sched/cputime: Accumulate vtime on top of nsec clocksource
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7
PZ
515 struct sched_entity *curr = cfs_rq->curr;
516
1af5f730
PZ
517 u64 vruntime = cfs_rq->min_vruntime;
518
b60205c7
PZ
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
1af5f730
PZ
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
549{
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bf0f6f24
IM
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
1af5f730 577 if (leftmost)
57cb499d 578 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
582}
583
0702e3eb 584static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 585{
3fe69747
PZ
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
3fe69747
PZ
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
3fe69747 591 }
e9acbff6 592
bf0f6f24 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
f4b6755f
PZ
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
7eee3e67 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67
IM
623
624 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
acb4a848 631int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 632 void __user *buffer, size_t *lenp,
b2be5e96
PZ
633 loff_t *ppos)
634{
8d65af78 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 636 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0a582440 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 691
0a582440 692 for_each_sched_entity(se) {
6272d68c 693 struct load_weight *load;
3104bf03 694 struct load_weight lw;
6272d68c
LM
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
f9c0b095 698
0a582440 699 if (unlikely(!se->on_rq)) {
3104bf03 700 lw = cfs_rq->load;
0a582440
MG
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
9dbdb155 705 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
706 }
707 return slice;
bf0f6f24
IM
708}
709
647e7cac 710/*
660cc00f 711 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 712 *
f9c0b095 713 * vs = s/w
647e7cac 714 */
f9c0b095 715static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 716{
f9c0b095 717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
718}
719
a75cdaa9 720#ifdef CONFIG_SMP
283e2ed3
PZ
721
722#include "sched-pelt.h"
723
772bd008 724static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
725static unsigned long task_h_load(struct task_struct *p);
726
540247fb
YD
727/* Give new sched_entity start runnable values to heavy its load in infant time */
728void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 729{
540247fb 730 struct sched_avg *sa = &se->avg;
a75cdaa9 731
9d89c257
YD
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
b5a9b340
VG
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
7dc603c9 756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 757static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 758
2b8c41da
YD
759/*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784void post_init_entity_util_avg(struct sched_entity *se)
785{
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
172895e6 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
7dc603c9
PZ
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
809 update_cfs_rq_load_avg(now, cfs_rq, false);
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
df217913 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
817 return;
818 }
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
2b8c41da
YD
828void post_init_entity_util_avg(struct sched_entity *se)
829{
830}
3d30544f
PZ
831static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 867 cpuacct_charge(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
4fa8d299 894 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
4fa8d299 916 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
4fa8d299
JP
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 927}
3ea94de1 928
4fa8d299 929static inline void
1a3d027c
JP
930update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931{
932 struct task_struct *tsk = NULL;
4fa8d299
JP
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
4fa8d299
JP
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
946
947 if ((s64)delta < 0)
948 delta = 0;
949
4fa8d299
JP
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 952
4fa8d299
JP
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
4fa8d299
JP
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
963
964 if ((s64)delta < 0)
965 delta = 0;
966
4fa8d299
JP
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
1a3d027c 969
4fa8d299
JP
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
972
973 if (tsk) {
974 if (tsk->in_iowait) {
4fa8d299
JP
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
3ea94de1 995}
3ea94de1 996
bf0f6f24
IM
997/*
998 * Task is being enqueued - update stats:
999 */
cb251765 1000static inline void
1a3d027c 1001update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1002{
4fa8d299
JP
1003 if (!schedstat_enabled())
1004 return;
1005
bf0f6f24
IM
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
429d43bc 1010 if (se != cfs_rq->curr)
5870db5b 1011 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1015}
1016
bf0f6f24 1017static inline void
cb251765 1018update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
4fa8d299
JP
1020
1021 if (!schedstat_enabled())
1022 return;
1023
bf0f6f24
IM
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
429d43bc 1028 if (se != cfs_rq->curr)
9ef0a961 1029 update_stats_wait_end(cfs_rq, se);
cb251765 1030
4fa8d299
JP
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
cb251765 1033
4fa8d299
JP
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
cb251765 1040 }
cb251765
MG
1041}
1042
bf0f6f24
IM
1043/*
1044 * We are picking a new current task - update its stats:
1045 */
1046static inline void
79303e9e 1047update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1048{
1049 /*
1050 * We are starting a new run period:
1051 */
78becc27 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1053}
1054
bf0f6f24
IM
1055/**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
cbee9f88
PZ
1059#ifdef CONFIG_NUMA_BALANCING
1060/*
598f0ec0
MG
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
cbee9f88 1064 */
598f0ec0
MG
1065unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1067
1068/* Portion of address space to scan in MB */
1069unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1070
4b96a29b
PZ
1071/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
598f0ec0
MG
1074static unsigned int task_nr_scan_windows(struct task_struct *p)
1075{
1076 unsigned long rss = 0;
1077 unsigned long nr_scan_pages;
1078
1079 /*
1080 * Calculations based on RSS as non-present and empty pages are skipped
1081 * by the PTE scanner and NUMA hinting faults should be trapped based
1082 * on resident pages
1083 */
1084 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1085 rss = get_mm_rss(p->mm);
1086 if (!rss)
1087 rss = nr_scan_pages;
1088
1089 rss = round_up(rss, nr_scan_pages);
1090 return rss / nr_scan_pages;
1091}
1092
1093/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1094#define MAX_SCAN_WINDOW 2560
1095
1096static unsigned int task_scan_min(struct task_struct *p)
1097{
316c1608 1098 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1099 unsigned int scan, floor;
1100 unsigned int windows = 1;
1101
64192658
KT
1102 if (scan_size < MAX_SCAN_WINDOW)
1103 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1104 floor = 1000 / windows;
1105
1106 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1107 return max_t(unsigned int, floor, scan);
1108}
1109
1110static unsigned int task_scan_max(struct task_struct *p)
1111{
1112 unsigned int smin = task_scan_min(p);
1113 unsigned int smax;
1114
1115 /* Watch for min being lower than max due to floor calculations */
1116 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1117 return max(smin, smax);
1118}
1119
0ec8aa00
PZ
1120static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1121{
1122 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1123 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1124}
1125
1126static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1127{
1128 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1129 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1130}
1131
8c8a743c
PZ
1132struct numa_group {
1133 atomic_t refcount;
1134
1135 spinlock_t lock; /* nr_tasks, tasks */
1136 int nr_tasks;
e29cf08b 1137 pid_t gid;
4142c3eb 1138 int active_nodes;
8c8a743c
PZ
1139
1140 struct rcu_head rcu;
989348b5 1141 unsigned long total_faults;
4142c3eb 1142 unsigned long max_faults_cpu;
7e2703e6
RR
1143 /*
1144 * Faults_cpu is used to decide whether memory should move
1145 * towards the CPU. As a consequence, these stats are weighted
1146 * more by CPU use than by memory faults.
1147 */
50ec8a40 1148 unsigned long *faults_cpu;
989348b5 1149 unsigned long faults[0];
8c8a743c
PZ
1150};
1151
be1e4e76
RR
1152/* Shared or private faults. */
1153#define NR_NUMA_HINT_FAULT_TYPES 2
1154
1155/* Memory and CPU locality */
1156#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1157
1158/* Averaged statistics, and temporary buffers. */
1159#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1160
e29cf08b
MG
1161pid_t task_numa_group_id(struct task_struct *p)
1162{
1163 return p->numa_group ? p->numa_group->gid : 0;
1164}
1165
44dba3d5
IM
1166/*
1167 * The averaged statistics, shared & private, memory & cpu,
1168 * occupy the first half of the array. The second half of the
1169 * array is for current counters, which are averaged into the
1170 * first set by task_numa_placement.
1171 */
1172static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1173{
44dba3d5 1174 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1175}
1176
1177static inline unsigned long task_faults(struct task_struct *p, int nid)
1178{
44dba3d5 1179 if (!p->numa_faults)
ac8e895b
MG
1180 return 0;
1181
44dba3d5
IM
1182 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1183 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1184}
1185
83e1d2cd
MG
1186static inline unsigned long group_faults(struct task_struct *p, int nid)
1187{
1188 if (!p->numa_group)
1189 return 0;
1190
44dba3d5
IM
1191 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1192 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1193}
1194
20e07dea
RR
1195static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1196{
44dba3d5
IM
1197 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1199}
1200
4142c3eb
RR
1201/*
1202 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1203 * considered part of a numa group's pseudo-interleaving set. Migrations
1204 * between these nodes are slowed down, to allow things to settle down.
1205 */
1206#define ACTIVE_NODE_FRACTION 3
1207
1208static bool numa_is_active_node(int nid, struct numa_group *ng)
1209{
1210 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1211}
1212
6c6b1193
RR
1213/* Handle placement on systems where not all nodes are directly connected. */
1214static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1215 int maxdist, bool task)
1216{
1217 unsigned long score = 0;
1218 int node;
1219
1220 /*
1221 * All nodes are directly connected, and the same distance
1222 * from each other. No need for fancy placement algorithms.
1223 */
1224 if (sched_numa_topology_type == NUMA_DIRECT)
1225 return 0;
1226
1227 /*
1228 * This code is called for each node, introducing N^2 complexity,
1229 * which should be ok given the number of nodes rarely exceeds 8.
1230 */
1231 for_each_online_node(node) {
1232 unsigned long faults;
1233 int dist = node_distance(nid, node);
1234
1235 /*
1236 * The furthest away nodes in the system are not interesting
1237 * for placement; nid was already counted.
1238 */
1239 if (dist == sched_max_numa_distance || node == nid)
1240 continue;
1241
1242 /*
1243 * On systems with a backplane NUMA topology, compare groups
1244 * of nodes, and move tasks towards the group with the most
1245 * memory accesses. When comparing two nodes at distance
1246 * "hoplimit", only nodes closer by than "hoplimit" are part
1247 * of each group. Skip other nodes.
1248 */
1249 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1250 dist > maxdist)
1251 continue;
1252
1253 /* Add up the faults from nearby nodes. */
1254 if (task)
1255 faults = task_faults(p, node);
1256 else
1257 faults = group_faults(p, node);
1258
1259 /*
1260 * On systems with a glueless mesh NUMA topology, there are
1261 * no fixed "groups of nodes". Instead, nodes that are not
1262 * directly connected bounce traffic through intermediate
1263 * nodes; a numa_group can occupy any set of nodes.
1264 * The further away a node is, the less the faults count.
1265 * This seems to result in good task placement.
1266 */
1267 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1268 faults *= (sched_max_numa_distance - dist);
1269 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1270 }
1271
1272 score += faults;
1273 }
1274
1275 return score;
1276}
1277
83e1d2cd
MG
1278/*
1279 * These return the fraction of accesses done by a particular task, or
1280 * task group, on a particular numa node. The group weight is given a
1281 * larger multiplier, in order to group tasks together that are almost
1282 * evenly spread out between numa nodes.
1283 */
7bd95320
RR
1284static inline unsigned long task_weight(struct task_struct *p, int nid,
1285 int dist)
83e1d2cd 1286{
7bd95320 1287 unsigned long faults, total_faults;
83e1d2cd 1288
44dba3d5 1289 if (!p->numa_faults)
83e1d2cd
MG
1290 return 0;
1291
1292 total_faults = p->total_numa_faults;
1293
1294 if (!total_faults)
1295 return 0;
1296
7bd95320 1297 faults = task_faults(p, nid);
6c6b1193
RR
1298 faults += score_nearby_nodes(p, nid, dist, true);
1299
7bd95320 1300 return 1000 * faults / total_faults;
83e1d2cd
MG
1301}
1302
7bd95320
RR
1303static inline unsigned long group_weight(struct task_struct *p, int nid,
1304 int dist)
83e1d2cd 1305{
7bd95320
RR
1306 unsigned long faults, total_faults;
1307
1308 if (!p->numa_group)
1309 return 0;
1310
1311 total_faults = p->numa_group->total_faults;
1312
1313 if (!total_faults)
83e1d2cd
MG
1314 return 0;
1315
7bd95320 1316 faults = group_faults(p, nid);
6c6b1193
RR
1317 faults += score_nearby_nodes(p, nid, dist, false);
1318
7bd95320 1319 return 1000 * faults / total_faults;
83e1d2cd
MG
1320}
1321
10f39042
RR
1322bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1323 int src_nid, int dst_cpu)
1324{
1325 struct numa_group *ng = p->numa_group;
1326 int dst_nid = cpu_to_node(dst_cpu);
1327 int last_cpupid, this_cpupid;
1328
1329 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1330
1331 /*
1332 * Multi-stage node selection is used in conjunction with a periodic
1333 * migration fault to build a temporal task<->page relation. By using
1334 * a two-stage filter we remove short/unlikely relations.
1335 *
1336 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1337 * a task's usage of a particular page (n_p) per total usage of this
1338 * page (n_t) (in a given time-span) to a probability.
1339 *
1340 * Our periodic faults will sample this probability and getting the
1341 * same result twice in a row, given these samples are fully
1342 * independent, is then given by P(n)^2, provided our sample period
1343 * is sufficiently short compared to the usage pattern.
1344 *
1345 * This quadric squishes small probabilities, making it less likely we
1346 * act on an unlikely task<->page relation.
1347 */
1348 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1349 if (!cpupid_pid_unset(last_cpupid) &&
1350 cpupid_to_nid(last_cpupid) != dst_nid)
1351 return false;
1352
1353 /* Always allow migrate on private faults */
1354 if (cpupid_match_pid(p, last_cpupid))
1355 return true;
1356
1357 /* A shared fault, but p->numa_group has not been set up yet. */
1358 if (!ng)
1359 return true;
1360
1361 /*
4142c3eb
RR
1362 * Destination node is much more heavily used than the source
1363 * node? Allow migration.
10f39042 1364 */
4142c3eb
RR
1365 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1366 ACTIVE_NODE_FRACTION)
10f39042
RR
1367 return true;
1368
1369 /*
4142c3eb
RR
1370 * Distribute memory according to CPU & memory use on each node,
1371 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1372 *
1373 * faults_cpu(dst) 3 faults_cpu(src)
1374 * --------------- * - > ---------------
1375 * faults_mem(dst) 4 faults_mem(src)
10f39042 1376 */
4142c3eb
RR
1377 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1378 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1379}
1380
e6628d5b 1381static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1382static unsigned long source_load(int cpu, int type);
1383static unsigned long target_load(int cpu, int type);
ced549fa 1384static unsigned long capacity_of(int cpu);
58d081b5 1385
fb13c7ee 1386/* Cached statistics for all CPUs within a node */
58d081b5 1387struct numa_stats {
fb13c7ee 1388 unsigned long nr_running;
58d081b5 1389 unsigned long load;
fb13c7ee
MG
1390
1391 /* Total compute capacity of CPUs on a node */
5ef20ca1 1392 unsigned long compute_capacity;
fb13c7ee
MG
1393
1394 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1395 unsigned long task_capacity;
1b6a7495 1396 int has_free_capacity;
58d081b5 1397};
e6628d5b 1398
fb13c7ee
MG
1399/*
1400 * XXX borrowed from update_sg_lb_stats
1401 */
1402static void update_numa_stats(struct numa_stats *ns, int nid)
1403{
83d7f242
RR
1404 int smt, cpu, cpus = 0;
1405 unsigned long capacity;
fb13c7ee
MG
1406
1407 memset(ns, 0, sizeof(*ns));
1408 for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 struct rq *rq = cpu_rq(cpu);
1410
1411 ns->nr_running += rq->nr_running;
1412 ns->load += weighted_cpuload(cpu);
ced549fa 1413 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1414
1415 cpus++;
fb13c7ee
MG
1416 }
1417
5eca82a9
PZ
1418 /*
1419 * If we raced with hotplug and there are no CPUs left in our mask
1420 * the @ns structure is NULL'ed and task_numa_compare() will
1421 * not find this node attractive.
1422 *
1b6a7495
NP
1423 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 * imbalance and bail there.
5eca82a9
PZ
1425 */
1426 if (!cpus)
1427 return;
1428
83d7f242
RR
1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 capacity = cpus / smt; /* cores */
1432
1433 ns->task_capacity = min_t(unsigned, capacity,
1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1436}
1437
58d081b5
MG
1438struct task_numa_env {
1439 struct task_struct *p;
e6628d5b 1440
58d081b5
MG
1441 int src_cpu, src_nid;
1442 int dst_cpu, dst_nid;
e6628d5b 1443
58d081b5 1444 struct numa_stats src_stats, dst_stats;
e6628d5b 1445
40ea2b42 1446 int imbalance_pct;
7bd95320 1447 int dist;
fb13c7ee
MG
1448
1449 struct task_struct *best_task;
1450 long best_imp;
58d081b5
MG
1451 int best_cpu;
1452};
1453
fb13c7ee
MG
1454static void task_numa_assign(struct task_numa_env *env,
1455 struct task_struct *p, long imp)
1456{
1457 if (env->best_task)
1458 put_task_struct(env->best_task);
bac78573
ON
1459 if (p)
1460 get_task_struct(p);
fb13c7ee
MG
1461
1462 env->best_task = p;
1463 env->best_imp = imp;
1464 env->best_cpu = env->dst_cpu;
1465}
1466
28a21745 1467static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1468 struct task_numa_env *env)
1469{
e4991b24
RR
1470 long imb, old_imb;
1471 long orig_src_load, orig_dst_load;
28a21745
RR
1472 long src_capacity, dst_capacity;
1473
1474 /*
1475 * The load is corrected for the CPU capacity available on each node.
1476 *
1477 * src_load dst_load
1478 * ------------ vs ---------
1479 * src_capacity dst_capacity
1480 */
1481 src_capacity = env->src_stats.compute_capacity;
1482 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1483
1484 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1485 if (dst_load < src_load)
1486 swap(dst_load, src_load);
e63da036
RR
1487
1488 /* Is the difference below the threshold? */
e4991b24
RR
1489 imb = dst_load * src_capacity * 100 -
1490 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1491 if (imb <= 0)
1492 return false;
1493
1494 /*
1495 * The imbalance is above the allowed threshold.
e4991b24 1496 * Compare it with the old imbalance.
e63da036 1497 */
28a21745 1498 orig_src_load = env->src_stats.load;
e4991b24 1499 orig_dst_load = env->dst_stats.load;
28a21745 1500
e4991b24
RR
1501 if (orig_dst_load < orig_src_load)
1502 swap(orig_dst_load, orig_src_load);
e63da036 1503
e4991b24
RR
1504 old_imb = orig_dst_load * src_capacity * 100 -
1505 orig_src_load * dst_capacity * env->imbalance_pct;
1506
1507 /* Would this change make things worse? */
1508 return (imb > old_imb);
e63da036
RR
1509}
1510
fb13c7ee
MG
1511/*
1512 * This checks if the overall compute and NUMA accesses of the system would
1513 * be improved if the source tasks was migrated to the target dst_cpu taking
1514 * into account that it might be best if task running on the dst_cpu should
1515 * be exchanged with the source task
1516 */
887c290e
RR
1517static void task_numa_compare(struct task_numa_env *env,
1518 long taskimp, long groupimp)
fb13c7ee
MG
1519{
1520 struct rq *src_rq = cpu_rq(env->src_cpu);
1521 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 struct task_struct *cur;
28a21745 1523 long src_load, dst_load;
fb13c7ee 1524 long load;
1c5d3eb3 1525 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1526 long moveimp = imp;
7bd95320 1527 int dist = env->dist;
fb13c7ee
MG
1528
1529 rcu_read_lock();
bac78573
ON
1530 cur = task_rcu_dereference(&dst_rq->curr);
1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1532 cur = NULL;
1533
7af68335
PZ
1534 /*
1535 * Because we have preemption enabled we can get migrated around and
1536 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 */
1538 if (cur == env->p)
1539 goto unlock;
1540
fb13c7ee
MG
1541 /*
1542 * "imp" is the fault differential for the source task between the
1543 * source and destination node. Calculate the total differential for
1544 * the source task and potential destination task. The more negative
1545 * the value is, the more rmeote accesses that would be expected to
1546 * be incurred if the tasks were swapped.
1547 */
1548 if (cur) {
1549 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1551 goto unlock;
1552
887c290e
RR
1553 /*
1554 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1555 * in any group then look only at task weights.
887c290e 1556 */
ca28aa53 1557 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1558 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1560 /*
1561 * Add some hysteresis to prevent swapping the
1562 * tasks within a group over tiny differences.
1563 */
1564 if (cur->numa_group)
1565 imp -= imp/16;
887c290e 1566 } else {
ca28aa53
RR
1567 /*
1568 * Compare the group weights. If a task is all by
1569 * itself (not part of a group), use the task weight
1570 * instead.
1571 */
ca28aa53 1572 if (cur->numa_group)
7bd95320
RR
1573 imp += group_weight(cur, env->src_nid, dist) -
1574 group_weight(cur, env->dst_nid, dist);
ca28aa53 1575 else
7bd95320
RR
1576 imp += task_weight(cur, env->src_nid, dist) -
1577 task_weight(cur, env->dst_nid, dist);
887c290e 1578 }
fb13c7ee
MG
1579 }
1580
0132c3e1 1581 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1582 goto unlock;
1583
1584 if (!cur) {
1585 /* Is there capacity at our destination? */
b932c03c 1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1587 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1588 goto unlock;
1589
1590 goto balance;
1591 }
1592
1593 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1594 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 dst_rq->nr_running == 1)
fb13c7ee
MG
1596 goto assign;
1597
1598 /*
1599 * In the overloaded case, try and keep the load balanced.
1600 */
1601balance:
e720fff6
PZ
1602 load = task_h_load(env->p);
1603 dst_load = env->dst_stats.load + load;
1604 src_load = env->src_stats.load - load;
fb13c7ee 1605
0132c3e1
RR
1606 if (moveimp > imp && moveimp > env->best_imp) {
1607 /*
1608 * If the improvement from just moving env->p direction is
1609 * better than swapping tasks around, check if a move is
1610 * possible. Store a slightly smaller score than moveimp,
1611 * so an actually idle CPU will win.
1612 */
1613 if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 imp = moveimp - 1;
1615 cur = NULL;
1616 goto assign;
1617 }
1618 }
1619
1620 if (imp <= env->best_imp)
1621 goto unlock;
1622
fb13c7ee 1623 if (cur) {
e720fff6
PZ
1624 load = task_h_load(cur);
1625 dst_load -= load;
1626 src_load += load;
fb13c7ee
MG
1627 }
1628
28a21745 1629 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1630 goto unlock;
1631
ba7e5a27
RR
1632 /*
1633 * One idle CPU per node is evaluated for a task numa move.
1634 * Call select_idle_sibling to maybe find a better one.
1635 */
10e2f1ac
PZ
1636 if (!cur) {
1637 /*
1638 * select_idle_siblings() uses an per-cpu cpumask that
1639 * can be used from IRQ context.
1640 */
1641 local_irq_disable();
772bd008
MR
1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 env->dst_cpu);
10e2f1ac
PZ
1644 local_irq_enable();
1645 }
ba7e5a27 1646
fb13c7ee
MG
1647assign:
1648 task_numa_assign(env, cur, imp);
1649unlock:
1650 rcu_read_unlock();
1651}
1652
887c290e
RR
1653static void task_numa_find_cpu(struct task_numa_env *env,
1654 long taskimp, long groupimp)
2c8a50aa
MG
1655{
1656 int cpu;
1657
1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 /* Skip this CPU if the source task cannot migrate */
0c98d344 1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1661 continue;
1662
1663 env->dst_cpu = cpu;
887c290e 1664 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1665 }
1666}
1667
6f9aad0b
RR
1668/* Only move tasks to a NUMA node less busy than the current node. */
1669static bool numa_has_capacity(struct task_numa_env *env)
1670{
1671 struct numa_stats *src = &env->src_stats;
1672 struct numa_stats *dst = &env->dst_stats;
1673
1674 if (src->has_free_capacity && !dst->has_free_capacity)
1675 return false;
1676
1677 /*
1678 * Only consider a task move if the source has a higher load
1679 * than the destination, corrected for CPU capacity on each node.
1680 *
1681 * src->load dst->load
1682 * --------------------- vs ---------------------
1683 * src->compute_capacity dst->compute_capacity
1684 */
44dcb04f
SD
1685 if (src->load * dst->compute_capacity * env->imbalance_pct >
1686
1687 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1688 return true;
1689
1690 return false;
1691}
1692
58d081b5
MG
1693static int task_numa_migrate(struct task_struct *p)
1694{
58d081b5
MG
1695 struct task_numa_env env = {
1696 .p = p,
fb13c7ee 1697
58d081b5 1698 .src_cpu = task_cpu(p),
b32e86b4 1699 .src_nid = task_node(p),
fb13c7ee
MG
1700
1701 .imbalance_pct = 112,
1702
1703 .best_task = NULL,
1704 .best_imp = 0,
4142c3eb 1705 .best_cpu = -1,
58d081b5
MG
1706 };
1707 struct sched_domain *sd;
887c290e 1708 unsigned long taskweight, groupweight;
7bd95320 1709 int nid, ret, dist;
887c290e 1710 long taskimp, groupimp;
e6628d5b 1711
58d081b5 1712 /*
fb13c7ee
MG
1713 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 * imbalance and would be the first to start moving tasks about.
1715 *
1716 * And we want to avoid any moving of tasks about, as that would create
1717 * random movement of tasks -- counter the numa conditions we're trying
1718 * to satisfy here.
58d081b5
MG
1719 */
1720 rcu_read_lock();
fb13c7ee 1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1722 if (sd)
1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1724 rcu_read_unlock();
1725
46a73e8a
RR
1726 /*
1727 * Cpusets can break the scheduler domain tree into smaller
1728 * balance domains, some of which do not cross NUMA boundaries.
1729 * Tasks that are "trapped" in such domains cannot be migrated
1730 * elsewhere, so there is no point in (re)trying.
1731 */
1732 if (unlikely(!sd)) {
de1b301a 1733 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1734 return -EINVAL;
1735 }
1736
2c8a50aa 1737 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 taskweight = task_weight(p, env.src_nid, dist);
1740 groupweight = group_weight(p, env.src_nid, dist);
1741 update_numa_stats(&env.src_stats, env.src_nid);
1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1744 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1745
a43455a1 1746 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1747 if (numa_has_capacity(&env))
1748 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1749
9de05d48
RR
1750 /*
1751 * Look at other nodes in these cases:
1752 * - there is no space available on the preferred_nid
1753 * - the task is part of a numa_group that is interleaved across
1754 * multiple NUMA nodes; in order to better consolidate the group,
1755 * we need to check other locations.
1756 */
4142c3eb 1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1758 for_each_online_node(nid) {
1759 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 continue;
58d081b5 1761
7bd95320 1762 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1763 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 dist != env.dist) {
1765 taskweight = task_weight(p, env.src_nid, dist);
1766 groupweight = group_weight(p, env.src_nid, dist);
1767 }
7bd95320 1768
83e1d2cd 1769 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1770 taskimp = task_weight(p, nid, dist) - taskweight;
1771 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1772 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1773 continue;
1774
7bd95320 1775 env.dist = dist;
2c8a50aa
MG
1776 env.dst_nid = nid;
1777 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1778 if (numa_has_capacity(&env))
1779 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1780 }
1781 }
1782
68d1b02a
RR
1783 /*
1784 * If the task is part of a workload that spans multiple NUMA nodes,
1785 * and is migrating into one of the workload's active nodes, remember
1786 * this node as the task's preferred numa node, so the workload can
1787 * settle down.
1788 * A task that migrated to a second choice node will be better off
1789 * trying for a better one later. Do not set the preferred node here.
1790 */
db015dae 1791 if (p->numa_group) {
4142c3eb
RR
1792 struct numa_group *ng = p->numa_group;
1793
db015dae
RR
1794 if (env.best_cpu == -1)
1795 nid = env.src_nid;
1796 else
1797 nid = env.dst_nid;
1798
4142c3eb 1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1800 sched_setnuma(p, env.dst_nid);
1801 }
1802
1803 /* No better CPU than the current one was found. */
1804 if (env.best_cpu == -1)
1805 return -EAGAIN;
0ec8aa00 1806
04bb2f94
RR
1807 /*
1808 * Reset the scan period if the task is being rescheduled on an
1809 * alternative node to recheck if the tasks is now properly placed.
1810 */
1811 p->numa_scan_period = task_scan_min(p);
1812
fb13c7ee 1813 if (env.best_task == NULL) {
286549dc
MG
1814 ret = migrate_task_to(p, env.best_cpu);
1815 if (ret != 0)
1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1817 return ret;
1818 }
1819
1820 ret = migrate_swap(p, env.best_task);
286549dc
MG
1821 if (ret != 0)
1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1823 put_task_struct(env.best_task);
1824 return ret;
e6628d5b
MG
1825}
1826
6b9a7460
MG
1827/* Attempt to migrate a task to a CPU on the preferred node. */
1828static void numa_migrate_preferred(struct task_struct *p)
1829{
5085e2a3
RR
1830 unsigned long interval = HZ;
1831
2739d3ee 1832 /* This task has no NUMA fault statistics yet */
44dba3d5 1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1834 return;
1835
2739d3ee 1836 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1839
1840 /* Success if task is already running on preferred CPU */
de1b301a 1841 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1842 return;
1843
1844 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1845 task_numa_migrate(p);
6b9a7460
MG
1846}
1847
20e07dea 1848/*
4142c3eb 1849 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1850 * tracking the nodes from which NUMA hinting faults are triggered. This can
1851 * be different from the set of nodes where the workload's memory is currently
1852 * located.
20e07dea 1853 */
4142c3eb 1854static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1855{
1856 unsigned long faults, max_faults = 0;
4142c3eb 1857 int nid, active_nodes = 0;
20e07dea
RR
1858
1859 for_each_online_node(nid) {
1860 faults = group_faults_cpu(numa_group, nid);
1861 if (faults > max_faults)
1862 max_faults = faults;
1863 }
1864
1865 for_each_online_node(nid) {
1866 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1867 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 active_nodes++;
20e07dea 1869 }
4142c3eb
RR
1870
1871 numa_group->max_faults_cpu = max_faults;
1872 numa_group->active_nodes = active_nodes;
20e07dea
RR
1873}
1874
04bb2f94
RR
1875/*
1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1878 * period will be for the next scan window. If local/(local+remote) ratio is
1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1881 */
1882#define NUMA_PERIOD_SLOTS 10
a22b4b01 1883#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1884
1885/*
1886 * Increase the scan period (slow down scanning) if the majority of
1887 * our memory is already on our local node, or if the majority of
1888 * the page accesses are shared with other processes.
1889 * Otherwise, decrease the scan period.
1890 */
1891static void update_task_scan_period(struct task_struct *p,
1892 unsigned long shared, unsigned long private)
1893{
1894 unsigned int period_slot;
1895 int ratio;
1896 int diff;
1897
1898 unsigned long remote = p->numa_faults_locality[0];
1899 unsigned long local = p->numa_faults_locality[1];
1900
1901 /*
1902 * If there were no record hinting faults then either the task is
1903 * completely idle or all activity is areas that are not of interest
074c2381
MG
1904 * to automatic numa balancing. Related to that, if there were failed
1905 * migration then it implies we are migrating too quickly or the local
1906 * node is overloaded. In either case, scan slower
04bb2f94 1907 */
074c2381 1908 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1909 p->numa_scan_period = min(p->numa_scan_period_max,
1910 p->numa_scan_period << 1);
1911
1912 p->mm->numa_next_scan = jiffies +
1913 msecs_to_jiffies(p->numa_scan_period);
1914
1915 return;
1916 }
1917
1918 /*
1919 * Prepare to scale scan period relative to the current period.
1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 */
1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1925 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1927 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1928 if (!slot)
1929 slot = 1;
1930 diff = slot * period_slot;
1931 } else {
1932 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1933
1934 /*
1935 * Scale scan rate increases based on sharing. There is an
1936 * inverse relationship between the degree of sharing and
1937 * the adjustment made to the scanning period. Broadly
1938 * speaking the intent is that there is little point
1939 * scanning faster if shared accesses dominate as it may
1940 * simply bounce migrations uselessly
1941 */
2847c90e 1942 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1943 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1944 }
1945
1946 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1947 task_scan_min(p), task_scan_max(p));
1948 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1949}
1950
7e2703e6
RR
1951/*
1952 * Get the fraction of time the task has been running since the last
1953 * NUMA placement cycle. The scheduler keeps similar statistics, but
1954 * decays those on a 32ms period, which is orders of magnitude off
1955 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1956 * stats only if the task is so new there are no NUMA statistics yet.
1957 */
1958static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1959{
1960 u64 runtime, delta, now;
1961 /* Use the start of this time slice to avoid calculations. */
1962 now = p->se.exec_start;
1963 runtime = p->se.sum_exec_runtime;
1964
1965 if (p->last_task_numa_placement) {
1966 delta = runtime - p->last_sum_exec_runtime;
1967 *period = now - p->last_task_numa_placement;
1968 } else {
9d89c257
YD
1969 delta = p->se.avg.load_sum / p->se.load.weight;
1970 *period = LOAD_AVG_MAX;
7e2703e6
RR
1971 }
1972
1973 p->last_sum_exec_runtime = runtime;
1974 p->last_task_numa_placement = now;
1975
1976 return delta;
1977}
1978
54009416
RR
1979/*
1980 * Determine the preferred nid for a task in a numa_group. This needs to
1981 * be done in a way that produces consistent results with group_weight,
1982 * otherwise workloads might not converge.
1983 */
1984static int preferred_group_nid(struct task_struct *p, int nid)
1985{
1986 nodemask_t nodes;
1987 int dist;
1988
1989 /* Direct connections between all NUMA nodes. */
1990 if (sched_numa_topology_type == NUMA_DIRECT)
1991 return nid;
1992
1993 /*
1994 * On a system with glueless mesh NUMA topology, group_weight
1995 * scores nodes according to the number of NUMA hinting faults on
1996 * both the node itself, and on nearby nodes.
1997 */
1998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1999 unsigned long score, max_score = 0;
2000 int node, max_node = nid;
2001
2002 dist = sched_max_numa_distance;
2003
2004 for_each_online_node(node) {
2005 score = group_weight(p, node, dist);
2006 if (score > max_score) {
2007 max_score = score;
2008 max_node = node;
2009 }
2010 }
2011 return max_node;
2012 }
2013
2014 /*
2015 * Finding the preferred nid in a system with NUMA backplane
2016 * interconnect topology is more involved. The goal is to locate
2017 * tasks from numa_groups near each other in the system, and
2018 * untangle workloads from different sides of the system. This requires
2019 * searching down the hierarchy of node groups, recursively searching
2020 * inside the highest scoring group of nodes. The nodemask tricks
2021 * keep the complexity of the search down.
2022 */
2023 nodes = node_online_map;
2024 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2025 unsigned long max_faults = 0;
81907478 2026 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2027 int a, b;
2028
2029 /* Are there nodes at this distance from each other? */
2030 if (!find_numa_distance(dist))
2031 continue;
2032
2033 for_each_node_mask(a, nodes) {
2034 unsigned long faults = 0;
2035 nodemask_t this_group;
2036 nodes_clear(this_group);
2037
2038 /* Sum group's NUMA faults; includes a==b case. */
2039 for_each_node_mask(b, nodes) {
2040 if (node_distance(a, b) < dist) {
2041 faults += group_faults(p, b);
2042 node_set(b, this_group);
2043 node_clear(b, nodes);
2044 }
2045 }
2046
2047 /* Remember the top group. */
2048 if (faults > max_faults) {
2049 max_faults = faults;
2050 max_group = this_group;
2051 /*
2052 * subtle: at the smallest distance there is
2053 * just one node left in each "group", the
2054 * winner is the preferred nid.
2055 */
2056 nid = a;
2057 }
2058 }
2059 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2060 if (!max_faults)
2061 break;
54009416
RR
2062 nodes = max_group;
2063 }
2064 return nid;
2065}
2066
cbee9f88
PZ
2067static void task_numa_placement(struct task_struct *p)
2068{
83e1d2cd
MG
2069 int seq, nid, max_nid = -1, max_group_nid = -1;
2070 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2071 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2072 unsigned long total_faults;
2073 u64 runtime, period;
7dbd13ed 2074 spinlock_t *group_lock = NULL;
cbee9f88 2075
7e5a2c17
JL
2076 /*
2077 * The p->mm->numa_scan_seq field gets updated without
2078 * exclusive access. Use READ_ONCE() here to ensure
2079 * that the field is read in a single access:
2080 */
316c1608 2081 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2082 if (p->numa_scan_seq == seq)
2083 return;
2084 p->numa_scan_seq = seq;
598f0ec0 2085 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2086
7e2703e6
RR
2087 total_faults = p->numa_faults_locality[0] +
2088 p->numa_faults_locality[1];
2089 runtime = numa_get_avg_runtime(p, &period);
2090
7dbd13ed
MG
2091 /* If the task is part of a group prevent parallel updates to group stats */
2092 if (p->numa_group) {
2093 group_lock = &p->numa_group->lock;
60e69eed 2094 spin_lock_irq(group_lock);
7dbd13ed
MG
2095 }
2096
688b7585
MG
2097 /* Find the node with the highest number of faults */
2098 for_each_online_node(nid) {
44dba3d5
IM
2099 /* Keep track of the offsets in numa_faults array */
2100 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2101 unsigned long faults = 0, group_faults = 0;
44dba3d5 2102 int priv;
745d6147 2103
be1e4e76 2104 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2105 long diff, f_diff, f_weight;
8c8a743c 2106
44dba3d5
IM
2107 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2108 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2109 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2110 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2111
ac8e895b 2112 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2113 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2114 fault_types[priv] += p->numa_faults[membuf_idx];
2115 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2116
7e2703e6
RR
2117 /*
2118 * Normalize the faults_from, so all tasks in a group
2119 * count according to CPU use, instead of by the raw
2120 * number of faults. Tasks with little runtime have
2121 * little over-all impact on throughput, and thus their
2122 * faults are less important.
2123 */
2124 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2125 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2126 (total_faults + 1);
44dba3d5
IM
2127 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2128 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2129
44dba3d5
IM
2130 p->numa_faults[mem_idx] += diff;
2131 p->numa_faults[cpu_idx] += f_diff;
2132 faults += p->numa_faults[mem_idx];
83e1d2cd 2133 p->total_numa_faults += diff;
8c8a743c 2134 if (p->numa_group) {
44dba3d5
IM
2135 /*
2136 * safe because we can only change our own group
2137 *
2138 * mem_idx represents the offset for a given
2139 * nid and priv in a specific region because it
2140 * is at the beginning of the numa_faults array.
2141 */
2142 p->numa_group->faults[mem_idx] += diff;
2143 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2144 p->numa_group->total_faults += diff;
44dba3d5 2145 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2146 }
ac8e895b
MG
2147 }
2148
688b7585
MG
2149 if (faults > max_faults) {
2150 max_faults = faults;
2151 max_nid = nid;
2152 }
83e1d2cd
MG
2153
2154 if (group_faults > max_group_faults) {
2155 max_group_faults = group_faults;
2156 max_group_nid = nid;
2157 }
2158 }
2159
04bb2f94
RR
2160 update_task_scan_period(p, fault_types[0], fault_types[1]);
2161
7dbd13ed 2162 if (p->numa_group) {
4142c3eb 2163 numa_group_count_active_nodes(p->numa_group);
60e69eed 2164 spin_unlock_irq(group_lock);
54009416 2165 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2166 }
2167
bb97fc31
RR
2168 if (max_faults) {
2169 /* Set the new preferred node */
2170 if (max_nid != p->numa_preferred_nid)
2171 sched_setnuma(p, max_nid);
2172
2173 if (task_node(p) != p->numa_preferred_nid)
2174 numa_migrate_preferred(p);
3a7053b3 2175 }
cbee9f88
PZ
2176}
2177
8c8a743c
PZ
2178static inline int get_numa_group(struct numa_group *grp)
2179{
2180 return atomic_inc_not_zero(&grp->refcount);
2181}
2182
2183static inline void put_numa_group(struct numa_group *grp)
2184{
2185 if (atomic_dec_and_test(&grp->refcount))
2186 kfree_rcu(grp, rcu);
2187}
2188
3e6a9418
MG
2189static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2190 int *priv)
8c8a743c
PZ
2191{
2192 struct numa_group *grp, *my_grp;
2193 struct task_struct *tsk;
2194 bool join = false;
2195 int cpu = cpupid_to_cpu(cpupid);
2196 int i;
2197
2198 if (unlikely(!p->numa_group)) {
2199 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2200 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2201
2202 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2203 if (!grp)
2204 return;
2205
2206 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2207 grp->active_nodes = 1;
2208 grp->max_faults_cpu = 0;
8c8a743c 2209 spin_lock_init(&grp->lock);
e29cf08b 2210 grp->gid = p->pid;
50ec8a40 2211 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2212 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2213 nr_node_ids;
8c8a743c 2214
be1e4e76 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2216 grp->faults[i] = p->numa_faults[i];
8c8a743c 2217
989348b5 2218 grp->total_faults = p->total_numa_faults;
83e1d2cd 2219
8c8a743c
PZ
2220 grp->nr_tasks++;
2221 rcu_assign_pointer(p->numa_group, grp);
2222 }
2223
2224 rcu_read_lock();
316c1608 2225 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2226
2227 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2228 goto no_join;
8c8a743c
PZ
2229
2230 grp = rcu_dereference(tsk->numa_group);
2231 if (!grp)
3354781a 2232 goto no_join;
8c8a743c
PZ
2233
2234 my_grp = p->numa_group;
2235 if (grp == my_grp)
3354781a 2236 goto no_join;
8c8a743c
PZ
2237
2238 /*
2239 * Only join the other group if its bigger; if we're the bigger group,
2240 * the other task will join us.
2241 */
2242 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2243 goto no_join;
8c8a743c
PZ
2244
2245 /*
2246 * Tie-break on the grp address.
2247 */
2248 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2249 goto no_join;
8c8a743c 2250
dabe1d99
RR
2251 /* Always join threads in the same process. */
2252 if (tsk->mm == current->mm)
2253 join = true;
2254
2255 /* Simple filter to avoid false positives due to PID collisions */
2256 if (flags & TNF_SHARED)
2257 join = true;
8c8a743c 2258
3e6a9418
MG
2259 /* Update priv based on whether false sharing was detected */
2260 *priv = !join;
2261
dabe1d99 2262 if (join && !get_numa_group(grp))
3354781a 2263 goto no_join;
8c8a743c 2264
8c8a743c
PZ
2265 rcu_read_unlock();
2266
2267 if (!join)
2268 return;
2269
60e69eed
MG
2270 BUG_ON(irqs_disabled());
2271 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2272
be1e4e76 2273 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2274 my_grp->faults[i] -= p->numa_faults[i];
2275 grp->faults[i] += p->numa_faults[i];
8c8a743c 2276 }
989348b5
MG
2277 my_grp->total_faults -= p->total_numa_faults;
2278 grp->total_faults += p->total_numa_faults;
8c8a743c 2279
8c8a743c
PZ
2280 my_grp->nr_tasks--;
2281 grp->nr_tasks++;
2282
2283 spin_unlock(&my_grp->lock);
60e69eed 2284 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2285
2286 rcu_assign_pointer(p->numa_group, grp);
2287
2288 put_numa_group(my_grp);
3354781a
PZ
2289 return;
2290
2291no_join:
2292 rcu_read_unlock();
2293 return;
8c8a743c
PZ
2294}
2295
2296void task_numa_free(struct task_struct *p)
2297{
2298 struct numa_group *grp = p->numa_group;
44dba3d5 2299 void *numa_faults = p->numa_faults;
e9dd685c
SR
2300 unsigned long flags;
2301 int i;
8c8a743c
PZ
2302
2303 if (grp) {
e9dd685c 2304 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2305 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2306 grp->faults[i] -= p->numa_faults[i];
989348b5 2307 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2308
8c8a743c 2309 grp->nr_tasks--;
e9dd685c 2310 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2311 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2312 put_numa_group(grp);
2313 }
2314
44dba3d5 2315 p->numa_faults = NULL;
82727018 2316 kfree(numa_faults);
8c8a743c
PZ
2317}
2318
cbee9f88
PZ
2319/*
2320 * Got a PROT_NONE fault for a page on @node.
2321 */
58b46da3 2322void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2323{
2324 struct task_struct *p = current;
6688cc05 2325 bool migrated = flags & TNF_MIGRATED;
58b46da3 2326 int cpu_node = task_node(current);
792568ec 2327 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2328 struct numa_group *ng;
ac8e895b 2329 int priv;
cbee9f88 2330
2a595721 2331 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2332 return;
2333
9ff1d9ff
MG
2334 /* for example, ksmd faulting in a user's mm */
2335 if (!p->mm)
2336 return;
2337
f809ca9a 2338 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2339 if (unlikely(!p->numa_faults)) {
2340 int size = sizeof(*p->numa_faults) *
be1e4e76 2341 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2342
44dba3d5
IM
2343 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2344 if (!p->numa_faults)
f809ca9a 2345 return;
745d6147 2346
83e1d2cd 2347 p->total_numa_faults = 0;
04bb2f94 2348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2349 }
cbee9f88 2350
8c8a743c
PZ
2351 /*
2352 * First accesses are treated as private, otherwise consider accesses
2353 * to be private if the accessing pid has not changed
2354 */
2355 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2356 priv = 1;
2357 } else {
2358 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2359 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2360 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2361 }
2362
792568ec
RR
2363 /*
2364 * If a workload spans multiple NUMA nodes, a shared fault that
2365 * occurs wholly within the set of nodes that the workload is
2366 * actively using should be counted as local. This allows the
2367 * scan rate to slow down when a workload has settled down.
2368 */
4142c3eb
RR
2369 ng = p->numa_group;
2370 if (!priv && !local && ng && ng->active_nodes > 1 &&
2371 numa_is_active_node(cpu_node, ng) &&
2372 numa_is_active_node(mem_node, ng))
792568ec
RR
2373 local = 1;
2374
cbee9f88 2375 task_numa_placement(p);
f809ca9a 2376
2739d3ee
RR
2377 /*
2378 * Retry task to preferred node migration periodically, in case it
2379 * case it previously failed, or the scheduler moved us.
2380 */
2381 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2382 numa_migrate_preferred(p);
2383
b32e86b4
IM
2384 if (migrated)
2385 p->numa_pages_migrated += pages;
074c2381
MG
2386 if (flags & TNF_MIGRATE_FAIL)
2387 p->numa_faults_locality[2] += pages;
b32e86b4 2388
44dba3d5
IM
2389 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2390 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2391 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2392}
2393
6e5fb223
PZ
2394static void reset_ptenuma_scan(struct task_struct *p)
2395{
7e5a2c17
JL
2396 /*
2397 * We only did a read acquisition of the mmap sem, so
2398 * p->mm->numa_scan_seq is written to without exclusive access
2399 * and the update is not guaranteed to be atomic. That's not
2400 * much of an issue though, since this is just used for
2401 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2402 * expensive, to avoid any form of compiler optimizations:
2403 */
316c1608 2404 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2405 p->mm->numa_scan_offset = 0;
2406}
2407
cbee9f88
PZ
2408/*
2409 * The expensive part of numa migration is done from task_work context.
2410 * Triggered from task_tick_numa().
2411 */
2412void task_numa_work(struct callback_head *work)
2413{
2414 unsigned long migrate, next_scan, now = jiffies;
2415 struct task_struct *p = current;
2416 struct mm_struct *mm = p->mm;
51170840 2417 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2418 struct vm_area_struct *vma;
9f40604c 2419 unsigned long start, end;
598f0ec0 2420 unsigned long nr_pte_updates = 0;
4620f8c1 2421 long pages, virtpages;
cbee9f88 2422
9148a3a1 2423 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2424
2425 work->next = work; /* protect against double add */
2426 /*
2427 * Who cares about NUMA placement when they're dying.
2428 *
2429 * NOTE: make sure not to dereference p->mm before this check,
2430 * exit_task_work() happens _after_ exit_mm() so we could be called
2431 * without p->mm even though we still had it when we enqueued this
2432 * work.
2433 */
2434 if (p->flags & PF_EXITING)
2435 return;
2436
930aa174 2437 if (!mm->numa_next_scan) {
7e8d16b6
MG
2438 mm->numa_next_scan = now +
2439 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2440 }
2441
cbee9f88
PZ
2442 /*
2443 * Enforce maximal scan/migration frequency..
2444 */
2445 migrate = mm->numa_next_scan;
2446 if (time_before(now, migrate))
2447 return;
2448
598f0ec0
MG
2449 if (p->numa_scan_period == 0) {
2450 p->numa_scan_period_max = task_scan_max(p);
2451 p->numa_scan_period = task_scan_min(p);
2452 }
cbee9f88 2453
fb003b80 2454 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2455 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2456 return;
2457
19a78d11
PZ
2458 /*
2459 * Delay this task enough that another task of this mm will likely win
2460 * the next time around.
2461 */
2462 p->node_stamp += 2 * TICK_NSEC;
2463
9f40604c
MG
2464 start = mm->numa_scan_offset;
2465 pages = sysctl_numa_balancing_scan_size;
2466 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2467 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2468 if (!pages)
2469 return;
cbee9f88 2470
4620f8c1 2471
8655d549
VB
2472 if (!down_read_trylock(&mm->mmap_sem))
2473 return;
9f40604c 2474 vma = find_vma(mm, start);
6e5fb223
PZ
2475 if (!vma) {
2476 reset_ptenuma_scan(p);
9f40604c 2477 start = 0;
6e5fb223
PZ
2478 vma = mm->mmap;
2479 }
9f40604c 2480 for (; vma; vma = vma->vm_next) {
6b79c57b 2481 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2482 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2483 continue;
6b79c57b 2484 }
6e5fb223 2485
4591ce4f
MG
2486 /*
2487 * Shared library pages mapped by multiple processes are not
2488 * migrated as it is expected they are cache replicated. Avoid
2489 * hinting faults in read-only file-backed mappings or the vdso
2490 * as migrating the pages will be of marginal benefit.
2491 */
2492 if (!vma->vm_mm ||
2493 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2494 continue;
2495
3c67f474
MG
2496 /*
2497 * Skip inaccessible VMAs to avoid any confusion between
2498 * PROT_NONE and NUMA hinting ptes
2499 */
2500 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2501 continue;
4591ce4f 2502
9f40604c
MG
2503 do {
2504 start = max(start, vma->vm_start);
2505 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2506 end = min(end, vma->vm_end);
4620f8c1 2507 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2508
2509 /*
4620f8c1
RR
2510 * Try to scan sysctl_numa_balancing_size worth of
2511 * hpages that have at least one present PTE that
2512 * is not already pte-numa. If the VMA contains
2513 * areas that are unused or already full of prot_numa
2514 * PTEs, scan up to virtpages, to skip through those
2515 * areas faster.
598f0ec0
MG
2516 */
2517 if (nr_pte_updates)
2518 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2519 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2520
9f40604c 2521 start = end;
4620f8c1 2522 if (pages <= 0 || virtpages <= 0)
9f40604c 2523 goto out;
3cf1962c
RR
2524
2525 cond_resched();
9f40604c 2526 } while (end != vma->vm_end);
cbee9f88 2527 }
6e5fb223 2528
9f40604c 2529out:
6e5fb223 2530 /*
c69307d5
PZ
2531 * It is possible to reach the end of the VMA list but the last few
2532 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2533 * would find the !migratable VMA on the next scan but not reset the
2534 * scanner to the start so check it now.
6e5fb223
PZ
2535 */
2536 if (vma)
9f40604c 2537 mm->numa_scan_offset = start;
6e5fb223
PZ
2538 else
2539 reset_ptenuma_scan(p);
2540 up_read(&mm->mmap_sem);
51170840
RR
2541
2542 /*
2543 * Make sure tasks use at least 32x as much time to run other code
2544 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2545 * Usually update_task_scan_period slows down scanning enough; on an
2546 * overloaded system we need to limit overhead on a per task basis.
2547 */
2548 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2549 u64 diff = p->se.sum_exec_runtime - runtime;
2550 p->node_stamp += 32 * diff;
2551 }
cbee9f88
PZ
2552}
2553
2554/*
2555 * Drive the periodic memory faults..
2556 */
2557void task_tick_numa(struct rq *rq, struct task_struct *curr)
2558{
2559 struct callback_head *work = &curr->numa_work;
2560 u64 period, now;
2561
2562 /*
2563 * We don't care about NUMA placement if we don't have memory.
2564 */
2565 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2566 return;
2567
2568 /*
2569 * Using runtime rather than walltime has the dual advantage that
2570 * we (mostly) drive the selection from busy threads and that the
2571 * task needs to have done some actual work before we bother with
2572 * NUMA placement.
2573 */
2574 now = curr->se.sum_exec_runtime;
2575 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2576
25b3e5a3 2577 if (now > curr->node_stamp + period) {
4b96a29b 2578 if (!curr->node_stamp)
598f0ec0 2579 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2580 curr->node_stamp += period;
cbee9f88
PZ
2581
2582 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2583 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2584 task_work_add(curr, work, true);
2585 }
2586 }
2587}
3fed382b
RR
2588
2589/*
2590 * Can a task be moved from prev_cpu to this_cpu without causing a load
2591 * imbalance that would trigger the load balancer?
2592 */
2593static inline bool numa_wake_affine(struct sched_domain *sd,
2594 struct task_struct *p, int this_cpu,
2595 int prev_cpu, int sync)
2596{
2597 struct numa_stats prev_load, this_load;
2598 s64 this_eff_load, prev_eff_load;
2599
2600 update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
2601 update_numa_stats(&this_load, cpu_to_node(this_cpu));
2602
2603 /*
2604 * If sync wakeup then subtract the (maximum possible)
2605 * effect of the currently running task from the load
2606 * of the current CPU:
2607 */
2608 if (sync) {
2609 unsigned long current_load = task_h_load(current);
2610
2611 if (this_load.load > current_load)
2612 this_load.load -= current_load;
2613 else
2614 this_load.load = 0;
2615 }
2616
2617 /*
2618 * In low-load situations, where this_cpu's node is idle due to the
2619 * sync cause above having dropped this_load.load to 0, move the task.
2620 * Moving to an idle socket will not create a bad imbalance.
2621 *
2622 * Otherwise check if the nodes are near enough in load to allow this
2623 * task to be woken on this_cpu's node.
2624 */
2625 if (this_load.load > 0) {
2626 unsigned long task_load = task_h_load(p);
2627
2628 this_eff_load = 100;
2629 this_eff_load *= prev_load.compute_capacity;
2630
2631 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2632 prev_eff_load *= this_load.compute_capacity;
2633
2634 this_eff_load *= this_load.load + task_load;
2635 prev_eff_load *= prev_load.load - task_load;
2636
2637 return this_eff_load <= prev_eff_load;
2638 }
2639
2640 return true;
2641}
cbee9f88
PZ
2642#else
2643static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2644{
2645}
0ec8aa00
PZ
2646
2647static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2648{
2649}
2650
2651static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2652{
2653}
3fed382b 2654
ff801b71 2655#ifdef CONFIG_SMP
3fed382b
RR
2656static inline bool numa_wake_affine(struct sched_domain *sd,
2657 struct task_struct *p, int this_cpu,
2658 int prev_cpu, int sync)
2659{
2660 return true;
2661}
ff801b71 2662#endif /* !SMP */
cbee9f88
PZ
2663#endif /* CONFIG_NUMA_BALANCING */
2664
30cfdcfc
DA
2665static void
2666account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2667{
2668 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2669 if (!parent_entity(se))
029632fb 2670 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2671#ifdef CONFIG_SMP
0ec8aa00
PZ
2672 if (entity_is_task(se)) {
2673 struct rq *rq = rq_of(cfs_rq);
2674
2675 account_numa_enqueue(rq, task_of(se));
2676 list_add(&se->group_node, &rq->cfs_tasks);
2677 }
367456c7 2678#endif
30cfdcfc 2679 cfs_rq->nr_running++;
30cfdcfc
DA
2680}
2681
2682static void
2683account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2684{
2685 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2686 if (!parent_entity(se))
029632fb 2687 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2688#ifdef CONFIG_SMP
0ec8aa00
PZ
2689 if (entity_is_task(se)) {
2690 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2691 list_del_init(&se->group_node);
0ec8aa00 2692 }
bfdb198c 2693#endif
30cfdcfc 2694 cfs_rq->nr_running--;
30cfdcfc
DA
2695}
2696
3ff6dcac
YZ
2697#ifdef CONFIG_FAIR_GROUP_SCHED
2698# ifdef CONFIG_SMP
ea1dc6fc 2699static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2700{
ea1dc6fc 2701 long tg_weight, load, shares;
cf5f0acf
PZ
2702
2703 /*
ea1dc6fc
PZ
2704 * This really should be: cfs_rq->avg.load_avg, but instead we use
2705 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2706 * the shares for small weight interactive tasks.
cf5f0acf 2707 */
ea1dc6fc 2708 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2709
ea1dc6fc 2710 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2711
ea1dc6fc
PZ
2712 /* Ensure tg_weight >= load */
2713 tg_weight -= cfs_rq->tg_load_avg_contrib;
2714 tg_weight += load;
3ff6dcac 2715
3ff6dcac 2716 shares = (tg->shares * load);
cf5f0acf
PZ
2717 if (tg_weight)
2718 shares /= tg_weight;
3ff6dcac 2719
b8fd8423
DE
2720 /*
2721 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2722 * of a group with small tg->shares value. It is a floor value which is
2723 * assigned as a minimum load.weight to the sched_entity representing
2724 * the group on a CPU.
2725 *
2726 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2727 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2728 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2729 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2730 * instead of 0.
2731 */
3ff6dcac
YZ
2732 if (shares < MIN_SHARES)
2733 shares = MIN_SHARES;
2734 if (shares > tg->shares)
2735 shares = tg->shares;
2736
2737 return shares;
2738}
3ff6dcac 2739# else /* CONFIG_SMP */
6d5ab293 2740static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2741{
2742 return tg->shares;
2743}
3ff6dcac 2744# endif /* CONFIG_SMP */
ea1dc6fc 2745
2069dd75
PZ
2746static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2747 unsigned long weight)
2748{
19e5eebb
PT
2749 if (se->on_rq) {
2750 /* commit outstanding execution time */
2751 if (cfs_rq->curr == se)
2752 update_curr(cfs_rq);
2069dd75 2753 account_entity_dequeue(cfs_rq, se);
19e5eebb 2754 }
2069dd75
PZ
2755
2756 update_load_set(&se->load, weight);
2757
2758 if (se->on_rq)
2759 account_entity_enqueue(cfs_rq, se);
2760}
2761
82958366
PT
2762static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2763
89ee048f 2764static void update_cfs_shares(struct sched_entity *se)
2069dd75 2765{
89ee048f 2766 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2767 struct task_group *tg;
3ff6dcac 2768 long shares;
2069dd75 2769
89ee048f
VG
2770 if (!cfs_rq)
2771 return;
2772
2773 if (throttled_hierarchy(cfs_rq))
2069dd75 2774 return;
89ee048f
VG
2775
2776 tg = cfs_rq->tg;
2777
3ff6dcac
YZ
2778#ifndef CONFIG_SMP
2779 if (likely(se->load.weight == tg->shares))
2780 return;
2781#endif
6d5ab293 2782 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2783
2784 reweight_entity(cfs_rq_of(se), se, shares);
2785}
89ee048f 2786
2069dd75 2787#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2788static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2789{
2790}
2791#endif /* CONFIG_FAIR_GROUP_SCHED */
2792
141965c7 2793#ifdef CONFIG_SMP
9d85f21c
PT
2794/*
2795 * Approximate:
2796 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2797 */
a481db34 2798static u64 decay_load(u64 val, u64 n)
9d85f21c 2799{
5b51f2f8
PT
2800 unsigned int local_n;
2801
05296e75 2802 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2803 return 0;
2804
2805 /* after bounds checking we can collapse to 32-bit */
2806 local_n = n;
2807
2808 /*
2809 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2810 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2811 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2812 *
2813 * To achieve constant time decay_load.
2814 */
2815 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2816 val >>= local_n / LOAD_AVG_PERIOD;
2817 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2818 }
2819
9d89c257
YD
2820 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2821 return val;
5b51f2f8
PT
2822}
2823
05296e75 2824static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2825{
05296e75 2826 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2827
a481db34 2828 /*
3841cdc3 2829 * c1 = d1 y^p
a481db34 2830 */
05296e75 2831 c1 = decay_load((u64)d1, periods);
a481db34 2832
a481db34 2833 /*
3841cdc3 2834 * p-1
05296e75
PZ
2835 * c2 = 1024 \Sum y^n
2836 * n=1
a481db34 2837 *
05296e75
PZ
2838 * inf inf
2839 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2840 * n=0 n=p
a481db34 2841 */
05296e75 2842 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2843
2844 return c1 + c2 + c3;
9d85f21c
PT
2845}
2846
54a21385 2847#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2848
a481db34
YD
2849/*
2850 * Accumulate the three separate parts of the sum; d1 the remainder
2851 * of the last (incomplete) period, d2 the span of full periods and d3
2852 * the remainder of the (incomplete) current period.
2853 *
2854 * d1 d2 d3
2855 * ^ ^ ^
2856 * | | |
2857 * |<->|<----------------->|<--->|
2858 * ... |---x---|------| ... |------|-----x (now)
2859 *
3841cdc3
PZ
2860 * p-1
2861 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2862 * n=1
a481db34 2863 *
3841cdc3 2864 * = u y^p + (Step 1)
a481db34 2865 *
3841cdc3
PZ
2866 * p-1
2867 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2868 * n=1
a481db34
YD
2869 */
2870static __always_inline u32
2871accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2872 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2873{
2874 unsigned long scale_freq, scale_cpu;
05296e75 2875 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2876 u64 periods;
a481db34
YD
2877
2878 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2879 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2880
2881 delta += sa->period_contrib;
2882 periods = delta / 1024; /* A period is 1024us (~1ms) */
2883
2884 /*
2885 * Step 1: decay old *_sum if we crossed period boundaries.
2886 */
2887 if (periods) {
2888 sa->load_sum = decay_load(sa->load_sum, periods);
2889 if (cfs_rq) {
2890 cfs_rq->runnable_load_sum =
2891 decay_load(cfs_rq->runnable_load_sum, periods);
2892 }
2893 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2894
05296e75
PZ
2895 /*
2896 * Step 2
2897 */
2898 delta %= 1024;
2899 contrib = __accumulate_pelt_segments(periods,
2900 1024 - sa->period_contrib, delta);
2901 }
a481db34
YD
2902 sa->period_contrib = delta;
2903
2904 contrib = cap_scale(contrib, scale_freq);
2905 if (weight) {
2906 sa->load_sum += weight * contrib;
2907 if (cfs_rq)
2908 cfs_rq->runnable_load_sum += weight * contrib;
2909 }
2910 if (running)
2911 sa->util_sum += contrib * scale_cpu;
2912
2913 return periods;
2914}
2915
9d85f21c
PT
2916/*
2917 * We can represent the historical contribution to runnable average as the
2918 * coefficients of a geometric series. To do this we sub-divide our runnable
2919 * history into segments of approximately 1ms (1024us); label the segment that
2920 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2921 *
2922 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2923 * p0 p1 p2
2924 * (now) (~1ms ago) (~2ms ago)
2925 *
2926 * Let u_i denote the fraction of p_i that the entity was runnable.
2927 *
2928 * We then designate the fractions u_i as our co-efficients, yielding the
2929 * following representation of historical load:
2930 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2931 *
2932 * We choose y based on the with of a reasonably scheduling period, fixing:
2933 * y^32 = 0.5
2934 *
2935 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2936 * approximately half as much as the contribution to load within the last ms
2937 * (u_0).
2938 *
2939 * When a period "rolls over" and we have new u_0`, multiplying the previous
2940 * sum again by y is sufficient to update:
2941 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2942 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2943 */
9d89c257 2944static __always_inline int
0ccb977f 2945___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2946 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2947{
a481db34 2948 u64 delta;
9d85f21c 2949
9d89c257 2950 delta = now - sa->last_update_time;
9d85f21c
PT
2951 /*
2952 * This should only happen when time goes backwards, which it
2953 * unfortunately does during sched clock init when we swap over to TSC.
2954 */
2955 if ((s64)delta < 0) {
9d89c257 2956 sa->last_update_time = now;
9d85f21c
PT
2957 return 0;
2958 }
2959
2960 /*
2961 * Use 1024ns as the unit of measurement since it's a reasonable
2962 * approximation of 1us and fast to compute.
2963 */
2964 delta >>= 10;
2965 if (!delta)
2966 return 0;
bb0bd044
PZ
2967
2968 sa->last_update_time += delta << 10;
9d85f21c 2969
a481db34
YD
2970 /*
2971 * Now we know we crossed measurement unit boundaries. The *_avg
2972 * accrues by two steps:
2973 *
2974 * Step 1: accumulate *_sum since last_update_time. If we haven't
2975 * crossed period boundaries, finish.
2976 */
2977 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2978 return 0;
9ee474f5 2979
a481db34
YD
2980 /*
2981 * Step 2: update *_avg.
2982 */
625ed2bf 2983 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
2984 if (cfs_rq) {
2985 cfs_rq->runnable_load_avg =
625ed2bf 2986 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 2987 }
625ed2bf 2988 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 2989
a481db34 2990 return 1;
9ee474f5
PT
2991}
2992
0ccb977f
PZ
2993static int
2994__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2995{
2996 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2997}
2998
2999static int
3000__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3001{
3002 return ___update_load_avg(now, cpu, &se->avg,
3003 se->on_rq * scale_load_down(se->load.weight),
3004 cfs_rq->curr == se, NULL);
3005}
3006
3007static int
3008__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3009{
3010 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3011 scale_load_down(cfs_rq->load.weight),
3012 cfs_rq->curr != NULL, cfs_rq);
3013}
3014
09a43ace
VG
3015/*
3016 * Signed add and clamp on underflow.
3017 *
3018 * Explicitly do a load-store to ensure the intermediate value never hits
3019 * memory. This allows lockless observations without ever seeing the negative
3020 * values.
3021 */
3022#define add_positive(_ptr, _val) do { \
3023 typeof(_ptr) ptr = (_ptr); \
3024 typeof(_val) val = (_val); \
3025 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3026 \
3027 res = var + val; \
3028 \
3029 if (val < 0 && res > var) \
3030 res = 0; \
3031 \
3032 WRITE_ONCE(*ptr, res); \
3033} while (0)
3034
c566e8e9 3035#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3036/**
3037 * update_tg_load_avg - update the tg's load avg
3038 * @cfs_rq: the cfs_rq whose avg changed
3039 * @force: update regardless of how small the difference
3040 *
3041 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3042 * However, because tg->load_avg is a global value there are performance
3043 * considerations.
3044 *
3045 * In order to avoid having to look at the other cfs_rq's, we use a
3046 * differential update where we store the last value we propagated. This in
3047 * turn allows skipping updates if the differential is 'small'.
3048 *
815abf5a 3049 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3050 */
9d89c257 3051static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3052{
9d89c257 3053 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3054
aa0b7ae0
WL
3055 /*
3056 * No need to update load_avg for root_task_group as it is not used.
3057 */
3058 if (cfs_rq->tg == &root_task_group)
3059 return;
3060
9d89c257
YD
3061 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3062 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3063 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3064 }
8165e145 3065}
f5f9739d 3066
ad936d86
BP
3067/*
3068 * Called within set_task_rq() right before setting a task's cpu. The
3069 * caller only guarantees p->pi_lock is held; no other assumptions,
3070 * including the state of rq->lock, should be made.
3071 */
3072void set_task_rq_fair(struct sched_entity *se,
3073 struct cfs_rq *prev, struct cfs_rq *next)
3074{
0ccb977f
PZ
3075 u64 p_last_update_time;
3076 u64 n_last_update_time;
3077
ad936d86
BP
3078 if (!sched_feat(ATTACH_AGE_LOAD))
3079 return;
3080
3081 /*
3082 * We are supposed to update the task to "current" time, then its up to
3083 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3084 * getting what current time is, so simply throw away the out-of-date
3085 * time. This will result in the wakee task is less decayed, but giving
3086 * the wakee more load sounds not bad.
3087 */
0ccb977f
PZ
3088 if (!(se->avg.last_update_time && prev))
3089 return;
ad936d86
BP
3090
3091#ifndef CONFIG_64BIT
0ccb977f 3092 {
ad936d86
BP
3093 u64 p_last_update_time_copy;
3094 u64 n_last_update_time_copy;
3095
3096 do {
3097 p_last_update_time_copy = prev->load_last_update_time_copy;
3098 n_last_update_time_copy = next->load_last_update_time_copy;
3099
3100 smp_rmb();
3101
3102 p_last_update_time = prev->avg.last_update_time;
3103 n_last_update_time = next->avg.last_update_time;
3104
3105 } while (p_last_update_time != p_last_update_time_copy ||
3106 n_last_update_time != n_last_update_time_copy);
0ccb977f 3107 }
ad936d86 3108#else
0ccb977f
PZ
3109 p_last_update_time = prev->avg.last_update_time;
3110 n_last_update_time = next->avg.last_update_time;
ad936d86 3111#endif
0ccb977f
PZ
3112 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3113 se->avg.last_update_time = n_last_update_time;
ad936d86 3114}
09a43ace
VG
3115
3116/* Take into account change of utilization of a child task group */
3117static inline void
3118update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3119{
3120 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3121 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3122
3123 /* Nothing to update */
3124 if (!delta)
3125 return;
3126
3127 /* Set new sched_entity's utilization */
3128 se->avg.util_avg = gcfs_rq->avg.util_avg;
3129 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3130
3131 /* Update parent cfs_rq utilization */
3132 add_positive(&cfs_rq->avg.util_avg, delta);
3133 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3134}
3135
3136/* Take into account change of load of a child task group */
3137static inline void
3138update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3139{
3140 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3141 long delta, load = gcfs_rq->avg.load_avg;
3142
3143 /*
3144 * If the load of group cfs_rq is null, the load of the
3145 * sched_entity will also be null so we can skip the formula
3146 */
3147 if (load) {
3148 long tg_load;
3149
3150 /* Get tg's load and ensure tg_load > 0 */
3151 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3152
3153 /* Ensure tg_load >= load and updated with current load*/
3154 tg_load -= gcfs_rq->tg_load_avg_contrib;
3155 tg_load += load;
3156
3157 /*
3158 * We need to compute a correction term in the case that the
3159 * task group is consuming more CPU than a task of equal
3160 * weight. A task with a weight equals to tg->shares will have
3161 * a load less or equal to scale_load_down(tg->shares).
3162 * Similarly, the sched_entities that represent the task group
3163 * at parent level, can't have a load higher than
3164 * scale_load_down(tg->shares). And the Sum of sched_entities'
3165 * load must be <= scale_load_down(tg->shares).
3166 */
3167 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3168 /* scale gcfs_rq's load into tg's shares*/
3169 load *= scale_load_down(gcfs_rq->tg->shares);
3170 load /= tg_load;
3171 }
3172 }
3173
3174 delta = load - se->avg.load_avg;
3175
3176 /* Nothing to update */
3177 if (!delta)
3178 return;
3179
3180 /* Set new sched_entity's load */
3181 se->avg.load_avg = load;
3182 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3183
3184 /* Update parent cfs_rq load */
3185 add_positive(&cfs_rq->avg.load_avg, delta);
3186 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3187
3188 /*
3189 * If the sched_entity is already enqueued, we also have to update the
3190 * runnable load avg.
3191 */
3192 if (se->on_rq) {
3193 /* Update parent cfs_rq runnable_load_avg */
3194 add_positive(&cfs_rq->runnable_load_avg, delta);
3195 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3196 }
3197}
3198
3199static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3200{
3201 cfs_rq->propagate_avg = 1;
3202}
3203
3204static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3205{
3206 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3207
3208 if (!cfs_rq->propagate_avg)
3209 return 0;
3210
3211 cfs_rq->propagate_avg = 0;
3212 return 1;
3213}
3214
3215/* Update task and its cfs_rq load average */
3216static inline int propagate_entity_load_avg(struct sched_entity *se)
3217{
3218 struct cfs_rq *cfs_rq;
3219
3220 if (entity_is_task(se))
3221 return 0;
3222
3223 if (!test_and_clear_tg_cfs_propagate(se))
3224 return 0;
3225
3226 cfs_rq = cfs_rq_of(se);
3227
3228 set_tg_cfs_propagate(cfs_rq);
3229
3230 update_tg_cfs_util(cfs_rq, se);
3231 update_tg_cfs_load(cfs_rq, se);
3232
3233 return 1;
3234}
3235
bc427898
VG
3236/*
3237 * Check if we need to update the load and the utilization of a blocked
3238 * group_entity:
3239 */
3240static inline bool skip_blocked_update(struct sched_entity *se)
3241{
3242 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3243
3244 /*
3245 * If sched_entity still have not zero load or utilization, we have to
3246 * decay it:
3247 */
3248 if (se->avg.load_avg || se->avg.util_avg)
3249 return false;
3250
3251 /*
3252 * If there is a pending propagation, we have to update the load and
3253 * the utilization of the sched_entity:
3254 */
3255 if (gcfs_rq->propagate_avg)
3256 return false;
3257
3258 /*
3259 * Otherwise, the load and the utilization of the sched_entity is
3260 * already zero and there is no pending propagation, so it will be a
3261 * waste of time to try to decay it:
3262 */
3263 return true;
3264}
3265
6e83125c 3266#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3267
9d89c257 3268static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3269
3270static inline int propagate_entity_load_avg(struct sched_entity *se)
3271{
3272 return 0;
3273}
3274
3275static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3276
6e83125c 3277#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3278
a2c6c91f
SM
3279static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3280{
58919e83 3281 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3282 /*
3283 * There are a few boundary cases this might miss but it should
3284 * get called often enough that that should (hopefully) not be
3285 * a real problem -- added to that it only calls on the local
3286 * CPU, so if we enqueue remotely we'll miss an update, but
3287 * the next tick/schedule should update.
3288 *
3289 * It will not get called when we go idle, because the idle
3290 * thread is a different class (!fair), nor will the utilization
3291 * number include things like RT tasks.
3292 *
3293 * As is, the util number is not freq-invariant (we'd have to
3294 * implement arch_scale_freq_capacity() for that).
3295 *
3296 * See cpu_util().
3297 */
12bde33d 3298 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3299 }
3300}
3301
89741892
PZ
3302/*
3303 * Unsigned subtract and clamp on underflow.
3304 *
3305 * Explicitly do a load-store to ensure the intermediate value never hits
3306 * memory. This allows lockless observations without ever seeing the negative
3307 * values.
3308 */
3309#define sub_positive(_ptr, _val) do { \
3310 typeof(_ptr) ptr = (_ptr); \
3311 typeof(*ptr) val = (_val); \
3312 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3313 res = var - val; \
3314 if (res > var) \
3315 res = 0; \
3316 WRITE_ONCE(*ptr, res); \
3317} while (0)
3318
3d30544f
PZ
3319/**
3320 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3321 * @now: current time, as per cfs_rq_clock_task()
3322 * @cfs_rq: cfs_rq to update
3323 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3324 *
3325 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3326 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3327 * post_init_entity_util_avg().
3328 *
3329 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3330 *
7c3edd2c
PZ
3331 * Returns true if the load decayed or we removed load.
3332 *
3333 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3334 * call update_tg_load_avg() when this function returns true.
3d30544f 3335 */
a2c6c91f
SM
3336static inline int
3337update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3338{
9d89c257 3339 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3340 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3341
9d89c257 3342 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3343 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3344 sub_positive(&sa->load_avg, r);
3345 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3346 removed_load = 1;
4e516076 3347 set_tg_cfs_propagate(cfs_rq);
8165e145 3348 }
2dac754e 3349
9d89c257
YD
3350 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3351 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3352 sub_positive(&sa->util_avg, r);
3353 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3354 removed_util = 1;
4e516076 3355 set_tg_cfs_propagate(cfs_rq);
9d89c257 3356 }
36ee28e4 3357
0ccb977f 3358 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3359
9d89c257
YD
3360#ifndef CONFIG_64BIT
3361 smp_wmb();
3362 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3363#endif
36ee28e4 3364
a2c6c91f
SM
3365 if (update_freq && (decayed || removed_util))
3366 cfs_rq_util_change(cfs_rq);
21e96f88 3367
41e0d37f 3368 return decayed || removed_load;
21e96f88
SM
3369}
3370
d31b1a66
VG
3371/*
3372 * Optional action to be done while updating the load average
3373 */
3374#define UPDATE_TG 0x1
3375#define SKIP_AGE_LOAD 0x2
3376
21e96f88 3377/* Update task and its cfs_rq load average */
d31b1a66 3378static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3379{
3380 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3381 u64 now = cfs_rq_clock_task(cfs_rq);
3382 struct rq *rq = rq_of(cfs_rq);
3383 int cpu = cpu_of(rq);
09a43ace 3384 int decayed;
21e96f88
SM
3385
3386 /*
3387 * Track task load average for carrying it to new CPU after migrated, and
3388 * track group sched_entity load average for task_h_load calc in migration
3389 */
0ccb977f
PZ
3390 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3391 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3392
09a43ace
VG
3393 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3394 decayed |= propagate_entity_load_avg(se);
3395
3396 if (decayed && (flags & UPDATE_TG))
21e96f88 3397 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3398}
3399
3d30544f
PZ
3400/**
3401 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3402 * @cfs_rq: cfs_rq to attach to
3403 * @se: sched_entity to attach
3404 *
3405 * Must call update_cfs_rq_load_avg() before this, since we rely on
3406 * cfs_rq->avg.last_update_time being current.
3407 */
a05e8c51
BP
3408static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3409{
3410 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3411 cfs_rq->avg.load_avg += se->avg.load_avg;
3412 cfs_rq->avg.load_sum += se->avg.load_sum;
3413 cfs_rq->avg.util_avg += se->avg.util_avg;
3414 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3415 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3416
3417 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3418}
3419
3d30544f
PZ
3420/**
3421 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3422 * @cfs_rq: cfs_rq to detach from
3423 * @se: sched_entity to detach
3424 *
3425 * Must call update_cfs_rq_load_avg() before this, since we rely on
3426 * cfs_rq->avg.last_update_time being current.
3427 */
a05e8c51
BP
3428static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3429{
a05e8c51 3430
89741892
PZ
3431 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3432 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3433 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3434 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3435 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3436
3437 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3438}
3439
9d89c257
YD
3440/* Add the load generated by se into cfs_rq's load average */
3441static inline void
3442enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3443{
9d89c257 3444 struct sched_avg *sa = &se->avg;
18bf2805 3445
13962234
YD
3446 cfs_rq->runnable_load_avg += sa->load_avg;
3447 cfs_rq->runnable_load_sum += sa->load_sum;
3448
d31b1a66 3449 if (!sa->last_update_time) {
a05e8c51 3450 attach_entity_load_avg(cfs_rq, se);
9d89c257 3451 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3452 }
2dac754e
PT
3453}
3454
13962234
YD
3455/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3456static inline void
3457dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3458{
13962234
YD
3459 cfs_rq->runnable_load_avg =
3460 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3461 cfs_rq->runnable_load_sum =
a05e8c51 3462 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3463}
3464
9d89c257 3465#ifndef CONFIG_64BIT
0905f04e
YD
3466static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3467{
9d89c257 3468 u64 last_update_time_copy;
0905f04e 3469 u64 last_update_time;
9ee474f5 3470
9d89c257
YD
3471 do {
3472 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3473 smp_rmb();
3474 last_update_time = cfs_rq->avg.last_update_time;
3475 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3476
3477 return last_update_time;
3478}
9d89c257 3479#else
0905f04e
YD
3480static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3481{
3482 return cfs_rq->avg.last_update_time;
3483}
9d89c257
YD
3484#endif
3485
104cb16d
MR
3486/*
3487 * Synchronize entity load avg of dequeued entity without locking
3488 * the previous rq.
3489 */
3490void sync_entity_load_avg(struct sched_entity *se)
3491{
3492 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3493 u64 last_update_time;
3494
3495 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3496 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3497}
3498
0905f04e
YD
3499/*
3500 * Task first catches up with cfs_rq, and then subtract
3501 * itself from the cfs_rq (task must be off the queue now).
3502 */
3503void remove_entity_load_avg(struct sched_entity *se)
3504{
3505 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3506
3507 /*
7dc603c9
PZ
3508 * tasks cannot exit without having gone through wake_up_new_task() ->
3509 * post_init_entity_util_avg() which will have added things to the
3510 * cfs_rq, so we can remove unconditionally.
3511 *
3512 * Similarly for groups, they will have passed through
3513 * post_init_entity_util_avg() before unregister_sched_fair_group()
3514 * calls this.
0905f04e 3515 */
0905f04e 3516
104cb16d 3517 sync_entity_load_avg(se);
9d89c257
YD
3518 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3519 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3520}
642dbc39 3521
7ea241af
YD
3522static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3523{
3524 return cfs_rq->runnable_load_avg;
3525}
3526
3527static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3528{
3529 return cfs_rq->avg.load_avg;
3530}
3531
46f69fa3 3532static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3533
38033c37
PZ
3534#else /* CONFIG_SMP */
3535
01011473
PZ
3536static inline int
3537update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3538{
3539 return 0;
3540}
3541
d31b1a66
VG
3542#define UPDATE_TG 0x0
3543#define SKIP_AGE_LOAD 0x0
3544
3545static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3546{
12bde33d 3547 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3548}
3549
9d89c257
YD
3550static inline void
3551enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3552static inline void
3553dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3554static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3555
a05e8c51
BP
3556static inline void
3557attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3558static inline void
3559detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3560
46f69fa3 3561static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3562{
3563 return 0;
3564}
3565
38033c37 3566#endif /* CONFIG_SMP */
9d85f21c 3567
ddc97297
PZ
3568static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3569{
3570#ifdef CONFIG_SCHED_DEBUG
3571 s64 d = se->vruntime - cfs_rq->min_vruntime;
3572
3573 if (d < 0)
3574 d = -d;
3575
3576 if (d > 3*sysctl_sched_latency)
ae92882e 3577 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3578#endif
3579}
3580
aeb73b04
PZ
3581static void
3582place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3583{
1af5f730 3584 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3585
2cb8600e
PZ
3586 /*
3587 * The 'current' period is already promised to the current tasks,
3588 * however the extra weight of the new task will slow them down a
3589 * little, place the new task so that it fits in the slot that
3590 * stays open at the end.
3591 */
94dfb5e7 3592 if (initial && sched_feat(START_DEBIT))
f9c0b095 3593 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3594
a2e7a7eb 3595 /* sleeps up to a single latency don't count. */
5ca9880c 3596 if (!initial) {
a2e7a7eb 3597 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3598
a2e7a7eb
MG
3599 /*
3600 * Halve their sleep time's effect, to allow
3601 * for a gentler effect of sleepers:
3602 */
3603 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3604 thresh >>= 1;
51e0304c 3605
a2e7a7eb 3606 vruntime -= thresh;
aeb73b04
PZ
3607 }
3608
b5d9d734 3609 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3610 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3611}
3612
d3d9dc33
PT
3613static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3614
cb251765
MG
3615static inline void check_schedstat_required(void)
3616{
3617#ifdef CONFIG_SCHEDSTATS
3618 if (schedstat_enabled())
3619 return;
3620
3621 /* Force schedstat enabled if a dependent tracepoint is active */
3622 if (trace_sched_stat_wait_enabled() ||
3623 trace_sched_stat_sleep_enabled() ||
3624 trace_sched_stat_iowait_enabled() ||
3625 trace_sched_stat_blocked_enabled() ||
3626 trace_sched_stat_runtime_enabled()) {
eda8dca5 3627 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3628 "stat_blocked and stat_runtime require the "
f67abed5 3629 "kernel parameter schedstats=enable or "
cb251765
MG
3630 "kernel.sched_schedstats=1\n");
3631 }
3632#endif
3633}
3634
b5179ac7
PZ
3635
3636/*
3637 * MIGRATION
3638 *
3639 * dequeue
3640 * update_curr()
3641 * update_min_vruntime()
3642 * vruntime -= min_vruntime
3643 *
3644 * enqueue
3645 * update_curr()
3646 * update_min_vruntime()
3647 * vruntime += min_vruntime
3648 *
3649 * this way the vruntime transition between RQs is done when both
3650 * min_vruntime are up-to-date.
3651 *
3652 * WAKEUP (remote)
3653 *
59efa0ba 3654 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3655 * vruntime -= min_vruntime
3656 *
3657 * enqueue
3658 * update_curr()
3659 * update_min_vruntime()
3660 * vruntime += min_vruntime
3661 *
3662 * this way we don't have the most up-to-date min_vruntime on the originating
3663 * CPU and an up-to-date min_vruntime on the destination CPU.
3664 */
3665
bf0f6f24 3666static void
88ec22d3 3667enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3668{
2f950354
PZ
3669 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3670 bool curr = cfs_rq->curr == se;
3671
88ec22d3 3672 /*
2f950354
PZ
3673 * If we're the current task, we must renormalise before calling
3674 * update_curr().
88ec22d3 3675 */
2f950354 3676 if (renorm && curr)
88ec22d3
PZ
3677 se->vruntime += cfs_rq->min_vruntime;
3678
2f950354
PZ
3679 update_curr(cfs_rq);
3680
bf0f6f24 3681 /*
2f950354
PZ
3682 * Otherwise, renormalise after, such that we're placed at the current
3683 * moment in time, instead of some random moment in the past. Being
3684 * placed in the past could significantly boost this task to the
3685 * fairness detriment of existing tasks.
bf0f6f24 3686 */
2f950354
PZ
3687 if (renorm && !curr)
3688 se->vruntime += cfs_rq->min_vruntime;
3689
89ee048f
VG
3690 /*
3691 * When enqueuing a sched_entity, we must:
3692 * - Update loads to have both entity and cfs_rq synced with now.
3693 * - Add its load to cfs_rq->runnable_avg
3694 * - For group_entity, update its weight to reflect the new share of
3695 * its group cfs_rq
3696 * - Add its new weight to cfs_rq->load.weight
3697 */
d31b1a66 3698 update_load_avg(se, UPDATE_TG);
9d89c257 3699 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3700 update_cfs_shares(se);
17bc14b7 3701 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3702
1a3d027c 3703 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3704 place_entity(cfs_rq, se, 0);
bf0f6f24 3705
cb251765 3706 check_schedstat_required();
4fa8d299
JP
3707 update_stats_enqueue(cfs_rq, se, flags);
3708 check_spread(cfs_rq, se);
2f950354 3709 if (!curr)
83b699ed 3710 __enqueue_entity(cfs_rq, se);
2069dd75 3711 se->on_rq = 1;
3d4b47b4 3712
d3d9dc33 3713 if (cfs_rq->nr_running == 1) {
3d4b47b4 3714 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3715 check_enqueue_throttle(cfs_rq);
3716 }
bf0f6f24
IM
3717}
3718
2c13c919 3719static void __clear_buddies_last(struct sched_entity *se)
2002c695 3720{
2c13c919
RR
3721 for_each_sched_entity(se) {
3722 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3723 if (cfs_rq->last != se)
2c13c919 3724 break;
f1044799
PZ
3725
3726 cfs_rq->last = NULL;
2c13c919
RR
3727 }
3728}
2002c695 3729
2c13c919
RR
3730static void __clear_buddies_next(struct sched_entity *se)
3731{
3732 for_each_sched_entity(se) {
3733 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3734 if (cfs_rq->next != se)
2c13c919 3735 break;
f1044799
PZ
3736
3737 cfs_rq->next = NULL;
2c13c919 3738 }
2002c695
PZ
3739}
3740
ac53db59
RR
3741static void __clear_buddies_skip(struct sched_entity *se)
3742{
3743 for_each_sched_entity(se) {
3744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3745 if (cfs_rq->skip != se)
ac53db59 3746 break;
f1044799
PZ
3747
3748 cfs_rq->skip = NULL;
ac53db59
RR
3749 }
3750}
3751
a571bbea
PZ
3752static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753{
2c13c919
RR
3754 if (cfs_rq->last == se)
3755 __clear_buddies_last(se);
3756
3757 if (cfs_rq->next == se)
3758 __clear_buddies_next(se);
ac53db59
RR
3759
3760 if (cfs_rq->skip == se)
3761 __clear_buddies_skip(se);
a571bbea
PZ
3762}
3763
6c16a6dc 3764static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3765
bf0f6f24 3766static void
371fd7e7 3767dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3768{
a2a2d680
DA
3769 /*
3770 * Update run-time statistics of the 'current'.
3771 */
3772 update_curr(cfs_rq);
89ee048f
VG
3773
3774 /*
3775 * When dequeuing a sched_entity, we must:
3776 * - Update loads to have both entity and cfs_rq synced with now.
3777 * - Substract its load from the cfs_rq->runnable_avg.
3778 * - Substract its previous weight from cfs_rq->load.weight.
3779 * - For group entity, update its weight to reflect the new share
3780 * of its group cfs_rq.
3781 */
d31b1a66 3782 update_load_avg(se, UPDATE_TG);
13962234 3783 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3784
4fa8d299 3785 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3786
2002c695 3787 clear_buddies(cfs_rq, se);
4793241b 3788
83b699ed 3789 if (se != cfs_rq->curr)
30cfdcfc 3790 __dequeue_entity(cfs_rq, se);
17bc14b7 3791 se->on_rq = 0;
30cfdcfc 3792 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3793
3794 /*
b60205c7
PZ
3795 * Normalize after update_curr(); which will also have moved
3796 * min_vruntime if @se is the one holding it back. But before doing
3797 * update_min_vruntime() again, which will discount @se's position and
3798 * can move min_vruntime forward still more.
88ec22d3 3799 */
371fd7e7 3800 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3801 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3802
d8b4986d
PT
3803 /* return excess runtime on last dequeue */
3804 return_cfs_rq_runtime(cfs_rq);
3805
89ee048f 3806 update_cfs_shares(se);
b60205c7
PZ
3807
3808 /*
3809 * Now advance min_vruntime if @se was the entity holding it back,
3810 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3811 * put back on, and if we advance min_vruntime, we'll be placed back
3812 * further than we started -- ie. we'll be penalized.
3813 */
3814 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3815 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3816}
3817
3818/*
3819 * Preempt the current task with a newly woken task if needed:
3820 */
7c92e54f 3821static void
2e09bf55 3822check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3823{
11697830 3824 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3825 struct sched_entity *se;
3826 s64 delta;
11697830 3827
6d0f0ebd 3828 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3829 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3830 if (delta_exec > ideal_runtime) {
8875125e 3831 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3832 /*
3833 * The current task ran long enough, ensure it doesn't get
3834 * re-elected due to buddy favours.
3835 */
3836 clear_buddies(cfs_rq, curr);
f685ceac
MG
3837 return;
3838 }
3839
3840 /*
3841 * Ensure that a task that missed wakeup preemption by a
3842 * narrow margin doesn't have to wait for a full slice.
3843 * This also mitigates buddy induced latencies under load.
3844 */
f685ceac
MG
3845 if (delta_exec < sysctl_sched_min_granularity)
3846 return;
3847
f4cfb33e
WX
3848 se = __pick_first_entity(cfs_rq);
3849 delta = curr->vruntime - se->vruntime;
f685ceac 3850
f4cfb33e
WX
3851 if (delta < 0)
3852 return;
d7d82944 3853
f4cfb33e 3854 if (delta > ideal_runtime)
8875125e 3855 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3856}
3857
83b699ed 3858static void
8494f412 3859set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3860{
83b699ed
SV
3861 /* 'current' is not kept within the tree. */
3862 if (se->on_rq) {
3863 /*
3864 * Any task has to be enqueued before it get to execute on
3865 * a CPU. So account for the time it spent waiting on the
3866 * runqueue.
3867 */
4fa8d299 3868 update_stats_wait_end(cfs_rq, se);
83b699ed 3869 __dequeue_entity(cfs_rq, se);
d31b1a66 3870 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3871 }
3872
79303e9e 3873 update_stats_curr_start(cfs_rq, se);
429d43bc 3874 cfs_rq->curr = se;
4fa8d299 3875
eba1ed4b
IM
3876 /*
3877 * Track our maximum slice length, if the CPU's load is at
3878 * least twice that of our own weight (i.e. dont track it
3879 * when there are only lesser-weight tasks around):
3880 */
cb251765 3881 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3882 schedstat_set(se->statistics.slice_max,
3883 max((u64)schedstat_val(se->statistics.slice_max),
3884 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3885 }
4fa8d299 3886
4a55b450 3887 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3888}
3889
3f3a4904
PZ
3890static int
3891wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3892
ac53db59
RR
3893/*
3894 * Pick the next process, keeping these things in mind, in this order:
3895 * 1) keep things fair between processes/task groups
3896 * 2) pick the "next" process, since someone really wants that to run
3897 * 3) pick the "last" process, for cache locality
3898 * 4) do not run the "skip" process, if something else is available
3899 */
678d5718
PZ
3900static struct sched_entity *
3901pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3902{
678d5718
PZ
3903 struct sched_entity *left = __pick_first_entity(cfs_rq);
3904 struct sched_entity *se;
3905
3906 /*
3907 * If curr is set we have to see if its left of the leftmost entity
3908 * still in the tree, provided there was anything in the tree at all.
3909 */
3910 if (!left || (curr && entity_before(curr, left)))
3911 left = curr;
3912
3913 se = left; /* ideally we run the leftmost entity */
f4b6755f 3914
ac53db59
RR
3915 /*
3916 * Avoid running the skip buddy, if running something else can
3917 * be done without getting too unfair.
3918 */
3919 if (cfs_rq->skip == se) {
678d5718
PZ
3920 struct sched_entity *second;
3921
3922 if (se == curr) {
3923 second = __pick_first_entity(cfs_rq);
3924 } else {
3925 second = __pick_next_entity(se);
3926 if (!second || (curr && entity_before(curr, second)))
3927 second = curr;
3928 }
3929
ac53db59
RR
3930 if (second && wakeup_preempt_entity(second, left) < 1)
3931 se = second;
3932 }
aa2ac252 3933
f685ceac
MG
3934 /*
3935 * Prefer last buddy, try to return the CPU to a preempted task.
3936 */
3937 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3938 se = cfs_rq->last;
3939
ac53db59
RR
3940 /*
3941 * Someone really wants this to run. If it's not unfair, run it.
3942 */
3943 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3944 se = cfs_rq->next;
3945
f685ceac 3946 clear_buddies(cfs_rq, se);
4793241b
PZ
3947
3948 return se;
aa2ac252
PZ
3949}
3950
678d5718 3951static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3952
ab6cde26 3953static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3954{
3955 /*
3956 * If still on the runqueue then deactivate_task()
3957 * was not called and update_curr() has to be done:
3958 */
3959 if (prev->on_rq)
b7cc0896 3960 update_curr(cfs_rq);
bf0f6f24 3961
d3d9dc33
PT
3962 /* throttle cfs_rqs exceeding runtime */
3963 check_cfs_rq_runtime(cfs_rq);
3964
4fa8d299 3965 check_spread(cfs_rq, prev);
cb251765 3966
30cfdcfc 3967 if (prev->on_rq) {
4fa8d299 3968 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3969 /* Put 'current' back into the tree. */
3970 __enqueue_entity(cfs_rq, prev);
9d85f21c 3971 /* in !on_rq case, update occurred at dequeue */
9d89c257 3972 update_load_avg(prev, 0);
30cfdcfc 3973 }
429d43bc 3974 cfs_rq->curr = NULL;
bf0f6f24
IM
3975}
3976
8f4d37ec
PZ
3977static void
3978entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3979{
bf0f6f24 3980 /*
30cfdcfc 3981 * Update run-time statistics of the 'current'.
bf0f6f24 3982 */
30cfdcfc 3983 update_curr(cfs_rq);
bf0f6f24 3984
9d85f21c
PT
3985 /*
3986 * Ensure that runnable average is periodically updated.
3987 */
d31b1a66 3988 update_load_avg(curr, UPDATE_TG);
89ee048f 3989 update_cfs_shares(curr);
9d85f21c 3990
8f4d37ec
PZ
3991#ifdef CONFIG_SCHED_HRTICK
3992 /*
3993 * queued ticks are scheduled to match the slice, so don't bother
3994 * validating it and just reschedule.
3995 */
983ed7a6 3996 if (queued) {
8875125e 3997 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3998 return;
3999 }
8f4d37ec
PZ
4000 /*
4001 * don't let the period tick interfere with the hrtick preemption
4002 */
4003 if (!sched_feat(DOUBLE_TICK) &&
4004 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4005 return;
4006#endif
4007
2c2efaed 4008 if (cfs_rq->nr_running > 1)
2e09bf55 4009 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4010}
4011
ab84d31e
PT
4012
4013/**************************************************
4014 * CFS bandwidth control machinery
4015 */
4016
4017#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4018
4019#ifdef HAVE_JUMP_LABEL
c5905afb 4020static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4021
4022static inline bool cfs_bandwidth_used(void)
4023{
c5905afb 4024 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4025}
4026
1ee14e6c 4027void cfs_bandwidth_usage_inc(void)
029632fb 4028{
1ee14e6c
BS
4029 static_key_slow_inc(&__cfs_bandwidth_used);
4030}
4031
4032void cfs_bandwidth_usage_dec(void)
4033{
4034 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4035}
4036#else /* HAVE_JUMP_LABEL */
4037static bool cfs_bandwidth_used(void)
4038{
4039 return true;
4040}
4041
1ee14e6c
BS
4042void cfs_bandwidth_usage_inc(void) {}
4043void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4044#endif /* HAVE_JUMP_LABEL */
4045
ab84d31e
PT
4046/*
4047 * default period for cfs group bandwidth.
4048 * default: 0.1s, units: nanoseconds
4049 */
4050static inline u64 default_cfs_period(void)
4051{
4052 return 100000000ULL;
4053}
ec12cb7f
PT
4054
4055static inline u64 sched_cfs_bandwidth_slice(void)
4056{
4057 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4058}
4059
a9cf55b2
PT
4060/*
4061 * Replenish runtime according to assigned quota and update expiration time.
4062 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4063 * additional synchronization around rq->lock.
4064 *
4065 * requires cfs_b->lock
4066 */
029632fb 4067void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4068{
4069 u64 now;
4070
4071 if (cfs_b->quota == RUNTIME_INF)
4072 return;
4073
4074 now = sched_clock_cpu(smp_processor_id());
4075 cfs_b->runtime = cfs_b->quota;
4076 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4077}
4078
029632fb
PZ
4079static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4080{
4081 return &tg->cfs_bandwidth;
4082}
4083
f1b17280
PT
4084/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4085static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4086{
4087 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4088 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4089
78becc27 4090 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4091}
4092
85dac906
PT
4093/* returns 0 on failure to allocate runtime */
4094static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4095{
4096 struct task_group *tg = cfs_rq->tg;
4097 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4098 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4099
4100 /* note: this is a positive sum as runtime_remaining <= 0 */
4101 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4102
4103 raw_spin_lock(&cfs_b->lock);
4104 if (cfs_b->quota == RUNTIME_INF)
4105 amount = min_amount;
58088ad0 4106 else {
77a4d1a1 4107 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4108
4109 if (cfs_b->runtime > 0) {
4110 amount = min(cfs_b->runtime, min_amount);
4111 cfs_b->runtime -= amount;
4112 cfs_b->idle = 0;
4113 }
ec12cb7f 4114 }
a9cf55b2 4115 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4116 raw_spin_unlock(&cfs_b->lock);
4117
4118 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4119 /*
4120 * we may have advanced our local expiration to account for allowed
4121 * spread between our sched_clock and the one on which runtime was
4122 * issued.
4123 */
4124 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4125 cfs_rq->runtime_expires = expires;
85dac906
PT
4126
4127 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4128}
4129
a9cf55b2
PT
4130/*
4131 * Note: This depends on the synchronization provided by sched_clock and the
4132 * fact that rq->clock snapshots this value.
4133 */
4134static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4135{
a9cf55b2 4136 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4137
4138 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4139 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4140 return;
4141
a9cf55b2
PT
4142 if (cfs_rq->runtime_remaining < 0)
4143 return;
4144
4145 /*
4146 * If the local deadline has passed we have to consider the
4147 * possibility that our sched_clock is 'fast' and the global deadline
4148 * has not truly expired.
4149 *
4150 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4151 * whether the global deadline has advanced. It is valid to compare
4152 * cfs_b->runtime_expires without any locks since we only care about
4153 * exact equality, so a partial write will still work.
a9cf55b2
PT
4154 */
4155
51f2176d 4156 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4157 /* extend local deadline, drift is bounded above by 2 ticks */
4158 cfs_rq->runtime_expires += TICK_NSEC;
4159 } else {
4160 /* global deadline is ahead, expiration has passed */
4161 cfs_rq->runtime_remaining = 0;
4162 }
4163}
4164
9dbdb155 4165static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4166{
4167 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4168 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4169 expire_cfs_rq_runtime(cfs_rq);
4170
4171 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4172 return;
4173
85dac906
PT
4174 /*
4175 * if we're unable to extend our runtime we resched so that the active
4176 * hierarchy can be throttled
4177 */
4178 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4179 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4180}
4181
6c16a6dc 4182static __always_inline
9dbdb155 4183void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4184{
56f570e5 4185 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4186 return;
4187
4188 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4189}
4190
85dac906
PT
4191static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4192{
56f570e5 4193 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4194}
4195
64660c86
PT
4196/* check whether cfs_rq, or any parent, is throttled */
4197static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4198{
56f570e5 4199 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4200}
4201
4202/*
4203 * Ensure that neither of the group entities corresponding to src_cpu or
4204 * dest_cpu are members of a throttled hierarchy when performing group
4205 * load-balance operations.
4206 */
4207static inline int throttled_lb_pair(struct task_group *tg,
4208 int src_cpu, int dest_cpu)
4209{
4210 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4211
4212 src_cfs_rq = tg->cfs_rq[src_cpu];
4213 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4214
4215 return throttled_hierarchy(src_cfs_rq) ||
4216 throttled_hierarchy(dest_cfs_rq);
4217}
4218
4219/* updated child weight may affect parent so we have to do this bottom up */
4220static int tg_unthrottle_up(struct task_group *tg, void *data)
4221{
4222 struct rq *rq = data;
4223 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4224
4225 cfs_rq->throttle_count--;
64660c86 4226 if (!cfs_rq->throttle_count) {
f1b17280 4227 /* adjust cfs_rq_clock_task() */
78becc27 4228 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4229 cfs_rq->throttled_clock_task;
64660c86 4230 }
64660c86
PT
4231
4232 return 0;
4233}
4234
4235static int tg_throttle_down(struct task_group *tg, void *data)
4236{
4237 struct rq *rq = data;
4238 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4239
82958366
PT
4240 /* group is entering throttled state, stop time */
4241 if (!cfs_rq->throttle_count)
78becc27 4242 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4243 cfs_rq->throttle_count++;
4244
4245 return 0;
4246}
4247
d3d9dc33 4248static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4249{
4250 struct rq *rq = rq_of(cfs_rq);
4251 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4252 struct sched_entity *se;
4253 long task_delta, dequeue = 1;
77a4d1a1 4254 bool empty;
85dac906
PT
4255
4256 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4257
f1b17280 4258 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4259 rcu_read_lock();
4260 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4261 rcu_read_unlock();
85dac906
PT
4262
4263 task_delta = cfs_rq->h_nr_running;
4264 for_each_sched_entity(se) {
4265 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4266 /* throttled entity or throttle-on-deactivate */
4267 if (!se->on_rq)
4268 break;
4269
4270 if (dequeue)
4271 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4272 qcfs_rq->h_nr_running -= task_delta;
4273
4274 if (qcfs_rq->load.weight)
4275 dequeue = 0;
4276 }
4277
4278 if (!se)
72465447 4279 sub_nr_running(rq, task_delta);
85dac906
PT
4280
4281 cfs_rq->throttled = 1;
78becc27 4282 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4283 raw_spin_lock(&cfs_b->lock);
d49db342 4284 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4285
c06f04c7
BS
4286 /*
4287 * Add to the _head_ of the list, so that an already-started
4288 * distribute_cfs_runtime will not see us
4289 */
4290 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4291
4292 /*
4293 * If we're the first throttled task, make sure the bandwidth
4294 * timer is running.
4295 */
4296 if (empty)
4297 start_cfs_bandwidth(cfs_b);
4298
85dac906
PT
4299 raw_spin_unlock(&cfs_b->lock);
4300}
4301
029632fb 4302void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4303{
4304 struct rq *rq = rq_of(cfs_rq);
4305 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4306 struct sched_entity *se;
4307 int enqueue = 1;
4308 long task_delta;
4309
22b958d8 4310 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4311
4312 cfs_rq->throttled = 0;
1a55af2e
FW
4313
4314 update_rq_clock(rq);
4315
671fd9da 4316 raw_spin_lock(&cfs_b->lock);
78becc27 4317 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4318 list_del_rcu(&cfs_rq->throttled_list);
4319 raw_spin_unlock(&cfs_b->lock);
4320
64660c86
PT
4321 /* update hierarchical throttle state */
4322 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4323
671fd9da
PT
4324 if (!cfs_rq->load.weight)
4325 return;
4326
4327 task_delta = cfs_rq->h_nr_running;
4328 for_each_sched_entity(se) {
4329 if (se->on_rq)
4330 enqueue = 0;
4331
4332 cfs_rq = cfs_rq_of(se);
4333 if (enqueue)
4334 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4335 cfs_rq->h_nr_running += task_delta;
4336
4337 if (cfs_rq_throttled(cfs_rq))
4338 break;
4339 }
4340
4341 if (!se)
72465447 4342 add_nr_running(rq, task_delta);
671fd9da
PT
4343
4344 /* determine whether we need to wake up potentially idle cpu */
4345 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4346 resched_curr(rq);
671fd9da
PT
4347}
4348
4349static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4350 u64 remaining, u64 expires)
4351{
4352 struct cfs_rq *cfs_rq;
c06f04c7
BS
4353 u64 runtime;
4354 u64 starting_runtime = remaining;
671fd9da
PT
4355
4356 rcu_read_lock();
4357 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4358 throttled_list) {
4359 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4360 struct rq_flags rf;
671fd9da 4361
8a8c69c3 4362 rq_lock(rq, &rf);
671fd9da
PT
4363 if (!cfs_rq_throttled(cfs_rq))
4364 goto next;
4365
4366 runtime = -cfs_rq->runtime_remaining + 1;
4367 if (runtime > remaining)
4368 runtime = remaining;
4369 remaining -= runtime;
4370
4371 cfs_rq->runtime_remaining += runtime;
4372 cfs_rq->runtime_expires = expires;
4373
4374 /* we check whether we're throttled above */
4375 if (cfs_rq->runtime_remaining > 0)
4376 unthrottle_cfs_rq(cfs_rq);
4377
4378next:
8a8c69c3 4379 rq_unlock(rq, &rf);
671fd9da
PT
4380
4381 if (!remaining)
4382 break;
4383 }
4384 rcu_read_unlock();
4385
c06f04c7 4386 return starting_runtime - remaining;
671fd9da
PT
4387}
4388
58088ad0
PT
4389/*
4390 * Responsible for refilling a task_group's bandwidth and unthrottling its
4391 * cfs_rqs as appropriate. If there has been no activity within the last
4392 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4393 * used to track this state.
4394 */
4395static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4396{
671fd9da 4397 u64 runtime, runtime_expires;
51f2176d 4398 int throttled;
58088ad0 4399
58088ad0
PT
4400 /* no need to continue the timer with no bandwidth constraint */
4401 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4402 goto out_deactivate;
58088ad0 4403
671fd9da 4404 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4405 cfs_b->nr_periods += overrun;
671fd9da 4406
51f2176d
BS
4407 /*
4408 * idle depends on !throttled (for the case of a large deficit), and if
4409 * we're going inactive then everything else can be deferred
4410 */
4411 if (cfs_b->idle && !throttled)
4412 goto out_deactivate;
a9cf55b2
PT
4413
4414 __refill_cfs_bandwidth_runtime(cfs_b);
4415
671fd9da
PT
4416 if (!throttled) {
4417 /* mark as potentially idle for the upcoming period */
4418 cfs_b->idle = 1;
51f2176d 4419 return 0;
671fd9da
PT
4420 }
4421
e8da1b18
NR
4422 /* account preceding periods in which throttling occurred */
4423 cfs_b->nr_throttled += overrun;
4424
671fd9da 4425 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4426
4427 /*
c06f04c7
BS
4428 * This check is repeated as we are holding onto the new bandwidth while
4429 * we unthrottle. This can potentially race with an unthrottled group
4430 * trying to acquire new bandwidth from the global pool. This can result
4431 * in us over-using our runtime if it is all used during this loop, but
4432 * only by limited amounts in that extreme case.
671fd9da 4433 */
c06f04c7
BS
4434 while (throttled && cfs_b->runtime > 0) {
4435 runtime = cfs_b->runtime;
671fd9da
PT
4436 raw_spin_unlock(&cfs_b->lock);
4437 /* we can't nest cfs_b->lock while distributing bandwidth */
4438 runtime = distribute_cfs_runtime(cfs_b, runtime,
4439 runtime_expires);
4440 raw_spin_lock(&cfs_b->lock);
4441
4442 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4443
4444 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4445 }
58088ad0 4446
671fd9da
PT
4447 /*
4448 * While we are ensured activity in the period following an
4449 * unthrottle, this also covers the case in which the new bandwidth is
4450 * insufficient to cover the existing bandwidth deficit. (Forcing the
4451 * timer to remain active while there are any throttled entities.)
4452 */
4453 cfs_b->idle = 0;
58088ad0 4454
51f2176d
BS
4455 return 0;
4456
4457out_deactivate:
51f2176d 4458 return 1;
58088ad0 4459}
d3d9dc33 4460
d8b4986d
PT
4461/* a cfs_rq won't donate quota below this amount */
4462static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4463/* minimum remaining period time to redistribute slack quota */
4464static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4465/* how long we wait to gather additional slack before distributing */
4466static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4467
db06e78c
BS
4468/*
4469 * Are we near the end of the current quota period?
4470 *
4471 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4472 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4473 * migrate_hrtimers, base is never cleared, so we are fine.
4474 */
d8b4986d
PT
4475static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4476{
4477 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4478 u64 remaining;
4479
4480 /* if the call-back is running a quota refresh is already occurring */
4481 if (hrtimer_callback_running(refresh_timer))
4482 return 1;
4483
4484 /* is a quota refresh about to occur? */
4485 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4486 if (remaining < min_expire)
4487 return 1;
4488
4489 return 0;
4490}
4491
4492static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4493{
4494 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4495
4496 /* if there's a quota refresh soon don't bother with slack */
4497 if (runtime_refresh_within(cfs_b, min_left))
4498 return;
4499
4cfafd30
PZ
4500 hrtimer_start(&cfs_b->slack_timer,
4501 ns_to_ktime(cfs_bandwidth_slack_period),
4502 HRTIMER_MODE_REL);
d8b4986d
PT
4503}
4504
4505/* we know any runtime found here is valid as update_curr() precedes return */
4506static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4507{
4508 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4509 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4510
4511 if (slack_runtime <= 0)
4512 return;
4513
4514 raw_spin_lock(&cfs_b->lock);
4515 if (cfs_b->quota != RUNTIME_INF &&
4516 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4517 cfs_b->runtime += slack_runtime;
4518
4519 /* we are under rq->lock, defer unthrottling using a timer */
4520 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4521 !list_empty(&cfs_b->throttled_cfs_rq))
4522 start_cfs_slack_bandwidth(cfs_b);
4523 }
4524 raw_spin_unlock(&cfs_b->lock);
4525
4526 /* even if it's not valid for return we don't want to try again */
4527 cfs_rq->runtime_remaining -= slack_runtime;
4528}
4529
4530static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4531{
56f570e5
PT
4532 if (!cfs_bandwidth_used())
4533 return;
4534
fccfdc6f 4535 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4536 return;
4537
4538 __return_cfs_rq_runtime(cfs_rq);
4539}
4540
4541/*
4542 * This is done with a timer (instead of inline with bandwidth return) since
4543 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4544 */
4545static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4546{
4547 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4548 u64 expires;
4549
4550 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4551 raw_spin_lock(&cfs_b->lock);
4552 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4553 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4554 return;
db06e78c 4555 }
d8b4986d 4556
c06f04c7 4557 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4558 runtime = cfs_b->runtime;
c06f04c7 4559
d8b4986d
PT
4560 expires = cfs_b->runtime_expires;
4561 raw_spin_unlock(&cfs_b->lock);
4562
4563 if (!runtime)
4564 return;
4565
4566 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4567
4568 raw_spin_lock(&cfs_b->lock);
4569 if (expires == cfs_b->runtime_expires)
c06f04c7 4570 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4571 raw_spin_unlock(&cfs_b->lock);
4572}
4573
d3d9dc33
PT
4574/*
4575 * When a group wakes up we want to make sure that its quota is not already
4576 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4577 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4578 */
4579static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4580{
56f570e5
PT
4581 if (!cfs_bandwidth_used())
4582 return;
4583
d3d9dc33
PT
4584 /* an active group must be handled by the update_curr()->put() path */
4585 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4586 return;
4587
4588 /* ensure the group is not already throttled */
4589 if (cfs_rq_throttled(cfs_rq))
4590 return;
4591
4592 /* update runtime allocation */
4593 account_cfs_rq_runtime(cfs_rq, 0);
4594 if (cfs_rq->runtime_remaining <= 0)
4595 throttle_cfs_rq(cfs_rq);
4596}
4597
55e16d30
PZ
4598static void sync_throttle(struct task_group *tg, int cpu)
4599{
4600 struct cfs_rq *pcfs_rq, *cfs_rq;
4601
4602 if (!cfs_bandwidth_used())
4603 return;
4604
4605 if (!tg->parent)
4606 return;
4607
4608 cfs_rq = tg->cfs_rq[cpu];
4609 pcfs_rq = tg->parent->cfs_rq[cpu];
4610
4611 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4612 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4613}
4614
d3d9dc33 4615/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4616static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4617{
56f570e5 4618 if (!cfs_bandwidth_used())
678d5718 4619 return false;
56f570e5 4620
d3d9dc33 4621 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4622 return false;
d3d9dc33
PT
4623
4624 /*
4625 * it's possible for a throttled entity to be forced into a running
4626 * state (e.g. set_curr_task), in this case we're finished.
4627 */
4628 if (cfs_rq_throttled(cfs_rq))
678d5718 4629 return true;
d3d9dc33
PT
4630
4631 throttle_cfs_rq(cfs_rq);
678d5718 4632 return true;
d3d9dc33 4633}
029632fb 4634
029632fb
PZ
4635static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4636{
4637 struct cfs_bandwidth *cfs_b =
4638 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4639
029632fb
PZ
4640 do_sched_cfs_slack_timer(cfs_b);
4641
4642 return HRTIMER_NORESTART;
4643}
4644
4645static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4646{
4647 struct cfs_bandwidth *cfs_b =
4648 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4649 int overrun;
4650 int idle = 0;
4651
51f2176d 4652 raw_spin_lock(&cfs_b->lock);
029632fb 4653 for (;;) {
77a4d1a1 4654 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4655 if (!overrun)
4656 break;
4657
4658 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4659 }
4cfafd30
PZ
4660 if (idle)
4661 cfs_b->period_active = 0;
51f2176d 4662 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4663
4664 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4665}
4666
4667void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4668{
4669 raw_spin_lock_init(&cfs_b->lock);
4670 cfs_b->runtime = 0;
4671 cfs_b->quota = RUNTIME_INF;
4672 cfs_b->period = ns_to_ktime(default_cfs_period());
4673
4674 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4675 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4676 cfs_b->period_timer.function = sched_cfs_period_timer;
4677 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4678 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4679}
4680
4681static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4682{
4683 cfs_rq->runtime_enabled = 0;
4684 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4685}
4686
77a4d1a1 4687void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4688{
4cfafd30 4689 lockdep_assert_held(&cfs_b->lock);
029632fb 4690
4cfafd30
PZ
4691 if (!cfs_b->period_active) {
4692 cfs_b->period_active = 1;
4693 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4694 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4695 }
029632fb
PZ
4696}
4697
4698static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4699{
7f1a169b
TH
4700 /* init_cfs_bandwidth() was not called */
4701 if (!cfs_b->throttled_cfs_rq.next)
4702 return;
4703
029632fb
PZ
4704 hrtimer_cancel(&cfs_b->period_timer);
4705 hrtimer_cancel(&cfs_b->slack_timer);
4706}
4707
502ce005
PZ
4708/*
4709 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4710 *
4711 * The race is harmless, since modifying bandwidth settings of unhooked group
4712 * bits doesn't do much.
4713 */
4714
4715/* cpu online calback */
0e59bdae
KT
4716static void __maybe_unused update_runtime_enabled(struct rq *rq)
4717{
502ce005 4718 struct task_group *tg;
0e59bdae 4719
502ce005
PZ
4720 lockdep_assert_held(&rq->lock);
4721
4722 rcu_read_lock();
4723 list_for_each_entry_rcu(tg, &task_groups, list) {
4724 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4726
4727 raw_spin_lock(&cfs_b->lock);
4728 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4729 raw_spin_unlock(&cfs_b->lock);
4730 }
502ce005 4731 rcu_read_unlock();
0e59bdae
KT
4732}
4733
502ce005 4734/* cpu offline callback */
38dc3348 4735static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4736{
502ce005
PZ
4737 struct task_group *tg;
4738
4739 lockdep_assert_held(&rq->lock);
4740
4741 rcu_read_lock();
4742 list_for_each_entry_rcu(tg, &task_groups, list) {
4743 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4744
029632fb
PZ
4745 if (!cfs_rq->runtime_enabled)
4746 continue;
4747
4748 /*
4749 * clock_task is not advancing so we just need to make sure
4750 * there's some valid quota amount
4751 */
51f2176d 4752 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4753 /*
4754 * Offline rq is schedulable till cpu is completely disabled
4755 * in take_cpu_down(), so we prevent new cfs throttling here.
4756 */
4757 cfs_rq->runtime_enabled = 0;
4758
029632fb
PZ
4759 if (cfs_rq_throttled(cfs_rq))
4760 unthrottle_cfs_rq(cfs_rq);
4761 }
502ce005 4762 rcu_read_unlock();
029632fb
PZ
4763}
4764
4765#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4766static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4767{
78becc27 4768 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4769}
4770
9dbdb155 4771static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4772static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4773static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4774static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4775static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4776
4777static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4778{
4779 return 0;
4780}
64660c86
PT
4781
4782static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4783{
4784 return 0;
4785}
4786
4787static inline int throttled_lb_pair(struct task_group *tg,
4788 int src_cpu, int dest_cpu)
4789{
4790 return 0;
4791}
029632fb
PZ
4792
4793void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4794
4795#ifdef CONFIG_FAIR_GROUP_SCHED
4796static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4797#endif
4798
029632fb
PZ
4799static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4800{
4801 return NULL;
4802}
4803static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4804static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4805static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4806
4807#endif /* CONFIG_CFS_BANDWIDTH */
4808
bf0f6f24
IM
4809/**************************************************
4810 * CFS operations on tasks:
4811 */
4812
8f4d37ec
PZ
4813#ifdef CONFIG_SCHED_HRTICK
4814static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4815{
8f4d37ec
PZ
4816 struct sched_entity *se = &p->se;
4817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4818
9148a3a1 4819 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4820
8bf46a39 4821 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4822 u64 slice = sched_slice(cfs_rq, se);
4823 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4824 s64 delta = slice - ran;
4825
4826 if (delta < 0) {
4827 if (rq->curr == p)
8875125e 4828 resched_curr(rq);
8f4d37ec
PZ
4829 return;
4830 }
31656519 4831 hrtick_start(rq, delta);
8f4d37ec
PZ
4832 }
4833}
a4c2f00f
PZ
4834
4835/*
4836 * called from enqueue/dequeue and updates the hrtick when the
4837 * current task is from our class and nr_running is low enough
4838 * to matter.
4839 */
4840static void hrtick_update(struct rq *rq)
4841{
4842 struct task_struct *curr = rq->curr;
4843
b39e66ea 4844 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4845 return;
4846
4847 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4848 hrtick_start_fair(rq, curr);
4849}
55e12e5e 4850#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4851static inline void
4852hrtick_start_fair(struct rq *rq, struct task_struct *p)
4853{
4854}
a4c2f00f
PZ
4855
4856static inline void hrtick_update(struct rq *rq)
4857{
4858}
8f4d37ec
PZ
4859#endif
4860
bf0f6f24
IM
4861/*
4862 * The enqueue_task method is called before nr_running is
4863 * increased. Here we update the fair scheduling stats and
4864 * then put the task into the rbtree:
4865 */
ea87bb78 4866static void
371fd7e7 4867enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4868{
4869 struct cfs_rq *cfs_rq;
62fb1851 4870 struct sched_entity *se = &p->se;
bf0f6f24 4871
8c34ab19
RW
4872 /*
4873 * If in_iowait is set, the code below may not trigger any cpufreq
4874 * utilization updates, so do it here explicitly with the IOWAIT flag
4875 * passed.
4876 */
4877 if (p->in_iowait)
4878 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4879
bf0f6f24 4880 for_each_sched_entity(se) {
62fb1851 4881 if (se->on_rq)
bf0f6f24
IM
4882 break;
4883 cfs_rq = cfs_rq_of(se);
88ec22d3 4884 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4885
4886 /*
4887 * end evaluation on encountering a throttled cfs_rq
4888 *
4889 * note: in the case of encountering a throttled cfs_rq we will
4890 * post the final h_nr_running increment below.
e210bffd 4891 */
85dac906
PT
4892 if (cfs_rq_throttled(cfs_rq))
4893 break;
953bfcd1 4894 cfs_rq->h_nr_running++;
85dac906 4895
88ec22d3 4896 flags = ENQUEUE_WAKEUP;
bf0f6f24 4897 }
8f4d37ec 4898
2069dd75 4899 for_each_sched_entity(se) {
0f317143 4900 cfs_rq = cfs_rq_of(se);
953bfcd1 4901 cfs_rq->h_nr_running++;
2069dd75 4902
85dac906
PT
4903 if (cfs_rq_throttled(cfs_rq))
4904 break;
4905
d31b1a66 4906 update_load_avg(se, UPDATE_TG);
89ee048f 4907 update_cfs_shares(se);
2069dd75
PZ
4908 }
4909
cd126afe 4910 if (!se)
72465447 4911 add_nr_running(rq, 1);
cd126afe 4912
a4c2f00f 4913 hrtick_update(rq);
bf0f6f24
IM
4914}
4915
2f36825b
VP
4916static void set_next_buddy(struct sched_entity *se);
4917
bf0f6f24
IM
4918/*
4919 * The dequeue_task method is called before nr_running is
4920 * decreased. We remove the task from the rbtree and
4921 * update the fair scheduling stats:
4922 */
371fd7e7 4923static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4924{
4925 struct cfs_rq *cfs_rq;
62fb1851 4926 struct sched_entity *se = &p->se;
2f36825b 4927 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4928
4929 for_each_sched_entity(se) {
4930 cfs_rq = cfs_rq_of(se);
371fd7e7 4931 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4932
4933 /*
4934 * end evaluation on encountering a throttled cfs_rq
4935 *
4936 * note: in the case of encountering a throttled cfs_rq we will
4937 * post the final h_nr_running decrement below.
4938 */
4939 if (cfs_rq_throttled(cfs_rq))
4940 break;
953bfcd1 4941 cfs_rq->h_nr_running--;
2069dd75 4942
bf0f6f24 4943 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4944 if (cfs_rq->load.weight) {
754bd598
KK
4945 /* Avoid re-evaluating load for this entity: */
4946 se = parent_entity(se);
2f36825b
VP
4947 /*
4948 * Bias pick_next to pick a task from this cfs_rq, as
4949 * p is sleeping when it is within its sched_slice.
4950 */
754bd598
KK
4951 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4952 set_next_buddy(se);
bf0f6f24 4953 break;
2f36825b 4954 }
371fd7e7 4955 flags |= DEQUEUE_SLEEP;
bf0f6f24 4956 }
8f4d37ec 4957
2069dd75 4958 for_each_sched_entity(se) {
0f317143 4959 cfs_rq = cfs_rq_of(se);
953bfcd1 4960 cfs_rq->h_nr_running--;
2069dd75 4961
85dac906
PT
4962 if (cfs_rq_throttled(cfs_rq))
4963 break;
4964
d31b1a66 4965 update_load_avg(se, UPDATE_TG);
89ee048f 4966 update_cfs_shares(se);
2069dd75
PZ
4967 }
4968
cd126afe 4969 if (!se)
72465447 4970 sub_nr_running(rq, 1);
cd126afe 4971
a4c2f00f 4972 hrtick_update(rq);
bf0f6f24
IM
4973}
4974
e7693a36 4975#ifdef CONFIG_SMP
10e2f1ac
PZ
4976
4977/* Working cpumask for: load_balance, load_balance_newidle. */
4978DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4979DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4980
9fd81dd5 4981#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4982/*
4983 * per rq 'load' arrray crap; XXX kill this.
4984 */
4985
4986/*
d937cdc5 4987 * The exact cpuload calculated at every tick would be:
3289bdb4 4988 *
d937cdc5
PZ
4989 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4990 *
4991 * If a cpu misses updates for n ticks (as it was idle) and update gets
4992 * called on the n+1-th tick when cpu may be busy, then we have:
4993 *
4994 * load_n = (1 - 1/2^i)^n * load_0
4995 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4996 *
4997 * decay_load_missed() below does efficient calculation of
3289bdb4 4998 *
d937cdc5
PZ
4999 * load' = (1 - 1/2^i)^n * load
5000 *
5001 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5002 * This allows us to precompute the above in said factors, thereby allowing the
5003 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5004 * fixed_power_int())
3289bdb4 5005 *
d937cdc5 5006 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5007 */
5008#define DEGRADE_SHIFT 7
d937cdc5
PZ
5009
5010static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5011static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5012 { 0, 0, 0, 0, 0, 0, 0, 0 },
5013 { 64, 32, 8, 0, 0, 0, 0, 0 },
5014 { 96, 72, 40, 12, 1, 0, 0, 0 },
5015 { 112, 98, 75, 43, 15, 1, 0, 0 },
5016 { 120, 112, 98, 76, 45, 16, 2, 0 }
5017};
3289bdb4
PZ
5018
5019/*
5020 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5021 * would be when CPU is idle and so we just decay the old load without
5022 * adding any new load.
5023 */
5024static unsigned long
5025decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5026{
5027 int j = 0;
5028
5029 if (!missed_updates)
5030 return load;
5031
5032 if (missed_updates >= degrade_zero_ticks[idx])
5033 return 0;
5034
5035 if (idx == 1)
5036 return load >> missed_updates;
5037
5038 while (missed_updates) {
5039 if (missed_updates % 2)
5040 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5041
5042 missed_updates >>= 1;
5043 j++;
5044 }
5045 return load;
5046}
9fd81dd5 5047#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5048
59543275 5049/**
cee1afce 5050 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5051 * @this_rq: The rq to update statistics for
5052 * @this_load: The current load
5053 * @pending_updates: The number of missed updates
59543275 5054 *
3289bdb4 5055 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5056 * scheduler tick (TICK_NSEC).
5057 *
5058 * This function computes a decaying average:
5059 *
5060 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5061 *
5062 * Because of NOHZ it might not get called on every tick which gives need for
5063 * the @pending_updates argument.
5064 *
5065 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5066 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5067 * = A * (A * load[i]_n-2 + B) + B
5068 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5069 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5070 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5071 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5072 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5073 *
5074 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5075 * any change in load would have resulted in the tick being turned back on.
5076 *
5077 * For regular NOHZ, this reduces to:
5078 *
5079 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5080 *
5081 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5082 * term.
3289bdb4 5083 */
1f41906a
FW
5084static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5085 unsigned long pending_updates)
3289bdb4 5086{
9fd81dd5 5087 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5088 int i, scale;
5089
5090 this_rq->nr_load_updates++;
5091
5092 /* Update our load: */
5093 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5094 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5095 unsigned long old_load, new_load;
5096
5097 /* scale is effectively 1 << i now, and >> i divides by scale */
5098
7400d3bb 5099 old_load = this_rq->cpu_load[i];
9fd81dd5 5100#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5101 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5102 if (tickless_load) {
5103 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5104 /*
5105 * old_load can never be a negative value because a
5106 * decayed tickless_load cannot be greater than the
5107 * original tickless_load.
5108 */
5109 old_load += tickless_load;
5110 }
9fd81dd5 5111#endif
3289bdb4
PZ
5112 new_load = this_load;
5113 /*
5114 * Round up the averaging division if load is increasing. This
5115 * prevents us from getting stuck on 9 if the load is 10, for
5116 * example.
5117 */
5118 if (new_load > old_load)
5119 new_load += scale - 1;
5120
5121 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5122 }
5123
5124 sched_avg_update(this_rq);
5125}
5126
7ea241af
YD
5127/* Used instead of source_load when we know the type == 0 */
5128static unsigned long weighted_cpuload(const int cpu)
5129{
5130 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5131}
5132
3289bdb4 5133#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5134/*
5135 * There is no sane way to deal with nohz on smp when using jiffies because the
5136 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5137 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5138 *
5139 * Therefore we need to avoid the delta approach from the regular tick when
5140 * possible since that would seriously skew the load calculation. This is why we
5141 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5142 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5143 * loop exit, nohz_idle_balance, nohz full exit...)
5144 *
5145 * This means we might still be one tick off for nohz periods.
5146 */
5147
5148static void cpu_load_update_nohz(struct rq *this_rq,
5149 unsigned long curr_jiffies,
5150 unsigned long load)
be68a682
FW
5151{
5152 unsigned long pending_updates;
5153
5154 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5155 if (pending_updates) {
5156 this_rq->last_load_update_tick = curr_jiffies;
5157 /*
5158 * In the regular NOHZ case, we were idle, this means load 0.
5159 * In the NOHZ_FULL case, we were non-idle, we should consider
5160 * its weighted load.
5161 */
1f41906a 5162 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5163 }
5164}
5165
3289bdb4
PZ
5166/*
5167 * Called from nohz_idle_balance() to update the load ratings before doing the
5168 * idle balance.
5169 */
cee1afce 5170static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5171{
3289bdb4
PZ
5172 /*
5173 * bail if there's load or we're actually up-to-date.
5174 */
be68a682 5175 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5176 return;
5177
1f41906a 5178 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5179}
5180
5181/*
1f41906a
FW
5182 * Record CPU load on nohz entry so we know the tickless load to account
5183 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5184 * than other cpu_load[idx] but it should be fine as cpu_load readers
5185 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5186 */
1f41906a 5187void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5188{
5189 struct rq *this_rq = this_rq();
1f41906a
FW
5190
5191 /*
5192 * This is all lockless but should be fine. If weighted_cpuload changes
5193 * concurrently we'll exit nohz. And cpu_load write can race with
5194 * cpu_load_update_idle() but both updater would be writing the same.
5195 */
5196 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5197}
5198
5199/*
5200 * Account the tickless load in the end of a nohz frame.
5201 */
5202void cpu_load_update_nohz_stop(void)
5203{
316c1608 5204 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5205 struct rq *this_rq = this_rq();
5206 unsigned long load;
8a8c69c3 5207 struct rq_flags rf;
3289bdb4
PZ
5208
5209 if (curr_jiffies == this_rq->last_load_update_tick)
5210 return;
5211
1f41906a 5212 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5213 rq_lock(this_rq, &rf);
b52fad2d 5214 update_rq_clock(this_rq);
1f41906a 5215 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5216 rq_unlock(this_rq, &rf);
3289bdb4 5217}
1f41906a
FW
5218#else /* !CONFIG_NO_HZ_COMMON */
5219static inline void cpu_load_update_nohz(struct rq *this_rq,
5220 unsigned long curr_jiffies,
5221 unsigned long load) { }
5222#endif /* CONFIG_NO_HZ_COMMON */
5223
5224static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5225{
9fd81dd5 5226#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5227 /* See the mess around cpu_load_update_nohz(). */
5228 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5229#endif
1f41906a
FW
5230 cpu_load_update(this_rq, load, 1);
5231}
3289bdb4
PZ
5232
5233/*
5234 * Called from scheduler_tick()
5235 */
cee1afce 5236void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5237{
7ea241af 5238 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5239
5240 if (tick_nohz_tick_stopped())
5241 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5242 else
5243 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5244}
5245
029632fb
PZ
5246/*
5247 * Return a low guess at the load of a migration-source cpu weighted
5248 * according to the scheduling class and "nice" value.
5249 *
5250 * We want to under-estimate the load of migration sources, to
5251 * balance conservatively.
5252 */
5253static unsigned long source_load(int cpu, int type)
5254{
5255 struct rq *rq = cpu_rq(cpu);
5256 unsigned long total = weighted_cpuload(cpu);
5257
5258 if (type == 0 || !sched_feat(LB_BIAS))
5259 return total;
5260
5261 return min(rq->cpu_load[type-1], total);
5262}
5263
5264/*
5265 * Return a high guess at the load of a migration-target cpu weighted
5266 * according to the scheduling class and "nice" value.
5267 */
5268static unsigned long target_load(int cpu, int type)
5269{
5270 struct rq *rq = cpu_rq(cpu);
5271 unsigned long total = weighted_cpuload(cpu);
5272
5273 if (type == 0 || !sched_feat(LB_BIAS))
5274 return total;
5275
5276 return max(rq->cpu_load[type-1], total);
5277}
5278
ced549fa 5279static unsigned long capacity_of(int cpu)
029632fb 5280{
ced549fa 5281 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5282}
5283
ca6d75e6
VG
5284static unsigned long capacity_orig_of(int cpu)
5285{
5286 return cpu_rq(cpu)->cpu_capacity_orig;
5287}
5288
029632fb
PZ
5289static unsigned long cpu_avg_load_per_task(int cpu)
5290{
5291 struct rq *rq = cpu_rq(cpu);
316c1608 5292 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5293 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5294
5295 if (nr_running)
b92486cb 5296 return load_avg / nr_running;
029632fb
PZ
5297
5298 return 0;
5299}
5300
c58d25f3
PZ
5301static void record_wakee(struct task_struct *p)
5302{
5303 /*
5304 * Only decay a single time; tasks that have less then 1 wakeup per
5305 * jiffy will not have built up many flips.
5306 */
5307 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5308 current->wakee_flips >>= 1;
5309 current->wakee_flip_decay_ts = jiffies;
5310 }
5311
5312 if (current->last_wakee != p) {
5313 current->last_wakee = p;
5314 current->wakee_flips++;
5315 }
5316}
5317
63b0e9ed
MG
5318/*
5319 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5320 *
63b0e9ed 5321 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5322 * at a frequency roughly N times higher than one of its wakees.
5323 *
5324 * In order to determine whether we should let the load spread vs consolidating
5325 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5326 * partner, and a factor of lls_size higher frequency in the other.
5327 *
5328 * With both conditions met, we can be relatively sure that the relationship is
5329 * non-monogamous, with partner count exceeding socket size.
5330 *
5331 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5332 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5333 * socket size.
63b0e9ed 5334 */
62470419
MW
5335static int wake_wide(struct task_struct *p)
5336{
63b0e9ed
MG
5337 unsigned int master = current->wakee_flips;
5338 unsigned int slave = p->wakee_flips;
7d9ffa89 5339 int factor = this_cpu_read(sd_llc_size);
62470419 5340
63b0e9ed
MG
5341 if (master < slave)
5342 swap(master, slave);
5343 if (slave < factor || master < slave * factor)
5344 return 0;
5345 return 1;
62470419
MW
5346}
5347
772bd008
MR
5348static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5349 int prev_cpu, int sync)
098fb9db 5350{
3fed382b
RR
5351 int this_cpu = smp_processor_id();
5352 bool affine = false;
098fb9db 5353
7d894e6e
RR
5354 /*
5355 * Common case: CPUs are in the same socket, and select_idle_sibling()
5356 * will do its thing regardless of what we return:
5357 */
5358 if (cpus_share_cache(prev_cpu, this_cpu))
3fed382b
RR
5359 affine = true;
5360 else
5361 affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5362
ae92882e 5363 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5364 if (affine) {
5365 schedstat_inc(sd->ttwu_move_affine);
5366 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5367 }
098fb9db 5368
3fed382b 5369 return affine;
098fb9db
IM
5370}
5371
6a0b19c0
MR
5372static inline int task_util(struct task_struct *p);
5373static int cpu_util_wake(int cpu, struct task_struct *p);
5374
5375static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5376{
5377 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5378}
5379
aaee1203
PZ
5380/*
5381 * find_idlest_group finds and returns the least busy CPU group within the
5382 * domain.
5383 */
5384static struct sched_group *
78e7ed53 5385find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5386 int this_cpu, int sd_flag)
e7693a36 5387{
b3bd3de6 5388 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5389 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5390 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5391 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5392 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5393 int load_idx = sd->forkexec_idx;
6b94780e
VG
5394 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5395 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5396 (sd->imbalance_pct-100) / 100;
e7693a36 5397
c44f2a02
VG
5398 if (sd_flag & SD_BALANCE_WAKE)
5399 load_idx = sd->wake_idx;
5400
aaee1203 5401 do {
6b94780e
VG
5402 unsigned long load, avg_load, runnable_load;
5403 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5404 int local_group;
5405 int i;
e7693a36 5406
aaee1203 5407 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5408 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5409 &p->cpus_allowed))
aaee1203
PZ
5410 continue;
5411
5412 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5413 sched_group_span(group));
aaee1203 5414
6a0b19c0
MR
5415 /*
5416 * Tally up the load of all CPUs in the group and find
5417 * the group containing the CPU with most spare capacity.
5418 */
aaee1203 5419 avg_load = 0;
6b94780e 5420 runnable_load = 0;
6a0b19c0 5421 max_spare_cap = 0;
aaee1203 5422
ae4df9d6 5423 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5424 /* Bias balancing toward cpus of our domain */
5425 if (local_group)
5426 load = source_load(i, load_idx);
5427 else
5428 load = target_load(i, load_idx);
5429
6b94780e
VG
5430 runnable_load += load;
5431
5432 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5433
5434 spare_cap = capacity_spare_wake(i, p);
5435
5436 if (spare_cap > max_spare_cap)
5437 max_spare_cap = spare_cap;
aaee1203
PZ
5438 }
5439
63b2ca30 5440 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5441 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5442 group->sgc->capacity;
5443 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5444 group->sgc->capacity;
aaee1203
PZ
5445
5446 if (local_group) {
6b94780e
VG
5447 this_runnable_load = runnable_load;
5448 this_avg_load = avg_load;
6a0b19c0
MR
5449 this_spare = max_spare_cap;
5450 } else {
6b94780e
VG
5451 if (min_runnable_load > (runnable_load + imbalance)) {
5452 /*
5453 * The runnable load is significantly smaller
5454 * so we can pick this new cpu
5455 */
5456 min_runnable_load = runnable_load;
5457 min_avg_load = avg_load;
5458 idlest = group;
5459 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5460 (100*min_avg_load > imbalance_scale*avg_load)) {
5461 /*
5462 * The runnable loads are close so take the
5463 * blocked load into account through avg_load.
5464 */
5465 min_avg_load = avg_load;
6a0b19c0
MR
5466 idlest = group;
5467 }
5468
5469 if (most_spare < max_spare_cap) {
5470 most_spare = max_spare_cap;
5471 most_spare_sg = group;
5472 }
aaee1203
PZ
5473 }
5474 } while (group = group->next, group != sd->groups);
5475
6a0b19c0
MR
5476 /*
5477 * The cross-over point between using spare capacity or least load
5478 * is too conservative for high utilization tasks on partially
5479 * utilized systems if we require spare_capacity > task_util(p),
5480 * so we allow for some task stuffing by using
5481 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5482 *
5483 * Spare capacity can't be used for fork because the utilization has
5484 * not been set yet, we must first select a rq to compute the initial
5485 * utilization.
6a0b19c0 5486 */
f519a3f1
VG
5487 if (sd_flag & SD_BALANCE_FORK)
5488 goto skip_spare;
5489
6a0b19c0 5490 if (this_spare > task_util(p) / 2 &&
6b94780e 5491 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5492 return NULL;
6b94780e
VG
5493
5494 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5495 return most_spare_sg;
5496
f519a3f1 5497skip_spare:
6b94780e
VG
5498 if (!idlest)
5499 return NULL;
5500
5501 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5502 return NULL;
6b94780e
VG
5503
5504 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5505 (100*this_avg_load < imbalance_scale*min_avg_load))
5506 return NULL;
5507
aaee1203
PZ
5508 return idlest;
5509}
5510
5511/*
5512 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5513 */
5514static int
5515find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5516{
5517 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5518 unsigned int min_exit_latency = UINT_MAX;
5519 u64 latest_idle_timestamp = 0;
5520 int least_loaded_cpu = this_cpu;
5521 int shallowest_idle_cpu = -1;
aaee1203
PZ
5522 int i;
5523
eaecf41f
MR
5524 /* Check if we have any choice: */
5525 if (group->group_weight == 1)
ae4df9d6 5526 return cpumask_first(sched_group_span(group));
eaecf41f 5527
aaee1203 5528 /* Traverse only the allowed CPUs */
ae4df9d6 5529 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5530 if (idle_cpu(i)) {
5531 struct rq *rq = cpu_rq(i);
5532 struct cpuidle_state *idle = idle_get_state(rq);
5533 if (idle && idle->exit_latency < min_exit_latency) {
5534 /*
5535 * We give priority to a CPU whose idle state
5536 * has the smallest exit latency irrespective
5537 * of any idle timestamp.
5538 */
5539 min_exit_latency = idle->exit_latency;
5540 latest_idle_timestamp = rq->idle_stamp;
5541 shallowest_idle_cpu = i;
5542 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5543 rq->idle_stamp > latest_idle_timestamp) {
5544 /*
5545 * If equal or no active idle state, then
5546 * the most recently idled CPU might have
5547 * a warmer cache.
5548 */
5549 latest_idle_timestamp = rq->idle_stamp;
5550 shallowest_idle_cpu = i;
5551 }
9f96742a 5552 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5553 load = weighted_cpuload(i);
5554 if (load < min_load || (load == min_load && i == this_cpu)) {
5555 min_load = load;
5556 least_loaded_cpu = i;
5557 }
e7693a36
GH
5558 }
5559 }
5560
83a0a96a 5561 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5562}
e7693a36 5563
10e2f1ac
PZ
5564#ifdef CONFIG_SCHED_SMT
5565
5566static inline void set_idle_cores(int cpu, int val)
5567{
5568 struct sched_domain_shared *sds;
5569
5570 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5571 if (sds)
5572 WRITE_ONCE(sds->has_idle_cores, val);
5573}
5574
5575static inline bool test_idle_cores(int cpu, bool def)
5576{
5577 struct sched_domain_shared *sds;
5578
5579 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5580 if (sds)
5581 return READ_ONCE(sds->has_idle_cores);
5582
5583 return def;
5584}
5585
5586/*
5587 * Scans the local SMT mask to see if the entire core is idle, and records this
5588 * information in sd_llc_shared->has_idle_cores.
5589 *
5590 * Since SMT siblings share all cache levels, inspecting this limited remote
5591 * state should be fairly cheap.
5592 */
1b568f0a 5593void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5594{
5595 int core = cpu_of(rq);
5596 int cpu;
5597
5598 rcu_read_lock();
5599 if (test_idle_cores(core, true))
5600 goto unlock;
5601
5602 for_each_cpu(cpu, cpu_smt_mask(core)) {
5603 if (cpu == core)
5604 continue;
5605
5606 if (!idle_cpu(cpu))
5607 goto unlock;
5608 }
5609
5610 set_idle_cores(core, 1);
5611unlock:
5612 rcu_read_unlock();
5613}
5614
5615/*
5616 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5617 * there are no idle cores left in the system; tracked through
5618 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5619 */
5620static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5621{
5622 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5623 int core, cpu;
10e2f1ac 5624
1b568f0a
PZ
5625 if (!static_branch_likely(&sched_smt_present))
5626 return -1;
5627
10e2f1ac
PZ
5628 if (!test_idle_cores(target, false))
5629 return -1;
5630
0c98d344 5631 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5632
c743f0a5 5633 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5634 bool idle = true;
5635
5636 for_each_cpu(cpu, cpu_smt_mask(core)) {
5637 cpumask_clear_cpu(cpu, cpus);
5638 if (!idle_cpu(cpu))
5639 idle = false;
5640 }
5641
5642 if (idle)
5643 return core;
5644 }
5645
5646 /*
5647 * Failed to find an idle core; stop looking for one.
5648 */
5649 set_idle_cores(target, 0);
5650
5651 return -1;
5652}
5653
5654/*
5655 * Scan the local SMT mask for idle CPUs.
5656 */
5657static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5658{
5659 int cpu;
5660
1b568f0a
PZ
5661 if (!static_branch_likely(&sched_smt_present))
5662 return -1;
5663
10e2f1ac 5664 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5665 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5666 continue;
5667 if (idle_cpu(cpu))
5668 return cpu;
5669 }
5670
5671 return -1;
5672}
5673
5674#else /* CONFIG_SCHED_SMT */
5675
5676static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5677{
5678 return -1;
5679}
5680
5681static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5682{
5683 return -1;
5684}
5685
5686#endif /* CONFIG_SCHED_SMT */
5687
5688/*
5689 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5690 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5691 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5692 */
10e2f1ac
PZ
5693static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5694{
9cfb38a7 5695 struct sched_domain *this_sd;
1ad3aaf3 5696 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5697 u64 time, cost;
5698 s64 delta;
1ad3aaf3 5699 int cpu, nr = INT_MAX;
10e2f1ac 5700
9cfb38a7
WL
5701 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5702 if (!this_sd)
5703 return -1;
5704
10e2f1ac
PZ
5705 /*
5706 * Due to large variance we need a large fuzz factor; hackbench in
5707 * particularly is sensitive here.
5708 */
1ad3aaf3
PZ
5709 avg_idle = this_rq()->avg_idle / 512;
5710 avg_cost = this_sd->avg_scan_cost + 1;
5711
5712 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5713 return -1;
5714
1ad3aaf3
PZ
5715 if (sched_feat(SIS_PROP)) {
5716 u64 span_avg = sd->span_weight * avg_idle;
5717 if (span_avg > 4*avg_cost)
5718 nr = div_u64(span_avg, avg_cost);
5719 else
5720 nr = 4;
5721 }
5722
10e2f1ac
PZ
5723 time = local_clock();
5724
c743f0a5 5725 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5726 if (!--nr)
5727 return -1;
0c98d344 5728 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5729 continue;
5730 if (idle_cpu(cpu))
5731 break;
5732 }
5733
5734 time = local_clock() - time;
5735 cost = this_sd->avg_scan_cost;
5736 delta = (s64)(time - cost) / 8;
5737 this_sd->avg_scan_cost += delta;
5738
5739 return cpu;
5740}
5741
5742/*
5743 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5744 */
772bd008 5745static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5746{
99bd5e2f 5747 struct sched_domain *sd;
10e2f1ac 5748 int i;
a50bde51 5749
e0a79f52
MG
5750 if (idle_cpu(target))
5751 return target;
99bd5e2f
SS
5752
5753 /*
10e2f1ac 5754 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5755 */
772bd008
MR
5756 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5757 return prev;
a50bde51 5758
518cd623 5759 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5760 if (!sd)
5761 return target;
772bd008 5762
10e2f1ac
PZ
5763 i = select_idle_core(p, sd, target);
5764 if ((unsigned)i < nr_cpumask_bits)
5765 return i;
37407ea7 5766
10e2f1ac
PZ
5767 i = select_idle_cpu(p, sd, target);
5768 if ((unsigned)i < nr_cpumask_bits)
5769 return i;
5770
5771 i = select_idle_smt(p, sd, target);
5772 if ((unsigned)i < nr_cpumask_bits)
5773 return i;
970e1789 5774
a50bde51
PZ
5775 return target;
5776}
231678b7 5777
8bb5b00c 5778/*
9e91d61d 5779 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5780 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5781 * compare the utilization with the capacity of the CPU that is available for
5782 * CFS task (ie cpu_capacity).
231678b7
DE
5783 *
5784 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5785 * recent utilization of currently non-runnable tasks on a CPU. It represents
5786 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5787 * capacity_orig is the cpu_capacity available at the highest frequency
5788 * (arch_scale_freq_capacity()).
5789 * The utilization of a CPU converges towards a sum equal to or less than the
5790 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5791 * the running time on this CPU scaled by capacity_curr.
5792 *
5793 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5794 * higher than capacity_orig because of unfortunate rounding in
5795 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5796 * the average stabilizes with the new running time. We need to check that the
5797 * utilization stays within the range of [0..capacity_orig] and cap it if
5798 * necessary. Without utilization capping, a group could be seen as overloaded
5799 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5800 * available capacity. We allow utilization to overshoot capacity_curr (but not
5801 * capacity_orig) as it useful for predicting the capacity required after task
5802 * migrations (scheduler-driven DVFS).
8bb5b00c 5803 */
9e91d61d 5804static int cpu_util(int cpu)
8bb5b00c 5805{
9e91d61d 5806 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5807 unsigned long capacity = capacity_orig_of(cpu);
5808
231678b7 5809 return (util >= capacity) ? capacity : util;
8bb5b00c 5810}
a50bde51 5811
3273163c
MR
5812static inline int task_util(struct task_struct *p)
5813{
5814 return p->se.avg.util_avg;
5815}
5816
104cb16d
MR
5817/*
5818 * cpu_util_wake: Compute cpu utilization with any contributions from
5819 * the waking task p removed.
5820 */
5821static int cpu_util_wake(int cpu, struct task_struct *p)
5822{
5823 unsigned long util, capacity;
5824
5825 /* Task has no contribution or is new */
5826 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5827 return cpu_util(cpu);
5828
5829 capacity = capacity_orig_of(cpu);
5830 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5831
5832 return (util >= capacity) ? capacity : util;
5833}
5834
3273163c
MR
5835/*
5836 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5837 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5838 *
5839 * In that case WAKE_AFFINE doesn't make sense and we'll let
5840 * BALANCE_WAKE sort things out.
5841 */
5842static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5843{
5844 long min_cap, max_cap;
5845
5846 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5847 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5848
5849 /* Minimum capacity is close to max, no need to abort wake_affine */
5850 if (max_cap - min_cap < max_cap >> 3)
5851 return 0;
5852
104cb16d
MR
5853 /* Bring task utilization in sync with prev_cpu */
5854 sync_entity_load_avg(&p->se);
5855
3273163c
MR
5856 return min_cap * 1024 < task_util(p) * capacity_margin;
5857}
5858
aaee1203 5859/*
de91b9cb
MR
5860 * select_task_rq_fair: Select target runqueue for the waking task in domains
5861 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5862 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5863 *
de91b9cb
MR
5864 * Balances load by selecting the idlest cpu in the idlest group, or under
5865 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5866 *
de91b9cb 5867 * Returns the target cpu number.
aaee1203
PZ
5868 *
5869 * preempt must be disabled.
5870 */
0017d735 5871static int
ac66f547 5872select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5873{
29cd8bae 5874 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5875 int cpu = smp_processor_id();
63b0e9ed 5876 int new_cpu = prev_cpu;
99bd5e2f 5877 int want_affine = 0;
5158f4e4 5878 int sync = wake_flags & WF_SYNC;
c88d5910 5879
c58d25f3
PZ
5880 if (sd_flag & SD_BALANCE_WAKE) {
5881 record_wakee(p);
3273163c 5882 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5883 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5884 }
aaee1203 5885
dce840a0 5886 rcu_read_lock();
aaee1203 5887 for_each_domain(cpu, tmp) {
e4f42888 5888 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5889 break;
e4f42888 5890
fe3bcfe1 5891 /*
99bd5e2f
SS
5892 * If both cpu and prev_cpu are part of this domain,
5893 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5894 */
99bd5e2f
SS
5895 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5896 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5897 affine_sd = tmp;
29cd8bae 5898 break;
f03542a7 5899 }
29cd8bae 5900
f03542a7 5901 if (tmp->flags & sd_flag)
29cd8bae 5902 sd = tmp;
63b0e9ed
MG
5903 else if (!want_affine)
5904 break;
29cd8bae
PZ
5905 }
5906
63b0e9ed
MG
5907 if (affine_sd) {
5908 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
5909 if (cpu == prev_cpu)
5910 goto pick_cpu;
5911
5912 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5913 new_cpu = cpu;
8b911acd 5914 }
e7693a36 5915
63b0e9ed 5916 if (!sd) {
7d894e6e 5917 pick_cpu:
63b0e9ed 5918 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5919 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5920
5921 } else while (sd) {
aaee1203 5922 struct sched_group *group;
c88d5910 5923 int weight;
098fb9db 5924
0763a660 5925 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5926 sd = sd->child;
5927 continue;
5928 }
098fb9db 5929
c44f2a02 5930 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5931 if (!group) {
5932 sd = sd->child;
5933 continue;
5934 }
4ae7d5ce 5935
d7c33c49 5936 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5937 if (new_cpu == -1 || new_cpu == cpu) {
5938 /* Now try balancing at a lower domain level of cpu */
5939 sd = sd->child;
5940 continue;
e7693a36 5941 }
aaee1203
PZ
5942
5943 /* Now try balancing at a lower domain level of new_cpu */
5944 cpu = new_cpu;
669c55e9 5945 weight = sd->span_weight;
aaee1203
PZ
5946 sd = NULL;
5947 for_each_domain(cpu, tmp) {
669c55e9 5948 if (weight <= tmp->span_weight)
aaee1203 5949 break;
0763a660 5950 if (tmp->flags & sd_flag)
aaee1203
PZ
5951 sd = tmp;
5952 }
5953 /* while loop will break here if sd == NULL */
e7693a36 5954 }
dce840a0 5955 rcu_read_unlock();
e7693a36 5956
c88d5910 5957 return new_cpu;
e7693a36 5958}
0a74bef8
PT
5959
5960/*
5961 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5962 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5963 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5964 */
5a4fd036 5965static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5966{
59efa0ba
PZ
5967 /*
5968 * As blocked tasks retain absolute vruntime the migration needs to
5969 * deal with this by subtracting the old and adding the new
5970 * min_vruntime -- the latter is done by enqueue_entity() when placing
5971 * the task on the new runqueue.
5972 */
5973 if (p->state == TASK_WAKING) {
5974 struct sched_entity *se = &p->se;
5975 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5976 u64 min_vruntime;
5977
5978#ifndef CONFIG_64BIT
5979 u64 min_vruntime_copy;
5980
5981 do {
5982 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5983 smp_rmb();
5984 min_vruntime = cfs_rq->min_vruntime;
5985 } while (min_vruntime != min_vruntime_copy);
5986#else
5987 min_vruntime = cfs_rq->min_vruntime;
5988#endif
5989
5990 se->vruntime -= min_vruntime;
5991 }
5992
aff3e498 5993 /*
9d89c257
YD
5994 * We are supposed to update the task to "current" time, then its up to date
5995 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5996 * what current time is, so simply throw away the out-of-date time. This
5997 * will result in the wakee task is less decayed, but giving the wakee more
5998 * load sounds not bad.
aff3e498 5999 */
9d89c257
YD
6000 remove_entity_load_avg(&p->se);
6001
6002 /* Tell new CPU we are migrated */
6003 p->se.avg.last_update_time = 0;
3944a927
BS
6004
6005 /* We have migrated, no longer consider this task hot */
9d89c257 6006 p->se.exec_start = 0;
0a74bef8 6007}
12695578
YD
6008
6009static void task_dead_fair(struct task_struct *p)
6010{
6011 remove_entity_load_avg(&p->se);
6012}
e7693a36
GH
6013#endif /* CONFIG_SMP */
6014
e52fb7c0
PZ
6015static unsigned long
6016wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6017{
6018 unsigned long gran = sysctl_sched_wakeup_granularity;
6019
6020 /*
e52fb7c0
PZ
6021 * Since its curr running now, convert the gran from real-time
6022 * to virtual-time in his units.
13814d42
MG
6023 *
6024 * By using 'se' instead of 'curr' we penalize light tasks, so
6025 * they get preempted easier. That is, if 'se' < 'curr' then
6026 * the resulting gran will be larger, therefore penalizing the
6027 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6028 * be smaller, again penalizing the lighter task.
6029 *
6030 * This is especially important for buddies when the leftmost
6031 * task is higher priority than the buddy.
0bbd3336 6032 */
f4ad9bd2 6033 return calc_delta_fair(gran, se);
0bbd3336
PZ
6034}
6035
464b7527
PZ
6036/*
6037 * Should 'se' preempt 'curr'.
6038 *
6039 * |s1
6040 * |s2
6041 * |s3
6042 * g
6043 * |<--->|c
6044 *
6045 * w(c, s1) = -1
6046 * w(c, s2) = 0
6047 * w(c, s3) = 1
6048 *
6049 */
6050static int
6051wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6052{
6053 s64 gran, vdiff = curr->vruntime - se->vruntime;
6054
6055 if (vdiff <= 0)
6056 return -1;
6057
e52fb7c0 6058 gran = wakeup_gran(curr, se);
464b7527
PZ
6059 if (vdiff > gran)
6060 return 1;
6061
6062 return 0;
6063}
6064
02479099
PZ
6065static void set_last_buddy(struct sched_entity *se)
6066{
69c80f3e
VP
6067 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6068 return;
6069
c5ae366e
DA
6070 for_each_sched_entity(se) {
6071 if (SCHED_WARN_ON(!se->on_rq))
6072 return;
69c80f3e 6073 cfs_rq_of(se)->last = se;
c5ae366e 6074 }
02479099
PZ
6075}
6076
6077static void set_next_buddy(struct sched_entity *se)
6078{
69c80f3e
VP
6079 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6080 return;
6081
c5ae366e
DA
6082 for_each_sched_entity(se) {
6083 if (SCHED_WARN_ON(!se->on_rq))
6084 return;
69c80f3e 6085 cfs_rq_of(se)->next = se;
c5ae366e 6086 }
02479099
PZ
6087}
6088
ac53db59
RR
6089static void set_skip_buddy(struct sched_entity *se)
6090{
69c80f3e
VP
6091 for_each_sched_entity(se)
6092 cfs_rq_of(se)->skip = se;
ac53db59
RR
6093}
6094
bf0f6f24
IM
6095/*
6096 * Preempt the current task with a newly woken task if needed:
6097 */
5a9b86f6 6098static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6099{
6100 struct task_struct *curr = rq->curr;
8651a86c 6101 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6102 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6103 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6104 int next_buddy_marked = 0;
bf0f6f24 6105
4ae7d5ce
IM
6106 if (unlikely(se == pse))
6107 return;
6108
5238cdd3 6109 /*
163122b7 6110 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6111 * unconditionally check_prempt_curr() after an enqueue (which may have
6112 * lead to a throttle). This both saves work and prevents false
6113 * next-buddy nomination below.
6114 */
6115 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6116 return;
6117
2f36825b 6118 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6119 set_next_buddy(pse);
2f36825b
VP
6120 next_buddy_marked = 1;
6121 }
57fdc26d 6122
aec0a514
BR
6123 /*
6124 * We can come here with TIF_NEED_RESCHED already set from new task
6125 * wake up path.
5238cdd3
PT
6126 *
6127 * Note: this also catches the edge-case of curr being in a throttled
6128 * group (e.g. via set_curr_task), since update_curr() (in the
6129 * enqueue of curr) will have resulted in resched being set. This
6130 * prevents us from potentially nominating it as a false LAST_BUDDY
6131 * below.
aec0a514
BR
6132 */
6133 if (test_tsk_need_resched(curr))
6134 return;
6135
a2f5c9ab
DH
6136 /* Idle tasks are by definition preempted by non-idle tasks. */
6137 if (unlikely(curr->policy == SCHED_IDLE) &&
6138 likely(p->policy != SCHED_IDLE))
6139 goto preempt;
6140
91c234b4 6141 /*
a2f5c9ab
DH
6142 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6143 * is driven by the tick):
91c234b4 6144 */
8ed92e51 6145 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6146 return;
bf0f6f24 6147
464b7527 6148 find_matching_se(&se, &pse);
9bbd7374 6149 update_curr(cfs_rq_of(se));
002f128b 6150 BUG_ON(!pse);
2f36825b
VP
6151 if (wakeup_preempt_entity(se, pse) == 1) {
6152 /*
6153 * Bias pick_next to pick the sched entity that is
6154 * triggering this preemption.
6155 */
6156 if (!next_buddy_marked)
6157 set_next_buddy(pse);
3a7e73a2 6158 goto preempt;
2f36825b 6159 }
464b7527 6160
3a7e73a2 6161 return;
a65ac745 6162
3a7e73a2 6163preempt:
8875125e 6164 resched_curr(rq);
3a7e73a2
PZ
6165 /*
6166 * Only set the backward buddy when the current task is still
6167 * on the rq. This can happen when a wakeup gets interleaved
6168 * with schedule on the ->pre_schedule() or idle_balance()
6169 * point, either of which can * drop the rq lock.
6170 *
6171 * Also, during early boot the idle thread is in the fair class,
6172 * for obvious reasons its a bad idea to schedule back to it.
6173 */
6174 if (unlikely(!se->on_rq || curr == rq->idle))
6175 return;
6176
6177 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6178 set_last_buddy(se);
bf0f6f24
IM
6179}
6180
606dba2e 6181static struct task_struct *
d8ac8971 6182pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6183{
6184 struct cfs_rq *cfs_rq = &rq->cfs;
6185 struct sched_entity *se;
678d5718 6186 struct task_struct *p;
37e117c0 6187 int new_tasks;
678d5718 6188
6e83125c 6189again:
678d5718
PZ
6190#ifdef CONFIG_FAIR_GROUP_SCHED
6191 if (!cfs_rq->nr_running)
38033c37 6192 goto idle;
678d5718 6193
3f1d2a31 6194 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6195 goto simple;
6196
6197 /*
6198 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6199 * likely that a next task is from the same cgroup as the current.
6200 *
6201 * Therefore attempt to avoid putting and setting the entire cgroup
6202 * hierarchy, only change the part that actually changes.
6203 */
6204
6205 do {
6206 struct sched_entity *curr = cfs_rq->curr;
6207
6208 /*
6209 * Since we got here without doing put_prev_entity() we also
6210 * have to consider cfs_rq->curr. If it is still a runnable
6211 * entity, update_curr() will update its vruntime, otherwise
6212 * forget we've ever seen it.
6213 */
54d27365
BS
6214 if (curr) {
6215 if (curr->on_rq)
6216 update_curr(cfs_rq);
6217 else
6218 curr = NULL;
678d5718 6219
54d27365
BS
6220 /*
6221 * This call to check_cfs_rq_runtime() will do the
6222 * throttle and dequeue its entity in the parent(s).
6223 * Therefore the 'simple' nr_running test will indeed
6224 * be correct.
6225 */
6226 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6227 goto simple;
6228 }
678d5718
PZ
6229
6230 se = pick_next_entity(cfs_rq, curr);
6231 cfs_rq = group_cfs_rq(se);
6232 } while (cfs_rq);
6233
6234 p = task_of(se);
6235
6236 /*
6237 * Since we haven't yet done put_prev_entity and if the selected task
6238 * is a different task than we started out with, try and touch the
6239 * least amount of cfs_rqs.
6240 */
6241 if (prev != p) {
6242 struct sched_entity *pse = &prev->se;
6243
6244 while (!(cfs_rq = is_same_group(se, pse))) {
6245 int se_depth = se->depth;
6246 int pse_depth = pse->depth;
6247
6248 if (se_depth <= pse_depth) {
6249 put_prev_entity(cfs_rq_of(pse), pse);
6250 pse = parent_entity(pse);
6251 }
6252 if (se_depth >= pse_depth) {
6253 set_next_entity(cfs_rq_of(se), se);
6254 se = parent_entity(se);
6255 }
6256 }
6257
6258 put_prev_entity(cfs_rq, pse);
6259 set_next_entity(cfs_rq, se);
6260 }
6261
6262 if (hrtick_enabled(rq))
6263 hrtick_start_fair(rq, p);
6264
6265 return p;
6266simple:
6267 cfs_rq = &rq->cfs;
6268#endif
bf0f6f24 6269
36ace27e 6270 if (!cfs_rq->nr_running)
38033c37 6271 goto idle;
bf0f6f24 6272
3f1d2a31 6273 put_prev_task(rq, prev);
606dba2e 6274
bf0f6f24 6275 do {
678d5718 6276 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6277 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6278 cfs_rq = group_cfs_rq(se);
6279 } while (cfs_rq);
6280
8f4d37ec 6281 p = task_of(se);
678d5718 6282
b39e66ea
MG
6283 if (hrtick_enabled(rq))
6284 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6285
6286 return p;
38033c37
PZ
6287
6288idle:
46f69fa3
MF
6289 new_tasks = idle_balance(rq, rf);
6290
37e117c0
PZ
6291 /*
6292 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6293 * possible for any higher priority task to appear. In that case we
6294 * must re-start the pick_next_entity() loop.
6295 */
e4aa358b 6296 if (new_tasks < 0)
37e117c0
PZ
6297 return RETRY_TASK;
6298
e4aa358b 6299 if (new_tasks > 0)
38033c37 6300 goto again;
38033c37
PZ
6301
6302 return NULL;
bf0f6f24
IM
6303}
6304
6305/*
6306 * Account for a descheduled task:
6307 */
31ee529c 6308static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6309{
6310 struct sched_entity *se = &prev->se;
6311 struct cfs_rq *cfs_rq;
6312
6313 for_each_sched_entity(se) {
6314 cfs_rq = cfs_rq_of(se);
ab6cde26 6315 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6316 }
6317}
6318
ac53db59
RR
6319/*
6320 * sched_yield() is very simple
6321 *
6322 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6323 */
6324static void yield_task_fair(struct rq *rq)
6325{
6326 struct task_struct *curr = rq->curr;
6327 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6328 struct sched_entity *se = &curr->se;
6329
6330 /*
6331 * Are we the only task in the tree?
6332 */
6333 if (unlikely(rq->nr_running == 1))
6334 return;
6335
6336 clear_buddies(cfs_rq, se);
6337
6338 if (curr->policy != SCHED_BATCH) {
6339 update_rq_clock(rq);
6340 /*
6341 * Update run-time statistics of the 'current'.
6342 */
6343 update_curr(cfs_rq);
916671c0
MG
6344 /*
6345 * Tell update_rq_clock() that we've just updated,
6346 * so we don't do microscopic update in schedule()
6347 * and double the fastpath cost.
6348 */
9edfbfed 6349 rq_clock_skip_update(rq, true);
ac53db59
RR
6350 }
6351
6352 set_skip_buddy(se);
6353}
6354
d95f4122
MG
6355static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6356{
6357 struct sched_entity *se = &p->se;
6358
5238cdd3
PT
6359 /* throttled hierarchies are not runnable */
6360 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6361 return false;
6362
6363 /* Tell the scheduler that we'd really like pse to run next. */
6364 set_next_buddy(se);
6365
d95f4122
MG
6366 yield_task_fair(rq);
6367
6368 return true;
6369}
6370
681f3e68 6371#ifdef CONFIG_SMP
bf0f6f24 6372/**************************************************
e9c84cb8
PZ
6373 * Fair scheduling class load-balancing methods.
6374 *
6375 * BASICS
6376 *
6377 * The purpose of load-balancing is to achieve the same basic fairness the
6378 * per-cpu scheduler provides, namely provide a proportional amount of compute
6379 * time to each task. This is expressed in the following equation:
6380 *
6381 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6382 *
6383 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6384 * W_i,0 is defined as:
6385 *
6386 * W_i,0 = \Sum_j w_i,j (2)
6387 *
6388 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6389 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6390 *
6391 * The weight average is an exponential decay average of the instantaneous
6392 * weight:
6393 *
6394 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6395 *
ced549fa 6396 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6397 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6398 * can also include other factors [XXX].
6399 *
6400 * To achieve this balance we define a measure of imbalance which follows
6401 * directly from (1):
6402 *
ced549fa 6403 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6404 *
6405 * We them move tasks around to minimize the imbalance. In the continuous
6406 * function space it is obvious this converges, in the discrete case we get
6407 * a few fun cases generally called infeasible weight scenarios.
6408 *
6409 * [XXX expand on:
6410 * - infeasible weights;
6411 * - local vs global optima in the discrete case. ]
6412 *
6413 *
6414 * SCHED DOMAINS
6415 *
6416 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6417 * for all i,j solution, we create a tree of cpus that follows the hardware
6418 * topology where each level pairs two lower groups (or better). This results
6419 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6420 * tree to only the first of the previous level and we decrease the frequency
6421 * of load-balance at each level inv. proportional to the number of cpus in
6422 * the groups.
6423 *
6424 * This yields:
6425 *
6426 * log_2 n 1 n
6427 * \Sum { --- * --- * 2^i } = O(n) (5)
6428 * i = 0 2^i 2^i
6429 * `- size of each group
6430 * | | `- number of cpus doing load-balance
6431 * | `- freq
6432 * `- sum over all levels
6433 *
6434 * Coupled with a limit on how many tasks we can migrate every balance pass,
6435 * this makes (5) the runtime complexity of the balancer.
6436 *
6437 * An important property here is that each CPU is still (indirectly) connected
6438 * to every other cpu in at most O(log n) steps:
6439 *
6440 * The adjacency matrix of the resulting graph is given by:
6441 *
97a7142f 6442 * log_2 n
e9c84cb8
PZ
6443 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6444 * k = 0
6445 *
6446 * And you'll find that:
6447 *
6448 * A^(log_2 n)_i,j != 0 for all i,j (7)
6449 *
6450 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6451 * The task movement gives a factor of O(m), giving a convergence complexity
6452 * of:
6453 *
6454 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6455 *
6456 *
6457 * WORK CONSERVING
6458 *
6459 * In order to avoid CPUs going idle while there's still work to do, new idle
6460 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6461 * tree itself instead of relying on other CPUs to bring it work.
6462 *
6463 * This adds some complexity to both (5) and (8) but it reduces the total idle
6464 * time.
6465 *
6466 * [XXX more?]
6467 *
6468 *
6469 * CGROUPS
6470 *
6471 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6472 *
6473 * s_k,i
6474 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6475 * S_k
6476 *
6477 * Where
6478 *
6479 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6480 *
6481 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6482 *
6483 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6484 * property.
6485 *
6486 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6487 * rewrite all of this once again.]
97a7142f 6488 */
bf0f6f24 6489
ed387b78
HS
6490static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6491
0ec8aa00
PZ
6492enum fbq_type { regular, remote, all };
6493
ddcdf6e7 6494#define LBF_ALL_PINNED 0x01
367456c7 6495#define LBF_NEED_BREAK 0x02
6263322c
PZ
6496#define LBF_DST_PINNED 0x04
6497#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6498
6499struct lb_env {
6500 struct sched_domain *sd;
6501
ddcdf6e7 6502 struct rq *src_rq;
85c1e7da 6503 int src_cpu;
ddcdf6e7
PZ
6504
6505 int dst_cpu;
6506 struct rq *dst_rq;
6507
88b8dac0
SV
6508 struct cpumask *dst_grpmask;
6509 int new_dst_cpu;
ddcdf6e7 6510 enum cpu_idle_type idle;
bd939f45 6511 long imbalance;
b9403130
MW
6512 /* The set of CPUs under consideration for load-balancing */
6513 struct cpumask *cpus;
6514
ddcdf6e7 6515 unsigned int flags;
367456c7
PZ
6516
6517 unsigned int loop;
6518 unsigned int loop_break;
6519 unsigned int loop_max;
0ec8aa00
PZ
6520
6521 enum fbq_type fbq_type;
163122b7 6522 struct list_head tasks;
ddcdf6e7
PZ
6523};
6524
029632fb
PZ
6525/*
6526 * Is this task likely cache-hot:
6527 */
5d5e2b1b 6528static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6529{
6530 s64 delta;
6531
e5673f28
KT
6532 lockdep_assert_held(&env->src_rq->lock);
6533
029632fb
PZ
6534 if (p->sched_class != &fair_sched_class)
6535 return 0;
6536
6537 if (unlikely(p->policy == SCHED_IDLE))
6538 return 0;
6539
6540 /*
6541 * Buddy candidates are cache hot:
6542 */
5d5e2b1b 6543 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6544 (&p->se == cfs_rq_of(&p->se)->next ||
6545 &p->se == cfs_rq_of(&p->se)->last))
6546 return 1;
6547
6548 if (sysctl_sched_migration_cost == -1)
6549 return 1;
6550 if (sysctl_sched_migration_cost == 0)
6551 return 0;
6552
5d5e2b1b 6553 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6554
6555 return delta < (s64)sysctl_sched_migration_cost;
6556}
6557
3a7053b3 6558#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6559/*
2a1ed24c
SD
6560 * Returns 1, if task migration degrades locality
6561 * Returns 0, if task migration improves locality i.e migration preferred.
6562 * Returns -1, if task migration is not affected by locality.
c1ceac62 6563 */
2a1ed24c 6564static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6565{
b1ad065e 6566 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6567 unsigned long src_faults, dst_faults;
3a7053b3
MG
6568 int src_nid, dst_nid;
6569
2a595721 6570 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6571 return -1;
6572
c3b9bc5b 6573 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6574 return -1;
7a0f3083
MG
6575
6576 src_nid = cpu_to_node(env->src_cpu);
6577 dst_nid = cpu_to_node(env->dst_cpu);
6578
83e1d2cd 6579 if (src_nid == dst_nid)
2a1ed24c 6580 return -1;
7a0f3083 6581
2a1ed24c
SD
6582 /* Migrating away from the preferred node is always bad. */
6583 if (src_nid == p->numa_preferred_nid) {
6584 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6585 return 1;
6586 else
6587 return -1;
6588 }
b1ad065e 6589
c1ceac62
RR
6590 /* Encourage migration to the preferred node. */
6591 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6592 return 0;
b1ad065e 6593
739294fb
RR
6594 /* Leaving a core idle is often worse than degrading locality. */
6595 if (env->idle != CPU_NOT_IDLE)
6596 return -1;
6597
c1ceac62
RR
6598 if (numa_group) {
6599 src_faults = group_faults(p, src_nid);
6600 dst_faults = group_faults(p, dst_nid);
6601 } else {
6602 src_faults = task_faults(p, src_nid);
6603 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6604 }
6605
c1ceac62 6606 return dst_faults < src_faults;
7a0f3083
MG
6607}
6608
3a7053b3 6609#else
2a1ed24c 6610static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6611 struct lb_env *env)
6612{
2a1ed24c 6613 return -1;
7a0f3083 6614}
3a7053b3
MG
6615#endif
6616
1e3c88bd
PZ
6617/*
6618 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6619 */
6620static
8e45cb54 6621int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6622{
2a1ed24c 6623 int tsk_cache_hot;
e5673f28
KT
6624
6625 lockdep_assert_held(&env->src_rq->lock);
6626
1e3c88bd
PZ
6627 /*
6628 * We do not migrate tasks that are:
d3198084 6629 * 1) throttled_lb_pair, or
1e3c88bd 6630 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6631 * 3) running (obviously), or
6632 * 4) are cache-hot on their current CPU.
1e3c88bd 6633 */
d3198084
JK
6634 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6635 return 0;
6636
0c98d344 6637 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6638 int cpu;
88b8dac0 6639
ae92882e 6640 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6641
6263322c
PZ
6642 env->flags |= LBF_SOME_PINNED;
6643
88b8dac0
SV
6644 /*
6645 * Remember if this task can be migrated to any other cpu in
6646 * our sched_group. We may want to revisit it if we couldn't
6647 * meet load balance goals by pulling other tasks on src_cpu.
6648 *
6649 * Also avoid computing new_dst_cpu if we have already computed
6650 * one in current iteration.
6651 */
6263322c 6652 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6653 return 0;
6654
e02e60c1
JK
6655 /* Prevent to re-select dst_cpu via env's cpus */
6656 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6657 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6658 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6659 env->new_dst_cpu = cpu;
6660 break;
6661 }
88b8dac0 6662 }
e02e60c1 6663
1e3c88bd
PZ
6664 return 0;
6665 }
88b8dac0
SV
6666
6667 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6668 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6669
ddcdf6e7 6670 if (task_running(env->src_rq, p)) {
ae92882e 6671 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6672 return 0;
6673 }
6674
6675 /*
6676 * Aggressive migration if:
3a7053b3
MG
6677 * 1) destination numa is preferred
6678 * 2) task is cache cold, or
6679 * 3) too many balance attempts have failed.
1e3c88bd 6680 */
2a1ed24c
SD
6681 tsk_cache_hot = migrate_degrades_locality(p, env);
6682 if (tsk_cache_hot == -1)
6683 tsk_cache_hot = task_hot(p, env);
3a7053b3 6684
2a1ed24c 6685 if (tsk_cache_hot <= 0 ||
7a96c231 6686 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6687 if (tsk_cache_hot == 1) {
ae92882e
JP
6688 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6689 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6690 }
1e3c88bd
PZ
6691 return 1;
6692 }
6693
ae92882e 6694 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6695 return 0;
1e3c88bd
PZ
6696}
6697
897c395f 6698/*
163122b7
KT
6699 * detach_task() -- detach the task for the migration specified in env
6700 */
6701static void detach_task(struct task_struct *p, struct lb_env *env)
6702{
6703 lockdep_assert_held(&env->src_rq->lock);
6704
163122b7 6705 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6706 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6707 set_task_cpu(p, env->dst_cpu);
6708}
6709
897c395f 6710/*
e5673f28 6711 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6712 * part of active balancing operations within "domain".
897c395f 6713 *
e5673f28 6714 * Returns a task if successful and NULL otherwise.
897c395f 6715 */
e5673f28 6716static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6717{
6718 struct task_struct *p, *n;
897c395f 6719
e5673f28
KT
6720 lockdep_assert_held(&env->src_rq->lock);
6721
367456c7 6722 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6723 if (!can_migrate_task(p, env))
6724 continue;
897c395f 6725
163122b7 6726 detach_task(p, env);
e5673f28 6727
367456c7 6728 /*
e5673f28 6729 * Right now, this is only the second place where
163122b7 6730 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6731 * so we can safely collect stats here rather than
163122b7 6732 * inside detach_tasks().
367456c7 6733 */
ae92882e 6734 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6735 return p;
897c395f 6736 }
e5673f28 6737 return NULL;
897c395f
PZ
6738}
6739
eb95308e
PZ
6740static const unsigned int sched_nr_migrate_break = 32;
6741
5d6523eb 6742/*
163122b7
KT
6743 * detach_tasks() -- tries to detach up to imbalance weighted load from
6744 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6745 *
163122b7 6746 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6747 */
163122b7 6748static int detach_tasks(struct lb_env *env)
1e3c88bd 6749{
5d6523eb
PZ
6750 struct list_head *tasks = &env->src_rq->cfs_tasks;
6751 struct task_struct *p;
367456c7 6752 unsigned long load;
163122b7
KT
6753 int detached = 0;
6754
6755 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6756
bd939f45 6757 if (env->imbalance <= 0)
5d6523eb 6758 return 0;
1e3c88bd 6759
5d6523eb 6760 while (!list_empty(tasks)) {
985d3a4c
YD
6761 /*
6762 * We don't want to steal all, otherwise we may be treated likewise,
6763 * which could at worst lead to a livelock crash.
6764 */
6765 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6766 break;
6767
5d6523eb 6768 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6769
367456c7
PZ
6770 env->loop++;
6771 /* We've more or less seen every task there is, call it quits */
5d6523eb 6772 if (env->loop > env->loop_max)
367456c7 6773 break;
5d6523eb
PZ
6774
6775 /* take a breather every nr_migrate tasks */
367456c7 6776 if (env->loop > env->loop_break) {
eb95308e 6777 env->loop_break += sched_nr_migrate_break;
8e45cb54 6778 env->flags |= LBF_NEED_BREAK;
ee00e66f 6779 break;
a195f004 6780 }
1e3c88bd 6781
d3198084 6782 if (!can_migrate_task(p, env))
367456c7
PZ
6783 goto next;
6784
6785 load = task_h_load(p);
5d6523eb 6786
eb95308e 6787 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6788 goto next;
6789
bd939f45 6790 if ((load / 2) > env->imbalance)
367456c7 6791 goto next;
1e3c88bd 6792
163122b7
KT
6793 detach_task(p, env);
6794 list_add(&p->se.group_node, &env->tasks);
6795
6796 detached++;
bd939f45 6797 env->imbalance -= load;
1e3c88bd
PZ
6798
6799#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6800 /*
6801 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6802 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6803 * the critical section.
6804 */
5d6523eb 6805 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6806 break;
1e3c88bd
PZ
6807#endif
6808
ee00e66f
PZ
6809 /*
6810 * We only want to steal up to the prescribed amount of
6811 * weighted load.
6812 */
bd939f45 6813 if (env->imbalance <= 0)
ee00e66f 6814 break;
367456c7
PZ
6815
6816 continue;
6817next:
5d6523eb 6818 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6819 }
5d6523eb 6820
1e3c88bd 6821 /*
163122b7
KT
6822 * Right now, this is one of only two places we collect this stat
6823 * so we can safely collect detach_one_task() stats here rather
6824 * than inside detach_one_task().
1e3c88bd 6825 */
ae92882e 6826 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6827
163122b7
KT
6828 return detached;
6829}
6830
6831/*
6832 * attach_task() -- attach the task detached by detach_task() to its new rq.
6833 */
6834static void attach_task(struct rq *rq, struct task_struct *p)
6835{
6836 lockdep_assert_held(&rq->lock);
6837
6838 BUG_ON(task_rq(p) != rq);
5704ac0a 6839 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6840 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6841 check_preempt_curr(rq, p, 0);
6842}
6843
6844/*
6845 * attach_one_task() -- attaches the task returned from detach_one_task() to
6846 * its new rq.
6847 */
6848static void attach_one_task(struct rq *rq, struct task_struct *p)
6849{
8a8c69c3
PZ
6850 struct rq_flags rf;
6851
6852 rq_lock(rq, &rf);
5704ac0a 6853 update_rq_clock(rq);
163122b7 6854 attach_task(rq, p);
8a8c69c3 6855 rq_unlock(rq, &rf);
163122b7
KT
6856}
6857
6858/*
6859 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6860 * new rq.
6861 */
6862static void attach_tasks(struct lb_env *env)
6863{
6864 struct list_head *tasks = &env->tasks;
6865 struct task_struct *p;
8a8c69c3 6866 struct rq_flags rf;
163122b7 6867
8a8c69c3 6868 rq_lock(env->dst_rq, &rf);
5704ac0a 6869 update_rq_clock(env->dst_rq);
163122b7
KT
6870
6871 while (!list_empty(tasks)) {
6872 p = list_first_entry(tasks, struct task_struct, se.group_node);
6873 list_del_init(&p->se.group_node);
1e3c88bd 6874
163122b7
KT
6875 attach_task(env->dst_rq, p);
6876 }
6877
8a8c69c3 6878 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6879}
6880
230059de 6881#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
6882
6883static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6884{
6885 if (cfs_rq->load.weight)
6886 return false;
6887
6888 if (cfs_rq->avg.load_sum)
6889 return false;
6890
6891 if (cfs_rq->avg.util_sum)
6892 return false;
6893
6894 if (cfs_rq->runnable_load_sum)
6895 return false;
6896
6897 return true;
6898}
6899
48a16753 6900static void update_blocked_averages(int cpu)
9e3081ca 6901{
9e3081ca 6902 struct rq *rq = cpu_rq(cpu);
a9e7f654 6903 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 6904 struct rq_flags rf;
9e3081ca 6905
8a8c69c3 6906 rq_lock_irqsave(rq, &rf);
48a16753 6907 update_rq_clock(rq);
9d89c257 6908
9763b67f
PZ
6909 /*
6910 * Iterates the task_group tree in a bottom up fashion, see
6911 * list_add_leaf_cfs_rq() for details.
6912 */
a9e7f654 6913 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
6914 struct sched_entity *se;
6915
9d89c257
YD
6916 /* throttled entities do not contribute to load */
6917 if (throttled_hierarchy(cfs_rq))
6918 continue;
48a16753 6919
a2c6c91f 6920 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6921 update_tg_load_avg(cfs_rq, 0);
4e516076 6922
bc427898
VG
6923 /* Propagate pending load changes to the parent, if any: */
6924 se = cfs_rq->tg->se[cpu];
6925 if (se && !skip_blocked_update(se))
6926 update_load_avg(se, 0);
a9e7f654
TH
6927
6928 /*
6929 * There can be a lot of idle CPU cgroups. Don't let fully
6930 * decayed cfs_rqs linger on the list.
6931 */
6932 if (cfs_rq_is_decayed(cfs_rq))
6933 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 6934 }
8a8c69c3 6935 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6936}
6937
9763b67f 6938/*
68520796 6939 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6940 * This needs to be done in a top-down fashion because the load of a child
6941 * group is a fraction of its parents load.
6942 */
68520796 6943static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6944{
68520796
VD
6945 struct rq *rq = rq_of(cfs_rq);
6946 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6947 unsigned long now = jiffies;
68520796 6948 unsigned long load;
a35b6466 6949
68520796 6950 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6951 return;
6952
68520796
VD
6953 cfs_rq->h_load_next = NULL;
6954 for_each_sched_entity(se) {
6955 cfs_rq = cfs_rq_of(se);
6956 cfs_rq->h_load_next = se;
6957 if (cfs_rq->last_h_load_update == now)
6958 break;
6959 }
a35b6466 6960
68520796 6961 if (!se) {
7ea241af 6962 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6963 cfs_rq->last_h_load_update = now;
6964 }
6965
6966 while ((se = cfs_rq->h_load_next) != NULL) {
6967 load = cfs_rq->h_load;
7ea241af
YD
6968 load = div64_ul(load * se->avg.load_avg,
6969 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6970 cfs_rq = group_cfs_rq(se);
6971 cfs_rq->h_load = load;
6972 cfs_rq->last_h_load_update = now;
6973 }
9763b67f
PZ
6974}
6975
367456c7 6976static unsigned long task_h_load(struct task_struct *p)
230059de 6977{
367456c7 6978 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6979
68520796 6980 update_cfs_rq_h_load(cfs_rq);
9d89c257 6981 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6982 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6983}
6984#else
48a16753 6985static inline void update_blocked_averages(int cpu)
9e3081ca 6986{
6c1d47c0
VG
6987 struct rq *rq = cpu_rq(cpu);
6988 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 6989 struct rq_flags rf;
6c1d47c0 6990
8a8c69c3 6991 rq_lock_irqsave(rq, &rf);
6c1d47c0 6992 update_rq_clock(rq);
a2c6c91f 6993 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 6994 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
6995}
6996
367456c7 6997static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6998{
9d89c257 6999 return p->se.avg.load_avg;
1e3c88bd 7000}
230059de 7001#endif
1e3c88bd 7002
1e3c88bd 7003/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7004
7005enum group_type {
7006 group_other = 0,
7007 group_imbalanced,
7008 group_overloaded,
7009};
7010
1e3c88bd
PZ
7011/*
7012 * sg_lb_stats - stats of a sched_group required for load_balancing
7013 */
7014struct sg_lb_stats {
7015 unsigned long avg_load; /*Avg load across the CPUs of the group */
7016 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7017 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7018 unsigned long load_per_task;
63b2ca30 7019 unsigned long group_capacity;
9e91d61d 7020 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7021 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7022 unsigned int idle_cpus;
7023 unsigned int group_weight;
caeb178c 7024 enum group_type group_type;
ea67821b 7025 int group_no_capacity;
0ec8aa00
PZ
7026#ifdef CONFIG_NUMA_BALANCING
7027 unsigned int nr_numa_running;
7028 unsigned int nr_preferred_running;
7029#endif
1e3c88bd
PZ
7030};
7031
56cf515b
JK
7032/*
7033 * sd_lb_stats - Structure to store the statistics of a sched_domain
7034 * during load balancing.
7035 */
7036struct sd_lb_stats {
7037 struct sched_group *busiest; /* Busiest group in this sd */
7038 struct sched_group *local; /* Local group in this sd */
7039 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7040 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7041 unsigned long avg_load; /* Average load across all groups in sd */
7042
56cf515b 7043 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7044 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7045};
7046
147c5fc2
PZ
7047static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7048{
7049 /*
7050 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7051 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7052 * We must however clear busiest_stat::avg_load because
7053 * update_sd_pick_busiest() reads this before assignment.
7054 */
7055 *sds = (struct sd_lb_stats){
7056 .busiest = NULL,
7057 .local = NULL,
7058 .total_load = 0UL,
63b2ca30 7059 .total_capacity = 0UL,
147c5fc2
PZ
7060 .busiest_stat = {
7061 .avg_load = 0UL,
caeb178c
RR
7062 .sum_nr_running = 0,
7063 .group_type = group_other,
147c5fc2
PZ
7064 },
7065 };
7066}
7067
1e3c88bd
PZ
7068/**
7069 * get_sd_load_idx - Obtain the load index for a given sched domain.
7070 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7071 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7072 *
7073 * Return: The load index.
1e3c88bd
PZ
7074 */
7075static inline int get_sd_load_idx(struct sched_domain *sd,
7076 enum cpu_idle_type idle)
7077{
7078 int load_idx;
7079
7080 switch (idle) {
7081 case CPU_NOT_IDLE:
7082 load_idx = sd->busy_idx;
7083 break;
7084
7085 case CPU_NEWLY_IDLE:
7086 load_idx = sd->newidle_idx;
7087 break;
7088 default:
7089 load_idx = sd->idle_idx;
7090 break;
7091 }
7092
7093 return load_idx;
7094}
7095
ced549fa 7096static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7097{
7098 struct rq *rq = cpu_rq(cpu);
b5b4860d 7099 u64 total, used, age_stamp, avg;
cadefd3d 7100 s64 delta;
1e3c88bd 7101
b654f7de
PZ
7102 /*
7103 * Since we're reading these variables without serialization make sure
7104 * we read them once before doing sanity checks on them.
7105 */
316c1608
JL
7106 age_stamp = READ_ONCE(rq->age_stamp);
7107 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7108 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7109
cadefd3d
PZ
7110 if (unlikely(delta < 0))
7111 delta = 0;
7112
7113 total = sched_avg_period() + delta;
aa483808 7114
b5b4860d 7115 used = div_u64(avg, total);
1e3c88bd 7116
b5b4860d
VG
7117 if (likely(used < SCHED_CAPACITY_SCALE))
7118 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7119
b5b4860d 7120 return 1;
1e3c88bd
PZ
7121}
7122
ced549fa 7123static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7124{
8cd5601c 7125 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7126 struct sched_group *sdg = sd->groups;
7127
ca6d75e6 7128 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7129
ced549fa 7130 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7131 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7132
ced549fa
NP
7133 if (!capacity)
7134 capacity = 1;
1e3c88bd 7135
ced549fa
NP
7136 cpu_rq(cpu)->cpu_capacity = capacity;
7137 sdg->sgc->capacity = capacity;
bf475ce0 7138 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7139}
7140
63b2ca30 7141void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7142{
7143 struct sched_domain *child = sd->child;
7144 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7145 unsigned long capacity, min_capacity;
4ec4412e
VG
7146 unsigned long interval;
7147
7148 interval = msecs_to_jiffies(sd->balance_interval);
7149 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7150 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7151
7152 if (!child) {
ced549fa 7153 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7154 return;
7155 }
7156
dc7ff76e 7157 capacity = 0;
bf475ce0 7158 min_capacity = ULONG_MAX;
1e3c88bd 7159
74a5ce20
PZ
7160 if (child->flags & SD_OVERLAP) {
7161 /*
7162 * SD_OVERLAP domains cannot assume that child groups
7163 * span the current group.
7164 */
7165
ae4df9d6 7166 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7167 struct sched_group_capacity *sgc;
9abf24d4 7168 struct rq *rq = cpu_rq(cpu);
863bffc8 7169
9abf24d4 7170 /*
63b2ca30 7171 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7172 * gets here before we've attached the domains to the
7173 * runqueues.
7174 *
ced549fa
NP
7175 * Use capacity_of(), which is set irrespective of domains
7176 * in update_cpu_capacity().
9abf24d4 7177 *
dc7ff76e 7178 * This avoids capacity from being 0 and
9abf24d4 7179 * causing divide-by-zero issues on boot.
9abf24d4
SD
7180 */
7181 if (unlikely(!rq->sd)) {
ced549fa 7182 capacity += capacity_of(cpu);
bf475ce0
MR
7183 } else {
7184 sgc = rq->sd->groups->sgc;
7185 capacity += sgc->capacity;
9abf24d4 7186 }
863bffc8 7187
bf475ce0 7188 min_capacity = min(capacity, min_capacity);
863bffc8 7189 }
74a5ce20
PZ
7190 } else {
7191 /*
7192 * !SD_OVERLAP domains can assume that child groups
7193 * span the current group.
97a7142f 7194 */
74a5ce20
PZ
7195
7196 group = child->groups;
7197 do {
bf475ce0
MR
7198 struct sched_group_capacity *sgc = group->sgc;
7199
7200 capacity += sgc->capacity;
7201 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7202 group = group->next;
7203 } while (group != child->groups);
7204 }
1e3c88bd 7205
63b2ca30 7206 sdg->sgc->capacity = capacity;
bf475ce0 7207 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7208}
7209
9d5efe05 7210/*
ea67821b
VG
7211 * Check whether the capacity of the rq has been noticeably reduced by side
7212 * activity. The imbalance_pct is used for the threshold.
7213 * Return true is the capacity is reduced
9d5efe05
SV
7214 */
7215static inline int
ea67821b 7216check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7217{
ea67821b
VG
7218 return ((rq->cpu_capacity * sd->imbalance_pct) <
7219 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7220}
7221
30ce5dab
PZ
7222/*
7223 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7224 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7225 *
7226 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7227 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7228 * Something like:
7229 *
2b4d5b25
IM
7230 * { 0 1 2 3 } { 4 5 6 7 }
7231 * * * * *
30ce5dab
PZ
7232 *
7233 * If we were to balance group-wise we'd place two tasks in the first group and
7234 * two tasks in the second group. Clearly this is undesired as it will overload
7235 * cpu 3 and leave one of the cpus in the second group unused.
7236 *
7237 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7238 * by noticing the lower domain failed to reach balance and had difficulty
7239 * moving tasks due to affinity constraints.
30ce5dab
PZ
7240 *
7241 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7242 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7243 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7244 * to create an effective group imbalance.
7245 *
7246 * This is a somewhat tricky proposition since the next run might not find the
7247 * group imbalance and decide the groups need to be balanced again. A most
7248 * subtle and fragile situation.
7249 */
7250
6263322c 7251static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7252{
63b2ca30 7253 return group->sgc->imbalance;
30ce5dab
PZ
7254}
7255
b37d9316 7256/*
ea67821b
VG
7257 * group_has_capacity returns true if the group has spare capacity that could
7258 * be used by some tasks.
7259 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7260 * smaller than the number of CPUs or if the utilization is lower than the
7261 * available capacity for CFS tasks.
ea67821b
VG
7262 * For the latter, we use a threshold to stabilize the state, to take into
7263 * account the variance of the tasks' load and to return true if the available
7264 * capacity in meaningful for the load balancer.
7265 * As an example, an available capacity of 1% can appear but it doesn't make
7266 * any benefit for the load balance.
b37d9316 7267 */
ea67821b
VG
7268static inline bool
7269group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7270{
ea67821b
VG
7271 if (sgs->sum_nr_running < sgs->group_weight)
7272 return true;
c61037e9 7273
ea67821b 7274 if ((sgs->group_capacity * 100) >
9e91d61d 7275 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7276 return true;
b37d9316 7277
ea67821b
VG
7278 return false;
7279}
7280
7281/*
7282 * group_is_overloaded returns true if the group has more tasks than it can
7283 * handle.
7284 * group_is_overloaded is not equals to !group_has_capacity because a group
7285 * with the exact right number of tasks, has no more spare capacity but is not
7286 * overloaded so both group_has_capacity and group_is_overloaded return
7287 * false.
7288 */
7289static inline bool
7290group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7291{
7292 if (sgs->sum_nr_running <= sgs->group_weight)
7293 return false;
b37d9316 7294
ea67821b 7295 if ((sgs->group_capacity * 100) <
9e91d61d 7296 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7297 return true;
b37d9316 7298
ea67821b 7299 return false;
b37d9316
PZ
7300}
7301
9e0994c0
MR
7302/*
7303 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7304 * per-CPU capacity than sched_group ref.
7305 */
7306static inline bool
7307group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7308{
7309 return sg->sgc->min_capacity * capacity_margin <
7310 ref->sgc->min_capacity * 1024;
7311}
7312
79a89f92
LY
7313static inline enum
7314group_type group_classify(struct sched_group *group,
7315 struct sg_lb_stats *sgs)
caeb178c 7316{
ea67821b 7317 if (sgs->group_no_capacity)
caeb178c
RR
7318 return group_overloaded;
7319
7320 if (sg_imbalanced(group))
7321 return group_imbalanced;
7322
7323 return group_other;
7324}
7325
1e3c88bd
PZ
7326/**
7327 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7328 * @env: The load balancing environment.
1e3c88bd 7329 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7330 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7331 * @local_group: Does group contain this_cpu.
1e3c88bd 7332 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7333 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7334 */
bd939f45
PZ
7335static inline void update_sg_lb_stats(struct lb_env *env,
7336 struct sched_group *group, int load_idx,
4486edd1
TC
7337 int local_group, struct sg_lb_stats *sgs,
7338 bool *overload)
1e3c88bd 7339{
30ce5dab 7340 unsigned long load;
a426f99c 7341 int i, nr_running;
1e3c88bd 7342
b72ff13c
PZ
7343 memset(sgs, 0, sizeof(*sgs));
7344
ae4df9d6 7345 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7346 struct rq *rq = cpu_rq(i);
7347
1e3c88bd 7348 /* Bias balancing toward cpus of our domain */
6263322c 7349 if (local_group)
04f733b4 7350 load = target_load(i, load_idx);
6263322c 7351 else
1e3c88bd 7352 load = source_load(i, load_idx);
1e3c88bd
PZ
7353
7354 sgs->group_load += load;
9e91d61d 7355 sgs->group_util += cpu_util(i);
65fdac08 7356 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7357
a426f99c
WL
7358 nr_running = rq->nr_running;
7359 if (nr_running > 1)
4486edd1
TC
7360 *overload = true;
7361
0ec8aa00
PZ
7362#ifdef CONFIG_NUMA_BALANCING
7363 sgs->nr_numa_running += rq->nr_numa_running;
7364 sgs->nr_preferred_running += rq->nr_preferred_running;
7365#endif
1e3c88bd 7366 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7367 /*
7368 * No need to call idle_cpu() if nr_running is not 0
7369 */
7370 if (!nr_running && idle_cpu(i))
aae6d3dd 7371 sgs->idle_cpus++;
1e3c88bd
PZ
7372 }
7373
63b2ca30
NP
7374 /* Adjust by relative CPU capacity of the group */
7375 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7376 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7377
dd5feea1 7378 if (sgs->sum_nr_running)
38d0f770 7379 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7380
aae6d3dd 7381 sgs->group_weight = group->group_weight;
b37d9316 7382
ea67821b 7383 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7384 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7385}
7386
532cb4c4
MN
7387/**
7388 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7389 * @env: The load balancing environment.
532cb4c4
MN
7390 * @sds: sched_domain statistics
7391 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7392 * @sgs: sched_group statistics
532cb4c4
MN
7393 *
7394 * Determine if @sg is a busier group than the previously selected
7395 * busiest group.
e69f6186
YB
7396 *
7397 * Return: %true if @sg is a busier group than the previously selected
7398 * busiest group. %false otherwise.
532cb4c4 7399 */
bd939f45 7400static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7401 struct sd_lb_stats *sds,
7402 struct sched_group *sg,
bd939f45 7403 struct sg_lb_stats *sgs)
532cb4c4 7404{
caeb178c 7405 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7406
caeb178c 7407 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7408 return true;
7409
caeb178c
RR
7410 if (sgs->group_type < busiest->group_type)
7411 return false;
7412
7413 if (sgs->avg_load <= busiest->avg_load)
7414 return false;
7415
9e0994c0
MR
7416 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7417 goto asym_packing;
7418
7419 /*
7420 * Candidate sg has no more than one task per CPU and
7421 * has higher per-CPU capacity. Migrating tasks to less
7422 * capable CPUs may harm throughput. Maximize throughput,
7423 * power/energy consequences are not considered.
7424 */
7425 if (sgs->sum_nr_running <= sgs->group_weight &&
7426 group_smaller_cpu_capacity(sds->local, sg))
7427 return false;
7428
7429asym_packing:
caeb178c
RR
7430 /* This is the busiest node in its class. */
7431 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7432 return true;
7433
1f621e02
SD
7434 /* No ASYM_PACKING if target cpu is already busy */
7435 if (env->idle == CPU_NOT_IDLE)
7436 return true;
532cb4c4 7437 /*
afe06efd
TC
7438 * ASYM_PACKING needs to move all the work to the highest
7439 * prority CPUs in the group, therefore mark all groups
7440 * of lower priority than ourself as busy.
532cb4c4 7441 */
afe06efd
TC
7442 if (sgs->sum_nr_running &&
7443 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7444 if (!sds->busiest)
7445 return true;
7446
afe06efd
TC
7447 /* Prefer to move from lowest priority cpu's work */
7448 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7449 sg->asym_prefer_cpu))
532cb4c4
MN
7450 return true;
7451 }
7452
7453 return false;
7454}
7455
0ec8aa00
PZ
7456#ifdef CONFIG_NUMA_BALANCING
7457static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7458{
7459 if (sgs->sum_nr_running > sgs->nr_numa_running)
7460 return regular;
7461 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7462 return remote;
7463 return all;
7464}
7465
7466static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7467{
7468 if (rq->nr_running > rq->nr_numa_running)
7469 return regular;
7470 if (rq->nr_running > rq->nr_preferred_running)
7471 return remote;
7472 return all;
7473}
7474#else
7475static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7476{
7477 return all;
7478}
7479
7480static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7481{
7482 return regular;
7483}
7484#endif /* CONFIG_NUMA_BALANCING */
7485
1e3c88bd 7486/**
461819ac 7487 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7488 * @env: The load balancing environment.
1e3c88bd
PZ
7489 * @sds: variable to hold the statistics for this sched_domain.
7490 */
0ec8aa00 7491static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7492{
bd939f45
PZ
7493 struct sched_domain *child = env->sd->child;
7494 struct sched_group *sg = env->sd->groups;
05b40e05 7495 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7496 struct sg_lb_stats tmp_sgs;
1e3c88bd 7497 int load_idx, prefer_sibling = 0;
4486edd1 7498 bool overload = false;
1e3c88bd
PZ
7499
7500 if (child && child->flags & SD_PREFER_SIBLING)
7501 prefer_sibling = 1;
7502
bd939f45 7503 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7504
7505 do {
56cf515b 7506 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7507 int local_group;
7508
ae4df9d6 7509 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7510 if (local_group) {
7511 sds->local = sg;
05b40e05 7512 sgs = local;
b72ff13c
PZ
7513
7514 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7515 time_after_eq(jiffies, sg->sgc->next_update))
7516 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7517 }
1e3c88bd 7518
4486edd1
TC
7519 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7520 &overload);
1e3c88bd 7521
b72ff13c
PZ
7522 if (local_group)
7523 goto next_group;
7524
1e3c88bd
PZ
7525 /*
7526 * In case the child domain prefers tasks go to siblings
ea67821b 7527 * first, lower the sg capacity so that we'll try
75dd321d
NR
7528 * and move all the excess tasks away. We lower the capacity
7529 * of a group only if the local group has the capacity to fit
ea67821b
VG
7530 * these excess tasks. The extra check prevents the case where
7531 * you always pull from the heaviest group when it is already
7532 * under-utilized (possible with a large weight task outweighs
7533 * the tasks on the system).
1e3c88bd 7534 */
b72ff13c 7535 if (prefer_sibling && sds->local &&
05b40e05
SD
7536 group_has_capacity(env, local) &&
7537 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7538 sgs->group_no_capacity = 1;
79a89f92 7539 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7540 }
1e3c88bd 7541
b72ff13c 7542 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7543 sds->busiest = sg;
56cf515b 7544 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7545 }
7546
b72ff13c
PZ
7547next_group:
7548 /* Now, start updating sd_lb_stats */
7549 sds->total_load += sgs->group_load;
63b2ca30 7550 sds->total_capacity += sgs->group_capacity;
b72ff13c 7551
532cb4c4 7552 sg = sg->next;
bd939f45 7553 } while (sg != env->sd->groups);
0ec8aa00
PZ
7554
7555 if (env->sd->flags & SD_NUMA)
7556 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7557
7558 if (!env->sd->parent) {
7559 /* update overload indicator if we are at root domain */
7560 if (env->dst_rq->rd->overload != overload)
7561 env->dst_rq->rd->overload = overload;
7562 }
7563
532cb4c4
MN
7564}
7565
532cb4c4
MN
7566/**
7567 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7568 * sched domain.
532cb4c4
MN
7569 *
7570 * This is primarily intended to used at the sibling level. Some
7571 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7572 * case of POWER7, it can move to lower SMT modes only when higher
7573 * threads are idle. When in lower SMT modes, the threads will
7574 * perform better since they share less core resources. Hence when we
7575 * have idle threads, we want them to be the higher ones.
7576 *
7577 * This packing function is run on idle threads. It checks to see if
7578 * the busiest CPU in this domain (core in the P7 case) has a higher
7579 * CPU number than the packing function is being run on. Here we are
7580 * assuming lower CPU number will be equivalent to lower a SMT thread
7581 * number.
7582 *
e69f6186 7583 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7584 * this CPU. The amount of the imbalance is returned in *imbalance.
7585 *
cd96891d 7586 * @env: The load balancing environment.
532cb4c4 7587 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7588 */
bd939f45 7589static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7590{
7591 int busiest_cpu;
7592
bd939f45 7593 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7594 return 0;
7595
1f621e02
SD
7596 if (env->idle == CPU_NOT_IDLE)
7597 return 0;
7598
532cb4c4
MN
7599 if (!sds->busiest)
7600 return 0;
7601
afe06efd
TC
7602 busiest_cpu = sds->busiest->asym_prefer_cpu;
7603 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7604 return 0;
7605
bd939f45 7606 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7607 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7608 SCHED_CAPACITY_SCALE);
bd939f45 7609
532cb4c4 7610 return 1;
1e3c88bd
PZ
7611}
7612
7613/**
7614 * fix_small_imbalance - Calculate the minor imbalance that exists
7615 * amongst the groups of a sched_domain, during
7616 * load balancing.
cd96891d 7617 * @env: The load balancing environment.
1e3c88bd 7618 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7619 */
bd939f45
PZ
7620static inline
7621void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7622{
63b2ca30 7623 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7624 unsigned int imbn = 2;
dd5feea1 7625 unsigned long scaled_busy_load_per_task;
56cf515b 7626 struct sg_lb_stats *local, *busiest;
1e3c88bd 7627
56cf515b
JK
7628 local = &sds->local_stat;
7629 busiest = &sds->busiest_stat;
1e3c88bd 7630
56cf515b
JK
7631 if (!local->sum_nr_running)
7632 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7633 else if (busiest->load_per_task > local->load_per_task)
7634 imbn = 1;
dd5feea1 7635
56cf515b 7636 scaled_busy_load_per_task =
ca8ce3d0 7637 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7638 busiest->group_capacity;
56cf515b 7639
3029ede3
VD
7640 if (busiest->avg_load + scaled_busy_load_per_task >=
7641 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7642 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7643 return;
7644 }
7645
7646 /*
7647 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7648 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7649 * moving them.
7650 */
7651
63b2ca30 7652 capa_now += busiest->group_capacity *
56cf515b 7653 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7654 capa_now += local->group_capacity *
56cf515b 7655 min(local->load_per_task, local->avg_load);
ca8ce3d0 7656 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7657
7658 /* Amount of load we'd subtract */
a2cd4260 7659 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7660 capa_move += busiest->group_capacity *
56cf515b 7661 min(busiest->load_per_task,
a2cd4260 7662 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7663 }
1e3c88bd
PZ
7664
7665 /* Amount of load we'd add */
63b2ca30 7666 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7667 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7668 tmp = (busiest->avg_load * busiest->group_capacity) /
7669 local->group_capacity;
56cf515b 7670 } else {
ca8ce3d0 7671 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7672 local->group_capacity;
56cf515b 7673 }
63b2ca30 7674 capa_move += local->group_capacity *
3ae11c90 7675 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7676 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7677
7678 /* Move if we gain throughput */
63b2ca30 7679 if (capa_move > capa_now)
56cf515b 7680 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7681}
7682
7683/**
7684 * calculate_imbalance - Calculate the amount of imbalance present within the
7685 * groups of a given sched_domain during load balance.
bd939f45 7686 * @env: load balance environment
1e3c88bd 7687 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7688 */
bd939f45 7689static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7690{
dd5feea1 7691 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7692 struct sg_lb_stats *local, *busiest;
7693
7694 local = &sds->local_stat;
56cf515b 7695 busiest = &sds->busiest_stat;
dd5feea1 7696
caeb178c 7697 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7698 /*
7699 * In the group_imb case we cannot rely on group-wide averages
7700 * to ensure cpu-load equilibrium, look at wider averages. XXX
7701 */
56cf515b
JK
7702 busiest->load_per_task =
7703 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7704 }
7705
1e3c88bd 7706 /*
885e542c
DE
7707 * Avg load of busiest sg can be less and avg load of local sg can
7708 * be greater than avg load across all sgs of sd because avg load
7709 * factors in sg capacity and sgs with smaller group_type are
7710 * skipped when updating the busiest sg:
1e3c88bd 7711 */
b1885550
VD
7712 if (busiest->avg_load <= sds->avg_load ||
7713 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7714 env->imbalance = 0;
7715 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7716 }
7717
9a5d9ba6
PZ
7718 /*
7719 * If there aren't any idle cpus, avoid creating some.
7720 */
7721 if (busiest->group_type == group_overloaded &&
7722 local->group_type == group_overloaded) {
1be0eb2a 7723 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7724 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7725 load_above_capacity -= busiest->group_capacity;
26656215 7726 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7727 load_above_capacity /= busiest->group_capacity;
7728 } else
ea67821b 7729 load_above_capacity = ~0UL;
dd5feea1
SS
7730 }
7731
7732 /*
7733 * We're trying to get all the cpus to the average_load, so we don't
7734 * want to push ourselves above the average load, nor do we wish to
7735 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7736 * we also don't want to reduce the group load below the group
7737 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7738 */
30ce5dab 7739 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7740
7741 /* How much load to actually move to equalise the imbalance */
56cf515b 7742 env->imbalance = min(
63b2ca30
NP
7743 max_pull * busiest->group_capacity,
7744 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7745 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7746
7747 /*
7748 * if *imbalance is less than the average load per runnable task
25985edc 7749 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7750 * a think about bumping its value to force at least one task to be
7751 * moved
7752 */
56cf515b 7753 if (env->imbalance < busiest->load_per_task)
bd939f45 7754 return fix_small_imbalance(env, sds);
1e3c88bd 7755}
fab47622 7756
1e3c88bd
PZ
7757/******* find_busiest_group() helpers end here *********************/
7758
7759/**
7760 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7761 * if there is an imbalance.
1e3c88bd
PZ
7762 *
7763 * Also calculates the amount of weighted load which should be moved
7764 * to restore balance.
7765 *
cd96891d 7766 * @env: The load balancing environment.
1e3c88bd 7767 *
e69f6186 7768 * Return: - The busiest group if imbalance exists.
1e3c88bd 7769 */
56cf515b 7770static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7771{
56cf515b 7772 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7773 struct sd_lb_stats sds;
7774
147c5fc2 7775 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7776
7777 /*
7778 * Compute the various statistics relavent for load balancing at
7779 * this level.
7780 */
23f0d209 7781 update_sd_lb_stats(env, &sds);
56cf515b
JK
7782 local = &sds.local_stat;
7783 busiest = &sds.busiest_stat;
1e3c88bd 7784
ea67821b 7785 /* ASYM feature bypasses nice load balance check */
1f621e02 7786 if (check_asym_packing(env, &sds))
532cb4c4
MN
7787 return sds.busiest;
7788
cc57aa8f 7789 /* There is no busy sibling group to pull tasks from */
56cf515b 7790 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7791 goto out_balanced;
7792
ca8ce3d0
NP
7793 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7794 / sds.total_capacity;
b0432d8f 7795
866ab43e
PZ
7796 /*
7797 * If the busiest group is imbalanced the below checks don't
30ce5dab 7798 * work because they assume all things are equal, which typically
866ab43e
PZ
7799 * isn't true due to cpus_allowed constraints and the like.
7800 */
caeb178c 7801 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7802 goto force_balance;
7803
cc57aa8f 7804 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7805 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7806 busiest->group_no_capacity)
fab47622
NR
7807 goto force_balance;
7808
cc57aa8f 7809 /*
9c58c79a 7810 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7811 * don't try and pull any tasks.
7812 */
56cf515b 7813 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7814 goto out_balanced;
7815
cc57aa8f
PZ
7816 /*
7817 * Don't pull any tasks if this group is already above the domain
7818 * average load.
7819 */
56cf515b 7820 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7821 goto out_balanced;
7822
bd939f45 7823 if (env->idle == CPU_IDLE) {
aae6d3dd 7824 /*
43f4d666
VG
7825 * This cpu is idle. If the busiest group is not overloaded
7826 * and there is no imbalance between this and busiest group
7827 * wrt idle cpus, it is balanced. The imbalance becomes
7828 * significant if the diff is greater than 1 otherwise we
7829 * might end up to just move the imbalance on another group
aae6d3dd 7830 */
43f4d666
VG
7831 if ((busiest->group_type != group_overloaded) &&
7832 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7833 goto out_balanced;
c186fafe
PZ
7834 } else {
7835 /*
7836 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7837 * imbalance_pct to be conservative.
7838 */
56cf515b
JK
7839 if (100 * busiest->avg_load <=
7840 env->sd->imbalance_pct * local->avg_load)
c186fafe 7841 goto out_balanced;
aae6d3dd 7842 }
1e3c88bd 7843
fab47622 7844force_balance:
1e3c88bd 7845 /* Looks like there is an imbalance. Compute it */
bd939f45 7846 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7847 return sds.busiest;
7848
7849out_balanced:
bd939f45 7850 env->imbalance = 0;
1e3c88bd
PZ
7851 return NULL;
7852}
7853
7854/*
7855 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7856 */
bd939f45 7857static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7858 struct sched_group *group)
1e3c88bd
PZ
7859{
7860 struct rq *busiest = NULL, *rq;
ced549fa 7861 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7862 int i;
7863
ae4df9d6 7864 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 7865 unsigned long capacity, wl;
0ec8aa00
PZ
7866 enum fbq_type rt;
7867
7868 rq = cpu_rq(i);
7869 rt = fbq_classify_rq(rq);
1e3c88bd 7870
0ec8aa00
PZ
7871 /*
7872 * We classify groups/runqueues into three groups:
7873 * - regular: there are !numa tasks
7874 * - remote: there are numa tasks that run on the 'wrong' node
7875 * - all: there is no distinction
7876 *
7877 * In order to avoid migrating ideally placed numa tasks,
7878 * ignore those when there's better options.
7879 *
7880 * If we ignore the actual busiest queue to migrate another
7881 * task, the next balance pass can still reduce the busiest
7882 * queue by moving tasks around inside the node.
7883 *
7884 * If we cannot move enough load due to this classification
7885 * the next pass will adjust the group classification and
7886 * allow migration of more tasks.
7887 *
7888 * Both cases only affect the total convergence complexity.
7889 */
7890 if (rt > env->fbq_type)
7891 continue;
7892
ced549fa 7893 capacity = capacity_of(i);
9d5efe05 7894
6e40f5bb 7895 wl = weighted_cpuload(i);
1e3c88bd 7896
6e40f5bb
TG
7897 /*
7898 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7899 * which is not scaled with the cpu capacity.
6e40f5bb 7900 */
ea67821b
VG
7901
7902 if (rq->nr_running == 1 && wl > env->imbalance &&
7903 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7904 continue;
7905
6e40f5bb
TG
7906 /*
7907 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7908 * the weighted_cpuload() scaled with the cpu capacity, so
7909 * that the load can be moved away from the cpu that is
7910 * potentially running at a lower capacity.
95a79b80 7911 *
ced549fa 7912 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7913 * multiplication to rid ourselves of the division works out
ced549fa
NP
7914 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7915 * our previous maximum.
6e40f5bb 7916 */
ced549fa 7917 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7918 busiest_load = wl;
ced549fa 7919 busiest_capacity = capacity;
1e3c88bd
PZ
7920 busiest = rq;
7921 }
7922 }
7923
7924 return busiest;
7925}
7926
7927/*
7928 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7929 * so long as it is large enough.
7930 */
7931#define MAX_PINNED_INTERVAL 512
7932
bd939f45 7933static int need_active_balance(struct lb_env *env)
1af3ed3d 7934{
bd939f45
PZ
7935 struct sched_domain *sd = env->sd;
7936
7937 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7938
7939 /*
7940 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
7941 * lower priority CPUs in order to pack all tasks in the
7942 * highest priority CPUs.
532cb4c4 7943 */
afe06efd
TC
7944 if ((sd->flags & SD_ASYM_PACKING) &&
7945 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 7946 return 1;
1af3ed3d
PZ
7947 }
7948
1aaf90a4
VG
7949 /*
7950 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7951 * It's worth migrating the task if the src_cpu's capacity is reduced
7952 * because of other sched_class or IRQs if more capacity stays
7953 * available on dst_cpu.
7954 */
7955 if ((env->idle != CPU_NOT_IDLE) &&
7956 (env->src_rq->cfs.h_nr_running == 1)) {
7957 if ((check_cpu_capacity(env->src_rq, sd)) &&
7958 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7959 return 1;
7960 }
7961
1af3ed3d
PZ
7962 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7963}
7964
969c7921
TH
7965static int active_load_balance_cpu_stop(void *data);
7966
23f0d209
JK
7967static int should_we_balance(struct lb_env *env)
7968{
7969 struct sched_group *sg = env->sd->groups;
23f0d209
JK
7970 int cpu, balance_cpu = -1;
7971
7972 /*
7973 * In the newly idle case, we will allow all the cpu's
7974 * to do the newly idle load balance.
7975 */
7976 if (env->idle == CPU_NEWLY_IDLE)
7977 return 1;
7978
23f0d209 7979 /* Try to find first idle cpu */
e5c14b1f 7980 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 7981 if (!idle_cpu(cpu))
23f0d209
JK
7982 continue;
7983
7984 balance_cpu = cpu;
7985 break;
7986 }
7987
7988 if (balance_cpu == -1)
7989 balance_cpu = group_balance_cpu(sg);
7990
7991 /*
7992 * First idle cpu or the first cpu(busiest) in this sched group
7993 * is eligible for doing load balancing at this and above domains.
7994 */
b0cff9d8 7995 return balance_cpu == env->dst_cpu;
23f0d209
JK
7996}
7997
1e3c88bd
PZ
7998/*
7999 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8000 * tasks if there is an imbalance.
8001 */
8002static int load_balance(int this_cpu, struct rq *this_rq,
8003 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8004 int *continue_balancing)
1e3c88bd 8005{
88b8dac0 8006 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8007 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8008 struct sched_group *group;
1e3c88bd 8009 struct rq *busiest;
8a8c69c3 8010 struct rq_flags rf;
4ba29684 8011 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8012
8e45cb54
PZ
8013 struct lb_env env = {
8014 .sd = sd,
ddcdf6e7
PZ
8015 .dst_cpu = this_cpu,
8016 .dst_rq = this_rq,
ae4df9d6 8017 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8018 .idle = idle,
eb95308e 8019 .loop_break = sched_nr_migrate_break,
b9403130 8020 .cpus = cpus,
0ec8aa00 8021 .fbq_type = all,
163122b7 8022 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8023 };
8024
cfc03118
JK
8025 /*
8026 * For NEWLY_IDLE load_balancing, we don't need to consider
8027 * other cpus in our group
8028 */
e02e60c1 8029 if (idle == CPU_NEWLY_IDLE)
cfc03118 8030 env.dst_grpmask = NULL;
cfc03118 8031
1e3c88bd
PZ
8032 cpumask_copy(cpus, cpu_active_mask);
8033
ae92882e 8034 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8035
8036redo:
23f0d209
JK
8037 if (!should_we_balance(&env)) {
8038 *continue_balancing = 0;
1e3c88bd 8039 goto out_balanced;
23f0d209 8040 }
1e3c88bd 8041
23f0d209 8042 group = find_busiest_group(&env);
1e3c88bd 8043 if (!group) {
ae92882e 8044 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8045 goto out_balanced;
8046 }
8047
b9403130 8048 busiest = find_busiest_queue(&env, group);
1e3c88bd 8049 if (!busiest) {
ae92882e 8050 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8051 goto out_balanced;
8052 }
8053
78feefc5 8054 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8055
ae92882e 8056 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8057
1aaf90a4
VG
8058 env.src_cpu = busiest->cpu;
8059 env.src_rq = busiest;
8060
1e3c88bd
PZ
8061 ld_moved = 0;
8062 if (busiest->nr_running > 1) {
8063 /*
8064 * Attempt to move tasks. If find_busiest_group has found
8065 * an imbalance but busiest->nr_running <= 1, the group is
8066 * still unbalanced. ld_moved simply stays zero, so it is
8067 * correctly treated as an imbalance.
8068 */
8e45cb54 8069 env.flags |= LBF_ALL_PINNED;
c82513e5 8070 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8071
5d6523eb 8072more_balance:
8a8c69c3 8073 rq_lock_irqsave(busiest, &rf);
3bed5e21 8074 update_rq_clock(busiest);
88b8dac0
SV
8075
8076 /*
8077 * cur_ld_moved - load moved in current iteration
8078 * ld_moved - cumulative load moved across iterations
8079 */
163122b7 8080 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8081
8082 /*
163122b7
KT
8083 * We've detached some tasks from busiest_rq. Every
8084 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8085 * unlock busiest->lock, and we are able to be sure
8086 * that nobody can manipulate the tasks in parallel.
8087 * See task_rq_lock() family for the details.
1e3c88bd 8088 */
163122b7 8089
8a8c69c3 8090 rq_unlock(busiest, &rf);
163122b7
KT
8091
8092 if (cur_ld_moved) {
8093 attach_tasks(&env);
8094 ld_moved += cur_ld_moved;
8095 }
8096
8a8c69c3 8097 local_irq_restore(rf.flags);
88b8dac0 8098
f1cd0858
JK
8099 if (env.flags & LBF_NEED_BREAK) {
8100 env.flags &= ~LBF_NEED_BREAK;
8101 goto more_balance;
8102 }
8103
88b8dac0
SV
8104 /*
8105 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8106 * us and move them to an alternate dst_cpu in our sched_group
8107 * where they can run. The upper limit on how many times we
8108 * iterate on same src_cpu is dependent on number of cpus in our
8109 * sched_group.
8110 *
8111 * This changes load balance semantics a bit on who can move
8112 * load to a given_cpu. In addition to the given_cpu itself
8113 * (or a ilb_cpu acting on its behalf where given_cpu is
8114 * nohz-idle), we now have balance_cpu in a position to move
8115 * load to given_cpu. In rare situations, this may cause
8116 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8117 * _independently_ and at _same_ time to move some load to
8118 * given_cpu) causing exceess load to be moved to given_cpu.
8119 * This however should not happen so much in practice and
8120 * moreover subsequent load balance cycles should correct the
8121 * excess load moved.
8122 */
6263322c 8123 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8124
7aff2e3a
VD
8125 /* Prevent to re-select dst_cpu via env's cpus */
8126 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8127
78feefc5 8128 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8129 env.dst_cpu = env.new_dst_cpu;
6263322c 8130 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8131 env.loop = 0;
8132 env.loop_break = sched_nr_migrate_break;
e02e60c1 8133
88b8dac0
SV
8134 /*
8135 * Go back to "more_balance" rather than "redo" since we
8136 * need to continue with same src_cpu.
8137 */
8138 goto more_balance;
8139 }
1e3c88bd 8140
6263322c
PZ
8141 /*
8142 * We failed to reach balance because of affinity.
8143 */
8144 if (sd_parent) {
63b2ca30 8145 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8146
afdeee05 8147 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8148 *group_imbalance = 1;
6263322c
PZ
8149 }
8150
1e3c88bd 8151 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8152 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8153 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8154 if (!cpumask_empty(cpus)) {
8155 env.loop = 0;
8156 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8157 goto redo;
bbf18b19 8158 }
afdeee05 8159 goto out_all_pinned;
1e3c88bd
PZ
8160 }
8161 }
8162
8163 if (!ld_moved) {
ae92882e 8164 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8165 /*
8166 * Increment the failure counter only on periodic balance.
8167 * We do not want newidle balance, which can be very
8168 * frequent, pollute the failure counter causing
8169 * excessive cache_hot migrations and active balances.
8170 */
8171 if (idle != CPU_NEWLY_IDLE)
8172 sd->nr_balance_failed++;
1e3c88bd 8173
bd939f45 8174 if (need_active_balance(&env)) {
8a8c69c3
PZ
8175 unsigned long flags;
8176
1e3c88bd
PZ
8177 raw_spin_lock_irqsave(&busiest->lock, flags);
8178
969c7921
TH
8179 /* don't kick the active_load_balance_cpu_stop,
8180 * if the curr task on busiest cpu can't be
8181 * moved to this_cpu
1e3c88bd 8182 */
0c98d344 8183 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8184 raw_spin_unlock_irqrestore(&busiest->lock,
8185 flags);
8e45cb54 8186 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8187 goto out_one_pinned;
8188 }
8189
969c7921
TH
8190 /*
8191 * ->active_balance synchronizes accesses to
8192 * ->active_balance_work. Once set, it's cleared
8193 * only after active load balance is finished.
8194 */
1e3c88bd
PZ
8195 if (!busiest->active_balance) {
8196 busiest->active_balance = 1;
8197 busiest->push_cpu = this_cpu;
8198 active_balance = 1;
8199 }
8200 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8201
bd939f45 8202 if (active_balance) {
969c7921
TH
8203 stop_one_cpu_nowait(cpu_of(busiest),
8204 active_load_balance_cpu_stop, busiest,
8205 &busiest->active_balance_work);
bd939f45 8206 }
1e3c88bd 8207
d02c0711 8208 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8209 sd->nr_balance_failed = sd->cache_nice_tries+1;
8210 }
8211 } else
8212 sd->nr_balance_failed = 0;
8213
8214 if (likely(!active_balance)) {
8215 /* We were unbalanced, so reset the balancing interval */
8216 sd->balance_interval = sd->min_interval;
8217 } else {
8218 /*
8219 * If we've begun active balancing, start to back off. This
8220 * case may not be covered by the all_pinned logic if there
8221 * is only 1 task on the busy runqueue (because we don't call
163122b7 8222 * detach_tasks).
1e3c88bd
PZ
8223 */
8224 if (sd->balance_interval < sd->max_interval)
8225 sd->balance_interval *= 2;
8226 }
8227
1e3c88bd
PZ
8228 goto out;
8229
8230out_balanced:
afdeee05
VG
8231 /*
8232 * We reach balance although we may have faced some affinity
8233 * constraints. Clear the imbalance flag if it was set.
8234 */
8235 if (sd_parent) {
8236 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8237
8238 if (*group_imbalance)
8239 *group_imbalance = 0;
8240 }
8241
8242out_all_pinned:
8243 /*
8244 * We reach balance because all tasks are pinned at this level so
8245 * we can't migrate them. Let the imbalance flag set so parent level
8246 * can try to migrate them.
8247 */
ae92882e 8248 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8249
8250 sd->nr_balance_failed = 0;
8251
8252out_one_pinned:
8253 /* tune up the balancing interval */
8e45cb54 8254 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8255 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8256 (sd->balance_interval < sd->max_interval))
8257 sd->balance_interval *= 2;
8258
46e49b38 8259 ld_moved = 0;
1e3c88bd 8260out:
1e3c88bd
PZ
8261 return ld_moved;
8262}
8263
52a08ef1
JL
8264static inline unsigned long
8265get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8266{
8267 unsigned long interval = sd->balance_interval;
8268
8269 if (cpu_busy)
8270 interval *= sd->busy_factor;
8271
8272 /* scale ms to jiffies */
8273 interval = msecs_to_jiffies(interval);
8274 interval = clamp(interval, 1UL, max_load_balance_interval);
8275
8276 return interval;
8277}
8278
8279static inline void
31851a98 8280update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8281{
8282 unsigned long interval, next;
8283
31851a98
LY
8284 /* used by idle balance, so cpu_busy = 0 */
8285 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8286 next = sd->last_balance + interval;
8287
8288 if (time_after(*next_balance, next))
8289 *next_balance = next;
8290}
8291
1e3c88bd
PZ
8292/*
8293 * idle_balance is called by schedule() if this_cpu is about to become
8294 * idle. Attempts to pull tasks from other CPUs.
8295 */
46f69fa3 8296static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8297{
52a08ef1
JL
8298 unsigned long next_balance = jiffies + HZ;
8299 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8300 struct sched_domain *sd;
8301 int pulled_task = 0;
9bd721c5 8302 u64 curr_cost = 0;
1e3c88bd 8303
6e83125c
PZ
8304 /*
8305 * We must set idle_stamp _before_ calling idle_balance(), such that we
8306 * measure the duration of idle_balance() as idle time.
8307 */
8308 this_rq->idle_stamp = rq_clock(this_rq);
8309
46f69fa3
MF
8310 /*
8311 * This is OK, because current is on_cpu, which avoids it being picked
8312 * for load-balance and preemption/IRQs are still disabled avoiding
8313 * further scheduler activity on it and we're being very careful to
8314 * re-start the picking loop.
8315 */
8316 rq_unpin_lock(this_rq, rf);
8317
4486edd1
TC
8318 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8319 !this_rq->rd->overload) {
52a08ef1
JL
8320 rcu_read_lock();
8321 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8322 if (sd)
31851a98 8323 update_next_balance(sd, &next_balance);
52a08ef1
JL
8324 rcu_read_unlock();
8325
6e83125c 8326 goto out;
52a08ef1 8327 }
1e3c88bd 8328
f492e12e
PZ
8329 raw_spin_unlock(&this_rq->lock);
8330
48a16753 8331 update_blocked_averages(this_cpu);
dce840a0 8332 rcu_read_lock();
1e3c88bd 8333 for_each_domain(this_cpu, sd) {
23f0d209 8334 int continue_balancing = 1;
9bd721c5 8335 u64 t0, domain_cost;
1e3c88bd
PZ
8336
8337 if (!(sd->flags & SD_LOAD_BALANCE))
8338 continue;
8339
52a08ef1 8340 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8341 update_next_balance(sd, &next_balance);
9bd721c5 8342 break;
52a08ef1 8343 }
9bd721c5 8344
f492e12e 8345 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8346 t0 = sched_clock_cpu(this_cpu);
8347
f492e12e 8348 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8349 sd, CPU_NEWLY_IDLE,
8350 &continue_balancing);
9bd721c5
JL
8351
8352 domain_cost = sched_clock_cpu(this_cpu) - t0;
8353 if (domain_cost > sd->max_newidle_lb_cost)
8354 sd->max_newidle_lb_cost = domain_cost;
8355
8356 curr_cost += domain_cost;
f492e12e 8357 }
1e3c88bd 8358
31851a98 8359 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8360
8361 /*
8362 * Stop searching for tasks to pull if there are
8363 * now runnable tasks on this rq.
8364 */
8365 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8366 break;
1e3c88bd 8367 }
dce840a0 8368 rcu_read_unlock();
f492e12e
PZ
8369
8370 raw_spin_lock(&this_rq->lock);
8371
0e5b5337
JL
8372 if (curr_cost > this_rq->max_idle_balance_cost)
8373 this_rq->max_idle_balance_cost = curr_cost;
8374
e5fc6611 8375 /*
0e5b5337
JL
8376 * While browsing the domains, we released the rq lock, a task could
8377 * have been enqueued in the meantime. Since we're not going idle,
8378 * pretend we pulled a task.
e5fc6611 8379 */
0e5b5337 8380 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8381 pulled_task = 1;
e5fc6611 8382
52a08ef1
JL
8383out:
8384 /* Move the next balance forward */
8385 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8386 this_rq->next_balance = next_balance;
9bd721c5 8387
e4aa358b 8388 /* Is there a task of a high priority class? */
46383648 8389 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8390 pulled_task = -1;
8391
38c6ade2 8392 if (pulled_task)
6e83125c
PZ
8393 this_rq->idle_stamp = 0;
8394
46f69fa3
MF
8395 rq_repin_lock(this_rq, rf);
8396
3c4017c1 8397 return pulled_task;
1e3c88bd
PZ
8398}
8399
8400/*
969c7921
TH
8401 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8402 * running tasks off the busiest CPU onto idle CPUs. It requires at
8403 * least 1 task to be running on each physical CPU where possible, and
8404 * avoids physical / logical imbalances.
1e3c88bd 8405 */
969c7921 8406static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8407{
969c7921
TH
8408 struct rq *busiest_rq = data;
8409 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8410 int target_cpu = busiest_rq->push_cpu;
969c7921 8411 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8412 struct sched_domain *sd;
e5673f28 8413 struct task_struct *p = NULL;
8a8c69c3 8414 struct rq_flags rf;
969c7921 8415
8a8c69c3 8416 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8417
8418 /* make sure the requested cpu hasn't gone down in the meantime */
8419 if (unlikely(busiest_cpu != smp_processor_id() ||
8420 !busiest_rq->active_balance))
8421 goto out_unlock;
1e3c88bd
PZ
8422
8423 /* Is there any task to move? */
8424 if (busiest_rq->nr_running <= 1)
969c7921 8425 goto out_unlock;
1e3c88bd
PZ
8426
8427 /*
8428 * This condition is "impossible", if it occurs
8429 * we need to fix it. Originally reported by
8430 * Bjorn Helgaas on a 128-cpu setup.
8431 */
8432 BUG_ON(busiest_rq == target_rq);
8433
1e3c88bd 8434 /* Search for an sd spanning us and the target CPU. */
dce840a0 8435 rcu_read_lock();
1e3c88bd
PZ
8436 for_each_domain(target_cpu, sd) {
8437 if ((sd->flags & SD_LOAD_BALANCE) &&
8438 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8439 break;
8440 }
8441
8442 if (likely(sd)) {
8e45cb54
PZ
8443 struct lb_env env = {
8444 .sd = sd,
ddcdf6e7
PZ
8445 .dst_cpu = target_cpu,
8446 .dst_rq = target_rq,
8447 .src_cpu = busiest_rq->cpu,
8448 .src_rq = busiest_rq,
8e45cb54
PZ
8449 .idle = CPU_IDLE,
8450 };
8451
ae92882e 8452 schedstat_inc(sd->alb_count);
3bed5e21 8453 update_rq_clock(busiest_rq);
1e3c88bd 8454
e5673f28 8455 p = detach_one_task(&env);
d02c0711 8456 if (p) {
ae92882e 8457 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8458 /* Active balancing done, reset the failure counter. */
8459 sd->nr_balance_failed = 0;
8460 } else {
ae92882e 8461 schedstat_inc(sd->alb_failed);
d02c0711 8462 }
1e3c88bd 8463 }
dce840a0 8464 rcu_read_unlock();
969c7921
TH
8465out_unlock:
8466 busiest_rq->active_balance = 0;
8a8c69c3 8467 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8468
8469 if (p)
8470 attach_one_task(target_rq, p);
8471
8472 local_irq_enable();
8473
969c7921 8474 return 0;
1e3c88bd
PZ
8475}
8476
d987fc7f
MG
8477static inline int on_null_domain(struct rq *rq)
8478{
8479 return unlikely(!rcu_dereference_sched(rq->sd));
8480}
8481
3451d024 8482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8483/*
8484 * idle load balancing details
83cd4fe2
VP
8485 * - When one of the busy CPUs notice that there may be an idle rebalancing
8486 * needed, they will kick the idle load balancer, which then does idle
8487 * load balancing for all the idle CPUs.
8488 */
1e3c88bd 8489static struct {
83cd4fe2 8490 cpumask_var_t idle_cpus_mask;
0b005cf5 8491 atomic_t nr_cpus;
83cd4fe2
VP
8492 unsigned long next_balance; /* in jiffy units */
8493} nohz ____cacheline_aligned;
1e3c88bd 8494
3dd0337d 8495static inline int find_new_ilb(void)
1e3c88bd 8496{
0b005cf5 8497 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8498
786d6dc7
SS
8499 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8500 return ilb;
8501
8502 return nr_cpu_ids;
1e3c88bd 8503}
1e3c88bd 8504
83cd4fe2
VP
8505/*
8506 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8507 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8508 * CPU (if there is one).
8509 */
0aeeeeba 8510static void nohz_balancer_kick(void)
83cd4fe2
VP
8511{
8512 int ilb_cpu;
8513
8514 nohz.next_balance++;
8515
3dd0337d 8516 ilb_cpu = find_new_ilb();
83cd4fe2 8517
0b005cf5
SS
8518 if (ilb_cpu >= nr_cpu_ids)
8519 return;
83cd4fe2 8520
cd490c5b 8521 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8522 return;
8523 /*
8524 * Use smp_send_reschedule() instead of resched_cpu().
8525 * This way we generate a sched IPI on the target cpu which
8526 * is idle. And the softirq performing nohz idle load balance
8527 * will be run before returning from the IPI.
8528 */
8529 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8530 return;
8531}
8532
20a5c8cc 8533void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8534{
8535 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8536 /*
8537 * Completely isolated CPUs don't ever set, so we must test.
8538 */
8539 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8540 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8541 atomic_dec(&nohz.nr_cpus);
8542 }
71325960
SS
8543 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8544 }
8545}
8546
69e1e811
SS
8547static inline void set_cpu_sd_state_busy(void)
8548{
8549 struct sched_domain *sd;
37dc6b50 8550 int cpu = smp_processor_id();
69e1e811 8551
69e1e811 8552 rcu_read_lock();
0e369d75 8553 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8554
8555 if (!sd || !sd->nohz_idle)
8556 goto unlock;
8557 sd->nohz_idle = 0;
8558
0e369d75 8559 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8560unlock:
69e1e811
SS
8561 rcu_read_unlock();
8562}
8563
8564void set_cpu_sd_state_idle(void)
8565{
8566 struct sched_domain *sd;
37dc6b50 8567 int cpu = smp_processor_id();
69e1e811 8568
69e1e811 8569 rcu_read_lock();
0e369d75 8570 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8571
8572 if (!sd || sd->nohz_idle)
8573 goto unlock;
8574 sd->nohz_idle = 1;
8575
0e369d75 8576 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8577unlock:
69e1e811
SS
8578 rcu_read_unlock();
8579}
8580
1e3c88bd 8581/*
c1cc017c 8582 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8583 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8584 */
c1cc017c 8585void nohz_balance_enter_idle(int cpu)
1e3c88bd 8586{
71325960
SS
8587 /*
8588 * If this cpu is going down, then nothing needs to be done.
8589 */
8590 if (!cpu_active(cpu))
8591 return;
8592
387bc8b5
FW
8593 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8594 if (!is_housekeeping_cpu(cpu))
8595 return;
8596
c1cc017c
AS
8597 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8598 return;
1e3c88bd 8599
d987fc7f
MG
8600 /*
8601 * If we're a completely isolated CPU, we don't play.
8602 */
8603 if (on_null_domain(cpu_rq(cpu)))
8604 return;
8605
c1cc017c
AS
8606 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8607 atomic_inc(&nohz.nr_cpus);
8608 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8609}
8610#endif
8611
8612static DEFINE_SPINLOCK(balancing);
8613
49c022e6
PZ
8614/*
8615 * Scale the max load_balance interval with the number of CPUs in the system.
8616 * This trades load-balance latency on larger machines for less cross talk.
8617 */
029632fb 8618void update_max_interval(void)
49c022e6
PZ
8619{
8620 max_load_balance_interval = HZ*num_online_cpus()/10;
8621}
8622
1e3c88bd
PZ
8623/*
8624 * It checks each scheduling domain to see if it is due to be balanced,
8625 * and initiates a balancing operation if so.
8626 *
b9b0853a 8627 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8628 */
f7ed0a89 8629static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8630{
23f0d209 8631 int continue_balancing = 1;
f7ed0a89 8632 int cpu = rq->cpu;
1e3c88bd 8633 unsigned long interval;
04f733b4 8634 struct sched_domain *sd;
1e3c88bd
PZ
8635 /* Earliest time when we have to do rebalance again */
8636 unsigned long next_balance = jiffies + 60*HZ;
8637 int update_next_balance = 0;
f48627e6
JL
8638 int need_serialize, need_decay = 0;
8639 u64 max_cost = 0;
1e3c88bd 8640
48a16753 8641 update_blocked_averages(cpu);
2069dd75 8642
dce840a0 8643 rcu_read_lock();
1e3c88bd 8644 for_each_domain(cpu, sd) {
f48627e6
JL
8645 /*
8646 * Decay the newidle max times here because this is a regular
8647 * visit to all the domains. Decay ~1% per second.
8648 */
8649 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8650 sd->max_newidle_lb_cost =
8651 (sd->max_newidle_lb_cost * 253) / 256;
8652 sd->next_decay_max_lb_cost = jiffies + HZ;
8653 need_decay = 1;
8654 }
8655 max_cost += sd->max_newidle_lb_cost;
8656
1e3c88bd
PZ
8657 if (!(sd->flags & SD_LOAD_BALANCE))
8658 continue;
8659
f48627e6
JL
8660 /*
8661 * Stop the load balance at this level. There is another
8662 * CPU in our sched group which is doing load balancing more
8663 * actively.
8664 */
8665 if (!continue_balancing) {
8666 if (need_decay)
8667 continue;
8668 break;
8669 }
8670
52a08ef1 8671 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8672
8673 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8674 if (need_serialize) {
8675 if (!spin_trylock(&balancing))
8676 goto out;
8677 }
8678
8679 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8680 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8681 /*
6263322c 8682 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8683 * env->dst_cpu, so we can't know our idle
8684 * state even if we migrated tasks. Update it.
1e3c88bd 8685 */
de5eb2dd 8686 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8687 }
8688 sd->last_balance = jiffies;
52a08ef1 8689 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8690 }
8691 if (need_serialize)
8692 spin_unlock(&balancing);
8693out:
8694 if (time_after(next_balance, sd->last_balance + interval)) {
8695 next_balance = sd->last_balance + interval;
8696 update_next_balance = 1;
8697 }
f48627e6
JL
8698 }
8699 if (need_decay) {
1e3c88bd 8700 /*
f48627e6
JL
8701 * Ensure the rq-wide value also decays but keep it at a
8702 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8703 */
f48627e6
JL
8704 rq->max_idle_balance_cost =
8705 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8706 }
dce840a0 8707 rcu_read_unlock();
1e3c88bd
PZ
8708
8709 /*
8710 * next_balance will be updated only when there is a need.
8711 * When the cpu is attached to null domain for ex, it will not be
8712 * updated.
8713 */
c5afb6a8 8714 if (likely(update_next_balance)) {
1e3c88bd 8715 rq->next_balance = next_balance;
c5afb6a8
VG
8716
8717#ifdef CONFIG_NO_HZ_COMMON
8718 /*
8719 * If this CPU has been elected to perform the nohz idle
8720 * balance. Other idle CPUs have already rebalanced with
8721 * nohz_idle_balance() and nohz.next_balance has been
8722 * updated accordingly. This CPU is now running the idle load
8723 * balance for itself and we need to update the
8724 * nohz.next_balance accordingly.
8725 */
8726 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8727 nohz.next_balance = rq->next_balance;
8728#endif
8729 }
1e3c88bd
PZ
8730}
8731
3451d024 8732#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8733/*
3451d024 8734 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8735 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8736 */
208cb16b 8737static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8738{
208cb16b 8739 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8740 struct rq *rq;
8741 int balance_cpu;
c5afb6a8
VG
8742 /* Earliest time when we have to do rebalance again */
8743 unsigned long next_balance = jiffies + 60*HZ;
8744 int update_next_balance = 0;
83cd4fe2 8745
1c792db7
SS
8746 if (idle != CPU_IDLE ||
8747 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8748 goto end;
83cd4fe2
VP
8749
8750 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8751 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8752 continue;
8753
8754 /*
8755 * If this cpu gets work to do, stop the load balancing
8756 * work being done for other cpus. Next load
8757 * balancing owner will pick it up.
8758 */
1c792db7 8759 if (need_resched())
83cd4fe2 8760 break;
83cd4fe2 8761
5ed4f1d9
VG
8762 rq = cpu_rq(balance_cpu);
8763
ed61bbc6
TC
8764 /*
8765 * If time for next balance is due,
8766 * do the balance.
8767 */
8768 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8769 struct rq_flags rf;
8770
8771 rq_lock_irq(rq, &rf);
ed61bbc6 8772 update_rq_clock(rq);
cee1afce 8773 cpu_load_update_idle(rq);
8a8c69c3
PZ
8774 rq_unlock_irq(rq, &rf);
8775
ed61bbc6
TC
8776 rebalance_domains(rq, CPU_IDLE);
8777 }
83cd4fe2 8778
c5afb6a8
VG
8779 if (time_after(next_balance, rq->next_balance)) {
8780 next_balance = rq->next_balance;
8781 update_next_balance = 1;
8782 }
83cd4fe2 8783 }
c5afb6a8
VG
8784
8785 /*
8786 * next_balance will be updated only when there is a need.
8787 * When the CPU is attached to null domain for ex, it will not be
8788 * updated.
8789 */
8790 if (likely(update_next_balance))
8791 nohz.next_balance = next_balance;
1c792db7
SS
8792end:
8793 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8794}
8795
8796/*
0b005cf5 8797 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8798 * of an idle cpu in the system.
0b005cf5 8799 * - This rq has more than one task.
1aaf90a4
VG
8800 * - This rq has at least one CFS task and the capacity of the CPU is
8801 * significantly reduced because of RT tasks or IRQs.
8802 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8803 * multiple busy cpu.
0b005cf5
SS
8804 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8805 * domain span are idle.
83cd4fe2 8806 */
1aaf90a4 8807static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8808{
8809 unsigned long now = jiffies;
0e369d75 8810 struct sched_domain_shared *sds;
0b005cf5 8811 struct sched_domain *sd;
afe06efd 8812 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8813 bool kick = false;
83cd4fe2 8814
4a725627 8815 if (unlikely(rq->idle_balance))
1aaf90a4 8816 return false;
83cd4fe2 8817
1c792db7
SS
8818 /*
8819 * We may be recently in ticked or tickless idle mode. At the first
8820 * busy tick after returning from idle, we will update the busy stats.
8821 */
69e1e811 8822 set_cpu_sd_state_busy();
c1cc017c 8823 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8824
8825 /*
8826 * None are in tickless mode and hence no need for NOHZ idle load
8827 * balancing.
8828 */
8829 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8830 return false;
1c792db7
SS
8831
8832 if (time_before(now, nohz.next_balance))
1aaf90a4 8833 return false;
83cd4fe2 8834
0b005cf5 8835 if (rq->nr_running >= 2)
1aaf90a4 8836 return true;
83cd4fe2 8837
067491b7 8838 rcu_read_lock();
0e369d75
PZ
8839 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8840 if (sds) {
8841 /*
8842 * XXX: write a coherent comment on why we do this.
8843 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8844 */
8845 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8846 if (nr_busy > 1) {
8847 kick = true;
8848 goto unlock;
8849 }
8850
83cd4fe2 8851 }
37dc6b50 8852
1aaf90a4
VG
8853 sd = rcu_dereference(rq->sd);
8854 if (sd) {
8855 if ((rq->cfs.h_nr_running >= 1) &&
8856 check_cpu_capacity(rq, sd)) {
8857 kick = true;
8858 goto unlock;
8859 }
8860 }
37dc6b50 8861
1aaf90a4 8862 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8863 if (sd) {
8864 for_each_cpu(i, sched_domain_span(sd)) {
8865 if (i == cpu ||
8866 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8867 continue;
067491b7 8868
afe06efd
TC
8869 if (sched_asym_prefer(i, cpu)) {
8870 kick = true;
8871 goto unlock;
8872 }
8873 }
8874 }
1aaf90a4 8875unlock:
067491b7 8876 rcu_read_unlock();
1aaf90a4 8877 return kick;
83cd4fe2
VP
8878}
8879#else
208cb16b 8880static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8881#endif
8882
8883/*
8884 * run_rebalance_domains is triggered when needed from the scheduler tick.
8885 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8886 */
0766f788 8887static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8888{
208cb16b 8889 struct rq *this_rq = this_rq();
6eb57e0d 8890 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8891 CPU_IDLE : CPU_NOT_IDLE;
8892
1e3c88bd 8893 /*
83cd4fe2 8894 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8895 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8896 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8897 * give the idle cpus a chance to load balance. Else we may
8898 * load balance only within the local sched_domain hierarchy
8899 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8900 */
208cb16b 8901 nohz_idle_balance(this_rq, idle);
d4573c3e 8902 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8903}
8904
1e3c88bd
PZ
8905/*
8906 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8907 */
7caff66f 8908void trigger_load_balance(struct rq *rq)
1e3c88bd 8909{
1e3c88bd 8910 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8911 if (unlikely(on_null_domain(rq)))
8912 return;
8913
8914 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8915 raise_softirq(SCHED_SOFTIRQ);
3451d024 8916#ifdef CONFIG_NO_HZ_COMMON
c726099e 8917 if (nohz_kick_needed(rq))
0aeeeeba 8918 nohz_balancer_kick();
83cd4fe2 8919#endif
1e3c88bd
PZ
8920}
8921
0bcdcf28
CE
8922static void rq_online_fair(struct rq *rq)
8923{
8924 update_sysctl();
0e59bdae
KT
8925
8926 update_runtime_enabled(rq);
0bcdcf28
CE
8927}
8928
8929static void rq_offline_fair(struct rq *rq)
8930{
8931 update_sysctl();
a4c96ae3
PB
8932
8933 /* Ensure any throttled groups are reachable by pick_next_task */
8934 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8935}
8936
55e12e5e 8937#endif /* CONFIG_SMP */
e1d1484f 8938
bf0f6f24
IM
8939/*
8940 * scheduler tick hitting a task of our scheduling class:
8941 */
8f4d37ec 8942static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8943{
8944 struct cfs_rq *cfs_rq;
8945 struct sched_entity *se = &curr->se;
8946
8947 for_each_sched_entity(se) {
8948 cfs_rq = cfs_rq_of(se);
8f4d37ec 8949 entity_tick(cfs_rq, se, queued);
bf0f6f24 8950 }
18bf2805 8951
b52da86e 8952 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8953 task_tick_numa(rq, curr);
bf0f6f24
IM
8954}
8955
8956/*
cd29fe6f
PZ
8957 * called on fork with the child task as argument from the parent's context
8958 * - child not yet on the tasklist
8959 * - preemption disabled
bf0f6f24 8960 */
cd29fe6f 8961static void task_fork_fair(struct task_struct *p)
bf0f6f24 8962{
4fc420c9
DN
8963 struct cfs_rq *cfs_rq;
8964 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8965 struct rq *rq = this_rq();
8a8c69c3 8966 struct rq_flags rf;
bf0f6f24 8967
8a8c69c3 8968 rq_lock(rq, &rf);
861d034e
PZ
8969 update_rq_clock(rq);
8970
4fc420c9
DN
8971 cfs_rq = task_cfs_rq(current);
8972 curr = cfs_rq->curr;
e210bffd
PZ
8973 if (curr) {
8974 update_curr(cfs_rq);
b5d9d734 8975 se->vruntime = curr->vruntime;
e210bffd 8976 }
aeb73b04 8977 place_entity(cfs_rq, se, 1);
4d78e7b6 8978
cd29fe6f 8979 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8980 /*
edcb60a3
IM
8981 * Upon rescheduling, sched_class::put_prev_task() will place
8982 * 'current' within the tree based on its new key value.
8983 */
4d78e7b6 8984 swap(curr->vruntime, se->vruntime);
8875125e 8985 resched_curr(rq);
4d78e7b6 8986 }
bf0f6f24 8987
88ec22d3 8988 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 8989 rq_unlock(rq, &rf);
bf0f6f24
IM
8990}
8991
cb469845
SR
8992/*
8993 * Priority of the task has changed. Check to see if we preempt
8994 * the current task.
8995 */
da7a735e
PZ
8996static void
8997prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8998{
da0c1e65 8999 if (!task_on_rq_queued(p))
da7a735e
PZ
9000 return;
9001
cb469845
SR
9002 /*
9003 * Reschedule if we are currently running on this runqueue and
9004 * our priority decreased, or if we are not currently running on
9005 * this runqueue and our priority is higher than the current's
9006 */
da7a735e 9007 if (rq->curr == p) {
cb469845 9008 if (p->prio > oldprio)
8875125e 9009 resched_curr(rq);
cb469845 9010 } else
15afe09b 9011 check_preempt_curr(rq, p, 0);
cb469845
SR
9012}
9013
daa59407 9014static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9015{
9016 struct sched_entity *se = &p->se;
da7a735e
PZ
9017
9018 /*
daa59407
BP
9019 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9020 * the dequeue_entity(.flags=0) will already have normalized the
9021 * vruntime.
9022 */
9023 if (p->on_rq)
9024 return true;
9025
9026 /*
9027 * When !on_rq, vruntime of the task has usually NOT been normalized.
9028 * But there are some cases where it has already been normalized:
da7a735e 9029 *
daa59407
BP
9030 * - A forked child which is waiting for being woken up by
9031 * wake_up_new_task().
9032 * - A task which has been woken up by try_to_wake_up() and
9033 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9034 */
daa59407
BP
9035 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9036 return true;
9037
9038 return false;
9039}
9040
09a43ace
VG
9041#ifdef CONFIG_FAIR_GROUP_SCHED
9042/*
9043 * Propagate the changes of the sched_entity across the tg tree to make it
9044 * visible to the root
9045 */
9046static void propagate_entity_cfs_rq(struct sched_entity *se)
9047{
9048 struct cfs_rq *cfs_rq;
9049
9050 /* Start to propagate at parent */
9051 se = se->parent;
9052
9053 for_each_sched_entity(se) {
9054 cfs_rq = cfs_rq_of(se);
9055
9056 if (cfs_rq_throttled(cfs_rq))
9057 break;
9058
9059 update_load_avg(se, UPDATE_TG);
9060 }
9061}
9062#else
9063static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9064#endif
9065
df217913 9066static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9067{
daa59407
BP
9068 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9069
9d89c257 9070 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9071 update_load_avg(se, 0);
a05e8c51 9072 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9073 update_tg_load_avg(cfs_rq, false);
09a43ace 9074 propagate_entity_cfs_rq(se);
da7a735e
PZ
9075}
9076
df217913 9077static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9078{
daa59407 9079 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9080
9081#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9082 /*
9083 * Since the real-depth could have been changed (only FAIR
9084 * class maintain depth value), reset depth properly.
9085 */
9086 se->depth = se->parent ? se->parent->depth + 1 : 0;
9087#endif
7855a35a 9088
df217913 9089 /* Synchronize entity with its cfs_rq */
d31b1a66 9090 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9091 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9092 update_tg_load_avg(cfs_rq, false);
09a43ace 9093 propagate_entity_cfs_rq(se);
df217913
VG
9094}
9095
9096static void detach_task_cfs_rq(struct task_struct *p)
9097{
9098 struct sched_entity *se = &p->se;
9099 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9100
9101 if (!vruntime_normalized(p)) {
9102 /*
9103 * Fix up our vruntime so that the current sleep doesn't
9104 * cause 'unlimited' sleep bonus.
9105 */
9106 place_entity(cfs_rq, se, 0);
9107 se->vruntime -= cfs_rq->min_vruntime;
9108 }
9109
9110 detach_entity_cfs_rq(se);
9111}
9112
9113static void attach_task_cfs_rq(struct task_struct *p)
9114{
9115 struct sched_entity *se = &p->se;
9116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9117
9118 attach_entity_cfs_rq(se);
daa59407
BP
9119
9120 if (!vruntime_normalized(p))
9121 se->vruntime += cfs_rq->min_vruntime;
9122}
6efdb105 9123
daa59407
BP
9124static void switched_from_fair(struct rq *rq, struct task_struct *p)
9125{
9126 detach_task_cfs_rq(p);
9127}
9128
9129static void switched_to_fair(struct rq *rq, struct task_struct *p)
9130{
9131 attach_task_cfs_rq(p);
7855a35a 9132
daa59407 9133 if (task_on_rq_queued(p)) {
7855a35a 9134 /*
daa59407
BP
9135 * We were most likely switched from sched_rt, so
9136 * kick off the schedule if running, otherwise just see
9137 * if we can still preempt the current task.
7855a35a 9138 */
daa59407
BP
9139 if (rq->curr == p)
9140 resched_curr(rq);
9141 else
9142 check_preempt_curr(rq, p, 0);
7855a35a 9143 }
cb469845
SR
9144}
9145
83b699ed
SV
9146/* Account for a task changing its policy or group.
9147 *
9148 * This routine is mostly called to set cfs_rq->curr field when a task
9149 * migrates between groups/classes.
9150 */
9151static void set_curr_task_fair(struct rq *rq)
9152{
9153 struct sched_entity *se = &rq->curr->se;
9154
ec12cb7f
PT
9155 for_each_sched_entity(se) {
9156 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9157
9158 set_next_entity(cfs_rq, se);
9159 /* ensure bandwidth has been allocated on our new cfs_rq */
9160 account_cfs_rq_runtime(cfs_rq, 0);
9161 }
83b699ed
SV
9162}
9163
029632fb
PZ
9164void init_cfs_rq(struct cfs_rq *cfs_rq)
9165{
9166 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9167 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9168#ifndef CONFIG_64BIT
9169 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9170#endif
141965c7 9171#ifdef CONFIG_SMP
09a43ace
VG
9172#ifdef CONFIG_FAIR_GROUP_SCHED
9173 cfs_rq->propagate_avg = 0;
9174#endif
9d89c257
YD
9175 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9176 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9177#endif
029632fb
PZ
9178}
9179
810b3817 9180#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9181static void task_set_group_fair(struct task_struct *p)
9182{
9183 struct sched_entity *se = &p->se;
9184
9185 set_task_rq(p, task_cpu(p));
9186 se->depth = se->parent ? se->parent->depth + 1 : 0;
9187}
9188
bc54da21 9189static void task_move_group_fair(struct task_struct *p)
810b3817 9190{
daa59407 9191 detach_task_cfs_rq(p);
b2b5ce02 9192 set_task_rq(p, task_cpu(p));
6efdb105
BP
9193
9194#ifdef CONFIG_SMP
9195 /* Tell se's cfs_rq has been changed -- migrated */
9196 p->se.avg.last_update_time = 0;
9197#endif
daa59407 9198 attach_task_cfs_rq(p);
810b3817 9199}
029632fb 9200
ea86cb4b
VG
9201static void task_change_group_fair(struct task_struct *p, int type)
9202{
9203 switch (type) {
9204 case TASK_SET_GROUP:
9205 task_set_group_fair(p);
9206 break;
9207
9208 case TASK_MOVE_GROUP:
9209 task_move_group_fair(p);
9210 break;
9211 }
9212}
9213
029632fb
PZ
9214void free_fair_sched_group(struct task_group *tg)
9215{
9216 int i;
9217
9218 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9219
9220 for_each_possible_cpu(i) {
9221 if (tg->cfs_rq)
9222 kfree(tg->cfs_rq[i]);
6fe1f348 9223 if (tg->se)
029632fb
PZ
9224 kfree(tg->se[i]);
9225 }
9226
9227 kfree(tg->cfs_rq);
9228 kfree(tg->se);
9229}
9230
9231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9232{
029632fb 9233 struct sched_entity *se;
b7fa30c9 9234 struct cfs_rq *cfs_rq;
029632fb
PZ
9235 int i;
9236
9237 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9238 if (!tg->cfs_rq)
9239 goto err;
9240 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9241 if (!tg->se)
9242 goto err;
9243
9244 tg->shares = NICE_0_LOAD;
9245
9246 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9247
9248 for_each_possible_cpu(i) {
9249 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9250 GFP_KERNEL, cpu_to_node(i));
9251 if (!cfs_rq)
9252 goto err;
9253
9254 se = kzalloc_node(sizeof(struct sched_entity),
9255 GFP_KERNEL, cpu_to_node(i));
9256 if (!se)
9257 goto err_free_rq;
9258
9259 init_cfs_rq(cfs_rq);
9260 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9261 init_entity_runnable_average(se);
029632fb
PZ
9262 }
9263
9264 return 1;
9265
9266err_free_rq:
9267 kfree(cfs_rq);
9268err:
9269 return 0;
9270}
9271
8663e24d
PZ
9272void online_fair_sched_group(struct task_group *tg)
9273{
9274 struct sched_entity *se;
9275 struct rq *rq;
9276 int i;
9277
9278 for_each_possible_cpu(i) {
9279 rq = cpu_rq(i);
9280 se = tg->se[i];
9281
9282 raw_spin_lock_irq(&rq->lock);
4126bad6 9283 update_rq_clock(rq);
d0326691 9284 attach_entity_cfs_rq(se);
55e16d30 9285 sync_throttle(tg, i);
8663e24d
PZ
9286 raw_spin_unlock_irq(&rq->lock);
9287 }
9288}
9289
6fe1f348 9290void unregister_fair_sched_group(struct task_group *tg)
029632fb 9291{
029632fb 9292 unsigned long flags;
6fe1f348
PZ
9293 struct rq *rq;
9294 int cpu;
029632fb 9295
6fe1f348
PZ
9296 for_each_possible_cpu(cpu) {
9297 if (tg->se[cpu])
9298 remove_entity_load_avg(tg->se[cpu]);
029632fb 9299
6fe1f348
PZ
9300 /*
9301 * Only empty task groups can be destroyed; so we can speculatively
9302 * check on_list without danger of it being re-added.
9303 */
9304 if (!tg->cfs_rq[cpu]->on_list)
9305 continue;
9306
9307 rq = cpu_rq(cpu);
9308
9309 raw_spin_lock_irqsave(&rq->lock, flags);
9310 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9311 raw_spin_unlock_irqrestore(&rq->lock, flags);
9312 }
029632fb
PZ
9313}
9314
9315void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9316 struct sched_entity *se, int cpu,
9317 struct sched_entity *parent)
9318{
9319 struct rq *rq = cpu_rq(cpu);
9320
9321 cfs_rq->tg = tg;
9322 cfs_rq->rq = rq;
029632fb
PZ
9323 init_cfs_rq_runtime(cfs_rq);
9324
9325 tg->cfs_rq[cpu] = cfs_rq;
9326 tg->se[cpu] = se;
9327
9328 /* se could be NULL for root_task_group */
9329 if (!se)
9330 return;
9331
fed14d45 9332 if (!parent) {
029632fb 9333 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9334 se->depth = 0;
9335 } else {
029632fb 9336 se->cfs_rq = parent->my_q;
fed14d45
PZ
9337 se->depth = parent->depth + 1;
9338 }
029632fb
PZ
9339
9340 se->my_q = cfs_rq;
0ac9b1c2
PT
9341 /* guarantee group entities always have weight */
9342 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9343 se->parent = parent;
9344}
9345
9346static DEFINE_MUTEX(shares_mutex);
9347
9348int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9349{
9350 int i;
029632fb
PZ
9351
9352 /*
9353 * We can't change the weight of the root cgroup.
9354 */
9355 if (!tg->se[0])
9356 return -EINVAL;
9357
9358 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9359
9360 mutex_lock(&shares_mutex);
9361 if (tg->shares == shares)
9362 goto done;
9363
9364 tg->shares = shares;
9365 for_each_possible_cpu(i) {
9366 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9367 struct sched_entity *se = tg->se[i];
9368 struct rq_flags rf;
029632fb 9369
029632fb 9370 /* Propagate contribution to hierarchy */
8a8c69c3 9371 rq_lock_irqsave(rq, &rf);
71b1da46 9372 update_rq_clock(rq);
89ee048f
VG
9373 for_each_sched_entity(se) {
9374 update_load_avg(se, UPDATE_TG);
9375 update_cfs_shares(se);
9376 }
8a8c69c3 9377 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9378 }
9379
9380done:
9381 mutex_unlock(&shares_mutex);
9382 return 0;
9383}
9384#else /* CONFIG_FAIR_GROUP_SCHED */
9385
9386void free_fair_sched_group(struct task_group *tg) { }
9387
9388int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9389{
9390 return 1;
9391}
9392
8663e24d
PZ
9393void online_fair_sched_group(struct task_group *tg) { }
9394
6fe1f348 9395void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9396
9397#endif /* CONFIG_FAIR_GROUP_SCHED */
9398
810b3817 9399
6d686f45 9400static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9401{
9402 struct sched_entity *se = &task->se;
0d721cea
PW
9403 unsigned int rr_interval = 0;
9404
9405 /*
9406 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9407 * idle runqueue:
9408 */
0d721cea 9409 if (rq->cfs.load.weight)
a59f4e07 9410 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9411
9412 return rr_interval;
9413}
9414
bf0f6f24
IM
9415/*
9416 * All the scheduling class methods:
9417 */
029632fb 9418const struct sched_class fair_sched_class = {
5522d5d5 9419 .next = &idle_sched_class,
bf0f6f24
IM
9420 .enqueue_task = enqueue_task_fair,
9421 .dequeue_task = dequeue_task_fair,
9422 .yield_task = yield_task_fair,
d95f4122 9423 .yield_to_task = yield_to_task_fair,
bf0f6f24 9424
2e09bf55 9425 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9426
9427 .pick_next_task = pick_next_task_fair,
9428 .put_prev_task = put_prev_task_fair,
9429
681f3e68 9430#ifdef CONFIG_SMP
4ce72a2c 9431 .select_task_rq = select_task_rq_fair,
0a74bef8 9432 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9433
0bcdcf28
CE
9434 .rq_online = rq_online_fair,
9435 .rq_offline = rq_offline_fair,
88ec22d3 9436
12695578 9437 .task_dead = task_dead_fair,
c5b28038 9438 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9439#endif
bf0f6f24 9440
83b699ed 9441 .set_curr_task = set_curr_task_fair,
bf0f6f24 9442 .task_tick = task_tick_fair,
cd29fe6f 9443 .task_fork = task_fork_fair,
cb469845
SR
9444
9445 .prio_changed = prio_changed_fair,
da7a735e 9446 .switched_from = switched_from_fair,
cb469845 9447 .switched_to = switched_to_fair,
810b3817 9448
0d721cea
PW
9449 .get_rr_interval = get_rr_interval_fair,
9450
6e998916
SG
9451 .update_curr = update_curr_fair,
9452
810b3817 9453#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9454 .task_change_group = task_change_group_fair,
810b3817 9455#endif
bf0f6f24
IM
9456};
9457
9458#ifdef CONFIG_SCHED_DEBUG
029632fb 9459void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9460{
a9e7f654 9461 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9462
5973e5b9 9463 rcu_read_lock();
a9e7f654 9464 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9465 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9466 rcu_read_unlock();
bf0f6f24 9467}
397f2378
SD
9468
9469#ifdef CONFIG_NUMA_BALANCING
9470void show_numa_stats(struct task_struct *p, struct seq_file *m)
9471{
9472 int node;
9473 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9474
9475 for_each_online_node(node) {
9476 if (p->numa_faults) {
9477 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9478 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9479 }
9480 if (p->numa_group) {
9481 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9482 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9483 }
9484 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9485 }
9486}
9487#endif /* CONFIG_NUMA_BALANCING */
9488#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9489
9490__init void init_sched_fair_class(void)
9491{
9492#ifdef CONFIG_SMP
9493 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9494
3451d024 9495#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9496 nohz.next_balance = jiffies;
029632fb 9497 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9498#endif
9499#endif /* SMP */
9500
9501}