perf: core: Use hrtimer_start()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
64192658 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
074c2381
MG
1625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
04bb2f94 1628 */
074c2381 1629 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1632
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1635
1636 return;
1637 }
1638
1639 /*
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 */
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655 /*
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1662 */
2847c90e 1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 }
1666
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
7e2703e6
RR
1672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1685
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1691 *period = p->se.avg.avg_period;
7e2703e6
RR
1692 }
1693
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1696
1697 return delta;
1698}
1699
54009416
RR
1700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707 nodemask_t nodes;
1708 int dist;
1709
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1713
1714 /*
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1718 */
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1722
1723 dist = sched_max_numa_distance;
1724
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1730 }
1731 }
1732 return max_node;
1733 }
1734
1735 /*
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1743 */
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
81907478 1747 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1748 int a, b;
1749
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1753
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1758
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1765 }
1766 }
1767
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1772 /*
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1776 */
1777 nid = a;
1778 }
1779 }
1780 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1781 if (!max_faults)
1782 break;
54009416
RR
1783 nodes = max_group;
1784 }
1785 return nid;
1786}
1787
cbee9f88
PZ
1788static void task_numa_placement(struct task_struct *p)
1789{
83e1d2cd
MG
1790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1792 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1793 unsigned long total_faults;
1794 u64 runtime, period;
7dbd13ed 1795 spinlock_t *group_lock = NULL;
cbee9f88 1796
2832bc19 1797 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1798 if (p->numa_scan_seq == seq)
1799 return;
1800 p->numa_scan_seq = seq;
598f0ec0 1801 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1802
7e2703e6
RR
1803 total_faults = p->numa_faults_locality[0] +
1804 p->numa_faults_locality[1];
1805 runtime = numa_get_avg_runtime(p, &period);
1806
7dbd13ed
MG
1807 /* If the task is part of a group prevent parallel updates to group stats */
1808 if (p->numa_group) {
1809 group_lock = &p->numa_group->lock;
60e69eed 1810 spin_lock_irq(group_lock);
7dbd13ed
MG
1811 }
1812
688b7585
MG
1813 /* Find the node with the highest number of faults */
1814 for_each_online_node(nid) {
44dba3d5
IM
1815 /* Keep track of the offsets in numa_faults array */
1816 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1817 unsigned long faults = 0, group_faults = 0;
44dba3d5 1818 int priv;
745d6147 1819
be1e4e76 1820 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1821 long diff, f_diff, f_weight;
8c8a743c 1822
44dba3d5
IM
1823 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1824 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1825 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1826 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1827
ac8e895b 1828 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1829 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1830 fault_types[priv] += p->numa_faults[membuf_idx];
1831 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1832
7e2703e6
RR
1833 /*
1834 * Normalize the faults_from, so all tasks in a group
1835 * count according to CPU use, instead of by the raw
1836 * number of faults. Tasks with little runtime have
1837 * little over-all impact on throughput, and thus their
1838 * faults are less important.
1839 */
1840 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1841 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1842 (total_faults + 1);
44dba3d5
IM
1843 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1844 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1845
44dba3d5
IM
1846 p->numa_faults[mem_idx] += diff;
1847 p->numa_faults[cpu_idx] += f_diff;
1848 faults += p->numa_faults[mem_idx];
83e1d2cd 1849 p->total_numa_faults += diff;
8c8a743c 1850 if (p->numa_group) {
44dba3d5
IM
1851 /*
1852 * safe because we can only change our own group
1853 *
1854 * mem_idx represents the offset for a given
1855 * nid and priv in a specific region because it
1856 * is at the beginning of the numa_faults array.
1857 */
1858 p->numa_group->faults[mem_idx] += diff;
1859 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1860 p->numa_group->total_faults += diff;
44dba3d5 1861 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1862 }
ac8e895b
MG
1863 }
1864
688b7585
MG
1865 if (faults > max_faults) {
1866 max_faults = faults;
1867 max_nid = nid;
1868 }
83e1d2cd
MG
1869
1870 if (group_faults > max_group_faults) {
1871 max_group_faults = group_faults;
1872 max_group_nid = nid;
1873 }
1874 }
1875
04bb2f94
RR
1876 update_task_scan_period(p, fault_types[0], fault_types[1]);
1877
7dbd13ed 1878 if (p->numa_group) {
20e07dea 1879 update_numa_active_node_mask(p->numa_group);
60e69eed 1880 spin_unlock_irq(group_lock);
54009416 1881 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1882 }
1883
bb97fc31
RR
1884 if (max_faults) {
1885 /* Set the new preferred node */
1886 if (max_nid != p->numa_preferred_nid)
1887 sched_setnuma(p, max_nid);
1888
1889 if (task_node(p) != p->numa_preferred_nid)
1890 numa_migrate_preferred(p);
3a7053b3 1891 }
cbee9f88
PZ
1892}
1893
8c8a743c
PZ
1894static inline int get_numa_group(struct numa_group *grp)
1895{
1896 return atomic_inc_not_zero(&grp->refcount);
1897}
1898
1899static inline void put_numa_group(struct numa_group *grp)
1900{
1901 if (atomic_dec_and_test(&grp->refcount))
1902 kfree_rcu(grp, rcu);
1903}
1904
3e6a9418
MG
1905static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1906 int *priv)
8c8a743c
PZ
1907{
1908 struct numa_group *grp, *my_grp;
1909 struct task_struct *tsk;
1910 bool join = false;
1911 int cpu = cpupid_to_cpu(cpupid);
1912 int i;
1913
1914 if (unlikely(!p->numa_group)) {
1915 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1916 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1917
1918 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1919 if (!grp)
1920 return;
1921
1922 atomic_set(&grp->refcount, 1);
1923 spin_lock_init(&grp->lock);
e29cf08b 1924 grp->gid = p->pid;
50ec8a40 1925 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1926 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1927 nr_node_ids;
8c8a743c 1928
20e07dea
RR
1929 node_set(task_node(current), grp->active_nodes);
1930
be1e4e76 1931 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1932 grp->faults[i] = p->numa_faults[i];
8c8a743c 1933
989348b5 1934 grp->total_faults = p->total_numa_faults;
83e1d2cd 1935
8c8a743c
PZ
1936 grp->nr_tasks++;
1937 rcu_assign_pointer(p->numa_group, grp);
1938 }
1939
1940 rcu_read_lock();
1941 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1942
1943 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1944 goto no_join;
8c8a743c
PZ
1945
1946 grp = rcu_dereference(tsk->numa_group);
1947 if (!grp)
3354781a 1948 goto no_join;
8c8a743c
PZ
1949
1950 my_grp = p->numa_group;
1951 if (grp == my_grp)
3354781a 1952 goto no_join;
8c8a743c
PZ
1953
1954 /*
1955 * Only join the other group if its bigger; if we're the bigger group,
1956 * the other task will join us.
1957 */
1958 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1959 goto no_join;
8c8a743c
PZ
1960
1961 /*
1962 * Tie-break on the grp address.
1963 */
1964 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1965 goto no_join;
8c8a743c 1966
dabe1d99
RR
1967 /* Always join threads in the same process. */
1968 if (tsk->mm == current->mm)
1969 join = true;
1970
1971 /* Simple filter to avoid false positives due to PID collisions */
1972 if (flags & TNF_SHARED)
1973 join = true;
8c8a743c 1974
3e6a9418
MG
1975 /* Update priv based on whether false sharing was detected */
1976 *priv = !join;
1977
dabe1d99 1978 if (join && !get_numa_group(grp))
3354781a 1979 goto no_join;
8c8a743c 1980
8c8a743c
PZ
1981 rcu_read_unlock();
1982
1983 if (!join)
1984 return;
1985
60e69eed
MG
1986 BUG_ON(irqs_disabled());
1987 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1988
be1e4e76 1989 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1990 my_grp->faults[i] -= p->numa_faults[i];
1991 grp->faults[i] += p->numa_faults[i];
8c8a743c 1992 }
989348b5
MG
1993 my_grp->total_faults -= p->total_numa_faults;
1994 grp->total_faults += p->total_numa_faults;
8c8a743c 1995
8c8a743c
PZ
1996 my_grp->nr_tasks--;
1997 grp->nr_tasks++;
1998
1999 spin_unlock(&my_grp->lock);
60e69eed 2000 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2001
2002 rcu_assign_pointer(p->numa_group, grp);
2003
2004 put_numa_group(my_grp);
3354781a
PZ
2005 return;
2006
2007no_join:
2008 rcu_read_unlock();
2009 return;
8c8a743c
PZ
2010}
2011
2012void task_numa_free(struct task_struct *p)
2013{
2014 struct numa_group *grp = p->numa_group;
44dba3d5 2015 void *numa_faults = p->numa_faults;
e9dd685c
SR
2016 unsigned long flags;
2017 int i;
8c8a743c
PZ
2018
2019 if (grp) {
e9dd685c 2020 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2021 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2022 grp->faults[i] -= p->numa_faults[i];
989348b5 2023 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2024
8c8a743c 2025 grp->nr_tasks--;
e9dd685c 2026 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2027 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2028 put_numa_group(grp);
2029 }
2030
44dba3d5 2031 p->numa_faults = NULL;
82727018 2032 kfree(numa_faults);
8c8a743c
PZ
2033}
2034
cbee9f88
PZ
2035/*
2036 * Got a PROT_NONE fault for a page on @node.
2037 */
58b46da3 2038void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2039{
2040 struct task_struct *p = current;
6688cc05 2041 bool migrated = flags & TNF_MIGRATED;
58b46da3 2042 int cpu_node = task_node(current);
792568ec 2043 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2044 int priv;
cbee9f88 2045
10e84b97 2046 if (!numabalancing_enabled)
1a687c2e
MG
2047 return;
2048
9ff1d9ff
MG
2049 /* for example, ksmd faulting in a user's mm */
2050 if (!p->mm)
2051 return;
2052
f809ca9a 2053 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2054 if (unlikely(!p->numa_faults)) {
2055 int size = sizeof(*p->numa_faults) *
be1e4e76 2056 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2057
44dba3d5
IM
2058 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2059 if (!p->numa_faults)
f809ca9a 2060 return;
745d6147 2061
83e1d2cd 2062 p->total_numa_faults = 0;
04bb2f94 2063 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2064 }
cbee9f88 2065
8c8a743c
PZ
2066 /*
2067 * First accesses are treated as private, otherwise consider accesses
2068 * to be private if the accessing pid has not changed
2069 */
2070 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2071 priv = 1;
2072 } else {
2073 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2074 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2075 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2076 }
2077
792568ec
RR
2078 /*
2079 * If a workload spans multiple NUMA nodes, a shared fault that
2080 * occurs wholly within the set of nodes that the workload is
2081 * actively using should be counted as local. This allows the
2082 * scan rate to slow down when a workload has settled down.
2083 */
2084 if (!priv && !local && p->numa_group &&
2085 node_isset(cpu_node, p->numa_group->active_nodes) &&
2086 node_isset(mem_node, p->numa_group->active_nodes))
2087 local = 1;
2088
cbee9f88 2089 task_numa_placement(p);
f809ca9a 2090
2739d3ee
RR
2091 /*
2092 * Retry task to preferred node migration periodically, in case it
2093 * case it previously failed, or the scheduler moved us.
2094 */
2095 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2096 numa_migrate_preferred(p);
2097
b32e86b4
IM
2098 if (migrated)
2099 p->numa_pages_migrated += pages;
074c2381
MG
2100 if (flags & TNF_MIGRATE_FAIL)
2101 p->numa_faults_locality[2] += pages;
b32e86b4 2102
44dba3d5
IM
2103 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2104 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2105 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2106}
2107
6e5fb223
PZ
2108static void reset_ptenuma_scan(struct task_struct *p)
2109{
2110 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2111 p->mm->numa_scan_offset = 0;
2112}
2113
cbee9f88
PZ
2114/*
2115 * The expensive part of numa migration is done from task_work context.
2116 * Triggered from task_tick_numa().
2117 */
2118void task_numa_work(struct callback_head *work)
2119{
2120 unsigned long migrate, next_scan, now = jiffies;
2121 struct task_struct *p = current;
2122 struct mm_struct *mm = p->mm;
6e5fb223 2123 struct vm_area_struct *vma;
9f40604c 2124 unsigned long start, end;
598f0ec0 2125 unsigned long nr_pte_updates = 0;
9f40604c 2126 long pages;
cbee9f88
PZ
2127
2128 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2129
2130 work->next = work; /* protect against double add */
2131 /*
2132 * Who cares about NUMA placement when they're dying.
2133 *
2134 * NOTE: make sure not to dereference p->mm before this check,
2135 * exit_task_work() happens _after_ exit_mm() so we could be called
2136 * without p->mm even though we still had it when we enqueued this
2137 * work.
2138 */
2139 if (p->flags & PF_EXITING)
2140 return;
2141
930aa174 2142 if (!mm->numa_next_scan) {
7e8d16b6
MG
2143 mm->numa_next_scan = now +
2144 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2145 }
2146
cbee9f88
PZ
2147 /*
2148 * Enforce maximal scan/migration frequency..
2149 */
2150 migrate = mm->numa_next_scan;
2151 if (time_before(now, migrate))
2152 return;
2153
598f0ec0
MG
2154 if (p->numa_scan_period == 0) {
2155 p->numa_scan_period_max = task_scan_max(p);
2156 p->numa_scan_period = task_scan_min(p);
2157 }
cbee9f88 2158
fb003b80 2159 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2160 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2161 return;
2162
19a78d11
PZ
2163 /*
2164 * Delay this task enough that another task of this mm will likely win
2165 * the next time around.
2166 */
2167 p->node_stamp += 2 * TICK_NSEC;
2168
9f40604c
MG
2169 start = mm->numa_scan_offset;
2170 pages = sysctl_numa_balancing_scan_size;
2171 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2172 if (!pages)
2173 return;
cbee9f88 2174
6e5fb223 2175 down_read(&mm->mmap_sem);
9f40604c 2176 vma = find_vma(mm, start);
6e5fb223
PZ
2177 if (!vma) {
2178 reset_ptenuma_scan(p);
9f40604c 2179 start = 0;
6e5fb223
PZ
2180 vma = mm->mmap;
2181 }
9f40604c 2182 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2183 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2184 is_vm_hugetlb_page(vma)) {
6e5fb223 2185 continue;
6b79c57b 2186 }
6e5fb223 2187
4591ce4f
MG
2188 /*
2189 * Shared library pages mapped by multiple processes are not
2190 * migrated as it is expected they are cache replicated. Avoid
2191 * hinting faults in read-only file-backed mappings or the vdso
2192 * as migrating the pages will be of marginal benefit.
2193 */
2194 if (!vma->vm_mm ||
2195 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2196 continue;
2197
3c67f474
MG
2198 /*
2199 * Skip inaccessible VMAs to avoid any confusion between
2200 * PROT_NONE and NUMA hinting ptes
2201 */
2202 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2203 continue;
4591ce4f 2204
9f40604c
MG
2205 do {
2206 start = max(start, vma->vm_start);
2207 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2208 end = min(end, vma->vm_end);
598f0ec0
MG
2209 nr_pte_updates += change_prot_numa(vma, start, end);
2210
2211 /*
2212 * Scan sysctl_numa_balancing_scan_size but ensure that
2213 * at least one PTE is updated so that unused virtual
2214 * address space is quickly skipped.
2215 */
2216 if (nr_pte_updates)
2217 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2218
9f40604c
MG
2219 start = end;
2220 if (pages <= 0)
2221 goto out;
3cf1962c
RR
2222
2223 cond_resched();
9f40604c 2224 } while (end != vma->vm_end);
cbee9f88 2225 }
6e5fb223 2226
9f40604c 2227out:
6e5fb223 2228 /*
c69307d5
PZ
2229 * It is possible to reach the end of the VMA list but the last few
2230 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2231 * would find the !migratable VMA on the next scan but not reset the
2232 * scanner to the start so check it now.
6e5fb223
PZ
2233 */
2234 if (vma)
9f40604c 2235 mm->numa_scan_offset = start;
6e5fb223
PZ
2236 else
2237 reset_ptenuma_scan(p);
2238 up_read(&mm->mmap_sem);
cbee9f88
PZ
2239}
2240
2241/*
2242 * Drive the periodic memory faults..
2243 */
2244void task_tick_numa(struct rq *rq, struct task_struct *curr)
2245{
2246 struct callback_head *work = &curr->numa_work;
2247 u64 period, now;
2248
2249 /*
2250 * We don't care about NUMA placement if we don't have memory.
2251 */
2252 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2253 return;
2254
2255 /*
2256 * Using runtime rather than walltime has the dual advantage that
2257 * we (mostly) drive the selection from busy threads and that the
2258 * task needs to have done some actual work before we bother with
2259 * NUMA placement.
2260 */
2261 now = curr->se.sum_exec_runtime;
2262 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2263
2264 if (now - curr->node_stamp > period) {
4b96a29b 2265 if (!curr->node_stamp)
598f0ec0 2266 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2267 curr->node_stamp += period;
cbee9f88
PZ
2268
2269 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2270 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2271 task_work_add(curr, work, true);
2272 }
2273 }
2274}
2275#else
2276static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2277{
2278}
0ec8aa00
PZ
2279
2280static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2281{
2282}
2283
2284static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2285{
2286}
cbee9f88
PZ
2287#endif /* CONFIG_NUMA_BALANCING */
2288
30cfdcfc
DA
2289static void
2290account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2291{
2292 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2293 if (!parent_entity(se))
029632fb 2294 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2295#ifdef CONFIG_SMP
0ec8aa00
PZ
2296 if (entity_is_task(se)) {
2297 struct rq *rq = rq_of(cfs_rq);
2298
2299 account_numa_enqueue(rq, task_of(se));
2300 list_add(&se->group_node, &rq->cfs_tasks);
2301 }
367456c7 2302#endif
30cfdcfc 2303 cfs_rq->nr_running++;
30cfdcfc
DA
2304}
2305
2306static void
2307account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2308{
2309 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2310 if (!parent_entity(se))
029632fb 2311 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2312 if (entity_is_task(se)) {
2313 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2314 list_del_init(&se->group_node);
0ec8aa00 2315 }
30cfdcfc 2316 cfs_rq->nr_running--;
30cfdcfc
DA
2317}
2318
3ff6dcac
YZ
2319#ifdef CONFIG_FAIR_GROUP_SCHED
2320# ifdef CONFIG_SMP
cf5f0acf
PZ
2321static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2322{
2323 long tg_weight;
2324
2325 /*
2326 * Use this CPU's actual weight instead of the last load_contribution
2327 * to gain a more accurate current total weight. See
2328 * update_cfs_rq_load_contribution().
2329 */
bf5b986e 2330 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2331 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2332 tg_weight += cfs_rq->load.weight;
2333
2334 return tg_weight;
2335}
2336
6d5ab293 2337static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2338{
cf5f0acf 2339 long tg_weight, load, shares;
3ff6dcac 2340
cf5f0acf 2341 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2342 load = cfs_rq->load.weight;
3ff6dcac 2343
3ff6dcac 2344 shares = (tg->shares * load);
cf5f0acf
PZ
2345 if (tg_weight)
2346 shares /= tg_weight;
3ff6dcac
YZ
2347
2348 if (shares < MIN_SHARES)
2349 shares = MIN_SHARES;
2350 if (shares > tg->shares)
2351 shares = tg->shares;
2352
2353 return shares;
2354}
3ff6dcac 2355# else /* CONFIG_SMP */
6d5ab293 2356static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2357{
2358 return tg->shares;
2359}
3ff6dcac 2360# endif /* CONFIG_SMP */
2069dd75
PZ
2361static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2362 unsigned long weight)
2363{
19e5eebb
PT
2364 if (se->on_rq) {
2365 /* commit outstanding execution time */
2366 if (cfs_rq->curr == se)
2367 update_curr(cfs_rq);
2069dd75 2368 account_entity_dequeue(cfs_rq, se);
19e5eebb 2369 }
2069dd75
PZ
2370
2371 update_load_set(&se->load, weight);
2372
2373 if (se->on_rq)
2374 account_entity_enqueue(cfs_rq, se);
2375}
2376
82958366
PT
2377static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2378
6d5ab293 2379static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2380{
2381 struct task_group *tg;
2382 struct sched_entity *se;
3ff6dcac 2383 long shares;
2069dd75 2384
2069dd75
PZ
2385 tg = cfs_rq->tg;
2386 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2387 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2388 return;
3ff6dcac
YZ
2389#ifndef CONFIG_SMP
2390 if (likely(se->load.weight == tg->shares))
2391 return;
2392#endif
6d5ab293 2393 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2394
2395 reweight_entity(cfs_rq_of(se), se, shares);
2396}
2397#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2398static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2399{
2400}
2401#endif /* CONFIG_FAIR_GROUP_SCHED */
2402
141965c7 2403#ifdef CONFIG_SMP
5b51f2f8
PT
2404/*
2405 * We choose a half-life close to 1 scheduling period.
2406 * Note: The tables below are dependent on this value.
2407 */
2408#define LOAD_AVG_PERIOD 32
2409#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2410#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2411
2412/* Precomputed fixed inverse multiplies for multiplication by y^n */
2413static const u32 runnable_avg_yN_inv[] = {
2414 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2415 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2416 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2417 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2418 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2419 0x85aac367, 0x82cd8698,
2420};
2421
2422/*
2423 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2424 * over-estimates when re-combining.
2425 */
2426static const u32 runnable_avg_yN_sum[] = {
2427 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2428 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2429 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2430};
2431
9d85f21c
PT
2432/*
2433 * Approximate:
2434 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2435 */
2436static __always_inline u64 decay_load(u64 val, u64 n)
2437{
5b51f2f8
PT
2438 unsigned int local_n;
2439
2440 if (!n)
2441 return val;
2442 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2443 return 0;
2444
2445 /* after bounds checking we can collapse to 32-bit */
2446 local_n = n;
2447
2448 /*
2449 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2450 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2451 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2452 *
2453 * To achieve constant time decay_load.
2454 */
2455 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2456 val >>= local_n / LOAD_AVG_PERIOD;
2457 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2458 }
2459
5b51f2f8
PT
2460 val *= runnable_avg_yN_inv[local_n];
2461 /* We don't use SRR here since we always want to round down. */
2462 return val >> 32;
2463}
2464
2465/*
2466 * For updates fully spanning n periods, the contribution to runnable
2467 * average will be: \Sum 1024*y^n
2468 *
2469 * We can compute this reasonably efficiently by combining:
2470 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2471 */
2472static u32 __compute_runnable_contrib(u64 n)
2473{
2474 u32 contrib = 0;
2475
2476 if (likely(n <= LOAD_AVG_PERIOD))
2477 return runnable_avg_yN_sum[n];
2478 else if (unlikely(n >= LOAD_AVG_MAX_N))
2479 return LOAD_AVG_MAX;
2480
2481 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2482 do {
2483 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2484 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2485
2486 n -= LOAD_AVG_PERIOD;
2487 } while (n > LOAD_AVG_PERIOD);
2488
2489 contrib = decay_load(contrib, n);
2490 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2491}
2492
2493/*
2494 * We can represent the historical contribution to runnable average as the
2495 * coefficients of a geometric series. To do this we sub-divide our runnable
2496 * history into segments of approximately 1ms (1024us); label the segment that
2497 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2498 *
2499 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2500 * p0 p1 p2
2501 * (now) (~1ms ago) (~2ms ago)
2502 *
2503 * Let u_i denote the fraction of p_i that the entity was runnable.
2504 *
2505 * We then designate the fractions u_i as our co-efficients, yielding the
2506 * following representation of historical load:
2507 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2508 *
2509 * We choose y based on the with of a reasonably scheduling period, fixing:
2510 * y^32 = 0.5
2511 *
2512 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2513 * approximately half as much as the contribution to load within the last ms
2514 * (u_0).
2515 *
2516 * When a period "rolls over" and we have new u_0`, multiplying the previous
2517 * sum again by y is sufficient to update:
2518 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2519 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2520 */
0c1dc6b2 2521static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2522 struct sched_avg *sa,
36ee28e4
VG
2523 int runnable,
2524 int running)
9d85f21c 2525{
5b51f2f8
PT
2526 u64 delta, periods;
2527 u32 runnable_contrib;
9d85f21c 2528 int delta_w, decayed = 0;
0c1dc6b2 2529 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2530
2531 delta = now - sa->last_runnable_update;
2532 /*
2533 * This should only happen when time goes backwards, which it
2534 * unfortunately does during sched clock init when we swap over to TSC.
2535 */
2536 if ((s64)delta < 0) {
2537 sa->last_runnable_update = now;
2538 return 0;
2539 }
2540
2541 /*
2542 * Use 1024ns as the unit of measurement since it's a reasonable
2543 * approximation of 1us and fast to compute.
2544 */
2545 delta >>= 10;
2546 if (!delta)
2547 return 0;
2548 sa->last_runnable_update = now;
2549
2550 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2551 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2552 if (delta + delta_w >= 1024) {
2553 /* period roll-over */
2554 decayed = 1;
2555
2556 /*
2557 * Now that we know we're crossing a period boundary, figure
2558 * out how much from delta we need to complete the current
2559 * period and accrue it.
2560 */
2561 delta_w = 1024 - delta_w;
5b51f2f8
PT
2562 if (runnable)
2563 sa->runnable_avg_sum += delta_w;
36ee28e4 2564 if (running)
0c1dc6b2
MR
2565 sa->running_avg_sum += delta_w * scale_freq
2566 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2567 sa->avg_period += delta_w;
5b51f2f8
PT
2568
2569 delta -= delta_w;
2570
2571 /* Figure out how many additional periods this update spans */
2572 periods = delta / 1024;
2573 delta %= 1024;
2574
2575 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2576 periods + 1);
36ee28e4
VG
2577 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2578 periods + 1);
2579 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2580 periods + 1);
2581
2582 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2583 runnable_contrib = __compute_runnable_contrib(periods);
2584 if (runnable)
2585 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2586 if (running)
0c1dc6b2
MR
2587 sa->running_avg_sum += runnable_contrib * scale_freq
2588 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2589 sa->avg_period += runnable_contrib;
9d85f21c
PT
2590 }
2591
2592 /* Remainder of delta accrued against u_0` */
2593 if (runnable)
2594 sa->runnable_avg_sum += delta;
36ee28e4 2595 if (running)
0c1dc6b2
MR
2596 sa->running_avg_sum += delta * scale_freq
2597 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2598 sa->avg_period += delta;
9d85f21c
PT
2599
2600 return decayed;
2601}
2602
9ee474f5 2603/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2604static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2605{
2606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2607 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2608
2609 decays -= se->avg.decay_count;
63847600 2610 se->avg.decay_count = 0;
9ee474f5 2611 if (!decays)
aff3e498 2612 return 0;
9ee474f5
PT
2613
2614 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2615 se->avg.utilization_avg_contrib =
2616 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2617
2618 return decays;
9ee474f5
PT
2619}
2620
c566e8e9
PT
2621#ifdef CONFIG_FAIR_GROUP_SCHED
2622static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2623 int force_update)
2624{
2625 struct task_group *tg = cfs_rq->tg;
bf5b986e 2626 long tg_contrib;
c566e8e9
PT
2627
2628 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2629 tg_contrib -= cfs_rq->tg_load_contrib;
2630
8236d907
JL
2631 if (!tg_contrib)
2632 return;
2633
bf5b986e
AS
2634 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2635 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2636 cfs_rq->tg_load_contrib += tg_contrib;
2637 }
2638}
8165e145 2639
bb17f655
PT
2640/*
2641 * Aggregate cfs_rq runnable averages into an equivalent task_group
2642 * representation for computing load contributions.
2643 */
2644static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2645 struct cfs_rq *cfs_rq)
2646{
2647 struct task_group *tg = cfs_rq->tg;
2648 long contrib;
2649
2650 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2651 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2652 sa->avg_period + 1);
bb17f655
PT
2653 contrib -= cfs_rq->tg_runnable_contrib;
2654
2655 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2656 atomic_add(contrib, &tg->runnable_avg);
2657 cfs_rq->tg_runnable_contrib += contrib;
2658 }
2659}
2660
8165e145
PT
2661static inline void __update_group_entity_contrib(struct sched_entity *se)
2662{
2663 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2664 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2665 int runnable_avg;
2666
8165e145
PT
2667 u64 contrib;
2668
2669 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2670 se->avg.load_avg_contrib = div_u64(contrib,
2671 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2672
2673 /*
2674 * For group entities we need to compute a correction term in the case
2675 * that they are consuming <1 cpu so that we would contribute the same
2676 * load as a task of equal weight.
2677 *
2678 * Explicitly co-ordinating this measurement would be expensive, but
2679 * fortunately the sum of each cpus contribution forms a usable
2680 * lower-bound on the true value.
2681 *
2682 * Consider the aggregate of 2 contributions. Either they are disjoint
2683 * (and the sum represents true value) or they are disjoint and we are
2684 * understating by the aggregate of their overlap.
2685 *
2686 * Extending this to N cpus, for a given overlap, the maximum amount we
2687 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2688 * cpus that overlap for this interval and w_i is the interval width.
2689 *
2690 * On a small machine; the first term is well-bounded which bounds the
2691 * total error since w_i is a subset of the period. Whereas on a
2692 * larger machine, while this first term can be larger, if w_i is the
2693 * of consequential size guaranteed to see n_i*w_i quickly converge to
2694 * our upper bound of 1-cpu.
2695 */
2696 runnable_avg = atomic_read(&tg->runnable_avg);
2697 if (runnable_avg < NICE_0_LOAD) {
2698 se->avg.load_avg_contrib *= runnable_avg;
2699 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2700 }
8165e145 2701}
f5f9739d
DE
2702
2703static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2704{
0c1dc6b2
MR
2705 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2706 runnable, runnable);
f5f9739d
DE
2707 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2708}
6e83125c 2709#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2710static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2711 int force_update) {}
bb17f655
PT
2712static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2713 struct cfs_rq *cfs_rq) {}
8165e145 2714static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2715static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2716#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2717
8165e145
PT
2718static inline void __update_task_entity_contrib(struct sched_entity *se)
2719{
2720 u32 contrib;
2721
2722 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2723 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2724 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2725 se->avg.load_avg_contrib = scale_load(contrib);
2726}
2727
2dac754e
PT
2728/* Compute the current contribution to load_avg by se, return any delta */
2729static long __update_entity_load_avg_contrib(struct sched_entity *se)
2730{
2731 long old_contrib = se->avg.load_avg_contrib;
2732
8165e145
PT
2733 if (entity_is_task(se)) {
2734 __update_task_entity_contrib(se);
2735 } else {
bb17f655 2736 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2737 __update_group_entity_contrib(se);
2738 }
2dac754e
PT
2739
2740 return se->avg.load_avg_contrib - old_contrib;
2741}
2742
36ee28e4
VG
2743
2744static inline void __update_task_entity_utilization(struct sched_entity *se)
2745{
2746 u32 contrib;
2747
2748 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2749 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2750 contrib /= (se->avg.avg_period + 1);
2751 se->avg.utilization_avg_contrib = scale_load(contrib);
2752}
2753
2754static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2755{
2756 long old_contrib = se->avg.utilization_avg_contrib;
2757
2758 if (entity_is_task(se))
2759 __update_task_entity_utilization(se);
21f44866
MR
2760 else
2761 se->avg.utilization_avg_contrib =
2762 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2763
2764 return se->avg.utilization_avg_contrib - old_contrib;
2765}
2766
9ee474f5
PT
2767static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2768 long load_contrib)
2769{
2770 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2771 cfs_rq->blocked_load_avg -= load_contrib;
2772 else
2773 cfs_rq->blocked_load_avg = 0;
2774}
2775
f1b17280
PT
2776static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2777
9d85f21c 2778/* Update a sched_entity's runnable average */
9ee474f5
PT
2779static inline void update_entity_load_avg(struct sched_entity *se,
2780 int update_cfs_rq)
9d85f21c 2781{
2dac754e 2782 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2783 long contrib_delta, utilization_delta;
0c1dc6b2 2784 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2785 u64 now;
2dac754e 2786
f1b17280
PT
2787 /*
2788 * For a group entity we need to use their owned cfs_rq_clock_task() in
2789 * case they are the parent of a throttled hierarchy.
2790 */
2791 if (entity_is_task(se))
2792 now = cfs_rq_clock_task(cfs_rq);
2793 else
2794 now = cfs_rq_clock_task(group_cfs_rq(se));
2795
0c1dc6b2 2796 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2797 cfs_rq->curr == se))
2dac754e
PT
2798 return;
2799
2800 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2801 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2802
2803 if (!update_cfs_rq)
2804 return;
2805
36ee28e4 2806 if (se->on_rq) {
2dac754e 2807 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2808 cfs_rq->utilization_load_avg += utilization_delta;
2809 } else {
9ee474f5 2810 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2811 }
9ee474f5
PT
2812}
2813
2814/*
2815 * Decay the load contributed by all blocked children and account this so that
2816 * their contribution may appropriately discounted when they wake up.
2817 */
aff3e498 2818static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2819{
f1b17280 2820 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2821 u64 decays;
2822
2823 decays = now - cfs_rq->last_decay;
aff3e498 2824 if (!decays && !force_update)
9ee474f5
PT
2825 return;
2826
2509940f
AS
2827 if (atomic_long_read(&cfs_rq->removed_load)) {
2828 unsigned long removed_load;
2829 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2830 subtract_blocked_load_contrib(cfs_rq, removed_load);
2831 }
9ee474f5 2832
aff3e498
PT
2833 if (decays) {
2834 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2835 decays);
2836 atomic64_add(decays, &cfs_rq->decay_counter);
2837 cfs_rq->last_decay = now;
2838 }
c566e8e9
PT
2839
2840 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2841}
18bf2805 2842
2dac754e
PT
2843/* Add the load generated by se into cfs_rq's child load-average */
2844static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2845 struct sched_entity *se,
2846 int wakeup)
2dac754e 2847{
aff3e498
PT
2848 /*
2849 * We track migrations using entity decay_count <= 0, on a wake-up
2850 * migration we use a negative decay count to track the remote decays
2851 * accumulated while sleeping.
a75cdaa9
AS
2852 *
2853 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2854 * are seen by enqueue_entity_load_avg() as a migration with an already
2855 * constructed load_avg_contrib.
aff3e498
PT
2856 */
2857 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2858 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2859 if (se->avg.decay_count) {
2860 /*
2861 * In a wake-up migration we have to approximate the
2862 * time sleeping. This is because we can't synchronize
2863 * clock_task between the two cpus, and it is not
2864 * guaranteed to be read-safe. Instead, we can
2865 * approximate this using our carried decays, which are
2866 * explicitly atomically readable.
2867 */
2868 se->avg.last_runnable_update -= (-se->avg.decay_count)
2869 << 20;
2870 update_entity_load_avg(se, 0);
2871 /* Indicate that we're now synchronized and on-rq */
2872 se->avg.decay_count = 0;
2873 }
9ee474f5
PT
2874 wakeup = 0;
2875 } else {
9390675a 2876 __synchronize_entity_decay(se);
9ee474f5
PT
2877 }
2878
aff3e498
PT
2879 /* migrated tasks did not contribute to our blocked load */
2880 if (wakeup) {
9ee474f5 2881 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2882 update_entity_load_avg(se, 0);
2883 }
9ee474f5 2884
2dac754e 2885 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2886 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2887 /* we force update consideration on load-balancer moves */
2888 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2889}
2890
9ee474f5
PT
2891/*
2892 * Remove se's load from this cfs_rq child load-average, if the entity is
2893 * transitioning to a blocked state we track its projected decay using
2894 * blocked_load_avg.
2895 */
2dac754e 2896static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2897 struct sched_entity *se,
2898 int sleep)
2dac754e 2899{
9ee474f5 2900 update_entity_load_avg(se, 1);
aff3e498
PT
2901 /* we force update consideration on load-balancer moves */
2902 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2903
2dac754e 2904 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2905 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2906 if (sleep) {
2907 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2908 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2909 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2910}
642dbc39
VG
2911
2912/*
2913 * Update the rq's load with the elapsed running time before entering
2914 * idle. if the last scheduled task is not a CFS task, idle_enter will
2915 * be the only way to update the runnable statistic.
2916 */
2917void idle_enter_fair(struct rq *this_rq)
2918{
2919 update_rq_runnable_avg(this_rq, 1);
2920}
2921
2922/*
2923 * Update the rq's load with the elapsed idle time before a task is
2924 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2925 * be the only way to update the runnable statistic.
2926 */
2927void idle_exit_fair(struct rq *this_rq)
2928{
2929 update_rq_runnable_avg(this_rq, 0);
2930}
2931
6e83125c
PZ
2932static int idle_balance(struct rq *this_rq);
2933
38033c37
PZ
2934#else /* CONFIG_SMP */
2935
9ee474f5
PT
2936static inline void update_entity_load_avg(struct sched_entity *se,
2937 int update_cfs_rq) {}
18bf2805 2938static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2939static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2940 struct sched_entity *se,
2941 int wakeup) {}
2dac754e 2942static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2943 struct sched_entity *se,
2944 int sleep) {}
aff3e498
PT
2945static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2946 int force_update) {}
6e83125c
PZ
2947
2948static inline int idle_balance(struct rq *rq)
2949{
2950 return 0;
2951}
2952
38033c37 2953#endif /* CONFIG_SMP */
9d85f21c 2954
2396af69 2955static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2956{
bf0f6f24 2957#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2958 struct task_struct *tsk = NULL;
2959
2960 if (entity_is_task(se))
2961 tsk = task_of(se);
2962
41acab88 2963 if (se->statistics.sleep_start) {
78becc27 2964 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2965
2966 if ((s64)delta < 0)
2967 delta = 0;
2968
41acab88
LDM
2969 if (unlikely(delta > se->statistics.sleep_max))
2970 se->statistics.sleep_max = delta;
bf0f6f24 2971
8c79a045 2972 se->statistics.sleep_start = 0;
41acab88 2973 se->statistics.sum_sleep_runtime += delta;
9745512c 2974
768d0c27 2975 if (tsk) {
e414314c 2976 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2977 trace_sched_stat_sleep(tsk, delta);
2978 }
bf0f6f24 2979 }
41acab88 2980 if (se->statistics.block_start) {
78becc27 2981 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2982
2983 if ((s64)delta < 0)
2984 delta = 0;
2985
41acab88
LDM
2986 if (unlikely(delta > se->statistics.block_max))
2987 se->statistics.block_max = delta;
bf0f6f24 2988
8c79a045 2989 se->statistics.block_start = 0;
41acab88 2990 se->statistics.sum_sleep_runtime += delta;
30084fbd 2991
e414314c 2992 if (tsk) {
8f0dfc34 2993 if (tsk->in_iowait) {
41acab88
LDM
2994 se->statistics.iowait_sum += delta;
2995 se->statistics.iowait_count++;
768d0c27 2996 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2997 }
2998
b781a602
AV
2999 trace_sched_stat_blocked(tsk, delta);
3000
e414314c
PZ
3001 /*
3002 * Blocking time is in units of nanosecs, so shift by
3003 * 20 to get a milliseconds-range estimation of the
3004 * amount of time that the task spent sleeping:
3005 */
3006 if (unlikely(prof_on == SLEEP_PROFILING)) {
3007 profile_hits(SLEEP_PROFILING,
3008 (void *)get_wchan(tsk),
3009 delta >> 20);
3010 }
3011 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3012 }
bf0f6f24
IM
3013 }
3014#endif
3015}
3016
ddc97297
PZ
3017static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3018{
3019#ifdef CONFIG_SCHED_DEBUG
3020 s64 d = se->vruntime - cfs_rq->min_vruntime;
3021
3022 if (d < 0)
3023 d = -d;
3024
3025 if (d > 3*sysctl_sched_latency)
3026 schedstat_inc(cfs_rq, nr_spread_over);
3027#endif
3028}
3029
aeb73b04
PZ
3030static void
3031place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3032{
1af5f730 3033 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3034
2cb8600e
PZ
3035 /*
3036 * The 'current' period is already promised to the current tasks,
3037 * however the extra weight of the new task will slow them down a
3038 * little, place the new task so that it fits in the slot that
3039 * stays open at the end.
3040 */
94dfb5e7 3041 if (initial && sched_feat(START_DEBIT))
f9c0b095 3042 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3043
a2e7a7eb 3044 /* sleeps up to a single latency don't count. */
5ca9880c 3045 if (!initial) {
a2e7a7eb 3046 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3047
a2e7a7eb
MG
3048 /*
3049 * Halve their sleep time's effect, to allow
3050 * for a gentler effect of sleepers:
3051 */
3052 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3053 thresh >>= 1;
51e0304c 3054
a2e7a7eb 3055 vruntime -= thresh;
aeb73b04
PZ
3056 }
3057
b5d9d734 3058 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3059 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3060}
3061
d3d9dc33
PT
3062static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3063
bf0f6f24 3064static void
88ec22d3 3065enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3066{
88ec22d3
PZ
3067 /*
3068 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3069 * through calling update_curr().
88ec22d3 3070 */
371fd7e7 3071 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3072 se->vruntime += cfs_rq->min_vruntime;
3073
bf0f6f24 3074 /*
a2a2d680 3075 * Update run-time statistics of the 'current'.
bf0f6f24 3076 */
b7cc0896 3077 update_curr(cfs_rq);
f269ae04 3078 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3079 account_entity_enqueue(cfs_rq, se);
3080 update_cfs_shares(cfs_rq);
bf0f6f24 3081
88ec22d3 3082 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3083 place_entity(cfs_rq, se, 0);
2396af69 3084 enqueue_sleeper(cfs_rq, se);
e9acbff6 3085 }
bf0f6f24 3086
d2417e5a 3087 update_stats_enqueue(cfs_rq, se);
ddc97297 3088 check_spread(cfs_rq, se);
83b699ed
SV
3089 if (se != cfs_rq->curr)
3090 __enqueue_entity(cfs_rq, se);
2069dd75 3091 se->on_rq = 1;
3d4b47b4 3092
d3d9dc33 3093 if (cfs_rq->nr_running == 1) {
3d4b47b4 3094 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3095 check_enqueue_throttle(cfs_rq);
3096 }
bf0f6f24
IM
3097}
3098
2c13c919 3099static void __clear_buddies_last(struct sched_entity *se)
2002c695 3100{
2c13c919
RR
3101 for_each_sched_entity(se) {
3102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3103 if (cfs_rq->last != se)
2c13c919 3104 break;
f1044799
PZ
3105
3106 cfs_rq->last = NULL;
2c13c919
RR
3107 }
3108}
2002c695 3109
2c13c919
RR
3110static void __clear_buddies_next(struct sched_entity *se)
3111{
3112 for_each_sched_entity(se) {
3113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3114 if (cfs_rq->next != se)
2c13c919 3115 break;
f1044799
PZ
3116
3117 cfs_rq->next = NULL;
2c13c919 3118 }
2002c695
PZ
3119}
3120
ac53db59
RR
3121static void __clear_buddies_skip(struct sched_entity *se)
3122{
3123 for_each_sched_entity(se) {
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3125 if (cfs_rq->skip != se)
ac53db59 3126 break;
f1044799
PZ
3127
3128 cfs_rq->skip = NULL;
ac53db59
RR
3129 }
3130}
3131
a571bbea
PZ
3132static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3133{
2c13c919
RR
3134 if (cfs_rq->last == se)
3135 __clear_buddies_last(se);
3136
3137 if (cfs_rq->next == se)
3138 __clear_buddies_next(se);
ac53db59
RR
3139
3140 if (cfs_rq->skip == se)
3141 __clear_buddies_skip(se);
a571bbea
PZ
3142}
3143
6c16a6dc 3144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3145
bf0f6f24 3146static void
371fd7e7 3147dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3148{
a2a2d680
DA
3149 /*
3150 * Update run-time statistics of the 'current'.
3151 */
3152 update_curr(cfs_rq);
17bc14b7 3153 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3154
19b6a2e3 3155 update_stats_dequeue(cfs_rq, se);
371fd7e7 3156 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3157#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3158 if (entity_is_task(se)) {
3159 struct task_struct *tsk = task_of(se);
3160
3161 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3162 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3163 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3164 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3165 }
db36cc7d 3166#endif
67e9fb2a
PZ
3167 }
3168
2002c695 3169 clear_buddies(cfs_rq, se);
4793241b 3170
83b699ed 3171 if (se != cfs_rq->curr)
30cfdcfc 3172 __dequeue_entity(cfs_rq, se);
17bc14b7 3173 se->on_rq = 0;
30cfdcfc 3174 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3175
3176 /*
3177 * Normalize the entity after updating the min_vruntime because the
3178 * update can refer to the ->curr item and we need to reflect this
3179 * movement in our normalized position.
3180 */
371fd7e7 3181 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3182 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3183
d8b4986d
PT
3184 /* return excess runtime on last dequeue */
3185 return_cfs_rq_runtime(cfs_rq);
3186
1e876231 3187 update_min_vruntime(cfs_rq);
17bc14b7 3188 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3189}
3190
3191/*
3192 * Preempt the current task with a newly woken task if needed:
3193 */
7c92e54f 3194static void
2e09bf55 3195check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3196{
11697830 3197 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3198 struct sched_entity *se;
3199 s64 delta;
11697830 3200
6d0f0ebd 3201 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3202 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3203 if (delta_exec > ideal_runtime) {
8875125e 3204 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3205 /*
3206 * The current task ran long enough, ensure it doesn't get
3207 * re-elected due to buddy favours.
3208 */
3209 clear_buddies(cfs_rq, curr);
f685ceac
MG
3210 return;
3211 }
3212
3213 /*
3214 * Ensure that a task that missed wakeup preemption by a
3215 * narrow margin doesn't have to wait for a full slice.
3216 * This also mitigates buddy induced latencies under load.
3217 */
f685ceac
MG
3218 if (delta_exec < sysctl_sched_min_granularity)
3219 return;
3220
f4cfb33e
WX
3221 se = __pick_first_entity(cfs_rq);
3222 delta = curr->vruntime - se->vruntime;
f685ceac 3223
f4cfb33e
WX
3224 if (delta < 0)
3225 return;
d7d82944 3226
f4cfb33e 3227 if (delta > ideal_runtime)
8875125e 3228 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3229}
3230
83b699ed 3231static void
8494f412 3232set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3233{
83b699ed
SV
3234 /* 'current' is not kept within the tree. */
3235 if (se->on_rq) {
3236 /*
3237 * Any task has to be enqueued before it get to execute on
3238 * a CPU. So account for the time it spent waiting on the
3239 * runqueue.
3240 */
3241 update_stats_wait_end(cfs_rq, se);
3242 __dequeue_entity(cfs_rq, se);
36ee28e4 3243 update_entity_load_avg(se, 1);
83b699ed
SV
3244 }
3245
79303e9e 3246 update_stats_curr_start(cfs_rq, se);
429d43bc 3247 cfs_rq->curr = se;
eba1ed4b
IM
3248#ifdef CONFIG_SCHEDSTATS
3249 /*
3250 * Track our maximum slice length, if the CPU's load is at
3251 * least twice that of our own weight (i.e. dont track it
3252 * when there are only lesser-weight tasks around):
3253 */
495eca49 3254 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3255 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3256 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3257 }
3258#endif
4a55b450 3259 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3260}
3261
3f3a4904
PZ
3262static int
3263wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3264
ac53db59
RR
3265/*
3266 * Pick the next process, keeping these things in mind, in this order:
3267 * 1) keep things fair between processes/task groups
3268 * 2) pick the "next" process, since someone really wants that to run
3269 * 3) pick the "last" process, for cache locality
3270 * 4) do not run the "skip" process, if something else is available
3271 */
678d5718
PZ
3272static struct sched_entity *
3273pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3274{
678d5718
PZ
3275 struct sched_entity *left = __pick_first_entity(cfs_rq);
3276 struct sched_entity *se;
3277
3278 /*
3279 * If curr is set we have to see if its left of the leftmost entity
3280 * still in the tree, provided there was anything in the tree at all.
3281 */
3282 if (!left || (curr && entity_before(curr, left)))
3283 left = curr;
3284
3285 se = left; /* ideally we run the leftmost entity */
f4b6755f 3286
ac53db59
RR
3287 /*
3288 * Avoid running the skip buddy, if running something else can
3289 * be done without getting too unfair.
3290 */
3291 if (cfs_rq->skip == se) {
678d5718
PZ
3292 struct sched_entity *second;
3293
3294 if (se == curr) {
3295 second = __pick_first_entity(cfs_rq);
3296 } else {
3297 second = __pick_next_entity(se);
3298 if (!second || (curr && entity_before(curr, second)))
3299 second = curr;
3300 }
3301
ac53db59
RR
3302 if (second && wakeup_preempt_entity(second, left) < 1)
3303 se = second;
3304 }
aa2ac252 3305
f685ceac
MG
3306 /*
3307 * Prefer last buddy, try to return the CPU to a preempted task.
3308 */
3309 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3310 se = cfs_rq->last;
3311
ac53db59
RR
3312 /*
3313 * Someone really wants this to run. If it's not unfair, run it.
3314 */
3315 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3316 se = cfs_rq->next;
3317
f685ceac 3318 clear_buddies(cfs_rq, se);
4793241b
PZ
3319
3320 return se;
aa2ac252
PZ
3321}
3322
678d5718 3323static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3324
ab6cde26 3325static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3326{
3327 /*
3328 * If still on the runqueue then deactivate_task()
3329 * was not called and update_curr() has to be done:
3330 */
3331 if (prev->on_rq)
b7cc0896 3332 update_curr(cfs_rq);
bf0f6f24 3333
d3d9dc33
PT
3334 /* throttle cfs_rqs exceeding runtime */
3335 check_cfs_rq_runtime(cfs_rq);
3336
ddc97297 3337 check_spread(cfs_rq, prev);
30cfdcfc 3338 if (prev->on_rq) {
5870db5b 3339 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3340 /* Put 'current' back into the tree. */
3341 __enqueue_entity(cfs_rq, prev);
9d85f21c 3342 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3343 update_entity_load_avg(prev, 1);
30cfdcfc 3344 }
429d43bc 3345 cfs_rq->curr = NULL;
bf0f6f24
IM
3346}
3347
8f4d37ec
PZ
3348static void
3349entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3350{
bf0f6f24 3351 /*
30cfdcfc 3352 * Update run-time statistics of the 'current'.
bf0f6f24 3353 */
30cfdcfc 3354 update_curr(cfs_rq);
bf0f6f24 3355
9d85f21c
PT
3356 /*
3357 * Ensure that runnable average is periodically updated.
3358 */
9ee474f5 3359 update_entity_load_avg(curr, 1);
aff3e498 3360 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3361 update_cfs_shares(cfs_rq);
9d85f21c 3362
8f4d37ec
PZ
3363#ifdef CONFIG_SCHED_HRTICK
3364 /*
3365 * queued ticks are scheduled to match the slice, so don't bother
3366 * validating it and just reschedule.
3367 */
983ed7a6 3368 if (queued) {
8875125e 3369 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3370 return;
3371 }
8f4d37ec
PZ
3372 /*
3373 * don't let the period tick interfere with the hrtick preemption
3374 */
3375 if (!sched_feat(DOUBLE_TICK) &&
3376 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3377 return;
3378#endif
3379
2c2efaed 3380 if (cfs_rq->nr_running > 1)
2e09bf55 3381 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3382}
3383
ab84d31e
PT
3384
3385/**************************************************
3386 * CFS bandwidth control machinery
3387 */
3388
3389#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3390
3391#ifdef HAVE_JUMP_LABEL
c5905afb 3392static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3393
3394static inline bool cfs_bandwidth_used(void)
3395{
c5905afb 3396 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3397}
3398
1ee14e6c 3399void cfs_bandwidth_usage_inc(void)
029632fb 3400{
1ee14e6c
BS
3401 static_key_slow_inc(&__cfs_bandwidth_used);
3402}
3403
3404void cfs_bandwidth_usage_dec(void)
3405{
3406 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3407}
3408#else /* HAVE_JUMP_LABEL */
3409static bool cfs_bandwidth_used(void)
3410{
3411 return true;
3412}
3413
1ee14e6c
BS
3414void cfs_bandwidth_usage_inc(void) {}
3415void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3416#endif /* HAVE_JUMP_LABEL */
3417
ab84d31e
PT
3418/*
3419 * default period for cfs group bandwidth.
3420 * default: 0.1s, units: nanoseconds
3421 */
3422static inline u64 default_cfs_period(void)
3423{
3424 return 100000000ULL;
3425}
ec12cb7f
PT
3426
3427static inline u64 sched_cfs_bandwidth_slice(void)
3428{
3429 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3430}
3431
a9cf55b2
PT
3432/*
3433 * Replenish runtime according to assigned quota and update expiration time.
3434 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3435 * additional synchronization around rq->lock.
3436 *
3437 * requires cfs_b->lock
3438 */
029632fb 3439void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3440{
3441 u64 now;
3442
3443 if (cfs_b->quota == RUNTIME_INF)
3444 return;
3445
3446 now = sched_clock_cpu(smp_processor_id());
3447 cfs_b->runtime = cfs_b->quota;
3448 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3449}
3450
029632fb
PZ
3451static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3452{
3453 return &tg->cfs_bandwidth;
3454}
3455
f1b17280
PT
3456/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3457static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3458{
3459 if (unlikely(cfs_rq->throttle_count))
3460 return cfs_rq->throttled_clock_task;
3461
78becc27 3462 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3463}
3464
85dac906
PT
3465/* returns 0 on failure to allocate runtime */
3466static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3467{
3468 struct task_group *tg = cfs_rq->tg;
3469 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3470 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3471
3472 /* note: this is a positive sum as runtime_remaining <= 0 */
3473 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3474
3475 raw_spin_lock(&cfs_b->lock);
3476 if (cfs_b->quota == RUNTIME_INF)
3477 amount = min_amount;
58088ad0 3478 else {
a9cf55b2
PT
3479 /*
3480 * If the bandwidth pool has become inactive, then at least one
3481 * period must have elapsed since the last consumption.
3482 * Refresh the global state and ensure bandwidth timer becomes
3483 * active.
3484 */
3485 if (!cfs_b->timer_active) {
3486 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3487 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3488 }
58088ad0
PT
3489
3490 if (cfs_b->runtime > 0) {
3491 amount = min(cfs_b->runtime, min_amount);
3492 cfs_b->runtime -= amount;
3493 cfs_b->idle = 0;
3494 }
ec12cb7f 3495 }
a9cf55b2 3496 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3497 raw_spin_unlock(&cfs_b->lock);
3498
3499 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3500 /*
3501 * we may have advanced our local expiration to account for allowed
3502 * spread between our sched_clock and the one on which runtime was
3503 * issued.
3504 */
3505 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3506 cfs_rq->runtime_expires = expires;
85dac906
PT
3507
3508 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3509}
3510
a9cf55b2
PT
3511/*
3512 * Note: This depends on the synchronization provided by sched_clock and the
3513 * fact that rq->clock snapshots this value.
3514 */
3515static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3516{
a9cf55b2 3517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3518
3519 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3520 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3521 return;
3522
a9cf55b2
PT
3523 if (cfs_rq->runtime_remaining < 0)
3524 return;
3525
3526 /*
3527 * If the local deadline has passed we have to consider the
3528 * possibility that our sched_clock is 'fast' and the global deadline
3529 * has not truly expired.
3530 *
3531 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3532 * whether the global deadline has advanced. It is valid to compare
3533 * cfs_b->runtime_expires without any locks since we only care about
3534 * exact equality, so a partial write will still work.
a9cf55b2
PT
3535 */
3536
51f2176d 3537 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3538 /* extend local deadline, drift is bounded above by 2 ticks */
3539 cfs_rq->runtime_expires += TICK_NSEC;
3540 } else {
3541 /* global deadline is ahead, expiration has passed */
3542 cfs_rq->runtime_remaining = 0;
3543 }
3544}
3545
9dbdb155 3546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3547{
3548 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3549 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3550 expire_cfs_rq_runtime(cfs_rq);
3551
3552 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3553 return;
3554
85dac906
PT
3555 /*
3556 * if we're unable to extend our runtime we resched so that the active
3557 * hierarchy can be throttled
3558 */
3559 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3560 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3561}
3562
6c16a6dc 3563static __always_inline
9dbdb155 3564void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3565{
56f570e5 3566 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3567 return;
3568
3569 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3570}
3571
85dac906
PT
3572static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3573{
56f570e5 3574 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3575}
3576
64660c86
PT
3577/* check whether cfs_rq, or any parent, is throttled */
3578static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3579{
56f570e5 3580 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3581}
3582
3583/*
3584 * Ensure that neither of the group entities corresponding to src_cpu or
3585 * dest_cpu are members of a throttled hierarchy when performing group
3586 * load-balance operations.
3587 */
3588static inline int throttled_lb_pair(struct task_group *tg,
3589 int src_cpu, int dest_cpu)
3590{
3591 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3592
3593 src_cfs_rq = tg->cfs_rq[src_cpu];
3594 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3595
3596 return throttled_hierarchy(src_cfs_rq) ||
3597 throttled_hierarchy(dest_cfs_rq);
3598}
3599
3600/* updated child weight may affect parent so we have to do this bottom up */
3601static int tg_unthrottle_up(struct task_group *tg, void *data)
3602{
3603 struct rq *rq = data;
3604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3605
3606 cfs_rq->throttle_count--;
3607#ifdef CONFIG_SMP
3608 if (!cfs_rq->throttle_count) {
f1b17280 3609 /* adjust cfs_rq_clock_task() */
78becc27 3610 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3611 cfs_rq->throttled_clock_task;
64660c86
PT
3612 }
3613#endif
3614
3615 return 0;
3616}
3617
3618static int tg_throttle_down(struct task_group *tg, void *data)
3619{
3620 struct rq *rq = data;
3621 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3622
82958366
PT
3623 /* group is entering throttled state, stop time */
3624 if (!cfs_rq->throttle_count)
78becc27 3625 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3626 cfs_rq->throttle_count++;
3627
3628 return 0;
3629}
3630
d3d9dc33 3631static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3632{
3633 struct rq *rq = rq_of(cfs_rq);
3634 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3635 struct sched_entity *se;
3636 long task_delta, dequeue = 1;
3637
3638 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3639
f1b17280 3640 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3641 rcu_read_lock();
3642 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3643 rcu_read_unlock();
85dac906
PT
3644
3645 task_delta = cfs_rq->h_nr_running;
3646 for_each_sched_entity(se) {
3647 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3648 /* throttled entity or throttle-on-deactivate */
3649 if (!se->on_rq)
3650 break;
3651
3652 if (dequeue)
3653 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3654 qcfs_rq->h_nr_running -= task_delta;
3655
3656 if (qcfs_rq->load.weight)
3657 dequeue = 0;
3658 }
3659
3660 if (!se)
72465447 3661 sub_nr_running(rq, task_delta);
85dac906
PT
3662
3663 cfs_rq->throttled = 1;
78becc27 3664 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3665 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3666 /*
3667 * Add to the _head_ of the list, so that an already-started
3668 * distribute_cfs_runtime will not see us
3669 */
3670 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3671 if (!cfs_b->timer_active)
09dc4ab0 3672 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3673 raw_spin_unlock(&cfs_b->lock);
3674}
3675
029632fb 3676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3677{
3678 struct rq *rq = rq_of(cfs_rq);
3679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3680 struct sched_entity *se;
3681 int enqueue = 1;
3682 long task_delta;
3683
22b958d8 3684 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3685
3686 cfs_rq->throttled = 0;
1a55af2e
FW
3687
3688 update_rq_clock(rq);
3689
671fd9da 3690 raw_spin_lock(&cfs_b->lock);
78becc27 3691 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3692 list_del_rcu(&cfs_rq->throttled_list);
3693 raw_spin_unlock(&cfs_b->lock);
3694
64660c86
PT
3695 /* update hierarchical throttle state */
3696 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3697
671fd9da
PT
3698 if (!cfs_rq->load.weight)
3699 return;
3700
3701 task_delta = cfs_rq->h_nr_running;
3702 for_each_sched_entity(se) {
3703 if (se->on_rq)
3704 enqueue = 0;
3705
3706 cfs_rq = cfs_rq_of(se);
3707 if (enqueue)
3708 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3709 cfs_rq->h_nr_running += task_delta;
3710
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
3713 }
3714
3715 if (!se)
72465447 3716 add_nr_running(rq, task_delta);
671fd9da
PT
3717
3718 /* determine whether we need to wake up potentially idle cpu */
3719 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3720 resched_curr(rq);
671fd9da
PT
3721}
3722
3723static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3724 u64 remaining, u64 expires)
3725{
3726 struct cfs_rq *cfs_rq;
c06f04c7
BS
3727 u64 runtime;
3728 u64 starting_runtime = remaining;
671fd9da
PT
3729
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3732 throttled_list) {
3733 struct rq *rq = rq_of(cfs_rq);
3734
3735 raw_spin_lock(&rq->lock);
3736 if (!cfs_rq_throttled(cfs_rq))
3737 goto next;
3738
3739 runtime = -cfs_rq->runtime_remaining + 1;
3740 if (runtime > remaining)
3741 runtime = remaining;
3742 remaining -= runtime;
3743
3744 cfs_rq->runtime_remaining += runtime;
3745 cfs_rq->runtime_expires = expires;
3746
3747 /* we check whether we're throttled above */
3748 if (cfs_rq->runtime_remaining > 0)
3749 unthrottle_cfs_rq(cfs_rq);
3750
3751next:
3752 raw_spin_unlock(&rq->lock);
3753
3754 if (!remaining)
3755 break;
3756 }
3757 rcu_read_unlock();
3758
c06f04c7 3759 return starting_runtime - remaining;
671fd9da
PT
3760}
3761
58088ad0
PT
3762/*
3763 * Responsible for refilling a task_group's bandwidth and unthrottling its
3764 * cfs_rqs as appropriate. If there has been no activity within the last
3765 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3766 * used to track this state.
3767 */
3768static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3769{
671fd9da 3770 u64 runtime, runtime_expires;
51f2176d 3771 int throttled;
58088ad0 3772
58088ad0
PT
3773 /* no need to continue the timer with no bandwidth constraint */
3774 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3775 goto out_deactivate;
58088ad0 3776
671fd9da 3777 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3778 cfs_b->nr_periods += overrun;
671fd9da 3779
51f2176d
BS
3780 /*
3781 * idle depends on !throttled (for the case of a large deficit), and if
3782 * we're going inactive then everything else can be deferred
3783 */
3784 if (cfs_b->idle && !throttled)
3785 goto out_deactivate;
a9cf55b2 3786
927b54fc
BS
3787 /*
3788 * if we have relooped after returning idle once, we need to update our
3789 * status as actually running, so that other cpus doing
3790 * __start_cfs_bandwidth will stop trying to cancel us.
3791 */
3792 cfs_b->timer_active = 1;
3793
a9cf55b2
PT
3794 __refill_cfs_bandwidth_runtime(cfs_b);
3795
671fd9da
PT
3796 if (!throttled) {
3797 /* mark as potentially idle for the upcoming period */
3798 cfs_b->idle = 1;
51f2176d 3799 return 0;
671fd9da
PT
3800 }
3801
e8da1b18
NR
3802 /* account preceding periods in which throttling occurred */
3803 cfs_b->nr_throttled += overrun;
3804
671fd9da 3805 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3806
3807 /*
c06f04c7
BS
3808 * This check is repeated as we are holding onto the new bandwidth while
3809 * we unthrottle. This can potentially race with an unthrottled group
3810 * trying to acquire new bandwidth from the global pool. This can result
3811 * in us over-using our runtime if it is all used during this loop, but
3812 * only by limited amounts in that extreme case.
671fd9da 3813 */
c06f04c7
BS
3814 while (throttled && cfs_b->runtime > 0) {
3815 runtime = cfs_b->runtime;
671fd9da
PT
3816 raw_spin_unlock(&cfs_b->lock);
3817 /* we can't nest cfs_b->lock while distributing bandwidth */
3818 runtime = distribute_cfs_runtime(cfs_b, runtime,
3819 runtime_expires);
3820 raw_spin_lock(&cfs_b->lock);
3821
3822 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3823
3824 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3825 }
58088ad0 3826
671fd9da
PT
3827 /*
3828 * While we are ensured activity in the period following an
3829 * unthrottle, this also covers the case in which the new bandwidth is
3830 * insufficient to cover the existing bandwidth deficit. (Forcing the
3831 * timer to remain active while there are any throttled entities.)
3832 */
3833 cfs_b->idle = 0;
58088ad0 3834
51f2176d
BS
3835 return 0;
3836
3837out_deactivate:
3838 cfs_b->timer_active = 0;
3839 return 1;
58088ad0 3840}
d3d9dc33 3841
d8b4986d
PT
3842/* a cfs_rq won't donate quota below this amount */
3843static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3844/* minimum remaining period time to redistribute slack quota */
3845static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3846/* how long we wait to gather additional slack before distributing */
3847static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3848
db06e78c
BS
3849/*
3850 * Are we near the end of the current quota period?
3851 *
3852 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3853 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3854 * migrate_hrtimers, base is never cleared, so we are fine.
3855 */
d8b4986d
PT
3856static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3857{
3858 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3859 u64 remaining;
3860
3861 /* if the call-back is running a quota refresh is already occurring */
3862 if (hrtimer_callback_running(refresh_timer))
3863 return 1;
3864
3865 /* is a quota refresh about to occur? */
3866 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3867 if (remaining < min_expire)
3868 return 1;
3869
3870 return 0;
3871}
3872
3873static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3874{
3875 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3876
3877 /* if there's a quota refresh soon don't bother with slack */
3878 if (runtime_refresh_within(cfs_b, min_left))
3879 return;
3880
3881 start_bandwidth_timer(&cfs_b->slack_timer,
3882 ns_to_ktime(cfs_bandwidth_slack_period));
3883}
3884
3885/* we know any runtime found here is valid as update_curr() precedes return */
3886static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3887{
3888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3889 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3890
3891 if (slack_runtime <= 0)
3892 return;
3893
3894 raw_spin_lock(&cfs_b->lock);
3895 if (cfs_b->quota != RUNTIME_INF &&
3896 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3897 cfs_b->runtime += slack_runtime;
3898
3899 /* we are under rq->lock, defer unthrottling using a timer */
3900 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3901 !list_empty(&cfs_b->throttled_cfs_rq))
3902 start_cfs_slack_bandwidth(cfs_b);
3903 }
3904 raw_spin_unlock(&cfs_b->lock);
3905
3906 /* even if it's not valid for return we don't want to try again */
3907 cfs_rq->runtime_remaining -= slack_runtime;
3908}
3909
3910static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911{
56f570e5
PT
3912 if (!cfs_bandwidth_used())
3913 return;
3914
fccfdc6f 3915 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3916 return;
3917
3918 __return_cfs_rq_runtime(cfs_rq);
3919}
3920
3921/*
3922 * This is done with a timer (instead of inline with bandwidth return) since
3923 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3924 */
3925static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3926{
3927 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3928 u64 expires;
3929
3930 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3931 raw_spin_lock(&cfs_b->lock);
3932 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3933 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3934 return;
db06e78c 3935 }
d8b4986d 3936
c06f04c7 3937 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3938 runtime = cfs_b->runtime;
c06f04c7 3939
d8b4986d
PT
3940 expires = cfs_b->runtime_expires;
3941 raw_spin_unlock(&cfs_b->lock);
3942
3943 if (!runtime)
3944 return;
3945
3946 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3947
3948 raw_spin_lock(&cfs_b->lock);
3949 if (expires == cfs_b->runtime_expires)
c06f04c7 3950 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3951 raw_spin_unlock(&cfs_b->lock);
3952}
3953
d3d9dc33
PT
3954/*
3955 * When a group wakes up we want to make sure that its quota is not already
3956 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3957 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3958 */
3959static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3960{
56f570e5
PT
3961 if (!cfs_bandwidth_used())
3962 return;
3963
d3d9dc33
PT
3964 /* an active group must be handled by the update_curr()->put() path */
3965 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3966 return;
3967
3968 /* ensure the group is not already throttled */
3969 if (cfs_rq_throttled(cfs_rq))
3970 return;
3971
3972 /* update runtime allocation */
3973 account_cfs_rq_runtime(cfs_rq, 0);
3974 if (cfs_rq->runtime_remaining <= 0)
3975 throttle_cfs_rq(cfs_rq);
3976}
3977
3978/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3979static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3980{
56f570e5 3981 if (!cfs_bandwidth_used())
678d5718 3982 return false;
56f570e5 3983
d3d9dc33 3984 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3985 return false;
d3d9dc33
PT
3986
3987 /*
3988 * it's possible for a throttled entity to be forced into a running
3989 * state (e.g. set_curr_task), in this case we're finished.
3990 */
3991 if (cfs_rq_throttled(cfs_rq))
678d5718 3992 return true;
d3d9dc33
PT
3993
3994 throttle_cfs_rq(cfs_rq);
678d5718 3995 return true;
d3d9dc33 3996}
029632fb 3997
029632fb
PZ
3998static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3999{
4000 struct cfs_bandwidth *cfs_b =
4001 container_of(timer, struct cfs_bandwidth, slack_timer);
4002 do_sched_cfs_slack_timer(cfs_b);
4003
4004 return HRTIMER_NORESTART;
4005}
4006
4007static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4008{
4009 struct cfs_bandwidth *cfs_b =
4010 container_of(timer, struct cfs_bandwidth, period_timer);
4011 ktime_t now;
4012 int overrun;
4013 int idle = 0;
4014
51f2176d 4015 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4016 for (;;) {
4017 now = hrtimer_cb_get_time(timer);
4018 overrun = hrtimer_forward(timer, now, cfs_b->period);
4019
4020 if (!overrun)
4021 break;
4022
4023 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4024 }
51f2176d 4025 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4026
4027 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4028}
4029
4030void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4031{
4032 raw_spin_lock_init(&cfs_b->lock);
4033 cfs_b->runtime = 0;
4034 cfs_b->quota = RUNTIME_INF;
4035 cfs_b->period = ns_to_ktime(default_cfs_period());
4036
4037 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4038 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4039 cfs_b->period_timer.function = sched_cfs_period_timer;
4040 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4041 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4042}
4043
4044static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4045{
4046 cfs_rq->runtime_enabled = 0;
4047 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4048}
4049
4050/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4051void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4052{
4053 /*
4054 * The timer may be active because we're trying to set a new bandwidth
4055 * period or because we're racing with the tear-down path
4056 * (timer_active==0 becomes visible before the hrtimer call-back
4057 * terminates). In either case we ensure that it's re-programmed
4058 */
927b54fc
BS
4059 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4060 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4061 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4062 raw_spin_unlock(&cfs_b->lock);
927b54fc 4063 cpu_relax();
029632fb
PZ
4064 raw_spin_lock(&cfs_b->lock);
4065 /* if someone else restarted the timer then we're done */
09dc4ab0 4066 if (!force && cfs_b->timer_active)
029632fb
PZ
4067 return;
4068 }
4069
4070 cfs_b->timer_active = 1;
4071 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4072}
4073
4074static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4075{
7f1a169b
TH
4076 /* init_cfs_bandwidth() was not called */
4077 if (!cfs_b->throttled_cfs_rq.next)
4078 return;
4079
029632fb
PZ
4080 hrtimer_cancel(&cfs_b->period_timer);
4081 hrtimer_cancel(&cfs_b->slack_timer);
4082}
4083
0e59bdae
KT
4084static void __maybe_unused update_runtime_enabled(struct rq *rq)
4085{
4086 struct cfs_rq *cfs_rq;
4087
4088 for_each_leaf_cfs_rq(rq, cfs_rq) {
4089 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4090
4091 raw_spin_lock(&cfs_b->lock);
4092 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4093 raw_spin_unlock(&cfs_b->lock);
4094 }
4095}
4096
38dc3348 4097static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4098{
4099 struct cfs_rq *cfs_rq;
4100
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4102 if (!cfs_rq->runtime_enabled)
4103 continue;
4104
4105 /*
4106 * clock_task is not advancing so we just need to make sure
4107 * there's some valid quota amount
4108 */
51f2176d 4109 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4110 /*
4111 * Offline rq is schedulable till cpu is completely disabled
4112 * in take_cpu_down(), so we prevent new cfs throttling here.
4113 */
4114 cfs_rq->runtime_enabled = 0;
4115
029632fb
PZ
4116 if (cfs_rq_throttled(cfs_rq))
4117 unthrottle_cfs_rq(cfs_rq);
4118 }
4119}
4120
4121#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4122static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4123{
78becc27 4124 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4125}
4126
9dbdb155 4127static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4128static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4129static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4130static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4131
4132static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4133{
4134 return 0;
4135}
64660c86
PT
4136
4137static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4138{
4139 return 0;
4140}
4141
4142static inline int throttled_lb_pair(struct task_group *tg,
4143 int src_cpu, int dest_cpu)
4144{
4145 return 0;
4146}
029632fb
PZ
4147
4148void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4149
4150#ifdef CONFIG_FAIR_GROUP_SCHED
4151static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4152#endif
4153
029632fb
PZ
4154static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4155{
4156 return NULL;
4157}
4158static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4159static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4160static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4161
4162#endif /* CONFIG_CFS_BANDWIDTH */
4163
bf0f6f24
IM
4164/**************************************************
4165 * CFS operations on tasks:
4166 */
4167
8f4d37ec
PZ
4168#ifdef CONFIG_SCHED_HRTICK
4169static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4170{
8f4d37ec
PZ
4171 struct sched_entity *se = &p->se;
4172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4173
4174 WARN_ON(task_rq(p) != rq);
4175
b39e66ea 4176 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4177 u64 slice = sched_slice(cfs_rq, se);
4178 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4179 s64 delta = slice - ran;
4180
4181 if (delta < 0) {
4182 if (rq->curr == p)
8875125e 4183 resched_curr(rq);
8f4d37ec
PZ
4184 return;
4185 }
31656519 4186 hrtick_start(rq, delta);
8f4d37ec
PZ
4187 }
4188}
a4c2f00f
PZ
4189
4190/*
4191 * called from enqueue/dequeue and updates the hrtick when the
4192 * current task is from our class and nr_running is low enough
4193 * to matter.
4194 */
4195static void hrtick_update(struct rq *rq)
4196{
4197 struct task_struct *curr = rq->curr;
4198
b39e66ea 4199 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4200 return;
4201
4202 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4203 hrtick_start_fair(rq, curr);
4204}
55e12e5e 4205#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4206static inline void
4207hrtick_start_fair(struct rq *rq, struct task_struct *p)
4208{
4209}
a4c2f00f
PZ
4210
4211static inline void hrtick_update(struct rq *rq)
4212{
4213}
8f4d37ec
PZ
4214#endif
4215
bf0f6f24
IM
4216/*
4217 * The enqueue_task method is called before nr_running is
4218 * increased. Here we update the fair scheduling stats and
4219 * then put the task into the rbtree:
4220 */
ea87bb78 4221static void
371fd7e7 4222enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4223{
4224 struct cfs_rq *cfs_rq;
62fb1851 4225 struct sched_entity *se = &p->se;
bf0f6f24
IM
4226
4227 for_each_sched_entity(se) {
62fb1851 4228 if (se->on_rq)
bf0f6f24
IM
4229 break;
4230 cfs_rq = cfs_rq_of(se);
88ec22d3 4231 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4232
4233 /*
4234 * end evaluation on encountering a throttled cfs_rq
4235 *
4236 * note: in the case of encountering a throttled cfs_rq we will
4237 * post the final h_nr_running increment below.
4238 */
4239 if (cfs_rq_throttled(cfs_rq))
4240 break;
953bfcd1 4241 cfs_rq->h_nr_running++;
85dac906 4242
88ec22d3 4243 flags = ENQUEUE_WAKEUP;
bf0f6f24 4244 }
8f4d37ec 4245
2069dd75 4246 for_each_sched_entity(se) {
0f317143 4247 cfs_rq = cfs_rq_of(se);
953bfcd1 4248 cfs_rq->h_nr_running++;
2069dd75 4249
85dac906
PT
4250 if (cfs_rq_throttled(cfs_rq))
4251 break;
4252
17bc14b7 4253 update_cfs_shares(cfs_rq);
9ee474f5 4254 update_entity_load_avg(se, 1);
2069dd75
PZ
4255 }
4256
18bf2805
BS
4257 if (!se) {
4258 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4259 add_nr_running(rq, 1);
18bf2805 4260 }
a4c2f00f 4261 hrtick_update(rq);
bf0f6f24
IM
4262}
4263
2f36825b
VP
4264static void set_next_buddy(struct sched_entity *se);
4265
bf0f6f24
IM
4266/*
4267 * The dequeue_task method is called before nr_running is
4268 * decreased. We remove the task from the rbtree and
4269 * update the fair scheduling stats:
4270 */
371fd7e7 4271static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4272{
4273 struct cfs_rq *cfs_rq;
62fb1851 4274 struct sched_entity *se = &p->se;
2f36825b 4275 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4276
4277 for_each_sched_entity(se) {
4278 cfs_rq = cfs_rq_of(se);
371fd7e7 4279 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4280
4281 /*
4282 * end evaluation on encountering a throttled cfs_rq
4283 *
4284 * note: in the case of encountering a throttled cfs_rq we will
4285 * post the final h_nr_running decrement below.
4286 */
4287 if (cfs_rq_throttled(cfs_rq))
4288 break;
953bfcd1 4289 cfs_rq->h_nr_running--;
2069dd75 4290
bf0f6f24 4291 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4292 if (cfs_rq->load.weight) {
4293 /*
4294 * Bias pick_next to pick a task from this cfs_rq, as
4295 * p is sleeping when it is within its sched_slice.
4296 */
4297 if (task_sleep && parent_entity(se))
4298 set_next_buddy(parent_entity(se));
9598c82d
PT
4299
4300 /* avoid re-evaluating load for this entity */
4301 se = parent_entity(se);
bf0f6f24 4302 break;
2f36825b 4303 }
371fd7e7 4304 flags |= DEQUEUE_SLEEP;
bf0f6f24 4305 }
8f4d37ec 4306
2069dd75 4307 for_each_sched_entity(se) {
0f317143 4308 cfs_rq = cfs_rq_of(se);
953bfcd1 4309 cfs_rq->h_nr_running--;
2069dd75 4310
85dac906
PT
4311 if (cfs_rq_throttled(cfs_rq))
4312 break;
4313
17bc14b7 4314 update_cfs_shares(cfs_rq);
9ee474f5 4315 update_entity_load_avg(se, 1);
2069dd75
PZ
4316 }
4317
18bf2805 4318 if (!se) {
72465447 4319 sub_nr_running(rq, 1);
18bf2805
BS
4320 update_rq_runnable_avg(rq, 1);
4321 }
a4c2f00f 4322 hrtick_update(rq);
bf0f6f24
IM
4323}
4324
e7693a36 4325#ifdef CONFIG_SMP
029632fb
PZ
4326/* Used instead of source_load when we know the type == 0 */
4327static unsigned long weighted_cpuload(const int cpu)
4328{
b92486cb 4329 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4330}
4331
4332/*
4333 * Return a low guess at the load of a migration-source cpu weighted
4334 * according to the scheduling class and "nice" value.
4335 *
4336 * We want to under-estimate the load of migration sources, to
4337 * balance conservatively.
4338 */
4339static unsigned long source_load(int cpu, int type)
4340{
4341 struct rq *rq = cpu_rq(cpu);
4342 unsigned long total = weighted_cpuload(cpu);
4343
4344 if (type == 0 || !sched_feat(LB_BIAS))
4345 return total;
4346
4347 return min(rq->cpu_load[type-1], total);
4348}
4349
4350/*
4351 * Return a high guess at the load of a migration-target cpu weighted
4352 * according to the scheduling class and "nice" value.
4353 */
4354static unsigned long target_load(int cpu, int type)
4355{
4356 struct rq *rq = cpu_rq(cpu);
4357 unsigned long total = weighted_cpuload(cpu);
4358
4359 if (type == 0 || !sched_feat(LB_BIAS))
4360 return total;
4361
4362 return max(rq->cpu_load[type-1], total);
4363}
4364
ced549fa 4365static unsigned long capacity_of(int cpu)
029632fb 4366{
ced549fa 4367 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4368}
4369
ca6d75e6
VG
4370static unsigned long capacity_orig_of(int cpu)
4371{
4372 return cpu_rq(cpu)->cpu_capacity_orig;
4373}
4374
029632fb
PZ
4375static unsigned long cpu_avg_load_per_task(int cpu)
4376{
4377 struct rq *rq = cpu_rq(cpu);
65fdac08 4378 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4379 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4380
4381 if (nr_running)
b92486cb 4382 return load_avg / nr_running;
029632fb
PZ
4383
4384 return 0;
4385}
4386
62470419
MW
4387static void record_wakee(struct task_struct *p)
4388{
4389 /*
4390 * Rough decay (wiping) for cost saving, don't worry
4391 * about the boundary, really active task won't care
4392 * about the loss.
4393 */
2538d960 4394 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4395 current->wakee_flips >>= 1;
62470419
MW
4396 current->wakee_flip_decay_ts = jiffies;
4397 }
4398
4399 if (current->last_wakee != p) {
4400 current->last_wakee = p;
4401 current->wakee_flips++;
4402 }
4403}
098fb9db 4404
74f8e4b2 4405static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4406{
4407 struct sched_entity *se = &p->se;
4408 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4409 u64 min_vruntime;
4410
4411#ifndef CONFIG_64BIT
4412 u64 min_vruntime_copy;
88ec22d3 4413
3fe1698b
PZ
4414 do {
4415 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4416 smp_rmb();
4417 min_vruntime = cfs_rq->min_vruntime;
4418 } while (min_vruntime != min_vruntime_copy);
4419#else
4420 min_vruntime = cfs_rq->min_vruntime;
4421#endif
88ec22d3 4422
3fe1698b 4423 se->vruntime -= min_vruntime;
62470419 4424 record_wakee(p);
88ec22d3
PZ
4425}
4426
bb3469ac 4427#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4428/*
4429 * effective_load() calculates the load change as seen from the root_task_group
4430 *
4431 * Adding load to a group doesn't make a group heavier, but can cause movement
4432 * of group shares between cpus. Assuming the shares were perfectly aligned one
4433 * can calculate the shift in shares.
cf5f0acf
PZ
4434 *
4435 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4436 * on this @cpu and results in a total addition (subtraction) of @wg to the
4437 * total group weight.
4438 *
4439 * Given a runqueue weight distribution (rw_i) we can compute a shares
4440 * distribution (s_i) using:
4441 *
4442 * s_i = rw_i / \Sum rw_j (1)
4443 *
4444 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4445 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4446 * shares distribution (s_i):
4447 *
4448 * rw_i = { 2, 4, 1, 0 }
4449 * s_i = { 2/7, 4/7, 1/7, 0 }
4450 *
4451 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4452 * task used to run on and the CPU the waker is running on), we need to
4453 * compute the effect of waking a task on either CPU and, in case of a sync
4454 * wakeup, compute the effect of the current task going to sleep.
4455 *
4456 * So for a change of @wl to the local @cpu with an overall group weight change
4457 * of @wl we can compute the new shares distribution (s'_i) using:
4458 *
4459 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4460 *
4461 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4462 * differences in waking a task to CPU 0. The additional task changes the
4463 * weight and shares distributions like:
4464 *
4465 * rw'_i = { 3, 4, 1, 0 }
4466 * s'_i = { 3/8, 4/8, 1/8, 0 }
4467 *
4468 * We can then compute the difference in effective weight by using:
4469 *
4470 * dw_i = S * (s'_i - s_i) (3)
4471 *
4472 * Where 'S' is the group weight as seen by its parent.
4473 *
4474 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4475 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4476 * 4/7) times the weight of the group.
f5bfb7d9 4477 */
2069dd75 4478static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4479{
4be9daaa 4480 struct sched_entity *se = tg->se[cpu];
f1d239f7 4481
9722c2da 4482 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4483 return wl;
4484
4be9daaa 4485 for_each_sched_entity(se) {
cf5f0acf 4486 long w, W;
4be9daaa 4487
977dda7c 4488 tg = se->my_q->tg;
bb3469ac 4489
cf5f0acf
PZ
4490 /*
4491 * W = @wg + \Sum rw_j
4492 */
4493 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4494
cf5f0acf
PZ
4495 /*
4496 * w = rw_i + @wl
4497 */
4498 w = se->my_q->load.weight + wl;
940959e9 4499
cf5f0acf
PZ
4500 /*
4501 * wl = S * s'_i; see (2)
4502 */
4503 if (W > 0 && w < W)
32a8df4e 4504 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4505 else
4506 wl = tg->shares;
940959e9 4507
cf5f0acf
PZ
4508 /*
4509 * Per the above, wl is the new se->load.weight value; since
4510 * those are clipped to [MIN_SHARES, ...) do so now. See
4511 * calc_cfs_shares().
4512 */
977dda7c
PT
4513 if (wl < MIN_SHARES)
4514 wl = MIN_SHARES;
cf5f0acf
PZ
4515
4516 /*
4517 * wl = dw_i = S * (s'_i - s_i); see (3)
4518 */
977dda7c 4519 wl -= se->load.weight;
cf5f0acf
PZ
4520
4521 /*
4522 * Recursively apply this logic to all parent groups to compute
4523 * the final effective load change on the root group. Since
4524 * only the @tg group gets extra weight, all parent groups can
4525 * only redistribute existing shares. @wl is the shift in shares
4526 * resulting from this level per the above.
4527 */
4be9daaa 4528 wg = 0;
4be9daaa 4529 }
bb3469ac 4530
4be9daaa 4531 return wl;
bb3469ac
PZ
4532}
4533#else
4be9daaa 4534
58d081b5 4535static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4536{
83378269 4537 return wl;
bb3469ac 4538}
4be9daaa 4539
bb3469ac
PZ
4540#endif
4541
62470419
MW
4542static int wake_wide(struct task_struct *p)
4543{
7d9ffa89 4544 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4545
4546 /*
4547 * Yeah, it's the switching-frequency, could means many wakee or
4548 * rapidly switch, use factor here will just help to automatically
4549 * adjust the loose-degree, so bigger node will lead to more pull.
4550 */
4551 if (p->wakee_flips > factor) {
4552 /*
4553 * wakee is somewhat hot, it needs certain amount of cpu
4554 * resource, so if waker is far more hot, prefer to leave
4555 * it alone.
4556 */
4557 if (current->wakee_flips > (factor * p->wakee_flips))
4558 return 1;
4559 }
4560
4561 return 0;
4562}
4563
c88d5910 4564static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4565{
e37b6a7b 4566 s64 this_load, load;
bd61c98f 4567 s64 this_eff_load, prev_eff_load;
c88d5910 4568 int idx, this_cpu, prev_cpu;
c88d5910 4569 struct task_group *tg;
83378269 4570 unsigned long weight;
b3137bc8 4571 int balanced;
098fb9db 4572
62470419
MW
4573 /*
4574 * If we wake multiple tasks be careful to not bounce
4575 * ourselves around too much.
4576 */
4577 if (wake_wide(p))
4578 return 0;
4579
c88d5910
PZ
4580 idx = sd->wake_idx;
4581 this_cpu = smp_processor_id();
4582 prev_cpu = task_cpu(p);
4583 load = source_load(prev_cpu, idx);
4584 this_load = target_load(this_cpu, idx);
098fb9db 4585
b3137bc8
MG
4586 /*
4587 * If sync wakeup then subtract the (maximum possible)
4588 * effect of the currently running task from the load
4589 * of the current CPU:
4590 */
83378269
PZ
4591 if (sync) {
4592 tg = task_group(current);
4593 weight = current->se.load.weight;
4594
c88d5910 4595 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4596 load += effective_load(tg, prev_cpu, 0, -weight);
4597 }
b3137bc8 4598
83378269
PZ
4599 tg = task_group(p);
4600 weight = p->se.load.weight;
b3137bc8 4601
71a29aa7
PZ
4602 /*
4603 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4604 * due to the sync cause above having dropped this_load to 0, we'll
4605 * always have an imbalance, but there's really nothing you can do
4606 * about that, so that's good too.
71a29aa7
PZ
4607 *
4608 * Otherwise check if either cpus are near enough in load to allow this
4609 * task to be woken on this_cpu.
4610 */
bd61c98f
VG
4611 this_eff_load = 100;
4612 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4613
bd61c98f
VG
4614 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4615 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4616
bd61c98f 4617 if (this_load > 0) {
e51fd5e2
PZ
4618 this_eff_load *= this_load +
4619 effective_load(tg, this_cpu, weight, weight);
4620
e51fd5e2 4621 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4622 }
e51fd5e2 4623
bd61c98f 4624 balanced = this_eff_load <= prev_eff_load;
098fb9db 4625
41acab88 4626 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4627
05bfb65f
VG
4628 if (!balanced)
4629 return 0;
098fb9db 4630
05bfb65f
VG
4631 schedstat_inc(sd, ttwu_move_affine);
4632 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4633
4634 return 1;
098fb9db
IM
4635}
4636
aaee1203
PZ
4637/*
4638 * find_idlest_group finds and returns the least busy CPU group within the
4639 * domain.
4640 */
4641static struct sched_group *
78e7ed53 4642find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4643 int this_cpu, int sd_flag)
e7693a36 4644{
b3bd3de6 4645 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4646 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4647 int load_idx = sd->forkexec_idx;
aaee1203 4648 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4649
c44f2a02
VG
4650 if (sd_flag & SD_BALANCE_WAKE)
4651 load_idx = sd->wake_idx;
4652
aaee1203
PZ
4653 do {
4654 unsigned long load, avg_load;
4655 int local_group;
4656 int i;
e7693a36 4657
aaee1203
PZ
4658 /* Skip over this group if it has no CPUs allowed */
4659 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4660 tsk_cpus_allowed(p)))
aaee1203
PZ
4661 continue;
4662
4663 local_group = cpumask_test_cpu(this_cpu,
4664 sched_group_cpus(group));
4665
4666 /* Tally up the load of all CPUs in the group */
4667 avg_load = 0;
4668
4669 for_each_cpu(i, sched_group_cpus(group)) {
4670 /* Bias balancing toward cpus of our domain */
4671 if (local_group)
4672 load = source_load(i, load_idx);
4673 else
4674 load = target_load(i, load_idx);
4675
4676 avg_load += load;
4677 }
4678
63b2ca30 4679 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4680 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4681
4682 if (local_group) {
4683 this_load = avg_load;
aaee1203
PZ
4684 } else if (avg_load < min_load) {
4685 min_load = avg_load;
4686 idlest = group;
4687 }
4688 } while (group = group->next, group != sd->groups);
4689
4690 if (!idlest || 100*this_load < imbalance*min_load)
4691 return NULL;
4692 return idlest;
4693}
4694
4695/*
4696 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4697 */
4698static int
4699find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4700{
4701 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4702 unsigned int min_exit_latency = UINT_MAX;
4703 u64 latest_idle_timestamp = 0;
4704 int least_loaded_cpu = this_cpu;
4705 int shallowest_idle_cpu = -1;
aaee1203
PZ
4706 int i;
4707
4708 /* Traverse only the allowed CPUs */
fa17b507 4709 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4710 if (idle_cpu(i)) {
4711 struct rq *rq = cpu_rq(i);
4712 struct cpuidle_state *idle = idle_get_state(rq);
4713 if (idle && idle->exit_latency < min_exit_latency) {
4714 /*
4715 * We give priority to a CPU whose idle state
4716 * has the smallest exit latency irrespective
4717 * of any idle timestamp.
4718 */
4719 min_exit_latency = idle->exit_latency;
4720 latest_idle_timestamp = rq->idle_stamp;
4721 shallowest_idle_cpu = i;
4722 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4723 rq->idle_stamp > latest_idle_timestamp) {
4724 /*
4725 * If equal or no active idle state, then
4726 * the most recently idled CPU might have
4727 * a warmer cache.
4728 */
4729 latest_idle_timestamp = rq->idle_stamp;
4730 shallowest_idle_cpu = i;
4731 }
9f96742a 4732 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4733 load = weighted_cpuload(i);
4734 if (load < min_load || (load == min_load && i == this_cpu)) {
4735 min_load = load;
4736 least_loaded_cpu = i;
4737 }
e7693a36
GH
4738 }
4739 }
4740
83a0a96a 4741 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4742}
e7693a36 4743
a50bde51
PZ
4744/*
4745 * Try and locate an idle CPU in the sched_domain.
4746 */
99bd5e2f 4747static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4748{
99bd5e2f 4749 struct sched_domain *sd;
37407ea7 4750 struct sched_group *sg;
e0a79f52 4751 int i = task_cpu(p);
a50bde51 4752
e0a79f52
MG
4753 if (idle_cpu(target))
4754 return target;
99bd5e2f
SS
4755
4756 /*
e0a79f52 4757 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4758 */
e0a79f52
MG
4759 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4760 return i;
a50bde51
PZ
4761
4762 /*
37407ea7 4763 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4764 */
518cd623 4765 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4766 for_each_lower_domain(sd) {
37407ea7
LT
4767 sg = sd->groups;
4768 do {
4769 if (!cpumask_intersects(sched_group_cpus(sg),
4770 tsk_cpus_allowed(p)))
4771 goto next;
4772
4773 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4774 if (i == target || !idle_cpu(i))
37407ea7
LT
4775 goto next;
4776 }
970e1789 4777
37407ea7
LT
4778 target = cpumask_first_and(sched_group_cpus(sg),
4779 tsk_cpus_allowed(p));
4780 goto done;
4781next:
4782 sg = sg->next;
4783 } while (sg != sd->groups);
4784 }
4785done:
a50bde51
PZ
4786 return target;
4787}
8bb5b00c
VG
4788/*
4789 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4790 * tasks. The unit of the return value must be the one of capacity so we can
4791 * compare the usage with the capacity of the CPU that is available for CFS
4792 * task (ie cpu_capacity).
4793 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4794 * CPU. It represents the amount of utilization of a CPU in the range
4795 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4796 * capacity of the CPU because it's about the running time on this CPU.
4797 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4798 * because of unfortunate rounding in avg_period and running_load_avg or just
4799 * after migrating tasks until the average stabilizes with the new running
4800 * time. So we need to check that the usage stays into the range
4801 * [0..cpu_capacity_orig] and cap if necessary.
4802 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4803 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4804 */
4805static int get_cpu_usage(int cpu)
4806{
4807 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4808 unsigned long capacity = capacity_orig_of(cpu);
4809
4810 if (usage >= SCHED_LOAD_SCALE)
4811 return capacity;
4812
4813 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4814}
a50bde51 4815
aaee1203 4816/*
de91b9cb
MR
4817 * select_task_rq_fair: Select target runqueue for the waking task in domains
4818 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4819 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4820 *
de91b9cb
MR
4821 * Balances load by selecting the idlest cpu in the idlest group, or under
4822 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4823 *
de91b9cb 4824 * Returns the target cpu number.
aaee1203
PZ
4825 *
4826 * preempt must be disabled.
4827 */
0017d735 4828static int
ac66f547 4829select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4830{
29cd8bae 4831 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4832 int cpu = smp_processor_id();
c88d5910 4833 int new_cpu = cpu;
99bd5e2f 4834 int want_affine = 0;
5158f4e4 4835 int sync = wake_flags & WF_SYNC;
c88d5910 4836
a8edd075
KT
4837 if (sd_flag & SD_BALANCE_WAKE)
4838 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4839
dce840a0 4840 rcu_read_lock();
aaee1203 4841 for_each_domain(cpu, tmp) {
e4f42888
PZ
4842 if (!(tmp->flags & SD_LOAD_BALANCE))
4843 continue;
4844
fe3bcfe1 4845 /*
99bd5e2f
SS
4846 * If both cpu and prev_cpu are part of this domain,
4847 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4848 */
99bd5e2f
SS
4849 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4850 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4851 affine_sd = tmp;
29cd8bae 4852 break;
f03542a7 4853 }
29cd8bae 4854
f03542a7 4855 if (tmp->flags & sd_flag)
29cd8bae
PZ
4856 sd = tmp;
4857 }
4858
8bf21433
RR
4859 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4860 prev_cpu = cpu;
dce840a0 4861
8bf21433 4862 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4863 new_cpu = select_idle_sibling(p, prev_cpu);
4864 goto unlock;
8b911acd 4865 }
e7693a36 4866
aaee1203
PZ
4867 while (sd) {
4868 struct sched_group *group;
c88d5910 4869 int weight;
098fb9db 4870
0763a660 4871 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4872 sd = sd->child;
4873 continue;
4874 }
098fb9db 4875
c44f2a02 4876 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4877 if (!group) {
4878 sd = sd->child;
4879 continue;
4880 }
4ae7d5ce 4881
d7c33c49 4882 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4883 if (new_cpu == -1 || new_cpu == cpu) {
4884 /* Now try balancing at a lower domain level of cpu */
4885 sd = sd->child;
4886 continue;
e7693a36 4887 }
aaee1203
PZ
4888
4889 /* Now try balancing at a lower domain level of new_cpu */
4890 cpu = new_cpu;
669c55e9 4891 weight = sd->span_weight;
aaee1203
PZ
4892 sd = NULL;
4893 for_each_domain(cpu, tmp) {
669c55e9 4894 if (weight <= tmp->span_weight)
aaee1203 4895 break;
0763a660 4896 if (tmp->flags & sd_flag)
aaee1203
PZ
4897 sd = tmp;
4898 }
4899 /* while loop will break here if sd == NULL */
e7693a36 4900 }
dce840a0
PZ
4901unlock:
4902 rcu_read_unlock();
e7693a36 4903
c88d5910 4904 return new_cpu;
e7693a36 4905}
0a74bef8
PT
4906
4907/*
4908 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4909 * cfs_rq_of(p) references at time of call are still valid and identify the
4910 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4911 * other assumptions, including the state of rq->lock, should be made.
4912 */
4913static void
4914migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4915{
aff3e498
PT
4916 struct sched_entity *se = &p->se;
4917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4918
4919 /*
4920 * Load tracking: accumulate removed load so that it can be processed
4921 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4922 * to blocked load iff they have a positive decay-count. It can never
4923 * be negative here since on-rq tasks have decay-count == 0.
4924 */
4925 if (se->avg.decay_count) {
4926 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4927 atomic_long_add(se->avg.load_avg_contrib,
4928 &cfs_rq->removed_load);
aff3e498 4929 }
3944a927
BS
4930
4931 /* We have migrated, no longer consider this task hot */
4932 se->exec_start = 0;
0a74bef8 4933}
e7693a36
GH
4934#endif /* CONFIG_SMP */
4935
e52fb7c0
PZ
4936static unsigned long
4937wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4938{
4939 unsigned long gran = sysctl_sched_wakeup_granularity;
4940
4941 /*
e52fb7c0
PZ
4942 * Since its curr running now, convert the gran from real-time
4943 * to virtual-time in his units.
13814d42
MG
4944 *
4945 * By using 'se' instead of 'curr' we penalize light tasks, so
4946 * they get preempted easier. That is, if 'se' < 'curr' then
4947 * the resulting gran will be larger, therefore penalizing the
4948 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4949 * be smaller, again penalizing the lighter task.
4950 *
4951 * This is especially important for buddies when the leftmost
4952 * task is higher priority than the buddy.
0bbd3336 4953 */
f4ad9bd2 4954 return calc_delta_fair(gran, se);
0bbd3336
PZ
4955}
4956
464b7527
PZ
4957/*
4958 * Should 'se' preempt 'curr'.
4959 *
4960 * |s1
4961 * |s2
4962 * |s3
4963 * g
4964 * |<--->|c
4965 *
4966 * w(c, s1) = -1
4967 * w(c, s2) = 0
4968 * w(c, s3) = 1
4969 *
4970 */
4971static int
4972wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4973{
4974 s64 gran, vdiff = curr->vruntime - se->vruntime;
4975
4976 if (vdiff <= 0)
4977 return -1;
4978
e52fb7c0 4979 gran = wakeup_gran(curr, se);
464b7527
PZ
4980 if (vdiff > gran)
4981 return 1;
4982
4983 return 0;
4984}
4985
02479099
PZ
4986static void set_last_buddy(struct sched_entity *se)
4987{
69c80f3e
VP
4988 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4989 return;
4990
4991 for_each_sched_entity(se)
4992 cfs_rq_of(se)->last = se;
02479099
PZ
4993}
4994
4995static void set_next_buddy(struct sched_entity *se)
4996{
69c80f3e
VP
4997 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4998 return;
4999
5000 for_each_sched_entity(se)
5001 cfs_rq_of(se)->next = se;
02479099
PZ
5002}
5003
ac53db59
RR
5004static void set_skip_buddy(struct sched_entity *se)
5005{
69c80f3e
VP
5006 for_each_sched_entity(se)
5007 cfs_rq_of(se)->skip = se;
ac53db59
RR
5008}
5009
bf0f6f24
IM
5010/*
5011 * Preempt the current task with a newly woken task if needed:
5012 */
5a9b86f6 5013static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5014{
5015 struct task_struct *curr = rq->curr;
8651a86c 5016 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5017 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5018 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5019 int next_buddy_marked = 0;
bf0f6f24 5020
4ae7d5ce
IM
5021 if (unlikely(se == pse))
5022 return;
5023
5238cdd3 5024 /*
163122b7 5025 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5026 * unconditionally check_prempt_curr() after an enqueue (which may have
5027 * lead to a throttle). This both saves work and prevents false
5028 * next-buddy nomination below.
5029 */
5030 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5031 return;
5032
2f36825b 5033 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5034 set_next_buddy(pse);
2f36825b
VP
5035 next_buddy_marked = 1;
5036 }
57fdc26d 5037
aec0a514
BR
5038 /*
5039 * We can come here with TIF_NEED_RESCHED already set from new task
5040 * wake up path.
5238cdd3
PT
5041 *
5042 * Note: this also catches the edge-case of curr being in a throttled
5043 * group (e.g. via set_curr_task), since update_curr() (in the
5044 * enqueue of curr) will have resulted in resched being set. This
5045 * prevents us from potentially nominating it as a false LAST_BUDDY
5046 * below.
aec0a514
BR
5047 */
5048 if (test_tsk_need_resched(curr))
5049 return;
5050
a2f5c9ab
DH
5051 /* Idle tasks are by definition preempted by non-idle tasks. */
5052 if (unlikely(curr->policy == SCHED_IDLE) &&
5053 likely(p->policy != SCHED_IDLE))
5054 goto preempt;
5055
91c234b4 5056 /*
a2f5c9ab
DH
5057 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5058 * is driven by the tick):
91c234b4 5059 */
8ed92e51 5060 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5061 return;
bf0f6f24 5062
464b7527 5063 find_matching_se(&se, &pse);
9bbd7374 5064 update_curr(cfs_rq_of(se));
002f128b 5065 BUG_ON(!pse);
2f36825b
VP
5066 if (wakeup_preempt_entity(se, pse) == 1) {
5067 /*
5068 * Bias pick_next to pick the sched entity that is
5069 * triggering this preemption.
5070 */
5071 if (!next_buddy_marked)
5072 set_next_buddy(pse);
3a7e73a2 5073 goto preempt;
2f36825b 5074 }
464b7527 5075
3a7e73a2 5076 return;
a65ac745 5077
3a7e73a2 5078preempt:
8875125e 5079 resched_curr(rq);
3a7e73a2
PZ
5080 /*
5081 * Only set the backward buddy when the current task is still
5082 * on the rq. This can happen when a wakeup gets interleaved
5083 * with schedule on the ->pre_schedule() or idle_balance()
5084 * point, either of which can * drop the rq lock.
5085 *
5086 * Also, during early boot the idle thread is in the fair class,
5087 * for obvious reasons its a bad idea to schedule back to it.
5088 */
5089 if (unlikely(!se->on_rq || curr == rq->idle))
5090 return;
5091
5092 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5093 set_last_buddy(se);
bf0f6f24
IM
5094}
5095
606dba2e
PZ
5096static struct task_struct *
5097pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5098{
5099 struct cfs_rq *cfs_rq = &rq->cfs;
5100 struct sched_entity *se;
678d5718 5101 struct task_struct *p;
37e117c0 5102 int new_tasks;
678d5718 5103
6e83125c 5104again:
678d5718
PZ
5105#ifdef CONFIG_FAIR_GROUP_SCHED
5106 if (!cfs_rq->nr_running)
38033c37 5107 goto idle;
678d5718 5108
3f1d2a31 5109 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5110 goto simple;
5111
5112 /*
5113 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5114 * likely that a next task is from the same cgroup as the current.
5115 *
5116 * Therefore attempt to avoid putting and setting the entire cgroup
5117 * hierarchy, only change the part that actually changes.
5118 */
5119
5120 do {
5121 struct sched_entity *curr = cfs_rq->curr;
5122
5123 /*
5124 * Since we got here without doing put_prev_entity() we also
5125 * have to consider cfs_rq->curr. If it is still a runnable
5126 * entity, update_curr() will update its vruntime, otherwise
5127 * forget we've ever seen it.
5128 */
5129 if (curr && curr->on_rq)
5130 update_curr(cfs_rq);
5131 else
5132 curr = NULL;
5133
5134 /*
5135 * This call to check_cfs_rq_runtime() will do the throttle and
5136 * dequeue its entity in the parent(s). Therefore the 'simple'
5137 * nr_running test will indeed be correct.
5138 */
5139 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5140 goto simple;
5141
5142 se = pick_next_entity(cfs_rq, curr);
5143 cfs_rq = group_cfs_rq(se);
5144 } while (cfs_rq);
5145
5146 p = task_of(se);
5147
5148 /*
5149 * Since we haven't yet done put_prev_entity and if the selected task
5150 * is a different task than we started out with, try and touch the
5151 * least amount of cfs_rqs.
5152 */
5153 if (prev != p) {
5154 struct sched_entity *pse = &prev->se;
5155
5156 while (!(cfs_rq = is_same_group(se, pse))) {
5157 int se_depth = se->depth;
5158 int pse_depth = pse->depth;
5159
5160 if (se_depth <= pse_depth) {
5161 put_prev_entity(cfs_rq_of(pse), pse);
5162 pse = parent_entity(pse);
5163 }
5164 if (se_depth >= pse_depth) {
5165 set_next_entity(cfs_rq_of(se), se);
5166 se = parent_entity(se);
5167 }
5168 }
5169
5170 put_prev_entity(cfs_rq, pse);
5171 set_next_entity(cfs_rq, se);
5172 }
5173
5174 if (hrtick_enabled(rq))
5175 hrtick_start_fair(rq, p);
5176
5177 return p;
5178simple:
5179 cfs_rq = &rq->cfs;
5180#endif
bf0f6f24 5181
36ace27e 5182 if (!cfs_rq->nr_running)
38033c37 5183 goto idle;
bf0f6f24 5184
3f1d2a31 5185 put_prev_task(rq, prev);
606dba2e 5186
bf0f6f24 5187 do {
678d5718 5188 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5189 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5190 cfs_rq = group_cfs_rq(se);
5191 } while (cfs_rq);
5192
8f4d37ec 5193 p = task_of(se);
678d5718 5194
b39e66ea
MG
5195 if (hrtick_enabled(rq))
5196 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5197
5198 return p;
38033c37
PZ
5199
5200idle:
e4aa358b 5201 new_tasks = idle_balance(rq);
37e117c0
PZ
5202 /*
5203 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5204 * possible for any higher priority task to appear. In that case we
5205 * must re-start the pick_next_entity() loop.
5206 */
e4aa358b 5207 if (new_tasks < 0)
37e117c0
PZ
5208 return RETRY_TASK;
5209
e4aa358b 5210 if (new_tasks > 0)
38033c37 5211 goto again;
38033c37
PZ
5212
5213 return NULL;
bf0f6f24
IM
5214}
5215
5216/*
5217 * Account for a descheduled task:
5218 */
31ee529c 5219static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5220{
5221 struct sched_entity *se = &prev->se;
5222 struct cfs_rq *cfs_rq;
5223
5224 for_each_sched_entity(se) {
5225 cfs_rq = cfs_rq_of(se);
ab6cde26 5226 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5227 }
5228}
5229
ac53db59
RR
5230/*
5231 * sched_yield() is very simple
5232 *
5233 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5234 */
5235static void yield_task_fair(struct rq *rq)
5236{
5237 struct task_struct *curr = rq->curr;
5238 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5239 struct sched_entity *se = &curr->se;
5240
5241 /*
5242 * Are we the only task in the tree?
5243 */
5244 if (unlikely(rq->nr_running == 1))
5245 return;
5246
5247 clear_buddies(cfs_rq, se);
5248
5249 if (curr->policy != SCHED_BATCH) {
5250 update_rq_clock(rq);
5251 /*
5252 * Update run-time statistics of the 'current'.
5253 */
5254 update_curr(cfs_rq);
916671c0
MG
5255 /*
5256 * Tell update_rq_clock() that we've just updated,
5257 * so we don't do microscopic update in schedule()
5258 * and double the fastpath cost.
5259 */
9edfbfed 5260 rq_clock_skip_update(rq, true);
ac53db59
RR
5261 }
5262
5263 set_skip_buddy(se);
5264}
5265
d95f4122
MG
5266static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5267{
5268 struct sched_entity *se = &p->se;
5269
5238cdd3
PT
5270 /* throttled hierarchies are not runnable */
5271 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5272 return false;
5273
5274 /* Tell the scheduler that we'd really like pse to run next. */
5275 set_next_buddy(se);
5276
d95f4122
MG
5277 yield_task_fair(rq);
5278
5279 return true;
5280}
5281
681f3e68 5282#ifdef CONFIG_SMP
bf0f6f24 5283/**************************************************
e9c84cb8
PZ
5284 * Fair scheduling class load-balancing methods.
5285 *
5286 * BASICS
5287 *
5288 * The purpose of load-balancing is to achieve the same basic fairness the
5289 * per-cpu scheduler provides, namely provide a proportional amount of compute
5290 * time to each task. This is expressed in the following equation:
5291 *
5292 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5293 *
5294 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5295 * W_i,0 is defined as:
5296 *
5297 * W_i,0 = \Sum_j w_i,j (2)
5298 *
5299 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5300 * is derived from the nice value as per prio_to_weight[].
5301 *
5302 * The weight average is an exponential decay average of the instantaneous
5303 * weight:
5304 *
5305 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5306 *
ced549fa 5307 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5308 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5309 * can also include other factors [XXX].
5310 *
5311 * To achieve this balance we define a measure of imbalance which follows
5312 * directly from (1):
5313 *
ced549fa 5314 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5315 *
5316 * We them move tasks around to minimize the imbalance. In the continuous
5317 * function space it is obvious this converges, in the discrete case we get
5318 * a few fun cases generally called infeasible weight scenarios.
5319 *
5320 * [XXX expand on:
5321 * - infeasible weights;
5322 * - local vs global optima in the discrete case. ]
5323 *
5324 *
5325 * SCHED DOMAINS
5326 *
5327 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5328 * for all i,j solution, we create a tree of cpus that follows the hardware
5329 * topology where each level pairs two lower groups (or better). This results
5330 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5331 * tree to only the first of the previous level and we decrease the frequency
5332 * of load-balance at each level inv. proportional to the number of cpus in
5333 * the groups.
5334 *
5335 * This yields:
5336 *
5337 * log_2 n 1 n
5338 * \Sum { --- * --- * 2^i } = O(n) (5)
5339 * i = 0 2^i 2^i
5340 * `- size of each group
5341 * | | `- number of cpus doing load-balance
5342 * | `- freq
5343 * `- sum over all levels
5344 *
5345 * Coupled with a limit on how many tasks we can migrate every balance pass,
5346 * this makes (5) the runtime complexity of the balancer.
5347 *
5348 * An important property here is that each CPU is still (indirectly) connected
5349 * to every other cpu in at most O(log n) steps:
5350 *
5351 * The adjacency matrix of the resulting graph is given by:
5352 *
5353 * log_2 n
5354 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5355 * k = 0
5356 *
5357 * And you'll find that:
5358 *
5359 * A^(log_2 n)_i,j != 0 for all i,j (7)
5360 *
5361 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5362 * The task movement gives a factor of O(m), giving a convergence complexity
5363 * of:
5364 *
5365 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5366 *
5367 *
5368 * WORK CONSERVING
5369 *
5370 * In order to avoid CPUs going idle while there's still work to do, new idle
5371 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5372 * tree itself instead of relying on other CPUs to bring it work.
5373 *
5374 * This adds some complexity to both (5) and (8) but it reduces the total idle
5375 * time.
5376 *
5377 * [XXX more?]
5378 *
5379 *
5380 * CGROUPS
5381 *
5382 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5383 *
5384 * s_k,i
5385 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5386 * S_k
5387 *
5388 * Where
5389 *
5390 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5391 *
5392 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5393 *
5394 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5395 * property.
5396 *
5397 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5398 * rewrite all of this once again.]
5399 */
bf0f6f24 5400
ed387b78
HS
5401static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5402
0ec8aa00
PZ
5403enum fbq_type { regular, remote, all };
5404
ddcdf6e7 5405#define LBF_ALL_PINNED 0x01
367456c7 5406#define LBF_NEED_BREAK 0x02
6263322c
PZ
5407#define LBF_DST_PINNED 0x04
5408#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5409
5410struct lb_env {
5411 struct sched_domain *sd;
5412
ddcdf6e7 5413 struct rq *src_rq;
85c1e7da 5414 int src_cpu;
ddcdf6e7
PZ
5415
5416 int dst_cpu;
5417 struct rq *dst_rq;
5418
88b8dac0
SV
5419 struct cpumask *dst_grpmask;
5420 int new_dst_cpu;
ddcdf6e7 5421 enum cpu_idle_type idle;
bd939f45 5422 long imbalance;
b9403130
MW
5423 /* The set of CPUs under consideration for load-balancing */
5424 struct cpumask *cpus;
5425
ddcdf6e7 5426 unsigned int flags;
367456c7
PZ
5427
5428 unsigned int loop;
5429 unsigned int loop_break;
5430 unsigned int loop_max;
0ec8aa00
PZ
5431
5432 enum fbq_type fbq_type;
163122b7 5433 struct list_head tasks;
ddcdf6e7
PZ
5434};
5435
029632fb
PZ
5436/*
5437 * Is this task likely cache-hot:
5438 */
5d5e2b1b 5439static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5440{
5441 s64 delta;
5442
e5673f28
KT
5443 lockdep_assert_held(&env->src_rq->lock);
5444
029632fb
PZ
5445 if (p->sched_class != &fair_sched_class)
5446 return 0;
5447
5448 if (unlikely(p->policy == SCHED_IDLE))
5449 return 0;
5450
5451 /*
5452 * Buddy candidates are cache hot:
5453 */
5d5e2b1b 5454 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5455 (&p->se == cfs_rq_of(&p->se)->next ||
5456 &p->se == cfs_rq_of(&p->se)->last))
5457 return 1;
5458
5459 if (sysctl_sched_migration_cost == -1)
5460 return 1;
5461 if (sysctl_sched_migration_cost == 0)
5462 return 0;
5463
5d5e2b1b 5464 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5465
5466 return delta < (s64)sysctl_sched_migration_cost;
5467}
5468
3a7053b3
MG
5469#ifdef CONFIG_NUMA_BALANCING
5470/* Returns true if the destination node has incurred more faults */
5471static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5472{
b1ad065e 5473 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5474 int src_nid, dst_nid;
5475
44dba3d5 5476 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5477 !(env->sd->flags & SD_NUMA)) {
5478 return false;
5479 }
5480
5481 src_nid = cpu_to_node(env->src_cpu);
5482 dst_nid = cpu_to_node(env->dst_cpu);
5483
83e1d2cd 5484 if (src_nid == dst_nid)
3a7053b3
MG
5485 return false;
5486
b1ad065e
RR
5487 if (numa_group) {
5488 /* Task is already in the group's interleave set. */
5489 if (node_isset(src_nid, numa_group->active_nodes))
5490 return false;
83e1d2cd 5491
b1ad065e
RR
5492 /* Task is moving into the group's interleave set. */
5493 if (node_isset(dst_nid, numa_group->active_nodes))
5494 return true;
83e1d2cd 5495
b1ad065e
RR
5496 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5497 }
5498
5499 /* Encourage migration to the preferred node. */
5500 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5501 return true;
5502
b1ad065e 5503 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5504}
7a0f3083
MG
5505
5506
5507static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5508{
b1ad065e 5509 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5510 int src_nid, dst_nid;
5511
5512 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5513 return false;
5514
44dba3d5 5515 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5516 return false;
5517
5518 src_nid = cpu_to_node(env->src_cpu);
5519 dst_nid = cpu_to_node(env->dst_cpu);
5520
83e1d2cd 5521 if (src_nid == dst_nid)
7a0f3083
MG
5522 return false;
5523
b1ad065e
RR
5524 if (numa_group) {
5525 /* Task is moving within/into the group's interleave set. */
5526 if (node_isset(dst_nid, numa_group->active_nodes))
5527 return false;
5528
5529 /* Task is moving out of the group's interleave set. */
5530 if (node_isset(src_nid, numa_group->active_nodes))
5531 return true;
5532
5533 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5534 }
5535
83e1d2cd
MG
5536 /* Migrating away from the preferred node is always bad. */
5537 if (src_nid == p->numa_preferred_nid)
5538 return true;
5539
b1ad065e 5540 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5541}
5542
3a7053b3
MG
5543#else
5544static inline bool migrate_improves_locality(struct task_struct *p,
5545 struct lb_env *env)
5546{
5547 return false;
5548}
7a0f3083
MG
5549
5550static inline bool migrate_degrades_locality(struct task_struct *p,
5551 struct lb_env *env)
5552{
5553 return false;
5554}
3a7053b3
MG
5555#endif
5556
1e3c88bd
PZ
5557/*
5558 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5559 */
5560static
8e45cb54 5561int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5562{
5563 int tsk_cache_hot = 0;
e5673f28
KT
5564
5565 lockdep_assert_held(&env->src_rq->lock);
5566
1e3c88bd
PZ
5567 /*
5568 * We do not migrate tasks that are:
d3198084 5569 * 1) throttled_lb_pair, or
1e3c88bd 5570 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5571 * 3) running (obviously), or
5572 * 4) are cache-hot on their current CPU.
1e3c88bd 5573 */
d3198084
JK
5574 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5575 return 0;
5576
ddcdf6e7 5577 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5578 int cpu;
88b8dac0 5579
41acab88 5580 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5581
6263322c
PZ
5582 env->flags |= LBF_SOME_PINNED;
5583
88b8dac0
SV
5584 /*
5585 * Remember if this task can be migrated to any other cpu in
5586 * our sched_group. We may want to revisit it if we couldn't
5587 * meet load balance goals by pulling other tasks on src_cpu.
5588 *
5589 * Also avoid computing new_dst_cpu if we have already computed
5590 * one in current iteration.
5591 */
6263322c 5592 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5593 return 0;
5594
e02e60c1
JK
5595 /* Prevent to re-select dst_cpu via env's cpus */
5596 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5597 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5598 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5599 env->new_dst_cpu = cpu;
5600 break;
5601 }
88b8dac0 5602 }
e02e60c1 5603
1e3c88bd
PZ
5604 return 0;
5605 }
88b8dac0
SV
5606
5607 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5608 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5609
ddcdf6e7 5610 if (task_running(env->src_rq, p)) {
41acab88 5611 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5612 return 0;
5613 }
5614
5615 /*
5616 * Aggressive migration if:
3a7053b3
MG
5617 * 1) destination numa is preferred
5618 * 2) task is cache cold, or
5619 * 3) too many balance attempts have failed.
1e3c88bd 5620 */
5d5e2b1b 5621 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5622 if (!tsk_cache_hot)
5623 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5624
7a96c231
KT
5625 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5626 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5627 if (tsk_cache_hot) {
5628 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5629 schedstat_inc(p, se.statistics.nr_forced_migrations);
5630 }
1e3c88bd
PZ
5631 return 1;
5632 }
5633
4e2dcb73
ZH
5634 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5635 return 0;
1e3c88bd
PZ
5636}
5637
897c395f 5638/*
163122b7
KT
5639 * detach_task() -- detach the task for the migration specified in env
5640 */
5641static void detach_task(struct task_struct *p, struct lb_env *env)
5642{
5643 lockdep_assert_held(&env->src_rq->lock);
5644
5645 deactivate_task(env->src_rq, p, 0);
5646 p->on_rq = TASK_ON_RQ_MIGRATING;
5647 set_task_cpu(p, env->dst_cpu);
5648}
5649
897c395f 5650/*
e5673f28 5651 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5652 * part of active balancing operations within "domain".
897c395f 5653 *
e5673f28 5654 * Returns a task if successful and NULL otherwise.
897c395f 5655 */
e5673f28 5656static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5657{
5658 struct task_struct *p, *n;
897c395f 5659
e5673f28
KT
5660 lockdep_assert_held(&env->src_rq->lock);
5661
367456c7 5662 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5663 if (!can_migrate_task(p, env))
5664 continue;
897c395f 5665
163122b7 5666 detach_task(p, env);
e5673f28 5667
367456c7 5668 /*
e5673f28 5669 * Right now, this is only the second place where
163122b7 5670 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5671 * so we can safely collect stats here rather than
163122b7 5672 * inside detach_tasks().
367456c7
PZ
5673 */
5674 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5675 return p;
897c395f 5676 }
e5673f28 5677 return NULL;
897c395f
PZ
5678}
5679
eb95308e
PZ
5680static const unsigned int sched_nr_migrate_break = 32;
5681
5d6523eb 5682/*
163122b7
KT
5683 * detach_tasks() -- tries to detach up to imbalance weighted load from
5684 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5685 *
163122b7 5686 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5687 */
163122b7 5688static int detach_tasks(struct lb_env *env)
1e3c88bd 5689{
5d6523eb
PZ
5690 struct list_head *tasks = &env->src_rq->cfs_tasks;
5691 struct task_struct *p;
367456c7 5692 unsigned long load;
163122b7
KT
5693 int detached = 0;
5694
5695 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5696
bd939f45 5697 if (env->imbalance <= 0)
5d6523eb 5698 return 0;
1e3c88bd 5699
5d6523eb
PZ
5700 while (!list_empty(tasks)) {
5701 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5702
367456c7
PZ
5703 env->loop++;
5704 /* We've more or less seen every task there is, call it quits */
5d6523eb 5705 if (env->loop > env->loop_max)
367456c7 5706 break;
5d6523eb
PZ
5707
5708 /* take a breather every nr_migrate tasks */
367456c7 5709 if (env->loop > env->loop_break) {
eb95308e 5710 env->loop_break += sched_nr_migrate_break;
8e45cb54 5711 env->flags |= LBF_NEED_BREAK;
ee00e66f 5712 break;
a195f004 5713 }
1e3c88bd 5714
d3198084 5715 if (!can_migrate_task(p, env))
367456c7
PZ
5716 goto next;
5717
5718 load = task_h_load(p);
5d6523eb 5719
eb95308e 5720 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5721 goto next;
5722
bd939f45 5723 if ((load / 2) > env->imbalance)
367456c7 5724 goto next;
1e3c88bd 5725
163122b7
KT
5726 detach_task(p, env);
5727 list_add(&p->se.group_node, &env->tasks);
5728
5729 detached++;
bd939f45 5730 env->imbalance -= load;
1e3c88bd
PZ
5731
5732#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5733 /*
5734 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5735 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5736 * the critical section.
5737 */
5d6523eb 5738 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5739 break;
1e3c88bd
PZ
5740#endif
5741
ee00e66f
PZ
5742 /*
5743 * We only want to steal up to the prescribed amount of
5744 * weighted load.
5745 */
bd939f45 5746 if (env->imbalance <= 0)
ee00e66f 5747 break;
367456c7
PZ
5748
5749 continue;
5750next:
5d6523eb 5751 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5752 }
5d6523eb 5753
1e3c88bd 5754 /*
163122b7
KT
5755 * Right now, this is one of only two places we collect this stat
5756 * so we can safely collect detach_one_task() stats here rather
5757 * than inside detach_one_task().
1e3c88bd 5758 */
163122b7 5759 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5760
163122b7
KT
5761 return detached;
5762}
5763
5764/*
5765 * attach_task() -- attach the task detached by detach_task() to its new rq.
5766 */
5767static void attach_task(struct rq *rq, struct task_struct *p)
5768{
5769 lockdep_assert_held(&rq->lock);
5770
5771 BUG_ON(task_rq(p) != rq);
5772 p->on_rq = TASK_ON_RQ_QUEUED;
5773 activate_task(rq, p, 0);
5774 check_preempt_curr(rq, p, 0);
5775}
5776
5777/*
5778 * attach_one_task() -- attaches the task returned from detach_one_task() to
5779 * its new rq.
5780 */
5781static void attach_one_task(struct rq *rq, struct task_struct *p)
5782{
5783 raw_spin_lock(&rq->lock);
5784 attach_task(rq, p);
5785 raw_spin_unlock(&rq->lock);
5786}
5787
5788/*
5789 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5790 * new rq.
5791 */
5792static void attach_tasks(struct lb_env *env)
5793{
5794 struct list_head *tasks = &env->tasks;
5795 struct task_struct *p;
5796
5797 raw_spin_lock(&env->dst_rq->lock);
5798
5799 while (!list_empty(tasks)) {
5800 p = list_first_entry(tasks, struct task_struct, se.group_node);
5801 list_del_init(&p->se.group_node);
1e3c88bd 5802
163122b7
KT
5803 attach_task(env->dst_rq, p);
5804 }
5805
5806 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5807}
5808
230059de 5809#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5810/*
5811 * update tg->load_weight by folding this cpu's load_avg
5812 */
48a16753 5813static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5814{
48a16753
PT
5815 struct sched_entity *se = tg->se[cpu];
5816 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5817
48a16753
PT
5818 /* throttled entities do not contribute to load */
5819 if (throttled_hierarchy(cfs_rq))
5820 return;
9e3081ca 5821
aff3e498 5822 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5823
82958366
PT
5824 if (se) {
5825 update_entity_load_avg(se, 1);
5826 /*
5827 * We pivot on our runnable average having decayed to zero for
5828 * list removal. This generally implies that all our children
5829 * have also been removed (modulo rounding error or bandwidth
5830 * control); however, such cases are rare and we can fix these
5831 * at enqueue.
5832 *
5833 * TODO: fix up out-of-order children on enqueue.
5834 */
5835 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5836 list_del_leaf_cfs_rq(cfs_rq);
5837 } else {
48a16753 5838 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5839 update_rq_runnable_avg(rq, rq->nr_running);
5840 }
9e3081ca
PZ
5841}
5842
48a16753 5843static void update_blocked_averages(int cpu)
9e3081ca 5844{
9e3081ca 5845 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5846 struct cfs_rq *cfs_rq;
5847 unsigned long flags;
9e3081ca 5848
48a16753
PT
5849 raw_spin_lock_irqsave(&rq->lock, flags);
5850 update_rq_clock(rq);
9763b67f
PZ
5851 /*
5852 * Iterates the task_group tree in a bottom up fashion, see
5853 * list_add_leaf_cfs_rq() for details.
5854 */
64660c86 5855 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5856 /*
5857 * Note: We may want to consider periodically releasing
5858 * rq->lock about these updates so that creating many task
5859 * groups does not result in continually extending hold time.
5860 */
5861 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5862 }
48a16753
PT
5863
5864 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5865}
5866
9763b67f 5867/*
68520796 5868 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5869 * This needs to be done in a top-down fashion because the load of a child
5870 * group is a fraction of its parents load.
5871 */
68520796 5872static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5873{
68520796
VD
5874 struct rq *rq = rq_of(cfs_rq);
5875 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5876 unsigned long now = jiffies;
68520796 5877 unsigned long load;
a35b6466 5878
68520796 5879 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5880 return;
5881
68520796
VD
5882 cfs_rq->h_load_next = NULL;
5883 for_each_sched_entity(se) {
5884 cfs_rq = cfs_rq_of(se);
5885 cfs_rq->h_load_next = se;
5886 if (cfs_rq->last_h_load_update == now)
5887 break;
5888 }
a35b6466 5889
68520796 5890 if (!se) {
7e3115ef 5891 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5892 cfs_rq->last_h_load_update = now;
5893 }
5894
5895 while ((se = cfs_rq->h_load_next) != NULL) {
5896 load = cfs_rq->h_load;
5897 load = div64_ul(load * se->avg.load_avg_contrib,
5898 cfs_rq->runnable_load_avg + 1);
5899 cfs_rq = group_cfs_rq(se);
5900 cfs_rq->h_load = load;
5901 cfs_rq->last_h_load_update = now;
5902 }
9763b67f
PZ
5903}
5904
367456c7 5905static unsigned long task_h_load(struct task_struct *p)
230059de 5906{
367456c7 5907 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5908
68520796 5909 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5910 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5911 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5912}
5913#else
48a16753 5914static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5915{
5916}
5917
367456c7 5918static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5919{
a003a25b 5920 return p->se.avg.load_avg_contrib;
1e3c88bd 5921}
230059de 5922#endif
1e3c88bd 5923
1e3c88bd 5924/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5925
5926enum group_type {
5927 group_other = 0,
5928 group_imbalanced,
5929 group_overloaded,
5930};
5931
1e3c88bd
PZ
5932/*
5933 * sg_lb_stats - stats of a sched_group required for load_balancing
5934 */
5935struct sg_lb_stats {
5936 unsigned long avg_load; /*Avg load across the CPUs of the group */
5937 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5938 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5939 unsigned long load_per_task;
63b2ca30 5940 unsigned long group_capacity;
8bb5b00c 5941 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5942 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5943 unsigned int idle_cpus;
5944 unsigned int group_weight;
caeb178c 5945 enum group_type group_type;
ea67821b 5946 int group_no_capacity;
0ec8aa00
PZ
5947#ifdef CONFIG_NUMA_BALANCING
5948 unsigned int nr_numa_running;
5949 unsigned int nr_preferred_running;
5950#endif
1e3c88bd
PZ
5951};
5952
56cf515b
JK
5953/*
5954 * sd_lb_stats - Structure to store the statistics of a sched_domain
5955 * during load balancing.
5956 */
5957struct sd_lb_stats {
5958 struct sched_group *busiest; /* Busiest group in this sd */
5959 struct sched_group *local; /* Local group in this sd */
5960 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5961 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5962 unsigned long avg_load; /* Average load across all groups in sd */
5963
56cf515b 5964 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5965 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5966};
5967
147c5fc2
PZ
5968static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5969{
5970 /*
5971 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5972 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5973 * We must however clear busiest_stat::avg_load because
5974 * update_sd_pick_busiest() reads this before assignment.
5975 */
5976 *sds = (struct sd_lb_stats){
5977 .busiest = NULL,
5978 .local = NULL,
5979 .total_load = 0UL,
63b2ca30 5980 .total_capacity = 0UL,
147c5fc2
PZ
5981 .busiest_stat = {
5982 .avg_load = 0UL,
caeb178c
RR
5983 .sum_nr_running = 0,
5984 .group_type = group_other,
147c5fc2
PZ
5985 },
5986 };
5987}
5988
1e3c88bd
PZ
5989/**
5990 * get_sd_load_idx - Obtain the load index for a given sched domain.
5991 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5992 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5993 *
5994 * Return: The load index.
1e3c88bd
PZ
5995 */
5996static inline int get_sd_load_idx(struct sched_domain *sd,
5997 enum cpu_idle_type idle)
5998{
5999 int load_idx;
6000
6001 switch (idle) {
6002 case CPU_NOT_IDLE:
6003 load_idx = sd->busy_idx;
6004 break;
6005
6006 case CPU_NEWLY_IDLE:
6007 load_idx = sd->newidle_idx;
6008 break;
6009 default:
6010 load_idx = sd->idle_idx;
6011 break;
6012 }
6013
6014 return load_idx;
6015}
6016
26bc3c50 6017static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6018{
26bc3c50
VG
6019 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6020 return sd->smt_gain / sd->span_weight;
1e3c88bd 6021
26bc3c50 6022 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6023}
6024
26bc3c50 6025unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6026{
26bc3c50 6027 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6028}
6029
ced549fa 6030static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6031{
6032 struct rq *rq = cpu_rq(cpu);
b5b4860d 6033 u64 total, used, age_stamp, avg;
cadefd3d 6034 s64 delta;
1e3c88bd 6035
b654f7de
PZ
6036 /*
6037 * Since we're reading these variables without serialization make sure
6038 * we read them once before doing sanity checks on them.
6039 */
6040 age_stamp = ACCESS_ONCE(rq->age_stamp);
6041 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 6042 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6043
cadefd3d
PZ
6044 if (unlikely(delta < 0))
6045 delta = 0;
6046
6047 total = sched_avg_period() + delta;
aa483808 6048
b5b4860d 6049 used = div_u64(avg, total);
1e3c88bd 6050
b5b4860d
VG
6051 if (likely(used < SCHED_CAPACITY_SCALE))
6052 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6053
b5b4860d 6054 return 1;
1e3c88bd
PZ
6055}
6056
ced549fa 6057static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6058{
ca8ce3d0 6059 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6060 struct sched_group *sdg = sd->groups;
6061
26bc3c50
VG
6062 if (sched_feat(ARCH_CAPACITY))
6063 capacity *= arch_scale_cpu_capacity(sd, cpu);
6064 else
6065 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6066
26bc3c50 6067 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6068
ca6d75e6 6069 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6070
ced549fa 6071 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6072 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6073
ced549fa
NP
6074 if (!capacity)
6075 capacity = 1;
1e3c88bd 6076
ced549fa
NP
6077 cpu_rq(cpu)->cpu_capacity = capacity;
6078 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6079}
6080
63b2ca30 6081void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6082{
6083 struct sched_domain *child = sd->child;
6084 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6085 unsigned long capacity;
4ec4412e
VG
6086 unsigned long interval;
6087
6088 interval = msecs_to_jiffies(sd->balance_interval);
6089 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6090 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6091
6092 if (!child) {
ced549fa 6093 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6094 return;
6095 }
6096
dc7ff76e 6097 capacity = 0;
1e3c88bd 6098
74a5ce20
PZ
6099 if (child->flags & SD_OVERLAP) {
6100 /*
6101 * SD_OVERLAP domains cannot assume that child groups
6102 * span the current group.
6103 */
6104
863bffc8 6105 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6106 struct sched_group_capacity *sgc;
9abf24d4 6107 struct rq *rq = cpu_rq(cpu);
863bffc8 6108
9abf24d4 6109 /*
63b2ca30 6110 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6111 * gets here before we've attached the domains to the
6112 * runqueues.
6113 *
ced549fa
NP
6114 * Use capacity_of(), which is set irrespective of domains
6115 * in update_cpu_capacity().
9abf24d4 6116 *
dc7ff76e 6117 * This avoids capacity from being 0 and
9abf24d4 6118 * causing divide-by-zero issues on boot.
9abf24d4
SD
6119 */
6120 if (unlikely(!rq->sd)) {
ced549fa 6121 capacity += capacity_of(cpu);
9abf24d4
SD
6122 continue;
6123 }
863bffc8 6124
63b2ca30 6125 sgc = rq->sd->groups->sgc;
63b2ca30 6126 capacity += sgc->capacity;
863bffc8 6127 }
74a5ce20
PZ
6128 } else {
6129 /*
6130 * !SD_OVERLAP domains can assume that child groups
6131 * span the current group.
6132 */
6133
6134 group = child->groups;
6135 do {
63b2ca30 6136 capacity += group->sgc->capacity;
74a5ce20
PZ
6137 group = group->next;
6138 } while (group != child->groups);
6139 }
1e3c88bd 6140
63b2ca30 6141 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6142}
6143
9d5efe05 6144/*
ea67821b
VG
6145 * Check whether the capacity of the rq has been noticeably reduced by side
6146 * activity. The imbalance_pct is used for the threshold.
6147 * Return true is the capacity is reduced
9d5efe05
SV
6148 */
6149static inline int
ea67821b 6150check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6151{
ea67821b
VG
6152 return ((rq->cpu_capacity * sd->imbalance_pct) <
6153 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6154}
6155
30ce5dab
PZ
6156/*
6157 * Group imbalance indicates (and tries to solve) the problem where balancing
6158 * groups is inadequate due to tsk_cpus_allowed() constraints.
6159 *
6160 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6161 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6162 * Something like:
6163 *
6164 * { 0 1 2 3 } { 4 5 6 7 }
6165 * * * * *
6166 *
6167 * If we were to balance group-wise we'd place two tasks in the first group and
6168 * two tasks in the second group. Clearly this is undesired as it will overload
6169 * cpu 3 and leave one of the cpus in the second group unused.
6170 *
6171 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6172 * by noticing the lower domain failed to reach balance and had difficulty
6173 * moving tasks due to affinity constraints.
30ce5dab
PZ
6174 *
6175 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6176 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6177 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6178 * to create an effective group imbalance.
6179 *
6180 * This is a somewhat tricky proposition since the next run might not find the
6181 * group imbalance and decide the groups need to be balanced again. A most
6182 * subtle and fragile situation.
6183 */
6184
6263322c 6185static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6186{
63b2ca30 6187 return group->sgc->imbalance;
30ce5dab
PZ
6188}
6189
b37d9316 6190/*
ea67821b
VG
6191 * group_has_capacity returns true if the group has spare capacity that could
6192 * be used by some tasks.
6193 * We consider that a group has spare capacity if the * number of task is
6194 * smaller than the number of CPUs or if the usage is lower than the available
6195 * capacity for CFS tasks.
6196 * For the latter, we use a threshold to stabilize the state, to take into
6197 * account the variance of the tasks' load and to return true if the available
6198 * capacity in meaningful for the load balancer.
6199 * As an example, an available capacity of 1% can appear but it doesn't make
6200 * any benefit for the load balance.
b37d9316 6201 */
ea67821b
VG
6202static inline bool
6203group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6204{
ea67821b
VG
6205 if (sgs->sum_nr_running < sgs->group_weight)
6206 return true;
c61037e9 6207
ea67821b
VG
6208 if ((sgs->group_capacity * 100) >
6209 (sgs->group_usage * env->sd->imbalance_pct))
6210 return true;
b37d9316 6211
ea67821b
VG
6212 return false;
6213}
6214
6215/*
6216 * group_is_overloaded returns true if the group has more tasks than it can
6217 * handle.
6218 * group_is_overloaded is not equals to !group_has_capacity because a group
6219 * with the exact right number of tasks, has no more spare capacity but is not
6220 * overloaded so both group_has_capacity and group_is_overloaded return
6221 * false.
6222 */
6223static inline bool
6224group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6225{
6226 if (sgs->sum_nr_running <= sgs->group_weight)
6227 return false;
b37d9316 6228
ea67821b
VG
6229 if ((sgs->group_capacity * 100) <
6230 (sgs->group_usage * env->sd->imbalance_pct))
6231 return true;
b37d9316 6232
ea67821b 6233 return false;
b37d9316
PZ
6234}
6235
ea67821b
VG
6236static enum group_type group_classify(struct lb_env *env,
6237 struct sched_group *group,
6238 struct sg_lb_stats *sgs)
caeb178c 6239{
ea67821b 6240 if (sgs->group_no_capacity)
caeb178c
RR
6241 return group_overloaded;
6242
6243 if (sg_imbalanced(group))
6244 return group_imbalanced;
6245
6246 return group_other;
6247}
6248
1e3c88bd
PZ
6249/**
6250 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6251 * @env: The load balancing environment.
1e3c88bd 6252 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6253 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6254 * @local_group: Does group contain this_cpu.
1e3c88bd 6255 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6256 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6257 */
bd939f45
PZ
6258static inline void update_sg_lb_stats(struct lb_env *env,
6259 struct sched_group *group, int load_idx,
4486edd1
TC
6260 int local_group, struct sg_lb_stats *sgs,
6261 bool *overload)
1e3c88bd 6262{
30ce5dab 6263 unsigned long load;
bd939f45 6264 int i;
1e3c88bd 6265
b72ff13c
PZ
6266 memset(sgs, 0, sizeof(*sgs));
6267
b9403130 6268 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6269 struct rq *rq = cpu_rq(i);
6270
1e3c88bd 6271 /* Bias balancing toward cpus of our domain */
6263322c 6272 if (local_group)
04f733b4 6273 load = target_load(i, load_idx);
6263322c 6274 else
1e3c88bd 6275 load = source_load(i, load_idx);
1e3c88bd
PZ
6276
6277 sgs->group_load += load;
8bb5b00c 6278 sgs->group_usage += get_cpu_usage(i);
65fdac08 6279 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6280
6281 if (rq->nr_running > 1)
6282 *overload = true;
6283
0ec8aa00
PZ
6284#ifdef CONFIG_NUMA_BALANCING
6285 sgs->nr_numa_running += rq->nr_numa_running;
6286 sgs->nr_preferred_running += rq->nr_preferred_running;
6287#endif
1e3c88bd 6288 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6289 if (idle_cpu(i))
6290 sgs->idle_cpus++;
1e3c88bd
PZ
6291 }
6292
63b2ca30
NP
6293 /* Adjust by relative CPU capacity of the group */
6294 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6295 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6296
dd5feea1 6297 if (sgs->sum_nr_running)
38d0f770 6298 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6299
aae6d3dd 6300 sgs->group_weight = group->group_weight;
b37d9316 6301
ea67821b
VG
6302 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6303 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6304}
6305
532cb4c4
MN
6306/**
6307 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6308 * @env: The load balancing environment.
532cb4c4
MN
6309 * @sds: sched_domain statistics
6310 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6311 * @sgs: sched_group statistics
532cb4c4
MN
6312 *
6313 * Determine if @sg is a busier group than the previously selected
6314 * busiest group.
e69f6186
YB
6315 *
6316 * Return: %true if @sg is a busier group than the previously selected
6317 * busiest group. %false otherwise.
532cb4c4 6318 */
bd939f45 6319static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6320 struct sd_lb_stats *sds,
6321 struct sched_group *sg,
bd939f45 6322 struct sg_lb_stats *sgs)
532cb4c4 6323{
caeb178c 6324 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6325
caeb178c 6326 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6327 return true;
6328
caeb178c
RR
6329 if (sgs->group_type < busiest->group_type)
6330 return false;
6331
6332 if (sgs->avg_load <= busiest->avg_load)
6333 return false;
6334
6335 /* This is the busiest node in its class. */
6336 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6337 return true;
6338
6339 /*
6340 * ASYM_PACKING needs to move all the work to the lowest
6341 * numbered CPUs in the group, therefore mark all groups
6342 * higher than ourself as busy.
6343 */
caeb178c 6344 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6345 if (!sds->busiest)
6346 return true;
6347
6348 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6349 return true;
6350 }
6351
6352 return false;
6353}
6354
0ec8aa00
PZ
6355#ifdef CONFIG_NUMA_BALANCING
6356static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6357{
6358 if (sgs->sum_nr_running > sgs->nr_numa_running)
6359 return regular;
6360 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6361 return remote;
6362 return all;
6363}
6364
6365static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6366{
6367 if (rq->nr_running > rq->nr_numa_running)
6368 return regular;
6369 if (rq->nr_running > rq->nr_preferred_running)
6370 return remote;
6371 return all;
6372}
6373#else
6374static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6375{
6376 return all;
6377}
6378
6379static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6380{
6381 return regular;
6382}
6383#endif /* CONFIG_NUMA_BALANCING */
6384
1e3c88bd 6385/**
461819ac 6386 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6387 * @env: The load balancing environment.
1e3c88bd
PZ
6388 * @sds: variable to hold the statistics for this sched_domain.
6389 */
0ec8aa00 6390static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6391{
bd939f45
PZ
6392 struct sched_domain *child = env->sd->child;
6393 struct sched_group *sg = env->sd->groups;
56cf515b 6394 struct sg_lb_stats tmp_sgs;
1e3c88bd 6395 int load_idx, prefer_sibling = 0;
4486edd1 6396 bool overload = false;
1e3c88bd
PZ
6397
6398 if (child && child->flags & SD_PREFER_SIBLING)
6399 prefer_sibling = 1;
6400
bd939f45 6401 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6402
6403 do {
56cf515b 6404 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6405 int local_group;
6406
bd939f45 6407 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6408 if (local_group) {
6409 sds->local = sg;
6410 sgs = &sds->local_stat;
b72ff13c
PZ
6411
6412 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6413 time_after_eq(jiffies, sg->sgc->next_update))
6414 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6415 }
1e3c88bd 6416
4486edd1
TC
6417 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6418 &overload);
1e3c88bd 6419
b72ff13c
PZ
6420 if (local_group)
6421 goto next_group;
6422
1e3c88bd
PZ
6423 /*
6424 * In case the child domain prefers tasks go to siblings
ea67821b 6425 * first, lower the sg capacity so that we'll try
75dd321d
NR
6426 * and move all the excess tasks away. We lower the capacity
6427 * of a group only if the local group has the capacity to fit
ea67821b
VG
6428 * these excess tasks. The extra check prevents the case where
6429 * you always pull from the heaviest group when it is already
6430 * under-utilized (possible with a large weight task outweighs
6431 * the tasks on the system).
1e3c88bd 6432 */
b72ff13c 6433 if (prefer_sibling && sds->local &&
ea67821b
VG
6434 group_has_capacity(env, &sds->local_stat) &&
6435 (sgs->sum_nr_running > 1)) {
6436 sgs->group_no_capacity = 1;
6437 sgs->group_type = group_overloaded;
cb0b9f24 6438 }
1e3c88bd 6439
b72ff13c 6440 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6441 sds->busiest = sg;
56cf515b 6442 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6443 }
6444
b72ff13c
PZ
6445next_group:
6446 /* Now, start updating sd_lb_stats */
6447 sds->total_load += sgs->group_load;
63b2ca30 6448 sds->total_capacity += sgs->group_capacity;
b72ff13c 6449
532cb4c4 6450 sg = sg->next;
bd939f45 6451 } while (sg != env->sd->groups);
0ec8aa00
PZ
6452
6453 if (env->sd->flags & SD_NUMA)
6454 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6455
6456 if (!env->sd->parent) {
6457 /* update overload indicator if we are at root domain */
6458 if (env->dst_rq->rd->overload != overload)
6459 env->dst_rq->rd->overload = overload;
6460 }
6461
532cb4c4
MN
6462}
6463
532cb4c4
MN
6464/**
6465 * check_asym_packing - Check to see if the group is packed into the
6466 * sched doman.
6467 *
6468 * This is primarily intended to used at the sibling level. Some
6469 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6470 * case of POWER7, it can move to lower SMT modes only when higher
6471 * threads are idle. When in lower SMT modes, the threads will
6472 * perform better since they share less core resources. Hence when we
6473 * have idle threads, we want them to be the higher ones.
6474 *
6475 * This packing function is run on idle threads. It checks to see if
6476 * the busiest CPU in this domain (core in the P7 case) has a higher
6477 * CPU number than the packing function is being run on. Here we are
6478 * assuming lower CPU number will be equivalent to lower a SMT thread
6479 * number.
6480 *
e69f6186 6481 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6482 * this CPU. The amount of the imbalance is returned in *imbalance.
6483 *
cd96891d 6484 * @env: The load balancing environment.
532cb4c4 6485 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6486 */
bd939f45 6487static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6488{
6489 int busiest_cpu;
6490
bd939f45 6491 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6492 return 0;
6493
6494 if (!sds->busiest)
6495 return 0;
6496
6497 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6498 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6499 return 0;
6500
bd939f45 6501 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6502 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6503 SCHED_CAPACITY_SCALE);
bd939f45 6504
532cb4c4 6505 return 1;
1e3c88bd
PZ
6506}
6507
6508/**
6509 * fix_small_imbalance - Calculate the minor imbalance that exists
6510 * amongst the groups of a sched_domain, during
6511 * load balancing.
cd96891d 6512 * @env: The load balancing environment.
1e3c88bd 6513 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6514 */
bd939f45
PZ
6515static inline
6516void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6517{
63b2ca30 6518 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6519 unsigned int imbn = 2;
dd5feea1 6520 unsigned long scaled_busy_load_per_task;
56cf515b 6521 struct sg_lb_stats *local, *busiest;
1e3c88bd 6522
56cf515b
JK
6523 local = &sds->local_stat;
6524 busiest = &sds->busiest_stat;
1e3c88bd 6525
56cf515b
JK
6526 if (!local->sum_nr_running)
6527 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6528 else if (busiest->load_per_task > local->load_per_task)
6529 imbn = 1;
dd5feea1 6530
56cf515b 6531 scaled_busy_load_per_task =
ca8ce3d0 6532 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6533 busiest->group_capacity;
56cf515b 6534
3029ede3
VD
6535 if (busiest->avg_load + scaled_busy_load_per_task >=
6536 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6537 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6538 return;
6539 }
6540
6541 /*
6542 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6543 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6544 * moving them.
6545 */
6546
63b2ca30 6547 capa_now += busiest->group_capacity *
56cf515b 6548 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6549 capa_now += local->group_capacity *
56cf515b 6550 min(local->load_per_task, local->avg_load);
ca8ce3d0 6551 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6552
6553 /* Amount of load we'd subtract */
a2cd4260 6554 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6555 capa_move += busiest->group_capacity *
56cf515b 6556 min(busiest->load_per_task,
a2cd4260 6557 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6558 }
1e3c88bd
PZ
6559
6560 /* Amount of load we'd add */
63b2ca30 6561 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6562 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6563 tmp = (busiest->avg_load * busiest->group_capacity) /
6564 local->group_capacity;
56cf515b 6565 } else {
ca8ce3d0 6566 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6567 local->group_capacity;
56cf515b 6568 }
63b2ca30 6569 capa_move += local->group_capacity *
3ae11c90 6570 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6571 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6572
6573 /* Move if we gain throughput */
63b2ca30 6574 if (capa_move > capa_now)
56cf515b 6575 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6576}
6577
6578/**
6579 * calculate_imbalance - Calculate the amount of imbalance present within the
6580 * groups of a given sched_domain during load balance.
bd939f45 6581 * @env: load balance environment
1e3c88bd 6582 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6583 */
bd939f45 6584static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6585{
dd5feea1 6586 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6587 struct sg_lb_stats *local, *busiest;
6588
6589 local = &sds->local_stat;
56cf515b 6590 busiest = &sds->busiest_stat;
dd5feea1 6591
caeb178c 6592 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6593 /*
6594 * In the group_imb case we cannot rely on group-wide averages
6595 * to ensure cpu-load equilibrium, look at wider averages. XXX
6596 */
56cf515b
JK
6597 busiest->load_per_task =
6598 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6599 }
6600
1e3c88bd
PZ
6601 /*
6602 * In the presence of smp nice balancing, certain scenarios can have
6603 * max load less than avg load(as we skip the groups at or below
ced549fa 6604 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6605 */
b1885550
VD
6606 if (busiest->avg_load <= sds->avg_load ||
6607 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6608 env->imbalance = 0;
6609 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6610 }
6611
9a5d9ba6
PZ
6612 /*
6613 * If there aren't any idle cpus, avoid creating some.
6614 */
6615 if (busiest->group_type == group_overloaded &&
6616 local->group_type == group_overloaded) {
ea67821b
VG
6617 load_above_capacity = busiest->sum_nr_running *
6618 SCHED_LOAD_SCALE;
6619 if (load_above_capacity > busiest->group_capacity)
6620 load_above_capacity -= busiest->group_capacity;
6621 else
6622 load_above_capacity = ~0UL;
dd5feea1
SS
6623 }
6624
6625 /*
6626 * We're trying to get all the cpus to the average_load, so we don't
6627 * want to push ourselves above the average load, nor do we wish to
6628 * reduce the max loaded cpu below the average load. At the same time,
6629 * we also don't want to reduce the group load below the group capacity
6630 * (so that we can implement power-savings policies etc). Thus we look
6631 * for the minimum possible imbalance.
dd5feea1 6632 */
30ce5dab 6633 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6634
6635 /* How much load to actually move to equalise the imbalance */
56cf515b 6636 env->imbalance = min(
63b2ca30
NP
6637 max_pull * busiest->group_capacity,
6638 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6639 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6640
6641 /*
6642 * if *imbalance is less than the average load per runnable task
25985edc 6643 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6644 * a think about bumping its value to force at least one task to be
6645 * moved
6646 */
56cf515b 6647 if (env->imbalance < busiest->load_per_task)
bd939f45 6648 return fix_small_imbalance(env, sds);
1e3c88bd 6649}
fab47622 6650
1e3c88bd
PZ
6651/******* find_busiest_group() helpers end here *********************/
6652
6653/**
6654 * find_busiest_group - Returns the busiest group within the sched_domain
6655 * if there is an imbalance. If there isn't an imbalance, and
6656 * the user has opted for power-savings, it returns a group whose
6657 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6658 * such a group exists.
6659 *
6660 * Also calculates the amount of weighted load which should be moved
6661 * to restore balance.
6662 *
cd96891d 6663 * @env: The load balancing environment.
1e3c88bd 6664 *
e69f6186 6665 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6666 * - If no imbalance and user has opted for power-savings balance,
6667 * return the least loaded group whose CPUs can be
6668 * put to idle by rebalancing its tasks onto our group.
6669 */
56cf515b 6670static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6671{
56cf515b 6672 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6673 struct sd_lb_stats sds;
6674
147c5fc2 6675 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6676
6677 /*
6678 * Compute the various statistics relavent for load balancing at
6679 * this level.
6680 */
23f0d209 6681 update_sd_lb_stats(env, &sds);
56cf515b
JK
6682 local = &sds.local_stat;
6683 busiest = &sds.busiest_stat;
1e3c88bd 6684
ea67821b 6685 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6686 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6687 check_asym_packing(env, &sds))
532cb4c4
MN
6688 return sds.busiest;
6689
cc57aa8f 6690 /* There is no busy sibling group to pull tasks from */
56cf515b 6691 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6692 goto out_balanced;
6693
ca8ce3d0
NP
6694 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6695 / sds.total_capacity;
b0432d8f 6696
866ab43e
PZ
6697 /*
6698 * If the busiest group is imbalanced the below checks don't
30ce5dab 6699 * work because they assume all things are equal, which typically
866ab43e
PZ
6700 * isn't true due to cpus_allowed constraints and the like.
6701 */
caeb178c 6702 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6703 goto force_balance;
6704
cc57aa8f 6705 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6706 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6707 busiest->group_no_capacity)
fab47622
NR
6708 goto force_balance;
6709
cc57aa8f 6710 /*
9c58c79a 6711 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6712 * don't try and pull any tasks.
6713 */
56cf515b 6714 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6715 goto out_balanced;
6716
cc57aa8f
PZ
6717 /*
6718 * Don't pull any tasks if this group is already above the domain
6719 * average load.
6720 */
56cf515b 6721 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6722 goto out_balanced;
6723
bd939f45 6724 if (env->idle == CPU_IDLE) {
aae6d3dd 6725 /*
43f4d666
VG
6726 * This cpu is idle. If the busiest group is not overloaded
6727 * and there is no imbalance between this and busiest group
6728 * wrt idle cpus, it is balanced. The imbalance becomes
6729 * significant if the diff is greater than 1 otherwise we
6730 * might end up to just move the imbalance on another group
aae6d3dd 6731 */
43f4d666
VG
6732 if ((busiest->group_type != group_overloaded) &&
6733 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6734 goto out_balanced;
c186fafe
PZ
6735 } else {
6736 /*
6737 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6738 * imbalance_pct to be conservative.
6739 */
56cf515b
JK
6740 if (100 * busiest->avg_load <=
6741 env->sd->imbalance_pct * local->avg_load)
c186fafe 6742 goto out_balanced;
aae6d3dd 6743 }
1e3c88bd 6744
fab47622 6745force_balance:
1e3c88bd 6746 /* Looks like there is an imbalance. Compute it */
bd939f45 6747 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6748 return sds.busiest;
6749
6750out_balanced:
bd939f45 6751 env->imbalance = 0;
1e3c88bd
PZ
6752 return NULL;
6753}
6754
6755/*
6756 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6757 */
bd939f45 6758static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6759 struct sched_group *group)
1e3c88bd
PZ
6760{
6761 struct rq *busiest = NULL, *rq;
ced549fa 6762 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6763 int i;
6764
6906a408 6765 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6766 unsigned long capacity, wl;
0ec8aa00
PZ
6767 enum fbq_type rt;
6768
6769 rq = cpu_rq(i);
6770 rt = fbq_classify_rq(rq);
1e3c88bd 6771
0ec8aa00
PZ
6772 /*
6773 * We classify groups/runqueues into three groups:
6774 * - regular: there are !numa tasks
6775 * - remote: there are numa tasks that run on the 'wrong' node
6776 * - all: there is no distinction
6777 *
6778 * In order to avoid migrating ideally placed numa tasks,
6779 * ignore those when there's better options.
6780 *
6781 * If we ignore the actual busiest queue to migrate another
6782 * task, the next balance pass can still reduce the busiest
6783 * queue by moving tasks around inside the node.
6784 *
6785 * If we cannot move enough load due to this classification
6786 * the next pass will adjust the group classification and
6787 * allow migration of more tasks.
6788 *
6789 * Both cases only affect the total convergence complexity.
6790 */
6791 if (rt > env->fbq_type)
6792 continue;
6793
ced549fa 6794 capacity = capacity_of(i);
9d5efe05 6795
6e40f5bb 6796 wl = weighted_cpuload(i);
1e3c88bd 6797
6e40f5bb
TG
6798 /*
6799 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6800 * which is not scaled with the cpu capacity.
6e40f5bb 6801 */
ea67821b
VG
6802
6803 if (rq->nr_running == 1 && wl > env->imbalance &&
6804 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6805 continue;
6806
6e40f5bb
TG
6807 /*
6808 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6809 * the weighted_cpuload() scaled with the cpu capacity, so
6810 * that the load can be moved away from the cpu that is
6811 * potentially running at a lower capacity.
95a79b80 6812 *
ced549fa 6813 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6814 * multiplication to rid ourselves of the division works out
ced549fa
NP
6815 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6816 * our previous maximum.
6e40f5bb 6817 */
ced549fa 6818 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6819 busiest_load = wl;
ced549fa 6820 busiest_capacity = capacity;
1e3c88bd
PZ
6821 busiest = rq;
6822 }
6823 }
6824
6825 return busiest;
6826}
6827
6828/*
6829 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6830 * so long as it is large enough.
6831 */
6832#define MAX_PINNED_INTERVAL 512
6833
6834/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6835DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6836
bd939f45 6837static int need_active_balance(struct lb_env *env)
1af3ed3d 6838{
bd939f45
PZ
6839 struct sched_domain *sd = env->sd;
6840
6841 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6842
6843 /*
6844 * ASYM_PACKING needs to force migrate tasks from busy but
6845 * higher numbered CPUs in order to pack all tasks in the
6846 * lowest numbered CPUs.
6847 */
bd939f45 6848 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6849 return 1;
1af3ed3d
PZ
6850 }
6851
1aaf90a4
VG
6852 /*
6853 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6854 * It's worth migrating the task if the src_cpu's capacity is reduced
6855 * because of other sched_class or IRQs if more capacity stays
6856 * available on dst_cpu.
6857 */
6858 if ((env->idle != CPU_NOT_IDLE) &&
6859 (env->src_rq->cfs.h_nr_running == 1)) {
6860 if ((check_cpu_capacity(env->src_rq, sd)) &&
6861 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6862 return 1;
6863 }
6864
1af3ed3d
PZ
6865 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6866}
6867
969c7921
TH
6868static int active_load_balance_cpu_stop(void *data);
6869
23f0d209
JK
6870static int should_we_balance(struct lb_env *env)
6871{
6872 struct sched_group *sg = env->sd->groups;
6873 struct cpumask *sg_cpus, *sg_mask;
6874 int cpu, balance_cpu = -1;
6875
6876 /*
6877 * In the newly idle case, we will allow all the cpu's
6878 * to do the newly idle load balance.
6879 */
6880 if (env->idle == CPU_NEWLY_IDLE)
6881 return 1;
6882
6883 sg_cpus = sched_group_cpus(sg);
6884 sg_mask = sched_group_mask(sg);
6885 /* Try to find first idle cpu */
6886 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6887 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6888 continue;
6889
6890 balance_cpu = cpu;
6891 break;
6892 }
6893
6894 if (balance_cpu == -1)
6895 balance_cpu = group_balance_cpu(sg);
6896
6897 /*
6898 * First idle cpu or the first cpu(busiest) in this sched group
6899 * is eligible for doing load balancing at this and above domains.
6900 */
b0cff9d8 6901 return balance_cpu == env->dst_cpu;
23f0d209
JK
6902}
6903
1e3c88bd
PZ
6904/*
6905 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6906 * tasks if there is an imbalance.
6907 */
6908static int load_balance(int this_cpu, struct rq *this_rq,
6909 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6910 int *continue_balancing)
1e3c88bd 6911{
88b8dac0 6912 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6913 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6914 struct sched_group *group;
1e3c88bd
PZ
6915 struct rq *busiest;
6916 unsigned long flags;
4ba29684 6917 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6918
8e45cb54
PZ
6919 struct lb_env env = {
6920 .sd = sd,
ddcdf6e7
PZ
6921 .dst_cpu = this_cpu,
6922 .dst_rq = this_rq,
88b8dac0 6923 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6924 .idle = idle,
eb95308e 6925 .loop_break = sched_nr_migrate_break,
b9403130 6926 .cpus = cpus,
0ec8aa00 6927 .fbq_type = all,
163122b7 6928 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6929 };
6930
cfc03118
JK
6931 /*
6932 * For NEWLY_IDLE load_balancing, we don't need to consider
6933 * other cpus in our group
6934 */
e02e60c1 6935 if (idle == CPU_NEWLY_IDLE)
cfc03118 6936 env.dst_grpmask = NULL;
cfc03118 6937
1e3c88bd
PZ
6938 cpumask_copy(cpus, cpu_active_mask);
6939
1e3c88bd
PZ
6940 schedstat_inc(sd, lb_count[idle]);
6941
6942redo:
23f0d209
JK
6943 if (!should_we_balance(&env)) {
6944 *continue_balancing = 0;
1e3c88bd 6945 goto out_balanced;
23f0d209 6946 }
1e3c88bd 6947
23f0d209 6948 group = find_busiest_group(&env);
1e3c88bd
PZ
6949 if (!group) {
6950 schedstat_inc(sd, lb_nobusyg[idle]);
6951 goto out_balanced;
6952 }
6953
b9403130 6954 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6955 if (!busiest) {
6956 schedstat_inc(sd, lb_nobusyq[idle]);
6957 goto out_balanced;
6958 }
6959
78feefc5 6960 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6961
bd939f45 6962 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6963
1aaf90a4
VG
6964 env.src_cpu = busiest->cpu;
6965 env.src_rq = busiest;
6966
1e3c88bd
PZ
6967 ld_moved = 0;
6968 if (busiest->nr_running > 1) {
6969 /*
6970 * Attempt to move tasks. If find_busiest_group has found
6971 * an imbalance but busiest->nr_running <= 1, the group is
6972 * still unbalanced. ld_moved simply stays zero, so it is
6973 * correctly treated as an imbalance.
6974 */
8e45cb54 6975 env.flags |= LBF_ALL_PINNED;
c82513e5 6976 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6977
5d6523eb 6978more_balance:
163122b7 6979 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6980
6981 /*
6982 * cur_ld_moved - load moved in current iteration
6983 * ld_moved - cumulative load moved across iterations
6984 */
163122b7 6985 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6986
6987 /*
163122b7
KT
6988 * We've detached some tasks from busiest_rq. Every
6989 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6990 * unlock busiest->lock, and we are able to be sure
6991 * that nobody can manipulate the tasks in parallel.
6992 * See task_rq_lock() family for the details.
1e3c88bd 6993 */
163122b7
KT
6994
6995 raw_spin_unlock(&busiest->lock);
6996
6997 if (cur_ld_moved) {
6998 attach_tasks(&env);
6999 ld_moved += cur_ld_moved;
7000 }
7001
1e3c88bd 7002 local_irq_restore(flags);
88b8dac0 7003
f1cd0858
JK
7004 if (env.flags & LBF_NEED_BREAK) {
7005 env.flags &= ~LBF_NEED_BREAK;
7006 goto more_balance;
7007 }
7008
88b8dac0
SV
7009 /*
7010 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7011 * us and move them to an alternate dst_cpu in our sched_group
7012 * where they can run. The upper limit on how many times we
7013 * iterate on same src_cpu is dependent on number of cpus in our
7014 * sched_group.
7015 *
7016 * This changes load balance semantics a bit on who can move
7017 * load to a given_cpu. In addition to the given_cpu itself
7018 * (or a ilb_cpu acting on its behalf where given_cpu is
7019 * nohz-idle), we now have balance_cpu in a position to move
7020 * load to given_cpu. In rare situations, this may cause
7021 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7022 * _independently_ and at _same_ time to move some load to
7023 * given_cpu) causing exceess load to be moved to given_cpu.
7024 * This however should not happen so much in practice and
7025 * moreover subsequent load balance cycles should correct the
7026 * excess load moved.
7027 */
6263322c 7028 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7029
7aff2e3a
VD
7030 /* Prevent to re-select dst_cpu via env's cpus */
7031 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7032
78feefc5 7033 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7034 env.dst_cpu = env.new_dst_cpu;
6263322c 7035 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7036 env.loop = 0;
7037 env.loop_break = sched_nr_migrate_break;
e02e60c1 7038
88b8dac0
SV
7039 /*
7040 * Go back to "more_balance" rather than "redo" since we
7041 * need to continue with same src_cpu.
7042 */
7043 goto more_balance;
7044 }
1e3c88bd 7045
6263322c
PZ
7046 /*
7047 * We failed to reach balance because of affinity.
7048 */
7049 if (sd_parent) {
63b2ca30 7050 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7051
afdeee05 7052 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7053 *group_imbalance = 1;
6263322c
PZ
7054 }
7055
1e3c88bd 7056 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7057 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7058 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7059 if (!cpumask_empty(cpus)) {
7060 env.loop = 0;
7061 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7062 goto redo;
bbf18b19 7063 }
afdeee05 7064 goto out_all_pinned;
1e3c88bd
PZ
7065 }
7066 }
7067
7068 if (!ld_moved) {
7069 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7070 /*
7071 * Increment the failure counter only on periodic balance.
7072 * We do not want newidle balance, which can be very
7073 * frequent, pollute the failure counter causing
7074 * excessive cache_hot migrations and active balances.
7075 */
7076 if (idle != CPU_NEWLY_IDLE)
7077 sd->nr_balance_failed++;
1e3c88bd 7078
bd939f45 7079 if (need_active_balance(&env)) {
1e3c88bd
PZ
7080 raw_spin_lock_irqsave(&busiest->lock, flags);
7081
969c7921
TH
7082 /* don't kick the active_load_balance_cpu_stop,
7083 * if the curr task on busiest cpu can't be
7084 * moved to this_cpu
1e3c88bd
PZ
7085 */
7086 if (!cpumask_test_cpu(this_cpu,
fa17b507 7087 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7088 raw_spin_unlock_irqrestore(&busiest->lock,
7089 flags);
8e45cb54 7090 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7091 goto out_one_pinned;
7092 }
7093
969c7921
TH
7094 /*
7095 * ->active_balance synchronizes accesses to
7096 * ->active_balance_work. Once set, it's cleared
7097 * only after active load balance is finished.
7098 */
1e3c88bd
PZ
7099 if (!busiest->active_balance) {
7100 busiest->active_balance = 1;
7101 busiest->push_cpu = this_cpu;
7102 active_balance = 1;
7103 }
7104 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7105
bd939f45 7106 if (active_balance) {
969c7921
TH
7107 stop_one_cpu_nowait(cpu_of(busiest),
7108 active_load_balance_cpu_stop, busiest,
7109 &busiest->active_balance_work);
bd939f45 7110 }
1e3c88bd
PZ
7111
7112 /*
7113 * We've kicked active balancing, reset the failure
7114 * counter.
7115 */
7116 sd->nr_balance_failed = sd->cache_nice_tries+1;
7117 }
7118 } else
7119 sd->nr_balance_failed = 0;
7120
7121 if (likely(!active_balance)) {
7122 /* We were unbalanced, so reset the balancing interval */
7123 sd->balance_interval = sd->min_interval;
7124 } else {
7125 /*
7126 * If we've begun active balancing, start to back off. This
7127 * case may not be covered by the all_pinned logic if there
7128 * is only 1 task on the busy runqueue (because we don't call
163122b7 7129 * detach_tasks).
1e3c88bd
PZ
7130 */
7131 if (sd->balance_interval < sd->max_interval)
7132 sd->balance_interval *= 2;
7133 }
7134
1e3c88bd
PZ
7135 goto out;
7136
7137out_balanced:
afdeee05
VG
7138 /*
7139 * We reach balance although we may have faced some affinity
7140 * constraints. Clear the imbalance flag if it was set.
7141 */
7142 if (sd_parent) {
7143 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7144
7145 if (*group_imbalance)
7146 *group_imbalance = 0;
7147 }
7148
7149out_all_pinned:
7150 /*
7151 * We reach balance because all tasks are pinned at this level so
7152 * we can't migrate them. Let the imbalance flag set so parent level
7153 * can try to migrate them.
7154 */
1e3c88bd
PZ
7155 schedstat_inc(sd, lb_balanced[idle]);
7156
7157 sd->nr_balance_failed = 0;
7158
7159out_one_pinned:
7160 /* tune up the balancing interval */
8e45cb54 7161 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7162 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7163 (sd->balance_interval < sd->max_interval))
7164 sd->balance_interval *= 2;
7165
46e49b38 7166 ld_moved = 0;
1e3c88bd 7167out:
1e3c88bd
PZ
7168 return ld_moved;
7169}
7170
52a08ef1
JL
7171static inline unsigned long
7172get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7173{
7174 unsigned long interval = sd->balance_interval;
7175
7176 if (cpu_busy)
7177 interval *= sd->busy_factor;
7178
7179 /* scale ms to jiffies */
7180 interval = msecs_to_jiffies(interval);
7181 interval = clamp(interval, 1UL, max_load_balance_interval);
7182
7183 return interval;
7184}
7185
7186static inline void
7187update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7188{
7189 unsigned long interval, next;
7190
7191 interval = get_sd_balance_interval(sd, cpu_busy);
7192 next = sd->last_balance + interval;
7193
7194 if (time_after(*next_balance, next))
7195 *next_balance = next;
7196}
7197
1e3c88bd
PZ
7198/*
7199 * idle_balance is called by schedule() if this_cpu is about to become
7200 * idle. Attempts to pull tasks from other CPUs.
7201 */
6e83125c 7202static int idle_balance(struct rq *this_rq)
1e3c88bd 7203{
52a08ef1
JL
7204 unsigned long next_balance = jiffies + HZ;
7205 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7206 struct sched_domain *sd;
7207 int pulled_task = 0;
9bd721c5 7208 u64 curr_cost = 0;
1e3c88bd 7209
6e83125c 7210 idle_enter_fair(this_rq);
0e5b5337 7211
6e83125c
PZ
7212 /*
7213 * We must set idle_stamp _before_ calling idle_balance(), such that we
7214 * measure the duration of idle_balance() as idle time.
7215 */
7216 this_rq->idle_stamp = rq_clock(this_rq);
7217
4486edd1
TC
7218 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7219 !this_rq->rd->overload) {
52a08ef1
JL
7220 rcu_read_lock();
7221 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7222 if (sd)
7223 update_next_balance(sd, 0, &next_balance);
7224 rcu_read_unlock();
7225
6e83125c 7226 goto out;
52a08ef1 7227 }
1e3c88bd 7228
f492e12e
PZ
7229 /*
7230 * Drop the rq->lock, but keep IRQ/preempt disabled.
7231 */
7232 raw_spin_unlock(&this_rq->lock);
7233
48a16753 7234 update_blocked_averages(this_cpu);
dce840a0 7235 rcu_read_lock();
1e3c88bd 7236 for_each_domain(this_cpu, sd) {
23f0d209 7237 int continue_balancing = 1;
9bd721c5 7238 u64 t0, domain_cost;
1e3c88bd
PZ
7239
7240 if (!(sd->flags & SD_LOAD_BALANCE))
7241 continue;
7242
52a08ef1
JL
7243 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7244 update_next_balance(sd, 0, &next_balance);
9bd721c5 7245 break;
52a08ef1 7246 }
9bd721c5 7247
f492e12e 7248 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7249 t0 = sched_clock_cpu(this_cpu);
7250
f492e12e 7251 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7252 sd, CPU_NEWLY_IDLE,
7253 &continue_balancing);
9bd721c5
JL
7254
7255 domain_cost = sched_clock_cpu(this_cpu) - t0;
7256 if (domain_cost > sd->max_newidle_lb_cost)
7257 sd->max_newidle_lb_cost = domain_cost;
7258
7259 curr_cost += domain_cost;
f492e12e 7260 }
1e3c88bd 7261
52a08ef1 7262 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7263
7264 /*
7265 * Stop searching for tasks to pull if there are
7266 * now runnable tasks on this rq.
7267 */
7268 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7269 break;
1e3c88bd 7270 }
dce840a0 7271 rcu_read_unlock();
f492e12e
PZ
7272
7273 raw_spin_lock(&this_rq->lock);
7274
0e5b5337
JL
7275 if (curr_cost > this_rq->max_idle_balance_cost)
7276 this_rq->max_idle_balance_cost = curr_cost;
7277
e5fc6611 7278 /*
0e5b5337
JL
7279 * While browsing the domains, we released the rq lock, a task could
7280 * have been enqueued in the meantime. Since we're not going idle,
7281 * pretend we pulled a task.
e5fc6611 7282 */
0e5b5337 7283 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7284 pulled_task = 1;
e5fc6611 7285
52a08ef1
JL
7286out:
7287 /* Move the next balance forward */
7288 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7289 this_rq->next_balance = next_balance;
9bd721c5 7290
e4aa358b 7291 /* Is there a task of a high priority class? */
46383648 7292 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7293 pulled_task = -1;
7294
7295 if (pulled_task) {
7296 idle_exit_fair(this_rq);
6e83125c 7297 this_rq->idle_stamp = 0;
e4aa358b 7298 }
6e83125c 7299
3c4017c1 7300 return pulled_task;
1e3c88bd
PZ
7301}
7302
7303/*
969c7921
TH
7304 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7305 * running tasks off the busiest CPU onto idle CPUs. It requires at
7306 * least 1 task to be running on each physical CPU where possible, and
7307 * avoids physical / logical imbalances.
1e3c88bd 7308 */
969c7921 7309static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7310{
969c7921
TH
7311 struct rq *busiest_rq = data;
7312 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7313 int target_cpu = busiest_rq->push_cpu;
969c7921 7314 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7315 struct sched_domain *sd;
e5673f28 7316 struct task_struct *p = NULL;
969c7921
TH
7317
7318 raw_spin_lock_irq(&busiest_rq->lock);
7319
7320 /* make sure the requested cpu hasn't gone down in the meantime */
7321 if (unlikely(busiest_cpu != smp_processor_id() ||
7322 !busiest_rq->active_balance))
7323 goto out_unlock;
1e3c88bd
PZ
7324
7325 /* Is there any task to move? */
7326 if (busiest_rq->nr_running <= 1)
969c7921 7327 goto out_unlock;
1e3c88bd
PZ
7328
7329 /*
7330 * This condition is "impossible", if it occurs
7331 * we need to fix it. Originally reported by
7332 * Bjorn Helgaas on a 128-cpu setup.
7333 */
7334 BUG_ON(busiest_rq == target_rq);
7335
1e3c88bd 7336 /* Search for an sd spanning us and the target CPU. */
dce840a0 7337 rcu_read_lock();
1e3c88bd
PZ
7338 for_each_domain(target_cpu, sd) {
7339 if ((sd->flags & SD_LOAD_BALANCE) &&
7340 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7341 break;
7342 }
7343
7344 if (likely(sd)) {
8e45cb54
PZ
7345 struct lb_env env = {
7346 .sd = sd,
ddcdf6e7
PZ
7347 .dst_cpu = target_cpu,
7348 .dst_rq = target_rq,
7349 .src_cpu = busiest_rq->cpu,
7350 .src_rq = busiest_rq,
8e45cb54
PZ
7351 .idle = CPU_IDLE,
7352 };
7353
1e3c88bd
PZ
7354 schedstat_inc(sd, alb_count);
7355
e5673f28
KT
7356 p = detach_one_task(&env);
7357 if (p)
1e3c88bd
PZ
7358 schedstat_inc(sd, alb_pushed);
7359 else
7360 schedstat_inc(sd, alb_failed);
7361 }
dce840a0 7362 rcu_read_unlock();
969c7921
TH
7363out_unlock:
7364 busiest_rq->active_balance = 0;
e5673f28
KT
7365 raw_spin_unlock(&busiest_rq->lock);
7366
7367 if (p)
7368 attach_one_task(target_rq, p);
7369
7370 local_irq_enable();
7371
969c7921 7372 return 0;
1e3c88bd
PZ
7373}
7374
d987fc7f
MG
7375static inline int on_null_domain(struct rq *rq)
7376{
7377 return unlikely(!rcu_dereference_sched(rq->sd));
7378}
7379
3451d024 7380#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7381/*
7382 * idle load balancing details
83cd4fe2
VP
7383 * - When one of the busy CPUs notice that there may be an idle rebalancing
7384 * needed, they will kick the idle load balancer, which then does idle
7385 * load balancing for all the idle CPUs.
7386 */
1e3c88bd 7387static struct {
83cd4fe2 7388 cpumask_var_t idle_cpus_mask;
0b005cf5 7389 atomic_t nr_cpus;
83cd4fe2
VP
7390 unsigned long next_balance; /* in jiffy units */
7391} nohz ____cacheline_aligned;
1e3c88bd 7392
3dd0337d 7393static inline int find_new_ilb(void)
1e3c88bd 7394{
0b005cf5 7395 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7396
786d6dc7
SS
7397 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7398 return ilb;
7399
7400 return nr_cpu_ids;
1e3c88bd 7401}
1e3c88bd 7402
83cd4fe2
VP
7403/*
7404 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7405 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7406 * CPU (if there is one).
7407 */
0aeeeeba 7408static void nohz_balancer_kick(void)
83cd4fe2
VP
7409{
7410 int ilb_cpu;
7411
7412 nohz.next_balance++;
7413
3dd0337d 7414 ilb_cpu = find_new_ilb();
83cd4fe2 7415
0b005cf5
SS
7416 if (ilb_cpu >= nr_cpu_ids)
7417 return;
83cd4fe2 7418
cd490c5b 7419 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7420 return;
7421 /*
7422 * Use smp_send_reschedule() instead of resched_cpu().
7423 * This way we generate a sched IPI on the target cpu which
7424 * is idle. And the softirq performing nohz idle load balance
7425 * will be run before returning from the IPI.
7426 */
7427 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7428 return;
7429}
7430
c1cc017c 7431static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7432{
7433 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7434 /*
7435 * Completely isolated CPUs don't ever set, so we must test.
7436 */
7437 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7438 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7439 atomic_dec(&nohz.nr_cpus);
7440 }
71325960
SS
7441 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7442 }
7443}
7444
69e1e811
SS
7445static inline void set_cpu_sd_state_busy(void)
7446{
7447 struct sched_domain *sd;
37dc6b50 7448 int cpu = smp_processor_id();
69e1e811 7449
69e1e811 7450 rcu_read_lock();
37dc6b50 7451 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7452
7453 if (!sd || !sd->nohz_idle)
7454 goto unlock;
7455 sd->nohz_idle = 0;
7456
63b2ca30 7457 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7458unlock:
69e1e811
SS
7459 rcu_read_unlock();
7460}
7461
7462void set_cpu_sd_state_idle(void)
7463{
7464 struct sched_domain *sd;
37dc6b50 7465 int cpu = smp_processor_id();
69e1e811 7466
69e1e811 7467 rcu_read_lock();
37dc6b50 7468 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7469
7470 if (!sd || sd->nohz_idle)
7471 goto unlock;
7472 sd->nohz_idle = 1;
7473
63b2ca30 7474 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7475unlock:
69e1e811
SS
7476 rcu_read_unlock();
7477}
7478
1e3c88bd 7479/*
c1cc017c 7480 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7481 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7482 */
c1cc017c 7483void nohz_balance_enter_idle(int cpu)
1e3c88bd 7484{
71325960
SS
7485 /*
7486 * If this cpu is going down, then nothing needs to be done.
7487 */
7488 if (!cpu_active(cpu))
7489 return;
7490
c1cc017c
AS
7491 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7492 return;
1e3c88bd 7493
d987fc7f
MG
7494 /*
7495 * If we're a completely isolated CPU, we don't play.
7496 */
7497 if (on_null_domain(cpu_rq(cpu)))
7498 return;
7499
c1cc017c
AS
7500 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7501 atomic_inc(&nohz.nr_cpus);
7502 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7503}
71325960 7504
0db0628d 7505static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7506 unsigned long action, void *hcpu)
7507{
7508 switch (action & ~CPU_TASKS_FROZEN) {
7509 case CPU_DYING:
c1cc017c 7510 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7511 return NOTIFY_OK;
7512 default:
7513 return NOTIFY_DONE;
7514 }
7515}
1e3c88bd
PZ
7516#endif
7517
7518static DEFINE_SPINLOCK(balancing);
7519
49c022e6
PZ
7520/*
7521 * Scale the max load_balance interval with the number of CPUs in the system.
7522 * This trades load-balance latency on larger machines for less cross talk.
7523 */
029632fb 7524void update_max_interval(void)
49c022e6
PZ
7525{
7526 max_load_balance_interval = HZ*num_online_cpus()/10;
7527}
7528
1e3c88bd
PZ
7529/*
7530 * It checks each scheduling domain to see if it is due to be balanced,
7531 * and initiates a balancing operation if so.
7532 *
b9b0853a 7533 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7534 */
f7ed0a89 7535static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7536{
23f0d209 7537 int continue_balancing = 1;
f7ed0a89 7538 int cpu = rq->cpu;
1e3c88bd 7539 unsigned long interval;
04f733b4 7540 struct sched_domain *sd;
1e3c88bd
PZ
7541 /* Earliest time when we have to do rebalance again */
7542 unsigned long next_balance = jiffies + 60*HZ;
7543 int update_next_balance = 0;
f48627e6
JL
7544 int need_serialize, need_decay = 0;
7545 u64 max_cost = 0;
1e3c88bd 7546
48a16753 7547 update_blocked_averages(cpu);
2069dd75 7548
dce840a0 7549 rcu_read_lock();
1e3c88bd 7550 for_each_domain(cpu, sd) {
f48627e6
JL
7551 /*
7552 * Decay the newidle max times here because this is a regular
7553 * visit to all the domains. Decay ~1% per second.
7554 */
7555 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7556 sd->max_newidle_lb_cost =
7557 (sd->max_newidle_lb_cost * 253) / 256;
7558 sd->next_decay_max_lb_cost = jiffies + HZ;
7559 need_decay = 1;
7560 }
7561 max_cost += sd->max_newidle_lb_cost;
7562
1e3c88bd
PZ
7563 if (!(sd->flags & SD_LOAD_BALANCE))
7564 continue;
7565
f48627e6
JL
7566 /*
7567 * Stop the load balance at this level. There is another
7568 * CPU in our sched group which is doing load balancing more
7569 * actively.
7570 */
7571 if (!continue_balancing) {
7572 if (need_decay)
7573 continue;
7574 break;
7575 }
7576
52a08ef1 7577 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7578
7579 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7580 if (need_serialize) {
7581 if (!spin_trylock(&balancing))
7582 goto out;
7583 }
7584
7585 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7586 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7587 /*
6263322c 7588 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7589 * env->dst_cpu, so we can't know our idle
7590 * state even if we migrated tasks. Update it.
1e3c88bd 7591 */
de5eb2dd 7592 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7593 }
7594 sd->last_balance = jiffies;
52a08ef1 7595 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7596 }
7597 if (need_serialize)
7598 spin_unlock(&balancing);
7599out:
7600 if (time_after(next_balance, sd->last_balance + interval)) {
7601 next_balance = sd->last_balance + interval;
7602 update_next_balance = 1;
7603 }
f48627e6
JL
7604 }
7605 if (need_decay) {
1e3c88bd 7606 /*
f48627e6
JL
7607 * Ensure the rq-wide value also decays but keep it at a
7608 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7609 */
f48627e6
JL
7610 rq->max_idle_balance_cost =
7611 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7612 }
dce840a0 7613 rcu_read_unlock();
1e3c88bd
PZ
7614
7615 /*
7616 * next_balance will be updated only when there is a need.
7617 * When the cpu is attached to null domain for ex, it will not be
7618 * updated.
7619 */
7620 if (likely(update_next_balance))
7621 rq->next_balance = next_balance;
7622}
7623
3451d024 7624#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7625/*
3451d024 7626 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7627 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7628 */
208cb16b 7629static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7630{
208cb16b 7631 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7632 struct rq *rq;
7633 int balance_cpu;
7634
1c792db7
SS
7635 if (idle != CPU_IDLE ||
7636 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7637 goto end;
83cd4fe2
VP
7638
7639 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7640 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7641 continue;
7642
7643 /*
7644 * If this cpu gets work to do, stop the load balancing
7645 * work being done for other cpus. Next load
7646 * balancing owner will pick it up.
7647 */
1c792db7 7648 if (need_resched())
83cd4fe2 7649 break;
83cd4fe2 7650
5ed4f1d9
VG
7651 rq = cpu_rq(balance_cpu);
7652
ed61bbc6
TC
7653 /*
7654 * If time for next balance is due,
7655 * do the balance.
7656 */
7657 if (time_after_eq(jiffies, rq->next_balance)) {
7658 raw_spin_lock_irq(&rq->lock);
7659 update_rq_clock(rq);
7660 update_idle_cpu_load(rq);
7661 raw_spin_unlock_irq(&rq->lock);
7662 rebalance_domains(rq, CPU_IDLE);
7663 }
83cd4fe2 7664
83cd4fe2
VP
7665 if (time_after(this_rq->next_balance, rq->next_balance))
7666 this_rq->next_balance = rq->next_balance;
7667 }
7668 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7669end:
7670 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7671}
7672
7673/*
0b005cf5 7674 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7675 * of an idle cpu in the system.
0b005cf5 7676 * - This rq has more than one task.
1aaf90a4
VG
7677 * - This rq has at least one CFS task and the capacity of the CPU is
7678 * significantly reduced because of RT tasks or IRQs.
7679 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7680 * multiple busy cpu.
0b005cf5
SS
7681 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7682 * domain span are idle.
83cd4fe2 7683 */
1aaf90a4 7684static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7685{
7686 unsigned long now = jiffies;
0b005cf5 7687 struct sched_domain *sd;
63b2ca30 7688 struct sched_group_capacity *sgc;
4a725627 7689 int nr_busy, cpu = rq->cpu;
1aaf90a4 7690 bool kick = false;
83cd4fe2 7691
4a725627 7692 if (unlikely(rq->idle_balance))
1aaf90a4 7693 return false;
83cd4fe2 7694
1c792db7
SS
7695 /*
7696 * We may be recently in ticked or tickless idle mode. At the first
7697 * busy tick after returning from idle, we will update the busy stats.
7698 */
69e1e811 7699 set_cpu_sd_state_busy();
c1cc017c 7700 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7701
7702 /*
7703 * None are in tickless mode and hence no need for NOHZ idle load
7704 * balancing.
7705 */
7706 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7707 return false;
1c792db7
SS
7708
7709 if (time_before(now, nohz.next_balance))
1aaf90a4 7710 return false;
83cd4fe2 7711
0b005cf5 7712 if (rq->nr_running >= 2)
1aaf90a4 7713 return true;
83cd4fe2 7714
067491b7 7715 rcu_read_lock();
37dc6b50 7716 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7717 if (sd) {
63b2ca30
NP
7718 sgc = sd->groups->sgc;
7719 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7720
1aaf90a4
VG
7721 if (nr_busy > 1) {
7722 kick = true;
7723 goto unlock;
7724 }
7725
83cd4fe2 7726 }
37dc6b50 7727
1aaf90a4
VG
7728 sd = rcu_dereference(rq->sd);
7729 if (sd) {
7730 if ((rq->cfs.h_nr_running >= 1) &&
7731 check_cpu_capacity(rq, sd)) {
7732 kick = true;
7733 goto unlock;
7734 }
7735 }
37dc6b50 7736
1aaf90a4 7737 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7738 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7739 sched_domain_span(sd)) < cpu)) {
7740 kick = true;
7741 goto unlock;
7742 }
067491b7 7743
1aaf90a4 7744unlock:
067491b7 7745 rcu_read_unlock();
1aaf90a4 7746 return kick;
83cd4fe2
VP
7747}
7748#else
208cb16b 7749static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7750#endif
7751
7752/*
7753 * run_rebalance_domains is triggered when needed from the scheduler tick.
7754 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7755 */
1e3c88bd
PZ
7756static void run_rebalance_domains(struct softirq_action *h)
7757{
208cb16b 7758 struct rq *this_rq = this_rq();
6eb57e0d 7759 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7760 CPU_IDLE : CPU_NOT_IDLE;
7761
1e3c88bd 7762 /*
83cd4fe2 7763 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7764 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7765 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7766 * give the idle cpus a chance to load balance. Else we may
7767 * load balance only within the local sched_domain hierarchy
7768 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7769 */
208cb16b 7770 nohz_idle_balance(this_rq, idle);
d4573c3e 7771 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7772}
7773
1e3c88bd
PZ
7774/*
7775 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7776 */
7caff66f 7777void trigger_load_balance(struct rq *rq)
1e3c88bd 7778{
1e3c88bd 7779 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7780 if (unlikely(on_null_domain(rq)))
7781 return;
7782
7783 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7784 raise_softirq(SCHED_SOFTIRQ);
3451d024 7785#ifdef CONFIG_NO_HZ_COMMON
c726099e 7786 if (nohz_kick_needed(rq))
0aeeeeba 7787 nohz_balancer_kick();
83cd4fe2 7788#endif
1e3c88bd
PZ
7789}
7790
0bcdcf28
CE
7791static void rq_online_fair(struct rq *rq)
7792{
7793 update_sysctl();
0e59bdae
KT
7794
7795 update_runtime_enabled(rq);
0bcdcf28
CE
7796}
7797
7798static void rq_offline_fair(struct rq *rq)
7799{
7800 update_sysctl();
a4c96ae3
PB
7801
7802 /* Ensure any throttled groups are reachable by pick_next_task */
7803 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7804}
7805
55e12e5e 7806#endif /* CONFIG_SMP */
e1d1484f 7807
bf0f6f24
IM
7808/*
7809 * scheduler tick hitting a task of our scheduling class:
7810 */
8f4d37ec 7811static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7812{
7813 struct cfs_rq *cfs_rq;
7814 struct sched_entity *se = &curr->se;
7815
7816 for_each_sched_entity(se) {
7817 cfs_rq = cfs_rq_of(se);
8f4d37ec 7818 entity_tick(cfs_rq, se, queued);
bf0f6f24 7819 }
18bf2805 7820
10e84b97 7821 if (numabalancing_enabled)
cbee9f88 7822 task_tick_numa(rq, curr);
3d59eebc 7823
18bf2805 7824 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7825}
7826
7827/*
cd29fe6f
PZ
7828 * called on fork with the child task as argument from the parent's context
7829 * - child not yet on the tasklist
7830 * - preemption disabled
bf0f6f24 7831 */
cd29fe6f 7832static void task_fork_fair(struct task_struct *p)
bf0f6f24 7833{
4fc420c9
DN
7834 struct cfs_rq *cfs_rq;
7835 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7836 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7837 struct rq *rq = this_rq();
7838 unsigned long flags;
7839
05fa785c 7840 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7841
861d034e
PZ
7842 update_rq_clock(rq);
7843
4fc420c9
DN
7844 cfs_rq = task_cfs_rq(current);
7845 curr = cfs_rq->curr;
7846
6c9a27f5
DN
7847 /*
7848 * Not only the cpu but also the task_group of the parent might have
7849 * been changed after parent->se.parent,cfs_rq were copied to
7850 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7851 * of child point to valid ones.
7852 */
7853 rcu_read_lock();
7854 __set_task_cpu(p, this_cpu);
7855 rcu_read_unlock();
bf0f6f24 7856
7109c442 7857 update_curr(cfs_rq);
cd29fe6f 7858
b5d9d734
MG
7859 if (curr)
7860 se->vruntime = curr->vruntime;
aeb73b04 7861 place_entity(cfs_rq, se, 1);
4d78e7b6 7862
cd29fe6f 7863 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7864 /*
edcb60a3
IM
7865 * Upon rescheduling, sched_class::put_prev_task() will place
7866 * 'current' within the tree based on its new key value.
7867 */
4d78e7b6 7868 swap(curr->vruntime, se->vruntime);
8875125e 7869 resched_curr(rq);
4d78e7b6 7870 }
bf0f6f24 7871
88ec22d3
PZ
7872 se->vruntime -= cfs_rq->min_vruntime;
7873
05fa785c 7874 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7875}
7876
cb469845
SR
7877/*
7878 * Priority of the task has changed. Check to see if we preempt
7879 * the current task.
7880 */
da7a735e
PZ
7881static void
7882prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7883{
da0c1e65 7884 if (!task_on_rq_queued(p))
da7a735e
PZ
7885 return;
7886
cb469845
SR
7887 /*
7888 * Reschedule if we are currently running on this runqueue and
7889 * our priority decreased, or if we are not currently running on
7890 * this runqueue and our priority is higher than the current's
7891 */
da7a735e 7892 if (rq->curr == p) {
cb469845 7893 if (p->prio > oldprio)
8875125e 7894 resched_curr(rq);
cb469845 7895 } else
15afe09b 7896 check_preempt_curr(rq, p, 0);
cb469845
SR
7897}
7898
da7a735e
PZ
7899static void switched_from_fair(struct rq *rq, struct task_struct *p)
7900{
7901 struct sched_entity *se = &p->se;
7902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7903
7904 /*
791c9e02 7905 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7906 * switched back to the fair class the enqueue_entity(.flags=0) will
7907 * do the right thing.
7908 *
da0c1e65
KT
7909 * If it's queued, then the dequeue_entity(.flags=0) will already
7910 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7911 * the task is sleeping will it still have non-normalized vruntime.
7912 */
da0c1e65 7913 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7914 /*
7915 * Fix up our vruntime so that the current sleep doesn't
7916 * cause 'unlimited' sleep bonus.
7917 */
7918 place_entity(cfs_rq, se, 0);
7919 se->vruntime -= cfs_rq->min_vruntime;
7920 }
9ee474f5 7921
141965c7 7922#ifdef CONFIG_SMP
9ee474f5
PT
7923 /*
7924 * Remove our load from contribution when we leave sched_fair
7925 * and ensure we don't carry in an old decay_count if we
7926 * switch back.
7927 */
87e3c8ae
KT
7928 if (se->avg.decay_count) {
7929 __synchronize_entity_decay(se);
7930 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7931 }
7932#endif
da7a735e
PZ
7933}
7934
cb469845
SR
7935/*
7936 * We switched to the sched_fair class.
7937 */
da7a735e 7938static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7939{
eb7a59b2 7940#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7941 struct sched_entity *se = &p->se;
eb7a59b2
M
7942 /*
7943 * Since the real-depth could have been changed (only FAIR
7944 * class maintain depth value), reset depth properly.
7945 */
7946 se->depth = se->parent ? se->parent->depth + 1 : 0;
7947#endif
da0c1e65 7948 if (!task_on_rq_queued(p))
da7a735e
PZ
7949 return;
7950
cb469845
SR
7951 /*
7952 * We were most likely switched from sched_rt, so
7953 * kick off the schedule if running, otherwise just see
7954 * if we can still preempt the current task.
7955 */
da7a735e 7956 if (rq->curr == p)
8875125e 7957 resched_curr(rq);
cb469845 7958 else
15afe09b 7959 check_preempt_curr(rq, p, 0);
cb469845
SR
7960}
7961
83b699ed
SV
7962/* Account for a task changing its policy or group.
7963 *
7964 * This routine is mostly called to set cfs_rq->curr field when a task
7965 * migrates between groups/classes.
7966 */
7967static void set_curr_task_fair(struct rq *rq)
7968{
7969 struct sched_entity *se = &rq->curr->se;
7970
ec12cb7f
PT
7971 for_each_sched_entity(se) {
7972 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7973
7974 set_next_entity(cfs_rq, se);
7975 /* ensure bandwidth has been allocated on our new cfs_rq */
7976 account_cfs_rq_runtime(cfs_rq, 0);
7977 }
83b699ed
SV
7978}
7979
029632fb
PZ
7980void init_cfs_rq(struct cfs_rq *cfs_rq)
7981{
7982 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7983 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7984#ifndef CONFIG_64BIT
7985 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7986#endif
141965c7 7987#ifdef CONFIG_SMP
9ee474f5 7988 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7989 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7990#endif
029632fb
PZ
7991}
7992
810b3817 7993#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7994static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7995{
fed14d45 7996 struct sched_entity *se = &p->se;
aff3e498 7997 struct cfs_rq *cfs_rq;
fed14d45 7998
b2b5ce02
PZ
7999 /*
8000 * If the task was not on the rq at the time of this cgroup movement
8001 * it must have been asleep, sleeping tasks keep their ->vruntime
8002 * absolute on their old rq until wakeup (needed for the fair sleeper
8003 * bonus in place_entity()).
8004 *
8005 * If it was on the rq, we've just 'preempted' it, which does convert
8006 * ->vruntime to a relative base.
8007 *
8008 * Make sure both cases convert their relative position when migrating
8009 * to another cgroup's rq. This does somewhat interfere with the
8010 * fair sleeper stuff for the first placement, but who cares.
8011 */
7ceff013 8012 /*
da0c1e65 8013 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8014 * But there are some cases where it has already been normalized:
8015 *
8016 * - Moving a forked child which is waiting for being woken up by
8017 * wake_up_new_task().
62af3783
DN
8018 * - Moving a task which has been woken up by try_to_wake_up() and
8019 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8020 *
8021 * To prevent boost or penalty in the new cfs_rq caused by delta
8022 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8023 */
da0c1e65
KT
8024 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8025 queued = 1;
7ceff013 8026
da0c1e65 8027 if (!queued)
fed14d45 8028 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8029 set_task_rq(p, task_cpu(p));
fed14d45 8030 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8031 if (!queued) {
fed14d45
PZ
8032 cfs_rq = cfs_rq_of(se);
8033 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8034#ifdef CONFIG_SMP
8035 /*
8036 * migrate_task_rq_fair() will have removed our previous
8037 * contribution, but we must synchronize for ongoing future
8038 * decay.
8039 */
fed14d45
PZ
8040 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8041 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8042#endif
8043 }
810b3817 8044}
029632fb
PZ
8045
8046void free_fair_sched_group(struct task_group *tg)
8047{
8048 int i;
8049
8050 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8051
8052 for_each_possible_cpu(i) {
8053 if (tg->cfs_rq)
8054 kfree(tg->cfs_rq[i]);
8055 if (tg->se)
8056 kfree(tg->se[i]);
8057 }
8058
8059 kfree(tg->cfs_rq);
8060 kfree(tg->se);
8061}
8062
8063int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8064{
8065 struct cfs_rq *cfs_rq;
8066 struct sched_entity *se;
8067 int i;
8068
8069 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8070 if (!tg->cfs_rq)
8071 goto err;
8072 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8073 if (!tg->se)
8074 goto err;
8075
8076 tg->shares = NICE_0_LOAD;
8077
8078 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8079
8080 for_each_possible_cpu(i) {
8081 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8082 GFP_KERNEL, cpu_to_node(i));
8083 if (!cfs_rq)
8084 goto err;
8085
8086 se = kzalloc_node(sizeof(struct sched_entity),
8087 GFP_KERNEL, cpu_to_node(i));
8088 if (!se)
8089 goto err_free_rq;
8090
8091 init_cfs_rq(cfs_rq);
8092 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8093 }
8094
8095 return 1;
8096
8097err_free_rq:
8098 kfree(cfs_rq);
8099err:
8100 return 0;
8101}
8102
8103void unregister_fair_sched_group(struct task_group *tg, int cpu)
8104{
8105 struct rq *rq = cpu_rq(cpu);
8106 unsigned long flags;
8107
8108 /*
8109 * Only empty task groups can be destroyed; so we can speculatively
8110 * check on_list without danger of it being re-added.
8111 */
8112 if (!tg->cfs_rq[cpu]->on_list)
8113 return;
8114
8115 raw_spin_lock_irqsave(&rq->lock, flags);
8116 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8117 raw_spin_unlock_irqrestore(&rq->lock, flags);
8118}
8119
8120void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8121 struct sched_entity *se, int cpu,
8122 struct sched_entity *parent)
8123{
8124 struct rq *rq = cpu_rq(cpu);
8125
8126 cfs_rq->tg = tg;
8127 cfs_rq->rq = rq;
029632fb
PZ
8128 init_cfs_rq_runtime(cfs_rq);
8129
8130 tg->cfs_rq[cpu] = cfs_rq;
8131 tg->se[cpu] = se;
8132
8133 /* se could be NULL for root_task_group */
8134 if (!se)
8135 return;
8136
fed14d45 8137 if (!parent) {
029632fb 8138 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8139 se->depth = 0;
8140 } else {
029632fb 8141 se->cfs_rq = parent->my_q;
fed14d45
PZ
8142 se->depth = parent->depth + 1;
8143 }
029632fb
PZ
8144
8145 se->my_q = cfs_rq;
0ac9b1c2
PT
8146 /* guarantee group entities always have weight */
8147 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8148 se->parent = parent;
8149}
8150
8151static DEFINE_MUTEX(shares_mutex);
8152
8153int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8154{
8155 int i;
8156 unsigned long flags;
8157
8158 /*
8159 * We can't change the weight of the root cgroup.
8160 */
8161 if (!tg->se[0])
8162 return -EINVAL;
8163
8164 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8165
8166 mutex_lock(&shares_mutex);
8167 if (tg->shares == shares)
8168 goto done;
8169
8170 tg->shares = shares;
8171 for_each_possible_cpu(i) {
8172 struct rq *rq = cpu_rq(i);
8173 struct sched_entity *se;
8174
8175 se = tg->se[i];
8176 /* Propagate contribution to hierarchy */
8177 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8178
8179 /* Possible calls to update_curr() need rq clock */
8180 update_rq_clock(rq);
17bc14b7 8181 for_each_sched_entity(se)
029632fb
PZ
8182 update_cfs_shares(group_cfs_rq(se));
8183 raw_spin_unlock_irqrestore(&rq->lock, flags);
8184 }
8185
8186done:
8187 mutex_unlock(&shares_mutex);
8188 return 0;
8189}
8190#else /* CONFIG_FAIR_GROUP_SCHED */
8191
8192void free_fair_sched_group(struct task_group *tg) { }
8193
8194int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8195{
8196 return 1;
8197}
8198
8199void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8200
8201#endif /* CONFIG_FAIR_GROUP_SCHED */
8202
810b3817 8203
6d686f45 8204static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8205{
8206 struct sched_entity *se = &task->se;
0d721cea
PW
8207 unsigned int rr_interval = 0;
8208
8209 /*
8210 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8211 * idle runqueue:
8212 */
0d721cea 8213 if (rq->cfs.load.weight)
a59f4e07 8214 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8215
8216 return rr_interval;
8217}
8218
bf0f6f24
IM
8219/*
8220 * All the scheduling class methods:
8221 */
029632fb 8222const struct sched_class fair_sched_class = {
5522d5d5 8223 .next = &idle_sched_class,
bf0f6f24
IM
8224 .enqueue_task = enqueue_task_fair,
8225 .dequeue_task = dequeue_task_fair,
8226 .yield_task = yield_task_fair,
d95f4122 8227 .yield_to_task = yield_to_task_fair,
bf0f6f24 8228
2e09bf55 8229 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8230
8231 .pick_next_task = pick_next_task_fair,
8232 .put_prev_task = put_prev_task_fair,
8233
681f3e68 8234#ifdef CONFIG_SMP
4ce72a2c 8235 .select_task_rq = select_task_rq_fair,
0a74bef8 8236 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8237
0bcdcf28
CE
8238 .rq_online = rq_online_fair,
8239 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8240
8241 .task_waking = task_waking_fair,
681f3e68 8242#endif
bf0f6f24 8243
83b699ed 8244 .set_curr_task = set_curr_task_fair,
bf0f6f24 8245 .task_tick = task_tick_fair,
cd29fe6f 8246 .task_fork = task_fork_fair,
cb469845
SR
8247
8248 .prio_changed = prio_changed_fair,
da7a735e 8249 .switched_from = switched_from_fair,
cb469845 8250 .switched_to = switched_to_fair,
810b3817 8251
0d721cea
PW
8252 .get_rr_interval = get_rr_interval_fair,
8253
6e998916
SG
8254 .update_curr = update_curr_fair,
8255
810b3817 8256#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8257 .task_move_group = task_move_group_fair,
810b3817 8258#endif
bf0f6f24
IM
8259};
8260
8261#ifdef CONFIG_SCHED_DEBUG
029632fb 8262void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8263{
bf0f6f24
IM
8264 struct cfs_rq *cfs_rq;
8265
5973e5b9 8266 rcu_read_lock();
c3b64f1e 8267 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8268 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8269 rcu_read_unlock();
bf0f6f24
IM
8270}
8271#endif
029632fb
PZ
8272
8273__init void init_sched_fair_class(void)
8274{
8275#ifdef CONFIG_SMP
8276 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8277
3451d024 8278#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8279 nohz.next_balance = jiffies;
029632fb 8280 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8281 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8282#endif
8283#endif /* SMP */
8284
8285}