sched/fair: Clean up asym packing
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
60e17f5c 99 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
100 *
101 * (default: ~20%)
102 */
60e17f5c
VK
103#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
104
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
df217913 752static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 753
2b8c41da
YD
754/*
755 * With new tasks being created, their initial util_avgs are extrapolated
756 * based on the cfs_rq's current util_avg:
757 *
758 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
759 *
760 * However, in many cases, the above util_avg does not give a desired
761 * value. Moreover, the sum of the util_avgs may be divergent, such
762 * as when the series is a harmonic series.
763 *
764 * To solve this problem, we also cap the util_avg of successive tasks to
765 * only 1/2 of the left utilization budget:
766 *
8fe5c5a9 767 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 768 *
8fe5c5a9 769 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 770 *
8fe5c5a9
QP
771 * For example, for a CPU with 1024 of capacity, a simplest series from
772 * the beginning would be like:
2b8c41da
YD
773 *
774 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
775 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
776 *
777 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
778 * if util_avg > util_avg_cap.
779 */
d0fe0b9c 780void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 781{
d0fe0b9c 782 struct sched_entity *se = &p->se;
2b8c41da
YD
783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
784 struct sched_avg *sa = &se->avg;
8ec59c0f 785 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 786 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
787
788 if (cap > 0) {
789 if (cfs_rq->avg.util_avg != 0) {
790 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
791 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
792
793 if (sa->util_avg > cap)
794 sa->util_avg = cap;
795 } else {
796 sa->util_avg = cap;
797 }
2b8c41da 798 }
7dc603c9 799
d0fe0b9c
DE
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se, 0);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
7dc603c9
PZ
813 }
814
df217913 815 attach_entity_cfs_rq(se);
2b8c41da
YD
816}
817
7dc603c9 818#else /* !CONFIG_SMP */
540247fb 819void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
820{
821}
d0fe0b9c 822void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
823{
824}
3d30544f
PZ
825static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
826{
827}
7dc603c9 828#endif /* CONFIG_SMP */
a75cdaa9 829
bf0f6f24 830/*
9dbdb155 831 * Update the current task's runtime statistics.
bf0f6f24 832 */
b7cc0896 833static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 834{
429d43bc 835 struct sched_entity *curr = cfs_rq->curr;
78becc27 836 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 837 u64 delta_exec;
bf0f6f24
IM
838
839 if (unlikely(!curr))
840 return;
841
9dbdb155
PZ
842 delta_exec = now - curr->exec_start;
843 if (unlikely((s64)delta_exec <= 0))
34f28ecd 844 return;
bf0f6f24 845
8ebc91d9 846 curr->exec_start = now;
d842de87 847
9dbdb155
PZ
848 schedstat_set(curr->statistics.exec_max,
849 max(delta_exec, curr->statistics.exec_max));
850
851 curr->sum_exec_runtime += delta_exec;
ae92882e 852 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
853
854 curr->vruntime += calc_delta_fair(delta_exec, curr);
855 update_min_vruntime(cfs_rq);
856
d842de87
SV
857 if (entity_is_task(curr)) {
858 struct task_struct *curtask = task_of(curr);
859
f977bb49 860 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 861 cgroup_account_cputime(curtask, delta_exec);
f06febc9 862 account_group_exec_runtime(curtask, delta_exec);
d842de87 863 }
ec12cb7f
PT
864
865 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
866}
867
6e998916
SG
868static void update_curr_fair(struct rq *rq)
869{
870 update_curr(cfs_rq_of(&rq->curr->se));
871}
872
bf0f6f24 873static inline void
5870db5b 874update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 875{
4fa8d299
JP
876 u64 wait_start, prev_wait_start;
877
878 if (!schedstat_enabled())
879 return;
880
881 wait_start = rq_clock(rq_of(cfs_rq));
882 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
883
884 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
885 likely(wait_start > prev_wait_start))
886 wait_start -= prev_wait_start;
3ea94de1 887
2ed41a55 888 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
889}
890
4fa8d299 891static inline void
3ea94de1
JP
892update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
893{
894 struct task_struct *p;
cb251765
MG
895 u64 delta;
896
4fa8d299
JP
897 if (!schedstat_enabled())
898 return;
899
900 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
901
902 if (entity_is_task(se)) {
903 p = task_of(se);
904 if (task_on_rq_migrating(p)) {
905 /*
906 * Preserve migrating task's wait time so wait_start
907 * time stamp can be adjusted to accumulate wait time
908 * prior to migration.
909 */
2ed41a55 910 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
911 return;
912 }
913 trace_sched_stat_wait(p, delta);
914 }
915
2ed41a55 916 __schedstat_set(se->statistics.wait_max,
4fa8d299 917 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
918 __schedstat_inc(se->statistics.wait_count);
919 __schedstat_add(se->statistics.wait_sum, delta);
920 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 921}
3ea94de1 922
4fa8d299 923static inline void
1a3d027c
JP
924update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926 struct task_struct *tsk = NULL;
4fa8d299
JP
927 u64 sleep_start, block_start;
928
929 if (!schedstat_enabled())
930 return;
931
932 sleep_start = schedstat_val(se->statistics.sleep_start);
933 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
934
935 if (entity_is_task(se))
936 tsk = task_of(se);
937
4fa8d299
JP
938 if (sleep_start) {
939 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
940
941 if ((s64)delta < 0)
942 delta = 0;
943
4fa8d299 944 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 945 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 946
2ed41a55
PZ
947 __schedstat_set(se->statistics.sleep_start, 0);
948 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
949
950 if (tsk) {
951 account_scheduler_latency(tsk, delta >> 10, 1);
952 trace_sched_stat_sleep(tsk, delta);
953 }
954 }
4fa8d299
JP
955 if (block_start) {
956 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
957
958 if ((s64)delta < 0)
959 delta = 0;
960
4fa8d299 961 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 962 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 963
2ed41a55
PZ
964 __schedstat_set(se->statistics.block_start, 0);
965 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
966
967 if (tsk) {
968 if (tsk->in_iowait) {
2ed41a55
PZ
969 __schedstat_add(se->statistics.iowait_sum, delta);
970 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
971 trace_sched_stat_iowait(tsk, delta);
972 }
973
974 trace_sched_stat_blocked(tsk, delta);
975
976 /*
977 * Blocking time is in units of nanosecs, so shift by
978 * 20 to get a milliseconds-range estimation of the
979 * amount of time that the task spent sleeping:
980 */
981 if (unlikely(prof_on == SLEEP_PROFILING)) {
982 profile_hits(SLEEP_PROFILING,
983 (void *)get_wchan(tsk),
984 delta >> 20);
985 }
986 account_scheduler_latency(tsk, delta >> 10, 0);
987 }
988 }
3ea94de1 989}
3ea94de1 990
bf0f6f24
IM
991/*
992 * Task is being enqueued - update stats:
993 */
cb251765 994static inline void
1a3d027c 995update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 996{
4fa8d299
JP
997 if (!schedstat_enabled())
998 return;
999
bf0f6f24
IM
1000 /*
1001 * Are we enqueueing a waiting task? (for current tasks
1002 * a dequeue/enqueue event is a NOP)
1003 */
429d43bc 1004 if (se != cfs_rq->curr)
5870db5b 1005 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1006
1007 if (flags & ENQUEUE_WAKEUP)
1008 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1009}
1010
bf0f6f24 1011static inline void
cb251765 1012update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1013{
4fa8d299
JP
1014
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Mark the end of the wait period if dequeueing a
1020 * waiting task:
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
9ef0a961 1023 update_stats_wait_end(cfs_rq, se);
cb251765 1024
4fa8d299
JP
1025 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
cb251765 1027
4fa8d299 1028 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1029 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1030 rq_clock(rq_of(cfs_rq)));
1031 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1032 __schedstat_set(se->statistics.block_start,
4fa8d299 1033 rq_clock(rq_of(cfs_rq)));
cb251765 1034 }
cb251765
MG
1035}
1036
bf0f6f24
IM
1037/*
1038 * We are picking a new current task - update its stats:
1039 */
1040static inline void
79303e9e 1041update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1042{
1043 /*
1044 * We are starting a new run period:
1045 */
78becc27 1046 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1047}
1048
bf0f6f24
IM
1049/**************************************************
1050 * Scheduling class queueing methods:
1051 */
1052
cbee9f88
PZ
1053#ifdef CONFIG_NUMA_BALANCING
1054/*
598f0ec0
MG
1055 * Approximate time to scan a full NUMA task in ms. The task scan period is
1056 * calculated based on the tasks virtual memory size and
1057 * numa_balancing_scan_size.
cbee9f88 1058 */
598f0ec0
MG
1059unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1060unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1061
1062/* Portion of address space to scan in MB */
1063unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1064
4b96a29b
PZ
1065/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1066unsigned int sysctl_numa_balancing_scan_delay = 1000;
1067
b5dd77c8 1068struct numa_group {
c45a7795 1069 refcount_t refcount;
b5dd77c8
RR
1070
1071 spinlock_t lock; /* nr_tasks, tasks */
1072 int nr_tasks;
1073 pid_t gid;
1074 int active_nodes;
1075
1076 struct rcu_head rcu;
1077 unsigned long total_faults;
1078 unsigned long max_faults_cpu;
1079 /*
1080 * Faults_cpu is used to decide whether memory should move
1081 * towards the CPU. As a consequence, these stats are weighted
1082 * more by CPU use than by memory faults.
1083 */
1084 unsigned long *faults_cpu;
1085 unsigned long faults[0];
1086};
1087
cb361d8c
JH
1088/*
1089 * For functions that can be called in multiple contexts that permit reading
1090 * ->numa_group (see struct task_struct for locking rules).
1091 */
1092static struct numa_group *deref_task_numa_group(struct task_struct *p)
1093{
1094 return rcu_dereference_check(p->numa_group, p == current ||
1095 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1096}
1097
1098static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1099{
1100 return rcu_dereference_protected(p->numa_group, p == current);
1101}
1102
b5dd77c8
RR
1103static inline unsigned long group_faults_priv(struct numa_group *ng);
1104static inline unsigned long group_faults_shared(struct numa_group *ng);
1105
598f0ec0
MG
1106static unsigned int task_nr_scan_windows(struct task_struct *p)
1107{
1108 unsigned long rss = 0;
1109 unsigned long nr_scan_pages;
1110
1111 /*
1112 * Calculations based on RSS as non-present and empty pages are skipped
1113 * by the PTE scanner and NUMA hinting faults should be trapped based
1114 * on resident pages
1115 */
1116 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1117 rss = get_mm_rss(p->mm);
1118 if (!rss)
1119 rss = nr_scan_pages;
1120
1121 rss = round_up(rss, nr_scan_pages);
1122 return rss / nr_scan_pages;
1123}
1124
1125/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1126#define MAX_SCAN_WINDOW 2560
1127
1128static unsigned int task_scan_min(struct task_struct *p)
1129{
316c1608 1130 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1131 unsigned int scan, floor;
1132 unsigned int windows = 1;
1133
64192658
KT
1134 if (scan_size < MAX_SCAN_WINDOW)
1135 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1136 floor = 1000 / windows;
1137
1138 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1139 return max_t(unsigned int, floor, scan);
1140}
1141
b5dd77c8
RR
1142static unsigned int task_scan_start(struct task_struct *p)
1143{
1144 unsigned long smin = task_scan_min(p);
1145 unsigned long period = smin;
cb361d8c 1146 struct numa_group *ng;
b5dd77c8
RR
1147
1148 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1149 rcu_read_lock();
1150 ng = rcu_dereference(p->numa_group);
1151 if (ng) {
b5dd77c8
RR
1152 unsigned long shared = group_faults_shared(ng);
1153 unsigned long private = group_faults_priv(ng);
1154
c45a7795 1155 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1156 period *= shared + 1;
1157 period /= private + shared + 1;
1158 }
cb361d8c 1159 rcu_read_unlock();
b5dd77c8
RR
1160
1161 return max(smin, period);
1162}
1163
598f0ec0
MG
1164static unsigned int task_scan_max(struct task_struct *p)
1165{
b5dd77c8
RR
1166 unsigned long smin = task_scan_min(p);
1167 unsigned long smax;
cb361d8c 1168 struct numa_group *ng;
598f0ec0
MG
1169
1170 /* Watch for min being lower than max due to floor calculations */
1171 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1172
1173 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1174 ng = deref_curr_numa_group(p);
1175 if (ng) {
b5dd77c8
RR
1176 unsigned long shared = group_faults_shared(ng);
1177 unsigned long private = group_faults_priv(ng);
1178 unsigned long period = smax;
1179
c45a7795 1180 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1181 period *= shared + 1;
1182 period /= private + shared + 1;
1183
1184 smax = max(smax, period);
1185 }
1186
598f0ec0
MG
1187 return max(smin, smax);
1188}
1189
0ec8aa00
PZ
1190static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1191{
98fa15f3 1192 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1193 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1194}
1195
1196static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1197{
98fa15f3 1198 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1199 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1200}
1201
be1e4e76
RR
1202/* Shared or private faults. */
1203#define NR_NUMA_HINT_FAULT_TYPES 2
1204
1205/* Memory and CPU locality */
1206#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1207
1208/* Averaged statistics, and temporary buffers. */
1209#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1210
e29cf08b
MG
1211pid_t task_numa_group_id(struct task_struct *p)
1212{
cb361d8c
JH
1213 struct numa_group *ng;
1214 pid_t gid = 0;
1215
1216 rcu_read_lock();
1217 ng = rcu_dereference(p->numa_group);
1218 if (ng)
1219 gid = ng->gid;
1220 rcu_read_unlock();
1221
1222 return gid;
e29cf08b
MG
1223}
1224
44dba3d5 1225/*
97fb7a0a 1226 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1227 * occupy the first half of the array. The second half of the
1228 * array is for current counters, which are averaged into the
1229 * first set by task_numa_placement.
1230 */
1231static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1232{
44dba3d5 1233 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1234}
1235
1236static inline unsigned long task_faults(struct task_struct *p, int nid)
1237{
44dba3d5 1238 if (!p->numa_faults)
ac8e895b
MG
1239 return 0;
1240
44dba3d5
IM
1241 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1242 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1243}
1244
83e1d2cd
MG
1245static inline unsigned long group_faults(struct task_struct *p, int nid)
1246{
cb361d8c
JH
1247 struct numa_group *ng = deref_task_numa_group(p);
1248
1249 if (!ng)
83e1d2cd
MG
1250 return 0;
1251
cb361d8c
JH
1252 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1254}
1255
20e07dea
RR
1256static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1257{
44dba3d5
IM
1258 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1260}
1261
b5dd77c8
RR
1262static inline unsigned long group_faults_priv(struct numa_group *ng)
1263{
1264 unsigned long faults = 0;
1265 int node;
1266
1267 for_each_online_node(node) {
1268 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1269 }
1270
1271 return faults;
1272}
1273
1274static inline unsigned long group_faults_shared(struct numa_group *ng)
1275{
1276 unsigned long faults = 0;
1277 int node;
1278
1279 for_each_online_node(node) {
1280 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1281 }
1282
1283 return faults;
1284}
1285
4142c3eb
RR
1286/*
1287 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1288 * considered part of a numa group's pseudo-interleaving set. Migrations
1289 * between these nodes are slowed down, to allow things to settle down.
1290 */
1291#define ACTIVE_NODE_FRACTION 3
1292
1293static bool numa_is_active_node(int nid, struct numa_group *ng)
1294{
1295 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1296}
1297
6c6b1193
RR
1298/* Handle placement on systems where not all nodes are directly connected. */
1299static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1300 int maxdist, bool task)
1301{
1302 unsigned long score = 0;
1303 int node;
1304
1305 /*
1306 * All nodes are directly connected, and the same distance
1307 * from each other. No need for fancy placement algorithms.
1308 */
1309 if (sched_numa_topology_type == NUMA_DIRECT)
1310 return 0;
1311
1312 /*
1313 * This code is called for each node, introducing N^2 complexity,
1314 * which should be ok given the number of nodes rarely exceeds 8.
1315 */
1316 for_each_online_node(node) {
1317 unsigned long faults;
1318 int dist = node_distance(nid, node);
1319
1320 /*
1321 * The furthest away nodes in the system are not interesting
1322 * for placement; nid was already counted.
1323 */
1324 if (dist == sched_max_numa_distance || node == nid)
1325 continue;
1326
1327 /*
1328 * On systems with a backplane NUMA topology, compare groups
1329 * of nodes, and move tasks towards the group with the most
1330 * memory accesses. When comparing two nodes at distance
1331 * "hoplimit", only nodes closer by than "hoplimit" are part
1332 * of each group. Skip other nodes.
1333 */
1334 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1335 dist >= maxdist)
6c6b1193
RR
1336 continue;
1337
1338 /* Add up the faults from nearby nodes. */
1339 if (task)
1340 faults = task_faults(p, node);
1341 else
1342 faults = group_faults(p, node);
1343
1344 /*
1345 * On systems with a glueless mesh NUMA topology, there are
1346 * no fixed "groups of nodes". Instead, nodes that are not
1347 * directly connected bounce traffic through intermediate
1348 * nodes; a numa_group can occupy any set of nodes.
1349 * The further away a node is, the less the faults count.
1350 * This seems to result in good task placement.
1351 */
1352 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1353 faults *= (sched_max_numa_distance - dist);
1354 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1355 }
1356
1357 score += faults;
1358 }
1359
1360 return score;
1361}
1362
83e1d2cd
MG
1363/*
1364 * These return the fraction of accesses done by a particular task, or
1365 * task group, on a particular numa node. The group weight is given a
1366 * larger multiplier, in order to group tasks together that are almost
1367 * evenly spread out between numa nodes.
1368 */
7bd95320
RR
1369static inline unsigned long task_weight(struct task_struct *p, int nid,
1370 int dist)
83e1d2cd 1371{
7bd95320 1372 unsigned long faults, total_faults;
83e1d2cd 1373
44dba3d5 1374 if (!p->numa_faults)
83e1d2cd
MG
1375 return 0;
1376
1377 total_faults = p->total_numa_faults;
1378
1379 if (!total_faults)
1380 return 0;
1381
7bd95320 1382 faults = task_faults(p, nid);
6c6b1193
RR
1383 faults += score_nearby_nodes(p, nid, dist, true);
1384
7bd95320 1385 return 1000 * faults / total_faults;
83e1d2cd
MG
1386}
1387
7bd95320
RR
1388static inline unsigned long group_weight(struct task_struct *p, int nid,
1389 int dist)
83e1d2cd 1390{
cb361d8c 1391 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1392 unsigned long faults, total_faults;
1393
cb361d8c 1394 if (!ng)
7bd95320
RR
1395 return 0;
1396
cb361d8c 1397 total_faults = ng->total_faults;
7bd95320
RR
1398
1399 if (!total_faults)
83e1d2cd
MG
1400 return 0;
1401
7bd95320 1402 faults = group_faults(p, nid);
6c6b1193
RR
1403 faults += score_nearby_nodes(p, nid, dist, false);
1404
7bd95320 1405 return 1000 * faults / total_faults;
83e1d2cd
MG
1406}
1407
10f39042
RR
1408bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1409 int src_nid, int dst_cpu)
1410{
cb361d8c 1411 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1412 int dst_nid = cpu_to_node(dst_cpu);
1413 int last_cpupid, this_cpupid;
1414
1415 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1416 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1417
1418 /*
1419 * Allow first faults or private faults to migrate immediately early in
1420 * the lifetime of a task. The magic number 4 is based on waiting for
1421 * two full passes of the "multi-stage node selection" test that is
1422 * executed below.
1423 */
98fa15f3 1424 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1425 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1426 return true;
10f39042
RR
1427
1428 /*
1429 * Multi-stage node selection is used in conjunction with a periodic
1430 * migration fault to build a temporal task<->page relation. By using
1431 * a two-stage filter we remove short/unlikely relations.
1432 *
1433 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1434 * a task's usage of a particular page (n_p) per total usage of this
1435 * page (n_t) (in a given time-span) to a probability.
1436 *
1437 * Our periodic faults will sample this probability and getting the
1438 * same result twice in a row, given these samples are fully
1439 * independent, is then given by P(n)^2, provided our sample period
1440 * is sufficiently short compared to the usage pattern.
1441 *
1442 * This quadric squishes small probabilities, making it less likely we
1443 * act on an unlikely task<->page relation.
1444 */
10f39042
RR
1445 if (!cpupid_pid_unset(last_cpupid) &&
1446 cpupid_to_nid(last_cpupid) != dst_nid)
1447 return false;
1448
1449 /* Always allow migrate on private faults */
1450 if (cpupid_match_pid(p, last_cpupid))
1451 return true;
1452
1453 /* A shared fault, but p->numa_group has not been set up yet. */
1454 if (!ng)
1455 return true;
1456
1457 /*
4142c3eb
RR
1458 * Destination node is much more heavily used than the source
1459 * node? Allow migration.
10f39042 1460 */
4142c3eb
RR
1461 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1462 ACTIVE_NODE_FRACTION)
10f39042
RR
1463 return true;
1464
1465 /*
4142c3eb
RR
1466 * Distribute memory according to CPU & memory use on each node,
1467 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1468 *
1469 * faults_cpu(dst) 3 faults_cpu(src)
1470 * --------------- * - > ---------------
1471 * faults_mem(dst) 4 faults_mem(src)
10f39042 1472 */
4142c3eb
RR
1473 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1474 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1475}
1476
a3df0679 1477static unsigned long cpu_runnable_load(struct rq *rq);
58d081b5 1478
fb13c7ee 1479/* Cached statistics for all CPUs within a node */
58d081b5
MG
1480struct numa_stats {
1481 unsigned long load;
fb13c7ee
MG
1482
1483 /* Total compute capacity of CPUs on a node */
5ef20ca1 1484 unsigned long compute_capacity;
58d081b5 1485};
e6628d5b 1486
fb13c7ee
MG
1487/*
1488 * XXX borrowed from update_sg_lb_stats
1489 */
1490static void update_numa_stats(struct numa_stats *ns, int nid)
1491{
d90707eb 1492 int cpu;
fb13c7ee
MG
1493
1494 memset(ns, 0, sizeof(*ns));
1495 for_each_cpu(cpu, cpumask_of_node(nid)) {
1496 struct rq *rq = cpu_rq(cpu);
1497
a3df0679 1498 ns->load += cpu_runnable_load(rq);
ced549fa 1499 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1500 }
1501
fb13c7ee
MG
1502}
1503
58d081b5
MG
1504struct task_numa_env {
1505 struct task_struct *p;
e6628d5b 1506
58d081b5
MG
1507 int src_cpu, src_nid;
1508 int dst_cpu, dst_nid;
e6628d5b 1509
58d081b5 1510 struct numa_stats src_stats, dst_stats;
e6628d5b 1511
40ea2b42 1512 int imbalance_pct;
7bd95320 1513 int dist;
fb13c7ee
MG
1514
1515 struct task_struct *best_task;
1516 long best_imp;
58d081b5
MG
1517 int best_cpu;
1518};
1519
fb13c7ee
MG
1520static void task_numa_assign(struct task_numa_env *env,
1521 struct task_struct *p, long imp)
1522{
a4739eca
SD
1523 struct rq *rq = cpu_rq(env->dst_cpu);
1524
1525 /* Bail out if run-queue part of active NUMA balance. */
1526 if (xchg(&rq->numa_migrate_on, 1))
1527 return;
1528
1529 /*
1530 * Clear previous best_cpu/rq numa-migrate flag, since task now
1531 * found a better CPU to move/swap.
1532 */
1533 if (env->best_cpu != -1) {
1534 rq = cpu_rq(env->best_cpu);
1535 WRITE_ONCE(rq->numa_migrate_on, 0);
1536 }
1537
fb13c7ee
MG
1538 if (env->best_task)
1539 put_task_struct(env->best_task);
bac78573
ON
1540 if (p)
1541 get_task_struct(p);
fb13c7ee
MG
1542
1543 env->best_task = p;
1544 env->best_imp = imp;
1545 env->best_cpu = env->dst_cpu;
1546}
1547
28a21745 1548static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1549 struct task_numa_env *env)
1550{
e4991b24
RR
1551 long imb, old_imb;
1552 long orig_src_load, orig_dst_load;
28a21745
RR
1553 long src_capacity, dst_capacity;
1554
1555 /*
1556 * The load is corrected for the CPU capacity available on each node.
1557 *
1558 * src_load dst_load
1559 * ------------ vs ---------
1560 * src_capacity dst_capacity
1561 */
1562 src_capacity = env->src_stats.compute_capacity;
1563 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1564
5f95ba7a 1565 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1566
28a21745 1567 orig_src_load = env->src_stats.load;
e4991b24 1568 orig_dst_load = env->dst_stats.load;
28a21745 1569
5f95ba7a 1570 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1571
1572 /* Would this change make things worse? */
1573 return (imb > old_imb);
e63da036
RR
1574}
1575
6fd98e77
SD
1576/*
1577 * Maximum NUMA importance can be 1998 (2*999);
1578 * SMALLIMP @ 30 would be close to 1998/64.
1579 * Used to deter task migration.
1580 */
1581#define SMALLIMP 30
1582
fb13c7ee
MG
1583/*
1584 * This checks if the overall compute and NUMA accesses of the system would
1585 * be improved if the source tasks was migrated to the target dst_cpu taking
1586 * into account that it might be best if task running on the dst_cpu should
1587 * be exchanged with the source task
1588 */
887c290e 1589static void task_numa_compare(struct task_numa_env *env,
305c1fac 1590 long taskimp, long groupimp, bool maymove)
fb13c7ee 1591{
cb361d8c 1592 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1593 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1594 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1595 struct task_struct *cur;
28a21745 1596 long src_load, dst_load;
7bd95320 1597 int dist = env->dist;
cb361d8c
JH
1598 long moveimp = imp;
1599 long load;
fb13c7ee 1600
a4739eca
SD
1601 if (READ_ONCE(dst_rq->numa_migrate_on))
1602 return;
1603
fb13c7ee 1604 rcu_read_lock();
154abafc 1605 cur = rcu_dereference(dst_rq->curr);
bac78573 1606 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1607 cur = NULL;
1608
7af68335
PZ
1609 /*
1610 * Because we have preemption enabled we can get migrated around and
1611 * end try selecting ourselves (current == env->p) as a swap candidate.
1612 */
1613 if (cur == env->p)
1614 goto unlock;
1615
305c1fac 1616 if (!cur) {
6fd98e77 1617 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1618 goto assign;
1619 else
1620 goto unlock;
1621 }
1622
fb13c7ee
MG
1623 /*
1624 * "imp" is the fault differential for the source task between the
1625 * source and destination node. Calculate the total differential for
1626 * the source task and potential destination task. The more negative
305c1fac 1627 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1628 * be incurred if the tasks were swapped.
1629 */
305c1fac 1630 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1631 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1632 goto unlock;
fb13c7ee 1633
305c1fac
SD
1634 /*
1635 * If dst and source tasks are in the same NUMA group, or not
1636 * in any group then look only at task weights.
1637 */
cb361d8c
JH
1638 cur_ng = rcu_dereference(cur->numa_group);
1639 if (cur_ng == p_ng) {
305c1fac
SD
1640 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1641 task_weight(cur, env->dst_nid, dist);
887c290e 1642 /*
305c1fac
SD
1643 * Add some hysteresis to prevent swapping the
1644 * tasks within a group over tiny differences.
887c290e 1645 */
cb361d8c 1646 if (cur_ng)
305c1fac
SD
1647 imp -= imp / 16;
1648 } else {
1649 /*
1650 * Compare the group weights. If a task is all by itself
1651 * (not part of a group), use the task weight instead.
1652 */
cb361d8c 1653 if (cur_ng && p_ng)
305c1fac
SD
1654 imp += group_weight(cur, env->src_nid, dist) -
1655 group_weight(cur, env->dst_nid, dist);
1656 else
1657 imp += task_weight(cur, env->src_nid, dist) -
1658 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1659 }
1660
305c1fac 1661 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1662 imp = moveimp;
305c1fac 1663 cur = NULL;
fb13c7ee 1664 goto assign;
305c1fac 1665 }
fb13c7ee 1666
6fd98e77
SD
1667 /*
1668 * If the NUMA importance is less than SMALLIMP,
1669 * task migration might only result in ping pong
1670 * of tasks and also hurt performance due to cache
1671 * misses.
1672 */
1673 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1674 goto unlock;
1675
fb13c7ee
MG
1676 /*
1677 * In the overloaded case, try and keep the load balanced.
1678 */
305c1fac
SD
1679 load = task_h_load(env->p) - task_h_load(cur);
1680 if (!load)
1681 goto assign;
1682
e720fff6
PZ
1683 dst_load = env->dst_stats.load + load;
1684 src_load = env->src_stats.load - load;
fb13c7ee 1685
28a21745 1686 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1687 goto unlock;
1688
305c1fac 1689assign:
ba7e5a27
RR
1690 /*
1691 * One idle CPU per node is evaluated for a task numa move.
1692 * Call select_idle_sibling to maybe find a better one.
1693 */
10e2f1ac
PZ
1694 if (!cur) {
1695 /*
97fb7a0a 1696 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1697 * can be used from IRQ context.
1698 */
1699 local_irq_disable();
772bd008
MR
1700 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1701 env->dst_cpu);
10e2f1ac
PZ
1702 local_irq_enable();
1703 }
ba7e5a27 1704
fb13c7ee
MG
1705 task_numa_assign(env, cur, imp);
1706unlock:
1707 rcu_read_unlock();
1708}
1709
887c290e
RR
1710static void task_numa_find_cpu(struct task_numa_env *env,
1711 long taskimp, long groupimp)
2c8a50aa 1712{
305c1fac
SD
1713 long src_load, dst_load, load;
1714 bool maymove = false;
2c8a50aa
MG
1715 int cpu;
1716
305c1fac
SD
1717 load = task_h_load(env->p);
1718 dst_load = env->dst_stats.load + load;
1719 src_load = env->src_stats.load - load;
1720
1721 /*
1722 * If the improvement from just moving env->p direction is better
1723 * than swapping tasks around, check if a move is possible.
1724 */
1725 maymove = !load_too_imbalanced(src_load, dst_load, env);
1726
2c8a50aa
MG
1727 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1728 /* Skip this CPU if the source task cannot migrate */
3bd37062 1729 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1730 continue;
1731
1732 env->dst_cpu = cpu;
305c1fac 1733 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1734 }
1735}
1736
58d081b5
MG
1737static int task_numa_migrate(struct task_struct *p)
1738{
58d081b5
MG
1739 struct task_numa_env env = {
1740 .p = p,
fb13c7ee 1741
58d081b5 1742 .src_cpu = task_cpu(p),
b32e86b4 1743 .src_nid = task_node(p),
fb13c7ee
MG
1744
1745 .imbalance_pct = 112,
1746
1747 .best_task = NULL,
1748 .best_imp = 0,
4142c3eb 1749 .best_cpu = -1,
58d081b5 1750 };
cb361d8c 1751 unsigned long taskweight, groupweight;
58d081b5 1752 struct sched_domain *sd;
cb361d8c
JH
1753 long taskimp, groupimp;
1754 struct numa_group *ng;
a4739eca 1755 struct rq *best_rq;
7bd95320 1756 int nid, ret, dist;
e6628d5b 1757
58d081b5 1758 /*
fb13c7ee
MG
1759 * Pick the lowest SD_NUMA domain, as that would have the smallest
1760 * imbalance and would be the first to start moving tasks about.
1761 *
1762 * And we want to avoid any moving of tasks about, as that would create
1763 * random movement of tasks -- counter the numa conditions we're trying
1764 * to satisfy here.
58d081b5
MG
1765 */
1766 rcu_read_lock();
fb13c7ee 1767 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1768 if (sd)
1769 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1770 rcu_read_unlock();
1771
46a73e8a
RR
1772 /*
1773 * Cpusets can break the scheduler domain tree into smaller
1774 * balance domains, some of which do not cross NUMA boundaries.
1775 * Tasks that are "trapped" in such domains cannot be migrated
1776 * elsewhere, so there is no point in (re)trying.
1777 */
1778 if (unlikely(!sd)) {
8cd45eee 1779 sched_setnuma(p, task_node(p));
46a73e8a
RR
1780 return -EINVAL;
1781 }
1782
2c8a50aa 1783 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1784 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1785 taskweight = task_weight(p, env.src_nid, dist);
1786 groupweight = group_weight(p, env.src_nid, dist);
1787 update_numa_stats(&env.src_stats, env.src_nid);
1788 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1789 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1790 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1791
a43455a1 1792 /* Try to find a spot on the preferred nid. */
2d4056fa 1793 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1794
9de05d48
RR
1795 /*
1796 * Look at other nodes in these cases:
1797 * - there is no space available on the preferred_nid
1798 * - the task is part of a numa_group that is interleaved across
1799 * multiple NUMA nodes; in order to better consolidate the group,
1800 * we need to check other locations.
1801 */
cb361d8c
JH
1802 ng = deref_curr_numa_group(p);
1803 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1804 for_each_online_node(nid) {
1805 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 continue;
58d081b5 1807
7bd95320 1808 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1809 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 dist != env.dist) {
1811 taskweight = task_weight(p, env.src_nid, dist);
1812 groupweight = group_weight(p, env.src_nid, dist);
1813 }
7bd95320 1814
83e1d2cd 1815 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1816 taskimp = task_weight(p, nid, dist) - taskweight;
1817 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1818 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1819 continue;
1820
7bd95320 1821 env.dist = dist;
2c8a50aa
MG
1822 env.dst_nid = nid;
1823 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1824 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1825 }
1826 }
1827
68d1b02a
RR
1828 /*
1829 * If the task is part of a workload that spans multiple NUMA nodes,
1830 * and is migrating into one of the workload's active nodes, remember
1831 * this node as the task's preferred numa node, so the workload can
1832 * settle down.
1833 * A task that migrated to a second choice node will be better off
1834 * trying for a better one later. Do not set the preferred node here.
1835 */
cb361d8c 1836 if (ng) {
db015dae
RR
1837 if (env.best_cpu == -1)
1838 nid = env.src_nid;
1839 else
8cd45eee 1840 nid = cpu_to_node(env.best_cpu);
db015dae 1841
8cd45eee
SD
1842 if (nid != p->numa_preferred_nid)
1843 sched_setnuma(p, nid);
db015dae
RR
1844 }
1845
1846 /* No better CPU than the current one was found. */
1847 if (env.best_cpu == -1)
1848 return -EAGAIN;
0ec8aa00 1849
a4739eca 1850 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1851 if (env.best_task == NULL) {
286549dc 1852 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1853 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1854 if (ret != 0)
1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1856 return ret;
1857 }
1858
0ad4e3df 1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1861
286549dc
MG
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1864 put_task_struct(env.best_task);
1865 return ret;
e6628d5b
MG
1866}
1867
6b9a7460
MG
1868/* Attempt to migrate a task to a CPU on the preferred node. */
1869static void numa_migrate_preferred(struct task_struct *p)
1870{
5085e2a3
RR
1871 unsigned long interval = HZ;
1872
2739d3ee 1873 /* This task has no NUMA fault statistics yet */
98fa15f3 1874 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1875 return;
1876
2739d3ee 1877 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1879 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1880
1881 /* Success if task is already running on preferred CPU */
de1b301a 1882 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1886 task_numa_migrate(p);
6b9a7460
MG
1887}
1888
20e07dea 1889/*
4142c3eb 1890 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
20e07dea 1894 */
4142c3eb 1895static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1896{
1897 unsigned long faults, max_faults = 0;
4142c3eb 1898 int nid, active_nodes = 0;
20e07dea
RR
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
20e07dea 1910 }
4142c3eb
RR
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
20e07dea
RR
1914}
1915
04bb2f94
RR
1916/*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1922 */
1923#define NUMA_PERIOD_SLOTS 10
a22b4b01 1924#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1925
1926/*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934{
1935 unsigned int period_slot;
37ec97de 1936 int lr_ratio, ps_ratio;
04bb2f94
RR
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
074c2381
MG
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
04bb2f94 1948 */
074c2381 1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
04bb2f94 1989 /*
37ec97de
RR
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
04bb2f94 1993 */
37ec97de
RR
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001}
2002
7e2703e6
RR
2003/*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011{
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2020
2021 /* Avoid time going backwards, prevent potential divide error: */
2022 if (unlikely((s64)*period < 0))
2023 *period = 0;
7e2703e6 2024 } else {
c7b50216 2025 delta = p->se.avg.load_sum;
9d89c257 2026 *period = LOAD_AVG_MAX;
7e2703e6
RR
2027 }
2028
2029 p->last_sum_exec_runtime = runtime;
2030 p->last_task_numa_placement = now;
2031
2032 return delta;
2033}
2034
54009416
RR
2035/*
2036 * Determine the preferred nid for a task in a numa_group. This needs to
2037 * be done in a way that produces consistent results with group_weight,
2038 * otherwise workloads might not converge.
2039 */
2040static int preferred_group_nid(struct task_struct *p, int nid)
2041{
2042 nodemask_t nodes;
2043 int dist;
2044
2045 /* Direct connections between all NUMA nodes. */
2046 if (sched_numa_topology_type == NUMA_DIRECT)
2047 return nid;
2048
2049 /*
2050 * On a system with glueless mesh NUMA topology, group_weight
2051 * scores nodes according to the number of NUMA hinting faults on
2052 * both the node itself, and on nearby nodes.
2053 */
2054 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2055 unsigned long score, max_score = 0;
2056 int node, max_node = nid;
2057
2058 dist = sched_max_numa_distance;
2059
2060 for_each_online_node(node) {
2061 score = group_weight(p, node, dist);
2062 if (score > max_score) {
2063 max_score = score;
2064 max_node = node;
2065 }
2066 }
2067 return max_node;
2068 }
2069
2070 /*
2071 * Finding the preferred nid in a system with NUMA backplane
2072 * interconnect topology is more involved. The goal is to locate
2073 * tasks from numa_groups near each other in the system, and
2074 * untangle workloads from different sides of the system. This requires
2075 * searching down the hierarchy of node groups, recursively searching
2076 * inside the highest scoring group of nodes. The nodemask tricks
2077 * keep the complexity of the search down.
2078 */
2079 nodes = node_online_map;
2080 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2081 unsigned long max_faults = 0;
81907478 2082 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2083 int a, b;
2084
2085 /* Are there nodes at this distance from each other? */
2086 if (!find_numa_distance(dist))
2087 continue;
2088
2089 for_each_node_mask(a, nodes) {
2090 unsigned long faults = 0;
2091 nodemask_t this_group;
2092 nodes_clear(this_group);
2093
2094 /* Sum group's NUMA faults; includes a==b case. */
2095 for_each_node_mask(b, nodes) {
2096 if (node_distance(a, b) < dist) {
2097 faults += group_faults(p, b);
2098 node_set(b, this_group);
2099 node_clear(b, nodes);
2100 }
2101 }
2102
2103 /* Remember the top group. */
2104 if (faults > max_faults) {
2105 max_faults = faults;
2106 max_group = this_group;
2107 /*
2108 * subtle: at the smallest distance there is
2109 * just one node left in each "group", the
2110 * winner is the preferred nid.
2111 */
2112 nid = a;
2113 }
2114 }
2115 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2116 if (!max_faults)
2117 break;
54009416
RR
2118 nodes = max_group;
2119 }
2120 return nid;
2121}
2122
cbee9f88
PZ
2123static void task_numa_placement(struct task_struct *p)
2124{
98fa15f3 2125 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2126 unsigned long max_faults = 0;
04bb2f94 2127 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2128 unsigned long total_faults;
2129 u64 runtime, period;
7dbd13ed 2130 spinlock_t *group_lock = NULL;
cb361d8c 2131 struct numa_group *ng;
cbee9f88 2132
7e5a2c17
JL
2133 /*
2134 * The p->mm->numa_scan_seq field gets updated without
2135 * exclusive access. Use READ_ONCE() here to ensure
2136 * that the field is read in a single access:
2137 */
316c1608 2138 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2139 if (p->numa_scan_seq == seq)
2140 return;
2141 p->numa_scan_seq = seq;
598f0ec0 2142 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2143
7e2703e6
RR
2144 total_faults = p->numa_faults_locality[0] +
2145 p->numa_faults_locality[1];
2146 runtime = numa_get_avg_runtime(p, &period);
2147
7dbd13ed 2148 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2149 ng = deref_curr_numa_group(p);
2150 if (ng) {
2151 group_lock = &ng->lock;
60e69eed 2152 spin_lock_irq(group_lock);
7dbd13ed
MG
2153 }
2154
688b7585
MG
2155 /* Find the node with the highest number of faults */
2156 for_each_online_node(nid) {
44dba3d5
IM
2157 /* Keep track of the offsets in numa_faults array */
2158 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2159 unsigned long faults = 0, group_faults = 0;
44dba3d5 2160 int priv;
745d6147 2161
be1e4e76 2162 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2163 long diff, f_diff, f_weight;
8c8a743c 2164
44dba3d5
IM
2165 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2166 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2167 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2168 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2169
ac8e895b 2170 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2171 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2172 fault_types[priv] += p->numa_faults[membuf_idx];
2173 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2174
7e2703e6
RR
2175 /*
2176 * Normalize the faults_from, so all tasks in a group
2177 * count according to CPU use, instead of by the raw
2178 * number of faults. Tasks with little runtime have
2179 * little over-all impact on throughput, and thus their
2180 * faults are less important.
2181 */
2182 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2183 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2184 (total_faults + 1);
44dba3d5
IM
2185 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2186 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2187
44dba3d5
IM
2188 p->numa_faults[mem_idx] += diff;
2189 p->numa_faults[cpu_idx] += f_diff;
2190 faults += p->numa_faults[mem_idx];
83e1d2cd 2191 p->total_numa_faults += diff;
cb361d8c 2192 if (ng) {
44dba3d5
IM
2193 /*
2194 * safe because we can only change our own group
2195 *
2196 * mem_idx represents the offset for a given
2197 * nid and priv in a specific region because it
2198 * is at the beginning of the numa_faults array.
2199 */
cb361d8c
JH
2200 ng->faults[mem_idx] += diff;
2201 ng->faults_cpu[mem_idx] += f_diff;
2202 ng->total_faults += diff;
2203 group_faults += ng->faults[mem_idx];
8c8a743c 2204 }
ac8e895b
MG
2205 }
2206
cb361d8c 2207 if (!ng) {
f03bb676
SD
2208 if (faults > max_faults) {
2209 max_faults = faults;
2210 max_nid = nid;
2211 }
2212 } else if (group_faults > max_faults) {
2213 max_faults = group_faults;
688b7585
MG
2214 max_nid = nid;
2215 }
83e1d2cd
MG
2216 }
2217
cb361d8c
JH
2218 if (ng) {
2219 numa_group_count_active_nodes(ng);
60e69eed 2220 spin_unlock_irq(group_lock);
f03bb676 2221 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2222 }
2223
bb97fc31
RR
2224 if (max_faults) {
2225 /* Set the new preferred node */
2226 if (max_nid != p->numa_preferred_nid)
2227 sched_setnuma(p, max_nid);
3a7053b3 2228 }
30619c89
SD
2229
2230 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2231}
2232
8c8a743c
PZ
2233static inline int get_numa_group(struct numa_group *grp)
2234{
c45a7795 2235 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2236}
2237
2238static inline void put_numa_group(struct numa_group *grp)
2239{
c45a7795 2240 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2241 kfree_rcu(grp, rcu);
2242}
2243
3e6a9418
MG
2244static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2245 int *priv)
8c8a743c
PZ
2246{
2247 struct numa_group *grp, *my_grp;
2248 struct task_struct *tsk;
2249 bool join = false;
2250 int cpu = cpupid_to_cpu(cpupid);
2251 int i;
2252
cb361d8c 2253 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2254 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2255 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2256
2257 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2258 if (!grp)
2259 return;
2260
c45a7795 2261 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2262 grp->active_nodes = 1;
2263 grp->max_faults_cpu = 0;
8c8a743c 2264 spin_lock_init(&grp->lock);
e29cf08b 2265 grp->gid = p->pid;
50ec8a40 2266 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2267 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2268 nr_node_ids;
8c8a743c 2269
be1e4e76 2270 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2271 grp->faults[i] = p->numa_faults[i];
8c8a743c 2272
989348b5 2273 grp->total_faults = p->total_numa_faults;
83e1d2cd 2274
8c8a743c
PZ
2275 grp->nr_tasks++;
2276 rcu_assign_pointer(p->numa_group, grp);
2277 }
2278
2279 rcu_read_lock();
316c1608 2280 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2281
2282 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2283 goto no_join;
8c8a743c
PZ
2284
2285 grp = rcu_dereference(tsk->numa_group);
2286 if (!grp)
3354781a 2287 goto no_join;
8c8a743c 2288
cb361d8c 2289 my_grp = deref_curr_numa_group(p);
8c8a743c 2290 if (grp == my_grp)
3354781a 2291 goto no_join;
8c8a743c
PZ
2292
2293 /*
2294 * Only join the other group if its bigger; if we're the bigger group,
2295 * the other task will join us.
2296 */
2297 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2298 goto no_join;
8c8a743c
PZ
2299
2300 /*
2301 * Tie-break on the grp address.
2302 */
2303 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2304 goto no_join;
8c8a743c 2305
dabe1d99
RR
2306 /* Always join threads in the same process. */
2307 if (tsk->mm == current->mm)
2308 join = true;
2309
2310 /* Simple filter to avoid false positives due to PID collisions */
2311 if (flags & TNF_SHARED)
2312 join = true;
8c8a743c 2313
3e6a9418
MG
2314 /* Update priv based on whether false sharing was detected */
2315 *priv = !join;
2316
dabe1d99 2317 if (join && !get_numa_group(grp))
3354781a 2318 goto no_join;
8c8a743c 2319
8c8a743c
PZ
2320 rcu_read_unlock();
2321
2322 if (!join)
2323 return;
2324
60e69eed
MG
2325 BUG_ON(irqs_disabled());
2326 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2327
be1e4e76 2328 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2329 my_grp->faults[i] -= p->numa_faults[i];
2330 grp->faults[i] += p->numa_faults[i];
8c8a743c 2331 }
989348b5
MG
2332 my_grp->total_faults -= p->total_numa_faults;
2333 grp->total_faults += p->total_numa_faults;
8c8a743c 2334
8c8a743c
PZ
2335 my_grp->nr_tasks--;
2336 grp->nr_tasks++;
2337
2338 spin_unlock(&my_grp->lock);
60e69eed 2339 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2340
2341 rcu_assign_pointer(p->numa_group, grp);
2342
2343 put_numa_group(my_grp);
3354781a
PZ
2344 return;
2345
2346no_join:
2347 rcu_read_unlock();
2348 return;
8c8a743c
PZ
2349}
2350
16d51a59
JH
2351/*
2352 * Get rid of NUMA staticstics associated with a task (either current or dead).
2353 * If @final is set, the task is dead and has reached refcount zero, so we can
2354 * safely free all relevant data structures. Otherwise, there might be
2355 * concurrent reads from places like load balancing and procfs, and we should
2356 * reset the data back to default state without freeing ->numa_faults.
2357 */
2358void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2359{
cb361d8c
JH
2360 /* safe: p either is current or is being freed by current */
2361 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2362 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2363 unsigned long flags;
2364 int i;
8c8a743c 2365
16d51a59
JH
2366 if (!numa_faults)
2367 return;
2368
8c8a743c 2369 if (grp) {
e9dd685c 2370 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2371 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2372 grp->faults[i] -= p->numa_faults[i];
989348b5 2373 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2374
8c8a743c 2375 grp->nr_tasks--;
e9dd685c 2376 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2377 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2378 put_numa_group(grp);
2379 }
2380
16d51a59
JH
2381 if (final) {
2382 p->numa_faults = NULL;
2383 kfree(numa_faults);
2384 } else {
2385 p->total_numa_faults = 0;
2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 numa_faults[i] = 0;
2388 }
8c8a743c
PZ
2389}
2390
cbee9f88
PZ
2391/*
2392 * Got a PROT_NONE fault for a page on @node.
2393 */
58b46da3 2394void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2395{
2396 struct task_struct *p = current;
6688cc05 2397 bool migrated = flags & TNF_MIGRATED;
58b46da3 2398 int cpu_node = task_node(current);
792568ec 2399 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2400 struct numa_group *ng;
ac8e895b 2401 int priv;
cbee9f88 2402
2a595721 2403 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2404 return;
2405
9ff1d9ff
MG
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2409
f809ca9a 2410 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
be1e4e76 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2414
44dba3d5
IM
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
f809ca9a 2417 return;
745d6147 2418
83e1d2cd 2419 p->total_numa_faults = 0;
04bb2f94 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2421 }
cbee9f88 2422
8c8a743c
PZ
2423 /*
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2426 */
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2431 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2432 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2433 }
2434
792568ec
RR
2435 /*
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2440 */
cb361d8c 2441 ng = deref_curr_numa_group(p);
4142c3eb
RR
2442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
792568ec
RR
2445 local = 1;
2446
2739d3ee 2447 /*
e1ff516a
YW
2448 * Retry to migrate task to preferred node periodically, in case it
2449 * previously failed, or the scheduler moved us.
2739d3ee 2450 */
b6a60cf3
SD
2451 if (time_after(jiffies, p->numa_migrate_retry)) {
2452 task_numa_placement(p);
6b9a7460 2453 numa_migrate_preferred(p);
b6a60cf3 2454 }
6b9a7460 2455
b32e86b4
IM
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
074c2381
MG
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
b32e86b4 2460
44dba3d5
IM
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2463 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2464}
2465
6e5fb223
PZ
2466static void reset_ptenuma_scan(struct task_struct *p)
2467{
7e5a2c17
JL
2468 /*
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2475 */
316c1608 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2477 p->mm->numa_scan_offset = 0;
2478}
2479
cbee9f88
PZ
2480/*
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2483 */
9434f9f5 2484static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2485{
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
51170840 2489 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2490 struct vm_area_struct *vma;
9f40604c 2491 unsigned long start, end;
598f0ec0 2492 unsigned long nr_pte_updates = 0;
4620f8c1 2493 long pages, virtpages;
cbee9f88 2494
9148a3a1 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2496
b34920d4 2497 work->next = work;
cbee9f88
PZ
2498 /*
2499 * Who cares about NUMA placement when they're dying.
2500 *
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2505 */
2506 if (p->flags & PF_EXITING)
2507 return;
2508
930aa174 2509 if (!mm->numa_next_scan) {
7e8d16b6
MG
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2512 }
2513
cbee9f88
PZ
2514 /*
2515 * Enforce maximal scan/migration frequency..
2516 */
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2520
598f0ec0
MG
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2523 p->numa_scan_period = task_scan_start(p);
598f0ec0 2524 }
cbee9f88 2525
fb003b80 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2529
19a78d11
PZ
2530 /*
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2533 */
2534 p->node_stamp += 2 * TICK_NSEC;
2535
9f40604c
MG
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2539 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2540 if (!pages)
2541 return;
cbee9f88 2542
4620f8c1 2543
8655d549
VB
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
9f40604c 2546 vma = find_vma(mm, start);
6e5fb223
PZ
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
9f40604c 2549 start = 0;
6e5fb223
PZ
2550 vma = mm->mmap;
2551 }
9f40604c 2552 for (; vma; vma = vma->vm_next) {
6b79c57b 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2555 continue;
6b79c57b 2556 }
6e5fb223 2557
4591ce4f
MG
2558 /*
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2563 */
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2567
3c67f474
MG
2568 /*
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2571 */
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
4591ce4f 2574
9f40604c
MG
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
4620f8c1 2579 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2580
2581 /*
4620f8c1
RR
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
598f0ec0
MG
2588 */
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2591 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2592
9f40604c 2593 start = end;
4620f8c1 2594 if (pages <= 0 || virtpages <= 0)
9f40604c 2595 goto out;
3cf1962c
RR
2596
2597 cond_resched();
9f40604c 2598 } while (end != vma->vm_end);
cbee9f88 2599 }
6e5fb223 2600
9f40604c 2601out:
6e5fb223 2602 /*
c69307d5
PZ
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
6e5fb223
PZ
2607 */
2608 if (vma)
9f40604c 2609 mm->numa_scan_offset = start;
6e5fb223
PZ
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
51170840
RR
2613
2614 /*
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2619 */
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2623 }
cbee9f88
PZ
2624}
2625
d35927a1
VS
2626void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2627{
2628 int mm_users = 0;
2629 struct mm_struct *mm = p->mm;
2630
2631 if (mm) {
2632 mm_users = atomic_read(&mm->mm_users);
2633 if (mm_users == 1) {
2634 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2635 mm->numa_scan_seq = 0;
2636 }
2637 }
2638 p->node_stamp = 0;
2639 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2640 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2641 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2642 p->numa_work.next = &p->numa_work;
2643 p->numa_faults = NULL;
2644 RCU_INIT_POINTER(p->numa_group, NULL);
2645 p->last_task_numa_placement = 0;
2646 p->last_sum_exec_runtime = 0;
2647
b34920d4
VS
2648 init_task_work(&p->numa_work, task_numa_work);
2649
d35927a1
VS
2650 /* New address space, reset the preferred nid */
2651 if (!(clone_flags & CLONE_VM)) {
2652 p->numa_preferred_nid = NUMA_NO_NODE;
2653 return;
2654 }
2655
2656 /*
2657 * New thread, keep existing numa_preferred_nid which should be copied
2658 * already by arch_dup_task_struct but stagger when scans start.
2659 */
2660 if (mm) {
2661 unsigned int delay;
2662
2663 delay = min_t(unsigned int, task_scan_max(current),
2664 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2665 delay += 2 * TICK_NSEC;
2666 p->node_stamp = delay;
2667 }
2668}
2669
cbee9f88
PZ
2670/*
2671 * Drive the periodic memory faults..
2672 */
b1546edc 2673static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2674{
2675 struct callback_head *work = &curr->numa_work;
2676 u64 period, now;
2677
2678 /*
2679 * We don't care about NUMA placement if we don't have memory.
2680 */
2681 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2682 return;
2683
2684 /*
2685 * Using runtime rather than walltime has the dual advantage that
2686 * we (mostly) drive the selection from busy threads and that the
2687 * task needs to have done some actual work before we bother with
2688 * NUMA placement.
2689 */
2690 now = curr->se.sum_exec_runtime;
2691 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2692
25b3e5a3 2693 if (now > curr->node_stamp + period) {
4b96a29b 2694 if (!curr->node_stamp)
b5dd77c8 2695 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2696 curr->node_stamp += period;
cbee9f88 2697
b34920d4 2698 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2699 task_work_add(curr, work, true);
cbee9f88
PZ
2700 }
2701}
3fed382b 2702
3f9672ba
SD
2703static void update_scan_period(struct task_struct *p, int new_cpu)
2704{
2705 int src_nid = cpu_to_node(task_cpu(p));
2706 int dst_nid = cpu_to_node(new_cpu);
2707
05cbdf4f
MG
2708 if (!static_branch_likely(&sched_numa_balancing))
2709 return;
2710
3f9672ba
SD
2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 return;
2713
05cbdf4f
MG
2714 if (src_nid == dst_nid)
2715 return;
2716
2717 /*
2718 * Allow resets if faults have been trapped before one scan
2719 * has completed. This is most likely due to a new task that
2720 * is pulled cross-node due to wakeups or load balancing.
2721 */
2722 if (p->numa_scan_seq) {
2723 /*
2724 * Avoid scan adjustments if moving to the preferred
2725 * node or if the task was not previously running on
2726 * the preferred node.
2727 */
2728 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2729 (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2731 return;
2732 }
2733
2734 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2735}
2736
cbee9f88
PZ
2737#else
2738static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739{
2740}
0ec8aa00
PZ
2741
2742static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743{
2744}
2745
2746static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747{
2748}
3fed382b 2749
3f9672ba
SD
2750static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751{
2752}
2753
cbee9f88
PZ
2754#endif /* CONFIG_NUMA_BALANCING */
2755
30cfdcfc
DA
2756static void
2757account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758{
2759 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2760#ifdef CONFIG_SMP
0ec8aa00
PZ
2761 if (entity_is_task(se)) {
2762 struct rq *rq = rq_of(cfs_rq);
2763
2764 account_numa_enqueue(rq, task_of(se));
2765 list_add(&se->group_node, &rq->cfs_tasks);
2766 }
367456c7 2767#endif
30cfdcfc 2768 cfs_rq->nr_running++;
30cfdcfc
DA
2769}
2770
2771static void
2772account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773{
2774 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2775#ifdef CONFIG_SMP
0ec8aa00
PZ
2776 if (entity_is_task(se)) {
2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2778 list_del_init(&se->group_node);
0ec8aa00 2779 }
bfdb198c 2780#endif
30cfdcfc 2781 cfs_rq->nr_running--;
30cfdcfc
DA
2782}
2783
8d5b9025
PZ
2784/*
2785 * Signed add and clamp on underflow.
2786 *
2787 * Explicitly do a load-store to ensure the intermediate value never hits
2788 * memory. This allows lockless observations without ever seeing the negative
2789 * values.
2790 */
2791#define add_positive(_ptr, _val) do { \
2792 typeof(_ptr) ptr = (_ptr); \
2793 typeof(_val) val = (_val); \
2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2795 \
2796 res = var + val; \
2797 \
2798 if (val < 0 && res > var) \
2799 res = 0; \
2800 \
2801 WRITE_ONCE(*ptr, res); \
2802} while (0)
2803
2804/*
2805 * Unsigned subtract and clamp on underflow.
2806 *
2807 * Explicitly do a load-store to ensure the intermediate value never hits
2808 * memory. This allows lockless observations without ever seeing the negative
2809 * values.
2810 */
2811#define sub_positive(_ptr, _val) do { \
2812 typeof(_ptr) ptr = (_ptr); \
2813 typeof(*ptr) val = (_val); \
2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2815 res = var - val; \
2816 if (res > var) \
2817 res = 0; \
2818 WRITE_ONCE(*ptr, res); \
2819} while (0)
2820
b5c0ce7b
PB
2821/*
2822 * Remove and clamp on negative, from a local variable.
2823 *
2824 * A variant of sub_positive(), which does not use explicit load-store
2825 * and is thus optimized for local variable updates.
2826 */
2827#define lsub_positive(_ptr, _val) do { \
2828 typeof(_ptr) ptr = (_ptr); \
2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2830} while (0)
2831
8d5b9025 2832#ifdef CONFIG_SMP
8d5b9025
PZ
2833static inline void
2834enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835{
1ea6c46a
PZ
2836 cfs_rq->runnable_weight += se->runnable_weight;
2837
2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2840}
2841
2842static inline void
2843dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844{
1ea6c46a
PZ
2845 cfs_rq->runnable_weight -= se->runnable_weight;
2846
2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2850}
2851
2852static inline void
2853enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854{
2855 cfs_rq->avg.load_avg += se->avg.load_avg;
2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857}
2858
2859static inline void
2860dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861{
2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864}
2865#else
2866static inline void
2867enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868static inline void
2869dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870static inline void
2871enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874#endif
2875
9059393e 2876static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2877 unsigned long weight, unsigned long runnable)
9059393e
VG
2878{
2879 if (se->on_rq) {
2880 /* commit outstanding execution time */
2881 if (cfs_rq->curr == se)
2882 update_curr(cfs_rq);
2883 account_entity_dequeue(cfs_rq, se);
2884 dequeue_runnable_load_avg(cfs_rq, se);
2885 }
2886 dequeue_load_avg(cfs_rq, se);
2887
1ea6c46a 2888 se->runnable_weight = runnable;
9059393e
VG
2889 update_load_set(&se->load, weight);
2890
2891#ifdef CONFIG_SMP
1ea6c46a
PZ
2892 do {
2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894
2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 se->avg.runnable_load_avg =
2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 } while (0);
9059393e
VG
2899#endif
2900
2901 enqueue_load_avg(cfs_rq, se);
2902 if (se->on_rq) {
2903 account_entity_enqueue(cfs_rq, se);
2904 enqueue_runnable_load_avg(cfs_rq, se);
2905 }
2906}
2907
2908void reweight_task(struct task_struct *p, int prio)
2909{
2910 struct sched_entity *se = &p->se;
2911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 struct load_weight *load = &se->load;
2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914
1ea6c46a 2915 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2916 load->inv_weight = sched_prio_to_wmult[prio];
2917}
2918
3ff6dcac 2919#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2920#ifdef CONFIG_SMP
cef27403
PZ
2921/*
2922 * All this does is approximate the hierarchical proportion which includes that
2923 * global sum we all love to hate.
2924 *
2925 * That is, the weight of a group entity, is the proportional share of the
2926 * group weight based on the group runqueue weights. That is:
2927 *
2928 * tg->weight * grq->load.weight
2929 * ge->load.weight = ----------------------------- (1)
2930 * \Sum grq->load.weight
2931 *
2932 * Now, because computing that sum is prohibitively expensive to compute (been
2933 * there, done that) we approximate it with this average stuff. The average
2934 * moves slower and therefore the approximation is cheaper and more stable.
2935 *
2936 * So instead of the above, we substitute:
2937 *
2938 * grq->load.weight -> grq->avg.load_avg (2)
2939 *
2940 * which yields the following:
2941 *
2942 * tg->weight * grq->avg.load_avg
2943 * ge->load.weight = ------------------------------ (3)
2944 * tg->load_avg
2945 *
2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947 *
2948 * That is shares_avg, and it is right (given the approximation (2)).
2949 *
2950 * The problem with it is that because the average is slow -- it was designed
2951 * to be exactly that of course -- this leads to transients in boundary
2952 * conditions. In specific, the case where the group was idle and we start the
2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954 * yielding bad latency etc..
2955 *
2956 * Now, in that special case (1) reduces to:
2957 *
2958 * tg->weight * grq->load.weight
17de4ee0 2959 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2960 * grp->load.weight
2961 *
2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963 *
2964 * So what we do is modify our approximation (3) to approach (4) in the (near)
2965 * UP case, like:
2966 *
2967 * ge->load.weight =
2968 *
2969 * tg->weight * grq->load.weight
2970 * --------------------------------------------------- (5)
2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2972 *
17de4ee0
PZ
2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975 *
2976 *
2977 * tg->weight * grq->load.weight
2978 * ge->load.weight = ----------------------------- (6)
2979 * tg_load_avg'
2980 *
2981 * Where:
2982 *
2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2985 *
2986 * And that is shares_weight and is icky. In the (near) UP case it approaches
2987 * (4) while in the normal case it approaches (3). It consistently
2988 * overestimates the ge->load.weight and therefore:
2989 *
2990 * \Sum ge->load.weight >= tg->weight
2991 *
2992 * hence icky!
2993 */
2c8e4dce 2994static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2995{
7c80cfc9
PZ
2996 long tg_weight, tg_shares, load, shares;
2997 struct task_group *tg = cfs_rq->tg;
2998
2999 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3000
3d4b60d3 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3002
ea1dc6fc 3003 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3004
ea1dc6fc
PZ
3005 /* Ensure tg_weight >= load */
3006 tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 tg_weight += load;
3ff6dcac 3008
7c80cfc9 3009 shares = (tg_shares * load);
cf5f0acf
PZ
3010 if (tg_weight)
3011 shares /= tg_weight;
3ff6dcac 3012
b8fd8423
DE
3013 /*
3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 * of a group with small tg->shares value. It is a floor value which is
3016 * assigned as a minimum load.weight to the sched_entity representing
3017 * the group on a CPU.
3018 *
3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 * instead of 0.
3024 */
7c80cfc9 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3026}
2c8e4dce
JB
3027
3028/*
17de4ee0
PZ
3029 * This calculates the effective runnable weight for a group entity based on
3030 * the group entity weight calculated above.
3031 *
3032 * Because of the above approximation (2), our group entity weight is
3033 * an load_avg based ratio (3). This means that it includes blocked load and
3034 * does not represent the runnable weight.
3035 *
3036 * Approximate the group entity's runnable weight per ratio from the group
3037 * runqueue:
3038 *
3039 * grq->avg.runnable_load_avg
3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041 * grq->avg.load_avg
3042 *
3043 * However, analogous to above, since the avg numbers are slow, this leads to
3044 * transients in the from-idle case. Instead we use:
3045 *
3046 * ge->runnable_weight = ge->load.weight *
3047 *
3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049 * ----------------------------------------------------- (8)
3050 * max(grq->avg.load_avg, grq->load.weight)
3051 *
3052 * Where these max() serve both to use the 'instant' values to fix the slow
3053 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3054 */
3055static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056{
17de4ee0
PZ
3057 long runnable, load_avg;
3058
3059 load_avg = max(cfs_rq->avg.load_avg,
3060 scale_load_down(cfs_rq->load.weight));
3061
3062 runnable = max(cfs_rq->avg.runnable_load_avg,
3063 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3064
3065 runnable *= shares;
3066 if (load_avg)
3067 runnable /= load_avg;
17de4ee0 3068
2c8e4dce
JB
3069 return clamp_t(long, runnable, MIN_SHARES, shares);
3070}
387f77cc 3071#endif /* CONFIG_SMP */
ea1dc6fc 3072
82958366
PT
3073static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074
1ea6c46a
PZ
3075/*
3076 * Recomputes the group entity based on the current state of its group
3077 * runqueue.
3078 */
3079static void update_cfs_group(struct sched_entity *se)
2069dd75 3080{
1ea6c46a
PZ
3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 long shares, runnable;
2069dd75 3083
1ea6c46a 3084 if (!gcfs_rq)
89ee048f
VG
3085 return;
3086
1ea6c46a 3087 if (throttled_hierarchy(gcfs_rq))
2069dd75 3088 return;
89ee048f 3089
3ff6dcac 3090#ifndef CONFIG_SMP
1ea6c46a 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3092
3093 if (likely(se->load.weight == shares))
3ff6dcac 3094 return;
7c80cfc9 3095#else
2c8e4dce
JB
3096 shares = calc_group_shares(gcfs_rq);
3097 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3098#endif
2069dd75 3099
1ea6c46a 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3101}
89ee048f 3102
2069dd75 3103#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3104static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3105{
3106}
3107#endif /* CONFIG_FAIR_GROUP_SCHED */
3108
ea14b57e 3109static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3110{
43964409
LT
3111 struct rq *rq = rq_of(cfs_rq);
3112
ea14b57e 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3114 /*
3115 * There are a few boundary cases this might miss but it should
3116 * get called often enough that that should (hopefully) not be
9783be2c 3117 * a real problem.
a030d738
VK
3118 *
3119 * It will not get called when we go idle, because the idle
3120 * thread is a different class (!fair), nor will the utilization
3121 * number include things like RT tasks.
3122 *
3123 * As is, the util number is not freq-invariant (we'd have to
3124 * implement arch_scale_freq_capacity() for that).
3125 *
3126 * See cpu_util().
3127 */
ea14b57e 3128 cpufreq_update_util(rq, flags);
a030d738
VK
3129 }
3130}
3131
141965c7 3132#ifdef CONFIG_SMP
c566e8e9 3133#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3134/**
3135 * update_tg_load_avg - update the tg's load avg
3136 * @cfs_rq: the cfs_rq whose avg changed
3137 * @force: update regardless of how small the difference
3138 *
3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140 * However, because tg->load_avg is a global value there are performance
3141 * considerations.
3142 *
3143 * In order to avoid having to look at the other cfs_rq's, we use a
3144 * differential update where we store the last value we propagated. This in
3145 * turn allows skipping updates if the differential is 'small'.
3146 *
815abf5a 3147 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3148 */
9d89c257 3149static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3150{
9d89c257 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3152
aa0b7ae0
WL
3153 /*
3154 * No need to update load_avg for root_task_group as it is not used.
3155 */
3156 if (cfs_rq->tg == &root_task_group)
3157 return;
3158
9d89c257
YD
3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3162 }
8165e145 3163}
f5f9739d 3164
ad936d86 3165/*
97fb7a0a 3166 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3167 * caller only guarantees p->pi_lock is held; no other assumptions,
3168 * including the state of rq->lock, should be made.
3169 */
3170void set_task_rq_fair(struct sched_entity *se,
3171 struct cfs_rq *prev, struct cfs_rq *next)
3172{
0ccb977f
PZ
3173 u64 p_last_update_time;
3174 u64 n_last_update_time;
3175
ad936d86
BP
3176 if (!sched_feat(ATTACH_AGE_LOAD))
3177 return;
3178
3179 /*
3180 * We are supposed to update the task to "current" time, then its up to
3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 * getting what current time is, so simply throw away the out-of-date
3183 * time. This will result in the wakee task is less decayed, but giving
3184 * the wakee more load sounds not bad.
3185 */
0ccb977f
PZ
3186 if (!(se->avg.last_update_time && prev))
3187 return;
ad936d86
BP
3188
3189#ifndef CONFIG_64BIT
0ccb977f 3190 {
ad936d86
BP
3191 u64 p_last_update_time_copy;
3192 u64 n_last_update_time_copy;
3193
3194 do {
3195 p_last_update_time_copy = prev->load_last_update_time_copy;
3196 n_last_update_time_copy = next->load_last_update_time_copy;
3197
3198 smp_rmb();
3199
3200 p_last_update_time = prev->avg.last_update_time;
3201 n_last_update_time = next->avg.last_update_time;
3202
3203 } while (p_last_update_time != p_last_update_time_copy ||
3204 n_last_update_time != n_last_update_time_copy);
0ccb977f 3205 }
ad936d86 3206#else
0ccb977f
PZ
3207 p_last_update_time = prev->avg.last_update_time;
3208 n_last_update_time = next->avg.last_update_time;
ad936d86 3209#endif
23127296 3210 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3211 se->avg.last_update_time = n_last_update_time;
ad936d86 3212}
09a43ace 3213
0e2d2aaa
PZ
3214
3215/*
3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217 * propagate its contribution. The key to this propagation is the invariant
3218 * that for each group:
3219 *
3220 * ge->avg == grq->avg (1)
3221 *
3222 * _IFF_ we look at the pure running and runnable sums. Because they
3223 * represent the very same entity, just at different points in the hierarchy.
3224 *
a4c3c049
VG
3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226 * sum over (but still wrong, because the group entity and group rq do not have
3227 * their PELT windows aligned).
0e2d2aaa
PZ
3228 *
3229 * However, update_tg_cfs_runnable() is more complex. So we have:
3230 *
3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3232 *
3233 * And since, like util, the runnable part should be directly transferable,
3234 * the following would _appear_ to be the straight forward approach:
3235 *
a4c3c049 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3237 *
3238 * And per (1) we have:
3239 *
a4c3c049 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3241 *
3242 * Which gives:
3243 *
3244 * ge->load.weight * grq->avg.load_avg
3245 * ge->avg.load_avg = ----------------------------------- (4)
3246 * grq->load.weight
3247 *
3248 * Except that is wrong!
3249 *
3250 * Because while for entities historical weight is not important and we
3251 * really only care about our future and therefore can consider a pure
3252 * runnable sum, runqueues can NOT do this.
3253 *
3254 * We specifically want runqueues to have a load_avg that includes
3255 * historical weights. Those represent the blocked load, the load we expect
3256 * to (shortly) return to us. This only works by keeping the weights as
3257 * integral part of the sum. We therefore cannot decompose as per (3).
3258 *
a4c3c049
VG
3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262 * runnable section of these tasks overlap (or not). If they were to perfectly
3263 * align the rq as a whole would be runnable 2/3 of the time. If however we
3264 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3265 *
a4c3c049 3266 * So we'll have to approximate.. :/
0e2d2aaa 3267 *
a4c3c049 3268 * Given the constraint:
0e2d2aaa 3269 *
a4c3c049 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3271 *
a4c3c049
VG
3272 * We can construct a rule that adds runnable to a rq by assuming minimal
3273 * overlap.
0e2d2aaa 3274 *
a4c3c049 3275 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3276 *
a4c3c049 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3278 *
a4c3c049 3279 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3280 *
0e2d2aaa
PZ
3281 */
3282
09a43ace 3283static inline void
0e2d2aaa 3284update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3285{
09a43ace
VG
3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287
3288 /* Nothing to update */
3289 if (!delta)
3290 return;
3291
a4c3c049
VG
3292 /*
3293 * The relation between sum and avg is:
3294 *
3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 *
3297 * however, the PELT windows are not aligned between grq and gse.
3298 */
3299
09a43ace
VG
3300 /* Set new sched_entity's utilization */
3301 se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303
3304 /* Update parent cfs_rq utilization */
3305 add_positive(&cfs_rq->avg.util_avg, delta);
3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307}
3308
09a43ace 3309static inline void
0e2d2aaa 3310update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3311{
a4c3c049
VG
3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 unsigned long runnable_load_avg, load_avg;
3314 u64 runnable_load_sum, load_sum = 0;
3315 s64 delta_sum;
09a43ace 3316
0e2d2aaa
PZ
3317 if (!runnable_sum)
3318 return;
09a43ace 3319
0e2d2aaa 3320 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3321
a4c3c049
VG
3322 if (runnable_sum >= 0) {
3323 /*
3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 * the CPU is saturated running == runnable.
3326 */
3327 runnable_sum += se->avg.load_sum;
3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 } else {
3330 /*
3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 * assuming all tasks are equally runnable.
3333 */
3334 if (scale_load_down(gcfs_rq->load.weight)) {
3335 load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 scale_load_down(gcfs_rq->load.weight));
3337 }
3338
3339 /* But make sure to not inflate se's runnable */
3340 runnable_sum = min(se->avg.load_sum, load_sum);
3341 }
3342
3343 /*
3344 * runnable_sum can't be lower than running_sum
23127296
VG
3345 * Rescale running sum to be in the same range as runnable sum
3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3347 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3348 */
23127296 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3350 runnable_sum = max(runnable_sum, running_sum);
3351
0e2d2aaa
PZ
3352 load_sum = (s64)se_weight(se) * runnable_sum;
3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3354
a4c3c049
VG
3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3357
a4c3c049
VG
3358 se->avg.load_sum = runnable_sum;
3359 se->avg.load_avg = load_avg;
3360 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3362
1ea6c46a
PZ
3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3367
a4c3c049
VG
3368 se->avg.runnable_load_sum = runnable_sum;
3369 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3370
09a43ace 3371 if (se->on_rq) {
a4c3c049
VG
3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3374 }
3375}
3376
0e2d2aaa 3377static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3378{
0e2d2aaa
PZ
3379 cfs_rq->propagate = 1;
3380 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3381}
3382
3383/* Update task and its cfs_rq load average */
3384static inline int propagate_entity_load_avg(struct sched_entity *se)
3385{
0e2d2aaa 3386 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3387
3388 if (entity_is_task(se))
3389 return 0;
3390
0e2d2aaa
PZ
3391 gcfs_rq = group_cfs_rq(se);
3392 if (!gcfs_rq->propagate)
09a43ace
VG
3393 return 0;
3394
0e2d2aaa
PZ
3395 gcfs_rq->propagate = 0;
3396
09a43ace
VG
3397 cfs_rq = cfs_rq_of(se);
3398
0e2d2aaa 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3400
0e2d2aaa
PZ
3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3403
ba19f51f 3404 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3405 trace_pelt_se_tp(se);
ba19f51f 3406
09a43ace
VG
3407 return 1;
3408}
3409
bc427898
VG
3410/*
3411 * Check if we need to update the load and the utilization of a blocked
3412 * group_entity:
3413 */
3414static inline bool skip_blocked_update(struct sched_entity *se)
3415{
3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417
3418 /*
3419 * If sched_entity still have not zero load or utilization, we have to
3420 * decay it:
3421 */
3422 if (se->avg.load_avg || se->avg.util_avg)
3423 return false;
3424
3425 /*
3426 * If there is a pending propagation, we have to update the load and
3427 * the utilization of the sched_entity:
3428 */
0e2d2aaa 3429 if (gcfs_rq->propagate)
bc427898
VG
3430 return false;
3431
3432 /*
3433 * Otherwise, the load and the utilization of the sched_entity is
3434 * already zero and there is no pending propagation, so it will be a
3435 * waste of time to try to decay it:
3436 */
3437 return true;
3438}
3439
6e83125c 3440#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3441
9d89c257 3442static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3443
3444static inline int propagate_entity_load_avg(struct sched_entity *se)
3445{
3446 return 0;
3447}
3448
0e2d2aaa 3449static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3450
6e83125c 3451#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3452
3d30544f
PZ
3453/**
3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3455 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3456 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3457 *
3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460 * post_init_entity_util_avg().
3461 *
3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463 *
7c3edd2c
PZ
3464 * Returns true if the load decayed or we removed load.
3465 *
3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467 * call update_tg_load_avg() when this function returns true.
3d30544f 3468 */
a2c6c91f 3469static inline int
3a123bbb 3470update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3471{
0e2d2aaa 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3473 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3474 int decayed = 0;
2dac754e 3475
2a2f5d4e
PZ
3476 if (cfs_rq->removed.nr) {
3477 unsigned long r;
9a2dd585 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3479
3480 raw_spin_lock(&cfs_rq->removed.lock);
3481 swap(cfs_rq->removed.util_avg, removed_util);
3482 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3484 cfs_rq->removed.nr = 0;
3485 raw_spin_unlock(&cfs_rq->removed.lock);
3486
2a2f5d4e 3487 r = removed_load;
89741892 3488 sub_positive(&sa->load_avg, r);
9a2dd585 3489 sub_positive(&sa->load_sum, r * divider);
2dac754e 3490
2a2f5d4e 3491 r = removed_util;
89741892 3492 sub_positive(&sa->util_avg, r);
9a2dd585 3493 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3494
0e2d2aaa 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3496
3497 decayed = 1;
9d89c257 3498 }
36ee28e4 3499
23127296 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3501
9d89c257
YD
3502#ifndef CONFIG_64BIT
3503 smp_wmb();
3504 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505#endif
36ee28e4 3506
2a2f5d4e 3507 if (decayed)
ea14b57e 3508 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3509
2a2f5d4e 3510 return decayed;
21e96f88
SM
3511}
3512
3d30544f
PZ
3513/**
3514 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3515 * @cfs_rq: cfs_rq to attach to
3516 * @se: sched_entity to attach
882a78a9 3517 * @flags: migration hints
3d30544f
PZ
3518 *
3519 * Must call update_cfs_rq_load_avg() before this, since we rely on
3520 * cfs_rq->avg.last_update_time being current.
3521 */
ea14b57e 3522static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3523{
f207934f
PZ
3524 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3525
3526 /*
3527 * When we attach the @se to the @cfs_rq, we must align the decay
3528 * window because without that, really weird and wonderful things can
3529 * happen.
3530 *
3531 * XXX illustrate
3532 */
a05e8c51 3533 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3534 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3535
3536 /*
3537 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3538 * period_contrib. This isn't strictly correct, but since we're
3539 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3540 * _sum a little.
3541 */
3542 se->avg.util_sum = se->avg.util_avg * divider;
3543
3544 se->avg.load_sum = divider;
3545 if (se_weight(se)) {
3546 se->avg.load_sum =
3547 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3548 }
3549
3550 se->avg.runnable_load_sum = se->avg.load_sum;
3551
8d5b9025 3552 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3553 cfs_rq->avg.util_avg += se->avg.util_avg;
3554 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3555
3556 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3557
ea14b57e 3558 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3559
3560 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3561}
3562
3d30544f
PZ
3563/**
3564 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3565 * @cfs_rq: cfs_rq to detach from
3566 * @se: sched_entity to detach
3567 *
3568 * Must call update_cfs_rq_load_avg() before this, since we rely on
3569 * cfs_rq->avg.last_update_time being current.
3570 */
a05e8c51
BP
3571static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3572{
8d5b9025 3573 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3574 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3575 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3576
3577 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3578
ea14b57e 3579 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3580
3581 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3582}
3583
b382a531
PZ
3584/*
3585 * Optional action to be done while updating the load average
3586 */
3587#define UPDATE_TG 0x1
3588#define SKIP_AGE_LOAD 0x2
3589#define DO_ATTACH 0x4
3590
3591/* Update task and its cfs_rq load average */
3592static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3593{
23127296 3594 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3595 int decayed;
3596
3597 /*
3598 * Track task load average for carrying it to new CPU after migrated, and
3599 * track group sched_entity load average for task_h_load calc in migration
3600 */
3601 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3602 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3603
3604 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3605 decayed |= propagate_entity_load_avg(se);
3606
3607 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3608
ea14b57e
PZ
3609 /*
3610 * DO_ATTACH means we're here from enqueue_entity().
3611 * !last_update_time means we've passed through
3612 * migrate_task_rq_fair() indicating we migrated.
3613 *
3614 * IOW we're enqueueing a task on a new CPU.
3615 */
3616 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3617 update_tg_load_avg(cfs_rq, 0);
3618
3619 } else if (decayed && (flags & UPDATE_TG))
3620 update_tg_load_avg(cfs_rq, 0);
3621}
3622
9d89c257 3623#ifndef CONFIG_64BIT
0905f04e
YD
3624static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3625{
9d89c257 3626 u64 last_update_time_copy;
0905f04e 3627 u64 last_update_time;
9ee474f5 3628
9d89c257
YD
3629 do {
3630 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3631 smp_rmb();
3632 last_update_time = cfs_rq->avg.last_update_time;
3633 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3634
3635 return last_update_time;
3636}
9d89c257 3637#else
0905f04e
YD
3638static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3639{
3640 return cfs_rq->avg.last_update_time;
3641}
9d89c257
YD
3642#endif
3643
104cb16d
MR
3644/*
3645 * Synchronize entity load avg of dequeued entity without locking
3646 * the previous rq.
3647 */
71b47eaf 3648static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3649{
3650 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3651 u64 last_update_time;
3652
3653 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3654 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3655}
3656
0905f04e
YD
3657/*
3658 * Task first catches up with cfs_rq, and then subtract
3659 * itself from the cfs_rq (task must be off the queue now).
3660 */
71b47eaf 3661static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3662{
3663 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3664 unsigned long flags;
0905f04e
YD
3665
3666 /*
7dc603c9
PZ
3667 * tasks cannot exit without having gone through wake_up_new_task() ->
3668 * post_init_entity_util_avg() which will have added things to the
3669 * cfs_rq, so we can remove unconditionally.
0905f04e 3670 */
0905f04e 3671
104cb16d 3672 sync_entity_load_avg(se);
2a2f5d4e
PZ
3673
3674 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3675 ++cfs_rq->removed.nr;
3676 cfs_rq->removed.util_avg += se->avg.util_avg;
3677 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3678 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3679 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3680}
642dbc39 3681
7ea241af
YD
3682static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3683{
1ea6c46a 3684 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3685}
3686
3687static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3688{
3689 return cfs_rq->avg.load_avg;
3690}
3691
7f65ea42
PB
3692static inline unsigned long task_util(struct task_struct *p)
3693{
3694 return READ_ONCE(p->se.avg.util_avg);
3695}
3696
3697static inline unsigned long _task_util_est(struct task_struct *p)
3698{
3699 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3700
92a801e5 3701 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3702}
3703
3704static inline unsigned long task_util_est(struct task_struct *p)
3705{
3706 return max(task_util(p), _task_util_est(p));
3707}
3708
3709static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3710 struct task_struct *p)
3711{
3712 unsigned int enqueued;
3713
3714 if (!sched_feat(UTIL_EST))
3715 return;
3716
3717 /* Update root cfs_rq's estimated utilization */
3718 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3719 enqueued += _task_util_est(p);
7f65ea42
PB
3720 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3721}
3722
3723/*
3724 * Check if a (signed) value is within a specified (unsigned) margin,
3725 * based on the observation that:
3726 *
3727 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3728 *
3729 * NOTE: this only works when value + maring < INT_MAX.
3730 */
3731static inline bool within_margin(int value, int margin)
3732{
3733 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3734}
3735
3736static void
3737util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3738{
3739 long last_ewma_diff;
3740 struct util_est ue;
10a35e68 3741 int cpu;
7f65ea42
PB
3742
3743 if (!sched_feat(UTIL_EST))
3744 return;
3745
3482d98b
VG
3746 /* Update root cfs_rq's estimated utilization */
3747 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3748 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3749 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3750
3751 /*
3752 * Skip update of task's estimated utilization when the task has not
3753 * yet completed an activation, e.g. being migrated.
3754 */
3755 if (!task_sleep)
3756 return;
3757
d519329f
PB
3758 /*
3759 * If the PELT values haven't changed since enqueue time,
3760 * skip the util_est update.
3761 */
3762 ue = p->se.avg.util_est;
3763 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3764 return;
3765
7f65ea42
PB
3766 /*
3767 * Skip update of task's estimated utilization when its EWMA is
3768 * already ~1% close to its last activation value.
3769 */
d519329f 3770 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3771 last_ewma_diff = ue.enqueued - ue.ewma;
3772 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3773 return;
3774
10a35e68
VG
3775 /*
3776 * To avoid overestimation of actual task utilization, skip updates if
3777 * we cannot grant there is idle time in this CPU.
3778 */
3779 cpu = cpu_of(rq_of(cfs_rq));
3780 if (task_util(p) > capacity_orig_of(cpu))
3781 return;
3782
7f65ea42
PB
3783 /*
3784 * Update Task's estimated utilization
3785 *
3786 * When *p completes an activation we can consolidate another sample
3787 * of the task size. This is done by storing the current PELT value
3788 * as ue.enqueued and by using this value to update the Exponential
3789 * Weighted Moving Average (EWMA):
3790 *
3791 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3792 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3793 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3794 * = w * ( last_ewma_diff ) + ewma(t-1)
3795 * = w * (last_ewma_diff + ewma(t-1) / w)
3796 *
3797 * Where 'w' is the weight of new samples, which is configured to be
3798 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3799 */
3800 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3801 ue.ewma += last_ewma_diff;
3802 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3803 WRITE_ONCE(p->se.avg.util_est, ue);
3804}
3805
3b1baa64
MR
3806static inline int task_fits_capacity(struct task_struct *p, long capacity)
3807{
60e17f5c 3808 return fits_capacity(task_util_est(p), capacity);
3b1baa64
MR
3809}
3810
3811static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3812{
3813 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3814 return;
3815
3816 if (!p) {
3817 rq->misfit_task_load = 0;
3818 return;
3819 }
3820
3821 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3822 rq->misfit_task_load = 0;
3823 return;
3824 }
3825
3826 rq->misfit_task_load = task_h_load(p);
3827}
3828
38033c37
PZ
3829#else /* CONFIG_SMP */
3830
d31b1a66
VG
3831#define UPDATE_TG 0x0
3832#define SKIP_AGE_LOAD 0x0
b382a531 3833#define DO_ATTACH 0x0
d31b1a66 3834
88c0616e 3835static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3836{
ea14b57e 3837 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3838}
3839
9d89c257 3840static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3841
a05e8c51 3842static inline void
ea14b57e 3843attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3844static inline void
3845detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3846
46f69fa3 3847static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3848{
3849 return 0;
3850}
3851
7f65ea42
PB
3852static inline void
3853util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3854
3855static inline void
3856util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3857 bool task_sleep) {}
3b1baa64 3858static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3859
38033c37 3860#endif /* CONFIG_SMP */
9d85f21c 3861
ddc97297
PZ
3862static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3863{
3864#ifdef CONFIG_SCHED_DEBUG
3865 s64 d = se->vruntime - cfs_rq->min_vruntime;
3866
3867 if (d < 0)
3868 d = -d;
3869
3870 if (d > 3*sysctl_sched_latency)
ae92882e 3871 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3872#endif
3873}
3874
aeb73b04
PZ
3875static void
3876place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3877{
1af5f730 3878 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3879
2cb8600e
PZ
3880 /*
3881 * The 'current' period is already promised to the current tasks,
3882 * however the extra weight of the new task will slow them down a
3883 * little, place the new task so that it fits in the slot that
3884 * stays open at the end.
3885 */
94dfb5e7 3886 if (initial && sched_feat(START_DEBIT))
f9c0b095 3887 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3888
a2e7a7eb 3889 /* sleeps up to a single latency don't count. */
5ca9880c 3890 if (!initial) {
a2e7a7eb 3891 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3892
a2e7a7eb
MG
3893 /*
3894 * Halve their sleep time's effect, to allow
3895 * for a gentler effect of sleepers:
3896 */
3897 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3898 thresh >>= 1;
51e0304c 3899
a2e7a7eb 3900 vruntime -= thresh;
aeb73b04
PZ
3901 }
3902
b5d9d734 3903 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3904 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3905}
3906
d3d9dc33
PT
3907static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3908
cb251765
MG
3909static inline void check_schedstat_required(void)
3910{
3911#ifdef CONFIG_SCHEDSTATS
3912 if (schedstat_enabled())
3913 return;
3914
3915 /* Force schedstat enabled if a dependent tracepoint is active */
3916 if (trace_sched_stat_wait_enabled() ||
3917 trace_sched_stat_sleep_enabled() ||
3918 trace_sched_stat_iowait_enabled() ||
3919 trace_sched_stat_blocked_enabled() ||
3920 trace_sched_stat_runtime_enabled()) {
eda8dca5 3921 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3922 "stat_blocked and stat_runtime require the "
f67abed5 3923 "kernel parameter schedstats=enable or "
cb251765
MG
3924 "kernel.sched_schedstats=1\n");
3925 }
3926#endif
3927}
3928
b5179ac7
PZ
3929
3930/*
3931 * MIGRATION
3932 *
3933 * dequeue
3934 * update_curr()
3935 * update_min_vruntime()
3936 * vruntime -= min_vruntime
3937 *
3938 * enqueue
3939 * update_curr()
3940 * update_min_vruntime()
3941 * vruntime += min_vruntime
3942 *
3943 * this way the vruntime transition between RQs is done when both
3944 * min_vruntime are up-to-date.
3945 *
3946 * WAKEUP (remote)
3947 *
59efa0ba 3948 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3949 * vruntime -= min_vruntime
3950 *
3951 * enqueue
3952 * update_curr()
3953 * update_min_vruntime()
3954 * vruntime += min_vruntime
3955 *
3956 * this way we don't have the most up-to-date min_vruntime on the originating
3957 * CPU and an up-to-date min_vruntime on the destination CPU.
3958 */
3959
bf0f6f24 3960static void
88ec22d3 3961enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3962{
2f950354
PZ
3963 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3964 bool curr = cfs_rq->curr == se;
3965
88ec22d3 3966 /*
2f950354
PZ
3967 * If we're the current task, we must renormalise before calling
3968 * update_curr().
88ec22d3 3969 */
2f950354 3970 if (renorm && curr)
88ec22d3
PZ
3971 se->vruntime += cfs_rq->min_vruntime;
3972
2f950354
PZ
3973 update_curr(cfs_rq);
3974
bf0f6f24 3975 /*
2f950354
PZ
3976 * Otherwise, renormalise after, such that we're placed at the current
3977 * moment in time, instead of some random moment in the past. Being
3978 * placed in the past could significantly boost this task to the
3979 * fairness detriment of existing tasks.
bf0f6f24 3980 */
2f950354
PZ
3981 if (renorm && !curr)
3982 se->vruntime += cfs_rq->min_vruntime;
3983
89ee048f
VG
3984 /*
3985 * When enqueuing a sched_entity, we must:
3986 * - Update loads to have both entity and cfs_rq synced with now.
3987 * - Add its load to cfs_rq->runnable_avg
3988 * - For group_entity, update its weight to reflect the new share of
3989 * its group cfs_rq
3990 * - Add its new weight to cfs_rq->load.weight
3991 */
b382a531 3992 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3993 update_cfs_group(se);
b5b3e35f 3994 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3995 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3996
1a3d027c 3997 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3998 place_entity(cfs_rq, se, 0);
bf0f6f24 3999
cb251765 4000 check_schedstat_required();
4fa8d299
JP
4001 update_stats_enqueue(cfs_rq, se, flags);
4002 check_spread(cfs_rq, se);
2f950354 4003 if (!curr)
83b699ed 4004 __enqueue_entity(cfs_rq, se);
2069dd75 4005 se->on_rq = 1;
3d4b47b4 4006
d3d9dc33 4007 if (cfs_rq->nr_running == 1) {
3d4b47b4 4008 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4009 check_enqueue_throttle(cfs_rq);
4010 }
bf0f6f24
IM
4011}
4012
2c13c919 4013static void __clear_buddies_last(struct sched_entity *se)
2002c695 4014{
2c13c919
RR
4015 for_each_sched_entity(se) {
4016 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4017 if (cfs_rq->last != se)
2c13c919 4018 break;
f1044799
PZ
4019
4020 cfs_rq->last = NULL;
2c13c919
RR
4021 }
4022}
2002c695 4023
2c13c919
RR
4024static void __clear_buddies_next(struct sched_entity *se)
4025{
4026 for_each_sched_entity(se) {
4027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4028 if (cfs_rq->next != se)
2c13c919 4029 break;
f1044799
PZ
4030
4031 cfs_rq->next = NULL;
2c13c919 4032 }
2002c695
PZ
4033}
4034
ac53db59
RR
4035static void __clear_buddies_skip(struct sched_entity *se)
4036{
4037 for_each_sched_entity(se) {
4038 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4039 if (cfs_rq->skip != se)
ac53db59 4040 break;
f1044799
PZ
4041
4042 cfs_rq->skip = NULL;
ac53db59
RR
4043 }
4044}
4045
a571bbea
PZ
4046static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4047{
2c13c919
RR
4048 if (cfs_rq->last == se)
4049 __clear_buddies_last(se);
4050
4051 if (cfs_rq->next == se)
4052 __clear_buddies_next(se);
ac53db59
RR
4053
4054 if (cfs_rq->skip == se)
4055 __clear_buddies_skip(se);
a571bbea
PZ
4056}
4057
6c16a6dc 4058static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4059
bf0f6f24 4060static void
371fd7e7 4061dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4062{
a2a2d680
DA
4063 /*
4064 * Update run-time statistics of the 'current'.
4065 */
4066 update_curr(cfs_rq);
89ee048f
VG
4067
4068 /*
4069 * When dequeuing a sched_entity, we must:
4070 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4071 * - Subtract its load from the cfs_rq->runnable_avg.
4072 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4073 * - For group entity, update its weight to reflect the new share
4074 * of its group cfs_rq.
4075 */
88c0616e 4076 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4077 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4078
4fa8d299 4079 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4080
2002c695 4081 clear_buddies(cfs_rq, se);
4793241b 4082
83b699ed 4083 if (se != cfs_rq->curr)
30cfdcfc 4084 __dequeue_entity(cfs_rq, se);
17bc14b7 4085 se->on_rq = 0;
30cfdcfc 4086 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4087
4088 /*
b60205c7
PZ
4089 * Normalize after update_curr(); which will also have moved
4090 * min_vruntime if @se is the one holding it back. But before doing
4091 * update_min_vruntime() again, which will discount @se's position and
4092 * can move min_vruntime forward still more.
88ec22d3 4093 */
371fd7e7 4094 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4095 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4096
d8b4986d
PT
4097 /* return excess runtime on last dequeue */
4098 return_cfs_rq_runtime(cfs_rq);
4099
1ea6c46a 4100 update_cfs_group(se);
b60205c7
PZ
4101
4102 /*
4103 * Now advance min_vruntime if @se was the entity holding it back,
4104 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4105 * put back on, and if we advance min_vruntime, we'll be placed back
4106 * further than we started -- ie. we'll be penalized.
4107 */
9845c49c 4108 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4109 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4110}
4111
4112/*
4113 * Preempt the current task with a newly woken task if needed:
4114 */
7c92e54f 4115static void
2e09bf55 4116check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4117{
11697830 4118 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4119 struct sched_entity *se;
4120 s64 delta;
11697830 4121
6d0f0ebd 4122 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4123 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4124 if (delta_exec > ideal_runtime) {
8875125e 4125 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4126 /*
4127 * The current task ran long enough, ensure it doesn't get
4128 * re-elected due to buddy favours.
4129 */
4130 clear_buddies(cfs_rq, curr);
f685ceac
MG
4131 return;
4132 }
4133
4134 /*
4135 * Ensure that a task that missed wakeup preemption by a
4136 * narrow margin doesn't have to wait for a full slice.
4137 * This also mitigates buddy induced latencies under load.
4138 */
f685ceac
MG
4139 if (delta_exec < sysctl_sched_min_granularity)
4140 return;
4141
f4cfb33e
WX
4142 se = __pick_first_entity(cfs_rq);
4143 delta = curr->vruntime - se->vruntime;
f685ceac 4144
f4cfb33e
WX
4145 if (delta < 0)
4146 return;
d7d82944 4147
f4cfb33e 4148 if (delta > ideal_runtime)
8875125e 4149 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4150}
4151
83b699ed 4152static void
8494f412 4153set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4154{
83b699ed
SV
4155 /* 'current' is not kept within the tree. */
4156 if (se->on_rq) {
4157 /*
4158 * Any task has to be enqueued before it get to execute on
4159 * a CPU. So account for the time it spent waiting on the
4160 * runqueue.
4161 */
4fa8d299 4162 update_stats_wait_end(cfs_rq, se);
83b699ed 4163 __dequeue_entity(cfs_rq, se);
88c0616e 4164 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4165 }
4166
79303e9e 4167 update_stats_curr_start(cfs_rq, se);
429d43bc 4168 cfs_rq->curr = se;
4fa8d299 4169
eba1ed4b
IM
4170 /*
4171 * Track our maximum slice length, if the CPU's load is at
4172 * least twice that of our own weight (i.e. dont track it
4173 * when there are only lesser-weight tasks around):
4174 */
f2bedc47
DE
4175 if (schedstat_enabled() &&
4176 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4177 schedstat_set(se->statistics.slice_max,
4178 max((u64)schedstat_val(se->statistics.slice_max),
4179 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4180 }
4fa8d299 4181
4a55b450 4182 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4183}
4184
3f3a4904
PZ
4185static int
4186wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4187
ac53db59
RR
4188/*
4189 * Pick the next process, keeping these things in mind, in this order:
4190 * 1) keep things fair between processes/task groups
4191 * 2) pick the "next" process, since someone really wants that to run
4192 * 3) pick the "last" process, for cache locality
4193 * 4) do not run the "skip" process, if something else is available
4194 */
678d5718
PZ
4195static struct sched_entity *
4196pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4197{
678d5718
PZ
4198 struct sched_entity *left = __pick_first_entity(cfs_rq);
4199 struct sched_entity *se;
4200
4201 /*
4202 * If curr is set we have to see if its left of the leftmost entity
4203 * still in the tree, provided there was anything in the tree at all.
4204 */
4205 if (!left || (curr && entity_before(curr, left)))
4206 left = curr;
4207
4208 se = left; /* ideally we run the leftmost entity */
f4b6755f 4209
ac53db59
RR
4210 /*
4211 * Avoid running the skip buddy, if running something else can
4212 * be done without getting too unfair.
4213 */
4214 if (cfs_rq->skip == se) {
678d5718
PZ
4215 struct sched_entity *second;
4216
4217 if (se == curr) {
4218 second = __pick_first_entity(cfs_rq);
4219 } else {
4220 second = __pick_next_entity(se);
4221 if (!second || (curr && entity_before(curr, second)))
4222 second = curr;
4223 }
4224
ac53db59
RR
4225 if (second && wakeup_preempt_entity(second, left) < 1)
4226 se = second;
4227 }
aa2ac252 4228
f685ceac
MG
4229 /*
4230 * Prefer last buddy, try to return the CPU to a preempted task.
4231 */
4232 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4233 se = cfs_rq->last;
4234
ac53db59
RR
4235 /*
4236 * Someone really wants this to run. If it's not unfair, run it.
4237 */
4238 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4239 se = cfs_rq->next;
4240
f685ceac 4241 clear_buddies(cfs_rq, se);
4793241b
PZ
4242
4243 return se;
aa2ac252
PZ
4244}
4245
678d5718 4246static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4247
ab6cde26 4248static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4249{
4250 /*
4251 * If still on the runqueue then deactivate_task()
4252 * was not called and update_curr() has to be done:
4253 */
4254 if (prev->on_rq)
b7cc0896 4255 update_curr(cfs_rq);
bf0f6f24 4256
d3d9dc33
PT
4257 /* throttle cfs_rqs exceeding runtime */
4258 check_cfs_rq_runtime(cfs_rq);
4259
4fa8d299 4260 check_spread(cfs_rq, prev);
cb251765 4261
30cfdcfc 4262 if (prev->on_rq) {
4fa8d299 4263 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4264 /* Put 'current' back into the tree. */
4265 __enqueue_entity(cfs_rq, prev);
9d85f21c 4266 /* in !on_rq case, update occurred at dequeue */
88c0616e 4267 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4268 }
429d43bc 4269 cfs_rq->curr = NULL;
bf0f6f24
IM
4270}
4271
8f4d37ec
PZ
4272static void
4273entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4274{
bf0f6f24 4275 /*
30cfdcfc 4276 * Update run-time statistics of the 'current'.
bf0f6f24 4277 */
30cfdcfc 4278 update_curr(cfs_rq);
bf0f6f24 4279
9d85f21c
PT
4280 /*
4281 * Ensure that runnable average is periodically updated.
4282 */
88c0616e 4283 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4284 update_cfs_group(curr);
9d85f21c 4285
8f4d37ec
PZ
4286#ifdef CONFIG_SCHED_HRTICK
4287 /*
4288 * queued ticks are scheduled to match the slice, so don't bother
4289 * validating it and just reschedule.
4290 */
983ed7a6 4291 if (queued) {
8875125e 4292 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4293 return;
4294 }
8f4d37ec
PZ
4295 /*
4296 * don't let the period tick interfere with the hrtick preemption
4297 */
4298 if (!sched_feat(DOUBLE_TICK) &&
4299 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4300 return;
4301#endif
4302
2c2efaed 4303 if (cfs_rq->nr_running > 1)
2e09bf55 4304 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4305}
4306
ab84d31e
PT
4307
4308/**************************************************
4309 * CFS bandwidth control machinery
4310 */
4311
4312#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4313
e9666d10 4314#ifdef CONFIG_JUMP_LABEL
c5905afb 4315static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4316
4317static inline bool cfs_bandwidth_used(void)
4318{
c5905afb 4319 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4320}
4321
1ee14e6c 4322void cfs_bandwidth_usage_inc(void)
029632fb 4323{
ce48c146 4324 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4325}
4326
4327void cfs_bandwidth_usage_dec(void)
4328{
ce48c146 4329 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4330}
e9666d10 4331#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4332static bool cfs_bandwidth_used(void)
4333{
4334 return true;
4335}
4336
1ee14e6c
BS
4337void cfs_bandwidth_usage_inc(void) {}
4338void cfs_bandwidth_usage_dec(void) {}
e9666d10 4339#endif /* CONFIG_JUMP_LABEL */
029632fb 4340
ab84d31e
PT
4341/*
4342 * default period for cfs group bandwidth.
4343 * default: 0.1s, units: nanoseconds
4344 */
4345static inline u64 default_cfs_period(void)
4346{
4347 return 100000000ULL;
4348}
ec12cb7f
PT
4349
4350static inline u64 sched_cfs_bandwidth_slice(void)
4351{
4352 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4353}
4354
a9cf55b2 4355/*
763a9ec0
QC
4356 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4357 * directly instead of rq->clock to avoid adding additional synchronization
4358 * around rq->lock.
a9cf55b2
PT
4359 *
4360 * requires cfs_b->lock
4361 */
029632fb 4362void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4363{
763a9ec0
QC
4364 if (cfs_b->quota != RUNTIME_INF)
4365 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4366}
4367
029632fb
PZ
4368static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4369{
4370 return &tg->cfs_bandwidth;
4371}
4372
85dac906
PT
4373/* returns 0 on failure to allocate runtime */
4374static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4375{
4376 struct task_group *tg = cfs_rq->tg;
4377 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
de53fd7a 4378 u64 amount = 0, min_amount;
ec12cb7f
PT
4379
4380 /* note: this is a positive sum as runtime_remaining <= 0 */
4381 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4382
4383 raw_spin_lock(&cfs_b->lock);
4384 if (cfs_b->quota == RUNTIME_INF)
4385 amount = min_amount;
58088ad0 4386 else {
77a4d1a1 4387 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4388
4389 if (cfs_b->runtime > 0) {
4390 amount = min(cfs_b->runtime, min_amount);
4391 cfs_b->runtime -= amount;
4392 cfs_b->idle = 0;
4393 }
ec12cb7f
PT
4394 }
4395 raw_spin_unlock(&cfs_b->lock);
4396
4397 cfs_rq->runtime_remaining += amount;
85dac906
PT
4398
4399 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4400}
4401
9dbdb155 4402static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4403{
4404 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4405 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4406
4407 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4408 return;
4409
5e2d2cc2
L
4410 if (cfs_rq->throttled)
4411 return;
85dac906
PT
4412 /*
4413 * if we're unable to extend our runtime we resched so that the active
4414 * hierarchy can be throttled
4415 */
4416 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4417 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4418}
4419
6c16a6dc 4420static __always_inline
9dbdb155 4421void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4422{
56f570e5 4423 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4424 return;
4425
4426 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4427}
4428
85dac906
PT
4429static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4430{
56f570e5 4431 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4432}
4433
64660c86
PT
4434/* check whether cfs_rq, or any parent, is throttled */
4435static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4436{
56f570e5 4437 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4438}
4439
4440/*
4441 * Ensure that neither of the group entities corresponding to src_cpu or
4442 * dest_cpu are members of a throttled hierarchy when performing group
4443 * load-balance operations.
4444 */
4445static inline int throttled_lb_pair(struct task_group *tg,
4446 int src_cpu, int dest_cpu)
4447{
4448 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4449
4450 src_cfs_rq = tg->cfs_rq[src_cpu];
4451 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4452
4453 return throttled_hierarchy(src_cfs_rq) ||
4454 throttled_hierarchy(dest_cfs_rq);
4455}
4456
64660c86
PT
4457static int tg_unthrottle_up(struct task_group *tg, void *data)
4458{
4459 struct rq *rq = data;
4460 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4461
4462 cfs_rq->throttle_count--;
64660c86 4463 if (!cfs_rq->throttle_count) {
78becc27 4464 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4465 cfs_rq->throttled_clock_task;
31bc6aea
VG
4466
4467 /* Add cfs_rq with already running entity in the list */
4468 if (cfs_rq->nr_running >= 1)
4469 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4470 }
64660c86
PT
4471
4472 return 0;
4473}
4474
4475static int tg_throttle_down(struct task_group *tg, void *data)
4476{
4477 struct rq *rq = data;
4478 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4479
82958366 4480 /* group is entering throttled state, stop time */
31bc6aea 4481 if (!cfs_rq->throttle_count) {
78becc27 4482 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4483 list_del_leaf_cfs_rq(cfs_rq);
4484 }
64660c86
PT
4485 cfs_rq->throttle_count++;
4486
4487 return 0;
4488}
4489
d3d9dc33 4490static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4491{
4492 struct rq *rq = rq_of(cfs_rq);
4493 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4494 struct sched_entity *se;
43e9f7f2 4495 long task_delta, idle_task_delta, dequeue = 1;
77a4d1a1 4496 bool empty;
85dac906
PT
4497
4498 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4499
f1b17280 4500 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4501 rcu_read_lock();
4502 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4503 rcu_read_unlock();
85dac906
PT
4504
4505 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4506 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4507 for_each_sched_entity(se) {
4508 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4509 /* throttled entity or throttle-on-deactivate */
4510 if (!se->on_rq)
4511 break;
4512
4513 if (dequeue)
4514 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4515 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4516 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4517
4518 if (qcfs_rq->load.weight)
4519 dequeue = 0;
4520 }
4521
4522 if (!se)
72465447 4523 sub_nr_running(rq, task_delta);
85dac906
PT
4524
4525 cfs_rq->throttled = 1;
78becc27 4526 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4527 raw_spin_lock(&cfs_b->lock);
d49db342 4528 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4529
c06f04c7
BS
4530 /*
4531 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4532 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4533 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4534 */
baa9be4f
PA
4535 if (cfs_b->distribute_running)
4536 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4537 else
4538 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4539
4540 /*
4541 * If we're the first throttled task, make sure the bandwidth
4542 * timer is running.
4543 */
4544 if (empty)
4545 start_cfs_bandwidth(cfs_b);
4546
85dac906
PT
4547 raw_spin_unlock(&cfs_b->lock);
4548}
4549
029632fb 4550void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4551{
4552 struct rq *rq = rq_of(cfs_rq);
4553 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4554 struct sched_entity *se;
4555 int enqueue = 1;
43e9f7f2 4556 long task_delta, idle_task_delta;
671fd9da 4557
22b958d8 4558 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4559
4560 cfs_rq->throttled = 0;
1a55af2e
FW
4561
4562 update_rq_clock(rq);
4563
671fd9da 4564 raw_spin_lock(&cfs_b->lock);
78becc27 4565 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4566 list_del_rcu(&cfs_rq->throttled_list);
4567 raw_spin_unlock(&cfs_b->lock);
4568
64660c86
PT
4569 /* update hierarchical throttle state */
4570 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4571
671fd9da
PT
4572 if (!cfs_rq->load.weight)
4573 return;
4574
4575 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4576 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4577 for_each_sched_entity(se) {
4578 if (se->on_rq)
4579 enqueue = 0;
4580
4581 cfs_rq = cfs_rq_of(se);
4582 if (enqueue)
4583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4584 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4585 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da
PT
4586
4587 if (cfs_rq_throttled(cfs_rq))
4588 break;
4589 }
4590
31bc6aea
VG
4591 assert_list_leaf_cfs_rq(rq);
4592
671fd9da 4593 if (!se)
72465447 4594 add_nr_running(rq, task_delta);
671fd9da 4595
97fb7a0a 4596 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4597 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4598 resched_curr(rq);
671fd9da
PT
4599}
4600
de53fd7a 4601static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
671fd9da
PT
4602{
4603 struct cfs_rq *cfs_rq;
c06f04c7
BS
4604 u64 runtime;
4605 u64 starting_runtime = remaining;
671fd9da
PT
4606
4607 rcu_read_lock();
4608 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4609 throttled_list) {
4610 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4611 struct rq_flags rf;
671fd9da 4612
c0ad4aa4 4613 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4614 if (!cfs_rq_throttled(cfs_rq))
4615 goto next;
4616
5e2d2cc2
L
4617 /* By the above check, this should never be true */
4618 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4619
671fd9da
PT
4620 runtime = -cfs_rq->runtime_remaining + 1;
4621 if (runtime > remaining)
4622 runtime = remaining;
4623 remaining -= runtime;
4624
4625 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4626
4627 /* we check whether we're throttled above */
4628 if (cfs_rq->runtime_remaining > 0)
4629 unthrottle_cfs_rq(cfs_rq);
4630
4631next:
c0ad4aa4 4632 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4633
4634 if (!remaining)
4635 break;
4636 }
4637 rcu_read_unlock();
4638
c06f04c7 4639 return starting_runtime - remaining;
671fd9da
PT
4640}
4641
58088ad0
PT
4642/*
4643 * Responsible for refilling a task_group's bandwidth and unthrottling its
4644 * cfs_rqs as appropriate. If there has been no activity within the last
4645 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4646 * used to track this state.
4647 */
c0ad4aa4 4648static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4649{
de53fd7a 4650 u64 runtime;
51f2176d 4651 int throttled;
58088ad0 4652
58088ad0
PT
4653 /* no need to continue the timer with no bandwidth constraint */
4654 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4655 goto out_deactivate;
58088ad0 4656
671fd9da 4657 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4658 cfs_b->nr_periods += overrun;
671fd9da 4659
51f2176d
BS
4660 /*
4661 * idle depends on !throttled (for the case of a large deficit), and if
4662 * we're going inactive then everything else can be deferred
4663 */
4664 if (cfs_b->idle && !throttled)
4665 goto out_deactivate;
a9cf55b2
PT
4666
4667 __refill_cfs_bandwidth_runtime(cfs_b);
4668
671fd9da
PT
4669 if (!throttled) {
4670 /* mark as potentially idle for the upcoming period */
4671 cfs_b->idle = 1;
51f2176d 4672 return 0;
671fd9da
PT
4673 }
4674
e8da1b18
NR
4675 /* account preceding periods in which throttling occurred */
4676 cfs_b->nr_throttled += overrun;
4677
671fd9da 4678 /*
c06f04c7
BS
4679 * This check is repeated as we are holding onto the new bandwidth while
4680 * we unthrottle. This can potentially race with an unthrottled group
4681 * trying to acquire new bandwidth from the global pool. This can result
4682 * in us over-using our runtime if it is all used during this loop, but
4683 * only by limited amounts in that extreme case.
671fd9da 4684 */
baa9be4f 4685 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4686 runtime = cfs_b->runtime;
baa9be4f 4687 cfs_b->distribute_running = 1;
c0ad4aa4 4688 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4689 /* we can't nest cfs_b->lock while distributing bandwidth */
de53fd7a 4690 runtime = distribute_cfs_runtime(cfs_b, runtime);
c0ad4aa4 4691 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4692
baa9be4f 4693 cfs_b->distribute_running = 0;
671fd9da 4694 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4695
b5c0ce7b 4696 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4697 }
58088ad0 4698
671fd9da
PT
4699 /*
4700 * While we are ensured activity in the period following an
4701 * unthrottle, this also covers the case in which the new bandwidth is
4702 * insufficient to cover the existing bandwidth deficit. (Forcing the
4703 * timer to remain active while there are any throttled entities.)
4704 */
4705 cfs_b->idle = 0;
58088ad0 4706
51f2176d
BS
4707 return 0;
4708
4709out_deactivate:
51f2176d 4710 return 1;
58088ad0 4711}
d3d9dc33 4712
d8b4986d
PT
4713/* a cfs_rq won't donate quota below this amount */
4714static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4715/* minimum remaining period time to redistribute slack quota */
4716static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4717/* how long we wait to gather additional slack before distributing */
4718static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4719
db06e78c
BS
4720/*
4721 * Are we near the end of the current quota period?
4722 *
4723 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4724 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4725 * migrate_hrtimers, base is never cleared, so we are fine.
4726 */
d8b4986d
PT
4727static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4728{
4729 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4730 u64 remaining;
4731
4732 /* if the call-back is running a quota refresh is already occurring */
4733 if (hrtimer_callback_running(refresh_timer))
4734 return 1;
4735
4736 /* is a quota refresh about to occur? */
4737 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4738 if (remaining < min_expire)
4739 return 1;
4740
4741 return 0;
4742}
4743
4744static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4745{
4746 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4747
4748 /* if there's a quota refresh soon don't bother with slack */
4749 if (runtime_refresh_within(cfs_b, min_left))
4750 return;
4751
66567fcb 4752 /* don't push forwards an existing deferred unthrottle */
4753 if (cfs_b->slack_started)
4754 return;
4755 cfs_b->slack_started = true;
4756
4cfafd30
PZ
4757 hrtimer_start(&cfs_b->slack_timer,
4758 ns_to_ktime(cfs_bandwidth_slack_period),
4759 HRTIMER_MODE_REL);
d8b4986d
PT
4760}
4761
4762/* we know any runtime found here is valid as update_curr() precedes return */
4763static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4764{
4765 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4766 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4767
4768 if (slack_runtime <= 0)
4769 return;
4770
4771 raw_spin_lock(&cfs_b->lock);
de53fd7a 4772 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
4773 cfs_b->runtime += slack_runtime;
4774
4775 /* we are under rq->lock, defer unthrottling using a timer */
4776 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4777 !list_empty(&cfs_b->throttled_cfs_rq))
4778 start_cfs_slack_bandwidth(cfs_b);
4779 }
4780 raw_spin_unlock(&cfs_b->lock);
4781
4782 /* even if it's not valid for return we don't want to try again */
4783 cfs_rq->runtime_remaining -= slack_runtime;
4784}
4785
4786static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4787{
56f570e5
PT
4788 if (!cfs_bandwidth_used())
4789 return;
4790
fccfdc6f 4791 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4792 return;
4793
4794 __return_cfs_rq_runtime(cfs_rq);
4795}
4796
4797/*
4798 * This is done with a timer (instead of inline with bandwidth return) since
4799 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4800 */
4801static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4802{
4803 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4804 unsigned long flags;
d8b4986d
PT
4805
4806 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4807 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4808 cfs_b->slack_started = false;
baa9be4f 4809 if (cfs_b->distribute_running) {
c0ad4aa4 4810 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4811 return;
4812 }
4813
db06e78c 4814 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4815 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4816 return;
db06e78c 4817 }
d8b4986d 4818
c06f04c7 4819 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4820 runtime = cfs_b->runtime;
c06f04c7 4821
baa9be4f
PA
4822 if (runtime)
4823 cfs_b->distribute_running = 1;
4824
c0ad4aa4 4825 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4826
4827 if (!runtime)
4828 return;
4829
de53fd7a 4830 runtime = distribute_cfs_runtime(cfs_b, runtime);
d8b4986d 4831
c0ad4aa4 4832 raw_spin_lock_irqsave(&cfs_b->lock, flags);
de53fd7a 4833 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4834 cfs_b->distribute_running = 0;
c0ad4aa4 4835 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4836}
4837
d3d9dc33
PT
4838/*
4839 * When a group wakes up we want to make sure that its quota is not already
4840 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4841 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4842 */
4843static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4844{
56f570e5
PT
4845 if (!cfs_bandwidth_used())
4846 return;
4847
d3d9dc33
PT
4848 /* an active group must be handled by the update_curr()->put() path */
4849 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4850 return;
4851
4852 /* ensure the group is not already throttled */
4853 if (cfs_rq_throttled(cfs_rq))
4854 return;
4855
4856 /* update runtime allocation */
4857 account_cfs_rq_runtime(cfs_rq, 0);
4858 if (cfs_rq->runtime_remaining <= 0)
4859 throttle_cfs_rq(cfs_rq);
4860}
4861
55e16d30
PZ
4862static void sync_throttle(struct task_group *tg, int cpu)
4863{
4864 struct cfs_rq *pcfs_rq, *cfs_rq;
4865
4866 if (!cfs_bandwidth_used())
4867 return;
4868
4869 if (!tg->parent)
4870 return;
4871
4872 cfs_rq = tg->cfs_rq[cpu];
4873 pcfs_rq = tg->parent->cfs_rq[cpu];
4874
4875 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4876 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4877}
4878
d3d9dc33 4879/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4880static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4881{
56f570e5 4882 if (!cfs_bandwidth_used())
678d5718 4883 return false;
56f570e5 4884
d3d9dc33 4885 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4886 return false;
d3d9dc33
PT
4887
4888 /*
4889 * it's possible for a throttled entity to be forced into a running
4890 * state (e.g. set_curr_task), in this case we're finished.
4891 */
4892 if (cfs_rq_throttled(cfs_rq))
678d5718 4893 return true;
d3d9dc33
PT
4894
4895 throttle_cfs_rq(cfs_rq);
678d5718 4896 return true;
d3d9dc33 4897}
029632fb 4898
029632fb
PZ
4899static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4900{
4901 struct cfs_bandwidth *cfs_b =
4902 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4903
029632fb
PZ
4904 do_sched_cfs_slack_timer(cfs_b);
4905
4906 return HRTIMER_NORESTART;
4907}
4908
2e8e1922
PA
4909extern const u64 max_cfs_quota_period;
4910
029632fb
PZ
4911static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4912{
4913 struct cfs_bandwidth *cfs_b =
4914 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4915 unsigned long flags;
029632fb
PZ
4916 int overrun;
4917 int idle = 0;
2e8e1922 4918 int count = 0;
029632fb 4919
c0ad4aa4 4920 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4921 for (;;) {
77a4d1a1 4922 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4923 if (!overrun)
4924 break;
4925
2e8e1922
PA
4926 if (++count > 3) {
4927 u64 new, old = ktime_to_ns(cfs_b->period);
4928
4929a4e6
XZ
4929 /*
4930 * Grow period by a factor of 2 to avoid losing precision.
4931 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4932 * to fail.
4933 */
4934 new = old * 2;
4935 if (new < max_cfs_quota_period) {
4936 cfs_b->period = ns_to_ktime(new);
4937 cfs_b->quota *= 2;
4938
4939 pr_warn_ratelimited(
4940 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4941 smp_processor_id(),
4942 div_u64(new, NSEC_PER_USEC),
4943 div_u64(cfs_b->quota, NSEC_PER_USEC));
4944 } else {
4945 pr_warn_ratelimited(
4946 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4947 smp_processor_id(),
4948 div_u64(old, NSEC_PER_USEC),
4949 div_u64(cfs_b->quota, NSEC_PER_USEC));
4950 }
2e8e1922
PA
4951
4952 /* reset count so we don't come right back in here */
4953 count = 0;
4954 }
4955
c0ad4aa4 4956 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4957 }
4cfafd30
PZ
4958 if (idle)
4959 cfs_b->period_active = 0;
c0ad4aa4 4960 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4961
4962 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4963}
4964
4965void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4966{
4967 raw_spin_lock_init(&cfs_b->lock);
4968 cfs_b->runtime = 0;
4969 cfs_b->quota = RUNTIME_INF;
4970 cfs_b->period = ns_to_ktime(default_cfs_period());
4971
4972 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4973 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4974 cfs_b->period_timer.function = sched_cfs_period_timer;
4975 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4976 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4977 cfs_b->distribute_running = 0;
66567fcb 4978 cfs_b->slack_started = false;
029632fb
PZ
4979}
4980
4981static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4982{
4983 cfs_rq->runtime_enabled = 0;
4984 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4985}
4986
77a4d1a1 4987void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4988{
4cfafd30 4989 lockdep_assert_held(&cfs_b->lock);
029632fb 4990
f1d1be8a
XP
4991 if (cfs_b->period_active)
4992 return;
4993
4994 cfs_b->period_active = 1;
763a9ec0 4995 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 4996 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4997}
4998
4999static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5000{
7f1a169b
TH
5001 /* init_cfs_bandwidth() was not called */
5002 if (!cfs_b->throttled_cfs_rq.next)
5003 return;
5004
029632fb
PZ
5005 hrtimer_cancel(&cfs_b->period_timer);
5006 hrtimer_cancel(&cfs_b->slack_timer);
5007}
5008
502ce005 5009/*
97fb7a0a 5010 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5011 *
5012 * The race is harmless, since modifying bandwidth settings of unhooked group
5013 * bits doesn't do much.
5014 */
5015
5016/* cpu online calback */
0e59bdae
KT
5017static void __maybe_unused update_runtime_enabled(struct rq *rq)
5018{
502ce005 5019 struct task_group *tg;
0e59bdae 5020
502ce005
PZ
5021 lockdep_assert_held(&rq->lock);
5022
5023 rcu_read_lock();
5024 list_for_each_entry_rcu(tg, &task_groups, list) {
5025 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5026 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5027
5028 raw_spin_lock(&cfs_b->lock);
5029 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5030 raw_spin_unlock(&cfs_b->lock);
5031 }
502ce005 5032 rcu_read_unlock();
0e59bdae
KT
5033}
5034
502ce005 5035/* cpu offline callback */
38dc3348 5036static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5037{
502ce005
PZ
5038 struct task_group *tg;
5039
5040 lockdep_assert_held(&rq->lock);
5041
5042 rcu_read_lock();
5043 list_for_each_entry_rcu(tg, &task_groups, list) {
5044 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5045
029632fb
PZ
5046 if (!cfs_rq->runtime_enabled)
5047 continue;
5048
5049 /*
5050 * clock_task is not advancing so we just need to make sure
5051 * there's some valid quota amount
5052 */
51f2176d 5053 cfs_rq->runtime_remaining = 1;
0e59bdae 5054 /*
97fb7a0a 5055 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5056 * in take_cpu_down(), so we prevent new cfs throttling here.
5057 */
5058 cfs_rq->runtime_enabled = 0;
5059
029632fb
PZ
5060 if (cfs_rq_throttled(cfs_rq))
5061 unthrottle_cfs_rq(cfs_rq);
5062 }
502ce005 5063 rcu_read_unlock();
029632fb
PZ
5064}
5065
5066#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5067
5068static inline bool cfs_bandwidth_used(void)
5069{
5070 return false;
5071}
5072
9dbdb155 5073static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5074static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5075static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5076static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5077static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5078
5079static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5080{
5081 return 0;
5082}
64660c86
PT
5083
5084static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5085{
5086 return 0;
5087}
5088
5089static inline int throttled_lb_pair(struct task_group *tg,
5090 int src_cpu, int dest_cpu)
5091{
5092 return 0;
5093}
029632fb
PZ
5094
5095void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5096
5097#ifdef CONFIG_FAIR_GROUP_SCHED
5098static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5099#endif
5100
029632fb
PZ
5101static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5102{
5103 return NULL;
5104}
5105static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5106static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5107static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5108
5109#endif /* CONFIG_CFS_BANDWIDTH */
5110
bf0f6f24
IM
5111/**************************************************
5112 * CFS operations on tasks:
5113 */
5114
8f4d37ec
PZ
5115#ifdef CONFIG_SCHED_HRTICK
5116static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5117{
8f4d37ec
PZ
5118 struct sched_entity *se = &p->se;
5119 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5120
9148a3a1 5121 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5122
8bf46a39 5123 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5124 u64 slice = sched_slice(cfs_rq, se);
5125 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5126 s64 delta = slice - ran;
5127
5128 if (delta < 0) {
5129 if (rq->curr == p)
8875125e 5130 resched_curr(rq);
8f4d37ec
PZ
5131 return;
5132 }
31656519 5133 hrtick_start(rq, delta);
8f4d37ec
PZ
5134 }
5135}
a4c2f00f
PZ
5136
5137/*
5138 * called from enqueue/dequeue and updates the hrtick when the
5139 * current task is from our class and nr_running is low enough
5140 * to matter.
5141 */
5142static void hrtick_update(struct rq *rq)
5143{
5144 struct task_struct *curr = rq->curr;
5145
b39e66ea 5146 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5147 return;
5148
5149 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5150 hrtick_start_fair(rq, curr);
5151}
55e12e5e 5152#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5153static inline void
5154hrtick_start_fair(struct rq *rq, struct task_struct *p)
5155{
5156}
a4c2f00f
PZ
5157
5158static inline void hrtick_update(struct rq *rq)
5159{
5160}
8f4d37ec
PZ
5161#endif
5162
2802bf3c
MR
5163#ifdef CONFIG_SMP
5164static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5165
5166static inline bool cpu_overutilized(int cpu)
5167{
60e17f5c 5168 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5169}
5170
5171static inline void update_overutilized_status(struct rq *rq)
5172{
f9f240f9 5173 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5174 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5175 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5176 }
2802bf3c
MR
5177}
5178#else
5179static inline void update_overutilized_status(struct rq *rq) { }
5180#endif
5181
bf0f6f24
IM
5182/*
5183 * The enqueue_task method is called before nr_running is
5184 * increased. Here we update the fair scheduling stats and
5185 * then put the task into the rbtree:
5186 */
ea87bb78 5187static void
371fd7e7 5188enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5189{
5190 struct cfs_rq *cfs_rq;
62fb1851 5191 struct sched_entity *se = &p->se;
43e9f7f2 5192 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5193
2539fc82
PB
5194 /*
5195 * The code below (indirectly) updates schedutil which looks at
5196 * the cfs_rq utilization to select a frequency.
5197 * Let's add the task's estimated utilization to the cfs_rq's
5198 * estimated utilization, before we update schedutil.
5199 */
5200 util_est_enqueue(&rq->cfs, p);
5201
8c34ab19
RW
5202 /*
5203 * If in_iowait is set, the code below may not trigger any cpufreq
5204 * utilization updates, so do it here explicitly with the IOWAIT flag
5205 * passed.
5206 */
5207 if (p->in_iowait)
674e7541 5208 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5209
bf0f6f24 5210 for_each_sched_entity(se) {
62fb1851 5211 if (se->on_rq)
bf0f6f24
IM
5212 break;
5213 cfs_rq = cfs_rq_of(se);
88ec22d3 5214 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5215
5216 /*
5217 * end evaluation on encountering a throttled cfs_rq
5218 *
5219 * note: in the case of encountering a throttled cfs_rq we will
5220 * post the final h_nr_running increment below.
e210bffd 5221 */
85dac906
PT
5222 if (cfs_rq_throttled(cfs_rq))
5223 break;
953bfcd1 5224 cfs_rq->h_nr_running++;
43e9f7f2 5225 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5226
88ec22d3 5227 flags = ENQUEUE_WAKEUP;
bf0f6f24 5228 }
8f4d37ec 5229
2069dd75 5230 for_each_sched_entity(se) {
0f317143 5231 cfs_rq = cfs_rq_of(se);
953bfcd1 5232 cfs_rq->h_nr_running++;
43e9f7f2 5233 cfs_rq->idle_h_nr_running += idle_h_nr_running;
2069dd75 5234
85dac906
PT
5235 if (cfs_rq_throttled(cfs_rq))
5236 break;
5237
88c0616e 5238 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5239 update_cfs_group(se);
2069dd75
PZ
5240 }
5241
2802bf3c 5242 if (!se) {
72465447 5243 add_nr_running(rq, 1);
2802bf3c
MR
5244 /*
5245 * Since new tasks are assigned an initial util_avg equal to
5246 * half of the spare capacity of their CPU, tiny tasks have the
5247 * ability to cross the overutilized threshold, which will
5248 * result in the load balancer ruining all the task placement
5249 * done by EAS. As a way to mitigate that effect, do not account
5250 * for the first enqueue operation of new tasks during the
5251 * overutilized flag detection.
5252 *
5253 * A better way of solving this problem would be to wait for
5254 * the PELT signals of tasks to converge before taking them
5255 * into account, but that is not straightforward to implement,
5256 * and the following generally works well enough in practice.
5257 */
5258 if (flags & ENQUEUE_WAKEUP)
5259 update_overutilized_status(rq);
5260
5261 }
cd126afe 5262
f6783319
VG
5263 if (cfs_bandwidth_used()) {
5264 /*
5265 * When bandwidth control is enabled; the cfs_rq_throttled()
5266 * breaks in the above iteration can result in incomplete
5267 * leaf list maintenance, resulting in triggering the assertion
5268 * below.
5269 */
5270 for_each_sched_entity(se) {
5271 cfs_rq = cfs_rq_of(se);
5272
5273 if (list_add_leaf_cfs_rq(cfs_rq))
5274 break;
5275 }
5276 }
5277
5d299eab
PZ
5278 assert_list_leaf_cfs_rq(rq);
5279
a4c2f00f 5280 hrtick_update(rq);
bf0f6f24
IM
5281}
5282
2f36825b
VP
5283static void set_next_buddy(struct sched_entity *se);
5284
bf0f6f24
IM
5285/*
5286 * The dequeue_task method is called before nr_running is
5287 * decreased. We remove the task from the rbtree and
5288 * update the fair scheduling stats:
5289 */
371fd7e7 5290static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5291{
5292 struct cfs_rq *cfs_rq;
62fb1851 5293 struct sched_entity *se = &p->se;
2f36825b 5294 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5295 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24
IM
5296
5297 for_each_sched_entity(se) {
5298 cfs_rq = cfs_rq_of(se);
371fd7e7 5299 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5300
5301 /*
5302 * end evaluation on encountering a throttled cfs_rq
5303 *
5304 * note: in the case of encountering a throttled cfs_rq we will
5305 * post the final h_nr_running decrement below.
5306 */
5307 if (cfs_rq_throttled(cfs_rq))
5308 break;
953bfcd1 5309 cfs_rq->h_nr_running--;
43e9f7f2 5310 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5311
bf0f6f24 5312 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5313 if (cfs_rq->load.weight) {
754bd598
KK
5314 /* Avoid re-evaluating load for this entity: */
5315 se = parent_entity(se);
2f36825b
VP
5316 /*
5317 * Bias pick_next to pick a task from this cfs_rq, as
5318 * p is sleeping when it is within its sched_slice.
5319 */
754bd598
KK
5320 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5321 set_next_buddy(se);
bf0f6f24 5322 break;
2f36825b 5323 }
371fd7e7 5324 flags |= DEQUEUE_SLEEP;
bf0f6f24 5325 }
8f4d37ec 5326
2069dd75 5327 for_each_sched_entity(se) {
0f317143 5328 cfs_rq = cfs_rq_of(se);
953bfcd1 5329 cfs_rq->h_nr_running--;
43e9f7f2 5330 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5331
85dac906
PT
5332 if (cfs_rq_throttled(cfs_rq))
5333 break;
5334
88c0616e 5335 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5336 update_cfs_group(se);
2069dd75
PZ
5337 }
5338
cd126afe 5339 if (!se)
72465447 5340 sub_nr_running(rq, 1);
cd126afe 5341
7f65ea42 5342 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5343 hrtick_update(rq);
bf0f6f24
IM
5344}
5345
e7693a36 5346#ifdef CONFIG_SMP
10e2f1ac
PZ
5347
5348/* Working cpumask for: load_balance, load_balance_newidle. */
5349DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5350DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5351
9fd81dd5 5352#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5353
5354static struct {
5355 cpumask_var_t idle_cpus_mask;
5356 atomic_t nr_cpus;
f643ea22 5357 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5358 unsigned long next_balance; /* in jiffy units */
f643ea22 5359 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5360} nohz ____cacheline_aligned;
5361
9fd81dd5 5362#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5363
3c29e651
VK
5364/* CPU only has SCHED_IDLE tasks enqueued */
5365static int sched_idle_cpu(int cpu)
5366{
5367 struct rq *rq = cpu_rq(cpu);
5368
5369 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5370 rq->nr_running);
5371}
5372
a3df0679 5373static unsigned long cpu_runnable_load(struct rq *rq)
7ea241af 5374{
c7132dd6 5375 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5376}
5377
ced549fa 5378static unsigned long capacity_of(int cpu)
029632fb 5379{
ced549fa 5380 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5381}
5382
5383static unsigned long cpu_avg_load_per_task(int cpu)
5384{
5385 struct rq *rq = cpu_rq(cpu);
316c1608 5386 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
a3df0679 5387 unsigned long load_avg = cpu_runnable_load(rq);
029632fb
PZ
5388
5389 if (nr_running)
b92486cb 5390 return load_avg / nr_running;
029632fb
PZ
5391
5392 return 0;
5393}
5394
c58d25f3
PZ
5395static void record_wakee(struct task_struct *p)
5396{
5397 /*
5398 * Only decay a single time; tasks that have less then 1 wakeup per
5399 * jiffy will not have built up many flips.
5400 */
5401 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5402 current->wakee_flips >>= 1;
5403 current->wakee_flip_decay_ts = jiffies;
5404 }
5405
5406 if (current->last_wakee != p) {
5407 current->last_wakee = p;
5408 current->wakee_flips++;
5409 }
5410}
5411
63b0e9ed
MG
5412/*
5413 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5414 *
63b0e9ed 5415 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5416 * at a frequency roughly N times higher than one of its wakees.
5417 *
5418 * In order to determine whether we should let the load spread vs consolidating
5419 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5420 * partner, and a factor of lls_size higher frequency in the other.
5421 *
5422 * With both conditions met, we can be relatively sure that the relationship is
5423 * non-monogamous, with partner count exceeding socket size.
5424 *
5425 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5426 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5427 * socket size.
63b0e9ed 5428 */
62470419
MW
5429static int wake_wide(struct task_struct *p)
5430{
63b0e9ed
MG
5431 unsigned int master = current->wakee_flips;
5432 unsigned int slave = p->wakee_flips;
7d9ffa89 5433 int factor = this_cpu_read(sd_llc_size);
62470419 5434
63b0e9ed
MG
5435 if (master < slave)
5436 swap(master, slave);
5437 if (slave < factor || master < slave * factor)
5438 return 0;
5439 return 1;
62470419
MW
5440}
5441
90001d67 5442/*
d153b153
PZ
5443 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5444 * soonest. For the purpose of speed we only consider the waking and previous
5445 * CPU.
90001d67 5446 *
7332dec0
MG
5447 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5448 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5449 *
5450 * wake_affine_weight() - considers the weight to reflect the average
5451 * scheduling latency of the CPUs. This seems to work
5452 * for the overloaded case.
90001d67 5453 */
3b76c4a3 5454static int
89a55f56 5455wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5456{
7332dec0
MG
5457 /*
5458 * If this_cpu is idle, it implies the wakeup is from interrupt
5459 * context. Only allow the move if cache is shared. Otherwise an
5460 * interrupt intensive workload could force all tasks onto one
5461 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5462 *
5463 * If the prev_cpu is idle and cache affine then avoid a migration.
5464 * There is no guarantee that the cache hot data from an interrupt
5465 * is more important than cache hot data on the prev_cpu and from
5466 * a cpufreq perspective, it's better to have higher utilisation
5467 * on one CPU.
7332dec0 5468 */
943d355d
RJ
5469 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5470 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5471
d153b153 5472 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5473 return this_cpu;
90001d67 5474
3b76c4a3 5475 return nr_cpumask_bits;
90001d67
PZ
5476}
5477
3b76c4a3 5478static int
f2cdd9cc
PZ
5479wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5480 int this_cpu, int prev_cpu, int sync)
90001d67 5481{
90001d67
PZ
5482 s64 this_eff_load, prev_eff_load;
5483 unsigned long task_load;
5484
a3df0679 5485 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
90001d67 5486
90001d67
PZ
5487 if (sync) {
5488 unsigned long current_load = task_h_load(current);
5489
f2cdd9cc 5490 if (current_load > this_eff_load)
3b76c4a3 5491 return this_cpu;
90001d67 5492
f2cdd9cc 5493 this_eff_load -= current_load;
90001d67
PZ
5494 }
5495
90001d67
PZ
5496 task_load = task_h_load(p);
5497
f2cdd9cc
PZ
5498 this_eff_load += task_load;
5499 if (sched_feat(WA_BIAS))
5500 this_eff_load *= 100;
5501 this_eff_load *= capacity_of(prev_cpu);
90001d67 5502
a3df0679 5503 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5504 prev_eff_load -= task_load;
5505 if (sched_feat(WA_BIAS))
5506 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5507 prev_eff_load *= capacity_of(this_cpu);
90001d67 5508
082f764a
MG
5509 /*
5510 * If sync, adjust the weight of prev_eff_load such that if
5511 * prev_eff == this_eff that select_idle_sibling() will consider
5512 * stacking the wakee on top of the waker if no other CPU is
5513 * idle.
5514 */
5515 if (sync)
5516 prev_eff_load += 1;
5517
5518 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5519}
5520
772bd008 5521static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5522 int this_cpu, int prev_cpu, int sync)
098fb9db 5523{
3b76c4a3 5524 int target = nr_cpumask_bits;
098fb9db 5525
89a55f56 5526 if (sched_feat(WA_IDLE))
3b76c4a3 5527 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5528
3b76c4a3
MG
5529 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5530 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5531
ae92882e 5532 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5533 if (target == nr_cpumask_bits)
5534 return prev_cpu;
098fb9db 5535
3b76c4a3
MG
5536 schedstat_inc(sd->ttwu_move_affine);
5537 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5538 return target;
098fb9db
IM
5539}
5540
c469933e 5541static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5542
c469933e 5543static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5544{
c469933e 5545 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5546}
5547
aaee1203
PZ
5548/*
5549 * find_idlest_group finds and returns the least busy CPU group within the
5550 * domain.
6fee85cc
BJ
5551 *
5552 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5553 */
5554static struct sched_group *
78e7ed53 5555find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5556 int this_cpu, int sd_flag)
e7693a36 5557{
b3bd3de6 5558 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5559 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5560 unsigned long min_runnable_load = ULONG_MAX;
5561 unsigned long this_runnable_load = ULONG_MAX;
5562 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5563 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5564 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5565 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5566 (sd->imbalance_pct-100) / 100;
e7693a36 5567
aaee1203 5568 do {
6b94780e
VG
5569 unsigned long load, avg_load, runnable_load;
5570 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5571 int local_group;
5572 int i;
e7693a36 5573
aaee1203 5574 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5575 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5576 p->cpus_ptr))
aaee1203
PZ
5577 continue;
5578
5579 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5580 sched_group_span(group));
aaee1203 5581
6a0b19c0
MR
5582 /*
5583 * Tally up the load of all CPUs in the group and find
5584 * the group containing the CPU with most spare capacity.
5585 */
aaee1203 5586 avg_load = 0;
6b94780e 5587 runnable_load = 0;
6a0b19c0 5588 max_spare_cap = 0;
aaee1203 5589
ae4df9d6 5590 for_each_cpu(i, sched_group_span(group)) {
a3df0679 5591 load = cpu_runnable_load(cpu_rq(i));
6b94780e
VG
5592 runnable_load += load;
5593
5594 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5595
c469933e 5596 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5597
5598 if (spare_cap > max_spare_cap)
5599 max_spare_cap = spare_cap;
aaee1203
PZ
5600 }
5601
63b2ca30 5602 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5603 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5604 group->sgc->capacity;
5605 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5606 group->sgc->capacity;
aaee1203
PZ
5607
5608 if (local_group) {
6b94780e
VG
5609 this_runnable_load = runnable_load;
5610 this_avg_load = avg_load;
6a0b19c0
MR
5611 this_spare = max_spare_cap;
5612 } else {
6b94780e
VG
5613 if (min_runnable_load > (runnable_load + imbalance)) {
5614 /*
5615 * The runnable load is significantly smaller
97fb7a0a 5616 * so we can pick this new CPU:
6b94780e
VG
5617 */
5618 min_runnable_load = runnable_load;
5619 min_avg_load = avg_load;
5620 idlest = group;
5621 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5622 (100*min_avg_load > imbalance_scale*avg_load)) {
5623 /*
5624 * The runnable loads are close so take the
97fb7a0a 5625 * blocked load into account through avg_load:
6b94780e
VG
5626 */
5627 min_avg_load = avg_load;
6a0b19c0
MR
5628 idlest = group;
5629 }
5630
5631 if (most_spare < max_spare_cap) {
5632 most_spare = max_spare_cap;
5633 most_spare_sg = group;
5634 }
aaee1203
PZ
5635 }
5636 } while (group = group->next, group != sd->groups);
5637
6a0b19c0
MR
5638 /*
5639 * The cross-over point between using spare capacity or least load
5640 * is too conservative for high utilization tasks on partially
5641 * utilized systems if we require spare_capacity > task_util(p),
5642 * so we allow for some task stuffing by using
5643 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5644 *
5645 * Spare capacity can't be used for fork because the utilization has
5646 * not been set yet, we must first select a rq to compute the initial
5647 * utilization.
6a0b19c0 5648 */
f519a3f1
VG
5649 if (sd_flag & SD_BALANCE_FORK)
5650 goto skip_spare;
5651
6a0b19c0 5652 if (this_spare > task_util(p) / 2 &&
6b94780e 5653 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5654 return NULL;
6b94780e
VG
5655
5656 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5657 return most_spare_sg;
5658
f519a3f1 5659skip_spare:
6b94780e
VG
5660 if (!idlest)
5661 return NULL;
5662
2c833627
MG
5663 /*
5664 * When comparing groups across NUMA domains, it's possible for the
5665 * local domain to be very lightly loaded relative to the remote
5666 * domains but "imbalance" skews the comparison making remote CPUs
5667 * look much more favourable. When considering cross-domain, add
5668 * imbalance to the runnable load on the remote node and consider
5669 * staying local.
5670 */
5671 if ((sd->flags & SD_NUMA) &&
5672 min_runnable_load + imbalance >= this_runnable_load)
5673 return NULL;
5674
6b94780e 5675 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5676 return NULL;
6b94780e
VG
5677
5678 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5679 (100*this_avg_load < imbalance_scale*min_avg_load))
5680 return NULL;
5681
aaee1203
PZ
5682 return idlest;
5683}
5684
5685/*
97fb7a0a 5686 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5687 */
5688static int
18bd1b4b 5689find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5690{
5691 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5692 unsigned int min_exit_latency = UINT_MAX;
5693 u64 latest_idle_timestamp = 0;
5694 int least_loaded_cpu = this_cpu;
3c29e651 5695 int shallowest_idle_cpu = -1, si_cpu = -1;
aaee1203
PZ
5696 int i;
5697
eaecf41f
MR
5698 /* Check if we have any choice: */
5699 if (group->group_weight == 1)
ae4df9d6 5700 return cpumask_first(sched_group_span(group));
eaecf41f 5701
aaee1203 5702 /* Traverse only the allowed CPUs */
3bd37062 5703 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5704 if (available_idle_cpu(i)) {
83a0a96a
NP
5705 struct rq *rq = cpu_rq(i);
5706 struct cpuidle_state *idle = idle_get_state(rq);
5707 if (idle && idle->exit_latency < min_exit_latency) {
5708 /*
5709 * We give priority to a CPU whose idle state
5710 * has the smallest exit latency irrespective
5711 * of any idle timestamp.
5712 */
5713 min_exit_latency = idle->exit_latency;
5714 latest_idle_timestamp = rq->idle_stamp;
5715 shallowest_idle_cpu = i;
5716 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5717 rq->idle_stamp > latest_idle_timestamp) {
5718 /*
5719 * If equal or no active idle state, then
5720 * the most recently idled CPU might have
5721 * a warmer cache.
5722 */
5723 latest_idle_timestamp = rq->idle_stamp;
5724 shallowest_idle_cpu = i;
5725 }
3c29e651
VK
5726 } else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5727 if (sched_idle_cpu(i)) {
5728 si_cpu = i;
5729 continue;
5730 }
5731
a3df0679 5732 load = cpu_runnable_load(cpu_rq(i));
18cec7e0 5733 if (load < min_load) {
83a0a96a
NP
5734 min_load = load;
5735 least_loaded_cpu = i;
5736 }
e7693a36
GH
5737 }
5738 }
5739
3c29e651
VK
5740 if (shallowest_idle_cpu != -1)
5741 return shallowest_idle_cpu;
5742 if (si_cpu != -1)
5743 return si_cpu;
5744 return least_loaded_cpu;
aaee1203 5745}
e7693a36 5746
18bd1b4b
BJ
5747static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5748 int cpu, int prev_cpu, int sd_flag)
5749{
93f50f90 5750 int new_cpu = cpu;
18bd1b4b 5751
3bd37062 5752 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5753 return prev_cpu;
5754
c976a862 5755 /*
c469933e
PB
5756 * We need task's util for capacity_spare_without, sync it up to
5757 * prev_cpu's last_update_time.
c976a862
VK
5758 */
5759 if (!(sd_flag & SD_BALANCE_FORK))
5760 sync_entity_load_avg(&p->se);
5761
18bd1b4b
BJ
5762 while (sd) {
5763 struct sched_group *group;
5764 struct sched_domain *tmp;
5765 int weight;
5766
5767 if (!(sd->flags & sd_flag)) {
5768 sd = sd->child;
5769 continue;
5770 }
5771
5772 group = find_idlest_group(sd, p, cpu, sd_flag);
5773 if (!group) {
5774 sd = sd->child;
5775 continue;
5776 }
5777
5778 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5779 if (new_cpu == cpu) {
97fb7a0a 5780 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5781 sd = sd->child;
5782 continue;
5783 }
5784
97fb7a0a 5785 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5786 cpu = new_cpu;
5787 weight = sd->span_weight;
5788 sd = NULL;
5789 for_each_domain(cpu, tmp) {
5790 if (weight <= tmp->span_weight)
5791 break;
5792 if (tmp->flags & sd_flag)
5793 sd = tmp;
5794 }
18bd1b4b
BJ
5795 }
5796
5797 return new_cpu;
5798}
5799
10e2f1ac 5800#ifdef CONFIG_SCHED_SMT
ba2591a5 5801DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5802EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5803
5804static inline void set_idle_cores(int cpu, int val)
5805{
5806 struct sched_domain_shared *sds;
5807
5808 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5809 if (sds)
5810 WRITE_ONCE(sds->has_idle_cores, val);
5811}
5812
5813static inline bool test_idle_cores(int cpu, bool def)
5814{
5815 struct sched_domain_shared *sds;
5816
5817 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5818 if (sds)
5819 return READ_ONCE(sds->has_idle_cores);
5820
5821 return def;
5822}
5823
5824/*
5825 * Scans the local SMT mask to see if the entire core is idle, and records this
5826 * information in sd_llc_shared->has_idle_cores.
5827 *
5828 * Since SMT siblings share all cache levels, inspecting this limited remote
5829 * state should be fairly cheap.
5830 */
1b568f0a 5831void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5832{
5833 int core = cpu_of(rq);
5834 int cpu;
5835
5836 rcu_read_lock();
5837 if (test_idle_cores(core, true))
5838 goto unlock;
5839
5840 for_each_cpu(cpu, cpu_smt_mask(core)) {
5841 if (cpu == core)
5842 continue;
5843
943d355d 5844 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5845 goto unlock;
5846 }
5847
5848 set_idle_cores(core, 1);
5849unlock:
5850 rcu_read_unlock();
5851}
5852
5853/*
5854 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5855 * there are no idle cores left in the system; tracked through
5856 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5857 */
5858static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5859{
5860 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5861 int core, cpu;
10e2f1ac 5862
1b568f0a
PZ
5863 if (!static_branch_likely(&sched_smt_present))
5864 return -1;
5865
10e2f1ac
PZ
5866 if (!test_idle_cores(target, false))
5867 return -1;
5868
3bd37062 5869 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5870
c743f0a5 5871 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5872 bool idle = true;
5873
5874 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5875 __cpumask_clear_cpu(cpu, cpus);
943d355d 5876 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5877 idle = false;
5878 }
5879
5880 if (idle)
5881 return core;
5882 }
5883
5884 /*
5885 * Failed to find an idle core; stop looking for one.
5886 */
5887 set_idle_cores(target, 0);
5888
5889 return -1;
5890}
5891
5892/*
5893 * Scan the local SMT mask for idle CPUs.
5894 */
1b5500d7 5895static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 5896{
3c29e651 5897 int cpu, si_cpu = -1;
10e2f1ac 5898
1b568f0a
PZ
5899 if (!static_branch_likely(&sched_smt_present))
5900 return -1;
5901
10e2f1ac 5902 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5903 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5904 continue;
943d355d 5905 if (available_idle_cpu(cpu))
10e2f1ac 5906 return cpu;
3c29e651
VK
5907 if (si_cpu == -1 && sched_idle_cpu(cpu))
5908 si_cpu = cpu;
10e2f1ac
PZ
5909 }
5910
3c29e651 5911 return si_cpu;
10e2f1ac
PZ
5912}
5913
5914#else /* CONFIG_SCHED_SMT */
5915
5916static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5917{
5918 return -1;
5919}
5920
1b5500d7 5921static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5922{
5923 return -1;
5924}
5925
5926#endif /* CONFIG_SCHED_SMT */
5927
5928/*
5929 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5930 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5931 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5932 */
10e2f1ac
PZ
5933static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5934{
9cfb38a7 5935 struct sched_domain *this_sd;
1ad3aaf3 5936 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5937 u64 time, cost;
5938 s64 delta;
8dc2d993 5939 int this = smp_processor_id();
3c29e651 5940 int cpu, nr = INT_MAX, si_cpu = -1;
10e2f1ac 5941
9cfb38a7
WL
5942 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5943 if (!this_sd)
5944 return -1;
5945
10e2f1ac
PZ
5946 /*
5947 * Due to large variance we need a large fuzz factor; hackbench in
5948 * particularly is sensitive here.
5949 */
1ad3aaf3
PZ
5950 avg_idle = this_rq()->avg_idle / 512;
5951 avg_cost = this_sd->avg_scan_cost + 1;
5952
5953 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5954 return -1;
5955
1ad3aaf3
PZ
5956 if (sched_feat(SIS_PROP)) {
5957 u64 span_avg = sd->span_weight * avg_idle;
5958 if (span_avg > 4*avg_cost)
5959 nr = div_u64(span_avg, avg_cost);
5960 else
5961 nr = 4;
5962 }
5963
8dc2d993 5964 time = cpu_clock(this);
10e2f1ac 5965
c743f0a5 5966 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3 5967 if (!--nr)
3c29e651 5968 return si_cpu;
3bd37062 5969 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5970 continue;
943d355d 5971 if (available_idle_cpu(cpu))
10e2f1ac 5972 break;
3c29e651
VK
5973 if (si_cpu == -1 && sched_idle_cpu(cpu))
5974 si_cpu = cpu;
10e2f1ac
PZ
5975 }
5976
8dc2d993 5977 time = cpu_clock(this) - time;
10e2f1ac
PZ
5978 cost = this_sd->avg_scan_cost;
5979 delta = (s64)(time - cost) / 8;
5980 this_sd->avg_scan_cost += delta;
5981
5982 return cpu;
5983}
5984
5985/*
5986 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5987 */
772bd008 5988static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5989{
99bd5e2f 5990 struct sched_domain *sd;
32e839dd 5991 int i, recent_used_cpu;
a50bde51 5992
3c29e651 5993 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 5994 return target;
99bd5e2f
SS
5995
5996 /*
97fb7a0a 5997 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 5998 */
3c29e651
VK
5999 if (prev != target && cpus_share_cache(prev, target) &&
6000 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6001 return prev;
a50bde51 6002
97fb7a0a 6003 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6004 recent_used_cpu = p->recent_used_cpu;
6005 if (recent_used_cpu != prev &&
6006 recent_used_cpu != target &&
6007 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6008 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6009 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6010 /*
6011 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6012 * candidate for the next wake:
32e839dd
MG
6013 */
6014 p->recent_used_cpu = prev;
6015 return recent_used_cpu;
6016 }
6017
518cd623 6018 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6019 if (!sd)
6020 return target;
772bd008 6021
10e2f1ac
PZ
6022 i = select_idle_core(p, sd, target);
6023 if ((unsigned)i < nr_cpumask_bits)
6024 return i;
37407ea7 6025
10e2f1ac
PZ
6026 i = select_idle_cpu(p, sd, target);
6027 if ((unsigned)i < nr_cpumask_bits)
6028 return i;
6029
1b5500d7 6030 i = select_idle_smt(p, target);
10e2f1ac
PZ
6031 if ((unsigned)i < nr_cpumask_bits)
6032 return i;
970e1789 6033
a50bde51
PZ
6034 return target;
6035}
231678b7 6036
f9be3e59
PB
6037/**
6038 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6039 * @cpu: the CPU to get the utilization of
6040 *
6041 * The unit of the return value must be the one of capacity so we can compare
6042 * the utilization with the capacity of the CPU that is available for CFS task
6043 * (ie cpu_capacity).
231678b7
DE
6044 *
6045 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6046 * recent utilization of currently non-runnable tasks on a CPU. It represents
6047 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6048 * capacity_orig is the cpu_capacity available at the highest frequency
6049 * (arch_scale_freq_capacity()).
6050 * The utilization of a CPU converges towards a sum equal to or less than the
6051 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6052 * the running time on this CPU scaled by capacity_curr.
6053 *
f9be3e59
PB
6054 * The estimated utilization of a CPU is defined to be the maximum between its
6055 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6056 * currently RUNNABLE on that CPU.
6057 * This allows to properly represent the expected utilization of a CPU which
6058 * has just got a big task running since a long sleep period. At the same time
6059 * however it preserves the benefits of the "blocked utilization" in
6060 * describing the potential for other tasks waking up on the same CPU.
6061 *
231678b7
DE
6062 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6063 * higher than capacity_orig because of unfortunate rounding in
6064 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6065 * the average stabilizes with the new running time. We need to check that the
6066 * utilization stays within the range of [0..capacity_orig] and cap it if
6067 * necessary. Without utilization capping, a group could be seen as overloaded
6068 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6069 * available capacity. We allow utilization to overshoot capacity_curr (but not
6070 * capacity_orig) as it useful for predicting the capacity required after task
6071 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6072 *
6073 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6074 */
f9be3e59 6075static inline unsigned long cpu_util(int cpu)
8bb5b00c 6076{
f9be3e59
PB
6077 struct cfs_rq *cfs_rq;
6078 unsigned int util;
6079
6080 cfs_rq = &cpu_rq(cpu)->cfs;
6081 util = READ_ONCE(cfs_rq->avg.util_avg);
6082
6083 if (sched_feat(UTIL_EST))
6084 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6085
f9be3e59 6086 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6087}
a50bde51 6088
104cb16d 6089/*
c469933e
PB
6090 * cpu_util_without: compute cpu utilization without any contributions from *p
6091 * @cpu: the CPU which utilization is requested
6092 * @p: the task which utilization should be discounted
6093 *
6094 * The utilization of a CPU is defined by the utilization of tasks currently
6095 * enqueued on that CPU as well as tasks which are currently sleeping after an
6096 * execution on that CPU.
6097 *
6098 * This method returns the utilization of the specified CPU by discounting the
6099 * utilization of the specified task, whenever the task is currently
6100 * contributing to the CPU utilization.
104cb16d 6101 */
c469933e 6102static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6103{
f9be3e59
PB
6104 struct cfs_rq *cfs_rq;
6105 unsigned int util;
104cb16d
MR
6106
6107 /* Task has no contribution or is new */
f9be3e59 6108 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6109 return cpu_util(cpu);
6110
f9be3e59
PB
6111 cfs_rq = &cpu_rq(cpu)->cfs;
6112 util = READ_ONCE(cfs_rq->avg.util_avg);
6113
c469933e 6114 /* Discount task's util from CPU's util */
b5c0ce7b 6115 lsub_positive(&util, task_util(p));
104cb16d 6116
f9be3e59
PB
6117 /*
6118 * Covered cases:
6119 *
6120 * a) if *p is the only task sleeping on this CPU, then:
6121 * cpu_util (== task_util) > util_est (== 0)
6122 * and thus we return:
c469933e 6123 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6124 *
6125 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6126 * IDLE, then:
6127 * cpu_util >= task_util
6128 * cpu_util > util_est (== 0)
6129 * and thus we discount *p's blocked utilization to return:
c469933e 6130 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6131 *
6132 * c) if other tasks are RUNNABLE on that CPU and
6133 * util_est > cpu_util
6134 * then we use util_est since it returns a more restrictive
6135 * estimation of the spare capacity on that CPU, by just
6136 * considering the expected utilization of tasks already
6137 * runnable on that CPU.
6138 *
6139 * Cases a) and b) are covered by the above code, while case c) is
6140 * covered by the following code when estimated utilization is
6141 * enabled.
6142 */
c469933e
PB
6143 if (sched_feat(UTIL_EST)) {
6144 unsigned int estimated =
6145 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6146
6147 /*
6148 * Despite the following checks we still have a small window
6149 * for a possible race, when an execl's select_task_rq_fair()
6150 * races with LB's detach_task():
6151 *
6152 * detach_task()
6153 * p->on_rq = TASK_ON_RQ_MIGRATING;
6154 * ---------------------------------- A
6155 * deactivate_task() \
6156 * dequeue_task() + RaceTime
6157 * util_est_dequeue() /
6158 * ---------------------------------- B
6159 *
6160 * The additional check on "current == p" it's required to
6161 * properly fix the execl regression and it helps in further
6162 * reducing the chances for the above race.
6163 */
b5c0ce7b
PB
6164 if (unlikely(task_on_rq_queued(p) || current == p))
6165 lsub_positive(&estimated, _task_util_est(p));
6166
c469933e
PB
6167 util = max(util, estimated);
6168 }
f9be3e59
PB
6169
6170 /*
6171 * Utilization (estimated) can exceed the CPU capacity, thus let's
6172 * clamp to the maximum CPU capacity to ensure consistency with
6173 * the cpu_util call.
6174 */
6175 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6176}
6177
3273163c
MR
6178/*
6179 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6180 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6181 *
6182 * In that case WAKE_AFFINE doesn't make sense and we'll let
6183 * BALANCE_WAKE sort things out.
6184 */
6185static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6186{
6187 long min_cap, max_cap;
6188
df054e84
MR
6189 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6190 return 0;
6191
3273163c
MR
6192 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6193 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6194
6195 /* Minimum capacity is close to max, no need to abort wake_affine */
6196 if (max_cap - min_cap < max_cap >> 3)
6197 return 0;
6198
104cb16d
MR
6199 /* Bring task utilization in sync with prev_cpu */
6200 sync_entity_load_avg(&p->se);
6201
3b1baa64 6202 return !task_fits_capacity(p, min_cap);
3273163c
MR
6203}
6204
390031e4
QP
6205/*
6206 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6207 * to @dst_cpu.
6208 */
6209static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6210{
6211 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6212 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6213
6214 /*
6215 * If @p migrates from @cpu to another, remove its contribution. Or,
6216 * if @p migrates from another CPU to @cpu, add its contribution. In
6217 * the other cases, @cpu is not impacted by the migration, so the
6218 * util_avg should already be correct.
6219 */
6220 if (task_cpu(p) == cpu && dst_cpu != cpu)
6221 sub_positive(&util, task_util(p));
6222 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6223 util += task_util(p);
6224
6225 if (sched_feat(UTIL_EST)) {
6226 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6227
6228 /*
6229 * During wake-up, the task isn't enqueued yet and doesn't
6230 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6231 * so just add it (if needed) to "simulate" what will be
6232 * cpu_util() after the task has been enqueued.
6233 */
6234 if (dst_cpu == cpu)
6235 util_est += _task_util_est(p);
6236
6237 util = max(util, util_est);
6238 }
6239
6240 return min(util, capacity_orig_of(cpu));
6241}
6242
6243/*
eb92692b 6244 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6245 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6246 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6247 * to compute what would be the energy if we decided to actually migrate that
6248 * task.
6249 */
6250static long
6251compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6252{
eb92692b
QP
6253 struct cpumask *pd_mask = perf_domain_span(pd);
6254 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6255 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6256 int cpu;
6257
eb92692b
QP
6258 /*
6259 * The capacity state of CPUs of the current rd can be driven by CPUs
6260 * of another rd if they belong to the same pd. So, account for the
6261 * utilization of these CPUs too by masking pd with cpu_online_mask
6262 * instead of the rd span.
6263 *
6264 * If an entire pd is outside of the current rd, it will not appear in
6265 * its pd list and will not be accounted by compute_energy().
6266 */
6267 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6268 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6269 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6270
6271 /*
eb92692b
QP
6272 * Busy time computation: utilization clamping is not
6273 * required since the ratio (sum_util / cpu_capacity)
6274 * is already enough to scale the EM reported power
6275 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6276 */
eb92692b
QP
6277 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6278 ENERGY_UTIL, NULL);
af24bde8 6279
390031e4 6280 /*
eb92692b
QP
6281 * Performance domain frequency: utilization clamping
6282 * must be considered since it affects the selection
6283 * of the performance domain frequency.
6284 * NOTE: in case RT tasks are running, by default the
6285 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6286 */
eb92692b
QP
6287 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6288 FREQUENCY_UTIL, tsk);
6289 max_util = max(max_util, cpu_util);
390031e4
QP
6290 }
6291
eb92692b 6292 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6293}
6294
732cd75b
QP
6295/*
6296 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6297 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6298 * spare capacity in each performance domain and uses it as a potential
6299 * candidate to execute the task. Then, it uses the Energy Model to figure
6300 * out which of the CPU candidates is the most energy-efficient.
6301 *
6302 * The rationale for this heuristic is as follows. In a performance domain,
6303 * all the most energy efficient CPU candidates (according to the Energy
6304 * Model) are those for which we'll request a low frequency. When there are
6305 * several CPUs for which the frequency request will be the same, we don't
6306 * have enough data to break the tie between them, because the Energy Model
6307 * only includes active power costs. With this model, if we assume that
6308 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6309 * the maximum spare capacity in a performance domain is guaranteed to be among
6310 * the best candidates of the performance domain.
6311 *
6312 * In practice, it could be preferable from an energy standpoint to pack
6313 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6314 * but that could also hurt our chances to go cluster idle, and we have no
6315 * ways to tell with the current Energy Model if this is actually a good
6316 * idea or not. So, find_energy_efficient_cpu() basically favors
6317 * cluster-packing, and spreading inside a cluster. That should at least be
6318 * a good thing for latency, and this is consistent with the idea that most
6319 * of the energy savings of EAS come from the asymmetry of the system, and
6320 * not so much from breaking the tie between identical CPUs. That's also the
6321 * reason why EAS is enabled in the topology code only for systems where
6322 * SD_ASYM_CPUCAPACITY is set.
6323 *
6324 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6325 * they don't have any useful utilization data yet and it's not possible to
6326 * forecast their impact on energy consumption. Consequently, they will be
6327 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6328 * to be energy-inefficient in some use-cases. The alternative would be to
6329 * bias new tasks towards specific types of CPUs first, or to try to infer
6330 * their util_avg from the parent task, but those heuristics could hurt
6331 * other use-cases too. So, until someone finds a better way to solve this,
6332 * let's keep things simple by re-using the existing slow path.
6333 */
732cd75b
QP
6334static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6335{
eb92692b 6336 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6337 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6338 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6339 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6340 struct sched_domain *sd;
eb92692b 6341 struct perf_domain *pd;
732cd75b
QP
6342
6343 rcu_read_lock();
6344 pd = rcu_dereference(rd->pd);
6345 if (!pd || READ_ONCE(rd->overutilized))
6346 goto fail;
732cd75b
QP
6347
6348 /*
6349 * Energy-aware wake-up happens on the lowest sched_domain starting
6350 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6351 */
6352 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6353 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6354 sd = sd->parent;
6355 if (!sd)
6356 goto fail;
6357
6358 sync_entity_load_avg(&p->se);
6359 if (!task_util_est(p))
6360 goto unlock;
6361
6362 for (; pd; pd = pd->next) {
eb92692b
QP
6363 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6364 unsigned long base_energy_pd;
732cd75b
QP
6365 int max_spare_cap_cpu = -1;
6366
eb92692b
QP
6367 /* Compute the 'base' energy of the pd, without @p */
6368 base_energy_pd = compute_energy(p, -1, pd);
6369 base_energy += base_energy_pd;
6370
732cd75b 6371 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6372 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6373 continue;
6374
6375 /* Skip CPUs that will be overutilized. */
6376 util = cpu_util_next(cpu, p, cpu);
6377 cpu_cap = capacity_of(cpu);
60e17f5c 6378 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6379 continue;
6380
6381 /* Always use prev_cpu as a candidate. */
6382 if (cpu == prev_cpu) {
eb92692b
QP
6383 prev_delta = compute_energy(p, prev_cpu, pd);
6384 prev_delta -= base_energy_pd;
6385 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6386 }
6387
6388 /*
6389 * Find the CPU with the maximum spare capacity in
6390 * the performance domain
6391 */
6392 spare_cap = cpu_cap - util;
6393 if (spare_cap > max_spare_cap) {
6394 max_spare_cap = spare_cap;
6395 max_spare_cap_cpu = cpu;
6396 }
6397 }
6398
6399 /* Evaluate the energy impact of using this CPU. */
4892f51a 6400 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6401 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6402 cur_delta -= base_energy_pd;
6403 if (cur_delta < best_delta) {
6404 best_delta = cur_delta;
732cd75b
QP
6405 best_energy_cpu = max_spare_cap_cpu;
6406 }
6407 }
6408 }
6409unlock:
6410 rcu_read_unlock();
6411
6412 /*
6413 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6414 * least 6% of the energy used by prev_cpu.
6415 */
eb92692b 6416 if (prev_delta == ULONG_MAX)
732cd75b
QP
6417 return best_energy_cpu;
6418
eb92692b 6419 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6420 return best_energy_cpu;
6421
6422 return prev_cpu;
6423
6424fail:
6425 rcu_read_unlock();
6426
6427 return -1;
6428}
6429
aaee1203 6430/*
de91b9cb
MR
6431 * select_task_rq_fair: Select target runqueue for the waking task in domains
6432 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6433 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6434 *
97fb7a0a
IM
6435 * Balances load by selecting the idlest CPU in the idlest group, or under
6436 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6437 *
97fb7a0a 6438 * Returns the target CPU number.
aaee1203
PZ
6439 *
6440 * preempt must be disabled.
6441 */
0017d735 6442static int
ac66f547 6443select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6444{
f1d88b44 6445 struct sched_domain *tmp, *sd = NULL;
c88d5910 6446 int cpu = smp_processor_id();
63b0e9ed 6447 int new_cpu = prev_cpu;
99bd5e2f 6448 int want_affine = 0;
24d0c1d6 6449 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6450
c58d25f3
PZ
6451 if (sd_flag & SD_BALANCE_WAKE) {
6452 record_wakee(p);
732cd75b 6453
f8a696f2 6454 if (sched_energy_enabled()) {
732cd75b
QP
6455 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6456 if (new_cpu >= 0)
6457 return new_cpu;
6458 new_cpu = prev_cpu;
6459 }
6460
6461 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6462 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6463 }
aaee1203 6464
dce840a0 6465 rcu_read_lock();
aaee1203 6466 for_each_domain(cpu, tmp) {
e4f42888 6467 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6468 break;
e4f42888 6469
fe3bcfe1 6470 /*
97fb7a0a 6471 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6472 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6473 */
99bd5e2f
SS
6474 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6475 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6476 if (cpu != prev_cpu)
6477 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6478
6479 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6480 break;
f03542a7 6481 }
29cd8bae 6482
f03542a7 6483 if (tmp->flags & sd_flag)
29cd8bae 6484 sd = tmp;
63b0e9ed
MG
6485 else if (!want_affine)
6486 break;
29cd8bae
PZ
6487 }
6488
f1d88b44
VK
6489 if (unlikely(sd)) {
6490 /* Slow path */
18bd1b4b 6491 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6492 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6493 /* Fast path */
6494
6495 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6496
6497 if (want_affine)
6498 current->recent_used_cpu = cpu;
e7693a36 6499 }
dce840a0 6500 rcu_read_unlock();
e7693a36 6501
c88d5910 6502 return new_cpu;
e7693a36 6503}
0a74bef8 6504
144d8487
PZ
6505static void detach_entity_cfs_rq(struct sched_entity *se);
6506
0a74bef8 6507/*
97fb7a0a 6508 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6509 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6510 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6511 */
3f9672ba 6512static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6513{
59efa0ba
PZ
6514 /*
6515 * As blocked tasks retain absolute vruntime the migration needs to
6516 * deal with this by subtracting the old and adding the new
6517 * min_vruntime -- the latter is done by enqueue_entity() when placing
6518 * the task on the new runqueue.
6519 */
6520 if (p->state == TASK_WAKING) {
6521 struct sched_entity *se = &p->se;
6522 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6523 u64 min_vruntime;
6524
6525#ifndef CONFIG_64BIT
6526 u64 min_vruntime_copy;
6527
6528 do {
6529 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6530 smp_rmb();
6531 min_vruntime = cfs_rq->min_vruntime;
6532 } while (min_vruntime != min_vruntime_copy);
6533#else
6534 min_vruntime = cfs_rq->min_vruntime;
6535#endif
6536
6537 se->vruntime -= min_vruntime;
6538 }
6539
144d8487
PZ
6540 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6541 /*
6542 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6543 * rq->lock and can modify state directly.
6544 */
6545 lockdep_assert_held(&task_rq(p)->lock);
6546 detach_entity_cfs_rq(&p->se);
6547
6548 } else {
6549 /*
6550 * We are supposed to update the task to "current" time, then
6551 * its up to date and ready to go to new CPU/cfs_rq. But we
6552 * have difficulty in getting what current time is, so simply
6553 * throw away the out-of-date time. This will result in the
6554 * wakee task is less decayed, but giving the wakee more load
6555 * sounds not bad.
6556 */
6557 remove_entity_load_avg(&p->se);
6558 }
9d89c257
YD
6559
6560 /* Tell new CPU we are migrated */
6561 p->se.avg.last_update_time = 0;
3944a927
BS
6562
6563 /* We have migrated, no longer consider this task hot */
9d89c257 6564 p->se.exec_start = 0;
3f9672ba
SD
6565
6566 update_scan_period(p, new_cpu);
0a74bef8 6567}
12695578
YD
6568
6569static void task_dead_fair(struct task_struct *p)
6570{
6571 remove_entity_load_avg(&p->se);
6572}
e7693a36
GH
6573#endif /* CONFIG_SMP */
6574
a555e9d8 6575static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6576{
6577 unsigned long gran = sysctl_sched_wakeup_granularity;
6578
6579 /*
e52fb7c0
PZ
6580 * Since its curr running now, convert the gran from real-time
6581 * to virtual-time in his units.
13814d42
MG
6582 *
6583 * By using 'se' instead of 'curr' we penalize light tasks, so
6584 * they get preempted easier. That is, if 'se' < 'curr' then
6585 * the resulting gran will be larger, therefore penalizing the
6586 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6587 * be smaller, again penalizing the lighter task.
6588 *
6589 * This is especially important for buddies when the leftmost
6590 * task is higher priority than the buddy.
0bbd3336 6591 */
f4ad9bd2 6592 return calc_delta_fair(gran, se);
0bbd3336
PZ
6593}
6594
464b7527
PZ
6595/*
6596 * Should 'se' preempt 'curr'.
6597 *
6598 * |s1
6599 * |s2
6600 * |s3
6601 * g
6602 * |<--->|c
6603 *
6604 * w(c, s1) = -1
6605 * w(c, s2) = 0
6606 * w(c, s3) = 1
6607 *
6608 */
6609static int
6610wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6611{
6612 s64 gran, vdiff = curr->vruntime - se->vruntime;
6613
6614 if (vdiff <= 0)
6615 return -1;
6616
a555e9d8 6617 gran = wakeup_gran(se);
464b7527
PZ
6618 if (vdiff > gran)
6619 return 1;
6620
6621 return 0;
6622}
6623
02479099
PZ
6624static void set_last_buddy(struct sched_entity *se)
6625{
1da1843f 6626 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6627 return;
6628
c5ae366e
DA
6629 for_each_sched_entity(se) {
6630 if (SCHED_WARN_ON(!se->on_rq))
6631 return;
69c80f3e 6632 cfs_rq_of(se)->last = se;
c5ae366e 6633 }
02479099
PZ
6634}
6635
6636static void set_next_buddy(struct sched_entity *se)
6637{
1da1843f 6638 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6639 return;
6640
c5ae366e
DA
6641 for_each_sched_entity(se) {
6642 if (SCHED_WARN_ON(!se->on_rq))
6643 return;
69c80f3e 6644 cfs_rq_of(se)->next = se;
c5ae366e 6645 }
02479099
PZ
6646}
6647
ac53db59
RR
6648static void set_skip_buddy(struct sched_entity *se)
6649{
69c80f3e
VP
6650 for_each_sched_entity(se)
6651 cfs_rq_of(se)->skip = se;
ac53db59
RR
6652}
6653
bf0f6f24
IM
6654/*
6655 * Preempt the current task with a newly woken task if needed:
6656 */
5a9b86f6 6657static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6658{
6659 struct task_struct *curr = rq->curr;
8651a86c 6660 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6661 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6662 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6663 int next_buddy_marked = 0;
bf0f6f24 6664
4ae7d5ce
IM
6665 if (unlikely(se == pse))
6666 return;
6667
5238cdd3 6668 /*
163122b7 6669 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6670 * unconditionally check_prempt_curr() after an enqueue (which may have
6671 * lead to a throttle). This both saves work and prevents false
6672 * next-buddy nomination below.
6673 */
6674 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6675 return;
6676
2f36825b 6677 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6678 set_next_buddy(pse);
2f36825b
VP
6679 next_buddy_marked = 1;
6680 }
57fdc26d 6681
aec0a514
BR
6682 /*
6683 * We can come here with TIF_NEED_RESCHED already set from new task
6684 * wake up path.
5238cdd3
PT
6685 *
6686 * Note: this also catches the edge-case of curr being in a throttled
6687 * group (e.g. via set_curr_task), since update_curr() (in the
6688 * enqueue of curr) will have resulted in resched being set. This
6689 * prevents us from potentially nominating it as a false LAST_BUDDY
6690 * below.
aec0a514
BR
6691 */
6692 if (test_tsk_need_resched(curr))
6693 return;
6694
a2f5c9ab 6695 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6696 if (unlikely(task_has_idle_policy(curr)) &&
6697 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6698 goto preempt;
6699
91c234b4 6700 /*
a2f5c9ab
DH
6701 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6702 * is driven by the tick):
91c234b4 6703 */
8ed92e51 6704 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6705 return;
bf0f6f24 6706
464b7527 6707 find_matching_se(&se, &pse);
9bbd7374 6708 update_curr(cfs_rq_of(se));
002f128b 6709 BUG_ON(!pse);
2f36825b
VP
6710 if (wakeup_preempt_entity(se, pse) == 1) {
6711 /*
6712 * Bias pick_next to pick the sched entity that is
6713 * triggering this preemption.
6714 */
6715 if (!next_buddy_marked)
6716 set_next_buddy(pse);
3a7e73a2 6717 goto preempt;
2f36825b 6718 }
464b7527 6719
3a7e73a2 6720 return;
a65ac745 6721
3a7e73a2 6722preempt:
8875125e 6723 resched_curr(rq);
3a7e73a2
PZ
6724 /*
6725 * Only set the backward buddy when the current task is still
6726 * on the rq. This can happen when a wakeup gets interleaved
6727 * with schedule on the ->pre_schedule() or idle_balance()
6728 * point, either of which can * drop the rq lock.
6729 *
6730 * Also, during early boot the idle thread is in the fair class,
6731 * for obvious reasons its a bad idea to schedule back to it.
6732 */
6733 if (unlikely(!se->on_rq || curr == rq->idle))
6734 return;
6735
6736 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6737 set_last_buddy(se);
bf0f6f24
IM
6738}
6739
606dba2e 6740static struct task_struct *
d8ac8971 6741pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6742{
6743 struct cfs_rq *cfs_rq = &rq->cfs;
6744 struct sched_entity *se;
678d5718 6745 struct task_struct *p;
37e117c0 6746 int new_tasks;
678d5718 6747
6e83125c 6748again:
678d5718 6749 if (!cfs_rq->nr_running)
38033c37 6750 goto idle;
678d5718 6751
9674f5ca 6752#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6753 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6754 goto simple;
6755
6756 /*
6757 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6758 * likely that a next task is from the same cgroup as the current.
6759 *
6760 * Therefore attempt to avoid putting and setting the entire cgroup
6761 * hierarchy, only change the part that actually changes.
6762 */
6763
6764 do {
6765 struct sched_entity *curr = cfs_rq->curr;
6766
6767 /*
6768 * Since we got here without doing put_prev_entity() we also
6769 * have to consider cfs_rq->curr. If it is still a runnable
6770 * entity, update_curr() will update its vruntime, otherwise
6771 * forget we've ever seen it.
6772 */
54d27365
BS
6773 if (curr) {
6774 if (curr->on_rq)
6775 update_curr(cfs_rq);
6776 else
6777 curr = NULL;
678d5718 6778
54d27365
BS
6779 /*
6780 * This call to check_cfs_rq_runtime() will do the
6781 * throttle and dequeue its entity in the parent(s).
9674f5ca 6782 * Therefore the nr_running test will indeed
54d27365
BS
6783 * be correct.
6784 */
9674f5ca
VK
6785 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6786 cfs_rq = &rq->cfs;
6787
6788 if (!cfs_rq->nr_running)
6789 goto idle;
6790
54d27365 6791 goto simple;
9674f5ca 6792 }
54d27365 6793 }
678d5718
PZ
6794
6795 se = pick_next_entity(cfs_rq, curr);
6796 cfs_rq = group_cfs_rq(se);
6797 } while (cfs_rq);
6798
6799 p = task_of(se);
6800
6801 /*
6802 * Since we haven't yet done put_prev_entity and if the selected task
6803 * is a different task than we started out with, try and touch the
6804 * least amount of cfs_rqs.
6805 */
6806 if (prev != p) {
6807 struct sched_entity *pse = &prev->se;
6808
6809 while (!(cfs_rq = is_same_group(se, pse))) {
6810 int se_depth = se->depth;
6811 int pse_depth = pse->depth;
6812
6813 if (se_depth <= pse_depth) {
6814 put_prev_entity(cfs_rq_of(pse), pse);
6815 pse = parent_entity(pse);
6816 }
6817 if (se_depth >= pse_depth) {
6818 set_next_entity(cfs_rq_of(se), se);
6819 se = parent_entity(se);
6820 }
6821 }
6822
6823 put_prev_entity(cfs_rq, pse);
6824 set_next_entity(cfs_rq, se);
6825 }
6826
93824900 6827 goto done;
678d5718 6828simple:
678d5718 6829#endif
67692435
PZ
6830 if (prev)
6831 put_prev_task(rq, prev);
606dba2e 6832
bf0f6f24 6833 do {
678d5718 6834 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6835 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6836 cfs_rq = group_cfs_rq(se);
6837 } while (cfs_rq);
6838
8f4d37ec 6839 p = task_of(se);
678d5718 6840
13a453c2 6841done: __maybe_unused;
93824900
UR
6842#ifdef CONFIG_SMP
6843 /*
6844 * Move the next running task to the front of
6845 * the list, so our cfs_tasks list becomes MRU
6846 * one.
6847 */
6848 list_move(&p->se.group_node, &rq->cfs_tasks);
6849#endif
6850
b39e66ea
MG
6851 if (hrtick_enabled(rq))
6852 hrtick_start_fair(rq, p);
8f4d37ec 6853
3b1baa64
MR
6854 update_misfit_status(p, rq);
6855
8f4d37ec 6856 return p;
38033c37
PZ
6857
6858idle:
67692435
PZ
6859 if (!rf)
6860 return NULL;
6861
5ba553ef 6862 new_tasks = newidle_balance(rq, rf);
46f69fa3 6863
37e117c0 6864 /*
5ba553ef 6865 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
6866 * possible for any higher priority task to appear. In that case we
6867 * must re-start the pick_next_entity() loop.
6868 */
e4aa358b 6869 if (new_tasks < 0)
37e117c0
PZ
6870 return RETRY_TASK;
6871
e4aa358b 6872 if (new_tasks > 0)
38033c37 6873 goto again;
38033c37 6874
23127296
VG
6875 /*
6876 * rq is about to be idle, check if we need to update the
6877 * lost_idle_time of clock_pelt
6878 */
6879 update_idle_rq_clock_pelt(rq);
6880
38033c37 6881 return NULL;
bf0f6f24
IM
6882}
6883
6884/*
6885 * Account for a descheduled task:
6886 */
5f2a45fc 6887static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6888{
6889 struct sched_entity *se = &prev->se;
6890 struct cfs_rq *cfs_rq;
6891
6892 for_each_sched_entity(se) {
6893 cfs_rq = cfs_rq_of(se);
ab6cde26 6894 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6895 }
6896}
6897
ac53db59
RR
6898/*
6899 * sched_yield() is very simple
6900 *
6901 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6902 */
6903static void yield_task_fair(struct rq *rq)
6904{
6905 struct task_struct *curr = rq->curr;
6906 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6907 struct sched_entity *se = &curr->se;
6908
6909 /*
6910 * Are we the only task in the tree?
6911 */
6912 if (unlikely(rq->nr_running == 1))
6913 return;
6914
6915 clear_buddies(cfs_rq, se);
6916
6917 if (curr->policy != SCHED_BATCH) {
6918 update_rq_clock(rq);
6919 /*
6920 * Update run-time statistics of the 'current'.
6921 */
6922 update_curr(cfs_rq);
916671c0
MG
6923 /*
6924 * Tell update_rq_clock() that we've just updated,
6925 * so we don't do microscopic update in schedule()
6926 * and double the fastpath cost.
6927 */
adcc8da8 6928 rq_clock_skip_update(rq);
ac53db59
RR
6929 }
6930
6931 set_skip_buddy(se);
6932}
6933
d95f4122
MG
6934static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6935{
6936 struct sched_entity *se = &p->se;
6937
5238cdd3
PT
6938 /* throttled hierarchies are not runnable */
6939 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6940 return false;
6941
6942 /* Tell the scheduler that we'd really like pse to run next. */
6943 set_next_buddy(se);
6944
d95f4122
MG
6945 yield_task_fair(rq);
6946
6947 return true;
6948}
6949
681f3e68 6950#ifdef CONFIG_SMP
bf0f6f24 6951/**************************************************
e9c84cb8
PZ
6952 * Fair scheduling class load-balancing methods.
6953 *
6954 * BASICS
6955 *
6956 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 6957 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
6958 * time to each task. This is expressed in the following equation:
6959 *
6960 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6961 *
97fb7a0a 6962 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
6963 * W_i,0 is defined as:
6964 *
6965 * W_i,0 = \Sum_j w_i,j (2)
6966 *
97fb7a0a 6967 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 6968 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6969 *
6970 * The weight average is an exponential decay average of the instantaneous
6971 * weight:
6972 *
6973 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6974 *
97fb7a0a 6975 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
6976 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6977 * can also include other factors [XXX].
6978 *
6979 * To achieve this balance we define a measure of imbalance which follows
6980 * directly from (1):
6981 *
ced549fa 6982 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6983 *
6984 * We them move tasks around to minimize the imbalance. In the continuous
6985 * function space it is obvious this converges, in the discrete case we get
6986 * a few fun cases generally called infeasible weight scenarios.
6987 *
6988 * [XXX expand on:
6989 * - infeasible weights;
6990 * - local vs global optima in the discrete case. ]
6991 *
6992 *
6993 * SCHED DOMAINS
6994 *
6995 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 6996 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 6997 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 6998 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 6999 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7000 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7001 * the groups.
7002 *
7003 * This yields:
7004 *
7005 * log_2 n 1 n
7006 * \Sum { --- * --- * 2^i } = O(n) (5)
7007 * i = 0 2^i 2^i
7008 * `- size of each group
97fb7a0a 7009 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7010 * | `- freq
7011 * `- sum over all levels
7012 *
7013 * Coupled with a limit on how many tasks we can migrate every balance pass,
7014 * this makes (5) the runtime complexity of the balancer.
7015 *
7016 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7017 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7018 *
7019 * The adjacency matrix of the resulting graph is given by:
7020 *
97a7142f 7021 * log_2 n
e9c84cb8
PZ
7022 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7023 * k = 0
7024 *
7025 * And you'll find that:
7026 *
7027 * A^(log_2 n)_i,j != 0 for all i,j (7)
7028 *
97fb7a0a 7029 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7030 * The task movement gives a factor of O(m), giving a convergence complexity
7031 * of:
7032 *
7033 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7034 *
7035 *
7036 * WORK CONSERVING
7037 *
7038 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7039 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7040 * tree itself instead of relying on other CPUs to bring it work.
7041 *
7042 * This adds some complexity to both (5) and (8) but it reduces the total idle
7043 * time.
7044 *
7045 * [XXX more?]
7046 *
7047 *
7048 * CGROUPS
7049 *
7050 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7051 *
7052 * s_k,i
7053 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7054 * S_k
7055 *
7056 * Where
7057 *
7058 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7059 *
97fb7a0a 7060 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7061 *
7062 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7063 * property.
7064 *
7065 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7066 * rewrite all of this once again.]
97a7142f 7067 */
bf0f6f24 7068
ed387b78
HS
7069static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7070
0ec8aa00
PZ
7071enum fbq_type { regular, remote, all };
7072
3b1baa64
MR
7073enum group_type {
7074 group_other = 0,
7075 group_misfit_task,
7076 group_imbalanced,
7077 group_overloaded,
7078};
7079
ddcdf6e7 7080#define LBF_ALL_PINNED 0x01
367456c7 7081#define LBF_NEED_BREAK 0x02
6263322c
PZ
7082#define LBF_DST_PINNED 0x04
7083#define LBF_SOME_PINNED 0x08
e022e0d3 7084#define LBF_NOHZ_STATS 0x10
f643ea22 7085#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7086
7087struct lb_env {
7088 struct sched_domain *sd;
7089
ddcdf6e7 7090 struct rq *src_rq;
85c1e7da 7091 int src_cpu;
ddcdf6e7
PZ
7092
7093 int dst_cpu;
7094 struct rq *dst_rq;
7095
88b8dac0
SV
7096 struct cpumask *dst_grpmask;
7097 int new_dst_cpu;
ddcdf6e7 7098 enum cpu_idle_type idle;
bd939f45 7099 long imbalance;
b9403130
MW
7100 /* The set of CPUs under consideration for load-balancing */
7101 struct cpumask *cpus;
7102
ddcdf6e7 7103 unsigned int flags;
367456c7
PZ
7104
7105 unsigned int loop;
7106 unsigned int loop_break;
7107 unsigned int loop_max;
0ec8aa00
PZ
7108
7109 enum fbq_type fbq_type;
cad68e55 7110 enum group_type src_grp_type;
163122b7 7111 struct list_head tasks;
ddcdf6e7
PZ
7112};
7113
029632fb
PZ
7114/*
7115 * Is this task likely cache-hot:
7116 */
5d5e2b1b 7117static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7118{
7119 s64 delta;
7120
e5673f28
KT
7121 lockdep_assert_held(&env->src_rq->lock);
7122
029632fb
PZ
7123 if (p->sched_class != &fair_sched_class)
7124 return 0;
7125
1da1843f 7126 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7127 return 0;
7128
7129 /*
7130 * Buddy candidates are cache hot:
7131 */
5d5e2b1b 7132 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7133 (&p->se == cfs_rq_of(&p->se)->next ||
7134 &p->se == cfs_rq_of(&p->se)->last))
7135 return 1;
7136
7137 if (sysctl_sched_migration_cost == -1)
7138 return 1;
7139 if (sysctl_sched_migration_cost == 0)
7140 return 0;
7141
5d5e2b1b 7142 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7143
7144 return delta < (s64)sysctl_sched_migration_cost;
7145}
7146
3a7053b3 7147#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7148/*
2a1ed24c
SD
7149 * Returns 1, if task migration degrades locality
7150 * Returns 0, if task migration improves locality i.e migration preferred.
7151 * Returns -1, if task migration is not affected by locality.
c1ceac62 7152 */
2a1ed24c 7153static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7154{
b1ad065e 7155 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7156 unsigned long src_weight, dst_weight;
7157 int src_nid, dst_nid, dist;
3a7053b3 7158
2a595721 7159 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7160 return -1;
7161
c3b9bc5b 7162 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7163 return -1;
7a0f3083
MG
7164
7165 src_nid = cpu_to_node(env->src_cpu);
7166 dst_nid = cpu_to_node(env->dst_cpu);
7167
83e1d2cd 7168 if (src_nid == dst_nid)
2a1ed24c 7169 return -1;
7a0f3083 7170
2a1ed24c
SD
7171 /* Migrating away from the preferred node is always bad. */
7172 if (src_nid == p->numa_preferred_nid) {
7173 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7174 return 1;
7175 else
7176 return -1;
7177 }
b1ad065e 7178
c1ceac62
RR
7179 /* Encourage migration to the preferred node. */
7180 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7181 return 0;
b1ad065e 7182
739294fb 7183 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7184 if (env->idle == CPU_IDLE)
739294fb
RR
7185 return -1;
7186
f35678b6 7187 dist = node_distance(src_nid, dst_nid);
c1ceac62 7188 if (numa_group) {
f35678b6
SD
7189 src_weight = group_weight(p, src_nid, dist);
7190 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7191 } else {
f35678b6
SD
7192 src_weight = task_weight(p, src_nid, dist);
7193 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7194 }
7195
f35678b6 7196 return dst_weight < src_weight;
7a0f3083
MG
7197}
7198
3a7053b3 7199#else
2a1ed24c 7200static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7201 struct lb_env *env)
7202{
2a1ed24c 7203 return -1;
7a0f3083 7204}
3a7053b3
MG
7205#endif
7206
1e3c88bd
PZ
7207/*
7208 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7209 */
7210static
8e45cb54 7211int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7212{
2a1ed24c 7213 int tsk_cache_hot;
e5673f28
KT
7214
7215 lockdep_assert_held(&env->src_rq->lock);
7216
1e3c88bd
PZ
7217 /*
7218 * We do not migrate tasks that are:
d3198084 7219 * 1) throttled_lb_pair, or
3bd37062 7220 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7221 * 3) running (obviously), or
7222 * 4) are cache-hot on their current CPU.
1e3c88bd 7223 */
d3198084
JK
7224 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7225 return 0;
7226
3bd37062 7227 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7228 int cpu;
88b8dac0 7229
ae92882e 7230 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7231
6263322c
PZ
7232 env->flags |= LBF_SOME_PINNED;
7233
88b8dac0 7234 /*
97fb7a0a 7235 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7236 * our sched_group. We may want to revisit it if we couldn't
7237 * meet load balance goals by pulling other tasks on src_cpu.
7238 *
65a4433a
JH
7239 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7240 * already computed one in current iteration.
88b8dac0 7241 */
65a4433a 7242 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7243 return 0;
7244
97fb7a0a 7245 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7246 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7247 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7248 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7249 env->new_dst_cpu = cpu;
7250 break;
7251 }
88b8dac0 7252 }
e02e60c1 7253
1e3c88bd
PZ
7254 return 0;
7255 }
88b8dac0
SV
7256
7257 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7258 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7259
ddcdf6e7 7260 if (task_running(env->src_rq, p)) {
ae92882e 7261 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7262 return 0;
7263 }
7264
7265 /*
7266 * Aggressive migration if:
3a7053b3
MG
7267 * 1) destination numa is preferred
7268 * 2) task is cache cold, or
7269 * 3) too many balance attempts have failed.
1e3c88bd 7270 */
2a1ed24c
SD
7271 tsk_cache_hot = migrate_degrades_locality(p, env);
7272 if (tsk_cache_hot == -1)
7273 tsk_cache_hot = task_hot(p, env);
3a7053b3 7274
2a1ed24c 7275 if (tsk_cache_hot <= 0 ||
7a96c231 7276 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7277 if (tsk_cache_hot == 1) {
ae92882e
JP
7278 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7279 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7280 }
1e3c88bd
PZ
7281 return 1;
7282 }
7283
ae92882e 7284 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7285 return 0;
1e3c88bd
PZ
7286}
7287
897c395f 7288/*
163122b7
KT
7289 * detach_task() -- detach the task for the migration specified in env
7290 */
7291static void detach_task(struct task_struct *p, struct lb_env *env)
7292{
7293 lockdep_assert_held(&env->src_rq->lock);
7294
5704ac0a 7295 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7296 set_task_cpu(p, env->dst_cpu);
7297}
7298
897c395f 7299/*
e5673f28 7300 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7301 * part of active balancing operations within "domain".
897c395f 7302 *
e5673f28 7303 * Returns a task if successful and NULL otherwise.
897c395f 7304 */
e5673f28 7305static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7306{
93824900 7307 struct task_struct *p;
897c395f 7308
e5673f28
KT
7309 lockdep_assert_held(&env->src_rq->lock);
7310
93824900
UR
7311 list_for_each_entry_reverse(p,
7312 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7313 if (!can_migrate_task(p, env))
7314 continue;
897c395f 7315
163122b7 7316 detach_task(p, env);
e5673f28 7317
367456c7 7318 /*
e5673f28 7319 * Right now, this is only the second place where
163122b7 7320 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7321 * so we can safely collect stats here rather than
163122b7 7322 * inside detach_tasks().
367456c7 7323 */
ae92882e 7324 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7325 return p;
897c395f 7326 }
e5673f28 7327 return NULL;
897c395f
PZ
7328}
7329
eb95308e
PZ
7330static const unsigned int sched_nr_migrate_break = 32;
7331
5d6523eb 7332/*
a3df0679 7333 * detach_tasks() -- tries to detach up to imbalance runnable load from
163122b7 7334 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7335 *
163122b7 7336 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7337 */
163122b7 7338static int detach_tasks(struct lb_env *env)
1e3c88bd 7339{
5d6523eb
PZ
7340 struct list_head *tasks = &env->src_rq->cfs_tasks;
7341 struct task_struct *p;
367456c7 7342 unsigned long load;
163122b7
KT
7343 int detached = 0;
7344
7345 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7346
bd939f45 7347 if (env->imbalance <= 0)
5d6523eb 7348 return 0;
1e3c88bd 7349
5d6523eb 7350 while (!list_empty(tasks)) {
985d3a4c
YD
7351 /*
7352 * We don't want to steal all, otherwise we may be treated likewise,
7353 * which could at worst lead to a livelock crash.
7354 */
7355 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7356 break;
7357
93824900 7358 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7359
367456c7
PZ
7360 env->loop++;
7361 /* We've more or less seen every task there is, call it quits */
5d6523eb 7362 if (env->loop > env->loop_max)
367456c7 7363 break;
5d6523eb
PZ
7364
7365 /* take a breather every nr_migrate tasks */
367456c7 7366 if (env->loop > env->loop_break) {
eb95308e 7367 env->loop_break += sched_nr_migrate_break;
8e45cb54 7368 env->flags |= LBF_NEED_BREAK;
ee00e66f 7369 break;
a195f004 7370 }
1e3c88bd 7371
d3198084 7372 if (!can_migrate_task(p, env))
367456c7
PZ
7373 goto next;
7374
7375 load = task_h_load(p);
5d6523eb 7376
eb95308e 7377 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7378 goto next;
7379
bd939f45 7380 if ((load / 2) > env->imbalance)
367456c7 7381 goto next;
1e3c88bd 7382
163122b7
KT
7383 detach_task(p, env);
7384 list_add(&p->se.group_node, &env->tasks);
7385
7386 detached++;
bd939f45 7387 env->imbalance -= load;
1e3c88bd 7388
c1a280b6 7389#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7390 /*
7391 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7392 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7393 * the critical section.
7394 */
5d6523eb 7395 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7396 break;
1e3c88bd
PZ
7397#endif
7398
ee00e66f
PZ
7399 /*
7400 * We only want to steal up to the prescribed amount of
a3df0679 7401 * runnable load.
ee00e66f 7402 */
bd939f45 7403 if (env->imbalance <= 0)
ee00e66f 7404 break;
367456c7
PZ
7405
7406 continue;
7407next:
93824900 7408 list_move(&p->se.group_node, tasks);
1e3c88bd 7409 }
5d6523eb 7410
1e3c88bd 7411 /*
163122b7
KT
7412 * Right now, this is one of only two places we collect this stat
7413 * so we can safely collect detach_one_task() stats here rather
7414 * than inside detach_one_task().
1e3c88bd 7415 */
ae92882e 7416 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7417
163122b7
KT
7418 return detached;
7419}
7420
7421/*
7422 * attach_task() -- attach the task detached by detach_task() to its new rq.
7423 */
7424static void attach_task(struct rq *rq, struct task_struct *p)
7425{
7426 lockdep_assert_held(&rq->lock);
7427
7428 BUG_ON(task_rq(p) != rq);
5704ac0a 7429 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7430 check_preempt_curr(rq, p, 0);
7431}
7432
7433/*
7434 * attach_one_task() -- attaches the task returned from detach_one_task() to
7435 * its new rq.
7436 */
7437static void attach_one_task(struct rq *rq, struct task_struct *p)
7438{
8a8c69c3
PZ
7439 struct rq_flags rf;
7440
7441 rq_lock(rq, &rf);
5704ac0a 7442 update_rq_clock(rq);
163122b7 7443 attach_task(rq, p);
8a8c69c3 7444 rq_unlock(rq, &rf);
163122b7
KT
7445}
7446
7447/*
7448 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7449 * new rq.
7450 */
7451static void attach_tasks(struct lb_env *env)
7452{
7453 struct list_head *tasks = &env->tasks;
7454 struct task_struct *p;
8a8c69c3 7455 struct rq_flags rf;
163122b7 7456
8a8c69c3 7457 rq_lock(env->dst_rq, &rf);
5704ac0a 7458 update_rq_clock(env->dst_rq);
163122b7
KT
7459
7460 while (!list_empty(tasks)) {
7461 p = list_first_entry(tasks, struct task_struct, se.group_node);
7462 list_del_init(&p->se.group_node);
1e3c88bd 7463
163122b7
KT
7464 attach_task(env->dst_rq, p);
7465 }
7466
8a8c69c3 7467 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7468}
7469
b0c79224 7470#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7471static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7472{
7473 if (cfs_rq->avg.load_avg)
7474 return true;
7475
7476 if (cfs_rq->avg.util_avg)
7477 return true;
7478
7479 return false;
7480}
7481
91c27493 7482static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7483{
7484 if (READ_ONCE(rq->avg_rt.util_avg))
7485 return true;
7486
3727e0e1
VG
7487 if (READ_ONCE(rq->avg_dl.util_avg))
7488 return true;
7489
11d4afd4 7490#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7491 if (READ_ONCE(rq->avg_irq.util_avg))
7492 return true;
7493#endif
7494
371bf427
VG
7495 return false;
7496}
7497
b0c79224
VS
7498static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7499{
7500 rq->last_blocked_load_update_tick = jiffies;
7501
7502 if (!has_blocked)
7503 rq->has_blocked_load = 0;
7504}
7505#else
7506static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7507static inline bool others_have_blocked(struct rq *rq) { return false; }
7508static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7509#endif
7510
1936c53c
VG
7511#ifdef CONFIG_FAIR_GROUP_SCHED
7512
039ae8bc
VG
7513static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7514{
7515 if (cfs_rq->load.weight)
7516 return false;
7517
7518 if (cfs_rq->avg.load_sum)
7519 return false;
7520
7521 if (cfs_rq->avg.util_sum)
7522 return false;
7523
7524 if (cfs_rq->avg.runnable_load_sum)
7525 return false;
7526
7527 return true;
7528}
7529
48a16753 7530static void update_blocked_averages(int cpu)
9e3081ca 7531{
9e3081ca 7532 struct rq *rq = cpu_rq(cpu);
039ae8bc 7533 struct cfs_rq *cfs_rq, *pos;
12b04875 7534 const struct sched_class *curr_class;
8a8c69c3 7535 struct rq_flags rf;
f643ea22 7536 bool done = true;
9e3081ca 7537
8a8c69c3 7538 rq_lock_irqsave(rq, &rf);
48a16753 7539 update_rq_clock(rq);
9d89c257 7540
9763b67f
PZ
7541 /*
7542 * Iterates the task_group tree in a bottom up fashion, see
7543 * list_add_leaf_cfs_rq() for details.
7544 */
039ae8bc 7545 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7546 struct sched_entity *se;
7547
23127296 7548 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7549 update_tg_load_avg(cfs_rq, 0);
4e516076 7550
bc427898
VG
7551 /* Propagate pending load changes to the parent, if any: */
7552 se = cfs_rq->tg->se[cpu];
7553 if (se && !skip_blocked_update(se))
88c0616e 7554 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7555
039ae8bc
VG
7556 /*
7557 * There can be a lot of idle CPU cgroups. Don't let fully
7558 * decayed cfs_rqs linger on the list.
7559 */
7560 if (cfs_rq_is_decayed(cfs_rq))
7561 list_del_leaf_cfs_rq(cfs_rq);
7562
1936c53c
VG
7563 /* Don't need periodic decay once load/util_avg are null */
7564 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7565 done = false;
9d89c257 7566 }
12b04875
VG
7567
7568 curr_class = rq->curr->sched_class;
23127296
VG
7569 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7570 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7571 update_irq_load_avg(rq, 0);
371bf427 7572 /* Don't need periodic decay once load/util_avg are null */
91c27493 7573 if (others_have_blocked(rq))
371bf427 7574 done = false;
e022e0d3 7575
b0c79224 7576 update_blocked_load_status(rq, !done);
8a8c69c3 7577 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7578}
7579
9763b67f 7580/*
68520796 7581 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7582 * This needs to be done in a top-down fashion because the load of a child
7583 * group is a fraction of its parents load.
7584 */
68520796 7585static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7586{
68520796
VD
7587 struct rq *rq = rq_of(cfs_rq);
7588 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7589 unsigned long now = jiffies;
68520796 7590 unsigned long load;
a35b6466 7591
68520796 7592 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7593 return;
7594
0e9f0245 7595 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7596 for_each_sched_entity(se) {
7597 cfs_rq = cfs_rq_of(se);
0e9f0245 7598 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7599 if (cfs_rq->last_h_load_update == now)
7600 break;
7601 }
a35b6466 7602
68520796 7603 if (!se) {
7ea241af 7604 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7605 cfs_rq->last_h_load_update = now;
7606 }
7607
0e9f0245 7608 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7609 load = cfs_rq->h_load;
7ea241af
YD
7610 load = div64_ul(load * se->avg.load_avg,
7611 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7612 cfs_rq = group_cfs_rq(se);
7613 cfs_rq->h_load = load;
7614 cfs_rq->last_h_load_update = now;
7615 }
9763b67f
PZ
7616}
7617
367456c7 7618static unsigned long task_h_load(struct task_struct *p)
230059de 7619{
367456c7 7620 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7621
68520796 7622 update_cfs_rq_h_load(cfs_rq);
9d89c257 7623 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7624 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7625}
7626#else
48a16753 7627static inline void update_blocked_averages(int cpu)
9e3081ca 7628{
6c1d47c0
VG
7629 struct rq *rq = cpu_rq(cpu);
7630 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7631 const struct sched_class *curr_class;
8a8c69c3 7632 struct rq_flags rf;
6c1d47c0 7633
8a8c69c3 7634 rq_lock_irqsave(rq, &rf);
6c1d47c0 7635 update_rq_clock(rq);
23127296 7636 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7637
7638 curr_class = rq->curr->sched_class;
23127296
VG
7639 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7640 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7641 update_irq_load_avg(rq, 0);
b0c79224 7642 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
8a8c69c3 7643 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7644}
7645
367456c7 7646static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7647{
9d89c257 7648 return p->se.avg.load_avg;
1e3c88bd 7649}
230059de 7650#endif
1e3c88bd 7651
1e3c88bd 7652/********** Helpers for find_busiest_group ************************/
caeb178c 7653
1e3c88bd
PZ
7654/*
7655 * sg_lb_stats - stats of a sched_group required for load_balancing
7656 */
7657struct sg_lb_stats {
7658 unsigned long avg_load; /*Avg load across the CPUs of the group */
7659 unsigned long group_load; /* Total load over the CPUs of the group */
56cf515b 7660 unsigned long load_per_task;
63b2ca30 7661 unsigned long group_capacity;
9e91d61d 7662 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7663 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7664 unsigned int idle_cpus;
7665 unsigned int group_weight;
caeb178c 7666 enum group_type group_type;
ea67821b 7667 int group_no_capacity;
490ba971 7668 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 7669 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7670#ifdef CONFIG_NUMA_BALANCING
7671 unsigned int nr_numa_running;
7672 unsigned int nr_preferred_running;
7673#endif
1e3c88bd
PZ
7674};
7675
56cf515b
JK
7676/*
7677 * sd_lb_stats - Structure to store the statistics of a sched_domain
7678 * during load balancing.
7679 */
7680struct sd_lb_stats {
7681 struct sched_group *busiest; /* Busiest group in this sd */
7682 struct sched_group *local; /* Local group in this sd */
90001d67 7683 unsigned long total_running;
56cf515b 7684 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7685 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7686 unsigned long avg_load; /* Average load across all groups in sd */
7687
56cf515b 7688 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7689 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7690};
7691
147c5fc2
PZ
7692static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7693{
7694 /*
7695 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7696 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7697 * We must however clear busiest_stat::avg_load because
7698 * update_sd_pick_busiest() reads this before assignment.
7699 */
7700 *sds = (struct sd_lb_stats){
7701 .busiest = NULL,
7702 .local = NULL,
90001d67 7703 .total_running = 0UL,
147c5fc2 7704 .total_load = 0UL,
63b2ca30 7705 .total_capacity = 0UL,
147c5fc2
PZ
7706 .busiest_stat = {
7707 .avg_load = 0UL,
caeb178c
RR
7708 .sum_nr_running = 0,
7709 .group_type = group_other,
147c5fc2
PZ
7710 },
7711 };
7712}
7713
287cdaac 7714static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7715{
7716 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7717 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7718 unsigned long used, free;
523e979d 7719 unsigned long irq;
b654f7de 7720
2e62c474 7721 irq = cpu_util_irq(rq);
cadefd3d 7722
523e979d
VG
7723 if (unlikely(irq >= max))
7724 return 1;
aa483808 7725
523e979d
VG
7726 used = READ_ONCE(rq->avg_rt.util_avg);
7727 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7728
523e979d
VG
7729 if (unlikely(used >= max))
7730 return 1;
1e3c88bd 7731
523e979d 7732 free = max - used;
2e62c474
VG
7733
7734 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7735}
7736
ced549fa 7737static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7738{
287cdaac 7739 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7740 struct sched_group *sdg = sd->groups;
7741
8ec59c0f 7742 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7743
ced549fa
NP
7744 if (!capacity)
7745 capacity = 1;
1e3c88bd 7746
ced549fa
NP
7747 cpu_rq(cpu)->cpu_capacity = capacity;
7748 sdg->sgc->capacity = capacity;
bf475ce0 7749 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7750 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7751}
7752
63b2ca30 7753void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7754{
7755 struct sched_domain *child = sd->child;
7756 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7757 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7758 unsigned long interval;
7759
7760 interval = msecs_to_jiffies(sd->balance_interval);
7761 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7762 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7763
7764 if (!child) {
ced549fa 7765 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7766 return;
7767 }
7768
dc7ff76e 7769 capacity = 0;
bf475ce0 7770 min_capacity = ULONG_MAX;
e3d6d0cb 7771 max_capacity = 0;
1e3c88bd 7772
74a5ce20
PZ
7773 if (child->flags & SD_OVERLAP) {
7774 /*
7775 * SD_OVERLAP domains cannot assume that child groups
7776 * span the current group.
7777 */
7778
ae4df9d6 7779 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7780 struct sched_group_capacity *sgc;
9abf24d4 7781 struct rq *rq = cpu_rq(cpu);
863bffc8 7782
9abf24d4 7783 /*
63b2ca30 7784 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7785 * gets here before we've attached the domains to the
7786 * runqueues.
7787 *
ced549fa
NP
7788 * Use capacity_of(), which is set irrespective of domains
7789 * in update_cpu_capacity().
9abf24d4 7790 *
dc7ff76e 7791 * This avoids capacity from being 0 and
9abf24d4 7792 * causing divide-by-zero issues on boot.
9abf24d4
SD
7793 */
7794 if (unlikely(!rq->sd)) {
ced549fa 7795 capacity += capacity_of(cpu);
bf475ce0
MR
7796 } else {
7797 sgc = rq->sd->groups->sgc;
7798 capacity += sgc->capacity;
9abf24d4 7799 }
863bffc8 7800
bf475ce0 7801 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7802 max_capacity = max(capacity, max_capacity);
863bffc8 7803 }
74a5ce20
PZ
7804 } else {
7805 /*
7806 * !SD_OVERLAP domains can assume that child groups
7807 * span the current group.
97a7142f 7808 */
74a5ce20
PZ
7809
7810 group = child->groups;
7811 do {
bf475ce0
MR
7812 struct sched_group_capacity *sgc = group->sgc;
7813
7814 capacity += sgc->capacity;
7815 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7816 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7817 group = group->next;
7818 } while (group != child->groups);
7819 }
1e3c88bd 7820
63b2ca30 7821 sdg->sgc->capacity = capacity;
bf475ce0 7822 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7823 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7824}
7825
9d5efe05 7826/*
ea67821b
VG
7827 * Check whether the capacity of the rq has been noticeably reduced by side
7828 * activity. The imbalance_pct is used for the threshold.
7829 * Return true is the capacity is reduced
9d5efe05
SV
7830 */
7831static inline int
ea67821b 7832check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7833{
ea67821b
VG
7834 return ((rq->cpu_capacity * sd->imbalance_pct) <
7835 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7836}
7837
a0fe2cf0
VS
7838/*
7839 * Check whether a rq has a misfit task and if it looks like we can actually
7840 * help that task: we can migrate the task to a CPU of higher capacity, or
7841 * the task's current CPU is heavily pressured.
7842 */
7843static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7844{
7845 return rq->misfit_task_load &&
7846 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7847 check_cpu_capacity(rq, sd));
7848}
7849
30ce5dab
PZ
7850/*
7851 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7852 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7853 *
97fb7a0a
IM
7854 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7855 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7856 * Something like:
7857 *
2b4d5b25
IM
7858 * { 0 1 2 3 } { 4 5 6 7 }
7859 * * * * *
30ce5dab
PZ
7860 *
7861 * If we were to balance group-wise we'd place two tasks in the first group and
7862 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7863 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7864 *
7865 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7866 * by noticing the lower domain failed to reach balance and had difficulty
7867 * moving tasks due to affinity constraints.
30ce5dab
PZ
7868 *
7869 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7870 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7871 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7872 * to create an effective group imbalance.
7873 *
7874 * This is a somewhat tricky proposition since the next run might not find the
7875 * group imbalance and decide the groups need to be balanced again. A most
7876 * subtle and fragile situation.
7877 */
7878
6263322c 7879static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7880{
63b2ca30 7881 return group->sgc->imbalance;
30ce5dab
PZ
7882}
7883
b37d9316 7884/*
ea67821b
VG
7885 * group_has_capacity returns true if the group has spare capacity that could
7886 * be used by some tasks.
7887 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7888 * smaller than the number of CPUs or if the utilization is lower than the
7889 * available capacity for CFS tasks.
ea67821b
VG
7890 * For the latter, we use a threshold to stabilize the state, to take into
7891 * account the variance of the tasks' load and to return true if the available
7892 * capacity in meaningful for the load balancer.
7893 * As an example, an available capacity of 1% can appear but it doesn't make
7894 * any benefit for the load balance.
b37d9316 7895 */
ea67821b
VG
7896static inline bool
7897group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7898{
ea67821b
VG
7899 if (sgs->sum_nr_running < sgs->group_weight)
7900 return true;
c61037e9 7901
ea67821b 7902 if ((sgs->group_capacity * 100) >
9e91d61d 7903 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7904 return true;
b37d9316 7905
ea67821b
VG
7906 return false;
7907}
7908
7909/*
7910 * group_is_overloaded returns true if the group has more tasks than it can
7911 * handle.
7912 * group_is_overloaded is not equals to !group_has_capacity because a group
7913 * with the exact right number of tasks, has no more spare capacity but is not
7914 * overloaded so both group_has_capacity and group_is_overloaded return
7915 * false.
7916 */
7917static inline bool
7918group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7919{
7920 if (sgs->sum_nr_running <= sgs->group_weight)
7921 return false;
b37d9316 7922
ea67821b 7923 if ((sgs->group_capacity * 100) <
9e91d61d 7924 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7925 return true;
b37d9316 7926
ea67821b 7927 return false;
b37d9316
PZ
7928}
7929
9e0994c0 7930/*
e3d6d0cb 7931 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7932 * per-CPU capacity than sched_group ref.
7933 */
7934static inline bool
e3d6d0cb 7935group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 7936{
60e17f5c 7937 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
7938}
7939
e3d6d0cb
MR
7940/*
7941 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7942 * per-CPU capacity_orig than sched_group ref.
7943 */
7944static inline bool
7945group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7946{
60e17f5c 7947 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
7948}
7949
79a89f92
LY
7950static inline enum
7951group_type group_classify(struct sched_group *group,
7952 struct sg_lb_stats *sgs)
caeb178c 7953{
ea67821b 7954 if (sgs->group_no_capacity)
caeb178c
RR
7955 return group_overloaded;
7956
7957 if (sg_imbalanced(group))
7958 return group_imbalanced;
7959
3b1baa64
MR
7960 if (sgs->group_misfit_task_load)
7961 return group_misfit_task;
7962
caeb178c
RR
7963 return group_other;
7964}
7965
63928384 7966static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
7967{
7968#ifdef CONFIG_NO_HZ_COMMON
7969 unsigned int cpu = rq->cpu;
7970
f643ea22
VG
7971 if (!rq->has_blocked_load)
7972 return false;
7973
e022e0d3 7974 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 7975 return false;
e022e0d3 7976
63928384 7977 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 7978 return true;
e022e0d3
PZ
7979
7980 update_blocked_averages(cpu);
f643ea22
VG
7981
7982 return rq->has_blocked_load;
7983#else
7984 return false;
e022e0d3
PZ
7985#endif
7986}
7987
1e3c88bd
PZ
7988/**
7989 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7990 * @env: The load balancing environment.
1e3c88bd 7991 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7992 * @sgs: variable to hold the statistics for this group.
630246a0 7993 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 7994 */
bd939f45 7995static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
7996 struct sched_group *group,
7997 struct sg_lb_stats *sgs,
7998 int *sg_status)
1e3c88bd 7999{
a426f99c 8000 int i, nr_running;
1e3c88bd 8001
b72ff13c
PZ
8002 memset(sgs, 0, sizeof(*sgs));
8003
ae4df9d6 8004 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8005 struct rq *rq = cpu_rq(i);
8006
63928384 8007 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8008 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8009
a3df0679 8010 sgs->group_load += cpu_runnable_load(rq);
9e91d61d 8011 sgs->group_util += cpu_util(i);
65fdac08 8012 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8013
a426f99c
WL
8014 nr_running = rq->nr_running;
8015 if (nr_running > 1)
630246a0 8016 *sg_status |= SG_OVERLOAD;
4486edd1 8017
2802bf3c
MR
8018 if (cpu_overutilized(i))
8019 *sg_status |= SG_OVERUTILIZED;
4486edd1 8020
0ec8aa00
PZ
8021#ifdef CONFIG_NUMA_BALANCING
8022 sgs->nr_numa_running += rq->nr_numa_running;
8023 sgs->nr_preferred_running += rq->nr_preferred_running;
8024#endif
a426f99c
WL
8025 /*
8026 * No need to call idle_cpu() if nr_running is not 0
8027 */
8028 if (!nr_running && idle_cpu(i))
aae6d3dd 8029 sgs->idle_cpus++;
3b1baa64
MR
8030
8031 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8032 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8033 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8034 *sg_status |= SG_OVERLOAD;
757ffdd7 8035 }
1e3c88bd
PZ
8036 }
8037
63b2ca30
NP
8038 /* Adjust by relative CPU capacity of the group */
8039 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8040 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8041
dd5feea1 8042 if (sgs->sum_nr_running)
af75d1a9 8043 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
1e3c88bd 8044
aae6d3dd 8045 sgs->group_weight = group->group_weight;
b37d9316 8046
ea67821b 8047 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8048 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8049}
8050
532cb4c4
MN
8051/**
8052 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8053 * @env: The load balancing environment.
532cb4c4
MN
8054 * @sds: sched_domain statistics
8055 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8056 * @sgs: sched_group statistics
532cb4c4
MN
8057 *
8058 * Determine if @sg is a busier group than the previously selected
8059 * busiest group.
e69f6186
YB
8060 *
8061 * Return: %true if @sg is a busier group than the previously selected
8062 * busiest group. %false otherwise.
532cb4c4 8063 */
bd939f45 8064static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8065 struct sd_lb_stats *sds,
8066 struct sched_group *sg,
bd939f45 8067 struct sg_lb_stats *sgs)
532cb4c4 8068{
caeb178c 8069 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8070
cad68e55
MR
8071 /*
8072 * Don't try to pull misfit tasks we can't help.
8073 * We can use max_capacity here as reduction in capacity on some
8074 * CPUs in the group should either be possible to resolve
8075 * internally or be covered by avg_load imbalance (eventually).
8076 */
8077 if (sgs->group_type == group_misfit_task &&
8078 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8079 !group_has_capacity(env, &sds->local_stat)))
8080 return false;
8081
caeb178c 8082 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8083 return true;
8084
caeb178c
RR
8085 if (sgs->group_type < busiest->group_type)
8086 return false;
8087
8088 if (sgs->avg_load <= busiest->avg_load)
8089 return false;
8090
9e0994c0
MR
8091 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8092 goto asym_packing;
8093
8094 /*
8095 * Candidate sg has no more than one task per CPU and
8096 * has higher per-CPU capacity. Migrating tasks to less
8097 * capable CPUs may harm throughput. Maximize throughput,
8098 * power/energy consequences are not considered.
8099 */
8100 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8101 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8102 return false;
8103
cad68e55
MR
8104 /*
8105 * If we have more than one misfit sg go with the biggest misfit.
8106 */
8107 if (sgs->group_type == group_misfit_task &&
8108 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8109 return false;
8110
8111asym_packing:
caeb178c
RR
8112 /* This is the busiest node in its class. */
8113 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8114 return true;
8115
97fb7a0a 8116 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8117 if (env->idle == CPU_NOT_IDLE)
8118 return true;
532cb4c4 8119 /*
afe06efd
TC
8120 * ASYM_PACKING needs to move all the work to the highest
8121 * prority CPUs in the group, therefore mark all groups
8122 * of lower priority than ourself as busy.
490ba971
VG
8123 *
8124 * This is primarily intended to used at the sibling level. Some
8125 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8126 * case of POWER7, it can move to lower SMT modes only when higher
8127 * threads are idle. When in lower SMT modes, the threads will
8128 * perform better since they share less core resources. Hence when we
8129 * have idle threads, we want them to be the higher ones.
532cb4c4 8130 */
afe06efd
TC
8131 if (sgs->sum_nr_running &&
8132 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
490ba971 8133 sgs->group_asym_packing = 1;
532cb4c4
MN
8134 if (!sds->busiest)
8135 return true;
8136
97fb7a0a 8137 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8138 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8139 sg->asym_prefer_cpu))
532cb4c4
MN
8140 return true;
8141 }
8142
8143 return false;
8144}
8145
0ec8aa00
PZ
8146#ifdef CONFIG_NUMA_BALANCING
8147static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8148{
8149 if (sgs->sum_nr_running > sgs->nr_numa_running)
8150 return regular;
8151 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8152 return remote;
8153 return all;
8154}
8155
8156static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8157{
8158 if (rq->nr_running > rq->nr_numa_running)
8159 return regular;
8160 if (rq->nr_running > rq->nr_preferred_running)
8161 return remote;
8162 return all;
8163}
8164#else
8165static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8166{
8167 return all;
8168}
8169
8170static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8171{
8172 return regular;
8173}
8174#endif /* CONFIG_NUMA_BALANCING */
8175
1e3c88bd 8176/**
461819ac 8177 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8178 * @env: The load balancing environment.
1e3c88bd
PZ
8179 * @sds: variable to hold the statistics for this sched_domain.
8180 */
0ec8aa00 8181static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8182{
bd939f45
PZ
8183 struct sched_domain *child = env->sd->child;
8184 struct sched_group *sg = env->sd->groups;
05b40e05 8185 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8186 struct sg_lb_stats tmp_sgs;
dbbad719 8187 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8188 int sg_status = 0;
1e3c88bd 8189
e022e0d3 8190#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8191 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8192 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8193#endif
8194
1e3c88bd 8195 do {
56cf515b 8196 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8197 int local_group;
8198
ae4df9d6 8199 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8200 if (local_group) {
8201 sds->local = sg;
05b40e05 8202 sgs = local;
b72ff13c
PZ
8203
8204 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8205 time_after_eq(jiffies, sg->sgc->next_update))
8206 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8207 }
1e3c88bd 8208
630246a0 8209 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8210
b72ff13c
PZ
8211 if (local_group)
8212 goto next_group;
8213
1e3c88bd
PZ
8214 /*
8215 * In case the child domain prefers tasks go to siblings
ea67821b 8216 * first, lower the sg capacity so that we'll try
75dd321d
NR
8217 * and move all the excess tasks away. We lower the capacity
8218 * of a group only if the local group has the capacity to fit
ea67821b
VG
8219 * these excess tasks. The extra check prevents the case where
8220 * you always pull from the heaviest group when it is already
8221 * under-utilized (possible with a large weight task outweighs
8222 * the tasks on the system).
1e3c88bd 8223 */
b72ff13c 8224 if (prefer_sibling && sds->local &&
05b40e05
SD
8225 group_has_capacity(env, local) &&
8226 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8227 sgs->group_no_capacity = 1;
79a89f92 8228 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8229 }
1e3c88bd 8230
b72ff13c 8231 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8232 sds->busiest = sg;
56cf515b 8233 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8234 }
8235
b72ff13c
PZ
8236next_group:
8237 /* Now, start updating sd_lb_stats */
90001d67 8238 sds->total_running += sgs->sum_nr_running;
b72ff13c 8239 sds->total_load += sgs->group_load;
63b2ca30 8240 sds->total_capacity += sgs->group_capacity;
b72ff13c 8241
532cb4c4 8242 sg = sg->next;
bd939f45 8243 } while (sg != env->sd->groups);
0ec8aa00 8244
f643ea22
VG
8245#ifdef CONFIG_NO_HZ_COMMON
8246 if ((env->flags & LBF_NOHZ_AGAIN) &&
8247 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8248
8249 WRITE_ONCE(nohz.next_blocked,
8250 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8251 }
8252#endif
8253
0ec8aa00
PZ
8254 if (env->sd->flags & SD_NUMA)
8255 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8256
8257 if (!env->sd->parent) {
2802bf3c
MR
8258 struct root_domain *rd = env->dst_rq->rd;
8259
4486edd1 8260 /* update overload indicator if we are at root domain */
2802bf3c
MR
8261 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8262
8263 /* Update over-utilization (tipping point, U >= 0) indicator */
8264 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8265 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8266 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8267 struct root_domain *rd = env->dst_rq->rd;
8268
8269 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8270 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8271 }
532cb4c4
MN
8272}
8273
1e3c88bd
PZ
8274/**
8275 * fix_small_imbalance - Calculate the minor imbalance that exists
8276 * amongst the groups of a sched_domain, during
8277 * load balancing.
cd96891d 8278 * @env: The load balancing environment.
1e3c88bd 8279 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8280 */
bd939f45
PZ
8281static inline
8282void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8283{
63b2ca30 8284 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8285 unsigned int imbn = 2;
dd5feea1 8286 unsigned long scaled_busy_load_per_task;
56cf515b 8287 struct sg_lb_stats *local, *busiest;
1e3c88bd 8288
56cf515b
JK
8289 local = &sds->local_stat;
8290 busiest = &sds->busiest_stat;
1e3c88bd 8291
56cf515b
JK
8292 if (!local->sum_nr_running)
8293 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8294 else if (busiest->load_per_task > local->load_per_task)
8295 imbn = 1;
dd5feea1 8296
56cf515b 8297 scaled_busy_load_per_task =
ca8ce3d0 8298 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8299 busiest->group_capacity;
56cf515b 8300
3029ede3
VD
8301 if (busiest->avg_load + scaled_busy_load_per_task >=
8302 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8303 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8304 return;
8305 }
8306
8307 /*
8308 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8309 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8310 * moving them.
8311 */
8312
63b2ca30 8313 capa_now += busiest->group_capacity *
56cf515b 8314 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8315 capa_now += local->group_capacity *
56cf515b 8316 min(local->load_per_task, local->avg_load);
ca8ce3d0 8317 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8318
8319 /* Amount of load we'd subtract */
a2cd4260 8320 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8321 capa_move += busiest->group_capacity *
56cf515b 8322 min(busiest->load_per_task,
a2cd4260 8323 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8324 }
1e3c88bd
PZ
8325
8326 /* Amount of load we'd add */
63b2ca30 8327 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8328 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8329 tmp = (busiest->avg_load * busiest->group_capacity) /
8330 local->group_capacity;
56cf515b 8331 } else {
ca8ce3d0 8332 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8333 local->group_capacity;
56cf515b 8334 }
63b2ca30 8335 capa_move += local->group_capacity *
3ae11c90 8336 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8337 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8338
8339 /* Move if we gain throughput */
63b2ca30 8340 if (capa_move > capa_now)
56cf515b 8341 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8342}
8343
8344/**
8345 * calculate_imbalance - Calculate the amount of imbalance present within the
8346 * groups of a given sched_domain during load balance.
bd939f45 8347 * @env: load balance environment
1e3c88bd 8348 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8349 */
bd939f45 8350static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8351{
dd5feea1 8352 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8353 struct sg_lb_stats *local, *busiest;
8354
8355 local = &sds->local_stat;
56cf515b 8356 busiest = &sds->busiest_stat;
dd5feea1 8357
490ba971
VG
8358 if (busiest->group_asym_packing) {
8359 env->imbalance = busiest->group_load;
8360 return;
8361 }
8362
caeb178c 8363 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8364 /*
8365 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8366 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8367 */
56cf515b
JK
8368 busiest->load_per_task =
8369 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8370 }
8371
1e3c88bd 8372 /*
885e542c
DE
8373 * Avg load of busiest sg can be less and avg load of local sg can
8374 * be greater than avg load across all sgs of sd because avg load
8375 * factors in sg capacity and sgs with smaller group_type are
8376 * skipped when updating the busiest sg:
1e3c88bd 8377 */
cad68e55
MR
8378 if (busiest->group_type != group_misfit_task &&
8379 (busiest->avg_load <= sds->avg_load ||
8380 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8381 env->imbalance = 0;
8382 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8383 }
8384
9a5d9ba6 8385 /*
97fb7a0a 8386 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8387 */
8388 if (busiest->group_type == group_overloaded &&
8389 local->group_type == group_overloaded) {
1be0eb2a 8390 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8391 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8392 load_above_capacity -= busiest->group_capacity;
26656215 8393 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8394 load_above_capacity /= busiest->group_capacity;
8395 } else
ea67821b 8396 load_above_capacity = ~0UL;
dd5feea1
SS
8397 }
8398
8399 /*
97fb7a0a 8400 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8401 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8402 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8403 * we also don't want to reduce the group load below the group
8404 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8405 */
30ce5dab 8406 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8407
8408 /* How much load to actually move to equalise the imbalance */
56cf515b 8409 env->imbalance = min(
63b2ca30
NP
8410 max_pull * busiest->group_capacity,
8411 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8412 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8413
cad68e55
MR
8414 /* Boost imbalance to allow misfit task to be balanced. */
8415 if (busiest->group_type == group_misfit_task) {
8416 env->imbalance = max_t(long, env->imbalance,
8417 busiest->group_misfit_task_load);
8418 }
8419
1e3c88bd
PZ
8420 /*
8421 * if *imbalance is less than the average load per runnable task
25985edc 8422 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8423 * a think about bumping its value to force at least one task to be
8424 * moved
8425 */
56cf515b 8426 if (env->imbalance < busiest->load_per_task)
bd939f45 8427 return fix_small_imbalance(env, sds);
1e3c88bd 8428}
fab47622 8429
1e3c88bd
PZ
8430/******* find_busiest_group() helpers end here *********************/
8431
8432/**
8433 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8434 * if there is an imbalance.
1e3c88bd 8435 *
a3df0679 8436 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8437 * to restore balance.
8438 *
cd96891d 8439 * @env: The load balancing environment.
1e3c88bd 8440 *
e69f6186 8441 * Return: - The busiest group if imbalance exists.
1e3c88bd 8442 */
56cf515b 8443static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8444{
56cf515b 8445 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8446 struct sd_lb_stats sds;
8447
147c5fc2 8448 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8449
8450 /*
8451 * Compute the various statistics relavent for load balancing at
8452 * this level.
8453 */
23f0d209 8454 update_sd_lb_stats(env, &sds);
2802bf3c 8455
f8a696f2 8456 if (sched_energy_enabled()) {
2802bf3c
MR
8457 struct root_domain *rd = env->dst_rq->rd;
8458
8459 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8460 goto out_balanced;
8461 }
8462
56cf515b
JK
8463 local = &sds.local_stat;
8464 busiest = &sds.busiest_stat;
1e3c88bd 8465
ea67821b 8466 /* ASYM feature bypasses nice load balance check */
490ba971
VG
8467 if (busiest->group_asym_packing)
8468 goto force_balance;
532cb4c4 8469
cc57aa8f 8470 /* There is no busy sibling group to pull tasks from */
56cf515b 8471 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8472 goto out_balanced;
8473
90001d67 8474 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8475 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8476 / sds.total_capacity;
b0432d8f 8477
866ab43e
PZ
8478 /*
8479 * If the busiest group is imbalanced the below checks don't
30ce5dab 8480 * work because they assume all things are equal, which typically
3bd37062 8481 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8482 */
caeb178c 8483 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8484 goto force_balance;
8485
583ffd99
BJ
8486 /*
8487 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8488 * capacities from resulting in underutilization due to avg_load.
8489 */
8490 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8491 busiest->group_no_capacity)
fab47622
NR
8492 goto force_balance;
8493
cad68e55
MR
8494 /* Misfit tasks should be dealt with regardless of the avg load */
8495 if (busiest->group_type == group_misfit_task)
8496 goto force_balance;
8497
cc57aa8f 8498 /*
9c58c79a 8499 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8500 * don't try and pull any tasks.
8501 */
56cf515b 8502 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8503 goto out_balanced;
8504
cc57aa8f
PZ
8505 /*
8506 * Don't pull any tasks if this group is already above the domain
8507 * average load.
8508 */
56cf515b 8509 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8510 goto out_balanced;
8511
bd939f45 8512 if (env->idle == CPU_IDLE) {
aae6d3dd 8513 /*
97fb7a0a 8514 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8515 * and there is no imbalance between this and busiest group
97fb7a0a 8516 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8517 * significant if the diff is greater than 1 otherwise we
8518 * might end up to just move the imbalance on another group
aae6d3dd 8519 */
43f4d666
VG
8520 if ((busiest->group_type != group_overloaded) &&
8521 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8522 goto out_balanced;
c186fafe
PZ
8523 } else {
8524 /*
8525 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8526 * imbalance_pct to be conservative.
8527 */
56cf515b
JK
8528 if (100 * busiest->avg_load <=
8529 env->sd->imbalance_pct * local->avg_load)
c186fafe 8530 goto out_balanced;
aae6d3dd 8531 }
1e3c88bd 8532
fab47622 8533force_balance:
1e3c88bd 8534 /* Looks like there is an imbalance. Compute it */
cad68e55 8535 env->src_grp_type = busiest->group_type;
bd939f45 8536 calculate_imbalance(env, &sds);
bb3485c8 8537 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8538
8539out_balanced:
bd939f45 8540 env->imbalance = 0;
1e3c88bd
PZ
8541 return NULL;
8542}
8543
8544/*
97fb7a0a 8545 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8546 */
bd939f45 8547static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8548 struct sched_group *group)
1e3c88bd
PZ
8549{
8550 struct rq *busiest = NULL, *rq;
ced549fa 8551 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8552 int i;
8553
ae4df9d6 8554 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
a3df0679 8555 unsigned long capacity, load;
0ec8aa00
PZ
8556 enum fbq_type rt;
8557
8558 rq = cpu_rq(i);
8559 rt = fbq_classify_rq(rq);
1e3c88bd 8560
0ec8aa00
PZ
8561 /*
8562 * We classify groups/runqueues into three groups:
8563 * - regular: there are !numa tasks
8564 * - remote: there are numa tasks that run on the 'wrong' node
8565 * - all: there is no distinction
8566 *
8567 * In order to avoid migrating ideally placed numa tasks,
8568 * ignore those when there's better options.
8569 *
8570 * If we ignore the actual busiest queue to migrate another
8571 * task, the next balance pass can still reduce the busiest
8572 * queue by moving tasks around inside the node.
8573 *
8574 * If we cannot move enough load due to this classification
8575 * the next pass will adjust the group classification and
8576 * allow migration of more tasks.
8577 *
8578 * Both cases only affect the total convergence complexity.
8579 */
8580 if (rt > env->fbq_type)
8581 continue;
8582
cad68e55
MR
8583 /*
8584 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8585 * seek the "biggest" misfit task.
8586 */
8587 if (env->src_grp_type == group_misfit_task) {
8588 if (rq->misfit_task_load > busiest_load) {
8589 busiest_load = rq->misfit_task_load;
8590 busiest = rq;
8591 }
8592
8593 continue;
8594 }
8595
ced549fa 8596 capacity = capacity_of(i);
9d5efe05 8597
4ad3831a
CR
8598 /*
8599 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8600 * eventually lead to active_balancing high->low capacity.
8601 * Higher per-CPU capacity is considered better than balancing
8602 * average load.
8603 */
8604 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8605 capacity_of(env->dst_cpu) < capacity &&
8606 rq->nr_running == 1)
8607 continue;
8608
a3df0679 8609 load = cpu_runnable_load(rq);
1e3c88bd 8610
6e40f5bb 8611 /*
a3df0679 8612 * When comparing with imbalance, use cpu_runnable_load()
97fb7a0a 8613 * which is not scaled with the CPU capacity.
6e40f5bb 8614 */
ea67821b 8615
a3df0679 8616 if (rq->nr_running == 1 && load > env->imbalance &&
ea67821b 8617 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8618 continue;
8619
6e40f5bb 8620 /*
97fb7a0a 8621 * For the load comparisons with the other CPU's, consider
a3df0679 8622 * the cpu_runnable_load() scaled with the CPU capacity, so
97fb7a0a 8623 * that the load can be moved away from the CPU that is
ced549fa 8624 * potentially running at a lower capacity.
95a79b80 8625 *
a3df0679 8626 * Thus we're looking for max(load_i / capacity_i), crosswise
95a79b80 8627 * multiplication to rid ourselves of the division works out
a3df0679 8628 * to: load_i * capacity_j > load_j * capacity_i; where j is
ced549fa 8629 * our previous maximum.
6e40f5bb 8630 */
a3df0679
DE
8631 if (load * busiest_capacity > busiest_load * capacity) {
8632 busiest_load = load;
ced549fa 8633 busiest_capacity = capacity;
1e3c88bd
PZ
8634 busiest = rq;
8635 }
8636 }
8637
8638 return busiest;
8639}
8640
8641/*
8642 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8643 * so long as it is large enough.
8644 */
8645#define MAX_PINNED_INTERVAL 512
8646
46a745d9
VG
8647static inline bool
8648asym_active_balance(struct lb_env *env)
1af3ed3d 8649{
46a745d9
VG
8650 /*
8651 * ASYM_PACKING needs to force migrate tasks from busy but
8652 * lower priority CPUs in order to pack all tasks in the
8653 * highest priority CPUs.
8654 */
8655 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8656 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8657}
bd939f45 8658
46a745d9
VG
8659static inline bool
8660voluntary_active_balance(struct lb_env *env)
8661{
8662 struct sched_domain *sd = env->sd;
532cb4c4 8663
46a745d9
VG
8664 if (asym_active_balance(env))
8665 return 1;
1af3ed3d 8666
1aaf90a4
VG
8667 /*
8668 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8669 * It's worth migrating the task if the src_cpu's capacity is reduced
8670 * because of other sched_class or IRQs if more capacity stays
8671 * available on dst_cpu.
8672 */
8673 if ((env->idle != CPU_NOT_IDLE) &&
8674 (env->src_rq->cfs.h_nr_running == 1)) {
8675 if ((check_cpu_capacity(env->src_rq, sd)) &&
8676 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8677 return 1;
8678 }
8679
cad68e55
MR
8680 if (env->src_grp_type == group_misfit_task)
8681 return 1;
8682
46a745d9
VG
8683 return 0;
8684}
8685
8686static int need_active_balance(struct lb_env *env)
8687{
8688 struct sched_domain *sd = env->sd;
8689
8690 if (voluntary_active_balance(env))
8691 return 1;
8692
1af3ed3d
PZ
8693 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8694}
8695
969c7921
TH
8696static int active_load_balance_cpu_stop(void *data);
8697
23f0d209
JK
8698static int should_we_balance(struct lb_env *env)
8699{
8700 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8701 int cpu, balance_cpu = -1;
8702
024c9d2f
PZ
8703 /*
8704 * Ensure the balancing environment is consistent; can happen
8705 * when the softirq triggers 'during' hotplug.
8706 */
8707 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8708 return 0;
8709
23f0d209 8710 /*
97fb7a0a 8711 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8712 * to do the newly idle load balance.
8713 */
8714 if (env->idle == CPU_NEWLY_IDLE)
8715 return 1;
8716
97fb7a0a 8717 /* Try to find first idle CPU */
e5c14b1f 8718 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8719 if (!idle_cpu(cpu))
23f0d209
JK
8720 continue;
8721
8722 balance_cpu = cpu;
8723 break;
8724 }
8725
8726 if (balance_cpu == -1)
8727 balance_cpu = group_balance_cpu(sg);
8728
8729 /*
97fb7a0a 8730 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8731 * is eligible for doing load balancing at this and above domains.
8732 */
b0cff9d8 8733 return balance_cpu == env->dst_cpu;
23f0d209
JK
8734}
8735
1e3c88bd
PZ
8736/*
8737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8738 * tasks if there is an imbalance.
8739 */
8740static int load_balance(int this_cpu, struct rq *this_rq,
8741 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8742 int *continue_balancing)
1e3c88bd 8743{
88b8dac0 8744 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8745 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8746 struct sched_group *group;
1e3c88bd 8747 struct rq *busiest;
8a8c69c3 8748 struct rq_flags rf;
4ba29684 8749 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8750
8e45cb54
PZ
8751 struct lb_env env = {
8752 .sd = sd,
ddcdf6e7
PZ
8753 .dst_cpu = this_cpu,
8754 .dst_rq = this_rq,
ae4df9d6 8755 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8756 .idle = idle,
eb95308e 8757 .loop_break = sched_nr_migrate_break,
b9403130 8758 .cpus = cpus,
0ec8aa00 8759 .fbq_type = all,
163122b7 8760 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8761 };
8762
65a4433a 8763 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8764
ae92882e 8765 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8766
8767redo:
23f0d209
JK
8768 if (!should_we_balance(&env)) {
8769 *continue_balancing = 0;
1e3c88bd 8770 goto out_balanced;
23f0d209 8771 }
1e3c88bd 8772
23f0d209 8773 group = find_busiest_group(&env);
1e3c88bd 8774 if (!group) {
ae92882e 8775 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8776 goto out_balanced;
8777 }
8778
b9403130 8779 busiest = find_busiest_queue(&env, group);
1e3c88bd 8780 if (!busiest) {
ae92882e 8781 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8782 goto out_balanced;
8783 }
8784
78feefc5 8785 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8786
ae92882e 8787 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8788
1aaf90a4
VG
8789 env.src_cpu = busiest->cpu;
8790 env.src_rq = busiest;
8791
1e3c88bd
PZ
8792 ld_moved = 0;
8793 if (busiest->nr_running > 1) {
8794 /*
8795 * Attempt to move tasks. If find_busiest_group has found
8796 * an imbalance but busiest->nr_running <= 1, the group is
8797 * still unbalanced. ld_moved simply stays zero, so it is
8798 * correctly treated as an imbalance.
8799 */
8e45cb54 8800 env.flags |= LBF_ALL_PINNED;
c82513e5 8801 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8802
5d6523eb 8803more_balance:
8a8c69c3 8804 rq_lock_irqsave(busiest, &rf);
3bed5e21 8805 update_rq_clock(busiest);
88b8dac0
SV
8806
8807 /*
8808 * cur_ld_moved - load moved in current iteration
8809 * ld_moved - cumulative load moved across iterations
8810 */
163122b7 8811 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8812
8813 /*
163122b7
KT
8814 * We've detached some tasks from busiest_rq. Every
8815 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8816 * unlock busiest->lock, and we are able to be sure
8817 * that nobody can manipulate the tasks in parallel.
8818 * See task_rq_lock() family for the details.
1e3c88bd 8819 */
163122b7 8820
8a8c69c3 8821 rq_unlock(busiest, &rf);
163122b7
KT
8822
8823 if (cur_ld_moved) {
8824 attach_tasks(&env);
8825 ld_moved += cur_ld_moved;
8826 }
8827
8a8c69c3 8828 local_irq_restore(rf.flags);
88b8dac0 8829
f1cd0858
JK
8830 if (env.flags & LBF_NEED_BREAK) {
8831 env.flags &= ~LBF_NEED_BREAK;
8832 goto more_balance;
8833 }
8834
88b8dac0
SV
8835 /*
8836 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8837 * us and move them to an alternate dst_cpu in our sched_group
8838 * where they can run. The upper limit on how many times we
97fb7a0a 8839 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8840 * sched_group.
8841 *
8842 * This changes load balance semantics a bit on who can move
8843 * load to a given_cpu. In addition to the given_cpu itself
8844 * (or a ilb_cpu acting on its behalf where given_cpu is
8845 * nohz-idle), we now have balance_cpu in a position to move
8846 * load to given_cpu. In rare situations, this may cause
8847 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8848 * _independently_ and at _same_ time to move some load to
8849 * given_cpu) causing exceess load to be moved to given_cpu.
8850 * This however should not happen so much in practice and
8851 * moreover subsequent load balance cycles should correct the
8852 * excess load moved.
8853 */
6263322c 8854 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8855
97fb7a0a 8856 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8857 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8858
78feefc5 8859 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8860 env.dst_cpu = env.new_dst_cpu;
6263322c 8861 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8862 env.loop = 0;
8863 env.loop_break = sched_nr_migrate_break;
e02e60c1 8864
88b8dac0
SV
8865 /*
8866 * Go back to "more_balance" rather than "redo" since we
8867 * need to continue with same src_cpu.
8868 */
8869 goto more_balance;
8870 }
1e3c88bd 8871
6263322c
PZ
8872 /*
8873 * We failed to reach balance because of affinity.
8874 */
8875 if (sd_parent) {
63b2ca30 8876 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8877
afdeee05 8878 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8879 *group_imbalance = 1;
6263322c
PZ
8880 }
8881
1e3c88bd 8882 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8883 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8884 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8885 /*
8886 * Attempting to continue load balancing at the current
8887 * sched_domain level only makes sense if there are
8888 * active CPUs remaining as possible busiest CPUs to
8889 * pull load from which are not contained within the
8890 * destination group that is receiving any migrated
8891 * load.
8892 */
8893 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8894 env.loop = 0;
8895 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8896 goto redo;
bbf18b19 8897 }
afdeee05 8898 goto out_all_pinned;
1e3c88bd
PZ
8899 }
8900 }
8901
8902 if (!ld_moved) {
ae92882e 8903 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8904 /*
8905 * Increment the failure counter only on periodic balance.
8906 * We do not want newidle balance, which can be very
8907 * frequent, pollute the failure counter causing
8908 * excessive cache_hot migrations and active balances.
8909 */
8910 if (idle != CPU_NEWLY_IDLE)
8911 sd->nr_balance_failed++;
1e3c88bd 8912
bd939f45 8913 if (need_active_balance(&env)) {
8a8c69c3
PZ
8914 unsigned long flags;
8915
1e3c88bd
PZ
8916 raw_spin_lock_irqsave(&busiest->lock, flags);
8917
97fb7a0a
IM
8918 /*
8919 * Don't kick the active_load_balance_cpu_stop,
8920 * if the curr task on busiest CPU can't be
8921 * moved to this_cpu:
1e3c88bd 8922 */
3bd37062 8923 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
8924 raw_spin_unlock_irqrestore(&busiest->lock,
8925 flags);
8e45cb54 8926 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8927 goto out_one_pinned;
8928 }
8929
969c7921
TH
8930 /*
8931 * ->active_balance synchronizes accesses to
8932 * ->active_balance_work. Once set, it's cleared
8933 * only after active load balance is finished.
8934 */
1e3c88bd
PZ
8935 if (!busiest->active_balance) {
8936 busiest->active_balance = 1;
8937 busiest->push_cpu = this_cpu;
8938 active_balance = 1;
8939 }
8940 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8941
bd939f45 8942 if (active_balance) {
969c7921
TH
8943 stop_one_cpu_nowait(cpu_of(busiest),
8944 active_load_balance_cpu_stop, busiest,
8945 &busiest->active_balance_work);
bd939f45 8946 }
1e3c88bd 8947
d02c0711 8948 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8949 sd->nr_balance_failed = sd->cache_nice_tries+1;
8950 }
8951 } else
8952 sd->nr_balance_failed = 0;
8953
46a745d9 8954 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
8955 /* We were unbalanced, so reset the balancing interval */
8956 sd->balance_interval = sd->min_interval;
8957 } else {
8958 /*
8959 * If we've begun active balancing, start to back off. This
8960 * case may not be covered by the all_pinned logic if there
8961 * is only 1 task on the busy runqueue (because we don't call
163122b7 8962 * detach_tasks).
1e3c88bd
PZ
8963 */
8964 if (sd->balance_interval < sd->max_interval)
8965 sd->balance_interval *= 2;
8966 }
8967
1e3c88bd
PZ
8968 goto out;
8969
8970out_balanced:
afdeee05
VG
8971 /*
8972 * We reach balance although we may have faced some affinity
f6cad8df
VG
8973 * constraints. Clear the imbalance flag only if other tasks got
8974 * a chance to move and fix the imbalance.
afdeee05 8975 */
f6cad8df 8976 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
8977 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8978
8979 if (*group_imbalance)
8980 *group_imbalance = 0;
8981 }
8982
8983out_all_pinned:
8984 /*
8985 * We reach balance because all tasks are pinned at this level so
8986 * we can't migrate them. Let the imbalance flag set so parent level
8987 * can try to migrate them.
8988 */
ae92882e 8989 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8990
8991 sd->nr_balance_failed = 0;
8992
8993out_one_pinned:
3f130a37
VS
8994 ld_moved = 0;
8995
8996 /*
5ba553ef
PZ
8997 * newidle_balance() disregards balance intervals, so we could
8998 * repeatedly reach this code, which would lead to balance_interval
8999 * skyrocketting in a short amount of time. Skip the balance_interval
9000 * increase logic to avoid that.
3f130a37
VS
9001 */
9002 if (env.idle == CPU_NEWLY_IDLE)
9003 goto out;
9004
1e3c88bd 9005 /* tune up the balancing interval */
47b7aee1
VS
9006 if ((env.flags & LBF_ALL_PINNED &&
9007 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9008 sd->balance_interval < sd->max_interval)
1e3c88bd 9009 sd->balance_interval *= 2;
1e3c88bd 9010out:
1e3c88bd
PZ
9011 return ld_moved;
9012}
9013
52a08ef1
JL
9014static inline unsigned long
9015get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9016{
9017 unsigned long interval = sd->balance_interval;
9018
9019 if (cpu_busy)
9020 interval *= sd->busy_factor;
9021
9022 /* scale ms to jiffies */
9023 interval = msecs_to_jiffies(interval);
9024 interval = clamp(interval, 1UL, max_load_balance_interval);
9025
9026 return interval;
9027}
9028
9029static inline void
31851a98 9030update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9031{
9032 unsigned long interval, next;
9033
31851a98
LY
9034 /* used by idle balance, so cpu_busy = 0 */
9035 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9036 next = sd->last_balance + interval;
9037
9038 if (time_after(*next_balance, next))
9039 *next_balance = next;
9040}
9041
1e3c88bd 9042/*
97fb7a0a 9043 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9044 * running tasks off the busiest CPU onto idle CPUs. It requires at
9045 * least 1 task to be running on each physical CPU where possible, and
9046 * avoids physical / logical imbalances.
1e3c88bd 9047 */
969c7921 9048static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9049{
969c7921
TH
9050 struct rq *busiest_rq = data;
9051 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9052 int target_cpu = busiest_rq->push_cpu;
969c7921 9053 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9054 struct sched_domain *sd;
e5673f28 9055 struct task_struct *p = NULL;
8a8c69c3 9056 struct rq_flags rf;
969c7921 9057
8a8c69c3 9058 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9059 /*
9060 * Between queueing the stop-work and running it is a hole in which
9061 * CPUs can become inactive. We should not move tasks from or to
9062 * inactive CPUs.
9063 */
9064 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9065 goto out_unlock;
969c7921 9066
97fb7a0a 9067 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9068 if (unlikely(busiest_cpu != smp_processor_id() ||
9069 !busiest_rq->active_balance))
9070 goto out_unlock;
1e3c88bd
PZ
9071
9072 /* Is there any task to move? */
9073 if (busiest_rq->nr_running <= 1)
969c7921 9074 goto out_unlock;
1e3c88bd
PZ
9075
9076 /*
9077 * This condition is "impossible", if it occurs
9078 * we need to fix it. Originally reported by
97fb7a0a 9079 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9080 */
9081 BUG_ON(busiest_rq == target_rq);
9082
1e3c88bd 9083 /* Search for an sd spanning us and the target CPU. */
dce840a0 9084 rcu_read_lock();
1e3c88bd
PZ
9085 for_each_domain(target_cpu, sd) {
9086 if ((sd->flags & SD_LOAD_BALANCE) &&
9087 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9088 break;
9089 }
9090
9091 if (likely(sd)) {
8e45cb54
PZ
9092 struct lb_env env = {
9093 .sd = sd,
ddcdf6e7
PZ
9094 .dst_cpu = target_cpu,
9095 .dst_rq = target_rq,
9096 .src_cpu = busiest_rq->cpu,
9097 .src_rq = busiest_rq,
8e45cb54 9098 .idle = CPU_IDLE,
65a4433a
JH
9099 /*
9100 * can_migrate_task() doesn't need to compute new_dst_cpu
9101 * for active balancing. Since we have CPU_IDLE, but no
9102 * @dst_grpmask we need to make that test go away with lying
9103 * about DST_PINNED.
9104 */
9105 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9106 };
9107
ae92882e 9108 schedstat_inc(sd->alb_count);
3bed5e21 9109 update_rq_clock(busiest_rq);
1e3c88bd 9110
e5673f28 9111 p = detach_one_task(&env);
d02c0711 9112 if (p) {
ae92882e 9113 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9114 /* Active balancing done, reset the failure counter. */
9115 sd->nr_balance_failed = 0;
9116 } else {
ae92882e 9117 schedstat_inc(sd->alb_failed);
d02c0711 9118 }
1e3c88bd 9119 }
dce840a0 9120 rcu_read_unlock();
969c7921
TH
9121out_unlock:
9122 busiest_rq->active_balance = 0;
8a8c69c3 9123 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9124
9125 if (p)
9126 attach_one_task(target_rq, p);
9127
9128 local_irq_enable();
9129
969c7921 9130 return 0;
1e3c88bd
PZ
9131}
9132
af3fe03c
PZ
9133static DEFINE_SPINLOCK(balancing);
9134
9135/*
9136 * Scale the max load_balance interval with the number of CPUs in the system.
9137 * This trades load-balance latency on larger machines for less cross talk.
9138 */
9139void update_max_interval(void)
9140{
9141 max_load_balance_interval = HZ*num_online_cpus()/10;
9142}
9143
9144/*
9145 * It checks each scheduling domain to see if it is due to be balanced,
9146 * and initiates a balancing operation if so.
9147 *
9148 * Balancing parameters are set up in init_sched_domains.
9149 */
9150static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9151{
9152 int continue_balancing = 1;
9153 int cpu = rq->cpu;
9154 unsigned long interval;
9155 struct sched_domain *sd;
9156 /* Earliest time when we have to do rebalance again */
9157 unsigned long next_balance = jiffies + 60*HZ;
9158 int update_next_balance = 0;
9159 int need_serialize, need_decay = 0;
9160 u64 max_cost = 0;
9161
9162 rcu_read_lock();
9163 for_each_domain(cpu, sd) {
9164 /*
9165 * Decay the newidle max times here because this is a regular
9166 * visit to all the domains. Decay ~1% per second.
9167 */
9168 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9169 sd->max_newidle_lb_cost =
9170 (sd->max_newidle_lb_cost * 253) / 256;
9171 sd->next_decay_max_lb_cost = jiffies + HZ;
9172 need_decay = 1;
9173 }
9174 max_cost += sd->max_newidle_lb_cost;
9175
9176 if (!(sd->flags & SD_LOAD_BALANCE))
9177 continue;
9178
9179 /*
9180 * Stop the load balance at this level. There is another
9181 * CPU in our sched group which is doing load balancing more
9182 * actively.
9183 */
9184 if (!continue_balancing) {
9185 if (need_decay)
9186 continue;
9187 break;
9188 }
9189
9190 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9191
9192 need_serialize = sd->flags & SD_SERIALIZE;
9193 if (need_serialize) {
9194 if (!spin_trylock(&balancing))
9195 goto out;
9196 }
9197
9198 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9199 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9200 /*
9201 * The LBF_DST_PINNED logic could have changed
9202 * env->dst_cpu, so we can't know our idle
9203 * state even if we migrated tasks. Update it.
9204 */
9205 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9206 }
9207 sd->last_balance = jiffies;
9208 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9209 }
9210 if (need_serialize)
9211 spin_unlock(&balancing);
9212out:
9213 if (time_after(next_balance, sd->last_balance + interval)) {
9214 next_balance = sd->last_balance + interval;
9215 update_next_balance = 1;
9216 }
9217 }
9218 if (need_decay) {
9219 /*
9220 * Ensure the rq-wide value also decays but keep it at a
9221 * reasonable floor to avoid funnies with rq->avg_idle.
9222 */
9223 rq->max_idle_balance_cost =
9224 max((u64)sysctl_sched_migration_cost, max_cost);
9225 }
9226 rcu_read_unlock();
9227
9228 /*
9229 * next_balance will be updated only when there is a need.
9230 * When the cpu is attached to null domain for ex, it will not be
9231 * updated.
9232 */
9233 if (likely(update_next_balance)) {
9234 rq->next_balance = next_balance;
9235
9236#ifdef CONFIG_NO_HZ_COMMON
9237 /*
9238 * If this CPU has been elected to perform the nohz idle
9239 * balance. Other idle CPUs have already rebalanced with
9240 * nohz_idle_balance() and nohz.next_balance has been
9241 * updated accordingly. This CPU is now running the idle load
9242 * balance for itself and we need to update the
9243 * nohz.next_balance accordingly.
9244 */
9245 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9246 nohz.next_balance = rq->next_balance;
9247#endif
9248 }
9249}
9250
d987fc7f
MG
9251static inline int on_null_domain(struct rq *rq)
9252{
9253 return unlikely(!rcu_dereference_sched(rq->sd));
9254}
9255
3451d024 9256#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9257/*
9258 * idle load balancing details
83cd4fe2
VP
9259 * - When one of the busy CPUs notice that there may be an idle rebalancing
9260 * needed, they will kick the idle load balancer, which then does idle
9261 * load balancing for all the idle CPUs.
9b019acb
NP
9262 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9263 * anywhere yet.
83cd4fe2 9264 */
1e3c88bd 9265
3dd0337d 9266static inline int find_new_ilb(void)
1e3c88bd 9267{
9b019acb 9268 int ilb;
1e3c88bd 9269
9b019acb
NP
9270 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9271 housekeeping_cpumask(HK_FLAG_MISC)) {
9272 if (idle_cpu(ilb))
9273 return ilb;
9274 }
786d6dc7
SS
9275
9276 return nr_cpu_ids;
1e3c88bd 9277}
1e3c88bd 9278
83cd4fe2 9279/*
9b019acb
NP
9280 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9281 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9282 */
a4064fb6 9283static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9284{
9285 int ilb_cpu;
9286
9287 nohz.next_balance++;
9288
3dd0337d 9289 ilb_cpu = find_new_ilb();
83cd4fe2 9290
0b005cf5
SS
9291 if (ilb_cpu >= nr_cpu_ids)
9292 return;
83cd4fe2 9293
a4064fb6 9294 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9295 if (flags & NOHZ_KICK_MASK)
1c792db7 9296 return;
4550487a 9297
1c792db7
SS
9298 /*
9299 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9300 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9301 * is idle. And the softirq performing nohz idle load balance
9302 * will be run before returning from the IPI.
9303 */
9304 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9305}
9306
9307/*
9f132742
VS
9308 * Current decision point for kicking the idle load balancer in the presence
9309 * of idle CPUs in the system.
4550487a
PZ
9310 */
9311static void nohz_balancer_kick(struct rq *rq)
9312{
9313 unsigned long now = jiffies;
9314 struct sched_domain_shared *sds;
9315 struct sched_domain *sd;
9316 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9317 unsigned int flags = 0;
4550487a
PZ
9318
9319 if (unlikely(rq->idle_balance))
9320 return;
9321
9322 /*
9323 * We may be recently in ticked or tickless idle mode. At the first
9324 * busy tick after returning from idle, we will update the busy stats.
9325 */
00357f5e 9326 nohz_balance_exit_idle(rq);
4550487a
PZ
9327
9328 /*
9329 * None are in tickless mode and hence no need for NOHZ idle load
9330 * balancing.
9331 */
9332 if (likely(!atomic_read(&nohz.nr_cpus)))
9333 return;
9334
f643ea22
VG
9335 if (READ_ONCE(nohz.has_blocked) &&
9336 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9337 flags = NOHZ_STATS_KICK;
9338
4550487a 9339 if (time_before(now, nohz.next_balance))
a4064fb6 9340 goto out;
4550487a 9341
a0fe2cf0 9342 if (rq->nr_running >= 2) {
a4064fb6 9343 flags = NOHZ_KICK_MASK;
4550487a
PZ
9344 goto out;
9345 }
9346
9347 rcu_read_lock();
4550487a
PZ
9348
9349 sd = rcu_dereference(rq->sd);
9350 if (sd) {
e25a7a94
VS
9351 /*
9352 * If there's a CFS task and the current CPU has reduced
9353 * capacity; kick the ILB to see if there's a better CPU to run
9354 * on.
9355 */
9356 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9357 flags = NOHZ_KICK_MASK;
4550487a
PZ
9358 goto unlock;
9359 }
9360 }
9361
011b27bb 9362 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9363 if (sd) {
b9a7b883
VS
9364 /*
9365 * When ASYM_PACKING; see if there's a more preferred CPU
9366 * currently idle; in which case, kick the ILB to move tasks
9367 * around.
9368 */
7edab78d 9369 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9370 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9371 flags = NOHZ_KICK_MASK;
4550487a
PZ
9372 goto unlock;
9373 }
9374 }
9375 }
b9a7b883 9376
a0fe2cf0
VS
9377 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9378 if (sd) {
9379 /*
9380 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9381 * to run the misfit task on.
9382 */
9383 if (check_misfit_status(rq, sd)) {
9384 flags = NOHZ_KICK_MASK;
9385 goto unlock;
9386 }
b9a7b883
VS
9387
9388 /*
9389 * For asymmetric systems, we do not want to nicely balance
9390 * cache use, instead we want to embrace asymmetry and only
9391 * ensure tasks have enough CPU capacity.
9392 *
9393 * Skip the LLC logic because it's not relevant in that case.
9394 */
9395 goto unlock;
a0fe2cf0
VS
9396 }
9397
b9a7b883
VS
9398 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9399 if (sds) {
e25a7a94 9400 /*
b9a7b883
VS
9401 * If there is an imbalance between LLC domains (IOW we could
9402 * increase the overall cache use), we need some less-loaded LLC
9403 * domain to pull some load. Likewise, we may need to spread
9404 * load within the current LLC domain (e.g. packed SMT cores but
9405 * other CPUs are idle). We can't really know from here how busy
9406 * the others are - so just get a nohz balance going if it looks
9407 * like this LLC domain has tasks we could move.
e25a7a94 9408 */
b9a7b883
VS
9409 nr_busy = atomic_read(&sds->nr_busy_cpus);
9410 if (nr_busy > 1) {
9411 flags = NOHZ_KICK_MASK;
9412 goto unlock;
4550487a
PZ
9413 }
9414 }
9415unlock:
9416 rcu_read_unlock();
9417out:
a4064fb6
PZ
9418 if (flags)
9419 kick_ilb(flags);
83cd4fe2
VP
9420}
9421
00357f5e 9422static void set_cpu_sd_state_busy(int cpu)
71325960 9423{
00357f5e 9424 struct sched_domain *sd;
a22e47a4 9425
00357f5e
PZ
9426 rcu_read_lock();
9427 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9428
00357f5e
PZ
9429 if (!sd || !sd->nohz_idle)
9430 goto unlock;
9431 sd->nohz_idle = 0;
9432
9433 atomic_inc(&sd->shared->nr_busy_cpus);
9434unlock:
9435 rcu_read_unlock();
71325960
SS
9436}
9437
00357f5e
PZ
9438void nohz_balance_exit_idle(struct rq *rq)
9439{
9440 SCHED_WARN_ON(rq != this_rq());
9441
9442 if (likely(!rq->nohz_tick_stopped))
9443 return;
9444
9445 rq->nohz_tick_stopped = 0;
9446 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9447 atomic_dec(&nohz.nr_cpus);
9448
9449 set_cpu_sd_state_busy(rq->cpu);
9450}
9451
9452static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9453{
9454 struct sched_domain *sd;
69e1e811 9455
69e1e811 9456 rcu_read_lock();
0e369d75 9457 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9458
9459 if (!sd || sd->nohz_idle)
9460 goto unlock;
9461 sd->nohz_idle = 1;
9462
0e369d75 9463 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9464unlock:
69e1e811
SS
9465 rcu_read_unlock();
9466}
9467
1e3c88bd 9468/*
97fb7a0a 9469 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9470 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9471 */
c1cc017c 9472void nohz_balance_enter_idle(int cpu)
1e3c88bd 9473{
00357f5e
PZ
9474 struct rq *rq = cpu_rq(cpu);
9475
9476 SCHED_WARN_ON(cpu != smp_processor_id());
9477
97fb7a0a 9478 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9479 if (!cpu_active(cpu))
9480 return;
9481
387bc8b5 9482 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9483 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9484 return;
9485
f643ea22
VG
9486 /*
9487 * Can be set safely without rq->lock held
9488 * If a clear happens, it will have evaluated last additions because
9489 * rq->lock is held during the check and the clear
9490 */
9491 rq->has_blocked_load = 1;
9492
9493 /*
9494 * The tick is still stopped but load could have been added in the
9495 * meantime. We set the nohz.has_blocked flag to trig a check of the
9496 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9497 * of nohz.has_blocked can only happen after checking the new load
9498 */
00357f5e 9499 if (rq->nohz_tick_stopped)
f643ea22 9500 goto out;
1e3c88bd 9501
97fb7a0a 9502 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9503 if (on_null_domain(rq))
d987fc7f
MG
9504 return;
9505
00357f5e
PZ
9506 rq->nohz_tick_stopped = 1;
9507
c1cc017c
AS
9508 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9509 atomic_inc(&nohz.nr_cpus);
00357f5e 9510
f643ea22
VG
9511 /*
9512 * Ensures that if nohz_idle_balance() fails to observe our
9513 * @idle_cpus_mask store, it must observe the @has_blocked
9514 * store.
9515 */
9516 smp_mb__after_atomic();
9517
00357f5e 9518 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9519
9520out:
9521 /*
9522 * Each time a cpu enter idle, we assume that it has blocked load and
9523 * enable the periodic update of the load of idle cpus
9524 */
9525 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9526}
1e3c88bd 9527
1e3c88bd 9528/*
31e77c93
VG
9529 * Internal function that runs load balance for all idle cpus. The load balance
9530 * can be a simple update of blocked load or a complete load balance with
9531 * tasks movement depending of flags.
9532 * The function returns false if the loop has stopped before running
9533 * through all idle CPUs.
1e3c88bd 9534 */
31e77c93
VG
9535static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9536 enum cpu_idle_type idle)
83cd4fe2 9537{
c5afb6a8 9538 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9539 unsigned long now = jiffies;
9540 unsigned long next_balance = now + 60*HZ;
f643ea22 9541 bool has_blocked_load = false;
c5afb6a8 9542 int update_next_balance = 0;
b7031a02 9543 int this_cpu = this_rq->cpu;
b7031a02 9544 int balance_cpu;
31e77c93 9545 int ret = false;
b7031a02 9546 struct rq *rq;
83cd4fe2 9547
b7031a02 9548 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9549
f643ea22
VG
9550 /*
9551 * We assume there will be no idle load after this update and clear
9552 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9553 * set the has_blocked flag and trig another update of idle load.
9554 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9555 * setting the flag, we are sure to not clear the state and not
9556 * check the load of an idle cpu.
9557 */
9558 WRITE_ONCE(nohz.has_blocked, 0);
9559
9560 /*
9561 * Ensures that if we miss the CPU, we must see the has_blocked
9562 * store from nohz_balance_enter_idle().
9563 */
9564 smp_mb();
9565
83cd4fe2 9566 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9567 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9568 continue;
9569
9570 /*
97fb7a0a
IM
9571 * If this CPU gets work to do, stop the load balancing
9572 * work being done for other CPUs. Next load
83cd4fe2
VP
9573 * balancing owner will pick it up.
9574 */
f643ea22
VG
9575 if (need_resched()) {
9576 has_blocked_load = true;
9577 goto abort;
9578 }
83cd4fe2 9579
5ed4f1d9
VG
9580 rq = cpu_rq(balance_cpu);
9581
63928384 9582 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9583
ed61bbc6
TC
9584 /*
9585 * If time for next balance is due,
9586 * do the balance.
9587 */
9588 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9589 struct rq_flags rf;
9590
31e77c93 9591 rq_lock_irqsave(rq, &rf);
ed61bbc6 9592 update_rq_clock(rq);
31e77c93 9593 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9594
b7031a02
PZ
9595 if (flags & NOHZ_BALANCE_KICK)
9596 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9597 }
83cd4fe2 9598
c5afb6a8
VG
9599 if (time_after(next_balance, rq->next_balance)) {
9600 next_balance = rq->next_balance;
9601 update_next_balance = 1;
9602 }
83cd4fe2 9603 }
c5afb6a8 9604
31e77c93
VG
9605 /* Newly idle CPU doesn't need an update */
9606 if (idle != CPU_NEWLY_IDLE) {
9607 update_blocked_averages(this_cpu);
9608 has_blocked_load |= this_rq->has_blocked_load;
9609 }
9610
b7031a02
PZ
9611 if (flags & NOHZ_BALANCE_KICK)
9612 rebalance_domains(this_rq, CPU_IDLE);
9613
f643ea22
VG
9614 WRITE_ONCE(nohz.next_blocked,
9615 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9616
31e77c93
VG
9617 /* The full idle balance loop has been done */
9618 ret = true;
9619
f643ea22
VG
9620abort:
9621 /* There is still blocked load, enable periodic update */
9622 if (has_blocked_load)
9623 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9624
c5afb6a8
VG
9625 /*
9626 * next_balance will be updated only when there is a need.
9627 * When the CPU is attached to null domain for ex, it will not be
9628 * updated.
9629 */
9630 if (likely(update_next_balance))
9631 nohz.next_balance = next_balance;
b7031a02 9632
31e77c93
VG
9633 return ret;
9634}
9635
9636/*
9637 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9638 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9639 */
9640static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9641{
9642 int this_cpu = this_rq->cpu;
9643 unsigned int flags;
9644
9645 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9646 return false;
9647
9648 if (idle != CPU_IDLE) {
9649 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9650 return false;
9651 }
9652
80eb8657 9653 /* could be _relaxed() */
31e77c93
VG
9654 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9655 if (!(flags & NOHZ_KICK_MASK))
9656 return false;
9657
9658 _nohz_idle_balance(this_rq, flags, idle);
9659
b7031a02 9660 return true;
83cd4fe2 9661}
31e77c93
VG
9662
9663static void nohz_newidle_balance(struct rq *this_rq)
9664{
9665 int this_cpu = this_rq->cpu;
9666
9667 /*
9668 * This CPU doesn't want to be disturbed by scheduler
9669 * housekeeping
9670 */
9671 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9672 return;
9673
9674 /* Will wake up very soon. No time for doing anything else*/
9675 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9676 return;
9677
9678 /* Don't need to update blocked load of idle CPUs*/
9679 if (!READ_ONCE(nohz.has_blocked) ||
9680 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9681 return;
9682
9683 raw_spin_unlock(&this_rq->lock);
9684 /*
9685 * This CPU is going to be idle and blocked load of idle CPUs
9686 * need to be updated. Run the ilb locally as it is a good
9687 * candidate for ilb instead of waking up another idle CPU.
9688 * Kick an normal ilb if we failed to do the update.
9689 */
9690 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9691 kick_ilb(NOHZ_STATS_KICK);
9692 raw_spin_lock(&this_rq->lock);
9693}
9694
dd707247
PZ
9695#else /* !CONFIG_NO_HZ_COMMON */
9696static inline void nohz_balancer_kick(struct rq *rq) { }
9697
31e77c93 9698static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9699{
9700 return false;
9701}
31e77c93
VG
9702
9703static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9704#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9705
47ea5412
PZ
9706/*
9707 * idle_balance is called by schedule() if this_cpu is about to become
9708 * idle. Attempts to pull tasks from other CPUs.
9709 */
5ba553ef 9710int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
9711{
9712 unsigned long next_balance = jiffies + HZ;
9713 int this_cpu = this_rq->cpu;
9714 struct sched_domain *sd;
9715 int pulled_task = 0;
9716 u64 curr_cost = 0;
9717
5ba553ef 9718 update_misfit_status(NULL, this_rq);
47ea5412
PZ
9719 /*
9720 * We must set idle_stamp _before_ calling idle_balance(), such that we
9721 * measure the duration of idle_balance() as idle time.
9722 */
9723 this_rq->idle_stamp = rq_clock(this_rq);
9724
9725 /*
9726 * Do not pull tasks towards !active CPUs...
9727 */
9728 if (!cpu_active(this_cpu))
9729 return 0;
9730
9731 /*
9732 * This is OK, because current is on_cpu, which avoids it being picked
9733 * for load-balance and preemption/IRQs are still disabled avoiding
9734 * further scheduler activity on it and we're being very careful to
9735 * re-start the picking loop.
9736 */
9737 rq_unpin_lock(this_rq, rf);
9738
9739 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9740 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9741
47ea5412
PZ
9742 rcu_read_lock();
9743 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9744 if (sd)
9745 update_next_balance(sd, &next_balance);
9746 rcu_read_unlock();
9747
31e77c93
VG
9748 nohz_newidle_balance(this_rq);
9749
47ea5412
PZ
9750 goto out;
9751 }
9752
9753 raw_spin_unlock(&this_rq->lock);
9754
9755 update_blocked_averages(this_cpu);
9756 rcu_read_lock();
9757 for_each_domain(this_cpu, sd) {
9758 int continue_balancing = 1;
9759 u64 t0, domain_cost;
9760
9761 if (!(sd->flags & SD_LOAD_BALANCE))
9762 continue;
9763
9764 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9765 update_next_balance(sd, &next_balance);
9766 break;
9767 }
9768
9769 if (sd->flags & SD_BALANCE_NEWIDLE) {
9770 t0 = sched_clock_cpu(this_cpu);
9771
9772 pulled_task = load_balance(this_cpu, this_rq,
9773 sd, CPU_NEWLY_IDLE,
9774 &continue_balancing);
9775
9776 domain_cost = sched_clock_cpu(this_cpu) - t0;
9777 if (domain_cost > sd->max_newidle_lb_cost)
9778 sd->max_newidle_lb_cost = domain_cost;
9779
9780 curr_cost += domain_cost;
9781 }
9782
9783 update_next_balance(sd, &next_balance);
9784
9785 /*
9786 * Stop searching for tasks to pull if there are
9787 * now runnable tasks on this rq.
9788 */
9789 if (pulled_task || this_rq->nr_running > 0)
9790 break;
9791 }
9792 rcu_read_unlock();
9793
9794 raw_spin_lock(&this_rq->lock);
9795
9796 if (curr_cost > this_rq->max_idle_balance_cost)
9797 this_rq->max_idle_balance_cost = curr_cost;
9798
457be908 9799out:
47ea5412
PZ
9800 /*
9801 * While browsing the domains, we released the rq lock, a task could
9802 * have been enqueued in the meantime. Since we're not going idle,
9803 * pretend we pulled a task.
9804 */
9805 if (this_rq->cfs.h_nr_running && !pulled_task)
9806 pulled_task = 1;
9807
47ea5412
PZ
9808 /* Move the next balance forward */
9809 if (time_after(this_rq->next_balance, next_balance))
9810 this_rq->next_balance = next_balance;
9811
9812 /* Is there a task of a high priority class? */
9813 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9814 pulled_task = -1;
9815
9816 if (pulled_task)
9817 this_rq->idle_stamp = 0;
9818
9819 rq_repin_lock(this_rq, rf);
9820
9821 return pulled_task;
9822}
9823
83cd4fe2
VP
9824/*
9825 * run_rebalance_domains is triggered when needed from the scheduler tick.
9826 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9827 */
0766f788 9828static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9829{
208cb16b 9830 struct rq *this_rq = this_rq();
6eb57e0d 9831 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9832 CPU_IDLE : CPU_NOT_IDLE;
9833
1e3c88bd 9834 /*
97fb7a0a
IM
9835 * If this CPU has a pending nohz_balance_kick, then do the
9836 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9837 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9838 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9839 * load balance only within the local sched_domain hierarchy
9840 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9841 */
b7031a02
PZ
9842 if (nohz_idle_balance(this_rq, idle))
9843 return;
9844
9845 /* normal load balance */
9846 update_blocked_averages(this_rq->cpu);
d4573c3e 9847 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9848}
9849
1e3c88bd
PZ
9850/*
9851 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9852 */
7caff66f 9853void trigger_load_balance(struct rq *rq)
1e3c88bd 9854{
1e3c88bd 9855 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9856 if (unlikely(on_null_domain(rq)))
9857 return;
9858
9859 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9860 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9861
9862 nohz_balancer_kick(rq);
1e3c88bd
PZ
9863}
9864
0bcdcf28
CE
9865static void rq_online_fair(struct rq *rq)
9866{
9867 update_sysctl();
0e59bdae
KT
9868
9869 update_runtime_enabled(rq);
0bcdcf28
CE
9870}
9871
9872static void rq_offline_fair(struct rq *rq)
9873{
9874 update_sysctl();
a4c96ae3
PB
9875
9876 /* Ensure any throttled groups are reachable by pick_next_task */
9877 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9878}
9879
55e12e5e 9880#endif /* CONFIG_SMP */
e1d1484f 9881
bf0f6f24 9882/*
d84b3131
FW
9883 * scheduler tick hitting a task of our scheduling class.
9884 *
9885 * NOTE: This function can be called remotely by the tick offload that
9886 * goes along full dynticks. Therefore no local assumption can be made
9887 * and everything must be accessed through the @rq and @curr passed in
9888 * parameters.
bf0f6f24 9889 */
8f4d37ec 9890static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9891{
9892 struct cfs_rq *cfs_rq;
9893 struct sched_entity *se = &curr->se;
9894
9895 for_each_sched_entity(se) {
9896 cfs_rq = cfs_rq_of(se);
8f4d37ec 9897 entity_tick(cfs_rq, se, queued);
bf0f6f24 9898 }
18bf2805 9899
b52da86e 9900 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9901 task_tick_numa(rq, curr);
3b1baa64
MR
9902
9903 update_misfit_status(curr, rq);
2802bf3c 9904 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
9905}
9906
9907/*
cd29fe6f
PZ
9908 * called on fork with the child task as argument from the parent's context
9909 * - child not yet on the tasklist
9910 * - preemption disabled
bf0f6f24 9911 */
cd29fe6f 9912static void task_fork_fair(struct task_struct *p)
bf0f6f24 9913{
4fc420c9
DN
9914 struct cfs_rq *cfs_rq;
9915 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9916 struct rq *rq = this_rq();
8a8c69c3 9917 struct rq_flags rf;
bf0f6f24 9918
8a8c69c3 9919 rq_lock(rq, &rf);
861d034e
PZ
9920 update_rq_clock(rq);
9921
4fc420c9
DN
9922 cfs_rq = task_cfs_rq(current);
9923 curr = cfs_rq->curr;
e210bffd
PZ
9924 if (curr) {
9925 update_curr(cfs_rq);
b5d9d734 9926 se->vruntime = curr->vruntime;
e210bffd 9927 }
aeb73b04 9928 place_entity(cfs_rq, se, 1);
4d78e7b6 9929
cd29fe6f 9930 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9931 /*
edcb60a3
IM
9932 * Upon rescheduling, sched_class::put_prev_task() will place
9933 * 'current' within the tree based on its new key value.
9934 */
4d78e7b6 9935 swap(curr->vruntime, se->vruntime);
8875125e 9936 resched_curr(rq);
4d78e7b6 9937 }
bf0f6f24 9938
88ec22d3 9939 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9940 rq_unlock(rq, &rf);
bf0f6f24
IM
9941}
9942
cb469845
SR
9943/*
9944 * Priority of the task has changed. Check to see if we preempt
9945 * the current task.
9946 */
da7a735e
PZ
9947static void
9948prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9949{
da0c1e65 9950 if (!task_on_rq_queued(p))
da7a735e
PZ
9951 return;
9952
cb469845
SR
9953 /*
9954 * Reschedule if we are currently running on this runqueue and
9955 * our priority decreased, or if we are not currently running on
9956 * this runqueue and our priority is higher than the current's
9957 */
da7a735e 9958 if (rq->curr == p) {
cb469845 9959 if (p->prio > oldprio)
8875125e 9960 resched_curr(rq);
cb469845 9961 } else
15afe09b 9962 check_preempt_curr(rq, p, 0);
cb469845
SR
9963}
9964
daa59407 9965static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9966{
9967 struct sched_entity *se = &p->se;
da7a735e
PZ
9968
9969 /*
daa59407
BP
9970 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9971 * the dequeue_entity(.flags=0) will already have normalized the
9972 * vruntime.
9973 */
9974 if (p->on_rq)
9975 return true;
9976
9977 /*
9978 * When !on_rq, vruntime of the task has usually NOT been normalized.
9979 * But there are some cases where it has already been normalized:
da7a735e 9980 *
daa59407
BP
9981 * - A forked child which is waiting for being woken up by
9982 * wake_up_new_task().
9983 * - A task which has been woken up by try_to_wake_up() and
9984 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9985 */
d0cdb3ce
SM
9986 if (!se->sum_exec_runtime ||
9987 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
9988 return true;
9989
9990 return false;
9991}
9992
09a43ace
VG
9993#ifdef CONFIG_FAIR_GROUP_SCHED
9994/*
9995 * Propagate the changes of the sched_entity across the tg tree to make it
9996 * visible to the root
9997 */
9998static void propagate_entity_cfs_rq(struct sched_entity *se)
9999{
10000 struct cfs_rq *cfs_rq;
10001
10002 /* Start to propagate at parent */
10003 se = se->parent;
10004
10005 for_each_sched_entity(se) {
10006 cfs_rq = cfs_rq_of(se);
10007
10008 if (cfs_rq_throttled(cfs_rq))
10009 break;
10010
88c0616e 10011 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10012 }
10013}
10014#else
10015static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10016#endif
10017
df217913 10018static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10019{
daa59407
BP
10020 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10021
9d89c257 10022 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10023 update_load_avg(cfs_rq, se, 0);
a05e8c51 10024 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10025 update_tg_load_avg(cfs_rq, false);
09a43ace 10026 propagate_entity_cfs_rq(se);
da7a735e
PZ
10027}
10028
df217913 10029static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10030{
daa59407 10031 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10032
10033#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10034 /*
10035 * Since the real-depth could have been changed (only FAIR
10036 * class maintain depth value), reset depth properly.
10037 */
10038 se->depth = se->parent ? se->parent->depth + 1 : 0;
10039#endif
7855a35a 10040
df217913 10041 /* Synchronize entity with its cfs_rq */
88c0616e 10042 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10043 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10044 update_tg_load_avg(cfs_rq, false);
09a43ace 10045 propagate_entity_cfs_rq(se);
df217913
VG
10046}
10047
10048static void detach_task_cfs_rq(struct task_struct *p)
10049{
10050 struct sched_entity *se = &p->se;
10051 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10052
10053 if (!vruntime_normalized(p)) {
10054 /*
10055 * Fix up our vruntime so that the current sleep doesn't
10056 * cause 'unlimited' sleep bonus.
10057 */
10058 place_entity(cfs_rq, se, 0);
10059 se->vruntime -= cfs_rq->min_vruntime;
10060 }
10061
10062 detach_entity_cfs_rq(se);
10063}
10064
10065static void attach_task_cfs_rq(struct task_struct *p)
10066{
10067 struct sched_entity *se = &p->se;
10068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10069
10070 attach_entity_cfs_rq(se);
daa59407
BP
10071
10072 if (!vruntime_normalized(p))
10073 se->vruntime += cfs_rq->min_vruntime;
10074}
6efdb105 10075
daa59407
BP
10076static void switched_from_fair(struct rq *rq, struct task_struct *p)
10077{
10078 detach_task_cfs_rq(p);
10079}
10080
10081static void switched_to_fair(struct rq *rq, struct task_struct *p)
10082{
10083 attach_task_cfs_rq(p);
7855a35a 10084
daa59407 10085 if (task_on_rq_queued(p)) {
7855a35a 10086 /*
daa59407
BP
10087 * We were most likely switched from sched_rt, so
10088 * kick off the schedule if running, otherwise just see
10089 * if we can still preempt the current task.
7855a35a 10090 */
daa59407
BP
10091 if (rq->curr == p)
10092 resched_curr(rq);
10093 else
10094 check_preempt_curr(rq, p, 0);
7855a35a 10095 }
cb469845
SR
10096}
10097
83b699ed
SV
10098/* Account for a task changing its policy or group.
10099 *
10100 * This routine is mostly called to set cfs_rq->curr field when a task
10101 * migrates between groups/classes.
10102 */
03b7fad1 10103static void set_next_task_fair(struct rq *rq, struct task_struct *p)
83b699ed 10104{
03b7fad1
PZ
10105 struct sched_entity *se = &p->se;
10106
10107#ifdef CONFIG_SMP
10108 if (task_on_rq_queued(p)) {
10109 /*
10110 * Move the next running task to the front of the list, so our
10111 * cfs_tasks list becomes MRU one.
10112 */
10113 list_move(&se->group_node, &rq->cfs_tasks);
10114 }
10115#endif
83b699ed 10116
ec12cb7f
PT
10117 for_each_sched_entity(se) {
10118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10119
10120 set_next_entity(cfs_rq, se);
10121 /* ensure bandwidth has been allocated on our new cfs_rq */
10122 account_cfs_rq_runtime(cfs_rq, 0);
10123 }
83b699ed
SV
10124}
10125
029632fb
PZ
10126void init_cfs_rq(struct cfs_rq *cfs_rq)
10127{
bfb06889 10128 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10129 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10130#ifndef CONFIG_64BIT
10131 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10132#endif
141965c7 10133#ifdef CONFIG_SMP
2a2f5d4e 10134 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10135#endif
029632fb
PZ
10136}
10137
810b3817 10138#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10139static void task_set_group_fair(struct task_struct *p)
10140{
10141 struct sched_entity *se = &p->se;
10142
10143 set_task_rq(p, task_cpu(p));
10144 se->depth = se->parent ? se->parent->depth + 1 : 0;
10145}
10146
bc54da21 10147static void task_move_group_fair(struct task_struct *p)
810b3817 10148{
daa59407 10149 detach_task_cfs_rq(p);
b2b5ce02 10150 set_task_rq(p, task_cpu(p));
6efdb105
BP
10151
10152#ifdef CONFIG_SMP
10153 /* Tell se's cfs_rq has been changed -- migrated */
10154 p->se.avg.last_update_time = 0;
10155#endif
daa59407 10156 attach_task_cfs_rq(p);
810b3817 10157}
029632fb 10158
ea86cb4b
VG
10159static void task_change_group_fair(struct task_struct *p, int type)
10160{
10161 switch (type) {
10162 case TASK_SET_GROUP:
10163 task_set_group_fair(p);
10164 break;
10165
10166 case TASK_MOVE_GROUP:
10167 task_move_group_fair(p);
10168 break;
10169 }
10170}
10171
029632fb
PZ
10172void free_fair_sched_group(struct task_group *tg)
10173{
10174 int i;
10175
10176 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10177
10178 for_each_possible_cpu(i) {
10179 if (tg->cfs_rq)
10180 kfree(tg->cfs_rq[i]);
6fe1f348 10181 if (tg->se)
029632fb
PZ
10182 kfree(tg->se[i]);
10183 }
10184
10185 kfree(tg->cfs_rq);
10186 kfree(tg->se);
10187}
10188
10189int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10190{
029632fb 10191 struct sched_entity *se;
b7fa30c9 10192 struct cfs_rq *cfs_rq;
029632fb
PZ
10193 int i;
10194
6396bb22 10195 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10196 if (!tg->cfs_rq)
10197 goto err;
6396bb22 10198 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10199 if (!tg->se)
10200 goto err;
10201
10202 tg->shares = NICE_0_LOAD;
10203
10204 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10205
10206 for_each_possible_cpu(i) {
10207 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10208 GFP_KERNEL, cpu_to_node(i));
10209 if (!cfs_rq)
10210 goto err;
10211
10212 se = kzalloc_node(sizeof(struct sched_entity),
10213 GFP_KERNEL, cpu_to_node(i));
10214 if (!se)
10215 goto err_free_rq;
10216
10217 init_cfs_rq(cfs_rq);
10218 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10219 init_entity_runnable_average(se);
029632fb
PZ
10220 }
10221
10222 return 1;
10223
10224err_free_rq:
10225 kfree(cfs_rq);
10226err:
10227 return 0;
10228}
10229
8663e24d
PZ
10230void online_fair_sched_group(struct task_group *tg)
10231{
10232 struct sched_entity *se;
a46d14ec 10233 struct rq_flags rf;
8663e24d
PZ
10234 struct rq *rq;
10235 int i;
10236
10237 for_each_possible_cpu(i) {
10238 rq = cpu_rq(i);
10239 se = tg->se[i];
a46d14ec 10240 rq_lock_irq(rq, &rf);
4126bad6 10241 update_rq_clock(rq);
d0326691 10242 attach_entity_cfs_rq(se);
55e16d30 10243 sync_throttle(tg, i);
a46d14ec 10244 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10245 }
10246}
10247
6fe1f348 10248void unregister_fair_sched_group(struct task_group *tg)
029632fb 10249{
029632fb 10250 unsigned long flags;
6fe1f348
PZ
10251 struct rq *rq;
10252 int cpu;
029632fb 10253
6fe1f348
PZ
10254 for_each_possible_cpu(cpu) {
10255 if (tg->se[cpu])
10256 remove_entity_load_avg(tg->se[cpu]);
029632fb 10257
6fe1f348
PZ
10258 /*
10259 * Only empty task groups can be destroyed; so we can speculatively
10260 * check on_list without danger of it being re-added.
10261 */
10262 if (!tg->cfs_rq[cpu]->on_list)
10263 continue;
10264
10265 rq = cpu_rq(cpu);
10266
10267 raw_spin_lock_irqsave(&rq->lock, flags);
10268 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10269 raw_spin_unlock_irqrestore(&rq->lock, flags);
10270 }
029632fb
PZ
10271}
10272
10273void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10274 struct sched_entity *se, int cpu,
10275 struct sched_entity *parent)
10276{
10277 struct rq *rq = cpu_rq(cpu);
10278
10279 cfs_rq->tg = tg;
10280 cfs_rq->rq = rq;
029632fb
PZ
10281 init_cfs_rq_runtime(cfs_rq);
10282
10283 tg->cfs_rq[cpu] = cfs_rq;
10284 tg->se[cpu] = se;
10285
10286 /* se could be NULL for root_task_group */
10287 if (!se)
10288 return;
10289
fed14d45 10290 if (!parent) {
029632fb 10291 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10292 se->depth = 0;
10293 } else {
029632fb 10294 se->cfs_rq = parent->my_q;
fed14d45
PZ
10295 se->depth = parent->depth + 1;
10296 }
029632fb
PZ
10297
10298 se->my_q = cfs_rq;
0ac9b1c2
PT
10299 /* guarantee group entities always have weight */
10300 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10301 se->parent = parent;
10302}
10303
10304static DEFINE_MUTEX(shares_mutex);
10305
10306int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10307{
10308 int i;
029632fb
PZ
10309
10310 /*
10311 * We can't change the weight of the root cgroup.
10312 */
10313 if (!tg->se[0])
10314 return -EINVAL;
10315
10316 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10317
10318 mutex_lock(&shares_mutex);
10319 if (tg->shares == shares)
10320 goto done;
10321
10322 tg->shares = shares;
10323 for_each_possible_cpu(i) {
10324 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10325 struct sched_entity *se = tg->se[i];
10326 struct rq_flags rf;
029632fb 10327
029632fb 10328 /* Propagate contribution to hierarchy */
8a8c69c3 10329 rq_lock_irqsave(rq, &rf);
71b1da46 10330 update_rq_clock(rq);
89ee048f 10331 for_each_sched_entity(se) {
88c0616e 10332 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10333 update_cfs_group(se);
89ee048f 10334 }
8a8c69c3 10335 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10336 }
10337
10338done:
10339 mutex_unlock(&shares_mutex);
10340 return 0;
10341}
10342#else /* CONFIG_FAIR_GROUP_SCHED */
10343
10344void free_fair_sched_group(struct task_group *tg) { }
10345
10346int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10347{
10348 return 1;
10349}
10350
8663e24d
PZ
10351void online_fair_sched_group(struct task_group *tg) { }
10352
6fe1f348 10353void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10354
10355#endif /* CONFIG_FAIR_GROUP_SCHED */
10356
810b3817 10357
6d686f45 10358static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10359{
10360 struct sched_entity *se = &task->se;
0d721cea
PW
10361 unsigned int rr_interval = 0;
10362
10363 /*
10364 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10365 * idle runqueue:
10366 */
0d721cea 10367 if (rq->cfs.load.weight)
a59f4e07 10368 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10369
10370 return rr_interval;
10371}
10372
bf0f6f24
IM
10373/*
10374 * All the scheduling class methods:
10375 */
029632fb 10376const struct sched_class fair_sched_class = {
5522d5d5 10377 .next = &idle_sched_class,
bf0f6f24
IM
10378 .enqueue_task = enqueue_task_fair,
10379 .dequeue_task = dequeue_task_fair,
10380 .yield_task = yield_task_fair,
d95f4122 10381 .yield_to_task = yield_to_task_fair,
bf0f6f24 10382
2e09bf55 10383 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10384
10385 .pick_next_task = pick_next_task_fair,
03b7fad1 10386
bf0f6f24 10387 .put_prev_task = put_prev_task_fair,
03b7fad1 10388 .set_next_task = set_next_task_fair,
bf0f6f24 10389
681f3e68 10390#ifdef CONFIG_SMP
4ce72a2c 10391 .select_task_rq = select_task_rq_fair,
0a74bef8 10392 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10393
0bcdcf28
CE
10394 .rq_online = rq_online_fair,
10395 .rq_offline = rq_offline_fair,
88ec22d3 10396
12695578 10397 .task_dead = task_dead_fair,
c5b28038 10398 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10399#endif
bf0f6f24 10400
bf0f6f24 10401 .task_tick = task_tick_fair,
cd29fe6f 10402 .task_fork = task_fork_fair,
cb469845
SR
10403
10404 .prio_changed = prio_changed_fair,
da7a735e 10405 .switched_from = switched_from_fair,
cb469845 10406 .switched_to = switched_to_fair,
810b3817 10407
0d721cea
PW
10408 .get_rr_interval = get_rr_interval_fair,
10409
6e998916
SG
10410 .update_curr = update_curr_fair,
10411
810b3817 10412#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10413 .task_change_group = task_change_group_fair,
810b3817 10414#endif
982d9cdc
PB
10415
10416#ifdef CONFIG_UCLAMP_TASK
10417 .uclamp_enabled = 1,
10418#endif
bf0f6f24
IM
10419};
10420
10421#ifdef CONFIG_SCHED_DEBUG
029632fb 10422void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10423{
039ae8bc 10424 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10425
5973e5b9 10426 rcu_read_lock();
039ae8bc 10427 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10428 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10429 rcu_read_unlock();
bf0f6f24 10430}
397f2378
SD
10431
10432#ifdef CONFIG_NUMA_BALANCING
10433void show_numa_stats(struct task_struct *p, struct seq_file *m)
10434{
10435 int node;
10436 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10437 struct numa_group *ng;
397f2378 10438
cb361d8c
JH
10439 rcu_read_lock();
10440 ng = rcu_dereference(p->numa_group);
397f2378
SD
10441 for_each_online_node(node) {
10442 if (p->numa_faults) {
10443 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10444 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10445 }
cb361d8c
JH
10446 if (ng) {
10447 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10448 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10449 }
10450 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10451 }
cb361d8c 10452 rcu_read_unlock();
397f2378
SD
10453}
10454#endif /* CONFIG_NUMA_BALANCING */
10455#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10456
10457__init void init_sched_fair_class(void)
10458{
10459#ifdef CONFIG_SMP
10460 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10461
3451d024 10462#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10463 nohz.next_balance = jiffies;
f643ea22 10464 nohz.next_blocked = jiffies;
029632fb 10465 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10466#endif
10467#endif /* SMP */
10468
10469}
3c93a0c0
QY
10470
10471/*
10472 * Helper functions to facilitate extracting info from tracepoints.
10473 */
10474
10475const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10476{
10477#ifdef CONFIG_SMP
10478 return cfs_rq ? &cfs_rq->avg : NULL;
10479#else
10480 return NULL;
10481#endif
10482}
10483EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10484
10485char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10486{
10487 if (!cfs_rq) {
10488 if (str)
10489 strlcpy(str, "(null)", len);
10490 else
10491 return NULL;
10492 }
10493
10494 cfs_rq_tg_path(cfs_rq, str, len);
10495 return str;
10496}
10497EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10498
10499int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10500{
10501 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10502}
10503EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10504
10505const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10506{
10507#ifdef CONFIG_SMP
10508 return rq ? &rq->avg_rt : NULL;
10509#else
10510 return NULL;
10511#endif
10512}
10513EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10514
10515const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10516{
10517#ifdef CONFIG_SMP
10518 return rq ? &rq->avg_dl : NULL;
10519#else
10520 return NULL;
10521#endif
10522}
10523EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10524
10525const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10526{
10527#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10528 return rq ? &rq->avg_irq : NULL;
10529#else
10530 return NULL;
10531#endif
10532}
10533EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10534
10535int sched_trace_rq_cpu(struct rq *rq)
10536{
10537 return rq ? cpu_of(rq) : -1;
10538}
10539EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10540
10541const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10542{
10543#ifdef CONFIG_SMP
10544 return rd ? rd->span : NULL;
10545#else
10546 return NULL;
10547#endif
10548}
10549EXPORT_SYMBOL_GPL(sched_trace_rd_span);