sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
ec12cb7f
PT
419static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
420 unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
30cfdcfc
DA
779static void
780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 783 if (!parent_entity(se))
029632fb 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
785#ifdef CONFIG_SMP
786 if (entity_is_task(se))
787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788#endif
30cfdcfc 789 cfs_rq->nr_running++;
30cfdcfc
DA
790}
791
792static void
793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 798 if (entity_is_task(se))
b87f1724 799 list_del_init(&se->group_node);
30cfdcfc 800 cfs_rq->nr_running--;
30cfdcfc
DA
801}
802
3ff6dcac 803#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
804/* we need this in update_cfs_load and load-balance functions below */
805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 806# ifdef CONFIG_SMP
d6b55918
PT
807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809{
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820}
821
822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 823{
a7a4f8a7 824 u64 period = sysctl_sched_shares_window;
2069dd75 825 u64 now, delta;
e33078ba 826 unsigned long load = cfs_rq->load.weight;
2069dd75 827
64660c86 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
829 return;
830
05ca62c6 831 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
832 delta = now - cfs_rq->load_stamp;
833
e33078ba
PT
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
f07333bf 839 delta = period - 1;
e33078ba
PT
840 }
841
2069dd75 842 cfs_rq->load_stamp = now;
3b3d190e 843 cfs_rq->load_unacc_exec_time = 0;
2069dd75 844 cfs_rq->load_period += delta;
e33078ba
PT
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
2069dd75 849
d6b55918
PT
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
2069dd75
PZ
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
3d4b47b4 865
e33078ba
PT
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
868}
869
cf5f0acf
PZ
870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871{
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884}
885
6d5ab293 886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 887{
cf5f0acf 888 long tg_weight, load, shares;
3ff6dcac 889
cf5f0acf 890 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 891 load = cfs_rq->load.weight;
3ff6dcac 892
3ff6dcac 893 shares = (tg->shares * load);
cf5f0acf
PZ
894 if (tg_weight)
895 shares /= tg_weight;
3ff6dcac
YZ
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903}
904
905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906{
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
6d5ab293 909 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
910 }
911}
912# else /* CONFIG_SMP */
913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914{
915}
916
6d5ab293 917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
918{
919 return tg->shares;
920}
921
922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924}
925# endif /* CONFIG_SMP */
2069dd75
PZ
926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928{
19e5eebb
PT
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
2069dd75 933 account_entity_dequeue(cfs_rq, se);
19e5eebb 934 }
2069dd75
PZ
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940}
941
6d5ab293 942static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
943{
944 struct task_group *tg;
945 struct sched_entity *se;
3ff6dcac 946 long shares;
2069dd75 947
2069dd75
PZ
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 950 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 951 return;
3ff6dcac
YZ
952#ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955#endif
6d5ab293 956 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959}
960#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
962{
963}
964
6d5ab293 965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
966{
967}
43365bd7
PT
968
969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970{
971}
2069dd75
PZ
972#endif /* CONFIG_FAIR_GROUP_SCHED */
973
2396af69 974static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 975{
bf0f6f24 976#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
41acab88
LDM
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
984
985 if ((s64)delta < 0)
986 delta = 0;
987
41acab88
LDM
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
bf0f6f24 990
8c79a045 991 se->statistics.sleep_start = 0;
41acab88 992 se->statistics.sum_sleep_runtime += delta;
9745512c 993
768d0c27 994 if (tsk) {
e414314c 995 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
996 trace_sched_stat_sleep(tsk, delta);
997 }
bf0f6f24 998 }
41acab88
LDM
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
41acab88
LDM
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
bf0f6f24 1007
8c79a045 1008 se->statistics.block_start = 0;
41acab88 1009 se->statistics.sum_sleep_runtime += delta;
30084fbd 1010
e414314c 1011 if (tsk) {
8f0dfc34 1012 if (tsk->in_iowait) {
41acab88
LDM
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
768d0c27 1015 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1016 }
1017
b781a602
AV
1018 trace_sched_stat_blocked(tsk, delta);
1019
e414314c
PZ
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1031 }
bf0f6f24
IM
1032 }
1033#endif
1034}
1035
ddc97297
PZ
1036static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037{
1038#ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046#endif
1047}
1048
aeb73b04
PZ
1049static void
1050place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051{
1af5f730 1052 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1053
2cb8600e
PZ
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
94dfb5e7 1060 if (initial && sched_feat(START_DEBIT))
f9c0b095 1061 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1062
a2e7a7eb 1063 /* sleeps up to a single latency don't count. */
5ca9880c 1064 if (!initial) {
a2e7a7eb 1065 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1066
a2e7a7eb
MG
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
51e0304c 1073
a2e7a7eb 1074 vruntime -= thresh;
aeb73b04
PZ
1075 }
1076
b5d9d734
MG
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
67e9fb2a 1080 se->vruntime = vruntime;
aeb73b04
PZ
1081}
1082
d3d9dc33
PT
1083static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
bf0f6f24 1085static void
88ec22d3 1086enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1087{
88ec22d3
PZ
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
371fd7e7 1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1093 se->vruntime += cfs_rq->min_vruntime;
1094
bf0f6f24 1095 /*
a2a2d680 1096 * Update run-time statistics of the 'current'.
bf0f6f24 1097 */
b7cc0896 1098 update_curr(cfs_rq);
d6b55918 1099 update_cfs_load(cfs_rq, 0);
a992241d 1100 account_entity_enqueue(cfs_rq, se);
6d5ab293 1101 update_cfs_shares(cfs_rq);
bf0f6f24 1102
88ec22d3 1103 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1104 place_entity(cfs_rq, se, 0);
2396af69 1105 enqueue_sleeper(cfs_rq, se);
e9acbff6 1106 }
bf0f6f24 1107
d2417e5a 1108 update_stats_enqueue(cfs_rq, se);
ddc97297 1109 check_spread(cfs_rq, se);
83b699ed
SV
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
2069dd75 1112 se->on_rq = 1;
3d4b47b4 1113
d3d9dc33 1114 if (cfs_rq->nr_running == 1) {
3d4b47b4 1115 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1116 check_enqueue_throttle(cfs_rq);
1117 }
bf0f6f24
IM
1118}
1119
2c13c919 1120static void __clear_buddies_last(struct sched_entity *se)
2002c695 1121{
2c13c919
RR
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129}
2002c695 1130
2c13c919
RR
1131static void __clear_buddies_next(struct sched_entity *se)
1132{
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
2002c695
PZ
1140}
1141
ac53db59
RR
1142static void __clear_buddies_skip(struct sched_entity *se)
1143{
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151}
1152
a571bbea
PZ
1153static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154{
2c13c919
RR
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
ac53db59
RR
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
a571bbea
PZ
1163}
1164
d8b4986d
PT
1165static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166
bf0f6f24 1167static void
371fd7e7 1168dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1169{
a2a2d680
DA
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
19b6a2e3 1175 update_stats_dequeue(cfs_rq, se);
371fd7e7 1176 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1177#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1185 }
db36cc7d 1186#endif
67e9fb2a
PZ
1187 }
1188
2002c695 1189 clear_buddies(cfs_rq, se);
4793241b 1190
83b699ed 1191 if (se != cfs_rq->curr)
30cfdcfc 1192 __dequeue_entity(cfs_rq, se);
2069dd75 1193 se->on_rq = 0;
d6b55918 1194 update_cfs_load(cfs_rq, 0);
30cfdcfc 1195 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
371fd7e7 1202 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1203 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1204
d8b4986d
PT
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1e876231
PZ
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1210}
1211
1212/*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
7c92e54f 1215static void
2e09bf55 1216check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1217{
11697830 1218 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1219 struct sched_entity *se;
1220 s64 delta;
11697830 1221
6d0f0ebd 1222 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1224 if (delta_exec > ideal_runtime) {
bf0f6f24 1225 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
f685ceac
MG
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
f685ceac
MG
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
f4cfb33e
WX
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
f685ceac 1244
f4cfb33e
WX
1245 if (delta < 0)
1246 return;
d7d82944 1247
f4cfb33e
WX
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1250}
1251
83b699ed 1252static void
8494f412 1253set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1254{
83b699ed
SV
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
79303e9e 1266 update_stats_curr_start(cfs_rq, se);
429d43bc 1267 cfs_rq->curr = se;
eba1ed4b
IM
1268#ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
495eca49 1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1275 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278#endif
4a55b450 1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1280}
1281
3f3a4904
PZ
1282static int
1283wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
ac53db59
RR
1285/*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
f4b6755f 1292static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1293{
ac53db59 1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1295 struct sched_entity *left = se;
f4b6755f 1296
ac53db59
RR
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
aa2ac252 1306
f685ceac
MG
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
ac53db59
RR
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
f685ceac 1319 clear_buddies(cfs_rq, se);
4793241b
PZ
1320
1321 return se;
aa2ac252
PZ
1322}
1323
d3d9dc33
PT
1324static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
ab6cde26 1326static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1327{
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
b7cc0896 1333 update_curr(cfs_rq);
bf0f6f24 1334
d3d9dc33
PT
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
ddc97297 1338 check_spread(cfs_rq, prev);
30cfdcfc 1339 if (prev->on_rq) {
5870db5b 1340 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
429d43bc 1344 cfs_rq->curr = NULL;
bf0f6f24
IM
1345}
1346
8f4d37ec
PZ
1347static void
1348entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1349{
bf0f6f24 1350 /*
30cfdcfc 1351 * Update run-time statistics of the 'current'.
bf0f6f24 1352 */
30cfdcfc 1353 update_curr(cfs_rq);
bf0f6f24 1354
43365bd7
PT
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
8f4d37ec
PZ
1360#ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
983ed7a6
HH
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
8f4d37ec
PZ
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375#endif
1376
2c2efaed 1377 if (cfs_rq->nr_running > 1)
2e09bf55 1378 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1379}
1380
ab84d31e
PT
1381
1382/**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1387
1388#ifdef HAVE_JUMP_LABEL
1389static struct jump_label_key __cfs_bandwidth_used;
1390
1391static inline bool cfs_bandwidth_used(void)
1392{
1393 return static_branch(&__cfs_bandwidth_used);
1394}
1395
1396void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397{
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
1400 jump_label_inc(&__cfs_bandwidth_used);
1401 else if (!enabled && was_enabled)
1402 jump_label_dec(&__cfs_bandwidth_used);
1403}
1404#else /* HAVE_JUMP_LABEL */
1405static bool cfs_bandwidth_used(void)
1406{
1407 return true;
1408}
1409
1410void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411#endif /* HAVE_JUMP_LABEL */
1412
ab84d31e
PT
1413/*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417static inline u64 default_cfs_period(void)
1418{
1419 return 100000000ULL;
1420}
ec12cb7f
PT
1421
1422static inline u64 sched_cfs_bandwidth_slice(void)
1423{
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425}
1426
a9cf55b2
PT
1427/*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
029632fb 1434void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1435{
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444}
1445
029632fb
PZ
1446static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447{
1448 return &tg->cfs_bandwidth;
1449}
1450
85dac906
PT
1451/* returns 0 on failure to allocate runtime */
1452static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1453{
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1456 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
58088ad0 1464 else {
a9cf55b2
PT
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1473 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1474 }
58088ad0
PT
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
ec12cb7f 1481 }
a9cf55b2 1482 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
85dac906
PT
1493
1494 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1495}
1496
a9cf55b2
PT
1497/*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1502{
a9cf55b2
PT
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1508 return;
1509
a9cf55b2
PT
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529}
1530
1531static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533{
1534 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1535 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1539 return;
1540
85dac906
PT
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1547}
1548
1549static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1550 unsigned long delta_exec)
1551{
56f570e5 1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556}
1557
85dac906
PT
1558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559{
56f570e5 1560 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1561}
1562
64660c86
PT
1563/* check whether cfs_rq, or any parent, is throttled */
1564static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565{
56f570e5 1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1567}
1568
1569/*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576{
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584}
1585
1586/* updated child weight may affect parent so we have to do this bottom up */
1587static int tg_unthrottle_up(struct task_group *tg, void *data)
1588{
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593#ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604#endif
1605
1606 return 0;
1607}
1608
1609static int tg_throttle_down(struct task_group *tg, void *data)
1610{
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620}
1621
d3d9dc33 1622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1623{
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
64660c86
PT
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
85dac906
PT
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
e8da1b18 1655 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659}
1660
029632fb 1661void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1662{
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
e8da1b18 1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1676 cfs_rq->throttled_timestamp = 0;
671fd9da 1677
64660c86
PT
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
671fd9da
PT
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705}
1706
1707static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709{
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743}
1744
58088ad0
PT
1745/*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752{
671fd9da
PT
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
58088ad0
PT
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
671fd9da
PT
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
e8da1b18 1764 cfs_b->nr_periods += overrun;
671fd9da 1765
a9cf55b2
PT
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
671fd9da
PT
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
e8da1b18
NR
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
671fd9da
PT
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
58088ad0 1805
671fd9da
PT
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
58088ad0
PT
1815out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821}
d3d9dc33 1822
d8b4986d
PT
1823/* a cfs_rq won't donate quota below this amount */
1824static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825/* minimum remaining period time to redistribute slack quota */
1826static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827/* how long we wait to gather additional slack before distributing */
1828static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830/* are we near the end of the current quota period? */
1831static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832{
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846}
1847
1848static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849{
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858}
1859
1860/* we know any runtime found here is valid as update_curr() precedes return */
1861static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862{
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883}
1884
1885static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886{
56f570e5
PT
1887 if (!cfs_bandwidth_used())
1888 return;
1889
fccfdc6f 1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894}
1895
1896/*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901{
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926}
1927
d3d9dc33
PT
1928/*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934{
56f570e5
PT
1935 if (!cfs_bandwidth_used())
1936 return;
1937
d3d9dc33
PT
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950}
1951
1952/* conditionally throttle active cfs_rq's from put_prev_entity() */
1953static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954{
56f570e5
PT
1955 if (!cfs_bandwidth_used())
1956 return;
1957
d3d9dc33
PT
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969}
029632fb
PZ
1970
1971static inline u64 default_cfs_period(void);
1972static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976{
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982}
1983
1984static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985{
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003}
2004
2005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006{
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017}
2018
2019static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020{
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023}
2024
2025/* requires cfs_b->lock, may release to reprogram timer */
2026void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027{
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047}
2048
2049static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050{
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053}
2054
2055void unthrottle_offline_cfs_rqs(struct rq *rq)
2056{
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073}
2074
2075#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2076static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2077 unsigned long delta_exec) {}
d3d9dc33
PT
2078static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2080static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2081
2082static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083{
2084 return 0;
2085}
64660c86
PT
2086
2087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088{
2089 return 0;
2090}
2091
2092static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094{
2095 return 0;
2096}
029632fb
PZ
2097
2098void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100#ifdef CONFIG_FAIR_GROUP_SCHED
2101static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2102#endif
2103
029632fb
PZ
2104static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105{
2106 return NULL;
2107}
2108static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111#endif /* CONFIG_CFS_BANDWIDTH */
2112
bf0f6f24
IM
2113/**************************************************
2114 * CFS operations on tasks:
2115 */
2116
8f4d37ec
PZ
2117#ifdef CONFIG_SCHED_HRTICK
2118static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119{
8f4d37ec
PZ
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
b39e66ea 2125 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
31656519 2140 if (rq->curr != p)
157124c1 2141 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2142
31656519 2143 hrtick_start(rq, delta);
8f4d37ec
PZ
2144 }
2145}
a4c2f00f
PZ
2146
2147/*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152static void hrtick_update(struct rq *rq)
2153{
2154 struct task_struct *curr = rq->curr;
2155
b39e66ea 2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161}
55e12e5e 2162#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2163static inline void
2164hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165{
2166}
a4c2f00f
PZ
2167
2168static inline void hrtick_update(struct rq *rq)
2169{
2170}
8f4d37ec
PZ
2171#endif
2172
bf0f6f24
IM
2173/*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
ea87bb78 2178static void
371fd7e7 2179enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2180{
2181 struct cfs_rq *cfs_rq;
62fb1851 2182 struct sched_entity *se = &p->se;
bf0f6f24
IM
2183
2184 for_each_sched_entity(se) {
62fb1851 2185 if (se->on_rq)
bf0f6f24
IM
2186 break;
2187 cfs_rq = cfs_rq_of(se);
88ec22d3 2188 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
953bfcd1 2198 cfs_rq->h_nr_running++;
85dac906 2199
88ec22d3 2200 flags = ENQUEUE_WAKEUP;
bf0f6f24 2201 }
8f4d37ec 2202
2069dd75 2203 for_each_sched_entity(se) {
0f317143 2204 cfs_rq = cfs_rq_of(se);
953bfcd1 2205 cfs_rq->h_nr_running++;
2069dd75 2206
85dac906
PT
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
d6b55918 2210 update_cfs_load(cfs_rq, 0);
6d5ab293 2211 update_cfs_shares(cfs_rq);
2069dd75
PZ
2212 }
2213
85dac906
PT
2214 if (!se)
2215 inc_nr_running(rq);
a4c2f00f 2216 hrtick_update(rq);
bf0f6f24
IM
2217}
2218
2f36825b
VP
2219static void set_next_buddy(struct sched_entity *se);
2220
bf0f6f24
IM
2221/*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
371fd7e7 2226static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2227{
2228 struct cfs_rq *cfs_rq;
62fb1851 2229 struct sched_entity *se = &p->se;
2f36825b 2230 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
371fd7e7 2234 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
953bfcd1 2244 cfs_rq->h_nr_running--;
2069dd75 2245
bf0f6f24 2246 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
9598c82d
PT
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
bf0f6f24 2257 break;
2f36825b 2258 }
371fd7e7 2259 flags |= DEQUEUE_SLEEP;
bf0f6f24 2260 }
8f4d37ec 2261
2069dd75 2262 for_each_sched_entity(se) {
0f317143 2263 cfs_rq = cfs_rq_of(se);
953bfcd1 2264 cfs_rq->h_nr_running--;
2069dd75 2265
85dac906
PT
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
d6b55918 2269 update_cfs_load(cfs_rq, 0);
6d5ab293 2270 update_cfs_shares(cfs_rq);
2069dd75
PZ
2271 }
2272
85dac906
PT
2273 if (!se)
2274 dec_nr_running(rq);
a4c2f00f 2275 hrtick_update(rq);
bf0f6f24
IM
2276}
2277
e7693a36 2278#ifdef CONFIG_SMP
029632fb
PZ
2279/* Used instead of source_load when we know the type == 0 */
2280static unsigned long weighted_cpuload(const int cpu)
2281{
2282 return cpu_rq(cpu)->load.weight;
2283}
2284
2285/*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292static unsigned long source_load(int cpu, int type)
2293{
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301}
2302
2303/*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307static unsigned long target_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316}
2317
2318static unsigned long power_of(int cpu)
2319{
2320 return cpu_rq(cpu)->cpu_power;
2321}
2322
2323static unsigned long cpu_avg_load_per_task(int cpu)
2324{
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332}
2333
098fb9db 2334
74f8e4b2 2335static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2336{
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2339 u64 min_vruntime;
2340
2341#ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
88ec22d3 2343
3fe1698b
PZ
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349#else
2350 min_vruntime = cfs_rq->min_vruntime;
2351#endif
88ec22d3 2352
3fe1698b 2353 se->vruntime -= min_vruntime;
88ec22d3
PZ
2354}
2355
bb3469ac 2356#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2357/*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
cf5f0acf
PZ
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
f5bfb7d9 2406 */
2069dd75 2407static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2408{
4be9daaa 2409 struct sched_entity *se = tg->se[cpu];
f1d239f7 2410
cf5f0acf 2411 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2412 return wl;
2413
4be9daaa 2414 for_each_sched_entity(se) {
cf5f0acf 2415 long w, W;
4be9daaa 2416
977dda7c 2417 tg = se->my_q->tg;
bb3469ac 2418
cf5f0acf
PZ
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2423
cf5f0acf
PZ
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
940959e9 2428
cf5f0acf
PZ
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
977dda7c
PT
2434 else
2435 wl = tg->shares;
940959e9 2436
cf5f0acf
PZ
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
977dda7c
PT
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
cf5f0acf
PZ
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
977dda7c 2448 wl -= se->load.weight;
cf5f0acf
PZ
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
4be9daaa 2457 wg = 0;
4be9daaa 2458 }
bb3469ac 2459
4be9daaa 2460 return wl;
bb3469ac
PZ
2461}
2462#else
4be9daaa 2463
83378269
PZ
2464static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
4be9daaa 2466{
83378269 2467 return wl;
bb3469ac 2468}
4be9daaa 2469
bb3469ac
PZ
2470#endif
2471
c88d5910 2472static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2473{
e37b6a7b 2474 s64 this_load, load;
c88d5910 2475 int idx, this_cpu, prev_cpu;
098fb9db 2476 unsigned long tl_per_task;
c88d5910 2477 struct task_group *tg;
83378269 2478 unsigned long weight;
b3137bc8 2479 int balanced;
098fb9db 2480
c88d5910
PZ
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
098fb9db 2486
b3137bc8
MG
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
83378269
PZ
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
c88d5910 2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
b3137bc8 2499
83378269
PZ
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
b3137bc8 2502
71a29aa7
PZ
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
71a29aa7
PZ
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
e37b6a7b
PT
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
b3137bc8 2527
098fb9db 2528 /*
4ae7d5ce
IM
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
098fb9db 2532 */
2fb7635c
PZ
2533 if (sync && balanced)
2534 return 1;
098fb9db 2535
41acab88 2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
c88d5910
PZ
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
c88d5910 2547 schedstat_inc(sd, ttwu_move_affine);
41acab88 2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2549
2550 return 1;
2551 }
2552 return 0;
2553}
2554
aaee1203
PZ
2555/*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559static struct sched_group *
78e7ed53 2560find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2561 int this_cpu, int load_idx)
e7693a36 2562{
b3bd3de6 2563 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2564 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2566
aaee1203
PZ
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
e7693a36 2571
aaee1203
PZ
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2574 tsk_cpus_allowed(p)))
aaee1203
PZ
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
9c3f75cb 2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2595
2596 if (local_group) {
2597 this_load = avg_load;
aaee1203
PZ
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607}
2608
2609/*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612static int
2613find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614{
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
fa17b507 2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
e7693a36
GH
2626 }
2627 }
2628
aaee1203
PZ
2629 return idlest;
2630}
e7693a36 2631
a50bde51
PZ
2632/*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
99bd5e2f 2635static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2636{
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
99bd5e2f 2639 struct sched_domain *sd;
4dcfe102 2640 struct sched_group *sg;
77e81365 2641 int i;
a50bde51
PZ
2642
2643 /*
99bd5e2f
SS
2644 * If the task is going to be woken-up on this cpu and if it is
2645 * already idle, then it is the right target.
a50bde51 2646 */
99bd5e2f
SS
2647 if (target == cpu && idle_cpu(cpu))
2648 return cpu;
2649
2650 /*
2651 * If the task is going to be woken-up on the cpu where it previously
2652 * ran and if it is currently idle, then it the right target.
2653 */
2654 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2655 return prev_cpu;
a50bde51
PZ
2656
2657 /*
99bd5e2f 2658 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2659 */
518cd623 2660 sd = rcu_dereference(per_cpu(sd_llc, target));
77e81365 2661 for_each_lower_domain(sd) {
4dcfe102
PZ
2662 sg = sd->groups;
2663 do {
2664 if (!cpumask_intersects(sched_group_cpus(sg),
2665 tsk_cpus_allowed(p)))
2666 goto next;
2667
2668 for_each_cpu(i, sched_group_cpus(sg)) {
2669 if (!idle_cpu(i))
2670 goto next;
2671 }
2672
2673 target = cpumask_first_and(sched_group_cpus(sg),
2674 tsk_cpus_allowed(p));
2675 goto done;
2676next:
2677 sg = sg->next;
2678 } while (sg != sd->groups);
a50bde51 2679 }
4dcfe102 2680done:
a50bde51
PZ
2681 return target;
2682}
2683
aaee1203
PZ
2684/*
2685 * sched_balance_self: balance the current task (running on cpu) in domains
2686 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2687 * SD_BALANCE_EXEC.
2688 *
2689 * Balance, ie. select the least loaded group.
2690 *
2691 * Returns the target CPU number, or the same CPU if no balancing is needed.
2692 *
2693 * preempt must be disabled.
2694 */
0017d735 2695static int
7608dec2 2696select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2697{
29cd8bae 2698 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2699 int cpu = smp_processor_id();
2700 int prev_cpu = task_cpu(p);
2701 int new_cpu = cpu;
99bd5e2f 2702 int want_affine = 0;
29cd8bae 2703 int want_sd = 1;
5158f4e4 2704 int sync = wake_flags & WF_SYNC;
c88d5910 2705
76854c7e
MG
2706 if (p->rt.nr_cpus_allowed == 1)
2707 return prev_cpu;
2708
0763a660 2709 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2710 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2711 want_affine = 1;
2712 new_cpu = prev_cpu;
2713 }
aaee1203 2714
dce840a0 2715 rcu_read_lock();
aaee1203 2716 for_each_domain(cpu, tmp) {
e4f42888
PZ
2717 if (!(tmp->flags & SD_LOAD_BALANCE))
2718 continue;
2719
aaee1203 2720 /*
ae154be1
PZ
2721 * If power savings logic is enabled for a domain, see if we
2722 * are not overloaded, if so, don't balance wider.
aaee1203 2723 */
59abf026 2724 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2725 unsigned long power = 0;
2726 unsigned long nr_running = 0;
2727 unsigned long capacity;
2728 int i;
2729
2730 for_each_cpu(i, sched_domain_span(tmp)) {
2731 power += power_of(i);
2732 nr_running += cpu_rq(i)->cfs.nr_running;
2733 }
2734
1399fa78 2735 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2736
59abf026
PZ
2737 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2738 nr_running /= 2;
2739
2740 if (nr_running < capacity)
29cd8bae 2741 want_sd = 0;
ae154be1 2742 }
aaee1203 2743
fe3bcfe1 2744 /*
99bd5e2f
SS
2745 * If both cpu and prev_cpu are part of this domain,
2746 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2747 */
99bd5e2f
SS
2748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2750 affine_sd = tmp;
2751 want_affine = 0;
c88d5910
PZ
2752 }
2753
29cd8bae
PZ
2754 if (!want_sd && !want_affine)
2755 break;
2756
0763a660 2757 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2758 continue;
2759
29cd8bae
PZ
2760 if (want_sd)
2761 sd = tmp;
2762 }
2763
8b911acd 2764 if (affine_sd) {
99bd5e2f 2765 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2766 prev_cpu = cpu;
2767
2768 new_cpu = select_idle_sibling(p, prev_cpu);
2769 goto unlock;
8b911acd 2770 }
e7693a36 2771
aaee1203 2772 while (sd) {
5158f4e4 2773 int load_idx = sd->forkexec_idx;
aaee1203 2774 struct sched_group *group;
c88d5910 2775 int weight;
098fb9db 2776
0763a660 2777 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2778 sd = sd->child;
2779 continue;
2780 }
098fb9db 2781
5158f4e4
PZ
2782 if (sd_flag & SD_BALANCE_WAKE)
2783 load_idx = sd->wake_idx;
098fb9db 2784
5158f4e4 2785 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2786 if (!group) {
2787 sd = sd->child;
2788 continue;
2789 }
4ae7d5ce 2790
d7c33c49 2791 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2792 if (new_cpu == -1 || new_cpu == cpu) {
2793 /* Now try balancing at a lower domain level of cpu */
2794 sd = sd->child;
2795 continue;
e7693a36 2796 }
aaee1203
PZ
2797
2798 /* Now try balancing at a lower domain level of new_cpu */
2799 cpu = new_cpu;
669c55e9 2800 weight = sd->span_weight;
aaee1203
PZ
2801 sd = NULL;
2802 for_each_domain(cpu, tmp) {
669c55e9 2803 if (weight <= tmp->span_weight)
aaee1203 2804 break;
0763a660 2805 if (tmp->flags & sd_flag)
aaee1203
PZ
2806 sd = tmp;
2807 }
2808 /* while loop will break here if sd == NULL */
e7693a36 2809 }
dce840a0
PZ
2810unlock:
2811 rcu_read_unlock();
e7693a36 2812
c88d5910 2813 return new_cpu;
e7693a36
GH
2814}
2815#endif /* CONFIG_SMP */
2816
e52fb7c0
PZ
2817static unsigned long
2818wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2819{
2820 unsigned long gran = sysctl_sched_wakeup_granularity;
2821
2822 /*
e52fb7c0
PZ
2823 * Since its curr running now, convert the gran from real-time
2824 * to virtual-time in his units.
13814d42
MG
2825 *
2826 * By using 'se' instead of 'curr' we penalize light tasks, so
2827 * they get preempted easier. That is, if 'se' < 'curr' then
2828 * the resulting gran will be larger, therefore penalizing the
2829 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2830 * be smaller, again penalizing the lighter task.
2831 *
2832 * This is especially important for buddies when the leftmost
2833 * task is higher priority than the buddy.
0bbd3336 2834 */
f4ad9bd2 2835 return calc_delta_fair(gran, se);
0bbd3336
PZ
2836}
2837
464b7527
PZ
2838/*
2839 * Should 'se' preempt 'curr'.
2840 *
2841 * |s1
2842 * |s2
2843 * |s3
2844 * g
2845 * |<--->|c
2846 *
2847 * w(c, s1) = -1
2848 * w(c, s2) = 0
2849 * w(c, s3) = 1
2850 *
2851 */
2852static int
2853wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2854{
2855 s64 gran, vdiff = curr->vruntime - se->vruntime;
2856
2857 if (vdiff <= 0)
2858 return -1;
2859
e52fb7c0 2860 gran = wakeup_gran(curr, se);
464b7527
PZ
2861 if (vdiff > gran)
2862 return 1;
2863
2864 return 0;
2865}
2866
02479099
PZ
2867static void set_last_buddy(struct sched_entity *se)
2868{
69c80f3e
VP
2869 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2870 return;
2871
2872 for_each_sched_entity(se)
2873 cfs_rq_of(se)->last = se;
02479099
PZ
2874}
2875
2876static void set_next_buddy(struct sched_entity *se)
2877{
69c80f3e
VP
2878 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2879 return;
2880
2881 for_each_sched_entity(se)
2882 cfs_rq_of(se)->next = se;
02479099
PZ
2883}
2884
ac53db59
RR
2885static void set_skip_buddy(struct sched_entity *se)
2886{
69c80f3e
VP
2887 for_each_sched_entity(se)
2888 cfs_rq_of(se)->skip = se;
ac53db59
RR
2889}
2890
bf0f6f24
IM
2891/*
2892 * Preempt the current task with a newly woken task if needed:
2893 */
5a9b86f6 2894static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2895{
2896 struct task_struct *curr = rq->curr;
8651a86c 2897 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2898 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2899 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2900 int next_buddy_marked = 0;
bf0f6f24 2901
4ae7d5ce
IM
2902 if (unlikely(se == pse))
2903 return;
2904
5238cdd3 2905 /*
ddcdf6e7 2906 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
2907 * unconditionally check_prempt_curr() after an enqueue (which may have
2908 * lead to a throttle). This both saves work and prevents false
2909 * next-buddy nomination below.
2910 */
2911 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2912 return;
2913
2f36825b 2914 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2915 set_next_buddy(pse);
2f36825b
VP
2916 next_buddy_marked = 1;
2917 }
57fdc26d 2918
aec0a514
BR
2919 /*
2920 * We can come here with TIF_NEED_RESCHED already set from new task
2921 * wake up path.
5238cdd3
PT
2922 *
2923 * Note: this also catches the edge-case of curr being in a throttled
2924 * group (e.g. via set_curr_task), since update_curr() (in the
2925 * enqueue of curr) will have resulted in resched being set. This
2926 * prevents us from potentially nominating it as a false LAST_BUDDY
2927 * below.
aec0a514
BR
2928 */
2929 if (test_tsk_need_resched(curr))
2930 return;
2931
a2f5c9ab
DH
2932 /* Idle tasks are by definition preempted by non-idle tasks. */
2933 if (unlikely(curr->policy == SCHED_IDLE) &&
2934 likely(p->policy != SCHED_IDLE))
2935 goto preempt;
2936
91c234b4 2937 /*
a2f5c9ab
DH
2938 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2939 * is driven by the tick):
91c234b4 2940 */
6bc912b7 2941 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2942 return;
bf0f6f24 2943
464b7527 2944 find_matching_se(&se, &pse);
9bbd7374 2945 update_curr(cfs_rq_of(se));
002f128b 2946 BUG_ON(!pse);
2f36825b
VP
2947 if (wakeup_preempt_entity(se, pse) == 1) {
2948 /*
2949 * Bias pick_next to pick the sched entity that is
2950 * triggering this preemption.
2951 */
2952 if (!next_buddy_marked)
2953 set_next_buddy(pse);
3a7e73a2 2954 goto preempt;
2f36825b 2955 }
464b7527 2956
3a7e73a2 2957 return;
a65ac745 2958
3a7e73a2
PZ
2959preempt:
2960 resched_task(curr);
2961 /*
2962 * Only set the backward buddy when the current task is still
2963 * on the rq. This can happen when a wakeup gets interleaved
2964 * with schedule on the ->pre_schedule() or idle_balance()
2965 * point, either of which can * drop the rq lock.
2966 *
2967 * Also, during early boot the idle thread is in the fair class,
2968 * for obvious reasons its a bad idea to schedule back to it.
2969 */
2970 if (unlikely(!se->on_rq || curr == rq->idle))
2971 return;
2972
2973 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2974 set_last_buddy(se);
bf0f6f24
IM
2975}
2976
fb8d4724 2977static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2978{
8f4d37ec 2979 struct task_struct *p;
bf0f6f24
IM
2980 struct cfs_rq *cfs_rq = &rq->cfs;
2981 struct sched_entity *se;
2982
36ace27e 2983 if (!cfs_rq->nr_running)
bf0f6f24
IM
2984 return NULL;
2985
2986 do {
9948f4b2 2987 se = pick_next_entity(cfs_rq);
f4b6755f 2988 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2989 cfs_rq = group_cfs_rq(se);
2990 } while (cfs_rq);
2991
8f4d37ec 2992 p = task_of(se);
b39e66ea
MG
2993 if (hrtick_enabled(rq))
2994 hrtick_start_fair(rq, p);
8f4d37ec
PZ
2995
2996 return p;
bf0f6f24
IM
2997}
2998
2999/*
3000 * Account for a descheduled task:
3001 */
31ee529c 3002static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3003{
3004 struct sched_entity *se = &prev->se;
3005 struct cfs_rq *cfs_rq;
3006
3007 for_each_sched_entity(se) {
3008 cfs_rq = cfs_rq_of(se);
ab6cde26 3009 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3010 }
3011}
3012
ac53db59
RR
3013/*
3014 * sched_yield() is very simple
3015 *
3016 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3017 */
3018static void yield_task_fair(struct rq *rq)
3019{
3020 struct task_struct *curr = rq->curr;
3021 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3022 struct sched_entity *se = &curr->se;
3023
3024 /*
3025 * Are we the only task in the tree?
3026 */
3027 if (unlikely(rq->nr_running == 1))
3028 return;
3029
3030 clear_buddies(cfs_rq, se);
3031
3032 if (curr->policy != SCHED_BATCH) {
3033 update_rq_clock(rq);
3034 /*
3035 * Update run-time statistics of the 'current'.
3036 */
3037 update_curr(cfs_rq);
916671c0
MG
3038 /*
3039 * Tell update_rq_clock() that we've just updated,
3040 * so we don't do microscopic update in schedule()
3041 * and double the fastpath cost.
3042 */
3043 rq->skip_clock_update = 1;
ac53db59
RR
3044 }
3045
3046 set_skip_buddy(se);
3047}
3048
d95f4122
MG
3049static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3050{
3051 struct sched_entity *se = &p->se;
3052
5238cdd3
PT
3053 /* throttled hierarchies are not runnable */
3054 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3055 return false;
3056
3057 /* Tell the scheduler that we'd really like pse to run next. */
3058 set_next_buddy(se);
3059
d95f4122
MG
3060 yield_task_fair(rq);
3061
3062 return true;
3063}
3064
681f3e68 3065#ifdef CONFIG_SMP
bf0f6f24
IM
3066/**************************************************
3067 * Fair scheduling class load-balancing methods:
3068 */
3069
ed387b78
HS
3070static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3071
ddcdf6e7 3072#define LBF_ALL_PINNED 0x01
367456c7
PZ
3073#define LBF_NEED_BREAK 0x02
3074#define LBF_ABORT 0x04
ddcdf6e7
PZ
3075
3076struct lb_env {
3077 struct sched_domain *sd;
3078
3079 int src_cpu;
3080 struct rq *src_rq;
ddcdf6e7
PZ
3081
3082 int dst_cpu;
3083 struct rq *dst_rq;
3084
3085 enum cpu_idle_type idle;
3086 unsigned long max_load_move;
3087 unsigned int flags;
367456c7
PZ
3088
3089 unsigned int loop;
3090 unsigned int loop_break;
3091 unsigned int loop_max;
ddcdf6e7
PZ
3092};
3093
1e3c88bd 3094/*
ddcdf6e7 3095 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3096 * Both runqueues must be locked.
3097 */
ddcdf6e7 3098static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3099{
ddcdf6e7
PZ
3100 deactivate_task(env->src_rq, p, 0);
3101 set_task_cpu(p, env->dst_cpu);
3102 activate_task(env->dst_rq, p, 0);
3103 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3104}
3105
029632fb
PZ
3106/*
3107 * Is this task likely cache-hot:
3108 */
3109static int
3110task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3111{
3112 s64 delta;
3113
3114 if (p->sched_class != &fair_sched_class)
3115 return 0;
3116
3117 if (unlikely(p->policy == SCHED_IDLE))
3118 return 0;
3119
3120 /*
3121 * Buddy candidates are cache hot:
3122 */
3123 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3124 (&p->se == cfs_rq_of(&p->se)->next ||
3125 &p->se == cfs_rq_of(&p->se)->last))
3126 return 1;
3127
3128 if (sysctl_sched_migration_cost == -1)
3129 return 1;
3130 if (sysctl_sched_migration_cost == 0)
3131 return 0;
3132
3133 delta = now - p->se.exec_start;
3134
3135 return delta < (s64)sysctl_sched_migration_cost;
3136}
3137
1e3c88bd
PZ
3138/*
3139 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3140 */
3141static
8e45cb54 3142int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3143{
3144 int tsk_cache_hot = 0;
3145 /*
3146 * We do not migrate tasks that are:
3147 * 1) running (obviously), or
3148 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3149 * 3) are cache-hot on their current CPU.
3150 */
ddcdf6e7 3151 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
41acab88 3152 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3153 return 0;
3154 }
8e45cb54 3155 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3156
ddcdf6e7 3157 if (task_running(env->src_rq, p)) {
41acab88 3158 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3159 return 0;
3160 }
3161
3162 /*
3163 * Aggressive migration if:
3164 * 1) task is cache cold, or
3165 * 2) too many balance attempts have failed.
3166 */
3167
ddcdf6e7 3168 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3169 if (!tsk_cache_hot ||
8e45cb54 3170 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3171#ifdef CONFIG_SCHEDSTATS
3172 if (tsk_cache_hot) {
8e45cb54 3173 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3174 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3175 }
3176#endif
3177 return 1;
3178 }
3179
3180 if (tsk_cache_hot) {
41acab88 3181 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3182 return 0;
3183 }
3184 return 1;
3185}
3186
897c395f
PZ
3187/*
3188 * move_one_task tries to move exactly one task from busiest to this_rq, as
3189 * part of active balancing operations within "domain".
3190 * Returns 1 if successful and 0 otherwise.
3191 *
3192 * Called with both runqueues locked.
3193 */
8e45cb54 3194static int move_one_task(struct lb_env *env)
897c395f
PZ
3195{
3196 struct task_struct *p, *n;
897c395f 3197
367456c7
PZ
3198 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3199 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3200 continue;
897c395f 3201
367456c7
PZ
3202 if (!can_migrate_task(p, env))
3203 continue;
897c395f 3204
367456c7
PZ
3205 move_task(p, env);
3206 /*
3207 * Right now, this is only the second place move_task()
3208 * is called, so we can safely collect move_task()
3209 * stats here rather than inside move_task().
3210 */
3211 schedstat_inc(env->sd, lb_gained[env->idle]);
3212 return 1;
897c395f 3213 }
897c395f
PZ
3214 return 0;
3215}
3216
367456c7
PZ
3217static unsigned long task_h_load(struct task_struct *p);
3218
8e45cb54 3219static unsigned long balance_tasks(struct lb_env *env)
1e3c88bd 3220{
8e45cb54 3221 long rem_load_move = env->max_load_move;
ee00e66f 3222 struct task_struct *p, *n;
367456c7
PZ
3223 unsigned long load;
3224 int pulled = 0;
1e3c88bd 3225
8e45cb54 3226 if (env->max_load_move == 0)
1e3c88bd
PZ
3227 goto out;
3228
367456c7
PZ
3229 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3230 env->loop++;
3231 /* We've more or less seen every task there is, call it quits */
3232 if (env->loop > env->loop_max) {
3233 env->flags |= LBF_ABORT;
3234 break;
3235 }
3236 /* take a beather every nr_migrate tasks */
3237 if (env->loop > env->loop_break) {
3238 env->loop_break += sysctl_sched_nr_migrate;
8e45cb54 3239 env->flags |= LBF_NEED_BREAK;
ee00e66f 3240 break;
a195f004 3241 }
1e3c88bd 3242
367456c7
PZ
3243 if (throttled_lb_pair(task_group(p), env->src_rq->cpu,
3244 env->dst_cpu))
3245 goto next;
3246
3247 load = task_h_load(p);
3248 if (load < 16 && !env->sd->nr_balance_failed)
3249 goto next;
3250
3251 if ((load * 2) > rem_load_move)
3252 goto next;
3253
3254 if (!can_migrate_task(p, env))
3255 goto next;
1e3c88bd 3256
ddcdf6e7 3257 move_task(p, env);
ee00e66f 3258 pulled++;
367456c7 3259 rem_load_move -= load;
1e3c88bd
PZ
3260
3261#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3262 /*
3263 * NEWIDLE balancing is a source of latency, so preemptible
3264 * kernels will stop after the first task is pulled to minimize
3265 * the critical section.
3266 */
8e45cb54
PZ
3267 if (env->idle == CPU_NEWLY_IDLE) {
3268 env->flags |= LBF_ABORT;
ee00e66f 3269 break;
a195f004 3270 }
1e3c88bd
PZ
3271#endif
3272
ee00e66f
PZ
3273 /*
3274 * We only want to steal up to the prescribed amount of
3275 * weighted load.
3276 */
3277 if (rem_load_move <= 0)
3278 break;
367456c7
PZ
3279
3280 continue;
3281next:
3282 list_move_tail(&p->se.group_node, &env->src_rq->cfs_tasks);
1e3c88bd
PZ
3283 }
3284out:
3285 /*
ddcdf6e7
PZ
3286 * Right now, this is one of only two places move_task() is called,
3287 * so we can safely collect move_task() stats here rather than
3288 * inside move_task().
1e3c88bd 3289 */
8e45cb54 3290 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3291
8e45cb54 3292 return env->max_load_move - rem_load_move;
1e3c88bd
PZ
3293}
3294
230059de 3295#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3296/*
3297 * update tg->load_weight by folding this cpu's load_avg
3298 */
67e86250 3299static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3300{
3301 struct cfs_rq *cfs_rq;
3302 unsigned long flags;
3303 struct rq *rq;
9e3081ca
PZ
3304
3305 if (!tg->se[cpu])
3306 return 0;
3307
3308 rq = cpu_rq(cpu);
3309 cfs_rq = tg->cfs_rq[cpu];
3310
3311 raw_spin_lock_irqsave(&rq->lock, flags);
3312
3313 update_rq_clock(rq);
d6b55918 3314 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3315
3316 /*
3317 * We need to update shares after updating tg->load_weight in
3318 * order to adjust the weight of groups with long running tasks.
3319 */
6d5ab293 3320 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3321
3322 raw_spin_unlock_irqrestore(&rq->lock, flags);
3323
3324 return 0;
3325}
3326
3327static void update_shares(int cpu)
3328{
3329 struct cfs_rq *cfs_rq;
3330 struct rq *rq = cpu_rq(cpu);
3331
3332 rcu_read_lock();
9763b67f
PZ
3333 /*
3334 * Iterates the task_group tree in a bottom up fashion, see
3335 * list_add_leaf_cfs_rq() for details.
3336 */
64660c86
PT
3337 for_each_leaf_cfs_rq(rq, cfs_rq) {
3338 /* throttled entities do not contribute to load */
3339 if (throttled_hierarchy(cfs_rq))
3340 continue;
3341
67e86250 3342 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3343 }
9e3081ca
PZ
3344 rcu_read_unlock();
3345}
3346
9763b67f
PZ
3347/*
3348 * Compute the cpu's hierarchical load factor for each task group.
3349 * This needs to be done in a top-down fashion because the load of a child
3350 * group is a fraction of its parents load.
3351 */
3352static int tg_load_down(struct task_group *tg, void *data)
3353{
3354 unsigned long load;
3355 long cpu = (long)data;
3356
3357 if (!tg->parent) {
3358 load = cpu_rq(cpu)->load.weight;
3359 } else {
3360 load = tg->parent->cfs_rq[cpu]->h_load;
3361 load *= tg->se[cpu]->load.weight;
3362 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3363 }
3364
3365 tg->cfs_rq[cpu]->h_load = load;
3366
3367 return 0;
3368}
3369
3370static void update_h_load(long cpu)
3371{
367456c7 3372 rcu_read_lock();
9763b67f 3373 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3374 rcu_read_unlock();
9763b67f
PZ
3375}
3376
367456c7 3377static unsigned long task_h_load(struct task_struct *p)
230059de 3378{
367456c7
PZ
3379 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3380 unsigned long load;
230059de 3381
367456c7
PZ
3382 load = p->se.load.weight;
3383 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3384
367456c7 3385 return load;
230059de
PZ
3386}
3387#else
9e3081ca
PZ
3388static inline void update_shares(int cpu)
3389{
3390}
3391
367456c7 3392static inline void update_h_load(long cpu)
230059de 3393{
367456c7
PZ
3394}
3395
3396static unsigned long task_h_load(struct task_struct *p)
3397{
3398 return p->se.load.weight;
230059de
PZ
3399}
3400#endif
3401
1e3c88bd
PZ
3402/*
3403 * move_tasks tries to move up to max_load_move weighted load from busiest to
3404 * this_rq, as part of a balancing operation within domain "sd".
3405 * Returns 1 if successful and 0 otherwise.
3406 *
3407 * Called with both runqueues locked.
3408 */
8e45cb54 3409static int move_tasks(struct lb_env *env)
1e3c88bd 3410{
8e45cb54 3411 unsigned long max_load_move = env->max_load_move;
3d45fd80 3412 unsigned long total_load_moved = 0, load_moved;
1e3c88bd 3413
367456c7 3414 update_h_load(cpu_of(env->src_rq));
1e3c88bd 3415 do {
8e45cb54 3416 env->max_load_move = max_load_move - total_load_moved;
367456c7 3417 load_moved = balance_tasks(env);
3d45fd80 3418 total_load_moved += load_moved;
1e3c88bd 3419
8e45cb54 3420 if (env->flags & (LBF_NEED_BREAK|LBF_ABORT))
a195f004
PZ
3421 break;
3422
1e3c88bd
PZ
3423#ifdef CONFIG_PREEMPT
3424 /*
3425 * NEWIDLE balancing is a source of latency, so preemptible
3426 * kernels will stop after the first task is pulled to minimize
3427 * the critical section.
3428 */
ddcdf6e7 3429 if (env->idle == CPU_NEWLY_IDLE && env->dst_rq->nr_running) {
8e45cb54 3430 env->flags |= LBF_ABORT;
baa8c110 3431 break;
a195f004 3432 }
1e3c88bd 3433#endif
3d45fd80 3434 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3435
3436 return total_load_moved > 0;
3437}
3438
1e3c88bd
PZ
3439/********** Helpers for find_busiest_group ************************/
3440/*
3441 * sd_lb_stats - Structure to store the statistics of a sched_domain
3442 * during load balancing.
3443 */
3444struct sd_lb_stats {
3445 struct sched_group *busiest; /* Busiest group in this sd */
3446 struct sched_group *this; /* Local group in this sd */
3447 unsigned long total_load; /* Total load of all groups in sd */
3448 unsigned long total_pwr; /* Total power of all groups in sd */
3449 unsigned long avg_load; /* Average load across all groups in sd */
3450
3451 /** Statistics of this group */
3452 unsigned long this_load;
3453 unsigned long this_load_per_task;
3454 unsigned long this_nr_running;
fab47622 3455 unsigned long this_has_capacity;
aae6d3dd 3456 unsigned int this_idle_cpus;
1e3c88bd
PZ
3457
3458 /* Statistics of the busiest group */
aae6d3dd 3459 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3460 unsigned long max_load;
3461 unsigned long busiest_load_per_task;
3462 unsigned long busiest_nr_running;
dd5feea1 3463 unsigned long busiest_group_capacity;
fab47622 3464 unsigned long busiest_has_capacity;
aae6d3dd 3465 unsigned int busiest_group_weight;
1e3c88bd
PZ
3466
3467 int group_imb; /* Is there imbalance in this sd */
3468#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3469 int power_savings_balance; /* Is powersave balance needed for this sd */
3470 struct sched_group *group_min; /* Least loaded group in sd */
3471 struct sched_group *group_leader; /* Group which relieves group_min */
3472 unsigned long min_load_per_task; /* load_per_task in group_min */
3473 unsigned long leader_nr_running; /* Nr running of group_leader */
3474 unsigned long min_nr_running; /* Nr running of group_min */
3475#endif
3476};
3477
3478/*
3479 * sg_lb_stats - stats of a sched_group required for load_balancing
3480 */
3481struct sg_lb_stats {
3482 unsigned long avg_load; /*Avg load across the CPUs of the group */
3483 unsigned long group_load; /* Total load over the CPUs of the group */
3484 unsigned long sum_nr_running; /* Nr tasks running in the group */
3485 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3486 unsigned long group_capacity;
aae6d3dd
SS
3487 unsigned long idle_cpus;
3488 unsigned long group_weight;
1e3c88bd 3489 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3490 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3491};
3492
1e3c88bd
PZ
3493/**
3494 * get_sd_load_idx - Obtain the load index for a given sched domain.
3495 * @sd: The sched_domain whose load_idx is to be obtained.
3496 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3497 */
3498static inline int get_sd_load_idx(struct sched_domain *sd,
3499 enum cpu_idle_type idle)
3500{
3501 int load_idx;
3502
3503 switch (idle) {
3504 case CPU_NOT_IDLE:
3505 load_idx = sd->busy_idx;
3506 break;
3507
3508 case CPU_NEWLY_IDLE:
3509 load_idx = sd->newidle_idx;
3510 break;
3511 default:
3512 load_idx = sd->idle_idx;
3513 break;
3514 }
3515
3516 return load_idx;
3517}
3518
3519
3520#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3521/**
3522 * init_sd_power_savings_stats - Initialize power savings statistics for
3523 * the given sched_domain, during load balancing.
3524 *
3525 * @sd: Sched domain whose power-savings statistics are to be initialized.
3526 * @sds: Variable containing the statistics for sd.
3527 * @idle: Idle status of the CPU at which we're performing load-balancing.
3528 */
3529static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3530 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3531{
3532 /*
3533 * Busy processors will not participate in power savings
3534 * balance.
3535 */
3536 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3537 sds->power_savings_balance = 0;
3538 else {
3539 sds->power_savings_balance = 1;
3540 sds->min_nr_running = ULONG_MAX;
3541 sds->leader_nr_running = 0;
3542 }
3543}
3544
3545/**
3546 * update_sd_power_savings_stats - Update the power saving stats for a
3547 * sched_domain while performing load balancing.
3548 *
3549 * @group: sched_group belonging to the sched_domain under consideration.
3550 * @sds: Variable containing the statistics of the sched_domain
3551 * @local_group: Does group contain the CPU for which we're performing
3552 * load balancing ?
3553 * @sgs: Variable containing the statistics of the group.
3554 */
3555static inline void update_sd_power_savings_stats(struct sched_group *group,
3556 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3557{
3558
3559 if (!sds->power_savings_balance)
3560 return;
3561
3562 /*
3563 * If the local group is idle or completely loaded
3564 * no need to do power savings balance at this domain
3565 */
3566 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3567 !sds->this_nr_running))
3568 sds->power_savings_balance = 0;
3569
3570 /*
3571 * If a group is already running at full capacity or idle,
3572 * don't include that group in power savings calculations
3573 */
3574 if (!sds->power_savings_balance ||
3575 sgs->sum_nr_running >= sgs->group_capacity ||
3576 !sgs->sum_nr_running)
3577 return;
3578
3579 /*
3580 * Calculate the group which has the least non-idle load.
3581 * This is the group from where we need to pick up the load
3582 * for saving power
3583 */
3584 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3585 (sgs->sum_nr_running == sds->min_nr_running &&
3586 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3587 sds->group_min = group;
3588 sds->min_nr_running = sgs->sum_nr_running;
3589 sds->min_load_per_task = sgs->sum_weighted_load /
3590 sgs->sum_nr_running;
3591 }
3592
3593 /*
3594 * Calculate the group which is almost near its
3595 * capacity but still has some space to pick up some load
3596 * from other group and save more power
3597 */
3598 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3599 return;
3600
3601 if (sgs->sum_nr_running > sds->leader_nr_running ||
3602 (sgs->sum_nr_running == sds->leader_nr_running &&
3603 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3604 sds->group_leader = group;
3605 sds->leader_nr_running = sgs->sum_nr_running;
3606 }
3607}
3608
3609/**
3610 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3611 * @sds: Variable containing the statistics of the sched_domain
3612 * under consideration.
3613 * @this_cpu: Cpu at which we're currently performing load-balancing.
3614 * @imbalance: Variable to store the imbalance.
3615 *
3616 * Description:
3617 * Check if we have potential to perform some power-savings balance.
3618 * If yes, set the busiest group to be the least loaded group in the
3619 * sched_domain, so that it's CPUs can be put to idle.
3620 *
3621 * Returns 1 if there is potential to perform power-savings balance.
3622 * Else returns 0.
3623 */
3624static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3625 int this_cpu, unsigned long *imbalance)
3626{
3627 if (!sds->power_savings_balance)
3628 return 0;
3629
3630 if (sds->this != sds->group_leader ||
3631 sds->group_leader == sds->group_min)
3632 return 0;
3633
3634 *imbalance = sds->min_load_per_task;
3635 sds->busiest = sds->group_min;
3636
3637 return 1;
3638
3639}
3640#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3641static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3642 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3643{
3644 return;
3645}
3646
3647static inline void update_sd_power_savings_stats(struct sched_group *group,
3648 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3649{
3650 return;
3651}
3652
3653static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3654 int this_cpu, unsigned long *imbalance)
3655{
3656 return 0;
3657}
3658#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3659
3660
3661unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3662{
1399fa78 3663 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3664}
3665
3666unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3667{
3668 return default_scale_freq_power(sd, cpu);
3669}
3670
3671unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3672{
669c55e9 3673 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3674 unsigned long smt_gain = sd->smt_gain;
3675
3676 smt_gain /= weight;
3677
3678 return smt_gain;
3679}
3680
3681unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3682{
3683 return default_scale_smt_power(sd, cpu);
3684}
3685
3686unsigned long scale_rt_power(int cpu)
3687{
3688 struct rq *rq = cpu_rq(cpu);
3689 u64 total, available;
3690
1e3c88bd 3691 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3692
3693 if (unlikely(total < rq->rt_avg)) {
3694 /* Ensures that power won't end up being negative */
3695 available = 0;
3696 } else {
3697 available = total - rq->rt_avg;
3698 }
1e3c88bd 3699
1399fa78
NR
3700 if (unlikely((s64)total < SCHED_POWER_SCALE))
3701 total = SCHED_POWER_SCALE;
1e3c88bd 3702
1399fa78 3703 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3704
3705 return div_u64(available, total);
3706}
3707
3708static void update_cpu_power(struct sched_domain *sd, int cpu)
3709{
669c55e9 3710 unsigned long weight = sd->span_weight;
1399fa78 3711 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3712 struct sched_group *sdg = sd->groups;
3713
1e3c88bd
PZ
3714 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3715 if (sched_feat(ARCH_POWER))
3716 power *= arch_scale_smt_power(sd, cpu);
3717 else
3718 power *= default_scale_smt_power(sd, cpu);
3719
1399fa78 3720 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3721 }
3722
9c3f75cb 3723 sdg->sgp->power_orig = power;
9d5efe05
SV
3724
3725 if (sched_feat(ARCH_POWER))
3726 power *= arch_scale_freq_power(sd, cpu);
3727 else
3728 power *= default_scale_freq_power(sd, cpu);
3729
1399fa78 3730 power >>= SCHED_POWER_SHIFT;
9d5efe05 3731
1e3c88bd 3732 power *= scale_rt_power(cpu);
1399fa78 3733 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3734
3735 if (!power)
3736 power = 1;
3737
e51fd5e2 3738 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3739 sdg->sgp->power = power;
1e3c88bd
PZ
3740}
3741
029632fb 3742void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3743{
3744 struct sched_domain *child = sd->child;
3745 struct sched_group *group, *sdg = sd->groups;
3746 unsigned long power;
4ec4412e
VG
3747 unsigned long interval;
3748
3749 interval = msecs_to_jiffies(sd->balance_interval);
3750 interval = clamp(interval, 1UL, max_load_balance_interval);
3751 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3752
3753 if (!child) {
3754 update_cpu_power(sd, cpu);
3755 return;
3756 }
3757
3758 power = 0;
3759
3760 group = child->groups;
3761 do {
9c3f75cb 3762 power += group->sgp->power;
1e3c88bd
PZ
3763 group = group->next;
3764 } while (group != child->groups);
3765
9c3f75cb 3766 sdg->sgp->power = power;
1e3c88bd
PZ
3767}
3768
9d5efe05
SV
3769/*
3770 * Try and fix up capacity for tiny siblings, this is needed when
3771 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3772 * which on its own isn't powerful enough.
3773 *
3774 * See update_sd_pick_busiest() and check_asym_packing().
3775 */
3776static inline int
3777fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3778{
3779 /*
1399fa78 3780 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3781 */
a6c75f2f 3782 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3783 return 0;
3784
3785 /*
3786 * If ~90% of the cpu_power is still there, we're good.
3787 */
9c3f75cb 3788 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3789 return 1;
3790
3791 return 0;
3792}
3793
1e3c88bd
PZ
3794/**
3795 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3796 * @sd: The sched_domain whose statistics are to be updated.
3797 * @group: sched_group whose statistics are to be updated.
3798 * @this_cpu: Cpu for which load balance is currently performed.
3799 * @idle: Idle status of this_cpu
3800 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3801 * @local_group: Does group contain this_cpu.
3802 * @cpus: Set of cpus considered for load balancing.
3803 * @balance: Should we balance.
3804 * @sgs: variable to hold the statistics for this group.
3805 */
3806static inline void update_sg_lb_stats(struct sched_domain *sd,
3807 struct sched_group *group, int this_cpu,
46e49b38 3808 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3809 int local_group, const struct cpumask *cpus,
3810 int *balance, struct sg_lb_stats *sgs)
3811{
2582f0eb 3812 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3813 int i;
3814 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3815 unsigned long avg_load_per_task = 0;
1e3c88bd 3816
871e35bc 3817 if (local_group)
1e3c88bd 3818 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3819
3820 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3821 max_cpu_load = 0;
3822 min_cpu_load = ~0UL;
2582f0eb 3823 max_nr_running = 0;
1e3c88bd
PZ
3824
3825 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3826 struct rq *rq = cpu_rq(i);
3827
1e3c88bd
PZ
3828 /* Bias balancing toward cpus of our domain */
3829 if (local_group) {
3830 if (idle_cpu(i) && !first_idle_cpu) {
3831 first_idle_cpu = 1;
3832 balance_cpu = i;
3833 }
3834
3835 load = target_load(i, load_idx);
3836 } else {
3837 load = source_load(i, load_idx);
2582f0eb 3838 if (load > max_cpu_load) {
1e3c88bd 3839 max_cpu_load = load;
2582f0eb
NR
3840 max_nr_running = rq->nr_running;
3841 }
1e3c88bd
PZ
3842 if (min_cpu_load > load)
3843 min_cpu_load = load;
3844 }
3845
3846 sgs->group_load += load;
3847 sgs->sum_nr_running += rq->nr_running;
3848 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3849 if (idle_cpu(i))
3850 sgs->idle_cpus++;
1e3c88bd
PZ
3851 }
3852
3853 /*
3854 * First idle cpu or the first cpu(busiest) in this sched group
3855 * is eligible for doing load balancing at this and above
3856 * domains. In the newly idle case, we will allow all the cpu's
3857 * to do the newly idle load balance.
3858 */
4ec4412e
VG
3859 if (local_group) {
3860 if (idle != CPU_NEWLY_IDLE) {
3861 if (balance_cpu != this_cpu) {
3862 *balance = 0;
3863 return;
3864 }
3865 update_group_power(sd, this_cpu);
3866 } else if (time_after_eq(jiffies, group->sgp->next_update))
3867 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3868 }
3869
3870 /* Adjust by relative CPU power of the group */
9c3f75cb 3871 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3872
1e3c88bd
PZ
3873 /*
3874 * Consider the group unbalanced when the imbalance is larger
866ab43e 3875 * than the average weight of a task.
1e3c88bd
PZ
3876 *
3877 * APZ: with cgroup the avg task weight can vary wildly and
3878 * might not be a suitable number - should we keep a
3879 * normalized nr_running number somewhere that negates
3880 * the hierarchy?
3881 */
dd5feea1
SS
3882 if (sgs->sum_nr_running)
3883 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3884
866ab43e 3885 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3886 sgs->group_imb = 1;
3887
9c3f75cb 3888 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3889 SCHED_POWER_SCALE);
9d5efe05
SV
3890 if (!sgs->group_capacity)
3891 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3892 sgs->group_weight = group->group_weight;
fab47622
NR
3893
3894 if (sgs->group_capacity > sgs->sum_nr_running)
3895 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3896}
3897
532cb4c4
MN
3898/**
3899 * update_sd_pick_busiest - return 1 on busiest group
3900 * @sd: sched_domain whose statistics are to be checked
3901 * @sds: sched_domain statistics
3902 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3903 * @sgs: sched_group statistics
3904 * @this_cpu: the current cpu
532cb4c4
MN
3905 *
3906 * Determine if @sg is a busier group than the previously selected
3907 * busiest group.
3908 */
3909static bool update_sd_pick_busiest(struct sched_domain *sd,
3910 struct sd_lb_stats *sds,
3911 struct sched_group *sg,
3912 struct sg_lb_stats *sgs,
3913 int this_cpu)
3914{
3915 if (sgs->avg_load <= sds->max_load)
3916 return false;
3917
3918 if (sgs->sum_nr_running > sgs->group_capacity)
3919 return true;
3920
3921 if (sgs->group_imb)
3922 return true;
3923
3924 /*
3925 * ASYM_PACKING needs to move all the work to the lowest
3926 * numbered CPUs in the group, therefore mark all groups
3927 * higher than ourself as busy.
3928 */
3929 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3930 this_cpu < group_first_cpu(sg)) {
3931 if (!sds->busiest)
3932 return true;
3933
3934 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3935 return true;
3936 }
3937
3938 return false;
3939}
3940
1e3c88bd 3941/**
461819ac 3942 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3943 * @sd: sched_domain whose statistics are to be updated.
3944 * @this_cpu: Cpu for which load balance is currently performed.
3945 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3946 * @cpus: Set of cpus considered for load balancing.
3947 * @balance: Should we balance.
3948 * @sds: variable to hold the statistics for this sched_domain.
3949 */
3950static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3951 enum cpu_idle_type idle, const struct cpumask *cpus,
3952 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3953{
3954 struct sched_domain *child = sd->child;
532cb4c4 3955 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3956 struct sg_lb_stats sgs;
3957 int load_idx, prefer_sibling = 0;
3958
3959 if (child && child->flags & SD_PREFER_SIBLING)
3960 prefer_sibling = 1;
3961
3962 init_sd_power_savings_stats(sd, sds, idle);
3963 load_idx = get_sd_load_idx(sd, idle);
3964
3965 do {
3966 int local_group;
3967
532cb4c4 3968 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3969 memset(&sgs, 0, sizeof(sgs));
46e49b38 3970 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3971 local_group, cpus, balance, &sgs);
3972
8f190fb3 3973 if (local_group && !(*balance))
1e3c88bd
PZ
3974 return;
3975
3976 sds->total_load += sgs.group_load;
9c3f75cb 3977 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3978
3979 /*
3980 * In case the child domain prefers tasks go to siblings
532cb4c4 3981 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3982 * and move all the excess tasks away. We lower the capacity
3983 * of a group only if the local group has the capacity to fit
3984 * these excess tasks, i.e. nr_running < group_capacity. The
3985 * extra check prevents the case where you always pull from the
3986 * heaviest group when it is already under-utilized (possible
3987 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3988 */
75dd321d 3989 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3990 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3991
3992 if (local_group) {
3993 sds->this_load = sgs.avg_load;
532cb4c4 3994 sds->this = sg;
1e3c88bd
PZ
3995 sds->this_nr_running = sgs.sum_nr_running;
3996 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3997 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3998 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3999 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4000 sds->max_load = sgs.avg_load;
532cb4c4 4001 sds->busiest = sg;
1e3c88bd 4002 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4003 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4004 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4005 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4006 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4007 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4008 sds->group_imb = sgs.group_imb;
4009 }
4010
532cb4c4
MN
4011 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4012 sg = sg->next;
4013 } while (sg != sd->groups);
4014}
4015
532cb4c4
MN
4016/**
4017 * check_asym_packing - Check to see if the group is packed into the
4018 * sched doman.
4019 *
4020 * This is primarily intended to used at the sibling level. Some
4021 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4022 * case of POWER7, it can move to lower SMT modes only when higher
4023 * threads are idle. When in lower SMT modes, the threads will
4024 * perform better since they share less core resources. Hence when we
4025 * have idle threads, we want them to be the higher ones.
4026 *
4027 * This packing function is run on idle threads. It checks to see if
4028 * the busiest CPU in this domain (core in the P7 case) has a higher
4029 * CPU number than the packing function is being run on. Here we are
4030 * assuming lower CPU number will be equivalent to lower a SMT thread
4031 * number.
4032 *
b6b12294
MN
4033 * Returns 1 when packing is required and a task should be moved to
4034 * this CPU. The amount of the imbalance is returned in *imbalance.
4035 *
532cb4c4
MN
4036 * @sd: The sched_domain whose packing is to be checked.
4037 * @sds: Statistics of the sched_domain which is to be packed
4038 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4039 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4040 */
4041static int check_asym_packing(struct sched_domain *sd,
4042 struct sd_lb_stats *sds,
4043 int this_cpu, unsigned long *imbalance)
4044{
4045 int busiest_cpu;
4046
4047 if (!(sd->flags & SD_ASYM_PACKING))
4048 return 0;
4049
4050 if (!sds->busiest)
4051 return 0;
4052
4053 busiest_cpu = group_first_cpu(sds->busiest);
4054 if (this_cpu > busiest_cpu)
4055 return 0;
4056
9c3f75cb 4057 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4058 SCHED_POWER_SCALE);
532cb4c4 4059 return 1;
1e3c88bd
PZ
4060}
4061
4062/**
4063 * fix_small_imbalance - Calculate the minor imbalance that exists
4064 * amongst the groups of a sched_domain, during
4065 * load balancing.
4066 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4067 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4068 * @imbalance: Variable to store the imbalance.
4069 */
4070static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4071 int this_cpu, unsigned long *imbalance)
4072{
4073 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4074 unsigned int imbn = 2;
dd5feea1 4075 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4076
4077 if (sds->this_nr_running) {
4078 sds->this_load_per_task /= sds->this_nr_running;
4079 if (sds->busiest_load_per_task >
4080 sds->this_load_per_task)
4081 imbn = 1;
4082 } else
4083 sds->this_load_per_task =
4084 cpu_avg_load_per_task(this_cpu);
4085
dd5feea1 4086 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4087 * SCHED_POWER_SCALE;
9c3f75cb 4088 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4089
4090 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4091 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4092 *imbalance = sds->busiest_load_per_task;
4093 return;
4094 }
4095
4096 /*
4097 * OK, we don't have enough imbalance to justify moving tasks,
4098 * however we may be able to increase total CPU power used by
4099 * moving them.
4100 */
4101
9c3f75cb 4102 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4103 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4104 pwr_now += sds->this->sgp->power *
1e3c88bd 4105 min(sds->this_load_per_task, sds->this_load);
1399fa78 4106 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4107
4108 /* Amount of load we'd subtract */
1399fa78 4109 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4110 sds->busiest->sgp->power;
1e3c88bd 4111 if (sds->max_load > tmp)
9c3f75cb 4112 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4113 min(sds->busiest_load_per_task, sds->max_load - tmp);
4114
4115 /* Amount of load we'd add */
9c3f75cb 4116 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4117 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4118 tmp = (sds->max_load * sds->busiest->sgp->power) /
4119 sds->this->sgp->power;
1e3c88bd 4120 else
1399fa78 4121 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4122 sds->this->sgp->power;
4123 pwr_move += sds->this->sgp->power *
1e3c88bd 4124 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4125 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4126
4127 /* Move if we gain throughput */
4128 if (pwr_move > pwr_now)
4129 *imbalance = sds->busiest_load_per_task;
4130}
4131
4132/**
4133 * calculate_imbalance - Calculate the amount of imbalance present within the
4134 * groups of a given sched_domain during load balance.
4135 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4136 * @this_cpu: Cpu for which currently load balance is being performed.
4137 * @imbalance: The variable to store the imbalance.
4138 */
4139static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4140 unsigned long *imbalance)
4141{
dd5feea1
SS
4142 unsigned long max_pull, load_above_capacity = ~0UL;
4143
4144 sds->busiest_load_per_task /= sds->busiest_nr_running;
4145 if (sds->group_imb) {
4146 sds->busiest_load_per_task =
4147 min(sds->busiest_load_per_task, sds->avg_load);
4148 }
4149
1e3c88bd
PZ
4150 /*
4151 * In the presence of smp nice balancing, certain scenarios can have
4152 * max load less than avg load(as we skip the groups at or below
4153 * its cpu_power, while calculating max_load..)
4154 */
4155 if (sds->max_load < sds->avg_load) {
4156 *imbalance = 0;
4157 return fix_small_imbalance(sds, this_cpu, imbalance);
4158 }
4159
dd5feea1
SS
4160 if (!sds->group_imb) {
4161 /*
4162 * Don't want to pull so many tasks that a group would go idle.
4163 */
4164 load_above_capacity = (sds->busiest_nr_running -
4165 sds->busiest_group_capacity);
4166
1399fa78 4167 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4168
9c3f75cb 4169 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4170 }
4171
4172 /*
4173 * We're trying to get all the cpus to the average_load, so we don't
4174 * want to push ourselves above the average load, nor do we wish to
4175 * reduce the max loaded cpu below the average load. At the same time,
4176 * we also don't want to reduce the group load below the group capacity
4177 * (so that we can implement power-savings policies etc). Thus we look
4178 * for the minimum possible imbalance.
4179 * Be careful of negative numbers as they'll appear as very large values
4180 * with unsigned longs.
4181 */
4182 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4183
4184 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4185 *imbalance = min(max_pull * sds->busiest->sgp->power,
4186 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4187 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4188
4189 /*
4190 * if *imbalance is less than the average load per runnable task
25985edc 4191 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4192 * a think about bumping its value to force at least one task to be
4193 * moved
4194 */
4195 if (*imbalance < sds->busiest_load_per_task)
4196 return fix_small_imbalance(sds, this_cpu, imbalance);
4197
4198}
fab47622 4199
1e3c88bd
PZ
4200/******* find_busiest_group() helpers end here *********************/
4201
4202/**
4203 * find_busiest_group - Returns the busiest group within the sched_domain
4204 * if there is an imbalance. If there isn't an imbalance, and
4205 * the user has opted for power-savings, it returns a group whose
4206 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4207 * such a group exists.
4208 *
4209 * Also calculates the amount of weighted load which should be moved
4210 * to restore balance.
4211 *
4212 * @sd: The sched_domain whose busiest group is to be returned.
4213 * @this_cpu: The cpu for which load balancing is currently being performed.
4214 * @imbalance: Variable which stores amount of weighted load which should
4215 * be moved to restore balance/put a group to idle.
4216 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4217 * @cpus: The set of CPUs under consideration for load-balancing.
4218 * @balance: Pointer to a variable indicating if this_cpu
4219 * is the appropriate cpu to perform load balancing at this_level.
4220 *
4221 * Returns: - the busiest group if imbalance exists.
4222 * - If no imbalance and user has opted for power-savings balance,
4223 * return the least loaded group whose CPUs can be
4224 * put to idle by rebalancing its tasks onto our group.
4225 */
4226static struct sched_group *
4227find_busiest_group(struct sched_domain *sd, int this_cpu,
4228 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4229 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4230{
4231 struct sd_lb_stats sds;
4232
4233 memset(&sds, 0, sizeof(sds));
4234
4235 /*
4236 * Compute the various statistics relavent for load balancing at
4237 * this level.
4238 */
46e49b38 4239 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4240
cc57aa8f
PZ
4241 /*
4242 * this_cpu is not the appropriate cpu to perform load balancing at
4243 * this level.
1e3c88bd 4244 */
8f190fb3 4245 if (!(*balance))
1e3c88bd
PZ
4246 goto ret;
4247
532cb4c4
MN
4248 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4249 check_asym_packing(sd, &sds, this_cpu, imbalance))
4250 return sds.busiest;
4251
cc57aa8f 4252 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4253 if (!sds.busiest || sds.busiest_nr_running == 0)
4254 goto out_balanced;
4255
1399fa78 4256 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4257
866ab43e
PZ
4258 /*
4259 * If the busiest group is imbalanced the below checks don't
4260 * work because they assumes all things are equal, which typically
4261 * isn't true due to cpus_allowed constraints and the like.
4262 */
4263 if (sds.group_imb)
4264 goto force_balance;
4265
cc57aa8f 4266 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4267 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4268 !sds.busiest_has_capacity)
4269 goto force_balance;
4270
cc57aa8f
PZ
4271 /*
4272 * If the local group is more busy than the selected busiest group
4273 * don't try and pull any tasks.
4274 */
1e3c88bd
PZ
4275 if (sds.this_load >= sds.max_load)
4276 goto out_balanced;
4277
cc57aa8f
PZ
4278 /*
4279 * Don't pull any tasks if this group is already above the domain
4280 * average load.
4281 */
1e3c88bd
PZ
4282 if (sds.this_load >= sds.avg_load)
4283 goto out_balanced;
4284
c186fafe 4285 if (idle == CPU_IDLE) {
aae6d3dd
SS
4286 /*
4287 * This cpu is idle. If the busiest group load doesn't
4288 * have more tasks than the number of available cpu's and
4289 * there is no imbalance between this and busiest group
4290 * wrt to idle cpu's, it is balanced.
4291 */
c186fafe 4292 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4293 sds.busiest_nr_running <= sds.busiest_group_weight)
4294 goto out_balanced;
c186fafe
PZ
4295 } else {
4296 /*
4297 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4298 * imbalance_pct to be conservative.
4299 */
4300 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4301 goto out_balanced;
aae6d3dd 4302 }
1e3c88bd 4303
fab47622 4304force_balance:
1e3c88bd
PZ
4305 /* Looks like there is an imbalance. Compute it */
4306 calculate_imbalance(&sds, this_cpu, imbalance);
4307 return sds.busiest;
4308
4309out_balanced:
4310 /*
4311 * There is no obvious imbalance. But check if we can do some balancing
4312 * to save power.
4313 */
4314 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4315 return sds.busiest;
4316ret:
4317 *imbalance = 0;
4318 return NULL;
4319}
4320
4321/*
4322 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4323 */
4324static struct rq *
9d5efe05
SV
4325find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4326 enum cpu_idle_type idle, unsigned long imbalance,
4327 const struct cpumask *cpus)
1e3c88bd
PZ
4328{
4329 struct rq *busiest = NULL, *rq;
4330 unsigned long max_load = 0;
4331 int i;
4332
4333 for_each_cpu(i, sched_group_cpus(group)) {
4334 unsigned long power = power_of(i);
1399fa78
NR
4335 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4336 SCHED_POWER_SCALE);
1e3c88bd
PZ
4337 unsigned long wl;
4338
9d5efe05
SV
4339 if (!capacity)
4340 capacity = fix_small_capacity(sd, group);
4341
1e3c88bd
PZ
4342 if (!cpumask_test_cpu(i, cpus))
4343 continue;
4344
4345 rq = cpu_rq(i);
6e40f5bb 4346 wl = weighted_cpuload(i);
1e3c88bd 4347
6e40f5bb
TG
4348 /*
4349 * When comparing with imbalance, use weighted_cpuload()
4350 * which is not scaled with the cpu power.
4351 */
1e3c88bd
PZ
4352 if (capacity && rq->nr_running == 1 && wl > imbalance)
4353 continue;
4354
6e40f5bb
TG
4355 /*
4356 * For the load comparisons with the other cpu's, consider
4357 * the weighted_cpuload() scaled with the cpu power, so that
4358 * the load can be moved away from the cpu that is potentially
4359 * running at a lower capacity.
4360 */
1399fa78 4361 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4362
1e3c88bd
PZ
4363 if (wl > max_load) {
4364 max_load = wl;
4365 busiest = rq;
4366 }
4367 }
4368
4369 return busiest;
4370}
4371
4372/*
4373 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4374 * so long as it is large enough.
4375 */
4376#define MAX_PINNED_INTERVAL 512
4377
4378/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4379DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4380
46e49b38 4381static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4382 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4383{
4384 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4385
4386 /*
4387 * ASYM_PACKING needs to force migrate tasks from busy but
4388 * higher numbered CPUs in order to pack all tasks in the
4389 * lowest numbered CPUs.
4390 */
4391 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4392 return 1;
4393
1af3ed3d
PZ
4394 /*
4395 * The only task running in a non-idle cpu can be moved to this
4396 * cpu in an attempt to completely freeup the other CPU
4397 * package.
4398 *
4399 * The package power saving logic comes from
4400 * find_busiest_group(). If there are no imbalance, then
4401 * f_b_g() will return NULL. However when sched_mc={1,2} then
4402 * f_b_g() will select a group from which a running task may be
4403 * pulled to this cpu in order to make the other package idle.
4404 * If there is no opportunity to make a package idle and if
4405 * there are no imbalance, then f_b_g() will return NULL and no
4406 * action will be taken in load_balance_newidle().
4407 *
4408 * Under normal task pull operation due to imbalance, there
4409 * will be more than one task in the source run queue and
4410 * move_tasks() will succeed. ld_moved will be true and this
4411 * active balance code will not be triggered.
4412 */
1af3ed3d
PZ
4413 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4414 return 0;
4415 }
4416
4417 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4418}
4419
969c7921
TH
4420static int active_load_balance_cpu_stop(void *data);
4421
1e3c88bd
PZ
4422/*
4423 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4424 * tasks if there is an imbalance.
4425 */
4426static int load_balance(int this_cpu, struct rq *this_rq,
4427 struct sched_domain *sd, enum cpu_idle_type idle,
4428 int *balance)
4429{
8e45cb54 4430 int ld_moved, active_balance = 0;
1e3c88bd
PZ
4431 struct sched_group *group;
4432 unsigned long imbalance;
4433 struct rq *busiest;
4434 unsigned long flags;
4435 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4436
8e45cb54
PZ
4437 struct lb_env env = {
4438 .sd = sd,
ddcdf6e7
PZ
4439 .dst_cpu = this_cpu,
4440 .dst_rq = this_rq,
8e45cb54 4441 .idle = idle,
367456c7 4442 .loop_break = sysctl_sched_nr_migrate,
8e45cb54
PZ
4443 };
4444
1e3c88bd
PZ
4445 cpumask_copy(cpus, cpu_active_mask);
4446
1e3c88bd
PZ
4447 schedstat_inc(sd, lb_count[idle]);
4448
4449redo:
46e49b38 4450 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4451 cpus, balance);
4452
4453 if (*balance == 0)
4454 goto out_balanced;
4455
4456 if (!group) {
4457 schedstat_inc(sd, lb_nobusyg[idle]);
4458 goto out_balanced;
4459 }
4460
9d5efe05 4461 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4462 if (!busiest) {
4463 schedstat_inc(sd, lb_nobusyq[idle]);
4464 goto out_balanced;
4465 }
4466
4467 BUG_ON(busiest == this_rq);
4468
4469 schedstat_add(sd, lb_imbalance[idle], imbalance);
4470
4471 ld_moved = 0;
4472 if (busiest->nr_running > 1) {
4473 /*
4474 * Attempt to move tasks. If find_busiest_group has found
4475 * an imbalance but busiest->nr_running <= 1, the group is
4476 * still unbalanced. ld_moved simply stays zero, so it is
4477 * correctly treated as an imbalance.
4478 */
8e45cb54
PZ
4479 env.flags |= LBF_ALL_PINNED;
4480 env.max_load_move = imbalance;
ddcdf6e7
PZ
4481 env.src_cpu = busiest->cpu;
4482 env.src_rq = busiest;
367456c7 4483 env.loop_max = busiest->nr_running;
8e45cb54 4484
1e3c88bd
PZ
4485 local_irq_save(flags);
4486 double_rq_lock(this_rq, busiest);
8e45cb54 4487 ld_moved = move_tasks(&env);
1e3c88bd
PZ
4488 double_rq_unlock(this_rq, busiest);
4489 local_irq_restore(flags);
4490
4491 /*
4492 * some other cpu did the load balance for us.
4493 */
4494 if (ld_moved && this_cpu != smp_processor_id())
4495 resched_cpu(this_cpu);
4496
8e45cb54 4497 if (env.flags & LBF_ABORT)
a195f004
PZ
4498 goto out_balanced;
4499
8e45cb54 4500 if (env.flags & LBF_NEED_BREAK) {
367456c7 4501 env.flags &= ~LBF_NEED_BREAK;
a195f004
PZ
4502 goto redo;
4503 }
4504
1e3c88bd 4505 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4506 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd
PZ
4507 cpumask_clear_cpu(cpu_of(busiest), cpus);
4508 if (!cpumask_empty(cpus))
4509 goto redo;
4510 goto out_balanced;
4511 }
4512 }
4513
4514 if (!ld_moved) {
4515 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4516 /*
4517 * Increment the failure counter only on periodic balance.
4518 * We do not want newidle balance, which can be very
4519 * frequent, pollute the failure counter causing
4520 * excessive cache_hot migrations and active balances.
4521 */
4522 if (idle != CPU_NEWLY_IDLE)
4523 sd->nr_balance_failed++;
1e3c88bd 4524
46e49b38 4525 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4526 raw_spin_lock_irqsave(&busiest->lock, flags);
4527
969c7921
TH
4528 /* don't kick the active_load_balance_cpu_stop,
4529 * if the curr task on busiest cpu can't be
4530 * moved to this_cpu
1e3c88bd
PZ
4531 */
4532 if (!cpumask_test_cpu(this_cpu,
fa17b507 4533 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4534 raw_spin_unlock_irqrestore(&busiest->lock,
4535 flags);
8e45cb54 4536 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4537 goto out_one_pinned;
4538 }
4539
969c7921
TH
4540 /*
4541 * ->active_balance synchronizes accesses to
4542 * ->active_balance_work. Once set, it's cleared
4543 * only after active load balance is finished.
4544 */
1e3c88bd
PZ
4545 if (!busiest->active_balance) {
4546 busiest->active_balance = 1;
4547 busiest->push_cpu = this_cpu;
4548 active_balance = 1;
4549 }
4550 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4551
1e3c88bd 4552 if (active_balance)
969c7921
TH
4553 stop_one_cpu_nowait(cpu_of(busiest),
4554 active_load_balance_cpu_stop, busiest,
4555 &busiest->active_balance_work);
1e3c88bd
PZ
4556
4557 /*
4558 * We've kicked active balancing, reset the failure
4559 * counter.
4560 */
4561 sd->nr_balance_failed = sd->cache_nice_tries+1;
4562 }
4563 } else
4564 sd->nr_balance_failed = 0;
4565
4566 if (likely(!active_balance)) {
4567 /* We were unbalanced, so reset the balancing interval */
4568 sd->balance_interval = sd->min_interval;
4569 } else {
4570 /*
4571 * If we've begun active balancing, start to back off. This
4572 * case may not be covered by the all_pinned logic if there
4573 * is only 1 task on the busy runqueue (because we don't call
4574 * move_tasks).
4575 */
4576 if (sd->balance_interval < sd->max_interval)
4577 sd->balance_interval *= 2;
4578 }
4579
1e3c88bd
PZ
4580 goto out;
4581
4582out_balanced:
4583 schedstat_inc(sd, lb_balanced[idle]);
4584
4585 sd->nr_balance_failed = 0;
4586
4587out_one_pinned:
4588 /* tune up the balancing interval */
8e45cb54 4589 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4590 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4591 (sd->balance_interval < sd->max_interval))
4592 sd->balance_interval *= 2;
4593
46e49b38 4594 ld_moved = 0;
1e3c88bd 4595out:
1e3c88bd
PZ
4596 return ld_moved;
4597}
4598
1e3c88bd
PZ
4599/*
4600 * idle_balance is called by schedule() if this_cpu is about to become
4601 * idle. Attempts to pull tasks from other CPUs.
4602 */
029632fb 4603void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4604{
4605 struct sched_domain *sd;
4606 int pulled_task = 0;
4607 unsigned long next_balance = jiffies + HZ;
4608
4609 this_rq->idle_stamp = this_rq->clock;
4610
4611 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4612 return;
4613
f492e12e
PZ
4614 /*
4615 * Drop the rq->lock, but keep IRQ/preempt disabled.
4616 */
4617 raw_spin_unlock(&this_rq->lock);
4618
c66eaf61 4619 update_shares(this_cpu);
dce840a0 4620 rcu_read_lock();
1e3c88bd
PZ
4621 for_each_domain(this_cpu, sd) {
4622 unsigned long interval;
f492e12e 4623 int balance = 1;
1e3c88bd
PZ
4624
4625 if (!(sd->flags & SD_LOAD_BALANCE))
4626 continue;
4627
f492e12e 4628 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4629 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4630 pulled_task = load_balance(this_cpu, this_rq,
4631 sd, CPU_NEWLY_IDLE, &balance);
4632 }
1e3c88bd
PZ
4633
4634 interval = msecs_to_jiffies(sd->balance_interval);
4635 if (time_after(next_balance, sd->last_balance + interval))
4636 next_balance = sd->last_balance + interval;
d5ad140b
NR
4637 if (pulled_task) {
4638 this_rq->idle_stamp = 0;
1e3c88bd 4639 break;
d5ad140b 4640 }
1e3c88bd 4641 }
dce840a0 4642 rcu_read_unlock();
f492e12e
PZ
4643
4644 raw_spin_lock(&this_rq->lock);
4645
1e3c88bd
PZ
4646 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4647 /*
4648 * We are going idle. next_balance may be set based on
4649 * a busy processor. So reset next_balance.
4650 */
4651 this_rq->next_balance = next_balance;
4652 }
4653}
4654
4655/*
969c7921
TH
4656 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4657 * running tasks off the busiest CPU onto idle CPUs. It requires at
4658 * least 1 task to be running on each physical CPU where possible, and
4659 * avoids physical / logical imbalances.
1e3c88bd 4660 */
969c7921 4661static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4662{
969c7921
TH
4663 struct rq *busiest_rq = data;
4664 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4665 int target_cpu = busiest_rq->push_cpu;
969c7921 4666 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4667 struct sched_domain *sd;
969c7921
TH
4668
4669 raw_spin_lock_irq(&busiest_rq->lock);
4670
4671 /* make sure the requested cpu hasn't gone down in the meantime */
4672 if (unlikely(busiest_cpu != smp_processor_id() ||
4673 !busiest_rq->active_balance))
4674 goto out_unlock;
1e3c88bd
PZ
4675
4676 /* Is there any task to move? */
4677 if (busiest_rq->nr_running <= 1)
969c7921 4678 goto out_unlock;
1e3c88bd
PZ
4679
4680 /*
4681 * This condition is "impossible", if it occurs
4682 * we need to fix it. Originally reported by
4683 * Bjorn Helgaas on a 128-cpu setup.
4684 */
4685 BUG_ON(busiest_rq == target_rq);
4686
4687 /* move a task from busiest_rq to target_rq */
4688 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4689
4690 /* Search for an sd spanning us and the target CPU. */
dce840a0 4691 rcu_read_lock();
1e3c88bd
PZ
4692 for_each_domain(target_cpu, sd) {
4693 if ((sd->flags & SD_LOAD_BALANCE) &&
4694 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4695 break;
4696 }
4697
4698 if (likely(sd)) {
8e45cb54
PZ
4699 struct lb_env env = {
4700 .sd = sd,
ddcdf6e7
PZ
4701 .dst_cpu = target_cpu,
4702 .dst_rq = target_rq,
4703 .src_cpu = busiest_rq->cpu,
4704 .src_rq = busiest_rq,
8e45cb54
PZ
4705 .idle = CPU_IDLE,
4706 };
4707
1e3c88bd
PZ
4708 schedstat_inc(sd, alb_count);
4709
8e45cb54 4710 if (move_one_task(&env))
1e3c88bd
PZ
4711 schedstat_inc(sd, alb_pushed);
4712 else
4713 schedstat_inc(sd, alb_failed);
4714 }
dce840a0 4715 rcu_read_unlock();
1e3c88bd 4716 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4717out_unlock:
4718 busiest_rq->active_balance = 0;
4719 raw_spin_unlock_irq(&busiest_rq->lock);
4720 return 0;
1e3c88bd
PZ
4721}
4722
4723#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4724/*
4725 * idle load balancing details
83cd4fe2
VP
4726 * - When one of the busy CPUs notice that there may be an idle rebalancing
4727 * needed, they will kick the idle load balancer, which then does idle
4728 * load balancing for all the idle CPUs.
4729 */
1e3c88bd 4730static struct {
83cd4fe2 4731 cpumask_var_t idle_cpus_mask;
0b005cf5 4732 atomic_t nr_cpus;
83cd4fe2
VP
4733 unsigned long next_balance; /* in jiffy units */
4734} nohz ____cacheline_aligned;
1e3c88bd 4735
1e3c88bd
PZ
4736#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4737/**
4738 * lowest_flag_domain - Return lowest sched_domain containing flag.
4739 * @cpu: The cpu whose lowest level of sched domain is to
4740 * be returned.
4741 * @flag: The flag to check for the lowest sched_domain
4742 * for the given cpu.
4743 *
4744 * Returns the lowest sched_domain of a cpu which contains the given flag.
4745 */
4746static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4747{
4748 struct sched_domain *sd;
4749
4750 for_each_domain(cpu, sd)
08354716 4751 if (sd->flags & flag)
1e3c88bd
PZ
4752 break;
4753
4754 return sd;
4755}
4756
4757/**
4758 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4759 * @cpu: The cpu whose domains we're iterating over.
4760 * @sd: variable holding the value of the power_savings_sd
4761 * for cpu.
4762 * @flag: The flag to filter the sched_domains to be iterated.
4763 *
4764 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4765 * set, starting from the lowest sched_domain to the highest.
4766 */
4767#define for_each_flag_domain(cpu, sd, flag) \
4768 for (sd = lowest_flag_domain(cpu, flag); \
4769 (sd && (sd->flags & flag)); sd = sd->parent)
4770
1e3c88bd
PZ
4771/**
4772 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4773 * @cpu: The cpu which is nominating a new idle_load_balancer.
4774 *
4775 * Returns: Returns the id of the idle load balancer if it exists,
4776 * Else, returns >= nr_cpu_ids.
4777 *
4778 * This algorithm picks the idle load balancer such that it belongs to a
4779 * semi-idle powersavings sched_domain. The idea is to try and avoid
4780 * completely idle packages/cores just for the purpose of idle load balancing
4781 * when there are other idle cpu's which are better suited for that job.
4782 */
4783static int find_new_ilb(int cpu)
4784{
0b005cf5 4785 int ilb = cpumask_first(nohz.idle_cpus_mask);
786d6dc7 4786 struct sched_group *ilbg;
1e3c88bd 4787 struct sched_domain *sd;
1e3c88bd
PZ
4788
4789 /*
4790 * Have idle load balancer selection from semi-idle packages only
4791 * when power-aware load balancing is enabled
4792 */
4793 if (!(sched_smt_power_savings || sched_mc_power_savings))
4794 goto out_done;
4795
4796 /*
4797 * Optimize for the case when we have no idle CPUs or only one
4798 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4799 */
83cd4fe2 4800 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4801 goto out_done;
4802
dce840a0 4803 rcu_read_lock();
1e3c88bd 4804 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
786d6dc7 4805 ilbg = sd->groups;
1e3c88bd
PZ
4806
4807 do {
786d6dc7
SS
4808 if (ilbg->group_weight !=
4809 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4810 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4811 sched_group_cpus(ilbg));
dce840a0
PZ
4812 goto unlock;
4813 }
1e3c88bd 4814
786d6dc7 4815 ilbg = ilbg->next;
1e3c88bd 4816
786d6dc7 4817 } while (ilbg != sd->groups);
1e3c88bd 4818 }
dce840a0
PZ
4819unlock:
4820 rcu_read_unlock();
1e3c88bd
PZ
4821
4822out_done:
786d6dc7
SS
4823 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4824 return ilb;
4825
4826 return nr_cpu_ids;
1e3c88bd
PZ
4827}
4828#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4829static inline int find_new_ilb(int call_cpu)
4830{
83cd4fe2 4831 return nr_cpu_ids;
1e3c88bd
PZ
4832}
4833#endif
4834
83cd4fe2
VP
4835/*
4836 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4837 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4838 * CPU (if there is one).
4839 */
4840static void nohz_balancer_kick(int cpu)
4841{
4842 int ilb_cpu;
4843
4844 nohz.next_balance++;
4845
0b005cf5 4846 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4847
0b005cf5
SS
4848 if (ilb_cpu >= nr_cpu_ids)
4849 return;
83cd4fe2 4850
cd490c5b 4851 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4852 return;
4853 /*
4854 * Use smp_send_reschedule() instead of resched_cpu().
4855 * This way we generate a sched IPI on the target cpu which
4856 * is idle. And the softirq performing nohz idle load balance
4857 * will be run before returning from the IPI.
4858 */
4859 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4860 return;
4861}
4862
71325960
SS
4863static inline void clear_nohz_tick_stopped(int cpu)
4864{
4865 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4866 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4867 atomic_dec(&nohz.nr_cpus);
4868 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4869 }
4870}
4871
69e1e811
SS
4872static inline void set_cpu_sd_state_busy(void)
4873{
4874 struct sched_domain *sd;
4875 int cpu = smp_processor_id();
4876
4877 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4878 return;
4879 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4880
4881 rcu_read_lock();
4882 for_each_domain(cpu, sd)
4883 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4884 rcu_read_unlock();
4885}
4886
4887void set_cpu_sd_state_idle(void)
4888{
4889 struct sched_domain *sd;
4890 int cpu = smp_processor_id();
4891
4892 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4893 return;
4894 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4895
4896 rcu_read_lock();
4897 for_each_domain(cpu, sd)
4898 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4899 rcu_read_unlock();
4900}
4901
1e3c88bd 4902/*
0b005cf5
SS
4903 * This routine will record that this cpu is going idle with tick stopped.
4904 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4905 */
83cd4fe2 4906void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4907{
4908 int cpu = smp_processor_id();
4909
71325960
SS
4910 /*
4911 * If this cpu is going down, then nothing needs to be done.
4912 */
4913 if (!cpu_active(cpu))
4914 return;
4915
1e3c88bd 4916 if (stop_tick) {
0b005cf5 4917 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4918 return;
1e3c88bd 4919
83cd4fe2 4920 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4921 atomic_inc(&nohz.nr_cpus);
1c792db7 4922 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4923 }
83cd4fe2 4924 return;
1e3c88bd 4925}
71325960
SS
4926
4927static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4928 unsigned long action, void *hcpu)
4929{
4930 switch (action & ~CPU_TASKS_FROZEN) {
4931 case CPU_DYING:
4932 clear_nohz_tick_stopped(smp_processor_id());
4933 return NOTIFY_OK;
4934 default:
4935 return NOTIFY_DONE;
4936 }
4937}
1e3c88bd
PZ
4938#endif
4939
4940static DEFINE_SPINLOCK(balancing);
4941
49c022e6
PZ
4942/*
4943 * Scale the max load_balance interval with the number of CPUs in the system.
4944 * This trades load-balance latency on larger machines for less cross talk.
4945 */
029632fb 4946void update_max_interval(void)
49c022e6
PZ
4947{
4948 max_load_balance_interval = HZ*num_online_cpus()/10;
4949}
4950
1e3c88bd
PZ
4951/*
4952 * It checks each scheduling domain to see if it is due to be balanced,
4953 * and initiates a balancing operation if so.
4954 *
4955 * Balancing parameters are set up in arch_init_sched_domains.
4956 */
4957static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4958{
4959 int balance = 1;
4960 struct rq *rq = cpu_rq(cpu);
4961 unsigned long interval;
4962 struct sched_domain *sd;
4963 /* Earliest time when we have to do rebalance again */
4964 unsigned long next_balance = jiffies + 60*HZ;
4965 int update_next_balance = 0;
4966 int need_serialize;
4967
2069dd75
PZ
4968 update_shares(cpu);
4969
dce840a0 4970 rcu_read_lock();
1e3c88bd
PZ
4971 for_each_domain(cpu, sd) {
4972 if (!(sd->flags & SD_LOAD_BALANCE))
4973 continue;
4974
4975 interval = sd->balance_interval;
4976 if (idle != CPU_IDLE)
4977 interval *= sd->busy_factor;
4978
4979 /* scale ms to jiffies */
4980 interval = msecs_to_jiffies(interval);
49c022e6 4981 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4982
4983 need_serialize = sd->flags & SD_SERIALIZE;
4984
4985 if (need_serialize) {
4986 if (!spin_trylock(&balancing))
4987 goto out;
4988 }
4989
4990 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4991 if (load_balance(cpu, rq, sd, idle, &balance)) {
4992 /*
4993 * We've pulled tasks over so either we're no
c186fafe 4994 * longer idle.
1e3c88bd
PZ
4995 */
4996 idle = CPU_NOT_IDLE;
4997 }
4998 sd->last_balance = jiffies;
4999 }
5000 if (need_serialize)
5001 spin_unlock(&balancing);
5002out:
5003 if (time_after(next_balance, sd->last_balance + interval)) {
5004 next_balance = sd->last_balance + interval;
5005 update_next_balance = 1;
5006 }
5007
5008 /*
5009 * Stop the load balance at this level. There is another
5010 * CPU in our sched group which is doing load balancing more
5011 * actively.
5012 */
5013 if (!balance)
5014 break;
5015 }
dce840a0 5016 rcu_read_unlock();
1e3c88bd
PZ
5017
5018 /*
5019 * next_balance will be updated only when there is a need.
5020 * When the cpu is attached to null domain for ex, it will not be
5021 * updated.
5022 */
5023 if (likely(update_next_balance))
5024 rq->next_balance = next_balance;
5025}
5026
83cd4fe2 5027#ifdef CONFIG_NO_HZ
1e3c88bd 5028/*
83cd4fe2 5029 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5030 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5031 */
83cd4fe2
VP
5032static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5033{
5034 struct rq *this_rq = cpu_rq(this_cpu);
5035 struct rq *rq;
5036 int balance_cpu;
5037
1c792db7
SS
5038 if (idle != CPU_IDLE ||
5039 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5040 goto end;
83cd4fe2
VP
5041
5042 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5043 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5044 continue;
5045
5046 /*
5047 * If this cpu gets work to do, stop the load balancing
5048 * work being done for other cpus. Next load
5049 * balancing owner will pick it up.
5050 */
1c792db7 5051 if (need_resched())
83cd4fe2 5052 break;
83cd4fe2
VP
5053
5054 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5055 update_rq_clock(this_rq);
83cd4fe2
VP
5056 update_cpu_load(this_rq);
5057 raw_spin_unlock_irq(&this_rq->lock);
5058
5059 rebalance_domains(balance_cpu, CPU_IDLE);
5060
5061 rq = cpu_rq(balance_cpu);
5062 if (time_after(this_rq->next_balance, rq->next_balance))
5063 this_rq->next_balance = rq->next_balance;
5064 }
5065 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5066end:
5067 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5068}
5069
5070/*
0b005cf5
SS
5071 * Current heuristic for kicking the idle load balancer in the presence
5072 * of an idle cpu is the system.
5073 * - This rq has more than one task.
5074 * - At any scheduler domain level, this cpu's scheduler group has multiple
5075 * busy cpu's exceeding the group's power.
5076 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5077 * domain span are idle.
83cd4fe2
VP
5078 */
5079static inline int nohz_kick_needed(struct rq *rq, int cpu)
5080{
5081 unsigned long now = jiffies;
0b005cf5 5082 struct sched_domain *sd;
83cd4fe2 5083
1c792db7 5084 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5085 return 0;
5086
1c792db7
SS
5087 /*
5088 * We may be recently in ticked or tickless idle mode. At the first
5089 * busy tick after returning from idle, we will update the busy stats.
5090 */
69e1e811 5091 set_cpu_sd_state_busy();
71325960 5092 clear_nohz_tick_stopped(cpu);
0b005cf5
SS
5093
5094 /*
5095 * None are in tickless mode and hence no need for NOHZ idle load
5096 * balancing.
5097 */
5098 if (likely(!atomic_read(&nohz.nr_cpus)))
5099 return 0;
1c792db7
SS
5100
5101 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5102 return 0;
5103
0b005cf5
SS
5104 if (rq->nr_running >= 2)
5105 goto need_kick;
83cd4fe2 5106
067491b7 5107 rcu_read_lock();
0b005cf5
SS
5108 for_each_domain(cpu, sd) {
5109 struct sched_group *sg = sd->groups;
5110 struct sched_group_power *sgp = sg->sgp;
5111 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5112
0b005cf5 5113 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5114 goto need_kick_unlock;
0b005cf5
SS
5115
5116 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5117 && (cpumask_first_and(nohz.idle_cpus_mask,
5118 sched_domain_span(sd)) < cpu))
067491b7 5119 goto need_kick_unlock;
0b005cf5
SS
5120
5121 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5122 break;
83cd4fe2 5123 }
067491b7 5124 rcu_read_unlock();
83cd4fe2 5125 return 0;
067491b7
PZ
5126
5127need_kick_unlock:
5128 rcu_read_unlock();
0b005cf5
SS
5129need_kick:
5130 return 1;
83cd4fe2
VP
5131}
5132#else
5133static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5134#endif
5135
5136/*
5137 * run_rebalance_domains is triggered when needed from the scheduler tick.
5138 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5139 */
1e3c88bd
PZ
5140static void run_rebalance_domains(struct softirq_action *h)
5141{
5142 int this_cpu = smp_processor_id();
5143 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5144 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5145 CPU_IDLE : CPU_NOT_IDLE;
5146
5147 rebalance_domains(this_cpu, idle);
5148
1e3c88bd 5149 /*
83cd4fe2 5150 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5151 * balancing on behalf of the other idle cpus whose ticks are
5152 * stopped.
5153 */
83cd4fe2 5154 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5155}
5156
5157static inline int on_null_domain(int cpu)
5158{
90a6501f 5159 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5160}
5161
5162/*
5163 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5164 */
029632fb 5165void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5166{
1e3c88bd
PZ
5167 /* Don't need to rebalance while attached to NULL domain */
5168 if (time_after_eq(jiffies, rq->next_balance) &&
5169 likely(!on_null_domain(cpu)))
5170 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5171#ifdef CONFIG_NO_HZ
1c792db7 5172 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5173 nohz_balancer_kick(cpu);
5174#endif
1e3c88bd
PZ
5175}
5176
0bcdcf28
CE
5177static void rq_online_fair(struct rq *rq)
5178{
5179 update_sysctl();
5180}
5181
5182static void rq_offline_fair(struct rq *rq)
5183{
5184 update_sysctl();
5185}
5186
55e12e5e 5187#endif /* CONFIG_SMP */
e1d1484f 5188
bf0f6f24
IM
5189/*
5190 * scheduler tick hitting a task of our scheduling class:
5191 */
8f4d37ec 5192static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5193{
5194 struct cfs_rq *cfs_rq;
5195 struct sched_entity *se = &curr->se;
5196
5197 for_each_sched_entity(se) {
5198 cfs_rq = cfs_rq_of(se);
8f4d37ec 5199 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5200 }
5201}
5202
5203/*
cd29fe6f
PZ
5204 * called on fork with the child task as argument from the parent's context
5205 * - child not yet on the tasklist
5206 * - preemption disabled
bf0f6f24 5207 */
cd29fe6f 5208static void task_fork_fair(struct task_struct *p)
bf0f6f24 5209{
4fc420c9
DN
5210 struct cfs_rq *cfs_rq;
5211 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5212 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5213 struct rq *rq = this_rq();
5214 unsigned long flags;
5215
05fa785c 5216 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5217
861d034e
PZ
5218 update_rq_clock(rq);
5219
4fc420c9
DN
5220 cfs_rq = task_cfs_rq(current);
5221 curr = cfs_rq->curr;
5222
b0a0f667
PM
5223 if (unlikely(task_cpu(p) != this_cpu)) {
5224 rcu_read_lock();
cd29fe6f 5225 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5226 rcu_read_unlock();
5227 }
bf0f6f24 5228
7109c442 5229 update_curr(cfs_rq);
cd29fe6f 5230
b5d9d734
MG
5231 if (curr)
5232 se->vruntime = curr->vruntime;
aeb73b04 5233 place_entity(cfs_rq, se, 1);
4d78e7b6 5234
cd29fe6f 5235 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5236 /*
edcb60a3
IM
5237 * Upon rescheduling, sched_class::put_prev_task() will place
5238 * 'current' within the tree based on its new key value.
5239 */
4d78e7b6 5240 swap(curr->vruntime, se->vruntime);
aec0a514 5241 resched_task(rq->curr);
4d78e7b6 5242 }
bf0f6f24 5243
88ec22d3
PZ
5244 se->vruntime -= cfs_rq->min_vruntime;
5245
05fa785c 5246 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5247}
5248
cb469845
SR
5249/*
5250 * Priority of the task has changed. Check to see if we preempt
5251 * the current task.
5252 */
da7a735e
PZ
5253static void
5254prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5255{
da7a735e
PZ
5256 if (!p->se.on_rq)
5257 return;
5258
cb469845
SR
5259 /*
5260 * Reschedule if we are currently running on this runqueue and
5261 * our priority decreased, or if we are not currently running on
5262 * this runqueue and our priority is higher than the current's
5263 */
da7a735e 5264 if (rq->curr == p) {
cb469845
SR
5265 if (p->prio > oldprio)
5266 resched_task(rq->curr);
5267 } else
15afe09b 5268 check_preempt_curr(rq, p, 0);
cb469845
SR
5269}
5270
da7a735e
PZ
5271static void switched_from_fair(struct rq *rq, struct task_struct *p)
5272{
5273 struct sched_entity *se = &p->se;
5274 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5275
5276 /*
5277 * Ensure the task's vruntime is normalized, so that when its
5278 * switched back to the fair class the enqueue_entity(.flags=0) will
5279 * do the right thing.
5280 *
5281 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5282 * have normalized the vruntime, if it was !on_rq, then only when
5283 * the task is sleeping will it still have non-normalized vruntime.
5284 */
5285 if (!se->on_rq && p->state != TASK_RUNNING) {
5286 /*
5287 * Fix up our vruntime so that the current sleep doesn't
5288 * cause 'unlimited' sleep bonus.
5289 */
5290 place_entity(cfs_rq, se, 0);
5291 se->vruntime -= cfs_rq->min_vruntime;
5292 }
5293}
5294
cb469845
SR
5295/*
5296 * We switched to the sched_fair class.
5297 */
da7a735e 5298static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5299{
da7a735e
PZ
5300 if (!p->se.on_rq)
5301 return;
5302
cb469845
SR
5303 /*
5304 * We were most likely switched from sched_rt, so
5305 * kick off the schedule if running, otherwise just see
5306 * if we can still preempt the current task.
5307 */
da7a735e 5308 if (rq->curr == p)
cb469845
SR
5309 resched_task(rq->curr);
5310 else
15afe09b 5311 check_preempt_curr(rq, p, 0);
cb469845
SR
5312}
5313
83b699ed
SV
5314/* Account for a task changing its policy or group.
5315 *
5316 * This routine is mostly called to set cfs_rq->curr field when a task
5317 * migrates between groups/classes.
5318 */
5319static void set_curr_task_fair(struct rq *rq)
5320{
5321 struct sched_entity *se = &rq->curr->se;
5322
ec12cb7f
PT
5323 for_each_sched_entity(se) {
5324 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5325
5326 set_next_entity(cfs_rq, se);
5327 /* ensure bandwidth has been allocated on our new cfs_rq */
5328 account_cfs_rq_runtime(cfs_rq, 0);
5329 }
83b699ed
SV
5330}
5331
029632fb
PZ
5332void init_cfs_rq(struct cfs_rq *cfs_rq)
5333{
5334 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5335 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5336#ifndef CONFIG_64BIT
5337 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5338#endif
5339}
5340
810b3817 5341#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5342static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5343{
b2b5ce02
PZ
5344 /*
5345 * If the task was not on the rq at the time of this cgroup movement
5346 * it must have been asleep, sleeping tasks keep their ->vruntime
5347 * absolute on their old rq until wakeup (needed for the fair sleeper
5348 * bonus in place_entity()).
5349 *
5350 * If it was on the rq, we've just 'preempted' it, which does convert
5351 * ->vruntime to a relative base.
5352 *
5353 * Make sure both cases convert their relative position when migrating
5354 * to another cgroup's rq. This does somewhat interfere with the
5355 * fair sleeper stuff for the first placement, but who cares.
5356 */
7ceff013
DN
5357 /*
5358 * When !on_rq, vruntime of the task has usually NOT been normalized.
5359 * But there are some cases where it has already been normalized:
5360 *
5361 * - Moving a forked child which is waiting for being woken up by
5362 * wake_up_new_task().
62af3783
DN
5363 * - Moving a task which has been woken up by try_to_wake_up() and
5364 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5365 *
5366 * To prevent boost or penalty in the new cfs_rq caused by delta
5367 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5368 */
62af3783 5369 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5370 on_rq = 1;
5371
b2b5ce02
PZ
5372 if (!on_rq)
5373 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5374 set_task_rq(p, task_cpu(p));
88ec22d3 5375 if (!on_rq)
b2b5ce02 5376 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5377}
029632fb
PZ
5378
5379void free_fair_sched_group(struct task_group *tg)
5380{
5381 int i;
5382
5383 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5384
5385 for_each_possible_cpu(i) {
5386 if (tg->cfs_rq)
5387 kfree(tg->cfs_rq[i]);
5388 if (tg->se)
5389 kfree(tg->se[i]);
5390 }
5391
5392 kfree(tg->cfs_rq);
5393 kfree(tg->se);
5394}
5395
5396int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5397{
5398 struct cfs_rq *cfs_rq;
5399 struct sched_entity *se;
5400 int i;
5401
5402 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5403 if (!tg->cfs_rq)
5404 goto err;
5405 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5406 if (!tg->se)
5407 goto err;
5408
5409 tg->shares = NICE_0_LOAD;
5410
5411 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5412
5413 for_each_possible_cpu(i) {
5414 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5415 GFP_KERNEL, cpu_to_node(i));
5416 if (!cfs_rq)
5417 goto err;
5418
5419 se = kzalloc_node(sizeof(struct sched_entity),
5420 GFP_KERNEL, cpu_to_node(i));
5421 if (!se)
5422 goto err_free_rq;
5423
5424 init_cfs_rq(cfs_rq);
5425 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5426 }
5427
5428 return 1;
5429
5430err_free_rq:
5431 kfree(cfs_rq);
5432err:
5433 return 0;
5434}
5435
5436void unregister_fair_sched_group(struct task_group *tg, int cpu)
5437{
5438 struct rq *rq = cpu_rq(cpu);
5439 unsigned long flags;
5440
5441 /*
5442 * Only empty task groups can be destroyed; so we can speculatively
5443 * check on_list without danger of it being re-added.
5444 */
5445 if (!tg->cfs_rq[cpu]->on_list)
5446 return;
5447
5448 raw_spin_lock_irqsave(&rq->lock, flags);
5449 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5450 raw_spin_unlock_irqrestore(&rq->lock, flags);
5451}
5452
5453void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5454 struct sched_entity *se, int cpu,
5455 struct sched_entity *parent)
5456{
5457 struct rq *rq = cpu_rq(cpu);
5458
5459 cfs_rq->tg = tg;
5460 cfs_rq->rq = rq;
5461#ifdef CONFIG_SMP
5462 /* allow initial update_cfs_load() to truncate */
5463 cfs_rq->load_stamp = 1;
810b3817 5464#endif
029632fb
PZ
5465 init_cfs_rq_runtime(cfs_rq);
5466
5467 tg->cfs_rq[cpu] = cfs_rq;
5468 tg->se[cpu] = se;
5469
5470 /* se could be NULL for root_task_group */
5471 if (!se)
5472 return;
5473
5474 if (!parent)
5475 se->cfs_rq = &rq->cfs;
5476 else
5477 se->cfs_rq = parent->my_q;
5478
5479 se->my_q = cfs_rq;
5480 update_load_set(&se->load, 0);
5481 se->parent = parent;
5482}
5483
5484static DEFINE_MUTEX(shares_mutex);
5485
5486int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5487{
5488 int i;
5489 unsigned long flags;
5490
5491 /*
5492 * We can't change the weight of the root cgroup.
5493 */
5494 if (!tg->se[0])
5495 return -EINVAL;
5496
5497 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5498
5499 mutex_lock(&shares_mutex);
5500 if (tg->shares == shares)
5501 goto done;
5502
5503 tg->shares = shares;
5504 for_each_possible_cpu(i) {
5505 struct rq *rq = cpu_rq(i);
5506 struct sched_entity *se;
5507
5508 se = tg->se[i];
5509 /* Propagate contribution to hierarchy */
5510 raw_spin_lock_irqsave(&rq->lock, flags);
5511 for_each_sched_entity(se)
5512 update_cfs_shares(group_cfs_rq(se));
5513 raw_spin_unlock_irqrestore(&rq->lock, flags);
5514 }
5515
5516done:
5517 mutex_unlock(&shares_mutex);
5518 return 0;
5519}
5520#else /* CONFIG_FAIR_GROUP_SCHED */
5521
5522void free_fair_sched_group(struct task_group *tg) { }
5523
5524int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5525{
5526 return 1;
5527}
5528
5529void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5530
5531#endif /* CONFIG_FAIR_GROUP_SCHED */
5532
810b3817 5533
6d686f45 5534static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5535{
5536 struct sched_entity *se = &task->se;
0d721cea
PW
5537 unsigned int rr_interval = 0;
5538
5539 /*
5540 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5541 * idle runqueue:
5542 */
0d721cea
PW
5543 if (rq->cfs.load.weight)
5544 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5545
5546 return rr_interval;
5547}
5548
bf0f6f24
IM
5549/*
5550 * All the scheduling class methods:
5551 */
029632fb 5552const struct sched_class fair_sched_class = {
5522d5d5 5553 .next = &idle_sched_class,
bf0f6f24
IM
5554 .enqueue_task = enqueue_task_fair,
5555 .dequeue_task = dequeue_task_fair,
5556 .yield_task = yield_task_fair,
d95f4122 5557 .yield_to_task = yield_to_task_fair,
bf0f6f24 5558
2e09bf55 5559 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5560
5561 .pick_next_task = pick_next_task_fair,
5562 .put_prev_task = put_prev_task_fair,
5563
681f3e68 5564#ifdef CONFIG_SMP
4ce72a2c
LZ
5565 .select_task_rq = select_task_rq_fair,
5566
0bcdcf28
CE
5567 .rq_online = rq_online_fair,
5568 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5569
5570 .task_waking = task_waking_fair,
681f3e68 5571#endif
bf0f6f24 5572
83b699ed 5573 .set_curr_task = set_curr_task_fair,
bf0f6f24 5574 .task_tick = task_tick_fair,
cd29fe6f 5575 .task_fork = task_fork_fair,
cb469845
SR
5576
5577 .prio_changed = prio_changed_fair,
da7a735e 5578 .switched_from = switched_from_fair,
cb469845 5579 .switched_to = switched_to_fair,
810b3817 5580
0d721cea
PW
5581 .get_rr_interval = get_rr_interval_fair,
5582
810b3817 5583#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5584 .task_move_group = task_move_group_fair,
810b3817 5585#endif
bf0f6f24
IM
5586};
5587
5588#ifdef CONFIG_SCHED_DEBUG
029632fb 5589void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5590{
bf0f6f24
IM
5591 struct cfs_rq *cfs_rq;
5592
5973e5b9 5593 rcu_read_lock();
c3b64f1e 5594 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5595 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5596 rcu_read_unlock();
bf0f6f24
IM
5597}
5598#endif
029632fb
PZ
5599
5600__init void init_sched_fair_class(void)
5601{
5602#ifdef CONFIG_SMP
5603 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5604
5605#ifdef CONFIG_NO_HZ
5606 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5607 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5608#endif
5609#endif /* SMP */
5610
5611}