b911acd 5311 }
e7693a36 5312
63b0e9ed
MG
5313 if (!sd) {
5314 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5315 new_cpu = select_idle_sibling(p, new_cpu);
5316
5317 } else while (sd) {
aaee1203 5318 struct sched_group *group;
c88d5910 5319 int weight;
098fb9db 5320
0763a660 5321 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5322 sd = sd->child;
5323 continue;
5324 }
098fb9db 5325
c44f2a02 5326 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5327 if (!group) {
5328 sd = sd->child;
5329 continue;
5330 }
4ae7d5ce 5331
d7c33c49 5332 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5333 if (new_cpu == -1 || new_cpu == cpu) {
5334 /* Now try balancing at a lower domain level of cpu */
5335 sd = sd->child;
5336 continue;
e7693a36 5337 }
aaee1203
PZ
5338
5339 /* Now try balancing at a lower domain level of new_cpu */
5340 cpu = new_cpu;
669c55e9 5341 weight = sd->span_weight;
aaee1203
PZ
5342 sd = NULL;
5343 for_each_domain(cpu, tmp) {
669c55e9 5344 if (weight <= tmp->span_weight)
aaee1203 5345 break;
0763a660 5346 if (tmp->flags & sd_flag)
aaee1203
PZ
5347 sd = tmp;
5348 }
5349 /* while loop will break here if sd == NULL */
e7693a36 5350 }
dce840a0 5351 rcu_read_unlock();
e7693a36 5352
c88d5910 5353 return new_cpu;
e7693a36 5354}
0a74bef8
PT
5355
5356/*
5357 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5358 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5359 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5360 */
5a4fd036 5361static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5362{
aff3e498 5363 /*
9d89c257
YD
5364 * We are supposed to update the task to "current" time, then its up to date
5365 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5366 * what current time is, so simply throw away the out-of-date time. This
5367 * will result in the wakee task is less decayed, but giving the wakee more
5368 * load sounds not bad.
aff3e498 5369 */
9d89c257
YD
5370 remove_entity_load_avg(&p->se);
5371
5372 /* Tell new CPU we are migrated */
5373 p->se.avg.last_update_time = 0;
3944a927
BS
5374
5375 /* We have migrated, no longer consider this task hot */
9d89c257 5376 p->se.exec_start = 0;
0a74bef8 5377}
12695578
YD
5378
5379static void task_dead_fair(struct task_struct *p)
5380{
5381 remove_entity_load_avg(&p->se);
5382}
e7693a36
GH
5383#endif /* CONFIG_SMP */
5384
e52fb7c0
PZ
5385static unsigned long
5386wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5387{
5388 unsigned long gran = sysctl_sched_wakeup_granularity;
5389
5390 /*
e52fb7c0
PZ
5391 * Since its curr running now, convert the gran from real-time
5392 * to virtual-time in his units.
13814d42
MG
5393 *
5394 * By using 'se' instead of 'curr' we penalize light tasks, so
5395 * they get preempted easier. That is, if 'se' < 'curr' then
5396 * the resulting gran will be larger, therefore penalizing the
5397 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5398 * be smaller, again penalizing the lighter task.
5399 *
5400 * This is especially important for buddies when the leftmost
5401 * task is higher priority than the buddy.
0bbd3336 5402 */
f4ad9bd2 5403 return calc_delta_fair(gran, se);
0bbd3336
PZ
5404}
5405
464b7527
PZ
5406/*
5407 * Should 'se' preempt 'curr'.
5408 *
5409 * |s1
5410 * |s2
5411 * |s3
5412 * g
5413 * |<--->|c
5414 *
5415 * w(c, s1) = -1
5416 * w(c, s2) = 0
5417 * w(c, s3) = 1
5418 *
5419 */
5420static int
5421wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5422{
5423 s64 gran, vdiff = curr->vruntime - se->vruntime;
5424
5425 if (vdiff <= 0)
5426 return -1;
5427
e52fb7c0 5428 gran = wakeup_gran(curr, se);
464b7527
PZ
5429 if (vdiff > gran)
5430 return 1;
5431
5432 return 0;
5433}
5434
02479099
PZ
5435static void set_last_buddy(struct sched_entity *se)
5436{
69c80f3e
VP
5437 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5438 return;
5439
5440 for_each_sched_entity(se)
5441 cfs_rq_of(se)->last = se;
02479099
PZ
5442}
5443
5444static void set_next_buddy(struct sched_entity *se)
5445{
69c80f3e
VP
5446 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5447 return;
5448
5449 for_each_sched_entity(se)
5450 cfs_rq_of(se)->next = se;
02479099
PZ
5451}
5452
ac53db59
RR
5453static void set_skip_buddy(struct sched_entity *se)
5454{
69c80f3e
VP
5455 for_each_sched_entity(se)
5456 cfs_rq_of(se)->skip = se;
ac53db59
RR
5457}
5458
bf0f6f24
IM
5459/*
5460 * Preempt the current task with a newly woken task if needed:
5461 */
5a9b86f6 5462static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5463{
5464 struct task_struct *curr = rq->curr;
8651a86c 5465 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5466 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5467 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5468 int next_buddy_marked = 0;
bf0f6f24 5469
4ae7d5ce
IM
5470 if (unlikely(se == pse))
5471 return;
5472
5238cdd3 5473 /*
163122b7 5474 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5475 * unconditionally check_prempt_curr() after an enqueue (which may have
5476 * lead to a throttle). This both saves work and prevents false
5477 * next-buddy nomination below.
5478 */
5479 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5480 return;
5481
2f36825b 5482 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5483 set_next_buddy(pse);
2f36825b
VP
5484 next_buddy_marked = 1;
5485 }
57fdc26d 5486
aec0a514
BR
5487 /*
5488 * We can come here with TIF_NEED_RESCHED already set from new task
5489 * wake up path.
5238cdd3
PT
5490 *
5491 * Note: this also catches the edge-case of curr being in a throttled
5492 * group (e.g. via set_curr_task), since update_curr() (in the
5493 * enqueue of curr) will have resulted in resched being set. This
5494 * prevents us from potentially nominating it as a false LAST_BUDDY
5495 * below.
aec0a514
BR
5496 */
5497 if (test_tsk_need_resched(curr))
5498 return;
5499
a2f5c9ab
DH
5500 /* Idle tasks are by definition preempted by non-idle tasks. */
5501 if (unlikely(curr->policy == SCHED_IDLE) &&
5502 likely(p->policy != SCHED_IDLE))
5503 goto preempt;
5504
91c234b4 5505 /*
a2f5c9ab
DH
5506 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5507 * is driven by the tick):
91c234b4 5508 */
8ed92e51 5509 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5510 return;
bf0f6f24 5511
464b7527 5512 find_matching_se(&se, &pse);
9bbd7374 5513 update_curr(cfs_rq_of(se));
002f128b 5514 BUG_ON(!pse);
2f36825b
VP
5515 if (wakeup_preempt_entity(se, pse) == 1) {
5516 /*
5517 * Bias pick_next to pick the sched entity that is
5518 * triggering this preemption.
5519 */
5520 if (!next_buddy_marked)
5521 set_next_buddy(pse);
3a7e73a2 5522 goto preempt;
2f36825b 5523 }
464b7527 5524
3a7e73a2 5525 return;
a65ac745 5526
3a7e73a2 5527preempt:
8875125e 5528 resched_curr(rq);
3a7e73a2
PZ
5529 /*
5530 * Only set the backward buddy when the current task is still
5531 * on the rq. This can happen when a wakeup gets interleaved
5532 * with schedule on the ->pre_schedule() or idle_balance()
5533 * point, either of which can * drop the rq lock.
5534 *
5535 * Also, during early boot the idle thread is in the fair class,
5536 * for obvious reasons its a bad idea to schedule back to it.
5537 */
5538 if (unlikely(!se->on_rq || curr == rq->idle))
5539 return;
5540
5541 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5542 set_last_buddy(se);
bf0f6f24
IM
5543}
5544
606dba2e 5545static struct task_struct *
e7904a28 5546pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5547{
5548 struct cfs_rq *cfs_rq = &rq->cfs;
5549 struct sched_entity *se;
678d5718 5550 struct task_struct *p;
37e117c0 5551 int new_tasks;
678d5718 5552
6e83125c 5553again:
678d5718
PZ
5554#ifdef CONFIG_FAIR_GROUP_SCHED
5555 if (!cfs_rq->nr_running)
38033c37 5556 goto idle;
678d5718 5557
3f1d2a31 5558 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5559 goto simple;
5560
5561 /*
5562 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5563 * likely that a next task is from the same cgroup as the current.
5564 *
5565 * Therefore attempt to avoid putting and setting the entire cgroup
5566 * hierarchy, only change the part that actually changes.
5567 */
5568
5569 do {
5570 struct sched_entity *curr = cfs_rq->curr;
5571
5572 /*
5573 * Since we got here without doing put_prev_entity() we also
5574 * have to consider cfs_rq->curr. If it is still a runnable
5575 * entity, update_curr() will update its vruntime, otherwise
5576 * forget we've ever seen it.
5577 */
54d27365
BS
5578 if (curr) {
5579 if (curr->on_rq)
5580 update_curr(cfs_rq);
5581 else
5582 curr = NULL;
678d5718 5583
54d27365
BS
5584 /*
5585 * This call to check_cfs_rq_runtime() will do the
5586 * throttle and dequeue its entity in the parent(s).
5587 * Therefore the 'simple' nr_running test will indeed
5588 * be correct.
5589 */
5590 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5591 goto simple;
5592 }
678d5718
PZ
5593
5594 se = pick_next_entity(cfs_rq, curr);
5595 cfs_rq = group_cfs_rq(se);
5596 } while (cfs_rq);
5597
5598 p = task_of(se);
5599
5600 /*
5601 * Since we haven't yet done put_prev_entity and if the selected task
5602 * is a different task than we started out with, try and touch the
5603 * least amount of cfs_rqs.
5604 */
5605 if (prev != p) {
5606 struct sched_entity *pse = &prev->se;
5607
5608 while (!(cfs_rq = is_same_group(se, pse))) {
5609 int se_depth = se->depth;
5610 int pse_depth = pse->depth;
5611
5612 if (se_depth <= pse_depth) {
5613 put_prev_entity(cfs_rq_of(pse), pse);
5614 pse = parent_entity(pse);
5615 }
5616 if (se_depth >= pse_depth) {
5617 set_next_entity(cfs_rq_of(se), se);
5618 se = parent_entity(se);
5619 }
5620 }
5621
5622 put_prev_entity(cfs_rq, pse);
5623 set_next_entity(cfs_rq, se);
5624 }
5625
5626 if (hrtick_enabled(rq))
5627 hrtick_start_fair(rq, p);
5628
5629 return p;
5630simple:
5631 cfs_rq = &rq->cfs;
5632#endif
bf0f6f24 5633
36ace27e 5634 if (!cfs_rq->nr_running)
38033c37 5635 goto idle;
bf0f6f24 5636
3f1d2a31 5637 put_prev_task(rq, prev);
606dba2e 5638
bf0f6f24 5639 do {
678d5718 5640 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5641 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5642 cfs_rq = group_cfs_rq(se);
5643 } while (cfs_rq);
5644
8f4d37ec 5645 p = task_of(se);
678d5718 5646
b39e66ea
MG
5647 if (hrtick_enabled(rq))
5648 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5649
5650 return p;
38033c37
PZ
5651
5652idle:
cbce1a68
PZ
5653 /*
5654 * This is OK, because current is on_cpu, which avoids it being picked
5655 * for load-balance and preemption/IRQs are still disabled avoiding
5656 * further scheduler activity on it and we're being very careful to
5657 * re-start the picking loop.
5658 */
e7904a28 5659 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5660 new_tasks = idle_balance(rq);
e7904a28 5661 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5662 /*
5663 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5664 * possible for any higher priority task to appear. In that case we
5665 * must re-start the pick_next_entity() loop.
5666 */
e4aa358b 5667 if (new_tasks < 0)
37e117c0
PZ
5668 return RETRY_TASK;
5669
e4aa358b 5670 if (new_tasks > 0)
38033c37 5671 goto again;
38033c37
PZ
5672
5673 return NULL;
bf0f6f24
IM
5674}
5675
5676/*
5677 * Account for a descheduled task:
5678 */
31ee529c 5679static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5680{
5681 struct sched_entity *se = &prev->se;
5682 struct cfs_rq *cfs_rq;
5683
5684 for_each_sched_entity(se) {
5685 cfs_rq = cfs_rq_of(se);
ab6cde26 5686 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5687 }
5688}
5689
ac53db59
RR
5690/*
5691 * sched_yield() is very simple
5692 *
5693 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5694 */
5695static void yield_task_fair(struct rq *rq)
5696{
5697 struct task_struct *curr = rq->curr;
5698 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5699 struct sched_entity *se = &curr->se;
5700
5701 /*
5702 * Are we the only task in the tree?
5703 */
5704 if (unlikely(rq->nr_running == 1))
5705 return;
5706
5707 clear_buddies(cfs_rq, se);
5708
5709 if (curr->policy != SCHED_BATCH) {
5710 update_rq_clock(rq);
5711 /*
5712 * Update run-time statistics of the 'current'.
5713 */
5714 update_curr(cfs_rq);
916671c0
MG
5715 /*
5716 * Tell update_rq_clock() that we've just updated,
5717 * so we don't do microscopic update in schedule()
5718 * and double the fastpath cost.
5719 */
9edfbfed 5720 rq_clock_skip_update(rq, true);
ac53db59
RR
5721 }
5722
5723 set_skip_buddy(se);
5724}
5725
d95f4122
MG
5726static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5727{
5728 struct sched_entity *se = &p->se;
5729
5238cdd3
PT
5730 /* throttled hierarchies are not runnable */
5731 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5732 return false;
5733
5734 /* Tell the scheduler that we'd really like pse to run next. */
5735 set_next_buddy(se);
5736
d95f4122
MG
5737 yield_task_fair(rq);
5738
5739 return true;
5740}
5741
681f3e68 5742#ifdef CONFIG_SMP
bf0f6f24 5743/**************************************************
e9c84cb8
PZ
5744 * Fair scheduling class load-balancing methods.
5745 *
5746 * BASICS
5747 *
5748 * The purpose of load-balancing is to achieve the same basic fairness the
5749 * per-cpu scheduler provides, namely provide a proportional amount of compute
5750 * time to each task. This is expressed in the following equation:
5751 *
5752 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5753 *
5754 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5755 * W_i,0 is defined as:
5756 *
5757 * W_i,0 = \Sum_j w_i,j (2)
5758 *
5759 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5760 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5761 *
5762 * The weight average is an exponential decay average of the instantaneous
5763 * weight:
5764 *
5765 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5766 *
ced549fa 5767 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5768 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5769 * can also include other factors [XXX].
5770 *
5771 * To achieve this balance we define a measure of imbalance which follows
5772 * directly from (1):
5773 *
ced549fa 5774 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5775 *
5776 * We them move tasks around to minimize the imbalance. In the continuous
5777 * function space it is obvious this converges, in the discrete case we get
5778 * a few fun cases generally called infeasible weight scenarios.
5779 *
5780 * [XXX expand on:
5781 * - infeasible weights;
5782 * - local vs global optima in the discrete case. ]
5783 *
5784 *
5785 * SCHED DOMAINS
5786 *
5787 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5788 * for all i,j solution, we create a tree of cpus that follows the hardware
5789 * topology where each level pairs two lower groups (or better). This results
5790 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5791 * tree to only the first of the previous level and we decrease the frequency
5792 * of load-balance at each level inv. proportional to the number of cpus in
5793 * the groups.
5794 *
5795 * This yields:
5796 *
5797 * log_2 n 1 n
5798 * \Sum { --- * --- * 2^i } = O(n) (5)
5799 * i = 0 2^i 2^i
5800 * `- size of each group
5801 * | | `- number of cpus doing load-balance
5802 * | `- freq
5803 * `- sum over all levels
5804 *
5805 * Coupled with a limit on how many tasks we can migrate every balance pass,
5806 * this makes (5) the runtime complexity of the balancer.
5807 *
5808 * An important property here is that each CPU is still (indirectly) connected
5809 * to every other cpu in at most O(log n) steps:
5810 *
5811 * The adjacency matrix of the resulting graph is given by:
5812 *
5813 * log_2 n
5814 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5815 * k = 0
5816 *
5817 * And you'll find that:
5818 *
5819 * A^(log_2 n)_i,j != 0 for all i,j (7)
5820 *
5821 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5822 * The task movement gives a factor of O(m), giving a convergence complexity
5823 * of:
5824 *
5825 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5826 *
5827 *
5828 * WORK CONSERVING
5829 *
5830 * In order to avoid CPUs going idle while there's still work to do, new idle
5831 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5832 * tree itself instead of relying on other CPUs to bring it work.
5833 *
5834 * This adds some complexity to both (5) and (8) but it reduces the total idle
5835 * time.
5836 *
5837 * [XXX more?]
5838 *
5839 *
5840 * CGROUPS
5841 *
5842 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5843 *
5844 * s_k,i
5845 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5846 * S_k
5847 *
5848 * Where
5849 *
5850 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5851 *
5852 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5853 *
5854 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5855 * property.
5856 *
5857 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5858 * rewrite all of this once again.]
5859 */
bf0f6f24 5860
ed387b78
HS
5861static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5862
0ec8aa00
PZ
5863enum fbq_type { regular, remote, all };
5864
ddcdf6e7 5865#define LBF_ALL_PINNED 0x01
367456c7 5866#define LBF_NEED_BREAK 0x02
6263322c
PZ
5867#define LBF_DST_PINNED 0x04
5868#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5869
5870struct lb_env {
5871 struct sched_domain *sd;
5872
ddcdf6e7 5873 struct rq *src_rq;
85c1e7da 5874 int src_cpu;
ddcdf6e7
PZ
5875
5876 int dst_cpu;
5877 struct rq *dst_rq;
5878
88b8dac0
SV
5879 struct cpumask *dst_grpmask;
5880 int new_dst_cpu;
ddcdf6e7 5881 enum cpu_idle_type idle;
bd939f45 5882 long imbalance;
b9403130
MW
5883 /* The set of CPUs under consideration for load-balancing */
5884 struct cpumask *cpus;
5885
ddcdf6e7 5886 unsigned int flags;
367456c7
PZ
5887
5888 unsigned int loop;
5889 unsigned int loop_break;
5890 unsigned int loop_max;
0ec8aa00
PZ
5891
5892 enum fbq_type fbq_type;
163122b7 5893 struct list_head tasks;
ddcdf6e7
PZ
5894};
5895
029632fb
PZ
5896/*
5897 * Is this task likely cache-hot:
5898 */
5d5e2b1b 5899static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5900{
5901 s64 delta;
5902
e5673f28
KT
5903 lockdep_assert_held(&env->src_rq->lock);
5904
029632fb
PZ
5905 if (p->sched_class != &fair_sched_class)
5906 return 0;
5907
5908 if (unlikely(p->policy == SCHED_IDLE))
5909 return 0;
5910
5911 /*
5912 * Buddy candidates are cache hot:
5913 */
5d5e2b1b 5914 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5915 (&p->se == cfs_rq_of(&p->se)->next ||
5916 &p->se == cfs_rq_of(&p->se)->last))
5917 return 1;
5918
5919 if (sysctl_sched_migration_cost == -1)
5920 return 1;
5921 if (sysctl_sched_migration_cost == 0)
5922 return 0;
5923
5d5e2b1b 5924 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5925
5926 return delta < (s64)sysctl_sched_migration_cost;
5927}
5928
3a7053b3 5929#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5930/*
2a1ed24c
SD
5931 * Returns 1, if task migration degrades locality
5932 * Returns 0, if task migration improves locality i.e migration preferred.
5933 * Returns -1, if task migration is not affected by locality.
c1ceac62 5934 */
2a1ed24c 5935static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5936{
b1ad065e 5937 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5938 unsigned long src_faults, dst_faults;
3a7053b3
MG
5939 int src_nid, dst_nid;
5940
2a595721 5941 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5942 return -1;
5943
c3b9bc5b 5944 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5945 return -1;
7a0f3083
MG
5946
5947 src_nid = cpu_to_node(env->src_cpu);
5948 dst_nid = cpu_to_node(env->dst_cpu);
5949
83e1d2cd 5950 if (src_nid == dst_nid)
2a1ed24c 5951 return -1;
7a0f3083 5952
2a1ed24c
SD
5953 /* Migrating away from the preferred node is always bad. */
5954 if (src_nid == p->numa_preferred_nid) {
5955 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5956 return 1;
5957 else
5958 return -1;
5959 }
b1ad065e 5960
c1ceac62
RR
5961 /* Encourage migration to the preferred node. */
5962 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5963 return 0;
b1ad065e 5964
c1ceac62
RR
5965 if (numa_group) {
5966 src_faults = group_faults(p, src_nid);
5967 dst_faults = group_faults(p, dst_nid);
5968 } else {
5969 src_faults = task_faults(p, src_nid);
5970 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5971 }
5972
c1ceac62 5973 return dst_faults < src_faults;
7a0f3083
MG
5974}
5975
3a7053b3 5976#else
2a1ed24c 5977static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5978 struct lb_env *env)
5979{
2a1ed24c 5980 return -1;
7a0f3083 5981}
3a7053b3
MG
5982#endif
5983
1e3c88bd
PZ
5984/*
5985 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5986 */
5987static
8e45cb54 5988int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5989{
2a1ed24c 5990 int tsk_cache_hot;
e5673f28
KT
5991
5992 lockdep_assert_held(&env->src_rq->lock);
5993
1e3c88bd
PZ
5994 /*
5995 * We do not migrate tasks that are:
d3198084 5996 * 1) throttled_lb_pair, or
1e3c88bd 5997 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5998 * 3) running (obviously), or
5999 * 4) are cache-hot on their current CPU.
1e3c88bd 6000 */
d3198084
JK
6001 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6002 return 0;
6003
ddcdf6e7 6004 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6005 int cpu;
88b8dac0 6006
41acab88 6007 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6008
6263322c
PZ
6009 env->flags |= LBF_SOME_PINNED;
6010
88b8dac0
SV
6011 /*
6012 * Remember if this task can be migrated to any other cpu in
6013 * our sched_group. We may want to revisit it if we couldn't
6014 * meet load balance goals by pulling other tasks on src_cpu.
6015 *
6016 * Also avoid computing new_dst_cpu if we have already computed
6017 * one in current iteration.
6018 */
6263322c 6019 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6020 return 0;
6021
e02e60c1
JK
6022 /* Prevent to re-select dst_cpu via env's cpus */
6023 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6024 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6025 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6026 env->new_dst_cpu = cpu;
6027 break;
6028 }
88b8dac0 6029 }
e02e60c1 6030
1e3c88bd
PZ
6031 return 0;
6032 }
88b8dac0
SV
6033
6034 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6035 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6036
ddcdf6e7 6037 if (task_running(env->src_rq, p)) {
41acab88 6038 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6039 return 0;
6040 }
6041
6042 /*
6043 * Aggressive migration if:
3a7053b3
MG
6044 * 1) destination numa is preferred
6045 * 2) task is cache cold, or
6046 * 3) too many balance attempts have failed.
1e3c88bd 6047 */
2a1ed24c
SD
6048 tsk_cache_hot = migrate_degrades_locality(p, env);
6049 if (tsk_cache_hot == -1)
6050 tsk_cache_hot = task_hot(p, env);
3a7053b3 6051
2a1ed24c 6052 if (tsk_cache_hot <= 0 ||
7a96c231 6053 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6054 if (tsk_cache_hot == 1) {
3a7053b3
MG
6055 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6056 schedstat_inc(p, se.statistics.nr_forced_migrations);
6057 }
1e3c88bd
PZ
6058 return 1;
6059 }
6060
4e2dcb73
ZH
6061 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6062 return 0;
1e3c88bd
PZ
6063}
6064
897c395f 6065/*
163122b7
KT
6066 * detach_task() -- detach the task for the migration specified in env
6067 */
6068static void detach_task(struct task_struct *p, struct lb_env *env)
6069{
6070 lockdep_assert_held(&env->src_rq->lock);
6071
163122b7 6072 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6073 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6074 set_task_cpu(p, env->dst_cpu);
6075}
6076
897c395f 6077/*
e5673f28 6078 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6079 * part of active balancing operations within "domain".
897c395f 6080 *
e5673f28 6081 * Returns a task if successful and NULL otherwise.
897c395f 6082 */
e5673f28 6083static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6084{
6085 struct task_struct *p, *n;
897c395f 6086
e5673f28
KT
6087 lockdep_assert_held(&env->src_rq->lock);
6088
367456c7 6089 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6090 if (!can_migrate_task(p, env))
6091 continue;
897c395f 6092
163122b7 6093 detach_task(p, env);
e5673f28 6094
367456c7 6095 /*
e5673f28 6096 * Right now, this is only the second place where
163122b7 6097 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6098 * so we can safely collect stats here rather than
163122b7 6099 * inside detach_tasks().
367456c7
PZ
6100 */
6101 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6102 return p;
897c395f 6103 }
e5673f28 6104 return NULL;
897c395f
PZ
6105}
6106
eb95308e
PZ
6107static const unsigned int sched_nr_migrate_break = 32;
6108
5d6523eb 6109/*
163122b7
KT
6110 * detach_tasks() -- tries to detach up to imbalance weighted load from
6111 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6112 *
163122b7 6113 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6114 */
163122b7 6115static int detach_tasks(struct lb_env *env)
1e3c88bd 6116{
5d6523eb
PZ
6117 struct list_head *tasks = &env->src_rq->cfs_tasks;
6118 struct task_struct *p;
367456c7 6119 unsigned long load;
163122b7
KT
6120 int detached = 0;
6121
6122 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6123
bd939f45 6124 if (env->imbalance <= 0)
5d6523eb 6125 return 0;
1e3c88bd 6126
5d6523eb 6127 while (!list_empty(tasks)) {
985d3a4c
YD
6128 /*
6129 * We don't want to steal all, otherwise we may be treated likewise,
6130 * which could at worst lead to a livelock crash.
6131 */
6132 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6133 break;
6134
5d6523eb 6135 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6136
367456c7
PZ
6137 env->loop++;
6138 /* We've more or less seen every task there is, call it quits */
5d6523eb 6139 if (env->loop > env->loop_max)
367456c7 6140 break;
5d6523eb
PZ
6141
6142 /* take a breather every nr_migrate tasks */
367456c7 6143 if (env->loop > env->loop_break) {
eb95308e 6144 env->loop_break += sched_nr_migrate_break;
8e45cb54 6145 env->flags |= LBF_NEED_BREAK;
ee00e66f 6146 break;
a195f004 6147 }
1e3c88bd 6148
d3198084 6149 if (!can_migrate_task(p, env))
367456c7
PZ
6150 goto next;
6151
6152 load = task_h_load(p);
5d6523eb 6153
eb95308e 6154 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6155 goto next;
6156
bd939f45 6157 if ((load / 2) > env->imbalance)
367456c7 6158 goto next;
1e3c88bd 6159
163122b7
KT
6160 detach_task(p, env);
6161 list_add(&p->se.group_node, &env->tasks);
6162
6163 detached++;
bd939f45 6164 env->imbalance -= load;
1e3c88bd
PZ
6165
6166#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6167 /*
6168 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6169 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6170 * the critical section.
6171 */
5d6523eb 6172 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6173 break;
1e3c88bd
PZ
6174#endif
6175
ee00e66f
PZ
6176 /*
6177 * We only want to steal up to the prescribed amount of
6178 * weighted load.
6179 */
bd939f45 6180 if (env->imbalance <= 0)
ee00e66f 6181 break;
367456c7
PZ
6182
6183 continue;
6184next:
5d6523eb 6185 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6186 }
5d6523eb 6187
1e3c88bd 6188 /*
163122b7
KT
6189 * Right now, this is one of only two places we collect this stat
6190 * so we can safely collect detach_one_task() stats here rather
6191 * than inside detach_one_task().
1e3c88bd 6192 */
163122b7 6193 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6194
163122b7
KT
6195 return detached;
6196}
6197
6198/*
6199 * attach_task() -- attach the task detached by detach_task() to its new rq.
6200 */
6201static void attach_task(struct rq *rq, struct task_struct *p)
6202{
6203 lockdep_assert_held(&rq->lock);
6204
6205 BUG_ON(task_rq(p) != rq);
163122b7 6206 activate_task(rq, p, 0);
3ea94de1 6207 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6208 check_preempt_curr(rq, p, 0);
6209}
6210
6211/*
6212 * attach_one_task() -- attaches the task returned from detach_one_task() to
6213 * its new rq.
6214 */
6215static void attach_one_task(struct rq *rq, struct task_struct *p)
6216{
6217 raw_spin_lock(&rq->lock);
6218 attach_task(rq, p);
6219 raw_spin_unlock(&rq->lock);
6220}
6221
6222/*
6223 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6224 * new rq.
6225 */
6226static void attach_tasks(struct lb_env *env)
6227{
6228 struct list_head *tasks = &env->tasks;
6229 struct task_struct *p;
6230
6231 raw_spin_lock(&env->dst_rq->lock);
6232
6233 while (!list_empty(tasks)) {
6234 p = list_first_entry(tasks, struct task_struct, se.group_node);
6235 list_del_init(&p->se.group_node);
1e3c88bd 6236
163122b7
KT
6237 attach_task(env->dst_rq, p);
6238 }
6239
6240 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6241}
6242
230059de 6243#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6244static void update_blocked_averages(int cpu)
9e3081ca 6245{
9e3081ca 6246 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6247 struct cfs_rq *cfs_rq;
6248 unsigned long flags;
9e3081ca 6249
48a16753
PT
6250 raw_spin_lock_irqsave(&rq->lock, flags);
6251 update_rq_clock(rq);
9d89c257 6252
9763b67f
PZ
6253 /*
6254 * Iterates the task_group tree in a bottom up fashion, see
6255 * list_add_leaf_cfs_rq() for details.
6256 */
64660c86 6257 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6258 /* throttled entities do not contribute to load */
6259 if (throttled_hierarchy(cfs_rq))
6260 continue;
48a16753 6261
a2c6c91f 6262 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6263 update_tg_load_avg(cfs_rq, 0);
6264 }
48a16753 6265 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6266}
6267
9763b67f 6268/*
68520796 6269 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6270 * This needs to be done in a top-down fashion because the load of a child
6271 * group is a fraction of its parents load.
6272 */
68520796 6273static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6274{
68520796
VD
6275 struct rq *rq = rq_of(cfs_rq);
6276 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6277 unsigned long now = jiffies;
68520796 6278 unsigned long load;
a35b6466 6279
68520796 6280 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6281 return;
6282
68520796
VD
6283 cfs_rq->h_load_next = NULL;
6284 for_each_sched_entity(se) {
6285 cfs_rq = cfs_rq_of(se);
6286 cfs_rq->h_load_next = se;
6287 if (cfs_rq->last_h_load_update == now)
6288 break;
6289 }
a35b6466 6290
68520796 6291 if (!se) {
7ea241af 6292 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6293 cfs_rq->last_h_load_update = now;
6294 }
6295
6296 while ((se = cfs_rq->h_load_next) != NULL) {
6297 load = cfs_rq->h_load;
7ea241af
YD
6298 load = div64_ul(load * se->avg.load_avg,
6299 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6300 cfs_rq = group_cfs_rq(se);
6301 cfs_rq->h_load = load;
6302 cfs_rq->last_h_load_update = now;
6303 }
9763b67f
PZ
6304}
6305
367456c7 6306static unsigned long task_h_load(struct task_struct *p)
230059de 6307{
367456c7 6308 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6309
68520796 6310 update_cfs_rq_h_load(cfs_rq);
9d89c257 6311 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6312 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6313}
6314#else
48a16753 6315static inline void update_blocked_averages(int cpu)
9e3081ca 6316{
6c1d47c0
VG
6317 struct rq *rq = cpu_rq(cpu);
6318 struct cfs_rq *cfs_rq = &rq->cfs;
6319 unsigned long flags;
6320
6321 raw_spin_lock_irqsave(&rq->lock, flags);
6322 update_rq_clock(rq);
a2c6c91f 6323 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6324 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6325}
6326
367456c7 6327static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6328{
9d89c257 6329 return p->se.avg.load_avg;
1e3c88bd 6330}
230059de 6331#endif
1e3c88bd 6332
1e3c88bd 6333/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6334
6335enum group_type {
6336 group_other = 0,
6337 group_imbalanced,
6338 group_overloaded,
6339};
6340
1e3c88bd
PZ
6341/*
6342 * sg_lb_stats - stats of a sched_group required for load_balancing
6343 */
6344struct sg_lb_stats {
6345 unsigned long avg_load; /*Avg load across the CPUs of the group */
6346 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6347 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6348 unsigned long load_per_task;
63b2ca30 6349 unsigned long group_capacity;
9e91d61d 6350 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6351 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6352 unsigned int idle_cpus;
6353 unsigned int group_weight;
caeb178c 6354 enum group_type group_type;
ea67821b 6355 int group_no_capacity;
0ec8aa00
PZ
6356#ifdef CONFIG_NUMA_BALANCING
6357 unsigned int nr_numa_running;
6358 unsigned int nr_preferred_running;
6359#endif
1e3c88bd
PZ
6360};
6361
56cf515b
JK
6362/*
6363 * sd_lb_stats - Structure to store the statistics of a sched_domain
6364 * during load balancing.
6365 */
6366struct sd_lb_stats {
6367 struct sched_group *busiest; /* Busiest group in this sd */
6368 struct sched_group *local; /* Local group in this sd */
6369 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6370 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6371 unsigned long avg_load; /* Average load across all groups in sd */
6372
56cf515b 6373 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6374 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6375};
6376
147c5fc2
PZ
6377static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6378{
6379 /*
6380 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6381 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6382 * We must however clear busiest_stat::avg_load because
6383 * update_sd_pick_busiest() reads this before assignment.
6384 */
6385 *sds = (struct sd_lb_stats){
6386 .busiest = NULL,
6387 .local = NULL,
6388 .total_load = 0UL,
63b2ca30 6389 .total_capacity = 0UL,
147c5fc2
PZ
6390 .busiest_stat = {
6391 .avg_load = 0UL,
caeb178c
RR
6392 .sum_nr_running = 0,
6393 .group_type = group_other,
147c5fc2
PZ
6394 },
6395 };
6396}
6397
1e3c88bd
PZ
6398/**
6399 * get_sd_load_idx - Obtain the load index for a given sched domain.
6400 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6401 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6402 *
6403 * Return: The load index.
1e3c88bd
PZ
6404 */
6405static inline int get_sd_load_idx(struct sched_domain *sd,
6406 enum cpu_idle_type idle)
6407{
6408 int load_idx;
6409
6410 switch (idle) {
6411 case CPU_NOT_IDLE:
6412 load_idx = sd->busy_idx;
6413 break;
6414
6415 case CPU_NEWLY_IDLE:
6416 load_idx = sd->newidle_idx;
6417 break;
6418 default:
6419 load_idx = sd->idle_idx;
6420 break;
6421 }
6422
6423 return load_idx;
6424}
6425
ced549fa 6426static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6427{
6428 struct rq *rq = cpu_rq(cpu);
b5b4860d 6429 u64 total, used, age_stamp, avg;
cadefd3d 6430 s64 delta;
1e3c88bd 6431
b654f7de
PZ
6432 /*
6433 * Since we're reading these variables without serialization make sure
6434 * we read them once before doing sanity checks on them.
6435 */
316c1608
JL
6436 age_stamp = READ_ONCE(rq->age_stamp);
6437 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6438 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6439
cadefd3d
PZ
6440 if (unlikely(delta < 0))
6441 delta = 0;
6442
6443 total = sched_avg_period() + delta;
aa483808 6444
b5b4860d 6445 used = div_u64(avg, total);
1e3c88bd 6446
b5b4860d
VG
6447 if (likely(used < SCHED_CAPACITY_SCALE))
6448 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6449
b5b4860d 6450 return 1;
1e3c88bd
PZ
6451}
6452
ced549fa 6453static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6454{
8cd5601c 6455 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6456 struct sched_group *sdg = sd->groups;
6457
ca6d75e6 6458 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6459
ced549fa 6460 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6461 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6462
ced549fa
NP
6463 if (!capacity)
6464 capacity = 1;
1e3c88bd 6465
ced549fa
NP
6466 cpu_rq(cpu)->cpu_capacity = capacity;
6467 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6468}
6469
63b2ca30 6470void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6471{
6472 struct sched_domain *child = sd->child;
6473 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6474 unsigned long capacity;
4ec4412e
VG
6475 unsigned long interval;
6476
6477 interval = msecs_to_jiffies(sd->balance_interval);
6478 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6479 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6480
6481 if (!child) {
ced549fa 6482 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6483 return;
6484 }
6485
dc7ff76e 6486 capacity = 0;
1e3c88bd 6487
74a5ce20
PZ
6488 if (child->flags & SD_OVERLAP) {
6489 /*
6490 * SD_OVERLAP domains cannot assume that child groups
6491 * span the current group.
6492 */
6493
863bffc8 6494 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6495 struct sched_group_capacity *sgc;
9abf24d4 6496 struct rq *rq = cpu_rq(cpu);
863bffc8 6497
9abf24d4 6498 /*
63b2ca30 6499 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6500 * gets here before we've attached the domains to the
6501 * runqueues.
6502 *
ced549fa
NP
6503 * Use capacity_of(), which is set irrespective of domains
6504 * in update_cpu_capacity().
9abf24d4 6505 *
dc7ff76e 6506 * This avoids capacity from being 0 and
9abf24d4 6507 * causing divide-by-zero issues on boot.
9abf24d4
SD
6508 */
6509 if (unlikely(!rq->sd)) {
ced549fa 6510 capacity += capacity_of(cpu);
9abf24d4
SD
6511 continue;
6512 }
863bffc8 6513
63b2ca30 6514 sgc = rq->sd->groups->sgc;
63b2ca30 6515 capacity += sgc->capacity;
863bffc8 6516 }
74a5ce20
PZ
6517 } else {
6518 /*
6519 * !SD_OVERLAP domains can assume that child groups
6520 * span the current group.
6521 */
6522
6523 group = child->groups;
6524 do {
63b2ca30 6525 capacity += group->sgc->capacity;
74a5ce20
PZ
6526 group = group->next;
6527 } while (group != child->groups);
6528 }
1e3c88bd 6529
63b2ca30 6530 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6531}
6532
9d5efe05 6533/*
ea67821b
VG
6534 * Check whether the capacity of the rq has been noticeably reduced by side
6535 * activity. The imbalance_pct is used for the threshold.
6536 * Return true is the capacity is reduced
9d5efe05
SV
6537 */
6538static inline int
ea67821b 6539check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6540{
ea67821b
VG
6541 return ((rq->cpu_capacity * sd->imbalance_pct) <
6542 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6543}
6544
30ce5dab
PZ
6545/*
6546 * Group imbalance indicates (and tries to solve) the problem where balancing
6547 * groups is inadequate due to tsk_cpus_allowed() constraints.
6548 *
6549 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6550 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6551 * Something like:
6552 *
6553 * { 0 1 2 3 } { 4 5 6 7 }
6554 * * * * *
6555 *
6556 * If we were to balance group-wise we'd place two tasks in the first group and
6557 * two tasks in the second group. Clearly this is undesired as it will overload
6558 * cpu 3 and leave one of the cpus in the second group unused.
6559 *
6560 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6561 * by noticing the lower domain failed to reach balance and had difficulty
6562 * moving tasks due to affinity constraints.
30ce5dab
PZ
6563 *
6564 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6565 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6566 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6567 * to create an effective group imbalance.
6568 *
6569 * This is a somewhat tricky proposition since the next run might not find the
6570 * group imbalance and decide the groups need to be balanced again. A most
6571 * subtle and fragile situation.
6572 */
6573
6263322c 6574static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6575{
63b2ca30 6576 return group->sgc->imbalance;
30ce5dab
PZ
6577}
6578
b37d9316 6579/*
ea67821b
VG
6580 * group_has_capacity returns true if the group has spare capacity that could
6581 * be used by some tasks.
6582 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6583 * smaller than the number of CPUs or if the utilization is lower than the
6584 * available capacity for CFS tasks.
ea67821b
VG
6585 * For the latter, we use a threshold to stabilize the state, to take into
6586 * account the variance of the tasks' load and to return true if the available
6587 * capacity in meaningful for the load balancer.
6588 * As an example, an available capacity of 1% can appear but it doesn't make
6589 * any benefit for the load balance.
b37d9316 6590 */
ea67821b
VG
6591static inline bool
6592group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6593{
ea67821b
VG
6594 if (sgs->sum_nr_running < sgs->group_weight)
6595 return true;
c61037e9 6596
ea67821b 6597 if ((sgs->group_capacity * 100) >
9e91d61d 6598 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6599 return true;
b37d9316 6600
ea67821b
VG
6601 return false;
6602}
6603
6604/*
6605 * group_is_overloaded returns true if the group has more tasks than it can
6606 * handle.
6607 * group_is_overloaded is not equals to !group_has_capacity because a group
6608 * with the exact right number of tasks, has no more spare capacity but is not
6609 * overloaded so both group_has_capacity and group_is_overloaded return
6610 * false.
6611 */
6612static inline bool
6613group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6614{
6615 if (sgs->sum_nr_running <= sgs->group_weight)
6616 return false;
b37d9316 6617
ea67821b 6618 if ((sgs->group_capacity * 100) <
9e91d61d 6619 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6620 return true;
b37d9316 6621
ea67821b 6622 return false;
b37d9316
PZ
6623}
6624
79a89f92
LY
6625static inline enum
6626group_type group_classify(struct sched_group *group,
6627 struct sg_lb_stats *sgs)
caeb178c 6628{
ea67821b 6629 if (sgs->group_no_capacity)
caeb178c
RR
6630 return group_overloaded;
6631
6632 if (sg_imbalanced(group))
6633 return group_imbalanced;
6634
6635 return group_other;
6636}
6637
1e3c88bd
PZ
6638/**
6639 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6640 * @env: The load balancing environment.
1e3c88bd 6641 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6642 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6643 * @local_group: Does group contain this_cpu.
1e3c88bd 6644 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6645 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6646 */
bd939f45
PZ
6647static inline void update_sg_lb_stats(struct lb_env *env,
6648 struct sched_group *group, int load_idx,
4486edd1
TC
6649 int local_group, struct sg_lb_stats *sgs,
6650 bool *overload)
1e3c88bd 6651{
30ce5dab 6652 unsigned long load;
a426f99c 6653 int i, nr_running;
1e3c88bd 6654
b72ff13c
PZ
6655 memset(sgs, 0, sizeof(*sgs));
6656
b9403130 6657 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6658 struct rq *rq = cpu_rq(i);
6659
1e3c88bd 6660 /* Bias balancing toward cpus of our domain */
6263322c 6661 if (local_group)
04f733b4 6662 load = target_load(i, load_idx);
6263322c 6663 else
1e3c88bd 6664 load = source_load(i, load_idx);
1e3c88bd
PZ
6665
6666 sgs->group_load += load;
9e91d61d 6667 sgs->group_util += cpu_util(i);
65fdac08 6668 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6669
a426f99c
WL
6670 nr_running = rq->nr_running;
6671 if (nr_running > 1)
4486edd1
TC
6672 *overload = true;
6673
0ec8aa00
PZ
6674#ifdef CONFIG_NUMA_BALANCING
6675 sgs->nr_numa_running += rq->nr_numa_running;
6676 sgs->nr_preferred_running += rq->nr_preferred_running;
6677#endif
1e3c88bd 6678 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6679 /*
6680 * No need to call idle_cpu() if nr_running is not 0
6681 */
6682 if (!nr_running && idle_cpu(i))
aae6d3dd 6683 sgs->idle_cpus++;
1e3c88bd
PZ
6684 }
6685
63b2ca30
NP
6686 /* Adjust by relative CPU capacity of the group */
6687 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6688 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6689
dd5feea1 6690 if (sgs->sum_nr_running)
38d0f770 6691 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6692
aae6d3dd 6693 sgs->group_weight = group->group_weight;
b37d9316 6694
ea67821b 6695 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6696 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6697}
6698
532cb4c4
MN
6699/**
6700 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6701 * @env: The load balancing environment.
532cb4c4
MN
6702 * @sds: sched_domain statistics
6703 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6704 * @sgs: sched_group statistics
532cb4c4
MN
6705 *
6706 * Determine if @sg is a busier group than the previously selected
6707 * busiest group.
e69f6186
YB
6708 *
6709 * Return: %true if @sg is a busier group than the previously selected
6710 * busiest group. %false otherwise.
532cb4c4 6711 */
bd939f45 6712static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6713 struct sd_lb_stats *sds,
6714 struct sched_group *sg,
bd939f45 6715 struct sg_lb_stats *sgs)
532cb4c4 6716{
caeb178c 6717 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6718
caeb178c 6719 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6720 return true;
6721
caeb178c
RR
6722 if (sgs->group_type < busiest->group_type)
6723 return false;
6724
6725 if (sgs->avg_load <= busiest->avg_load)
6726 return false;
6727
6728 /* This is the busiest node in its class. */
6729 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6730 return true;
6731
1f621e02
SD
6732 /* No ASYM_PACKING if target cpu is already busy */
6733 if (env->idle == CPU_NOT_IDLE)
6734 return true;
532cb4c4
MN
6735 /*
6736 * ASYM_PACKING needs to move all the work to the lowest
6737 * numbered CPUs in the group, therefore mark all groups
6738 * higher than ourself as busy.
6739 */
caeb178c 6740 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6741 if (!sds->busiest)
6742 return true;
6743
1f621e02
SD
6744 /* Prefer to move from highest possible cpu's work */
6745 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6746 return true;
6747 }
6748
6749 return false;
6750}
6751
0ec8aa00
PZ
6752#ifdef CONFIG_NUMA_BALANCING
6753static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6754{
6755 if (sgs->sum_nr_running > sgs->nr_numa_running)
6756 return regular;
6757 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6758 return remote;
6759 return all;
6760}
6761
6762static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6763{
6764 if (rq->nr_running > rq->nr_numa_running)
6765 return regular;
6766 if (rq->nr_running > rq->nr_preferred_running)
6767 return remote;
6768 return all;
6769}
6770#else
6771static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6772{
6773 return all;
6774}
6775
6776static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6777{
6778 return regular;
6779}
6780#endif /* CONFIG_NUMA_BALANCING */
6781
1e3c88bd 6782/**
461819ac 6783 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6784 * @env: The load balancing environment.
1e3c88bd
PZ
6785 * @sds: variable to hold the statistics for this sched_domain.
6786 */
0ec8aa00 6787static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6788{
bd939f45
PZ
6789 struct sched_domain *child = env->sd->child;
6790 struct sched_group *sg = env->sd->groups;
56cf515b 6791 struct sg_lb_stats tmp_sgs;
1e3c88bd 6792 int load_idx, prefer_sibling = 0;
4486edd1 6793 bool overload = false;
1e3c88bd
PZ
6794
6795 if (child && child->flags & SD_PREFER_SIBLING)
6796 prefer_sibling = 1;
6797
bd939f45 6798 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6799
6800 do {
56cf515b 6801 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6802 int local_group;
6803
bd939f45 6804 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6805 if (local_group) {
6806 sds->local = sg;
6807 sgs = &sds->local_stat;
b72ff13c
PZ
6808
6809 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6810 time_after_eq(jiffies, sg->sgc->next_update))
6811 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6812 }
1e3c88bd 6813
4486edd1
TC
6814 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6815 &overload);
1e3c88bd 6816
b72ff13c
PZ
6817 if (local_group)
6818 goto next_group;
6819
1e3c88bd
PZ
6820 /*
6821 * In case the child domain prefers tasks go to siblings
ea67821b 6822 * first, lower the sg capacity so that we'll try
75dd321d
NR
6823 * and move all the excess tasks away. We lower the capacity
6824 * of a group only if the local group has the capacity to fit
ea67821b
VG
6825 * these excess tasks. The extra check prevents the case where
6826 * you always pull from the heaviest group when it is already
6827 * under-utilized (possible with a large weight task outweighs
6828 * the tasks on the system).
1e3c88bd 6829 */
b72ff13c 6830 if (prefer_sibling && sds->local &&
ea67821b
VG
6831 group_has_capacity(env, &sds->local_stat) &&
6832 (sgs->sum_nr_running > 1)) {
6833 sgs->group_no_capacity = 1;
79a89f92 6834 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6835 }
1e3c88bd 6836
b72ff13c 6837 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6838 sds->busiest = sg;
56cf515b 6839 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6840 }
6841
b72ff13c
PZ
6842next_group:
6843 /* Now, start updating sd_lb_stats */
6844 sds->total_load += sgs->group_load;
63b2ca30 6845 sds->total_capacity += sgs->group_capacity;
b72ff13c 6846
532cb4c4 6847 sg = sg->next;
bd939f45 6848 } while (sg != env->sd->groups);
0ec8aa00
PZ
6849
6850 if (env->sd->flags & SD_NUMA)
6851 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6852
6853 if (!env->sd->parent) {
6854 /* update overload indicator if we are at root domain */
6855 if (env->dst_rq->rd->overload != overload)
6856 env->dst_rq->rd->overload = overload;
6857 }
6858
532cb4c4
MN
6859}
6860
532cb4c4
MN
6861/**
6862 * check_asym_packing - Check to see if the group is packed into the
6863 * sched doman.
6864 *
6865 * This is primarily intended to used at the sibling level. Some
6866 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6867 * case of POWER7, it can move to lower SMT modes only when higher
6868 * threads are idle. When in lower SMT modes, the threads will
6869 * perform better since they share less core resources. Hence when we
6870 * have idle threads, we want them to be the higher ones.
6871 *
6872 * This packing function is run on idle threads. It checks to see if
6873 * the busiest CPU in this domain (core in the P7 case) has a higher
6874 * CPU number than the packing function is being run on. Here we are
6875 * assuming lower CPU number will be equivalent to lower a SMT thread
6876 * number.
6877 *
e69f6186 6878 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6879 * this CPU. The amount of the imbalance is returned in *imbalance.
6880 *
cd96891d 6881 * @env: The load balancing environment.
532cb4c4 6882 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6883 */
bd939f45 6884static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6885{
6886 int busiest_cpu;
6887
bd939f45 6888 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6889 return 0;
6890
1f621e02
SD
6891 if (env->idle == CPU_NOT_IDLE)
6892 return 0;
6893
532cb4c4
MN
6894 if (!sds->busiest)
6895 return 0;
6896
6897 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6898 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6899 return 0;
6900
bd939f45 6901 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6902 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6903 SCHED_CAPACITY_SCALE);
bd939f45 6904
532cb4c4 6905 return 1;
1e3c88bd
PZ
6906}
6907
6908/**
6909 * fix_small_imbalance - Calculate the minor imbalance that exists
6910 * amongst the groups of a sched_domain, during
6911 * load balancing.
cd96891d 6912 * @env: The load balancing environment.
1e3c88bd 6913 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6914 */
bd939f45
PZ
6915static inline
6916void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6917{
63b2ca30 6918 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6919 unsigned int imbn = 2;
dd5feea1 6920 unsigned long scaled_busy_load_per_task;
56cf515b 6921 struct sg_lb_stats *local, *busiest;
1e3c88bd 6922
56cf515b
JK
6923 local = &sds->local_stat;
6924 busiest = &sds->busiest_stat;
1e3c88bd 6925
56cf515b
JK
6926 if (!local->sum_nr_running)
6927 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6928 else if (busiest->load_per_task > local->load_per_task)
6929 imbn = 1;
dd5feea1 6930
56cf515b 6931 scaled_busy_load_per_task =
ca8ce3d0 6932 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6933 busiest->group_capacity;
56cf515b 6934
3029ede3
VD
6935 if (busiest->avg_load + scaled_busy_load_per_task >=
6936 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6937 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6938 return;
6939 }
6940
6941 /*
6942 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6943 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6944 * moving them.
6945 */
6946
63b2ca30 6947 capa_now += busiest->group_capacity *
56cf515b 6948 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6949 capa_now += local->group_capacity *
56cf515b 6950 min(local->load_per_task, local->avg_load);
ca8ce3d0 6951 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6952
6953 /* Amount of load we'd subtract */
a2cd4260 6954 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6955 capa_move += busiest->group_capacity *
56cf515b 6956 min(busiest->load_per_task,
a2cd4260 6957 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6958 }
1e3c88bd
PZ
6959
6960 /* Amount of load we'd add */
63b2ca30 6961 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6962 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6963 tmp = (busiest->avg_load * busiest->group_capacity) /
6964 local->group_capacity;
56cf515b 6965 } else {
ca8ce3d0 6966 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6967 local->group_capacity;
56cf515b 6968 }
63b2ca30 6969 capa_move += local->group_capacity *
3ae11c90 6970 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6971 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6972
6973 /* Move if we gain throughput */
63b2ca30 6974 if (capa_move > capa_now)
56cf515b 6975 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6976}
6977
6978/**
6979 * calculate_imbalance - Calculate the amount of imbalance present within the
6980 * groups of a given sched_domain during load balance.
bd939f45 6981 * @env: load balance environment
1e3c88bd 6982 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6983 */
bd939f45 6984static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6985{
dd5feea1 6986 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6987 struct sg_lb_stats *local, *busiest;
6988
6989 local = &sds->local_stat;
56cf515b 6990 busiest = &sds->busiest_stat;
dd5feea1 6991
caeb178c 6992 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6993 /*
6994 * In the group_imb case we cannot rely on group-wide averages
6995 * to ensure cpu-load equilibrium, look at wider averages. XXX
6996 */
56cf515b
JK
6997 busiest->load_per_task =
6998 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6999 }
7000
1e3c88bd 7001 /*
885e542c
DE
7002 * Avg load of busiest sg can be less and avg load of local sg can
7003 * be greater than avg load across all sgs of sd because avg load
7004 * factors in sg capacity and sgs with smaller group_type are
7005 * skipped when updating the busiest sg:
1e3c88bd 7006 */
b1885550
VD
7007 if (busiest->avg_load <= sds->avg_load ||
7008 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7009 env->imbalance = 0;
7010 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7011 }
7012
9a5d9ba6
PZ
7013 /*
7014 * If there aren't any idle cpus, avoid creating some.
7015 */
7016 if (busiest->group_type == group_overloaded &&
7017 local->group_type == group_overloaded) {
ea67821b 7018 load_above_capacity = busiest->sum_nr_running *
172895e6 7019 scale_load_down(NICE_0_LOAD);
ea67821b
VG
7020 if (load_above_capacity > busiest->group_capacity)
7021 load_above_capacity -= busiest->group_capacity;
7022 else
7023 load_above_capacity = ~0UL;
dd5feea1
SS
7024 }
7025
7026 /*
7027 * We're trying to get all the cpus to the average_load, so we don't
7028 * want to push ourselves above the average load, nor do we wish to
7029 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7030 * we also don't want to reduce the group load below the group
7031 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7032 */
30ce5dab 7033 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7034
7035 /* How much load to actually move to equalise the imbalance */
56cf515b 7036 env->imbalance = min(
63b2ca30
NP
7037 max_pull * busiest->group_capacity,
7038 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7039 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7040
7041 /*
7042 * if *imbalance is less than the average load per runnable task
25985edc 7043 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7044 * a think about bumping its value to force at least one task to be
7045 * moved
7046 */
56cf515b 7047 if (env->imbalance < busiest->load_per_task)
bd939f45 7048 return fix_small_imbalance(env, sds);
1e3c88bd 7049}
fab47622 7050
1e3c88bd
PZ
7051/******* find_busiest_group() helpers end here *********************/
7052
7053/**
7054 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7055 * if there is an imbalance.
1e3c88bd
PZ
7056 *
7057 * Also calculates the amount of weighted load which should be moved
7058 * to restore balance.
7059 *
cd96891d 7060 * @env: The load balancing environment.
1e3c88bd 7061 *
e69f6186 7062 * Return: - The busiest group if imbalance exists.
1e3c88bd 7063 */
56cf515b 7064static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7065{
56cf515b 7066 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7067 struct sd_lb_stats sds;
7068
147c5fc2 7069 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7070
7071 /*
7072 * Compute the various statistics relavent for load balancing at
7073 * this level.
7074 */
23f0d209 7075 update_sd_lb_stats(env, &sds);
56cf515b
JK
7076 local = &sds.local_stat;
7077 busiest = &sds.busiest_stat;
1e3c88bd 7078
ea67821b 7079 /* ASYM feature bypasses nice load balance check */
1f621e02 7080 if (check_asym_packing(env, &sds))
532cb4c4
MN
7081 return sds.busiest;
7082
cc57aa8f 7083 /* There is no busy sibling group to pull tasks from */
56cf515b 7084 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7085 goto out_balanced;
7086
ca8ce3d0
NP
7087 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7088 / sds.total_capacity;
b0432d8f 7089
866ab43e
PZ
7090 /*
7091 * If the busiest group is imbalanced the below checks don't
30ce5dab 7092 * work because they assume all things are equal, which typically
866ab43e
PZ
7093 * isn't true due to cpus_allowed constraints and the like.
7094 */
caeb178c 7095 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7096 goto force_balance;
7097
cc57aa8f 7098 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7099 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7100 busiest->group_no_capacity)
fab47622
NR
7101 goto force_balance;
7102
cc57aa8f 7103 /*
9c58c79a 7104 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7105 * don't try and pull any tasks.
7106 */
56cf515b 7107 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7108 goto out_balanced;
7109
cc57aa8f
PZ
7110 /*
7111 * Don't pull any tasks if this group is already above the domain
7112 * average load.
7113 */
56cf515b 7114 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7115 goto out_balanced;
7116
bd939f45 7117 if (env->idle == CPU_IDLE) {
aae6d3dd 7118 /*
43f4d666
VG
7119 * This cpu is idle. If the busiest group is not overloaded
7120 * and there is no imbalance between this and busiest group
7121 * wrt idle cpus, it is balanced. The imbalance becomes
7122 * significant if the diff is greater than 1 otherwise we
7123 * might end up to just move the imbalance on another group
aae6d3dd 7124 */
43f4d666
VG
7125 if ((busiest->group_type != group_overloaded) &&
7126 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7127 goto out_balanced;
c186fafe
PZ
7128 } else {
7129 /*
7130 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7131 * imbalance_pct to be conservative.
7132 */
56cf515b
JK
7133 if (100 * busiest->avg_load <=
7134 env->sd->imbalance_pct * local->avg_load)
c186fafe 7135 goto out_balanced;
aae6d3dd 7136 }
1e3c88bd 7137
fab47622 7138force_balance:
1e3c88bd 7139 /* Looks like there is an imbalance. Compute it */
bd939f45 7140 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7141 return sds.busiest;
7142
7143out_balanced:
bd939f45 7144 env->imbalance = 0;
1e3c88bd
PZ
7145 return NULL;
7146}
7147
7148/*
7149 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7150 */
bd939f45 7151static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7152 struct sched_group *group)
1e3c88bd
PZ
7153{
7154 struct rq *busiest = NULL, *rq;
ced549fa 7155 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7156 int i;
7157
6906a408 7158 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7159 unsigned long capacity, wl;
0ec8aa00
PZ
7160 enum fbq_type rt;
7161
7162 rq = cpu_rq(i);
7163 rt = fbq_classify_rq(rq);
1e3c88bd 7164
0ec8aa00
PZ
7165 /*
7166 * We classify groups/runqueues into three groups:
7167 * - regular: there are !numa tasks
7168 * - remote: there are numa tasks that run on the 'wrong' node
7169 * - all: there is no distinction
7170 *
7171 * In order to avoid migrating ideally placed numa tasks,
7172 * ignore those when there's better options.
7173 *
7174 * If we ignore the actual busiest queue to migrate another
7175 * task, the next balance pass can still reduce the busiest
7176 * queue by moving tasks around inside the node.
7177 *
7178 * If we cannot move enough load due to this classification
7179 * the next pass will adjust the group classification and
7180 * allow migration of more tasks.
7181 *
7182 * Both cases only affect the total convergence complexity.
7183 */
7184 if (rt > env->fbq_type)
7185 continue;
7186
ced549fa 7187 capacity = capacity_of(i);
9d5efe05 7188
6e40f5bb 7189 wl = weighted_cpuload(i);
1e3c88bd 7190
6e40f5bb
TG
7191 /*
7192 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7193 * which is not scaled with the cpu capacity.
6e40f5bb 7194 */
ea67821b
VG
7195
7196 if (rq->nr_running == 1 && wl > env->imbalance &&
7197 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7198 continue;
7199
6e40f5bb
TG
7200 /*
7201 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7202 * the weighted_cpuload() scaled with the cpu capacity, so
7203 * that the load can be moved away from the cpu that is
7204 * potentially running at a lower capacity.
95a79b80 7205 *
ced549fa 7206 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7207 * multiplication to rid ourselves of the division works out
ced549fa
NP
7208 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7209 * our previous maximum.
6e40f5bb 7210 */
ced549fa 7211 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7212 busiest_load = wl;
ced549fa 7213 busiest_capacity = capacity;
1e3c88bd
PZ
7214 busiest = rq;
7215 }
7216 }
7217
7218 return busiest;
7219}
7220
7221/*
7222 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7223 * so long as it is large enough.
7224 */
7225#define MAX_PINNED_INTERVAL 512
7226
7227/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7228DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7229
bd939f45 7230static int need_active_balance(struct lb_env *env)
1af3ed3d 7231{
bd939f45
PZ
7232 struct sched_domain *sd = env->sd;
7233
7234 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7235
7236 /*
7237 * ASYM_PACKING needs to force migrate tasks from busy but
7238 * higher numbered CPUs in order to pack all tasks in the
7239 * lowest numbered CPUs.
7240 */
bd939f45 7241 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7242 return 1;
1af3ed3d
PZ
7243 }
7244
1aaf90a4
VG
7245 /*
7246 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7247 * It's worth migrating the task if the src_cpu's capacity is reduced
7248 * because of other sched_class or IRQs if more capacity stays
7249 * available on dst_cpu.
7250 */
7251 if ((env->idle != CPU_NOT_IDLE) &&
7252 (env->src_rq->cfs.h_nr_running == 1)) {
7253 if ((check_cpu_capacity(env->src_rq, sd)) &&
7254 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7255 return 1;
7256 }
7257
1af3ed3d
PZ
7258 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7259}
7260
969c7921
TH
7261static int active_load_balance_cpu_stop(void *data);
7262
23f0d209
JK
7263static int should_we_balance(struct lb_env *env)
7264{
7265 struct sched_group *sg = env->sd->groups;
7266 struct cpumask *sg_cpus, *sg_mask;
7267 int cpu, balance_cpu = -1;
7268
7269 /*
7270 * In the newly idle case, we will allow all the cpu's
7271 * to do the newly idle load balance.
7272 */
7273 if (env->idle == CPU_NEWLY_IDLE)
7274 return 1;
7275
7276 sg_cpus = sched_group_cpus(sg);
7277 sg_mask = sched_group_mask(sg);
7278 /* Try to find first idle cpu */
7279 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7280 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7281 continue;
7282
7283 balance_cpu = cpu;
7284 break;
7285 }
7286
7287 if (balance_cpu == -1)
7288 balance_cpu = group_balance_cpu(sg);
7289
7290 /*
7291 * First idle cpu or the first cpu(busiest) in this sched group
7292 * is eligible for doing load balancing at this and above domains.
7293 */
b0cff9d8 7294 return balance_cpu == env->dst_cpu;
23f0d209
JK
7295}
7296
1e3c88bd
PZ
7297/*
7298 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7299 * tasks if there is an imbalance.
7300 */
7301static int load_balance(int this_cpu, struct rq *this_rq,
7302 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7303 int *continue_balancing)
1e3c88bd 7304{
88b8dac0 7305 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7306 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7307 struct sched_group *group;
1e3c88bd
PZ
7308 struct rq *busiest;
7309 unsigned long flags;
4ba29684 7310 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7311
8e45cb54
PZ
7312 struct lb_env env = {
7313 .sd = sd,
ddcdf6e7
PZ
7314 .dst_cpu = this_cpu,
7315 .dst_rq = this_rq,
88b8dac0 7316 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7317 .idle = idle,
eb95308e 7318 .loop_break = sched_nr_migrate_break,
b9403130 7319 .cpus = cpus,
0ec8aa00 7320 .fbq_type = all,
163122b7 7321 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7322 };
7323
cfc03118
JK
7324 /*
7325 * For NEWLY_IDLE load_balancing, we don't need to consider
7326 * other cpus in our group
7327 */
e02e60c1 7328 if (idle == CPU_NEWLY_IDLE)
cfc03118 7329 env.dst_grpmask = NULL;
cfc03118 7330
1e3c88bd
PZ
7331 cpumask_copy(cpus, cpu_active_mask);
7332
1e3c88bd
PZ
7333 schedstat_inc(sd, lb_count[idle]);
7334
7335redo:
23f0d209
JK
7336 if (!should_we_balance(&env)) {
7337 *continue_balancing = 0;
1e3c88bd 7338 goto out_balanced;
23f0d209 7339 }
1e3c88bd 7340
23f0d209 7341 group = find_busiest_group(&env);
1e3c88bd
PZ
7342 if (!group) {
7343 schedstat_inc(sd, lb_nobusyg[idle]);
7344 goto out_balanced;
7345 }
7346
b9403130 7347 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7348 if (!busiest) {
7349 schedstat_inc(sd, lb_nobusyq[idle]);
7350 goto out_balanced;
7351 }
7352
78feefc5 7353 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7354
bd939f45 7355 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7356
1aaf90a4
VG
7357 env.src_cpu = busiest->cpu;
7358 env.src_rq = busiest;
7359
1e3c88bd
PZ
7360 ld_moved = 0;
7361 if (busiest->nr_running > 1) {
7362 /*
7363 * Attempt to move tasks. If find_busiest_group has found
7364 * an imbalance but busiest->nr_running <= 1, the group is
7365 * still unbalanced. ld_moved simply stays zero, so it is
7366 * correctly treated as an imbalance.
7367 */
8e45cb54 7368 env.flags |= LBF_ALL_PINNED;
c82513e5 7369 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7370
5d6523eb 7371more_balance:
163122b7 7372 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7373
7374 /*
7375 * cur_ld_moved - load moved in current iteration
7376 * ld_moved - cumulative load moved across iterations
7377 */
163122b7 7378 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7379
7380 /*
163122b7
KT
7381 * We've detached some tasks from busiest_rq. Every
7382 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7383 * unlock busiest->lock, and we are able to be sure
7384 * that nobody can manipulate the tasks in parallel.
7385 * See task_rq_lock() family for the details.
1e3c88bd 7386 */
163122b7
KT
7387
7388 raw_spin_unlock(&busiest->lock);
7389
7390 if (cur_ld_moved) {
7391 attach_tasks(&env);
7392 ld_moved += cur_ld_moved;
7393 }
7394
1e3c88bd 7395 local_irq_restore(flags);
88b8dac0 7396
f1cd0858
JK
7397 if (env.flags & LBF_NEED_BREAK) {
7398 env.flags &= ~LBF_NEED_BREAK;
7399 goto more_balance;
7400 }
7401
88b8dac0
SV
7402 /*
7403 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7404 * us and move them to an alternate dst_cpu in our sched_group
7405 * where they can run. The upper limit on how many times we
7406 * iterate on same src_cpu is dependent on number of cpus in our
7407 * sched_group.
7408 *
7409 * This changes load balance semantics a bit on who can move
7410 * load to a given_cpu. In addition to the given_cpu itself
7411 * (or a ilb_cpu acting on its behalf where given_cpu is
7412 * nohz-idle), we now have balance_cpu in a position to move
7413 * load to given_cpu. In rare situations, this may cause
7414 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7415 * _independently_ and at _same_ time to move some load to
7416 * given_cpu) causing exceess load to be moved to given_cpu.
7417 * This however should not happen so much in practice and
7418 * moreover subsequent load balance cycles should correct the
7419 * excess load moved.
7420 */
6263322c 7421 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7422
7aff2e3a
VD
7423 /* Prevent to re-select dst_cpu via env's cpus */
7424 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7425
78feefc5 7426 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7427 env.dst_cpu = env.new_dst_cpu;
6263322c 7428 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7429 env.loop = 0;
7430 env.loop_break = sched_nr_migrate_break;
e02e60c1 7431
88b8dac0
SV
7432 /*
7433 * Go back to "more_balance" rather than "redo" since we
7434 * need to continue with same src_cpu.
7435 */
7436 goto more_balance;
7437 }
1e3c88bd 7438
6263322c
PZ
7439 /*
7440 * We failed to reach balance because of affinity.
7441 */
7442 if (sd_parent) {
63b2ca30 7443 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7444
afdeee05 7445 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7446 *group_imbalance = 1;
6263322c
PZ
7447 }
7448
1e3c88bd 7449 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7450 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7451 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7452 if (!cpumask_empty(cpus)) {
7453 env.loop = 0;
7454 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7455 goto redo;
bbf18b19 7456 }
afdeee05 7457 goto out_all_pinned;
1e3c88bd
PZ
7458 }
7459 }
7460
7461 if (!ld_moved) {
7462 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7463 /*
7464 * Increment the failure counter only on periodic balance.
7465 * We do not want newidle balance, which can be very
7466 * frequent, pollute the failure counter causing
7467 * excessive cache_hot migrations and active balances.
7468 */
7469 if (idle != CPU_NEWLY_IDLE)
7470 sd->nr_balance_failed++;
1e3c88bd 7471
bd939f45 7472 if (need_active_balance(&env)) {
1e3c88bd
PZ
7473 raw_spin_lock_irqsave(&busiest->lock, flags);
7474
969c7921
TH
7475 /* don't kick the active_load_balance_cpu_stop,
7476 * if the curr task on busiest cpu can't be
7477 * moved to this_cpu
1e3c88bd
PZ
7478 */
7479 if (!cpumask_test_cpu(this_cpu,
fa17b507 7480 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7481 raw_spin_unlock_irqrestore(&busiest->lock,
7482 flags);
8e45cb54 7483 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7484 goto out_one_pinned;
7485 }
7486
969c7921
TH
7487 /*
7488 * ->active_balance synchronizes accesses to
7489 * ->active_balance_work. Once set, it's cleared
7490 * only after active load balance is finished.
7491 */
1e3c88bd
PZ
7492 if (!busiest->active_balance) {
7493 busiest->active_balance = 1;
7494 busiest->push_cpu = this_cpu;
7495 active_balance = 1;
7496 }
7497 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7498
bd939f45 7499 if (active_balance) {
969c7921
TH
7500 stop_one_cpu_nowait(cpu_of(busiest),
7501 active_load_balance_cpu_stop, busiest,
7502 &busiest->active_balance_work);
bd939f45 7503 }
1e3c88bd 7504
d02c0711 7505 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7506 sd->nr_balance_failed = sd->cache_nice_tries+1;
7507 }
7508 } else
7509 sd->nr_balance_failed = 0;
7510
7511 if (likely(!active_balance)) {
7512 /* We were unbalanced, so reset the balancing interval */
7513 sd->balance_interval = sd->min_interval;
7514 } else {
7515 /*
7516 * If we've begun active balancing, start to back off. This
7517 * case may not be covered by the all_pinned logic if there
7518 * is only 1 task on the busy runqueue (because we don't call
163122b7 7519 * detach_tasks).
1e3c88bd
PZ
7520 */
7521 if (sd->balance_interval < sd->max_interval)
7522 sd->balance_interval *= 2;
7523 }
7524
1e3c88bd
PZ
7525 goto out;
7526
7527out_balanced:
afdeee05
VG
7528 /*
7529 * We reach balance although we may have faced some affinity
7530 * constraints. Clear the imbalance flag if it was set.
7531 */
7532 if (sd_parent) {
7533 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7534
7535 if (*group_imbalance)
7536 *group_imbalance = 0;
7537 }
7538
7539out_all_pinned:
7540 /*
7541 * We reach balance because all tasks are pinned at this level so
7542 * we can't migrate them. Let the imbalance flag set so parent level
7543 * can try to migrate them.
7544 */
1e3c88bd
PZ
7545 schedstat_inc(sd, lb_balanced[idle]);
7546
7547 sd->nr_balance_failed = 0;
7548
7549out_one_pinned:
7550 /* tune up the balancing interval */
8e45cb54 7551 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7552 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7553 (sd->balance_interval < sd->max_interval))
7554 sd->balance_interval *= 2;
7555
46e49b38 7556 ld_moved = 0;
1e3c88bd 7557out:
1e3c88bd
PZ
7558 return ld_moved;
7559}
7560
52a08ef1
JL
7561static inline unsigned long
7562get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7563{
7564 unsigned long interval = sd->balance_interval;
7565
7566 if (cpu_busy)
7567 interval *= sd->busy_factor;
7568
7569 /* scale ms to jiffies */
7570 interval = msecs_to_jiffies(interval);
7571 interval = clamp(interval, 1UL, max_load_balance_interval);
7572
7573 return interval;
7574}
7575
7576static inline void
7577update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7578{
7579 unsigned long interval, next;
7580
7581 interval = get_sd_balance_interval(sd, cpu_busy);
7582 next = sd->last_balance + interval;
7583
7584 if (time_after(*next_balance, next))
7585 *next_balance = next;
7586}
7587
1e3c88bd
PZ
7588/*
7589 * idle_balance is called by schedule() if this_cpu is about to become
7590 * idle. Attempts to pull tasks from other CPUs.
7591 */
6e83125c 7592static int idle_balance(struct rq *this_rq)
1e3c88bd 7593{
52a08ef1
JL
7594 unsigned long next_balance = jiffies + HZ;
7595 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7596 struct sched_domain *sd;
7597 int pulled_task = 0;
9bd721c5 7598 u64 curr_cost = 0;
1e3c88bd 7599
6e83125c
PZ
7600 /*
7601 * We must set idle_stamp _before_ calling idle_balance(), such that we
7602 * measure the duration of idle_balance() as idle time.
7603 */
7604 this_rq->idle_stamp = rq_clock(this_rq);
7605
4486edd1
TC
7606 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7607 !this_rq->rd->overload) {
52a08ef1
JL
7608 rcu_read_lock();
7609 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7610 if (sd)
7611 update_next_balance(sd, 0, &next_balance);
7612 rcu_read_unlock();
7613
6e83125c 7614 goto out;
52a08ef1 7615 }
1e3c88bd 7616
f492e12e
PZ
7617 raw_spin_unlock(&this_rq->lock);
7618
48a16753 7619 update_blocked_averages(this_cpu);
dce840a0 7620 rcu_read_lock();
1e3c88bd 7621 for_each_domain(this_cpu, sd) {
23f0d209 7622 int continue_balancing = 1;
9bd721c5 7623 u64 t0, domain_cost;
1e3c88bd
PZ
7624
7625 if (!(sd->flags & SD_LOAD_BALANCE))
7626 continue;
7627
52a08ef1
JL
7628 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7629 update_next_balance(sd, 0, &next_balance);
9bd721c5 7630 break;
52a08ef1 7631 }
9bd721c5 7632
f492e12e 7633 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7634 t0 = sched_clock_cpu(this_cpu);
7635
f492e12e 7636 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7637 sd, CPU_NEWLY_IDLE,
7638 &continue_balancing);
9bd721c5
JL
7639
7640 domain_cost = sched_clock_cpu(this_cpu) - t0;
7641 if (domain_cost > sd->max_newidle_lb_cost)
7642 sd->max_newidle_lb_cost = domain_cost;
7643
7644 curr_cost += domain_cost;
f492e12e 7645 }
1e3c88bd 7646
52a08ef1 7647 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7648
7649 /*
7650 * Stop searching for tasks to pull if there are
7651 * now runnable tasks on this rq.
7652 */
7653 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7654 break;
1e3c88bd 7655 }
dce840a0 7656 rcu_read_unlock();
f492e12e
PZ
7657
7658 raw_spin_lock(&this_rq->lock);
7659
0e5b5337
JL
7660 if (curr_cost > this_rq->max_idle_balance_cost)
7661 this_rq->max_idle_balance_cost = curr_cost;
7662
e5fc6611 7663 /*
0e5b5337
JL
7664 * While browsing the domains, we released the rq lock, a task could
7665 * have been enqueued in the meantime. Since we're not going idle,
7666 * pretend we pulled a task.
e5fc6611 7667 */
0e5b5337 7668 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7669 pulled_task = 1;
e5fc6611 7670
52a08ef1
JL
7671out:
7672 /* Move the next balance forward */
7673 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7674 this_rq->next_balance = next_balance;
9bd721c5 7675
e4aa358b 7676 /* Is there a task of a high priority class? */
46383648 7677 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7678 pulled_task = -1;
7679
38c6ade2 7680 if (pulled_task)
6e83125c
PZ
7681 this_rq->idle_stamp = 0;
7682
3c4017c1 7683 return pulled_task;
1e3c88bd
PZ
7684}
7685
7686/*
969c7921
TH
7687 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7688 * running tasks off the busiest CPU onto idle CPUs. It requires at
7689 * least 1 task to be running on each physical CPU where possible, and
7690 * avoids physical / logical imbalances.
1e3c88bd 7691 */
969c7921 7692static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7693{
969c7921
TH
7694 struct rq *busiest_rq = data;
7695 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7696 int target_cpu = busiest_rq->push_cpu;
969c7921 7697 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7698 struct sched_domain *sd;
e5673f28 7699 struct task_struct *p = NULL;
969c7921
TH
7700
7701 raw_spin_lock_irq(&busiest_rq->lock);
7702
7703 /* make sure the requested cpu hasn't gone down in the meantime */
7704 if (unlikely(busiest_cpu != smp_processor_id() ||
7705 !busiest_rq->active_balance))
7706 goto out_unlock;
1e3c88bd
PZ
7707
7708 /* Is there any task to move? */
7709 if (busiest_rq->nr_running <= 1)
969c7921 7710 goto out_unlock;
1e3c88bd
PZ
7711
7712 /*
7713 * This condition is "impossible", if it occurs
7714 * we need to fix it. Originally reported by
7715 * Bjorn Helgaas on a 128-cpu setup.
7716 */
7717 BUG_ON(busiest_rq == target_rq);
7718
1e3c88bd 7719 /* Search for an sd spanning us and the target CPU. */
dce840a0 7720 rcu_read_lock();
1e3c88bd
PZ
7721 for_each_domain(target_cpu, sd) {
7722 if ((sd->flags & SD_LOAD_BALANCE) &&
7723 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7724 break;
7725 }
7726
7727 if (likely(sd)) {
8e45cb54
PZ
7728 struct lb_env env = {
7729 .sd = sd,
ddcdf6e7
PZ
7730 .dst_cpu = target_cpu,
7731 .dst_rq = target_rq,
7732 .src_cpu = busiest_rq->cpu,
7733 .src_rq = busiest_rq,
8e45cb54
PZ
7734 .idle = CPU_IDLE,
7735 };
7736
1e3c88bd
PZ
7737 schedstat_inc(sd, alb_count);
7738
e5673f28 7739 p = detach_one_task(&env);
d02c0711 7740 if (p) {
1e3c88bd 7741 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7742 /* Active balancing done, reset the failure counter. */
7743 sd->nr_balance_failed = 0;
7744 } else {
1e3c88bd 7745 schedstat_inc(sd, alb_failed);
d02c0711 7746 }
1e3c88bd 7747 }
dce840a0 7748 rcu_read_unlock();
969c7921
TH
7749out_unlock:
7750 busiest_rq->active_balance = 0;
e5673f28
KT
7751 raw_spin_unlock(&busiest_rq->lock);
7752
7753 if (p)
7754 attach_one_task(target_rq, p);
7755
7756 local_irq_enable();
7757
969c7921 7758 return 0;
1e3c88bd
PZ
7759}
7760
d987fc7f
MG
7761static inline int on_null_domain(struct rq *rq)
7762{
7763 return unlikely(!rcu_dereference_sched(rq->sd));
7764}
7765
3451d024 7766#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7767/*
7768 * idle load balancing details
83cd4fe2
VP
7769 * - When one of the busy CPUs notice that there may be an idle rebalancing
7770 * needed, they will kick the idle load balancer, which then does idle
7771 * load balancing for all the idle CPUs.
7772 */
1e3c88bd 7773static struct {
83cd4fe2 7774 cpumask_var_t idle_cpus_mask;
0b005cf5 7775 atomic_t nr_cpus;
83cd4fe2
VP
7776 unsigned long next_balance; /* in jiffy units */
7777} nohz ____cacheline_aligned;
1e3c88bd 7778
3dd0337d 7779static inline int find_new_ilb(void)
1e3c88bd 7780{
0b005cf5 7781 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7782
786d6dc7
SS
7783 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7784 return ilb;
7785
7786 return nr_cpu_ids;
1e3c88bd 7787}
1e3c88bd 7788
83cd4fe2
VP
7789/*
7790 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7791 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7792 * CPU (if there is one).
7793 */
0aeeeeba 7794static void nohz_balancer_kick(void)
83cd4fe2
VP
7795{
7796 int ilb_cpu;
7797
7798 nohz.next_balance++;
7799
3dd0337d 7800 ilb_cpu = find_new_ilb();
83cd4fe2 7801
0b005cf5
SS
7802 if (ilb_cpu >= nr_cpu_ids)
7803 return;
83cd4fe2 7804
cd490c5b 7805 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7806 return;
7807 /*
7808 * Use smp_send_reschedule() instead of resched_cpu().
7809 * This way we generate a sched IPI on the target cpu which
7810 * is idle. And the softirq performing nohz idle load balance
7811 * will be run before returning from the IPI.
7812 */
7813 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7814 return;
7815}
7816
20a5c8cc 7817void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7818{
7819 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7820 /*
7821 * Completely isolated CPUs don't ever set, so we must test.
7822 */
7823 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7824 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7825 atomic_dec(&nohz.nr_cpus);
7826 }
71325960
SS
7827 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7828 }
7829}
7830
69e1e811
SS
7831static inline void set_cpu_sd_state_busy(void)
7832{
7833 struct sched_domain *sd;
37dc6b50 7834 int cpu = smp_processor_id();
69e1e811 7835
69e1e811 7836 rcu_read_lock();
37dc6b50 7837 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7838
7839 if (!sd || !sd->nohz_idle)
7840 goto unlock;
7841 sd->nohz_idle = 0;
7842
63b2ca30 7843 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7844unlock:
69e1e811
SS
7845 rcu_read_unlock();
7846}
7847
7848void set_cpu_sd_state_idle(void)
7849{
7850 struct sched_domain *sd;
37dc6b50 7851 int cpu = smp_processor_id();
69e1e811 7852
69e1e811 7853 rcu_read_lock();
37dc6b50 7854 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7855
7856 if (!sd || sd->nohz_idle)
7857 goto unlock;
7858 sd->nohz_idle = 1;
7859
63b2ca30 7860 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7861unlock:
69e1e811
SS
7862 rcu_read_unlock();
7863}
7864
1e3c88bd 7865/*
c1cc017c 7866 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7867 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7868 */
c1cc017c 7869void nohz_balance_enter_idle(int cpu)
1e3c88bd 7870{
71325960
SS
7871 /*
7872 * If this cpu is going down, then nothing needs to be done.
7873 */
7874 if (!cpu_active(cpu))
7875 return;
7876
c1cc017c
AS
7877 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7878 return;
1e3c88bd 7879
d987fc7f
MG
7880 /*
7881 * If we're a completely isolated CPU, we don't play.
7882 */
7883 if (on_null_domain(cpu_rq(cpu)))
7884 return;
7885
c1cc017c
AS
7886 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7887 atomic_inc(&nohz.nr_cpus);
7888 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7889}
7890#endif
7891
7892static DEFINE_SPINLOCK(balancing);
7893
49c022e6
PZ
7894/*
7895 * Scale the max load_balance interval with the number of CPUs in the system.
7896 * This trades load-balance latency on larger machines for less cross talk.
7897 */
029632fb 7898void update_max_interval(void)
49c022e6
PZ
7899{
7900 max_load_balance_interval = HZ*num_online_cpus()/10;
7901}
7902
1e3c88bd
PZ
7903/*
7904 * It checks each scheduling domain to see if it is due to be balanced,
7905 * and initiates a balancing operation if so.
7906 *
b9b0853a 7907 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7908 */
f7ed0a89 7909static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7910{
23f0d209 7911 int continue_balancing = 1;
f7ed0a89 7912 int cpu = rq->cpu;
1e3c88bd 7913 unsigned long interval;
04f733b4 7914 struct sched_domain *sd;
1e3c88bd
PZ
7915 /* Earliest time when we have to do rebalance again */
7916 unsigned long next_balance = jiffies + 60*HZ;
7917 int update_next_balance = 0;
f48627e6
JL
7918 int need_serialize, need_decay = 0;
7919 u64 max_cost = 0;
1e3c88bd 7920
48a16753 7921 update_blocked_averages(cpu);
2069dd75 7922
dce840a0 7923 rcu_read_lock();
1e3c88bd 7924 for_each_domain(cpu, sd) {
f48627e6
JL
7925 /*
7926 * Decay the newidle max times here because this is a regular
7927 * visit to all the domains. Decay ~1% per second.
7928 */
7929 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7930 sd->max_newidle_lb_cost =
7931 (sd->max_newidle_lb_cost * 253) / 256;
7932 sd->next_decay_max_lb_cost = jiffies + HZ;
7933 need_decay = 1;
7934 }
7935 max_cost += sd->max_newidle_lb_cost;
7936
1e3c88bd
PZ
7937 if (!(sd->flags & SD_LOAD_BALANCE))
7938 continue;
7939
f48627e6
JL
7940 /*
7941 * Stop the load balance at this level. There is another
7942 * CPU in our sched group which is doing load balancing more
7943 * actively.
7944 */
7945 if (!continue_balancing) {
7946 if (need_decay)
7947 continue;
7948 break;
7949 }
7950
52a08ef1 7951 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7952
7953 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7954 if (need_serialize) {
7955 if (!spin_trylock(&balancing))
7956 goto out;
7957 }
7958
7959 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7960 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7961 /*
6263322c 7962 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7963 * env->dst_cpu, so we can't know our idle
7964 * state even if we migrated tasks. Update it.
1e3c88bd 7965 */
de5eb2dd 7966 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7967 }
7968 sd->last_balance = jiffies;
52a08ef1 7969 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7970 }
7971 if (need_serialize)
7972 spin_unlock(&balancing);
7973out:
7974 if (time_after(next_balance, sd->last_balance + interval)) {
7975 next_balance = sd->last_balance + interval;
7976 update_next_balance = 1;
7977 }
f48627e6
JL
7978 }
7979 if (need_decay) {
1e3c88bd 7980 /*
f48627e6
JL
7981 * Ensure the rq-wide value also decays but keep it at a
7982 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7983 */
f48627e6
JL
7984 rq->max_idle_balance_cost =
7985 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7986 }
dce840a0 7987 rcu_read_unlock();
1e3c88bd
PZ
7988
7989 /*
7990 * next_balance will be updated only when there is a need.
7991 * When the cpu is attached to null domain for ex, it will not be
7992 * updated.
7993 */
c5afb6a8 7994 if (likely(update_next_balance)) {
1e3c88bd 7995 rq->next_balance = next_balance;
c5afb6a8
VG
7996
7997#ifdef CONFIG_NO_HZ_COMMON
7998 /*
7999 * If this CPU has been elected to perform the nohz idle
8000 * balance. Other idle CPUs have already rebalanced with
8001 * nohz_idle_balance() and nohz.next_balance has been
8002 * updated accordingly. This CPU is now running the idle load
8003 * balance for itself and we need to update the
8004 * nohz.next_balance accordingly.
8005 */
8006 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8007 nohz.next_balance = rq->next_balance;
8008#endif
8009 }
1e3c88bd
PZ
8010}
8011
3451d024 8012#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8013/*
3451d024 8014 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8015 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8016 */
208cb16b 8017static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8018{
208cb16b 8019 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8020 struct rq *rq;
8021 int balance_cpu;
c5afb6a8
VG
8022 /* Earliest time when we have to do rebalance again */
8023 unsigned long next_balance = jiffies + 60*HZ;
8024 int update_next_balance = 0;
83cd4fe2 8025
1c792db7
SS
8026 if (idle != CPU_IDLE ||
8027 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8028 goto end;
83cd4fe2
VP
8029
8030 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8031 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8032 continue;
8033
8034 /*
8035 * If this cpu gets work to do, stop the load balancing
8036 * work being done for other cpus. Next load
8037 * balancing owner will pick it up.
8038 */
1c792db7 8039 if (need_resched())
83cd4fe2 8040 break;
83cd4fe2 8041
5ed4f1d9
VG
8042 rq = cpu_rq(balance_cpu);
8043
ed61bbc6
TC
8044 /*
8045 * If time for next balance is due,
8046 * do the balance.
8047 */
8048 if (time_after_eq(jiffies, rq->next_balance)) {
8049 raw_spin_lock_irq(&rq->lock);
8050 update_rq_clock(rq);
cee1afce 8051 cpu_load_update_idle(rq);
ed61bbc6
TC
8052 raw_spin_unlock_irq(&rq->lock);
8053 rebalance_domains(rq, CPU_IDLE);
8054 }
83cd4fe2 8055
c5afb6a8
VG
8056 if (time_after(next_balance, rq->next_balance)) {
8057 next_balance = rq->next_balance;
8058 update_next_balance = 1;
8059 }
83cd4fe2 8060 }
c5afb6a8
VG
8061
8062 /*
8063 * next_balance will be updated only when there is a need.
8064 * When the CPU is attached to null domain for ex, it will not be
8065 * updated.
8066 */
8067 if (likely(update_next_balance))
8068 nohz.next_balance = next_balance;
1c792db7
SS
8069end:
8070 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8071}
8072
8073/*
0b005cf5 8074 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8075 * of an idle cpu in the system.
0b005cf5 8076 * - This rq has more than one task.
1aaf90a4
VG
8077 * - This rq has at least one CFS task and the capacity of the CPU is
8078 * significantly reduced because of RT tasks or IRQs.
8079 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8080 * multiple busy cpu.
0b005cf5
SS
8081 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8082 * domain span are idle.
83cd4fe2 8083 */
1aaf90a4 8084static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8085{
8086 unsigned long now = jiffies;
0b005cf5 8087 struct sched_domain *sd;
63b2ca30 8088 struct sched_group_capacity *sgc;
4a725627 8089 int nr_busy, cpu = rq->cpu;
1aaf90a4 8090 bool kick = false;
83cd4fe2 8091
4a725627 8092 if (unlikely(rq->idle_balance))
1aaf90a4 8093 return false;
83cd4fe2 8094
1c792db7
SS
8095 /*
8096 * We may be recently in ticked or tickless idle mode. At the first
8097 * busy tick after returning from idle, we will update the busy stats.
8098 */
69e1e811 8099 set_cpu_sd_state_busy();
c1cc017c 8100 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8101
8102 /*
8103 * None are in tickless mode and hence no need for NOHZ idle load
8104 * balancing.
8105 */
8106 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8107 return false;
1c792db7
SS
8108
8109 if (time_before(now, nohz.next_balance))
1aaf90a4 8110 return false;
83cd4fe2 8111
0b005cf5 8112 if (rq->nr_running >= 2)
1aaf90a4 8113 return true;
83cd4fe2 8114
067491b7 8115 rcu_read_lock();
37dc6b50 8116 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8117 if (sd) {
63b2ca30
NP
8118 sgc = sd->groups->sgc;
8119 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8120
1aaf90a4
VG
8121 if (nr_busy > 1) {
8122 kick = true;
8123 goto unlock;
8124 }
8125
83cd4fe2 8126 }
37dc6b50 8127
1aaf90a4
VG
8128 sd = rcu_dereference(rq->sd);
8129 if (sd) {
8130 if ((rq->cfs.h_nr_running >= 1) &&
8131 check_cpu_capacity(rq, sd)) {
8132 kick = true;
8133 goto unlock;
8134 }
8135 }
37dc6b50 8136
1aaf90a4 8137 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8138 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8139 sched_domain_span(sd)) < cpu)) {
8140 kick = true;
8141 goto unlock;
8142 }
067491b7 8143
1aaf90a4 8144unlock:
067491b7 8145 rcu_read_unlock();
1aaf90a4 8146 return kick;
83cd4fe2
VP
8147}
8148#else
208cb16b 8149static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8150#endif
8151
8152/*
8153 * run_rebalance_domains is triggered when needed from the scheduler tick.
8154 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8155 */
1e3c88bd
PZ
8156static void run_rebalance_domains(struct softirq_action *h)
8157{
208cb16b 8158 struct rq *this_rq = this_rq();
6eb57e0d 8159 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8160 CPU_IDLE : CPU_NOT_IDLE;
8161
1e3c88bd 8162 /*
83cd4fe2 8163 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8164 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8165 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8166 * give the idle cpus a chance to load balance. Else we may
8167 * load balance only within the local sched_domain hierarchy
8168 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8169 */
208cb16b 8170 nohz_idle_balance(this_rq, idle);
d4573c3e 8171 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8172}
8173
1e3c88bd
PZ
8174/*
8175 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8176 */
7caff66f 8177void trigger_load_balance(struct rq *rq)
1e3c88bd 8178{
1e3c88bd 8179 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8180 if (unlikely(on_null_domain(rq)))
8181 return;
8182
8183 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8184 raise_softirq(SCHED_SOFTIRQ);
3451d024 8185#ifdef CONFIG_NO_HZ_COMMON
c726099e 8186 if (nohz_kick_needed(rq))
0aeeeeba 8187 nohz_balancer_kick();
83cd4fe2 8188#endif
1e3c88bd
PZ
8189}
8190
0bcdcf28
CE
8191static void rq_online_fair(struct rq *rq)
8192{
8193 update_sysctl();
0e59bdae
KT
8194
8195 update_runtime_enabled(rq);
0bcdcf28
CE
8196}
8197
8198static void rq_offline_fair(struct rq *rq)
8199{
8200 update_sysctl();
a4c96ae3
PB
8201
8202 /* Ensure any throttled groups are reachable by pick_next_task */
8203 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8204}
8205
55e12e5e 8206#endif /* CONFIG_SMP */
e1d1484f 8207
bf0f6f24
IM
8208/*
8209 * scheduler tick hitting a task of our scheduling class:
8210 */
8f4d37ec 8211static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8212{
8213 struct cfs_rq *cfs_rq;
8214 struct sched_entity *se = &curr->se;
8215
8216 for_each_sched_entity(se) {
8217 cfs_rq = cfs_rq_of(se);
8f4d37ec 8218 entity_tick(cfs_rq, se, queued);
bf0f6f24 8219 }
18bf2805 8220
b52da86e 8221 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8222 task_tick_numa(rq, curr);
bf0f6f24
IM
8223}
8224
8225/*
cd29fe6f
PZ
8226 * called on fork with the child task as argument from the parent's context
8227 * - child not yet on the tasklist
8228 * - preemption disabled
bf0f6f24 8229 */
cd29fe6f 8230static void task_fork_fair(struct task_struct *p)
bf0f6f24 8231{
4fc420c9
DN
8232 struct cfs_rq *cfs_rq;
8233 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8234 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8235 struct rq *rq = this_rq();
8236 unsigned long flags;
8237
05fa785c 8238 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8239
861d034e
PZ
8240 update_rq_clock(rq);
8241
4fc420c9
DN
8242 cfs_rq = task_cfs_rq(current);
8243 curr = cfs_rq->curr;
8244
6c9a27f5
DN
8245 /*
8246 * Not only the cpu but also the task_group of the parent might have
8247 * been changed after parent->se.parent,cfs_rq were copied to
8248 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8249 * of child point to valid ones.
8250 */
8251 rcu_read_lock();
8252 __set_task_cpu(p, this_cpu);
8253 rcu_read_unlock();
bf0f6f24 8254
7109c442 8255 update_curr(cfs_rq);
cd29fe6f 8256
b5d9d734
MG
8257 if (curr)
8258 se->vruntime = curr->vruntime;
aeb73b04 8259 place_entity(cfs_rq, se, 1);
4d78e7b6 8260
cd29fe6f 8261 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8262 /*
edcb60a3
IM
8263 * Upon rescheduling, sched_class::put_prev_task() will place
8264 * 'current' within the tree based on its new key value.
8265 */
4d78e7b6 8266 swap(curr->vruntime, se->vruntime);
8875125e 8267 resched_curr(rq);
4d78e7b6 8268 }
bf0f6f24 8269
88ec22d3
PZ
8270 se->vruntime -= cfs_rq->min_vruntime;
8271
05fa785c 8272 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8273}
8274
cb469845
SR
8275/*
8276 * Priority of the task has changed. Check to see if we preempt
8277 * the current task.
8278 */
da7a735e
PZ
8279static void
8280prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8281{
da0c1e65 8282 if (!task_on_rq_queued(p))
da7a735e
PZ
8283 return;
8284
cb469845
SR
8285 /*
8286 * Reschedule if we are currently running on this runqueue and
8287 * our priority decreased, or if we are not currently running on
8288 * this runqueue and our priority is higher than the current's
8289 */
da7a735e 8290 if (rq->curr == p) {
cb469845 8291 if (p->prio > oldprio)
8875125e 8292 resched_curr(rq);
cb469845 8293 } else
15afe09b 8294 check_preempt_curr(rq, p, 0);
cb469845
SR
8295}
8296
daa59407 8297static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8298{
8299 struct sched_entity *se = &p->se;
da7a735e
PZ
8300
8301 /*
daa59407
BP
8302 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8303 * the dequeue_entity(.flags=0) will already have normalized the
8304 * vruntime.
8305 */
8306 if (p->on_rq)
8307 return true;
8308
8309 /*
8310 * When !on_rq, vruntime of the task has usually NOT been normalized.
8311 * But there are some cases where it has already been normalized:
da7a735e 8312 *
daa59407
BP
8313 * - A forked child which is waiting for being woken up by
8314 * wake_up_new_task().
8315 * - A task which has been woken up by try_to_wake_up() and
8316 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8317 */
daa59407
BP
8318 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8319 return true;
8320
8321 return false;
8322}
8323
8324static void detach_task_cfs_rq(struct task_struct *p)
8325{
8326 struct sched_entity *se = &p->se;
8327 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8328
8329 if (!vruntime_normalized(p)) {
da7a735e
PZ
8330 /*
8331 * Fix up our vruntime so that the current sleep doesn't
8332 * cause 'unlimited' sleep bonus.
8333 */
8334 place_entity(cfs_rq, se, 0);
8335 se->vruntime -= cfs_rq->min_vruntime;
8336 }
9ee474f5 8337
9d89c257 8338 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8339 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8340}
8341
daa59407 8342static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8343{
f36c019c 8344 struct sched_entity *se = &p->se;
daa59407 8345 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8346
8347#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8348 /*
8349 * Since the real-depth could have been changed (only FAIR
8350 * class maintain depth value), reset depth properly.
8351 */
8352 se->depth = se->parent ? se->parent->depth + 1 : 0;
8353#endif
7855a35a 8354
6efdb105 8355 /* Synchronize task with its cfs_rq */
daa59407
BP
8356 attach_entity_load_avg(cfs_rq, se);
8357
8358 if (!vruntime_normalized(p))
8359 se->vruntime += cfs_rq->min_vruntime;
8360}
6efdb105 8361
daa59407
BP
8362static void switched_from_fair(struct rq *rq, struct task_struct *p)
8363{
8364 detach_task_cfs_rq(p);
8365}
8366
8367static void switched_to_fair(struct rq *rq, struct task_struct *p)
8368{
8369 attach_task_cfs_rq(p);
7855a35a 8370
daa59407 8371 if (task_on_rq_queued(p)) {
7855a35a 8372 /*
daa59407
BP
8373 * We were most likely switched from sched_rt, so
8374 * kick off the schedule if running, otherwise just see
8375 * if we can still preempt the current task.
7855a35a 8376 */
daa59407
BP
8377 if (rq->curr == p)
8378 resched_curr(rq);
8379 else
8380 check_preempt_curr(rq, p, 0);
7855a35a 8381 }
cb469845
SR
8382}
8383
83b699ed
SV
8384/* Account for a task changing its policy or group.
8385 *
8386 * This routine is mostly called to set cfs_rq->curr field when a task
8387 * migrates between groups/classes.
8388 */
8389static void set_curr_task_fair(struct rq *rq)
8390{
8391 struct sched_entity *se = &rq->curr->se;
8392
ec12cb7f
PT
8393 for_each_sched_entity(se) {
8394 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8395
8396 set_next_entity(cfs_rq, se);
8397 /* ensure bandwidth has been allocated on our new cfs_rq */
8398 account_cfs_rq_runtime(cfs_rq, 0);
8399 }
83b699ed
SV
8400}
8401
029632fb
PZ
8402void init_cfs_rq(struct cfs_rq *cfs_rq)
8403{
8404 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8405 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8406#ifndef CONFIG_64BIT
8407 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8408#endif
141965c7 8409#ifdef CONFIG_SMP
9d89c257
YD
8410 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8411 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8412#endif
029632fb
PZ
8413}
8414
810b3817 8415#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8416static void task_move_group_fair(struct task_struct *p)
810b3817 8417{
daa59407 8418 detach_task_cfs_rq(p);
b2b5ce02 8419 set_task_rq(p, task_cpu(p));
6efdb105
BP
8420
8421#ifdef CONFIG_SMP
8422 /* Tell se's cfs_rq has been changed -- migrated */
8423 p->se.avg.last_update_time = 0;
8424#endif
daa59407 8425 attach_task_cfs_rq(p);
810b3817 8426}
029632fb
PZ
8427
8428void free_fair_sched_group(struct task_group *tg)
8429{
8430 int i;
8431
8432 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8433
8434 for_each_possible_cpu(i) {
8435 if (tg->cfs_rq)
8436 kfree(tg->cfs_rq[i]);
6fe1f348 8437 if (tg->se)
029632fb
PZ
8438 kfree(tg->se[i]);
8439 }
8440
8441 kfree(tg->cfs_rq);
8442 kfree(tg->se);
8443}
8444
8445int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8446{
8447 struct cfs_rq *cfs_rq;
8448 struct sched_entity *se;
8449 int i;
8450
8451 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8452 if (!tg->cfs_rq)
8453 goto err;
8454 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8455 if (!tg->se)
8456 goto err;
8457
8458 tg->shares = NICE_0_LOAD;
8459
8460 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8461
8462 for_each_possible_cpu(i) {
8463 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8464 GFP_KERNEL, cpu_to_node(i));
8465 if (!cfs_rq)
8466 goto err;
8467
8468 se = kzalloc_node(sizeof(struct sched_entity),
8469 GFP_KERNEL, cpu_to_node(i));
8470 if (!se)
8471 goto err_free_rq;
8472
8473 init_cfs_rq(cfs_rq);
8474 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8475 init_entity_runnable_average(se);
2b8c41da 8476 post_init_entity_util_avg(se);
029632fb
PZ
8477 }
8478
8479 return 1;
8480
8481err_free_rq:
8482 kfree(cfs_rq);
8483err:
8484 return 0;
8485}
8486
6fe1f348 8487void unregister_fair_sched_group(struct task_group *tg)
029632fb 8488{
029632fb 8489 unsigned long flags;
6fe1f348
PZ
8490 struct rq *rq;
8491 int cpu;
029632fb 8492
6fe1f348
PZ
8493 for_each_possible_cpu(cpu) {
8494 if (tg->se[cpu])
8495 remove_entity_load_avg(tg->se[cpu]);
029632fb 8496
6fe1f348
PZ
8497 /*
8498 * Only empty task groups can be destroyed; so we can speculatively
8499 * check on_list without danger of it being re-added.
8500 */
8501 if (!tg->cfs_rq[cpu]->on_list)
8502 continue;
8503
8504 rq = cpu_rq(cpu);
8505
8506 raw_spin_lock_irqsave(&rq->lock, flags);
8507 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8508 raw_spin_unlock_irqrestore(&rq->lock, flags);
8509 }
029632fb
PZ
8510}
8511
8512void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8513 struct sched_entity *se, int cpu,
8514 struct sched_entity *parent)
8515{
8516 struct rq *rq = cpu_rq(cpu);
8517
8518 cfs_rq->tg = tg;
8519 cfs_rq->rq = rq;
029632fb
PZ
8520 init_cfs_rq_runtime(cfs_rq);
8521
8522 tg->cfs_rq[cpu] = cfs_rq;
8523 tg->se[cpu] = se;
8524
8525 /* se could be NULL for root_task_group */
8526 if (!se)
8527 return;
8528
fed14d45 8529 if (!parent) {
029632fb 8530 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8531 se->depth = 0;
8532 } else {
029632fb 8533 se->cfs_rq = parent->my_q;
fed14d45
PZ
8534 se->depth = parent->depth + 1;
8535 }
029632fb
PZ
8536
8537 se->my_q = cfs_rq;
0ac9b1c2
PT
8538 /* guarantee group entities always have weight */
8539 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8540 se->parent = parent;
8541}
8542
8543static DEFINE_MUTEX(shares_mutex);
8544
8545int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8546{
8547 int i;
8548 unsigned long flags;
8549
8550 /*
8551 * We can't change the weight of the root cgroup.
8552 */
8553 if (!tg->se[0])
8554 return -EINVAL;
8555
8556 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8557
8558 mutex_lock(&shares_mutex);
8559 if (tg->shares == shares)
8560 goto done;
8561
8562 tg->shares = shares;
8563 for_each_possible_cpu(i) {
8564 struct rq *rq = cpu_rq(i);
8565 struct sched_entity *se;
8566
8567 se = tg->se[i];
8568 /* Propagate contribution to hierarchy */
8569 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8570
8571 /* Possible calls to update_curr() need rq clock */
8572 update_rq_clock(rq);
17bc14b7 8573 for_each_sched_entity(se)
029632fb
PZ
8574 update_cfs_shares(group_cfs_rq(se));
8575 raw_spin_unlock_irqrestore(&rq->lock, flags);
8576 }
8577
8578done:
8579 mutex_unlock(&shares_mutex);
8580 return 0;
8581}
8582#else /* CONFIG_FAIR_GROUP_SCHED */
8583
8584void free_fair_sched_group(struct task_group *tg) { }
8585
8586int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8587{
8588 return 1;
8589}
8590
6fe1f348 8591void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8592
8593#endif /* CONFIG_FAIR_GROUP_SCHED */
8594
810b3817 8595
6d686f45 8596static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8597{
8598 struct sched_entity *se = &task->se;
0d721cea
PW
8599 unsigned int rr_interval = 0;
8600
8601 /*
8602 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8603 * idle runqueue:
8604 */
0d721cea 8605 if (rq->cfs.load.weight)
a59f4e07 8606 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8607
8608 return rr_interval;
8609}
8610
bf0f6f24
IM
8611/*
8612 * All the scheduling class methods:
8613 */
029632fb 8614const struct sched_class fair_sched_class = {
5522d5d5 8615 .next = &idle_sched_class,
bf0f6f24
IM
8616 .enqueue_task = enqueue_task_fair,
8617 .dequeue_task = dequeue_task_fair,
8618 .yield_task = yield_task_fair,
d95f4122 8619 .yield_to_task = yield_to_task_fair,
bf0f6f24 8620
2e09bf55 8621 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8622
8623 .pick_next_task = pick_next_task_fair,
8624 .put_prev_task = put_prev_task_fair,
8625
681f3e68 8626#ifdef CONFIG_SMP
4ce72a2c 8627 .select_task_rq = select_task_rq_fair,
0a74bef8 8628 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8629
0bcdcf28
CE
8630 .rq_online = rq_online_fair,
8631 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8632
8633 .task_waking = task_waking_fair,
12695578 8634 .task_dead = task_dead_fair,
c5b28038 8635 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8636#endif
bf0f6f24 8637
83b699ed 8638 .set_curr_task = set_curr_task_fair,
bf0f6f24 8639 .task_tick = task_tick_fair,
cd29fe6f 8640 .task_fork = task_fork_fair,
cb469845
SR
8641
8642 .prio_changed = prio_changed_fair,
da7a735e 8643 .switched_from = switched_from_fair,
cb469845 8644 .switched_to = switched_to_fair,
810b3817 8645
0d721cea
PW
8646 .get_rr_interval = get_rr_interval_fair,
8647
6e998916
SG
8648 .update_curr = update_curr_fair,
8649
810b3817 8650#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8651 .task_move_group = task_move_group_fair,
810b3817 8652#endif
bf0f6f24
IM
8653};
8654
8655#ifdef CONFIG_SCHED_DEBUG
029632fb 8656void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8657{
bf0f6f24
IM
8658 struct cfs_rq *cfs_rq;
8659
5973e5b9 8660 rcu_read_lock();
c3b64f1e 8661 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8662 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8663 rcu_read_unlock();
bf0f6f24 8664}
397f2378
SD
8665
8666#ifdef CONFIG_NUMA_BALANCING
8667void show_numa_stats(struct task_struct *p, struct seq_file *m)
8668{
8669 int node;
8670 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8671
8672 for_each_online_node(node) {
8673 if (p->numa_faults) {
8674 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8675 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8676 }
8677 if (p->numa_group) {
8678 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8679 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8680 }
8681 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8682 }
8683}
8684#endif /* CONFIG_NUMA_BALANCING */
8685#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8686
8687__init void init_sched_fair_class(void)
8688{
8689#ifdef CONFIG_SMP
8690 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8691
3451d024 8692#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8693 nohz.next_balance = jiffies;
029632fb 8694 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8695#endif
8696#endif /* SMP */
8697
8698}