nohz/full, sched/rt: Fix missed tick-reenabling bug in sched_can_stop_tick()
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
cb251765
MG
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
3ea94de1 781
bf0f6f24
IM
782/*
783 * Task is being enqueued - update stats:
784 */
cb251765
MG
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 787{
bf0f6f24
IM
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
429d43bc 792 if (se != cfs_rq->curr)
5870db5b 793 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
794}
795
bf0f6f24 796static inline void
cb251765 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 798{
bf0f6f24
IM
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
429d43bc 803 if (se != cfs_rq->curr)
9ef0a961 804 update_stats_wait_end(cfs_rq, se);
cb251765
MG
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
bf0f6f24 837}
cb251765 838#endif
bf0f6f24
IM
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
79303e9e 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
845{
846 /*
847 * We are starting a new run period:
848 */
78becc27 849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
850}
851
bf0f6f24
IM
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
cbee9f88
PZ
856#ifdef CONFIG_NUMA_BALANCING
857/*
598f0ec0
MG
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
cbee9f88 861 */
598f0ec0
MG
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 867
4b96a29b
PZ
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
598f0ec0
MG
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
316c1608 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
64192658
KT
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
0ec8aa00
PZ
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
8c8a743c
PZ
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
e29cf08b 934 pid_t gid;
4142c3eb 935 int active_nodes;
8c8a743c
PZ
936
937 struct rcu_head rcu;
989348b5 938 unsigned long total_faults;
4142c3eb 939 unsigned long max_faults_cpu;
7e2703e6
RR
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
50ec8a40 945 unsigned long *faults_cpu;
989348b5 946 unsigned long faults[0];
8c8a743c
PZ
947};
948
be1e4e76
RR
949/* Shared or private faults. */
950#define NR_NUMA_HINT_FAULT_TYPES 2
951
952/* Memory and CPU locality */
953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955/* Averaged statistics, and temporary buffers. */
956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
e29cf08b
MG
958pid_t task_numa_group_id(struct task_struct *p)
959{
960 return p->numa_group ? p->numa_group->gid : 0;
961}
962
44dba3d5
IM
963/*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 970{
44dba3d5 971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
972}
973
974static inline unsigned long task_faults(struct task_struct *p, int nid)
975{
44dba3d5 976 if (!p->numa_faults)
ac8e895b
MG
977 return 0;
978
44dba3d5
IM
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
981}
982
83e1d2cd
MG
983static inline unsigned long group_faults(struct task_struct *p, int nid)
984{
985 if (!p->numa_group)
986 return 0;
987
44dba3d5
IM
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
990}
991
20e07dea
RR
992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993{
44dba3d5
IM
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
996}
997
4142c3eb
RR
998/*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
6c6b1193
RR
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013{
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073}
1074
83e1d2cd
MG
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
7bd95320
RR
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
83e1d2cd 1083{
7bd95320 1084 unsigned long faults, total_faults;
83e1d2cd 1085
44dba3d5 1086 if (!p->numa_faults)
83e1d2cd
MG
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
7bd95320 1094 faults = task_faults(p, nid);
6c6b1193
RR
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
7bd95320 1097 return 1000 * faults / total_faults;
83e1d2cd
MG
1098}
1099
7bd95320
RR
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
83e1d2cd 1102{
7bd95320
RR
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
83e1d2cd
MG
1111 return 0;
1112
7bd95320 1113 faults = group_faults(p, nid);
6c6b1193
RR
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
7bd95320 1116 return 1000 * faults / total_faults;
83e1d2cd
MG
1117}
1118
10f39042
RR
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121{
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
4142c3eb
RR
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
10f39042 1161 */
4142c3eb
RR
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
10f39042
RR
1164 return true;
1165
1166 /*
4142c3eb
RR
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
10f39042 1173 */
4142c3eb
RR
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1176}
1177
e6628d5b 1178static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
ced549fa 1181static unsigned long capacity_of(int cpu);
58d081b5
MG
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
fb13c7ee 1184/* Cached statistics for all CPUs within a node */
58d081b5 1185struct numa_stats {
fb13c7ee 1186 unsigned long nr_running;
58d081b5 1187 unsigned long load;
fb13c7ee
MG
1188
1189 /* Total compute capacity of CPUs on a node */
5ef20ca1 1190 unsigned long compute_capacity;
fb13c7ee
MG
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1193 unsigned long task_capacity;
1b6a7495 1194 int has_free_capacity;
58d081b5 1195};
e6628d5b 1196
fb13c7ee
MG
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
83d7f242
RR
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
fb13c7ee
MG
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
ced549fa 1211 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1212
1213 cpus++;
fb13c7ee
MG
1214 }
1215
5eca82a9
PZ
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1b6a7495
NP
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
5eca82a9
PZ
1223 */
1224 if (!cpus)
1225 return;
1226
83d7f242
RR
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1234}
1235
58d081b5
MG
1236struct task_numa_env {
1237 struct task_struct *p;
e6628d5b 1238
58d081b5
MG
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
e6628d5b 1241
58d081b5 1242 struct numa_stats src_stats, dst_stats;
e6628d5b 1243
40ea2b42 1244 int imbalance_pct;
7bd95320 1245 int dist;
fb13c7ee
MG
1246
1247 struct task_struct *best_task;
1248 long best_imp;
58d081b5
MG
1249 int best_cpu;
1250};
1251
fb13c7ee
MG
1252static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254{
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
fb13c7ee
MG
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261}
1262
28a21745 1263static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1264 struct task_numa_env *env)
1265{
e4991b24
RR
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
28a21745
RR
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1279
1280 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
e63da036
RR
1283
1284 /* Is the difference below the threshold? */
e4991b24
RR
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
e4991b24 1292 * Compare it with the old imbalance.
e63da036 1293 */
28a21745 1294 orig_src_load = env->src_stats.load;
e4991b24 1295 orig_dst_load = env->dst_stats.load;
28a21745 1296
e4991b24
RR
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
e63da036 1299
e4991b24
RR
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
e63da036
RR
1305}
1306
fb13c7ee
MG
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
887c290e
RR
1313static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
fb13c7ee
MG
1315{
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
28a21745 1319 long src_load, dst_load;
fb13c7ee 1320 long load;
1c5d3eb3 1321 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1322 long moveimp = imp;
7bd95320 1323 int dist = env->dist;
1dff76b9 1324 bool assigned = false;
fb13c7ee
MG
1325
1326 rcu_read_lock();
1effd9f1
KT
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1dff76b9 1331 * No need to move the exiting task or idle task.
1effd9f1
KT
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1334 cur = NULL;
1dff76b9
GG
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1effd9f1 1348 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1349
7af68335
PZ
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
fb13c7ee
MG
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
887c290e
RR
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1371 * in any group then look only at task weights.
887c290e 1372 */
ca28aa53 1373 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
887c290e 1382 } else {
ca28aa53
RR
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
ca28aa53 1388 if (cur->numa_group)
7bd95320
RR
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
ca28aa53 1391 else
7bd95320
RR
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
887c290e 1394 }
fb13c7ee
MG
1395 }
1396
0132c3e1 1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
b932c03c 1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1403 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
fb13c7ee
MG
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417balance:
e720fff6
PZ
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
fb13c7ee 1421
0132c3e1
RR
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1dff76b9 1431 put_task_struct(cur);
0132c3e1
RR
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
fb13c7ee 1440 if (cur) {
e720fff6
PZ
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
fb13c7ee
MG
1444 }
1445
28a21745 1446 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1447 goto unlock;
1448
ba7e5a27
RR
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
fb13c7ee 1456assign:
1dff76b9 1457 assigned = true;
fb13c7ee
MG
1458 task_numa_assign(env, cur, imp);
1459unlock:
1460 rcu_read_unlock();
1dff76b9
GG
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
fb13c7ee
MG
1467}
1468
887c290e
RR
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
2c8a50aa
MG
1471{
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
887c290e 1480 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1481 }
1482}
1483
6f9aad0b
RR
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
44dcb04f
SD
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1504 return true;
1505
1506 return false;
1507}
1508
58d081b5
MG
1509static int task_numa_migrate(struct task_struct *p)
1510{
58d081b5
MG
1511 struct task_numa_env env = {
1512 .p = p,
fb13c7ee 1513
58d081b5 1514 .src_cpu = task_cpu(p),
b32e86b4 1515 .src_nid = task_node(p),
fb13c7ee
MG
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
4142c3eb 1521 .best_cpu = -1,
58d081b5
MG
1522 };
1523 struct sched_domain *sd;
887c290e 1524 unsigned long taskweight, groupweight;
7bd95320 1525 int nid, ret, dist;
887c290e 1526 long taskimp, groupimp;
e6628d5b 1527
58d081b5 1528 /*
fb13c7ee
MG
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
58d081b5
MG
1535 */
1536 rcu_read_lock();
fb13c7ee 1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1540 rcu_read_unlock();
1541
46a73e8a
RR
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
de1b301a 1549 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1550 return -EINVAL;
1551 }
1552
2c8a50aa 1553 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1560 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1561
a43455a1 1562 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1565
9de05d48
RR
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
4142c3eb 1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
58d081b5 1577
7bd95320 1578 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
7bd95320 1584
83e1d2cd 1585 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1588 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1589 continue;
1590
7bd95320 1591 env.dist = dist;
2c8a50aa
MG
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1596 }
1597 }
1598
68d1b02a
RR
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
db015dae 1607 if (p->numa_group) {
4142c3eb
RR
1608 struct numa_group *ng = p->numa_group;
1609
db015dae
RR
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
4142c3eb 1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
0ec8aa00 1622
04bb2f94
RR
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
fb13c7ee 1629 if (env.best_task == NULL) {
286549dc
MG
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
286549dc
MG
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1639 put_task_struct(env.best_task);
1640 return ret;
e6628d5b
MG
1641}
1642
6b9a7460
MG
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
5085e2a3
RR
1646 unsigned long interval = HZ;
1647
2739d3ee 1648 /* This task has no NUMA fault statistics yet */
44dba3d5 1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1650 return;
1651
2739d3ee 1652 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1655
1656 /* Success if task is already running on preferred CPU */
de1b301a 1657 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1661 task_numa_migrate(p);
6b9a7460
MG
1662}
1663
20e07dea 1664/*
4142c3eb 1665 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
20e07dea 1669 */
4142c3eb 1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1671{
1672 unsigned long faults, max_faults = 0;
4142c3eb 1673 int nid, active_nodes = 0;
20e07dea
RR
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
20e07dea 1685 }
4142c3eb
RR
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
20e07dea
RR
1689}
1690
04bb2f94
RR
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1697 */
1698#define NUMA_PERIOD_SLOTS 10
a22b4b01 1699#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709{
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
074c2381
MG
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
04bb2f94 1723 */
074c2381 1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
2847c90e 1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
7e2703e6
RR
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
9d89c257
YD
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
7e2703e6
RR
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793}
1794
54009416
RR
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
81907478 1842 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1876 if (!max_faults)
1877 break;
54009416
RR
1878 nodes = max_group;
1879 }
1880 return nid;
1881}
1882
cbee9f88
PZ
1883static void task_numa_placement(struct task_struct *p)
1884{
83e1d2cd
MG
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1887 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1888 unsigned long total_faults;
1889 u64 runtime, period;
7dbd13ed 1890 spinlock_t *group_lock = NULL;
cbee9f88 1891
7e5a2c17
JL
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
316c1608 1897 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
598f0ec0 1901 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1902
7e2703e6
RR
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
7dbd13ed
MG
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
60e69eed 1910 spin_lock_irq(group_lock);
7dbd13ed
MG
1911 }
1912
688b7585
MG
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
44dba3d5
IM
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1917 unsigned long faults = 0, group_faults = 0;
44dba3d5 1918 int priv;
745d6147 1919
be1e4e76 1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1921 long diff, f_diff, f_weight;
8c8a743c 1922
44dba3d5
IM
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1927
ac8e895b 1928 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1932
7e2703e6
RR
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1942 (total_faults + 1);
44dba3d5
IM
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1945
44dba3d5
IM
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
83e1d2cd 1949 p->total_numa_faults += diff;
8c8a743c 1950 if (p->numa_group) {
44dba3d5
IM
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1960 p->numa_group->total_faults += diff;
44dba3d5 1961 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1962 }
ac8e895b
MG
1963 }
1964
688b7585
MG
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
83e1d2cd
MG
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
04bb2f94
RR
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
7dbd13ed 1978 if (p->numa_group) {
4142c3eb 1979 numa_group_count_active_nodes(p->numa_group);
60e69eed 1980 spin_unlock_irq(group_lock);
54009416 1981 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1982 }
1983
bb97fc31
RR
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
3a7053b3 1991 }
cbee9f88
PZ
1992}
1993
8c8a743c
PZ
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996 return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003}
2004
3e6a9418
MG
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
8c8a743c
PZ
2007{
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2016 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
8c8a743c 2025 spin_lock_init(&grp->lock);
e29cf08b 2026 grp->gid = p->pid;
50ec8a40 2027 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
8c8a743c 2030
be1e4e76 2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2032 grp->faults[i] = p->numa_faults[i];
8c8a743c 2033
989348b5 2034 grp->total_faults = p->total_numa_faults;
83e1d2cd 2035
8c8a743c
PZ
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
316c1608 2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2044 goto no_join;
8c8a743c
PZ
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
3354781a 2048 goto no_join;
8c8a743c
PZ
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
3354781a 2052 goto no_join;
8c8a743c
PZ
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2059 goto no_join;
8c8a743c
PZ
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2065 goto no_join;
8c8a743c 2066
dabe1d99
RR
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
8c8a743c 2074
3e6a9418
MG
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
dabe1d99 2078 if (join && !get_numa_group(grp))
3354781a 2079 goto no_join;
8c8a743c 2080
8c8a743c
PZ
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
60e69eed
MG
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2088
be1e4e76 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
8c8a743c 2092 }
989348b5
MG
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
8c8a743c 2095
8c8a743c
PZ
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
60e69eed 2100 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
3354781a
PZ
2105 return;
2106
2107no_join:
2108 rcu_read_unlock();
2109 return;
8c8a743c
PZ
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114 struct numa_group *grp = p->numa_group;
44dba3d5 2115 void *numa_faults = p->numa_faults;
e9dd685c
SR
2116 unsigned long flags;
2117 int i;
8c8a743c
PZ
2118
2119 if (grp) {
e9dd685c 2120 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2122 grp->faults[i] -= p->numa_faults[i];
989348b5 2123 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2124
8c8a743c 2125 grp->nr_tasks--;
e9dd685c 2126 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2127 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2128 put_numa_group(grp);
2129 }
2130
44dba3d5 2131 p->numa_faults = NULL;
82727018 2132 kfree(numa_faults);
8c8a743c
PZ
2133}
2134
cbee9f88
PZ
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
58b46da3 2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2139{
2140 struct task_struct *p = current;
6688cc05 2141 bool migrated = flags & TNF_MIGRATED;
58b46da3 2142 int cpu_node = task_node(current);
792568ec 2143 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2144 struct numa_group *ng;
ac8e895b 2145 int priv;
cbee9f88 2146
2a595721 2147 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2148 return;
2149
9ff1d9ff
MG
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
f809ca9a 2154 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
be1e4e76 2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2158
44dba3d5
IM
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
f809ca9a 2161 return;
745d6147 2162
83e1d2cd 2163 p->total_numa_faults = 0;
04bb2f94 2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2165 }
cbee9f88 2166
8c8a743c
PZ
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2175 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2176 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2177 }
2178
792568ec
RR
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
4142c3eb
RR
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
792568ec
RR
2189 local = 1;
2190
cbee9f88 2191 task_numa_placement(p);
f809ca9a 2192
2739d3ee
RR
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2198 numa_migrate_preferred(p);
2199
b32e86b4
IM
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
074c2381
MG
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
b32e86b4 2204
44dba3d5
IM
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2207 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2208}
2209
6e5fb223
PZ
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
7e5a2c17
JL
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
316c1608 2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2221 p->mm->numa_scan_offset = 0;
2222}
2223
cbee9f88
PZ
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
51170840 2233 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2234 struct vm_area_struct *vma;
9f40604c 2235 unsigned long start, end;
598f0ec0 2236 unsigned long nr_pte_updates = 0;
4620f8c1 2237 long pages, virtpages;
cbee9f88
PZ
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
930aa174 2253 if (!mm->numa_next_scan) {
7e8d16b6
MG
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2256 }
2257
cbee9f88
PZ
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
598f0ec0
MG
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
cbee9f88 2269
fb003b80 2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
19a78d11
PZ
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
9f40604c
MG
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2283 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2284 if (!pages)
2285 return;
cbee9f88 2286
4620f8c1 2287
6e5fb223 2288 down_read(&mm->mmap_sem);
9f40604c 2289 vma = find_vma(mm, start);
6e5fb223
PZ
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
9f40604c 2292 start = 0;
6e5fb223
PZ
2293 vma = mm->mmap;
2294 }
9f40604c 2295 for (; vma; vma = vma->vm_next) {
6b79c57b 2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2298 continue;
6b79c57b 2299 }
6e5fb223 2300
4591ce4f
MG
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
3c67f474
MG
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
4591ce4f 2317
9f40604c
MG
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
4620f8c1 2322 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2323
2324 /*
4620f8c1
RR
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
598f0ec0
MG
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2334 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2335
9f40604c 2336 start = end;
4620f8c1 2337 if (pages <= 0 || virtpages <= 0)
9f40604c 2338 goto out;
3cf1962c
RR
2339
2340 cond_resched();
9f40604c 2341 } while (end != vma->vm_end);
cbee9f88 2342 }
6e5fb223 2343
9f40604c 2344out:
6e5fb223 2345 /*
c69307d5
PZ
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
6e5fb223
PZ
2350 */
2351 if (vma)
9f40604c 2352 mm->numa_scan_offset = start;
6e5fb223
PZ
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
51170840
RR
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
cbee9f88
PZ
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
25b3e5a3 2392 if (now > curr->node_stamp + period) {
4b96a29b 2393 if (!curr->node_stamp)
598f0ec0 2394 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2395 curr->node_stamp += period;
cbee9f88
PZ
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
0ec8aa00
PZ
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
cbee9f88
PZ
2415#endif /* CONFIG_NUMA_BALANCING */
2416
30cfdcfc
DA
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2421 if (!parent_entity(se))
029632fb 2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2423#ifdef CONFIG_SMP
0ec8aa00
PZ
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
367456c7 2430#endif
30cfdcfc 2431 cfs_rq->nr_running++;
30cfdcfc
DA
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2438 if (!parent_entity(se))
029632fb 2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2442 list_del_init(&se->group_node);
0ec8aa00 2443 }
30cfdcfc 2444 cfs_rq->nr_running--;
30cfdcfc
DA
2445}
2446
3ff6dcac
YZ
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
cf5f0acf
PZ
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451 long tg_weight;
2452
2453 /*
9d89c257
YD
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2457 */
bf5b986e 2458 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2460 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2461
2462 return tg_weight;
2463}
2464
6d5ab293 2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2466{
cf5f0acf 2467 long tg_weight, load, shares;
3ff6dcac 2468
cf5f0acf 2469 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2470 load = cfs_rq->load.weight;
3ff6dcac 2471
3ff6dcac 2472 shares = (tg->shares * load);
cf5f0acf
PZ
2473 if (tg_weight)
2474 shares /= tg_weight;
3ff6dcac
YZ
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482}
3ff6dcac 2483# else /* CONFIG_SMP */
6d5ab293 2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2485{
2486 return tg->shares;
2487}
3ff6dcac 2488# endif /* CONFIG_SMP */
2069dd75
PZ
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491{
19e5eebb
PT
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2069dd75 2496 account_entity_dequeue(cfs_rq, se);
19e5eebb 2497 }
2069dd75
PZ
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503}
2504
82958366
PT
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
6d5ab293 2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2508{
2509 struct task_group *tg;
2510 struct sched_entity *se;
3ff6dcac 2511 long shares;
2069dd75 2512
2069dd75
PZ
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2515 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2516 return;
3ff6dcac
YZ
2517#ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520#endif
6d5ab293 2521 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
141965c7 2531#ifdef CONFIG_SMP
5b51f2f8
PT
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
9d85f21c
PT
2552/*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
5b51f2f8
PT
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2578 }
2579
9d89c257
YD
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
5b51f2f8
PT
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2610}
2611
006cdf02
PZ
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
54a21385 2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2617
9d85f21c
PT
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
9d89c257
YD
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2649{
e0f5f3af 2650 u64 delta, scaled_delta, periods;
9d89c257 2651 u32 contrib;
6115c793 2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2653 unsigned long scale_freq, scale_cpu;
9d85f21c 2654
9d89c257 2655 delta = now - sa->last_update_time;
9d85f21c
PT
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
9d89c257 2661 sa->last_update_time = now;
9d85f21c
PT
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
9d89c257 2672 sa->last_update_time = now;
9d85f21c 2673
6f2b0452
DE
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
9d85f21c 2677 /* delta_w is the amount already accumulated against our next period */
9d89c257 2678 delta_w = sa->period_contrib;
9d85f21c 2679 if (delta + delta_w >= 1024) {
9d85f21c
PT
2680 decayed = 1;
2681
9d89c257
YD
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
9d85f21c
PT
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
54a21385 2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2692 if (weight) {
e0f5f3af
DE
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
13962234 2698 }
36ee28e4 2699 if (running)
006cdf02 2700 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
9d89c257 2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
9d89c257 2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2716 contrib = __compute_runnable_contrib(periods);
54a21385 2717 contrib = cap_scale(contrib, scale_freq);
13962234 2718 if (weight) {
9d89c257 2719 sa->load_sum += weight * contrib;
13962234
YD
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
36ee28e4 2723 if (running)
006cdf02 2724 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
54a21385 2728 scaled_delta = cap_scale(delta, scale_freq);
13962234 2729 if (weight) {
e0f5f3af 2730 sa->load_sum += weight * scaled_delta;
13962234 2731 if (cfs_rq)
e0f5f3af 2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2733 }
36ee28e4 2734 if (running)
006cdf02 2735 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2736
9d89c257 2737 sa->period_contrib += delta;
9ee474f5 2738
9d89c257
YD
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
006cdf02 2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2746 }
aff3e498 2747
9d89c257 2748 return decayed;
9ee474f5
PT
2749}
2750
c566e8e9 2751#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2752/*
9d89c257
YD
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
bb17f655 2755 */
9d89c257 2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2757{
9d89c257 2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2759
aa0b7ae0
WL
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
9d89c257
YD
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2769 }
8165e145 2770}
f5f9739d 2771
ad936d86
BP
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809#else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812#endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817}
6e83125c 2818#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2820#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2821
9d89c257 2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2823
9d89c257
YD
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2826{
9d89c257 2827 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2828 int decayed, removed = 0;
2dac754e 2829
9d89c257 2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2834 removed = 1;
8165e145 2835 }
2dac754e 2836
9d89c257
YD
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2841 }
36ee28e4 2842
9d89c257 2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2845
9d89c257
YD
2846#ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
36ee28e4 2850
3e386d56 2851 return decayed || removed;
9ee474f5
PT
2852}
2853
9d89c257
YD
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2856{
2dac754e 2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2858 u64 now = cfs_rq_clock_task(cfs_rq);
34e2c555
RW
2859 struct rq *rq = rq_of(cfs_rq);
2860 int cpu = cpu_of(rq);
2dac754e 2861
f1b17280 2862 /*
9d89c257
YD
2863 * Track task load average for carrying it to new CPU after migrated, and
2864 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2865 */
9d89c257 2866 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2867 se->on_rq * scale_load_down(se->load.weight),
2868 cfs_rq->curr == se, NULL);
f1b17280 2869
9d89c257
YD
2870 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 update_tg_load_avg(cfs_rq, 0);
34e2c555
RW
2872
2873 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 unsigned long max = rq->cpu_capacity_orig;
2875
2876 /*
2877 * There are a few boundary cases this might miss but it should
2878 * get called often enough that that should (hopefully) not be
2879 * a real problem -- added to that it only calls on the local
2880 * CPU, so if we enqueue remotely we'll miss an update, but
2881 * the next tick/schedule should update.
2882 *
2883 * It will not get called when we go idle, because the idle
2884 * thread is a different class (!fair), nor will the utilization
2885 * number include things like RT tasks.
2886 *
2887 * As is, the util number is not freq-invariant (we'd have to
2888 * implement arch_scale_freq_capacity() for that).
2889 *
2890 * See cpu_util().
2891 */
2892 cpufreq_update_util(rq_clock(rq),
2893 min(cfs_rq->avg.util_avg, max), max);
2894 }
9ee474f5
PT
2895}
2896
a05e8c51
BP
2897static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898{
a9280514
PZ
2899 if (!sched_feat(ATTACH_AGE_LOAD))
2900 goto skip_aging;
2901
6efdb105
BP
2902 /*
2903 * If we got migrated (either between CPUs or between cgroups) we'll
2904 * have aged the average right before clearing @last_update_time.
2905 */
2906 if (se->avg.last_update_time) {
2907 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 &se->avg, 0, 0, NULL);
2909
2910 /*
2911 * XXX: we could have just aged the entire load away if we've been
2912 * absent from the fair class for too long.
2913 */
2914 }
2915
a9280514 2916skip_aging:
a05e8c51
BP
2917 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 cfs_rq->avg.load_avg += se->avg.load_avg;
2919 cfs_rq->avg.load_sum += se->avg.load_sum;
2920 cfs_rq->avg.util_avg += se->avg.util_avg;
2921 cfs_rq->avg.util_sum += se->avg.util_sum;
2922}
2923
2924static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925{
2926 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 cfs_rq->curr == se, NULL);
2929
2930 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934}
2935
9d89c257
YD
2936/* Add the load generated by se into cfs_rq's load average */
2937static inline void
2938enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2939{
9d89c257
YD
2940 struct sched_avg *sa = &se->avg;
2941 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2942 int migrated, decayed;
9ee474f5 2943
a05e8c51
BP
2944 migrated = !sa->last_update_time;
2945 if (!migrated) {
9d89c257 2946 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2947 se->on_rq * scale_load_down(se->load.weight),
2948 cfs_rq->curr == se, NULL);
aff3e498 2949 }
c566e8e9 2950
9d89c257 2951 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2952
13962234
YD
2953 cfs_rq->runnable_load_avg += sa->load_avg;
2954 cfs_rq->runnable_load_sum += sa->load_sum;
2955
a05e8c51
BP
2956 if (migrated)
2957 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2958
9d89c257
YD
2959 if (decayed || migrated)
2960 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2961}
2962
13962234
YD
2963/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964static inline void
2965dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966{
2967 update_load_avg(se, 1);
2968
2969 cfs_rq->runnable_load_avg =
2970 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 cfs_rq->runnable_load_sum =
a05e8c51 2972 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2973}
2974
9d89c257 2975#ifndef CONFIG_64BIT
0905f04e
YD
2976static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977{
9d89c257 2978 u64 last_update_time_copy;
0905f04e 2979 u64 last_update_time;
9ee474f5 2980
9d89c257
YD
2981 do {
2982 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 smp_rmb();
2984 last_update_time = cfs_rq->avg.last_update_time;
2985 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2986
2987 return last_update_time;
2988}
9d89c257 2989#else
0905f04e
YD
2990static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991{
2992 return cfs_rq->avg.last_update_time;
2993}
9d89c257
YD
2994#endif
2995
0905f04e
YD
2996/*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
2999 */
3000void remove_entity_load_avg(struct sched_entity *se)
3001{
3002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 u64 last_update_time;
3004
3005 /*
3006 * Newly created task or never used group entity should not be removed
3007 * from its (source) cfs_rq
3008 */
3009 if (se->avg.last_update_time == 0)
3010 return;
3011
3012 last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
13962234 3014 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3015 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3017}
642dbc39 3018
7ea241af
YD
3019static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020{
3021 return cfs_rq->runnable_load_avg;
3022}
3023
3024static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025{
3026 return cfs_rq->avg.load_avg;
3027}
3028
6e83125c
PZ
3029static int idle_balance(struct rq *this_rq);
3030
38033c37
PZ
3031#else /* CONFIG_SMP */
3032
9d89c257
YD
3033static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3034static inline void
3035enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3036static inline void
3037dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3038static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3039
a05e8c51
BP
3040static inline void
3041attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3042static inline void
3043detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044
6e83125c
PZ
3045static inline int idle_balance(struct rq *rq)
3046{
3047 return 0;
3048}
3049
38033c37 3050#endif /* CONFIG_SMP */
9d85f21c 3051
2396af69 3052static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3053{
bf0f6f24 3054#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3055 struct task_struct *tsk = NULL;
3056
3057 if (entity_is_task(se))
3058 tsk = task_of(se);
3059
41acab88 3060 if (se->statistics.sleep_start) {
78becc27 3061 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3062
3063 if ((s64)delta < 0)
3064 delta = 0;
3065
41acab88
LDM
3066 if (unlikely(delta > se->statistics.sleep_max))
3067 se->statistics.sleep_max = delta;
bf0f6f24 3068
8c79a045 3069 se->statistics.sleep_start = 0;
41acab88 3070 se->statistics.sum_sleep_runtime += delta;
9745512c 3071
768d0c27 3072 if (tsk) {
e414314c 3073 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3074 trace_sched_stat_sleep(tsk, delta);
3075 }
bf0f6f24 3076 }
41acab88 3077 if (se->statistics.block_start) {
78becc27 3078 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3079
3080 if ((s64)delta < 0)
3081 delta = 0;
3082
41acab88
LDM
3083 if (unlikely(delta > se->statistics.block_max))
3084 se->statistics.block_max = delta;
bf0f6f24 3085
8c79a045 3086 se->statistics.block_start = 0;
41acab88 3087 se->statistics.sum_sleep_runtime += delta;
30084fbd 3088
e414314c 3089 if (tsk) {
8f0dfc34 3090 if (tsk->in_iowait) {
41acab88
LDM
3091 se->statistics.iowait_sum += delta;
3092 se->statistics.iowait_count++;
768d0c27 3093 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3094 }
3095
b781a602
AV
3096 trace_sched_stat_blocked(tsk, delta);
3097
e414314c
PZ
3098 /*
3099 * Blocking time is in units of nanosecs, so shift by
3100 * 20 to get a milliseconds-range estimation of the
3101 * amount of time that the task spent sleeping:
3102 */
3103 if (unlikely(prof_on == SLEEP_PROFILING)) {
3104 profile_hits(SLEEP_PROFILING,
3105 (void *)get_wchan(tsk),
3106 delta >> 20);
3107 }
3108 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3109 }
bf0f6f24
IM
3110 }
3111#endif
3112}
3113
ddc97297
PZ
3114static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3115{
3116#ifdef CONFIG_SCHED_DEBUG
3117 s64 d = se->vruntime - cfs_rq->min_vruntime;
3118
3119 if (d < 0)
3120 d = -d;
3121
3122 if (d > 3*sysctl_sched_latency)
3123 schedstat_inc(cfs_rq, nr_spread_over);
3124#endif
3125}
3126
aeb73b04
PZ
3127static void
3128place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3129{
1af5f730 3130 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3131
2cb8600e
PZ
3132 /*
3133 * The 'current' period is already promised to the current tasks,
3134 * however the extra weight of the new task will slow them down a
3135 * little, place the new task so that it fits in the slot that
3136 * stays open at the end.
3137 */
94dfb5e7 3138 if (initial && sched_feat(START_DEBIT))
f9c0b095 3139 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3140
a2e7a7eb 3141 /* sleeps up to a single latency don't count. */
5ca9880c 3142 if (!initial) {
a2e7a7eb 3143 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3144
a2e7a7eb
MG
3145 /*
3146 * Halve their sleep time's effect, to allow
3147 * for a gentler effect of sleepers:
3148 */
3149 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3150 thresh >>= 1;
51e0304c 3151
a2e7a7eb 3152 vruntime -= thresh;
aeb73b04
PZ
3153 }
3154
b5d9d734 3155 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3156 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3157}
3158
d3d9dc33
PT
3159static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3160
cb251765
MG
3161static inline void check_schedstat_required(void)
3162{
3163#ifdef CONFIG_SCHEDSTATS
3164 if (schedstat_enabled())
3165 return;
3166
3167 /* Force schedstat enabled if a dependent tracepoint is active */
3168 if (trace_sched_stat_wait_enabled() ||
3169 trace_sched_stat_sleep_enabled() ||
3170 trace_sched_stat_iowait_enabled() ||
3171 trace_sched_stat_blocked_enabled() ||
3172 trace_sched_stat_runtime_enabled()) {
3173 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3174 "stat_blocked and stat_runtime require the "
3175 "kernel parameter schedstats=enabled or "
3176 "kernel.sched_schedstats=1\n");
3177 }
3178#endif
3179}
3180
bf0f6f24 3181static void
88ec22d3 3182enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3183{
3a47d512
PZ
3184 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3185 bool curr = cfs_rq->curr == se;
3186
88ec22d3 3187 /*
3a47d512
PZ
3188 * If we're the current task, we must renormalise before calling
3189 * update_curr().
88ec22d3 3190 */
3a47d512 3191 if (renorm && curr)
88ec22d3
PZ
3192 se->vruntime += cfs_rq->min_vruntime;
3193
3a47d512
PZ
3194 update_curr(cfs_rq);
3195
bf0f6f24 3196 /*
3a47d512
PZ
3197 * Otherwise, renormalise after, such that we're placed at the current
3198 * moment in time, instead of some random moment in the past.
bf0f6f24 3199 */
3a47d512
PZ
3200 if (renorm && !curr)
3201 se->vruntime += cfs_rq->min_vruntime;
3202
9d89c257 3203 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3204 account_entity_enqueue(cfs_rq, se);
3205 update_cfs_shares(cfs_rq);
bf0f6f24 3206
88ec22d3 3207 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3208 place_entity(cfs_rq, se, 0);
cb251765
MG
3209 if (schedstat_enabled())
3210 enqueue_sleeper(cfs_rq, se);
e9acbff6 3211 }
bf0f6f24 3212
cb251765
MG
3213 check_schedstat_required();
3214 if (schedstat_enabled()) {
3215 update_stats_enqueue(cfs_rq, se);
3216 check_spread(cfs_rq, se);
3217 }
3a47d512 3218 if (!curr)
83b699ed 3219 __enqueue_entity(cfs_rq, se);
2069dd75 3220 se->on_rq = 1;
3d4b47b4 3221
d3d9dc33 3222 if (cfs_rq->nr_running == 1) {
3d4b47b4 3223 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3224 check_enqueue_throttle(cfs_rq);
3225 }
bf0f6f24
IM
3226}
3227
2c13c919 3228static void __clear_buddies_last(struct sched_entity *se)
2002c695 3229{
2c13c919
RR
3230 for_each_sched_entity(se) {
3231 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3232 if (cfs_rq->last != se)
2c13c919 3233 break;
f1044799
PZ
3234
3235 cfs_rq->last = NULL;
2c13c919
RR
3236 }
3237}
2002c695 3238
2c13c919
RR
3239static void __clear_buddies_next(struct sched_entity *se)
3240{
3241 for_each_sched_entity(se) {
3242 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3243 if (cfs_rq->next != se)
2c13c919 3244 break;
f1044799
PZ
3245
3246 cfs_rq->next = NULL;
2c13c919 3247 }
2002c695
PZ
3248}
3249
ac53db59
RR
3250static void __clear_buddies_skip(struct sched_entity *se)
3251{
3252 for_each_sched_entity(se) {
3253 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3254 if (cfs_rq->skip != se)
ac53db59 3255 break;
f1044799
PZ
3256
3257 cfs_rq->skip = NULL;
ac53db59
RR
3258 }
3259}
3260
a571bbea
PZ
3261static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3262{
2c13c919
RR
3263 if (cfs_rq->last == se)
3264 __clear_buddies_last(se);
3265
3266 if (cfs_rq->next == se)
3267 __clear_buddies_next(se);
ac53db59
RR
3268
3269 if (cfs_rq->skip == se)
3270 __clear_buddies_skip(se);
a571bbea
PZ
3271}
3272
6c16a6dc 3273static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3274
bf0f6f24 3275static void
371fd7e7 3276dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3277{
a2a2d680
DA
3278 /*
3279 * Update run-time statistics of the 'current'.
3280 */
3281 update_curr(cfs_rq);
13962234 3282 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3283
cb251765
MG
3284 if (schedstat_enabled())
3285 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3286
2002c695 3287 clear_buddies(cfs_rq, se);
4793241b 3288
83b699ed 3289 if (se != cfs_rq->curr)
30cfdcfc 3290 __dequeue_entity(cfs_rq, se);
17bc14b7 3291 se->on_rq = 0;
30cfdcfc 3292 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3293
3294 /*
3295 * Normalize the entity after updating the min_vruntime because the
3296 * update can refer to the ->curr item and we need to reflect this
3297 * movement in our normalized position.
3298 */
371fd7e7 3299 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3300 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3301
d8b4986d
PT
3302 /* return excess runtime on last dequeue */
3303 return_cfs_rq_runtime(cfs_rq);
3304
1e876231 3305 update_min_vruntime(cfs_rq);
17bc14b7 3306 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3307}
3308
3309/*
3310 * Preempt the current task with a newly woken task if needed:
3311 */
7c92e54f 3312static void
2e09bf55 3313check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3314{
11697830 3315 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3316 struct sched_entity *se;
3317 s64 delta;
11697830 3318
6d0f0ebd 3319 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3320 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3321 if (delta_exec > ideal_runtime) {
8875125e 3322 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3323 /*
3324 * The current task ran long enough, ensure it doesn't get
3325 * re-elected due to buddy favours.
3326 */
3327 clear_buddies(cfs_rq, curr);
f685ceac
MG
3328 return;
3329 }
3330
3331 /*
3332 * Ensure that a task that missed wakeup preemption by a
3333 * narrow margin doesn't have to wait for a full slice.
3334 * This also mitigates buddy induced latencies under load.
3335 */
f685ceac
MG
3336 if (delta_exec < sysctl_sched_min_granularity)
3337 return;
3338
f4cfb33e
WX
3339 se = __pick_first_entity(cfs_rq);
3340 delta = curr->vruntime - se->vruntime;
f685ceac 3341
f4cfb33e
WX
3342 if (delta < 0)
3343 return;
d7d82944 3344
f4cfb33e 3345 if (delta > ideal_runtime)
8875125e 3346 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3347}
3348
83b699ed 3349static void
8494f412 3350set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3351{
83b699ed
SV
3352 /* 'current' is not kept within the tree. */
3353 if (se->on_rq) {
3354 /*
3355 * Any task has to be enqueued before it get to execute on
3356 * a CPU. So account for the time it spent waiting on the
3357 * runqueue.
3358 */
cb251765
MG
3359 if (schedstat_enabled())
3360 update_stats_wait_end(cfs_rq, se);
83b699ed 3361 __dequeue_entity(cfs_rq, se);
9d89c257 3362 update_load_avg(se, 1);
83b699ed
SV
3363 }
3364
79303e9e 3365 update_stats_curr_start(cfs_rq, se);
429d43bc 3366 cfs_rq->curr = se;
eba1ed4b
IM
3367#ifdef CONFIG_SCHEDSTATS
3368 /*
3369 * Track our maximum slice length, if the CPU's load is at
3370 * least twice that of our own weight (i.e. dont track it
3371 * when there are only lesser-weight tasks around):
3372 */
cb251765 3373 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3374 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3375 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3376 }
3377#endif
4a55b450 3378 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3379}
3380
3f3a4904
PZ
3381static int
3382wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3383
ac53db59
RR
3384/*
3385 * Pick the next process, keeping these things in mind, in this order:
3386 * 1) keep things fair between processes/task groups
3387 * 2) pick the "next" process, since someone really wants that to run
3388 * 3) pick the "last" process, for cache locality
3389 * 4) do not run the "skip" process, if something else is available
3390 */
678d5718
PZ
3391static struct sched_entity *
3392pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3393{
678d5718
PZ
3394 struct sched_entity *left = __pick_first_entity(cfs_rq);
3395 struct sched_entity *se;
3396
3397 /*
3398 * If curr is set we have to see if its left of the leftmost entity
3399 * still in the tree, provided there was anything in the tree at all.
3400 */
3401 if (!left || (curr && entity_before(curr, left)))
3402 left = curr;
3403
3404 se = left; /* ideally we run the leftmost entity */
f4b6755f 3405
ac53db59
RR
3406 /*
3407 * Avoid running the skip buddy, if running something else can
3408 * be done without getting too unfair.
3409 */
3410 if (cfs_rq->skip == se) {
678d5718
PZ
3411 struct sched_entity *second;
3412
3413 if (se == curr) {
3414 second = __pick_first_entity(cfs_rq);
3415 } else {
3416 second = __pick_next_entity(se);
3417 if (!second || (curr && entity_before(curr, second)))
3418 second = curr;
3419 }
3420
ac53db59
RR
3421 if (second && wakeup_preempt_entity(second, left) < 1)
3422 se = second;
3423 }
aa2ac252 3424
f685ceac
MG
3425 /*
3426 * Prefer last buddy, try to return the CPU to a preempted task.
3427 */
3428 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3429 se = cfs_rq->last;
3430
ac53db59
RR
3431 /*
3432 * Someone really wants this to run. If it's not unfair, run it.
3433 */
3434 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3435 se = cfs_rq->next;
3436
f685ceac 3437 clear_buddies(cfs_rq, se);
4793241b
PZ
3438
3439 return se;
aa2ac252
PZ
3440}
3441
678d5718 3442static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3443
ab6cde26 3444static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3445{
3446 /*
3447 * If still on the runqueue then deactivate_task()
3448 * was not called and update_curr() has to be done:
3449 */
3450 if (prev->on_rq)
b7cc0896 3451 update_curr(cfs_rq);
bf0f6f24 3452
d3d9dc33
PT
3453 /* throttle cfs_rqs exceeding runtime */
3454 check_cfs_rq_runtime(cfs_rq);
3455
cb251765
MG
3456 if (schedstat_enabled()) {
3457 check_spread(cfs_rq, prev);
3458 if (prev->on_rq)
3459 update_stats_wait_start(cfs_rq, prev);
3460 }
3461
30cfdcfc 3462 if (prev->on_rq) {
30cfdcfc
DA
3463 /* Put 'current' back into the tree. */
3464 __enqueue_entity(cfs_rq, prev);
9d85f21c 3465 /* in !on_rq case, update occurred at dequeue */
9d89c257 3466 update_load_avg(prev, 0);
30cfdcfc 3467 }
429d43bc 3468 cfs_rq->curr = NULL;
bf0f6f24
IM
3469}
3470
8f4d37ec
PZ
3471static void
3472entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3473{
bf0f6f24 3474 /*
30cfdcfc 3475 * Update run-time statistics of the 'current'.
bf0f6f24 3476 */
30cfdcfc 3477 update_curr(cfs_rq);
bf0f6f24 3478
9d85f21c
PT
3479 /*
3480 * Ensure that runnable average is periodically updated.
3481 */
9d89c257 3482 update_load_avg(curr, 1);
bf0bd948 3483 update_cfs_shares(cfs_rq);
9d85f21c 3484
8f4d37ec
PZ
3485#ifdef CONFIG_SCHED_HRTICK
3486 /*
3487 * queued ticks are scheduled to match the slice, so don't bother
3488 * validating it and just reschedule.
3489 */
983ed7a6 3490 if (queued) {
8875125e 3491 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3492 return;
3493 }
8f4d37ec
PZ
3494 /*
3495 * don't let the period tick interfere with the hrtick preemption
3496 */
3497 if (!sched_feat(DOUBLE_TICK) &&
3498 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3499 return;
3500#endif
3501
2c2efaed 3502 if (cfs_rq->nr_running > 1)
2e09bf55 3503 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3504}
3505
ab84d31e
PT
3506
3507/**************************************************
3508 * CFS bandwidth control machinery
3509 */
3510
3511#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3512
3513#ifdef HAVE_JUMP_LABEL
c5905afb 3514static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3515
3516static inline bool cfs_bandwidth_used(void)
3517{
c5905afb 3518 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3519}
3520
1ee14e6c 3521void cfs_bandwidth_usage_inc(void)
029632fb 3522{
1ee14e6c
BS
3523 static_key_slow_inc(&__cfs_bandwidth_used);
3524}
3525
3526void cfs_bandwidth_usage_dec(void)
3527{
3528 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3529}
3530#else /* HAVE_JUMP_LABEL */
3531static bool cfs_bandwidth_used(void)
3532{
3533 return true;
3534}
3535
1ee14e6c
BS
3536void cfs_bandwidth_usage_inc(void) {}
3537void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3538#endif /* HAVE_JUMP_LABEL */
3539
ab84d31e
PT
3540/*
3541 * default period for cfs group bandwidth.
3542 * default: 0.1s, units: nanoseconds
3543 */
3544static inline u64 default_cfs_period(void)
3545{
3546 return 100000000ULL;
3547}
ec12cb7f
PT
3548
3549static inline u64 sched_cfs_bandwidth_slice(void)
3550{
3551 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3552}
3553
a9cf55b2
PT
3554/*
3555 * Replenish runtime according to assigned quota and update expiration time.
3556 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3557 * additional synchronization around rq->lock.
3558 *
3559 * requires cfs_b->lock
3560 */
029632fb 3561void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3562{
3563 u64 now;
3564
3565 if (cfs_b->quota == RUNTIME_INF)
3566 return;
3567
3568 now = sched_clock_cpu(smp_processor_id());
3569 cfs_b->runtime = cfs_b->quota;
3570 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3571}
3572
029632fb
PZ
3573static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3574{
3575 return &tg->cfs_bandwidth;
3576}
3577
f1b17280
PT
3578/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3579static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3580{
3581 if (unlikely(cfs_rq->throttle_count))
3582 return cfs_rq->throttled_clock_task;
3583
78becc27 3584 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3585}
3586
85dac906
PT
3587/* returns 0 on failure to allocate runtime */
3588static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3589{
3590 struct task_group *tg = cfs_rq->tg;
3591 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3592 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3593
3594 /* note: this is a positive sum as runtime_remaining <= 0 */
3595 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3596
3597 raw_spin_lock(&cfs_b->lock);
3598 if (cfs_b->quota == RUNTIME_INF)
3599 amount = min_amount;
58088ad0 3600 else {
77a4d1a1 3601 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3602
3603 if (cfs_b->runtime > 0) {
3604 amount = min(cfs_b->runtime, min_amount);
3605 cfs_b->runtime -= amount;
3606 cfs_b->idle = 0;
3607 }
ec12cb7f 3608 }
a9cf55b2 3609 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3610 raw_spin_unlock(&cfs_b->lock);
3611
3612 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3613 /*
3614 * we may have advanced our local expiration to account for allowed
3615 * spread between our sched_clock and the one on which runtime was
3616 * issued.
3617 */
3618 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3619 cfs_rq->runtime_expires = expires;
85dac906
PT
3620
3621 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3622}
3623
a9cf55b2
PT
3624/*
3625 * Note: This depends on the synchronization provided by sched_clock and the
3626 * fact that rq->clock snapshots this value.
3627 */
3628static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3629{
a9cf55b2 3630 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3631
3632 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3633 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3634 return;
3635
a9cf55b2
PT
3636 if (cfs_rq->runtime_remaining < 0)
3637 return;
3638
3639 /*
3640 * If the local deadline has passed we have to consider the
3641 * possibility that our sched_clock is 'fast' and the global deadline
3642 * has not truly expired.
3643 *
3644 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3645 * whether the global deadline has advanced. It is valid to compare
3646 * cfs_b->runtime_expires without any locks since we only care about
3647 * exact equality, so a partial write will still work.
a9cf55b2
PT
3648 */
3649
51f2176d 3650 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3651 /* extend local deadline, drift is bounded above by 2 ticks */
3652 cfs_rq->runtime_expires += TICK_NSEC;
3653 } else {
3654 /* global deadline is ahead, expiration has passed */
3655 cfs_rq->runtime_remaining = 0;
3656 }
3657}
3658
9dbdb155 3659static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3660{
3661 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3662 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3663 expire_cfs_rq_runtime(cfs_rq);
3664
3665 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3666 return;
3667
85dac906
PT
3668 /*
3669 * if we're unable to extend our runtime we resched so that the active
3670 * hierarchy can be throttled
3671 */
3672 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3673 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3674}
3675
6c16a6dc 3676static __always_inline
9dbdb155 3677void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3678{
56f570e5 3679 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3680 return;
3681
3682 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3683}
3684
85dac906
PT
3685static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3686{
56f570e5 3687 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3688}
3689
64660c86
PT
3690/* check whether cfs_rq, or any parent, is throttled */
3691static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3692{
56f570e5 3693 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3694}
3695
3696/*
3697 * Ensure that neither of the group entities corresponding to src_cpu or
3698 * dest_cpu are members of a throttled hierarchy when performing group
3699 * load-balance operations.
3700 */
3701static inline int throttled_lb_pair(struct task_group *tg,
3702 int src_cpu, int dest_cpu)
3703{
3704 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3705
3706 src_cfs_rq = tg->cfs_rq[src_cpu];
3707 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3708
3709 return throttled_hierarchy(src_cfs_rq) ||
3710 throttled_hierarchy(dest_cfs_rq);
3711}
3712
3713/* updated child weight may affect parent so we have to do this bottom up */
3714static int tg_unthrottle_up(struct task_group *tg, void *data)
3715{
3716 struct rq *rq = data;
3717 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3718
3719 cfs_rq->throttle_count--;
3720#ifdef CONFIG_SMP
3721 if (!cfs_rq->throttle_count) {
f1b17280 3722 /* adjust cfs_rq_clock_task() */
78becc27 3723 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3724 cfs_rq->throttled_clock_task;
64660c86
PT
3725 }
3726#endif
3727
3728 return 0;
3729}
3730
3731static int tg_throttle_down(struct task_group *tg, void *data)
3732{
3733 struct rq *rq = data;
3734 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3735
82958366
PT
3736 /* group is entering throttled state, stop time */
3737 if (!cfs_rq->throttle_count)
78becc27 3738 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3739 cfs_rq->throttle_count++;
3740
3741 return 0;
3742}
3743
d3d9dc33 3744static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3745{
3746 struct rq *rq = rq_of(cfs_rq);
3747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3748 struct sched_entity *se;
3749 long task_delta, dequeue = 1;
77a4d1a1 3750 bool empty;
85dac906
PT
3751
3752 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3753
f1b17280 3754 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3755 rcu_read_lock();
3756 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3757 rcu_read_unlock();
85dac906
PT
3758
3759 task_delta = cfs_rq->h_nr_running;
3760 for_each_sched_entity(se) {
3761 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3762 /* throttled entity or throttle-on-deactivate */
3763 if (!se->on_rq)
3764 break;
3765
3766 if (dequeue)
3767 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3768 qcfs_rq->h_nr_running -= task_delta;
3769
3770 if (qcfs_rq->load.weight)
3771 dequeue = 0;
3772 }
3773
3774 if (!se)
72465447 3775 sub_nr_running(rq, task_delta);
85dac906
PT
3776
3777 cfs_rq->throttled = 1;
78becc27 3778 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3779 raw_spin_lock(&cfs_b->lock);
d49db342 3780 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3781
c06f04c7
BS
3782 /*
3783 * Add to the _head_ of the list, so that an already-started
3784 * distribute_cfs_runtime will not see us
3785 */
3786 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3787
3788 /*
3789 * If we're the first throttled task, make sure the bandwidth
3790 * timer is running.
3791 */
3792 if (empty)
3793 start_cfs_bandwidth(cfs_b);
3794
85dac906
PT
3795 raw_spin_unlock(&cfs_b->lock);
3796}
3797
029632fb 3798void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3799{
3800 struct rq *rq = rq_of(cfs_rq);
3801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3802 struct sched_entity *se;
3803 int enqueue = 1;
3804 long task_delta;
3805
22b958d8 3806 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3807
3808 cfs_rq->throttled = 0;
1a55af2e
FW
3809
3810 update_rq_clock(rq);
3811
671fd9da 3812 raw_spin_lock(&cfs_b->lock);
78becc27 3813 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3814 list_del_rcu(&cfs_rq->throttled_list);
3815 raw_spin_unlock(&cfs_b->lock);
3816
64660c86
PT
3817 /* update hierarchical throttle state */
3818 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3819
671fd9da
PT
3820 if (!cfs_rq->load.weight)
3821 return;
3822
3823 task_delta = cfs_rq->h_nr_running;
3824 for_each_sched_entity(se) {
3825 if (se->on_rq)
3826 enqueue = 0;
3827
3828 cfs_rq = cfs_rq_of(se);
3829 if (enqueue)
3830 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3831 cfs_rq->h_nr_running += task_delta;
3832
3833 if (cfs_rq_throttled(cfs_rq))
3834 break;
3835 }
3836
3837 if (!se)
72465447 3838 add_nr_running(rq, task_delta);
671fd9da
PT
3839
3840 /* determine whether we need to wake up potentially idle cpu */
3841 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3842 resched_curr(rq);
671fd9da
PT
3843}
3844
3845static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3846 u64 remaining, u64 expires)
3847{
3848 struct cfs_rq *cfs_rq;
c06f04c7
BS
3849 u64 runtime;
3850 u64 starting_runtime = remaining;
671fd9da
PT
3851
3852 rcu_read_lock();
3853 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3854 throttled_list) {
3855 struct rq *rq = rq_of(cfs_rq);
3856
3857 raw_spin_lock(&rq->lock);
3858 if (!cfs_rq_throttled(cfs_rq))
3859 goto next;
3860
3861 runtime = -cfs_rq->runtime_remaining + 1;
3862 if (runtime > remaining)
3863 runtime = remaining;
3864 remaining -= runtime;
3865
3866 cfs_rq->runtime_remaining += runtime;
3867 cfs_rq->runtime_expires = expires;
3868
3869 /* we check whether we're throttled above */
3870 if (cfs_rq->runtime_remaining > 0)
3871 unthrottle_cfs_rq(cfs_rq);
3872
3873next:
3874 raw_spin_unlock(&rq->lock);
3875
3876 if (!remaining)
3877 break;
3878 }
3879 rcu_read_unlock();
3880
c06f04c7 3881 return starting_runtime - remaining;
671fd9da
PT
3882}
3883
58088ad0
PT
3884/*
3885 * Responsible for refilling a task_group's bandwidth and unthrottling its
3886 * cfs_rqs as appropriate. If there has been no activity within the last
3887 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3888 * used to track this state.
3889 */
3890static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3891{
671fd9da 3892 u64 runtime, runtime_expires;
51f2176d 3893 int throttled;
58088ad0 3894
58088ad0
PT
3895 /* no need to continue the timer with no bandwidth constraint */
3896 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3897 goto out_deactivate;
58088ad0 3898
671fd9da 3899 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3900 cfs_b->nr_periods += overrun;
671fd9da 3901
51f2176d
BS
3902 /*
3903 * idle depends on !throttled (for the case of a large deficit), and if
3904 * we're going inactive then everything else can be deferred
3905 */
3906 if (cfs_b->idle && !throttled)
3907 goto out_deactivate;
a9cf55b2
PT
3908
3909 __refill_cfs_bandwidth_runtime(cfs_b);
3910
671fd9da
PT
3911 if (!throttled) {
3912 /* mark as potentially idle for the upcoming period */
3913 cfs_b->idle = 1;
51f2176d 3914 return 0;
671fd9da
PT
3915 }
3916
e8da1b18
NR
3917 /* account preceding periods in which throttling occurred */
3918 cfs_b->nr_throttled += overrun;
3919
671fd9da 3920 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3921
3922 /*
c06f04c7
BS
3923 * This check is repeated as we are holding onto the new bandwidth while
3924 * we unthrottle. This can potentially race with an unthrottled group
3925 * trying to acquire new bandwidth from the global pool. This can result
3926 * in us over-using our runtime if it is all used during this loop, but
3927 * only by limited amounts in that extreme case.
671fd9da 3928 */
c06f04c7
BS
3929 while (throttled && cfs_b->runtime > 0) {
3930 runtime = cfs_b->runtime;
671fd9da
PT
3931 raw_spin_unlock(&cfs_b->lock);
3932 /* we can't nest cfs_b->lock while distributing bandwidth */
3933 runtime = distribute_cfs_runtime(cfs_b, runtime,
3934 runtime_expires);
3935 raw_spin_lock(&cfs_b->lock);
3936
3937 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3938
3939 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3940 }
58088ad0 3941
671fd9da
PT
3942 /*
3943 * While we are ensured activity in the period following an
3944 * unthrottle, this also covers the case in which the new bandwidth is
3945 * insufficient to cover the existing bandwidth deficit. (Forcing the
3946 * timer to remain active while there are any throttled entities.)
3947 */
3948 cfs_b->idle = 0;
58088ad0 3949
51f2176d
BS
3950 return 0;
3951
3952out_deactivate:
51f2176d 3953 return 1;
58088ad0 3954}
d3d9dc33 3955
d8b4986d
PT
3956/* a cfs_rq won't donate quota below this amount */
3957static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3958/* minimum remaining period time to redistribute slack quota */
3959static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3960/* how long we wait to gather additional slack before distributing */
3961static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3962
db06e78c
BS
3963/*
3964 * Are we near the end of the current quota period?
3965 *
3966 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3967 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3968 * migrate_hrtimers, base is never cleared, so we are fine.
3969 */
d8b4986d
PT
3970static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3971{
3972 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3973 u64 remaining;
3974
3975 /* if the call-back is running a quota refresh is already occurring */
3976 if (hrtimer_callback_running(refresh_timer))
3977 return 1;
3978
3979 /* is a quota refresh about to occur? */
3980 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3981 if (remaining < min_expire)
3982 return 1;
3983
3984 return 0;
3985}
3986
3987static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3988{
3989 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3990
3991 /* if there's a quota refresh soon don't bother with slack */
3992 if (runtime_refresh_within(cfs_b, min_left))
3993 return;
3994
4cfafd30
PZ
3995 hrtimer_start(&cfs_b->slack_timer,
3996 ns_to_ktime(cfs_bandwidth_slack_period),
3997 HRTIMER_MODE_REL);
d8b4986d
PT
3998}
3999
4000/* we know any runtime found here is valid as update_curr() precedes return */
4001static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4002{
4003 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4004 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4005
4006 if (slack_runtime <= 0)
4007 return;
4008
4009 raw_spin_lock(&cfs_b->lock);
4010 if (cfs_b->quota != RUNTIME_INF &&
4011 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4012 cfs_b->runtime += slack_runtime;
4013
4014 /* we are under rq->lock, defer unthrottling using a timer */
4015 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4016 !list_empty(&cfs_b->throttled_cfs_rq))
4017 start_cfs_slack_bandwidth(cfs_b);
4018 }
4019 raw_spin_unlock(&cfs_b->lock);
4020
4021 /* even if it's not valid for return we don't want to try again */
4022 cfs_rq->runtime_remaining -= slack_runtime;
4023}
4024
4025static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4026{
56f570e5
PT
4027 if (!cfs_bandwidth_used())
4028 return;
4029
fccfdc6f 4030 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4031 return;
4032
4033 __return_cfs_rq_runtime(cfs_rq);
4034}
4035
4036/*
4037 * This is done with a timer (instead of inline with bandwidth return) since
4038 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4039 */
4040static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4041{
4042 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4043 u64 expires;
4044
4045 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4046 raw_spin_lock(&cfs_b->lock);
4047 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4048 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4049 return;
db06e78c 4050 }
d8b4986d 4051
c06f04c7 4052 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4053 runtime = cfs_b->runtime;
c06f04c7 4054
d8b4986d
PT
4055 expires = cfs_b->runtime_expires;
4056 raw_spin_unlock(&cfs_b->lock);
4057
4058 if (!runtime)
4059 return;
4060
4061 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4062
4063 raw_spin_lock(&cfs_b->lock);
4064 if (expires == cfs_b->runtime_expires)
c06f04c7 4065 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4066 raw_spin_unlock(&cfs_b->lock);
4067}
4068
d3d9dc33
PT
4069/*
4070 * When a group wakes up we want to make sure that its quota is not already
4071 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4072 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4073 */
4074static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4075{
56f570e5
PT
4076 if (!cfs_bandwidth_used())
4077 return;
4078
d3d9dc33
PT
4079 /* an active group must be handled by the update_curr()->put() path */
4080 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4081 return;
4082
4083 /* ensure the group is not already throttled */
4084 if (cfs_rq_throttled(cfs_rq))
4085 return;
4086
4087 /* update runtime allocation */
4088 account_cfs_rq_runtime(cfs_rq, 0);
4089 if (cfs_rq->runtime_remaining <= 0)
4090 throttle_cfs_rq(cfs_rq);
4091}
4092
4093/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4094static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4095{
56f570e5 4096 if (!cfs_bandwidth_used())
678d5718 4097 return false;
56f570e5 4098
d3d9dc33 4099 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4100 return false;
d3d9dc33
PT
4101
4102 /*
4103 * it's possible for a throttled entity to be forced into a running
4104 * state (e.g. set_curr_task), in this case we're finished.
4105 */
4106 if (cfs_rq_throttled(cfs_rq))
678d5718 4107 return true;
d3d9dc33
PT
4108
4109 throttle_cfs_rq(cfs_rq);
678d5718 4110 return true;
d3d9dc33 4111}
029632fb 4112
029632fb
PZ
4113static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4114{
4115 struct cfs_bandwidth *cfs_b =
4116 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4117
029632fb
PZ
4118 do_sched_cfs_slack_timer(cfs_b);
4119
4120 return HRTIMER_NORESTART;
4121}
4122
4123static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4124{
4125 struct cfs_bandwidth *cfs_b =
4126 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4127 int overrun;
4128 int idle = 0;
4129
51f2176d 4130 raw_spin_lock(&cfs_b->lock);
029632fb 4131 for (;;) {
77a4d1a1 4132 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4133 if (!overrun)
4134 break;
4135
4136 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4137 }
4cfafd30
PZ
4138 if (idle)
4139 cfs_b->period_active = 0;
51f2176d 4140 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4141
4142 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4143}
4144
4145void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4146{
4147 raw_spin_lock_init(&cfs_b->lock);
4148 cfs_b->runtime = 0;
4149 cfs_b->quota = RUNTIME_INF;
4150 cfs_b->period = ns_to_ktime(default_cfs_period());
4151
4152 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4153 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4154 cfs_b->period_timer.function = sched_cfs_period_timer;
4155 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4156 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4157}
4158
4159static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4160{
4161 cfs_rq->runtime_enabled = 0;
4162 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4163}
4164
77a4d1a1 4165void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4166{
4cfafd30 4167 lockdep_assert_held(&cfs_b->lock);
029632fb 4168
4cfafd30
PZ
4169 if (!cfs_b->period_active) {
4170 cfs_b->period_active = 1;
4171 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4172 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4173 }
029632fb
PZ
4174}
4175
4176static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4177{
7f1a169b
TH
4178 /* init_cfs_bandwidth() was not called */
4179 if (!cfs_b->throttled_cfs_rq.next)
4180 return;
4181
029632fb
PZ
4182 hrtimer_cancel(&cfs_b->period_timer);
4183 hrtimer_cancel(&cfs_b->slack_timer);
4184}
4185
0e59bdae
KT
4186static void __maybe_unused update_runtime_enabled(struct rq *rq)
4187{
4188 struct cfs_rq *cfs_rq;
4189
4190 for_each_leaf_cfs_rq(rq, cfs_rq) {
4191 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4192
4193 raw_spin_lock(&cfs_b->lock);
4194 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4195 raw_spin_unlock(&cfs_b->lock);
4196 }
4197}
4198
38dc3348 4199static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4200{
4201 struct cfs_rq *cfs_rq;
4202
4203 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4204 if (!cfs_rq->runtime_enabled)
4205 continue;
4206
4207 /*
4208 * clock_task is not advancing so we just need to make sure
4209 * there's some valid quota amount
4210 */
51f2176d 4211 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4212 /*
4213 * Offline rq is schedulable till cpu is completely disabled
4214 * in take_cpu_down(), so we prevent new cfs throttling here.
4215 */
4216 cfs_rq->runtime_enabled = 0;
4217
029632fb
PZ
4218 if (cfs_rq_throttled(cfs_rq))
4219 unthrottle_cfs_rq(cfs_rq);
4220 }
4221}
4222
4223#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4224static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4225{
78becc27 4226 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4227}
4228
9dbdb155 4229static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4230static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4231static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4232static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4233
4234static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4235{
4236 return 0;
4237}
64660c86
PT
4238
4239static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4240{
4241 return 0;
4242}
4243
4244static inline int throttled_lb_pair(struct task_group *tg,
4245 int src_cpu, int dest_cpu)
4246{
4247 return 0;
4248}
029632fb
PZ
4249
4250void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4251
4252#ifdef CONFIG_FAIR_GROUP_SCHED
4253static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4254#endif
4255
029632fb
PZ
4256static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4257{
4258 return NULL;
4259}
4260static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4261static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4262static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4263
4264#endif /* CONFIG_CFS_BANDWIDTH */
4265
bf0f6f24
IM
4266/**************************************************
4267 * CFS operations on tasks:
4268 */
4269
8f4d37ec
PZ
4270#ifdef CONFIG_SCHED_HRTICK
4271static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4272{
8f4d37ec
PZ
4273 struct sched_entity *se = &p->se;
4274 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4275
4276 WARN_ON(task_rq(p) != rq);
4277
b39e66ea 4278 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4279 u64 slice = sched_slice(cfs_rq, se);
4280 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4281 s64 delta = slice - ran;
4282
4283 if (delta < 0) {
4284 if (rq->curr == p)
8875125e 4285 resched_curr(rq);
8f4d37ec
PZ
4286 return;
4287 }
31656519 4288 hrtick_start(rq, delta);
8f4d37ec
PZ
4289 }
4290}
a4c2f00f
PZ
4291
4292/*
4293 * called from enqueue/dequeue and updates the hrtick when the
4294 * current task is from our class and nr_running is low enough
4295 * to matter.
4296 */
4297static void hrtick_update(struct rq *rq)
4298{
4299 struct task_struct *curr = rq->curr;
4300
b39e66ea 4301 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4302 return;
4303
4304 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4305 hrtick_start_fair(rq, curr);
4306}
55e12e5e 4307#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4308static inline void
4309hrtick_start_fair(struct rq *rq, struct task_struct *p)
4310{
4311}
a4c2f00f
PZ
4312
4313static inline void hrtick_update(struct rq *rq)
4314{
4315}
8f4d37ec
PZ
4316#endif
4317
bf0f6f24
IM
4318/*
4319 * The enqueue_task method is called before nr_running is
4320 * increased. Here we update the fair scheduling stats and
4321 * then put the task into the rbtree:
4322 */
ea87bb78 4323static void
371fd7e7 4324enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4325{
4326 struct cfs_rq *cfs_rq;
62fb1851 4327 struct sched_entity *se = &p->se;
bf0f6f24
IM
4328
4329 for_each_sched_entity(se) {
62fb1851 4330 if (se->on_rq)
bf0f6f24
IM
4331 break;
4332 cfs_rq = cfs_rq_of(se);
88ec22d3 4333 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4334
4335 /*
4336 * end evaluation on encountering a throttled cfs_rq
4337 *
4338 * note: in the case of encountering a throttled cfs_rq we will
4339 * post the final h_nr_running increment below.
4340 */
4341 if (cfs_rq_throttled(cfs_rq))
4342 break;
953bfcd1 4343 cfs_rq->h_nr_running++;
85dac906 4344
88ec22d3 4345 flags = ENQUEUE_WAKEUP;
bf0f6f24 4346 }
8f4d37ec 4347
2069dd75 4348 for_each_sched_entity(se) {
0f317143 4349 cfs_rq = cfs_rq_of(se);
953bfcd1 4350 cfs_rq->h_nr_running++;
2069dd75 4351
85dac906
PT
4352 if (cfs_rq_throttled(cfs_rq))
4353 break;
4354
9d89c257 4355 update_load_avg(se, 1);
17bc14b7 4356 update_cfs_shares(cfs_rq);
2069dd75
PZ
4357 }
4358
cd126afe 4359 if (!se)
72465447 4360 add_nr_running(rq, 1);
cd126afe 4361
a4c2f00f 4362 hrtick_update(rq);
bf0f6f24
IM
4363}
4364
2f36825b
VP
4365static void set_next_buddy(struct sched_entity *se);
4366
bf0f6f24
IM
4367/*
4368 * The dequeue_task method is called before nr_running is
4369 * decreased. We remove the task from the rbtree and
4370 * update the fair scheduling stats:
4371 */
371fd7e7 4372static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4373{
4374 struct cfs_rq *cfs_rq;
62fb1851 4375 struct sched_entity *se = &p->se;
2f36825b 4376 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4377
4378 for_each_sched_entity(se) {
4379 cfs_rq = cfs_rq_of(se);
371fd7e7 4380 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4381
4382 /*
4383 * end evaluation on encountering a throttled cfs_rq
4384 *
4385 * note: in the case of encountering a throttled cfs_rq we will
4386 * post the final h_nr_running decrement below.
4387 */
4388 if (cfs_rq_throttled(cfs_rq))
4389 break;
953bfcd1 4390 cfs_rq->h_nr_running--;
2069dd75 4391
bf0f6f24 4392 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4393 if (cfs_rq->load.weight) {
4394 /*
4395 * Bias pick_next to pick a task from this cfs_rq, as
4396 * p is sleeping when it is within its sched_slice.
4397 */
4398 if (task_sleep && parent_entity(se))
4399 set_next_buddy(parent_entity(se));
9598c82d
PT
4400
4401 /* avoid re-evaluating load for this entity */
4402 se = parent_entity(se);
bf0f6f24 4403 break;
2f36825b 4404 }
371fd7e7 4405 flags |= DEQUEUE_SLEEP;
bf0f6f24 4406 }
8f4d37ec 4407
2069dd75 4408 for_each_sched_entity(se) {
0f317143 4409 cfs_rq = cfs_rq_of(se);
953bfcd1 4410 cfs_rq->h_nr_running--;
2069dd75 4411
85dac906
PT
4412 if (cfs_rq_throttled(cfs_rq))
4413 break;
4414
9d89c257 4415 update_load_avg(se, 1);
17bc14b7 4416 update_cfs_shares(cfs_rq);
2069dd75
PZ
4417 }
4418
cd126afe 4419 if (!se)
72465447 4420 sub_nr_running(rq, 1);
cd126afe 4421
a4c2f00f 4422 hrtick_update(rq);
bf0f6f24
IM
4423}
4424
e7693a36 4425#ifdef CONFIG_SMP
3289bdb4
PZ
4426
4427/*
4428 * per rq 'load' arrray crap; XXX kill this.
4429 */
4430
4431/*
d937cdc5 4432 * The exact cpuload calculated at every tick would be:
3289bdb4 4433 *
d937cdc5
PZ
4434 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4435 *
4436 * If a cpu misses updates for n ticks (as it was idle) and update gets
4437 * called on the n+1-th tick when cpu may be busy, then we have:
4438 *
4439 * load_n = (1 - 1/2^i)^n * load_0
4440 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4441 *
4442 * decay_load_missed() below does efficient calculation of
3289bdb4 4443 *
d937cdc5
PZ
4444 * load' = (1 - 1/2^i)^n * load
4445 *
4446 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4447 * This allows us to precompute the above in said factors, thereby allowing the
4448 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4449 * fixed_power_int())
3289bdb4 4450 *
d937cdc5 4451 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4452 */
4453#define DEGRADE_SHIFT 7
d937cdc5
PZ
4454
4455static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4456static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4457 { 0, 0, 0, 0, 0, 0, 0, 0 },
4458 { 64, 32, 8, 0, 0, 0, 0, 0 },
4459 { 96, 72, 40, 12, 1, 0, 0, 0 },
4460 { 112, 98, 75, 43, 15, 1, 0, 0 },
4461 { 120, 112, 98, 76, 45, 16, 2, 0 }
4462};
3289bdb4
PZ
4463
4464/*
4465 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4466 * would be when CPU is idle and so we just decay the old load without
4467 * adding any new load.
4468 */
4469static unsigned long
4470decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4471{
4472 int j = 0;
4473
4474 if (!missed_updates)
4475 return load;
4476
4477 if (missed_updates >= degrade_zero_ticks[idx])
4478 return 0;
4479
4480 if (idx == 1)
4481 return load >> missed_updates;
4482
4483 while (missed_updates) {
4484 if (missed_updates % 2)
4485 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4486
4487 missed_updates >>= 1;
4488 j++;
4489 }
4490 return load;
4491}
4492
59543275
BP
4493/**
4494 * __update_cpu_load - update the rq->cpu_load[] statistics
4495 * @this_rq: The rq to update statistics for
4496 * @this_load: The current load
4497 * @pending_updates: The number of missed updates
4498 * @active: !0 for NOHZ_FULL
4499 *
3289bdb4 4500 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4501 * scheduler tick (TICK_NSEC).
4502 *
4503 * This function computes a decaying average:
4504 *
4505 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4506 *
4507 * Because of NOHZ it might not get called on every tick which gives need for
4508 * the @pending_updates argument.
4509 *
4510 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4511 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4512 * = A * (A * load[i]_n-2 + B) + B
4513 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4514 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4515 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4516 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4517 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4518 *
4519 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4520 * any change in load would have resulted in the tick being turned back on.
4521 *
4522 * For regular NOHZ, this reduces to:
4523 *
4524 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4525 *
4526 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4527 * term. See the @active paramter.
3289bdb4
PZ
4528 */
4529static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4530 unsigned long pending_updates, int active)
3289bdb4 4531{
59543275 4532 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4533 int i, scale;
4534
4535 this_rq->nr_load_updates++;
4536
4537 /* Update our load: */
4538 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4539 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4540 unsigned long old_load, new_load;
4541
4542 /* scale is effectively 1 << i now, and >> i divides by scale */
4543
7400d3bb 4544 old_load = this_rq->cpu_load[i];
3289bdb4 4545 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4546 if (tickless_load) {
4547 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4548 /*
4549 * old_load can never be a negative value because a
4550 * decayed tickless_load cannot be greater than the
4551 * original tickless_load.
4552 */
4553 old_load += tickless_load;
4554 }
3289bdb4
PZ
4555 new_load = this_load;
4556 /*
4557 * Round up the averaging division if load is increasing. This
4558 * prevents us from getting stuck on 9 if the load is 10, for
4559 * example.
4560 */
4561 if (new_load > old_load)
4562 new_load += scale - 1;
4563
4564 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4565 }
4566
4567 sched_avg_update(this_rq);
4568}
4569
7ea241af
YD
4570/* Used instead of source_load when we know the type == 0 */
4571static unsigned long weighted_cpuload(const int cpu)
4572{
4573 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4574}
4575
3289bdb4 4576#ifdef CONFIG_NO_HZ_COMMON
be68a682
FW
4577static void __update_cpu_load_nohz(struct rq *this_rq,
4578 unsigned long curr_jiffies,
4579 unsigned long load,
4580 int active)
4581{
4582 unsigned long pending_updates;
4583
4584 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4585 if (pending_updates) {
4586 this_rq->last_load_update_tick = curr_jiffies;
4587 /*
4588 * In the regular NOHZ case, we were idle, this means load 0.
4589 * In the NOHZ_FULL case, we were non-idle, we should consider
4590 * its weighted load.
4591 */
4592 __update_cpu_load(this_rq, load, pending_updates, active);
4593 }
4594}
4595
3289bdb4
PZ
4596/*
4597 * There is no sane way to deal with nohz on smp when using jiffies because the
4598 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4599 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4600 *
4601 * Therefore we cannot use the delta approach from the regular tick since that
4602 * would seriously skew the load calculation. However we'll make do for those
4603 * updates happening while idle (nohz_idle_balance) or coming out of idle
4604 * (tick_nohz_idle_exit).
4605 *
4606 * This means we might still be one tick off for nohz periods.
4607 */
4608
4609/*
4610 * Called from nohz_idle_balance() to update the load ratings before doing the
4611 * idle balance.
4612 */
be68a682 4613static void update_cpu_load_idle(struct rq *this_rq)
3289bdb4 4614{
3289bdb4
PZ
4615 /*
4616 * bail if there's load or we're actually up-to-date.
4617 */
be68a682 4618 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4619 return;
4620
be68a682 4621 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4622}
4623
4624/*
4625 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4626 */
525705d1 4627void update_cpu_load_nohz(int active)
3289bdb4
PZ
4628{
4629 struct rq *this_rq = this_rq();
316c1608 4630 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4631 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4632
4633 if (curr_jiffies == this_rq->last_load_update_tick)
4634 return;
4635
4636 raw_spin_lock(&this_rq->lock);
be68a682 4637 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4638 raw_spin_unlock(&this_rq->lock);
4639}
4640#endif /* CONFIG_NO_HZ */
4641
4642/*
4643 * Called from scheduler_tick()
4644 */
4645void update_cpu_load_active(struct rq *this_rq)
4646{
7ea241af 4647 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4648 /*
be68a682 4649 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
3289bdb4
PZ
4650 */
4651 this_rq->last_load_update_tick = jiffies;
59543275 4652 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4653}
4654
029632fb
PZ
4655/*
4656 * Return a low guess at the load of a migration-source cpu weighted
4657 * according to the scheduling class and "nice" value.
4658 *
4659 * We want to under-estimate the load of migration sources, to
4660 * balance conservatively.
4661 */
4662static unsigned long source_load(int cpu, int type)
4663{
4664 struct rq *rq = cpu_rq(cpu);
4665 unsigned long total = weighted_cpuload(cpu);
4666
4667 if (type == 0 || !sched_feat(LB_BIAS))
4668 return total;
4669
4670 return min(rq->cpu_load[type-1], total);
4671}
4672
4673/*
4674 * Return a high guess at the load of a migration-target cpu weighted
4675 * according to the scheduling class and "nice" value.
4676 */
4677static unsigned long target_load(int cpu, int type)
4678{
4679 struct rq *rq = cpu_rq(cpu);
4680 unsigned long total = weighted_cpuload(cpu);
4681
4682 if (type == 0 || !sched_feat(LB_BIAS))
4683 return total;
4684
4685 return max(rq->cpu_load[type-1], total);
4686}
4687
ced549fa 4688static unsigned long capacity_of(int cpu)
029632fb 4689{
ced549fa 4690 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4691}
4692
ca6d75e6
VG
4693static unsigned long capacity_orig_of(int cpu)
4694{
4695 return cpu_rq(cpu)->cpu_capacity_orig;
4696}
4697
029632fb
PZ
4698static unsigned long cpu_avg_load_per_task(int cpu)
4699{
4700 struct rq *rq = cpu_rq(cpu);
316c1608 4701 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4702 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4703
4704 if (nr_running)
b92486cb 4705 return load_avg / nr_running;
029632fb
PZ
4706
4707 return 0;
4708}
4709
62470419
MW
4710static void record_wakee(struct task_struct *p)
4711{
4712 /*
4713 * Rough decay (wiping) for cost saving, don't worry
4714 * about the boundary, really active task won't care
4715 * about the loss.
4716 */
2538d960 4717 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4718 current->wakee_flips >>= 1;
62470419
MW
4719 current->wakee_flip_decay_ts = jiffies;
4720 }
4721
4722 if (current->last_wakee != p) {
4723 current->last_wakee = p;
4724 current->wakee_flips++;
4725 }
4726}
098fb9db 4727
74f8e4b2 4728static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4729{
4730 struct sched_entity *se = &p->se;
4731 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4732 u64 min_vruntime;
4733
4734#ifndef CONFIG_64BIT
4735 u64 min_vruntime_copy;
88ec22d3 4736
3fe1698b
PZ
4737 do {
4738 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4739 smp_rmb();
4740 min_vruntime = cfs_rq->min_vruntime;
4741 } while (min_vruntime != min_vruntime_copy);
4742#else
4743 min_vruntime = cfs_rq->min_vruntime;
4744#endif
88ec22d3 4745
3fe1698b 4746 se->vruntime -= min_vruntime;
62470419 4747 record_wakee(p);
88ec22d3
PZ
4748}
4749
bb3469ac 4750#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4751/*
4752 * effective_load() calculates the load change as seen from the root_task_group
4753 *
4754 * Adding load to a group doesn't make a group heavier, but can cause movement
4755 * of group shares between cpus. Assuming the shares were perfectly aligned one
4756 * can calculate the shift in shares.
cf5f0acf
PZ
4757 *
4758 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4759 * on this @cpu and results in a total addition (subtraction) of @wg to the
4760 * total group weight.
4761 *
4762 * Given a runqueue weight distribution (rw_i) we can compute a shares
4763 * distribution (s_i) using:
4764 *
4765 * s_i = rw_i / \Sum rw_j (1)
4766 *
4767 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4768 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4769 * shares distribution (s_i):
4770 *
4771 * rw_i = { 2, 4, 1, 0 }
4772 * s_i = { 2/7, 4/7, 1/7, 0 }
4773 *
4774 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4775 * task used to run on and the CPU the waker is running on), we need to
4776 * compute the effect of waking a task on either CPU and, in case of a sync
4777 * wakeup, compute the effect of the current task going to sleep.
4778 *
4779 * So for a change of @wl to the local @cpu with an overall group weight change
4780 * of @wl we can compute the new shares distribution (s'_i) using:
4781 *
4782 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4783 *
4784 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4785 * differences in waking a task to CPU 0. The additional task changes the
4786 * weight and shares distributions like:
4787 *
4788 * rw'_i = { 3, 4, 1, 0 }
4789 * s'_i = { 3/8, 4/8, 1/8, 0 }
4790 *
4791 * We can then compute the difference in effective weight by using:
4792 *
4793 * dw_i = S * (s'_i - s_i) (3)
4794 *
4795 * Where 'S' is the group weight as seen by its parent.
4796 *
4797 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4798 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4799 * 4/7) times the weight of the group.
f5bfb7d9 4800 */
2069dd75 4801static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4802{
4be9daaa 4803 struct sched_entity *se = tg->se[cpu];
f1d239f7 4804
9722c2da 4805 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4806 return wl;
4807
4be9daaa 4808 for_each_sched_entity(se) {
cf5f0acf 4809 long w, W;
4be9daaa 4810
977dda7c 4811 tg = se->my_q->tg;
bb3469ac 4812
cf5f0acf
PZ
4813 /*
4814 * W = @wg + \Sum rw_j
4815 */
4816 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4817
cf5f0acf
PZ
4818 /*
4819 * w = rw_i + @wl
4820 */
7ea241af 4821 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4822
cf5f0acf
PZ
4823 /*
4824 * wl = S * s'_i; see (2)
4825 */
4826 if (W > 0 && w < W)
32a8df4e 4827 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4828 else
4829 wl = tg->shares;
940959e9 4830
cf5f0acf
PZ
4831 /*
4832 * Per the above, wl is the new se->load.weight value; since
4833 * those are clipped to [MIN_SHARES, ...) do so now. See
4834 * calc_cfs_shares().
4835 */
977dda7c
PT
4836 if (wl < MIN_SHARES)
4837 wl = MIN_SHARES;
cf5f0acf
PZ
4838
4839 /*
4840 * wl = dw_i = S * (s'_i - s_i); see (3)
4841 */
9d89c257 4842 wl -= se->avg.load_avg;
cf5f0acf
PZ
4843
4844 /*
4845 * Recursively apply this logic to all parent groups to compute
4846 * the final effective load change on the root group. Since
4847 * only the @tg group gets extra weight, all parent groups can
4848 * only redistribute existing shares. @wl is the shift in shares
4849 * resulting from this level per the above.
4850 */
4be9daaa 4851 wg = 0;
4be9daaa 4852 }
bb3469ac 4853
4be9daaa 4854 return wl;
bb3469ac
PZ
4855}
4856#else
4be9daaa 4857
58d081b5 4858static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4859{
83378269 4860 return wl;
bb3469ac 4861}
4be9daaa 4862
bb3469ac
PZ
4863#endif
4864
63b0e9ed
MG
4865/*
4866 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4867 * A waker of many should wake a different task than the one last awakened
4868 * at a frequency roughly N times higher than one of its wakees. In order
4869 * to determine whether we should let the load spread vs consolodating to
4870 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4871 * partner, and a factor of lls_size higher frequency in the other. With
4872 * both conditions met, we can be relatively sure that the relationship is
4873 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4874 * being client/server, worker/dispatcher, interrupt source or whatever is
4875 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4876 */
62470419
MW
4877static int wake_wide(struct task_struct *p)
4878{
63b0e9ed
MG
4879 unsigned int master = current->wakee_flips;
4880 unsigned int slave = p->wakee_flips;
7d9ffa89 4881 int factor = this_cpu_read(sd_llc_size);
62470419 4882
63b0e9ed
MG
4883 if (master < slave)
4884 swap(master, slave);
4885 if (slave < factor || master < slave * factor)
4886 return 0;
4887 return 1;
62470419
MW
4888}
4889
c88d5910 4890static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4891{
e37b6a7b 4892 s64 this_load, load;
bd61c98f 4893 s64 this_eff_load, prev_eff_load;
c88d5910 4894 int idx, this_cpu, prev_cpu;
c88d5910 4895 struct task_group *tg;
83378269 4896 unsigned long weight;
b3137bc8 4897 int balanced;
098fb9db 4898
c88d5910
PZ
4899 idx = sd->wake_idx;
4900 this_cpu = smp_processor_id();
4901 prev_cpu = task_cpu(p);
4902 load = source_load(prev_cpu, idx);
4903 this_load = target_load(this_cpu, idx);
098fb9db 4904
b3137bc8
MG
4905 /*
4906 * If sync wakeup then subtract the (maximum possible)
4907 * effect of the currently running task from the load
4908 * of the current CPU:
4909 */
83378269
PZ
4910 if (sync) {
4911 tg = task_group(current);
9d89c257 4912 weight = current->se.avg.load_avg;
83378269 4913
c88d5910 4914 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4915 load += effective_load(tg, prev_cpu, 0, -weight);
4916 }
b3137bc8 4917
83378269 4918 tg = task_group(p);
9d89c257 4919 weight = p->se.avg.load_avg;
b3137bc8 4920
71a29aa7
PZ
4921 /*
4922 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4923 * due to the sync cause above having dropped this_load to 0, we'll
4924 * always have an imbalance, but there's really nothing you can do
4925 * about that, so that's good too.
71a29aa7
PZ
4926 *
4927 * Otherwise check if either cpus are near enough in load to allow this
4928 * task to be woken on this_cpu.
4929 */
bd61c98f
VG
4930 this_eff_load = 100;
4931 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4932
bd61c98f
VG
4933 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4934 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4935
bd61c98f 4936 if (this_load > 0) {
e51fd5e2
PZ
4937 this_eff_load *= this_load +
4938 effective_load(tg, this_cpu, weight, weight);
4939
e51fd5e2 4940 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4941 }
e51fd5e2 4942
bd61c98f 4943 balanced = this_eff_load <= prev_eff_load;
098fb9db 4944
41acab88 4945 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4946
05bfb65f
VG
4947 if (!balanced)
4948 return 0;
098fb9db 4949
05bfb65f
VG
4950 schedstat_inc(sd, ttwu_move_affine);
4951 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4952
4953 return 1;
098fb9db
IM
4954}
4955
aaee1203
PZ
4956/*
4957 * find_idlest_group finds and returns the least busy CPU group within the
4958 * domain.
4959 */
4960static struct sched_group *
78e7ed53 4961find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4962 int this_cpu, int sd_flag)
e7693a36 4963{
b3bd3de6 4964 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4965 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4966 int load_idx = sd->forkexec_idx;
aaee1203 4967 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4968
c44f2a02
VG
4969 if (sd_flag & SD_BALANCE_WAKE)
4970 load_idx = sd->wake_idx;
4971
aaee1203
PZ
4972 do {
4973 unsigned long load, avg_load;
4974 int local_group;
4975 int i;
e7693a36 4976
aaee1203
PZ
4977 /* Skip over this group if it has no CPUs allowed */
4978 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4979 tsk_cpus_allowed(p)))
aaee1203
PZ
4980 continue;
4981
4982 local_group = cpumask_test_cpu(this_cpu,
4983 sched_group_cpus(group));
4984
4985 /* Tally up the load of all CPUs in the group */
4986 avg_load = 0;
4987
4988 for_each_cpu(i, sched_group_cpus(group)) {
4989 /* Bias balancing toward cpus of our domain */
4990 if (local_group)
4991 load = source_load(i, load_idx);
4992 else
4993 load = target_load(i, load_idx);
4994
4995 avg_load += load;
4996 }
4997
63b2ca30 4998 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4999 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5000
5001 if (local_group) {
5002 this_load = avg_load;
aaee1203
PZ
5003 } else if (avg_load < min_load) {
5004 min_load = avg_load;
5005 idlest = group;
5006 }
5007 } while (group = group->next, group != sd->groups);
5008
5009 if (!idlest || 100*this_load < imbalance*min_load)
5010 return NULL;
5011 return idlest;
5012}
5013
5014/*
5015 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5016 */
5017static int
5018find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5019{
5020 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5021 unsigned int min_exit_latency = UINT_MAX;
5022 u64 latest_idle_timestamp = 0;
5023 int least_loaded_cpu = this_cpu;
5024 int shallowest_idle_cpu = -1;
aaee1203
PZ
5025 int i;
5026
5027 /* Traverse only the allowed CPUs */
fa17b507 5028 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5029 if (idle_cpu(i)) {
5030 struct rq *rq = cpu_rq(i);
5031 struct cpuidle_state *idle = idle_get_state(rq);
5032 if (idle && idle->exit_latency < min_exit_latency) {
5033 /*
5034 * We give priority to a CPU whose idle state
5035 * has the smallest exit latency irrespective
5036 * of any idle timestamp.
5037 */
5038 min_exit_latency = idle->exit_latency;
5039 latest_idle_timestamp = rq->idle_stamp;
5040 shallowest_idle_cpu = i;
5041 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5042 rq->idle_stamp > latest_idle_timestamp) {
5043 /*
5044 * If equal or no active idle state, then
5045 * the most recently idled CPU might have
5046 * a warmer cache.
5047 */
5048 latest_idle_timestamp = rq->idle_stamp;
5049 shallowest_idle_cpu = i;
5050 }
9f96742a 5051 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5052 load = weighted_cpuload(i);
5053 if (load < min_load || (load == min_load && i == this_cpu)) {
5054 min_load = load;
5055 least_loaded_cpu = i;
5056 }
e7693a36
GH
5057 }
5058 }
5059
83a0a96a 5060 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5061}
e7693a36 5062
a50bde51
PZ
5063/*
5064 * Try and locate an idle CPU in the sched_domain.
5065 */
99bd5e2f 5066static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5067{
99bd5e2f 5068 struct sched_domain *sd;
37407ea7 5069 struct sched_group *sg;
e0a79f52 5070 int i = task_cpu(p);
a50bde51 5071
e0a79f52
MG
5072 if (idle_cpu(target))
5073 return target;
99bd5e2f
SS
5074
5075 /*
e0a79f52 5076 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5077 */
e0a79f52
MG
5078 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5079 return i;
a50bde51
PZ
5080
5081 /*
d4335581
MF
5082 * Otherwise, iterate the domains and find an eligible idle cpu.
5083 *
5084 * A completely idle sched group at higher domains is more
5085 * desirable than an idle group at a lower level, because lower
5086 * domains have smaller groups and usually share hardware
5087 * resources which causes tasks to contend on them, e.g. x86
5088 * hyperthread siblings in the lowest domain (SMT) can contend
5089 * on the shared cpu pipeline.
5090 *
5091 * However, while we prefer idle groups at higher domains
5092 * finding an idle cpu at the lowest domain is still better than
5093 * returning 'target', which we've already established, isn't
5094 * idle.
a50bde51 5095 */
518cd623 5096 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5097 for_each_lower_domain(sd) {
37407ea7
LT
5098 sg = sd->groups;
5099 do {
5100 if (!cpumask_intersects(sched_group_cpus(sg),
5101 tsk_cpus_allowed(p)))
5102 goto next;
5103
d4335581 5104 /* Ensure the entire group is idle */
37407ea7 5105 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5106 if (i == target || !idle_cpu(i))
37407ea7
LT
5107 goto next;
5108 }
970e1789 5109
d4335581
MF
5110 /*
5111 * It doesn't matter which cpu we pick, the
5112 * whole group is idle.
5113 */
37407ea7
LT
5114 target = cpumask_first_and(sched_group_cpus(sg),
5115 tsk_cpus_allowed(p));
5116 goto done;
5117next:
5118 sg = sg->next;
5119 } while (sg != sd->groups);
5120 }
5121done:
a50bde51
PZ
5122 return target;
5123}
231678b7 5124
8bb5b00c 5125/*
9e91d61d 5126 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5127 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5128 * compare the utilization with the capacity of the CPU that is available for
5129 * CFS task (ie cpu_capacity).
231678b7
DE
5130 *
5131 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5132 * recent utilization of currently non-runnable tasks on a CPU. It represents
5133 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5134 * capacity_orig is the cpu_capacity available at the highest frequency
5135 * (arch_scale_freq_capacity()).
5136 * The utilization of a CPU converges towards a sum equal to or less than the
5137 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5138 * the running time on this CPU scaled by capacity_curr.
5139 *
5140 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5141 * higher than capacity_orig because of unfortunate rounding in
5142 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5143 * the average stabilizes with the new running time. We need to check that the
5144 * utilization stays within the range of [0..capacity_orig] and cap it if
5145 * necessary. Without utilization capping, a group could be seen as overloaded
5146 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5147 * available capacity. We allow utilization to overshoot capacity_curr (but not
5148 * capacity_orig) as it useful for predicting the capacity required after task
5149 * migrations (scheduler-driven DVFS).
8bb5b00c 5150 */
9e91d61d 5151static int cpu_util(int cpu)
8bb5b00c 5152{
9e91d61d 5153 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5154 unsigned long capacity = capacity_orig_of(cpu);
5155
231678b7 5156 return (util >= capacity) ? capacity : util;
8bb5b00c 5157}
a50bde51 5158
aaee1203 5159/*
de91b9cb
MR
5160 * select_task_rq_fair: Select target runqueue for the waking task in domains
5161 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5162 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5163 *
de91b9cb
MR
5164 * Balances load by selecting the idlest cpu in the idlest group, or under
5165 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5166 *
de91b9cb 5167 * Returns the target cpu number.
aaee1203
PZ
5168 *
5169 * preempt must be disabled.
5170 */
0017d735 5171static int
ac66f547 5172select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5173{
29cd8bae 5174 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5175 int cpu = smp_processor_id();
63b0e9ed 5176 int new_cpu = prev_cpu;
99bd5e2f 5177 int want_affine = 0;
5158f4e4 5178 int sync = wake_flags & WF_SYNC;
c88d5910 5179
a8edd075 5180 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5181 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5182
dce840a0 5183 rcu_read_lock();
aaee1203 5184 for_each_domain(cpu, tmp) {
e4f42888 5185 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5186 break;
e4f42888 5187
fe3bcfe1 5188 /*
99bd5e2f
SS
5189 * If both cpu and prev_cpu are part of this domain,
5190 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5191 */
99bd5e2f
SS
5192 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5193 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5194 affine_sd = tmp;
29cd8bae 5195 break;
f03542a7 5196 }
29cd8bae 5197
f03542a7 5198 if (tmp->flags & sd_flag)
29cd8bae 5199 sd = tmp;
63b0e9ed
MG
5200 else if (!want_affine)
5201 break;
29cd8bae
PZ
5202 }
5203
63b0e9ed
MG
5204 if (affine_sd) {
5205 sd = NULL; /* Prefer wake_affine over balance flags */
5206 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5207 new_cpu = cpu;
8b911acd 5208 }
e7693a36 5209
63b0e9ed
MG
5210 if (!sd) {
5211 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5212 new_cpu = select_idle_sibling(p, new_cpu);
5213
5214 } else while (sd) {
aaee1203 5215 struct sched_group *group;
c88d5910 5216 int weight;
098fb9db 5217
0763a660 5218 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5219 sd = sd->child;
5220 continue;
5221 }
098fb9db 5222
c44f2a02 5223 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5224 if (!group) {
5225 sd = sd->child;
5226 continue;
5227 }
4ae7d5ce 5228
d7c33c49 5229 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5230 if (new_cpu == -1 || new_cpu == cpu) {
5231 /* Now try balancing at a lower domain level of cpu */
5232 sd = sd->child;
5233 continue;
e7693a36 5234 }
aaee1203
PZ
5235
5236 /* Now try balancing at a lower domain level of new_cpu */
5237 cpu = new_cpu;
669c55e9 5238 weight = sd->span_weight;
aaee1203
PZ
5239 sd = NULL;
5240 for_each_domain(cpu, tmp) {
669c55e9 5241 if (weight <= tmp->span_weight)
aaee1203 5242 break;
0763a660 5243 if (tmp->flags & sd_flag)
aaee1203
PZ
5244 sd = tmp;
5245 }
5246 /* while loop will break here if sd == NULL */
e7693a36 5247 }
dce840a0 5248 rcu_read_unlock();
e7693a36 5249
c88d5910 5250 return new_cpu;
e7693a36 5251}
0a74bef8
PT
5252
5253/*
5254 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5255 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5256 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5257 */
5a4fd036 5258static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5259{
aff3e498 5260 /*
9d89c257
YD
5261 * We are supposed to update the task to "current" time, then its up to date
5262 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5263 * what current time is, so simply throw away the out-of-date time. This
5264 * will result in the wakee task is less decayed, but giving the wakee more
5265 * load sounds not bad.
aff3e498 5266 */
9d89c257
YD
5267 remove_entity_load_avg(&p->se);
5268
5269 /* Tell new CPU we are migrated */
5270 p->se.avg.last_update_time = 0;
3944a927
BS
5271
5272 /* We have migrated, no longer consider this task hot */
9d89c257 5273 p->se.exec_start = 0;
0a74bef8 5274}
12695578
YD
5275
5276static void task_dead_fair(struct task_struct *p)
5277{
5278 remove_entity_load_avg(&p->se);
5279}
e7693a36
GH
5280#endif /* CONFIG_SMP */
5281
e52fb7c0
PZ
5282static unsigned long
5283wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5284{
5285 unsigned long gran = sysctl_sched_wakeup_granularity;
5286
5287 /*
e52fb7c0
PZ
5288 * Since its curr running now, convert the gran from real-time
5289 * to virtual-time in his units.
13814d42
MG
5290 *
5291 * By using 'se' instead of 'curr' we penalize light tasks, so
5292 * they get preempted easier. That is, if 'se' < 'curr' then
5293 * the resulting gran will be larger, therefore penalizing the
5294 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5295 * be smaller, again penalizing the lighter task.
5296 *
5297 * This is especially important for buddies when the leftmost
5298 * task is higher priority than the buddy.
0bbd3336 5299 */
f4ad9bd2 5300 return calc_delta_fair(gran, se);
0bbd3336
PZ
5301}
5302
464b7527
PZ
5303/*
5304 * Should 'se' preempt 'curr'.
5305 *
5306 * |s1
5307 * |s2
5308 * |s3
5309 * g
5310 * |<--->|c
5311 *
5312 * w(c, s1) = -1
5313 * w(c, s2) = 0
5314 * w(c, s3) = 1
5315 *
5316 */
5317static int
5318wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5319{
5320 s64 gran, vdiff = curr->vruntime - se->vruntime;
5321
5322 if (vdiff <= 0)
5323 return -1;
5324
e52fb7c0 5325 gran = wakeup_gran(curr, se);
464b7527
PZ
5326 if (vdiff > gran)
5327 return 1;
5328
5329 return 0;
5330}
5331
02479099
PZ
5332static void set_last_buddy(struct sched_entity *se)
5333{
69c80f3e
VP
5334 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5335 return;
5336
5337 for_each_sched_entity(se)
5338 cfs_rq_of(se)->last = se;
02479099
PZ
5339}
5340
5341static void set_next_buddy(struct sched_entity *se)
5342{
69c80f3e
VP
5343 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5344 return;
5345
5346 for_each_sched_entity(se)
5347 cfs_rq_of(se)->next = se;
02479099
PZ
5348}
5349
ac53db59
RR
5350static void set_skip_buddy(struct sched_entity *se)
5351{
69c80f3e
VP
5352 for_each_sched_entity(se)
5353 cfs_rq_of(se)->skip = se;
ac53db59
RR
5354}
5355
bf0f6f24
IM
5356/*
5357 * Preempt the current task with a newly woken task if needed:
5358 */
5a9b86f6 5359static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5360{
5361 struct task_struct *curr = rq->curr;
8651a86c 5362 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5363 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5364 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5365 int next_buddy_marked = 0;
bf0f6f24 5366
4ae7d5ce
IM
5367 if (unlikely(se == pse))
5368 return;
5369
5238cdd3 5370 /*
163122b7 5371 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5372 * unconditionally check_prempt_curr() after an enqueue (which may have
5373 * lead to a throttle). This both saves work and prevents false
5374 * next-buddy nomination below.
5375 */
5376 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5377 return;
5378
2f36825b 5379 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5380 set_next_buddy(pse);
2f36825b
VP
5381 next_buddy_marked = 1;
5382 }
57fdc26d 5383
aec0a514
BR
5384 /*
5385 * We can come here with TIF_NEED_RESCHED already set from new task
5386 * wake up path.
5238cdd3
PT
5387 *
5388 * Note: this also catches the edge-case of curr being in a throttled
5389 * group (e.g. via set_curr_task), since update_curr() (in the
5390 * enqueue of curr) will have resulted in resched being set. This
5391 * prevents us from potentially nominating it as a false LAST_BUDDY
5392 * below.
aec0a514
BR
5393 */
5394 if (test_tsk_need_resched(curr))
5395 return;
5396
a2f5c9ab
DH
5397 /* Idle tasks are by definition preempted by non-idle tasks. */
5398 if (unlikely(curr->policy == SCHED_IDLE) &&
5399 likely(p->policy != SCHED_IDLE))
5400 goto preempt;
5401
91c234b4 5402 /*
a2f5c9ab
DH
5403 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5404 * is driven by the tick):
91c234b4 5405 */
8ed92e51 5406 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5407 return;
bf0f6f24 5408
464b7527 5409 find_matching_se(&se, &pse);
9bbd7374 5410 update_curr(cfs_rq_of(se));
002f128b 5411 BUG_ON(!pse);
2f36825b
VP
5412 if (wakeup_preempt_entity(se, pse) == 1) {
5413 /*
5414 * Bias pick_next to pick the sched entity that is
5415 * triggering this preemption.
5416 */
5417 if (!next_buddy_marked)
5418 set_next_buddy(pse);
3a7e73a2 5419 goto preempt;
2f36825b 5420 }
464b7527 5421
3a7e73a2 5422 return;
a65ac745 5423
3a7e73a2 5424preempt:
8875125e 5425 resched_curr(rq);
3a7e73a2
PZ
5426 /*
5427 * Only set the backward buddy when the current task is still
5428 * on the rq. This can happen when a wakeup gets interleaved
5429 * with schedule on the ->pre_schedule() or idle_balance()
5430 * point, either of which can * drop the rq lock.
5431 *
5432 * Also, during early boot the idle thread is in the fair class,
5433 * for obvious reasons its a bad idea to schedule back to it.
5434 */
5435 if (unlikely(!se->on_rq || curr == rq->idle))
5436 return;
5437
5438 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5439 set_last_buddy(se);
bf0f6f24
IM
5440}
5441
606dba2e
PZ
5442static struct task_struct *
5443pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5444{
5445 struct cfs_rq *cfs_rq = &rq->cfs;
5446 struct sched_entity *se;
678d5718 5447 struct task_struct *p;
37e117c0 5448 int new_tasks;
678d5718 5449
6e83125c 5450again:
678d5718
PZ
5451#ifdef CONFIG_FAIR_GROUP_SCHED
5452 if (!cfs_rq->nr_running)
38033c37 5453 goto idle;
678d5718 5454
3f1d2a31 5455 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5456 goto simple;
5457
5458 /*
5459 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5460 * likely that a next task is from the same cgroup as the current.
5461 *
5462 * Therefore attempt to avoid putting and setting the entire cgroup
5463 * hierarchy, only change the part that actually changes.
5464 */
5465
5466 do {
5467 struct sched_entity *curr = cfs_rq->curr;
5468
5469 /*
5470 * Since we got here without doing put_prev_entity() we also
5471 * have to consider cfs_rq->curr. If it is still a runnable
5472 * entity, update_curr() will update its vruntime, otherwise
5473 * forget we've ever seen it.
5474 */
54d27365
BS
5475 if (curr) {
5476 if (curr->on_rq)
5477 update_curr(cfs_rq);
5478 else
5479 curr = NULL;
678d5718 5480
54d27365
BS
5481 /*
5482 * This call to check_cfs_rq_runtime() will do the
5483 * throttle and dequeue its entity in the parent(s).
5484 * Therefore the 'simple' nr_running test will indeed
5485 * be correct.
5486 */
5487 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5488 goto simple;
5489 }
678d5718
PZ
5490
5491 se = pick_next_entity(cfs_rq, curr);
5492 cfs_rq = group_cfs_rq(se);
5493 } while (cfs_rq);
5494
5495 p = task_of(se);
5496
5497 /*
5498 * Since we haven't yet done put_prev_entity and if the selected task
5499 * is a different task than we started out with, try and touch the
5500 * least amount of cfs_rqs.
5501 */
5502 if (prev != p) {
5503 struct sched_entity *pse = &prev->se;
5504
5505 while (!(cfs_rq = is_same_group(se, pse))) {
5506 int se_depth = se->depth;
5507 int pse_depth = pse->depth;
5508
5509 if (se_depth <= pse_depth) {
5510 put_prev_entity(cfs_rq_of(pse), pse);
5511 pse = parent_entity(pse);
5512 }
5513 if (se_depth >= pse_depth) {
5514 set_next_entity(cfs_rq_of(se), se);
5515 se = parent_entity(se);
5516 }
5517 }
5518
5519 put_prev_entity(cfs_rq, pse);
5520 set_next_entity(cfs_rq, se);
5521 }
5522
5523 if (hrtick_enabled(rq))
5524 hrtick_start_fair(rq, p);
5525
5526 return p;
5527simple:
5528 cfs_rq = &rq->cfs;
5529#endif
bf0f6f24 5530
36ace27e 5531 if (!cfs_rq->nr_running)
38033c37 5532 goto idle;
bf0f6f24 5533
3f1d2a31 5534 put_prev_task(rq, prev);
606dba2e 5535
bf0f6f24 5536 do {
678d5718 5537 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5538 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5539 cfs_rq = group_cfs_rq(se);
5540 } while (cfs_rq);
5541
8f4d37ec 5542 p = task_of(se);
678d5718 5543
b39e66ea
MG
5544 if (hrtick_enabled(rq))
5545 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5546
5547 return p;
38033c37
PZ
5548
5549idle:
cbce1a68
PZ
5550 /*
5551 * This is OK, because current is on_cpu, which avoids it being picked
5552 * for load-balance and preemption/IRQs are still disabled avoiding
5553 * further scheduler activity on it and we're being very careful to
5554 * re-start the picking loop.
5555 */
5556 lockdep_unpin_lock(&rq->lock);
e4aa358b 5557 new_tasks = idle_balance(rq);
cbce1a68 5558 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5559 /*
5560 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5561 * possible for any higher priority task to appear. In that case we
5562 * must re-start the pick_next_entity() loop.
5563 */
e4aa358b 5564 if (new_tasks < 0)
37e117c0
PZ
5565 return RETRY_TASK;
5566
e4aa358b 5567 if (new_tasks > 0)
38033c37 5568 goto again;
38033c37
PZ
5569
5570 return NULL;
bf0f6f24
IM
5571}
5572
5573/*
5574 * Account for a descheduled task:
5575 */
31ee529c 5576static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5577{
5578 struct sched_entity *se = &prev->se;
5579 struct cfs_rq *cfs_rq;
5580
5581 for_each_sched_entity(se) {
5582 cfs_rq = cfs_rq_of(se);
ab6cde26 5583 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5584 }
5585}
5586
ac53db59
RR
5587/*
5588 * sched_yield() is very simple
5589 *
5590 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5591 */
5592static void yield_task_fair(struct rq *rq)
5593{
5594 struct task_struct *curr = rq->curr;
5595 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596 struct sched_entity *se = &curr->se;
5597
5598 /*
5599 * Are we the only task in the tree?
5600 */
5601 if (unlikely(rq->nr_running == 1))
5602 return;
5603
5604 clear_buddies(cfs_rq, se);
5605
5606 if (curr->policy != SCHED_BATCH) {
5607 update_rq_clock(rq);
5608 /*
5609 * Update run-time statistics of the 'current'.
5610 */
5611 update_curr(cfs_rq);
916671c0
MG
5612 /*
5613 * Tell update_rq_clock() that we've just updated,
5614 * so we don't do microscopic update in schedule()
5615 * and double the fastpath cost.
5616 */
9edfbfed 5617 rq_clock_skip_update(rq, true);
ac53db59
RR
5618 }
5619
5620 set_skip_buddy(se);
5621}
5622
d95f4122
MG
5623static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5624{
5625 struct sched_entity *se = &p->se;
5626
5238cdd3
PT
5627 /* throttled hierarchies are not runnable */
5628 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5629 return false;
5630
5631 /* Tell the scheduler that we'd really like pse to run next. */
5632 set_next_buddy(se);
5633
d95f4122
MG
5634 yield_task_fair(rq);
5635
5636 return true;
5637}
5638
681f3e68 5639#ifdef CONFIG_SMP
bf0f6f24 5640/**************************************************
e9c84cb8
PZ
5641 * Fair scheduling class load-balancing methods.
5642 *
5643 * BASICS
5644 *
5645 * The purpose of load-balancing is to achieve the same basic fairness the
5646 * per-cpu scheduler provides, namely provide a proportional amount of compute
5647 * time to each task. This is expressed in the following equation:
5648 *
5649 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5650 *
5651 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5652 * W_i,0 is defined as:
5653 *
5654 * W_i,0 = \Sum_j w_i,j (2)
5655 *
5656 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5657 * is derived from the nice value as per prio_to_weight[].
5658 *
5659 * The weight average is an exponential decay average of the instantaneous
5660 * weight:
5661 *
5662 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5663 *
ced549fa 5664 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5665 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5666 * can also include other factors [XXX].
5667 *
5668 * To achieve this balance we define a measure of imbalance which follows
5669 * directly from (1):
5670 *
ced549fa 5671 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5672 *
5673 * We them move tasks around to minimize the imbalance. In the continuous
5674 * function space it is obvious this converges, in the discrete case we get
5675 * a few fun cases generally called infeasible weight scenarios.
5676 *
5677 * [XXX expand on:
5678 * - infeasible weights;
5679 * - local vs global optima in the discrete case. ]
5680 *
5681 *
5682 * SCHED DOMAINS
5683 *
5684 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5685 * for all i,j solution, we create a tree of cpus that follows the hardware
5686 * topology where each level pairs two lower groups (or better). This results
5687 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5688 * tree to only the first of the previous level and we decrease the frequency
5689 * of load-balance at each level inv. proportional to the number of cpus in
5690 * the groups.
5691 *
5692 * This yields:
5693 *
5694 * log_2 n 1 n
5695 * \Sum { --- * --- * 2^i } = O(n) (5)
5696 * i = 0 2^i 2^i
5697 * `- size of each group
5698 * | | `- number of cpus doing load-balance
5699 * | `- freq
5700 * `- sum over all levels
5701 *
5702 * Coupled with a limit on how many tasks we can migrate every balance pass,
5703 * this makes (5) the runtime complexity of the balancer.
5704 *
5705 * An important property here is that each CPU is still (indirectly) connected
5706 * to every other cpu in at most O(log n) steps:
5707 *
5708 * The adjacency matrix of the resulting graph is given by:
5709 *
5710 * log_2 n
5711 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5712 * k = 0
5713 *
5714 * And you'll find that:
5715 *
5716 * A^(log_2 n)_i,j != 0 for all i,j (7)
5717 *
5718 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5719 * The task movement gives a factor of O(m), giving a convergence complexity
5720 * of:
5721 *
5722 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5723 *
5724 *
5725 * WORK CONSERVING
5726 *
5727 * In order to avoid CPUs going idle while there's still work to do, new idle
5728 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5729 * tree itself instead of relying on other CPUs to bring it work.
5730 *
5731 * This adds some complexity to both (5) and (8) but it reduces the total idle
5732 * time.
5733 *
5734 * [XXX more?]
5735 *
5736 *
5737 * CGROUPS
5738 *
5739 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5740 *
5741 * s_k,i
5742 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5743 * S_k
5744 *
5745 * Where
5746 *
5747 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5748 *
5749 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5750 *
5751 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5752 * property.
5753 *
5754 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5755 * rewrite all of this once again.]
5756 */
bf0f6f24 5757
ed387b78
HS
5758static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5759
0ec8aa00
PZ
5760enum fbq_type { regular, remote, all };
5761
ddcdf6e7 5762#define LBF_ALL_PINNED 0x01
367456c7 5763#define LBF_NEED_BREAK 0x02
6263322c
PZ
5764#define LBF_DST_PINNED 0x04
5765#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5766
5767struct lb_env {
5768 struct sched_domain *sd;
5769
ddcdf6e7 5770 struct rq *src_rq;
85c1e7da 5771 int src_cpu;
ddcdf6e7
PZ
5772
5773 int dst_cpu;
5774 struct rq *dst_rq;
5775
88b8dac0
SV
5776 struct cpumask *dst_grpmask;
5777 int new_dst_cpu;
ddcdf6e7 5778 enum cpu_idle_type idle;
bd939f45 5779 long imbalance;
b9403130
MW
5780 /* The set of CPUs under consideration for load-balancing */
5781 struct cpumask *cpus;
5782
ddcdf6e7 5783 unsigned int flags;
367456c7
PZ
5784
5785 unsigned int loop;
5786 unsigned int loop_break;
5787 unsigned int loop_max;
0ec8aa00
PZ
5788
5789 enum fbq_type fbq_type;
163122b7 5790 struct list_head tasks;
ddcdf6e7
PZ
5791};
5792
029632fb
PZ
5793/*
5794 * Is this task likely cache-hot:
5795 */
5d5e2b1b 5796static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5797{
5798 s64 delta;
5799
e5673f28
KT
5800 lockdep_assert_held(&env->src_rq->lock);
5801
029632fb
PZ
5802 if (p->sched_class != &fair_sched_class)
5803 return 0;
5804
5805 if (unlikely(p->policy == SCHED_IDLE))
5806 return 0;
5807
5808 /*
5809 * Buddy candidates are cache hot:
5810 */
5d5e2b1b 5811 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5812 (&p->se == cfs_rq_of(&p->se)->next ||
5813 &p->se == cfs_rq_of(&p->se)->last))
5814 return 1;
5815
5816 if (sysctl_sched_migration_cost == -1)
5817 return 1;
5818 if (sysctl_sched_migration_cost == 0)
5819 return 0;
5820
5d5e2b1b 5821 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5822
5823 return delta < (s64)sysctl_sched_migration_cost;
5824}
5825
3a7053b3 5826#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5827/*
2a1ed24c
SD
5828 * Returns 1, if task migration degrades locality
5829 * Returns 0, if task migration improves locality i.e migration preferred.
5830 * Returns -1, if task migration is not affected by locality.
c1ceac62 5831 */
2a1ed24c 5832static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5833{
b1ad065e 5834 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5835 unsigned long src_faults, dst_faults;
3a7053b3
MG
5836 int src_nid, dst_nid;
5837
2a595721 5838 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5839 return -1;
5840
c3b9bc5b 5841 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5842 return -1;
7a0f3083
MG
5843
5844 src_nid = cpu_to_node(env->src_cpu);
5845 dst_nid = cpu_to_node(env->dst_cpu);
5846
83e1d2cd 5847 if (src_nid == dst_nid)
2a1ed24c 5848 return -1;
7a0f3083 5849
2a1ed24c
SD
5850 /* Migrating away from the preferred node is always bad. */
5851 if (src_nid == p->numa_preferred_nid) {
5852 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5853 return 1;
5854 else
5855 return -1;
5856 }
b1ad065e 5857
c1ceac62
RR
5858 /* Encourage migration to the preferred node. */
5859 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5860 return 0;
b1ad065e 5861
c1ceac62
RR
5862 if (numa_group) {
5863 src_faults = group_faults(p, src_nid);
5864 dst_faults = group_faults(p, dst_nid);
5865 } else {
5866 src_faults = task_faults(p, src_nid);
5867 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5868 }
5869
c1ceac62 5870 return dst_faults < src_faults;
7a0f3083
MG
5871}
5872
3a7053b3 5873#else
2a1ed24c 5874static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5875 struct lb_env *env)
5876{
2a1ed24c 5877 return -1;
7a0f3083 5878}
3a7053b3
MG
5879#endif
5880
1e3c88bd
PZ
5881/*
5882 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5883 */
5884static
8e45cb54 5885int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5886{
2a1ed24c 5887 int tsk_cache_hot;
e5673f28
KT
5888
5889 lockdep_assert_held(&env->src_rq->lock);
5890
1e3c88bd
PZ
5891 /*
5892 * We do not migrate tasks that are:
d3198084 5893 * 1) throttled_lb_pair, or
1e3c88bd 5894 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5895 * 3) running (obviously), or
5896 * 4) are cache-hot on their current CPU.
1e3c88bd 5897 */
d3198084
JK
5898 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5899 return 0;
5900
ddcdf6e7 5901 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5902 int cpu;
88b8dac0 5903
41acab88 5904 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5905
6263322c
PZ
5906 env->flags |= LBF_SOME_PINNED;
5907
88b8dac0
SV
5908 /*
5909 * Remember if this task can be migrated to any other cpu in
5910 * our sched_group. We may want to revisit it if we couldn't
5911 * meet load balance goals by pulling other tasks on src_cpu.
5912 *
5913 * Also avoid computing new_dst_cpu if we have already computed
5914 * one in current iteration.
5915 */
6263322c 5916 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5917 return 0;
5918
e02e60c1
JK
5919 /* Prevent to re-select dst_cpu via env's cpus */
5920 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5921 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5922 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5923 env->new_dst_cpu = cpu;
5924 break;
5925 }
88b8dac0 5926 }
e02e60c1 5927
1e3c88bd
PZ
5928 return 0;
5929 }
88b8dac0
SV
5930
5931 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5932 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5933
ddcdf6e7 5934 if (task_running(env->src_rq, p)) {
41acab88 5935 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5936 return 0;
5937 }
5938
5939 /*
5940 * Aggressive migration if:
3a7053b3
MG
5941 * 1) destination numa is preferred
5942 * 2) task is cache cold, or
5943 * 3) too many balance attempts have failed.
1e3c88bd 5944 */
2a1ed24c
SD
5945 tsk_cache_hot = migrate_degrades_locality(p, env);
5946 if (tsk_cache_hot == -1)
5947 tsk_cache_hot = task_hot(p, env);
3a7053b3 5948
2a1ed24c 5949 if (tsk_cache_hot <= 0 ||
7a96c231 5950 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5951 if (tsk_cache_hot == 1) {
3a7053b3
MG
5952 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5953 schedstat_inc(p, se.statistics.nr_forced_migrations);
5954 }
1e3c88bd
PZ
5955 return 1;
5956 }
5957
4e2dcb73
ZH
5958 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5959 return 0;
1e3c88bd
PZ
5960}
5961
897c395f 5962/*
163122b7
KT
5963 * detach_task() -- detach the task for the migration specified in env
5964 */
5965static void detach_task(struct task_struct *p, struct lb_env *env)
5966{
5967 lockdep_assert_held(&env->src_rq->lock);
5968
163122b7 5969 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5970 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5971 set_task_cpu(p, env->dst_cpu);
5972}
5973
897c395f 5974/*
e5673f28 5975 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5976 * part of active balancing operations within "domain".
897c395f 5977 *
e5673f28 5978 * Returns a task if successful and NULL otherwise.
897c395f 5979 */
e5673f28 5980static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5981{
5982 struct task_struct *p, *n;
897c395f 5983
e5673f28
KT
5984 lockdep_assert_held(&env->src_rq->lock);
5985
367456c7 5986 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5987 if (!can_migrate_task(p, env))
5988 continue;
897c395f 5989
163122b7 5990 detach_task(p, env);
e5673f28 5991
367456c7 5992 /*
e5673f28 5993 * Right now, this is only the second place where
163122b7 5994 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5995 * so we can safely collect stats here rather than
163122b7 5996 * inside detach_tasks().
367456c7
PZ
5997 */
5998 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5999 return p;
897c395f 6000 }
e5673f28 6001 return NULL;
897c395f
PZ
6002}
6003
eb95308e
PZ
6004static const unsigned int sched_nr_migrate_break = 32;
6005
5d6523eb 6006/*
163122b7
KT
6007 * detach_tasks() -- tries to detach up to imbalance weighted load from
6008 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6009 *
163122b7 6010 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6011 */
163122b7 6012static int detach_tasks(struct lb_env *env)
1e3c88bd 6013{
5d6523eb
PZ
6014 struct list_head *tasks = &env->src_rq->cfs_tasks;
6015 struct task_struct *p;
367456c7 6016 unsigned long load;
163122b7
KT
6017 int detached = 0;
6018
6019 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6020
bd939f45 6021 if (env->imbalance <= 0)
5d6523eb 6022 return 0;
1e3c88bd 6023
5d6523eb 6024 while (!list_empty(tasks)) {
985d3a4c
YD
6025 /*
6026 * We don't want to steal all, otherwise we may be treated likewise,
6027 * which could at worst lead to a livelock crash.
6028 */
6029 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6030 break;
6031
5d6523eb 6032 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6033
367456c7
PZ
6034 env->loop++;
6035 /* We've more or less seen every task there is, call it quits */
5d6523eb 6036 if (env->loop > env->loop_max)
367456c7 6037 break;
5d6523eb
PZ
6038
6039 /* take a breather every nr_migrate tasks */
367456c7 6040 if (env->loop > env->loop_break) {
eb95308e 6041 env->loop_break += sched_nr_migrate_break;
8e45cb54 6042 env->flags |= LBF_NEED_BREAK;
ee00e66f 6043 break;
a195f004 6044 }
1e3c88bd 6045
d3198084 6046 if (!can_migrate_task(p, env))
367456c7
PZ
6047 goto next;
6048
6049 load = task_h_load(p);
5d6523eb 6050
eb95308e 6051 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6052 goto next;
6053
bd939f45 6054 if ((load / 2) > env->imbalance)
367456c7 6055 goto next;
1e3c88bd 6056
163122b7
KT
6057 detach_task(p, env);
6058 list_add(&p->se.group_node, &env->tasks);
6059
6060 detached++;
bd939f45 6061 env->imbalance -= load;
1e3c88bd
PZ
6062
6063#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6064 /*
6065 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6066 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6067 * the critical section.
6068 */
5d6523eb 6069 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6070 break;
1e3c88bd
PZ
6071#endif
6072
ee00e66f
PZ
6073 /*
6074 * We only want to steal up to the prescribed amount of
6075 * weighted load.
6076 */
bd939f45 6077 if (env->imbalance <= 0)
ee00e66f 6078 break;
367456c7
PZ
6079
6080 continue;
6081next:
5d6523eb 6082 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6083 }
5d6523eb 6084
1e3c88bd 6085 /*
163122b7
KT
6086 * Right now, this is one of only two places we collect this stat
6087 * so we can safely collect detach_one_task() stats here rather
6088 * than inside detach_one_task().
1e3c88bd 6089 */
163122b7 6090 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6091
163122b7
KT
6092 return detached;
6093}
6094
6095/*
6096 * attach_task() -- attach the task detached by detach_task() to its new rq.
6097 */
6098static void attach_task(struct rq *rq, struct task_struct *p)
6099{
6100 lockdep_assert_held(&rq->lock);
6101
6102 BUG_ON(task_rq(p) != rq);
163122b7 6103 activate_task(rq, p, 0);
3ea94de1 6104 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6105 check_preempt_curr(rq, p, 0);
6106}
6107
6108/*
6109 * attach_one_task() -- attaches the task returned from detach_one_task() to
6110 * its new rq.
6111 */
6112static void attach_one_task(struct rq *rq, struct task_struct *p)
6113{
6114 raw_spin_lock(&rq->lock);
6115 attach_task(rq, p);
6116 raw_spin_unlock(&rq->lock);
6117}
6118
6119/*
6120 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6121 * new rq.
6122 */
6123static void attach_tasks(struct lb_env *env)
6124{
6125 struct list_head *tasks = &env->tasks;
6126 struct task_struct *p;
6127
6128 raw_spin_lock(&env->dst_rq->lock);
6129
6130 while (!list_empty(tasks)) {
6131 p = list_first_entry(tasks, struct task_struct, se.group_node);
6132 list_del_init(&p->se.group_node);
1e3c88bd 6133
163122b7
KT
6134 attach_task(env->dst_rq, p);
6135 }
6136
6137 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6138}
6139
230059de 6140#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6141static void update_blocked_averages(int cpu)
9e3081ca 6142{
9e3081ca 6143 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6144 struct cfs_rq *cfs_rq;
6145 unsigned long flags;
9e3081ca 6146
48a16753
PT
6147 raw_spin_lock_irqsave(&rq->lock, flags);
6148 update_rq_clock(rq);
9d89c257 6149
9763b67f
PZ
6150 /*
6151 * Iterates the task_group tree in a bottom up fashion, see
6152 * list_add_leaf_cfs_rq() for details.
6153 */
64660c86 6154 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6155 /* throttled entities do not contribute to load */
6156 if (throttled_hierarchy(cfs_rq))
6157 continue;
48a16753 6158
9d89c257
YD
6159 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6160 update_tg_load_avg(cfs_rq, 0);
6161 }
48a16753 6162 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6163}
6164
9763b67f 6165/*
68520796 6166 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6167 * This needs to be done in a top-down fashion because the load of a child
6168 * group is a fraction of its parents load.
6169 */
68520796 6170static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6171{
68520796
VD
6172 struct rq *rq = rq_of(cfs_rq);
6173 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6174 unsigned long now = jiffies;
68520796 6175 unsigned long load;
a35b6466 6176
68520796 6177 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6178 return;
6179
68520796
VD
6180 cfs_rq->h_load_next = NULL;
6181 for_each_sched_entity(se) {
6182 cfs_rq = cfs_rq_of(se);
6183 cfs_rq->h_load_next = se;
6184 if (cfs_rq->last_h_load_update == now)
6185 break;
6186 }
a35b6466 6187
68520796 6188 if (!se) {
7ea241af 6189 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6190 cfs_rq->last_h_load_update = now;
6191 }
6192
6193 while ((se = cfs_rq->h_load_next) != NULL) {
6194 load = cfs_rq->h_load;
7ea241af
YD
6195 load = div64_ul(load * se->avg.load_avg,
6196 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6197 cfs_rq = group_cfs_rq(se);
6198 cfs_rq->h_load = load;
6199 cfs_rq->last_h_load_update = now;
6200 }
9763b67f
PZ
6201}
6202
367456c7 6203static unsigned long task_h_load(struct task_struct *p)
230059de 6204{
367456c7 6205 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6206
68520796 6207 update_cfs_rq_h_load(cfs_rq);
9d89c257 6208 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6209 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6210}
6211#else
48a16753 6212static inline void update_blocked_averages(int cpu)
9e3081ca 6213{
6c1d47c0
VG
6214 struct rq *rq = cpu_rq(cpu);
6215 struct cfs_rq *cfs_rq = &rq->cfs;
6216 unsigned long flags;
6217
6218 raw_spin_lock_irqsave(&rq->lock, flags);
6219 update_rq_clock(rq);
6220 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6221 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6222}
6223
367456c7 6224static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6225{
9d89c257 6226 return p->se.avg.load_avg;
1e3c88bd 6227}
230059de 6228#endif
1e3c88bd 6229
1e3c88bd 6230/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6231
6232enum group_type {
6233 group_other = 0,
6234 group_imbalanced,
6235 group_overloaded,
6236};
6237
1e3c88bd
PZ
6238/*
6239 * sg_lb_stats - stats of a sched_group required for load_balancing
6240 */
6241struct sg_lb_stats {
6242 unsigned long avg_load; /*Avg load across the CPUs of the group */
6243 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6244 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6245 unsigned long load_per_task;
63b2ca30 6246 unsigned long group_capacity;
9e91d61d 6247 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6248 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6249 unsigned int idle_cpus;
6250 unsigned int group_weight;
caeb178c 6251 enum group_type group_type;
ea67821b 6252 int group_no_capacity;
0ec8aa00
PZ
6253#ifdef CONFIG_NUMA_BALANCING
6254 unsigned int nr_numa_running;
6255 unsigned int nr_preferred_running;
6256#endif
1e3c88bd
PZ
6257};
6258
56cf515b
JK
6259/*
6260 * sd_lb_stats - Structure to store the statistics of a sched_domain
6261 * during load balancing.
6262 */
6263struct sd_lb_stats {
6264 struct sched_group *busiest; /* Busiest group in this sd */
6265 struct sched_group *local; /* Local group in this sd */
6266 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6267 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6268 unsigned long avg_load; /* Average load across all groups in sd */
6269
56cf515b 6270 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6271 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6272};
6273
147c5fc2
PZ
6274static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6275{
6276 /*
6277 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6278 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6279 * We must however clear busiest_stat::avg_load because
6280 * update_sd_pick_busiest() reads this before assignment.
6281 */
6282 *sds = (struct sd_lb_stats){
6283 .busiest = NULL,
6284 .local = NULL,
6285 .total_load = 0UL,
63b2ca30 6286 .total_capacity = 0UL,
147c5fc2
PZ
6287 .busiest_stat = {
6288 .avg_load = 0UL,
caeb178c
RR
6289 .sum_nr_running = 0,
6290 .group_type = group_other,
147c5fc2
PZ
6291 },
6292 };
6293}
6294
1e3c88bd
PZ
6295/**
6296 * get_sd_load_idx - Obtain the load index for a given sched domain.
6297 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6298 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6299 *
6300 * Return: The load index.
1e3c88bd
PZ
6301 */
6302static inline int get_sd_load_idx(struct sched_domain *sd,
6303 enum cpu_idle_type idle)
6304{
6305 int load_idx;
6306
6307 switch (idle) {
6308 case CPU_NOT_IDLE:
6309 load_idx = sd->busy_idx;
6310 break;
6311
6312 case CPU_NEWLY_IDLE:
6313 load_idx = sd->newidle_idx;
6314 break;
6315 default:
6316 load_idx = sd->idle_idx;
6317 break;
6318 }
6319
6320 return load_idx;
6321}
6322
ced549fa 6323static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6324{
6325 struct rq *rq = cpu_rq(cpu);
b5b4860d 6326 u64 total, used, age_stamp, avg;
cadefd3d 6327 s64 delta;
1e3c88bd 6328
b654f7de
PZ
6329 /*
6330 * Since we're reading these variables without serialization make sure
6331 * we read them once before doing sanity checks on them.
6332 */
316c1608
JL
6333 age_stamp = READ_ONCE(rq->age_stamp);
6334 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6335 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6336
cadefd3d
PZ
6337 if (unlikely(delta < 0))
6338 delta = 0;
6339
6340 total = sched_avg_period() + delta;
aa483808 6341
b5b4860d 6342 used = div_u64(avg, total);
1e3c88bd 6343
b5b4860d
VG
6344 if (likely(used < SCHED_CAPACITY_SCALE))
6345 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6346
b5b4860d 6347 return 1;
1e3c88bd
PZ
6348}
6349
ced549fa 6350static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6351{
8cd5601c 6352 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6353 struct sched_group *sdg = sd->groups;
6354
ca6d75e6 6355 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6356
ced549fa 6357 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6358 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6359
ced549fa
NP
6360 if (!capacity)
6361 capacity = 1;
1e3c88bd 6362
ced549fa
NP
6363 cpu_rq(cpu)->cpu_capacity = capacity;
6364 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6365}
6366
63b2ca30 6367void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6368{
6369 struct sched_domain *child = sd->child;
6370 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6371 unsigned long capacity;
4ec4412e
VG
6372 unsigned long interval;
6373
6374 interval = msecs_to_jiffies(sd->balance_interval);
6375 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6376 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6377
6378 if (!child) {
ced549fa 6379 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6380 return;
6381 }
6382
dc7ff76e 6383 capacity = 0;
1e3c88bd 6384
74a5ce20
PZ
6385 if (child->flags & SD_OVERLAP) {
6386 /*
6387 * SD_OVERLAP domains cannot assume that child groups
6388 * span the current group.
6389 */
6390
863bffc8 6391 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6392 struct sched_group_capacity *sgc;
9abf24d4 6393 struct rq *rq = cpu_rq(cpu);
863bffc8 6394
9abf24d4 6395 /*
63b2ca30 6396 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6397 * gets here before we've attached the domains to the
6398 * runqueues.
6399 *
ced549fa
NP
6400 * Use capacity_of(), which is set irrespective of domains
6401 * in update_cpu_capacity().
9abf24d4 6402 *
dc7ff76e 6403 * This avoids capacity from being 0 and
9abf24d4 6404 * causing divide-by-zero issues on boot.
9abf24d4
SD
6405 */
6406 if (unlikely(!rq->sd)) {
ced549fa 6407 capacity += capacity_of(cpu);
9abf24d4
SD
6408 continue;
6409 }
863bffc8 6410
63b2ca30 6411 sgc = rq->sd->groups->sgc;
63b2ca30 6412 capacity += sgc->capacity;
863bffc8 6413 }
74a5ce20
PZ
6414 } else {
6415 /*
6416 * !SD_OVERLAP domains can assume that child groups
6417 * span the current group.
6418 */
6419
6420 group = child->groups;
6421 do {
63b2ca30 6422 capacity += group->sgc->capacity;
74a5ce20
PZ
6423 group = group->next;
6424 } while (group != child->groups);
6425 }
1e3c88bd 6426
63b2ca30 6427 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6428}
6429
9d5efe05 6430/*
ea67821b
VG
6431 * Check whether the capacity of the rq has been noticeably reduced by side
6432 * activity. The imbalance_pct is used for the threshold.
6433 * Return true is the capacity is reduced
9d5efe05
SV
6434 */
6435static inline int
ea67821b 6436check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6437{
ea67821b
VG
6438 return ((rq->cpu_capacity * sd->imbalance_pct) <
6439 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6440}
6441
30ce5dab
PZ
6442/*
6443 * Group imbalance indicates (and tries to solve) the problem where balancing
6444 * groups is inadequate due to tsk_cpus_allowed() constraints.
6445 *
6446 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6447 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6448 * Something like:
6449 *
6450 * { 0 1 2 3 } { 4 5 6 7 }
6451 * * * * *
6452 *
6453 * If we were to balance group-wise we'd place two tasks in the first group and
6454 * two tasks in the second group. Clearly this is undesired as it will overload
6455 * cpu 3 and leave one of the cpus in the second group unused.
6456 *
6457 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6458 * by noticing the lower domain failed to reach balance and had difficulty
6459 * moving tasks due to affinity constraints.
30ce5dab
PZ
6460 *
6461 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6462 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6463 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6464 * to create an effective group imbalance.
6465 *
6466 * This is a somewhat tricky proposition since the next run might not find the
6467 * group imbalance and decide the groups need to be balanced again. A most
6468 * subtle and fragile situation.
6469 */
6470
6263322c 6471static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6472{
63b2ca30 6473 return group->sgc->imbalance;
30ce5dab
PZ
6474}
6475
b37d9316 6476/*
ea67821b
VG
6477 * group_has_capacity returns true if the group has spare capacity that could
6478 * be used by some tasks.
6479 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6480 * smaller than the number of CPUs or if the utilization is lower than the
6481 * available capacity for CFS tasks.
ea67821b
VG
6482 * For the latter, we use a threshold to stabilize the state, to take into
6483 * account the variance of the tasks' load and to return true if the available
6484 * capacity in meaningful for the load balancer.
6485 * As an example, an available capacity of 1% can appear but it doesn't make
6486 * any benefit for the load balance.
b37d9316 6487 */
ea67821b
VG
6488static inline bool
6489group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6490{
ea67821b
VG
6491 if (sgs->sum_nr_running < sgs->group_weight)
6492 return true;
c61037e9 6493
ea67821b 6494 if ((sgs->group_capacity * 100) >
9e91d61d 6495 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6496 return true;
b37d9316 6497
ea67821b
VG
6498 return false;
6499}
6500
6501/*
6502 * group_is_overloaded returns true if the group has more tasks than it can
6503 * handle.
6504 * group_is_overloaded is not equals to !group_has_capacity because a group
6505 * with the exact right number of tasks, has no more spare capacity but is not
6506 * overloaded so both group_has_capacity and group_is_overloaded return
6507 * false.
6508 */
6509static inline bool
6510group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6511{
6512 if (sgs->sum_nr_running <= sgs->group_weight)
6513 return false;
b37d9316 6514
ea67821b 6515 if ((sgs->group_capacity * 100) <
9e91d61d 6516 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6517 return true;
b37d9316 6518
ea67821b 6519 return false;
b37d9316
PZ
6520}
6521
79a89f92
LY
6522static inline enum
6523group_type group_classify(struct sched_group *group,
6524 struct sg_lb_stats *sgs)
caeb178c 6525{
ea67821b 6526 if (sgs->group_no_capacity)
caeb178c
RR
6527 return group_overloaded;
6528
6529 if (sg_imbalanced(group))
6530 return group_imbalanced;
6531
6532 return group_other;
6533}
6534
1e3c88bd
PZ
6535/**
6536 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6537 * @env: The load balancing environment.
1e3c88bd 6538 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6539 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6540 * @local_group: Does group contain this_cpu.
1e3c88bd 6541 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6542 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6543 */
bd939f45
PZ
6544static inline void update_sg_lb_stats(struct lb_env *env,
6545 struct sched_group *group, int load_idx,
4486edd1
TC
6546 int local_group, struct sg_lb_stats *sgs,
6547 bool *overload)
1e3c88bd 6548{
30ce5dab 6549 unsigned long load;
a426f99c 6550 int i, nr_running;
1e3c88bd 6551
b72ff13c
PZ
6552 memset(sgs, 0, sizeof(*sgs));
6553
b9403130 6554 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6555 struct rq *rq = cpu_rq(i);
6556
1e3c88bd 6557 /* Bias balancing toward cpus of our domain */
6263322c 6558 if (local_group)
04f733b4 6559 load = target_load(i, load_idx);
6263322c 6560 else
1e3c88bd 6561 load = source_load(i, load_idx);
1e3c88bd
PZ
6562
6563 sgs->group_load += load;
9e91d61d 6564 sgs->group_util += cpu_util(i);
65fdac08 6565 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6566
a426f99c
WL
6567 nr_running = rq->nr_running;
6568 if (nr_running > 1)
4486edd1
TC
6569 *overload = true;
6570
0ec8aa00
PZ
6571#ifdef CONFIG_NUMA_BALANCING
6572 sgs->nr_numa_running += rq->nr_numa_running;
6573 sgs->nr_preferred_running += rq->nr_preferred_running;
6574#endif
1e3c88bd 6575 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6576 /*
6577 * No need to call idle_cpu() if nr_running is not 0
6578 */
6579 if (!nr_running && idle_cpu(i))
aae6d3dd 6580 sgs->idle_cpus++;
1e3c88bd
PZ
6581 }
6582
63b2ca30
NP
6583 /* Adjust by relative CPU capacity of the group */
6584 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6585 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6586
dd5feea1 6587 if (sgs->sum_nr_running)
38d0f770 6588 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6589
aae6d3dd 6590 sgs->group_weight = group->group_weight;
b37d9316 6591
ea67821b 6592 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6593 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6594}
6595
532cb4c4
MN
6596/**
6597 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6598 * @env: The load balancing environment.
532cb4c4
MN
6599 * @sds: sched_domain statistics
6600 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6601 * @sgs: sched_group statistics
532cb4c4
MN
6602 *
6603 * Determine if @sg is a busier group than the previously selected
6604 * busiest group.
e69f6186
YB
6605 *
6606 * Return: %true if @sg is a busier group than the previously selected
6607 * busiest group. %false otherwise.
532cb4c4 6608 */
bd939f45 6609static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6610 struct sd_lb_stats *sds,
6611 struct sched_group *sg,
bd939f45 6612 struct sg_lb_stats *sgs)
532cb4c4 6613{
caeb178c 6614 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6615
caeb178c 6616 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6617 return true;
6618
caeb178c
RR
6619 if (sgs->group_type < busiest->group_type)
6620 return false;
6621
6622 if (sgs->avg_load <= busiest->avg_load)
6623 return false;
6624
6625 /* This is the busiest node in its class. */
6626 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6627 return true;
6628
6629 /*
6630 * ASYM_PACKING needs to move all the work to the lowest
6631 * numbered CPUs in the group, therefore mark all groups
6632 * higher than ourself as busy.
6633 */
caeb178c 6634 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6635 if (!sds->busiest)
6636 return true;
6637
6638 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6639 return true;
6640 }
6641
6642 return false;
6643}
6644
0ec8aa00
PZ
6645#ifdef CONFIG_NUMA_BALANCING
6646static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6647{
6648 if (sgs->sum_nr_running > sgs->nr_numa_running)
6649 return regular;
6650 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6651 return remote;
6652 return all;
6653}
6654
6655static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6656{
6657 if (rq->nr_running > rq->nr_numa_running)
6658 return regular;
6659 if (rq->nr_running > rq->nr_preferred_running)
6660 return remote;
6661 return all;
6662}
6663#else
6664static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6665{
6666 return all;
6667}
6668
6669static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6670{
6671 return regular;
6672}
6673#endif /* CONFIG_NUMA_BALANCING */
6674
1e3c88bd 6675/**
461819ac 6676 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6677 * @env: The load balancing environment.
1e3c88bd
PZ
6678 * @sds: variable to hold the statistics for this sched_domain.
6679 */
0ec8aa00 6680static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6681{
bd939f45
PZ
6682 struct sched_domain *child = env->sd->child;
6683 struct sched_group *sg = env->sd->groups;
56cf515b 6684 struct sg_lb_stats tmp_sgs;
1e3c88bd 6685 int load_idx, prefer_sibling = 0;
4486edd1 6686 bool overload = false;
1e3c88bd
PZ
6687
6688 if (child && child->flags & SD_PREFER_SIBLING)
6689 prefer_sibling = 1;
6690
bd939f45 6691 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6692
6693 do {
56cf515b 6694 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6695 int local_group;
6696
bd939f45 6697 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6698 if (local_group) {
6699 sds->local = sg;
6700 sgs = &sds->local_stat;
b72ff13c
PZ
6701
6702 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6703 time_after_eq(jiffies, sg->sgc->next_update))
6704 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6705 }
1e3c88bd 6706
4486edd1
TC
6707 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6708 &overload);
1e3c88bd 6709
b72ff13c
PZ
6710 if (local_group)
6711 goto next_group;
6712
1e3c88bd
PZ
6713 /*
6714 * In case the child domain prefers tasks go to siblings
ea67821b 6715 * first, lower the sg capacity so that we'll try
75dd321d
NR
6716 * and move all the excess tasks away. We lower the capacity
6717 * of a group only if the local group has the capacity to fit
ea67821b
VG
6718 * these excess tasks. The extra check prevents the case where
6719 * you always pull from the heaviest group when it is already
6720 * under-utilized (possible with a large weight task outweighs
6721 * the tasks on the system).
1e3c88bd 6722 */
b72ff13c 6723 if (prefer_sibling && sds->local &&
ea67821b
VG
6724 group_has_capacity(env, &sds->local_stat) &&
6725 (sgs->sum_nr_running > 1)) {
6726 sgs->group_no_capacity = 1;
79a89f92 6727 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6728 }
1e3c88bd 6729
b72ff13c 6730 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6731 sds->busiest = sg;
56cf515b 6732 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6733 }
6734
b72ff13c
PZ
6735next_group:
6736 /* Now, start updating sd_lb_stats */
6737 sds->total_load += sgs->group_load;
63b2ca30 6738 sds->total_capacity += sgs->group_capacity;
b72ff13c 6739
532cb4c4 6740 sg = sg->next;
bd939f45 6741 } while (sg != env->sd->groups);
0ec8aa00
PZ
6742
6743 if (env->sd->flags & SD_NUMA)
6744 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6745
6746 if (!env->sd->parent) {
6747 /* update overload indicator if we are at root domain */
6748 if (env->dst_rq->rd->overload != overload)
6749 env->dst_rq->rd->overload = overload;
6750 }
6751
532cb4c4
MN
6752}
6753
532cb4c4
MN
6754/**
6755 * check_asym_packing - Check to see if the group is packed into the
6756 * sched doman.
6757 *
6758 * This is primarily intended to used at the sibling level. Some
6759 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6760 * case of POWER7, it can move to lower SMT modes only when higher
6761 * threads are idle. When in lower SMT modes, the threads will
6762 * perform better since they share less core resources. Hence when we
6763 * have idle threads, we want them to be the higher ones.
6764 *
6765 * This packing function is run on idle threads. It checks to see if
6766 * the busiest CPU in this domain (core in the P7 case) has a higher
6767 * CPU number than the packing function is being run on. Here we are
6768 * assuming lower CPU number will be equivalent to lower a SMT thread
6769 * number.
6770 *
e69f6186 6771 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6772 * this CPU. The amount of the imbalance is returned in *imbalance.
6773 *
cd96891d 6774 * @env: The load balancing environment.
532cb4c4 6775 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6776 */
bd939f45 6777static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6778{
6779 int busiest_cpu;
6780
bd939f45 6781 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6782 return 0;
6783
6784 if (!sds->busiest)
6785 return 0;
6786
6787 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6788 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6789 return 0;
6790
bd939f45 6791 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6792 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6793 SCHED_CAPACITY_SCALE);
bd939f45 6794
532cb4c4 6795 return 1;
1e3c88bd
PZ
6796}
6797
6798/**
6799 * fix_small_imbalance - Calculate the minor imbalance that exists
6800 * amongst the groups of a sched_domain, during
6801 * load balancing.
cd96891d 6802 * @env: The load balancing environment.
1e3c88bd 6803 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6804 */
bd939f45
PZ
6805static inline
6806void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6807{
63b2ca30 6808 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6809 unsigned int imbn = 2;
dd5feea1 6810 unsigned long scaled_busy_load_per_task;
56cf515b 6811 struct sg_lb_stats *local, *busiest;
1e3c88bd 6812
56cf515b
JK
6813 local = &sds->local_stat;
6814 busiest = &sds->busiest_stat;
1e3c88bd 6815
56cf515b
JK
6816 if (!local->sum_nr_running)
6817 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6818 else if (busiest->load_per_task > local->load_per_task)
6819 imbn = 1;
dd5feea1 6820
56cf515b 6821 scaled_busy_load_per_task =
ca8ce3d0 6822 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6823 busiest->group_capacity;
56cf515b 6824
3029ede3
VD
6825 if (busiest->avg_load + scaled_busy_load_per_task >=
6826 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6827 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6828 return;
6829 }
6830
6831 /*
6832 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6833 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6834 * moving them.
6835 */
6836
63b2ca30 6837 capa_now += busiest->group_capacity *
56cf515b 6838 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6839 capa_now += local->group_capacity *
56cf515b 6840 min(local->load_per_task, local->avg_load);
ca8ce3d0 6841 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6842
6843 /* Amount of load we'd subtract */
a2cd4260 6844 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6845 capa_move += busiest->group_capacity *
56cf515b 6846 min(busiest->load_per_task,
a2cd4260 6847 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6848 }
1e3c88bd
PZ
6849
6850 /* Amount of load we'd add */
63b2ca30 6851 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6852 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6853 tmp = (busiest->avg_load * busiest->group_capacity) /
6854 local->group_capacity;
56cf515b 6855 } else {
ca8ce3d0 6856 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6857 local->group_capacity;
56cf515b 6858 }
63b2ca30 6859 capa_move += local->group_capacity *
3ae11c90 6860 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6861 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6862
6863 /* Move if we gain throughput */
63b2ca30 6864 if (capa_move > capa_now)
56cf515b 6865 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6866}
6867
6868/**
6869 * calculate_imbalance - Calculate the amount of imbalance present within the
6870 * groups of a given sched_domain during load balance.
bd939f45 6871 * @env: load balance environment
1e3c88bd 6872 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6873 */
bd939f45 6874static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6875{
dd5feea1 6876 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6877 struct sg_lb_stats *local, *busiest;
6878
6879 local = &sds->local_stat;
56cf515b 6880 busiest = &sds->busiest_stat;
dd5feea1 6881
caeb178c 6882 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6883 /*
6884 * In the group_imb case we cannot rely on group-wide averages
6885 * to ensure cpu-load equilibrium, look at wider averages. XXX
6886 */
56cf515b
JK
6887 busiest->load_per_task =
6888 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6889 }
6890
1e3c88bd
PZ
6891 /*
6892 * In the presence of smp nice balancing, certain scenarios can have
6893 * max load less than avg load(as we skip the groups at or below
ced549fa 6894 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6895 */
b1885550
VD
6896 if (busiest->avg_load <= sds->avg_load ||
6897 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6898 env->imbalance = 0;
6899 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6900 }
6901
9a5d9ba6
PZ
6902 /*
6903 * If there aren't any idle cpus, avoid creating some.
6904 */
6905 if (busiest->group_type == group_overloaded &&
6906 local->group_type == group_overloaded) {
ea67821b
VG
6907 load_above_capacity = busiest->sum_nr_running *
6908 SCHED_LOAD_SCALE;
6909 if (load_above_capacity > busiest->group_capacity)
6910 load_above_capacity -= busiest->group_capacity;
6911 else
6912 load_above_capacity = ~0UL;
dd5feea1
SS
6913 }
6914
6915 /*
6916 * We're trying to get all the cpus to the average_load, so we don't
6917 * want to push ourselves above the average load, nor do we wish to
6918 * reduce the max loaded cpu below the average load. At the same time,
6919 * we also don't want to reduce the group load below the group capacity
6920 * (so that we can implement power-savings policies etc). Thus we look
6921 * for the minimum possible imbalance.
dd5feea1 6922 */
30ce5dab 6923 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6924
6925 /* How much load to actually move to equalise the imbalance */
56cf515b 6926 env->imbalance = min(
63b2ca30
NP
6927 max_pull * busiest->group_capacity,
6928 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6929 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6930
6931 /*
6932 * if *imbalance is less than the average load per runnable task
25985edc 6933 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6934 * a think about bumping its value to force at least one task to be
6935 * moved
6936 */
56cf515b 6937 if (env->imbalance < busiest->load_per_task)
bd939f45 6938 return fix_small_imbalance(env, sds);
1e3c88bd 6939}
fab47622 6940
1e3c88bd
PZ
6941/******* find_busiest_group() helpers end here *********************/
6942
6943/**
6944 * find_busiest_group - Returns the busiest group within the sched_domain
6945 * if there is an imbalance. If there isn't an imbalance, and
6946 * the user has opted for power-savings, it returns a group whose
6947 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6948 * such a group exists.
6949 *
6950 * Also calculates the amount of weighted load which should be moved
6951 * to restore balance.
6952 *
cd96891d 6953 * @env: The load balancing environment.
1e3c88bd 6954 *
e69f6186 6955 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6956 * - If no imbalance and user has opted for power-savings balance,
6957 * return the least loaded group whose CPUs can be
6958 * put to idle by rebalancing its tasks onto our group.
6959 */
56cf515b 6960static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6961{
56cf515b 6962 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6963 struct sd_lb_stats sds;
6964
147c5fc2 6965 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6966
6967 /*
6968 * Compute the various statistics relavent for load balancing at
6969 * this level.
6970 */
23f0d209 6971 update_sd_lb_stats(env, &sds);
56cf515b
JK
6972 local = &sds.local_stat;
6973 busiest = &sds.busiest_stat;
1e3c88bd 6974
ea67821b 6975 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6976 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6977 check_asym_packing(env, &sds))
532cb4c4
MN
6978 return sds.busiest;
6979
cc57aa8f 6980 /* There is no busy sibling group to pull tasks from */
56cf515b 6981 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6982 goto out_balanced;
6983
ca8ce3d0
NP
6984 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6985 / sds.total_capacity;
b0432d8f 6986
866ab43e
PZ
6987 /*
6988 * If the busiest group is imbalanced the below checks don't
30ce5dab 6989 * work because they assume all things are equal, which typically
866ab43e
PZ
6990 * isn't true due to cpus_allowed constraints and the like.
6991 */
caeb178c 6992 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6993 goto force_balance;
6994
cc57aa8f 6995 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6996 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6997 busiest->group_no_capacity)
fab47622
NR
6998 goto force_balance;
6999
cc57aa8f 7000 /*
9c58c79a 7001 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7002 * don't try and pull any tasks.
7003 */
56cf515b 7004 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7005 goto out_balanced;
7006
cc57aa8f
PZ
7007 /*
7008 * Don't pull any tasks if this group is already above the domain
7009 * average load.
7010 */
56cf515b 7011 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7012 goto out_balanced;
7013
bd939f45 7014 if (env->idle == CPU_IDLE) {
aae6d3dd 7015 /*
43f4d666
VG
7016 * This cpu is idle. If the busiest group is not overloaded
7017 * and there is no imbalance between this and busiest group
7018 * wrt idle cpus, it is balanced. The imbalance becomes
7019 * significant if the diff is greater than 1 otherwise we
7020 * might end up to just move the imbalance on another group
aae6d3dd 7021 */
43f4d666
VG
7022 if ((busiest->group_type != group_overloaded) &&
7023 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7024 goto out_balanced;
c186fafe
PZ
7025 } else {
7026 /*
7027 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7028 * imbalance_pct to be conservative.
7029 */
56cf515b
JK
7030 if (100 * busiest->avg_load <=
7031 env->sd->imbalance_pct * local->avg_load)
c186fafe 7032 goto out_balanced;
aae6d3dd 7033 }
1e3c88bd 7034
fab47622 7035force_balance:
1e3c88bd 7036 /* Looks like there is an imbalance. Compute it */
bd939f45 7037 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7038 return sds.busiest;
7039
7040out_balanced:
bd939f45 7041 env->imbalance = 0;
1e3c88bd
PZ
7042 return NULL;
7043}
7044
7045/*
7046 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7047 */
bd939f45 7048static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7049 struct sched_group *group)
1e3c88bd
PZ
7050{
7051 struct rq *busiest = NULL, *rq;
ced549fa 7052 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7053 int i;
7054
6906a408 7055 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7056 unsigned long capacity, wl;
0ec8aa00
PZ
7057 enum fbq_type rt;
7058
7059 rq = cpu_rq(i);
7060 rt = fbq_classify_rq(rq);
1e3c88bd 7061
0ec8aa00
PZ
7062 /*
7063 * We classify groups/runqueues into three groups:
7064 * - regular: there are !numa tasks
7065 * - remote: there are numa tasks that run on the 'wrong' node
7066 * - all: there is no distinction
7067 *
7068 * In order to avoid migrating ideally placed numa tasks,
7069 * ignore those when there's better options.
7070 *
7071 * If we ignore the actual busiest queue to migrate another
7072 * task, the next balance pass can still reduce the busiest
7073 * queue by moving tasks around inside the node.
7074 *
7075 * If we cannot move enough load due to this classification
7076 * the next pass will adjust the group classification and
7077 * allow migration of more tasks.
7078 *
7079 * Both cases only affect the total convergence complexity.
7080 */
7081 if (rt > env->fbq_type)
7082 continue;
7083
ced549fa 7084 capacity = capacity_of(i);
9d5efe05 7085
6e40f5bb 7086 wl = weighted_cpuload(i);
1e3c88bd 7087
6e40f5bb
TG
7088 /*
7089 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7090 * which is not scaled with the cpu capacity.
6e40f5bb 7091 */
ea67821b
VG
7092
7093 if (rq->nr_running == 1 && wl > env->imbalance &&
7094 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7095 continue;
7096
6e40f5bb
TG
7097 /*
7098 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7099 * the weighted_cpuload() scaled with the cpu capacity, so
7100 * that the load can be moved away from the cpu that is
7101 * potentially running at a lower capacity.
95a79b80 7102 *
ced549fa 7103 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7104 * multiplication to rid ourselves of the division works out
ced549fa
NP
7105 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7106 * our previous maximum.
6e40f5bb 7107 */
ced549fa 7108 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7109 busiest_load = wl;
ced549fa 7110 busiest_capacity = capacity;
1e3c88bd
PZ
7111 busiest = rq;
7112 }
7113 }
7114
7115 return busiest;
7116}
7117
7118/*
7119 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7120 * so long as it is large enough.
7121 */
7122#define MAX_PINNED_INTERVAL 512
7123
7124/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7125DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7126
bd939f45 7127static int need_active_balance(struct lb_env *env)
1af3ed3d 7128{
bd939f45
PZ
7129 struct sched_domain *sd = env->sd;
7130
7131 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7132
7133 /*
7134 * ASYM_PACKING needs to force migrate tasks from busy but
7135 * higher numbered CPUs in order to pack all tasks in the
7136 * lowest numbered CPUs.
7137 */
bd939f45 7138 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7139 return 1;
1af3ed3d
PZ
7140 }
7141
1aaf90a4
VG
7142 /*
7143 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7144 * It's worth migrating the task if the src_cpu's capacity is reduced
7145 * because of other sched_class or IRQs if more capacity stays
7146 * available on dst_cpu.
7147 */
7148 if ((env->idle != CPU_NOT_IDLE) &&
7149 (env->src_rq->cfs.h_nr_running == 1)) {
7150 if ((check_cpu_capacity(env->src_rq, sd)) &&
7151 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7152 return 1;
7153 }
7154
1af3ed3d
PZ
7155 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7156}
7157
969c7921
TH
7158static int active_load_balance_cpu_stop(void *data);
7159
23f0d209
JK
7160static int should_we_balance(struct lb_env *env)
7161{
7162 struct sched_group *sg = env->sd->groups;
7163 struct cpumask *sg_cpus, *sg_mask;
7164 int cpu, balance_cpu = -1;
7165
7166 /*
7167 * In the newly idle case, we will allow all the cpu's
7168 * to do the newly idle load balance.
7169 */
7170 if (env->idle == CPU_NEWLY_IDLE)
7171 return 1;
7172
7173 sg_cpus = sched_group_cpus(sg);
7174 sg_mask = sched_group_mask(sg);
7175 /* Try to find first idle cpu */
7176 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7177 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7178 continue;
7179
7180 balance_cpu = cpu;
7181 break;
7182 }
7183
7184 if (balance_cpu == -1)
7185 balance_cpu = group_balance_cpu(sg);
7186
7187 /*
7188 * First idle cpu or the first cpu(busiest) in this sched group
7189 * is eligible for doing load balancing at this and above domains.
7190 */
b0cff9d8 7191 return balance_cpu == env->dst_cpu;
23f0d209
JK
7192}
7193
1e3c88bd
PZ
7194/*
7195 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7196 * tasks if there is an imbalance.
7197 */
7198static int load_balance(int this_cpu, struct rq *this_rq,
7199 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7200 int *continue_balancing)
1e3c88bd 7201{
88b8dac0 7202 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7203 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7204 struct sched_group *group;
1e3c88bd
PZ
7205 struct rq *busiest;
7206 unsigned long flags;
4ba29684 7207 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7208
8e45cb54
PZ
7209 struct lb_env env = {
7210 .sd = sd,
ddcdf6e7
PZ
7211 .dst_cpu = this_cpu,
7212 .dst_rq = this_rq,
88b8dac0 7213 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7214 .idle = idle,
eb95308e 7215 .loop_break = sched_nr_migrate_break,
b9403130 7216 .cpus = cpus,
0ec8aa00 7217 .fbq_type = all,
163122b7 7218 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7219 };
7220
cfc03118
JK
7221 /*
7222 * For NEWLY_IDLE load_balancing, we don't need to consider
7223 * other cpus in our group
7224 */
e02e60c1 7225 if (idle == CPU_NEWLY_IDLE)
cfc03118 7226 env.dst_grpmask = NULL;
cfc03118 7227
1e3c88bd
PZ
7228 cpumask_copy(cpus, cpu_active_mask);
7229
1e3c88bd
PZ
7230 schedstat_inc(sd, lb_count[idle]);
7231
7232redo:
23f0d209
JK
7233 if (!should_we_balance(&env)) {
7234 *continue_balancing = 0;
1e3c88bd 7235 goto out_balanced;
23f0d209 7236 }
1e3c88bd 7237
23f0d209 7238 group = find_busiest_group(&env);
1e3c88bd
PZ
7239 if (!group) {
7240 schedstat_inc(sd, lb_nobusyg[idle]);
7241 goto out_balanced;
7242 }
7243
b9403130 7244 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7245 if (!busiest) {
7246 schedstat_inc(sd, lb_nobusyq[idle]);
7247 goto out_balanced;
7248 }
7249
78feefc5 7250 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7251
bd939f45 7252 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7253
1aaf90a4
VG
7254 env.src_cpu = busiest->cpu;
7255 env.src_rq = busiest;
7256
1e3c88bd
PZ
7257 ld_moved = 0;
7258 if (busiest->nr_running > 1) {
7259 /*
7260 * Attempt to move tasks. If find_busiest_group has found
7261 * an imbalance but busiest->nr_running <= 1, the group is
7262 * still unbalanced. ld_moved simply stays zero, so it is
7263 * correctly treated as an imbalance.
7264 */
8e45cb54 7265 env.flags |= LBF_ALL_PINNED;
c82513e5 7266 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7267
5d6523eb 7268more_balance:
163122b7 7269 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7270
7271 /*
7272 * cur_ld_moved - load moved in current iteration
7273 * ld_moved - cumulative load moved across iterations
7274 */
163122b7 7275 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7276
7277 /*
163122b7
KT
7278 * We've detached some tasks from busiest_rq. Every
7279 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7280 * unlock busiest->lock, and we are able to be sure
7281 * that nobody can manipulate the tasks in parallel.
7282 * See task_rq_lock() family for the details.
1e3c88bd 7283 */
163122b7
KT
7284
7285 raw_spin_unlock(&busiest->lock);
7286
7287 if (cur_ld_moved) {
7288 attach_tasks(&env);
7289 ld_moved += cur_ld_moved;
7290 }
7291
1e3c88bd 7292 local_irq_restore(flags);
88b8dac0 7293
f1cd0858
JK
7294 if (env.flags & LBF_NEED_BREAK) {
7295 env.flags &= ~LBF_NEED_BREAK;
7296 goto more_balance;
7297 }
7298
88b8dac0
SV
7299 /*
7300 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7301 * us and move them to an alternate dst_cpu in our sched_group
7302 * where they can run. The upper limit on how many times we
7303 * iterate on same src_cpu is dependent on number of cpus in our
7304 * sched_group.
7305 *
7306 * This changes load balance semantics a bit on who can move
7307 * load to a given_cpu. In addition to the given_cpu itself
7308 * (or a ilb_cpu acting on its behalf where given_cpu is
7309 * nohz-idle), we now have balance_cpu in a position to move
7310 * load to given_cpu. In rare situations, this may cause
7311 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7312 * _independently_ and at _same_ time to move some load to
7313 * given_cpu) causing exceess load to be moved to given_cpu.
7314 * This however should not happen so much in practice and
7315 * moreover subsequent load balance cycles should correct the
7316 * excess load moved.
7317 */
6263322c 7318 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7319
7aff2e3a
VD
7320 /* Prevent to re-select dst_cpu via env's cpus */
7321 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7322
78feefc5 7323 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7324 env.dst_cpu = env.new_dst_cpu;
6263322c 7325 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7326 env.loop = 0;
7327 env.loop_break = sched_nr_migrate_break;
e02e60c1 7328
88b8dac0
SV
7329 /*
7330 * Go back to "more_balance" rather than "redo" since we
7331 * need to continue with same src_cpu.
7332 */
7333 goto more_balance;
7334 }
1e3c88bd 7335
6263322c
PZ
7336 /*
7337 * We failed to reach balance because of affinity.
7338 */
7339 if (sd_parent) {
63b2ca30 7340 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7341
afdeee05 7342 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7343 *group_imbalance = 1;
6263322c
PZ
7344 }
7345
1e3c88bd 7346 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7347 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7348 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7349 if (!cpumask_empty(cpus)) {
7350 env.loop = 0;
7351 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7352 goto redo;
bbf18b19 7353 }
afdeee05 7354 goto out_all_pinned;
1e3c88bd
PZ
7355 }
7356 }
7357
7358 if (!ld_moved) {
7359 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7360 /*
7361 * Increment the failure counter only on periodic balance.
7362 * We do not want newidle balance, which can be very
7363 * frequent, pollute the failure counter causing
7364 * excessive cache_hot migrations and active balances.
7365 */
7366 if (idle != CPU_NEWLY_IDLE)
7367 sd->nr_balance_failed++;
1e3c88bd 7368
bd939f45 7369 if (need_active_balance(&env)) {
1e3c88bd
PZ
7370 raw_spin_lock_irqsave(&busiest->lock, flags);
7371
969c7921
TH
7372 /* don't kick the active_load_balance_cpu_stop,
7373 * if the curr task on busiest cpu can't be
7374 * moved to this_cpu
1e3c88bd
PZ
7375 */
7376 if (!cpumask_test_cpu(this_cpu,
fa17b507 7377 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7378 raw_spin_unlock_irqrestore(&busiest->lock,
7379 flags);
8e45cb54 7380 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7381 goto out_one_pinned;
7382 }
7383
969c7921
TH
7384 /*
7385 * ->active_balance synchronizes accesses to
7386 * ->active_balance_work. Once set, it's cleared
7387 * only after active load balance is finished.
7388 */
1e3c88bd
PZ
7389 if (!busiest->active_balance) {
7390 busiest->active_balance = 1;
7391 busiest->push_cpu = this_cpu;
7392 active_balance = 1;
7393 }
7394 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7395
bd939f45 7396 if (active_balance) {
969c7921
TH
7397 stop_one_cpu_nowait(cpu_of(busiest),
7398 active_load_balance_cpu_stop, busiest,
7399 &busiest->active_balance_work);
bd939f45 7400 }
1e3c88bd
PZ
7401
7402 /*
7403 * We've kicked active balancing, reset the failure
7404 * counter.
7405 */
7406 sd->nr_balance_failed = sd->cache_nice_tries+1;
7407 }
7408 } else
7409 sd->nr_balance_failed = 0;
7410
7411 if (likely(!active_balance)) {
7412 /* We were unbalanced, so reset the balancing interval */
7413 sd->balance_interval = sd->min_interval;
7414 } else {
7415 /*
7416 * If we've begun active balancing, start to back off. This
7417 * case may not be covered by the all_pinned logic if there
7418 * is only 1 task on the busy runqueue (because we don't call
163122b7 7419 * detach_tasks).
1e3c88bd
PZ
7420 */
7421 if (sd->balance_interval < sd->max_interval)
7422 sd->balance_interval *= 2;
7423 }
7424
1e3c88bd
PZ
7425 goto out;
7426
7427out_balanced:
afdeee05
VG
7428 /*
7429 * We reach balance although we may have faced some affinity
7430 * constraints. Clear the imbalance flag if it was set.
7431 */
7432 if (sd_parent) {
7433 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7434
7435 if (*group_imbalance)
7436 *group_imbalance = 0;
7437 }
7438
7439out_all_pinned:
7440 /*
7441 * We reach balance because all tasks are pinned at this level so
7442 * we can't migrate them. Let the imbalance flag set so parent level
7443 * can try to migrate them.
7444 */
1e3c88bd
PZ
7445 schedstat_inc(sd, lb_balanced[idle]);
7446
7447 sd->nr_balance_failed = 0;
7448
7449out_one_pinned:
7450 /* tune up the balancing interval */
8e45cb54 7451 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7452 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7453 (sd->balance_interval < sd->max_interval))
7454 sd->balance_interval *= 2;
7455
46e49b38 7456 ld_moved = 0;
1e3c88bd 7457out:
1e3c88bd
PZ
7458 return ld_moved;
7459}
7460
52a08ef1
JL
7461static inline unsigned long
7462get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7463{
7464 unsigned long interval = sd->balance_interval;
7465
7466 if (cpu_busy)
7467 interval *= sd->busy_factor;
7468
7469 /* scale ms to jiffies */
7470 interval = msecs_to_jiffies(interval);
7471 interval = clamp(interval, 1UL, max_load_balance_interval);
7472
7473 return interval;
7474}
7475
7476static inline void
7477update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7478{
7479 unsigned long interval, next;
7480
7481 interval = get_sd_balance_interval(sd, cpu_busy);
7482 next = sd->last_balance + interval;
7483
7484 if (time_after(*next_balance, next))
7485 *next_balance = next;
7486}
7487
1e3c88bd
PZ
7488/*
7489 * idle_balance is called by schedule() if this_cpu is about to become
7490 * idle. Attempts to pull tasks from other CPUs.
7491 */
6e83125c 7492static int idle_balance(struct rq *this_rq)
1e3c88bd 7493{
52a08ef1
JL
7494 unsigned long next_balance = jiffies + HZ;
7495 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7496 struct sched_domain *sd;
7497 int pulled_task = 0;
9bd721c5 7498 u64 curr_cost = 0;
1e3c88bd 7499
6e83125c
PZ
7500 /*
7501 * We must set idle_stamp _before_ calling idle_balance(), such that we
7502 * measure the duration of idle_balance() as idle time.
7503 */
7504 this_rq->idle_stamp = rq_clock(this_rq);
7505
4486edd1
TC
7506 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7507 !this_rq->rd->overload) {
52a08ef1
JL
7508 rcu_read_lock();
7509 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7510 if (sd)
7511 update_next_balance(sd, 0, &next_balance);
7512 rcu_read_unlock();
7513
6e83125c 7514 goto out;
52a08ef1 7515 }
1e3c88bd 7516
f492e12e
PZ
7517 raw_spin_unlock(&this_rq->lock);
7518
48a16753 7519 update_blocked_averages(this_cpu);
dce840a0 7520 rcu_read_lock();
1e3c88bd 7521 for_each_domain(this_cpu, sd) {
23f0d209 7522 int continue_balancing = 1;
9bd721c5 7523 u64 t0, domain_cost;
1e3c88bd
PZ
7524
7525 if (!(sd->flags & SD_LOAD_BALANCE))
7526 continue;
7527
52a08ef1
JL
7528 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7529 update_next_balance(sd, 0, &next_balance);
9bd721c5 7530 break;
52a08ef1 7531 }
9bd721c5 7532
f492e12e 7533 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7534 t0 = sched_clock_cpu(this_cpu);
7535
f492e12e 7536 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7537 sd, CPU_NEWLY_IDLE,
7538 &continue_balancing);
9bd721c5
JL
7539
7540 domain_cost = sched_clock_cpu(this_cpu) - t0;
7541 if (domain_cost > sd->max_newidle_lb_cost)
7542 sd->max_newidle_lb_cost = domain_cost;
7543
7544 curr_cost += domain_cost;
f492e12e 7545 }
1e3c88bd 7546
52a08ef1 7547 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7548
7549 /*
7550 * Stop searching for tasks to pull if there are
7551 * now runnable tasks on this rq.
7552 */
7553 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7554 break;
1e3c88bd 7555 }
dce840a0 7556 rcu_read_unlock();
f492e12e
PZ
7557
7558 raw_spin_lock(&this_rq->lock);
7559
0e5b5337
JL
7560 if (curr_cost > this_rq->max_idle_balance_cost)
7561 this_rq->max_idle_balance_cost = curr_cost;
7562
e5fc6611 7563 /*
0e5b5337
JL
7564 * While browsing the domains, we released the rq lock, a task could
7565 * have been enqueued in the meantime. Since we're not going idle,
7566 * pretend we pulled a task.
e5fc6611 7567 */
0e5b5337 7568 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7569 pulled_task = 1;
e5fc6611 7570
52a08ef1
JL
7571out:
7572 /* Move the next balance forward */
7573 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7574 this_rq->next_balance = next_balance;
9bd721c5 7575
e4aa358b 7576 /* Is there a task of a high priority class? */
46383648 7577 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7578 pulled_task = -1;
7579
38c6ade2 7580 if (pulled_task)
6e83125c
PZ
7581 this_rq->idle_stamp = 0;
7582
3c4017c1 7583 return pulled_task;
1e3c88bd
PZ
7584}
7585
7586/*
969c7921
TH
7587 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7588 * running tasks off the busiest CPU onto idle CPUs. It requires at
7589 * least 1 task to be running on each physical CPU where possible, and
7590 * avoids physical / logical imbalances.
1e3c88bd 7591 */
969c7921 7592static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7593{
969c7921
TH
7594 struct rq *busiest_rq = data;
7595 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7596 int target_cpu = busiest_rq->push_cpu;
969c7921 7597 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7598 struct sched_domain *sd;
e5673f28 7599 struct task_struct *p = NULL;
969c7921
TH
7600
7601 raw_spin_lock_irq(&busiest_rq->lock);
7602
7603 /* make sure the requested cpu hasn't gone down in the meantime */
7604 if (unlikely(busiest_cpu != smp_processor_id() ||
7605 !busiest_rq->active_balance))
7606 goto out_unlock;
1e3c88bd
PZ
7607
7608 /* Is there any task to move? */
7609 if (busiest_rq->nr_running <= 1)
969c7921 7610 goto out_unlock;
1e3c88bd
PZ
7611
7612 /*
7613 * This condition is "impossible", if it occurs
7614 * we need to fix it. Originally reported by
7615 * Bjorn Helgaas on a 128-cpu setup.
7616 */
7617 BUG_ON(busiest_rq == target_rq);
7618
1e3c88bd 7619 /* Search for an sd spanning us and the target CPU. */
dce840a0 7620 rcu_read_lock();
1e3c88bd
PZ
7621 for_each_domain(target_cpu, sd) {
7622 if ((sd->flags & SD_LOAD_BALANCE) &&
7623 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7624 break;
7625 }
7626
7627 if (likely(sd)) {
8e45cb54
PZ
7628 struct lb_env env = {
7629 .sd = sd,
ddcdf6e7
PZ
7630 .dst_cpu = target_cpu,
7631 .dst_rq = target_rq,
7632 .src_cpu = busiest_rq->cpu,
7633 .src_rq = busiest_rq,
8e45cb54
PZ
7634 .idle = CPU_IDLE,
7635 };
7636
1e3c88bd
PZ
7637 schedstat_inc(sd, alb_count);
7638
e5673f28
KT
7639 p = detach_one_task(&env);
7640 if (p)
1e3c88bd
PZ
7641 schedstat_inc(sd, alb_pushed);
7642 else
7643 schedstat_inc(sd, alb_failed);
7644 }
dce840a0 7645 rcu_read_unlock();
969c7921
TH
7646out_unlock:
7647 busiest_rq->active_balance = 0;
e5673f28
KT
7648 raw_spin_unlock(&busiest_rq->lock);
7649
7650 if (p)
7651 attach_one_task(target_rq, p);
7652
7653 local_irq_enable();
7654
969c7921 7655 return 0;
1e3c88bd
PZ
7656}
7657
d987fc7f
MG
7658static inline int on_null_domain(struct rq *rq)
7659{
7660 return unlikely(!rcu_dereference_sched(rq->sd));
7661}
7662
3451d024 7663#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7664/*
7665 * idle load balancing details
83cd4fe2
VP
7666 * - When one of the busy CPUs notice that there may be an idle rebalancing
7667 * needed, they will kick the idle load balancer, which then does idle
7668 * load balancing for all the idle CPUs.
7669 */
1e3c88bd 7670static struct {
83cd4fe2 7671 cpumask_var_t idle_cpus_mask;
0b005cf5 7672 atomic_t nr_cpus;
83cd4fe2
VP
7673 unsigned long next_balance; /* in jiffy units */
7674} nohz ____cacheline_aligned;
1e3c88bd 7675
3dd0337d 7676static inline int find_new_ilb(void)
1e3c88bd 7677{
0b005cf5 7678 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7679
786d6dc7
SS
7680 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7681 return ilb;
7682
7683 return nr_cpu_ids;
1e3c88bd 7684}
1e3c88bd 7685
83cd4fe2
VP
7686/*
7687 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7688 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7689 * CPU (if there is one).
7690 */
0aeeeeba 7691static void nohz_balancer_kick(void)
83cd4fe2
VP
7692{
7693 int ilb_cpu;
7694
7695 nohz.next_balance++;
7696
3dd0337d 7697 ilb_cpu = find_new_ilb();
83cd4fe2 7698
0b005cf5
SS
7699 if (ilb_cpu >= nr_cpu_ids)
7700 return;
83cd4fe2 7701
cd490c5b 7702 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7703 return;
7704 /*
7705 * Use smp_send_reschedule() instead of resched_cpu().
7706 * This way we generate a sched IPI on the target cpu which
7707 * is idle. And the softirq performing nohz idle load balance
7708 * will be run before returning from the IPI.
7709 */
7710 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7711 return;
7712}
7713
c1cc017c 7714static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7715{
7716 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7717 /*
7718 * Completely isolated CPUs don't ever set, so we must test.
7719 */
7720 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7721 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7722 atomic_dec(&nohz.nr_cpus);
7723 }
71325960
SS
7724 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7725 }
7726}
7727
69e1e811
SS
7728static inline void set_cpu_sd_state_busy(void)
7729{
7730 struct sched_domain *sd;
37dc6b50 7731 int cpu = smp_processor_id();
69e1e811 7732
69e1e811 7733 rcu_read_lock();
37dc6b50 7734 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7735
7736 if (!sd || !sd->nohz_idle)
7737 goto unlock;
7738 sd->nohz_idle = 0;
7739
63b2ca30 7740 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7741unlock:
69e1e811
SS
7742 rcu_read_unlock();
7743}
7744
7745void set_cpu_sd_state_idle(void)
7746{
7747 struct sched_domain *sd;
37dc6b50 7748 int cpu = smp_processor_id();
69e1e811 7749
69e1e811 7750 rcu_read_lock();
37dc6b50 7751 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7752
7753 if (!sd || sd->nohz_idle)
7754 goto unlock;
7755 sd->nohz_idle = 1;
7756
63b2ca30 7757 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7758unlock:
69e1e811
SS
7759 rcu_read_unlock();
7760}
7761
1e3c88bd 7762/*
c1cc017c 7763 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7764 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7765 */
c1cc017c 7766void nohz_balance_enter_idle(int cpu)
1e3c88bd 7767{
71325960
SS
7768 /*
7769 * If this cpu is going down, then nothing needs to be done.
7770 */
7771 if (!cpu_active(cpu))
7772 return;
7773
c1cc017c
AS
7774 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7775 return;
1e3c88bd 7776
d987fc7f
MG
7777 /*
7778 * If we're a completely isolated CPU, we don't play.
7779 */
7780 if (on_null_domain(cpu_rq(cpu)))
7781 return;
7782
c1cc017c
AS
7783 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7784 atomic_inc(&nohz.nr_cpus);
7785 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7786}
71325960 7787
0db0628d 7788static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7789 unsigned long action, void *hcpu)
7790{
7791 switch (action & ~CPU_TASKS_FROZEN) {
7792 case CPU_DYING:
c1cc017c 7793 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7794 return NOTIFY_OK;
7795 default:
7796 return NOTIFY_DONE;
7797 }
7798}
1e3c88bd
PZ
7799#endif
7800
7801static DEFINE_SPINLOCK(balancing);
7802
49c022e6
PZ
7803/*
7804 * Scale the max load_balance interval with the number of CPUs in the system.
7805 * This trades load-balance latency on larger machines for less cross talk.
7806 */
029632fb 7807void update_max_interval(void)
49c022e6
PZ
7808{
7809 max_load_balance_interval = HZ*num_online_cpus()/10;
7810}
7811
1e3c88bd
PZ
7812/*
7813 * It checks each scheduling domain to see if it is due to be balanced,
7814 * and initiates a balancing operation if so.
7815 *
b9b0853a 7816 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7817 */
f7ed0a89 7818static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7819{
23f0d209 7820 int continue_balancing = 1;
f7ed0a89 7821 int cpu = rq->cpu;
1e3c88bd 7822 unsigned long interval;
04f733b4 7823 struct sched_domain *sd;
1e3c88bd
PZ
7824 /* Earliest time when we have to do rebalance again */
7825 unsigned long next_balance = jiffies + 60*HZ;
7826 int update_next_balance = 0;
f48627e6
JL
7827 int need_serialize, need_decay = 0;
7828 u64 max_cost = 0;
1e3c88bd 7829
48a16753 7830 update_blocked_averages(cpu);
2069dd75 7831
dce840a0 7832 rcu_read_lock();
1e3c88bd 7833 for_each_domain(cpu, sd) {
f48627e6
JL
7834 /*
7835 * Decay the newidle max times here because this is a regular
7836 * visit to all the domains. Decay ~1% per second.
7837 */
7838 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7839 sd->max_newidle_lb_cost =
7840 (sd->max_newidle_lb_cost * 253) / 256;
7841 sd->next_decay_max_lb_cost = jiffies + HZ;
7842 need_decay = 1;
7843 }
7844 max_cost += sd->max_newidle_lb_cost;
7845
1e3c88bd
PZ
7846 if (!(sd->flags & SD_LOAD_BALANCE))
7847 continue;
7848
f48627e6
JL
7849 /*
7850 * Stop the load balance at this level. There is another
7851 * CPU in our sched group which is doing load balancing more
7852 * actively.
7853 */
7854 if (!continue_balancing) {
7855 if (need_decay)
7856 continue;
7857 break;
7858 }
7859
52a08ef1 7860 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7861
7862 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7863 if (need_serialize) {
7864 if (!spin_trylock(&balancing))
7865 goto out;
7866 }
7867
7868 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7869 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7870 /*
6263322c 7871 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7872 * env->dst_cpu, so we can't know our idle
7873 * state even if we migrated tasks. Update it.
1e3c88bd 7874 */
de5eb2dd 7875 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7876 }
7877 sd->last_balance = jiffies;
52a08ef1 7878 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7879 }
7880 if (need_serialize)
7881 spin_unlock(&balancing);
7882out:
7883 if (time_after(next_balance, sd->last_balance + interval)) {
7884 next_balance = sd->last_balance + interval;
7885 update_next_balance = 1;
7886 }
f48627e6
JL
7887 }
7888 if (need_decay) {
1e3c88bd 7889 /*
f48627e6
JL
7890 * Ensure the rq-wide value also decays but keep it at a
7891 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7892 */
f48627e6
JL
7893 rq->max_idle_balance_cost =
7894 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7895 }
dce840a0 7896 rcu_read_unlock();
1e3c88bd
PZ
7897
7898 /*
7899 * next_balance will be updated only when there is a need.
7900 * When the cpu is attached to null domain for ex, it will not be
7901 * updated.
7902 */
c5afb6a8 7903 if (likely(update_next_balance)) {
1e3c88bd 7904 rq->next_balance = next_balance;
c5afb6a8
VG
7905
7906#ifdef CONFIG_NO_HZ_COMMON
7907 /*
7908 * If this CPU has been elected to perform the nohz idle
7909 * balance. Other idle CPUs have already rebalanced with
7910 * nohz_idle_balance() and nohz.next_balance has been
7911 * updated accordingly. This CPU is now running the idle load
7912 * balance for itself and we need to update the
7913 * nohz.next_balance accordingly.
7914 */
7915 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7916 nohz.next_balance = rq->next_balance;
7917#endif
7918 }
1e3c88bd
PZ
7919}
7920
3451d024 7921#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7922/*
3451d024 7923 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7924 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7925 */
208cb16b 7926static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7927{
208cb16b 7928 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7929 struct rq *rq;
7930 int balance_cpu;
c5afb6a8
VG
7931 /* Earliest time when we have to do rebalance again */
7932 unsigned long next_balance = jiffies + 60*HZ;
7933 int update_next_balance = 0;
83cd4fe2 7934
1c792db7
SS
7935 if (idle != CPU_IDLE ||
7936 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7937 goto end;
83cd4fe2
VP
7938
7939 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7940 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7941 continue;
7942
7943 /*
7944 * If this cpu gets work to do, stop the load balancing
7945 * work being done for other cpus. Next load
7946 * balancing owner will pick it up.
7947 */
1c792db7 7948 if (need_resched())
83cd4fe2 7949 break;
83cd4fe2 7950
5ed4f1d9
VG
7951 rq = cpu_rq(balance_cpu);
7952
ed61bbc6
TC
7953 /*
7954 * If time for next balance is due,
7955 * do the balance.
7956 */
7957 if (time_after_eq(jiffies, rq->next_balance)) {
7958 raw_spin_lock_irq(&rq->lock);
7959 update_rq_clock(rq);
be68a682 7960 update_cpu_load_idle(rq);
ed61bbc6
TC
7961 raw_spin_unlock_irq(&rq->lock);
7962 rebalance_domains(rq, CPU_IDLE);
7963 }
83cd4fe2 7964
c5afb6a8
VG
7965 if (time_after(next_balance, rq->next_balance)) {
7966 next_balance = rq->next_balance;
7967 update_next_balance = 1;
7968 }
83cd4fe2 7969 }
c5afb6a8
VG
7970
7971 /*
7972 * next_balance will be updated only when there is a need.
7973 * When the CPU is attached to null domain for ex, it will not be
7974 * updated.
7975 */
7976 if (likely(update_next_balance))
7977 nohz.next_balance = next_balance;
1c792db7
SS
7978end:
7979 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7980}
7981
7982/*
0b005cf5 7983 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7984 * of an idle cpu in the system.
0b005cf5 7985 * - This rq has more than one task.
1aaf90a4
VG
7986 * - This rq has at least one CFS task and the capacity of the CPU is
7987 * significantly reduced because of RT tasks or IRQs.
7988 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7989 * multiple busy cpu.
0b005cf5
SS
7990 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7991 * domain span are idle.
83cd4fe2 7992 */
1aaf90a4 7993static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7994{
7995 unsigned long now = jiffies;
0b005cf5 7996 struct sched_domain *sd;
63b2ca30 7997 struct sched_group_capacity *sgc;
4a725627 7998 int nr_busy, cpu = rq->cpu;
1aaf90a4 7999 bool kick = false;
83cd4fe2 8000
4a725627 8001 if (unlikely(rq->idle_balance))
1aaf90a4 8002 return false;
83cd4fe2 8003
1c792db7
SS
8004 /*
8005 * We may be recently in ticked or tickless idle mode. At the first
8006 * busy tick after returning from idle, we will update the busy stats.
8007 */
69e1e811 8008 set_cpu_sd_state_busy();
c1cc017c 8009 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8010
8011 /*
8012 * None are in tickless mode and hence no need for NOHZ idle load
8013 * balancing.
8014 */
8015 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8016 return false;
1c792db7
SS
8017
8018 if (time_before(now, nohz.next_balance))
1aaf90a4 8019 return false;
83cd4fe2 8020
0b005cf5 8021 if (rq->nr_running >= 2)
1aaf90a4 8022 return true;
83cd4fe2 8023
067491b7 8024 rcu_read_lock();
37dc6b50 8025 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8026 if (sd) {
63b2ca30
NP
8027 sgc = sd->groups->sgc;
8028 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8029
1aaf90a4
VG
8030 if (nr_busy > 1) {
8031 kick = true;
8032 goto unlock;
8033 }
8034
83cd4fe2 8035 }
37dc6b50 8036
1aaf90a4
VG
8037 sd = rcu_dereference(rq->sd);
8038 if (sd) {
8039 if ((rq->cfs.h_nr_running >= 1) &&
8040 check_cpu_capacity(rq, sd)) {
8041 kick = true;
8042 goto unlock;
8043 }
8044 }
37dc6b50 8045
1aaf90a4 8046 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8047 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8048 sched_domain_span(sd)) < cpu)) {
8049 kick = true;
8050 goto unlock;
8051 }
067491b7 8052
1aaf90a4 8053unlock:
067491b7 8054 rcu_read_unlock();
1aaf90a4 8055 return kick;
83cd4fe2
VP
8056}
8057#else
208cb16b 8058static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8059#endif
8060
8061/*
8062 * run_rebalance_domains is triggered when needed from the scheduler tick.
8063 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8064 */
1e3c88bd
PZ
8065static void run_rebalance_domains(struct softirq_action *h)
8066{
208cb16b 8067 struct rq *this_rq = this_rq();
6eb57e0d 8068 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8069 CPU_IDLE : CPU_NOT_IDLE;
8070
1e3c88bd 8071 /*
83cd4fe2 8072 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8073 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8074 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8075 * give the idle cpus a chance to load balance. Else we may
8076 * load balance only within the local sched_domain hierarchy
8077 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8078 */
208cb16b 8079 nohz_idle_balance(this_rq, idle);
d4573c3e 8080 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8081}
8082
1e3c88bd
PZ
8083/*
8084 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8085 */
7caff66f 8086void trigger_load_balance(struct rq *rq)
1e3c88bd 8087{
1e3c88bd 8088 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8089 if (unlikely(on_null_domain(rq)))
8090 return;
8091
8092 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8093 raise_softirq(SCHED_SOFTIRQ);
3451d024 8094#ifdef CONFIG_NO_HZ_COMMON
c726099e 8095 if (nohz_kick_needed(rq))
0aeeeeba 8096 nohz_balancer_kick();
83cd4fe2 8097#endif
1e3c88bd
PZ
8098}
8099
0bcdcf28
CE
8100static void rq_online_fair(struct rq *rq)
8101{
8102 update_sysctl();
0e59bdae
KT
8103
8104 update_runtime_enabled(rq);
0bcdcf28
CE
8105}
8106
8107static void rq_offline_fair(struct rq *rq)
8108{
8109 update_sysctl();
a4c96ae3
PB
8110
8111 /* Ensure any throttled groups are reachable by pick_next_task */
8112 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8113}
8114
55e12e5e 8115#endif /* CONFIG_SMP */
e1d1484f 8116
bf0f6f24
IM
8117/*
8118 * scheduler tick hitting a task of our scheduling class:
8119 */
8f4d37ec 8120static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8121{
8122 struct cfs_rq *cfs_rq;
8123 struct sched_entity *se = &curr->se;
8124
8125 for_each_sched_entity(se) {
8126 cfs_rq = cfs_rq_of(se);
8f4d37ec 8127 entity_tick(cfs_rq, se, queued);
bf0f6f24 8128 }
18bf2805 8129
b52da86e 8130 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8131 task_tick_numa(rq, curr);
bf0f6f24
IM
8132}
8133
8134/*
cd29fe6f
PZ
8135 * called on fork with the child task as argument from the parent's context
8136 * - child not yet on the tasklist
8137 * - preemption disabled
bf0f6f24 8138 */
cd29fe6f 8139static void task_fork_fair(struct task_struct *p)
bf0f6f24 8140{
4fc420c9
DN
8141 struct cfs_rq *cfs_rq;
8142 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8143 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8144 struct rq *rq = this_rq();
8145 unsigned long flags;
8146
05fa785c 8147 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8148
861d034e
PZ
8149 update_rq_clock(rq);
8150
4fc420c9
DN
8151 cfs_rq = task_cfs_rq(current);
8152 curr = cfs_rq->curr;
8153
6c9a27f5
DN
8154 /*
8155 * Not only the cpu but also the task_group of the parent might have
8156 * been changed after parent->se.parent,cfs_rq were copied to
8157 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8158 * of child point to valid ones.
8159 */
8160 rcu_read_lock();
8161 __set_task_cpu(p, this_cpu);
8162 rcu_read_unlock();
bf0f6f24 8163
7109c442 8164 update_curr(cfs_rq);
cd29fe6f 8165
b5d9d734
MG
8166 if (curr)
8167 se->vruntime = curr->vruntime;
aeb73b04 8168 place_entity(cfs_rq, se, 1);
4d78e7b6 8169
cd29fe6f 8170 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8171 /*
edcb60a3
IM
8172 * Upon rescheduling, sched_class::put_prev_task() will place
8173 * 'current' within the tree based on its new key value.
8174 */
4d78e7b6 8175 swap(curr->vruntime, se->vruntime);
8875125e 8176 resched_curr(rq);
4d78e7b6 8177 }
bf0f6f24 8178
88ec22d3
PZ
8179 se->vruntime -= cfs_rq->min_vruntime;
8180
05fa785c 8181 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8182}
8183
cb469845
SR
8184/*
8185 * Priority of the task has changed. Check to see if we preempt
8186 * the current task.
8187 */
da7a735e
PZ
8188static void
8189prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8190{
da0c1e65 8191 if (!task_on_rq_queued(p))
da7a735e
PZ
8192 return;
8193
cb469845
SR
8194 /*
8195 * Reschedule if we are currently running on this runqueue and
8196 * our priority decreased, or if we are not currently running on
8197 * this runqueue and our priority is higher than the current's
8198 */
da7a735e 8199 if (rq->curr == p) {
cb469845 8200 if (p->prio > oldprio)
8875125e 8201 resched_curr(rq);
cb469845 8202 } else
15afe09b 8203 check_preempt_curr(rq, p, 0);
cb469845
SR
8204}
8205
daa59407 8206static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8207{
8208 struct sched_entity *se = &p->se;
da7a735e
PZ
8209
8210 /*
daa59407
BP
8211 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8212 * the dequeue_entity(.flags=0) will already have normalized the
8213 * vruntime.
8214 */
8215 if (p->on_rq)
8216 return true;
8217
8218 /*
8219 * When !on_rq, vruntime of the task has usually NOT been normalized.
8220 * But there are some cases where it has already been normalized:
da7a735e 8221 *
daa59407
BP
8222 * - A forked child which is waiting for being woken up by
8223 * wake_up_new_task().
8224 * - A task which has been woken up by try_to_wake_up() and
8225 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8226 */
daa59407
BP
8227 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8228 return true;
8229
8230 return false;
8231}
8232
8233static void detach_task_cfs_rq(struct task_struct *p)
8234{
8235 struct sched_entity *se = &p->se;
8236 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8237
8238 if (!vruntime_normalized(p)) {
da7a735e
PZ
8239 /*
8240 * Fix up our vruntime so that the current sleep doesn't
8241 * cause 'unlimited' sleep bonus.
8242 */
8243 place_entity(cfs_rq, se, 0);
8244 se->vruntime -= cfs_rq->min_vruntime;
8245 }
9ee474f5 8246
9d89c257 8247 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8248 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8249}
8250
daa59407 8251static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8252{
f36c019c 8253 struct sched_entity *se = &p->se;
daa59407 8254 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8255
8256#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8257 /*
8258 * Since the real-depth could have been changed (only FAIR
8259 * class maintain depth value), reset depth properly.
8260 */
8261 se->depth = se->parent ? se->parent->depth + 1 : 0;
8262#endif
7855a35a 8263
6efdb105 8264 /* Synchronize task with its cfs_rq */
daa59407
BP
8265 attach_entity_load_avg(cfs_rq, se);
8266
8267 if (!vruntime_normalized(p))
8268 se->vruntime += cfs_rq->min_vruntime;
8269}
6efdb105 8270
daa59407
BP
8271static void switched_from_fair(struct rq *rq, struct task_struct *p)
8272{
8273 detach_task_cfs_rq(p);
8274}
8275
8276static void switched_to_fair(struct rq *rq, struct task_struct *p)
8277{
8278 attach_task_cfs_rq(p);
7855a35a 8279
daa59407 8280 if (task_on_rq_queued(p)) {
7855a35a 8281 /*
daa59407
BP
8282 * We were most likely switched from sched_rt, so
8283 * kick off the schedule if running, otherwise just see
8284 * if we can still preempt the current task.
7855a35a 8285 */
daa59407
BP
8286 if (rq->curr == p)
8287 resched_curr(rq);
8288 else
8289 check_preempt_curr(rq, p, 0);
7855a35a 8290 }
cb469845
SR
8291}
8292
83b699ed
SV
8293/* Account for a task changing its policy or group.
8294 *
8295 * This routine is mostly called to set cfs_rq->curr field when a task
8296 * migrates between groups/classes.
8297 */
8298static void set_curr_task_fair(struct rq *rq)
8299{
8300 struct sched_entity *se = &rq->curr->se;
8301
ec12cb7f
PT
8302 for_each_sched_entity(se) {
8303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8304
8305 set_next_entity(cfs_rq, se);
8306 /* ensure bandwidth has been allocated on our new cfs_rq */
8307 account_cfs_rq_runtime(cfs_rq, 0);
8308 }
83b699ed
SV
8309}
8310
029632fb
PZ
8311void init_cfs_rq(struct cfs_rq *cfs_rq)
8312{
8313 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8314 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8315#ifndef CONFIG_64BIT
8316 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8317#endif
141965c7 8318#ifdef CONFIG_SMP
9d89c257
YD
8319 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8320 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8321#endif
029632fb
PZ
8322}
8323
810b3817 8324#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8325static void task_move_group_fair(struct task_struct *p)
810b3817 8326{
daa59407 8327 detach_task_cfs_rq(p);
b2b5ce02 8328 set_task_rq(p, task_cpu(p));
6efdb105
BP
8329
8330#ifdef CONFIG_SMP
8331 /* Tell se's cfs_rq has been changed -- migrated */
8332 p->se.avg.last_update_time = 0;
8333#endif
daa59407 8334 attach_task_cfs_rq(p);
810b3817 8335}
029632fb
PZ
8336
8337void free_fair_sched_group(struct task_group *tg)
8338{
8339 int i;
8340
8341 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8342
8343 for_each_possible_cpu(i) {
8344 if (tg->cfs_rq)
8345 kfree(tg->cfs_rq[i]);
6fe1f348 8346 if (tg->se)
029632fb
PZ
8347 kfree(tg->se[i]);
8348 }
8349
8350 kfree(tg->cfs_rq);
8351 kfree(tg->se);
8352}
8353
8354int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8355{
8356 struct cfs_rq *cfs_rq;
8357 struct sched_entity *se;
8358 int i;
8359
8360 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8361 if (!tg->cfs_rq)
8362 goto err;
8363 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8364 if (!tg->se)
8365 goto err;
8366
8367 tg->shares = NICE_0_LOAD;
8368
8369 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8370
8371 for_each_possible_cpu(i) {
8372 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8373 GFP_KERNEL, cpu_to_node(i));
8374 if (!cfs_rq)
8375 goto err;
8376
8377 se = kzalloc_node(sizeof(struct sched_entity),
8378 GFP_KERNEL, cpu_to_node(i));
8379 if (!se)
8380 goto err_free_rq;
8381
8382 init_cfs_rq(cfs_rq);
8383 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8384 init_entity_runnable_average(se);
029632fb
PZ
8385 }
8386
8387 return 1;
8388
8389err_free_rq:
8390 kfree(cfs_rq);
8391err:
8392 return 0;
8393}
8394
6fe1f348 8395void unregister_fair_sched_group(struct task_group *tg)
029632fb 8396{
029632fb 8397 unsigned long flags;
6fe1f348
PZ
8398 struct rq *rq;
8399 int cpu;
029632fb 8400
6fe1f348
PZ
8401 for_each_possible_cpu(cpu) {
8402 if (tg->se[cpu])
8403 remove_entity_load_avg(tg->se[cpu]);
029632fb 8404
6fe1f348
PZ
8405 /*
8406 * Only empty task groups can be destroyed; so we can speculatively
8407 * check on_list without danger of it being re-added.
8408 */
8409 if (!tg->cfs_rq[cpu]->on_list)
8410 continue;
8411
8412 rq = cpu_rq(cpu);
8413
8414 raw_spin_lock_irqsave(&rq->lock, flags);
8415 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8416 raw_spin_unlock_irqrestore(&rq->lock, flags);
8417 }
029632fb
PZ
8418}
8419
8420void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8421 struct sched_entity *se, int cpu,
8422 struct sched_entity *parent)
8423{
8424 struct rq *rq = cpu_rq(cpu);
8425
8426 cfs_rq->tg = tg;
8427 cfs_rq->rq = rq;
029632fb
PZ
8428 init_cfs_rq_runtime(cfs_rq);
8429
8430 tg->cfs_rq[cpu] = cfs_rq;
8431 tg->se[cpu] = se;
8432
8433 /* se could be NULL for root_task_group */
8434 if (!se)
8435 return;
8436
fed14d45 8437 if (!parent) {
029632fb 8438 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8439 se->depth = 0;
8440 } else {
029632fb 8441 se->cfs_rq = parent->my_q;
fed14d45
PZ
8442 se->depth = parent->depth + 1;
8443 }
029632fb
PZ
8444
8445 se->my_q = cfs_rq;
0ac9b1c2
PT
8446 /* guarantee group entities always have weight */
8447 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8448 se->parent = parent;
8449}
8450
8451static DEFINE_MUTEX(shares_mutex);
8452
8453int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8454{
8455 int i;
8456 unsigned long flags;
8457
8458 /*
8459 * We can't change the weight of the root cgroup.
8460 */
8461 if (!tg->se[0])
8462 return -EINVAL;
8463
8464 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8465
8466 mutex_lock(&shares_mutex);
8467 if (tg->shares == shares)
8468 goto done;
8469
8470 tg->shares = shares;
8471 for_each_possible_cpu(i) {
8472 struct rq *rq = cpu_rq(i);
8473 struct sched_entity *se;
8474
8475 se = tg->se[i];
8476 /* Propagate contribution to hierarchy */
8477 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8478
8479 /* Possible calls to update_curr() need rq clock */
8480 update_rq_clock(rq);
17bc14b7 8481 for_each_sched_entity(se)
029632fb
PZ
8482 update_cfs_shares(group_cfs_rq(se));
8483 raw_spin_unlock_irqrestore(&rq->lock, flags);
8484 }
8485
8486done:
8487 mutex_unlock(&shares_mutex);
8488 return 0;
8489}
8490#else /* CONFIG_FAIR_GROUP_SCHED */
8491
8492void free_fair_sched_group(struct task_group *tg) { }
8493
8494int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8495{
8496 return 1;
8497}
8498
6fe1f348 8499void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8500
8501#endif /* CONFIG_FAIR_GROUP_SCHED */
8502
810b3817 8503
6d686f45 8504static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8505{
8506 struct sched_entity *se = &task->se;
0d721cea
PW
8507 unsigned int rr_interval = 0;
8508
8509 /*
8510 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8511 * idle runqueue:
8512 */
0d721cea 8513 if (rq->cfs.load.weight)
a59f4e07 8514 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8515
8516 return rr_interval;
8517}
8518
bf0f6f24
IM
8519/*
8520 * All the scheduling class methods:
8521 */
029632fb 8522const struct sched_class fair_sched_class = {
5522d5d5 8523 .next = &idle_sched_class,
bf0f6f24
IM
8524 .enqueue_task = enqueue_task_fair,
8525 .dequeue_task = dequeue_task_fair,
8526 .yield_task = yield_task_fair,
d95f4122 8527 .yield_to_task = yield_to_task_fair,
bf0f6f24 8528
2e09bf55 8529 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8530
8531 .pick_next_task = pick_next_task_fair,
8532 .put_prev_task = put_prev_task_fair,
8533
681f3e68 8534#ifdef CONFIG_SMP
4ce72a2c 8535 .select_task_rq = select_task_rq_fair,
0a74bef8 8536 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8537
0bcdcf28
CE
8538 .rq_online = rq_online_fair,
8539 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8540
8541 .task_waking = task_waking_fair,
12695578 8542 .task_dead = task_dead_fair,
c5b28038 8543 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8544#endif
bf0f6f24 8545
83b699ed 8546 .set_curr_task = set_curr_task_fair,
bf0f6f24 8547 .task_tick = task_tick_fair,
cd29fe6f 8548 .task_fork = task_fork_fair,
cb469845
SR
8549
8550 .prio_changed = prio_changed_fair,
da7a735e 8551 .switched_from = switched_from_fair,
cb469845 8552 .switched_to = switched_to_fair,
810b3817 8553
0d721cea
PW
8554 .get_rr_interval = get_rr_interval_fair,
8555
6e998916
SG
8556 .update_curr = update_curr_fair,
8557
810b3817 8558#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8559 .task_move_group = task_move_group_fair,
810b3817 8560#endif
bf0f6f24
IM
8561};
8562
8563#ifdef CONFIG_SCHED_DEBUG
029632fb 8564void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8565{
bf0f6f24
IM
8566 struct cfs_rq *cfs_rq;
8567
5973e5b9 8568 rcu_read_lock();
c3b64f1e 8569 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8570 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8571 rcu_read_unlock();
bf0f6f24 8572}
397f2378
SD
8573
8574#ifdef CONFIG_NUMA_BALANCING
8575void show_numa_stats(struct task_struct *p, struct seq_file *m)
8576{
8577 int node;
8578 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8579
8580 for_each_online_node(node) {
8581 if (p->numa_faults) {
8582 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8583 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8584 }
8585 if (p->numa_group) {
8586 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8587 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8588 }
8589 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8590 }
8591}
8592#endif /* CONFIG_NUMA_BALANCING */
8593#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8594
8595__init void init_sched_fair_class(void)
8596{
8597#ifdef CONFIG_SMP
8598 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8599
3451d024 8600#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8601 nohz.next_balance = jiffies;
029632fb 8602 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8603 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8604#endif
8605#endif /* SMP */
8606
8607}