sched/fair: Restructure wake_affine*() to return a CPU id
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
22 */
23
589ee628 24#include <linux/sched/mm.h>
105ab3d8
IM
25#include <linux/sched/topology.h>
26
cb251765 27#include <linux/latencytop.h>
3436ae12 28#include <linux/cpumask.h>
83a0a96a 29#include <linux/cpuidle.h>
029632fb
PZ
30#include <linux/slab.h>
31#include <linux/profile.h>
32#include <linux/interrupt.h>
cbee9f88 33#include <linux/mempolicy.h>
e14808b4 34#include <linux/migrate.h>
cbee9f88 35#include <linux/task_work.h>
78634061 36#include <linux/sched/isolation.h>
029632fb
PZ
37
38#include <trace/events/sched.h>
39
40#include "sched.h"
9745512c 41
bf0f6f24 42/*
21805085 43 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 44 *
21805085 45 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
bf0f6f24 49 *
d274a4ce
IM
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
52 *
53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 54 */
2b4d5b25
IM
55unsigned int sysctl_sched_latency = 6000000ULL;
56unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 57
1983a922
CE
58/*
59 * The initial- and re-scaling of tunables is configurable
1983a922
CE
60 *
61 * Options are:
2b4d5b25
IM
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 68 */
2b4d5b25 69enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 70
2bd8e6d4 71/*
b2be5e96 72 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 73 *
864616ee 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 75 */
2b4d5b25
IM
76unsigned int sysctl_sched_min_granularity = 750000ULL;
77unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
78
79/*
2b4d5b25 80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 81 */
0bf377bb 82static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
83
84/*
2bba22c5 85 * After fork, child runs first. If set to 0 (default) then
b2be5e96 86 * parent will (try to) run first.
21805085 87 */
2bba22c5 88unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 89
bf0f6f24
IM
90/*
91 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
92 *
93 * This option delays the preemption effects of decoupled workloads
94 * and reduces their over-scheduling. Synchronous workloads will still
95 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
96 *
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 98 */
2b4d5b25
IM
99unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
100unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 101
2b4d5b25 102const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 103
afe06efd
TC
104#ifdef CONFIG_SMP
105/*
106 * For asym packing, by default the lower numbered cpu has higher priority.
107 */
108int __weak arch_asym_cpu_priority(int cpu)
109{
110 return -cpu;
111}
112#endif
113
ec12cb7f
PT
114#ifdef CONFIG_CFS_BANDWIDTH
115/*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
2b4d5b25
IM
123 * (default: 5 msec, units: microseconds)
124 */
125unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
126#endif
127
3273163c
MR
128/*
129 * The margin used when comparing utilization with CPU capacity:
893c5d22 130 * util * margin < capacity * 1024
2b4d5b25
IM
131 *
132 * (default: ~20%)
3273163c 133 */
2b4d5b25 134unsigned int capacity_margin = 1280;
3273163c 135
8527632d
PG
136static inline void update_load_add(struct load_weight *lw, unsigned long inc)
137{
138 lw->weight += inc;
139 lw->inv_weight = 0;
140}
141
142static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
143{
144 lw->weight -= dec;
145 lw->inv_weight = 0;
146}
147
148static inline void update_load_set(struct load_weight *lw, unsigned long w)
149{
150 lw->weight = w;
151 lw->inv_weight = 0;
152}
153
029632fb
PZ
154/*
155 * Increase the granularity value when there are more CPUs,
156 * because with more CPUs the 'effective latency' as visible
157 * to users decreases. But the relationship is not linear,
158 * so pick a second-best guess by going with the log2 of the
159 * number of CPUs.
160 *
161 * This idea comes from the SD scheduler of Con Kolivas:
162 */
58ac93e4 163static unsigned int get_update_sysctl_factor(void)
029632fb 164{
58ac93e4 165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
166 unsigned int factor;
167
168 switch (sysctl_sched_tunable_scaling) {
169 case SCHED_TUNABLESCALING_NONE:
170 factor = 1;
171 break;
172 case SCHED_TUNABLESCALING_LINEAR:
173 factor = cpus;
174 break;
175 case SCHED_TUNABLESCALING_LOG:
176 default:
177 factor = 1 + ilog2(cpus);
178 break;
179 }
180
181 return factor;
182}
183
184static void update_sysctl(void)
185{
186 unsigned int factor = get_update_sysctl_factor();
187
188#define SET_SYSCTL(name) \
189 (sysctl_##name = (factor) * normalized_sysctl_##name)
190 SET_SYSCTL(sched_min_granularity);
191 SET_SYSCTL(sched_latency);
192 SET_SYSCTL(sched_wakeup_granularity);
193#undef SET_SYSCTL
194}
195
196void sched_init_granularity(void)
197{
198 update_sysctl();
199}
200
9dbdb155 201#define WMULT_CONST (~0U)
029632fb
PZ
202#define WMULT_SHIFT 32
203
9dbdb155
PZ
204static void __update_inv_weight(struct load_weight *lw)
205{
206 unsigned long w;
207
208 if (likely(lw->inv_weight))
209 return;
210
211 w = scale_load_down(lw->weight);
212
213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
214 lw->inv_weight = 1;
215 else if (unlikely(!w))
216 lw->inv_weight = WMULT_CONST;
217 else
218 lw->inv_weight = WMULT_CONST / w;
219}
029632fb
PZ
220
221/*
9dbdb155
PZ
222 * delta_exec * weight / lw.weight
223 * OR
224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
225 *
1c3de5e1 226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
227 * we're guaranteed shift stays positive because inv_weight is guaranteed to
228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
229 *
230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 232 */
9dbdb155 233static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 234{
9dbdb155
PZ
235 u64 fact = scale_load_down(weight);
236 int shift = WMULT_SHIFT;
029632fb 237
9dbdb155 238 __update_inv_weight(lw);
029632fb 239
9dbdb155
PZ
240 if (unlikely(fact >> 32)) {
241 while (fact >> 32) {
242 fact >>= 1;
243 shift--;
244 }
029632fb
PZ
245 }
246
9dbdb155
PZ
247 /* hint to use a 32x32->64 mul */
248 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 249
9dbdb155
PZ
250 while (fact >> 32) {
251 fact >>= 1;
252 shift--;
253 }
029632fb 254
9dbdb155 255 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
256}
257
258
259const struct sched_class fair_sched_class;
a4c2f00f 260
bf0f6f24
IM
261/**************************************************************
262 * CFS operations on generic schedulable entities:
263 */
264
62160e3f 265#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 266
62160e3f 267/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
268static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
269{
62160e3f 270 return cfs_rq->rq;
bf0f6f24
IM
271}
272
62160e3f
IM
273/* An entity is a task if it doesn't "own" a runqueue */
274#define entity_is_task(se) (!se->my_q)
bf0f6f24 275
8f48894f
PZ
276static inline struct task_struct *task_of(struct sched_entity *se)
277{
9148a3a1 278 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
279 return container_of(se, struct task_struct, se);
280}
281
b758149c
PZ
282/* Walk up scheduling entities hierarchy */
283#define for_each_sched_entity(se) \
284 for (; se; se = se->parent)
285
286static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
287{
288 return p->se.cfs_rq;
289}
290
291/* runqueue on which this entity is (to be) queued */
292static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
293{
294 return se->cfs_rq;
295}
296
297/* runqueue "owned" by this group */
298static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
299{
300 return grp->my_q;
301}
302
3d4b47b4
PZ
303static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304{
305 if (!cfs_rq->on_list) {
9c2791f9
VG
306 struct rq *rq = rq_of(cfs_rq);
307 int cpu = cpu_of(rq);
67e86250
PT
308 /*
309 * Ensure we either appear before our parent (if already
310 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
311 * enqueued. The fact that we always enqueue bottom-up
312 * reduces this to two cases and a special case for the root
313 * cfs_rq. Furthermore, it also means that we will always reset
314 * tmp_alone_branch either when the branch is connected
315 * to a tree or when we reach the beg of the tree
67e86250
PT
316 */
317 if (cfs_rq->tg->parent &&
9c2791f9
VG
318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
319 /*
320 * If parent is already on the list, we add the child
321 * just before. Thanks to circular linked property of
322 * the list, this means to put the child at the tail
323 * of the list that starts by parent.
324 */
325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
327 /*
328 * The branch is now connected to its tree so we can
329 * reset tmp_alone_branch to the beginning of the
330 * list.
331 */
332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
333 } else if (!cfs_rq->tg->parent) {
334 /*
335 * cfs rq without parent should be put
336 * at the tail of the list.
337 */
67e86250 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
339 &rq->leaf_cfs_rq_list);
340 /*
341 * We have reach the beg of a tree so we can reset
342 * tmp_alone_branch to the beginning of the list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 } else {
346 /*
347 * The parent has not already been added so we want to
348 * make sure that it will be put after us.
349 * tmp_alone_branch points to the beg of the branch
350 * where we will add parent.
351 */
352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
353 rq->tmp_alone_branch);
354 /*
355 * update tmp_alone_branch to points to the new beg
356 * of the branch
357 */
358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 359 }
3d4b47b4
PZ
360
361 cfs_rq->on_list = 1;
362 }
363}
364
365static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366{
367 if (cfs_rq->on_list) {
368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
369 cfs_rq->on_list = 0;
370 }
371}
372
b758149c 373/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
374#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
376 leaf_cfs_rq_list)
b758149c
PZ
377
378/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 379static inline struct cfs_rq *
b758149c
PZ
380is_same_group(struct sched_entity *se, struct sched_entity *pse)
381{
382 if (se->cfs_rq == pse->cfs_rq)
fed14d45 383 return se->cfs_rq;
b758149c 384
fed14d45 385 return NULL;
b758149c
PZ
386}
387
388static inline struct sched_entity *parent_entity(struct sched_entity *se)
389{
390 return se->parent;
391}
392
464b7527
PZ
393static void
394find_matching_se(struct sched_entity **se, struct sched_entity **pse)
395{
396 int se_depth, pse_depth;
397
398 /*
399 * preemption test can be made between sibling entities who are in the
400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
401 * both tasks until we find their ancestors who are siblings of common
402 * parent.
403 */
404
405 /* First walk up until both entities are at same depth */
fed14d45
PZ
406 se_depth = (*se)->depth;
407 pse_depth = (*pse)->depth;
464b7527
PZ
408
409 while (se_depth > pse_depth) {
410 se_depth--;
411 *se = parent_entity(*se);
412 }
413
414 while (pse_depth > se_depth) {
415 pse_depth--;
416 *pse = parent_entity(*pse);
417 }
418
419 while (!is_same_group(*se, *pse)) {
420 *se = parent_entity(*se);
421 *pse = parent_entity(*pse);
422 }
423}
424
8f48894f
PZ
425#else /* !CONFIG_FAIR_GROUP_SCHED */
426
427static inline struct task_struct *task_of(struct sched_entity *se)
428{
429 return container_of(se, struct task_struct, se);
430}
bf0f6f24 431
62160e3f
IM
432static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
433{
434 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
435}
436
437#define entity_is_task(se) 1
438
b758149c
PZ
439#define for_each_sched_entity(se) \
440 for (; se; se = NULL)
bf0f6f24 441
b758149c 442static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 443{
b758149c 444 return &task_rq(p)->cfs;
bf0f6f24
IM
445}
446
b758149c
PZ
447static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
448{
449 struct task_struct *p = task_of(se);
450 struct rq *rq = task_rq(p);
451
452 return &rq->cfs;
453}
454
455/* runqueue "owned" by this group */
456static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
457{
458 return NULL;
459}
460
3d4b47b4
PZ
461static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
462{
463}
464
465static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
466{
467}
468
a9e7f654
TH
469#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 471
b758149c
PZ
472static inline struct sched_entity *parent_entity(struct sched_entity *se)
473{
474 return NULL;
475}
476
464b7527
PZ
477static inline void
478find_matching_se(struct sched_entity **se, struct sched_entity **pse)
479{
480}
481
b758149c
PZ
482#endif /* CONFIG_FAIR_GROUP_SCHED */
483
6c16a6dc 484static __always_inline
9dbdb155 485void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
486
487/**************************************************************
488 * Scheduling class tree data structure manipulation methods:
489 */
490
1bf08230 491static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 492{
1bf08230 493 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 494 if (delta > 0)
1bf08230 495 max_vruntime = vruntime;
02e0431a 496
1bf08230 497 return max_vruntime;
02e0431a
PZ
498}
499
0702e3eb 500static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
501{
502 s64 delta = (s64)(vruntime - min_vruntime);
503 if (delta < 0)
504 min_vruntime = vruntime;
505
506 return min_vruntime;
507}
508
54fdc581
FC
509static inline int entity_before(struct sched_entity *a,
510 struct sched_entity *b)
511{
512 return (s64)(a->vruntime - b->vruntime) < 0;
513}
514
1af5f730
PZ
515static void update_min_vruntime(struct cfs_rq *cfs_rq)
516{
b60205c7 517 struct sched_entity *curr = cfs_rq->curr;
bfb06889 518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 519
1af5f730
PZ
520 u64 vruntime = cfs_rq->min_vruntime;
521
b60205c7
PZ
522 if (curr) {
523 if (curr->on_rq)
524 vruntime = curr->vruntime;
525 else
526 curr = NULL;
527 }
1af5f730 528
bfb06889
DB
529 if (leftmost) { /* non-empty tree */
530 struct sched_entity *se;
531 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 532
b60205c7 533 if (!curr)
1af5f730
PZ
534 vruntime = se->vruntime;
535 else
536 vruntime = min_vruntime(vruntime, se->vruntime);
537 }
538
1bf08230 539 /* ensure we never gain time by being placed backwards. */
1af5f730 540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
541#ifndef CONFIG_64BIT
542 smp_wmb();
543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
544#endif
1af5f730
PZ
545}
546
bf0f6f24
IM
547/*
548 * Enqueue an entity into the rb-tree:
549 */
0702e3eb 550static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 551{
bfb06889 552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
553 struct rb_node *parent = NULL;
554 struct sched_entity *entry;
bfb06889 555 bool leftmost = true;
bf0f6f24
IM
556
557 /*
558 * Find the right place in the rbtree:
559 */
560 while (*link) {
561 parent = *link;
562 entry = rb_entry(parent, struct sched_entity, run_node);
563 /*
564 * We dont care about collisions. Nodes with
565 * the same key stay together.
566 */
2bd2d6f2 567 if (entity_before(se, entry)) {
bf0f6f24
IM
568 link = &parent->rb_left;
569 } else {
570 link = &parent->rb_right;
bfb06889 571 leftmost = false;
bf0f6f24
IM
572 }
573 }
574
bf0f6f24 575 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
576 rb_insert_color_cached(&se->run_node,
577 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
578}
579
0702e3eb 580static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 581{
bfb06889 582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
583}
584
029632fb 585struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 586{
bfb06889 587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
588
589 if (!left)
590 return NULL;
591
592 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
593}
594
ac53db59
RR
595static struct sched_entity *__pick_next_entity(struct sched_entity *se)
596{
597 struct rb_node *next = rb_next(&se->run_node);
598
599 if (!next)
600 return NULL;
601
602 return rb_entry(next, struct sched_entity, run_node);
603}
604
605#ifdef CONFIG_SCHED_DEBUG
029632fb 606struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 607{
bfb06889 608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 609
70eee74b
BS
610 if (!last)
611 return NULL;
7eee3e67
IM
612
613 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
614}
615
bf0f6f24
IM
616/**************************************************************
617 * Scheduling class statistics methods:
618 */
619
acb4a848 620int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 621 void __user *buffer, size_t *lenp,
b2be5e96
PZ
622 loff_t *ppos)
623{
8d65af78 624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 625 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
626
627 if (ret || !write)
628 return ret;
629
630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
631 sysctl_sched_min_granularity);
632
acb4a848
CE
633#define WRT_SYSCTL(name) \
634 (normalized_sysctl_##name = sysctl_##name / (factor))
635 WRT_SYSCTL(sched_min_granularity);
636 WRT_SYSCTL(sched_latency);
637 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
638#undef WRT_SYSCTL
639
b2be5e96
PZ
640 return 0;
641}
642#endif
647e7cac 643
a7be37ac 644/*
f9c0b095 645 * delta /= w
a7be37ac 646 */
9dbdb155 647static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 648{
f9c0b095 649 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
651
652 return delta;
653}
654
647e7cac
IM
655/*
656 * The idea is to set a period in which each task runs once.
657 *
532b1858 658 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
659 * this period because otherwise the slices get too small.
660 *
661 * p = (nr <= nl) ? l : l*nr/nl
662 */
4d78e7b6
PZ
663static u64 __sched_period(unsigned long nr_running)
664{
8e2b0bf3
BF
665 if (unlikely(nr_running > sched_nr_latency))
666 return nr_running * sysctl_sched_min_granularity;
667 else
668 return sysctl_sched_latency;
4d78e7b6
PZ
669}
670
647e7cac
IM
671/*
672 * We calculate the wall-time slice from the period by taking a part
673 * proportional to the weight.
674 *
f9c0b095 675 * s = p*P[w/rw]
647e7cac 676 */
6d0f0ebd 677static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 678{
0a582440 679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 680
0a582440 681 for_each_sched_entity(se) {
6272d68c 682 struct load_weight *load;
3104bf03 683 struct load_weight lw;
6272d68c
LM
684
685 cfs_rq = cfs_rq_of(se);
686 load = &cfs_rq->load;
f9c0b095 687
0a582440 688 if (unlikely(!se->on_rq)) {
3104bf03 689 lw = cfs_rq->load;
0a582440
MG
690
691 update_load_add(&lw, se->load.weight);
692 load = &lw;
693 }
9dbdb155 694 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
695 }
696 return slice;
bf0f6f24
IM
697}
698
647e7cac 699/*
660cc00f 700 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 701 *
f9c0b095 702 * vs = s/w
647e7cac 703 */
f9c0b095 704static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 705{
f9c0b095 706 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
707}
708
a75cdaa9 709#ifdef CONFIG_SMP
283e2ed3
PZ
710
711#include "sched-pelt.h"
712
772bd008 713static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
714static unsigned long task_h_load(struct task_struct *p);
715
540247fb
YD
716/* Give new sched_entity start runnable values to heavy its load in infant time */
717void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 718{
540247fb 719 struct sched_avg *sa = &se->avg;
a75cdaa9 720
f207934f
PZ
721 memset(sa, 0, sizeof(*sa));
722
b5a9b340
VG
723 /*
724 * Tasks are intialized with full load to be seen as heavy tasks until
725 * they get a chance to stabilize to their real load level.
726 * Group entities are intialized with zero load to reflect the fact that
727 * nothing has been attached to the task group yet.
728 */
729 if (entity_is_task(se))
1ea6c46a 730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 731
f207934f
PZ
732 se->runnable_weight = se->load.weight;
733
9d89c257 734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 735}
7ea241af 736
7dc603c9 737static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 738static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 739
2b8c41da
YD
740/*
741 * With new tasks being created, their initial util_avgs are extrapolated
742 * based on the cfs_rq's current util_avg:
743 *
744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
745 *
746 * However, in many cases, the above util_avg does not give a desired
747 * value. Moreover, the sum of the util_avgs may be divergent, such
748 * as when the series is a harmonic series.
749 *
750 * To solve this problem, we also cap the util_avg of successive tasks to
751 * only 1/2 of the left utilization budget:
752 *
753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
754 *
755 * where n denotes the nth task.
756 *
757 * For example, a simplest series from the beginning would be like:
758 *
759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
761 *
762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
763 * if util_avg > util_avg_cap.
764 */
765void post_init_entity_util_avg(struct sched_entity *se)
766{
767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
768 struct sched_avg *sa = &se->avg;
172895e6 769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
770
771 if (cap > 0) {
772 if (cfs_rq->avg.util_avg != 0) {
773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
774 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
775
776 if (sa->util_avg > cap)
777 sa->util_avg = cap;
778 } else {
779 sa->util_avg = cap;
780 }
2b8c41da 781 }
7dc603c9
PZ
782
783 if (entity_is_task(se)) {
784 struct task_struct *p = task_of(se);
785 if (p->sched_class != &fair_sched_class) {
786 /*
787 * For !fair tasks do:
788 *
3a123bbb 789 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
790 attach_entity_load_avg(cfs_rq, se);
791 switched_from_fair(rq, p);
792 *
793 * such that the next switched_to_fair() has the
794 * expected state.
795 */
df217913 796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
797 return;
798 }
799 }
800
df217913 801 attach_entity_cfs_rq(se);
2b8c41da
YD
802}
803
7dc603c9 804#else /* !CONFIG_SMP */
540247fb 805void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
806{
807}
2b8c41da
YD
808void post_init_entity_util_avg(struct sched_entity *se)
809{
810}
3d30544f
PZ
811static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
812{
813}
7dc603c9 814#endif /* CONFIG_SMP */
a75cdaa9 815
bf0f6f24 816/*
9dbdb155 817 * Update the current task's runtime statistics.
bf0f6f24 818 */
b7cc0896 819static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 820{
429d43bc 821 struct sched_entity *curr = cfs_rq->curr;
78becc27 822 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 823 u64 delta_exec;
bf0f6f24
IM
824
825 if (unlikely(!curr))
826 return;
827
9dbdb155
PZ
828 delta_exec = now - curr->exec_start;
829 if (unlikely((s64)delta_exec <= 0))
34f28ecd 830 return;
bf0f6f24 831
8ebc91d9 832 curr->exec_start = now;
d842de87 833
9dbdb155
PZ
834 schedstat_set(curr->statistics.exec_max,
835 max(delta_exec, curr->statistics.exec_max));
836
837 curr->sum_exec_runtime += delta_exec;
ae92882e 838 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
839
840 curr->vruntime += calc_delta_fair(delta_exec, curr);
841 update_min_vruntime(cfs_rq);
842
d842de87
SV
843 if (entity_is_task(curr)) {
844 struct task_struct *curtask = task_of(curr);
845
f977bb49 846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 847 cgroup_account_cputime(curtask, delta_exec);
f06febc9 848 account_group_exec_runtime(curtask, delta_exec);
d842de87 849 }
ec12cb7f
PT
850
851 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
852}
853
6e998916
SG
854static void update_curr_fair(struct rq *rq)
855{
856 update_curr(cfs_rq_of(&rq->curr->se));
857}
858
bf0f6f24 859static inline void
5870db5b 860update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 861{
4fa8d299
JP
862 u64 wait_start, prev_wait_start;
863
864 if (!schedstat_enabled())
865 return;
866
867 wait_start = rq_clock(rq_of(cfs_rq));
868 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
869
870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
871 likely(wait_start > prev_wait_start))
872 wait_start -= prev_wait_start;
3ea94de1 873
2ed41a55 874 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
875}
876
4fa8d299 877static inline void
3ea94de1
JP
878update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
879{
880 struct task_struct *p;
cb251765
MG
881 u64 delta;
882
4fa8d299
JP
883 if (!schedstat_enabled())
884 return;
885
886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
887
888 if (entity_is_task(se)) {
889 p = task_of(se);
890 if (task_on_rq_migrating(p)) {
891 /*
892 * Preserve migrating task's wait time so wait_start
893 * time stamp can be adjusted to accumulate wait time
894 * prior to migration.
895 */
2ed41a55 896 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
897 return;
898 }
899 trace_sched_stat_wait(p, delta);
900 }
901
2ed41a55 902 __schedstat_set(se->statistics.wait_max,
4fa8d299 903 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
904 __schedstat_inc(se->statistics.wait_count);
905 __schedstat_add(se->statistics.wait_sum, delta);
906 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 907}
3ea94de1 908
4fa8d299 909static inline void
1a3d027c
JP
910update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
911{
912 struct task_struct *tsk = NULL;
4fa8d299
JP
913 u64 sleep_start, block_start;
914
915 if (!schedstat_enabled())
916 return;
917
918 sleep_start = schedstat_val(se->statistics.sleep_start);
919 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
920
921 if (entity_is_task(se))
922 tsk = task_of(se);
923
4fa8d299
JP
924 if (sleep_start) {
925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
926
927 if ((s64)delta < 0)
928 delta = 0;
929
4fa8d299 930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 931 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 932
2ed41a55
PZ
933 __schedstat_set(se->statistics.sleep_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
935
936 if (tsk) {
937 account_scheduler_latency(tsk, delta >> 10, 1);
938 trace_sched_stat_sleep(tsk, delta);
939 }
940 }
4fa8d299
JP
941 if (block_start) {
942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
943
944 if ((s64)delta < 0)
945 delta = 0;
946
4fa8d299 947 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 948 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 949
2ed41a55
PZ
950 __schedstat_set(se->statistics.block_start, 0);
951 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
952
953 if (tsk) {
954 if (tsk->in_iowait) {
2ed41a55
PZ
955 __schedstat_add(se->statistics.iowait_sum, delta);
956 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
957 trace_sched_stat_iowait(tsk, delta);
958 }
959
960 trace_sched_stat_blocked(tsk, delta);
961
962 /*
963 * Blocking time is in units of nanosecs, so shift by
964 * 20 to get a milliseconds-range estimation of the
965 * amount of time that the task spent sleeping:
966 */
967 if (unlikely(prof_on == SLEEP_PROFILING)) {
968 profile_hits(SLEEP_PROFILING,
969 (void *)get_wchan(tsk),
970 delta >> 20);
971 }
972 account_scheduler_latency(tsk, delta >> 10, 0);
973 }
974 }
3ea94de1 975}
3ea94de1 976
bf0f6f24
IM
977/*
978 * Task is being enqueued - update stats:
979 */
cb251765 980static inline void
1a3d027c 981update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 982{
4fa8d299
JP
983 if (!schedstat_enabled())
984 return;
985
bf0f6f24
IM
986 /*
987 * Are we enqueueing a waiting task? (for current tasks
988 * a dequeue/enqueue event is a NOP)
989 */
429d43bc 990 if (se != cfs_rq->curr)
5870db5b 991 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
992
993 if (flags & ENQUEUE_WAKEUP)
994 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
995}
996
bf0f6f24 997static inline void
cb251765 998update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 999{
4fa8d299
JP
1000
1001 if (!schedstat_enabled())
1002 return;
1003
bf0f6f24
IM
1004 /*
1005 * Mark the end of the wait period if dequeueing a
1006 * waiting task:
1007 */
429d43bc 1008 if (se != cfs_rq->curr)
9ef0a961 1009 update_stats_wait_end(cfs_rq, se);
cb251765 1010
4fa8d299
JP
1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1012 struct task_struct *tsk = task_of(se);
cb251765 1013
4fa8d299 1014 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1015 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1016 rq_clock(rq_of(cfs_rq)));
1017 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1018 __schedstat_set(se->statistics.block_start,
4fa8d299 1019 rq_clock(rq_of(cfs_rq)));
cb251765 1020 }
cb251765
MG
1021}
1022
bf0f6f24
IM
1023/*
1024 * We are picking a new current task - update its stats:
1025 */
1026static inline void
79303e9e 1027update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1028{
1029 /*
1030 * We are starting a new run period:
1031 */
78becc27 1032 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1033}
1034
bf0f6f24
IM
1035/**************************************************
1036 * Scheduling class queueing methods:
1037 */
1038
cbee9f88
PZ
1039#ifdef CONFIG_NUMA_BALANCING
1040/*
598f0ec0
MG
1041 * Approximate time to scan a full NUMA task in ms. The task scan period is
1042 * calculated based on the tasks virtual memory size and
1043 * numa_balancing_scan_size.
cbee9f88 1044 */
598f0ec0
MG
1045unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1046unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1047
1048/* Portion of address space to scan in MB */
1049unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1050
4b96a29b
PZ
1051/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1052unsigned int sysctl_numa_balancing_scan_delay = 1000;
1053
b5dd77c8
RR
1054struct numa_group {
1055 atomic_t refcount;
1056
1057 spinlock_t lock; /* nr_tasks, tasks */
1058 int nr_tasks;
1059 pid_t gid;
1060 int active_nodes;
1061
1062 struct rcu_head rcu;
1063 unsigned long total_faults;
1064 unsigned long max_faults_cpu;
1065 /*
1066 * Faults_cpu is used to decide whether memory should move
1067 * towards the CPU. As a consequence, these stats are weighted
1068 * more by CPU use than by memory faults.
1069 */
1070 unsigned long *faults_cpu;
1071 unsigned long faults[0];
1072};
1073
1074static inline unsigned long group_faults_priv(struct numa_group *ng);
1075static inline unsigned long group_faults_shared(struct numa_group *ng);
1076
598f0ec0
MG
1077static unsigned int task_nr_scan_windows(struct task_struct *p)
1078{
1079 unsigned long rss = 0;
1080 unsigned long nr_scan_pages;
1081
1082 /*
1083 * Calculations based on RSS as non-present and empty pages are skipped
1084 * by the PTE scanner and NUMA hinting faults should be trapped based
1085 * on resident pages
1086 */
1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1088 rss = get_mm_rss(p->mm);
1089 if (!rss)
1090 rss = nr_scan_pages;
1091
1092 rss = round_up(rss, nr_scan_pages);
1093 return rss / nr_scan_pages;
1094}
1095
1096/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1097#define MAX_SCAN_WINDOW 2560
1098
1099static unsigned int task_scan_min(struct task_struct *p)
1100{
316c1608 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1102 unsigned int scan, floor;
1103 unsigned int windows = 1;
1104
64192658
KT
1105 if (scan_size < MAX_SCAN_WINDOW)
1106 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1107 floor = 1000 / windows;
1108
1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1110 return max_t(unsigned int, floor, scan);
1111}
1112
b5dd77c8
RR
1113static unsigned int task_scan_start(struct task_struct *p)
1114{
1115 unsigned long smin = task_scan_min(p);
1116 unsigned long period = smin;
1117
1118 /* Scale the maximum scan period with the amount of shared memory. */
1119 if (p->numa_group) {
1120 struct numa_group *ng = p->numa_group;
1121 unsigned long shared = group_faults_shared(ng);
1122 unsigned long private = group_faults_priv(ng);
1123
1124 period *= atomic_read(&ng->refcount);
1125 period *= shared + 1;
1126 period /= private + shared + 1;
1127 }
1128
1129 return max(smin, period);
1130}
1131
598f0ec0
MG
1132static unsigned int task_scan_max(struct task_struct *p)
1133{
b5dd77c8
RR
1134 unsigned long smin = task_scan_min(p);
1135 unsigned long smax;
598f0ec0
MG
1136
1137 /* Watch for min being lower than max due to floor calculations */
1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1139
1140 /* Scale the maximum scan period with the amount of shared memory. */
1141 if (p->numa_group) {
1142 struct numa_group *ng = p->numa_group;
1143 unsigned long shared = group_faults_shared(ng);
1144 unsigned long private = group_faults_priv(ng);
1145 unsigned long period = smax;
1146
1147 period *= atomic_read(&ng->refcount);
1148 period *= shared + 1;
1149 period /= private + shared + 1;
1150
1151 smax = max(smax, period);
1152 }
1153
598f0ec0
MG
1154 return max(smin, smax);
1155}
1156
0ec8aa00
PZ
1157static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1158{
1159 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1161}
1162
1163static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1164{
1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1167}
1168
be1e4e76
RR
1169/* Shared or private faults. */
1170#define NR_NUMA_HINT_FAULT_TYPES 2
1171
1172/* Memory and CPU locality */
1173#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1174
1175/* Averaged statistics, and temporary buffers. */
1176#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1177
e29cf08b
MG
1178pid_t task_numa_group_id(struct task_struct *p)
1179{
1180 return p->numa_group ? p->numa_group->gid : 0;
1181}
1182
44dba3d5
IM
1183/*
1184 * The averaged statistics, shared & private, memory & cpu,
1185 * occupy the first half of the array. The second half of the
1186 * array is for current counters, which are averaged into the
1187 * first set by task_numa_placement.
1188 */
1189static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1190{
44dba3d5 1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1192}
1193
1194static inline unsigned long task_faults(struct task_struct *p, int nid)
1195{
44dba3d5 1196 if (!p->numa_faults)
ac8e895b
MG
1197 return 0;
1198
44dba3d5
IM
1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1201}
1202
83e1d2cd
MG
1203static inline unsigned long group_faults(struct task_struct *p, int nid)
1204{
1205 if (!p->numa_group)
1206 return 0;
1207
44dba3d5
IM
1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1210}
1211
20e07dea
RR
1212static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1213{
44dba3d5
IM
1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1216}
1217
b5dd77c8
RR
1218static inline unsigned long group_faults_priv(struct numa_group *ng)
1219{
1220 unsigned long faults = 0;
1221 int node;
1222
1223 for_each_online_node(node) {
1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1225 }
1226
1227 return faults;
1228}
1229
1230static inline unsigned long group_faults_shared(struct numa_group *ng)
1231{
1232 unsigned long faults = 0;
1233 int node;
1234
1235 for_each_online_node(node) {
1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1237 }
1238
1239 return faults;
1240}
1241
4142c3eb
RR
1242/*
1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1244 * considered part of a numa group's pseudo-interleaving set. Migrations
1245 * between these nodes are slowed down, to allow things to settle down.
1246 */
1247#define ACTIVE_NODE_FRACTION 3
1248
1249static bool numa_is_active_node(int nid, struct numa_group *ng)
1250{
1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1252}
1253
6c6b1193
RR
1254/* Handle placement on systems where not all nodes are directly connected. */
1255static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1256 int maxdist, bool task)
1257{
1258 unsigned long score = 0;
1259 int node;
1260
1261 /*
1262 * All nodes are directly connected, and the same distance
1263 * from each other. No need for fancy placement algorithms.
1264 */
1265 if (sched_numa_topology_type == NUMA_DIRECT)
1266 return 0;
1267
1268 /*
1269 * This code is called for each node, introducing N^2 complexity,
1270 * which should be ok given the number of nodes rarely exceeds 8.
1271 */
1272 for_each_online_node(node) {
1273 unsigned long faults;
1274 int dist = node_distance(nid, node);
1275
1276 /*
1277 * The furthest away nodes in the system are not interesting
1278 * for placement; nid was already counted.
1279 */
1280 if (dist == sched_max_numa_distance || node == nid)
1281 continue;
1282
1283 /*
1284 * On systems with a backplane NUMA topology, compare groups
1285 * of nodes, and move tasks towards the group with the most
1286 * memory accesses. When comparing two nodes at distance
1287 * "hoplimit", only nodes closer by than "hoplimit" are part
1288 * of each group. Skip other nodes.
1289 */
1290 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1291 dist > maxdist)
1292 continue;
1293
1294 /* Add up the faults from nearby nodes. */
1295 if (task)
1296 faults = task_faults(p, node);
1297 else
1298 faults = group_faults(p, node);
1299
1300 /*
1301 * On systems with a glueless mesh NUMA topology, there are
1302 * no fixed "groups of nodes". Instead, nodes that are not
1303 * directly connected bounce traffic through intermediate
1304 * nodes; a numa_group can occupy any set of nodes.
1305 * The further away a node is, the less the faults count.
1306 * This seems to result in good task placement.
1307 */
1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1309 faults *= (sched_max_numa_distance - dist);
1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1311 }
1312
1313 score += faults;
1314 }
1315
1316 return score;
1317}
1318
83e1d2cd
MG
1319/*
1320 * These return the fraction of accesses done by a particular task, or
1321 * task group, on a particular numa node. The group weight is given a
1322 * larger multiplier, in order to group tasks together that are almost
1323 * evenly spread out between numa nodes.
1324 */
7bd95320
RR
1325static inline unsigned long task_weight(struct task_struct *p, int nid,
1326 int dist)
83e1d2cd 1327{
7bd95320 1328 unsigned long faults, total_faults;
83e1d2cd 1329
44dba3d5 1330 if (!p->numa_faults)
83e1d2cd
MG
1331 return 0;
1332
1333 total_faults = p->total_numa_faults;
1334
1335 if (!total_faults)
1336 return 0;
1337
7bd95320 1338 faults = task_faults(p, nid);
6c6b1193
RR
1339 faults += score_nearby_nodes(p, nid, dist, true);
1340
7bd95320 1341 return 1000 * faults / total_faults;
83e1d2cd
MG
1342}
1343
7bd95320
RR
1344static inline unsigned long group_weight(struct task_struct *p, int nid,
1345 int dist)
83e1d2cd 1346{
7bd95320
RR
1347 unsigned long faults, total_faults;
1348
1349 if (!p->numa_group)
1350 return 0;
1351
1352 total_faults = p->numa_group->total_faults;
1353
1354 if (!total_faults)
83e1d2cd
MG
1355 return 0;
1356
7bd95320 1357 faults = group_faults(p, nid);
6c6b1193
RR
1358 faults += score_nearby_nodes(p, nid, dist, false);
1359
7bd95320 1360 return 1000 * faults / total_faults;
83e1d2cd
MG
1361}
1362
10f39042
RR
1363bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1364 int src_nid, int dst_cpu)
1365{
1366 struct numa_group *ng = p->numa_group;
1367 int dst_nid = cpu_to_node(dst_cpu);
1368 int last_cpupid, this_cpupid;
1369
1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1371
1372 /*
1373 * Multi-stage node selection is used in conjunction with a periodic
1374 * migration fault to build a temporal task<->page relation. By using
1375 * a two-stage filter we remove short/unlikely relations.
1376 *
1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1378 * a task's usage of a particular page (n_p) per total usage of this
1379 * page (n_t) (in a given time-span) to a probability.
1380 *
1381 * Our periodic faults will sample this probability and getting the
1382 * same result twice in a row, given these samples are fully
1383 * independent, is then given by P(n)^2, provided our sample period
1384 * is sufficiently short compared to the usage pattern.
1385 *
1386 * This quadric squishes small probabilities, making it less likely we
1387 * act on an unlikely task<->page relation.
1388 */
1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1390 if (!cpupid_pid_unset(last_cpupid) &&
1391 cpupid_to_nid(last_cpupid) != dst_nid)
1392 return false;
1393
1394 /* Always allow migrate on private faults */
1395 if (cpupid_match_pid(p, last_cpupid))
1396 return true;
1397
1398 /* A shared fault, but p->numa_group has not been set up yet. */
1399 if (!ng)
1400 return true;
1401
1402 /*
4142c3eb
RR
1403 * Destination node is much more heavily used than the source
1404 * node? Allow migration.
10f39042 1405 */
4142c3eb
RR
1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1407 ACTIVE_NODE_FRACTION)
10f39042
RR
1408 return true;
1409
1410 /*
4142c3eb
RR
1411 * Distribute memory according to CPU & memory use on each node,
1412 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1413 *
1414 * faults_cpu(dst) 3 faults_cpu(src)
1415 * --------------- * - > ---------------
1416 * faults_mem(dst) 4 faults_mem(src)
10f39042 1417 */
4142c3eb
RR
1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1420}
1421
c7132dd6 1422static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1423static unsigned long source_load(int cpu, int type);
1424static unsigned long target_load(int cpu, int type);
ced549fa 1425static unsigned long capacity_of(int cpu);
58d081b5 1426
fb13c7ee 1427/* Cached statistics for all CPUs within a node */
58d081b5 1428struct numa_stats {
fb13c7ee 1429 unsigned long nr_running;
58d081b5 1430 unsigned long load;
fb13c7ee
MG
1431
1432 /* Total compute capacity of CPUs on a node */
5ef20ca1 1433 unsigned long compute_capacity;
fb13c7ee
MG
1434
1435 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1436 unsigned long task_capacity;
1b6a7495 1437 int has_free_capacity;
58d081b5 1438};
e6628d5b 1439
fb13c7ee
MG
1440/*
1441 * XXX borrowed from update_sg_lb_stats
1442 */
1443static void update_numa_stats(struct numa_stats *ns, int nid)
1444{
83d7f242
RR
1445 int smt, cpu, cpus = 0;
1446 unsigned long capacity;
fb13c7ee
MG
1447
1448 memset(ns, 0, sizeof(*ns));
1449 for_each_cpu(cpu, cpumask_of_node(nid)) {
1450 struct rq *rq = cpu_rq(cpu);
1451
1452 ns->nr_running += rq->nr_running;
c7132dd6 1453 ns->load += weighted_cpuload(rq);
ced549fa 1454 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1455
1456 cpus++;
fb13c7ee
MG
1457 }
1458
5eca82a9
PZ
1459 /*
1460 * If we raced with hotplug and there are no CPUs left in our mask
1461 * the @ns structure is NULL'ed and task_numa_compare() will
1462 * not find this node attractive.
1463 *
1b6a7495
NP
1464 * We'll either bail at !has_free_capacity, or we'll detect a huge
1465 * imbalance and bail there.
5eca82a9
PZ
1466 */
1467 if (!cpus)
1468 return;
1469
83d7f242
RR
1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1472 capacity = cpus / smt; /* cores */
1473
1474 ns->task_capacity = min_t(unsigned, capacity,
1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1477}
1478
58d081b5
MG
1479struct task_numa_env {
1480 struct task_struct *p;
e6628d5b 1481
58d081b5
MG
1482 int src_cpu, src_nid;
1483 int dst_cpu, dst_nid;
e6628d5b 1484
58d081b5 1485 struct numa_stats src_stats, dst_stats;
e6628d5b 1486
40ea2b42 1487 int imbalance_pct;
7bd95320 1488 int dist;
fb13c7ee
MG
1489
1490 struct task_struct *best_task;
1491 long best_imp;
58d081b5
MG
1492 int best_cpu;
1493};
1494
fb13c7ee
MG
1495static void task_numa_assign(struct task_numa_env *env,
1496 struct task_struct *p, long imp)
1497{
1498 if (env->best_task)
1499 put_task_struct(env->best_task);
bac78573
ON
1500 if (p)
1501 get_task_struct(p);
fb13c7ee
MG
1502
1503 env->best_task = p;
1504 env->best_imp = imp;
1505 env->best_cpu = env->dst_cpu;
1506}
1507
28a21745 1508static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1509 struct task_numa_env *env)
1510{
e4991b24
RR
1511 long imb, old_imb;
1512 long orig_src_load, orig_dst_load;
28a21745
RR
1513 long src_capacity, dst_capacity;
1514
1515 /*
1516 * The load is corrected for the CPU capacity available on each node.
1517 *
1518 * src_load dst_load
1519 * ------------ vs ---------
1520 * src_capacity dst_capacity
1521 */
1522 src_capacity = env->src_stats.compute_capacity;
1523 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1524
1525 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1526 if (dst_load < src_load)
1527 swap(dst_load, src_load);
e63da036
RR
1528
1529 /* Is the difference below the threshold? */
e4991b24
RR
1530 imb = dst_load * src_capacity * 100 -
1531 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1532 if (imb <= 0)
1533 return false;
1534
1535 /*
1536 * The imbalance is above the allowed threshold.
e4991b24 1537 * Compare it with the old imbalance.
e63da036 1538 */
28a21745 1539 orig_src_load = env->src_stats.load;
e4991b24 1540 orig_dst_load = env->dst_stats.load;
28a21745 1541
e4991b24
RR
1542 if (orig_dst_load < orig_src_load)
1543 swap(orig_dst_load, orig_src_load);
e63da036 1544
e4991b24
RR
1545 old_imb = orig_dst_load * src_capacity * 100 -
1546 orig_src_load * dst_capacity * env->imbalance_pct;
1547
1548 /* Would this change make things worse? */
1549 return (imb > old_imb);
e63da036
RR
1550}
1551
fb13c7ee
MG
1552/*
1553 * This checks if the overall compute and NUMA accesses of the system would
1554 * be improved if the source tasks was migrated to the target dst_cpu taking
1555 * into account that it might be best if task running on the dst_cpu should
1556 * be exchanged with the source task
1557 */
887c290e
RR
1558static void task_numa_compare(struct task_numa_env *env,
1559 long taskimp, long groupimp)
fb13c7ee
MG
1560{
1561 struct rq *src_rq = cpu_rq(env->src_cpu);
1562 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1563 struct task_struct *cur;
28a21745 1564 long src_load, dst_load;
fb13c7ee 1565 long load;
1c5d3eb3 1566 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1567 long moveimp = imp;
7bd95320 1568 int dist = env->dist;
fb13c7ee
MG
1569
1570 rcu_read_lock();
bac78573
ON
1571 cur = task_rcu_dereference(&dst_rq->curr);
1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1573 cur = NULL;
1574
7af68335
PZ
1575 /*
1576 * Because we have preemption enabled we can get migrated around and
1577 * end try selecting ourselves (current == env->p) as a swap candidate.
1578 */
1579 if (cur == env->p)
1580 goto unlock;
1581
fb13c7ee
MG
1582 /*
1583 * "imp" is the fault differential for the source task between the
1584 * source and destination node. Calculate the total differential for
1585 * the source task and potential destination task. The more negative
1586 * the value is, the more rmeote accesses that would be expected to
1587 * be incurred if the tasks were swapped.
1588 */
1589 if (cur) {
1590 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1592 goto unlock;
1593
887c290e
RR
1594 /*
1595 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1596 * in any group then look only at task weights.
887c290e 1597 */
ca28aa53 1598 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1599 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1600 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1601 /*
1602 * Add some hysteresis to prevent swapping the
1603 * tasks within a group over tiny differences.
1604 */
1605 if (cur->numa_group)
1606 imp -= imp/16;
887c290e 1607 } else {
ca28aa53
RR
1608 /*
1609 * Compare the group weights. If a task is all by
1610 * itself (not part of a group), use the task weight
1611 * instead.
1612 */
ca28aa53 1613 if (cur->numa_group)
7bd95320
RR
1614 imp += group_weight(cur, env->src_nid, dist) -
1615 group_weight(cur, env->dst_nid, dist);
ca28aa53 1616 else
7bd95320
RR
1617 imp += task_weight(cur, env->src_nid, dist) -
1618 task_weight(cur, env->dst_nid, dist);
887c290e 1619 }
fb13c7ee
MG
1620 }
1621
0132c3e1 1622 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1623 goto unlock;
1624
1625 if (!cur) {
1626 /* Is there capacity at our destination? */
b932c03c 1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1628 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1629 goto unlock;
1630
1631 goto balance;
1632 }
1633
1634 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1635 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1636 dst_rq->nr_running == 1)
fb13c7ee
MG
1637 goto assign;
1638
1639 /*
1640 * In the overloaded case, try and keep the load balanced.
1641 */
1642balance:
e720fff6
PZ
1643 load = task_h_load(env->p);
1644 dst_load = env->dst_stats.load + load;
1645 src_load = env->src_stats.load - load;
fb13c7ee 1646
0132c3e1
RR
1647 if (moveimp > imp && moveimp > env->best_imp) {
1648 /*
1649 * If the improvement from just moving env->p direction is
1650 * better than swapping tasks around, check if a move is
1651 * possible. Store a slightly smaller score than moveimp,
1652 * so an actually idle CPU will win.
1653 */
1654 if (!load_too_imbalanced(src_load, dst_load, env)) {
1655 imp = moveimp - 1;
1656 cur = NULL;
1657 goto assign;
1658 }
1659 }
1660
1661 if (imp <= env->best_imp)
1662 goto unlock;
1663
fb13c7ee 1664 if (cur) {
e720fff6
PZ
1665 load = task_h_load(cur);
1666 dst_load -= load;
1667 src_load += load;
fb13c7ee
MG
1668 }
1669
28a21745 1670 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1671 goto unlock;
1672
ba7e5a27
RR
1673 /*
1674 * One idle CPU per node is evaluated for a task numa move.
1675 * Call select_idle_sibling to maybe find a better one.
1676 */
10e2f1ac
PZ
1677 if (!cur) {
1678 /*
1679 * select_idle_siblings() uses an per-cpu cpumask that
1680 * can be used from IRQ context.
1681 */
1682 local_irq_disable();
772bd008
MR
1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1684 env->dst_cpu);
10e2f1ac
PZ
1685 local_irq_enable();
1686 }
ba7e5a27 1687
fb13c7ee
MG
1688assign:
1689 task_numa_assign(env, cur, imp);
1690unlock:
1691 rcu_read_unlock();
1692}
1693
887c290e
RR
1694static void task_numa_find_cpu(struct task_numa_env *env,
1695 long taskimp, long groupimp)
2c8a50aa
MG
1696{
1697 int cpu;
1698
1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1700 /* Skip this CPU if the source task cannot migrate */
0c98d344 1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1702 continue;
1703
1704 env->dst_cpu = cpu;
887c290e 1705 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1706 }
1707}
1708
6f9aad0b
RR
1709/* Only move tasks to a NUMA node less busy than the current node. */
1710static bool numa_has_capacity(struct task_numa_env *env)
1711{
1712 struct numa_stats *src = &env->src_stats;
1713 struct numa_stats *dst = &env->dst_stats;
1714
1715 if (src->has_free_capacity && !dst->has_free_capacity)
1716 return false;
1717
1718 /*
1719 * Only consider a task move if the source has a higher load
1720 * than the destination, corrected for CPU capacity on each node.
1721 *
1722 * src->load dst->load
1723 * --------------------- vs ---------------------
1724 * src->compute_capacity dst->compute_capacity
1725 */
44dcb04f
SD
1726 if (src->load * dst->compute_capacity * env->imbalance_pct >
1727
1728 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1729 return true;
1730
1731 return false;
1732}
1733
58d081b5
MG
1734static int task_numa_migrate(struct task_struct *p)
1735{
58d081b5
MG
1736 struct task_numa_env env = {
1737 .p = p,
fb13c7ee 1738
58d081b5 1739 .src_cpu = task_cpu(p),
b32e86b4 1740 .src_nid = task_node(p),
fb13c7ee
MG
1741
1742 .imbalance_pct = 112,
1743
1744 .best_task = NULL,
1745 .best_imp = 0,
4142c3eb 1746 .best_cpu = -1,
58d081b5
MG
1747 };
1748 struct sched_domain *sd;
887c290e 1749 unsigned long taskweight, groupweight;
7bd95320 1750 int nid, ret, dist;
887c290e 1751 long taskimp, groupimp;
e6628d5b 1752
58d081b5 1753 /*
fb13c7ee
MG
1754 * Pick the lowest SD_NUMA domain, as that would have the smallest
1755 * imbalance and would be the first to start moving tasks about.
1756 *
1757 * And we want to avoid any moving of tasks about, as that would create
1758 * random movement of tasks -- counter the numa conditions we're trying
1759 * to satisfy here.
58d081b5
MG
1760 */
1761 rcu_read_lock();
fb13c7ee 1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1763 if (sd)
1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1765 rcu_read_unlock();
1766
46a73e8a
RR
1767 /*
1768 * Cpusets can break the scheduler domain tree into smaller
1769 * balance domains, some of which do not cross NUMA boundaries.
1770 * Tasks that are "trapped" in such domains cannot be migrated
1771 * elsewhere, so there is no point in (re)trying.
1772 */
1773 if (unlikely(!sd)) {
de1b301a 1774 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1775 return -EINVAL;
1776 }
1777
2c8a50aa 1778 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1780 taskweight = task_weight(p, env.src_nid, dist);
1781 groupweight = group_weight(p, env.src_nid, dist);
1782 update_numa_stats(&env.src_stats, env.src_nid);
1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1785 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1786
a43455a1 1787 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1788 if (numa_has_capacity(&env))
1789 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1790
9de05d48
RR
1791 /*
1792 * Look at other nodes in these cases:
1793 * - there is no space available on the preferred_nid
1794 * - the task is part of a numa_group that is interleaved across
1795 * multiple NUMA nodes; in order to better consolidate the group,
1796 * we need to check other locations.
1797 */
4142c3eb 1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1799 for_each_online_node(nid) {
1800 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1801 continue;
58d081b5 1802
7bd95320 1803 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1804 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1805 dist != env.dist) {
1806 taskweight = task_weight(p, env.src_nid, dist);
1807 groupweight = group_weight(p, env.src_nid, dist);
1808 }
7bd95320 1809
83e1d2cd 1810 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1811 taskimp = task_weight(p, nid, dist) - taskweight;
1812 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1813 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1814 continue;
1815
7bd95320 1816 env.dist = dist;
2c8a50aa
MG
1817 env.dst_nid = nid;
1818 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1819 if (numa_has_capacity(&env))
1820 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1821 }
1822 }
1823
68d1b02a
RR
1824 /*
1825 * If the task is part of a workload that spans multiple NUMA nodes,
1826 * and is migrating into one of the workload's active nodes, remember
1827 * this node as the task's preferred numa node, so the workload can
1828 * settle down.
1829 * A task that migrated to a second choice node will be better off
1830 * trying for a better one later. Do not set the preferred node here.
1831 */
db015dae 1832 if (p->numa_group) {
4142c3eb
RR
1833 struct numa_group *ng = p->numa_group;
1834
db015dae
RR
1835 if (env.best_cpu == -1)
1836 nid = env.src_nid;
1837 else
1838 nid = env.dst_nid;
1839
4142c3eb 1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1841 sched_setnuma(p, env.dst_nid);
1842 }
1843
1844 /* No better CPU than the current one was found. */
1845 if (env.best_cpu == -1)
1846 return -EAGAIN;
0ec8aa00 1847
04bb2f94
RR
1848 /*
1849 * Reset the scan period if the task is being rescheduled on an
1850 * alternative node to recheck if the tasks is now properly placed.
1851 */
b5dd77c8 1852 p->numa_scan_period = task_scan_start(p);
04bb2f94 1853
fb13c7ee 1854 if (env.best_task == NULL) {
286549dc
MG
1855 ret = migrate_task_to(p, env.best_cpu);
1856 if (ret != 0)
1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1858 return ret;
1859 }
1860
1861 ret = migrate_swap(p, env.best_task);
286549dc
MG
1862 if (ret != 0)
1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1864 put_task_struct(env.best_task);
1865 return ret;
e6628d5b
MG
1866}
1867
6b9a7460
MG
1868/* Attempt to migrate a task to a CPU on the preferred node. */
1869static void numa_migrate_preferred(struct task_struct *p)
1870{
5085e2a3
RR
1871 unsigned long interval = HZ;
1872
2739d3ee 1873 /* This task has no NUMA fault statistics yet */
44dba3d5 1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1875 return;
1876
2739d3ee 1877 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1880
1881 /* Success if task is already running on preferred CPU */
de1b301a 1882 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1883 return;
1884
1885 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1886 task_numa_migrate(p);
6b9a7460
MG
1887}
1888
20e07dea 1889/*
4142c3eb 1890 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
20e07dea 1894 */
4142c3eb 1895static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1896{
1897 unsigned long faults, max_faults = 0;
4142c3eb 1898 int nid, active_nodes = 0;
20e07dea
RR
1899
1900 for_each_online_node(nid) {
1901 faults = group_faults_cpu(numa_group, nid);
1902 if (faults > max_faults)
1903 max_faults = faults;
1904 }
1905
1906 for_each_online_node(nid) {
1907 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1908 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 active_nodes++;
20e07dea 1910 }
4142c3eb
RR
1911
1912 numa_group->max_faults_cpu = max_faults;
1913 numa_group->active_nodes = active_nodes;
20e07dea
RR
1914}
1915
04bb2f94
RR
1916/*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1922 */
1923#define NUMA_PERIOD_SLOTS 10
a22b4b01 1924#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1925
1926/*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932static void update_task_scan_period(struct task_struct *p,
1933 unsigned long shared, unsigned long private)
1934{
1935 unsigned int period_slot;
37ec97de 1936 int lr_ratio, ps_ratio;
04bb2f94
RR
1937 int diff;
1938
1939 unsigned long remote = p->numa_faults_locality[0];
1940 unsigned long local = p->numa_faults_locality[1];
1941
1942 /*
1943 * If there were no record hinting faults then either the task is
1944 * completely idle or all activity is areas that are not of interest
074c2381
MG
1945 * to automatic numa balancing. Related to that, if there were failed
1946 * migration then it implies we are migrating too quickly or the local
1947 * node is overloaded. In either case, scan slower
04bb2f94 1948 */
074c2381 1949 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1950 p->numa_scan_period = min(p->numa_scan_period_max,
1951 p->numa_scan_period << 1);
1952
1953 p->mm->numa_next_scan = jiffies +
1954 msecs_to_jiffies(p->numa_scan_period);
1955
1956 return;
1957 }
1958
1959 /*
1960 * Prepare to scale scan period relative to the current period.
1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 */
1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 /*
1971 * Most memory accesses are local. There is no need to
1972 * do fast NUMA scanning, since memory is already local.
1973 */
1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 /*
1980 * Most memory accesses are shared with other tasks.
1981 * There is no point in continuing fast NUMA scanning,
1982 * since other tasks may just move the memory elsewhere.
1983 */
1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1985 if (!slot)
1986 slot = 1;
1987 diff = slot * period_slot;
1988 } else {
04bb2f94 1989 /*
37ec97de
RR
1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 * yet they are not on the local NUMA node. Speed up
1992 * NUMA scanning to get the memory moved over.
04bb2f94 1993 */
37ec97de
RR
1994 int ratio = max(lr_ratio, ps_ratio);
1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1996 }
1997
1998 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 task_scan_min(p), task_scan_max(p));
2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001}
2002
7e2703e6
RR
2003/*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011{
2012 u64 runtime, delta, now;
2013 /* Use the start of this time slice to avoid calculations. */
2014 now = p->se.exec_start;
2015 runtime = p->se.sum_exec_runtime;
2016
2017 if (p->last_task_numa_placement) {
2018 delta = runtime - p->last_sum_exec_runtime;
2019 *period = now - p->last_task_numa_placement;
2020 } else {
c7b50216 2021 delta = p->se.avg.load_sum;
9d89c257 2022 *period = LOAD_AVG_MAX;
7e2703e6
RR
2023 }
2024
2025 p->last_sum_exec_runtime = runtime;
2026 p->last_task_numa_placement = now;
2027
2028 return delta;
2029}
2030
54009416
RR
2031/*
2032 * Determine the preferred nid for a task in a numa_group. This needs to
2033 * be done in a way that produces consistent results with group_weight,
2034 * otherwise workloads might not converge.
2035 */
2036static int preferred_group_nid(struct task_struct *p, int nid)
2037{
2038 nodemask_t nodes;
2039 int dist;
2040
2041 /* Direct connections between all NUMA nodes. */
2042 if (sched_numa_topology_type == NUMA_DIRECT)
2043 return nid;
2044
2045 /*
2046 * On a system with glueless mesh NUMA topology, group_weight
2047 * scores nodes according to the number of NUMA hinting faults on
2048 * both the node itself, and on nearby nodes.
2049 */
2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051 unsigned long score, max_score = 0;
2052 int node, max_node = nid;
2053
2054 dist = sched_max_numa_distance;
2055
2056 for_each_online_node(node) {
2057 score = group_weight(p, node, dist);
2058 if (score > max_score) {
2059 max_score = score;
2060 max_node = node;
2061 }
2062 }
2063 return max_node;
2064 }
2065
2066 /*
2067 * Finding the preferred nid in a system with NUMA backplane
2068 * interconnect topology is more involved. The goal is to locate
2069 * tasks from numa_groups near each other in the system, and
2070 * untangle workloads from different sides of the system. This requires
2071 * searching down the hierarchy of node groups, recursively searching
2072 * inside the highest scoring group of nodes. The nodemask tricks
2073 * keep the complexity of the search down.
2074 */
2075 nodes = node_online_map;
2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077 unsigned long max_faults = 0;
81907478 2078 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2079 int a, b;
2080
2081 /* Are there nodes at this distance from each other? */
2082 if (!find_numa_distance(dist))
2083 continue;
2084
2085 for_each_node_mask(a, nodes) {
2086 unsigned long faults = 0;
2087 nodemask_t this_group;
2088 nodes_clear(this_group);
2089
2090 /* Sum group's NUMA faults; includes a==b case. */
2091 for_each_node_mask(b, nodes) {
2092 if (node_distance(a, b) < dist) {
2093 faults += group_faults(p, b);
2094 node_set(b, this_group);
2095 node_clear(b, nodes);
2096 }
2097 }
2098
2099 /* Remember the top group. */
2100 if (faults > max_faults) {
2101 max_faults = faults;
2102 max_group = this_group;
2103 /*
2104 * subtle: at the smallest distance there is
2105 * just one node left in each "group", the
2106 * winner is the preferred nid.
2107 */
2108 nid = a;
2109 }
2110 }
2111 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2112 if (!max_faults)
2113 break;
54009416
RR
2114 nodes = max_group;
2115 }
2116 return nid;
2117}
2118
cbee9f88
PZ
2119static void task_numa_placement(struct task_struct *p)
2120{
83e1d2cd
MG
2121 int seq, nid, max_nid = -1, max_group_nid = -1;
2122 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2123 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2124 unsigned long total_faults;
2125 u64 runtime, period;
7dbd13ed 2126 spinlock_t *group_lock = NULL;
cbee9f88 2127
7e5a2c17
JL
2128 /*
2129 * The p->mm->numa_scan_seq field gets updated without
2130 * exclusive access. Use READ_ONCE() here to ensure
2131 * that the field is read in a single access:
2132 */
316c1608 2133 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2134 if (p->numa_scan_seq == seq)
2135 return;
2136 p->numa_scan_seq = seq;
598f0ec0 2137 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2138
7e2703e6
RR
2139 total_faults = p->numa_faults_locality[0] +
2140 p->numa_faults_locality[1];
2141 runtime = numa_get_avg_runtime(p, &period);
2142
7dbd13ed
MG
2143 /* If the task is part of a group prevent parallel updates to group stats */
2144 if (p->numa_group) {
2145 group_lock = &p->numa_group->lock;
60e69eed 2146 spin_lock_irq(group_lock);
7dbd13ed
MG
2147 }
2148
688b7585
MG
2149 /* Find the node with the highest number of faults */
2150 for_each_online_node(nid) {
44dba3d5
IM
2151 /* Keep track of the offsets in numa_faults array */
2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2153 unsigned long faults = 0, group_faults = 0;
44dba3d5 2154 int priv;
745d6147 2155
be1e4e76 2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2157 long diff, f_diff, f_weight;
8c8a743c 2158
44dba3d5
IM
2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2163
ac8e895b 2164 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166 fault_types[priv] += p->numa_faults[membuf_idx];
2167 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2168
7e2703e6
RR
2169 /*
2170 * Normalize the faults_from, so all tasks in a group
2171 * count according to CPU use, instead of by the raw
2172 * number of faults. Tasks with little runtime have
2173 * little over-all impact on throughput, and thus their
2174 * faults are less important.
2175 */
2176 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2178 (total_faults + 1);
44dba3d5
IM
2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2181
44dba3d5
IM
2182 p->numa_faults[mem_idx] += diff;
2183 p->numa_faults[cpu_idx] += f_diff;
2184 faults += p->numa_faults[mem_idx];
83e1d2cd 2185 p->total_numa_faults += diff;
8c8a743c 2186 if (p->numa_group) {
44dba3d5
IM
2187 /*
2188 * safe because we can only change our own group
2189 *
2190 * mem_idx represents the offset for a given
2191 * nid and priv in a specific region because it
2192 * is at the beginning of the numa_faults array.
2193 */
2194 p->numa_group->faults[mem_idx] += diff;
2195 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2196 p->numa_group->total_faults += diff;
44dba3d5 2197 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2198 }
ac8e895b
MG
2199 }
2200
688b7585
MG
2201 if (faults > max_faults) {
2202 max_faults = faults;
2203 max_nid = nid;
2204 }
83e1d2cd
MG
2205
2206 if (group_faults > max_group_faults) {
2207 max_group_faults = group_faults;
2208 max_group_nid = nid;
2209 }
2210 }
2211
04bb2f94
RR
2212 update_task_scan_period(p, fault_types[0], fault_types[1]);
2213
7dbd13ed 2214 if (p->numa_group) {
4142c3eb 2215 numa_group_count_active_nodes(p->numa_group);
60e69eed 2216 spin_unlock_irq(group_lock);
54009416 2217 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2218 }
2219
bb97fc31
RR
2220 if (max_faults) {
2221 /* Set the new preferred node */
2222 if (max_nid != p->numa_preferred_nid)
2223 sched_setnuma(p, max_nid);
2224
2225 if (task_node(p) != p->numa_preferred_nid)
2226 numa_migrate_preferred(p);
3a7053b3 2227 }
cbee9f88
PZ
2228}
2229
8c8a743c
PZ
2230static inline int get_numa_group(struct numa_group *grp)
2231{
2232 return atomic_inc_not_zero(&grp->refcount);
2233}
2234
2235static inline void put_numa_group(struct numa_group *grp)
2236{
2237 if (atomic_dec_and_test(&grp->refcount))
2238 kfree_rcu(grp, rcu);
2239}
2240
3e6a9418
MG
2241static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2242 int *priv)
8c8a743c
PZ
2243{
2244 struct numa_group *grp, *my_grp;
2245 struct task_struct *tsk;
2246 bool join = false;
2247 int cpu = cpupid_to_cpu(cpupid);
2248 int i;
2249
2250 if (unlikely(!p->numa_group)) {
2251 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2252 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2253
2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2255 if (!grp)
2256 return;
2257
2258 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2259 grp->active_nodes = 1;
2260 grp->max_faults_cpu = 0;
8c8a743c 2261 spin_lock_init(&grp->lock);
e29cf08b 2262 grp->gid = p->pid;
50ec8a40 2263 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2265 nr_node_ids;
8c8a743c 2266
be1e4e76 2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2268 grp->faults[i] = p->numa_faults[i];
8c8a743c 2269
989348b5 2270 grp->total_faults = p->total_numa_faults;
83e1d2cd 2271
8c8a743c
PZ
2272 grp->nr_tasks++;
2273 rcu_assign_pointer(p->numa_group, grp);
2274 }
2275
2276 rcu_read_lock();
316c1608 2277 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2278
2279 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2280 goto no_join;
8c8a743c
PZ
2281
2282 grp = rcu_dereference(tsk->numa_group);
2283 if (!grp)
3354781a 2284 goto no_join;
8c8a743c
PZ
2285
2286 my_grp = p->numa_group;
2287 if (grp == my_grp)
3354781a 2288 goto no_join;
8c8a743c
PZ
2289
2290 /*
2291 * Only join the other group if its bigger; if we're the bigger group,
2292 * the other task will join us.
2293 */
2294 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2295 goto no_join;
8c8a743c
PZ
2296
2297 /*
2298 * Tie-break on the grp address.
2299 */
2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2301 goto no_join;
8c8a743c 2302
dabe1d99
RR
2303 /* Always join threads in the same process. */
2304 if (tsk->mm == current->mm)
2305 join = true;
2306
2307 /* Simple filter to avoid false positives due to PID collisions */
2308 if (flags & TNF_SHARED)
2309 join = true;
8c8a743c 2310
3e6a9418
MG
2311 /* Update priv based on whether false sharing was detected */
2312 *priv = !join;
2313
dabe1d99 2314 if (join && !get_numa_group(grp))
3354781a 2315 goto no_join;
8c8a743c 2316
8c8a743c
PZ
2317 rcu_read_unlock();
2318
2319 if (!join)
2320 return;
2321
60e69eed
MG
2322 BUG_ON(irqs_disabled());
2323 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2324
be1e4e76 2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2326 my_grp->faults[i] -= p->numa_faults[i];
2327 grp->faults[i] += p->numa_faults[i];
8c8a743c 2328 }
989348b5
MG
2329 my_grp->total_faults -= p->total_numa_faults;
2330 grp->total_faults += p->total_numa_faults;
8c8a743c 2331
8c8a743c
PZ
2332 my_grp->nr_tasks--;
2333 grp->nr_tasks++;
2334
2335 spin_unlock(&my_grp->lock);
60e69eed 2336 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2337
2338 rcu_assign_pointer(p->numa_group, grp);
2339
2340 put_numa_group(my_grp);
3354781a
PZ
2341 return;
2342
2343no_join:
2344 rcu_read_unlock();
2345 return;
8c8a743c
PZ
2346}
2347
2348void task_numa_free(struct task_struct *p)
2349{
2350 struct numa_group *grp = p->numa_group;
44dba3d5 2351 void *numa_faults = p->numa_faults;
e9dd685c
SR
2352 unsigned long flags;
2353 int i;
8c8a743c
PZ
2354
2355 if (grp) {
e9dd685c 2356 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2358 grp->faults[i] -= p->numa_faults[i];
989348b5 2359 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2360
8c8a743c 2361 grp->nr_tasks--;
e9dd685c 2362 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2363 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2364 put_numa_group(grp);
2365 }
2366
44dba3d5 2367 p->numa_faults = NULL;
82727018 2368 kfree(numa_faults);
8c8a743c
PZ
2369}
2370
cbee9f88
PZ
2371/*
2372 * Got a PROT_NONE fault for a page on @node.
2373 */
58b46da3 2374void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2375{
2376 struct task_struct *p = current;
6688cc05 2377 bool migrated = flags & TNF_MIGRATED;
58b46da3 2378 int cpu_node = task_node(current);
792568ec 2379 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2380 struct numa_group *ng;
ac8e895b 2381 int priv;
cbee9f88 2382
2a595721 2383 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2384 return;
2385
9ff1d9ff
MG
2386 /* for example, ksmd faulting in a user's mm */
2387 if (!p->mm)
2388 return;
2389
f809ca9a 2390 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2391 if (unlikely(!p->numa_faults)) {
2392 int size = sizeof(*p->numa_faults) *
be1e4e76 2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2394
44dba3d5
IM
2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2396 if (!p->numa_faults)
f809ca9a 2397 return;
745d6147 2398
83e1d2cd 2399 p->total_numa_faults = 0;
04bb2f94 2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2401 }
cbee9f88 2402
8c8a743c
PZ
2403 /*
2404 * First accesses are treated as private, otherwise consider accesses
2405 * to be private if the accessing pid has not changed
2406 */
2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2408 priv = 1;
2409 } else {
2410 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2411 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2412 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2413 }
2414
792568ec
RR
2415 /*
2416 * If a workload spans multiple NUMA nodes, a shared fault that
2417 * occurs wholly within the set of nodes that the workload is
2418 * actively using should be counted as local. This allows the
2419 * scan rate to slow down when a workload has settled down.
2420 */
4142c3eb
RR
2421 ng = p->numa_group;
2422 if (!priv && !local && ng && ng->active_nodes > 1 &&
2423 numa_is_active_node(cpu_node, ng) &&
2424 numa_is_active_node(mem_node, ng))
792568ec
RR
2425 local = 1;
2426
cbee9f88 2427 task_numa_placement(p);
f809ca9a 2428
2739d3ee
RR
2429 /*
2430 * Retry task to preferred node migration periodically, in case it
2431 * case it previously failed, or the scheduler moved us.
2432 */
2433 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2434 numa_migrate_preferred(p);
2435
b32e86b4
IM
2436 if (migrated)
2437 p->numa_pages_migrated += pages;
074c2381
MG
2438 if (flags & TNF_MIGRATE_FAIL)
2439 p->numa_faults_locality[2] += pages;
b32e86b4 2440
44dba3d5
IM
2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2443 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2444}
2445
6e5fb223
PZ
2446static void reset_ptenuma_scan(struct task_struct *p)
2447{
7e5a2c17
JL
2448 /*
2449 * We only did a read acquisition of the mmap sem, so
2450 * p->mm->numa_scan_seq is written to without exclusive access
2451 * and the update is not guaranteed to be atomic. That's not
2452 * much of an issue though, since this is just used for
2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2454 * expensive, to avoid any form of compiler optimizations:
2455 */
316c1608 2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2457 p->mm->numa_scan_offset = 0;
2458}
2459
cbee9f88
PZ
2460/*
2461 * The expensive part of numa migration is done from task_work context.
2462 * Triggered from task_tick_numa().
2463 */
2464void task_numa_work(struct callback_head *work)
2465{
2466 unsigned long migrate, next_scan, now = jiffies;
2467 struct task_struct *p = current;
2468 struct mm_struct *mm = p->mm;
51170840 2469 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2470 struct vm_area_struct *vma;
9f40604c 2471 unsigned long start, end;
598f0ec0 2472 unsigned long nr_pte_updates = 0;
4620f8c1 2473 long pages, virtpages;
cbee9f88 2474
9148a3a1 2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2476
2477 work->next = work; /* protect against double add */
2478 /*
2479 * Who cares about NUMA placement when they're dying.
2480 *
2481 * NOTE: make sure not to dereference p->mm before this check,
2482 * exit_task_work() happens _after_ exit_mm() so we could be called
2483 * without p->mm even though we still had it when we enqueued this
2484 * work.
2485 */
2486 if (p->flags & PF_EXITING)
2487 return;
2488
930aa174 2489 if (!mm->numa_next_scan) {
7e8d16b6
MG
2490 mm->numa_next_scan = now +
2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2492 }
2493
cbee9f88
PZ
2494 /*
2495 * Enforce maximal scan/migration frequency..
2496 */
2497 migrate = mm->numa_next_scan;
2498 if (time_before(now, migrate))
2499 return;
2500
598f0ec0
MG
2501 if (p->numa_scan_period == 0) {
2502 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2503 p->numa_scan_period = task_scan_start(p);
598f0ec0 2504 }
cbee9f88 2505
fb003b80 2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2508 return;
2509
19a78d11
PZ
2510 /*
2511 * Delay this task enough that another task of this mm will likely win
2512 * the next time around.
2513 */
2514 p->node_stamp += 2 * TICK_NSEC;
2515
9f40604c
MG
2516 start = mm->numa_scan_offset;
2517 pages = sysctl_numa_balancing_scan_size;
2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2519 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2520 if (!pages)
2521 return;
cbee9f88 2522
4620f8c1 2523
8655d549
VB
2524 if (!down_read_trylock(&mm->mmap_sem))
2525 return;
9f40604c 2526 vma = find_vma(mm, start);
6e5fb223
PZ
2527 if (!vma) {
2528 reset_ptenuma_scan(p);
9f40604c 2529 start = 0;
6e5fb223
PZ
2530 vma = mm->mmap;
2531 }
9f40604c 2532 for (; vma; vma = vma->vm_next) {
6b79c57b 2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2535 continue;
6b79c57b 2536 }
6e5fb223 2537
4591ce4f
MG
2538 /*
2539 * Shared library pages mapped by multiple processes are not
2540 * migrated as it is expected they are cache replicated. Avoid
2541 * hinting faults in read-only file-backed mappings or the vdso
2542 * as migrating the pages will be of marginal benefit.
2543 */
2544 if (!vma->vm_mm ||
2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2546 continue;
2547
3c67f474
MG
2548 /*
2549 * Skip inaccessible VMAs to avoid any confusion between
2550 * PROT_NONE and NUMA hinting ptes
2551 */
2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2553 continue;
4591ce4f 2554
9f40604c
MG
2555 do {
2556 start = max(start, vma->vm_start);
2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2558 end = min(end, vma->vm_end);
4620f8c1 2559 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2560
2561 /*
4620f8c1
RR
2562 * Try to scan sysctl_numa_balancing_size worth of
2563 * hpages that have at least one present PTE that
2564 * is not already pte-numa. If the VMA contains
2565 * areas that are unused or already full of prot_numa
2566 * PTEs, scan up to virtpages, to skip through those
2567 * areas faster.
598f0ec0
MG
2568 */
2569 if (nr_pte_updates)
2570 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2571 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2572
9f40604c 2573 start = end;
4620f8c1 2574 if (pages <= 0 || virtpages <= 0)
9f40604c 2575 goto out;
3cf1962c
RR
2576
2577 cond_resched();
9f40604c 2578 } while (end != vma->vm_end);
cbee9f88 2579 }
6e5fb223 2580
9f40604c 2581out:
6e5fb223 2582 /*
c69307d5
PZ
2583 * It is possible to reach the end of the VMA list but the last few
2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2585 * would find the !migratable VMA on the next scan but not reset the
2586 * scanner to the start so check it now.
6e5fb223
PZ
2587 */
2588 if (vma)
9f40604c 2589 mm->numa_scan_offset = start;
6e5fb223
PZ
2590 else
2591 reset_ptenuma_scan(p);
2592 up_read(&mm->mmap_sem);
51170840
RR
2593
2594 /*
2595 * Make sure tasks use at least 32x as much time to run other code
2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2597 * Usually update_task_scan_period slows down scanning enough; on an
2598 * overloaded system we need to limit overhead on a per task basis.
2599 */
2600 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2601 u64 diff = p->se.sum_exec_runtime - runtime;
2602 p->node_stamp += 32 * diff;
2603 }
cbee9f88
PZ
2604}
2605
2606/*
2607 * Drive the periodic memory faults..
2608 */
2609void task_tick_numa(struct rq *rq, struct task_struct *curr)
2610{
2611 struct callback_head *work = &curr->numa_work;
2612 u64 period, now;
2613
2614 /*
2615 * We don't care about NUMA placement if we don't have memory.
2616 */
2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2618 return;
2619
2620 /*
2621 * Using runtime rather than walltime has the dual advantage that
2622 * we (mostly) drive the selection from busy threads and that the
2623 * task needs to have done some actual work before we bother with
2624 * NUMA placement.
2625 */
2626 now = curr->se.sum_exec_runtime;
2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2628
25b3e5a3 2629 if (now > curr->node_stamp + period) {
4b96a29b 2630 if (!curr->node_stamp)
b5dd77c8 2631 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2632 curr->node_stamp += period;
cbee9f88
PZ
2633
2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2636 task_work_add(curr, work, true);
2637 }
2638 }
2639}
3fed382b 2640
cbee9f88
PZ
2641#else
2642static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2643{
2644}
0ec8aa00
PZ
2645
2646static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2647{
2648}
2649
2650static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2651{
2652}
3fed382b 2653
cbee9f88
PZ
2654#endif /* CONFIG_NUMA_BALANCING */
2655
30cfdcfc
DA
2656static void
2657account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2658{
2659 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2660 if (!parent_entity(se))
029632fb 2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2662#ifdef CONFIG_SMP
0ec8aa00
PZ
2663 if (entity_is_task(se)) {
2664 struct rq *rq = rq_of(cfs_rq);
2665
2666 account_numa_enqueue(rq, task_of(se));
2667 list_add(&se->group_node, &rq->cfs_tasks);
2668 }
367456c7 2669#endif
30cfdcfc 2670 cfs_rq->nr_running++;
30cfdcfc
DA
2671}
2672
2673static void
2674account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2675{
2676 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2677 if (!parent_entity(se))
029632fb 2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2679#ifdef CONFIG_SMP
0ec8aa00
PZ
2680 if (entity_is_task(se)) {
2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2682 list_del_init(&se->group_node);
0ec8aa00 2683 }
bfdb198c 2684#endif
30cfdcfc 2685 cfs_rq->nr_running--;
30cfdcfc
DA
2686}
2687
8d5b9025
PZ
2688/*
2689 * Signed add and clamp on underflow.
2690 *
2691 * Explicitly do a load-store to ensure the intermediate value never hits
2692 * memory. This allows lockless observations without ever seeing the negative
2693 * values.
2694 */
2695#define add_positive(_ptr, _val) do { \
2696 typeof(_ptr) ptr = (_ptr); \
2697 typeof(_val) val = (_val); \
2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2699 \
2700 res = var + val; \
2701 \
2702 if (val < 0 && res > var) \
2703 res = 0; \
2704 \
2705 WRITE_ONCE(*ptr, res); \
2706} while (0)
2707
2708/*
2709 * Unsigned subtract and clamp on underflow.
2710 *
2711 * Explicitly do a load-store to ensure the intermediate value never hits
2712 * memory. This allows lockless observations without ever seeing the negative
2713 * values.
2714 */
2715#define sub_positive(_ptr, _val) do { \
2716 typeof(_ptr) ptr = (_ptr); \
2717 typeof(*ptr) val = (_val); \
2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2719 res = var - val; \
2720 if (res > var) \
2721 res = 0; \
2722 WRITE_ONCE(*ptr, res); \
2723} while (0)
2724
2725#ifdef CONFIG_SMP
2726/*
1ea6c46a 2727 * XXX we want to get rid of these helpers and use the full load resolution.
8d5b9025
PZ
2728 */
2729static inline long se_weight(struct sched_entity *se)
2730{
2731 return scale_load_down(se->load.weight);
2732}
2733
1ea6c46a
PZ
2734static inline long se_runnable(struct sched_entity *se)
2735{
2736 return scale_load_down(se->runnable_weight);
2737}
2738
8d5b9025
PZ
2739static inline void
2740enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741{
1ea6c46a
PZ
2742 cfs_rq->runnable_weight += se->runnable_weight;
2743
2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2746}
2747
2748static inline void
2749dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
1ea6c46a
PZ
2751 cfs_rq->runnable_weight -= se->runnable_weight;
2752
2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2754 sub_positive(&cfs_rq->avg.runnable_load_sum,
2755 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2756}
2757
2758static inline void
2759enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760{
2761 cfs_rq->avg.load_avg += se->avg.load_avg;
2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2763}
2764
2765static inline void
2766dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767{
2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2770}
2771#else
2772static inline void
2773enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2774static inline void
2775dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2776static inline void
2777enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2778static inline void
2779dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2780#endif
2781
9059393e 2782static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2783 unsigned long weight, unsigned long runnable)
9059393e
VG
2784{
2785 if (se->on_rq) {
2786 /* commit outstanding execution time */
2787 if (cfs_rq->curr == se)
2788 update_curr(cfs_rq);
2789 account_entity_dequeue(cfs_rq, se);
2790 dequeue_runnable_load_avg(cfs_rq, se);
2791 }
2792 dequeue_load_avg(cfs_rq, se);
2793
1ea6c46a 2794 se->runnable_weight = runnable;
9059393e
VG
2795 update_load_set(&se->load, weight);
2796
2797#ifdef CONFIG_SMP
1ea6c46a
PZ
2798 do {
2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2800
2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2802 se->avg.runnable_load_avg =
2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2804 } while (0);
9059393e
VG
2805#endif
2806
2807 enqueue_load_avg(cfs_rq, se);
2808 if (se->on_rq) {
2809 account_entity_enqueue(cfs_rq, se);
2810 enqueue_runnable_load_avg(cfs_rq, se);
2811 }
2812}
2813
2814void reweight_task(struct task_struct *p, int prio)
2815{
2816 struct sched_entity *se = &p->se;
2817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2818 struct load_weight *load = &se->load;
2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2820
1ea6c46a 2821 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2822 load->inv_weight = sched_prio_to_wmult[prio];
2823}
2824
3ff6dcac
YZ
2825#ifdef CONFIG_FAIR_GROUP_SCHED
2826# ifdef CONFIG_SMP
cef27403
PZ
2827/*
2828 * All this does is approximate the hierarchical proportion which includes that
2829 * global sum we all love to hate.
2830 *
2831 * That is, the weight of a group entity, is the proportional share of the
2832 * group weight based on the group runqueue weights. That is:
2833 *
2834 * tg->weight * grq->load.weight
2835 * ge->load.weight = ----------------------------- (1)
2836 * \Sum grq->load.weight
2837 *
2838 * Now, because computing that sum is prohibitively expensive to compute (been
2839 * there, done that) we approximate it with this average stuff. The average
2840 * moves slower and therefore the approximation is cheaper and more stable.
2841 *
2842 * So instead of the above, we substitute:
2843 *
2844 * grq->load.weight -> grq->avg.load_avg (2)
2845 *
2846 * which yields the following:
2847 *
2848 * tg->weight * grq->avg.load_avg
2849 * ge->load.weight = ------------------------------ (3)
2850 * tg->load_avg
2851 *
2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2853 *
2854 * That is shares_avg, and it is right (given the approximation (2)).
2855 *
2856 * The problem with it is that because the average is slow -- it was designed
2857 * to be exactly that of course -- this leads to transients in boundary
2858 * conditions. In specific, the case where the group was idle and we start the
2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2860 * yielding bad latency etc..
2861 *
2862 * Now, in that special case (1) reduces to:
2863 *
2864 * tg->weight * grq->load.weight
17de4ee0 2865 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2866 * grp->load.weight
2867 *
2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2869 *
2870 * So what we do is modify our approximation (3) to approach (4) in the (near)
2871 * UP case, like:
2872 *
2873 * ge->load.weight =
2874 *
2875 * tg->weight * grq->load.weight
2876 * --------------------------------------------------- (5)
2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2878 *
17de4ee0
PZ
2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2880 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2881 *
2882 *
2883 * tg->weight * grq->load.weight
2884 * ge->load.weight = ----------------------------- (6)
2885 * tg_load_avg'
2886 *
2887 * Where:
2888 *
2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2890 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2891 *
2892 * And that is shares_weight and is icky. In the (near) UP case it approaches
2893 * (4) while in the normal case it approaches (3). It consistently
2894 * overestimates the ge->load.weight and therefore:
2895 *
2896 * \Sum ge->load.weight >= tg->weight
2897 *
2898 * hence icky!
2899 */
2c8e4dce 2900static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2901{
7c80cfc9
PZ
2902 long tg_weight, tg_shares, load, shares;
2903 struct task_group *tg = cfs_rq->tg;
2904
2905 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2906
3d4b60d3 2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2908
ea1dc6fc 2909 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2910
ea1dc6fc
PZ
2911 /* Ensure tg_weight >= load */
2912 tg_weight -= cfs_rq->tg_load_avg_contrib;
2913 tg_weight += load;
3ff6dcac 2914
7c80cfc9 2915 shares = (tg_shares * load);
cf5f0acf
PZ
2916 if (tg_weight)
2917 shares /= tg_weight;
3ff6dcac 2918
b8fd8423
DE
2919 /*
2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2921 * of a group with small tg->shares value. It is a floor value which is
2922 * assigned as a minimum load.weight to the sched_entity representing
2923 * the group on a CPU.
2924 *
2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2929 * instead of 0.
2930 */
7c80cfc9 2931 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2932}
2c8e4dce
JB
2933
2934/*
17de4ee0
PZ
2935 * This calculates the effective runnable weight for a group entity based on
2936 * the group entity weight calculated above.
2937 *
2938 * Because of the above approximation (2), our group entity weight is
2939 * an load_avg based ratio (3). This means that it includes blocked load and
2940 * does not represent the runnable weight.
2941 *
2942 * Approximate the group entity's runnable weight per ratio from the group
2943 * runqueue:
2944 *
2945 * grq->avg.runnable_load_avg
2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2947 * grq->avg.load_avg
2948 *
2949 * However, analogous to above, since the avg numbers are slow, this leads to
2950 * transients in the from-idle case. Instead we use:
2951 *
2952 * ge->runnable_weight = ge->load.weight *
2953 *
2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2955 * ----------------------------------------------------- (8)
2956 * max(grq->avg.load_avg, grq->load.weight)
2957 *
2958 * Where these max() serve both to use the 'instant' values to fix the slow
2959 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2960 */
2961static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2962{
17de4ee0
PZ
2963 long runnable, load_avg;
2964
2965 load_avg = max(cfs_rq->avg.load_avg,
2966 scale_load_down(cfs_rq->load.weight));
2967
2968 runnable = max(cfs_rq->avg.runnable_load_avg,
2969 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2970
2971 runnable *= shares;
2972 if (load_avg)
2973 runnable /= load_avg;
17de4ee0 2974
2c8e4dce
JB
2975 return clamp_t(long, runnable, MIN_SHARES, shares);
2976}
3ff6dcac 2977# endif /* CONFIG_SMP */
ea1dc6fc 2978
82958366
PT
2979static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2980
1ea6c46a
PZ
2981/*
2982 * Recomputes the group entity based on the current state of its group
2983 * runqueue.
2984 */
2985static void update_cfs_group(struct sched_entity *se)
2069dd75 2986{
1ea6c46a
PZ
2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2988 long shares, runnable;
2069dd75 2989
1ea6c46a 2990 if (!gcfs_rq)
89ee048f
VG
2991 return;
2992
1ea6c46a 2993 if (throttled_hierarchy(gcfs_rq))
2069dd75 2994 return;
89ee048f 2995
3ff6dcac 2996#ifndef CONFIG_SMP
1ea6c46a 2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
2998
2999 if (likely(se->load.weight == shares))
3ff6dcac 3000 return;
7c80cfc9 3001#else
2c8e4dce
JB
3002 shares = calc_group_shares(gcfs_rq);
3003 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3004#endif
2069dd75 3005
1ea6c46a 3006 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3007}
89ee048f 3008
2069dd75 3009#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3010static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3011{
3012}
3013#endif /* CONFIG_FAIR_GROUP_SCHED */
3014
a030d738
VK
3015static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3016{
43964409
LT
3017 struct rq *rq = rq_of(cfs_rq);
3018
3019 if (&rq->cfs == cfs_rq) {
a030d738
VK
3020 /*
3021 * There are a few boundary cases this might miss but it should
3022 * get called often enough that that should (hopefully) not be
9783be2c 3023 * a real problem.
a030d738
VK
3024 *
3025 * It will not get called when we go idle, because the idle
3026 * thread is a different class (!fair), nor will the utilization
3027 * number include things like RT tasks.
3028 *
3029 * As is, the util number is not freq-invariant (we'd have to
3030 * implement arch_scale_freq_capacity() for that).
3031 *
3032 * See cpu_util().
3033 */
43964409 3034 cpufreq_update_util(rq, 0);
a030d738
VK
3035 }
3036}
3037
141965c7 3038#ifdef CONFIG_SMP
9d85f21c
PT
3039/*
3040 * Approximate:
3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3042 */
a481db34 3043static u64 decay_load(u64 val, u64 n)
9d85f21c 3044{
5b51f2f8
PT
3045 unsigned int local_n;
3046
05296e75 3047 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
3048 return 0;
3049
3050 /* after bounds checking we can collapse to 32-bit */
3051 local_n = n;
3052
3053 /*
3054 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3056 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
3057 *
3058 * To achieve constant time decay_load.
3059 */
3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3061 val >>= local_n / LOAD_AVG_PERIOD;
3062 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
3063 }
3064
9d89c257
YD
3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3066 return val;
5b51f2f8
PT
3067}
3068
05296e75 3069static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 3070{
05296e75 3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 3072
a481db34 3073 /*
3841cdc3 3074 * c1 = d1 y^p
a481db34 3075 */
05296e75 3076 c1 = decay_load((u64)d1, periods);
a481db34 3077
a481db34 3078 /*
3841cdc3 3079 * p-1
05296e75
PZ
3080 * c2 = 1024 \Sum y^n
3081 * n=1
a481db34 3082 *
05296e75
PZ
3083 * inf inf
3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 3085 * n=0 n=p
a481db34 3086 */
05296e75 3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
3088
3089 return c1 + c2 + c3;
9d85f21c
PT
3090}
3091
a481db34
YD
3092/*
3093 * Accumulate the three separate parts of the sum; d1 the remainder
3094 * of the last (incomplete) period, d2 the span of full periods and d3
3095 * the remainder of the (incomplete) current period.
3096 *
3097 * d1 d2 d3
3098 * ^ ^ ^
3099 * | | |
3100 * |<->|<----------------->|<--->|
3101 * ... |---x---|------| ... |------|-----x (now)
3102 *
3841cdc3
PZ
3103 * p-1
3104 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3105 * n=1
a481db34 3106 *
3841cdc3 3107 * = u y^p + (Step 1)
a481db34 3108 *
3841cdc3
PZ
3109 * p-1
3110 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3111 * n=1
a481db34
YD
3112 */
3113static __always_inline u32
3114accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
1ea6c46a 3115 unsigned long load, unsigned long runnable, int running)
a481db34
YD
3116{
3117 unsigned long scale_freq, scale_cpu;
05296e75 3118 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 3119 u64 periods;
a481db34 3120
7673c8a4 3121 scale_freq = arch_scale_freq_capacity(cpu);
a481db34
YD
3122 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3123
3124 delta += sa->period_contrib;
3125 periods = delta / 1024; /* A period is 1024us (~1ms) */
3126
3127 /*
3128 * Step 1: decay old *_sum if we crossed period boundaries.
3129 */
3130 if (periods) {
3131 sa->load_sum = decay_load(sa->load_sum, periods);
1ea6c46a
PZ
3132 sa->runnable_load_sum =
3133 decay_load(sa->runnable_load_sum, periods);
a481db34 3134 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 3135
05296e75
PZ
3136 /*
3137 * Step 2
3138 */
3139 delta %= 1024;
3140 contrib = __accumulate_pelt_segments(periods,
3141 1024 - sa->period_contrib, delta);
3142 }
a481db34
YD
3143 sa->period_contrib = delta;
3144
3145 contrib = cap_scale(contrib, scale_freq);
1ea6c46a
PZ
3146 if (load)
3147 sa->load_sum += load * contrib;
3148 if (runnable)
3149 sa->runnable_load_sum += runnable * contrib;
a481db34
YD
3150 if (running)
3151 sa->util_sum += contrib * scale_cpu;
3152
3153 return periods;
3154}
3155
9d85f21c
PT
3156/*
3157 * We can represent the historical contribution to runnable average as the
3158 * coefficients of a geometric series. To do this we sub-divide our runnable
3159 * history into segments of approximately 1ms (1024us); label the segment that
3160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3161 *
3162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3163 * p0 p1 p2
3164 * (now) (~1ms ago) (~2ms ago)
3165 *
3166 * Let u_i denote the fraction of p_i that the entity was runnable.
3167 *
3168 * We then designate the fractions u_i as our co-efficients, yielding the
3169 * following representation of historical load:
3170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3171 *
3172 * We choose y based on the with of a reasonably scheduling period, fixing:
3173 * y^32 = 0.5
3174 *
3175 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3176 * approximately half as much as the contribution to load within the last ms
3177 * (u_0).
3178 *
3179 * When a period "rolls over" and we have new u_0`, multiplying the previous
3180 * sum again by y is sufficient to update:
3181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3183 */
9d89c257 3184static __always_inline int
c7b50216 3185___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
1ea6c46a 3186 unsigned long load, unsigned long runnable, int running)
9d85f21c 3187{
a481db34 3188 u64 delta;
9d85f21c 3189
9d89c257 3190 delta = now - sa->last_update_time;
9d85f21c
PT
3191 /*
3192 * This should only happen when time goes backwards, which it
3193 * unfortunately does during sched clock init when we swap over to TSC.
3194 */
3195 if ((s64)delta < 0) {
9d89c257 3196 sa->last_update_time = now;
9d85f21c
PT
3197 return 0;
3198 }
3199
3200 /*
3201 * Use 1024ns as the unit of measurement since it's a reasonable
3202 * approximation of 1us and fast to compute.
3203 */
3204 delta >>= 10;
3205 if (!delta)
3206 return 0;
bb0bd044
PZ
3207
3208 sa->last_update_time += delta << 10;
9d85f21c 3209
f235a54f
VG
3210 /*
3211 * running is a subset of runnable (weight) so running can't be set if
3212 * runnable is clear. But there are some corner cases where the current
3213 * se has been already dequeued but cfs_rq->curr still points to it.
3214 * This means that weight will be 0 but not running for a sched_entity
3215 * but also for a cfs_rq if the latter becomes idle. As an example,
3216 * this happens during idle_balance() which calls
3217 * update_blocked_averages()
3218 */
1ea6c46a
PZ
3219 if (!load)
3220 runnable = running = 0;
f235a54f 3221
a481db34
YD
3222 /*
3223 * Now we know we crossed measurement unit boundaries. The *_avg
3224 * accrues by two steps:
3225 *
3226 * Step 1: accumulate *_sum since last_update_time. If we haven't
3227 * crossed period boundaries, finish.
3228 */
1ea6c46a 3229 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
a481db34 3230 return 0;
9ee474f5 3231
c7b50216
PZ
3232 return 1;
3233}
3234
3235static __always_inline void
1ea6c46a 3236___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
c7b50216
PZ
3237{
3238 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3239
a481db34
YD
3240 /*
3241 * Step 2: update *_avg.
3242 */
1ea6c46a
PZ
3243 sa->load_avg = div_u64(load * sa->load_sum, divider);
3244 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
c7b50216
PZ
3245 sa->util_avg = sa->util_sum / divider;
3246}
aff3e498 3247
c7b50216
PZ
3248/*
3249 * sched_entity:
3250 *
1ea6c46a
PZ
3251 * task:
3252 * se_runnable() == se_weight()
3253 *
3254 * group: [ see update_cfs_group() ]
3255 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3256 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3257 *
c7b50216
PZ
3258 * load_sum := runnable_sum
3259 * load_avg = se_weight(se) * runnable_avg
3260 *
1ea6c46a
PZ
3261 * runnable_load_sum := runnable_sum
3262 * runnable_load_avg = se_runnable(se) * runnable_avg
3263 *
3264 * XXX collapse load_sum and runnable_load_sum
3265 *
c7b50216
PZ
3266 * cfq_rs:
3267 *
3268 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3269 * load_avg = \Sum se->avg.load_avg
1ea6c46a
PZ
3270 *
3271 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3272 * runnable_load_avg = \Sum se->avg.runable_load_avg
c7b50216
PZ
3273 */
3274
0ccb977f
PZ
3275static int
3276__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3277{
1ea6c46a
PZ
3278 if (entity_is_task(se))
3279 se->runnable_weight = se->load.weight;
3280
3281 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
c7b50216
PZ
3283 return 1;
3284 }
3285
3286 return 0;
0ccb977f
PZ
3287}
3288
3289static int
3290__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3291{
1ea6c46a
PZ
3292 if (entity_is_task(se))
3293 se->runnable_weight = se->load.weight;
3294
3295 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3296 cfs_rq->curr == se)) {
c7b50216 3297
1ea6c46a 3298 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
c7b50216
PZ
3299 return 1;
3300 }
3301
3302 return 0;
0ccb977f
PZ
3303}
3304
3305static int
3306__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3307{
c7b50216
PZ
3308 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3309 scale_load_down(cfs_rq->load.weight),
1ea6c46a
PZ
3310 scale_load_down(cfs_rq->runnable_weight),
3311 cfs_rq->curr != NULL)) {
3312
3313 ___update_load_avg(&cfs_rq->avg, 1, 1);
c7b50216
PZ
3314 return 1;
3315 }
3316
3317 return 0;
0ccb977f
PZ
3318}
3319
c566e8e9 3320#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3321/**
3322 * update_tg_load_avg - update the tg's load avg
3323 * @cfs_rq: the cfs_rq whose avg changed
3324 * @force: update regardless of how small the difference
3325 *
3326 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3327 * However, because tg->load_avg is a global value there are performance
3328 * considerations.
3329 *
3330 * In order to avoid having to look at the other cfs_rq's, we use a
3331 * differential update where we store the last value we propagated. This in
3332 * turn allows skipping updates if the differential is 'small'.
3333 *
815abf5a 3334 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3335 */
9d89c257 3336static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3337{
9d89c257 3338 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3339
aa0b7ae0
WL
3340 /*
3341 * No need to update load_avg for root_task_group as it is not used.
3342 */
3343 if (cfs_rq->tg == &root_task_group)
3344 return;
3345
9d89c257
YD
3346 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3347 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3348 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3349 }
8165e145 3350}
f5f9739d 3351
ad936d86
BP
3352/*
3353 * Called within set_task_rq() right before setting a task's cpu. The
3354 * caller only guarantees p->pi_lock is held; no other assumptions,
3355 * including the state of rq->lock, should be made.
3356 */
3357void set_task_rq_fair(struct sched_entity *se,
3358 struct cfs_rq *prev, struct cfs_rq *next)
3359{
0ccb977f
PZ
3360 u64 p_last_update_time;
3361 u64 n_last_update_time;
3362
ad936d86
BP
3363 if (!sched_feat(ATTACH_AGE_LOAD))
3364 return;
3365
3366 /*
3367 * We are supposed to update the task to "current" time, then its up to
3368 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3369 * getting what current time is, so simply throw away the out-of-date
3370 * time. This will result in the wakee task is less decayed, but giving
3371 * the wakee more load sounds not bad.
3372 */
0ccb977f
PZ
3373 if (!(se->avg.last_update_time && prev))
3374 return;
ad936d86
BP
3375
3376#ifndef CONFIG_64BIT
0ccb977f 3377 {
ad936d86
BP
3378 u64 p_last_update_time_copy;
3379 u64 n_last_update_time_copy;
3380
3381 do {
3382 p_last_update_time_copy = prev->load_last_update_time_copy;
3383 n_last_update_time_copy = next->load_last_update_time_copy;
3384
3385 smp_rmb();
3386
3387 p_last_update_time = prev->avg.last_update_time;
3388 n_last_update_time = next->avg.last_update_time;
3389
3390 } while (p_last_update_time != p_last_update_time_copy ||
3391 n_last_update_time != n_last_update_time_copy);
0ccb977f 3392 }
ad936d86 3393#else
0ccb977f
PZ
3394 p_last_update_time = prev->avg.last_update_time;
3395 n_last_update_time = next->avg.last_update_time;
ad936d86 3396#endif
0ccb977f
PZ
3397 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3398 se->avg.last_update_time = n_last_update_time;
ad936d86 3399}
09a43ace 3400
0e2d2aaa
PZ
3401
3402/*
3403 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3404 * propagate its contribution. The key to this propagation is the invariant
3405 * that for each group:
3406 *
3407 * ge->avg == grq->avg (1)
3408 *
3409 * _IFF_ we look at the pure running and runnable sums. Because they
3410 * represent the very same entity, just at different points in the hierarchy.
3411 *
a4c3c049
VG
3412 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3413 * sum over (but still wrong, because the group entity and group rq do not have
3414 * their PELT windows aligned).
0e2d2aaa
PZ
3415 *
3416 * However, update_tg_cfs_runnable() is more complex. So we have:
3417 *
3418 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3419 *
3420 * And since, like util, the runnable part should be directly transferable,
3421 * the following would _appear_ to be the straight forward approach:
3422 *
a4c3c049 3423 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3424 *
3425 * And per (1) we have:
3426 *
a4c3c049 3427 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3428 *
3429 * Which gives:
3430 *
3431 * ge->load.weight * grq->avg.load_avg
3432 * ge->avg.load_avg = ----------------------------------- (4)
3433 * grq->load.weight
3434 *
3435 * Except that is wrong!
3436 *
3437 * Because while for entities historical weight is not important and we
3438 * really only care about our future and therefore can consider a pure
3439 * runnable sum, runqueues can NOT do this.
3440 *
3441 * We specifically want runqueues to have a load_avg that includes
3442 * historical weights. Those represent the blocked load, the load we expect
3443 * to (shortly) return to us. This only works by keeping the weights as
3444 * integral part of the sum. We therefore cannot decompose as per (3).
3445 *
a4c3c049
VG
3446 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3447 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3448 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3449 * runnable section of these tasks overlap (or not). If they were to perfectly
3450 * align the rq as a whole would be runnable 2/3 of the time. If however we
3451 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3452 *
a4c3c049 3453 * So we'll have to approximate.. :/
0e2d2aaa 3454 *
a4c3c049 3455 * Given the constraint:
0e2d2aaa 3456 *
a4c3c049 3457 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3458 *
a4c3c049
VG
3459 * We can construct a rule that adds runnable to a rq by assuming minimal
3460 * overlap.
0e2d2aaa 3461 *
a4c3c049 3462 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3463 *
a4c3c049 3464 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3465 *
a4c3c049 3466 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3467 *
0e2d2aaa
PZ
3468 */
3469
09a43ace 3470static inline void
0e2d2aaa 3471update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3472{
09a43ace
VG
3473 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3474
3475 /* Nothing to update */
3476 if (!delta)
3477 return;
3478
a4c3c049
VG
3479 /*
3480 * The relation between sum and avg is:
3481 *
3482 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3483 *
3484 * however, the PELT windows are not aligned between grq and gse.
3485 */
3486
09a43ace
VG
3487 /* Set new sched_entity's utilization */
3488 se->avg.util_avg = gcfs_rq->avg.util_avg;
3489 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3490
3491 /* Update parent cfs_rq utilization */
3492 add_positive(&cfs_rq->avg.util_avg, delta);
3493 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3494}
3495
09a43ace 3496static inline void
0e2d2aaa 3497update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3498{
a4c3c049
VG
3499 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3500 unsigned long runnable_load_avg, load_avg;
3501 u64 runnable_load_sum, load_sum = 0;
3502 s64 delta_sum;
09a43ace 3503
0e2d2aaa
PZ
3504 if (!runnable_sum)
3505 return;
09a43ace 3506
0e2d2aaa 3507 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3508
a4c3c049
VG
3509 if (runnable_sum >= 0) {
3510 /*
3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3512 * the CPU is saturated running == runnable.
3513 */
3514 runnable_sum += se->avg.load_sum;
3515 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3516 } else {
3517 /*
3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3519 * assuming all tasks are equally runnable.
3520 */
3521 if (scale_load_down(gcfs_rq->load.weight)) {
3522 load_sum = div_s64(gcfs_rq->avg.load_sum,
3523 scale_load_down(gcfs_rq->load.weight));
3524 }
3525
3526 /* But make sure to not inflate se's runnable */
3527 runnable_sum = min(se->avg.load_sum, load_sum);
3528 }
3529
3530 /*
3531 * runnable_sum can't be lower than running_sum
3532 * As running sum is scale with cpu capacity wehreas the runnable sum
3533 * is not we rescale running_sum 1st
3534 */
3535 running_sum = se->avg.util_sum /
3536 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3537 runnable_sum = max(runnable_sum, running_sum);
3538
0e2d2aaa
PZ
3539 load_sum = (s64)se_weight(se) * runnable_sum;
3540 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3541
a4c3c049
VG
3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3543 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3544
a4c3c049
VG
3545 se->avg.load_sum = runnable_sum;
3546 se->avg.load_avg = load_avg;
3547 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3548 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3549
1ea6c46a
PZ
3550 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3551 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3552 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3553 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3554
a4c3c049
VG
3555 se->avg.runnable_load_sum = runnable_sum;
3556 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3557
09a43ace 3558 if (se->on_rq) {
a4c3c049
VG
3559 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3560 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3561 }
3562}
3563
0e2d2aaa 3564static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3565{
0e2d2aaa
PZ
3566 cfs_rq->propagate = 1;
3567 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3568}
3569
3570/* Update task and its cfs_rq load average */
3571static inline int propagate_entity_load_avg(struct sched_entity *se)
3572{
0e2d2aaa 3573 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3574
3575 if (entity_is_task(se))
3576 return 0;
3577
0e2d2aaa
PZ
3578 gcfs_rq = group_cfs_rq(se);
3579 if (!gcfs_rq->propagate)
09a43ace
VG
3580 return 0;
3581
0e2d2aaa
PZ
3582 gcfs_rq->propagate = 0;
3583
09a43ace
VG
3584 cfs_rq = cfs_rq_of(se);
3585
0e2d2aaa 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3587
0e2d2aaa
PZ
3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3590
3591 return 1;
3592}
3593
bc427898
VG
3594/*
3595 * Check if we need to update the load and the utilization of a blocked
3596 * group_entity:
3597 */
3598static inline bool skip_blocked_update(struct sched_entity *se)
3599{
3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3601
3602 /*
3603 * If sched_entity still have not zero load or utilization, we have to
3604 * decay it:
3605 */
3606 if (se->avg.load_avg || se->avg.util_avg)
3607 return false;
3608
3609 /*
3610 * If there is a pending propagation, we have to update the load and
3611 * the utilization of the sched_entity:
3612 */
0e2d2aaa 3613 if (gcfs_rq->propagate)
bc427898
VG
3614 return false;
3615
3616 /*
3617 * Otherwise, the load and the utilization of the sched_entity is
3618 * already zero and there is no pending propagation, so it will be a
3619 * waste of time to try to decay it:
3620 */
3621 return true;
3622}
3623
6e83125c 3624#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3625
9d89c257 3626static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3627
3628static inline int propagate_entity_load_avg(struct sched_entity *se)
3629{
3630 return 0;
3631}
3632
0e2d2aaa 3633static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3634
6e83125c 3635#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3636
3d30544f
PZ
3637/**
3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3639 * @now: current time, as per cfs_rq_clock_task()
3640 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3641 *
3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3644 * post_init_entity_util_avg().
3645 *
3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3647 *
7c3edd2c
PZ
3648 * Returns true if the load decayed or we removed load.
3649 *
3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3651 * call update_tg_load_avg() when this function returns true.
3d30544f 3652 */
a2c6c91f 3653static inline int
3a123bbb 3654update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3655{
0e2d2aaa 3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3657 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3658 int decayed = 0;
2dac754e 3659
2a2f5d4e
PZ
3660 if (cfs_rq->removed.nr) {
3661 unsigned long r;
9a2dd585 3662 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3663
3664 raw_spin_lock(&cfs_rq->removed.lock);
3665 swap(cfs_rq->removed.util_avg, removed_util);
3666 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3667 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3668 cfs_rq->removed.nr = 0;
3669 raw_spin_unlock(&cfs_rq->removed.lock);
3670
2a2f5d4e 3671 r = removed_load;
89741892 3672 sub_positive(&sa->load_avg, r);
9a2dd585 3673 sub_positive(&sa->load_sum, r * divider);
2dac754e 3674
2a2f5d4e 3675 r = removed_util;
89741892 3676 sub_positive(&sa->util_avg, r);
9a2dd585 3677 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3678
0e2d2aaa 3679 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3680
3681 decayed = 1;
9d89c257 3682 }
36ee28e4 3683
2a2f5d4e 3684 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3685
9d89c257
YD
3686#ifndef CONFIG_64BIT
3687 smp_wmb();
3688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3689#endif
36ee28e4 3690
2a2f5d4e 3691 if (decayed)
a2c6c91f 3692 cfs_rq_util_change(cfs_rq);
21e96f88 3693
2a2f5d4e 3694 return decayed;
21e96f88
SM
3695}
3696
3d30544f
PZ
3697/**
3698 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3699 * @cfs_rq: cfs_rq to attach to
3700 * @se: sched_entity to attach
3701 *
3702 * Must call update_cfs_rq_load_avg() before this, since we rely on
3703 * cfs_rq->avg.last_update_time being current.
3704 */
a05e8c51
BP
3705static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3706{
f207934f
PZ
3707 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3708
3709 /*
3710 * When we attach the @se to the @cfs_rq, we must align the decay
3711 * window because without that, really weird and wonderful things can
3712 * happen.
3713 *
3714 * XXX illustrate
3715 */
a05e8c51 3716 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3717 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3718
3719 /*
3720 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3721 * period_contrib. This isn't strictly correct, but since we're
3722 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3723 * _sum a little.
3724 */
3725 se->avg.util_sum = se->avg.util_avg * divider;
3726
3727 se->avg.load_sum = divider;
3728 if (se_weight(se)) {
3729 se->avg.load_sum =
3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3731 }
3732
3733 se->avg.runnable_load_sum = se->avg.load_sum;
3734
8d5b9025 3735 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3736 cfs_rq->avg.util_avg += se->avg.util_avg;
3737 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3738
3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f
SM
3740
3741 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3742}
3743
3d30544f
PZ
3744/**
3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3746 * @cfs_rq: cfs_rq to detach from
3747 * @se: sched_entity to detach
3748 *
3749 * Must call update_cfs_rq_load_avg() before this, since we rely on
3750 * cfs_rq->avg.last_update_time being current.
3751 */
a05e8c51
BP
3752static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753{
8d5b9025 3754 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3757
3758 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f
SM
3759
3760 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3761}
3762
b382a531
PZ
3763/*
3764 * Optional action to be done while updating the load average
3765 */
3766#define UPDATE_TG 0x1
3767#define SKIP_AGE_LOAD 0x2
3768#define DO_ATTACH 0x4
3769
3770/* Update task and its cfs_rq load average */
3771static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3772{
3773 u64 now = cfs_rq_clock_task(cfs_rq);
3774 struct rq *rq = rq_of(cfs_rq);
3775 int cpu = cpu_of(rq);
3776 int decayed;
3777
3778 /*
3779 * Track task load average for carrying it to new CPU after migrated, and
3780 * track group sched_entity load average for task_h_load calc in migration
3781 */
3782 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3783 __update_load_avg_se(now, cpu, cfs_rq, se);
3784
3785 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3786 decayed |= propagate_entity_load_avg(se);
3787
3788 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3789
3790 attach_entity_load_avg(cfs_rq, se);
3791 update_tg_load_avg(cfs_rq, 0);
3792
3793 } else if (decayed && (flags & UPDATE_TG))
3794 update_tg_load_avg(cfs_rq, 0);
3795}
3796
9d89c257 3797#ifndef CONFIG_64BIT
0905f04e
YD
3798static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3799{
9d89c257 3800 u64 last_update_time_copy;
0905f04e 3801 u64 last_update_time;
9ee474f5 3802
9d89c257
YD
3803 do {
3804 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3805 smp_rmb();
3806 last_update_time = cfs_rq->avg.last_update_time;
3807 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3808
3809 return last_update_time;
3810}
9d89c257 3811#else
0905f04e
YD
3812static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813{
3814 return cfs_rq->avg.last_update_time;
3815}
9d89c257
YD
3816#endif
3817
104cb16d
MR
3818/*
3819 * Synchronize entity load avg of dequeued entity without locking
3820 * the previous rq.
3821 */
3822void sync_entity_load_avg(struct sched_entity *se)
3823{
3824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3825 u64 last_update_time;
3826
3827 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3828 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3829}
3830
0905f04e
YD
3831/*
3832 * Task first catches up with cfs_rq, and then subtract
3833 * itself from the cfs_rq (task must be off the queue now).
3834 */
3835void remove_entity_load_avg(struct sched_entity *se)
3836{
3837 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3838 unsigned long flags;
0905f04e
YD
3839
3840 /*
7dc603c9
PZ
3841 * tasks cannot exit without having gone through wake_up_new_task() ->
3842 * post_init_entity_util_avg() which will have added things to the
3843 * cfs_rq, so we can remove unconditionally.
3844 *
3845 * Similarly for groups, they will have passed through
3846 * post_init_entity_util_avg() before unregister_sched_fair_group()
3847 * calls this.
0905f04e 3848 */
0905f04e 3849
104cb16d 3850 sync_entity_load_avg(se);
2a2f5d4e
PZ
3851
3852 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3853 ++cfs_rq->removed.nr;
3854 cfs_rq->removed.util_avg += se->avg.util_avg;
3855 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3856 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3857 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3858}
642dbc39 3859
7ea241af
YD
3860static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3861{
1ea6c46a 3862 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3863}
3864
3865static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3866{
3867 return cfs_rq->avg.load_avg;
3868}
3869
46f69fa3 3870static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3871
38033c37
PZ
3872#else /* CONFIG_SMP */
3873
01011473 3874static inline int
3a123bbb 3875update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3876{
3877 return 0;
3878}
3879
d31b1a66
VG
3880#define UPDATE_TG 0x0
3881#define SKIP_AGE_LOAD 0x0
b382a531 3882#define DO_ATTACH 0x0
d31b1a66 3883
88c0616e 3884static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3885{
88c0616e 3886 cfs_rq_util_change(cfs_rq);
536bd00c
RW
3887}
3888
9d89c257 3889static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3890
a05e8c51
BP
3891static inline void
3892attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3893static inline void
3894detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3895
46f69fa3 3896static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3897{
3898 return 0;
3899}
3900
38033c37 3901#endif /* CONFIG_SMP */
9d85f21c 3902
ddc97297
PZ
3903static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3904{
3905#ifdef CONFIG_SCHED_DEBUG
3906 s64 d = se->vruntime - cfs_rq->min_vruntime;
3907
3908 if (d < 0)
3909 d = -d;
3910
3911 if (d > 3*sysctl_sched_latency)
ae92882e 3912 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3913#endif
3914}
3915
aeb73b04
PZ
3916static void
3917place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3918{
1af5f730 3919 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3920
2cb8600e
PZ
3921 /*
3922 * The 'current' period is already promised to the current tasks,
3923 * however the extra weight of the new task will slow them down a
3924 * little, place the new task so that it fits in the slot that
3925 * stays open at the end.
3926 */
94dfb5e7 3927 if (initial && sched_feat(START_DEBIT))
f9c0b095 3928 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3929
a2e7a7eb 3930 /* sleeps up to a single latency don't count. */
5ca9880c 3931 if (!initial) {
a2e7a7eb 3932 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3933
a2e7a7eb
MG
3934 /*
3935 * Halve their sleep time's effect, to allow
3936 * for a gentler effect of sleepers:
3937 */
3938 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3939 thresh >>= 1;
51e0304c 3940
a2e7a7eb 3941 vruntime -= thresh;
aeb73b04
PZ
3942 }
3943
b5d9d734 3944 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3945 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3946}
3947
d3d9dc33
PT
3948static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3949
cb251765
MG
3950static inline void check_schedstat_required(void)
3951{
3952#ifdef CONFIG_SCHEDSTATS
3953 if (schedstat_enabled())
3954 return;
3955
3956 /* Force schedstat enabled if a dependent tracepoint is active */
3957 if (trace_sched_stat_wait_enabled() ||
3958 trace_sched_stat_sleep_enabled() ||
3959 trace_sched_stat_iowait_enabled() ||
3960 trace_sched_stat_blocked_enabled() ||
3961 trace_sched_stat_runtime_enabled()) {
eda8dca5 3962 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3963 "stat_blocked and stat_runtime require the "
f67abed5 3964 "kernel parameter schedstats=enable or "
cb251765
MG
3965 "kernel.sched_schedstats=1\n");
3966 }
3967#endif
3968}
3969
b5179ac7
PZ
3970
3971/*
3972 * MIGRATION
3973 *
3974 * dequeue
3975 * update_curr()
3976 * update_min_vruntime()
3977 * vruntime -= min_vruntime
3978 *
3979 * enqueue
3980 * update_curr()
3981 * update_min_vruntime()
3982 * vruntime += min_vruntime
3983 *
3984 * this way the vruntime transition between RQs is done when both
3985 * min_vruntime are up-to-date.
3986 *
3987 * WAKEUP (remote)
3988 *
59efa0ba 3989 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3990 * vruntime -= min_vruntime
3991 *
3992 * enqueue
3993 * update_curr()
3994 * update_min_vruntime()
3995 * vruntime += min_vruntime
3996 *
3997 * this way we don't have the most up-to-date min_vruntime on the originating
3998 * CPU and an up-to-date min_vruntime on the destination CPU.
3999 */
4000
bf0f6f24 4001static void
88ec22d3 4002enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4003{
2f950354
PZ
4004 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4005 bool curr = cfs_rq->curr == se;
4006
88ec22d3 4007 /*
2f950354
PZ
4008 * If we're the current task, we must renormalise before calling
4009 * update_curr().
88ec22d3 4010 */
2f950354 4011 if (renorm && curr)
88ec22d3
PZ
4012 se->vruntime += cfs_rq->min_vruntime;
4013
2f950354
PZ
4014 update_curr(cfs_rq);
4015
bf0f6f24 4016 /*
2f950354
PZ
4017 * Otherwise, renormalise after, such that we're placed at the current
4018 * moment in time, instead of some random moment in the past. Being
4019 * placed in the past could significantly boost this task to the
4020 * fairness detriment of existing tasks.
bf0f6f24 4021 */
2f950354
PZ
4022 if (renorm && !curr)
4023 se->vruntime += cfs_rq->min_vruntime;
4024
89ee048f
VG
4025 /*
4026 * When enqueuing a sched_entity, we must:
4027 * - Update loads to have both entity and cfs_rq synced with now.
4028 * - Add its load to cfs_rq->runnable_avg
4029 * - For group_entity, update its weight to reflect the new share of
4030 * its group cfs_rq
4031 * - Add its new weight to cfs_rq->load.weight
4032 */
b382a531 4033 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 4034 update_cfs_group(se);
b5b3e35f 4035 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 4036 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4037
1a3d027c 4038 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4039 place_entity(cfs_rq, se, 0);
bf0f6f24 4040
cb251765 4041 check_schedstat_required();
4fa8d299
JP
4042 update_stats_enqueue(cfs_rq, se, flags);
4043 check_spread(cfs_rq, se);
2f950354 4044 if (!curr)
83b699ed 4045 __enqueue_entity(cfs_rq, se);
2069dd75 4046 se->on_rq = 1;
3d4b47b4 4047
d3d9dc33 4048 if (cfs_rq->nr_running == 1) {
3d4b47b4 4049 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4050 check_enqueue_throttle(cfs_rq);
4051 }
bf0f6f24
IM
4052}
4053
2c13c919 4054static void __clear_buddies_last(struct sched_entity *se)
2002c695 4055{
2c13c919
RR
4056 for_each_sched_entity(se) {
4057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4058 if (cfs_rq->last != se)
2c13c919 4059 break;
f1044799
PZ
4060
4061 cfs_rq->last = NULL;
2c13c919
RR
4062 }
4063}
2002c695 4064
2c13c919
RR
4065static void __clear_buddies_next(struct sched_entity *se)
4066{
4067 for_each_sched_entity(se) {
4068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4069 if (cfs_rq->next != se)
2c13c919 4070 break;
f1044799
PZ
4071
4072 cfs_rq->next = NULL;
2c13c919 4073 }
2002c695
PZ
4074}
4075
ac53db59
RR
4076static void __clear_buddies_skip(struct sched_entity *se)
4077{
4078 for_each_sched_entity(se) {
4079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4080 if (cfs_rq->skip != se)
ac53db59 4081 break;
f1044799
PZ
4082
4083 cfs_rq->skip = NULL;
ac53db59
RR
4084 }
4085}
4086
a571bbea
PZ
4087static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4088{
2c13c919
RR
4089 if (cfs_rq->last == se)
4090 __clear_buddies_last(se);
4091
4092 if (cfs_rq->next == se)
4093 __clear_buddies_next(se);
ac53db59
RR
4094
4095 if (cfs_rq->skip == se)
4096 __clear_buddies_skip(se);
a571bbea
PZ
4097}
4098
6c16a6dc 4099static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4100
bf0f6f24 4101static void
371fd7e7 4102dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4103{
a2a2d680
DA
4104 /*
4105 * Update run-time statistics of the 'current'.
4106 */
4107 update_curr(cfs_rq);
89ee048f
VG
4108
4109 /*
4110 * When dequeuing a sched_entity, we must:
4111 * - Update loads to have both entity and cfs_rq synced with now.
4112 * - Substract its load from the cfs_rq->runnable_avg.
4113 * - Substract its previous weight from cfs_rq->load.weight.
4114 * - For group entity, update its weight to reflect the new share
4115 * of its group cfs_rq.
4116 */
88c0616e 4117 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4118 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4119
4fa8d299 4120 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4121
2002c695 4122 clear_buddies(cfs_rq, se);
4793241b 4123
83b699ed 4124 if (se != cfs_rq->curr)
30cfdcfc 4125 __dequeue_entity(cfs_rq, se);
17bc14b7 4126 se->on_rq = 0;
30cfdcfc 4127 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4128
4129 /*
b60205c7
PZ
4130 * Normalize after update_curr(); which will also have moved
4131 * min_vruntime if @se is the one holding it back. But before doing
4132 * update_min_vruntime() again, which will discount @se's position and
4133 * can move min_vruntime forward still more.
88ec22d3 4134 */
371fd7e7 4135 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4136 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4137
d8b4986d
PT
4138 /* return excess runtime on last dequeue */
4139 return_cfs_rq_runtime(cfs_rq);
4140
1ea6c46a 4141 update_cfs_group(se);
b60205c7
PZ
4142
4143 /*
4144 * Now advance min_vruntime if @se was the entity holding it back,
4145 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4146 * put back on, and if we advance min_vruntime, we'll be placed back
4147 * further than we started -- ie. we'll be penalized.
4148 */
4149 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4150 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4151}
4152
4153/*
4154 * Preempt the current task with a newly woken task if needed:
4155 */
7c92e54f 4156static void
2e09bf55 4157check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4158{
11697830 4159 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4160 struct sched_entity *se;
4161 s64 delta;
11697830 4162
6d0f0ebd 4163 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4164 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4165 if (delta_exec > ideal_runtime) {
8875125e 4166 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4167 /*
4168 * The current task ran long enough, ensure it doesn't get
4169 * re-elected due to buddy favours.
4170 */
4171 clear_buddies(cfs_rq, curr);
f685ceac
MG
4172 return;
4173 }
4174
4175 /*
4176 * Ensure that a task that missed wakeup preemption by a
4177 * narrow margin doesn't have to wait for a full slice.
4178 * This also mitigates buddy induced latencies under load.
4179 */
f685ceac
MG
4180 if (delta_exec < sysctl_sched_min_granularity)
4181 return;
4182
f4cfb33e
WX
4183 se = __pick_first_entity(cfs_rq);
4184 delta = curr->vruntime - se->vruntime;
f685ceac 4185
f4cfb33e
WX
4186 if (delta < 0)
4187 return;
d7d82944 4188
f4cfb33e 4189 if (delta > ideal_runtime)
8875125e 4190 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4191}
4192
83b699ed 4193static void
8494f412 4194set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4195{
83b699ed
SV
4196 /* 'current' is not kept within the tree. */
4197 if (se->on_rq) {
4198 /*
4199 * Any task has to be enqueued before it get to execute on
4200 * a CPU. So account for the time it spent waiting on the
4201 * runqueue.
4202 */
4fa8d299 4203 update_stats_wait_end(cfs_rq, se);
83b699ed 4204 __dequeue_entity(cfs_rq, se);
88c0616e 4205 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4206 }
4207
79303e9e 4208 update_stats_curr_start(cfs_rq, se);
429d43bc 4209 cfs_rq->curr = se;
4fa8d299 4210
eba1ed4b
IM
4211 /*
4212 * Track our maximum slice length, if the CPU's load is at
4213 * least twice that of our own weight (i.e. dont track it
4214 * when there are only lesser-weight tasks around):
4215 */
cb251765 4216 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4217 schedstat_set(se->statistics.slice_max,
4218 max((u64)schedstat_val(se->statistics.slice_max),
4219 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4220 }
4fa8d299 4221
4a55b450 4222 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4223}
4224
3f3a4904
PZ
4225static int
4226wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4227
ac53db59
RR
4228/*
4229 * Pick the next process, keeping these things in mind, in this order:
4230 * 1) keep things fair between processes/task groups
4231 * 2) pick the "next" process, since someone really wants that to run
4232 * 3) pick the "last" process, for cache locality
4233 * 4) do not run the "skip" process, if something else is available
4234 */
678d5718
PZ
4235static struct sched_entity *
4236pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4237{
678d5718
PZ
4238 struct sched_entity *left = __pick_first_entity(cfs_rq);
4239 struct sched_entity *se;
4240
4241 /*
4242 * If curr is set we have to see if its left of the leftmost entity
4243 * still in the tree, provided there was anything in the tree at all.
4244 */
4245 if (!left || (curr && entity_before(curr, left)))
4246 left = curr;
4247
4248 se = left; /* ideally we run the leftmost entity */
f4b6755f 4249
ac53db59
RR
4250 /*
4251 * Avoid running the skip buddy, if running something else can
4252 * be done without getting too unfair.
4253 */
4254 if (cfs_rq->skip == se) {
678d5718
PZ
4255 struct sched_entity *second;
4256
4257 if (se == curr) {
4258 second = __pick_first_entity(cfs_rq);
4259 } else {
4260 second = __pick_next_entity(se);
4261 if (!second || (curr && entity_before(curr, second)))
4262 second = curr;
4263 }
4264
ac53db59
RR
4265 if (second && wakeup_preempt_entity(second, left) < 1)
4266 se = second;
4267 }
aa2ac252 4268
f685ceac
MG
4269 /*
4270 * Prefer last buddy, try to return the CPU to a preempted task.
4271 */
4272 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4273 se = cfs_rq->last;
4274
ac53db59
RR
4275 /*
4276 * Someone really wants this to run. If it's not unfair, run it.
4277 */
4278 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4279 se = cfs_rq->next;
4280
f685ceac 4281 clear_buddies(cfs_rq, se);
4793241b
PZ
4282
4283 return se;
aa2ac252
PZ
4284}
4285
678d5718 4286static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4287
ab6cde26 4288static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4289{
4290 /*
4291 * If still on the runqueue then deactivate_task()
4292 * was not called and update_curr() has to be done:
4293 */
4294 if (prev->on_rq)
b7cc0896 4295 update_curr(cfs_rq);
bf0f6f24 4296
d3d9dc33
PT
4297 /* throttle cfs_rqs exceeding runtime */
4298 check_cfs_rq_runtime(cfs_rq);
4299
4fa8d299 4300 check_spread(cfs_rq, prev);
cb251765 4301
30cfdcfc 4302 if (prev->on_rq) {
4fa8d299 4303 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4304 /* Put 'current' back into the tree. */
4305 __enqueue_entity(cfs_rq, prev);
9d85f21c 4306 /* in !on_rq case, update occurred at dequeue */
88c0616e 4307 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4308 }
429d43bc 4309 cfs_rq->curr = NULL;
bf0f6f24
IM
4310}
4311
8f4d37ec
PZ
4312static void
4313entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4314{
bf0f6f24 4315 /*
30cfdcfc 4316 * Update run-time statistics of the 'current'.
bf0f6f24 4317 */
30cfdcfc 4318 update_curr(cfs_rq);
bf0f6f24 4319
9d85f21c
PT
4320 /*
4321 * Ensure that runnable average is periodically updated.
4322 */
88c0616e 4323 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4324 update_cfs_group(curr);
9d85f21c 4325
8f4d37ec
PZ
4326#ifdef CONFIG_SCHED_HRTICK
4327 /*
4328 * queued ticks are scheduled to match the slice, so don't bother
4329 * validating it and just reschedule.
4330 */
983ed7a6 4331 if (queued) {
8875125e 4332 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4333 return;
4334 }
8f4d37ec
PZ
4335 /*
4336 * don't let the period tick interfere with the hrtick preemption
4337 */
4338 if (!sched_feat(DOUBLE_TICK) &&
4339 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4340 return;
4341#endif
4342
2c2efaed 4343 if (cfs_rq->nr_running > 1)
2e09bf55 4344 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4345}
4346
ab84d31e
PT
4347
4348/**************************************************
4349 * CFS bandwidth control machinery
4350 */
4351
4352#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4353
4354#ifdef HAVE_JUMP_LABEL
c5905afb 4355static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4356
4357static inline bool cfs_bandwidth_used(void)
4358{
c5905afb 4359 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4360}
4361
1ee14e6c 4362void cfs_bandwidth_usage_inc(void)
029632fb 4363{
ce48c146 4364 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4365}
4366
4367void cfs_bandwidth_usage_dec(void)
4368{
ce48c146 4369 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb
PZ
4370}
4371#else /* HAVE_JUMP_LABEL */
4372static bool cfs_bandwidth_used(void)
4373{
4374 return true;
4375}
4376
1ee14e6c
BS
4377void cfs_bandwidth_usage_inc(void) {}
4378void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4379#endif /* HAVE_JUMP_LABEL */
4380
ab84d31e
PT
4381/*
4382 * default period for cfs group bandwidth.
4383 * default: 0.1s, units: nanoseconds
4384 */
4385static inline u64 default_cfs_period(void)
4386{
4387 return 100000000ULL;
4388}
ec12cb7f
PT
4389
4390static inline u64 sched_cfs_bandwidth_slice(void)
4391{
4392 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4393}
4394
a9cf55b2
PT
4395/*
4396 * Replenish runtime according to assigned quota and update expiration time.
4397 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4398 * additional synchronization around rq->lock.
4399 *
4400 * requires cfs_b->lock
4401 */
029632fb 4402void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4403{
4404 u64 now;
4405
4406 if (cfs_b->quota == RUNTIME_INF)
4407 return;
4408
4409 now = sched_clock_cpu(smp_processor_id());
4410 cfs_b->runtime = cfs_b->quota;
4411 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4412}
4413
029632fb
PZ
4414static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4415{
4416 return &tg->cfs_bandwidth;
4417}
4418
f1b17280
PT
4419/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4420static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4421{
4422 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4423 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4424
78becc27 4425 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4426}
4427
85dac906
PT
4428/* returns 0 on failure to allocate runtime */
4429static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4430{
4431 struct task_group *tg = cfs_rq->tg;
4432 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4433 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4434
4435 /* note: this is a positive sum as runtime_remaining <= 0 */
4436 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4437
4438 raw_spin_lock(&cfs_b->lock);
4439 if (cfs_b->quota == RUNTIME_INF)
4440 amount = min_amount;
58088ad0 4441 else {
77a4d1a1 4442 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4443
4444 if (cfs_b->runtime > 0) {
4445 amount = min(cfs_b->runtime, min_amount);
4446 cfs_b->runtime -= amount;
4447 cfs_b->idle = 0;
4448 }
ec12cb7f 4449 }
a9cf55b2 4450 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4451 raw_spin_unlock(&cfs_b->lock);
4452
4453 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4454 /*
4455 * we may have advanced our local expiration to account for allowed
4456 * spread between our sched_clock and the one on which runtime was
4457 * issued.
4458 */
4459 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4460 cfs_rq->runtime_expires = expires;
85dac906
PT
4461
4462 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4463}
4464
a9cf55b2
PT
4465/*
4466 * Note: This depends on the synchronization provided by sched_clock and the
4467 * fact that rq->clock snapshots this value.
4468 */
4469static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4470{
a9cf55b2 4471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4472
4473 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4474 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4475 return;
4476
a9cf55b2
PT
4477 if (cfs_rq->runtime_remaining < 0)
4478 return;
4479
4480 /*
4481 * If the local deadline has passed we have to consider the
4482 * possibility that our sched_clock is 'fast' and the global deadline
4483 * has not truly expired.
4484 *
4485 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4486 * whether the global deadline has advanced. It is valid to compare
4487 * cfs_b->runtime_expires without any locks since we only care about
4488 * exact equality, so a partial write will still work.
a9cf55b2
PT
4489 */
4490
51f2176d 4491 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4492 /* extend local deadline, drift is bounded above by 2 ticks */
4493 cfs_rq->runtime_expires += TICK_NSEC;
4494 } else {
4495 /* global deadline is ahead, expiration has passed */
4496 cfs_rq->runtime_remaining = 0;
4497 }
4498}
4499
9dbdb155 4500static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4501{
4502 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4503 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4504 expire_cfs_rq_runtime(cfs_rq);
4505
4506 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4507 return;
4508
85dac906
PT
4509 /*
4510 * if we're unable to extend our runtime we resched so that the active
4511 * hierarchy can be throttled
4512 */
4513 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4514 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4515}
4516
6c16a6dc 4517static __always_inline
9dbdb155 4518void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4519{
56f570e5 4520 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4521 return;
4522
4523 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4524}
4525
85dac906
PT
4526static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4527{
56f570e5 4528 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4529}
4530
64660c86
PT
4531/* check whether cfs_rq, or any parent, is throttled */
4532static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4533{
56f570e5 4534 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4535}
4536
4537/*
4538 * Ensure that neither of the group entities corresponding to src_cpu or
4539 * dest_cpu are members of a throttled hierarchy when performing group
4540 * load-balance operations.
4541 */
4542static inline int throttled_lb_pair(struct task_group *tg,
4543 int src_cpu, int dest_cpu)
4544{
4545 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4546
4547 src_cfs_rq = tg->cfs_rq[src_cpu];
4548 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4549
4550 return throttled_hierarchy(src_cfs_rq) ||
4551 throttled_hierarchy(dest_cfs_rq);
4552}
4553
4554/* updated child weight may affect parent so we have to do this bottom up */
4555static int tg_unthrottle_up(struct task_group *tg, void *data)
4556{
4557 struct rq *rq = data;
4558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4559
4560 cfs_rq->throttle_count--;
64660c86 4561 if (!cfs_rq->throttle_count) {
f1b17280 4562 /* adjust cfs_rq_clock_task() */
78becc27 4563 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4564 cfs_rq->throttled_clock_task;
64660c86 4565 }
64660c86
PT
4566
4567 return 0;
4568}
4569
4570static int tg_throttle_down(struct task_group *tg, void *data)
4571{
4572 struct rq *rq = data;
4573 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4574
82958366
PT
4575 /* group is entering throttled state, stop time */
4576 if (!cfs_rq->throttle_count)
78becc27 4577 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4578 cfs_rq->throttle_count++;
4579
4580 return 0;
4581}
4582
d3d9dc33 4583static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4584{
4585 struct rq *rq = rq_of(cfs_rq);
4586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4587 struct sched_entity *se;
4588 long task_delta, dequeue = 1;
77a4d1a1 4589 bool empty;
85dac906
PT
4590
4591 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4592
f1b17280 4593 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4594 rcu_read_lock();
4595 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4596 rcu_read_unlock();
85dac906
PT
4597
4598 task_delta = cfs_rq->h_nr_running;
4599 for_each_sched_entity(se) {
4600 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4601 /* throttled entity or throttle-on-deactivate */
4602 if (!se->on_rq)
4603 break;
4604
4605 if (dequeue)
4606 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4607 qcfs_rq->h_nr_running -= task_delta;
4608
4609 if (qcfs_rq->load.weight)
4610 dequeue = 0;
4611 }
4612
4613 if (!se)
72465447 4614 sub_nr_running(rq, task_delta);
85dac906
PT
4615
4616 cfs_rq->throttled = 1;
78becc27 4617 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4618 raw_spin_lock(&cfs_b->lock);
d49db342 4619 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4620
c06f04c7
BS
4621 /*
4622 * Add to the _head_ of the list, so that an already-started
4623 * distribute_cfs_runtime will not see us
4624 */
4625 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4626
4627 /*
4628 * If we're the first throttled task, make sure the bandwidth
4629 * timer is running.
4630 */
4631 if (empty)
4632 start_cfs_bandwidth(cfs_b);
4633
85dac906
PT
4634 raw_spin_unlock(&cfs_b->lock);
4635}
4636
029632fb 4637void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4638{
4639 struct rq *rq = rq_of(cfs_rq);
4640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4641 struct sched_entity *se;
4642 int enqueue = 1;
4643 long task_delta;
4644
22b958d8 4645 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4646
4647 cfs_rq->throttled = 0;
1a55af2e
FW
4648
4649 update_rq_clock(rq);
4650
671fd9da 4651 raw_spin_lock(&cfs_b->lock);
78becc27 4652 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4653 list_del_rcu(&cfs_rq->throttled_list);
4654 raw_spin_unlock(&cfs_b->lock);
4655
64660c86
PT
4656 /* update hierarchical throttle state */
4657 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4658
671fd9da
PT
4659 if (!cfs_rq->load.weight)
4660 return;
4661
4662 task_delta = cfs_rq->h_nr_running;
4663 for_each_sched_entity(se) {
4664 if (se->on_rq)
4665 enqueue = 0;
4666
4667 cfs_rq = cfs_rq_of(se);
4668 if (enqueue)
4669 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4670 cfs_rq->h_nr_running += task_delta;
4671
4672 if (cfs_rq_throttled(cfs_rq))
4673 break;
4674 }
4675
4676 if (!se)
72465447 4677 add_nr_running(rq, task_delta);
671fd9da
PT
4678
4679 /* determine whether we need to wake up potentially idle cpu */
4680 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4681 resched_curr(rq);
671fd9da
PT
4682}
4683
4684static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4685 u64 remaining, u64 expires)
4686{
4687 struct cfs_rq *cfs_rq;
c06f04c7
BS
4688 u64 runtime;
4689 u64 starting_runtime = remaining;
671fd9da
PT
4690
4691 rcu_read_lock();
4692 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4693 throttled_list) {
4694 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4695 struct rq_flags rf;
671fd9da 4696
8a8c69c3 4697 rq_lock(rq, &rf);
671fd9da
PT
4698 if (!cfs_rq_throttled(cfs_rq))
4699 goto next;
4700
4701 runtime = -cfs_rq->runtime_remaining + 1;
4702 if (runtime > remaining)
4703 runtime = remaining;
4704 remaining -= runtime;
4705
4706 cfs_rq->runtime_remaining += runtime;
4707 cfs_rq->runtime_expires = expires;
4708
4709 /* we check whether we're throttled above */
4710 if (cfs_rq->runtime_remaining > 0)
4711 unthrottle_cfs_rq(cfs_rq);
4712
4713next:
8a8c69c3 4714 rq_unlock(rq, &rf);
671fd9da
PT
4715
4716 if (!remaining)
4717 break;
4718 }
4719 rcu_read_unlock();
4720
c06f04c7 4721 return starting_runtime - remaining;
671fd9da
PT
4722}
4723
58088ad0
PT
4724/*
4725 * Responsible for refilling a task_group's bandwidth and unthrottling its
4726 * cfs_rqs as appropriate. If there has been no activity within the last
4727 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4728 * used to track this state.
4729 */
4730static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4731{
671fd9da 4732 u64 runtime, runtime_expires;
51f2176d 4733 int throttled;
58088ad0 4734
58088ad0
PT
4735 /* no need to continue the timer with no bandwidth constraint */
4736 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4737 goto out_deactivate;
58088ad0 4738
671fd9da 4739 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4740 cfs_b->nr_periods += overrun;
671fd9da 4741
51f2176d
BS
4742 /*
4743 * idle depends on !throttled (for the case of a large deficit), and if
4744 * we're going inactive then everything else can be deferred
4745 */
4746 if (cfs_b->idle && !throttled)
4747 goto out_deactivate;
a9cf55b2
PT
4748
4749 __refill_cfs_bandwidth_runtime(cfs_b);
4750
671fd9da
PT
4751 if (!throttled) {
4752 /* mark as potentially idle for the upcoming period */
4753 cfs_b->idle = 1;
51f2176d 4754 return 0;
671fd9da
PT
4755 }
4756
e8da1b18
NR
4757 /* account preceding periods in which throttling occurred */
4758 cfs_b->nr_throttled += overrun;
4759
671fd9da 4760 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4761
4762 /*
c06f04c7
BS
4763 * This check is repeated as we are holding onto the new bandwidth while
4764 * we unthrottle. This can potentially race with an unthrottled group
4765 * trying to acquire new bandwidth from the global pool. This can result
4766 * in us over-using our runtime if it is all used during this loop, but
4767 * only by limited amounts in that extreme case.
671fd9da 4768 */
c06f04c7
BS
4769 while (throttled && cfs_b->runtime > 0) {
4770 runtime = cfs_b->runtime;
671fd9da
PT
4771 raw_spin_unlock(&cfs_b->lock);
4772 /* we can't nest cfs_b->lock while distributing bandwidth */
4773 runtime = distribute_cfs_runtime(cfs_b, runtime,
4774 runtime_expires);
4775 raw_spin_lock(&cfs_b->lock);
4776
4777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4778
4779 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4780 }
58088ad0 4781
671fd9da
PT
4782 /*
4783 * While we are ensured activity in the period following an
4784 * unthrottle, this also covers the case in which the new bandwidth is
4785 * insufficient to cover the existing bandwidth deficit. (Forcing the
4786 * timer to remain active while there are any throttled entities.)
4787 */
4788 cfs_b->idle = 0;
58088ad0 4789
51f2176d
BS
4790 return 0;
4791
4792out_deactivate:
51f2176d 4793 return 1;
58088ad0 4794}
d3d9dc33 4795
d8b4986d
PT
4796/* a cfs_rq won't donate quota below this amount */
4797static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4798/* minimum remaining period time to redistribute slack quota */
4799static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4800/* how long we wait to gather additional slack before distributing */
4801static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4802
db06e78c
BS
4803/*
4804 * Are we near the end of the current quota period?
4805 *
4806 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4807 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4808 * migrate_hrtimers, base is never cleared, so we are fine.
4809 */
d8b4986d
PT
4810static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4811{
4812 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4813 u64 remaining;
4814
4815 /* if the call-back is running a quota refresh is already occurring */
4816 if (hrtimer_callback_running(refresh_timer))
4817 return 1;
4818
4819 /* is a quota refresh about to occur? */
4820 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4821 if (remaining < min_expire)
4822 return 1;
4823
4824 return 0;
4825}
4826
4827static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4828{
4829 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4830
4831 /* if there's a quota refresh soon don't bother with slack */
4832 if (runtime_refresh_within(cfs_b, min_left))
4833 return;
4834
4cfafd30
PZ
4835 hrtimer_start(&cfs_b->slack_timer,
4836 ns_to_ktime(cfs_bandwidth_slack_period),
4837 HRTIMER_MODE_REL);
d8b4986d
PT
4838}
4839
4840/* we know any runtime found here is valid as update_curr() precedes return */
4841static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4842{
4843 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4844 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4845
4846 if (slack_runtime <= 0)
4847 return;
4848
4849 raw_spin_lock(&cfs_b->lock);
4850 if (cfs_b->quota != RUNTIME_INF &&
4851 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4852 cfs_b->runtime += slack_runtime;
4853
4854 /* we are under rq->lock, defer unthrottling using a timer */
4855 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4856 !list_empty(&cfs_b->throttled_cfs_rq))
4857 start_cfs_slack_bandwidth(cfs_b);
4858 }
4859 raw_spin_unlock(&cfs_b->lock);
4860
4861 /* even if it's not valid for return we don't want to try again */
4862 cfs_rq->runtime_remaining -= slack_runtime;
4863}
4864
4865static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4866{
56f570e5
PT
4867 if (!cfs_bandwidth_used())
4868 return;
4869
fccfdc6f 4870 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4871 return;
4872
4873 __return_cfs_rq_runtime(cfs_rq);
4874}
4875
4876/*
4877 * This is done with a timer (instead of inline with bandwidth return) since
4878 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4879 */
4880static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4881{
4882 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4883 u64 expires;
4884
4885 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4886 raw_spin_lock(&cfs_b->lock);
4887 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4888 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4889 return;
db06e78c 4890 }
d8b4986d 4891
c06f04c7 4892 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4893 runtime = cfs_b->runtime;
c06f04c7 4894
d8b4986d
PT
4895 expires = cfs_b->runtime_expires;
4896 raw_spin_unlock(&cfs_b->lock);
4897
4898 if (!runtime)
4899 return;
4900
4901 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4902
4903 raw_spin_lock(&cfs_b->lock);
4904 if (expires == cfs_b->runtime_expires)
c06f04c7 4905 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4906 raw_spin_unlock(&cfs_b->lock);
4907}
4908
d3d9dc33
PT
4909/*
4910 * When a group wakes up we want to make sure that its quota is not already
4911 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4912 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4913 */
4914static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4915{
56f570e5
PT
4916 if (!cfs_bandwidth_used())
4917 return;
4918
d3d9dc33
PT
4919 /* an active group must be handled by the update_curr()->put() path */
4920 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4921 return;
4922
4923 /* ensure the group is not already throttled */
4924 if (cfs_rq_throttled(cfs_rq))
4925 return;
4926
4927 /* update runtime allocation */
4928 account_cfs_rq_runtime(cfs_rq, 0);
4929 if (cfs_rq->runtime_remaining <= 0)
4930 throttle_cfs_rq(cfs_rq);
4931}
4932
55e16d30
PZ
4933static void sync_throttle(struct task_group *tg, int cpu)
4934{
4935 struct cfs_rq *pcfs_rq, *cfs_rq;
4936
4937 if (!cfs_bandwidth_used())
4938 return;
4939
4940 if (!tg->parent)
4941 return;
4942
4943 cfs_rq = tg->cfs_rq[cpu];
4944 pcfs_rq = tg->parent->cfs_rq[cpu];
4945
4946 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4947 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4948}
4949
d3d9dc33 4950/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4951static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4952{
56f570e5 4953 if (!cfs_bandwidth_used())
678d5718 4954 return false;
56f570e5 4955
d3d9dc33 4956 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4957 return false;
d3d9dc33
PT
4958
4959 /*
4960 * it's possible for a throttled entity to be forced into a running
4961 * state (e.g. set_curr_task), in this case we're finished.
4962 */
4963 if (cfs_rq_throttled(cfs_rq))
678d5718 4964 return true;
d3d9dc33
PT
4965
4966 throttle_cfs_rq(cfs_rq);
678d5718 4967 return true;
d3d9dc33 4968}
029632fb 4969
029632fb
PZ
4970static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4971{
4972 struct cfs_bandwidth *cfs_b =
4973 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4974
029632fb
PZ
4975 do_sched_cfs_slack_timer(cfs_b);
4976
4977 return HRTIMER_NORESTART;
4978}
4979
4980static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4981{
4982 struct cfs_bandwidth *cfs_b =
4983 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4984 int overrun;
4985 int idle = 0;
4986
51f2176d 4987 raw_spin_lock(&cfs_b->lock);
029632fb 4988 for (;;) {
77a4d1a1 4989 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4990 if (!overrun)
4991 break;
4992
4993 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4994 }
4cfafd30
PZ
4995 if (idle)
4996 cfs_b->period_active = 0;
51f2176d 4997 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4998
4999 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5000}
5001
5002void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5003{
5004 raw_spin_lock_init(&cfs_b->lock);
5005 cfs_b->runtime = 0;
5006 cfs_b->quota = RUNTIME_INF;
5007 cfs_b->period = ns_to_ktime(default_cfs_period());
5008
5009 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5010 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5011 cfs_b->period_timer.function = sched_cfs_period_timer;
5012 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5013 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5014}
5015
5016static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5017{
5018 cfs_rq->runtime_enabled = 0;
5019 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5020}
5021
77a4d1a1 5022void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5023{
4cfafd30 5024 lockdep_assert_held(&cfs_b->lock);
029632fb 5025
4cfafd30
PZ
5026 if (!cfs_b->period_active) {
5027 cfs_b->period_active = 1;
5028 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5029 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5030 }
029632fb
PZ
5031}
5032
5033static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5034{
7f1a169b
TH
5035 /* init_cfs_bandwidth() was not called */
5036 if (!cfs_b->throttled_cfs_rq.next)
5037 return;
5038
029632fb
PZ
5039 hrtimer_cancel(&cfs_b->period_timer);
5040 hrtimer_cancel(&cfs_b->slack_timer);
5041}
5042
502ce005
PZ
5043/*
5044 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5045 *
5046 * The race is harmless, since modifying bandwidth settings of unhooked group
5047 * bits doesn't do much.
5048 */
5049
5050/* cpu online calback */
0e59bdae
KT
5051static void __maybe_unused update_runtime_enabled(struct rq *rq)
5052{
502ce005 5053 struct task_group *tg;
0e59bdae 5054
502ce005
PZ
5055 lockdep_assert_held(&rq->lock);
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(tg, &task_groups, list) {
5059 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5061
5062 raw_spin_lock(&cfs_b->lock);
5063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5064 raw_spin_unlock(&cfs_b->lock);
5065 }
502ce005 5066 rcu_read_unlock();
0e59bdae
KT
5067}
5068
502ce005 5069/* cpu offline callback */
38dc3348 5070static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5071{
502ce005
PZ
5072 struct task_group *tg;
5073
5074 lockdep_assert_held(&rq->lock);
5075
5076 rcu_read_lock();
5077 list_for_each_entry_rcu(tg, &task_groups, list) {
5078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5079
029632fb
PZ
5080 if (!cfs_rq->runtime_enabled)
5081 continue;
5082
5083 /*
5084 * clock_task is not advancing so we just need to make sure
5085 * there's some valid quota amount
5086 */
51f2176d 5087 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
5088 /*
5089 * Offline rq is schedulable till cpu is completely disabled
5090 * in take_cpu_down(), so we prevent new cfs throttling here.
5091 */
5092 cfs_rq->runtime_enabled = 0;
5093
029632fb
PZ
5094 if (cfs_rq_throttled(cfs_rq))
5095 unthrottle_cfs_rq(cfs_rq);
5096 }
502ce005 5097 rcu_read_unlock();
029632fb
PZ
5098}
5099
5100#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
5101static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5102{
78becc27 5103 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5104}
5105
9dbdb155 5106static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5107static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5108static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5109static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5110static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5111
5112static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5113{
5114 return 0;
5115}
64660c86
PT
5116
5117static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5118{
5119 return 0;
5120}
5121
5122static inline int throttled_lb_pair(struct task_group *tg,
5123 int src_cpu, int dest_cpu)
5124{
5125 return 0;
5126}
029632fb
PZ
5127
5128void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5129
5130#ifdef CONFIG_FAIR_GROUP_SCHED
5131static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5132#endif
5133
029632fb
PZ
5134static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5135{
5136 return NULL;
5137}
5138static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5139static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5140static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5141
5142#endif /* CONFIG_CFS_BANDWIDTH */
5143
bf0f6f24
IM
5144/**************************************************
5145 * CFS operations on tasks:
5146 */
5147
8f4d37ec
PZ
5148#ifdef CONFIG_SCHED_HRTICK
5149static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5150{
8f4d37ec
PZ
5151 struct sched_entity *se = &p->se;
5152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5153
9148a3a1 5154 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5155
8bf46a39 5156 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5157 u64 slice = sched_slice(cfs_rq, se);
5158 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5159 s64 delta = slice - ran;
5160
5161 if (delta < 0) {
5162 if (rq->curr == p)
8875125e 5163 resched_curr(rq);
8f4d37ec
PZ
5164 return;
5165 }
31656519 5166 hrtick_start(rq, delta);
8f4d37ec
PZ
5167 }
5168}
a4c2f00f
PZ
5169
5170/*
5171 * called from enqueue/dequeue and updates the hrtick when the
5172 * current task is from our class and nr_running is low enough
5173 * to matter.
5174 */
5175static void hrtick_update(struct rq *rq)
5176{
5177 struct task_struct *curr = rq->curr;
5178
b39e66ea 5179 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5180 return;
5181
5182 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5183 hrtick_start_fair(rq, curr);
5184}
55e12e5e 5185#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5186static inline void
5187hrtick_start_fair(struct rq *rq, struct task_struct *p)
5188{
5189}
a4c2f00f
PZ
5190
5191static inline void hrtick_update(struct rq *rq)
5192{
5193}
8f4d37ec
PZ
5194#endif
5195
bf0f6f24
IM
5196/*
5197 * The enqueue_task method is called before nr_running is
5198 * increased. Here we update the fair scheduling stats and
5199 * then put the task into the rbtree:
5200 */
ea87bb78 5201static void
371fd7e7 5202enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5203{
5204 struct cfs_rq *cfs_rq;
62fb1851 5205 struct sched_entity *se = &p->se;
bf0f6f24 5206
8c34ab19
RW
5207 /*
5208 * If in_iowait is set, the code below may not trigger any cpufreq
5209 * utilization updates, so do it here explicitly with the IOWAIT flag
5210 * passed.
5211 */
5212 if (p->in_iowait)
674e7541 5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5214
bf0f6f24 5215 for_each_sched_entity(se) {
62fb1851 5216 if (se->on_rq)
bf0f6f24
IM
5217 break;
5218 cfs_rq = cfs_rq_of(se);
88ec22d3 5219 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5220
5221 /*
5222 * end evaluation on encountering a throttled cfs_rq
5223 *
5224 * note: in the case of encountering a throttled cfs_rq we will
5225 * post the final h_nr_running increment below.
e210bffd 5226 */
85dac906
PT
5227 if (cfs_rq_throttled(cfs_rq))
5228 break;
953bfcd1 5229 cfs_rq->h_nr_running++;
85dac906 5230
88ec22d3 5231 flags = ENQUEUE_WAKEUP;
bf0f6f24 5232 }
8f4d37ec 5233
2069dd75 5234 for_each_sched_entity(se) {
0f317143 5235 cfs_rq = cfs_rq_of(se);
953bfcd1 5236 cfs_rq->h_nr_running++;
2069dd75 5237
85dac906
PT
5238 if (cfs_rq_throttled(cfs_rq))
5239 break;
5240
88c0616e 5241 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5242 update_cfs_group(se);
2069dd75
PZ
5243 }
5244
cd126afe 5245 if (!se)
72465447 5246 add_nr_running(rq, 1);
cd126afe 5247
a4c2f00f 5248 hrtick_update(rq);
bf0f6f24
IM
5249}
5250
2f36825b
VP
5251static void set_next_buddy(struct sched_entity *se);
5252
bf0f6f24
IM
5253/*
5254 * The dequeue_task method is called before nr_running is
5255 * decreased. We remove the task from the rbtree and
5256 * update the fair scheduling stats:
5257 */
371fd7e7 5258static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5259{
5260 struct cfs_rq *cfs_rq;
62fb1851 5261 struct sched_entity *se = &p->se;
2f36825b 5262 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5263
5264 for_each_sched_entity(se) {
5265 cfs_rq = cfs_rq_of(se);
371fd7e7 5266 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5267
5268 /*
5269 * end evaluation on encountering a throttled cfs_rq
5270 *
5271 * note: in the case of encountering a throttled cfs_rq we will
5272 * post the final h_nr_running decrement below.
5273 */
5274 if (cfs_rq_throttled(cfs_rq))
5275 break;
953bfcd1 5276 cfs_rq->h_nr_running--;
2069dd75 5277
bf0f6f24 5278 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5279 if (cfs_rq->load.weight) {
754bd598
KK
5280 /* Avoid re-evaluating load for this entity: */
5281 se = parent_entity(se);
2f36825b
VP
5282 /*
5283 * Bias pick_next to pick a task from this cfs_rq, as
5284 * p is sleeping when it is within its sched_slice.
5285 */
754bd598
KK
5286 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5287 set_next_buddy(se);
bf0f6f24 5288 break;
2f36825b 5289 }
371fd7e7 5290 flags |= DEQUEUE_SLEEP;
bf0f6f24 5291 }
8f4d37ec 5292
2069dd75 5293 for_each_sched_entity(se) {
0f317143 5294 cfs_rq = cfs_rq_of(se);
953bfcd1 5295 cfs_rq->h_nr_running--;
2069dd75 5296
85dac906
PT
5297 if (cfs_rq_throttled(cfs_rq))
5298 break;
5299
88c0616e 5300 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5301 update_cfs_group(se);
2069dd75
PZ
5302 }
5303
cd126afe 5304 if (!se)
72465447 5305 sub_nr_running(rq, 1);
cd126afe 5306
a4c2f00f 5307 hrtick_update(rq);
bf0f6f24
IM
5308}
5309
e7693a36 5310#ifdef CONFIG_SMP
10e2f1ac
PZ
5311
5312/* Working cpumask for: load_balance, load_balance_newidle. */
5313DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5314DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5315
9fd81dd5 5316#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5317/*
5318 * per rq 'load' arrray crap; XXX kill this.
5319 */
5320
5321/*
d937cdc5 5322 * The exact cpuload calculated at every tick would be:
3289bdb4 5323 *
d937cdc5
PZ
5324 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5325 *
5326 * If a cpu misses updates for n ticks (as it was idle) and update gets
5327 * called on the n+1-th tick when cpu may be busy, then we have:
5328 *
5329 * load_n = (1 - 1/2^i)^n * load_0
5330 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5331 *
5332 * decay_load_missed() below does efficient calculation of
3289bdb4 5333 *
d937cdc5
PZ
5334 * load' = (1 - 1/2^i)^n * load
5335 *
5336 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5337 * This allows us to precompute the above in said factors, thereby allowing the
5338 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5339 * fixed_power_int())
3289bdb4 5340 *
d937cdc5 5341 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5342 */
5343#define DEGRADE_SHIFT 7
d937cdc5
PZ
5344
5345static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5346static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5347 { 0, 0, 0, 0, 0, 0, 0, 0 },
5348 { 64, 32, 8, 0, 0, 0, 0, 0 },
5349 { 96, 72, 40, 12, 1, 0, 0, 0 },
5350 { 112, 98, 75, 43, 15, 1, 0, 0 },
5351 { 120, 112, 98, 76, 45, 16, 2, 0 }
5352};
3289bdb4
PZ
5353
5354/*
5355 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5356 * would be when CPU is idle and so we just decay the old load without
5357 * adding any new load.
5358 */
5359static unsigned long
5360decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5361{
5362 int j = 0;
5363
5364 if (!missed_updates)
5365 return load;
5366
5367 if (missed_updates >= degrade_zero_ticks[idx])
5368 return 0;
5369
5370 if (idx == 1)
5371 return load >> missed_updates;
5372
5373 while (missed_updates) {
5374 if (missed_updates % 2)
5375 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5376
5377 missed_updates >>= 1;
5378 j++;
5379 }
5380 return load;
5381}
9fd81dd5 5382#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5383
59543275 5384/**
cee1afce 5385 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5386 * @this_rq: The rq to update statistics for
5387 * @this_load: The current load
5388 * @pending_updates: The number of missed updates
59543275 5389 *
3289bdb4 5390 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5391 * scheduler tick (TICK_NSEC).
5392 *
5393 * This function computes a decaying average:
5394 *
5395 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5396 *
5397 * Because of NOHZ it might not get called on every tick which gives need for
5398 * the @pending_updates argument.
5399 *
5400 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5401 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5402 * = A * (A * load[i]_n-2 + B) + B
5403 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5404 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5405 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5406 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5407 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5408 *
5409 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5410 * any change in load would have resulted in the tick being turned back on.
5411 *
5412 * For regular NOHZ, this reduces to:
5413 *
5414 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5415 *
5416 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5417 * term.
3289bdb4 5418 */
1f41906a
FW
5419static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5420 unsigned long pending_updates)
3289bdb4 5421{
9fd81dd5 5422 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5423 int i, scale;
5424
5425 this_rq->nr_load_updates++;
5426
5427 /* Update our load: */
5428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5430 unsigned long old_load, new_load;
5431
5432 /* scale is effectively 1 << i now, and >> i divides by scale */
5433
7400d3bb 5434 old_load = this_rq->cpu_load[i];
9fd81dd5 5435#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5436 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5437 if (tickless_load) {
5438 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5439 /*
5440 * old_load can never be a negative value because a
5441 * decayed tickless_load cannot be greater than the
5442 * original tickless_load.
5443 */
5444 old_load += tickless_load;
5445 }
9fd81dd5 5446#endif
3289bdb4
PZ
5447 new_load = this_load;
5448 /*
5449 * Round up the averaging division if load is increasing. This
5450 * prevents us from getting stuck on 9 if the load is 10, for
5451 * example.
5452 */
5453 if (new_load > old_load)
5454 new_load += scale - 1;
5455
5456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5457 }
5458
5459 sched_avg_update(this_rq);
5460}
5461
7ea241af 5462/* Used instead of source_load when we know the type == 0 */
c7132dd6 5463static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5464{
c7132dd6 5465 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5466}
5467
3289bdb4 5468#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5469/*
5470 * There is no sane way to deal with nohz on smp when using jiffies because the
5471 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5472 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5473 *
5474 * Therefore we need to avoid the delta approach from the regular tick when
5475 * possible since that would seriously skew the load calculation. This is why we
5476 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5477 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5478 * loop exit, nohz_idle_balance, nohz full exit...)
5479 *
5480 * This means we might still be one tick off for nohz periods.
5481 */
5482
5483static void cpu_load_update_nohz(struct rq *this_rq,
5484 unsigned long curr_jiffies,
5485 unsigned long load)
be68a682
FW
5486{
5487 unsigned long pending_updates;
5488
5489 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5490 if (pending_updates) {
5491 this_rq->last_load_update_tick = curr_jiffies;
5492 /*
5493 * In the regular NOHZ case, we were idle, this means load 0.
5494 * In the NOHZ_FULL case, we were non-idle, we should consider
5495 * its weighted load.
5496 */
1f41906a 5497 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5498 }
5499}
5500
3289bdb4
PZ
5501/*
5502 * Called from nohz_idle_balance() to update the load ratings before doing the
5503 * idle balance.
5504 */
cee1afce 5505static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5506{
3289bdb4
PZ
5507 /*
5508 * bail if there's load or we're actually up-to-date.
5509 */
c7132dd6 5510 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5511 return;
5512
1f41906a 5513 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5514}
5515
5516/*
1f41906a
FW
5517 * Record CPU load on nohz entry so we know the tickless load to account
5518 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5519 * than other cpu_load[idx] but it should be fine as cpu_load readers
5520 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5521 */
1f41906a 5522void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5523{
5524 struct rq *this_rq = this_rq();
1f41906a
FW
5525
5526 /*
5527 * This is all lockless but should be fine. If weighted_cpuload changes
5528 * concurrently we'll exit nohz. And cpu_load write can race with
5529 * cpu_load_update_idle() but both updater would be writing the same.
5530 */
c7132dd6 5531 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5532}
5533
5534/*
5535 * Account the tickless load in the end of a nohz frame.
5536 */
5537void cpu_load_update_nohz_stop(void)
5538{
316c1608 5539 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5540 struct rq *this_rq = this_rq();
5541 unsigned long load;
8a8c69c3 5542 struct rq_flags rf;
3289bdb4
PZ
5543
5544 if (curr_jiffies == this_rq->last_load_update_tick)
5545 return;
5546
c7132dd6 5547 load = weighted_cpuload(this_rq);
8a8c69c3 5548 rq_lock(this_rq, &rf);
b52fad2d 5549 update_rq_clock(this_rq);
1f41906a 5550 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5551 rq_unlock(this_rq, &rf);
3289bdb4 5552}
1f41906a
FW
5553#else /* !CONFIG_NO_HZ_COMMON */
5554static inline void cpu_load_update_nohz(struct rq *this_rq,
5555 unsigned long curr_jiffies,
5556 unsigned long load) { }
5557#endif /* CONFIG_NO_HZ_COMMON */
5558
5559static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5560{
9fd81dd5 5561#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5562 /* See the mess around cpu_load_update_nohz(). */
5563 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5564#endif
1f41906a
FW
5565 cpu_load_update(this_rq, load, 1);
5566}
3289bdb4
PZ
5567
5568/*
5569 * Called from scheduler_tick()
5570 */
cee1afce 5571void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5572{
c7132dd6 5573 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5574
5575 if (tick_nohz_tick_stopped())
5576 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5577 else
5578 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5579}
5580
029632fb
PZ
5581/*
5582 * Return a low guess at the load of a migration-source cpu weighted
5583 * according to the scheduling class and "nice" value.
5584 *
5585 * We want to under-estimate the load of migration sources, to
5586 * balance conservatively.
5587 */
5588static unsigned long source_load(int cpu, int type)
5589{
5590 struct rq *rq = cpu_rq(cpu);
c7132dd6 5591 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5592
5593 if (type == 0 || !sched_feat(LB_BIAS))
5594 return total;
5595
5596 return min(rq->cpu_load[type-1], total);
5597}
5598
5599/*
5600 * Return a high guess at the load of a migration-target cpu weighted
5601 * according to the scheduling class and "nice" value.
5602 */
5603static unsigned long target_load(int cpu, int type)
5604{
5605 struct rq *rq = cpu_rq(cpu);
c7132dd6 5606 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5607
5608 if (type == 0 || !sched_feat(LB_BIAS))
5609 return total;
5610
5611 return max(rq->cpu_load[type-1], total);
5612}
5613
ced549fa 5614static unsigned long capacity_of(int cpu)
029632fb 5615{
ced549fa 5616 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5617}
5618
ca6d75e6
VG
5619static unsigned long capacity_orig_of(int cpu)
5620{
5621 return cpu_rq(cpu)->cpu_capacity_orig;
5622}
5623
029632fb
PZ
5624static unsigned long cpu_avg_load_per_task(int cpu)
5625{
5626 struct rq *rq = cpu_rq(cpu);
316c1608 5627 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5628 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5629
5630 if (nr_running)
b92486cb 5631 return load_avg / nr_running;
029632fb
PZ
5632
5633 return 0;
5634}
5635
c58d25f3
PZ
5636static void record_wakee(struct task_struct *p)
5637{
5638 /*
5639 * Only decay a single time; tasks that have less then 1 wakeup per
5640 * jiffy will not have built up many flips.
5641 */
5642 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5643 current->wakee_flips >>= 1;
5644 current->wakee_flip_decay_ts = jiffies;
5645 }
5646
5647 if (current->last_wakee != p) {
5648 current->last_wakee = p;
5649 current->wakee_flips++;
5650 }
5651}
5652
63b0e9ed
MG
5653/*
5654 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5655 *
63b0e9ed 5656 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5657 * at a frequency roughly N times higher than one of its wakees.
5658 *
5659 * In order to determine whether we should let the load spread vs consolidating
5660 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5661 * partner, and a factor of lls_size higher frequency in the other.
5662 *
5663 * With both conditions met, we can be relatively sure that the relationship is
5664 * non-monogamous, with partner count exceeding socket size.
5665 *
5666 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5667 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5668 * socket size.
63b0e9ed 5669 */
62470419
MW
5670static int wake_wide(struct task_struct *p)
5671{
63b0e9ed
MG
5672 unsigned int master = current->wakee_flips;
5673 unsigned int slave = p->wakee_flips;
7d9ffa89 5674 int factor = this_cpu_read(sd_llc_size);
62470419 5675
63b0e9ed
MG
5676 if (master < slave)
5677 swap(master, slave);
5678 if (slave < factor || master < slave * factor)
5679 return 0;
5680 return 1;
62470419
MW
5681}
5682
90001d67 5683/*
d153b153
PZ
5684 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5685 * soonest. For the purpose of speed we only consider the waking and previous
5686 * CPU.
90001d67 5687 *
7332dec0
MG
5688 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5689 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5690 *
5691 * wake_affine_weight() - considers the weight to reflect the average
5692 * scheduling latency of the CPUs. This seems to work
5693 * for the overloaded case.
90001d67 5694 */
3b76c4a3 5695static int
89a55f56 5696wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5697{
7332dec0
MG
5698 /*
5699 * If this_cpu is idle, it implies the wakeup is from interrupt
5700 * context. Only allow the move if cache is shared. Otherwise an
5701 * interrupt intensive workload could force all tasks onto one
5702 * node depending on the IO topology or IRQ affinity settings.
5703 */
5704 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
3b76c4a3 5705 return this_cpu;
90001d67 5706
d153b153 5707 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5708 return this_cpu;
90001d67 5709
3b76c4a3 5710 return nr_cpumask_bits;
90001d67
PZ
5711}
5712
3b76c4a3 5713static int
f2cdd9cc
PZ
5714wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5715 int this_cpu, int prev_cpu, int sync)
90001d67 5716{
90001d67
PZ
5717 s64 this_eff_load, prev_eff_load;
5718 unsigned long task_load;
5719
f2cdd9cc
PZ
5720 this_eff_load = target_load(this_cpu, sd->wake_idx);
5721 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
90001d67 5722
90001d67
PZ
5723 if (sync) {
5724 unsigned long current_load = task_h_load(current);
5725
f2cdd9cc 5726 if (current_load > this_eff_load)
3b76c4a3 5727 return this_cpu;
90001d67 5728
f2cdd9cc 5729 this_eff_load -= current_load;
90001d67
PZ
5730 }
5731
90001d67
PZ
5732 task_load = task_h_load(p);
5733
f2cdd9cc
PZ
5734 this_eff_load += task_load;
5735 if (sched_feat(WA_BIAS))
5736 this_eff_load *= 100;
5737 this_eff_load *= capacity_of(prev_cpu);
90001d67 5738
f2cdd9cc
PZ
5739 prev_eff_load -= task_load;
5740 if (sched_feat(WA_BIAS))
5741 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5742 prev_eff_load *= capacity_of(this_cpu);
90001d67 5743
3b76c4a3 5744 return this_eff_load <= prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5745}
5746
772bd008
MR
5747static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5748 int prev_cpu, int sync)
098fb9db 5749{
3fed382b 5750 int this_cpu = smp_processor_id();
3b76c4a3 5751 int target = nr_cpumask_bits;
098fb9db 5752
89a55f56 5753 if (sched_feat(WA_IDLE))
3b76c4a3 5754 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5755
3b76c4a3
MG
5756 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5757 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5758
ae92882e 5759 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5760 if (target == nr_cpumask_bits)
5761 return prev_cpu;
098fb9db 5762
3b76c4a3
MG
5763 schedstat_inc(sd->ttwu_move_affine);
5764 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5765 return target;
098fb9db
IM
5766}
5767
f01415fd
PB
5768static inline unsigned long task_util(struct task_struct *p);
5769static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
6a0b19c0
MR
5770
5771static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5772{
f453ae22 5773 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
6a0b19c0
MR
5774}
5775
aaee1203
PZ
5776/*
5777 * find_idlest_group finds and returns the least busy CPU group within the
5778 * domain.
6fee85cc
BJ
5779 *
5780 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5781 */
5782static struct sched_group *
78e7ed53 5783find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5784 int this_cpu, int sd_flag)
e7693a36 5785{
b3bd3de6 5786 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5787 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5788 unsigned long min_runnable_load = ULONG_MAX;
5789 unsigned long this_runnable_load = ULONG_MAX;
5790 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5791 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5792 int load_idx = sd->forkexec_idx;
6b94780e
VG
5793 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5794 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5795 (sd->imbalance_pct-100) / 100;
e7693a36 5796
c44f2a02
VG
5797 if (sd_flag & SD_BALANCE_WAKE)
5798 load_idx = sd->wake_idx;
5799
aaee1203 5800 do {
6b94780e
VG
5801 unsigned long load, avg_load, runnable_load;
5802 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5803 int local_group;
5804 int i;
e7693a36 5805
aaee1203 5806 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5807 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5808 &p->cpus_allowed))
aaee1203
PZ
5809 continue;
5810
5811 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5812 sched_group_span(group));
aaee1203 5813
6a0b19c0
MR
5814 /*
5815 * Tally up the load of all CPUs in the group and find
5816 * the group containing the CPU with most spare capacity.
5817 */
aaee1203 5818 avg_load = 0;
6b94780e 5819 runnable_load = 0;
6a0b19c0 5820 max_spare_cap = 0;
aaee1203 5821
ae4df9d6 5822 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5823 /* Bias balancing toward cpus of our domain */
5824 if (local_group)
5825 load = source_load(i, load_idx);
5826 else
5827 load = target_load(i, load_idx);
5828
6b94780e
VG
5829 runnable_load += load;
5830
5831 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5832
5833 spare_cap = capacity_spare_wake(i, p);
5834
5835 if (spare_cap > max_spare_cap)
5836 max_spare_cap = spare_cap;
aaee1203
PZ
5837 }
5838
63b2ca30 5839 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5840 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5841 group->sgc->capacity;
5842 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5843 group->sgc->capacity;
aaee1203
PZ
5844
5845 if (local_group) {
6b94780e
VG
5846 this_runnable_load = runnable_load;
5847 this_avg_load = avg_load;
6a0b19c0
MR
5848 this_spare = max_spare_cap;
5849 } else {
6b94780e
VG
5850 if (min_runnable_load > (runnable_load + imbalance)) {
5851 /*
5852 * The runnable load is significantly smaller
5853 * so we can pick this new cpu
5854 */
5855 min_runnable_load = runnable_load;
5856 min_avg_load = avg_load;
5857 idlest = group;
5858 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5859 (100*min_avg_load > imbalance_scale*avg_load)) {
5860 /*
5861 * The runnable loads are close so take the
5862 * blocked load into account through avg_load.
5863 */
5864 min_avg_load = avg_load;
6a0b19c0
MR
5865 idlest = group;
5866 }
5867
5868 if (most_spare < max_spare_cap) {
5869 most_spare = max_spare_cap;
5870 most_spare_sg = group;
5871 }
aaee1203
PZ
5872 }
5873 } while (group = group->next, group != sd->groups);
5874
6a0b19c0
MR
5875 /*
5876 * The cross-over point between using spare capacity or least load
5877 * is too conservative for high utilization tasks on partially
5878 * utilized systems if we require spare_capacity > task_util(p),
5879 * so we allow for some task stuffing by using
5880 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5881 *
5882 * Spare capacity can't be used for fork because the utilization has
5883 * not been set yet, we must first select a rq to compute the initial
5884 * utilization.
6a0b19c0 5885 */
f519a3f1
VG
5886 if (sd_flag & SD_BALANCE_FORK)
5887 goto skip_spare;
5888
6a0b19c0 5889 if (this_spare > task_util(p) / 2 &&
6b94780e 5890 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5891 return NULL;
6b94780e
VG
5892
5893 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5894 return most_spare_sg;
5895
f519a3f1 5896skip_spare:
6b94780e
VG
5897 if (!idlest)
5898 return NULL;
5899
5900 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5901 return NULL;
6b94780e
VG
5902
5903 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5904 (100*this_avg_load < imbalance_scale*min_avg_load))
5905 return NULL;
5906
aaee1203
PZ
5907 return idlest;
5908}
5909
5910/*
18bd1b4b 5911 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
aaee1203
PZ
5912 */
5913static int
18bd1b4b 5914find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5915{
5916 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5917 unsigned int min_exit_latency = UINT_MAX;
5918 u64 latest_idle_timestamp = 0;
5919 int least_loaded_cpu = this_cpu;
5920 int shallowest_idle_cpu = -1;
aaee1203
PZ
5921 int i;
5922
eaecf41f
MR
5923 /* Check if we have any choice: */
5924 if (group->group_weight == 1)
ae4df9d6 5925 return cpumask_first(sched_group_span(group));
eaecf41f 5926
aaee1203 5927 /* Traverse only the allowed CPUs */
ae4df9d6 5928 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5929 if (idle_cpu(i)) {
5930 struct rq *rq = cpu_rq(i);
5931 struct cpuidle_state *idle = idle_get_state(rq);
5932 if (idle && idle->exit_latency < min_exit_latency) {
5933 /*
5934 * We give priority to a CPU whose idle state
5935 * has the smallest exit latency irrespective
5936 * of any idle timestamp.
5937 */
5938 min_exit_latency = idle->exit_latency;
5939 latest_idle_timestamp = rq->idle_stamp;
5940 shallowest_idle_cpu = i;
5941 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5942 rq->idle_stamp > latest_idle_timestamp) {
5943 /*
5944 * If equal or no active idle state, then
5945 * the most recently idled CPU might have
5946 * a warmer cache.
5947 */
5948 latest_idle_timestamp = rq->idle_stamp;
5949 shallowest_idle_cpu = i;
5950 }
9f96742a 5951 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5952 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5953 if (load < min_load) {
83a0a96a
NP
5954 min_load = load;
5955 least_loaded_cpu = i;
5956 }
e7693a36
GH
5957 }
5958 }
5959
83a0a96a 5960 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5961}
e7693a36 5962
18bd1b4b
BJ
5963static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5964 int cpu, int prev_cpu, int sd_flag)
5965{
93f50f90 5966 int new_cpu = cpu;
18bd1b4b 5967
6fee85cc
BJ
5968 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5969 return prev_cpu;
5970
18bd1b4b
BJ
5971 while (sd) {
5972 struct sched_group *group;
5973 struct sched_domain *tmp;
5974 int weight;
5975
5976 if (!(sd->flags & sd_flag)) {
5977 sd = sd->child;
5978 continue;
5979 }
5980
5981 group = find_idlest_group(sd, p, cpu, sd_flag);
5982 if (!group) {
5983 sd = sd->child;
5984 continue;
5985 }
5986
5987 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5988 if (new_cpu == cpu) {
18bd1b4b
BJ
5989 /* Now try balancing at a lower domain level of cpu */
5990 sd = sd->child;
5991 continue;
5992 }
5993
5994 /* Now try balancing at a lower domain level of new_cpu */
5995 cpu = new_cpu;
5996 weight = sd->span_weight;
5997 sd = NULL;
5998 for_each_domain(cpu, tmp) {
5999 if (weight <= tmp->span_weight)
6000 break;
6001 if (tmp->flags & sd_flag)
6002 sd = tmp;
6003 }
6004 /* while loop will break here if sd == NULL */
6005 }
6006
6007 return new_cpu;
6008}
6009
10e2f1ac
PZ
6010#ifdef CONFIG_SCHED_SMT
6011
6012static inline void set_idle_cores(int cpu, int val)
6013{
6014 struct sched_domain_shared *sds;
6015
6016 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6017 if (sds)
6018 WRITE_ONCE(sds->has_idle_cores, val);
6019}
6020
6021static inline bool test_idle_cores(int cpu, bool def)
6022{
6023 struct sched_domain_shared *sds;
6024
6025 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6026 if (sds)
6027 return READ_ONCE(sds->has_idle_cores);
6028
6029 return def;
6030}
6031
6032/*
6033 * Scans the local SMT mask to see if the entire core is idle, and records this
6034 * information in sd_llc_shared->has_idle_cores.
6035 *
6036 * Since SMT siblings share all cache levels, inspecting this limited remote
6037 * state should be fairly cheap.
6038 */
1b568f0a 6039void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6040{
6041 int core = cpu_of(rq);
6042 int cpu;
6043
6044 rcu_read_lock();
6045 if (test_idle_cores(core, true))
6046 goto unlock;
6047
6048 for_each_cpu(cpu, cpu_smt_mask(core)) {
6049 if (cpu == core)
6050 continue;
6051
6052 if (!idle_cpu(cpu))
6053 goto unlock;
6054 }
6055
6056 set_idle_cores(core, 1);
6057unlock:
6058 rcu_read_unlock();
6059}
6060
6061/*
6062 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6063 * there are no idle cores left in the system; tracked through
6064 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6065 */
6066static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6067{
6068 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6069 int core, cpu;
10e2f1ac 6070
1b568f0a
PZ
6071 if (!static_branch_likely(&sched_smt_present))
6072 return -1;
6073
10e2f1ac
PZ
6074 if (!test_idle_cores(target, false))
6075 return -1;
6076
0c98d344 6077 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6078
c743f0a5 6079 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6080 bool idle = true;
6081
6082 for_each_cpu(cpu, cpu_smt_mask(core)) {
6083 cpumask_clear_cpu(cpu, cpus);
6084 if (!idle_cpu(cpu))
6085 idle = false;
6086 }
6087
6088 if (idle)
6089 return core;
6090 }
6091
6092 /*
6093 * Failed to find an idle core; stop looking for one.
6094 */
6095 set_idle_cores(target, 0);
6096
6097 return -1;
6098}
6099
6100/*
6101 * Scan the local SMT mask for idle CPUs.
6102 */
6103static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6104{
6105 int cpu;
6106
1b568f0a
PZ
6107 if (!static_branch_likely(&sched_smt_present))
6108 return -1;
6109
10e2f1ac 6110 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6111 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
6112 continue;
6113 if (idle_cpu(cpu))
6114 return cpu;
6115 }
6116
6117 return -1;
6118}
6119
6120#else /* CONFIG_SCHED_SMT */
6121
6122static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6123{
6124 return -1;
6125}
6126
6127static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6128{
6129 return -1;
6130}
6131
6132#endif /* CONFIG_SCHED_SMT */
6133
6134/*
6135 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6136 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6137 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6138 */
10e2f1ac
PZ
6139static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6140{
9cfb38a7 6141 struct sched_domain *this_sd;
1ad3aaf3 6142 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6143 u64 time, cost;
6144 s64 delta;
1ad3aaf3 6145 int cpu, nr = INT_MAX;
10e2f1ac 6146
9cfb38a7
WL
6147 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6148 if (!this_sd)
6149 return -1;
6150
10e2f1ac
PZ
6151 /*
6152 * Due to large variance we need a large fuzz factor; hackbench in
6153 * particularly is sensitive here.
6154 */
1ad3aaf3
PZ
6155 avg_idle = this_rq()->avg_idle / 512;
6156 avg_cost = this_sd->avg_scan_cost + 1;
6157
6158 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6159 return -1;
6160
1ad3aaf3
PZ
6161 if (sched_feat(SIS_PROP)) {
6162 u64 span_avg = sd->span_weight * avg_idle;
6163 if (span_avg > 4*avg_cost)
6164 nr = div_u64(span_avg, avg_cost);
6165 else
6166 nr = 4;
6167 }
6168
10e2f1ac
PZ
6169 time = local_clock();
6170
c743f0a5 6171 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6172 if (!--nr)
6173 return -1;
0c98d344 6174 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
6175 continue;
6176 if (idle_cpu(cpu))
6177 break;
6178 }
6179
6180 time = local_clock() - time;
6181 cost = this_sd->avg_scan_cost;
6182 delta = (s64)(time - cost) / 8;
6183 this_sd->avg_scan_cost += delta;
6184
6185 return cpu;
6186}
6187
6188/*
6189 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6190 */
772bd008 6191static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6192{
99bd5e2f 6193 struct sched_domain *sd;
10e2f1ac 6194 int i;
a50bde51 6195
e0a79f52
MG
6196 if (idle_cpu(target))
6197 return target;
99bd5e2f
SS
6198
6199 /*
10e2f1ac 6200 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 6201 */
772bd008
MR
6202 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6203 return prev;
a50bde51 6204
518cd623 6205 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6206 if (!sd)
6207 return target;
772bd008 6208
10e2f1ac
PZ
6209 i = select_idle_core(p, sd, target);
6210 if ((unsigned)i < nr_cpumask_bits)
6211 return i;
37407ea7 6212
10e2f1ac
PZ
6213 i = select_idle_cpu(p, sd, target);
6214 if ((unsigned)i < nr_cpumask_bits)
6215 return i;
6216
6217 i = select_idle_smt(p, sd, target);
6218 if ((unsigned)i < nr_cpumask_bits)
6219 return i;
970e1789 6220
a50bde51
PZ
6221 return target;
6222}
231678b7 6223
8bb5b00c 6224/*
9e91d61d 6225 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 6226 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
6227 * compare the utilization with the capacity of the CPU that is available for
6228 * CFS task (ie cpu_capacity).
231678b7
DE
6229 *
6230 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6231 * recent utilization of currently non-runnable tasks on a CPU. It represents
6232 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6233 * capacity_orig is the cpu_capacity available at the highest frequency
6234 * (arch_scale_freq_capacity()).
6235 * The utilization of a CPU converges towards a sum equal to or less than the
6236 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6237 * the running time on this CPU scaled by capacity_curr.
6238 *
6239 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6240 * higher than capacity_orig because of unfortunate rounding in
6241 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6242 * the average stabilizes with the new running time. We need to check that the
6243 * utilization stays within the range of [0..capacity_orig] and cap it if
6244 * necessary. Without utilization capping, a group could be seen as overloaded
6245 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6246 * available capacity. We allow utilization to overshoot capacity_curr (but not
6247 * capacity_orig) as it useful for predicting the capacity required after task
6248 * migrations (scheduler-driven DVFS).
8bb5b00c 6249 */
f01415fd 6250static unsigned long cpu_util(int cpu)
8bb5b00c 6251{
9e91d61d 6252 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
6253 unsigned long capacity = capacity_orig_of(cpu);
6254
231678b7 6255 return (util >= capacity) ? capacity : util;
8bb5b00c 6256}
a50bde51 6257
f01415fd 6258static inline unsigned long task_util(struct task_struct *p)
3273163c
MR
6259{
6260 return p->se.avg.util_avg;
6261}
6262
104cb16d
MR
6263/*
6264 * cpu_util_wake: Compute cpu utilization with any contributions from
6265 * the waking task p removed.
6266 */
f01415fd 6267static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
104cb16d
MR
6268{
6269 unsigned long util, capacity;
6270
6271 /* Task has no contribution or is new */
6272 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6273 return cpu_util(cpu);
6274
6275 capacity = capacity_orig_of(cpu);
6276 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6277
6278 return (util >= capacity) ? capacity : util;
6279}
6280
3273163c
MR
6281/*
6282 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6283 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6284 *
6285 * In that case WAKE_AFFINE doesn't make sense and we'll let
6286 * BALANCE_WAKE sort things out.
6287 */
6288static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6289{
6290 long min_cap, max_cap;
6291
6292 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6293 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6294
6295 /* Minimum capacity is close to max, no need to abort wake_affine */
6296 if (max_cap - min_cap < max_cap >> 3)
6297 return 0;
6298
104cb16d
MR
6299 /* Bring task utilization in sync with prev_cpu */
6300 sync_entity_load_avg(&p->se);
6301
3273163c
MR
6302 return min_cap * 1024 < task_util(p) * capacity_margin;
6303}
6304
aaee1203 6305/*
de91b9cb
MR
6306 * select_task_rq_fair: Select target runqueue for the waking task in domains
6307 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6308 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6309 *
de91b9cb
MR
6310 * Balances load by selecting the idlest cpu in the idlest group, or under
6311 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 6312 *
de91b9cb 6313 * Returns the target cpu number.
aaee1203
PZ
6314 *
6315 * preempt must be disabled.
6316 */
0017d735 6317static int
ac66f547 6318select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6319{
29cd8bae 6320 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 6321 int cpu = smp_processor_id();
63b0e9ed 6322 int new_cpu = prev_cpu;
99bd5e2f 6323 int want_affine = 0;
5158f4e4 6324 int sync = wake_flags & WF_SYNC;
c88d5910 6325
c58d25f3
PZ
6326 if (sd_flag & SD_BALANCE_WAKE) {
6327 record_wakee(p);
3273163c 6328 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6329 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6330 }
aaee1203 6331
dce840a0 6332 rcu_read_lock();
aaee1203 6333 for_each_domain(cpu, tmp) {
e4f42888 6334 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6335 break;
e4f42888 6336
fe3bcfe1 6337 /*
99bd5e2f
SS
6338 * If both cpu and prev_cpu are part of this domain,
6339 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6340 */
99bd5e2f
SS
6341 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6342 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6343 affine_sd = tmp;
29cd8bae 6344 break;
f03542a7 6345 }
29cd8bae 6346
f03542a7 6347 if (tmp->flags & sd_flag)
29cd8bae 6348 sd = tmp;
63b0e9ed
MG
6349 else if (!want_affine)
6350 break;
29cd8bae
PZ
6351 }
6352
63b0e9ed
MG
6353 if (affine_sd) {
6354 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6355 if (cpu == prev_cpu)
6356 goto pick_cpu;
6357
3b76c4a3 6358 new_cpu = wake_affine(affine_sd, p, prev_cpu, sync);
8b911acd 6359 }
e7693a36 6360
ea16f0ea
BJ
6361 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6362 /*
6363 * We're going to need the task's util for capacity_spare_wake
6364 * in find_idlest_group. Sync it up to prev_cpu's
6365 * last_update_time.
6366 */
6367 sync_entity_load_avg(&p->se);
6368 }
6369
63b0e9ed 6370 if (!sd) {
ea16f0ea 6371pick_cpu:
63b0e9ed 6372 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6373 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed 6374
18bd1b4b
BJ
6375 } else {
6376 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
e7693a36 6377 }
dce840a0 6378 rcu_read_unlock();
e7693a36 6379
c88d5910 6380 return new_cpu;
e7693a36 6381}
0a74bef8 6382
144d8487
PZ
6383static void detach_entity_cfs_rq(struct sched_entity *se);
6384
0a74bef8
PT
6385/*
6386 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6387 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6388 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6389 */
5a4fd036 6390static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6391{
59efa0ba
PZ
6392 /*
6393 * As blocked tasks retain absolute vruntime the migration needs to
6394 * deal with this by subtracting the old and adding the new
6395 * min_vruntime -- the latter is done by enqueue_entity() when placing
6396 * the task on the new runqueue.
6397 */
6398 if (p->state == TASK_WAKING) {
6399 struct sched_entity *se = &p->se;
6400 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6401 u64 min_vruntime;
6402
6403#ifndef CONFIG_64BIT
6404 u64 min_vruntime_copy;
6405
6406 do {
6407 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6408 smp_rmb();
6409 min_vruntime = cfs_rq->min_vruntime;
6410 } while (min_vruntime != min_vruntime_copy);
6411#else
6412 min_vruntime = cfs_rq->min_vruntime;
6413#endif
6414
6415 se->vruntime -= min_vruntime;
6416 }
6417
144d8487
PZ
6418 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6419 /*
6420 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6421 * rq->lock and can modify state directly.
6422 */
6423 lockdep_assert_held(&task_rq(p)->lock);
6424 detach_entity_cfs_rq(&p->se);
6425
6426 } else {
6427 /*
6428 * We are supposed to update the task to "current" time, then
6429 * its up to date and ready to go to new CPU/cfs_rq. But we
6430 * have difficulty in getting what current time is, so simply
6431 * throw away the out-of-date time. This will result in the
6432 * wakee task is less decayed, but giving the wakee more load
6433 * sounds not bad.
6434 */
6435 remove_entity_load_avg(&p->se);
6436 }
9d89c257
YD
6437
6438 /* Tell new CPU we are migrated */
6439 p->se.avg.last_update_time = 0;
3944a927
BS
6440
6441 /* We have migrated, no longer consider this task hot */
9d89c257 6442 p->se.exec_start = 0;
0a74bef8 6443}
12695578
YD
6444
6445static void task_dead_fair(struct task_struct *p)
6446{
6447 remove_entity_load_avg(&p->se);
6448}
e7693a36
GH
6449#endif /* CONFIG_SMP */
6450
a555e9d8 6451static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6452{
6453 unsigned long gran = sysctl_sched_wakeup_granularity;
6454
6455 /*
e52fb7c0
PZ
6456 * Since its curr running now, convert the gran from real-time
6457 * to virtual-time in his units.
13814d42
MG
6458 *
6459 * By using 'se' instead of 'curr' we penalize light tasks, so
6460 * they get preempted easier. That is, if 'se' < 'curr' then
6461 * the resulting gran will be larger, therefore penalizing the
6462 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6463 * be smaller, again penalizing the lighter task.
6464 *
6465 * This is especially important for buddies when the leftmost
6466 * task is higher priority than the buddy.
0bbd3336 6467 */
f4ad9bd2 6468 return calc_delta_fair(gran, se);
0bbd3336
PZ
6469}
6470
464b7527
PZ
6471/*
6472 * Should 'se' preempt 'curr'.
6473 *
6474 * |s1
6475 * |s2
6476 * |s3
6477 * g
6478 * |<--->|c
6479 *
6480 * w(c, s1) = -1
6481 * w(c, s2) = 0
6482 * w(c, s3) = 1
6483 *
6484 */
6485static int
6486wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6487{
6488 s64 gran, vdiff = curr->vruntime - se->vruntime;
6489
6490 if (vdiff <= 0)
6491 return -1;
6492
a555e9d8 6493 gran = wakeup_gran(se);
464b7527
PZ
6494 if (vdiff > gran)
6495 return 1;
6496
6497 return 0;
6498}
6499
02479099
PZ
6500static void set_last_buddy(struct sched_entity *se)
6501{
69c80f3e
VP
6502 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6503 return;
6504
c5ae366e
DA
6505 for_each_sched_entity(se) {
6506 if (SCHED_WARN_ON(!se->on_rq))
6507 return;
69c80f3e 6508 cfs_rq_of(se)->last = se;
c5ae366e 6509 }
02479099
PZ
6510}
6511
6512static void set_next_buddy(struct sched_entity *se)
6513{
69c80f3e
VP
6514 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6515 return;
6516
c5ae366e
DA
6517 for_each_sched_entity(se) {
6518 if (SCHED_WARN_ON(!se->on_rq))
6519 return;
69c80f3e 6520 cfs_rq_of(se)->next = se;
c5ae366e 6521 }
02479099
PZ
6522}
6523
ac53db59
RR
6524static void set_skip_buddy(struct sched_entity *se)
6525{
69c80f3e
VP
6526 for_each_sched_entity(se)
6527 cfs_rq_of(se)->skip = se;
ac53db59
RR
6528}
6529
bf0f6f24
IM
6530/*
6531 * Preempt the current task with a newly woken task if needed:
6532 */
5a9b86f6 6533static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6534{
6535 struct task_struct *curr = rq->curr;
8651a86c 6536 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6537 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6538 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6539 int next_buddy_marked = 0;
bf0f6f24 6540
4ae7d5ce
IM
6541 if (unlikely(se == pse))
6542 return;
6543
5238cdd3 6544 /*
163122b7 6545 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6546 * unconditionally check_prempt_curr() after an enqueue (which may have
6547 * lead to a throttle). This both saves work and prevents false
6548 * next-buddy nomination below.
6549 */
6550 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6551 return;
6552
2f36825b 6553 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6554 set_next_buddy(pse);
2f36825b
VP
6555 next_buddy_marked = 1;
6556 }
57fdc26d 6557
aec0a514
BR
6558 /*
6559 * We can come here with TIF_NEED_RESCHED already set from new task
6560 * wake up path.
5238cdd3
PT
6561 *
6562 * Note: this also catches the edge-case of curr being in a throttled
6563 * group (e.g. via set_curr_task), since update_curr() (in the
6564 * enqueue of curr) will have resulted in resched being set. This
6565 * prevents us from potentially nominating it as a false LAST_BUDDY
6566 * below.
aec0a514
BR
6567 */
6568 if (test_tsk_need_resched(curr))
6569 return;
6570
a2f5c9ab
DH
6571 /* Idle tasks are by definition preempted by non-idle tasks. */
6572 if (unlikely(curr->policy == SCHED_IDLE) &&
6573 likely(p->policy != SCHED_IDLE))
6574 goto preempt;
6575
91c234b4 6576 /*
a2f5c9ab
DH
6577 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6578 * is driven by the tick):
91c234b4 6579 */
8ed92e51 6580 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6581 return;
bf0f6f24 6582
464b7527 6583 find_matching_se(&se, &pse);
9bbd7374 6584 update_curr(cfs_rq_of(se));
002f128b 6585 BUG_ON(!pse);
2f36825b
VP
6586 if (wakeup_preempt_entity(se, pse) == 1) {
6587 /*
6588 * Bias pick_next to pick the sched entity that is
6589 * triggering this preemption.
6590 */
6591 if (!next_buddy_marked)
6592 set_next_buddy(pse);
3a7e73a2 6593 goto preempt;
2f36825b 6594 }
464b7527 6595
3a7e73a2 6596 return;
a65ac745 6597
3a7e73a2 6598preempt:
8875125e 6599 resched_curr(rq);
3a7e73a2
PZ
6600 /*
6601 * Only set the backward buddy when the current task is still
6602 * on the rq. This can happen when a wakeup gets interleaved
6603 * with schedule on the ->pre_schedule() or idle_balance()
6604 * point, either of which can * drop the rq lock.
6605 *
6606 * Also, during early boot the idle thread is in the fair class,
6607 * for obvious reasons its a bad idea to schedule back to it.
6608 */
6609 if (unlikely(!se->on_rq || curr == rq->idle))
6610 return;
6611
6612 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6613 set_last_buddy(se);
bf0f6f24
IM
6614}
6615
606dba2e 6616static struct task_struct *
d8ac8971 6617pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6618{
6619 struct cfs_rq *cfs_rq = &rq->cfs;
6620 struct sched_entity *se;
678d5718 6621 struct task_struct *p;
37e117c0 6622 int new_tasks;
678d5718 6623
6e83125c 6624again:
678d5718 6625 if (!cfs_rq->nr_running)
38033c37 6626 goto idle;
678d5718 6627
9674f5ca 6628#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6629 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6630 goto simple;
6631
6632 /*
6633 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6634 * likely that a next task is from the same cgroup as the current.
6635 *
6636 * Therefore attempt to avoid putting and setting the entire cgroup
6637 * hierarchy, only change the part that actually changes.
6638 */
6639
6640 do {
6641 struct sched_entity *curr = cfs_rq->curr;
6642
6643 /*
6644 * Since we got here without doing put_prev_entity() we also
6645 * have to consider cfs_rq->curr. If it is still a runnable
6646 * entity, update_curr() will update its vruntime, otherwise
6647 * forget we've ever seen it.
6648 */
54d27365
BS
6649 if (curr) {
6650 if (curr->on_rq)
6651 update_curr(cfs_rq);
6652 else
6653 curr = NULL;
678d5718 6654
54d27365
BS
6655 /*
6656 * This call to check_cfs_rq_runtime() will do the
6657 * throttle and dequeue its entity in the parent(s).
9674f5ca 6658 * Therefore the nr_running test will indeed
54d27365
BS
6659 * be correct.
6660 */
9674f5ca
VK
6661 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6662 cfs_rq = &rq->cfs;
6663
6664 if (!cfs_rq->nr_running)
6665 goto idle;
6666
54d27365 6667 goto simple;
9674f5ca 6668 }
54d27365 6669 }
678d5718
PZ
6670
6671 se = pick_next_entity(cfs_rq, curr);
6672 cfs_rq = group_cfs_rq(se);
6673 } while (cfs_rq);
6674
6675 p = task_of(se);
6676
6677 /*
6678 * Since we haven't yet done put_prev_entity and if the selected task
6679 * is a different task than we started out with, try and touch the
6680 * least amount of cfs_rqs.
6681 */
6682 if (prev != p) {
6683 struct sched_entity *pse = &prev->se;
6684
6685 while (!(cfs_rq = is_same_group(se, pse))) {
6686 int se_depth = se->depth;
6687 int pse_depth = pse->depth;
6688
6689 if (se_depth <= pse_depth) {
6690 put_prev_entity(cfs_rq_of(pse), pse);
6691 pse = parent_entity(pse);
6692 }
6693 if (se_depth >= pse_depth) {
6694 set_next_entity(cfs_rq_of(se), se);
6695 se = parent_entity(se);
6696 }
6697 }
6698
6699 put_prev_entity(cfs_rq, pse);
6700 set_next_entity(cfs_rq, se);
6701 }
6702
93824900 6703 goto done;
678d5718 6704simple:
678d5718 6705#endif
bf0f6f24 6706
3f1d2a31 6707 put_prev_task(rq, prev);
606dba2e 6708
bf0f6f24 6709 do {
678d5718 6710 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6711 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6712 cfs_rq = group_cfs_rq(se);
6713 } while (cfs_rq);
6714
8f4d37ec 6715 p = task_of(se);
678d5718 6716
93824900
UR
6717done: __maybe_unused
6718#ifdef CONFIG_SMP
6719 /*
6720 * Move the next running task to the front of
6721 * the list, so our cfs_tasks list becomes MRU
6722 * one.
6723 */
6724 list_move(&p->se.group_node, &rq->cfs_tasks);
6725#endif
6726
b39e66ea
MG
6727 if (hrtick_enabled(rq))
6728 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6729
6730 return p;
38033c37
PZ
6731
6732idle:
46f69fa3
MF
6733 new_tasks = idle_balance(rq, rf);
6734
37e117c0
PZ
6735 /*
6736 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6737 * possible for any higher priority task to appear. In that case we
6738 * must re-start the pick_next_entity() loop.
6739 */
e4aa358b 6740 if (new_tasks < 0)
37e117c0
PZ
6741 return RETRY_TASK;
6742
e4aa358b 6743 if (new_tasks > 0)
38033c37 6744 goto again;
38033c37
PZ
6745
6746 return NULL;
bf0f6f24
IM
6747}
6748
6749/*
6750 * Account for a descheduled task:
6751 */
31ee529c 6752static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6753{
6754 struct sched_entity *se = &prev->se;
6755 struct cfs_rq *cfs_rq;
6756
6757 for_each_sched_entity(se) {
6758 cfs_rq = cfs_rq_of(se);
ab6cde26 6759 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6760 }
6761}
6762
ac53db59
RR
6763/*
6764 * sched_yield() is very simple
6765 *
6766 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6767 */
6768static void yield_task_fair(struct rq *rq)
6769{
6770 struct task_struct *curr = rq->curr;
6771 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6772 struct sched_entity *se = &curr->se;
6773
6774 /*
6775 * Are we the only task in the tree?
6776 */
6777 if (unlikely(rq->nr_running == 1))
6778 return;
6779
6780 clear_buddies(cfs_rq, se);
6781
6782 if (curr->policy != SCHED_BATCH) {
6783 update_rq_clock(rq);
6784 /*
6785 * Update run-time statistics of the 'current'.
6786 */
6787 update_curr(cfs_rq);
916671c0
MG
6788 /*
6789 * Tell update_rq_clock() that we've just updated,
6790 * so we don't do microscopic update in schedule()
6791 * and double the fastpath cost.
6792 */
9edfbfed 6793 rq_clock_skip_update(rq, true);
ac53db59
RR
6794 }
6795
6796 set_skip_buddy(se);
6797}
6798
d95f4122
MG
6799static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6800{
6801 struct sched_entity *se = &p->se;
6802
5238cdd3
PT
6803 /* throttled hierarchies are not runnable */
6804 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6805 return false;
6806
6807 /* Tell the scheduler that we'd really like pse to run next. */
6808 set_next_buddy(se);
6809
d95f4122
MG
6810 yield_task_fair(rq);
6811
6812 return true;
6813}
6814
681f3e68 6815#ifdef CONFIG_SMP
bf0f6f24 6816/**************************************************
e9c84cb8
PZ
6817 * Fair scheduling class load-balancing methods.
6818 *
6819 * BASICS
6820 *
6821 * The purpose of load-balancing is to achieve the same basic fairness the
6822 * per-cpu scheduler provides, namely provide a proportional amount of compute
6823 * time to each task. This is expressed in the following equation:
6824 *
6825 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6826 *
6827 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6828 * W_i,0 is defined as:
6829 *
6830 * W_i,0 = \Sum_j w_i,j (2)
6831 *
6832 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6833 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6834 *
6835 * The weight average is an exponential decay average of the instantaneous
6836 * weight:
6837 *
6838 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6839 *
ced549fa 6840 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6841 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6842 * can also include other factors [XXX].
6843 *
6844 * To achieve this balance we define a measure of imbalance which follows
6845 * directly from (1):
6846 *
ced549fa 6847 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6848 *
6849 * We them move tasks around to minimize the imbalance. In the continuous
6850 * function space it is obvious this converges, in the discrete case we get
6851 * a few fun cases generally called infeasible weight scenarios.
6852 *
6853 * [XXX expand on:
6854 * - infeasible weights;
6855 * - local vs global optima in the discrete case. ]
6856 *
6857 *
6858 * SCHED DOMAINS
6859 *
6860 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6861 * for all i,j solution, we create a tree of cpus that follows the hardware
6862 * topology where each level pairs two lower groups (or better). This results
6863 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6864 * tree to only the first of the previous level and we decrease the frequency
6865 * of load-balance at each level inv. proportional to the number of cpus in
6866 * the groups.
6867 *
6868 * This yields:
6869 *
6870 * log_2 n 1 n
6871 * \Sum { --- * --- * 2^i } = O(n) (5)
6872 * i = 0 2^i 2^i
6873 * `- size of each group
6874 * | | `- number of cpus doing load-balance
6875 * | `- freq
6876 * `- sum over all levels
6877 *
6878 * Coupled with a limit on how many tasks we can migrate every balance pass,
6879 * this makes (5) the runtime complexity of the balancer.
6880 *
6881 * An important property here is that each CPU is still (indirectly) connected
6882 * to every other cpu in at most O(log n) steps:
6883 *
6884 * The adjacency matrix of the resulting graph is given by:
6885 *
97a7142f 6886 * log_2 n
e9c84cb8
PZ
6887 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6888 * k = 0
6889 *
6890 * And you'll find that:
6891 *
6892 * A^(log_2 n)_i,j != 0 for all i,j (7)
6893 *
6894 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6895 * The task movement gives a factor of O(m), giving a convergence complexity
6896 * of:
6897 *
6898 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6899 *
6900 *
6901 * WORK CONSERVING
6902 *
6903 * In order to avoid CPUs going idle while there's still work to do, new idle
6904 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6905 * tree itself instead of relying on other CPUs to bring it work.
6906 *
6907 * This adds some complexity to both (5) and (8) but it reduces the total idle
6908 * time.
6909 *
6910 * [XXX more?]
6911 *
6912 *
6913 * CGROUPS
6914 *
6915 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6916 *
6917 * s_k,i
6918 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6919 * S_k
6920 *
6921 * Where
6922 *
6923 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6924 *
6925 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6926 *
6927 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6928 * property.
6929 *
6930 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6931 * rewrite all of this once again.]
97a7142f 6932 */
bf0f6f24 6933
ed387b78
HS
6934static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6935
0ec8aa00
PZ
6936enum fbq_type { regular, remote, all };
6937
ddcdf6e7 6938#define LBF_ALL_PINNED 0x01
367456c7 6939#define LBF_NEED_BREAK 0x02
6263322c
PZ
6940#define LBF_DST_PINNED 0x04
6941#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6942
6943struct lb_env {
6944 struct sched_domain *sd;
6945
ddcdf6e7 6946 struct rq *src_rq;
85c1e7da 6947 int src_cpu;
ddcdf6e7
PZ
6948
6949 int dst_cpu;
6950 struct rq *dst_rq;
6951
88b8dac0
SV
6952 struct cpumask *dst_grpmask;
6953 int new_dst_cpu;
ddcdf6e7 6954 enum cpu_idle_type idle;
bd939f45 6955 long imbalance;
b9403130
MW
6956 /* The set of CPUs under consideration for load-balancing */
6957 struct cpumask *cpus;
6958
ddcdf6e7 6959 unsigned int flags;
367456c7
PZ
6960
6961 unsigned int loop;
6962 unsigned int loop_break;
6963 unsigned int loop_max;
0ec8aa00
PZ
6964
6965 enum fbq_type fbq_type;
163122b7 6966 struct list_head tasks;
ddcdf6e7
PZ
6967};
6968
029632fb
PZ
6969/*
6970 * Is this task likely cache-hot:
6971 */
5d5e2b1b 6972static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6973{
6974 s64 delta;
6975
e5673f28
KT
6976 lockdep_assert_held(&env->src_rq->lock);
6977
029632fb
PZ
6978 if (p->sched_class != &fair_sched_class)
6979 return 0;
6980
6981 if (unlikely(p->policy == SCHED_IDLE))
6982 return 0;
6983
6984 /*
6985 * Buddy candidates are cache hot:
6986 */
5d5e2b1b 6987 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6988 (&p->se == cfs_rq_of(&p->se)->next ||
6989 &p->se == cfs_rq_of(&p->se)->last))
6990 return 1;
6991
6992 if (sysctl_sched_migration_cost == -1)
6993 return 1;
6994 if (sysctl_sched_migration_cost == 0)
6995 return 0;
6996
5d5e2b1b 6997 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6998
6999 return delta < (s64)sysctl_sched_migration_cost;
7000}
7001
3a7053b3 7002#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7003/*
2a1ed24c
SD
7004 * Returns 1, if task migration degrades locality
7005 * Returns 0, if task migration improves locality i.e migration preferred.
7006 * Returns -1, if task migration is not affected by locality.
c1ceac62 7007 */
2a1ed24c 7008static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7009{
b1ad065e 7010 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 7011 unsigned long src_faults, dst_faults;
3a7053b3
MG
7012 int src_nid, dst_nid;
7013
2a595721 7014 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7015 return -1;
7016
c3b9bc5b 7017 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7018 return -1;
7a0f3083
MG
7019
7020 src_nid = cpu_to_node(env->src_cpu);
7021 dst_nid = cpu_to_node(env->dst_cpu);
7022
83e1d2cd 7023 if (src_nid == dst_nid)
2a1ed24c 7024 return -1;
7a0f3083 7025
2a1ed24c
SD
7026 /* Migrating away from the preferred node is always bad. */
7027 if (src_nid == p->numa_preferred_nid) {
7028 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7029 return 1;
7030 else
7031 return -1;
7032 }
b1ad065e 7033
c1ceac62
RR
7034 /* Encourage migration to the preferred node. */
7035 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7036 return 0;
b1ad065e 7037
739294fb
RR
7038 /* Leaving a core idle is often worse than degrading locality. */
7039 if (env->idle != CPU_NOT_IDLE)
7040 return -1;
7041
c1ceac62
RR
7042 if (numa_group) {
7043 src_faults = group_faults(p, src_nid);
7044 dst_faults = group_faults(p, dst_nid);
7045 } else {
7046 src_faults = task_faults(p, src_nid);
7047 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
7048 }
7049
c1ceac62 7050 return dst_faults < src_faults;
7a0f3083
MG
7051}
7052
3a7053b3 7053#else
2a1ed24c 7054static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7055 struct lb_env *env)
7056{
2a1ed24c 7057 return -1;
7a0f3083 7058}
3a7053b3
MG
7059#endif
7060
1e3c88bd
PZ
7061/*
7062 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7063 */
7064static
8e45cb54 7065int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7066{
2a1ed24c 7067 int tsk_cache_hot;
e5673f28
KT
7068
7069 lockdep_assert_held(&env->src_rq->lock);
7070
1e3c88bd
PZ
7071 /*
7072 * We do not migrate tasks that are:
d3198084 7073 * 1) throttled_lb_pair, or
1e3c88bd 7074 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7075 * 3) running (obviously), or
7076 * 4) are cache-hot on their current CPU.
1e3c88bd 7077 */
d3198084
JK
7078 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7079 return 0;
7080
0c98d344 7081 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7082 int cpu;
88b8dac0 7083
ae92882e 7084 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7085
6263322c
PZ
7086 env->flags |= LBF_SOME_PINNED;
7087
88b8dac0
SV
7088 /*
7089 * Remember if this task can be migrated to any other cpu in
7090 * our sched_group. We may want to revisit it if we couldn't
7091 * meet load balance goals by pulling other tasks on src_cpu.
7092 *
65a4433a
JH
7093 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7094 * already computed one in current iteration.
88b8dac0 7095 */
65a4433a 7096 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7097 return 0;
7098
e02e60c1
JK
7099 /* Prevent to re-select dst_cpu via env's cpus */
7100 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7101 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7102 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7103 env->new_dst_cpu = cpu;
7104 break;
7105 }
88b8dac0 7106 }
e02e60c1 7107
1e3c88bd
PZ
7108 return 0;
7109 }
88b8dac0
SV
7110
7111 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7112 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7113
ddcdf6e7 7114 if (task_running(env->src_rq, p)) {
ae92882e 7115 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7116 return 0;
7117 }
7118
7119 /*
7120 * Aggressive migration if:
3a7053b3
MG
7121 * 1) destination numa is preferred
7122 * 2) task is cache cold, or
7123 * 3) too many balance attempts have failed.
1e3c88bd 7124 */
2a1ed24c
SD
7125 tsk_cache_hot = migrate_degrades_locality(p, env);
7126 if (tsk_cache_hot == -1)
7127 tsk_cache_hot = task_hot(p, env);
3a7053b3 7128
2a1ed24c 7129 if (tsk_cache_hot <= 0 ||
7a96c231 7130 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7131 if (tsk_cache_hot == 1) {
ae92882e
JP
7132 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7133 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7134 }
1e3c88bd
PZ
7135 return 1;
7136 }
7137
ae92882e 7138 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7139 return 0;
1e3c88bd
PZ
7140}
7141
897c395f 7142/*
163122b7
KT
7143 * detach_task() -- detach the task for the migration specified in env
7144 */
7145static void detach_task(struct task_struct *p, struct lb_env *env)
7146{
7147 lockdep_assert_held(&env->src_rq->lock);
7148
163122b7 7149 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7150 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7151 set_task_cpu(p, env->dst_cpu);
7152}
7153
897c395f 7154/*
e5673f28 7155 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7156 * part of active balancing operations within "domain".
897c395f 7157 *
e5673f28 7158 * Returns a task if successful and NULL otherwise.
897c395f 7159 */
e5673f28 7160static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7161{
93824900 7162 struct task_struct *p;
897c395f 7163
e5673f28
KT
7164 lockdep_assert_held(&env->src_rq->lock);
7165
93824900
UR
7166 list_for_each_entry_reverse(p,
7167 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7168 if (!can_migrate_task(p, env))
7169 continue;
897c395f 7170
163122b7 7171 detach_task(p, env);
e5673f28 7172
367456c7 7173 /*
e5673f28 7174 * Right now, this is only the second place where
163122b7 7175 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7176 * so we can safely collect stats here rather than
163122b7 7177 * inside detach_tasks().
367456c7 7178 */
ae92882e 7179 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7180 return p;
897c395f 7181 }
e5673f28 7182 return NULL;
897c395f
PZ
7183}
7184
eb95308e
PZ
7185static const unsigned int sched_nr_migrate_break = 32;
7186
5d6523eb 7187/*
163122b7
KT
7188 * detach_tasks() -- tries to detach up to imbalance weighted load from
7189 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7190 *
163122b7 7191 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7192 */
163122b7 7193static int detach_tasks(struct lb_env *env)
1e3c88bd 7194{
5d6523eb
PZ
7195 struct list_head *tasks = &env->src_rq->cfs_tasks;
7196 struct task_struct *p;
367456c7 7197 unsigned long load;
163122b7
KT
7198 int detached = 0;
7199
7200 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7201
bd939f45 7202 if (env->imbalance <= 0)
5d6523eb 7203 return 0;
1e3c88bd 7204
5d6523eb 7205 while (!list_empty(tasks)) {
985d3a4c
YD
7206 /*
7207 * We don't want to steal all, otherwise we may be treated likewise,
7208 * which could at worst lead to a livelock crash.
7209 */
7210 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7211 break;
7212
93824900 7213 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7214
367456c7
PZ
7215 env->loop++;
7216 /* We've more or less seen every task there is, call it quits */
5d6523eb 7217 if (env->loop > env->loop_max)
367456c7 7218 break;
5d6523eb
PZ
7219
7220 /* take a breather every nr_migrate tasks */
367456c7 7221 if (env->loop > env->loop_break) {
eb95308e 7222 env->loop_break += sched_nr_migrate_break;
8e45cb54 7223 env->flags |= LBF_NEED_BREAK;
ee00e66f 7224 break;
a195f004 7225 }
1e3c88bd 7226
d3198084 7227 if (!can_migrate_task(p, env))
367456c7
PZ
7228 goto next;
7229
7230 load = task_h_load(p);
5d6523eb 7231
eb95308e 7232 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7233 goto next;
7234
bd939f45 7235 if ((load / 2) > env->imbalance)
367456c7 7236 goto next;
1e3c88bd 7237
163122b7
KT
7238 detach_task(p, env);
7239 list_add(&p->se.group_node, &env->tasks);
7240
7241 detached++;
bd939f45 7242 env->imbalance -= load;
1e3c88bd
PZ
7243
7244#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7245 /*
7246 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7247 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7248 * the critical section.
7249 */
5d6523eb 7250 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7251 break;
1e3c88bd
PZ
7252#endif
7253
ee00e66f
PZ
7254 /*
7255 * We only want to steal up to the prescribed amount of
7256 * weighted load.
7257 */
bd939f45 7258 if (env->imbalance <= 0)
ee00e66f 7259 break;
367456c7
PZ
7260
7261 continue;
7262next:
93824900 7263 list_move(&p->se.group_node, tasks);
1e3c88bd 7264 }
5d6523eb 7265
1e3c88bd 7266 /*
163122b7
KT
7267 * Right now, this is one of only two places we collect this stat
7268 * so we can safely collect detach_one_task() stats here rather
7269 * than inside detach_one_task().
1e3c88bd 7270 */
ae92882e 7271 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7272
163122b7
KT
7273 return detached;
7274}
7275
7276/*
7277 * attach_task() -- attach the task detached by detach_task() to its new rq.
7278 */
7279static void attach_task(struct rq *rq, struct task_struct *p)
7280{
7281 lockdep_assert_held(&rq->lock);
7282
7283 BUG_ON(task_rq(p) != rq);
5704ac0a 7284 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7285 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7286 check_preempt_curr(rq, p, 0);
7287}
7288
7289/*
7290 * attach_one_task() -- attaches the task returned from detach_one_task() to
7291 * its new rq.
7292 */
7293static void attach_one_task(struct rq *rq, struct task_struct *p)
7294{
8a8c69c3
PZ
7295 struct rq_flags rf;
7296
7297 rq_lock(rq, &rf);
5704ac0a 7298 update_rq_clock(rq);
163122b7 7299 attach_task(rq, p);
8a8c69c3 7300 rq_unlock(rq, &rf);
163122b7
KT
7301}
7302
7303/*
7304 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7305 * new rq.
7306 */
7307static void attach_tasks(struct lb_env *env)
7308{
7309 struct list_head *tasks = &env->tasks;
7310 struct task_struct *p;
8a8c69c3 7311 struct rq_flags rf;
163122b7 7312
8a8c69c3 7313 rq_lock(env->dst_rq, &rf);
5704ac0a 7314 update_rq_clock(env->dst_rq);
163122b7
KT
7315
7316 while (!list_empty(tasks)) {
7317 p = list_first_entry(tasks, struct task_struct, se.group_node);
7318 list_del_init(&p->se.group_node);
1e3c88bd 7319
163122b7
KT
7320 attach_task(env->dst_rq, p);
7321 }
7322
8a8c69c3 7323 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7324}
7325
230059de 7326#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7327
7328static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7329{
7330 if (cfs_rq->load.weight)
7331 return false;
7332
7333 if (cfs_rq->avg.load_sum)
7334 return false;
7335
7336 if (cfs_rq->avg.util_sum)
7337 return false;
7338
1ea6c46a 7339 if (cfs_rq->avg.runnable_load_sum)
a9e7f654
TH
7340 return false;
7341
7342 return true;
7343}
7344
48a16753 7345static void update_blocked_averages(int cpu)
9e3081ca 7346{
9e3081ca 7347 struct rq *rq = cpu_rq(cpu);
a9e7f654 7348 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7349 struct rq_flags rf;
9e3081ca 7350
8a8c69c3 7351 rq_lock_irqsave(rq, &rf);
48a16753 7352 update_rq_clock(rq);
9d89c257 7353
9763b67f
PZ
7354 /*
7355 * Iterates the task_group tree in a bottom up fashion, see
7356 * list_add_leaf_cfs_rq() for details.
7357 */
a9e7f654 7358 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7359 struct sched_entity *se;
7360
9d89c257
YD
7361 /* throttled entities do not contribute to load */
7362 if (throttled_hierarchy(cfs_rq))
7363 continue;
48a16753 7364
3a123bbb 7365 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7366 update_tg_load_avg(cfs_rq, 0);
4e516076 7367
bc427898
VG
7368 /* Propagate pending load changes to the parent, if any: */
7369 se = cfs_rq->tg->se[cpu];
7370 if (se && !skip_blocked_update(se))
88c0616e 7371 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654
TH
7372
7373 /*
7374 * There can be a lot of idle CPU cgroups. Don't let fully
7375 * decayed cfs_rqs linger on the list.
7376 */
7377 if (cfs_rq_is_decayed(cfs_rq))
7378 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7379 }
8a8c69c3 7380 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7381}
7382
9763b67f 7383/*
68520796 7384 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7385 * This needs to be done in a top-down fashion because the load of a child
7386 * group is a fraction of its parents load.
7387 */
68520796 7388static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7389{
68520796
VD
7390 struct rq *rq = rq_of(cfs_rq);
7391 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7392 unsigned long now = jiffies;
68520796 7393 unsigned long load;
a35b6466 7394
68520796 7395 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7396 return;
7397
68520796
VD
7398 cfs_rq->h_load_next = NULL;
7399 for_each_sched_entity(se) {
7400 cfs_rq = cfs_rq_of(se);
7401 cfs_rq->h_load_next = se;
7402 if (cfs_rq->last_h_load_update == now)
7403 break;
7404 }
a35b6466 7405
68520796 7406 if (!se) {
7ea241af 7407 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7408 cfs_rq->last_h_load_update = now;
7409 }
7410
7411 while ((se = cfs_rq->h_load_next) != NULL) {
7412 load = cfs_rq->h_load;
7ea241af
YD
7413 load = div64_ul(load * se->avg.load_avg,
7414 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7415 cfs_rq = group_cfs_rq(se);
7416 cfs_rq->h_load = load;
7417 cfs_rq->last_h_load_update = now;
7418 }
9763b67f
PZ
7419}
7420
367456c7 7421static unsigned long task_h_load(struct task_struct *p)
230059de 7422{
367456c7 7423 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7424
68520796 7425 update_cfs_rq_h_load(cfs_rq);
9d89c257 7426 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7427 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7428}
7429#else
48a16753 7430static inline void update_blocked_averages(int cpu)
9e3081ca 7431{
6c1d47c0
VG
7432 struct rq *rq = cpu_rq(cpu);
7433 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7434 struct rq_flags rf;
6c1d47c0 7435
8a8c69c3 7436 rq_lock_irqsave(rq, &rf);
6c1d47c0 7437 update_rq_clock(rq);
3a123bbb 7438 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7439 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7440}
7441
367456c7 7442static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7443{
9d89c257 7444 return p->se.avg.load_avg;
1e3c88bd 7445}
230059de 7446#endif
1e3c88bd 7447
1e3c88bd 7448/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7449
7450enum group_type {
7451 group_other = 0,
7452 group_imbalanced,
7453 group_overloaded,
7454};
7455
1e3c88bd
PZ
7456/*
7457 * sg_lb_stats - stats of a sched_group required for load_balancing
7458 */
7459struct sg_lb_stats {
7460 unsigned long avg_load; /*Avg load across the CPUs of the group */
7461 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7462 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7463 unsigned long load_per_task;
63b2ca30 7464 unsigned long group_capacity;
9e91d61d 7465 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7466 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7467 unsigned int idle_cpus;
7468 unsigned int group_weight;
caeb178c 7469 enum group_type group_type;
ea67821b 7470 int group_no_capacity;
0ec8aa00
PZ
7471#ifdef CONFIG_NUMA_BALANCING
7472 unsigned int nr_numa_running;
7473 unsigned int nr_preferred_running;
7474#endif
1e3c88bd
PZ
7475};
7476
56cf515b
JK
7477/*
7478 * sd_lb_stats - Structure to store the statistics of a sched_domain
7479 * during load balancing.
7480 */
7481struct sd_lb_stats {
7482 struct sched_group *busiest; /* Busiest group in this sd */
7483 struct sched_group *local; /* Local group in this sd */
90001d67 7484 unsigned long total_running;
56cf515b 7485 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7486 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7487 unsigned long avg_load; /* Average load across all groups in sd */
7488
56cf515b 7489 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7490 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7491};
7492
147c5fc2
PZ
7493static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7494{
7495 /*
7496 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7497 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7498 * We must however clear busiest_stat::avg_load because
7499 * update_sd_pick_busiest() reads this before assignment.
7500 */
7501 *sds = (struct sd_lb_stats){
7502 .busiest = NULL,
7503 .local = NULL,
90001d67 7504 .total_running = 0UL,
147c5fc2 7505 .total_load = 0UL,
63b2ca30 7506 .total_capacity = 0UL,
147c5fc2
PZ
7507 .busiest_stat = {
7508 .avg_load = 0UL,
caeb178c
RR
7509 .sum_nr_running = 0,
7510 .group_type = group_other,
147c5fc2
PZ
7511 },
7512 };
7513}
7514
1e3c88bd
PZ
7515/**
7516 * get_sd_load_idx - Obtain the load index for a given sched domain.
7517 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7518 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7519 *
7520 * Return: The load index.
1e3c88bd
PZ
7521 */
7522static inline int get_sd_load_idx(struct sched_domain *sd,
7523 enum cpu_idle_type idle)
7524{
7525 int load_idx;
7526
7527 switch (idle) {
7528 case CPU_NOT_IDLE:
7529 load_idx = sd->busy_idx;
7530 break;
7531
7532 case CPU_NEWLY_IDLE:
7533 load_idx = sd->newidle_idx;
7534 break;
7535 default:
7536 load_idx = sd->idle_idx;
7537 break;
7538 }
7539
7540 return load_idx;
7541}
7542
ced549fa 7543static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7544{
7545 struct rq *rq = cpu_rq(cpu);
b5b4860d 7546 u64 total, used, age_stamp, avg;
cadefd3d 7547 s64 delta;
1e3c88bd 7548
b654f7de
PZ
7549 /*
7550 * Since we're reading these variables without serialization make sure
7551 * we read them once before doing sanity checks on them.
7552 */
316c1608
JL
7553 age_stamp = READ_ONCE(rq->age_stamp);
7554 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7555 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7556
cadefd3d
PZ
7557 if (unlikely(delta < 0))
7558 delta = 0;
7559
7560 total = sched_avg_period() + delta;
aa483808 7561
b5b4860d 7562 used = div_u64(avg, total);
1e3c88bd 7563
b5b4860d
VG
7564 if (likely(used < SCHED_CAPACITY_SCALE))
7565 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7566
b5b4860d 7567 return 1;
1e3c88bd
PZ
7568}
7569
ced549fa 7570static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7571{
8cd5601c 7572 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7573 struct sched_group *sdg = sd->groups;
7574
ca6d75e6 7575 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7576
ced549fa 7577 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7578 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7579
ced549fa
NP
7580 if (!capacity)
7581 capacity = 1;
1e3c88bd 7582
ced549fa
NP
7583 cpu_rq(cpu)->cpu_capacity = capacity;
7584 sdg->sgc->capacity = capacity;
bf475ce0 7585 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7586}
7587
63b2ca30 7588void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7589{
7590 struct sched_domain *child = sd->child;
7591 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7592 unsigned long capacity, min_capacity;
4ec4412e
VG
7593 unsigned long interval;
7594
7595 interval = msecs_to_jiffies(sd->balance_interval);
7596 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7597 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7598
7599 if (!child) {
ced549fa 7600 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7601 return;
7602 }
7603
dc7ff76e 7604 capacity = 0;
bf475ce0 7605 min_capacity = ULONG_MAX;
1e3c88bd 7606
74a5ce20
PZ
7607 if (child->flags & SD_OVERLAP) {
7608 /*
7609 * SD_OVERLAP domains cannot assume that child groups
7610 * span the current group.
7611 */
7612
ae4df9d6 7613 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7614 struct sched_group_capacity *sgc;
9abf24d4 7615 struct rq *rq = cpu_rq(cpu);
863bffc8 7616
9abf24d4 7617 /*
63b2ca30 7618 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7619 * gets here before we've attached the domains to the
7620 * runqueues.
7621 *
ced549fa
NP
7622 * Use capacity_of(), which is set irrespective of domains
7623 * in update_cpu_capacity().
9abf24d4 7624 *
dc7ff76e 7625 * This avoids capacity from being 0 and
9abf24d4 7626 * causing divide-by-zero issues on boot.
9abf24d4
SD
7627 */
7628 if (unlikely(!rq->sd)) {
ced549fa 7629 capacity += capacity_of(cpu);
bf475ce0
MR
7630 } else {
7631 sgc = rq->sd->groups->sgc;
7632 capacity += sgc->capacity;
9abf24d4 7633 }
863bffc8 7634
bf475ce0 7635 min_capacity = min(capacity, min_capacity);
863bffc8 7636 }
74a5ce20
PZ
7637 } else {
7638 /*
7639 * !SD_OVERLAP domains can assume that child groups
7640 * span the current group.
97a7142f 7641 */
74a5ce20
PZ
7642
7643 group = child->groups;
7644 do {
bf475ce0
MR
7645 struct sched_group_capacity *sgc = group->sgc;
7646
7647 capacity += sgc->capacity;
7648 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7649 group = group->next;
7650 } while (group != child->groups);
7651 }
1e3c88bd 7652
63b2ca30 7653 sdg->sgc->capacity = capacity;
bf475ce0 7654 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7655}
7656
9d5efe05 7657/*
ea67821b
VG
7658 * Check whether the capacity of the rq has been noticeably reduced by side
7659 * activity. The imbalance_pct is used for the threshold.
7660 * Return true is the capacity is reduced
9d5efe05
SV
7661 */
7662static inline int
ea67821b 7663check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7664{
ea67821b
VG
7665 return ((rq->cpu_capacity * sd->imbalance_pct) <
7666 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7667}
7668
30ce5dab
PZ
7669/*
7670 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7671 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7672 *
7673 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7674 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7675 * Something like:
7676 *
2b4d5b25
IM
7677 * { 0 1 2 3 } { 4 5 6 7 }
7678 * * * * *
30ce5dab
PZ
7679 *
7680 * If we were to balance group-wise we'd place two tasks in the first group and
7681 * two tasks in the second group. Clearly this is undesired as it will overload
7682 * cpu 3 and leave one of the cpus in the second group unused.
7683 *
7684 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7685 * by noticing the lower domain failed to reach balance and had difficulty
7686 * moving tasks due to affinity constraints.
30ce5dab
PZ
7687 *
7688 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7689 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7690 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7691 * to create an effective group imbalance.
7692 *
7693 * This is a somewhat tricky proposition since the next run might not find the
7694 * group imbalance and decide the groups need to be balanced again. A most
7695 * subtle and fragile situation.
7696 */
7697
6263322c 7698static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7699{
63b2ca30 7700 return group->sgc->imbalance;
30ce5dab
PZ
7701}
7702
b37d9316 7703/*
ea67821b
VG
7704 * group_has_capacity returns true if the group has spare capacity that could
7705 * be used by some tasks.
7706 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7707 * smaller than the number of CPUs or if the utilization is lower than the
7708 * available capacity for CFS tasks.
ea67821b
VG
7709 * For the latter, we use a threshold to stabilize the state, to take into
7710 * account the variance of the tasks' load and to return true if the available
7711 * capacity in meaningful for the load balancer.
7712 * As an example, an available capacity of 1% can appear but it doesn't make
7713 * any benefit for the load balance.
b37d9316 7714 */
ea67821b
VG
7715static inline bool
7716group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7717{
ea67821b
VG
7718 if (sgs->sum_nr_running < sgs->group_weight)
7719 return true;
c61037e9 7720
ea67821b 7721 if ((sgs->group_capacity * 100) >
9e91d61d 7722 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7723 return true;
b37d9316 7724
ea67821b
VG
7725 return false;
7726}
7727
7728/*
7729 * group_is_overloaded returns true if the group has more tasks than it can
7730 * handle.
7731 * group_is_overloaded is not equals to !group_has_capacity because a group
7732 * with the exact right number of tasks, has no more spare capacity but is not
7733 * overloaded so both group_has_capacity and group_is_overloaded return
7734 * false.
7735 */
7736static inline bool
7737group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7738{
7739 if (sgs->sum_nr_running <= sgs->group_weight)
7740 return false;
b37d9316 7741
ea67821b 7742 if ((sgs->group_capacity * 100) <
9e91d61d 7743 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7744 return true;
b37d9316 7745
ea67821b 7746 return false;
b37d9316
PZ
7747}
7748
9e0994c0
MR
7749/*
7750 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7751 * per-CPU capacity than sched_group ref.
7752 */
7753static inline bool
7754group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7755{
7756 return sg->sgc->min_capacity * capacity_margin <
7757 ref->sgc->min_capacity * 1024;
7758}
7759
79a89f92
LY
7760static inline enum
7761group_type group_classify(struct sched_group *group,
7762 struct sg_lb_stats *sgs)
caeb178c 7763{
ea67821b 7764 if (sgs->group_no_capacity)
caeb178c
RR
7765 return group_overloaded;
7766
7767 if (sg_imbalanced(group))
7768 return group_imbalanced;
7769
7770 return group_other;
7771}
7772
1e3c88bd
PZ
7773/**
7774 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7775 * @env: The load balancing environment.
1e3c88bd 7776 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7777 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7778 * @local_group: Does group contain this_cpu.
1e3c88bd 7779 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7780 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7781 */
bd939f45
PZ
7782static inline void update_sg_lb_stats(struct lb_env *env,
7783 struct sched_group *group, int load_idx,
4486edd1
TC
7784 int local_group, struct sg_lb_stats *sgs,
7785 bool *overload)
1e3c88bd 7786{
30ce5dab 7787 unsigned long load;
a426f99c 7788 int i, nr_running;
1e3c88bd 7789
b72ff13c
PZ
7790 memset(sgs, 0, sizeof(*sgs));
7791
ae4df9d6 7792 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7793 struct rq *rq = cpu_rq(i);
7794
1e3c88bd 7795 /* Bias balancing toward cpus of our domain */
6263322c 7796 if (local_group)
04f733b4 7797 load = target_load(i, load_idx);
6263322c 7798 else
1e3c88bd 7799 load = source_load(i, load_idx);
1e3c88bd
PZ
7800
7801 sgs->group_load += load;
9e91d61d 7802 sgs->group_util += cpu_util(i);
65fdac08 7803 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7804
a426f99c
WL
7805 nr_running = rq->nr_running;
7806 if (nr_running > 1)
4486edd1
TC
7807 *overload = true;
7808
0ec8aa00
PZ
7809#ifdef CONFIG_NUMA_BALANCING
7810 sgs->nr_numa_running += rq->nr_numa_running;
7811 sgs->nr_preferred_running += rq->nr_preferred_running;
7812#endif
c7132dd6 7813 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7814 /*
7815 * No need to call idle_cpu() if nr_running is not 0
7816 */
7817 if (!nr_running && idle_cpu(i))
aae6d3dd 7818 sgs->idle_cpus++;
1e3c88bd
PZ
7819 }
7820
63b2ca30
NP
7821 /* Adjust by relative CPU capacity of the group */
7822 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7823 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7824
dd5feea1 7825 if (sgs->sum_nr_running)
38d0f770 7826 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7827
aae6d3dd 7828 sgs->group_weight = group->group_weight;
b37d9316 7829
ea67821b 7830 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7831 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7832}
7833
532cb4c4
MN
7834/**
7835 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7836 * @env: The load balancing environment.
532cb4c4
MN
7837 * @sds: sched_domain statistics
7838 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7839 * @sgs: sched_group statistics
532cb4c4
MN
7840 *
7841 * Determine if @sg is a busier group than the previously selected
7842 * busiest group.
e69f6186
YB
7843 *
7844 * Return: %true if @sg is a busier group than the previously selected
7845 * busiest group. %false otherwise.
532cb4c4 7846 */
bd939f45 7847static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7848 struct sd_lb_stats *sds,
7849 struct sched_group *sg,
bd939f45 7850 struct sg_lb_stats *sgs)
532cb4c4 7851{
caeb178c 7852 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7853
caeb178c 7854 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7855 return true;
7856
caeb178c
RR
7857 if (sgs->group_type < busiest->group_type)
7858 return false;
7859
7860 if (sgs->avg_load <= busiest->avg_load)
7861 return false;
7862
9e0994c0
MR
7863 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7864 goto asym_packing;
7865
7866 /*
7867 * Candidate sg has no more than one task per CPU and
7868 * has higher per-CPU capacity. Migrating tasks to less
7869 * capable CPUs may harm throughput. Maximize throughput,
7870 * power/energy consequences are not considered.
7871 */
7872 if (sgs->sum_nr_running <= sgs->group_weight &&
7873 group_smaller_cpu_capacity(sds->local, sg))
7874 return false;
7875
7876asym_packing:
caeb178c
RR
7877 /* This is the busiest node in its class. */
7878 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7879 return true;
7880
1f621e02
SD
7881 /* No ASYM_PACKING if target cpu is already busy */
7882 if (env->idle == CPU_NOT_IDLE)
7883 return true;
532cb4c4 7884 /*
afe06efd
TC
7885 * ASYM_PACKING needs to move all the work to the highest
7886 * prority CPUs in the group, therefore mark all groups
7887 * of lower priority than ourself as busy.
532cb4c4 7888 */
afe06efd
TC
7889 if (sgs->sum_nr_running &&
7890 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7891 if (!sds->busiest)
7892 return true;
7893
afe06efd
TC
7894 /* Prefer to move from lowest priority cpu's work */
7895 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7896 sg->asym_prefer_cpu))
532cb4c4
MN
7897 return true;
7898 }
7899
7900 return false;
7901}
7902
0ec8aa00
PZ
7903#ifdef CONFIG_NUMA_BALANCING
7904static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7905{
7906 if (sgs->sum_nr_running > sgs->nr_numa_running)
7907 return regular;
7908 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7909 return remote;
7910 return all;
7911}
7912
7913static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7914{
7915 if (rq->nr_running > rq->nr_numa_running)
7916 return regular;
7917 if (rq->nr_running > rq->nr_preferred_running)
7918 return remote;
7919 return all;
7920}
7921#else
7922static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7923{
7924 return all;
7925}
7926
7927static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7928{
7929 return regular;
7930}
7931#endif /* CONFIG_NUMA_BALANCING */
7932
1e3c88bd 7933/**
461819ac 7934 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7935 * @env: The load balancing environment.
1e3c88bd
PZ
7936 * @sds: variable to hold the statistics for this sched_domain.
7937 */
0ec8aa00 7938static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7939{
bd939f45
PZ
7940 struct sched_domain *child = env->sd->child;
7941 struct sched_group *sg = env->sd->groups;
05b40e05 7942 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7943 struct sg_lb_stats tmp_sgs;
1e3c88bd 7944 int load_idx, prefer_sibling = 0;
4486edd1 7945 bool overload = false;
1e3c88bd
PZ
7946
7947 if (child && child->flags & SD_PREFER_SIBLING)
7948 prefer_sibling = 1;
7949
bd939f45 7950 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7951
7952 do {
56cf515b 7953 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7954 int local_group;
7955
ae4df9d6 7956 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7957 if (local_group) {
7958 sds->local = sg;
05b40e05 7959 sgs = local;
b72ff13c
PZ
7960
7961 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7962 time_after_eq(jiffies, sg->sgc->next_update))
7963 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7964 }
1e3c88bd 7965
4486edd1
TC
7966 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7967 &overload);
1e3c88bd 7968
b72ff13c
PZ
7969 if (local_group)
7970 goto next_group;
7971
1e3c88bd
PZ
7972 /*
7973 * In case the child domain prefers tasks go to siblings
ea67821b 7974 * first, lower the sg capacity so that we'll try
75dd321d
NR
7975 * and move all the excess tasks away. We lower the capacity
7976 * of a group only if the local group has the capacity to fit
ea67821b
VG
7977 * these excess tasks. The extra check prevents the case where
7978 * you always pull from the heaviest group when it is already
7979 * under-utilized (possible with a large weight task outweighs
7980 * the tasks on the system).
1e3c88bd 7981 */
b72ff13c 7982 if (prefer_sibling && sds->local &&
05b40e05
SD
7983 group_has_capacity(env, local) &&
7984 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7985 sgs->group_no_capacity = 1;
79a89f92 7986 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7987 }
1e3c88bd 7988
b72ff13c 7989 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7990 sds->busiest = sg;
56cf515b 7991 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7992 }
7993
b72ff13c
PZ
7994next_group:
7995 /* Now, start updating sd_lb_stats */
90001d67 7996 sds->total_running += sgs->sum_nr_running;
b72ff13c 7997 sds->total_load += sgs->group_load;
63b2ca30 7998 sds->total_capacity += sgs->group_capacity;
b72ff13c 7999
532cb4c4 8000 sg = sg->next;
bd939f45 8001 } while (sg != env->sd->groups);
0ec8aa00
PZ
8002
8003 if (env->sd->flags & SD_NUMA)
8004 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8005
8006 if (!env->sd->parent) {
8007 /* update overload indicator if we are at root domain */
8008 if (env->dst_rq->rd->overload != overload)
8009 env->dst_rq->rd->overload = overload;
8010 }
532cb4c4
MN
8011}
8012
532cb4c4
MN
8013/**
8014 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8015 * sched domain.
532cb4c4
MN
8016 *
8017 * This is primarily intended to used at the sibling level. Some
8018 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8019 * case of POWER7, it can move to lower SMT modes only when higher
8020 * threads are idle. When in lower SMT modes, the threads will
8021 * perform better since they share less core resources. Hence when we
8022 * have idle threads, we want them to be the higher ones.
8023 *
8024 * This packing function is run on idle threads. It checks to see if
8025 * the busiest CPU in this domain (core in the P7 case) has a higher
8026 * CPU number than the packing function is being run on. Here we are
8027 * assuming lower CPU number will be equivalent to lower a SMT thread
8028 * number.
8029 *
e69f6186 8030 * Return: 1 when packing is required and a task should be moved to
46123355 8031 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8032 *
cd96891d 8033 * @env: The load balancing environment.
532cb4c4 8034 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8035 */
bd939f45 8036static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8037{
8038 int busiest_cpu;
8039
bd939f45 8040 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8041 return 0;
8042
1f621e02
SD
8043 if (env->idle == CPU_NOT_IDLE)
8044 return 0;
8045
532cb4c4
MN
8046 if (!sds->busiest)
8047 return 0;
8048
afe06efd
TC
8049 busiest_cpu = sds->busiest->asym_prefer_cpu;
8050 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8051 return 0;
8052
bd939f45 8053 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 8054 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 8055 SCHED_CAPACITY_SCALE);
bd939f45 8056
532cb4c4 8057 return 1;
1e3c88bd
PZ
8058}
8059
8060/**
8061 * fix_small_imbalance - Calculate the minor imbalance that exists
8062 * amongst the groups of a sched_domain, during
8063 * load balancing.
cd96891d 8064 * @env: The load balancing environment.
1e3c88bd 8065 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8066 */
bd939f45
PZ
8067static inline
8068void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8069{
63b2ca30 8070 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8071 unsigned int imbn = 2;
dd5feea1 8072 unsigned long scaled_busy_load_per_task;
56cf515b 8073 struct sg_lb_stats *local, *busiest;
1e3c88bd 8074
56cf515b
JK
8075 local = &sds->local_stat;
8076 busiest = &sds->busiest_stat;
1e3c88bd 8077
56cf515b
JK
8078 if (!local->sum_nr_running)
8079 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8080 else if (busiest->load_per_task > local->load_per_task)
8081 imbn = 1;
dd5feea1 8082
56cf515b 8083 scaled_busy_load_per_task =
ca8ce3d0 8084 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8085 busiest->group_capacity;
56cf515b 8086
3029ede3
VD
8087 if (busiest->avg_load + scaled_busy_load_per_task >=
8088 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8089 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8090 return;
8091 }
8092
8093 /*
8094 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8095 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8096 * moving them.
8097 */
8098
63b2ca30 8099 capa_now += busiest->group_capacity *
56cf515b 8100 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8101 capa_now += local->group_capacity *
56cf515b 8102 min(local->load_per_task, local->avg_load);
ca8ce3d0 8103 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8104
8105 /* Amount of load we'd subtract */
a2cd4260 8106 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8107 capa_move += busiest->group_capacity *
56cf515b 8108 min(busiest->load_per_task,
a2cd4260 8109 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8110 }
1e3c88bd
PZ
8111
8112 /* Amount of load we'd add */
63b2ca30 8113 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8114 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8115 tmp = (busiest->avg_load * busiest->group_capacity) /
8116 local->group_capacity;
56cf515b 8117 } else {
ca8ce3d0 8118 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8119 local->group_capacity;
56cf515b 8120 }
63b2ca30 8121 capa_move += local->group_capacity *
3ae11c90 8122 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8123 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8124
8125 /* Move if we gain throughput */
63b2ca30 8126 if (capa_move > capa_now)
56cf515b 8127 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8128}
8129
8130/**
8131 * calculate_imbalance - Calculate the amount of imbalance present within the
8132 * groups of a given sched_domain during load balance.
bd939f45 8133 * @env: load balance environment
1e3c88bd 8134 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8135 */
bd939f45 8136static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8137{
dd5feea1 8138 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8139 struct sg_lb_stats *local, *busiest;
8140
8141 local = &sds->local_stat;
56cf515b 8142 busiest = &sds->busiest_stat;
dd5feea1 8143
caeb178c 8144 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8145 /*
8146 * In the group_imb case we cannot rely on group-wide averages
8147 * to ensure cpu-load equilibrium, look at wider averages. XXX
8148 */
56cf515b
JK
8149 busiest->load_per_task =
8150 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8151 }
8152
1e3c88bd 8153 /*
885e542c
DE
8154 * Avg load of busiest sg can be less and avg load of local sg can
8155 * be greater than avg load across all sgs of sd because avg load
8156 * factors in sg capacity and sgs with smaller group_type are
8157 * skipped when updating the busiest sg:
1e3c88bd 8158 */
b1885550
VD
8159 if (busiest->avg_load <= sds->avg_load ||
8160 local->avg_load >= sds->avg_load) {
bd939f45
PZ
8161 env->imbalance = 0;
8162 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8163 }
8164
9a5d9ba6
PZ
8165 /*
8166 * If there aren't any idle cpus, avoid creating some.
8167 */
8168 if (busiest->group_type == group_overloaded &&
8169 local->group_type == group_overloaded) {
1be0eb2a 8170 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8171 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8172 load_above_capacity -= busiest->group_capacity;
26656215 8173 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8174 load_above_capacity /= busiest->group_capacity;
8175 } else
ea67821b 8176 load_above_capacity = ~0UL;
dd5feea1
SS
8177 }
8178
8179 /*
8180 * We're trying to get all the cpus to the average_load, so we don't
8181 * want to push ourselves above the average load, nor do we wish to
8182 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
8183 * we also don't want to reduce the group load below the group
8184 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8185 */
30ce5dab 8186 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8187
8188 /* How much load to actually move to equalise the imbalance */
56cf515b 8189 env->imbalance = min(
63b2ca30
NP
8190 max_pull * busiest->group_capacity,
8191 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8192 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8193
8194 /*
8195 * if *imbalance is less than the average load per runnable task
25985edc 8196 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8197 * a think about bumping its value to force at least one task to be
8198 * moved
8199 */
56cf515b 8200 if (env->imbalance < busiest->load_per_task)
bd939f45 8201 return fix_small_imbalance(env, sds);
1e3c88bd 8202}
fab47622 8203
1e3c88bd
PZ
8204/******* find_busiest_group() helpers end here *********************/
8205
8206/**
8207 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8208 * if there is an imbalance.
1e3c88bd
PZ
8209 *
8210 * Also calculates the amount of weighted load which should be moved
8211 * to restore balance.
8212 *
cd96891d 8213 * @env: The load balancing environment.
1e3c88bd 8214 *
e69f6186 8215 * Return: - The busiest group if imbalance exists.
1e3c88bd 8216 */
56cf515b 8217static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8218{
56cf515b 8219 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8220 struct sd_lb_stats sds;
8221
147c5fc2 8222 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8223
8224 /*
8225 * Compute the various statistics relavent for load balancing at
8226 * this level.
8227 */
23f0d209 8228 update_sd_lb_stats(env, &sds);
56cf515b
JK
8229 local = &sds.local_stat;
8230 busiest = &sds.busiest_stat;
1e3c88bd 8231
ea67821b 8232 /* ASYM feature bypasses nice load balance check */
1f621e02 8233 if (check_asym_packing(env, &sds))
532cb4c4
MN
8234 return sds.busiest;
8235
cc57aa8f 8236 /* There is no busy sibling group to pull tasks from */
56cf515b 8237 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8238 goto out_balanced;
8239
90001d67 8240 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8241 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8242 / sds.total_capacity;
b0432d8f 8243
866ab43e
PZ
8244 /*
8245 * If the busiest group is imbalanced the below checks don't
30ce5dab 8246 * work because they assume all things are equal, which typically
866ab43e
PZ
8247 * isn't true due to cpus_allowed constraints and the like.
8248 */
caeb178c 8249 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8250 goto force_balance;
8251
583ffd99
BJ
8252 /*
8253 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8254 * capacities from resulting in underutilization due to avg_load.
8255 */
8256 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8257 busiest->group_no_capacity)
fab47622
NR
8258 goto force_balance;
8259
cc57aa8f 8260 /*
9c58c79a 8261 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8262 * don't try and pull any tasks.
8263 */
56cf515b 8264 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8265 goto out_balanced;
8266
cc57aa8f
PZ
8267 /*
8268 * Don't pull any tasks if this group is already above the domain
8269 * average load.
8270 */
56cf515b 8271 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8272 goto out_balanced;
8273
bd939f45 8274 if (env->idle == CPU_IDLE) {
aae6d3dd 8275 /*
43f4d666
VG
8276 * This cpu is idle. If the busiest group is not overloaded
8277 * and there is no imbalance between this and busiest group
8278 * wrt idle cpus, it is balanced. The imbalance becomes
8279 * significant if the diff is greater than 1 otherwise we
8280 * might end up to just move the imbalance on another group
aae6d3dd 8281 */
43f4d666
VG
8282 if ((busiest->group_type != group_overloaded) &&
8283 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8284 goto out_balanced;
c186fafe
PZ
8285 } else {
8286 /*
8287 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8288 * imbalance_pct to be conservative.
8289 */
56cf515b
JK
8290 if (100 * busiest->avg_load <=
8291 env->sd->imbalance_pct * local->avg_load)
c186fafe 8292 goto out_balanced;
aae6d3dd 8293 }
1e3c88bd 8294
fab47622 8295force_balance:
1e3c88bd 8296 /* Looks like there is an imbalance. Compute it */
bd939f45 8297 calculate_imbalance(env, &sds);
1e3c88bd
PZ
8298 return sds.busiest;
8299
8300out_balanced:
bd939f45 8301 env->imbalance = 0;
1e3c88bd
PZ
8302 return NULL;
8303}
8304
8305/*
8306 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8307 */
bd939f45 8308static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8309 struct sched_group *group)
1e3c88bd
PZ
8310{
8311 struct rq *busiest = NULL, *rq;
ced549fa 8312 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8313 int i;
8314
ae4df9d6 8315 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8316 unsigned long capacity, wl;
0ec8aa00
PZ
8317 enum fbq_type rt;
8318
8319 rq = cpu_rq(i);
8320 rt = fbq_classify_rq(rq);
1e3c88bd 8321
0ec8aa00
PZ
8322 /*
8323 * We classify groups/runqueues into three groups:
8324 * - regular: there are !numa tasks
8325 * - remote: there are numa tasks that run on the 'wrong' node
8326 * - all: there is no distinction
8327 *
8328 * In order to avoid migrating ideally placed numa tasks,
8329 * ignore those when there's better options.
8330 *
8331 * If we ignore the actual busiest queue to migrate another
8332 * task, the next balance pass can still reduce the busiest
8333 * queue by moving tasks around inside the node.
8334 *
8335 * If we cannot move enough load due to this classification
8336 * the next pass will adjust the group classification and
8337 * allow migration of more tasks.
8338 *
8339 * Both cases only affect the total convergence complexity.
8340 */
8341 if (rt > env->fbq_type)
8342 continue;
8343
ced549fa 8344 capacity = capacity_of(i);
9d5efe05 8345
c7132dd6 8346 wl = weighted_cpuload(rq);
1e3c88bd 8347
6e40f5bb
TG
8348 /*
8349 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8350 * which is not scaled with the cpu capacity.
6e40f5bb 8351 */
ea67821b
VG
8352
8353 if (rq->nr_running == 1 && wl > env->imbalance &&
8354 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8355 continue;
8356
6e40f5bb
TG
8357 /*
8358 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8359 * the weighted_cpuload() scaled with the cpu capacity, so
8360 * that the load can be moved away from the cpu that is
8361 * potentially running at a lower capacity.
95a79b80 8362 *
ced549fa 8363 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8364 * multiplication to rid ourselves of the division works out
ced549fa
NP
8365 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8366 * our previous maximum.
6e40f5bb 8367 */
ced549fa 8368 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8369 busiest_load = wl;
ced549fa 8370 busiest_capacity = capacity;
1e3c88bd
PZ
8371 busiest = rq;
8372 }
8373 }
8374
8375 return busiest;
8376}
8377
8378/*
8379 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8380 * so long as it is large enough.
8381 */
8382#define MAX_PINNED_INTERVAL 512
8383
bd939f45 8384static int need_active_balance(struct lb_env *env)
1af3ed3d 8385{
bd939f45
PZ
8386 struct sched_domain *sd = env->sd;
8387
8388 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8389
8390 /*
8391 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8392 * lower priority CPUs in order to pack all tasks in the
8393 * highest priority CPUs.
532cb4c4 8394 */
afe06efd
TC
8395 if ((sd->flags & SD_ASYM_PACKING) &&
8396 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8397 return 1;
1af3ed3d
PZ
8398 }
8399
1aaf90a4
VG
8400 /*
8401 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8402 * It's worth migrating the task if the src_cpu's capacity is reduced
8403 * because of other sched_class or IRQs if more capacity stays
8404 * available on dst_cpu.
8405 */
8406 if ((env->idle != CPU_NOT_IDLE) &&
8407 (env->src_rq->cfs.h_nr_running == 1)) {
8408 if ((check_cpu_capacity(env->src_rq, sd)) &&
8409 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8410 return 1;
8411 }
8412
1af3ed3d
PZ
8413 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8414}
8415
969c7921
TH
8416static int active_load_balance_cpu_stop(void *data);
8417
23f0d209
JK
8418static int should_we_balance(struct lb_env *env)
8419{
8420 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8421 int cpu, balance_cpu = -1;
8422
024c9d2f
PZ
8423 /*
8424 * Ensure the balancing environment is consistent; can happen
8425 * when the softirq triggers 'during' hotplug.
8426 */
8427 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8428 return 0;
8429
23f0d209
JK
8430 /*
8431 * In the newly idle case, we will allow all the cpu's
8432 * to do the newly idle load balance.
8433 */
8434 if (env->idle == CPU_NEWLY_IDLE)
8435 return 1;
8436
23f0d209 8437 /* Try to find first idle cpu */
e5c14b1f 8438 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8439 if (!idle_cpu(cpu))
23f0d209
JK
8440 continue;
8441
8442 balance_cpu = cpu;
8443 break;
8444 }
8445
8446 if (balance_cpu == -1)
8447 balance_cpu = group_balance_cpu(sg);
8448
8449 /*
8450 * First idle cpu or the first cpu(busiest) in this sched group
8451 * is eligible for doing load balancing at this and above domains.
8452 */
b0cff9d8 8453 return balance_cpu == env->dst_cpu;
23f0d209
JK
8454}
8455
1e3c88bd
PZ
8456/*
8457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8458 * tasks if there is an imbalance.
8459 */
8460static int load_balance(int this_cpu, struct rq *this_rq,
8461 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8462 int *continue_balancing)
1e3c88bd 8463{
88b8dac0 8464 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8465 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8466 struct sched_group *group;
1e3c88bd 8467 struct rq *busiest;
8a8c69c3 8468 struct rq_flags rf;
4ba29684 8469 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8470
8e45cb54
PZ
8471 struct lb_env env = {
8472 .sd = sd,
ddcdf6e7
PZ
8473 .dst_cpu = this_cpu,
8474 .dst_rq = this_rq,
ae4df9d6 8475 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8476 .idle = idle,
eb95308e 8477 .loop_break = sched_nr_migrate_break,
b9403130 8478 .cpus = cpus,
0ec8aa00 8479 .fbq_type = all,
163122b7 8480 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8481 };
8482
65a4433a 8483 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8484
ae92882e 8485 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8486
8487redo:
23f0d209
JK
8488 if (!should_we_balance(&env)) {
8489 *continue_balancing = 0;
1e3c88bd 8490 goto out_balanced;
23f0d209 8491 }
1e3c88bd 8492
23f0d209 8493 group = find_busiest_group(&env);
1e3c88bd 8494 if (!group) {
ae92882e 8495 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8496 goto out_balanced;
8497 }
8498
b9403130 8499 busiest = find_busiest_queue(&env, group);
1e3c88bd 8500 if (!busiest) {
ae92882e 8501 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8502 goto out_balanced;
8503 }
8504
78feefc5 8505 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8506
ae92882e 8507 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8508
1aaf90a4
VG
8509 env.src_cpu = busiest->cpu;
8510 env.src_rq = busiest;
8511
1e3c88bd
PZ
8512 ld_moved = 0;
8513 if (busiest->nr_running > 1) {
8514 /*
8515 * Attempt to move tasks. If find_busiest_group has found
8516 * an imbalance but busiest->nr_running <= 1, the group is
8517 * still unbalanced. ld_moved simply stays zero, so it is
8518 * correctly treated as an imbalance.
8519 */
8e45cb54 8520 env.flags |= LBF_ALL_PINNED;
c82513e5 8521 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8522
5d6523eb 8523more_balance:
8a8c69c3 8524 rq_lock_irqsave(busiest, &rf);
3bed5e21 8525 update_rq_clock(busiest);
88b8dac0
SV
8526
8527 /*
8528 * cur_ld_moved - load moved in current iteration
8529 * ld_moved - cumulative load moved across iterations
8530 */
163122b7 8531 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8532
8533 /*
163122b7
KT
8534 * We've detached some tasks from busiest_rq. Every
8535 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8536 * unlock busiest->lock, and we are able to be sure
8537 * that nobody can manipulate the tasks in parallel.
8538 * See task_rq_lock() family for the details.
1e3c88bd 8539 */
163122b7 8540
8a8c69c3 8541 rq_unlock(busiest, &rf);
163122b7
KT
8542
8543 if (cur_ld_moved) {
8544 attach_tasks(&env);
8545 ld_moved += cur_ld_moved;
8546 }
8547
8a8c69c3 8548 local_irq_restore(rf.flags);
88b8dac0 8549
f1cd0858
JK
8550 if (env.flags & LBF_NEED_BREAK) {
8551 env.flags &= ~LBF_NEED_BREAK;
8552 goto more_balance;
8553 }
8554
88b8dac0
SV
8555 /*
8556 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8557 * us and move them to an alternate dst_cpu in our sched_group
8558 * where they can run. The upper limit on how many times we
8559 * iterate on same src_cpu is dependent on number of cpus in our
8560 * sched_group.
8561 *
8562 * This changes load balance semantics a bit on who can move
8563 * load to a given_cpu. In addition to the given_cpu itself
8564 * (or a ilb_cpu acting on its behalf where given_cpu is
8565 * nohz-idle), we now have balance_cpu in a position to move
8566 * load to given_cpu. In rare situations, this may cause
8567 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8568 * _independently_ and at _same_ time to move some load to
8569 * given_cpu) causing exceess load to be moved to given_cpu.
8570 * This however should not happen so much in practice and
8571 * moreover subsequent load balance cycles should correct the
8572 * excess load moved.
8573 */
6263322c 8574 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8575
7aff2e3a
VD
8576 /* Prevent to re-select dst_cpu via env's cpus */
8577 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8578
78feefc5 8579 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8580 env.dst_cpu = env.new_dst_cpu;
6263322c 8581 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8582 env.loop = 0;
8583 env.loop_break = sched_nr_migrate_break;
e02e60c1 8584
88b8dac0
SV
8585 /*
8586 * Go back to "more_balance" rather than "redo" since we
8587 * need to continue with same src_cpu.
8588 */
8589 goto more_balance;
8590 }
1e3c88bd 8591
6263322c
PZ
8592 /*
8593 * We failed to reach balance because of affinity.
8594 */
8595 if (sd_parent) {
63b2ca30 8596 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8597
afdeee05 8598 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8599 *group_imbalance = 1;
6263322c
PZ
8600 }
8601
1e3c88bd 8602 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8603 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8604 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8605 /*
8606 * Attempting to continue load balancing at the current
8607 * sched_domain level only makes sense if there are
8608 * active CPUs remaining as possible busiest CPUs to
8609 * pull load from which are not contained within the
8610 * destination group that is receiving any migrated
8611 * load.
8612 */
8613 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8614 env.loop = 0;
8615 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8616 goto redo;
bbf18b19 8617 }
afdeee05 8618 goto out_all_pinned;
1e3c88bd
PZ
8619 }
8620 }
8621
8622 if (!ld_moved) {
ae92882e 8623 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8624 /*
8625 * Increment the failure counter only on periodic balance.
8626 * We do not want newidle balance, which can be very
8627 * frequent, pollute the failure counter causing
8628 * excessive cache_hot migrations and active balances.
8629 */
8630 if (idle != CPU_NEWLY_IDLE)
8631 sd->nr_balance_failed++;
1e3c88bd 8632
bd939f45 8633 if (need_active_balance(&env)) {
8a8c69c3
PZ
8634 unsigned long flags;
8635
1e3c88bd
PZ
8636 raw_spin_lock_irqsave(&busiest->lock, flags);
8637
969c7921
TH
8638 /* don't kick the active_load_balance_cpu_stop,
8639 * if the curr task on busiest cpu can't be
8640 * moved to this_cpu
1e3c88bd 8641 */
0c98d344 8642 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8643 raw_spin_unlock_irqrestore(&busiest->lock,
8644 flags);
8e45cb54 8645 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8646 goto out_one_pinned;
8647 }
8648
969c7921
TH
8649 /*
8650 * ->active_balance synchronizes accesses to
8651 * ->active_balance_work. Once set, it's cleared
8652 * only after active load balance is finished.
8653 */
1e3c88bd
PZ
8654 if (!busiest->active_balance) {
8655 busiest->active_balance = 1;
8656 busiest->push_cpu = this_cpu;
8657 active_balance = 1;
8658 }
8659 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8660
bd939f45 8661 if (active_balance) {
969c7921
TH
8662 stop_one_cpu_nowait(cpu_of(busiest),
8663 active_load_balance_cpu_stop, busiest,
8664 &busiest->active_balance_work);
bd939f45 8665 }
1e3c88bd 8666
d02c0711 8667 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8668 sd->nr_balance_failed = sd->cache_nice_tries+1;
8669 }
8670 } else
8671 sd->nr_balance_failed = 0;
8672
8673 if (likely(!active_balance)) {
8674 /* We were unbalanced, so reset the balancing interval */
8675 sd->balance_interval = sd->min_interval;
8676 } else {
8677 /*
8678 * If we've begun active balancing, start to back off. This
8679 * case may not be covered by the all_pinned logic if there
8680 * is only 1 task on the busy runqueue (because we don't call
163122b7 8681 * detach_tasks).
1e3c88bd
PZ
8682 */
8683 if (sd->balance_interval < sd->max_interval)
8684 sd->balance_interval *= 2;
8685 }
8686
1e3c88bd
PZ
8687 goto out;
8688
8689out_balanced:
afdeee05
VG
8690 /*
8691 * We reach balance although we may have faced some affinity
8692 * constraints. Clear the imbalance flag if it was set.
8693 */
8694 if (sd_parent) {
8695 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8696
8697 if (*group_imbalance)
8698 *group_imbalance = 0;
8699 }
8700
8701out_all_pinned:
8702 /*
8703 * We reach balance because all tasks are pinned at this level so
8704 * we can't migrate them. Let the imbalance flag set so parent level
8705 * can try to migrate them.
8706 */
ae92882e 8707 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8708
8709 sd->nr_balance_failed = 0;
8710
8711out_one_pinned:
8712 /* tune up the balancing interval */
8e45cb54 8713 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8714 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8715 (sd->balance_interval < sd->max_interval))
8716 sd->balance_interval *= 2;
8717
46e49b38 8718 ld_moved = 0;
1e3c88bd 8719out:
1e3c88bd
PZ
8720 return ld_moved;
8721}
8722
52a08ef1
JL
8723static inline unsigned long
8724get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8725{
8726 unsigned long interval = sd->balance_interval;
8727
8728 if (cpu_busy)
8729 interval *= sd->busy_factor;
8730
8731 /* scale ms to jiffies */
8732 interval = msecs_to_jiffies(interval);
8733 interval = clamp(interval, 1UL, max_load_balance_interval);
8734
8735 return interval;
8736}
8737
8738static inline void
31851a98 8739update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8740{
8741 unsigned long interval, next;
8742
31851a98
LY
8743 /* used by idle balance, so cpu_busy = 0 */
8744 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8745 next = sd->last_balance + interval;
8746
8747 if (time_after(*next_balance, next))
8748 *next_balance = next;
8749}
8750
1e3c88bd
PZ
8751/*
8752 * idle_balance is called by schedule() if this_cpu is about to become
8753 * idle. Attempts to pull tasks from other CPUs.
8754 */
46f69fa3 8755static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8756{
52a08ef1
JL
8757 unsigned long next_balance = jiffies + HZ;
8758 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8759 struct sched_domain *sd;
8760 int pulled_task = 0;
9bd721c5 8761 u64 curr_cost = 0;
1e3c88bd 8762
6e83125c
PZ
8763 /*
8764 * We must set idle_stamp _before_ calling idle_balance(), such that we
8765 * measure the duration of idle_balance() as idle time.
8766 */
8767 this_rq->idle_stamp = rq_clock(this_rq);
8768
2800486e
PZ
8769 /*
8770 * Do not pull tasks towards !active CPUs...
8771 */
8772 if (!cpu_active(this_cpu))
8773 return 0;
8774
46f69fa3
MF
8775 /*
8776 * This is OK, because current is on_cpu, which avoids it being picked
8777 * for load-balance and preemption/IRQs are still disabled avoiding
8778 * further scheduler activity on it and we're being very careful to
8779 * re-start the picking loop.
8780 */
8781 rq_unpin_lock(this_rq, rf);
8782
4486edd1
TC
8783 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8784 !this_rq->rd->overload) {
52a08ef1
JL
8785 rcu_read_lock();
8786 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8787 if (sd)
31851a98 8788 update_next_balance(sd, &next_balance);
52a08ef1
JL
8789 rcu_read_unlock();
8790
6e83125c 8791 goto out;
52a08ef1 8792 }
1e3c88bd 8793
f492e12e
PZ
8794 raw_spin_unlock(&this_rq->lock);
8795
48a16753 8796 update_blocked_averages(this_cpu);
dce840a0 8797 rcu_read_lock();
1e3c88bd 8798 for_each_domain(this_cpu, sd) {
23f0d209 8799 int continue_balancing = 1;
9bd721c5 8800 u64 t0, domain_cost;
1e3c88bd
PZ
8801
8802 if (!(sd->flags & SD_LOAD_BALANCE))
8803 continue;
8804
52a08ef1 8805 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8806 update_next_balance(sd, &next_balance);
9bd721c5 8807 break;
52a08ef1 8808 }
9bd721c5 8809
f492e12e 8810 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8811 t0 = sched_clock_cpu(this_cpu);
8812
f492e12e 8813 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8814 sd, CPU_NEWLY_IDLE,
8815 &continue_balancing);
9bd721c5
JL
8816
8817 domain_cost = sched_clock_cpu(this_cpu) - t0;
8818 if (domain_cost > sd->max_newidle_lb_cost)
8819 sd->max_newidle_lb_cost = domain_cost;
8820
8821 curr_cost += domain_cost;
f492e12e 8822 }
1e3c88bd 8823
31851a98 8824 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8825
8826 /*
8827 * Stop searching for tasks to pull if there are
8828 * now runnable tasks on this rq.
8829 */
8830 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8831 break;
1e3c88bd 8832 }
dce840a0 8833 rcu_read_unlock();
f492e12e
PZ
8834
8835 raw_spin_lock(&this_rq->lock);
8836
0e5b5337
JL
8837 if (curr_cost > this_rq->max_idle_balance_cost)
8838 this_rq->max_idle_balance_cost = curr_cost;
8839
e5fc6611 8840 /*
0e5b5337
JL
8841 * While browsing the domains, we released the rq lock, a task could
8842 * have been enqueued in the meantime. Since we're not going idle,
8843 * pretend we pulled a task.
e5fc6611 8844 */
0e5b5337 8845 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8846 pulled_task = 1;
e5fc6611 8847
52a08ef1
JL
8848out:
8849 /* Move the next balance forward */
8850 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8851 this_rq->next_balance = next_balance;
9bd721c5 8852
e4aa358b 8853 /* Is there a task of a high priority class? */
46383648 8854 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8855 pulled_task = -1;
8856
38c6ade2 8857 if (pulled_task)
6e83125c
PZ
8858 this_rq->idle_stamp = 0;
8859
46f69fa3
MF
8860 rq_repin_lock(this_rq, rf);
8861
3c4017c1 8862 return pulled_task;
1e3c88bd
PZ
8863}
8864
8865/*
969c7921
TH
8866 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8867 * running tasks off the busiest CPU onto idle CPUs. It requires at
8868 * least 1 task to be running on each physical CPU where possible, and
8869 * avoids physical / logical imbalances.
1e3c88bd 8870 */
969c7921 8871static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8872{
969c7921
TH
8873 struct rq *busiest_rq = data;
8874 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8875 int target_cpu = busiest_rq->push_cpu;
969c7921 8876 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8877 struct sched_domain *sd;
e5673f28 8878 struct task_struct *p = NULL;
8a8c69c3 8879 struct rq_flags rf;
969c7921 8880
8a8c69c3 8881 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
8882 /*
8883 * Between queueing the stop-work and running it is a hole in which
8884 * CPUs can become inactive. We should not move tasks from or to
8885 * inactive CPUs.
8886 */
8887 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8888 goto out_unlock;
969c7921
TH
8889
8890 /* make sure the requested cpu hasn't gone down in the meantime */
8891 if (unlikely(busiest_cpu != smp_processor_id() ||
8892 !busiest_rq->active_balance))
8893 goto out_unlock;
1e3c88bd
PZ
8894
8895 /* Is there any task to move? */
8896 if (busiest_rq->nr_running <= 1)
969c7921 8897 goto out_unlock;
1e3c88bd
PZ
8898
8899 /*
8900 * This condition is "impossible", if it occurs
8901 * we need to fix it. Originally reported by
8902 * Bjorn Helgaas on a 128-cpu setup.
8903 */
8904 BUG_ON(busiest_rq == target_rq);
8905
1e3c88bd 8906 /* Search for an sd spanning us and the target CPU. */
dce840a0 8907 rcu_read_lock();
1e3c88bd
PZ
8908 for_each_domain(target_cpu, sd) {
8909 if ((sd->flags & SD_LOAD_BALANCE) &&
8910 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8911 break;
8912 }
8913
8914 if (likely(sd)) {
8e45cb54
PZ
8915 struct lb_env env = {
8916 .sd = sd,
ddcdf6e7
PZ
8917 .dst_cpu = target_cpu,
8918 .dst_rq = target_rq,
8919 .src_cpu = busiest_rq->cpu,
8920 .src_rq = busiest_rq,
8e45cb54 8921 .idle = CPU_IDLE,
65a4433a
JH
8922 /*
8923 * can_migrate_task() doesn't need to compute new_dst_cpu
8924 * for active balancing. Since we have CPU_IDLE, but no
8925 * @dst_grpmask we need to make that test go away with lying
8926 * about DST_PINNED.
8927 */
8928 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8929 };
8930
ae92882e 8931 schedstat_inc(sd->alb_count);
3bed5e21 8932 update_rq_clock(busiest_rq);
1e3c88bd 8933
e5673f28 8934 p = detach_one_task(&env);
d02c0711 8935 if (p) {
ae92882e 8936 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8937 /* Active balancing done, reset the failure counter. */
8938 sd->nr_balance_failed = 0;
8939 } else {
ae92882e 8940 schedstat_inc(sd->alb_failed);
d02c0711 8941 }
1e3c88bd 8942 }
dce840a0 8943 rcu_read_unlock();
969c7921
TH
8944out_unlock:
8945 busiest_rq->active_balance = 0;
8a8c69c3 8946 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8947
8948 if (p)
8949 attach_one_task(target_rq, p);
8950
8951 local_irq_enable();
8952
969c7921 8953 return 0;
1e3c88bd
PZ
8954}
8955
d987fc7f
MG
8956static inline int on_null_domain(struct rq *rq)
8957{
8958 return unlikely(!rcu_dereference_sched(rq->sd));
8959}
8960
3451d024 8961#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8962/*
8963 * idle load balancing details
83cd4fe2
VP
8964 * - When one of the busy CPUs notice that there may be an idle rebalancing
8965 * needed, they will kick the idle load balancer, which then does idle
8966 * load balancing for all the idle CPUs.
8967 */
1e3c88bd 8968static struct {
83cd4fe2 8969 cpumask_var_t idle_cpus_mask;
0b005cf5 8970 atomic_t nr_cpus;
83cd4fe2
VP
8971 unsigned long next_balance; /* in jiffy units */
8972} nohz ____cacheline_aligned;
1e3c88bd 8973
3dd0337d 8974static inline int find_new_ilb(void)
1e3c88bd 8975{
0b005cf5 8976 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8977
786d6dc7
SS
8978 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8979 return ilb;
8980
8981 return nr_cpu_ids;
1e3c88bd 8982}
1e3c88bd 8983
83cd4fe2
VP
8984/*
8985 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8986 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8987 * CPU (if there is one).
8988 */
0aeeeeba 8989static void nohz_balancer_kick(void)
83cd4fe2
VP
8990{
8991 int ilb_cpu;
8992
8993 nohz.next_balance++;
8994
3dd0337d 8995 ilb_cpu = find_new_ilb();
83cd4fe2 8996
0b005cf5
SS
8997 if (ilb_cpu >= nr_cpu_ids)
8998 return;
83cd4fe2 8999
cd490c5b 9000 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
9001 return;
9002 /*
9003 * Use smp_send_reschedule() instead of resched_cpu().
9004 * This way we generate a sched IPI on the target cpu which
9005 * is idle. And the softirq performing nohz idle load balance
9006 * will be run before returning from the IPI.
9007 */
9008 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
9009 return;
9010}
9011
20a5c8cc 9012void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
9013{
9014 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
9015 /*
9016 * Completely isolated CPUs don't ever set, so we must test.
9017 */
9018 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9019 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9020 atomic_dec(&nohz.nr_cpus);
9021 }
71325960
SS
9022 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9023 }
9024}
9025
69e1e811
SS
9026static inline void set_cpu_sd_state_busy(void)
9027{
9028 struct sched_domain *sd;
37dc6b50 9029 int cpu = smp_processor_id();
69e1e811 9030
69e1e811 9031 rcu_read_lock();
0e369d75 9032 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9033
9034 if (!sd || !sd->nohz_idle)
9035 goto unlock;
9036 sd->nohz_idle = 0;
9037
0e369d75 9038 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 9039unlock:
69e1e811
SS
9040 rcu_read_unlock();
9041}
9042
9043void set_cpu_sd_state_idle(void)
9044{
9045 struct sched_domain *sd;
37dc6b50 9046 int cpu = smp_processor_id();
69e1e811 9047
69e1e811 9048 rcu_read_lock();
0e369d75 9049 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9050
9051 if (!sd || sd->nohz_idle)
9052 goto unlock;
9053 sd->nohz_idle = 1;
9054
0e369d75 9055 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9056unlock:
69e1e811
SS
9057 rcu_read_unlock();
9058}
9059
1e3c88bd 9060/*
c1cc017c 9061 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 9062 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9063 */
c1cc017c 9064void nohz_balance_enter_idle(int cpu)
1e3c88bd 9065{
71325960
SS
9066 /*
9067 * If this cpu is going down, then nothing needs to be done.
9068 */
9069 if (!cpu_active(cpu))
9070 return;
9071
387bc8b5 9072 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9073 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9074 return;
9075
c1cc017c
AS
9076 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
9077 return;
1e3c88bd 9078
d987fc7f
MG
9079 /*
9080 * If we're a completely isolated CPU, we don't play.
9081 */
9082 if (on_null_domain(cpu_rq(cpu)))
9083 return;
9084
c1cc017c
AS
9085 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9086 atomic_inc(&nohz.nr_cpus);
9087 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
9088}
9089#endif
9090
9091static DEFINE_SPINLOCK(balancing);
9092
49c022e6
PZ
9093/*
9094 * Scale the max load_balance interval with the number of CPUs in the system.
9095 * This trades load-balance latency on larger machines for less cross talk.
9096 */
029632fb 9097void update_max_interval(void)
49c022e6
PZ
9098{
9099 max_load_balance_interval = HZ*num_online_cpus()/10;
9100}
9101
1e3c88bd
PZ
9102/*
9103 * It checks each scheduling domain to see if it is due to be balanced,
9104 * and initiates a balancing operation if so.
9105 *
b9b0853a 9106 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 9107 */
f7ed0a89 9108static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 9109{
23f0d209 9110 int continue_balancing = 1;
f7ed0a89 9111 int cpu = rq->cpu;
1e3c88bd 9112 unsigned long interval;
04f733b4 9113 struct sched_domain *sd;
1e3c88bd
PZ
9114 /* Earliest time when we have to do rebalance again */
9115 unsigned long next_balance = jiffies + 60*HZ;
9116 int update_next_balance = 0;
f48627e6
JL
9117 int need_serialize, need_decay = 0;
9118 u64 max_cost = 0;
1e3c88bd 9119
48a16753 9120 update_blocked_averages(cpu);
2069dd75 9121
dce840a0 9122 rcu_read_lock();
1e3c88bd 9123 for_each_domain(cpu, sd) {
f48627e6
JL
9124 /*
9125 * Decay the newidle max times here because this is a regular
9126 * visit to all the domains. Decay ~1% per second.
9127 */
9128 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9129 sd->max_newidle_lb_cost =
9130 (sd->max_newidle_lb_cost * 253) / 256;
9131 sd->next_decay_max_lb_cost = jiffies + HZ;
9132 need_decay = 1;
9133 }
9134 max_cost += sd->max_newidle_lb_cost;
9135
1e3c88bd
PZ
9136 if (!(sd->flags & SD_LOAD_BALANCE))
9137 continue;
9138
f48627e6
JL
9139 /*
9140 * Stop the load balance at this level. There is another
9141 * CPU in our sched group which is doing load balancing more
9142 * actively.
9143 */
9144 if (!continue_balancing) {
9145 if (need_decay)
9146 continue;
9147 break;
9148 }
9149
52a08ef1 9150 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
9151
9152 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
9153 if (need_serialize) {
9154 if (!spin_trylock(&balancing))
9155 goto out;
9156 }
9157
9158 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 9159 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 9160 /*
6263322c 9161 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
9162 * env->dst_cpu, so we can't know our idle
9163 * state even if we migrated tasks. Update it.
1e3c88bd 9164 */
de5eb2dd 9165 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
9166 }
9167 sd->last_balance = jiffies;
52a08ef1 9168 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
9169 }
9170 if (need_serialize)
9171 spin_unlock(&balancing);
9172out:
9173 if (time_after(next_balance, sd->last_balance + interval)) {
9174 next_balance = sd->last_balance + interval;
9175 update_next_balance = 1;
9176 }
f48627e6
JL
9177 }
9178 if (need_decay) {
1e3c88bd 9179 /*
f48627e6
JL
9180 * Ensure the rq-wide value also decays but keep it at a
9181 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 9182 */
f48627e6
JL
9183 rq->max_idle_balance_cost =
9184 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 9185 }
dce840a0 9186 rcu_read_unlock();
1e3c88bd
PZ
9187
9188 /*
9189 * next_balance will be updated only when there is a need.
9190 * When the cpu is attached to null domain for ex, it will not be
9191 * updated.
9192 */
c5afb6a8 9193 if (likely(update_next_balance)) {
1e3c88bd 9194 rq->next_balance = next_balance;
c5afb6a8
VG
9195
9196#ifdef CONFIG_NO_HZ_COMMON
9197 /*
9198 * If this CPU has been elected to perform the nohz idle
9199 * balance. Other idle CPUs have already rebalanced with
9200 * nohz_idle_balance() and nohz.next_balance has been
9201 * updated accordingly. This CPU is now running the idle load
9202 * balance for itself and we need to update the
9203 * nohz.next_balance accordingly.
9204 */
9205 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9206 nohz.next_balance = rq->next_balance;
9207#endif
9208 }
1e3c88bd
PZ
9209}
9210
3451d024 9211#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 9212/*
3451d024 9213 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
9214 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9215 */
208cb16b 9216static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 9217{
208cb16b 9218 int this_cpu = this_rq->cpu;
83cd4fe2
VP
9219 struct rq *rq;
9220 int balance_cpu;
c5afb6a8
VG
9221 /* Earliest time when we have to do rebalance again */
9222 unsigned long next_balance = jiffies + 60*HZ;
9223 int update_next_balance = 0;
83cd4fe2 9224
1c792db7
SS
9225 if (idle != CPU_IDLE ||
9226 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9227 goto end;
83cd4fe2
VP
9228
9229 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9230 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9231 continue;
9232
9233 /*
9234 * If this cpu gets work to do, stop the load balancing
9235 * work being done for other cpus. Next load
9236 * balancing owner will pick it up.
9237 */
1c792db7 9238 if (need_resched())
83cd4fe2 9239 break;
83cd4fe2 9240
5ed4f1d9
VG
9241 rq = cpu_rq(balance_cpu);
9242
ed61bbc6
TC
9243 /*
9244 * If time for next balance is due,
9245 * do the balance.
9246 */
9247 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9248 struct rq_flags rf;
9249
9250 rq_lock_irq(rq, &rf);
ed61bbc6 9251 update_rq_clock(rq);
cee1afce 9252 cpu_load_update_idle(rq);
8a8c69c3
PZ
9253 rq_unlock_irq(rq, &rf);
9254
ed61bbc6
TC
9255 rebalance_domains(rq, CPU_IDLE);
9256 }
83cd4fe2 9257
c5afb6a8
VG
9258 if (time_after(next_balance, rq->next_balance)) {
9259 next_balance = rq->next_balance;
9260 update_next_balance = 1;
9261 }
83cd4fe2 9262 }
c5afb6a8
VG
9263
9264 /*
9265 * next_balance will be updated only when there is a need.
9266 * When the CPU is attached to null domain for ex, it will not be
9267 * updated.
9268 */
9269 if (likely(update_next_balance))
9270 nohz.next_balance = next_balance;
1c792db7
SS
9271end:
9272 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
9273}
9274
9275/*
0b005cf5 9276 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 9277 * of an idle cpu in the system.
0b005cf5 9278 * - This rq has more than one task.
1aaf90a4
VG
9279 * - This rq has at least one CFS task and the capacity of the CPU is
9280 * significantly reduced because of RT tasks or IRQs.
9281 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9282 * multiple busy cpu.
0b005cf5
SS
9283 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9284 * domain span are idle.
83cd4fe2 9285 */
1aaf90a4 9286static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
9287{
9288 unsigned long now = jiffies;
0e369d75 9289 struct sched_domain_shared *sds;
0b005cf5 9290 struct sched_domain *sd;
afe06efd 9291 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 9292 bool kick = false;
83cd4fe2 9293
4a725627 9294 if (unlikely(rq->idle_balance))
1aaf90a4 9295 return false;
83cd4fe2 9296
1c792db7
SS
9297 /*
9298 * We may be recently in ticked or tickless idle mode. At the first
9299 * busy tick after returning from idle, we will update the busy stats.
9300 */
69e1e811 9301 set_cpu_sd_state_busy();
c1cc017c 9302 nohz_balance_exit_idle(cpu);
0b005cf5
SS
9303
9304 /*
9305 * None are in tickless mode and hence no need for NOHZ idle load
9306 * balancing.
9307 */
9308 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 9309 return false;
1c792db7
SS
9310
9311 if (time_before(now, nohz.next_balance))
1aaf90a4 9312 return false;
83cd4fe2 9313
0b005cf5 9314 if (rq->nr_running >= 2)
1aaf90a4 9315 return true;
83cd4fe2 9316
067491b7 9317 rcu_read_lock();
0e369d75
PZ
9318 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9319 if (sds) {
9320 /*
9321 * XXX: write a coherent comment on why we do this.
9322 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9323 */
9324 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
9325 if (nr_busy > 1) {
9326 kick = true;
9327 goto unlock;
9328 }
9329
83cd4fe2 9330 }
37dc6b50 9331
1aaf90a4
VG
9332 sd = rcu_dereference(rq->sd);
9333 if (sd) {
9334 if ((rq->cfs.h_nr_running >= 1) &&
9335 check_cpu_capacity(rq, sd)) {
9336 kick = true;
9337 goto unlock;
9338 }
9339 }
37dc6b50 9340
1aaf90a4 9341 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9342 if (sd) {
9343 for_each_cpu(i, sched_domain_span(sd)) {
9344 if (i == cpu ||
9345 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9346 continue;
067491b7 9347
afe06efd
TC
9348 if (sched_asym_prefer(i, cpu)) {
9349 kick = true;
9350 goto unlock;
9351 }
9352 }
9353 }
1aaf90a4 9354unlock:
067491b7 9355 rcu_read_unlock();
1aaf90a4 9356 return kick;
83cd4fe2
VP
9357}
9358#else
208cb16b 9359static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9360#endif
9361
9362/*
9363 * run_rebalance_domains is triggered when needed from the scheduler tick.
9364 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9365 */
0766f788 9366static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9367{
208cb16b 9368 struct rq *this_rq = this_rq();
6eb57e0d 9369 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9370 CPU_IDLE : CPU_NOT_IDLE;
9371
1e3c88bd 9372 /*
83cd4fe2 9373 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9374 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9375 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9376 * give the idle cpus a chance to load balance. Else we may
9377 * load balance only within the local sched_domain hierarchy
9378 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9379 */
208cb16b 9380 nohz_idle_balance(this_rq, idle);
d4573c3e 9381 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9382}
9383
1e3c88bd
PZ
9384/*
9385 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9386 */
7caff66f 9387void trigger_load_balance(struct rq *rq)
1e3c88bd 9388{
1e3c88bd 9389 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9390 if (unlikely(on_null_domain(rq)))
9391 return;
9392
9393 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9394 raise_softirq(SCHED_SOFTIRQ);
3451d024 9395#ifdef CONFIG_NO_HZ_COMMON
c726099e 9396 if (nohz_kick_needed(rq))
0aeeeeba 9397 nohz_balancer_kick();
83cd4fe2 9398#endif
1e3c88bd
PZ
9399}
9400
0bcdcf28
CE
9401static void rq_online_fair(struct rq *rq)
9402{
9403 update_sysctl();
0e59bdae
KT
9404
9405 update_runtime_enabled(rq);
0bcdcf28
CE
9406}
9407
9408static void rq_offline_fair(struct rq *rq)
9409{
9410 update_sysctl();
a4c96ae3
PB
9411
9412 /* Ensure any throttled groups are reachable by pick_next_task */
9413 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9414}
9415
55e12e5e 9416#endif /* CONFIG_SMP */
e1d1484f 9417
bf0f6f24
IM
9418/*
9419 * scheduler tick hitting a task of our scheduling class:
9420 */
8f4d37ec 9421static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9422{
9423 struct cfs_rq *cfs_rq;
9424 struct sched_entity *se = &curr->se;
9425
9426 for_each_sched_entity(se) {
9427 cfs_rq = cfs_rq_of(se);
8f4d37ec 9428 entity_tick(cfs_rq, se, queued);
bf0f6f24 9429 }
18bf2805 9430
b52da86e 9431 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9432 task_tick_numa(rq, curr);
bf0f6f24
IM
9433}
9434
9435/*
cd29fe6f
PZ
9436 * called on fork with the child task as argument from the parent's context
9437 * - child not yet on the tasklist
9438 * - preemption disabled
bf0f6f24 9439 */
cd29fe6f 9440static void task_fork_fair(struct task_struct *p)
bf0f6f24 9441{
4fc420c9
DN
9442 struct cfs_rq *cfs_rq;
9443 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9444 struct rq *rq = this_rq();
8a8c69c3 9445 struct rq_flags rf;
bf0f6f24 9446
8a8c69c3 9447 rq_lock(rq, &rf);
861d034e
PZ
9448 update_rq_clock(rq);
9449
4fc420c9
DN
9450 cfs_rq = task_cfs_rq(current);
9451 curr = cfs_rq->curr;
e210bffd
PZ
9452 if (curr) {
9453 update_curr(cfs_rq);
b5d9d734 9454 se->vruntime = curr->vruntime;
e210bffd 9455 }
aeb73b04 9456 place_entity(cfs_rq, se, 1);
4d78e7b6 9457
cd29fe6f 9458 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9459 /*
edcb60a3
IM
9460 * Upon rescheduling, sched_class::put_prev_task() will place
9461 * 'current' within the tree based on its new key value.
9462 */
4d78e7b6 9463 swap(curr->vruntime, se->vruntime);
8875125e 9464 resched_curr(rq);
4d78e7b6 9465 }
bf0f6f24 9466
88ec22d3 9467 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9468 rq_unlock(rq, &rf);
bf0f6f24
IM
9469}
9470
cb469845
SR
9471/*
9472 * Priority of the task has changed. Check to see if we preempt
9473 * the current task.
9474 */
da7a735e
PZ
9475static void
9476prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9477{
da0c1e65 9478 if (!task_on_rq_queued(p))
da7a735e
PZ
9479 return;
9480
cb469845
SR
9481 /*
9482 * Reschedule if we are currently running on this runqueue and
9483 * our priority decreased, or if we are not currently running on
9484 * this runqueue and our priority is higher than the current's
9485 */
da7a735e 9486 if (rq->curr == p) {
cb469845 9487 if (p->prio > oldprio)
8875125e 9488 resched_curr(rq);
cb469845 9489 } else
15afe09b 9490 check_preempt_curr(rq, p, 0);
cb469845
SR
9491}
9492
daa59407 9493static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9494{
9495 struct sched_entity *se = &p->se;
da7a735e
PZ
9496
9497 /*
daa59407
BP
9498 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9499 * the dequeue_entity(.flags=0) will already have normalized the
9500 * vruntime.
9501 */
9502 if (p->on_rq)
9503 return true;
9504
9505 /*
9506 * When !on_rq, vruntime of the task has usually NOT been normalized.
9507 * But there are some cases where it has already been normalized:
da7a735e 9508 *
daa59407
BP
9509 * - A forked child which is waiting for being woken up by
9510 * wake_up_new_task().
9511 * - A task which has been woken up by try_to_wake_up() and
9512 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9513 */
daa59407
BP
9514 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9515 return true;
9516
9517 return false;
9518}
9519
09a43ace
VG
9520#ifdef CONFIG_FAIR_GROUP_SCHED
9521/*
9522 * Propagate the changes of the sched_entity across the tg tree to make it
9523 * visible to the root
9524 */
9525static void propagate_entity_cfs_rq(struct sched_entity *se)
9526{
9527 struct cfs_rq *cfs_rq;
9528
9529 /* Start to propagate at parent */
9530 se = se->parent;
9531
9532 for_each_sched_entity(se) {
9533 cfs_rq = cfs_rq_of(se);
9534
9535 if (cfs_rq_throttled(cfs_rq))
9536 break;
9537
88c0616e 9538 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
9539 }
9540}
9541#else
9542static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9543#endif
9544
df217913 9545static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9546{
daa59407
BP
9547 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9548
9d89c257 9549 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 9550 update_load_avg(cfs_rq, se, 0);
a05e8c51 9551 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9552 update_tg_load_avg(cfs_rq, false);
09a43ace 9553 propagate_entity_cfs_rq(se);
da7a735e
PZ
9554}
9555
df217913 9556static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9557{
daa59407 9558 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9559
9560#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9561 /*
9562 * Since the real-depth could have been changed (only FAIR
9563 * class maintain depth value), reset depth properly.
9564 */
9565 se->depth = se->parent ? se->parent->depth + 1 : 0;
9566#endif
7855a35a 9567
df217913 9568 /* Synchronize entity with its cfs_rq */
88c0616e 9569 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9570 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9571 update_tg_load_avg(cfs_rq, false);
09a43ace 9572 propagate_entity_cfs_rq(se);
df217913
VG
9573}
9574
9575static void detach_task_cfs_rq(struct task_struct *p)
9576{
9577 struct sched_entity *se = &p->se;
9578 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9579
9580 if (!vruntime_normalized(p)) {
9581 /*
9582 * Fix up our vruntime so that the current sleep doesn't
9583 * cause 'unlimited' sleep bonus.
9584 */
9585 place_entity(cfs_rq, se, 0);
9586 se->vruntime -= cfs_rq->min_vruntime;
9587 }
9588
9589 detach_entity_cfs_rq(se);
9590}
9591
9592static void attach_task_cfs_rq(struct task_struct *p)
9593{
9594 struct sched_entity *se = &p->se;
9595 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9596
9597 attach_entity_cfs_rq(se);
daa59407
BP
9598
9599 if (!vruntime_normalized(p))
9600 se->vruntime += cfs_rq->min_vruntime;
9601}
6efdb105 9602
daa59407
BP
9603static void switched_from_fair(struct rq *rq, struct task_struct *p)
9604{
9605 detach_task_cfs_rq(p);
9606}
9607
9608static void switched_to_fair(struct rq *rq, struct task_struct *p)
9609{
9610 attach_task_cfs_rq(p);
7855a35a 9611
daa59407 9612 if (task_on_rq_queued(p)) {
7855a35a 9613 /*
daa59407
BP
9614 * We were most likely switched from sched_rt, so
9615 * kick off the schedule if running, otherwise just see
9616 * if we can still preempt the current task.
7855a35a 9617 */
daa59407
BP
9618 if (rq->curr == p)
9619 resched_curr(rq);
9620 else
9621 check_preempt_curr(rq, p, 0);
7855a35a 9622 }
cb469845
SR
9623}
9624
83b699ed
SV
9625/* Account for a task changing its policy or group.
9626 *
9627 * This routine is mostly called to set cfs_rq->curr field when a task
9628 * migrates between groups/classes.
9629 */
9630static void set_curr_task_fair(struct rq *rq)
9631{
9632 struct sched_entity *se = &rq->curr->se;
9633
ec12cb7f
PT
9634 for_each_sched_entity(se) {
9635 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9636
9637 set_next_entity(cfs_rq, se);
9638 /* ensure bandwidth has been allocated on our new cfs_rq */
9639 account_cfs_rq_runtime(cfs_rq, 0);
9640 }
83b699ed
SV
9641}
9642
029632fb
PZ
9643void init_cfs_rq(struct cfs_rq *cfs_rq)
9644{
bfb06889 9645 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
9646 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9647#ifndef CONFIG_64BIT
9648 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9649#endif
141965c7 9650#ifdef CONFIG_SMP
2a2f5d4e 9651 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 9652#endif
029632fb
PZ
9653}
9654
810b3817 9655#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9656static void task_set_group_fair(struct task_struct *p)
9657{
9658 struct sched_entity *se = &p->se;
9659
9660 set_task_rq(p, task_cpu(p));
9661 se->depth = se->parent ? se->parent->depth + 1 : 0;
9662}
9663
bc54da21 9664static void task_move_group_fair(struct task_struct *p)
810b3817 9665{
daa59407 9666 detach_task_cfs_rq(p);
b2b5ce02 9667 set_task_rq(p, task_cpu(p));
6efdb105
BP
9668
9669#ifdef CONFIG_SMP
9670 /* Tell se's cfs_rq has been changed -- migrated */
9671 p->se.avg.last_update_time = 0;
9672#endif
daa59407 9673 attach_task_cfs_rq(p);
810b3817 9674}
029632fb 9675
ea86cb4b
VG
9676static void task_change_group_fair(struct task_struct *p, int type)
9677{
9678 switch (type) {
9679 case TASK_SET_GROUP:
9680 task_set_group_fair(p);
9681 break;
9682
9683 case TASK_MOVE_GROUP:
9684 task_move_group_fair(p);
9685 break;
9686 }
9687}
9688
029632fb
PZ
9689void free_fair_sched_group(struct task_group *tg)
9690{
9691 int i;
9692
9693 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9694
9695 for_each_possible_cpu(i) {
9696 if (tg->cfs_rq)
9697 kfree(tg->cfs_rq[i]);
6fe1f348 9698 if (tg->se)
029632fb
PZ
9699 kfree(tg->se[i]);
9700 }
9701
9702 kfree(tg->cfs_rq);
9703 kfree(tg->se);
9704}
9705
9706int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9707{
029632fb 9708 struct sched_entity *se;
b7fa30c9 9709 struct cfs_rq *cfs_rq;
029632fb
PZ
9710 int i;
9711
9712 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9713 if (!tg->cfs_rq)
9714 goto err;
9715 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9716 if (!tg->se)
9717 goto err;
9718
9719 tg->shares = NICE_0_LOAD;
9720
9721 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9722
9723 for_each_possible_cpu(i) {
9724 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9725 GFP_KERNEL, cpu_to_node(i));
9726 if (!cfs_rq)
9727 goto err;
9728
9729 se = kzalloc_node(sizeof(struct sched_entity),
9730 GFP_KERNEL, cpu_to_node(i));
9731 if (!se)
9732 goto err_free_rq;
9733
9734 init_cfs_rq(cfs_rq);
9735 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9736 init_entity_runnable_average(se);
029632fb
PZ
9737 }
9738
9739 return 1;
9740
9741err_free_rq:
9742 kfree(cfs_rq);
9743err:
9744 return 0;
9745}
9746
8663e24d
PZ
9747void online_fair_sched_group(struct task_group *tg)
9748{
9749 struct sched_entity *se;
9750 struct rq *rq;
9751 int i;
9752
9753 for_each_possible_cpu(i) {
9754 rq = cpu_rq(i);
9755 se = tg->se[i];
9756
9757 raw_spin_lock_irq(&rq->lock);
4126bad6 9758 update_rq_clock(rq);
d0326691 9759 attach_entity_cfs_rq(se);
55e16d30 9760 sync_throttle(tg, i);
8663e24d
PZ
9761 raw_spin_unlock_irq(&rq->lock);
9762 }
9763}
9764
6fe1f348 9765void unregister_fair_sched_group(struct task_group *tg)
029632fb 9766{
029632fb 9767 unsigned long flags;
6fe1f348
PZ
9768 struct rq *rq;
9769 int cpu;
029632fb 9770
6fe1f348
PZ
9771 for_each_possible_cpu(cpu) {
9772 if (tg->se[cpu])
9773 remove_entity_load_avg(tg->se[cpu]);
029632fb 9774
6fe1f348
PZ
9775 /*
9776 * Only empty task groups can be destroyed; so we can speculatively
9777 * check on_list without danger of it being re-added.
9778 */
9779 if (!tg->cfs_rq[cpu]->on_list)
9780 continue;
9781
9782 rq = cpu_rq(cpu);
9783
9784 raw_spin_lock_irqsave(&rq->lock, flags);
9785 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9786 raw_spin_unlock_irqrestore(&rq->lock, flags);
9787 }
029632fb
PZ
9788}
9789
9790void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9791 struct sched_entity *se, int cpu,
9792 struct sched_entity *parent)
9793{
9794 struct rq *rq = cpu_rq(cpu);
9795
9796 cfs_rq->tg = tg;
9797 cfs_rq->rq = rq;
029632fb
PZ
9798 init_cfs_rq_runtime(cfs_rq);
9799
9800 tg->cfs_rq[cpu] = cfs_rq;
9801 tg->se[cpu] = se;
9802
9803 /* se could be NULL for root_task_group */
9804 if (!se)
9805 return;
9806
fed14d45 9807 if (!parent) {
029632fb 9808 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9809 se->depth = 0;
9810 } else {
029632fb 9811 se->cfs_rq = parent->my_q;
fed14d45
PZ
9812 se->depth = parent->depth + 1;
9813 }
029632fb
PZ
9814
9815 se->my_q = cfs_rq;
0ac9b1c2
PT
9816 /* guarantee group entities always have weight */
9817 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9818 se->parent = parent;
9819}
9820
9821static DEFINE_MUTEX(shares_mutex);
9822
9823int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9824{
9825 int i;
029632fb
PZ
9826
9827 /*
9828 * We can't change the weight of the root cgroup.
9829 */
9830 if (!tg->se[0])
9831 return -EINVAL;
9832
9833 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9834
9835 mutex_lock(&shares_mutex);
9836 if (tg->shares == shares)
9837 goto done;
9838
9839 tg->shares = shares;
9840 for_each_possible_cpu(i) {
9841 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9842 struct sched_entity *se = tg->se[i];
9843 struct rq_flags rf;
029632fb 9844
029632fb 9845 /* Propagate contribution to hierarchy */
8a8c69c3 9846 rq_lock_irqsave(rq, &rf);
71b1da46 9847 update_rq_clock(rq);
89ee048f 9848 for_each_sched_entity(se) {
88c0616e 9849 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 9850 update_cfs_group(se);
89ee048f 9851 }
8a8c69c3 9852 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9853 }
9854
9855done:
9856 mutex_unlock(&shares_mutex);
9857 return 0;
9858}
9859#else /* CONFIG_FAIR_GROUP_SCHED */
9860
9861void free_fair_sched_group(struct task_group *tg) { }
9862
9863int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9864{
9865 return 1;
9866}
9867
8663e24d
PZ
9868void online_fair_sched_group(struct task_group *tg) { }
9869
6fe1f348 9870void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9871
9872#endif /* CONFIG_FAIR_GROUP_SCHED */
9873
810b3817 9874
6d686f45 9875static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9876{
9877 struct sched_entity *se = &task->se;
0d721cea
PW
9878 unsigned int rr_interval = 0;
9879
9880 /*
9881 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9882 * idle runqueue:
9883 */
0d721cea 9884 if (rq->cfs.load.weight)
a59f4e07 9885 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9886
9887 return rr_interval;
9888}
9889
bf0f6f24
IM
9890/*
9891 * All the scheduling class methods:
9892 */
029632fb 9893const struct sched_class fair_sched_class = {
5522d5d5 9894 .next = &idle_sched_class,
bf0f6f24
IM
9895 .enqueue_task = enqueue_task_fair,
9896 .dequeue_task = dequeue_task_fair,
9897 .yield_task = yield_task_fair,
d95f4122 9898 .yield_to_task = yield_to_task_fair,
bf0f6f24 9899
2e09bf55 9900 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9901
9902 .pick_next_task = pick_next_task_fair,
9903 .put_prev_task = put_prev_task_fair,
9904
681f3e68 9905#ifdef CONFIG_SMP
4ce72a2c 9906 .select_task_rq = select_task_rq_fair,
0a74bef8 9907 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9908
0bcdcf28
CE
9909 .rq_online = rq_online_fair,
9910 .rq_offline = rq_offline_fair,
88ec22d3 9911
12695578 9912 .task_dead = task_dead_fair,
c5b28038 9913 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9914#endif
bf0f6f24 9915
83b699ed 9916 .set_curr_task = set_curr_task_fair,
bf0f6f24 9917 .task_tick = task_tick_fair,
cd29fe6f 9918 .task_fork = task_fork_fair,
cb469845
SR
9919
9920 .prio_changed = prio_changed_fair,
da7a735e 9921 .switched_from = switched_from_fair,
cb469845 9922 .switched_to = switched_to_fair,
810b3817 9923
0d721cea
PW
9924 .get_rr_interval = get_rr_interval_fair,
9925
6e998916
SG
9926 .update_curr = update_curr_fair,
9927
810b3817 9928#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9929 .task_change_group = task_change_group_fair,
810b3817 9930#endif
bf0f6f24
IM
9931};
9932
9933#ifdef CONFIG_SCHED_DEBUG
029632fb 9934void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9935{
a9e7f654 9936 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9937
5973e5b9 9938 rcu_read_lock();
a9e7f654 9939 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9940 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9941 rcu_read_unlock();
bf0f6f24 9942}
397f2378
SD
9943
9944#ifdef CONFIG_NUMA_BALANCING
9945void show_numa_stats(struct task_struct *p, struct seq_file *m)
9946{
9947 int node;
9948 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9949
9950 for_each_online_node(node) {
9951 if (p->numa_faults) {
9952 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9953 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9954 }
9955 if (p->numa_group) {
9956 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9957 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9958 }
9959 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9960 }
9961}
9962#endif /* CONFIG_NUMA_BALANCING */
9963#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9964
9965__init void init_sched_fair_class(void)
9966{
9967#ifdef CONFIG_SMP
9968 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9969
3451d024 9970#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9971 nohz.next_balance = jiffies;
029632fb 9972 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9973#endif
9974#endif /* SMP */
9975
9976}